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ABSTRACT 

K-Ras is the most frequently mutated protein in human cancers driving cancer initiation, 

progression and drug resistance, directly leading to nearly a million deaths per year. Sadly, 

there are still no drugs in that directly target mutant K-Ras in the clinic. Recent studies 

utilizing dynamics information show promising results for selectively targeting it. However, 

despite extensive characterization, the regulatory mechanisms of K-Ras dynamics remain 

elusive. Since protein function is related to its dynamics, understanding these mechanisms can 

present novel opportunities for identifying target sites on mutant K-Ras surface. 

In this work, we investigate the regulation mechanisms of K-Ras dynamics and the effects of 

nucleotide binding and mutations on these mechanisms using extensive molecular dynamics 

(MD) simulations. We applied different MD simulation data analysis techniques to compare 

the dynamic characteristics of both active and inactive forms of wild-type K-Ras
WT

 and 

mutant K-Ras
G12D

, the most recurrent mutant in cancer patients. Our results on K-Ras
WT

 

showed excellent agreement with experimental data and served as a reference point for K-

Ras
G12D

 analysis. Then, we demonstrated how G12D mutation induces structural and 

conformational changes that result in characteristic correlated motions in active K-Ras
G12D

. 

Moreover, we developed a novel conditional time-delayed correlations (CTC) based approach 

to predict causal relationships in regulation of K-Ras dynamics. CTC analysis identified the 

regulatory sites that control K-Ras dynamics. Finally, we identified a novel drug target pocket 

in active K-Ras
G12D

 and screened a small molecule library against it using docking techniques. 

Our study draws a complete picture of the regulation of K-Ras dynamics. We anticipate that 

the identified regulatory sites on active K-Ras
G12D

 can present novel opportunities for direct 

targeting of K-Ras
G12D

 in future drug discovery efforts. 
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ÖZET 

K-Ras kanserde en sık mutasyona uğrayan protein olup kanserin oluşumunu, ilerlemesini ve 

ilaç direncini tetikleyerek her yıl sayısı milyonu bulan insan ölümüne yol açar. Ne yazık ki 

kanser tedavisinde bu proteini doğrudan hedefleyen bir ilaç henüz yok. Protein dinamiği 

bilgisinden yararlanan son çalışmalar ümit vaad etse de K-Ras’taki dinamik süreçlerin nasıl 

düzenlendiği hala aydınlatılmış değil. Oysaki bir proteinin işlevi içsel dinamik süreçlerin 

düzenlenmesiyle ilgilidir ve bu düzenleyici mekanizmaları anlamamız mutant K-Ras üzerinde 

ilaç hedefi olabilecek bölgeleri ortaya çıkarmamız için yeni imkanlar yaratabilir. 

Bu çalışmada, K-Ras’taki dinamik süreçlerin düzenlenmesi ile nükleotit bağlanması ve 

mutasyonların buna etkisini inceledik. Bu amaçla kanser hastalarında en sık rastlanan 

mutasyon olan G12D’yi seçip doğal tip (K-Ras
DT

) ve mutant (K-Ras
G12D

) formların hem aktif 

hem de inaktif durumlarının moleküler dinamik simulasyonlarını yaptık. K-Ras’ın bu farklı 

formlarının dinamik özelliklerini karşılaştırmak için simulayon verisini farklı yöntemleri 

birleştirerek analiz ettik. K-Ras
DT

 analiznin sonuçları literatürdeki deney sonuçlarıyla 

mükemmel örtüştü ve mutant formun analizleri için iyi bir referans noktası oldu. Sonrasındaki 

K-Ras
G12D

 analiziyle G12D mutasyonunun yapısal ve biçimsel değişimleri tetikleyerek 

proteinde karakteristik korele hareketlerin oluşumunu sağladığını gösterdik. Dahası, 

proteindeki korele hareketlerin nedensellik ilişkisini ortaya çıkarabilen yeni bir yaklaşım 

geliştirdik. Koşullu gecikmeli korelasyon hesabına dayalı bu yaklaşımla K-Ras’taki dinamik 

süreçleri kontrol eden bölgeleri aydınlatmayı başardık. Tüm analiz sonuçlarını birlikte 

yorumlayarak K-Ras
G12D

 üzerinde yeni bir ilaç hedefi bölgesi bulduk ve buraya 

bağlanabilecek molekülleri yanaşma tekniğiyle taradık. Burada bulunan K-Ras dinamiklerini 

kontrol eden bölgelerin gelecek ilaç keşfi çalışmalarında yeni fırsatlar sunacağını umuyoruz. 
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1 INTRODUCTION 

K-Ras is the most frequently mutated oncoprotein in human cancers[1-3]. Activating 

mutations in K-Ras protein drive tumor initiation, progression and drug resistance in patients 

with cancers of the pancreas, colon and lung[4-7], directly leading to nearly a million deaths 

per year [8]. Sadly, these mutations are predictive of very poor response to standard therapies, 

and often emerge and drive acquired resistance[9-11]. K-Ras is a small GTPase that is critical 

in the regulation of intracellular signaling networks in cellular growth, proliferation and 

differentiation[12]. To perform its cellular roles, it switches between its inactive GDP-bound 

and active GTP-bound states (Figure 1.1A) [13, 14]. The balance between the two states is 

regulated by guaninenucleotide exchange factors (GEFs), which bind to inactive K-Ras (K-

Ras-GDP) and catalyze the exchange of GDP for GTP. Only active GTP-bound K-Ras (K-

Ras-GTP) can bind and activate its downstream effector proteins, such as Raf kinase, 

phosphatidylinositol 3-kinase (PI3K), and Ral guanine nucleotide dissociation stimulator 

(RalGDS) (Figure 1.1A)[15-17]. To terminate the downstream signaling, K-Ras-GTP 

catalyzes the GTP hydrolysis and becomes inactive. In K-Ras-GTP, the P-loop (residues 10-

17), switch I (SI, residues 25-40) and switch II (SII, residues 60-74) regions make up the 

active site whose well-ordered conformations allow GTP hydrolysis (Figure 1.2). Intrinsic 

GTPase hydrolysis of K-Ras-GTP can be accelerated by the binding of GTPase-activating 

proteins (GAPs)[18, 19]. However, oncogenic mutations in K-Ras impair the intrinsic GTPase 

function and GAP binding and thereby GTP hydrolysis. Unable to switch to its GDP-bound 

inactive state, mutant K-Ras remains continuously active, causing prolonged activation of 

downstream pathways associated with oncogenic cell growth[15, 20-22]. Oncogenic 

mutations in K-Ras are found in about 27% of human cancers[2]. These mutations in K-Ras 



 

2 

 

protein are recurrently observed at positions G12, G13 and Q61, where G12 is the most 

frequently mutated residue (89%), followed by G13 (9%) and Q61 (1%) (Figure 1.1B)[3, 15]. 

G12 most prevalently mutates to aspartate (G12D, 36%) followed by valine (G12V, 23%) and 

cysteine (G12C, 14%)[3, 15]. There is strong evidence that blocking mutant K-Ras activity 

can be very effective in cancer treatment[23, 24]. Yet, despite decades of research, there are 

still no drugs in the clinic today that can directly target these proteins[25, 26]. 

 

Figure 1.1 K-Ras GTP/GDP cycle, downstream effectors and mutation frequencies. A) 

Activation/inactivation cycle of K-Ras and downstream effector pathways implicated in K-

Ras-mediated oncogenesis. Adapted from literature [27] B) Piechart graph of the frequencies 

of mutations in K-Ras.(Blue: G12, Green: G13, Magenta: Q61, Yellow: Others) 
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Part of the challenge in oncogenic K-Ras inhibitor design has been due to structure analyses 

that suggest a lack of well-defined druggable sites on its surface[28]. Accumulating studies 

suggest that K-Ras proteins are in dynamic and flexible states and their distinct characteristics 

cannot be identified by structural studies alone[24, 29-37]. Studies that have utilized protein 

dynamics data such as nuclear magnetic resonance (NMR) and mass spectrometry have 

identified binding pockets on specific K-Ras oncogenic mutants, attempted to stabilize their 

conformational states achieved promising results; however, these are limited to K-Ras
G12C

 

mutant[30, 31, 35, 38], and the mechanisms that regulate K-Ras dynamics remain unknown. 

Therefore, we still need to clearly understand the intra-molecular regulatory relationships 

between residue pairs of K-Ras[26] and thereby investigate how the mutations trigger 

structural, conformational and dynamic changes in K-Ras that result in its constitutive 

activation. Understanding the mechanisms of dynamic regulation can present novel 

opportunities for identifying clinically actionable regulatory sites on mutant K-Ras surface. 

In regulation of protein dynamics, correlated motions between protein residues are essential 

[39-41]. These motions enable the transfer of fluctuation information through the allosteric 

network[42], which inherently involves directionality, or “causality” of events[43]. If the 

motions of two residues are correlated, it would be valuable to identify whether the motions 

of one residue drive the motions of the other. However, while correlation calculations indicate 

interaction (which is necessary for allosteric transitions) they are symmetric and do not reveal 

the direction of information flow. A method for detecting causality between two sets of 

observables is time-delayed correlation calculation. It has been extensively used in causality 

analyses in economics since its inception[44], leading to the Nobel prize, but has not been 

widely adopted in protein dynamics. 
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Figure 1.2 Crystal structure of wild-type K-Ras protein in GTP-bound state (PDB: 

4OBE). A) K-Ras structure ribbon representation with secondary structures in blue for α-

helices and green for β-sheets. B) Schematic of K-Ras sequences (residues 1-169). Functional 

regions are in same color used in K-Ras structure in A. 

