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ABSTRACT 

 

The Effect of Aging on Timing and Decision Making in Mice: 

Combination of Behavioral, Computational and Neurobiological Approaches 

Ezgi Gür 

Doctor of Philosophy in Psychology 

January 13, 2020 

 

The aim of this thesis was to investigate age-related alterations in interval timing and 

decision-making at the levels of behavioral output and latent variables along with their 

neurobiological correlates in mice. In the first experiment (Chapter 2), age-related 

alterations in interval timing behavior and its neurobiological correlates were investigated 

in young, adult, and old mice using dual peak interval procedure. Behavioral outputs were 

evaluated to make inferences regarding the source of variability in timing behavior within 

the framework of Scalar Expectancy Theory. In the second experiment (Chapter 3), in 

addition to age-related changes in interval timing ability, how probabilistic information 

is integrated into temporal decisions was investigated in young and old mice using the 

switch paradigm. In the third experiment (Chapter 4), we expanded the scope of our study 

to include perceptual decisions and investigated how latent variables of simple perceptual 

decision process changes with aging and the neurobiological correlates of these age-

related changes in young, adult and old mice using a bright discrimination task we adapted 

for mice. 

In both first and second experiments, we found that the core timing ability of old mice 

was intact; however, they exhibited a pronounced deficit in termination of an ongoing 

timed response. In the first experiment, we also found that the acquisition of response 

termination took a longer time and the contribution of threshold variance relative to 

clock/memory variance was higher in old mice. In the second experiment, the observed 

deficit disappeared when mice were supposed to adopt a switch strategy from a low 

probability short option to a high probability long option as opposed to switching from a 

high probability short option to a high probability long option. Consequently, we 

suggested that such a deficit might be due to age-dependent changes in the decisional 

component of interval timing. Decrements in both dopaminergic (VTA & SNc) and 

cholinergic (MS/DB complex) neuron counts and dopaminergic axon terminal densities 

(DLS & DMS) were evident in old mice (Experiment 1). From all these neurobiological 

measures the number of dopaminergic neurons in VTA and the number of cholinergic 

neurons in MS/DB complex were negatively correlated with the time of response 

termination and the acquisition of response termination, respectively, which pointed at 

the role of dopaminergic and cholinergic functions in the observed age-dependent 

alterations in timing behavior. In the third experiment, we found that brightness 

discrimination accuracy was lower in old mice with no difference in response times. 

Modeling of the decision outputs within the framework of the Hierarchical Drift Diffusion 
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Model revealed that observed accuracy difference was due to a decrease in the quality of 

evidence integration (i.e., drift rate) during the decision-making process suggesting 

slowing down of information processing in aging in the domain of perceptual decision 

making. The quality of evidence integration was positively correlated with mesocortical 

(number of dopaminergic neurons in VTA) and nigrostriatal (density of dopaminergic 

axon terminals in DMS) dopaminergic function. 

Overall, the results of these three experiments suggest that a healthy aging process is 

characterized by different deficits (i.e. decision component vs. information processing) in 

different cognitive domains (i.e. interval timing vs. decision making) despite their 

overlapping neurobiological correlates. Taken together, these results constitute a 

comprehensive characterization of a healthy cognitive aging process in a mouse model of 

cognitive aging based on behavior, cognition, and neurobiology and highlight the 

translational value of animal models of cognitive aging. 
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Chapter 1  

 

 

INTRODUCTION 

 

The decline in cognitive health accompanies aging has profound effects on one’s well-

being and quality of life. The cognitive decline might interfere with everyday activities, 

social life, and one’s profession depending on the domain and extent of the deficit. 

Understanding the nature of the cognitive decline in aging, firstly, would allow for 

interventions that could delay, slow down or prevent this decline and thereby increase the 

quality of life for the elderly. Secondly, the cognitive and neurobiological changes that 

arise long before the recognition of symptoms of some neurodegenerative disorders could 

be distinguished by isolating cognitive alterations observed in healthy aging, both in 

qualitative and quantitative terms (Deary et al., 2009; Harada et al., 2013). Therefore, 

investigation of cognitive decline in aging along with associated neurobiological 

mechanisms is of crucial importance. 

Given the value of animal models in facilitating translational research and methodological 

constraints in human studies, the study of cognitive aging in animal modelsis necessary 

to fully understand the effect of aging on behavioral, cognitive and neurobiological levels. 

In a relatively recent special issue, the studies of cognitive aging across species were 

evaluated and several cognitive domains that are extensively studied across species were 

highlighted. These domains include associative memory, recognition memory, spatial and 

contextual memory, working memory and executive functioning (Roberson et al., 2012). 

From these, memory research domain dominated the studies of animal models of 

cognitive aging. On the other hand, domains such as interval timing and decision making 

which also have widespread relevance for daily functioning were overlooked in the 

comparative investigation of cognitive aging. 
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In fact, previous work reported age-dependent alterations both in interval timing and 

decision making in humans (e.g. Balcı et al., 2009a; Ratcliff et al, 2006a). Moreover, 

neurotransmitter systems (e.g. dopaminergic and cholinergic) and neural pathways (e.g., 

cortico-striatal circuitry) that are subject to change in aging are also implicated in both of 

these cognitive domains (Coull et al., 2011; Forstmann et al., 2010; Marschner et al., 

2005). Importantly, rodents, primates, and humans have homologous neural mechanisms 

supporting interval timing and decision-making processes and both processes can be 

characterized by generative models that enable making inferences about the latent 

variables underlying these processes. Altogether, these factors make interval timing and 

decision-making ideal candidate systems to study cognitive aging in animal models. 

In this thesis, age-dependent alterations in interval timing and decision-making processes 

are investigated from a behavioral, psycho-mechanistically meaningful computational 

(i.e., Hierarchical Drift Diffusion Model and Information Processing variant of Scalar 

Expectancy Theory) and neurobiological (i.e., immunohistochemistry) perspectives. 

Given that animal models provide useful insight regarding the cognitive architecture of 

humans, the mouse model of cognitive aging is used in three different experiments. 

1.1 Interval Timing 

Interval timing ability requires perception, encoding, storage, retrieval, estimation, and 

discrimination of durations in seconds-to-minutes range. Consequently, execution of an 

interval timing task relies on the engagement of different components of the timing 

system such as attention, memory, and decision in addition to a core timing component 

(i.e. hypothetical clock). Aging studies conducted with human participants reported 

changes in the interval timing performance and suggested that these changes are due to 

attention, memory, or clock components depending on the nature and the complexity of 

the timing task (e.g. Lustig, 2003; Perbal et al., 2002; Vanneste et al., 2001). Although 

rodents are often the subjects of interval timing studies, only a limited number of aging 

studies have been conducted with a comparative approach and these studies rarely 

addressed the possible sources of interval timing deficits observed in aging. 

Neurobiological changes leading to interval timing deficits in aging are even less 

understood. In the first experiment (Chapter 2), age-dependent alterations in interval 

timing performance and sources of variability that contributed to behavioral outputs were 
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examined through testing young, adult, and old mice in the peak interval procedure. 

Relationships between behavioral and immunohistochemistry outputs were examined to 

elucidate the neurobiological correlates of age-dependent alterations in interval timing 

behavior. In the second experiment (Chapter 3), we examined how young and old mice 

spontaneously integrate probabilistic information to the temporal decisions for adaptive 

behavioral outputs, in addition to the investigation of age-dependent alterations in timing 

behavior, using a switch task with a pretraining phase (developed earlier in Tosun, Gür 

& Balcı, 2016). 

1.2 Decision Making 

Decision making is the process of choosing one option among others by gathering the 

available information. Perceptual decision making which relies on sensory information is 

usually investigated in the laboratory settings by two-alternative forced-choice paradigms 

and two measures are used to characterize the choice behavior: accuracy and response 

times. In such tasks, decision making in older population is usually characterized by 

slower response times, while the accuracy differences are mostly observed under the 

speed instructions (e.g. Ratcliff et al., 2007; Ratcliff and McKoon, 2008). Although these 

observations were initially attributed to a general slowing down in cognitive processes in 

aging, separate evaluation of the measures collected during a simple choice task does not 

provide any information about the latent variables of the decision process that gives rise 

to both of these decision outputs. On the other hand, computational modeling of decision 

outputs in a unified fashion reveals the differences at the level of latent decision variables. 

For instance, the application of the drift-diffusion model to decision outputs showed that 

slower reaction times of the elderly could be explained by the longer time spent on 

stimulus encoding, response execution, and a cautious response criterion (i.e., decision 

threshold) in a majority of cases (Ratcliff et al, 2006a). At the neural level, our primary 

knowledge about decision-making comes from the studies conducted with human and 

non-human primates. Only with recent methodological developments, several studies 

started to utilize various two alternative forced choice protocols to study decision making 

in rodent models and use modeling to understand the latent decision variables along with 

their neural correlates. To our knowledge, age-dependent alterations in these latent 

variables and their neurobiological correlates have not been studied in a mouse model of 

cognitive aging yet. In the third experiment (Chapter 4), young, adult, and old mice were 
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tested with a two alternative forced choice (i.e. bright discrimination) task that was 

adapted for mice and the examination of the latent variables are done by fitting the 

decision outputs with the Hierarchical Drift-Diffusion model. The outputs of 

immunohistochemistry were utilized for investigating the neurobiological correlates of 

age-dependent alterations in the latent decision variables. 
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Chapter 2  

 

 

INTERVAL TIMING DEFICITS AND ITS NEUROBIOLOGICAL 

CORRELATES IN AGING MICE 

 

2.1 Abstract 

Age-related neurobiological and cognitive alterations suggest that interval timing (as a 

related function) is also altered in aging, which can, in turn, disrupt timing-dependent 

functions. We investigated alterations in interval timing with aging and accompanying 

neurobiological changes. We tested 4-6, 10-12, and 18-20 months-old mice on the dual-

peak-interval procedure. Results revealed a specific deficit in the termination of timed 

responses (stop-times). The decision processes contributed more to timing variability (vs. 

clock/memory process) in the aged mice. We observed age-dependent reductions in the 

number of dopaminergic neurons in the VTA and SNc, cholinergic neurons in the medial 

septum/diagonal band (MS/DB) complex, and density of dopaminergic axon terminals in 

the DLS/DMS. Negative correlations were found between the number of dopaminergic 

neurons in the VTA and stop times, and the number of cholinergic neurons in MS/DB 

complex and the acquisition of stop times. Our results point at age-dependent changes in 

the decisional components of interval timing and the role of dopaminergic and cholinergic 

functions in these behavioral alterations. 

2.2 Introduction 

Interval timing, a function that relies on neurobiological and cognitive constituents 

subject to change with aging, is also altered in aging (Balcı et al., 2009a). For instance, 

the cholinergic and dopaminergic inputs gradually decline with aging (Marschener et al., 

2005; Schliebs & Arendt, 2011) and both neuromodulatory functions are known to have 
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central roles in interval timing. Specifically, dopamine levels have been associated with 

the internal clock speed (e.g., faster clock speed with higher dopaminergic tone; Meck, 

1983) whereas the cholinergic activity has been associated with the temporal memory 

process (e.g., longer recalled time with lower cholinergic activity; Meck & Church, 1987). 

In support of this assertion, anecdotal reports indeed suggest that subjective time elapses 

faster with age -at least when evaluated retrospectively (Wittmann & Lehnhoff, 2005). In 

line with the slower information-processing account of cognitive aging (Salthouse, 1996), 

this observation can be accounted for by assuming lower clock speed. However, 

experimental human prospective timing studies have led to equivocal findings regarding 

age-related alterations in interval timing (Balcı et al., 2009a; Turgeon et al., 2016; 

Paraskevoudi et al., 2018). The importance of interval timing for many other functions 

from motor planning to decision making to learning makes the study of age-dependent 

alterations in this function particularly relevant for cognitive aging. 

The question of how interval timing is altered with aging has also been investigated in 

animal models particularly using the Peak Interval (PI) Procedure (Roberts, 1981). In this 

procedure, animals are trained to anticipate reward delivery after a fixed delay (Fixed 

Interval, FI, trials) and tested in the longer probe trials without reward (PI trials). 

Anticipatory response data averaged across trials yield a bell curve; its peak time reflects 

the timing accuracy and its width reflects the timing precision. The examination of PI 

data on a trial-by-trial basis reveals a different behavioral pattern (Balcı et al., 2009a; 

Gibbon & Church, 1990). In a single PI trial, subjects transition from low to high rate of 

responding in an abrupt fashion (i.e. start time) and then abruptly transition back to the 

low rate (i.e. stop time) after the omission of anticipated reward. Mean of start and stop 

times is referred to as the middle time and the difference between the start and stop times 

(i.e. spread) indexes timing precision. 

Data gathered from the PI procedure is typically conceptualized within the Scalar 

Expectancy (Timing) Theory framework (SET; Gibbon, 1977; Gibbon et al., 1984). SET 

assumes that the pulses generated by a pacemaker are integrated in the accumulator during 

the timed event. When a reward is delivered, the content of the accumulator is transferred 

to the reference memory during which the clock readings are perturbed by Gaussian 

distributed noise (with mean of 1) resulting in a reference memory density function with 

a veridical mean. At the decision stage, the current clock reading in the accumulator is 
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compared with a random sample from the reference memory according to a ratio rule (i.e., 

|Accumulated Time-Random Memory Sample|/Random Memory Sample). When this 

decision variable first crosses the threshold, the animal starts its anticipatory responding 

and when the reward is omitted, the second crossing of the threshold terminates the 

anticipatory responding.  

Consequently, SET predicts certain correlational patterns between the measures of single-

trial analysis (Gibbon & Church, 1990; 1992). Clock/memory variance would result in 

positive start-stop, start-spread, and middle-spread correlations since a common bias 

would affect these variables in the same direction. Threshold variance would result in 

negative start-stop and start-spread correlations and no middle-spread correlation given 

that an increase in the threshold would separate the start and stop times away from each 

other and thereby increasing the spread without changing the time estimate. Consequently, 

different correlation patterns and their relative strengths would reflect the relative 

contributions of these sources to the timing variability. Empirical studies typically 

reported positive correlations between the start and stop times, middle and spread, and a 

negative correlation between the start and spread in pigeons, rats, and humans (Balcı et 

al., 2013; Cheng & Westwood, 1993; Church et al., 1994).  

In relation to aging, animal PI studies have indeed revealed age-related deficits in timing 

behavior. For instance, Lejeune et al. (1998) found delayed anticipatory timed responses 

of old rats. Meck and his colleagues reported age-related deficits in both temporal 

accuracy (e.g. underestimation of time; Meck et al., 1986; Meck, 2006) and precision 

(Meck et al., 1986). Another study found that the accuracy of temporal responses of rats 

decreased with age while precision showed an increasing trend (Church et al., 2014). In 

a more recent study, different analysis approaches provided inconclusive results regarding 

temporal precision in rats (Garces et al., 2018). From these studies, Garces et al. (2018) 

and Lejeune et al. (1998) also looked at the correlation patterns and reported partially 

different patterns than what is usually observed (e.g. weak start-stop correlations or 

negative middle-spread correlations) without age-related differences. Other studies 

utilizing alternative timing tasks in aging did not provide consistent results either (Cheng 

et al., 2011; LeBlanc et al., 1996; LeBlanc & Soffie, 1999). Briefly, similar to human 

literature, the results of animal studies have also led to inconsistent findings regarding 

how timing is altered in aging. 
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The neurobiological correlates of the age-dependent changes in interval timing are even 

less understood than the behavioral alterations. Earlier studies have found the role 

cholinergic function in age-dependent changes in temporal accuracy (Meck et al., 1986; 

Meck, 2002; Meck, 2006), which has been typically attributed to altered temporal 

memory with aging. In a more recent study, Church et al. (2014) reported that the 

decreased accuracy of temporal responses observed in aged rats was negatively related to 

the levels of amyloid-beta (Aβ), Aβ42, RAGE (Aβ influx transporter) while increased 

precision had a positive relationship with these Aβ-related biomarkers. 

In light of the literature, we aimed to investigate how timing behavior is altered with aging 

in mice and elucidate how age-related alterations in dopaminergic and cholinergic 

functions mediate these behavioral alterations. Specifically, we tested young, middle age, 

and old mice in the dual PI procedure and investigated the relationship between the 

behavioral observations and dopaminergic and cholinergic biomarkers. Overall, our 

findings showed that altered timing behavior is likely due to the decision rather than 

clock/memory processes and suggest the role of dopaminergic neurons in the ventral 

tegmental area (VTA) in mediating stop times and the role of cholinergic neurons in 

MS/DB complex in the acquisition of stop times. 

2.3 Method 

2.3.1 Subjects 

Subjects were 38 naive male C57BL/6J mice (KUARF). Young (n = 12), adult (n =13) 

and old mice (n=13) were 4, 10 and 18 months old at the beginning of the experiment (+2 

months at steady state), respectively. One adult mouse died of natural causes. Mice were 

group-housed in polycarbonate cages in a room on a 12:12-h light:dark cycle. Subjects 

were tested daily in one-hour long sessions during the light cycle. Food intake was 

restricted to maintain the weight of mice at 85% of their free-feeding weight with ad 

libitum access to water. Additional pellets were provided after each session. All 

procedures were approved by Koç University IACUC (2014-13). 

2.3.2 Apparatus 

Operant chambers (ENV-307W; Med Associates) that housed two retractable levers, a 

house light, and feeding hoppers were used for behavioral testing. Details of the apparatus 
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are provided in the Appendix A.1 Operant Chambers. A peristaltic pump (Ismatec-

Reglo) was used for transcardial perfusion. Brain sections were cut using a cryostat (Leica 

CM1520). The examination of the brain sections after staining was done under an optical 

microscope (Zeiss Primostar). The images of the sections were photographed with a 

digital camera system (Axiovision, Version 4.8.2 SP2, Zeiss). 

2.3.3 Procedure 

Magazine/Lever Press Training 

In the first four sessions of magazine/lever press training, sessions started with inserting 

one of the two levers into the box and food was provided every 60 seconds (FT60) or 

earlier if there was a lever press (FR1). When pressed, the lever was retracted, FT60 

schedule was reset, and one of the levers was inserted into the box in random order for 

the next trial. After four sessions of FR1-FT60 training, all mice had only FR1 sessions, 

until they collected 40 rewards in a session for two consecutive days. Mice meeting the 

FR1 requirement (on average after 4 sessions) proceeded to the experiment with dual PI 

procedure consisting of intermixed FI and PI trials. 

Intermixed FI Training and PI Testing 

In this phase (50 sessions), mice were trained and tested for two target intervals 

(Appendix A.9 Dual Peak Task Illustration: Figure A.1). Each session consisted of 

FI and their corresponding PI trials separately for two target intervals (25 s and 50 s). 

Each lever was associated with one of the intervals (counterbalanced across subjects). All 

trials started with the insertion of one lever into the box along with illumination of house 

light to signal time interval. In the FI trials, after the first response emitted following the 

FI, the lever was retracted, house light was turned off, and liquid reinforcement was 

delivered for 3 s in the illuminated food hopper. The PI trials lasted three times longer 

than their corresponding FI trials and terminated by retraction of the lever and turning the 

house light off without any reinforcement. Inter-trial intervals were on average 60 s 

(variable with minimum 30 s). Trials for the two target intervals were presented with 

equal probability (3 FI:1 PI trial). There were at most 6 consecutive FI trials and at most 

2 consecutive PI trials. 
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Immunohistochemistry (IHC) & Histological Confirmation 

IHC stainings were done for 9 mice from each age group in this experiment to see the 

relation of these measures with the behavioral data. Target regions were substantia nigra 

pars compacta (SNc), VTA, MS/DB complex, and striatum (STR; dorsolateral: DLS and 

dorsomedial: DMS). All coordinates were obtained from the stereotaxic atlas of Paxinos 

and Franklin (2012). Additionally, we combined our neurobiological data gathered from 

27 mice with the same measures gathered from the sex and age-matched mice involved 

in another behavioral experiment (Gür et al., under review) to compare these 

neurobiological parameters (overall N = 54).  

One-to-four days after the completion of the behavioral phase of the experiment (2 days 

on average), mice were transcardially perfused and decapitated. After keeping the brains 

in a fixative and sucrose solution, snap-frozen brains were stored at -80°C until further 

use. The IHC staining protocol for free-floating sections was followed after all mice 

completed the behavioral phase of the experiment. Tyrosine Hydroxylase (1:500) and 

Choactase (1:100) were used as the primary antibodies (Santa Cruz) to identify tyrosine 

hydroxylase-positive (TH+, dopaminergic) neurons and choline acetyltransferase-

positive (ChAT+, cholinergic) neurons, respectively. To confirm the localization and 

morphology of the targeted regions, sections were stained with thionin acetate (Sigma 

Aldrich). The examination of the sections was done under an optical microscope. Details 

of the IHC staining are presented in Appendix A.2 IHC Protocol & Histological 

Confirmation. 

2.3.4 Data Analysis 

Behavioral Data Analysis 

The steady-state PI data from the last 10 sessions of the FI-PI phase were compared 

between target intervals and age groups. The peak times and spread were estimated from 

the response curves (Appendix A.3 Estimation of peak time & spread from the average 

response curves). Start and stop times were extracted from steady-state individual trials 

(normalized by the target intervals) from which middle and spread values were also 

calculated (see Appendix A.4 Estimation of start & stop times via single-trial 

analysis for details). All these measures (except middle and spread of single-trial analysis) 

were compared between target intervals and age groups using 2x3 mixed-design ANOVA. 
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Analysis of the variability of start and stop times are described in Appendix A.5

 Variability of Start and Stop Times. Normalized single-trial measures pooled for 

the short and long target intervals were used to calculate the correlation coefficients to 

infer the possible sources of variability in timing behavior and they were compared 

between the age groups using one-way ANOVA. 

In addition to the analysis of steady-state timing performance, the change point algorithm 

(Balcı et al., 2009c) was also run on the entire PI-trial data collected over 50 sessions to 

extract the start and stop times (normalized by target intervals) in each trial for the 

examination of the evolution of the timing behavior throughout the experiment. These 

measures were averaged for every 10 sessions and compared between target intervals, age 

groups and session blocks using 2 x 3 x 5 mixed-design ANOVA. Furthermore, since the 

stop times emerge later in training, we found the point (nth trial) during the FI-PI phase at 

which the temporally-controlled stop times emerged (i.e. acquisition of the stop time 

threshold) for each subject using the change point algorithm for binomial data (details are 

provided in Appendix A.6 Examination of Acquisition of Stop Times). The number of 

trials it took for the mouse to acquire the stop time threshold was compared between target 

intervals and age groups using 2 x 3 mixed-design ANOVA. 

Quantification in IHC 

The visualization of targeted regions (SNc, VTA, MS/DB complex, and STR) was 

performed under an optic microscope. The images of the sections were photographed at 

x5 and x20 magnification. After the determination of the location and boundaries of the 

regions in brain sections, dark-brown reaction products were interpreted as 

immunoreactive. Images were converted into grayscale using ImageJ software (version 

1.49; NIH) and the mean immunoreactivity density was measured within the designated 

regions. Gray levels ranged from 0 (light gray) to 255 (dark gray). The number of TH+ 

neurons in SNc and VTA (n = 16), number of ChAT+ neurons in MS/DB complex (n = 

27), and optic density of TH+ axon terminals in DLS and DMS (n = 18) were analyzed. 

Although the same number of samples were stained for each target region, the 

quantification was performed only for the sections with clear images. For each mouse, 

the mean value of the series of stained sections for the target area was used. The number 
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of neurons was calculated per μm2. Optic density measure was weighted for each subject 

by the mean value of the group formed for the staining protocol (see Gulcebi et al., 2017). 

After neurobiological measures were taken, correlations between these measures and 

steady state behavioral measures (normalized and pooled across durations) were 

examined. Additionally, measures collected from each target region (from twice as large 

sample size, see section 2.3.3) were compared between age groups using one-way 

ANOVA. All the analysis and statistical tests described above were run on MATLAB or 

SPSS. Follow-up tests were conducted for the significant effects. 

2.4 Results 

2.4.1 Behavioral Results 

Figure 2.1 shows the normalized average response curves of each age group for the short 

and long PI trials in 10 session bins. Normalized steady-state peak time and spread 

measures estimated from the response curve (rightmost column of Figure 2.1) were 

compared between the age groups and target intervals. The normalized peak time for short 

target (ST) [Mean (M) = 0.95, Standard Error (SE) = 0.04] was significantly later than 

the normalized peak time for long target (LT) [M = 0.85, SE = 0.03; F(1,34) = 4.51, p = 

0.04, ηp
2 = 0.12]. Neither the effect of age [F(2,34) = 0.72, p = 0.50] nor the interaction 

effect of age and target interval [F(2,34) = 0.69, p = 0.51] were significant. The average 

normalized spread for ST (M = 0.99, SE = 0.04) was wider than the average normalized 

spread for LT [M = 0.66, SE = 0.04; F(1,34) = 55.98, p < 0.001, ηp
2 = 0.62]. The effect 

of age [F(2,34) = 0.53, p = 0.59] and the interaction effect of age and target interval 

[F(2,34) = 0.59, p = 0.56] were not significant. 
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Figure 2.1: Normalized average response curves of young (straight green line), adult 

(dashed red line), and old (dashed and dotted blue line) mice for the PI trials of short 

(upper panel) and long (lower panel) intervals in every 10 sessions from the beginning to 

the end of the experiment. 

The normalized steady-state start and stop times were also compared between age groups 

and target intervals (Figure 2.2). For the normalized start times, neither the main effects 

of the target interval [F(1,34) = 2.95, p = 0.10] and age [F(2,34) = 0.06, p = 0.94] nor their 

interaction effect [F(2,34) = 1.03, p = 0.37] were significant. The normalized stop times 

was later for ST (M = 2.02, SE = 0.05) than LT (M = 1.58, SE = 0.05) [F(1,34) = 134.08, 

p < 0.001, ηp
2 = 0.80]. The main effect of age on the normalized stop times was significant, 

F(2,34) = 17.97, p < 0.001, ηp
2 = 0.51. The post hoc comparisons showed that the average 

normalized stop time in old mice was significantly later than in young (MD = 0.31, SE = 

0.08, p = 0.001) and adult (MD = 0.45, SE = 0.08, p < 0.001) mice. The interaction 

between target interval and age was not significant [F(2,34) = 1.75, p = 0.19]. 
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Figure 2.2: Mean normalized start and stop times separately for short and long intervals 

for young, adult, and old mice. Error bars show 95% confidence intervals. ***: p <= 0.001. 

We compared the correlation coefficients between single-trial variables between young, 

adult and old mice to see the age differences regarding the sources of variability/noise in 

timing behavior (Figure 2.3). The effect of age was significant on start-stop [F(2,34) = 

11.47, p < 0.001, ηp
2 = 0.40] and start-spread [F(2,34) = 6.05, p = 0.01, ηp

2 = 0.26] 

correlations, but not on the middle-spread correlation [F(2,34) = 1.71, p = 0.20]. 

Specifically, the start-stop correlation of old mice was significantly weaker compared to 

the start-stop correlations of young (MD = -0.26, SE = 0.06, p < 0.001) and adult (MD = 

-0.24, SE = 0.06, p = 0.001) mice. The start-spread correlation of old mice was 

significantly stronger than the start-spread correlations of adult mice (MD = -0.18, SE = 

0.05, p = 0.004). 

 

Figure 2.3: Mean correlation coefficients for start-stop, start-spread and middle-spread 

pairs. Error bars show 95% confidence intervals. **: p <= 0.01; ***: p <= 0.001. 
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Figure 2.4 shows the progression of the timing behavior throughout the experiment for 

different age groups and target intervals. For the normalized start times, main effects of 

block [F(3.02,102.65) = 38.35, p < 0.001, ηp
2 = 0.53] and age [F(2,34) = 3.29, p = 0.049, 

ηp
2 = 0.16] were significant while the main effect of target interval was not significant 

[F(1,34) = 2.75, p = 0.11]. There were significant interactions between the age and target 

interval [F(2,34) = 6.87, p = 0.003, ηp
2 = 0.29] and between the target interval and block 

[F(4,136) = 4.07, p = 0.004, ηp
2 = 0.11] but not between the age and block [F(6.04,102.65) 

= 1.33, p = 0.25]. There was a significant three-way interaction between block, age and 

target interval [F(8,136) = 2.53, p = 0.01, ηp
2 = 0.13]. Therefore, we do not report further 

statistics for the lower order significant effects. 

 

Figure 2.4: Average normalized start and stop times across session blocks for short and 

long target intervals by age. Error bars show 95% confidence intervals. 

We compared the age groups at each level of blocks for two target intervals, revealing 

that the interaction between age and block was different for the two target intervals. For 

ST, age differences in normalized start times were evident only in the first three session 

blocks (in the first 3 blocks ps <= 0.01) showing that the average normalized start time of 

old mice was significantly later than the average normalized start time of young mice 

(first 3 sessions) and adult mice (first 2 sessions) but these differences disappeared 

between all pairs with further training (4th and 5th blocks ps > 0.05). For LT, significant 



 

 

Chapter 2: Interval Timing & Aging   16 

 

 

 

age effect was observed only in the first block (p <= 0.01 - see Appendix A.7 Start 

Times Throughout Session Blocks for details). 

For the normalized stop times, main effects of block [F(2.67,90.90) = 149.86, p < 0.001, 

ηp
2 = 0.82], age [F(2,34) = 17.63, p < 0.001, ηp

2 = 0.51], and target interval [F(1,34) = 

111.86, p < 0.001, ηp
2 = 0.77] were significant. Two-way interactions between age and 

block [F(5.35,90.90) = 4.07, p = 0.002, ηp
2 = 0.19] and between target interval and block 

[F(4,136) = 9.86, p < 0.001, ηp
2 = 0.23] were also significant but the interaction between 

the age and target interval was not significant [F(2,34) = 1.97, p = 0.16]. Finally, the three-

way interaction between block, age and target interval was statistically significant 

[F(8,136) = 2.73, p = 0.01, ηp
2 = 0.14]. Therefore, we do not report further statistics for 

the lower order significant effects. Both for ST and LT, the normalized stop times of older 

mice were later than the younger two age groups for most of the blocks (for ST first 2 

blocks’ ps > 0.05, remaining blocks’ ps < 0.001; for LT first block’s p > 0.05, remaining 

blocks’ ps <= 01; see Appendix A.8 Stop Times Throughout Session Blocks for details). 

In light of these findings and to address whether the stop times were acquired differently 

by different age groups, the number of trials to the acquisition of the stop thresholds for 

the short and long target intervals was compared between the age groups. The main effect 

of age was significant [F(2,34) = 21.77, p < 0.001, ηp
2 = 0.56]. It took longer for the old 

mice to acquire the stop thresholds than the young (MD = 55.51, SE = 10.39, p < 0.001) 

and adult (MD = 61.93, SE = 10.39, p < 0.001) mice. The main effect of target interval 

was also significant [F(1,34) = 38.56, p < 0.001, ηp
2 = 0.53], showing that it took more 

number of trials on average for the mice to acquire the stop threshold for the ST interval 

(M = 113.54, SE = 6.83) than the LT interval (M = 80.05, SE = 6.79). There was no 

significant interaction between age group and the target interval [F(2,34) = 0.90, p = 0.42]. 

2.4.2 Age Differences in IHC Outputs 

The neurobiological parameters were compared between the age groups separately for 

each region. For SNc and VTA (Figure 2.5 & Appendix A.10 Mean Neuron 

CountsFigure A.2), TH+ neurons were counted for 38 mice in total (young: 10, adult: 13, 

old: 15). The number of TH+ neurons in SNc [F(2,35) = 6.52, p = 0.004, ηp
2 = 0.27] and 

VTA [F(2,35) = 7.44, p = 0.002, ηp
2 = 0.30] differed significantly between the age groups. 

The mean number of TH+ neurons in SNc was lower for the old mice compared to the 
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young (MD = -60.54, SE = 19.86, p = 0.012) and adult (MD = -56.40, SE = 18.44, p = 

0.012) mice. Similarly, the mean number of TH+ neurons in VTA was lower for the old 

mice compared to the young (MD = -51.65, SE = 13.99, p = 0.002) and adult (MD = -

33.70, SE = 12.98, p = 0.04) mice. 

 

Figure 2.5: Representative images of dark brown immunoreactive TH+ neurons in VTA 

and SNc on 40 μm sections (5x) for young (G), adult (H) and old mice (I). Images at A, 

C, E and B, D, F shows smaller windows within targeted regions for VTA and SNc, 

respectively (20x). 

For the MS/DB complex (Figure 2.6 & Appendix A.10 Mean Neuron CountsFigure 

A.2), ChAT+ neuron counts were done for 54 mice in total (young: 18, adult: 18, old: 18). 

The number of ChAT+ neurons differed significantly between the three age groups 

[F(2,51) = 8.69, p = 0.001, ηp
2 = 0.25]. The mean number of ChAT+ neurons was 

significantly lower in the old mice compared to the young (MD = -31.08, SE = 7.87, p = 

0.001) and adult (MD = -24.67, SE = 7.87, p = 0.01) mice. 
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Figure 2.6: Representative images of dark brown immunoreactive ChAT+ neurons in 

MS/DB complex (D-F) are shown for each age group on 40 μm sections (5x). A-C and 

G-I, respectively, show enlarged images of selected upper and lower windows on MS/DB 



 

 

Chapter 2: Interval Timing & Aging   19 

 

 

 

complex (20x). Dark brown immunoreactive TH+ axon terminals in DMS (J-L) and DLS 

(M-O) are shown for each age group on 40 μm sections (5x). 

For DLS and DMS regions (Figure 2.6 & Appendix A.11 Mean Optic Density of Axon 

TerminalsFigure A.3), the density of the TH+ axon terminals was measured from 42 mice 

in total (young: 14, adult: 14, old: 14). There was a significant effect of age on the density 

of the axon terminals of TH+ neurons both in DLS [F(2,39) = 4.86, p = 0.01, ηp
2 = 0.20] 

and DMS [F(2,39) = 7.48, p = 0.002, ηp
2 = 0.28]. The mean density in DLS was 

significantly lower for the old mice compared to young mice (MD = -19.93, SE = 6.44, p 

= 0.01). Similarly, the mean density in DMS was significantly lower for the old mice 

compared to young mice (MD = 19.91, SE = 5.15, p = 0.001). 

2.4.3 IHC Output in Relation to Behavioral/Neurobiological Correlates 

There was a significant negative correlation between the normalized stop times and the 

number of TH+ neurons in VTA (r = -0.55, n = 16, p = 0.03). There was also a significant 

negative correlation between the average number of trials for the acquisition of stop 

threshold and the number of ChAT+ neurons in MS/DB complex (r = -0.38, n = 27, p = 

0.049 - see Appendix A.12 ScatterplotsFigure A.4 for scatterplots and correlation 

coefficients of all measures). 

2.5 Discussion 

How interval timing is altered with aging is largely unanswered. This is a relevant 

research question since neurobiological and cognitive functions that are known to change 

with aging are also implicated for interval timing. Furthermore, interval timing has 

important roles in many fundamental functions ranging from motor planning to 

associative learning and thus the elucidation of this question would also be informative 

in understanding cognitive aging in general. The related-human work has largely led to 

inconsistent results, which is primarily attributed to the engagement of the compensatory 

cognitive mechanisms (Turgeon et al., 2016). Thus, although animal research is a better 

fit to address this question along with its neurobiological aspects, there is only a limited 

number of related animal studies, which also revealed equivocal findings.  

The current work aimed to fill this empirical gap investigating the alterations in the 

interval timing behavior as well as the relevant neurobiological correlates that accompany 

it by testing young, adult, and aged mice in the dual PI procedure. Our results revealed 
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that compared to the young and adult mice, old mice terminated their timed anticipatory 

responses later in the trial without any apparent differences in start times or the timing 

accuracy or precision, and overall old mice acquired timed response termination later in 

training compared to the young and adult mice. Interestingly, the relative contribution of 

the decision threshold variability was higher (compared to clock speed/memory 

variability) in the aged mice compared to young and adult mice. These behavioral 

differences were coupled with prominent age-dependent differences in the number of 

dopaminergic neurons in the VTA and SNc, cholinergic neurons in the MS/DB complex, 

and density of dopaminergic axon terminals in the DLS and DMS. From these measures, 

the number of TH+ neurons in the VTA and ChAT+ neurons in the MS/DB complex were 

negatively correlated with the stop times and the acquisition of the stop time thresholds, 

respectively. 

The observed behavioral signature of cognitive aging regarding the stop times closely 

resembled the signature observed with two different transgenic mouse models (i.e., Balcı 

et al., 2009b) and a rat model (i.e., Garces et al., 2018) of Huntington’s Disease, 

behavioral observations with the rodent models of aging (Church et al., 2014, Figure 4), 

and the effect of scopolamine on peak responding in mice (Abner et al., 2001; Balcı et al., 

2008). These findings can be interpreted in terms of the loss of temporal control over 

anticipatory responding in aging; aged animals have difficulty in inhibiting the already 

initiated goal-directed anticipatory responding following the omission of the 

reinforcement at the expected delay. This interpretation is in line with the disrupted 

inhibitory control account of cognitive aging (e.g., Hasher & Zacks, 1988), which can be 

observed in the form of disrupted behavioral inhibition, cognitive perseveration, or 

impulsivity (e.g. Head et al., 2009; Morales-Vives & Vigil-Colet, 2012; Potter & Grealy, 

2008). A recent analysis of the inhibition deficit due to aging indeed suggested that 

inhibition in terms of ignoring the distraction is intact in elderly; however, it is the 

suppression of ongoing response in which elderly fails compared to the young subjects 

(Rey-Mermet & Gade, 2018), very similar to the one we observed in our experiment. 