The major goal of this thesis is to study regulation mechanisms of K-Ras dynamics. To do 

this, we utilized several theoretical approaches for analyzing trajectories obtained from MD 

simulations of wild-type and mutant K-Ras proteins. 

This thesis consists of eight chapters. In the present chapter, we give an overview of K-Ras 

protein as a drug target and the importance of dynamic characterization of it for direct 
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targeting. Chapter 2 reviewed the current literature on protein dynamics including theoretical 

aspects of MD simulations, causality relationships in protein motions, K-Ras in cancer, 

structure and dynamics of K-Ras and drug design efforts to target it. Chapters 3, 4, 5, and 6 

are organized in a similar manner. Each of those chapters describes a complete study with the 

introduction, the methods used and the results obtained combined with the discussion section.  

Chapter 3 presents a comprehensive study of intrinsic dynamics of K-Ras, including detailed 

analyses of causality between the motions of its residues. Development of new direct 

inhibitors that selectively bind to mutant K-Ras conformations while sparing those of WT K-

Ras requires first understanding the dynamics of the WT protein in detail. To evaluate the 

GTP/GDP binding dependent changes in WT K-Ras dynamics, we analyzed data from MD 

simulations of K-Ras-GTP and K-Ras-GDP by combining several distinct methods. Here, we 

introduce a novel approach –CTC– that predicts causality relationships between residue pairs 

of a protein. 

In Chapter 4, we probed the specific effects of the K-Ras mutations onto causality 

relationships in regulation of the protein dynamics. In that chapter, we improved our novel 

method CTC, introduced in Chapter 3, for faster and more accurate analysis of long time scale 

MD simulation data.  

Chapter focuses on the most frequently observed K-Ras mutation, G12D. We investigated 

how the G12D mutation triggers structural, conformational and dynamic changes in K-Ras 

that result in its constitutive activation. For this purpose, we developed an integrated MD 

simulation data analysis approach that uses different computational metrics to quantify 

mutation-based changes in protein structure and its consequences.  
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Chapter 6 discusses the dynamic characteristics of active and inactive K-Ras
G12D

. To design 

specific inhibitor drugs that selectively target constitutively active K-Ras
G12D

-GTP, we need 

to identify differences between active and inactive K-Ras
G12D

. Therefore, we performed 

detailed analysis of both active K-Ras
G12D

-GTP and inactive K-Ras
G12D

-GDP dynamics and 

provided comprehensive descriptions and comparison of these two states from extensive MD 

simulations. 

In chapter 7, using the results from Chapter 5 and Chapter 6, which compare the dynamic 

characteristics of WT & mutant K-Ras and active & inactive mutant K-Ras respectively, we 

were seeking for a novel drug binding pocket that is specific to active K-Ras
G12D

-GTP, the 

most recurrent mutant form. After identifying a novel drug binding pocket, we identified the 

small molecules that fit into novel binding site on K-Ras
G12D

 surface by applying docking 

techniques. In addition to K-Ras case, we applied docking methods into other drug design 

problems, too. We demonstrate three fruitful applications that we performed two of them in 

collaboration with experimental groups.  

Finally, Chapter 8 discussed the main outcomes of this thesis. We conclude this thesis by 

emphasizing that understanding the regulation of protein dynamics is crucial for drawing a 

complete picture of protein function; identifying the molecular mechanisms of mutations; and 

development of better drugs. 

2 LITERATURE REVIEW 

2.1 Protein Dynamics 

“Certainly no subject or field is making more progress on so many fronts at the present 

moment, than biology, and if we were to name the most powerful assumption of all, which 
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leads one on and on in an attempt to understand life, it is that all things are made of atoms, 

and that everything that living things do can be understood in terms of the jigglings and 

wigglings of atoms.” 

Richard P. Feynman 

(Feynman Lectures on Physics, vol. 1, Ch. 3. 1963) 

Proteins are dynamic macromolecules and essential components of the cell being responsible 

for a variety of biological functions. The function of a protein is related to its structure and 

dynamics. The physical basis of protein structure, dynamics and function has been extensively 

studied for several decades. Understanding of a protein function requires determination of 

protein structure at first[45]. Over the past half-century, improvements in structural biology 

have provided atomic-resolution models of many proteins [46].The experimental methods for 

the determination of the protein three-dimensional structures are X-ray crystallography and 

NMR spectroscopy. Numerous static protein structures have been determined by X-ray 

crystallography and NMR spectroscopy techniques[47] However, these techniques have their 

own limitations. In X-ray crystallography, the homogeneous crystal is needed while NMR 

spectroscopy technique is confined to structural solution of only small soluble proteins. 

Because of the limitations of experimental methods, computational methods for prediction of 

protein structure also have been developed[48]. These methods use an energy function for 

identifying the most stable conformation of a protein and a scoring function for evaluating the 

predicted models. 

However, determination of the structure of a protein is not enough to understand the function 

of it. Proteins are dynamic entities where the substantial structural fluctuations occur[49]. 

These fluctuations and the resulting conformational changes are playing an essential role in 
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their functions[50]. That conformational flexibility and also its preservation through specific 

deformation modes are crucial for proteins function[51-53]. Therefore, a full understanding of 

the function of a protein requires not only determination of its statistic structure but even more 

importantly, analysis of its dynamic behavior[54].The methods for analysis of protein’s 

dynamic behavior can be divided into two groups: High resolution structural approaches and 

theoretical approaches. 

2.1.1 High resolution structural approaches 

High resolution structural approaches involve X-ray crystallography and NMR 

spectroscopy[55]. Although protein motions have been frozen by these techniques, they 

provide indirect information on protein dynamics. For example, protein residues that can be 

found in different conformations often appear with partial occupancy in the X-ray structures. 

Moreover, each atom in the X-ray structures in Protein PDB has a B-factor value which is a 

rough measure of flexibility[56]. The B-factor calculated from the displacement of the atomic 

positions from an average value. The more flexible atoms have the larger B-factors 

distinguishing the rigid and flexible parts of a protein. Although they are widely used to 

estimate protein flexibility, B-factors are able to explain only harmonic motions, so that they 

systematically underestimate the magnitude of protein flexibility[57]. On the other hand, 

NMR spectroscopy also provides dynamic data giving more information than X-ray 

crystallography[58]. NMR experiments give dynamic information at different time scales: the 

pico-nanosecond scale from spin relaxation type experiments, the micro-millisecond scale in 

relaxation–dispersion measures and the second-minute regime in amide proton exchange 

saturation experiments[55]. Although these NMR experiments provide valuable dynamic 

information, we need to transform the observations into three-dimensional continuous images 
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to draw a complete picture of protein dynamics. However, theoretical methods for this 

transformation should be integrated very carefully [55, 59]. 

2.1.2 Theoretical approaches: MD Simulations 

The limitations of the high resolution structural approaches for defining the protein dynamics 

lead improvement of theoretical approaches and thereby development of computational tools. 

Since computational tools deal with models, they are classified as theoretical approaches[60]. 

The computational tool preferred for describing the dynamics of a specific protein system 

depends on the systems size. For dynamic description of large protein systems coarse grained 

methods are used. Coarse-grained models simulate the dynamics of complex protein systems 

using their simplified representation. Since complex protein systems are too large to be 

studied in atomistic detail, coarse-grained modelling makes the representation of large protein 

systems possible by lowering the representation level from all-atom to coarse-grained[61]. In 

coarse-grained models, in order to reduce the degrees of freedom of the system protein atoms 

divided into groups which are represented by single beads and solvent molecules divided into 

clusters which are represented by particles[62-67]. Although coarse-grained modelling is 

highly efficient in terms of computational cost, the atomic details are lost in this technique. 

A widely used computational method for studying protein dynamics is all-atom MD 

simulation. This method represents every atom in the system and evolves the positions and 

velocities of atoms according to the laws of classical physics. It computes the forces applied 

on the atoms using force fields. Those force fields are designed based on a combination of 

first-principles physics and parameter fitting to quantum mechanical calculations and 

experimental data[68]. A force field defines the total force on an atom as a sum of three types 

of component forces: bonded forces, van der Waals forces and electrostatic forces. Bonded 
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forces involve interactions between atoms connected by one or more covalent bonds. Van der 

Waals forces include the interactions between all atom pairs that fall off quickly with distance 

and therefore this type of interactions typically evaluated only for nearby pairs of atoms. 

Controversially, electrostatic forces include the interactions between all atom pairs that fall 

off quickly with distance. They are computed explicitly between nearby atom pairs; however, 

long-range electrostatic interactions are computed by using approximate methods which are 

more efficient than explicitly computing interactions between all distant atoms pairs.  

In MD simulation algorithms, the equations of motion are solved numerically following the 

time evolution of the system, and they allow the derivation of kinetic and thermodynamic 

properties. This property has own significance since the user can apply different 

environmental conditions (e.g. temperature, pressure, pH) to the simulated system. Since the 

biologically important macromolecules and their environments can be studied, MD 

simulations have been accepted as computational experiments[69]. 