Although mice were trained in a double PI procedure, only one lever was available on 

any given trial. This makes the interpretation of the differences in stop times complicated 

since this measure can also be affected by other factors. For instance, Sanabria et al. (2009) 

showed that the presence of other reinforcers could improve temporal acuity by 
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constraining the dispersion of timed responding. Under this rationale, the stop time 

differences could be due to the fact that old mice valued pressing the lever more than 

engaging in alternative activities such as grooming. Matell & Portugal (2007) also found 

that providing an alternative response option in the PI procedure might increase the 

temporal control over behavior through the modulation of thresholds for response 

initiation/termination. This has been said, findings from one of our recent studies (Gür et 

al., 2019) support our original interpretation. In that study, mice had two concurrent 

options associated with reward after a short or long interval and we still observed an age-

dependent deficit in terminating timed responding for the short interval (except when 

probabilistic information favored responding on the shorter option). 

In addition to the delayed stop times at steady-state, we also observed that the controlled 

response terminations occurred later in training in the old mice. Relatedly, while there 

were no age differences at the beginning of the training in terms of stop times, they started 

to appear as training proceeded and persisted until the end of the testing. Several previous 

studies also reported differential acquisition of timed responses (Garces et al., 2018; 

LeBlanc et al., 1996; LeBlanc & Soffie, 1999) between young and old subjects. Such 

differences can be attributed to the decision processes provided that clock speed or 

memory alterations would also affect other indices of timing. 

Recently, De Corte et al. (2019) showed that while blocking of D1 receptor in the DMS 

delayed the stop times as observed in our experiment, blocking of D2 receptors in DMS 

delayed both the start and stop times. They argued that such a difference might occur due 

to the differential tuning of start and stop thresholds by striatal dopamine. This argument 

is compatible with a model of SET (Gibbon & Church, 1990) in which start and stop 

thresholds can be independent of each other while memory sample varies between trials. 

The fact that we found age differences between stop times but not start times is consistent 

with this argument. Moreover, from the analysis of start and stop times over the session 

blocks, we can conclude that there is differential acquisition of thresholds for the start and 

stop times, which is consistent with the previous findings demonstrating that controlled 

stops in the PI procedure emerge later during the training (Balcı et al., 2009c). 

We found positive start-stop, negative start-spread, and positive middle-spread 

correlations similar to those reported previously in different species (Balcı et al., 2013; 
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Cheng & Westwood, 1993; Church et al., 1994). While the contribution of clock/memory 

variability was higher in young and adult mice compared to old, the contribution of 

threshold variability was higher in aged mice. Previous aging studies that reported 

uncommon correlation patterns did not find any age differences between the correlations 

(e.g. Garces et al., 2018; Lejeune et al., 1998). Mattel and Portugal (2007) provided very 

similar correlational patterns to the ones we observed in aged mice when impulsive 

responding was not controlled in extensive PI training. In their data, they observed 

impulsivity in the form of premature responding when mice extensively trained in the PI 

procedure without an alternative response option. Perseveration or response inhibition, 

which are different facets of impulsivity, can also lead to the same correlational patterns, 

as we propose to be the case for the performance of the aged mice in the PI procedure. 

Dopaminergic and cholinergic functions are known to be impaired in aging. In support of 

this view, the number of cholinergic and dopaminergic neurons was also found to differ 

significantly between the age groups; the aged mice had less number of ChAT+ neurons 

in MS/DB complex (see also Onozuka et al., 2002) and less number of TH+ neurons in 

VTA and SNc compared to the young and adult mice (see also Brandt et al., 2017). 

Importantly, earlier work has shown specifically the mediation of age-related timing 

deficits by the cholinergic function. In one of these studies, Meck et al. (1986) tested rats 

intermittently between 10-30 months of age in the PI procedure and arginine vasopressin 

injection at a young age reversed the disruption in temporal accuracy and precision 

observed in old rats. The same treatment partially recovered the choline uptake in the 

frontal cortex. Therefore, Meck et al. (1986) argued that the age-dependent alteration of 

timing behavior was due to a change in the content of temporal memory which was related 

to the change in cholinergic activity in the frontal cortex. In another study Meck (2002) 

did not find any age differences in timing behavior; however, the activity of cholinergic 

neurons during the behavioral activation was positively correlated with the absolute 

deviation of subjective time from the target time (i.e., content of the temporal memory). 

Complementing these earlier studies, Meck (2006) found peak times of old rats were later 

than the adult rats and single administration of ChAT inhibitor increased the peak time 

for both age groups gradually with a more prominent effect in the aged rats that were 

presumed to have a compromised cholinergic function. 
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Although we did not observe a memory-mediated effect of aging on timing performance, 

some of the neurobiological (including dopaminergic and cholinergic) factors were 

associated with several behavioral signatures. For instance, we found that as the number 

of TH+ neurons in the VTA decreased, stop times of mice increased; this relation did not 

hold for cell counts in SNc. These findings are in line with the differential behavioral 

effects of VTA and SNc lesions in rats (Pioli et al., 2008). Pioli et al. (2008) found that 

bilateral SNc partial lesions disrupted fine motor functions whereas the bilateral VTA 

partial lesions induced perseveration. The relationship between the cell count in VTA and 

stop times might be mediated by the prefrontal dysfunction due to lowered dopaminergic 

input. Relatedly, by use of pharmacological manipulation and optogenetics Narayanan et 

al. (2012) found that temporal control relies on the mesocortical dopaminergic 

modulation of the prefrontal cortex via D1 receptor both in rats and mice. But since 

Narayanan et al. (2012) only looked at FI responding, these results are based only on the 

“pre-peak” leg of the response curve, which did not differ between the age groups in our 

study. 

Although previous studies reported the role of corticostriatal projections in timing 

behavior (Emmons et al, 2017;2019; De Corte et al., 2019), we did not find any significant 

correlations between the timing indices and the dopaminergic axon density in DMS or 

DLS. For instance, Emmons et al. (2017) showed that inactivation of corticostriatal 

projections deteriorated interval timing behavior and time-related neural ramping activity. 

Importantly, optogenetic stimulation of axonal projections of medial frontal cortex (MFC) 

in DMS recovered interval timing performance and time-related activity in the STR only 

when MFC was inactivated (Emmons et al., 2019) and the blockade of both D1 and D2 

receptors in DMS and DLS disrupted different indices of timing behavior (De Corte et al., 

2019). Despite the lower density of dopaminergic axon terminals in DMS/DLS of old 

mice, the fact that we did not find significant relationships between timing behavior and 

STR might suggest that top-down control of striatal activity was still intact in old mice. 

Future studies can elucidate the adaptive/protective mechanism(s) in old mice that 

compensates for such neurobiological changes given that neuron density in a specific 

region alone might not be a direct indicator of the overall functioning of this region. 

Another significant finding is that the number of ChAT+ neurons in MS/DB complex was 

negatively correlated with the rate of the stop threshold acquisition. In relation to the 
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acquisition of an operant response, previous work showed that cholinergic input to the 

rodent primary visual cortex from the basal forebrain region has a role in the acquisition 

of reward timing but not in its expression (Chubykin et al., 2013). This observation is in 

line with the relation of ChAT+ cell count in MS/DB complex with the acquisition of stop 

times but not their parametric expression. Pointing at the non-temporal effects of 

cholinergic function, Zhang et al. (2019) showed that although scopolamine 

administration impairs timing behavior in FI schedule, this effect was due to altered 

stimulus-related processing rather than temporal processing in the MFC. Different from 

these studies, Meck and Church (1987) however showed that lesioning medial septal area 

resulted in a gradual reduction in the remembered time of the reinforcement in the PI 

procedure, which was attributed to its effect on temporal memory. The opposite pattern 

was observed with lesions of nucleus basalis magnocellularis and frontal cortex.  

Oprisan & Buhusi (2011) have offered a clearer theoretical link between cholinergic 

function, mesocortical dopamine projections to the frontal cortex and interval timing 

within the framework of Striatal-Beat-Frequency (SBF) Model. They attributed 

dopaminergic activity in the mesocortical projections to clock-speed (via changing the 

firing frequency of cortical oscillators) whereas cholinergic activity was attributed to 

long-term memory. They demonstrated that their model accounts for the behavioral 

effects of pharmacological manipulations. Our findings constitute at least a partial 

challenge for this model; we did not observe any relationship between ChAT+ neurons 

and behavioral outputs that would reflect temporal memory alterations. Furthermore, 

although our study was not designed to test for clock speed effects since these effects 

would be observable in acute treatment regimes, changes in the clock speed would also 

be expected to be reflected in temporal precision, which was not observed in our study. 

The lack of a relationship between start times and the number of TH+ neurons in VTA 

form a challenge also for approaches that attribute dopaminergic effects on timing 

behavior to incentive motivation (Balcı, 2014). Further studies are needed to elucidate the 

role of these different neurobiological mechanisms in age-dependent alterations in timing 

behavior (e.g., by integrating optogenetics with aging experiments). Although we have 

observed only two statistically significant direct relations between the neurobiological 

measures and behavioral measures, one can also observe that the absence of behavioral 

differences is accompanied by the absence of differences in neurobiological measures 
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between young and adult mice. Note that the outputs of the pre-planned correlation 

analyses between neurobiological and behavioral variables were not corrected for 

multiple-comparisons and thus they should be interpreted with caution. 

Based on our findings, it is unclear whether the observed deficits are due to a learning 

deficit or a performance deficit because subjects were both trained and tested within their 

particular age range. One way to address this issue would be to train all subjects at a 

young age but to test their timing performance at different ages (although this would result 

in differential retention intervals for different age groups). Another important issue is that 

visual inspection of Figure 2.1 suggested that the age-dependent differences were more 

prominent for short compared to the long target interval. Thus, caution should be 

exercised in concluding that the aging deficit applies to all interval ranges. 

Our results show that aging in mice leads to a prominent deficit in terminating timed 

anticipatory responses and that age-related differences in VTA-localized dopaminergic 

function underlies this impairment whereas age-related changes in cholinergic function is 

associated with the acquisition of the termination of timed responding. Overall, our results 

point at the age-dependent changes in the decisional components of interval timing. These 

findings could have implications regarding the nature of aging-related cognitive and 

behavioral deficits, particularly in relation to perseveration in the context of timing. 
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Chapter 3  

 

 

PROBABILISTIC INFORMATION MODULATES THE TIMED 

INHIBITION DEFICIT IN AGING MICE 

3.1 Abstract 

How interval timing is affected by aging constitutes one of the contemporary research 

questions. There is however a limited number of studies that investigate this research 

question in animal models of aging. The current study investigated how temporal 

decision-making is affected by aging. Initially, we trained young (2-3 month-old) and old 

C57BL/6J male mice (18-19 month-old) independently with short (3s) and long (9s) 

intervals by signaling, in each trial, the hopper associated with the interval that is in effect 

in that trial. The probability of short and long trials was manipulated for different animals 

in each age group (25% or 75%). During testing, both hoppers were illuminated, and thus 

active trial type was not differentiated. We expected mice to spontaneously combine the 

independently acquired interval-location-probability information to adaptively guide 

their timing behavior in test trials. This adaptive ability and the resultant timing behavior 

were analyzed and compared between the age groups. Both young and old mice indeed 

adjusted their timing behavior in an abrupt fashion based on the independently acquired 

temporal-spatial-probabilistic information. The core timing ability of old mice was also 

intact. However, old mice had difficulty in terminating an ongoing timed response when 

the probability for the short trial was higher and this difference disappeared in the group 

that was exposed to a lower probability of short trials. These results suggest an inhibition 

problem in old mice as reflected through the threshold modulation process in timed 

decisions, which is cognitively penetrable to the probabilistic information. 
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3.2 Introduction 

How temporal information processing is altered in aging is a fundamental research 

question (Xu & Church, 2017). Results gathered from human and animal studies targeting 

this very question have vastly led to equivocal conclusions regarding the health of 

temporal information processing in aging (e.g., Balcı et al., 2009a; Turgeon et al., 2016). 

Most of these studies have assessed timing performance with no-to-minimal focus on how 

other relevant parameters such as probabilities and spatial locations are integrated into 

temporal information processing. In order to fill this empirical gap, the current study 

investigated how the core features of interval timing performance, the integration of 

probabilistic information into timing behavior, and the spontaneous behavioral 

adjustments based on previously acquired information regarding these parameters are 

altered in the mouse model of aging. 

Anecdotal evidence based on the personal reports suggests that subjective time flows 

faster with aging (Friedman, 2013). Theoretic treatment of this observation coupled with 

convergent evidence suggesting slower information processing in old age (Salthouse, 

1996; but see Starns & Ratcliff, 2010) suggests that the internal clock slows down with 

aging. This conclusion is supported by slower and more variable tapping in very simple 

tasks (i.e., unpaced finger-tapping - Turgeon & Wing, 2012; Vanneste et al., 2002). Other 

studies using dual-task paradigms have also demonstrated disrupted timing performance, 

which is attributed to the disrupted allocation of attentional resources between temporal 

and non-temporal aspects of the tasks (for review see Balcı et al., 2009a). These earlier 

studies do not address the ability of older organisms to integrate other task-relevant 

parameters with temporal information for guiding adaptive actions.  

Our earlier work has shown that humans and mice can integrate probability information 

into their temporal decisions in an adaptive fashion (e.g., maximizing reward-rate; 

Akdoğan & Balcı, 2016; Balcı et al., 2009b; Çoşkun et al., 2015; Kheifets & Gallistel, 

2012) and they can do this abruptly and spontaneously (Tosun et al., 2016; for a review 

see Gür et al., 2018). Regarding these functional endpoints, earlier studies show that 

sensitivity to probabilistic information is higher in young compared to elderly (Howard 

et al., 2008), which becomes more pronounced with extended practice (Simon et al., 

2010). Despite these differences in the utilization of probabilistic information, the ability 
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to detect probabilities were reported to be intact in elderly when young and old 

participants were equated on memory encoding capacity (Spaniol & Bayen, 2005). 

The current study investigated how the nature and degree of integration of probabilistic 

information into temporal decisions as well as the resultant timing behavior change with 

aging. To this end, we first trained young and old mice independently on two temporal 

options with different probabilities in an autoshaping setting. In order to probe and assess 

the timing performance of mice and their ability to modulate their timing behavior based 

on previously and independently experienced probabilistic and spatiotemporal relations, 

we introduced an experimental setting that required the spontaneous integration of these 

variables for adaptive anticipatory responding. 

3.3 Material and Methods 

3.3.1 Subjects 

Subjects were 34 experimentally naive male C57BL/6J mice purchased from Koç 

University Animal Research Facility. Sixteen of the mice were approximately two months 

old and 18 mice were 18 months old at the start of the experiment. Two old mice died of 

natural causes and could not complete the experiment. Another old mouse was excluded 

from the data analysis due to the lack of data points required to make the model fits. 

Consequently, data from 31 subjects were analyzed. Animals were housed in groups of 

three to five in polycarbonate cages (Allentown type I long individually ventilated cages) 

in rooms that were illuminated on a 12:12-h light:dark cycle (lights on at 6:00 AM). 

Subjects were tested during the light cycle on consecutive days. Three days prior to the 

start of the experiment, mice were subjected to a food deprivation protocol with ad libitum 

access to water. After each experimental session, they were given additional food pellets 

to maintain them at 85% of their free-feeding weight. All procedures reported here were 

approved by Koç University Animal Research Local Ethics Committee (Protocol 

Numbers: 2013-2 and 2014-13). 

3.3.2 Apparatus 

Mice were tested in operant chambers with metal end walls, and transparent plexiglass 

side walls and ceiling. In one of the end walls, there were three illuminable food hoppers. 

Hoppers at the extreme sides were active to deliver 0.01 mL of diluted liquid feed (Nestlé 
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Nutrition Isosource, vanilla flavor) as the reward and to signal time intervals. On the 

opposite wall, levers were retracted at all times. The nose poke hole in between the levers 

was used for mice to initiate the trials. Head entries to the food magazines and the nose 

poke hole were detected via IR beam break detectors. MED-PC IV software was used to 

run the experiment and record the data. All events were logged and time-stamped with a 

resolution of 10 ms. The boxes were ventilated throughout all sessions. 

3.3.3 Procedure 

Training Phase 

Mice were trained on two types of trials, 3 s (short) trials and 9 s (long) trials, which were 

presented in a randomly intermixed fashion. Each feeding hopper was associated with 

one of the two trial types (counterbalanced between subjects). The nose poke hole was 

illuminated to signal that a trial could be initiated upon responding there. When the 

subject initiated the trial, the feeding hopper associated with the current trial type was 

illuminated. The light stayed on for the duration of the trial type and the reward was 

delivered irrespective of the subject’s response at the light offset for 6 s (autoshaping). 

The inter-trial interval (ITI) was fixed 30 s delay plus an exponentially distributed random 

variable with a mean of 60 s. Each session lasted for an hour. Regardless of the subjects’ 

performance to collect rewards, each subject took the first test session after 20 training 

sessions. Importantly, mice in each age group were divided into two groups and trained 

separately with the following probability conditions for trial type: p(short) = .25 and 

p(short) = .75. Upper panel of Figure 3.1 depicts the training protocol and typical 

behavioral pattern observed during short and long trials. 

Test Phase 

The test phase was identical to the training phase, except that instead of a single (active) 

hopper illumination, both feeding hoppers were illuminated for the entire duration of the 

trial type. Same short trial probabilities used in the training were used during testing. The 

test session was two-hours long. The lower panel of Figure 3.1 shows the long test trials 

and typical switch behavior observed during these trials. After the test session, subjects 

went through the training protocol for one daily session and testing protocol for one daily 

session, each lasted for two hours, in two consecutive days. 
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Figure 3.1: Graphical depiction of the procedures applied during training and testing 

along with the depiction of the typical behavior observed in the corresponding trials. Top 

right table depicts the four different experimental groups (2 age groups X 2 probability 

conditions). 

3.3.4 Data Analysis 

Switch latencies (or switch times) were defined as the time mice left the short duration 

hopper for the long duration hopper in the long trials since the illumination of the 

hopper(s). These latencies were used to calculate the mean switch time and coefficient of 

variation (CV = Standard Deviation/Mean) for each subject based on the Weibull function 

fits to the data collected during two test sessions. Model fits were done using maximum 

likelihood estimation method. Note that in the calculation of switch rates we limited our 

definition of switches in the long trials to the ones which were earlier than 9 s given that 

switches after that point were “contaminated” by the presentation of reward in the hopper 

associated with the long duration. This resulted in only a few exclusions in the training 
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phase as switch behavior was rare during this phase (2 young and 3 old mice had relatively 

higher switch rates – see Figure 3.2). We also computed switch rates (the number of 

switches divided by the number of long trials) for the last training session and two test 

sessions combined. Two test sessions were evaluated by combining the data since the 

results were similar when we applied the analysis for individual test sessions. The same 

analysis (on switch rate and time) was conducted also for the first hour of the initial test 

session to be able to compare the results to those of Tosun et al. (2016) study. The results 

of this additional analysis that replicated our earlier findings are presented in Appendix 

B along with the comparable analyses of the data from Tosun et al. (2016). 

Acquisition of the task during training in relation to the timing of first responses in both 

locations was examined in order to see whether there was a difference between the age 

and probability groups throughout the training. First, the time of first visits to the short 

location in the short trials and the time of first visits to the long location in the long trials 

were extracted, which were then averaged for each session and mouse. Then, the time of 

first visits was regressed on the session order for each mouse separately for the first short 

and first long location responses in the short and long trials, respectively. The acquired 

slopes were compared between the age and probability groups as well as between the 

short and long trials. Additionally, to see if there is any learning/adjustment in switch 

times throughout the first test phase, we first regressed the switch times on their order of 

occurrence and compared them between the experimental groups. 

We were also interested in the beginning and termination of reward anticipation in short 

location and the beginning of reward anticipation in the long location in the long trials of 

the test sessions. Since long trials terminated with reward delivery, we could not compute 

the termination of reward anticipation for the long location. The anticipation of reward is 

captured by the high state of responding at the location of reward delivery in a given trial. 

Time points that mark the beginning and end of the high state are referred to as start (s1) 

and stop (s2) times. Here, we used cumulative sum test (CUSUM) with absolute residuals 

to detect the trial times at which subjects transitioned from low-to-high (s1) or high-to-

low (s2) state of responding at the short and long locations in each long trial (Church et 

al., 1994). Times that maximized the difference between high and low rates were 

calculated by t1(r-r1)+t2(r2-r)+t3(r-r3) separately for the short and long location 

responses, respectively; t1 is the time from the beginning of trial until s1, t2 is the time 
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between s1 and s2, t3 is the time between s2 and the end of trial, r is the overall mean 

response rate, r1, r2, and r3 are the mean response rates during t1, t2, and t3, respectively 

(Church et al., 1994). During the detection of start/stop times for a given trial, the 

algorithm detected the start and stop times of short location responses first. The search 

for the start time of long location responses was started from the stop time of short 

location responses. If there was no short response in that trial, the start time of long 

location responses was searched from the beginning of the trial. Any start or stop time 

later than 9 seconds (time of reward delivery) were excluded from the analysis (8% of all 

trials). 

After the detection of start/stop times of short location responses and start times of long 

location responses, CV of each measure was also calculated for individual subjects. The 

point of maximum expectancy for the reward in the short location (i.e. middle time) was 

defined as the mean of start and stop times of short location responses. Difference 

between start and stop times of short location responses (spread) was also calculated as 

an index of timing uncertainty for a given trial. 

The analysis of variance was used to make comparisons between age and probability 

groups for the slope of the first response times for training, slopes of switch times during 

the test, switch rates during training/testing, switch times, CV of switch times, start and 

stop times of short location responses. In the case of assumption violation, we used t-test 

by splitting subjects by one of the variables. We refer the readers to the Appendix B.3

 Analysis of Complementary Measures for the statistical comparisons of age and 

probability conditions for CVs of start and stop times of short location responses, middle 

times and spread of the short location responses, start time of the long location responses 

and its CV. Raw data were processed using Matlab to acquire parameters for each 

individual subject. Statistical comparisons were conducted using SPSS 24 and/or JASP 

(Jasp Team, 2019). 

3.4 Results 

3.4.1 Acquisition During Training and Test Phase 

Comparison of the individual slopes acquired from the timing of first responses at short 

and long locations on the short and long trials, respectively, revealed that the (absolute 

value of) slopes of the first response time of short location responses was significantly 
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higher than the slopes of the first response time of long location responses, [F(1, 26) = 

14.78, p <= .001 (Mshort = -.67 (.06) vs. Mlong = -.41 (.06)]. Neither the main effect of age 

[F(1, 26) = 1.08, p = .31] nor the probability [F(1, 26) = 3.15, p = .09] were significant. 

The interaction effects of trial type*age [F(1, 26) = .94, p = .34], trial type*probability 

manipulation [F(1, 26) = 2.70, p = .11], age*probability manipulation [F(1, 26) = .05, p 

= .83], and trial type*age*probability manipulation [F(1, 26) = 3.20, p = .09] on these 

slopes throughout the training phase were also not statistically significant. 

The analysis of slopes of switch times as a function of their order of occurrence within 

the first test session based on conventional tests revealed that there was a significant slope 

in only 4 out of 31 cases. Consistently, the corresponding Bayesian analysis supported 

the alternative hypothesis only in 6 cases, and only two of these six cases were based on 

strong evidence while the rest had only anecdotal evidence. Comparison of these values 

between age and probability groups revealed that there was no main effect of age [F(1, 

27) = .04, p = .85], main effect of probability [F(1, 27) = 1.19, p = .29], or age*probability 

interaction [F(1, 27) = 2.73, p = .11]. Briefly, our results did not point at any age-

dependent differences in the acquisition of timed responses. 

3.4.2 Switch Rates in Training vs. Test Sessions 

Difference between the switch rates during the long trials of training and test sessions 

reflects whether mice can utilize information acquired during the training phase to 

adaptively respond in the ambiguous situation created in the test session. Raster plots 

show the response patterns observed in every trial both for training and testing sessions 

of each subject (Figure 3.2). During training, switch behavior was rare when only the 

location of reward delivery was signaled (first and third columns of Figure 3.2). However, 

in the test sessions in which both options were signaled, in the long trials mice often 

switched to the long location after first visiting the short location (second and fourth 

columns of Figure 3.2). We compared the difference between switch rates of training and 

testing as well as the age differences in the switch rates. 
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Figure 3.2: Raster plots of short (grey) and long (cyan) location responses in the long 

trials of training (columns 1 & 3) and test (columns 2 & 4) sessions. Upper and lower 

panels show the data collected from young and old mice, respectively. Horizontal tick 

black lines separate the data collected from each mouse. Vertical dotted black lines show 

the time of reward delivery in the long trials (9 seconds). Mice rarely switched from the 
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short location to the long location during the long trials of the training session; however, 

timed switches were apparent from the outset during the long trials of testing in both age 

groups. Green, red, and blue dots correspond to the start time of short location responses, 

stop time of short location response, and start time of long location responses estimated 

from the single trial analysis, respectively. 

A mixed design ANOVA with age as the between-subjects factor and time of 

measurement (last training session vs. test sessions) as the within-subjects factor revealed 

a significant main effect of phase on switch rates both for p(short) = .25 [F(1, 14) = 93.66, 

p < .001, partial η² = .87; Mtraining = .11 (.02) vs. Mtest = .69 (.06)] and p(short) = .75 [F(1, 

13) = 82.33, p < .001, partial η² = .86; Mtraining = .25 (.07) vs. Mtest = .83 (.03)] conditions. 

In other words, mean switch rates increased substantially from the training phase to the 

test phase in both probability conditions (Figure 3.3A). The main effect of age on switch 

rates was not significant in p(short) = .25 [F(1, 14) = .23, p = .64; Myoung = .39 (.05) vs. 

Mold = .42 (.05)] or p(short) = .75 [F(1, 13) = .62, p = .44; Myoung = .57 (.06) vs. Mold = .50 

(.07)] groups. Interaction of age and time of measurement was not significant [p(short) 

= .25: F(1,14) = .15, p = .71 & p(short) = .75: F(1,13) = .87, p = .37], either. These results 

suggested that timed-switching was an emergent behavior due to new (ambiguous) task 

demands both in young and old mice regardless of probability condition [Note: 

Probability was not included in the analysis as a factor but when it was included, 

nonparametric tests (Mann-Whitney U Test) were run due to the violation of homogeneity 

of variance assumption. The effect of probability on switch rate was not significant 

(ptraining = .47, ptest = .09)]. The same results held even when the data from the first hour 

of the initial test session was analyzed between the phases and age groups (for details see 

Appendix B.1 Switch Rate and Switch Latencies (Times) in the First Hour of the Initial 

Test Session). 
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Figure 3.3: Mean switch rates for the last training session and two test sessions combined 

(A). Mean switch times of young and old mice by short probability conditions (B). Error 

bars show 95% confidence intervals (Mean +/- 1.96*SE). 

3.4.3 Switch Times in Test Session 

We also analyzed the effect of age and probability manipulation on switch time as well 

as their interaction given that timed behavior might have deteriorated with age and 

previous work showed that probability manipulation exerts an effect on switch times. A 

2x2 ANOVA with age (young vs. old) and probability condition (.25 vs. .75) as between-

subject factors revealed main effects of age (F(1, 27) = 12.09, p = .002, partial η² = .31) 

and probability manipulation (F(1, 27) = 18.31, p < .001, partial η² = .40). Old mice (M 

= 5.52, SE = .23) had later switch times compared to young mice (M = 4.93, SE = .13). 

Switch times were later for the mice in p(short) = .75 condition (M = 5.60, SE = .23) 

compared to p(short) = .25 condition (M = 4.85, SE = .09). Importantly, these main effects 

were coupled with a significant interaction of age and probability, F(1, 27) = 12.52, p 

= .001, partial η² = .32. In p(short) = .25 condition, mean switch times of young and old 

mice did not differ, MD = .01, SE = .26, p = .97. In p(short) = .75 condition, on the other 

hand, the mean switch time of old mice was significantly later than mean switch time of 

young mice, MD = -1.29, SE = .27, p < .001. Figure 3.3B shows the mean switch times 

for both probability conditions by age. These results revealed an age difference in timed 

switching behavior moderated by training with different trial probabilities. When we 

analyzed the switch times from the first hour of the initial test session, the effect of 

probability manipulation was evident, but we did not observe an age and probability 
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interaction (see Appendix B.1 Switch Rate and Switch Latencies (Times) in the 

First Hour of the Initial Test Session). 

As an indicator of temporal precision, we analyzed the CV values. A two-way ANOVA 

was conducted to see the effects of age and probability on CV of the switch times. Results 

showed that there was a significant main effect of probability condition; mice in p(short) 

= .25 condition (M = .39, SE = .02) had higher CV on average compared to p(short) = .75 

condition (M = .20, SE = .01) regardless of the age (F(1, 27) = 63.02, p < .001, partial η² 

= .70). There was no main effect of age, F(1, 27) = .08, p = .79 or interaction effect 

between age and probability manipulation, F(1, 27) = .12, p = .74. These results suggested 

that the temporal precision of young and old mice was comparable. 

3.4.4 Timed Anticipatory Responses During Test Session 

Not only the timed-switching pattern of a subject in the timed switch task but also the 

timing of short and long location responses separately might allow us to characterize 

anticipatory behavior in more detail to investigate age differences in interval timing. To 

do so, we compared several measures of timing behavior that reflect distinct processes 

within interval timing between age and probability groups. The analysis was limited to 

long trials during testing, allowing us to characterize timing behavior during reward 

omissions for short location responses, and prior to reward presentation for long location 

responses. Figure 3.2 provides each subject’s data on a trial-by-trial basis showing short 

location responses and long location responses during training and test sessions as well 

as start and stop times extracted for the test phase. Figure 3.4 presents the normalized 

averaged response curves for the short and long location responses in order to provide an 

overall idea about the timing performance of young and old mice. 
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Figure 3.4: Normalized averaged response curves for short and long location responses 

during long trials of test sessions for young (red) and old (black) mice in different 

probability conditions. Dotted vertical lines represent the time of reward delivery in short 

and long locations; however, note that there was no reward delivery in the short location 

during long trials. Early in the trial, the normalized response rate was higher for the short 

location (dotted black and red curves) and it peaked around 3 seconds. For the long 

location, the normalized response rate increased (solid black and red curves) later in the 

trial. Error bars show the standard error of the actual mean values. 

Comparisons of start times of the short location responses were done between young and 

old mice and probability conditions (Figure 3.5A) by splitting data for one of the variables 

due to the violation of homogeneity of variance assumption. When the data were split by 

age, we found that start times of the short location responses were later in p(short) = .25 

condition compared to p(short) = .75 condition both in young (t(8.90) = 3.15, p = .01) and 

old mice (t(8.81) = 3.22, p = .01) on average. After splitting the data by probability 

condition, there were no differences between young and old mice in p(short) = .25 (t(14) 

= .20, p = .85) and p(short) = .75 (t(13) = -.89, p = .39) conditions. Mean start time of the 

short location responses were 2.68 (SE = .40) and 1.35 (SE = .15) for young mice and 

2.58 (SE = .31) and 1.52 (SE = .11) for old mice in p(short) = .25 and p(short) = .75 

conditions, respectively. 
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Figure 3.5: Mean start time of short location responses (A) and mean stop time of short 

location responses (B) depending on age and probability conditions. Error bars show 95% 

confidence intervals (Mean +/- 1.96*SE). 

The effect of age and probability was also examined for the stop times of short location 

responses (Figure 3.5B). Mean stop time of short location responses was significantly 

earlier for young mice compared to old mice, F(1,27) = 16.52, p < .001, partial η² = .38. 

There was also a significant main effect of probability manipulation showing that mean 

stop time of short location responses were earlier in p(short) = .25 condition compared to 

p(short) = .75 condition, F(1,27) = 16.28, p < .001, partial η² = .38. Importantly, we found 

a significant interaction of age and probability on the mean stop time of short location 

responses, F(1,27) = 11.11, p = .003, partial η² = .29. Simple effect analysis showed that 

the mean stop time of short location responses were comparable between young and old 

mice in p(short) = .25 condition, MD = -.12, SE = .23, p = .60. However, aged mice 

stopped responding in the short location significantly later than the young mice in p(short) 

= .75 condition, MD = -1.24, SE = .24, p < .001. These findings can also be observed at 

normalized averaged response curves in Figure 3.4 (compare two panels). 

3.5 Discussion 

This study investigated age differences in temporal decision-making, anticipatory timing 

behavior, and spontaneous integration of task parameters into temporally controlled goal-

directed responses. Our results revealed that both young and old mice were able to adopt 

a novel action plan during testing (i.e. timed switching) that required them to take into 

account the previously and independently learned temporal characteristics and 

probabilities of reinforcement at two different choice locations. This observation was 
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evident in significantly higher timed switching rate found in test sessions compared to 

training regardless of the age group (irrespective of the duration of testing). Age 

differences were observed in switch times and stop times for short location timed 

responses that were moderated by the probabilities of options. Specifically, when the 

probability of reward delivery after the short interval was high; old mice persevered more 

at the short-latency option. As expected, this difference between the age groups was 

reflected in both switch time and stop times for the short location responses; two highly 

correlated measures [r = .95, N = 31, p < .001]. 

Observed response perseveration shows parallelism to other findings reported in the 

literature in relation to neurodegenerative conditions (e.g., Huntington’s Disease, Balcı et 

al., 2009b), disruptive effect of scopolamine (typically used as a model of dementia; Ebert 

& Kirch, 1998) on the peak interval responding (Abner et al., 2001; Balcı et al., 2008) 

and it is consistent with the effect of aging on single peak procedure (see Figure 4 bottom 

panel at Church et al., 2014). On the other hand, interestingly the observed disruption of 

timing behavior in terms of the termination of timed responses was present only when the 

probability was an independent source of bias favoring the reward delivery at the short-

latency option. Combined with our previous findings outlined above, this empirical 

observation suggests that the inhibition deficit can be rescued when the likelihood of the 

corresponding option does not favor the option associated with the to-be inhibited action 

(i.e., p(short)=.25) possibly as an independent source of cognitive control. 

In line with this rationale, previous studies on behavioral inhibition have also suggested 

that the manipulation of stimulus probabilities that signal to act or not to act alters the 

behavioral inhibition performance by modulating the strength of response preparation 

process (e.g., Bruin & Wijers, 2002). Therefore, we suggest that the inhibitory control 

integrates multiple sources of information including different quantities/dimensions such 

as time and probability. 

Our empirical observations are also consistent with the weakened inhibitory control 

theory of cognitive aging (Coxon et al., 2012; Kramer et al., 1994; Potter & Grealy, 2008). 

For instance, older individuals have also been shown to persevere with a previous rule on 

the Wisconsin Card Sorting task (Ashendorf & McCaffrey, 2007). Possibly reflecting 

similar perseverative tendencies, older rats and mice were found to exhibit lower 
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spontaneous alternation performance compared to young rats (Willig et al., 1987) and 

mice (Stone et al., 1992). These results point to cognitive perseveration as the possible 

common factor. Inhibitory (action) control in aging is typically evaluated in relation to 

the signaled termination of an initiated response (e.g., stop signal reaction time task). 

These studies reported a slower reaction to stop signals for the elderly (Bruin & Wijers, 

2002; van de Laar et al., 2011). A recent meta-analytic study also concluded that 

inhibition deficits due to aging are specifically seen in the form of suppressing dominant 

response rather than ignoring distractor information or response interference (Rey-

Mermet & Gade, 2018). In our case, such inhibition problem in old mice was evident in 

the delayed switch and stop times (and thus an ongoing response) specifically when the 

trial probability favored the short option, which presumably turns the ongoing responses 

in the short location into a dominant response that could not be inhibited by older mice.  

Several different neural mechanisms have been implicated for such inhibitory control 

deficits. However, the current study cannot differentiate if the observed deficit in 

inhibitory control is due to altered functional connectivity in cortico (right inferior frontal 

gyrus and presupplementary motor area)-subthalamic nucleus (Coxon et al., 2012), 

fronto-basal ganglia (Suchy et al., 2013; for instance in relation to hyperkinetic 

perseveration; Goldberg, 1986) or another circuit that has been implicated with inhibitory 

control deficit in aging. Future studies needed to elucidate the role of these candidate 

neural circuitries for the observed effects and their relationship to timing behavior. 

Our results also show that the processes of spontaneous integration of information that 

were gathered independently during the prior experience were not affected by cognitive 

aging. All the indices of timing performance (except for the stop times for short location) 

were comparable between the two age groups. There was an interaction effect of age and 

probability on the stop times of the short location responses. A disruption in the core 

timing component (i.e. clock) or memory would predict shifts in both the start and stop 

times by the same amount and in the same direction, which was not the case in our study. 

Observed differences in our study are most likely related to the factors that relate to the 

decision component of interval timing. Specifically, old mice set a higher threshold 

(criterion) for response terminations when the probability of the short trial was higher, 

which in turn resulted in later response terminations and delayed switch times. Given that 
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there was no difference between the age groups in terms of the start times, we propose 

that in our case, the modulation of timed responses by probabilistic information was 

(partially) via altering the threshold setting of specifically when to terminate an ongoing 

response. This claim is supported by the independence of decision processes that guide 

the initiation and termination of timed responding (Balcı et al., 2009c; Church et al., 1994; 

MacDonald et al., 2012). Finally, we observed higher CV of the start times of the short 

location responses in older mice, which might be due to the higher trial-to-trial variation 

in the motivational states of the old mice (e.g., Balcı, 2014); however, this possibility 

requires further investigation. 

The current study also constituted the direct replication of our previous work (Tosun et 

al., 2016 - see Appendix B.2 Results of Tosun et al. (2016) for Comparison to the Results 

of Current Study for the results of the comparable statistical analysis) when the first hour 

of the initial testing was analyzed to match the one-hour long testing in the previous work. 

Consistent with Tosun et al. (2016), we found that during the test sessions mice can 

immediately and rapidly integrate previously learned task parameters to plan and guide 

their choice behavior. The resultant timing behavior was sensitive to probabilistic 

manipulations and did not change over the course of testing for the majority of the cases 

(both for the entire two hour long first test session and during its first one hour). These 

results challenge the theoretical approaches that solely rely on gradual learning based on 

trial-by-trial response-outcome experiences (for review see Gür et al., 2018; Malet-Karas 

et al., 2018). 

One of the limitations of the current work is that animals received feedback (in the form 

of reinforcement) for correct responses during testing, which introduces a possible means 

for animals to learn based on differential reinforcement (albeit this learning would still 

have to be very abrupt to account for our observations). Future research can omit 

reinforcement from all test trials for a cleaner characterization of the emergent behavior. 