It has been 40 years since the first MD simulation of a macromolecule of biological interest 

was published[70, 71]. It was the simulation of the bovine pancreatic trypsin inhibitor whose 

X-ray crystal structure was available in 1975. Although this simulation lasted for only 9.2 ps, 

the results were instrumental in acceptance of the idea that proteins are dynamic systems and 

their internal motions are related to their function[71]. During the following years, MD 

simulation method has continued to evolve with increasing accuracy and predictive power 

that makes it a widely accepted tool all over the world. While the original simulation was less 

than 10 ps in length, current protocols allow the simulation of protein systems for the multi-

nanosecond to microsecond time scale[55]. This rapid progress in MD simulation method and 

its popularization have been possible thanks to the advances in MD simulation softwares. The 
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most known softwares are GROMACS[72], GROMOS[73], AMBER[74], CHARMM[75] 

and NAMD[76] and they are freely available for the scientific community. 

One of the current progresses in MD simulations is parallel-computing simulations. The two 

components of its algorithm are responsible for the computational cost of MD simulation[46]. 

The first component is the force calculation at each time step. This part requires substantial 

computation (e.g. one billion calculation steps for a system with one hundred thousand 

atoms). The second component is the need for the force calculation repeated many times. 

Since atomic vibrations are too fast, individual time steps of the simulation are limited to a 

few femtoseconds. Therefore, approximately one billion time steps are required for a 

microsecond simulation. It’s impossible to complete such simulation on a single high-end 

processor core since it takes hundreds of years. To accelerate the simulations, people have 

started to develop softwares that parallelize molecular dynamics force calculations across 

multiple computer 22 years ago[77, 78]. Recent algorithmic innovations that reduce the 

communication requirements have improved the parallel computing scalability and efficiency. 

For example, as a part of Blue Gene project, IBM has developed Blue Matter application 

which can be scaled to thousands of cores for Blue Gene/L supercomputer[79]. Along with 

this, parallel computing performances of the most known MD simulation softwares such as 

GROMACS, AMBER and NAMD have made a marked progress.  

The other substantial contribution to the current progresses in MD simulations has made by D. 

E. Shaw Research. Shaw and co-workers developed a software package, Desmond, for 

commodity clusters, that speeds up the simulations by an order of magnitude[80]. They could 

run 500 ns simulation per day with this software[81]. However, their greatest contribution to 

the advances in MD simulations is Anton supercomputer. In order to run very long time scale 
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simulations, they designed Anton computer specifically for MD simulations[46], Anton is 

composed of directly connected special-purpose chips. Each Anton chip contains a dozen 

processor cores which are customized for simulations[81]. As a result of their effort, Shaw 

and co-workers was able to complete the first millisecond atomistic MD simulation of a 

folded protein[82]. Their studies of protein folding simulations provided a basis for 

understanding the kinetics of protein folding[83-86]. In recent publications, they explained the 

other processes in protein dynamics like ion channels’ mechanism, allosteric effects of ligand 

binding into membrane receptors and drug binding to target proteins by running long time 

scale simulations[87-90]. The extraordinary computational power of Anton allows extremely 

long simulations which can alter the interplay between experiment and theory. 

In addition to parallel computing and the special purpose parallel supercomputer, usage of 

graphics processing units (GPUs) also has accelerated MD simulations. GPUs are able to 

perform large numbers of identical calculations in parallel on a single chip. Although GPUs 

had been designed for increasing the speed of rendering of three-dimensional graphics, they 

have widely used for scientific purposes. In the last few years, the most popular MD 

simulation programs, GROMACS, AMBER and NAMD optimized their codes for GPU 

support. Despite the fact that GPU accelerated MD simulations with these softwares could not 

reach the speed of Anton, they allow many scientists to perform the multi-microsecond 

simulations for small and medium-sized proteins since they are freely available for the 

scientific community[91, 92]. 

Along with the rapid progress in MD simulation softwares, people also have developed tools 

for visualization of output trajectories of MD simulations. The most popular molecular 

animation tool is Visual Molecular Dynamics (VMD). VMD is written in C++, using an 
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object-oriented design by the Group of Theoretical Biophysics from the University of 

Illinois[93]. It is a molecular graphics program designed for the display and analysis of 

molecular assemblies, in particular proteins, nucleic acids, and molecular systems on the basis 

of lipids (i.e. components of cell membranes). VMD has also been designed for animation and 

analysis of trajectories obtained MD simulations and it is extensively used by scientific 

community as molecular animation software. VMD supports variety of file formats of for 

biomolecules and output MD simulation trajectories. Its ability to process great amount of 

data and its options for visualization and rendering of images and animation make VMD an 

attractive tool for the community[94]. The program allows user to use various methods of 

visualization and coloring molecules. One of the advantages of the program is that it can 

operate on a remote computer. Moreover, it is integrated with NAMD software. Scientist with 

any background can easily operate VMD thanks to its user-friendly graphical user interface. 

VMD software, its source code and extensive documentation are freely available via 

anonymous ftp and through the World Wide Web.  

MD simulation  method has been accepted as a “virtual microscope”[95] to observe variety of 

biologic processes in molecular level thanks to the recent improvements in simulation 

softwares and trajectory visualization tools. More specifically, people utilized MD simulation 

method especially for their studies on conformational changes in proteins and the binding of 

ligands into proteins[60].  

2.1.2.1 Conformational changes and ligand binding in MD simulations 

Conformational changes in proteins have studied for many years, since proteins’ function and 

regulation depend on the conformational changes[96]. Under physiological conditions, 

proteins obtain different conformational states. Conformational changes consist of significant 
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domain motions the thermal motions. Domain motions are the slow processes and they may 

assist ligand or effector binding. On the other hand, thermal motions such as side-chain 

rotations occurring at equilibrium are fast motions and they are precondition for protein 

activity[97]. Since MD simulations can capture these conformational changes composed of 

slow and fast motions, scientist use MD simulations to identify changes in conformational 

distribution resulting from mutations or ligand binding. Fast motions of proteins are very 

short time scale motions and they cannot be observed in experimental studies. Only molecular 

dynamic studies are able to record them even in femtosecond level. On the contrary, slow 

motions of proteins are long time scale motions and they can be observed only by 

experimental studies until recently. However, thanks to the recent progress in MD simulations 

(e.g. parallel-computing, special-purpose supercomputers, GPU acceleration etc.) the slow 

motions of proteins up to millisecond time scale can be recorded in MD simulations now[98]. 

In parallel to advances for calculation of long time scale motions, simulation data 

visualization tools also have been improved to deal with increasing amount of simulation 

data[99]. Therefore, scientists are able to perform detailed analysis and visualization of the 

protein conformational changes even from fast femtosecond motions to slow millisecond 

motions with MD simulations today. 

In addition to conformational changes of proteins, ligand binding to proteins also has been 

extensively studied by utilizing MD simulations[46]. Variety of biological processes (e.g. 

enzyme reactions, molecular recognition, cellular signaling) result from the intermolecular 

interactions between proteins and ligand molecules. Moreover, those interactions between 

proteins and small-molecule ligands play a key role in the disease treatment where the ligands 

act as drugs. Ligands can alter protein activity by causing the protein to change its 

conformational state or inhibit protein activity by binding to the active site of a protein. All of 
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the changes in protein activity as consequences of ligand binding can be identified by MD 

simulations. Moreover, due to the recent improvement in accessible timescales, now scientists 

are able to perform MD simulations where the ligands bind to target proteins spontaneously 

even if they don’t have prior knowledge of the binding site[100-102]  

2.1.2.2 MD simulations in drug discovery 

MD simulations have found applications in different areas, as they become faster and more 

accurate. Especially, they have been utilized as part of the drug development process 

Furthermore, it’s speculated that biomolecular simulation may make an impact drug discovery 

area in the coming years[46]. It has been over 50 years when Feynman stated the importance 

of the ‘jigglings and wigglings’ of atoms for understanding the living things. There isn’t any 

doubt that understanding these atomic motions of proteins is pertaining to drug discovery.  

In 1894, Emil Fischer postulated the initial ligand binding theory –‘lock and key' model- for 

the first time[103]. According to this analogy, the lock is the motionless target protein and the 

key is the ligand. Only the correctly sized ligand (key) can fit into the active site (key hole) of 

the target protein (lock) without causing any conformational changes. However, this rigid 

model couldn’t explain all experimental evidence sufficiently. For this reason, the rigid model 

has been abandoned in favor of a dynamic model: ‘Induced fit’. In 1958, D. E. Koshland Jr. 

from the University of California, Berkley, recognized that proteins are flexible structures and 

proposed this new model[104]. This dynamic model states that the binding of a ligand to a 

target causes a change in the shape of the target protein [105]. This model assumes that target 

protein is partially flexible and only the proper ligand is able to induce the proper fitting into 

the active site. A further proposed model was “conformational selection”. This model 

describes the stabilization of protein conformations by ligand binding. According to this 



 

16 

 

model, a protein can be found in variety of conformations from its unbound form to different 

interconvertible states. The binding of a ligand into the target protein triggers the 

conformational selection process where the ligand shows the highest binding affinity to a 

specific conformation of the protein and it preferentially binds to this conformation. During 

the conformational selection process the ligand does not create a new conformational state but 

causes a shift in the population in the favor of the binding competent state. 

MD simulations have long been utilized the drug discovery studies where the target protein is 

assumed as a dynamic entity. MD simulations of target proteins are attractive because of they 

have the potential to discover novel drug binding sites. Structural studies are not enough to 

define target sites on the surfaces of such dynamic proteins. On the other hand MD 

simulations are capable to reveal novel pockets on the proteins that are not present in existing 

crystal structures[106-109]. In addition to their capacity to reveal novel drug target sites, MD 

simulations are able to refine low-resolution structural protein models that are utilized in 

structure-based drug design[110]. 

MD simulations of proteins have provided many insights into complex activity of proteins 

concerning the internal motions of them since the first MD simulation of a protein was 

performed 40 years ago. Thanks to the advances in the simulation tools and the computational 

power we can carry out MD simulations of larger and more complex systems and longer time 

scales. These advances allow us to observe the atomic motions that are related to protein 

function for longer time scales. We can also obtain detailed information that is not obtained 

from experiments. The success of simulation tools makes clear that the applications of MD 

simulations will play an even more important role for our understanding of protein systems in 

the future. 



 

17 

 

2.2 Causality in protein dynamics 

Understanding the regulation of protein dynamics is crucial for drawing a complete picture of 

the protein function. In this regulation, the dynamics of different parts of the protein may be 

coupled by their long-range interactions and correlated motions. Such correlated motions are 

essential for the allosteric regulation which can render the protein dynamics productive in 

terms of biological function (e.g. catalysis, signal transduction). Realizing the importance of 

correlated motions, people have proposed several analysis methods for MD simulation data 

that aimed to define correlated motions[111, 112].  

One of the popular analysis methods for revealing the correlated motions is the calculation of 

the Pearson coefficient from MD trajectories. Ichiye and Karplus applied this method to the 

analysis of the bovine pancreatic trypsin inhibitor dynamics for the first time[113, 114]. They 

could identify the regions of the protein that move in a correlated manner. As illustrated by 

the first application, the Pearson coefficient quantifies the correlation between pairs of 

residues that indicates allosteric coupling of their motions. Although it’s a very popular 

method, Pearson coefficient calculation has a disadvantage: Coefficient values are symmetric. 

Therefore, one residue cannot be differentiated from another in a correlated pair. Nonetheless, 

it’s known that correlated motions of residue pairs often imply a causal directionality. The 

most known two examples of causality relationships in protein motions are hemoglobin and 

GroEl shaperon. In hemoglobin dynamics, the binding of oxygen atom to the heme group 

drives the correlated motions among heme, helix F, and the rest of the protein. Specifically, 

oxygen binding induces the motions of heme group and then the motions of heme group are 

responded by the motions of helix F and the rest of the protein[115, 116]. On the other hand, 

in the GroEL chaperone dynamics, the binding of ATP molecule to the equatorial domain 



 

18 

 

drives the correlated motions between the equatorial, intermediate, and apical domains that 

results in that lead the opening of the cis cavity[117, 118]. 

For determining the causality relationships between protein residue pairs transfer entropy 

calculation has been used[119, 120]. Schreiber proposed an information theoretic measure 

which is called transfer entropy[121]. This theoretic metric is able to identify asymmetry in 

the correlated pairs and distinguish driving and responding elements. It was used mostly in 

neuroscience to detect the neuronal networks[122, 123]. Then transfer entropy was applied to 

MD simulation data of transcription factor Ets-1 in order to reveal the information flow in its 

dynamics[42] Analysis showed that binding of DNA to H1 helix causes the correlated 

motions of the H1 helix with HI1 by means of a relay helix. Another application is the 

analysis of the autoactivation of extracellular signal-regulated kinases 1 and 2[124]. This 

analysis elucidated that helix-C at N-domain drives the activation lip that results in activation. 

Although these studies show that transfer entropy can be a useful measure to understand the 

causality in protein dynamics, the statistical significance of calculated transfer entropy values 

is not clear in these studies[42, 124]. Resulting transfer entropy values are often too small, 

and thus it is critical to apply well-defined statistical significance test. 

As we know from the literature, there is a method that can identify causation between time-

series variables is the calculation of the time-delayed correlation. This method first proposed 

by Sir Clive William John Granger[44], a British econometrician and recipient of the 2003 

Nobel Prize in Economics[125]. According to this method, for two time-series variables, X 

and Y, time-delayed correlation quantifies the information flow from the past of X to the 

future of Y. It has been extensively used in causality analyses in economics and in other 

fields, for example neuroscience[126], cell biology[127], human physiology[128, 129]. But to 

our knowledge, no applications to MD simulation data have been reported. 
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2.3 K-Ras protein as a drug target 

2.3.1 K-Ras and cancer 

The linkage between mutationally activated human Ras genes and human cancer was 

identified as retroviral oncogenes transduced from the rodent genome in 1982[130]. This 

investigation provoked intensive research for understanding the structure, biochemistry and 

biology of wild type and mutant Ras proteins to obtain information to be utilized in the 

discovery of drug molecules that can block mutant Ras function in cancer.  

The pioneer study for identification of Ras was a retrovirus study which isolated rapidly 

transforming retroviruses from animals such as chickens, turkeys, rats, mice, cats and 

monkeys. In that extensive study, the oncogenic viruses cause acute formation of sarcomas in 

infected animals and potent transformation of cells in culture. After that study the potently 

oncogenic Harvey murine sarcoma virus and the Kirsten murine sarcoma virus were identified 

in 1964[131] and in 1967[132], respectively. Identification of these viruses leaded to 

discoveries of the oncogenic genetic elements in human including the human H-Ras and K-

Ras oncogenes. 

Between the late 1970s to the early 1980s, serial studies of Scolnick and colleagues elucidated 

origin of the viral H-Ras and K-Ras genes[133, 134]. Then they determined that the 21 kDa 

proteins are encoded by these genes[135] and also these proteins make complex with 

nucleotides (GDP and GTP)[136] that are bound to the cell membrane[137]. Furthermore, 

they revealed that overexpression of these proteins can transform cells[138] and their 

preferential binding to GTP is key for transformation[136, 139]. Scolnick and colleagues 

could establish the basics of Ras as GTP-binding membrane-associated proteins and their 

studies served as cornerstone for the further subsequent studies on Ras. 
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In 1982, three groups identified the same Ras genes in Kirsten and Harvey sarcoma viruses in 

NIH/3T3 DNA transfection assays[140, 141]. They could also reveal the molecular basis of 

H-Ras gene activation in the EJ/T24 bladder carcinoma cell line[142]. Then the activation of 

K-Ras gene in human colon and lung carcinomas was identified, too[143]. Today, thanks to 

advances in sequencing technology we know that K-Ras mutations are the biggest oncogene 

mountains in particularly in human colon and pancreatic cancer, which are two deadly cancers 

in human. In contrast to K-Ras, N-Ras mutations are associated with hematopoietic tumors. 

As The Catalog of Somatic Mutations in Cancer(COSMIC) confirms that  K-Ras is the most 

frequently mutated Ras isoform in Ras driven cancers present in 86% of all tumors analyzed 

compared to 11% for N-Ras and 3% for H-Ras[3]. Likewise, each isoform has a different 

point mutation frequency. For K-Ras, 89% of the mutations are observed at residue 12, while 

very few mutations occur at codon 61. Controversially, 60% of N-Ras mutations are found at 

residue 61, whereas 35% of them are observed at codon 12. However, H-Ras mutations 

exhibit an intermediate pattern with 50% frequency at residue 12 and 40% frequency at 

residue 61[2]. 

2.3.2 Structure and dynamics of Ras 

The first Ras crystal structure was determined 30 years ago[144]. This finding fueled the 

research on Ras structure and function. Ras proteins are low molecular weight so called small 

GTPases (~20-25 kD) and their structure is composed of two domains. First part is the G-

domain (or catalytic domain consisting approximately 166 residues), which forms the bulk of 

the protein. It is responsible for the catalytic activity. The other part is the hyper-variable 

region. This region consists of a linker domain (a linkage between and catalytic domain and 

C-terminus; residues 167–179) and the C-terminal part (residues 180–186). C-terminal part 

undergoes farnesylation and its farnesyl tail targets the proteins to specific compartments of 
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plasma membranes[145]. The catalytic domain is composed of 5 α -helices, 6 β-strands, and 

10 loops[146]. The catalytic domain also can be divided into two lobes: Lobe 1 (residues 1-

86) and Lobe 2 (residues 86-166)[147]. Lobe1 is called effector lobe since it interacts with 

effector proteins and it spans the N-terminal part of the protein. Lobe 2 is the allosteric lobe 

that forms interactions with the membrane [148]. 