The use of a single set of intervals also limits the generalizability of our conclusions to 

other intervals. Finally, given our experimental design, we do not know how much pre-

training would be necessary to observe the abrupt emergence of timed-switching behavior. 

These are issues that can be addressed by future research. 
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Chapter 4  

 

 

AGING IMPAIRS PERCEPTUAL DECISION-MAKING IN MICE: 

INTEGRATING COMPUTATIONAL AND NEUROBIOLOGICAL 

APPROACHES 

4.1 Abstract 

Decision-making is one of the cognitive domains which has been under-investigated in 

animal models of cognitive aging along with its neurobiological correlates. This study 

investigated the latent variables of the decision process using hierarchical drift-diffusion 

model (HDDM). Neurobiological correlates of these processes were examined via 

immunohistochemistry. Young (n = 11, 4 months old), adult (n = 10, 10 months old), and 

old (n = 10, 18 months old) mice were tested in a perceptual decision-making task (i.e. 

two alternative forced choice; 2AFC). Observed data showed that there was an age-

dependent decrease in the accuracy rate of old mice while response times were 

comparable between age groups. HDDM results revealed that age-dependent accuracy 

difference was a result of a decrease in the quality of evidence integration during decision-

making. Significant positive correlations observed between evidence integration rate and 

the number of tyrosine hydroxylase positive (TH+) neurons in ventral tegmental area 

(VTA) and axon terminals in dorsomedial striatum (DMS) suggest that decrease in the 

quality of evidence integration in aging is related to decreased function of mesocortical 

and nigrostriatal dopamine. 

4.2 Introduction 

Cognitive aging is associated with the impairment of various cognitive functions such as 

learning, memory, and attention. Age-related alterations in these functions have been 

reported convergently based on vast human and animal research while some other 
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cognitive domains have been under-investigated in relation to cognitive aging. Maybe 

one of the least studied domains in animal models of (and arguably human) cognitive 

aging is the health of simple perceptual decision-making. This appears as a prominent 

translational gap particularly given that perceptual decisions determine the adaptiveness 

of individuals in many aspects of life including motor, traffic, and consumer behaviors. 

Consequently, we have only limited information regarding how basic decision processes 

are altered in aging and the neurobiological correlates of these age-related changes. The 

current study convergently fills this gap by investigating how decision-processes are 

altered in the mouse model of aging based on the analytical treatment of behavioral data 

in the light of a computational decision-theoretic approach and the investigation of the 

neurobiological correlates of the age-related alterations in the corresponding components 

of the decision process. 

Decision-making is a cognitive function that leads to the choice of an option or action 

from multiple alternatives based on the processing and assessment of the information 

available to the decision-maker. Choosing one lane over another one in the traffic, 

studying radiological scans, picking the ripest blueberries from a bunch all involve some 

sort of a decision process in which the individual processes information regarding the 

flow of traffic, image contrasts or color. Although such decisions are relatively simple, 

research shows that the decision processes that successfully applied to account for such 

simple perceptual decisions (Ratcliff and McKoon, 2008) can also account for more 

complex decisions such as value-based judgments (Mormann et al., 2010). One of the 

core features of these decisions that determines their adaptiveness (e.g., reward rate) is 

the emergent tradeoff between the accuracy and speed of the decisions (i.e., speed-

accuracy tradeoff; SAT); namely, the fact that deliberating decisions lead to more 

accurate but slower decisions while rushing decisions speed up choices at the expense of 

their accuracy (Bogacz et al., 2006). 

This integral property of choice behavior emerges as a natural by-product of the diffusion 

decision model (DDM) that offers a computational framework to explain the decision-

making based on psychologically meaningful and analytically trackable parameters. The 

drift-diffusion model assumes that a) sensory evidence is a noisy input (due to the 

task/environment, limits of the sensory organs and/or the neural activity [Scott et al., 

2015]), b) the difference between the sensory evidence supporting different options is 



 

 

Chapter 4: Perceptual Decisions & Aging  45 

 

 

 

integrated over time, c) when the integrated evidence hits one of the two thresholds (each 

of which represents one of the two alternatives being considered in 2AFC) the 

corresponding choice is made and d) the delay to the threshold first crossing time denotes 

the decision time. The diffusion process in a single trial is illustrated in Figure 4.1 along 

with the basic DDM parameters. 

 

Figure 4.1: Graphical illustration of the diffusion process in a single trial along with the 

DDM parameters. 

Formally speaking, DDM captures response times and decision accuracy in a unified 

fashion based on four core parameters: drift rate (v), boundary separation (a), starting 

point of the evidence accumulation (z), and non-decision time (T0) (Ratcliff and Rouder, 

1998): a) Drift rate reflects the signal-to-noise ratio (quality of evidence; SNR) in the 

decision process as well as the individual’s ability to integrate the evidence, b) boundary 

separation reflects the degree of cautiousness, c) starting point reflects the prior belief 

state of the decision-maker regarding the likelihood of different alternatives, d) non-

decision time accounts for the time spent on stimulus encoding and response execution, 

and together with the decision time, it corresponds to response time (RT). Besides starting 

point, drift criterion (dc) is an additional parameter for quantifying decision bias, as it 

moves the zero-point of drift rate away from zero in either direction, with drift rates above 
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the criterion moving towards one boundary and those below moving towards the other 

(Ratcliff and McKoon, 2008).  

Although the accumulated evidence on average (drift rate) favors the correct threshold 

over the incorrect threshold when the SNR is positive, accumulated evidence might still 

first hit the incorrect threshold due to the random noise that the evidence accumulation is 

subject to (diffusion). This results in the speed-accuracy tradeoff in choice behavior; for 

instance, lowering decision thresholds speeds up the decisions at the expense of an 

increased likelihood of hitting the incorrect threshold due to randomness in the decision 

process (Ratcliff and Rouder, 1998; Ratcliff and Tuerlinckx, 2002). The treatment of 

decision outputs (i.e., accuracy and RTs) in a unitary fashion in light of this computational 

decision-theoretic approach has revealed differences at the level of latent decision process 

between many groups of interest in humans (e.g., White et al., 2010).  

Previous studies compared the choice behavior and the underlying decision performance 

of older participants compared to younger participants in simple choice tasks (Ratcliff et 

al., 2001; 2003a; 2004a; 2004b; 2006a; Thapar et al., 2003). RTs were longer for older 

participants in all settings while age difference in accuracy was dependent on the task and 

instructions favoring accuracy or speed. Older participants had lower accuracy when 

instructions favored the speed. The treatment of the behavioral outputs in the light of the 

drift-diffusion model pointed at three possible sources of age difference in humans: higher 

decision thresholds, longer non-decision times, and lower drift rates in older compared to 

young adults (Ratcliff et al., 2001, 2003a, 2004b; Ratcliff et al., 2004a; Starns and Ratcliff, 

2010; Thapar et al., 2003). However, the difference in drift rates was more prominent in 

perceptual tasks with advanced age (75-90 years old; Ratcliff et al., 2007). A significant 

benefit of practice through a decrease in the boundaries and an increase in the drift rates 

was also observed in the elderly (Ratcliff et al., 2006b). Moreover, individual differences 

in basic DDM parameters were consistent across tasks, suggesting a common decision 

process that applies to different decision domains (Ratcliff et al., 2006a).  

Animal studies offer a culture-free means of studying cognitive aging along with its 

neurobiological correlates; however, to our knowledge, how the decision processes 

outlined above are affected in the animal models of cognitive aging and the 

neurobiological changes that accompany these alterations are not yet known. 



 

 

Chapter 4: Perceptual Decisions & Aging  47 

 

 

 

Foundational work regarding the neural basis of perceptual decision-making was carried 

out primarily with non-human primates. These studies revealed a resemblance between 

diffusion decision processes and neural firing rates over time in different brain structures 

such as frontal eye field (FEF; Ding and Gold, 2012), lateral intraparietal cortex (LIP; de 

Lafuente et al., 2015), superior colliculus (Ratcliff, et al., 2003b) that translate sensory 

input to motor output (Gold and Shadlen, 2001, 2007; Smith and Ratcliff, 2004).  

Such findings suggested that evidence accumulation has a distributed neural network. 

However, silencing of frontal orienting fields (FOF) and posterior parietal cortex (PPC) 

(homologous to FEF and LIP) neurons in rats revealed that neither FOF nor PPC was 

central to the evidence accumulation process (Erlich et al., 2015). Another study 

suggested the involvement of dorsal striatum in evidence accumulation and choice bias 

(Ding and Gold, 2010). Results of recent work, conducted with rats utilizing behavioral, 

pharmacological, optogenetics, electrophysiological and computational approaches also 

revealed that anterior dorsal striatum is causally responsible for the computation of 

evidence accumulation (Yartsev et al., 2018).  

Several other studies pointed at the role of neurochemical systems in the decision process. 

For instance, dopaminergic input from the VTA to the frontal cortex (FC) was found to 

be crucial for healthy executive functions and modulating SNR in neural processing 

(Kroener et al., 2009). Lo and Wang (2006) proposed a model in which dopamine-

dependent plasticity in the cortico-striatal pathway modulates the decision criterion. In 

line with this proposal, lower decision boundaries were associated with higher activation 

of pre-supplementary motor area (pre-SMA) and striatum (Forstmann et al., 2008), and 

flexible modulation of decision boundaries was associated with stronger cortico-striatal 

connections (Forstmann et al., 2010). Providing causal evidence for this claim, Berkay et 

al. (2018) and Tosun et al (2017) showed that increasing and decreasing the activity of 

preSMA via theta-burst stimulation protocols lead to lower and higher decision thresholds, 

respectively. 

Animal studies have also shown the roles of dopamine and acetylcholine function and 

their interaction effect on the decision-making performance (Hoebel et al., 2007; Mendez 

et al., 2013; Stocco et al., 2012; Xie et al., 2012). Importantly, neurochemical changes 

that are implicated in age-dependent alterations in decision-making are attributed 
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primarily to dopaminergic (Berry et al., 2018; Samanez-Larkin and Knutson, 2015) and 

cholinergic functions (e.g., Bossaerts and Murawski, 2016). The cholinergic system is 

implicated in aging, age-dependent cognitive dysfunction, and Alzheimer’s Disease 

(Muir, 1997). The medial septal area, a part of the cholinergic basal brain, is found to 

modulate the activity of dopaminergic neurons in the substantia nigra pars compacta (SNc) 

and VTA (Bortz and Grace, 2018a).  

In light of the previous studies, dopaminergic input from SNc to dorsal striatum can be 

thought to modulate thresholds (Bogacz et al., 2010; Lo and Wang, 2006) whereas 

mesocortical dopaminergic function can be thought to modulate the efficacy of evidence 

integration over time (drift rate - but also see Yartsev et al., 2018 for the potential role of 

dorsal striatal involvement). Supporting the latter rationale, for instance, recent work 

showed that methylphenidate administration only increases the drift rate in humans (Beste 

et al., 2018; see also Kroener et al., 2009). Although both dopaminergic and cholinergic 

neurotransmitter systems are known to alter with age (Bossaerts and Murawski, 2016), 

how they relate to age-related changes in decision process largely remains unknown.  

Recent methodological developments offer alternatives to elucidate the information 

processing basis of age-dependent alterations in decision-making and their 

neurobiological correlates. For instance, several studies utilized various 2AFC protocols 

in freely moving or head-fixed mice/rats in recent years (e.g. Burgess et al., 2017; Scott 

et al., 2013). Behavioral data provided consistent results with human studies (e.g. Brunton 

et al., 2013; Odoemene et al., 2018; Scott et al., 2015). With new behavioral protocols 

and technologies, rodent models have already facilitated the research progress in animal-

based decision science. 

Capitalizing on these procedural developments and to bridge the corresponding gap in the 

literature, we tested young, adult and old mice in a 2AFC brightness discrimination task 

(as a task underlain by perceptual decision making; Liston & Stone, 2013; Ratcliff, 2002; 

Ratcliff et al., 2003a) and characterized the behavioral outputs based on the drift-diffusion 

model. We also compared the number of TH+ (dopaminergic) neurons in SNc and VTA, 

and the number of choline acetyltransferase positive (ChAT+; cholinergic) neurons in 

medial septum /diagonal band (MS/DB) complex as well as the density of TH+ axon 

terminals in the dorsomedial and dorsolateral striatum (DMS and DLS, respectively). 
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Finally, we investigated the relationship between the latent variables of the decision 

process and the neurochemical variables. We hypothesized that aged mice would perform 

worse in the decision making task and observed performance difference could be 

explained by the latent processes, provided by the drift-diffusion framework, which in 

turn would be related to neurobiological changes observed in healthy aging. Specifically, 

we expected lower drift rates in aged mice, which (for a given SNR in the sensory input) 

would point at lower efficacy in the integration of sensory evidence over time. We also 

expected higher decision thresholds in aged mice, which would point at a more cautious 

decision strategy (i.e., accuracy bias). We expected the differences in drift rate to be 

associated with TH+ neurons in VTA given the role of the mesocortical dopamine 

pathway in executive functions (Kroener et al., 2009) and the threshold changes to be 

associated with the number of TH+ neurons in SNc and TH+ axon terminals in DLS in 

light of the cortico-striatal theory of speed-accuracy tradeoff (for review see Bogacz et 

al., 2010). Our results showed higher error rates and lower drift rates in old mice and a 

significant relationship between the drift rate and TH+ axon terminal density in DMS as 

well as the number of TH+ neurons in VTA. 

4.3 Method 

4.3.1 Subjects 

Subjects were 34 naive male C57BL/6J mice bred in the Koç University Animal Research 

Facility. Young (n = 12), adult (n = 11), and old (n = 11) mice were 4-, 10-, and 18-

months old at the beginning of the experiment, respectively. One mouse from each group 

was excluded from the data collection process due to health issues and consequently, a 

total of 31 mice completed the experiment. Mice were housed in groups of three to five 

in polycarbonate individually ventilated cages (Allentown type I long) in a room on a 

12:12-h light:dark cycle (lights on at 6:00 AM). One hour-long experimental sessions 

were run during the light cycle on consecutive days. Food restriction started 3 days before 

the data collection and mice were maintained at 85% of their free-feeding weight with ad 

libitum access to water in their home cages. Additional food pellets were provided after 

experimental sessions. Neurobiological measures were collected from 27 mice out of 

these 31 mice (randomly chosen) with 9 mice from each age group at the end of the 

experiment. All procedures were approved by the Koç University Animal Research Local 

Ethics Committee (Protocol Number: 2014-13). 
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4.3.2 Apparatus 

Experiments were conducted in five-choice serial reaction time task boxes (SO-MED-

NP5M-B1; Med Associates) contained in ventilated sound-attenuating cubicles (ENV-

022MD; Med Associates). One of the walls had five illuminable nose-poke holes in which 

light density could be manipulated (ENV-115C; Med Associates). The middle one (H3) 

was used to initiate trials and the other two at the left (H2) and the right (H4) of the H3 

were the choice options. At the opposite wall, there was an illuminable pellet receptacle 

(ENV-303W and ENV-303RL, Med Associates) in which sucrose pellets (TestDiet 

Sucrose Tablet 20mg) were delivered via a pellet dispenser (ENV-203-20, Med 

Associates). Nose entries were detected via IR beam break detectors in nose-poke holes 

and pellet receptacle. MED-PC IV software was used to control the boxes and record data. 

All events were logged and time-stamped with a resolution of 10 ms. 

4.3.3 Procedure 

Magazine and Nose Poke Training 

Initially, mice went through two sessions in which sucrose pellets were delivered in every 

60 seconds (FT60) by illuminating the food hopper for 3 seconds. In the following three 

sessions, in addition to the FT60 schedule, the middle nose poke hole was illuminated 

and each nose poke (FR1) resulted in food delivery as well (FR1-FT60 concurrent 

schedule training). Finally, mice were trained on the FR1 schedule until the collection of 

40 pellets in two consecutive sessions. Mice met the criterion on 6-7 days on average 

without a difference between the age groups. Daily sessions were one-hour long. 

2AFC Training and Testing 

Two nose-poke holes (H2 and H4) were associated with dim and bright light intensities. 

When the signal light was dim, mice were required to poke H2 (correct response) and 

when the signal light was bright, mice were required to poke H4 (correct response) to 

receive the reward (counterbalanced across subjects). Dim and bright light signals were 

presented in random order with equal probability. In the first 50 sessions, 75% of the trials 

were training trials and the rest was test trials. For the remaining 40 sessions, test trials 

constituted 50% of the trials in each session. The presentation order for training and test 

trials were random. 



 

 

Chapter 4: Perceptual Decisions & Aging  51 

 

 

 

Mice initiated each trial by nose poking in the H3 which was illuminated in middle light 

intensity. After a nose poke into H3, the light was turned off. In training trials, only one 

of the nose poke holes (H2 or H4) associated with a dim or bright light was illuminated 

to signal the correct location for the associated/presented light intensity there. The correct 

nose poke in the correct (illuminated) hole terminated the stimulus and was reinforced. 

The trial was terminated if there was no response within 15 seconds (<1% at the steady-

state performance). In the test trials, after a nose poke into H3, both nose-poke holes (H2 

and H4) were illuminated with the same intensity (dim or bright light) forcing the animal 

to make a choice based on previously learned association between the light intensity and 

corresponding nose poke hole. To receive the reward, mice were required to poke the hole 

associated with the presented light intensity during the training trials. Appendix C.2

 Brightness Discrimination Task: Figure C.1 provides an illustration of the task. 

Immunohistochemistry (IHC) and Histological Confirmation 

On average 2 days after the completion of behavioral testing (range: 1-4 days), 

transcardial perfusion with physiological saline and 10% formaldehyde (Tekkim, Turkey) 

was performed under ketamine (90 mg/kg, i.p.) + xylazine (10 mg/kg) anesthesia using a 

peristaltic perfusion pump (5 mL/min). Following the perfusion, mice were decapitated, 

brains were collected and kept in the fixative solution overnight. On the next day, brains 

transferred to 30% sucrose solution were stored in +4°C until they sank to the bottom of 

the tubes. Finally, brains were fast frozen at -20°C for 3 minutes in dry ice (2-

isomethylbutane, Sigma-Aldrich, USA) and stored at -80°C until further processing. The 

staining protocol outlined below was followed when the testing was complete for all mice. 

The SNc, VTA, MS/DB complex, and striatum (STR separated anatomically as DLS and 

DMS) were the target regions for IHC staining. The stereotaxic atlas of Paxinos and 

Franklin (2012) was used to determine the coordinates of all target regions. Bregma was 

the reference point on the anteroposterior axis. For the examination of SNc and VTA, 

sections were taken from the region between -2.7 mm and -3.8 mm. For the examination 

of MS/DB complex and STR, sections were taken from the region between 1.4 mm and .4 

mm. 