The three canonical members of RAS family in human are H-Ras, K-Ras and N-Ras. These 

isoform proteins show 90% sequence identity. The catalytic domain is structurally conserved 

between the isoforms while the hyper-variable region differs from each other. In detail, in the 

catalytic domain effector lobe is 100% conserved while the allosteric lobe exhibit small 

changes in the sequence. Earlier, it was considered that highly homologous catalytic domain 

serves the same function in all the isoforms. Within years, however, functional specificity of 

each isoform was investigated by experiments[149]. This functional specificity was 

considered to be a result of the different localizations of the each isoform on the membrane 

and subcellular compartments[150-152]. The differences in hyper-variable region of isoforms 

lead to distinct posttranslational modifications of them. They are localized to different 

domains on the plasma membrane by direction of these modifications. In addition to 

localization specificity, the role of the catalytic domain in selective interaction with effector 

and regulator proteins was suggested to contribute to the functional specificity[153, 154]. An 

example for selective interaction with regulator proteins is that RAS-GRF (a regulatory 

protein) activates only H-Ras[155] while RAS-GRP2 (another regulatory protein) activates N-

Ras and K-Ras but not H-Ras[156]. Similarly, there are examples for selective interaction 

with effector proteins, too. K-Ras is a more potent activator of Raf-1 among the other 

isoforms. Moreover, H-Ras can activate PI3K more efficiently is activated[157]. 
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After the first H-Ras crystal structure was determined in 1988, 130 H- Ras and 54 K-Ras 

crystal structures have been deposited in the PDB until today. These crystal structures are 

mostly GDP-bound forms or they are bound to GTP analogues (i.e. GppNHp). All of the 

structures have only the catalytic domain except recently reported K-Ras structures[158].  

X-ray crystal structures of Ras proteins bound with GDP and GppNHp display major 

conformational changes in the SI and SII regions[144, 159]. Binding of GTP to Ras allows the 

switch regions to obtain a conformation that Ras can bind to its effectors, e.g. Raf and PI3K. 

In addition to relative conformations of the two forms, each GDP and GppNHp bound form of 

Ras also fluctuates in solution. However, crystal packing of the protein restricts those 

significant fluctuations where crystal packing forces freeze out the protein conformation 

under the crystallization. Therefore, rigid crystal structures are not enough for understanding 

the mechanism of Ras-effector protein interactions[160]. To capture the dynamic changes of 

the protein in solution, NMR spectroscopy is the most suitable technique providing detailed 

dynamic characteristics of the protein that are mostly lost in crystal structures.  

The first Ras structure determined with NMR spectroscopy is catalytic domain of H-Ras 

bound to GDP has been (PDB ID 1CRP and 1CRR)[161]. Totally 40 determined NMR 

structures showed that folding topology of the solvated H-Ras structure is the same with the 

folding topology determined by X-ray crystallization. Moreover, the secondary structure 

elements -five α-helices and six β-strands- are identical with the crystal structures. NMR 

structures of H-Ras-GDP reveal also show that the SII region and to a lesser extent the SI 

region are flexible parts in solution. Furthermore, the superimposition of the averaged NMR 

structures (PDB ID 1CRQ) and the X-ray crystal structure of H-Ras-GDP (PDB ID 4Q21) 

shows the similarity of the structures excluding the SI regions.  

On the other hand, determination of the wild-type Ras and GppNHp complex structures with 
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NMR spectroscopy was challenging because of the time scales of NMR experiments. On the 

NMR time scale, chemical exchange processes at intermediate rates causes dilatation of the 

residues in the P-loop and SI and SII regions[162]. To overcome to this dilatation, threonine 

at position 35 is substituted with serine and this mutation successfully could eliminate the 

slow conformational exchange process[162]. As a result of this, 20 NMR structures of 

GppNHp bound form of mutant H-Ras
T35S

 were deposited in PDB (PDB ID 2LCF)[163]. 

Those NMR structures showed the same conformational characteristics with the crystal 

structures of Ras- GppNHp complexes. Superimposition of those NMR structures indicated 

that fluctuations of SI region are remarkable while those of SII region are intermediate. These 

resulting conformational characteristics of Ras-GppNHp are quite different then the NMR 

structure of Ras-GDP where fluctuations of the switch regions showed the opposite 

characteristics. 

2.3.3 MD simulations of Ras 

The first all-atom MD simulation of solvated GTP-bound Ras was done by Foley and 

colleagues in 1992[164]. They performed the 200 ps-simulation of the solvated 

crystallographic H-Ras structure of Pai et al[159]. Although this study and other earliest 

simulations of Ras proteins were very short (max 500 ps) by the current simulation standards, 

the flexible nature of the nucleotide binding site could be observed[164-168]. Those short-

time scale MD simulations helped distinguish the GTP and GDP bound Ras states displaying 

the distinct conformations of nucleotide binding site residues. Next, a longer (1 ns) simulation 

of oncogenic G12V mutant of H-Ras exhibit that the fluctuations of nucleotide binding site 

increased in the mutant form compared to wild-type form[169]. Further studies compared the 

simulations of Ras isoforms each other using homology models of the N- and K-Ras catalytic 

domains and they showed the differences between mutant and wild-type isoforms[147]. One 
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of the difference between K-Ras and H-Ras dynamics is the more flexible character of the 

nucleotide binding site and helix3-loop7 region in K-Ras than H-Ras that is similar to mutant 

H-Ras[170]. The flexibility of the loop 7 was also implicated by a following crystallographic 

study [171]. After that Gorfe and colleagues described the nucleotide and isoform-dependent 

dynamical features of Ras proteins. They found out isoform-specific allosteric communication 

pathways between the nucleotide binding region (lobe 1, the effector lobe) and the C-terminus 

(lobe 2, allosteric lobe)[147]. The allosteric communication pathways connecting the two 

lobes and their controlling by the nucleotide binding were further identified in the subsequent 

MD simulationstudies of Ras proteins [172-174]. These studies also revealed transition states 

between the active and inactive states of Ras [173]. Along with the detailed analyses of the 

monomer structure of Ras, the dynamics of GAP bound Ras complexes were also 

analyzed[175, 176]. Resat et. al. showed that binding of GAP to Ras induced the structural 

reorganization within the nucleotide binding site of Ras that accelerates the GTP 

hydrolysis[175]. The dynamics of effector-Ras complexes were analyzed by many 

groups[177-179]. These studies indicated the crucial role of the Ras dynamics in effector 

binding. 

2.4 Direct targeting of K-Ras activity 

As a central point of carcinogenesis, K-Ras is an urgent therapeutic target in human cancers. 

This section describes the strategies for direct targeting of K-Ras that were designed at 

various levels: 

The first strategy is to interrupt the K-Ras-GTP interaction. Nonetheless, the design of 

competitive inhibitors of K-Ras-GTP binding is considered as not feasible since intracellular 

concentrations of GTP are very high (millimolar range) and also binding affinity of K-Ras for 
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GTP is very strong (picomolar range). Since it’s not feasible to target GTP binding site, 

Ostrem and colleagues identified another target site which is adjacent to the active site on K-

Ras
G12C 

[30] based on a former strategy for distinguishing G12C mutant from other mutants 

and WT Ras[180]. Consequently, a specific and irreversible inhibitor of K-Ras
G12C

 has 

developed[35]. This inhibitor binds to inactive K-Ras
G12C

-GDP, stabilizes inactive form of K-

Ras
G12C

 and thereby blocks the downstream signaling. Along with this, another inhibitor that 

binds to K-Ras
G12C

-GDP was discovered by Patricelli and colleagues[29]. This inhibitor 

blocks the SOS-mediated activation of K-Ras
G12C

 where SOS (son of sevenless) is a GEF 

protein catalyzes K-Ras GTP/GDP exchange. Actually, this inhibitor of K-Ras
G12C

-GDP-SOS 

interaction was developed based on the knowledge of well-defined binding pockets in 

previous studies[181, 182]. In conclusion, the molecules which can bind to K-Ras and 

successfully inhibit its activation are limited to K-Ras
G12C

 inhibitors. However, G12C 

mutation less frequent then the other K-Ras mutations. Thus, we still need inhibitors for the 

most frequent mutations, G12D and G12C, in fight against cancer. 

The second strategy is design of GTP analogs. Ahmadian and collegues designed a modified 

GTP which can be hydrolyzed by the mutant K-Ras. They discovered that G12 mutants can 

hydrolyze a GTP analog, Diamino-benzophenone-phosphoroamidate-GTP, more effectively 

than WT protein[183]. Unfortunately, none of the molecules which are produced following 

this strategy has passed in vitro studies. 

Another strategy for direct targeting of K-Ras activity is gene therapy. In order to inhibit K-

Ras expression, people developed small antisense nucleotide sequences called small 

interfering RNA (siRNA) to silence the K-Ras gene directly. Chen and colleagues discovered 

an oligonucleotide that inhibits K-Ras expression efficiently in vitro[184], but this 



 

26 

 

oligonucleotide showed high toxicity and could not pass the preclinical tests. After that to 

reduce the toxicity, a biodegradable polymer was developed and carried by a local siRNA 

delivery system[185]. However, this system also could not pass the preclinical tests[186]. 

3 INTRINSIC DYNAMICS OF WILD-TYPE K-RAS: 

COMPARISION OF ACTIVE AND INACTIVE K-RAS 

3.1 INTRODUCTION 

K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs 

that directly target it in the clinic. Recent studies utilizing dynamics information show 

promising results for selectively targeting mutant K-Ras. However, despite extensive 

characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric 

regulatory information remain unknown. Understanding the direction of information flow can 

provide new mechanistic insights for K-Ras targeting.  