Thawed brains were embedded in Tissue-Tek (Sakura-Finetek, USA) to cut 40 μm 

coronal sections at -20°C using a cryostat. The sections were first immersed in phosphate-
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buffered saline (PBS) in well plates and then incubated with 3% hydrogen peroxide (H2O2) 

solution using an orbital shaker, which lasted 10 min. After sections were rinsed with 

TBS-Tween 20 (3x5 min), they were incubated with Ultra V Block solution (Thermo 

Scientific, USA) for 30 min and then incubated with primary antibodies [Tyrosine 

Hydroxylase (1:500) and Choactase (1:100), Santa Cruz, USA] in 0.5% TBS-Triton X-

100 solution at +4°C overnight. On the next day, secondary antibody (UltraVision Quanto 

Detection System, Thermo Scientific, USA) was used for 20 min incubation. After being 

rinsed with TBS-Tween 20 (3x5 min), sections were incubated with horseradish 

peroxidase (HRP) solution (Thermo Scientific, USA) for 30 min and rinsed again with 

TBS-Tween 20 (3x5 min). Finally, the sections stained with AEC Substrate System (Lab 

Vision Mount, Thermo Scientific, USA) were rinsed with TBS-Tween 20, mounted on 

positively charged slides and then coverslipped. An equal number of brains from each 

age group was used every time staining protocol was performed to avoid any systematic 

biases in the data; groups formed during this process consisting one mouse from each age 

were the basis for the quantification of IHC data (for the optic density measure) and the 

selection of the mice for the staining groups was random (with the constraint that each 

age group had the same number of subjects). Thionin acetate (Sigma Aldrich, USA) 

staining was also performed on the sections containing SNc, VTA, MS/DB complex, and 

STR to confirm the localization and morphology of the target regions. For the thionin 

staining following protocol was used: xylene (2 min), 100% alcohol (2 min), 98% alcohol 

(2 min), 70% alcohol (2 min), 50% alcohol (2 min), thionin acetate (1 min), 50% alcohol 

(1-2 sec), 70% alcohol (1-2 sec), 98% alcohol (1-2 sec), 100% alcohol (1-2 sec), xylene 

(1-2 sec). The examination of sections was done under an optical microscope. 

4.3.4 Data Analysis 

Behavioral Analysis 

First of all, the accuracy rates in test trials for every 10 sessions were calculated to 

characterize the acquisition of task performance in terms of error rates. Mixed-design 

ANOVA was used to compare accuracies across session blocks (9 levels), and the age 

group was the between-group factor. Data from the test trials in the last 5 sessions of the 

experiment was used to compare the steady-state performance of age groups with one-

way ANOVA. Mixed-design ANOVA was also performed by separating the accuracies 

for bright and dim trial types to evaluate accuracy rates in two options which might reflect 
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a bias towards one of the choice options. Response times collapsed across correct and 

incorrect responses were compared between bright and dim trial types along with age 

groups using mixed-design ANOVA. Response times were also compared using mixed-

design ANOVA with age group as the between-subject factor and the choice accuracy as 

the within-subject factor. One-way ANOVA was used to compare the arrival time to the 

food hopper (after a correct response) between age groups. The time it took for a mouse 

to collect food was calculated as the absolute difference between the time of response and 

the time of first head-in in the food hopper following this response. We excluded the 

extreme scores (3 SD above the mean), before getting the subject means of the arrival 

time to the food hopper for the comparisons. Note that not excluding these data does not 

change the results. The significant overall differences were followed-up by post hoc 

comparisons when necessary. 

Modeling 

Comparisons within-session blocks and between age groups were applied using the 

posterior distributions of parameters estimated by HDDM. HDDM takes a hierarchical 

Bayesian approach to the drift-diffusion model (Wiecki et al., 2013) and is shown to 

provide reliable parameter estimates even with a relatively low number of trials from 

human participants (Ratcliff and Childers, 2015). We chose to use uninformative priors 

for our analyses since the informative priors of the parameters in HDDM are informed by 

human data. The change in parameters over session blocks was modeled using the 

HDDMRegression module as a within-subject model with the drift rate, threshold, and 

non-decision time as free parameters allowed to change with the progression of 9 session 

blocks. The final parameters of the three age groups in the last five sessions, determined 

as the steady-state, were compared in a between-subjects model using the StimCoding 

module, allowing the investigation of any potential decision bias in addition to the other 

parameters. For both sets of models, we decided on the inclusion of parameters in the 

models using model comparisons via changes in the Deviation Information Criterion 

(DIC). The models that reduced the DIC by more than 10 over the simpler models were 

considered to be worth the increased complexity due to the added parameters 

(Spiegelhalter et al., 2002). For all models, we used Markov Chain Monte Carlo (MCMC) 

estimation with 5000 samples with the first 20 draws discarded as burn-in. We visually 

inspected the traces, autocorrelations, and distributions of the Markov chains to assess 
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model convergence. Hypothesis testing was conducted on the posterior distributions of 

the parameters for each condition. The P values reported in the HDDM results are 

calculated as the proportion of the MCMC samples in which the difference between the 

two relevant estimates is above zero, and we consider any such probability above 0.95 to 

be significant by convention. 

Quantification in IHC 

The images of the sections containing target regions (SNc, VTA, MS/DB complex, and 

STR) were taken at x5 and x20 magnification. Location and boundaries of the regions 

were determined on these images and reaction products in dark brown color were 

interpreted as immunoreactive. Image J software (version 1.49; National Institutes of 

Health) was used to convert images into grayscale in which levels ranged between 0 (light 

gray) and 255 (dark gray) and to measure the mean immunoreactivity density within the 

designated regions. Light intensity and threshold settings were the same for all the 

evaluated sections. The threshold was set to 75%; therefore, a cell was considered as 

immunoreactive when the density exceeded the background density of the section by 75% 

(Moers-Hornikx et al., 2009). The number of TH+ neurons in SNc and VTA (n = 22), 

number of ChAT+ neurons in MS/DB complex (n = 27) were counted, and (optic) density 

of TH+ axon terminals in DLS and DMS (n = 24) was measured. Although samples from 

9 mice in each age group were stained for each target region, quantification could not be 

performed for all due to the unclarity of some images. The number of neurons was 

calculated per μm2 for each section and the mean value of the series of stained sections 

for the target area was used for each mouse. On average, evaluations were based on 4 

sections. The optic density measure values extracted for each subject were divided by the 

mean value of the group that staining protocol performed together (see Gulcebi et al., 

2017 for the details). All these measures were compared between age groups using one-

way ANOVA and correlations between these measures and model parameters were 

examined. Analysis and the statistical tests were run on MATLAB, SPSS for the 

behavioral data analysis and IHC outputs, and on Python for modeling. 
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4.4 Results 

4.4.1 Behavioral Analysis 

Evaluation of choice accuracy as a function of training separately for three different age 

groups and test vs. guided (training) trials revealed that the performance of mice was 

nearly at the ceiling in the guided trials and their performance rose above the chance level 

with training in the test trials. The overall accuracy rate was 95.68% in guided trials at 

the steady-state performance with no significant difference between the age groups 

(F(2,28) = 3.01, p = .07, ηp² = .18). The statistical comparison of accuracy in test trials 

over session blocks to see whether or not there is a linear increase in the choice accuracy 

showed that it increased in a monotonic fashion as a function of training F(1,28) = 210.43, 

p <= .001, ηp² = .88. The accuracy increased from chance level performance (M = .48, SE 

= .01) to above-chance level performance (M = .65, SE = .01) irrespective of the age 

group. There was no significant difference between the age groups in terms of choice 

accuracy (over the entire session blocks; F(2,28) = 2.70, p = .08, ηp² = .16) and there was 

no interaction between age and session blocks, F(2,28) = 1.67, p = .21, ηp² = .11. 

Consequently, the monotonic increase in choice accuracy was independent of the age 

group. 

Figure 4.2a shows the choice accuracy separately for three different age groups during 

steady-state performance (i.e., last five sessions). One-way ANOVA revealed a 

significant age effect on choice accuracy, F(2,28) = 5.30, p = .01, ηp² = .28. The post-hoc 

comparison of the accuracies revealed a significant difference between young (M = .70, 

SE = .02) and old (M = .61, SE = .02) mice (p = .01). There were no other significant 

differences (Madult = .67, SE = .02). When we introduce the accuracy in those trials with 

brighter and dimmer stimulus separately into the ANOVA, we did not observe any 

significant effect of stimulus type, F(1,28) = .13, p = .73, ηp² = .0004. There was not a 

significant interaction between stimulus type and age groups F(2,28) = .41, p = .67, ηp² 

= .03. Main effect of age, independent of the stimulus type, was still evident F(2,28) = 

4.97, p = .01, ηp² = .26; young mice performed significantly better than old mice and there 

were no differences between young and adult, and adult and old mice (ps > .05). 

Comparison of RTs for stimulus type and age groups did not reveal any significant 

differences [stimulus type: F(1,28) = .19, p = .67, ηp² = .01; age: F(2,28) = .21, p = .81, 

ηp² = .02; stimulus type*age: F(2,28) = .14, p = .87, ηp² = .01]. 
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Figure 4.2: a) Mean choice accuracy along with individual data points in test trials during 

the steady-state performance for young, adult, and old mice; a statistically significant 

difference was found between young and old mice only. b) Mean correct and incorrect 

RTs along with individual data points during the steady-state performance for different 

age groups. Error bars show the 95% confidence intervals. 

Figure 4.2b shows the correct and error RTs separately during the steady-state 

performance for three different age groups. The correct and error RTs were not 

significantly different from each other, F(1,28) = .33, p = .57, ηp² = .01. We did not find 

a significant effect of age (F(2,28) = .31, p = .74, ηp² = .02) or an interaction between age 

and RT for correct and error responses (F(2,28) = 2.09, p = .14, ηp² = .13). Comparison 

of arrival time to the food hopper after a correct response was comparable between all 

age groups (F(2,28) = 1.25, p = .30, ηp² = .08). 

4.4.2 HDDM Fits 

Initially, four models were evaluated against the null model for the entire dataset 

categorized in 9 session blocks to evaluate if possible changes in the latent processes took 

place throughout the experimental sessions. The model with the lowest DIC score 

included the three core parameters of the drift-diffusion model (i.e., drift rate, decision 

threshold, non-decision time), with all parameters allowed to vary with age group. 

Appendix C.1 Model Fits: Table C.1 presents the models fit to the entire dataset in 9 

session blocks along with the DIC scores associated with them. 

Data simulated based on the best fit model parameter values were consistent with the 

empirical data, namely that empirical data were within the 95% credible interval of the 

distribution of simulated data. The fit quality for the first two session blocks was below 

the desirable level, which is an expected observation with very low drift rates reducing 
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the credibility of the parameter estimation. The fit quality criteria displayed the desirable 

profile for the remaining session blocks. 

Figure 4.3a shows that the drift rate increased in a monotonic fashion as a function of 

session blocks pointing at perceptual learning. Following the 2nd session block (after 20th 

session), the drift rate was significantly higher than 0 for all bins (Pv_3>0 = .998). In order 

to analyze if this increase in drift rates was significant, we compared the posterior 

distribution of drift rates between each consecutive posterior distribution. This 

comparison revealed that the increase in drift rate from the previous session was 

significant from the 3rd through the 6th session blocks (Pv_n>v_n-1 > .95 for all comparisons 

within this range). This increase in the drift rate saturated in the final blocks as the mice 

learned the task. 

We also analyzed the change in decision thresholds (Figure 4.3b) and non-decision times 

(Figure 4.3c) and did not find any significant change in these parameters except for 

between the first two blocks. Of note, the parameter estimates from the first few blocks 

are not reliable due to low fit quality. There was no difference between the consecutive 

posterior distributions of either parameter from the 3rd through the 9th session blocks 

(Pa_n>a_n-1 < 0.80, Pt_n<t_n-1 < 0.75 for all comparisons). 
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Figure 4.3: Drift rates (a), decision thresholds (b), and non-decision times (c) estimated 

for each session block. Parameter estimates for individual animals are shown with thin 

lines whereas the average estimates are shown as thick lines. Shades denote the 95% 

confidence interval around the mean estimates. While the figures display only the mean 

parameter estimates for the subjects and label them by age, note that hypothesis testing 

was done based on the entire posterior distributions of each session block, and differences 

between the age groups were not factored in at this stage (models that included age as a 
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factor had higher DIC scores compared to the model without age). The labels and line 

types for different age groups are therefore for demonstration purposes and not part of the 

underlying model. Green-straight, red-dashed, blue-dotted lines are for young, adult, and 

old mice, respectively. 

For the evaluation of steady-state data, bias parameters—the starting point and drift 

criterion—were also included in the evaluation of alternative models to be able to 

examine possible sources of bias in choice behavior between age groups. In order to 

measure bias in these models with bias parameters, first, the data were coded according 

to the stimulus properties (lower boundary/0: bright light, upper boundary/1: dim light). 

We took the simplest model to be the best model from the previous analysis of session 

progress (SP4 in the previous set, SS0 in the current set; see Appendix C.1 Model 

Fits: Table C.1 and Table C.2), and tested models with added bias parameters against it. 

Comparison of DIC values between alternative models revealed that models that include 

bias parameters performed better in comparison to the models that did not include these 

parameters; however, DIC values were not sufficient to differentiate between the models 

where bias parameters were constant for all age groups and those where they were free to 

vary between the groups (Appendix C.1 Model Fits: Table C.2). Therefore, the model 

that had the fewest free parameters (i.e. lower complexity) was selected as the best-fitting 

model (Model SS2 in Appendix C.1 Model Fits: Table C.2) and used for the evaluation 

of age differences in the latent decision processes. 

We found that the drift rate decreased with advanced age and the difference between 

young and old mice was significant (Pv_young>v_old > .95) (Figure 4.4a). Decision threshold 

(Figure 4.4b) and non-decision time (Figure 4.4c) parameters did not differ significantly 

between the age groups (P < .80 for all comparisons). 

 

Figure 4.4: The posterior distributions for drift rate (a), decision threshold (b), and non-

decision time (c) in the last five sessions for the age groups. Green-straight, red-dashed, 

blue-dotted lines are for young, adult, and old mice, respectively. 
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The best model included two bias parameters (starting point and drift criterion) as 

common parameters for all age groups (see Appendix C.3 Posterior Distributions: 

Figure C.2 for the posterior distributions of these parameters). The unbiased value for the 

starting point that is equidistant to the two thresholds is taken to be 0.5. A starting point 

that is estimated above this value indicates a response bias for the upper boundary (dim 

light), and a lower value indicates a bias for the lower boundary (bright light). Drift 

criterion separates the drift rates that move towards the upper and lower boundaries, and 

an unbiased drift criterion would have a value of 0. A negative drift criterion indicates a 

bias towards the upper boundary, whereas a positive value indicates a bias towards the 

lower boundary. The common posterior distribution for all age groups indicated a bias for 

the dim light both via the upward-shifted starting point (Pz>0.5 > .95) and the negative drift 

criterion (Pdc<0 > .95). 

4.4.3 IHC Outputs and Their Relation to Latent Variables 

Figure 4.5 (VTA and SNc) and Figure 4.6 (MS/DB complex, DLS, and DMS) show 

representative images of stained target regions for young, adult, and old mice. 

Comparisons of IHC outputs between age groups revealed significant differences for two 

target regions, VTA [F(2,19) = 4.38, p = .03, ηp² = .32] and DMS [F(2,21) = 4.21, p = .03, 

ηp² = .29]. Post hoc comparisons showed that the number of TH+ neurons in VTA was 

significantly lower in old mice compared to young mice (MD = -56.48, SE = 19.09, p 

= .02); there was no difference between young and adult mice and between adult and old 

mice (ps > .05). The density of TH+ axon terminals in DMS was significantly lower in 

old mice compared to young mice (MD = -19.80, SE = 6.84, p = .02) but there was no 

such difference for young-adult and adult-old comparisons (ps > .05). We did not observe 

any other significant age differences between the age groups for the measures gathered 

from DLS [F(2,21) = 2.44, p = .11, ηp² = .19], MS/DB complex [F(2,24) = 2.92, p = .07, 

ηp² = .20], and SNc [F(2,19) = 3.02, p = .07, ηp² = .24]. Note that the IHC data presented 

here were also reported as part of a larger dataset in another study for the between-age 

comparisons, where the trends observed here were statistically significant differences 

(Gür et al., submitted). 
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Figure 4.5: Representative images of VTA and SNc after IHC staining for young, adult, 

and old mice (from top to bottom panel). The middle panel shows dark brown 

immunoreactive TH+ neurons of VTA and SNc on 40 μm sections (5x). Images to the 

left (VTA) and right (SNc) of the middle panel provide a closer look to smaller windows 

within these target regions (20x). 
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Figure 4.6: Representative images of MS/DB complex and STR stainings for young, 

adult, and old mice. The left upper panel shows dark brown immunoreactive ChAT+ 

neurons in MS/DB complex (5x) and the left-lower panel shows enlarged images of 

selected windows from the target region (20x). At the right panel, immunoreactive TH+ 

axon terminals are seen in dark brown on DMS (right-upper panel) and DLS (right-lower 

panel); images are magnified 5x. 

We also investigated the correlations between the IHC outputs and the latent decision 

variables (i.e., drift rate, decision threshold, non-decision time, starting point, drift 

criterion). Our analysis revealed a significant positive moderate relationship between the 

drift rate and two dopaminergic outputs [i.e., Number of TH+ neurons in VTA (r = .43, n 

= 22, p = .045), density of dopaminergic axon terminal density in DMS (r = .41, n = 24, 

p = .048)]. Figure 4.7 shows the scatterplots for the measures with significant relations. 

 

Figure 4.7: Scatterplots showing the significant relationship found between drift rate and 

number of dopaminergic neurons in the VTA and optic density of dopaminergic axon 

terminals in DMS. 
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4.5 Discussion 

We investigated how decision-making is altered in the mouse model of aging both at the 

level of behavioral outputs (i.e., accuracy and RT) and the latent variables of the decision 

process that explained these behavioral outputs. Our results showed that the accuracy of 

perceptual decisions of old mice was significantly lower than younger animals and this 

difference was due to lower drift rate in the older mice. The lack of an age difference in 

task performance for signaled (training) trials validates our conclusion that the observed 

age differences were specific to decision-making rather than sensory processing. 

Our results regarding the behavioral outputs and latent variables are consistent with those 

of previous studies that showed lower accuracies (particularly under speed instructions) 

and lower drift rates of older human participants (particularly those older than 75 years 

old) compared to younger participants (Ratcliff et al., 2007). Such an overlap between 

human and animal studies highlight the translational value of 2AFC perceptual decision-

making tasks and the treatment of the data in the light of computational decision-theoretic 

approaches. 

Importantly, the characterization of these behavioral and modeling outputs was 

accompanied by the investigation of their relationship with dopaminergic and cholinergic 

markers (i.e., TH+ and ChAT+ neuron counts and the density of TH+ axon terminals). 

We found that the drift rate was associated with the TH+ cell count in the VTA as well 

as the TH+ axon terminal density in the DMS. To our knowledge, these results constitute 

the most complete characterization decision-making in an animal model of cognitive 

aging based on complementary behavioral, decision-theoretic, and neurobiological 

grounds. 