In summary, we present a comprehensive study of intrinsic K-Ras dynamics, including 

detailed analyses of causality between the motions of its residues. We first provide detailed, 

quantitative descriptions of both GTP- and GDP-bound K-Ras from extensive MD 

simulations. We use a statistical thermodynamics interpretation of fluctuation correlations to 

quantify K-Ras ‘stiffening’ upon activation. Stiffening changes protein dynamics. More 

importantly, using stiffness calculations jointly with measurements of reduced relative 

fluctuations, we define protein stability and show that K-Ras is more stable in active 

conformation. To characterize correlated motions that are persistent within the MD 

simulations of GTP- and GDP bound K-Ras, we map the correlated motion patterns within 
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their residues individually, and then compare and discuss their correlation decay time 

differences in detail. Our results show that inactive K-Ras is marked by a pronounced 

decrease in correlated motions of residues for shorter periods, while active K-Ras correlations 

have longer decay times. We analyze the ensuing events at the atomic scale. Finally, to enable 

a deeper understanding of K-Ras dynamics, we introduce the first causality calculations for 

K-Ras and predict specific driver/follower residue pairs during protein simulations. We apply 

a novel approach –CTC – using the motions of all residue pairs of a protein to predict 

directionality in the allosteric regulation of the protein fluctuations. CTC is the correlation 

between two time series subject to the condition that fluctuations of the first trajectory are 

correlated with later fluctuations of the second and thereby predict how past fluctuations of 

one trajectory affects the future fluctuations of the second. In some cases, CTC function of 

two trajectories may be asymmetric, with one affecting the other more strongly. We then 

predict that the fluctuations of a given residue control and modify the fluctuations of the 

delayed one. Results show the direction of information flow during allosteric modulation of 

its nucleotide-dependent intrinsic activity: active K-Ras SII region motions drive SI region 

motions, while α-helix-3L7 motions control both. Our results provide novel insights for 

strategies that directly target mutant K-Ras. 

3.2 METHODS 

3.2.1 MD Simulations 

We performed all-atom MD simulations for both Mg
+2

GDP- and Mg
+2

GTP-bound K-Ras. 

Crystal structure of K-Ras-GDP was retrieved from PDB (PDB ID: 4OBE) and K-Ras-GTP 

structure was obtained by changing GDP to GTP by adding a phosphate group to GDP using 

Discovery Studio 4.5 software, (DS)[187]. Then, the complex was optimized with Clean 
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Geometry tool of DS. This geometry optimization tool uses a fast, Dreiding-like forcefield to 

improve the geometry of the selected atoms and results in an approximate three-dimensional 

structure. We solvated each protein in a TIP3P water box with 12Å buffering distance. We 

applied periodic boundary conditions and added ions to neutralize the system. We used a 2fs 

time-step with a 12Å cutoff for Van der Waals interactions and full particle-mesh Ewald 

electrostatics with 1Å grid spacing and direct space tolerance of 10
-6

. We carried out all 

computations in N, P, T dynamics procedure. System temperature was kept constant at the 

physiological value of 310K using Langevin dynamics with a damping coefficient of 2ps
-1

. 

Constant pressure of 1atm was maintained by The Nose-Hoover Langevin piston method with 

a 200fs piston period and 100fs decay time. We used NAMD 2.11[76] with AMBER 

ff99SB[188] and general amber force fields (GAFF)[189]. We obtained parameters of GTP 

and GDP following the procedure in the next section. The initial system energy was first 

minimized for 10,000 steps, followed by 10,000 steps for equilibration. After equilibration, 

we performed 300ns simulations. Atomic coordinates �̂� of all atoms were saved every 1ps. To 

eliminate all rotational and translational motions, we aligned the trajectories to the initial 

structure by using VMD software 1.9.2[93]. We visualized trajectories using VMD. 

Additionally, to test whether WT KRAS-GTP complex approached the active (close) state, we 

monitored the first 100 ns-trajectories of both GTP- and GDP-bound complexes with VMD. 

We observed that the active site residues obtain relatively close conformations in WT KRAS-

GTP. We calculated distance distributions of several residue pairs that flank GTP and 

observed that they were in support of the relatively close active site conformation. 
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3.2.2 Parametrization of GTP and GDP 

The procedure consisted of two parts: (i) charge derivation; and (ii) preparation of the 

coordination and parameter files for the complexes. Charge derivation was divided into three 

sequential steps. First, we optimized the initial GTP and GDP structures by using QM 

program Gaussian 03 with base 6-31G* and level HF. Second, we performed Molecular 

Electrostatic Potential (MEP) calculations using Gaussian 03 with base cc-pVTZ  and the 

Density Functional Theory (DFT) method  B3LYP in continuum solvent. The third step was 

Restrained Electrostatic Potential (RESP) charge derivation[190]. We used RESP program 

available under AMBER[191]. We automated the calculations using the programs RED-vIII, 

Ante_RED and Antechamber[191-193]. The RESP ESP charge Derive program (R.E.D.) 

sequentially executed these three steps by interfacing Gaussian and RESP programs, and 

allowed the automatic derivation of RESP and ESP charges for GTP and GDP. Ante_RED 

was useful to prepare input files for Gaussian. We used RED-vIII to perform MEP 

calculations and RESP charge derivations. Antechamber wrote out additional force field files 

(frcmod file) of molecules with missing parameters. For basic model building and Amber 

coordinate and parameter/topology file creation we used the LEaP module of AMBER 14 

package[74].  

3.2.3 Calculation of fluctuations  

MD trajectories describe the time evolution of a system and are defined by the position vector 

Ri(t) of every atom i at every time point t where 1 ≤ t ≤ NT and NT is the total number of t time 

points of the trajectory. The time average 𝑅�̅� position of each atom i is then defined as 

�̅�𝑖 = ∑ 𝑅𝑖
𝑁𝑇
𝑡 (𝑡) 𝑁𝑇⁄  . The instantaneous fluctuation ΔRi (t) of the position vector of the ith 

atom is defined as  ∆𝑅𝑖(𝑡) = ∆𝑅𝑖(𝑡) − �̅�𝑖. The root mean squared fluctuation (RMSF) of a 
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residue is , where the angular brackets show the time average of the quantity 

enclosed. The RMSF of each atom is proportional to its Debye-Waller (B-factor) measured 

experimentally. 

3.2.4 Stiffness 

We quantified nucleotide-bound K-Ras stiffness using a statistical thermodynamics 

interpretation of fluctuation correlations[194]. We assumed that the interaction between two 

fluctuating residues i and j can be represented by a spring, where the spring constant follows 

from the Gaussian Network Model (GNM)[195]: 𝑘𝑖𝑗 =
𝑘𝛽𝑇

〈(∆𝑅𝑖)2〉−2〈(∆𝑅𝑖∆𝑅𝑗)〉+〈(∆𝑅𝑗)
2

〉
  where ∆𝑅𝑖 

is the instantaneous fluctuation of one end of the rod, ∆𝑅𝑗 is the fluctuation of the other end, 

kB  is the Boltzmann constant and T is the absolute temperature. The spring constant has 

dimensions of force/length. In GNM spring definition, each residue i is attached to N-1 other 

residues via N-1 springs[195]. Thus, how stiffly a residue i is attached to a protein can be 

quantified by �̅�𝑖 =  ∑ 𝑘𝑖𝑗𝑗 𝑁 − 1⁄  where  �̅�𝑖 is the mean spring constant for a residue i. For 

stiffness estimates of the complete complexes, we define an overall stiffness parameter koverall  

by the expression  . To estimate the stiffness differences in active versus 

inactive K-Ras, we calculated  �̅�𝑖 for each residue and koverall for the protein for both states.  

3.2.5 Stability  

We defined the stability of an interacting system of residues as the joint state of reduced 

RMSF and increased interaction stiffness. RMSF relates to the magnitude of fluctuations of 

individual residues and stiffness relates to the distance between two residues and therefore 
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they are two independent quantities. A small RMSF and a high stiffness denote increased 

stability.  

3.2.6 Distance distributions between residue pairs 

We calculated the distance between two residues (i,j) as 𝑅𝑖𝑗 = √(𝑅𝑖(𝑡) − 𝑅𝑗(𝑡))2. Residue 

pair distance distributions W(Rij) were calculated by dividing the maximum distance between 

the pair into small bins and counting the number of observed distances in each bin. All 

distributions were normalized. 

3.2.7 Time independent correlations (cross-correlation coefficient map) 

Correlations intrinsic to K-Ras structure are defined by the cross-correlation coefficient map, 

C(ΔRi, ΔRj ): 

𝐶𝑖𝑗 = 𝐶(𝛥𝑅𝑖, 𝛥𝑅𝑗 ) =
〈∆𝑅𝑖(𝑡)∙∆𝑅𝑗(𝑡)〉

〈(∆𝑅𝑖(𝑡))2〉1 2⁄  〈(∆𝑅𝑗(𝑡))2〉1 2⁄  =
∑ ∆𝑅𝑖(𝑡)∙∆𝑅𝑗(𝑡)

𝑁𝑡−𝜏
𝑡=1

[∑ (∆𝑅𝑖
2𝑁𝑡−𝜏

𝑡=1
(𝑡))]

1 2⁄
 [∑ (∆𝑅𝑗

2𝑁𝑡−𝜏
𝑡=1

(𝑡))]
1 2⁄   

where ∙ denotes the dot product. Correlation varies between -1 and 1. If motions of two atoms 

are independent, then 〈∆𝑅𝑖(𝑡) ∙ ∆𝑅𝑗(𝑡)〉 = 0 and 𝐶𝑖𝑗= 0. If the atoms always move in parallel 

in the same direction, then they are perfectly positively correlated, and 𝐶𝑖𝑗 = 1. If they always 

move in parallel in opposite directions, they are perfectly negatively correlated, and 𝐶𝑖𝑗 = -1. 