Our results gathered from a mouse model of aging supported the view that cognitive aging 

is primarily associated with slowing of information processing (Salthouse, 1996) rather 

than more cautious decision strategies as has been observed in several human studies 

(Starns and Ratcliff, 2010). Starns and Ratcliff (2010) tested old and young adults in a 

variety of 2AFC tasks and found that older individuals set their thresholds above the 

reward rate optimizing decision threshold whereas young adults were closer to the 

optimal strategy. This result suggested an accuracy bias in older participants, which is 

consistent with the slower and less error-prone decisions observed in older participants. 
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The fact that we did not observe such an accuracy bias (in terms of more cautious 

thresholds) suggest that the observed accuracy bias in humans may be a result of 

enculturation (e.g., valuing accuracy over reward rate) that is specific to humans and 

manifested via higher threshold setting (accuracy bias; Balcı et al., 2011; Bogacz et al., 

2006; Maddox & Bohil, 1998) and slower/lower SNR in information processing might 

represent a purer marker of cognitive aging. We observed a similar disassociation 

between the subclinical obsessive-compulsive tendencies in young adults (Erhan & Balcı, 

2016) and clinical pediatric obsessive-compulsive disorder (Erhan et al., 2017). We found 

higher thresholds in the subclinical group whereas the drift rate was lower (with a trend 

for higher thresholds) in the clinical group. This difference might be due to the differential 

efficacy of cognitively controlled compensatory mechanisms in these two groups of 

participants either due to age, disease prognosis or their interaction. The fact that we did 

not observe a difference in the non-decision times (which would have simply shifted the 

RT distributions without altering their overall shape) also suggests that the age-dependent 

alteration in decision-making was peculiar to those processes that required neural 

integration over longer time scales (e.g., ramping like activity, Gold and Shadlen, 2007). 

Another interesting and pioneering feature of our dataset is the relation we found between 

the only decision process that exhibited age-dependent alteration, namely the drift rate 

and the dopaminergic biomarkers both at the mesocortical and nigrostriatal level. 

Interestingly, this relation held for the nigrostriatal input to the DMS (with prefrontal 

associative cortex and visual areas as the afferents; e.g., Devan et al., 2011) but not to 

DLS (with sensorimotor cortex as the afferent; e.g., Packard and McGough, 1996; Schulz 

et al., 2009). Provided the fact that DMS but not DLS receives visual input, this finding 

is consistent with the neuroanatomical connectivities and the visual character of the task 

used in the current work. This finding is also consistent with the ramping like activity (as 

predicted by the drift-diffusion model of interval timing; Balcı & Simen, 2016; Simen et 

al., 2011) in the DMS carrying the input from the medial frontal cortex over time 

(Emmons et al, 2017). Our results suggest that dopamine-mediated gain in the DMS might 

indeed be disrupted in aging resulting in lower efficiency in integrating evidence. The 

relationship of dopaminergic input to DMS in drift rate modulation also suggests that the 

choice behavior is likely still goal-directed in the task used in this study. 
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The coupling between the ramping activity in the striatum and medial PFC has been 

shown in the context of interval timing (Emmons et al., 2017). For instance, in that study, 

the inactivation of medial PFC disrupted the striatal ramping activity supporting the 

notion that striatal neurons integrated signals from medial PFC. It is of interest whether a 

similar neuroanatomical functional map also underlies perceptual decision-making, 

which is also known to involve ramping-like neuronal activity over time (e.g., de Lafuente 

et al., 2015; Gold and Shadlen, 2007). One cannot treat these pathways separately from 

the mesocortical dopamine pathway since the input received by DMS would be subject 

to the downstream effect of altered dopaminergic input to the medial PFC. This rationale 

is further supported by the fact that mesocortical dopamine input to the prefrontal cortex 

increases the SNR in neuronal information processing in the PFC (Kroener et al., 2009). 

Adding to the translational value of the use of 2AFC perceptual decision-making in 

animals, the acquisition analyses of behavioral outputs and latent variables revealed a 

very similar profile to what has been observed in perceptual decision-making (compare 

to Balcı et al., 2011). Specifically, the accuracy and drift rate increased with training (also 

note the decreasing trend in decision threshold). Note that we did not find any significant 

differences between the age groups regarding the acquisition profiles, but these 

differences were apparent at steady-state (i.e., asymptotic performance). A similar 

acquisition profile in terms of drift rate and decision thresholds have also been observed 

in the study of old participants (Ratcliff et al., 2006b). These overlaps strengthen the 

suitability of 2AFC tasks in translational aging research. 

To our knowledge, this study constitutes the first investigation of age-dependent 

alterations in perceptual decision making in mice using both computational approaches 

and their relation to neurobiological markers. Specifically, we utilized the diffusion 

decision model as a computational interface to make a mapping between the behavioral 

and neurochemical processes. This approach constitutes the primary novelty of our study 

compared to the earlier animal cognitive aging studies (conducted primarily with rats) 

that focused on decision-making (e.g., Johnson et al., 2017; Yoder et al., 2017). Our work 

differs, on similar grounds, also from several other earlier works that focus on the study 

of value-based decision-making in the context of aging (Breton et al., 2015; Simon et al., 

2010). It would be of interest to future investigations whether these more complex 

decisions of animals (including cost-benefit judgments) can be approached with similar 
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decision-theoretic computational approaches for the mechanistic elucidation of the 

related decision processes (see Mormann et al., 2010 for a similar approach in humans; 

Bhatia, 2013). 

In order to control for possible differences in visual acuity, we intermixed the test trials 

with those trials in which the correct hopper was signaled (i.e., guided trials). Although 

we failed to falsify the null hypothesis that performance in the guided trials differed 

between the age groups, there was a statistical trend for a possible difference. Thus, it is 

possible that the differences observed in the test trials were partially due to statistically 

undetectable age-dependent differences in visual acuity. However, Wong and Brown 

(2007) showed that the visual detection performance of C57BL/6J was poorest at 6 

months of age and increased with age (12, 18, 24 months old). These mice also had better 

pattern discrimination performance at 24 compared to 6-18 months of age and lower 

visual acuity threshold at 12-24 compared to 6 months of age. Note that part of these 

differences could be due to practice effects; however, some other strains of mice showed 

visual deficits in the same task despite the potential practice effects (Wong and Brown, 

2007). Thus, it is not likely that the observed age-related differences are due to differential 

visual acuity. Finally, given the memory component in the task (i.e., the association 

between the hopper and light intensity), it is also possible that the observed differences 

were due to the deficits in remembering the associations that are required to respond 

correctly (even after the light intensity is judged correctly). An independent test that 

assesses specifically memory impairments would help elucidate this possibility in future 

research. Furthermore, in order to address potentially different win-stay and lose-shift 

strategies between the age groups, we made the corresponding analyses and found that 

staying following a win was more frequent than shifting following a loss [F(1,28) = 14.53, 

p < .001, ηp² = .34] irrespective of the age of the mice tested [F(2,28) = 1.21, p = .31, ηp² 

= .08]. 

Our results revealed clear decision-making deficits in the mouse model of aging and its 

neurochemical correlates in a fashion that is highly consistent with earlier research. Future 

studies can focus on the electrophysiological correlates of these age-dependent 

differences. Another interesting line of future research would constitute the optogenetic 

stimulation of the systems that were found to be associated with drift rates. For instance, 

whether the stimulation of VTA or nigro-medial striatal axons would rescue the age-
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dependent disruptions in older mouse constitutes a relevant research question for future 

studies. Finally, the relatively long response to stimulus interval (RSI), time interval 

between the previous response and the start of the next trial, utilized in this study was not 

suitable for the characterization of the choice behavior with respect to the optimal policy 

and thus we did not conduct the optimality analysis of this dataset. Future studies can 

utilize RSIs that are more suitable for optimality analysis. 
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CONCLUSION 

 

While age-dependent cognitive decline is evident in the current literature, further 

understanding of both preserved and disrupted functions along with their underlying 

neural mechanisms is of crucial importance. This thesis focused on two cognitive 

functions: interval timing and decision making. Both of these functions are known to be 

subject to a change in aging, nonetheless, they are understudied in the animal models of 

cognitive aging.  

The first study provided additional information to the existent body of knowledge in the 

study of aging on interval timing while complementing the behavioral observations with 

their neurobiological correlates for a more complete characterization of age-dependent 

changes in interval timing. Such detailed investigation in the aging domain is relatively 

scarce in the current interval timing literature despite the extensive use of animal models 

in this area. We tested the interval timing ability of old mice in comparison to young and 

adult mice in a dual peak interval procedure and examined the behavioral output in the 

light of SET to make inferences regarding the relative contribution of different sources of 

variability in timing behavior across different age groups. Additionally, neurobiological 

alterations accompanying the age-dependent alterations in the interval timing behavior 

was studied using immunohistochemistry. Our results revealed that the core timing ability 

of old mice was intact while the termination of timed anticipatory responses was impaired 

along with delayed acquisition of thresholds for the response termination. While the 

response terminations were inversely related to the dopaminergic neuron counts in VTA, 

delayed acquisition of response terminations was related to lower number of cholinergic 

neurons in MS/DB complex. These findings together with a higher contribution of 



 

 

Chapter 5: Conclusion  69 

 

 

 

threshold variability (compared to memory variability) to timed responding in old mice 

suggest an age-dependent alteration in interval timing behavior of old mice due to the 

decision component of the interval timing. Importantly, we found significant differences 

between young and old mice in all our neurobiological measures that are implicated in 

interval timing; however, all these differences were not related to behavior contrary to 

suggestions by the previous literature (e.g. memory impairment & cholinergic 

dysfunction). Future studies are needed to elucidate these relations in a fashion that would 

allow making inferences regarding causal role different neurobiological systems in 

different components of interval timing in the context of cognitive aging. 

The second study extended our question of age-dependent changes in interval timing 

function to a relatively more complex timing task that requires the integration of 

previously learned information to the timing behavior for an adaptive response. To do so, 

we tested the age differences in temporal decision making, timed anticipatory responses, 

and spontaneous integration of task-related parameters (e.g., probability information) into 

timed responses using the timed switch task with pretraining. Both young and old mice 

were able to adopt a novel behavioral strategy (i.e. timed switching behavior) in a 

spontaneous fashion using previously learned spatiotemporal relations and probabilistic 

information. Age-dependent differences were observed in the switch times and the stop 

times for short location only when the probability of reward delivery after the short 

interval was high er than the probability of reward delivery after the long interval during 

training. The other indices of timing were comparable between the two age groups and 

the observed difference in stop times was specific to one probability condition (i.e., higher 

probability of reward delivery after short interval). Therefore, we suggest that this 

difference is due to the decision component of the interval timing. In other words, 

inhibitory control over timed response termination threshold integrates multiple sources 

of information (e.g., time and probability) such that it can rescue age dependent 

alterations when probabilistic information favors the termination of timing responding 

over its continuation. The neural mechanisms underlying such an integration is a research 

question that remains to be answered in relation to timing behavior. This work was also 

important given that we replicated our findings from previous work regarding the ability 

of mice to spontaneously plan decision strategies based on previously learned time 

intervals, locations, and probabilities (Tosun et al., 2016). 
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The third study might has important implications given that to our knowledge no study in 

the domain of perceptual decisions has yet used mice as a model of cognitive aging and 

more importantly utilized a computational approach to elucidate the relationship between 

age-dependent alterations in latent decision variables and possible neurobiological 

markers of aging. Therefore, this study can serve as a reference for further 

characterization of the neural mechanisms of latent decision variables and their causal 

relationship to aging. In this study, we tested young, adult and old mice in a bright 

discrimination task. Age-related differences in the latent variables of the decision process 

were explored using the Hierarchical Drift-Diffusion model. Relationships between the 

estimated latent decision variables and neurobiological measures, which are known to be 

affected in aging, were also examined. Behavioral measures showed that old mice 

performed worse than young and adult mice in terms of accuracy while response times 

were comparable between the age groups. Hierarchical Drift-Diffusion modeling of the 

behavioral outputs revealed that decrease in the quality of evidence integration (i.e., drift 

rate) underlies the observed accuracy differences between age groups and the rate of 

evidence integration (drift rate) correlated positively with the number of VTA-localized 

dopaminergic neurons and the density of DMS-localized dopaminergic axon terminals. 

Importantly, the perceptual decision-making performance of old mice in terms of 

observable and latent variables resembled the perceptual decision-making performance 

described in previous studies of the elderly (Ratcliff et al., 2006b; 2007), highlighting the 

validity and translational value of mouse models. 

This thesis was a comprehensive attempt to characterize the healthy cognitive aging 

process in a mouse model of cognitive aging based on behavioral, computational, and 

neurobiological outputs for two overlooked cognitive domains in the aging literature: 

interval timing and decision making. Delayed stop times observed for old mice in the first 

two experiments, without any other apparent differences between age groups, pointed at 

the disruption in inhibitory control of timing behavior in aging, which can be explained 

with weakened inhibitory control account of aging (Hasher and Zacks, 1988) at least in 

the case of suppression of an ongoing goal-directed response in the context of timing 

behavior. The decrease in the quality of evidence integration found in old mice in simple 

perceptual decision-making, on the other hand, provided support for the slower 

information-processing account of aging (Salthouse, 1996). Overall, these results 
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demonstrate how different domains of cognition are subject to change along with their 

neurobiological correlates in a mouse model of cognitive aging and how overlapping 

neurobiological systems can differentially relate to the components of different cognitive 

functions in the context of cognitive aging. 
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A.1 Operant Chambers 

Experiments were conducted in operant chambers (21.6×17.8×12.7cm, ENV-307W; Med 

Associates) in sound-attenuating boxes. Three illuminable feeding hoppers (ENV-

302RW) were mounted side by side on one of the end walls and a nose poke hole (ENW-

313W) in the middle of the opposite wall. A houselight (ENV-315W) above the nose 

poke hole signaled the time intervals. There were two retractable levers (ENV-312-2W) 

on each side of the nose poke hole. The middle feeding hopper delivered 0.01 mL of 

diluted liquid food (Nestlé Nutrition Isosource, vanilla flavor) as the reward. MED-PC 

IV software was used to control operant chambers and record data (10 ms precision). 

A.2 IHC Protocol & Histological Confirmation 

One-to-four days after the completion of the behavioral phase of the experiment (2 days 

on average), mice were anesthetized with ketamine (90 mg/kg, i.p.) and xylazine (10 

mg/kg), transcardially perfused with physiological saline and then with a fixative (10% 

solution of formaldehyde, Tekkim, Turkey) using a peristaltic perfusion pump (5 

mL/min), and decapitated. Brains were collected and kept in the fixative solution 

overnight in falcon tubes. The next day, brains were transferred to 30% sucrose solution 

and stored at +4°C until they sank to the bottom. Finally, brains were snap-frozen in dry 

ice (2-isomethylbutane, Sigma-Aldrich) for 3 min at -20°C and were stored at -80°C until 

further use. The rest of the protocol was followed after all mice completed the behavioral 

phase. 

The target regions of IHC staining for free-floating sections were substantia nigra pars 

compacta (SNc), ventral tegmental area (VTA), medial septal/diagonal band (MS/DB) 

complex, and striatum (STR; dorsolateral: DLS and dorsomedial: DMS). All coordinates 

were obtained from the stereotaxic atlas of Paxinos and Franklin (Paxinos and Franklin, 

2012). Bregma was the reference point on the anteroposterior axis. The sections from the 

region between -2.7 mm and -3.8 mm were taken for the examination of SNc and VTA, 

and sections from the region between 1.7 mm and 0.2 mm were taken for the examination 

of MS/DB complex and STR. 
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After thawing, the whole brains were embedded in Tissue-Tek (Sakura-Finetek) and 40 

μm sections were cut at -20°C using a cryostat. The free-floating sections were first 

immersed in PBS in well plates and then incubated with 3% H2O2 solution for 10 min 

using an orbital shaker. After being rinsed with TBS-Tween 20 (3x5 min), the sections 

were incubated with Ultra V Block solution (Thermo Scientific) for 30 min and then 

incubated with primary antibodies [Tyrosine Hydroxylase (1:500) & Choactase (1:100), 

Santa Cruz] in 0.5% TBS-Triton X-100 solution at +4°C overnight. On the following day, 

the sections were incubated for 20 min with secondary antibody (UltraVision Quanto 

Detection System, Thermo Scientific) and rinsed with TBS-Tween 20 (3x5 min). The 

sections were then incubated with horseradish peroxidase solution (Thermo Scientific) 

for 30 min and rinsed with TBS-Tween 20 (3x5 min). After staining with AEC Substrate 

System (Lab Vision Mount, Thermo Scientific), the sections were rinsed with TBS-

Tween 20, mounted on positively charged slides and then coverslipped. During the 

staining protocol, brains were grouped in three such that there was one mouse from each 

age group. 

 Coronal sections containing the SNc, VTA, MS/DB complex, and STR were stained with 

thionin acetate (Sigma Aldrich) to confirm the localization and morphology of the 

targeted regions. Thionin staining protocol was as follows: xylene (2 min), 100%, 98%, 

70%, 50% alcohol (each for 2 min), thionin acetate (1 min), 50%, 70%, 98%, 100% 

alcohol (each for 1-2 sec), xylene (1-2 sec).  

A.3 Estimation of peak time & spread from the average response curves 

Average response curves smoothed by three-second bins and normalized by the amplitude 

and the target intervals were used to calculate peak time and spread measures to examine 

the temporal accuracy (i.e. peak time) and precision (i.e. spread) of mice (Balcı et al., 

2009c). In these normalized curves, the point at which the response rate was equal to 1, 

which is the time of maximum reward expectancy, was defined as the peak time. For the 

calculation of the spread, the difference between the first point that the normalized 

response rate exceeded .70 from the beginning of the trial and the first point that the 

normalized response rate fell below .70 following the peak time was used. 
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A.4 Estimation of start & stop times via single-trial analysis 

In order to extract the start time and stop times from the steady-state data, a relative 

likelihood change point (CP) algorithm was run on the cumulative inter-response time 

(IRT) data from each PI trial of each subject to detect the breakpoints that correspond to 

the transition from low to high response state as the time of reinforcement availability 

approaches (i.e. start time) and the transition from high to low response state as the 

reinforcement availability time passes (i.e. stop time). The CP algorithm runs on the 

cumulative IRTs datum-by-datum and for each point, it compares the former part of the 

data with the rest of the data to decide whether these two fractions of the data come from 

the same or two different exponential distributions. For a given point, when the odds are 

in favor of a change relative to no change hypothesis according to a predefined (odds ratio) 

criterion, the algorithm decides that there has been a change in the rate at which the 

responses are emitted. We chose a conservative factor of 100 meaning that odds had to 

favor the change model over the no-change model by 100:1 for the CP algorithm to decide 

there has been a change. The algorithm first detects the start time and by truncating the 

data from this point onward it runs to detect the stop time (Balcı et al., 2009c). In our 

analysis, after normalizing the detected start and stop times by the target intervals (to be 

able to compare the measures of two target intervals), the average of the normalized start 

and stop times and the absolute difference between the normalized start and stop times 

were defined as the middle time and spread, respectively. 

A.5 Variability of Start and Stop Times 

After pooling the normalized start and stop times for the short and long target intervals, 

coefficients of variation (CVs) were also calculated for the start and stop times. These 

measures were compared by 2 x 3 mixed-design ANOVA using age as the between-

groups factor. Comparison of the CV of start and stop times by age groups showed that 

the CV of start times (M = 0.92, SE = 0.03) was significantly higher than the CV of stop 

times (M = 0.35, SE = 0.01), F(1,34) = 453.85, p < 0.001,  ηp
2 = 0.93. Difference between 

the age groups was not statistically significant, F(2,34) = 2.49, p = 0.098. The interaction 

between the CV measures and age was statistically significant, F(2,34) = 4.21, p = 0.02, 

ηp
2 = 0.20. The CV of stop times were comparable between age groups (all ps > 0.05) 

while the CV of start times of the adult mice (M = 0.82, SE = 0.05) was significantly 
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lower than the CV of start times of young (MD = -0.15, SE = 0.07, p = 0.03) and old (MD 

= -0.15, SE = 0.06, p = 0.02) mice. 

A.6 Examination of Acquisition of Stop Times 

In order to do find the point (nth trial) during the FI-PI phase at which the temporally 

controlled stop times emerged (i.e. acquisition of the stop time threshold) for each subject, 

the change point algorithm for binomial data was used. First, the stop times in each trial 

were defined as a success (1) or fail (0) trials and then the change point algorithm was 

run on the binomial data for each subject. The success trials were defined as the trials that 

had stop times shorter than 50 s and 100 s for short (25 s) and long (50 s) target intervals 

(i.e., 2xFI), respectively.  

A.7 Start Times Throughout Session Blocks 

For the short target interval, age differences were evident in the first three session blocks 

[1st block: F(2,34) = 5.65, p = 0.01, ηp
2 = 0.25; 2nd block: F(2,34) = 11.99, p < 0.001, ηp

2 

= 0.41; 3rd block: F(2,34) = 5.17, p = 0.01, ηp
2 = 0.23]. Specifically, the average 

normalized start time of old mice was significantly later than the average normalized start 

time of young (MD = 0.09, SE = 0.03, p = 0.01) and adult (MD = 0.09, SE = 0.03, p = 

0.01) mice but there was no significant difference between the young and adult mice (MD 

= -0.002, SE = 0.03, p = 0.96) in the first block. In the second block, similar to the first 

block, the average normalized start time of old mice was significantly later than the 

average normalized start time of young (MD = 0.14, SE = 0.03, p < 0.001) and adult (MD 

= 0.08, SE = 0.03, p = 0.01) mice but there was no significant difference between the 

young and adult mice (MD = -0.06, SE = 0.03, p = 0.052). In the third block, the difference 

between the normalized start times of adult and old mice disappeared (MD = -0.01, SE 

=0 .04, p = 0.86); however, the average normalized start time of young mice was 

significantly earlier than the average normalized start time of adult (MD = -0.11, SE = 

0.04, p = 0.01) and old (MD = -00.12, SE = .04, p = 0.01) mice. In the following fourth 

and fifth blocks, age differences between the average normalized start time were not 

significant for the short target interval [4th block: F(2,34) = 2.17, p = 0.13; 5th block: 

F(2,34) = 0.23, p = 0.80]. Examination of the normalized start times between age groups 

for each block for the long target interval revealed that only in the first block age 

difference was significant [F(2,34) = 6.14, p = 0.01, ηp
2 = 0.27]. On average, the 
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normalized start time of young mice was significantly earlier than the normalized start 

time of adult (MD = -0.14, SE = 0.04, p = 0.002) and old (MD = -0.10, SE = 0.04, p = 

0.02) mice; there was no significant difference between adult and old mice (MD = 0.04, 

SE = 0.04, p = 0.31). In the remaining four blocks, we did not find any significant 

differences between the normalized start times of three age groups [2nd block: F(2,34) = 

0.54, p = 0.59; 3rd block: F(2,34) =0 .41, p = 0.67; 4th block: F(2,34) = 0.95, p = 0.40; 5th 

block: F(2,34) = 0.80, p = 0.46]. Overall, these results showed that any observed age 

differences in the normalized start times disappeared as sessions proceeded for both target 

intervals. 

A.8 Stop Times Throughout Session Blocks 

For the short target interval, we found that there were no age differences in the normalized 

stop times of the first [F(2,34) = 0.84, p = 0.44] and the second [F(2,34) = 2.69, p = 0.08] 

blocks. A significant age difference was apparent starting from the third block [F(2,34) = 

10.81, p < 0.001, ηp
2 = 0.39]; old mice having significantly later normalized stop times 

compared to young (MD = 0.38, SE = 0.10, p < 0.001) and adult (MD = 0.41, SE = 0.10, 

p < 0.001) mice, while the young and adult mice had no such difference (MD = 0.03, SE 

= 0.10, p = 0.79). In the following blocks, significant effect of age was still evident for 

the short target interval [4th block: F(2,34) = 14.89, p < 0.001, ηp
2 = 0.47; 5th block: F(2,34) 

= 19.22, p < 0.001, ηp
2 = 0.53]. More specifically, in the fourth block, on average, the 

normalized stop time of old mice was later compared to the normalized stop time of young 

(MD = 0.46, SE = 0.11, p < 0.001) and adult (MD = 0.57, SE = 0.11, p < 0.001) mice 

with no difference between young and adult mice (MD = 0.11, SE = 0.11, p = 0.36). The 

same differences held for the normalized stop times in the fifth block of the short target 

interval, such that the normalized stop time of old mice was later compared to the 

normalized stop time of young (MD = 0.40, SE = 0.09, < 0.001) and adult (MD = 0.52, 

SE = 0.09, < 0.001) mice with no difference between young and adult mice (MD = 0.12, 

SE = 0.09, p = 0.18). For the long target interval, while there was no significant age 

differences between the normalized stop times in the first block [F(2,34) = 2.15, p = 0.13], 

age differences were significant in all the remaining blocks. In the second block, the 

normalized stop times were significantly different between the adult and old mice (MD = 

-0.53, SE = 0.15, p = 0.001), but not between the young and adult (MD = 0.28, SE = 0.15, 

p = 0.07) or young and old (MD = -0.25, SE = 0.15, p = 0.11) mice [F(2,34) = 6.20, p = 
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0.01, ηp
2 = 0.27]. In the third block [F(2,34) = 9.78, p < 0.001, ηp

2 = 0.37], the average 

normalized stop time of old mice was significantly later than the average normalized stop 

time of young (MD = 0.52, SE = 0.16, p = 0.003) and adult (MD = 0.68, SE = 0.16, p < 

0.001) mice but young and adult mice did not differ (MD = 0.16, SE = 0.16, p = 0.35). In 

the fourth block [F(2,34) = 10.51, p < 0.001, ηp
2 = 0.38], the average normalized stop 

times were not different between young and adult mice (MD = 0.17, SE = 0.13, p = 0.22); 

however, the average normalized stop time of old mice was significantly later than young 

(MD = 0.41, SE = 0.13, p = 0.003) and adult (MD = 0.57, SE = 0.13, p < 0.001) mice. 

The significant age differences for the normalized stop times found in the third and fourth 

blocks also held in the fifth block [F(2,34) = 8.77, p = 0.001, ηp
2 = 0.34]. On average, the 

normalized stop time of old mice was later compared to young (MD = 0.23, SE = 0.10, p 

= 0.02) and adult (MD = 0.39, SE = 0.10, p < 0.001) mice, while there was no significant 

difference between young and adult mice (MD = 0.16, SE = 0.10, p = 0.11). Overall, these 

results showed that while initially the normalized stop times were comparable between 

the age groups, significant age differences emerged as sessions proceeded for both target 

intervals. 
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A.9 Dual Peak Task Illustration 

 

Figure A.1: A graphic representation of the dual peak procedure used in our experiment. 

There were two target intervals associated with two different levers (25 s and 50 s). The 

presentation probability of short and long target trials was equal. Within a session, there 

were fixed interval (FI) trials in which subjects learn the target interval associated with 

the presented lever and peak interval (PI) trials in which subjects were tested for the target 

interval associated with the presented lever. In FI trials, subjects received a reward for the 

first lever press after the target time. In PI trials, subjects did not receive any reward 

irrespective of their responding. PI trials were three times longer than the FI trials. The 

overall number of FI trials within a session was three times more than the number of PI 

trials (R+: reward). 
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A.10 Mean Neuron Counts 

 

Figure A.2: Mean number of TH+ neurons in SNc and VTA and mean number of ChAT+ 

neurons in MS/DB complex for young, adult, old mice. Error bars show 95% confidence 

intervals. *:p < 0.05; **: p <= 0.01; ***: p <= 0.001 

A.11 Mean Optic Density of Axon Terminals 

 

Figure A.3: The mean (optic) density of TH+ axon terminals. Error bars show 95% 

confidence intervals. **: p <= 0.01; ***: p <= 0.001. 
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A.12 Scatterplots 

 

Figure A.4: Scatterplots displaying the relationships between the behavioral measures 

and the neurobiological parameters collected from the target regions. Correlation 

coefficients are shown on the top-right corner of each plot (*: p < 0.05). 
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Appendix B 

 

B.1 Switch Rate and Switch Latencies (Times) in the First Hour of the Initial Test 

Session 

Due to the insufficient number of observations, 3 mice from the young group and 4 mice 

from the old group were not included in the analysis of the first hour of the initial test 

session. With the remaining subjects, there were 13 mice in the young group, 11 mice in 

the old group. First, we conducted a mixed ANOVA to compare switch rates between 

phases (last the training session vs. the first hour of the first test session) and age (young 

vs. old) groups. Results showed that mice switch from the short location to the long 

location significantly more during the first hour of the first test session (M = .72, SE = .04) 

compared to last training session (M = .22, SE = .05), F(1, 22) = 104.34, p < .001, partial 

η² = .83. Main effect of age (F(1,22) = .00, p = 1.00) and age by phase interaction (F(1,22) 

= .41, p = .53) were not significant. 

Comparison of switch times between age and probability groups revealed that there was 

a significant main effect of probability, F(1,20) = 12.96, p = .002, partial η² = .39. As 

expected, switch times were later in p(short) = .75 condition (M = 5.42, SE = .17) 

compared to p(short) = .25 condition (M =4.41, SE = .23). Main effect of age (F(1,20) = 

2.43, p = .14) and age by phase interaction (F(1,20) = .22, p = .65) were not significant.  

Adjustment in switch times during the first hour of the test session was also examined by 

regressing the switch times on their order of occurrence for each mouse. Results revealed 

that there was no evidence for adjustment in majority of the cases. Slopes were significant 

in 8 out of 24 cases, and only in 4 of these cases we found moderate to strong evidence 

for a slope different from 0. 

B.2 Results of Tosun et al. (2016) for Comparison to the Results of Current Study 

Two experiments were run for this study. There were 15 mice in the first experiment and 

12 in the second experiment. In the first experiment, short trials were presented by .25, .50, 

and .75 probability for three different groups. In the second experiment, presentation 

probability of short trial was determined as .50 and .75 for two groups.  The analysis of 

the data from Tosun et al. (2016) based on parametric tests (as in the current study) 
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revealed results that are comparable to the results of the current study. We provide the 

results of these analyses below. 

Experiment 1 

Comparison of switch rates between the last training and first test sessions revealed that 

switch rates increased substantially from training to test phase all probability conditions 

(p(short) = .25: t(4) = -17.95, p < .001; p(short) = .50: t(4) = -5.91,p < .01; p(short) = .75: 

t(4) = -5.27, p < .01), consistent with the increase observed in the current experiment. 

Comparison of switch times between probability conditions revealed that probability 

manipulation significantly affected the switch times, F(2,12) = 14.43, p < .001. 

Comparison of probability conditions showed that average switch time of p(short) = .75 

condition was significantly later than the average switch time of (short) = .25 condition 

(t(8) = -5.19, p < .01). Differences observed between p(short) = .25 and p(short) = .50 

(t(8) = -2.86, p < .05), and p(short) = .50 and p(short) = .75 (t(8) = -2.68, p < .05) did not 

hold after Holm-Bonferroni corrections. 

Experiment 2 

Switch rate comparison between the long trials of last training and first test sessions 

showed that switch rates were significantly higher during testing than training both in 

p(short) = .50 (t(5) = -3.70, p < .05) and p(short) = .75 (t(5) = -7.53, p < .001) conditions. 

Furthermore, in this experiment, there were probe trials for short and long trials without 

reinforcement. Provided that short probe trial duration was 9 second like the long trial 

durations, we also compared the switch rates from the last five training sessions to the 

switch rates from the long trials of the first test session (last five sessions were used to 

have enough trials for a meaningful comparison since probe trials constituted only 25% 

of presented trials for each option). Again, we found that switch rates were higher during 

testing than training in both probability conditions (p(short) = .50: t(5) = -4.93, p < .01; 

p(short) = .75: t(5) = -7.15, p < .001). This comparison showed that mice preferred to 

stick with the signaled short option during training phase even if there was time to explore 

the other option, which was not active. Switch times were comparable between p(short) 

= .50 and p(short) = .75 conditions, t(10) = .07, p = .95. 
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Note 

Results of these experiments were published in Proceedings of the National Academy of 

Sciences (113: 787–792), entitled as Mice plan decision strategies based on previously 

learned time intervals, locations, and probabilities by Tosun, T., Gür, E., & Balci, F. 

(2016).  In Tosun et al. (2016), we adopted a conservative approach and analyzed the data 

with non-parametric tests, the results of which are comparable to the results of the current 

study. Here the same data from Tosun et al. (2016) were reanalyzed with parametric tests, 

which provided nearly identical results to those reported in the original manuscript and 

are also comparable to the results of the current study. These observations point to the 

robustness of our original findings reported in Tosun et al. (2016). 

B.3 Analysis of Complementary Measures 

CV of the start time of short location responses 

We found the main effects of age (F(1,27) = 6.94, p = .01, partial η² = .20) and probability 

(F(1,27) = 6.98, p = .01, partial η² = .20) on the CV of the start time of short location 

responses. Mean CV of the start time of short location responses was lower for young 

mice (M = .34, SE = .02) compared to old mice (M = .43, SE = .03) independent of the 

probability conditions. Additionally, the CV of the start time of short location responses 

was lower for p(short) = .75 condition (M = .33, SE = .02) compared to p(short) = .25 

condition (M = .43, SE = .03). The interaction effect of age and probability was not 

significant, F(1,27) = .002, p = .96. 

CV of the stop time of short location responses 

The effect of probability manipulation was also evident on mean CV of the stop time of 

short location responses, F(1,27) = 37.91, p < .001, partial η² = .58, with higher mean CV 

for mice in p(short) = .25 condition (M = .35, SE = .02) compared to p(short) = .75 

condition (M = .22, SE = .02) independent of age. The effect of age (F(1,27) = 1.08, p 

= .31) or the interaction between age and probability (F(1,27) = .67, p = .42) were not 

statistically significant. 

Middle time and spread of short location responses 

Middle and spread values of short location responses derived from start and stop times 

were also compared between age and probability groups. There were no main effect of 
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age (F(1,27) = 3.60, p = .07), probability (F(1,27) = 1.96, p = .17), or interaction of age 

and probability (F(1,27) = 3.38, p = .08) on the middle times of short location responses 

(See the peak location of normalized response curves for short location responses in 

Figure 4 in the main text). Comparisons of spread values were done with separate 

independent t-tests after splitting data by probability or age due to assumption violations 

for running ANOVA. When we split data by the probability, we found that the spread of 

the short location responses of young mice (M = 2.71, SE = .36) was not different from 

the spread of the short location responses of old mice in p(short) = .25 condition [(M = 

2.93, SE = .25), t(14) = -.51, p = .62]. On the other hand, young mice (M = 4.16, SE = .12) 

had narrower spread compared to old mice (M = 5.23, SE = .25) in p(short) = .75 condition, 

t(8.69) = -3.94, p = .004. When comparisons were done for probability conditions after 

splitting data by age, the spread of the short location responses in p(short) = .25 condition 

was significantly narrower than the spread of the short location responses in p(short) = .75 

condition both in the young (t(8.46) = -3.83, p = .005) and old mice (t(13) = -6.47, p 

< .001). However, note that significant differences observed between the groups for the 

spread value depend on the start and stop times as it is calculated as the difference between 

them. 

Start times of the long location responses 

Comparison of the start times of the long location responses between age and probability 

conditions revealed a main effect of probability, F(1,27) = 19.09, p < .001, partial η² = .41. 

The mean start time of the long location responses in the p(short) = .25 condition (M = 

5.80, SE = .19) was significantly earlier than the mean start time of the long location 

responses in the p(short) = .75 condition (M = 6.79, SE = .14). The mean start time of the 

long location responses were not significantly different between young and old mice, 

F(1,27) = .94, p = .34. The interaction of age and probability was not significant, F(1,27) 

= 3.01, p = .09. CV of the start time of long location responses also differed between 

probability conditions, F(1,27) = 29.00, p < .001, partial η² = .52. The CV values was 

higher in the p(short) = .25 condition (M = .28, SE = .02) than in the p(short) = .75 

condition (M = .16, SE = .01).  There was no effect of age or the interaction of age and 

probability on CV of the start times of the long location responses (age: F(1,27) = .50, p 

= .49, age*probability: F(1,27) = .06, p = .81). 
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Appendix C 

 

C.1 Model Fits 

Table C.1: Models fit to the entire dataset categorized in 9 session blocks and associated 

Deviance Information Criteria (DIC). 

Model Included Parameters Free Parameters DIC ΔDIC (from Null) 

SP Null a, v, t  169315.86  

SP1 a, v, t a 165179.75 -4136.11 

SP2 a, v, t v 168395.48 -920.38 

SP3 a, v, t a, v 164365.90 -4949.96 

SP4 a, v, t a, v, t 163740.92 -5574.94 

 

 

Table C.2: Models fit to the steady-state data and associated DIC values. 

Model Included Parameters Free Parameters DIC ΔDIC (from Null) 

SS0 a, v, t a, v, t 10879.06  

SS1 a, v, t, z a, v, t 10140.56 -738.5 

SS2 a, v, t, z, dc a, v, t 9994.69 -884.37 

SS3 a, v, t, z, dc a, v, t, z 9995.20 -883.86 

SS4 a, v, t, z, dc a, v, t, dc 9994.76 -884.3 

SS5 a, v, t, z, dc a, v, t, z, dc 9997.01 -882.05 
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C.2 Brightness Discrimination Task 

 

Figure C.1: An illustration of the task used in the experiment. Three nose-poke holes 

adjacent to each other were used in the experiment. The middle one was illuminated in a 

medium light density signaling that mice can initiate the trial by nose poking into it. 

During the training trials after a nose poke in the middle nose-poke hole, one of the other 

two holes was illuminated with either dim or bright light. The assignment of light intensity 

to the nose-poke holes was counterbalanced across subjects. Mice collected the reward 

when they respond in the illuminated nose-poke hole. In the test trials, trial initiation was 

the same as in the training trials. Once the trial was initiated, both nose-poke holes were 

illuminated with one of the light intensities (dim or bright) and mice collected the reward 

when they respond in the nose-poke hole associated with the presented light intensity 

during the training trials. 
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C.3 Posterior Distributions 

 

Figure C.2: The posterior distributions of starting point (A) and drift criterion (B) 

irrespective of age groups. Note that the best fit model included these two bias parameters 

as common parameters for all age groups. 