Cross-correlation coefficients lie in the range of -1 ≤ 𝐶𝑖𝑗 ≤1.  

3.2.8 Time delayed correlations, mobility and causality 

Time-delayed correlation of two fluctuations is defined by: 
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where  denotes that the average is a conditional average calculated according to 

               0i j j k i k i k i k j k

k
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            . 

Here,     j k i kp R t R t   denotes the conditional probability of observing  j kR t  
 
at 

time  kt  , given  i kR t  at time kt . 

Similarly, if indices are exchanged, then 𝐶𝑗𝑖(𝜏) represents the correlations of ΔRi  at time t + τ 

with earlier ΔRj values at time t. If the fluctuations of residue i drive the fluctuations of 

residue j, then 𝐶𝑖𝑗(𝜏) > 𝐶𝑗𝑖(𝜏). If 𝐶𝑗𝑖(𝜏) > 𝐶𝑖𝑗(𝜏), residue j drives residue i because the 

fluctuation ΔRj 
at time t is correlated with future fluctuations of ΔRi. However, at τ=0, the 

equality 𝐶𝑖𝑗(0)=𝐶𝑗𝑖(0) holds.  

Note that time-delayed autocorrelation 𝐶𝑖𝑖(𝜏) is the correlation of the trajectory with its own 

past and future coordinates. If autocorrelation is large, it can correspond to a specific form of 

“persistence”, a tendency for a system to remain in the same state from one observation to the 

next. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Comparison of stiffness changes in active and inactive K-Ras 

 GTP binding increases K-Ras stiffness. To understand how nucleotide binding affects K-

Ras dynamics, we quantified changes in its ‘stiffness’ – a metric that inversely correlates with 
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residue pair fluctuations - upon GTP vs. GDP binding. For this purpose, we represented the 

interaction between two fluctuating residue pairs (i and j) as a spring with a constant kij, and 

related its magnitude to the mean square fluctuations of residues i and j and to their cross-

correlations using the Gaussian Network Model (GNM). GNM is a coarse grained model at 

the residue level but it has been used widely for predicting protein behavior[195]. Plotting this 

spring constant for every residue pair in both GTP- (Figure 3.1A) and GDP-bound (Figure 

3.1B) K-Ras, we observe strong coordination in the fluctuations of GTP phosphate groups 

with those of K-Ras (Figure 3.1A).  

To zoom in on and directly compare the effects of nucleotide binding on K-Ras stiffness, we 

calculated the differences in spring constant values between GTP- and GDP- bound K-Ras. In 

the following paragraphs we show that the spring constants calculated in this way are in 

agreement with experimental findings. In Figure 3.1C, red dots indicate that the differences 

are largely due to the stiffening effects of GTP-binding on residue pair fluctuations. Notice 

that Regions 1-3 in Figure 3.1C that correspond to secondary structures show significant 

increase in kij when GTP-bound. Furthermore, Region 1 corresponds to strong coordination of 

β2 and β3 motions, while Regions 2 and 3 correspond to increased stiffness of β4-α3 and α4. 
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Figure 3.1 Stiffness results for GTP- and GDP-bound K-Ras and their difference. In 

panels A and B, both axes marks 1-169 represent the residue Cα atoms of K-Ras and marks 

170-on represent GDP and GTP nucleotide heavy atoms, respectively with kij >1.5 

kcal/mol∙A
2
. (A) kij for K-Ras-GTP. Atoms 170-181 are the γ, β, α-phosphate groups and 182-

201 are the guanine atoms of GTP. (B) kij for K-Ras-GDP. Atoms 170-178 are the β and α 

phosphate groups and 178-197 are the guanine atoms of GDP. (C) Difference between active 

and inactive K-Ras kij values. Red regions are stiffer in K-Ras-GTP (kij values of K-Ras-GTP 

> K-Ras-GDP by at least 0.75 kcal/mol∙A
2
) and blue regions are stiffer in K-Ras-GDP (kij 

values of K-Ras-GDP > K-Ras-GTP by at least 0.75 kcal/mol∙A
2
 ). (D) Mean spring constants 

𝒌�̅� for GTP and GDP bound states. (E) Mean spring constant differences 𝚫𝒌�̅� for GTP and 

GDP bound states. Positive values correspond to larger mean stiffness in K-Ras-GTP. 

Nucleotide binding affects spring constant of α2 (SII). We next investigated the effects of 

nucleotide binding on the spring constant of α2 (SII), because previous studies have shown 

that stiffness increases when SII refolds into an α-helical conformation through GTP 

binding[196]. We calculated the spring constants of the two terminal residues of α2 (A66 and 

T74), which were 0.10 kcal/mol∙A
2
 (69.91 pN/nm) for active and 0.04 kcal/mol∙A

2
 (27.78 
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pN/nm) for inactive K-Ras. Previous studies have utilized various experimental methods that 

have all led to spring constants within ~0.09-1.15 kcal/mol∙A
2
 (60–80 pN/nm) for 

helices[197, 198]. Our results for both K-Ras forms are on the same order of magnitude. Note 

that for active K-Ras the α2 spring constant is equalent to the characteristic spring constant of 

α-helices, while it is lower in inactive form. Hence, our results validate and quantify earlier, 

qualitative observations of Noe et. Al.[196] that the α2 spring constant reaches to the level of 

an α-helix spring constant during GTP binding. 

Overall spring constant is higher in active complex. To estimate global changes in stiffness 

in response to nucleotide binding, we calculated the overall spring constants koverall (details in 

Methods) of nucleotide-K-Ras complexes, which were 0.70 kcal/mol∙A
2
 (481.75 pN/nm) for 

GTP-bound, and 0.55 kcal/mol∙A
2
 (385.12 pN/nm) for GDP-bound K-Ras. Both are of the 

same order of magnitude with an experimental study for another protein, myoglobin, which 

has an overall spring constant of ~300 pN/m[199, 200] pointing to an order of magnitude 

agreement of overall stiffnesses of proteins in general. In conclusion, GTP-binding increases 

the overall K-Ras stiffness. In other words, GTP-binding decreases pairwise residue 

fluctuations of K-Ras overall, making the protein more rigid. 

Secondary structure motions show the strongest coordination with the rest of the protein. 

Quantifying the spring constant based on fluctuations allows for analyzing how, analogous to 

a virtual spring, the fluctuations of a specific residue are coupled with fluctuations of rest of 

the protein. To discover residues whose fluctuations are in strong coordination with K-Ras 

fluctuations and how they change between the two states, we compared the mean spring 

constant  �̅�𝑖 of each residue i, for both active and inactive K-Ras (Figure 3.1D) as described in 

Methods. A large  �̅�𝑖 value indicates that the motions of residue i are stiffly coupled with 
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protein motions; while a small  �̅�𝑖 value indicates that the motions of the ith residue and the 

protein are flexibly coupled. For simplicity, we categorized the significant mean spring 

constant  �̅�𝑖 values as highest, high and smallest (For details please see Table 3.1). In both 

states, the highest  �̅�𝑖 values are of β-strand residues β4, β5 and β6, showing the strongest 

coordination of their motions with K-Ras motions. Next, high  �̅�𝑖 values of β1, the P-loop and 

α5 residues indicate that their fluctuations are also strongly coupled with those of the protein. 

On the other hand, the smallest  �̅�𝑖 values belong to SII region in active and SI and SII regions 

in inactive K-Ras which show that their residue fluctuations are not correlated with the rest of 

the protein (Table 3.2). Since we have defined the stiffness metric as a signifier of a decrease 

in residue fluctuations, we provide a second line of proof that increased stiffness stabilizes 

dynamic fluctuations in both forms of K-Ras by using RMSF graph (Figure 3.2). Clearly, the 

residues with the smallest mean spring constant  �̅�𝑖 values from Figure 3.1D have the highest 

RMSF values in Figure.3.2 and vice versa.  

Table 3.1 Categorization of 𝒌�̅� values 

𝑘�̅� 

RANGE 

𝑘�̅�
 
VALUES (kcal/mol∙A

2
) CATEGORY 

K-Ras-GTP K-Ras-GDP 

%100 1.28 (Max) 1.08 (Max) The Highest 

%90 ≥ 1.16 ≥ 0.97 

%80 ≥1.04 ≥ 0.86 High 
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%10 

%100 

≤ 0.19 

Min 0.08 

≤ 0.14 

Min 0.03 

The Smallest 

 

Table 3.2 Categorization of residues according to their mean spring constant 𝒌�̅� values 

for K-Ras-GTP (left) and K-Ras-GDP (right). 

 K-Ras-GTP K-Ras-GDP 

Region Residues Region Residues 

The Most 

Rigidly 

Attached 

β4 G77-I84 β4 G77-I84 

β5 P110-N116 β5 P110-N116 

β6 P140-T144 β6 P140-T144 

Rigidly 

Attached 

β1 L6-G10 β1 L6-G10 

P-loop V14-G15 P-loop V14-G15 

α5 F156-V160 α5 F156-V160 

The Most 

Flexibly 

Attached 

SII G60-M67 SI D30-P34 

SII A59-R68 
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As indicated in previous studies where NMR and Atomic Force Microscopy were used, 

protein stiffness depends on secondary structure [199, 200], where loops contribute to 

structural flexibility and show large fluctuations, while β-strands and α-helices provide 

mechanical stability and show small fluctuations[199]. Our K-Ras results are consistent with 

these general observations. In addition, we observe stiff coupling of the fluctuations of the P-

loop and the protein. This observation is important since the P-loop is the phosphate binding 

site of K-Ras and connects β1 and α1. Although loops are often flexible regions of proteins 

and show higher fluctuations, in K-Ras, motions of the P-loop residues are stiffly coupled to 

those of the protein, especially in active state ( �̅�𝑖 =1.08 kcal/mol∙A
2
 for K-Ras-GTP,  �̅�𝑖=0.85 

kcal/mol∙A
2
 for K-Ras-GDP).  

 

Figure 3.2 Comparison of RMSF values of K-Ras motion in active form with inactive 

form. RMSF values of active form (black) and inactive form (red). 

The mean spring constant values of residues in β2, β3, α3 and switch regions –especially 

SI- are higher in active K-Ras than in inactive K-Ras. Finally, we calculated mean spring 

constant differences between GTP-bound active and GDP-bound inactive K-Ras, Δ �̅�𝑖  ( �̅�𝑖  K-

Ras-GTP -  �̅�𝑖 K-Ras-GDP). Figure 2E shows that the fluctuations of β2 and β3 terminal (D38 and 

D57) and α3 center (D92-I93) residues are in stronger coordination with those of active K-Ras 
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(vs. inactive K-Ras) (Δ�̅�𝑖 > 0.43 kcal/mol∙A
2
).  Our results also indicate that although residues 

of switch regions have the smallest  �̅�𝑖 values in both forms, some of their �̅�𝑖 values increase 

significantly in active form. In Figure 2E, Δ�̅�𝑖 ranges between 0.20-0.36 kcal/mol∙A
2
 for 

residues in SI (D30-R41) and 0.02-0.19 kcal/mol∙A
2
 for residues in SII (G60-T74). These Δ�̅�𝑖 

values show stiffer coupling of the motions of GTP-K-Ras with the motions of switch 

residues, especially SI (vs GDP-K-Ras). This result is important as SI includes the binding 

site to effector proteins which only bind to GTP-bound K-Ras when SI flexibilty is 

reduced[201]. Earlier studies that used NMR spectra and RMSF calculation also support our 

results that GTP binding reduces the flexibility of both SI and SII, especially SI[202, 203]. 

Our results improve on this information by showing that fluctuations of switch regions –

notably SI- are more stiffly coupled with K-Ras-GTP fluctuations (Figure 3.1E).  

3.3.2 Comparison of residue pair correlations for active and inactive K-Ras 

To identify if the fluctuations of one residue are related to fluctuations of another residue, we 

calculated the correlations of all residue-residue pairs in both GTP- vs GDP bound K-Ras 

complexes. As expected, cross-correlation coefficient maps of K-Ras-GTP (Figure 3.3A) and 

K-Ras GDP (Figure 3.3B) exhibit different correlation characteristics. The most remarkable 

differences between Figure 3A and 3B belong to two parts: (i) the correlation of α1-SI with 

L10-α5 and (ii) the correlations between β2 and β3. Positive correlation patterns within these 

two parts are evident in K-Ras-GTP simulations, but absent in K-Ras GDP simulations. To 

provide comprehensive information on nucleotide-dependent K-Ras dynamics, we present 

these two remarkable results from correlation analyses (Figure 3.3) as well as sources of 

correlated motions (i.e. H-bonds) together in the following sections.  
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The correlation of α1-SI with L10-α5 in active K-Ras motions is due to three specific H-

bonds. MD simulations show that the correlation between α1-SI and L10-α5 in the active 

form results from GTP binding to active site residues, which also form specific H bonds with 

other K-Ras residues and water. Based on the average number of H-bonds each residue forms 

throughout the simulation, we estimated that the nucleotides remain bound to active site 

residues S17, D30, D119 and K147, and that GTP-binding (vs. GDP) is more stable for S17 

and D30 (Table 3.3). Furthermore, correlated motions of α1-SI and L10-α5 in GTP-bound K-

Ras originate specifically from three H-bonds: (i) A146-Q22, (ii) D30-GTP, (iii) D30-a water 

molecule. We observed a sustained H-bond between A146-Q22 during active but not in 

inactive complex simulation. This suggests that A146-Q22 interaction causes a strong 

relationship between L10α5 (A146-D154) and α1 (L19-I24) in active K-Ras (Figure 3.3A) 

with a correlation coefficient of 0.75, and a weak correlation coefficient of 0.28 for inactive 

K-Ras. At the same time, the active site residue D30 forms an H-bond with the nucleotide in 

both active and inactive K-Ras, while it also binds to a water molecule only in the active 

form. However, the H-bond in the active form between D30(O)-GTP(O2A) is more 

permanent than the H-bond in the inactive form between D30(O)-GDP(O2’). 
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Figure 3.3 Cross-correlation coefficient maps for GTP and GDP bound states. Red dots 

show positive correlations (1 ≥ C(ΔRi, ΔRj ) ≥ 0.6) and blue dots show negative correlations 

(-0.45 ≥ C(ΔRi, ΔRj ) ≥ -1). Residues indices 1-169 refer to K-Ras. (A) Correlated 

fluctuations of K-Ras-GTP. Indices between 170-201 refer to GTP heavy atoms (182-201 are 

guanine atoms). (B) Correlated fluctuations of K-Ras-GDP. Indices between 170-197 refer to 

GDP heavy atoms (178-197 are guanine atoms). 

Since H-bond of D30-GTP is effective throughout the full trajectory, the D30-GTP distance 

is invariant and the fluctuation correlations of the D30-GTP have longer decay times 

during K-Ras-GTP simulation. We next combined cross-correlation results with the distance 

distribution of D30 and nucleotides and quantified the decay times of their correlations during 

MD simulations. In addition to more permanent binding of D30(O)-GTP(O2A), nucleotide-

D30 distance distribution pattern is close to the normal distribution curve with a mean of a 

smaller value in active K-Ras (Figure 3.4A), with a correlation coefficient of 0.97. To 

quantify decay time of this correlation in both complexes, we first defined two “connectivity 

vectors”, ΔR30-GTP and ΔR30-GDP, between D30(O) and nucleotides. As illustrated in Figure 

3.4B, ΔR30-GTP connects the starting point of fluctuation vector of ΔRD30(O) to end point of 
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negative ΔRGTP(O2A); ΔR30-GDP starts from ΔRD30(O) to negative ΔRGDP(O2’). We then calculated 

time-delayed autocorrelations of each connectivity vector throughout the MD simulations. 

The autocorrelation plot in Figure 3.4B summarizes the correlation of connectivity vectors at 

various time delays, where vector correlation coefficients are plotted with 1 ns delays at a 

time; slow decay of correlations in active K-Ras is clearly observed. Correlations decay to 1/e 

in about 3 ns for K-Ras-GDP (red line), vs. to ~10 ns for K-Ras-GTP (black line). One reason 

for this slow correlation decay is the H-bond, which binds D30 to a water molecule in active 

K-Ras. The O atom of D30 establishes an H-bond with the nearest water during 28% of the 

trajectory while it does not make any contact with waters when K-Ras is inactive.  

Table 3.3 Comparison of the average number of hydrogen bonds formed throughout the 

simulation between the nucleotide and K-Ras. 

 Average number of H bonds throughout the simulations 

Residue of K-Ras GTP GDP 

SER17 0.45 0.20 

ASP30 1.00 0.61 

A continuously acting H-bond stabilizes β2-β3 distance and promotes longer decay times 

for β2-β3 correlations during K-Ras-GTP simulation. β2 and β3 are two parallel β strands 

located between SI and SII regions (Figure3.5A). Due to the presence of a persistent H-bond 

between R41(β2)-D54(β3) in K-Ras-GTP simulation, the peak value of R41-54 distribution 

decreases (Figure 3.5B) and fluctuations of β2 and β3 become correlated (Figure 3.5A). Time-

delayed autocorrelations of the vector ΔR38-57 between their terminal residues D38 and D57 
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are presented in Figure 3.5C showing that ΔR38-57 correlation decays much more slowly in 

active K-Ras. 

 

Figure 3.4 D30-GTP distance is more stable than that of D30-GDP. Fluctuations of 

D30(O) to GTP(O2A) “connectivity vector” are persistently correlated. (A) Distance 

distribution between D30 and connecting O atoms of GTP (black) and GDP (red) (B)Time 

delayed autocorrelations for the vector connecting Oxygen atom of D30 to O2A of GTP 

(black curve) and O2’ of GDP (red curve). X-axis is the time delay (τ) and Y-axis is the time 

delayed autocorrelation of the vector for τ. 

 

Figure 3.5 Correlation of β2 and β3 fluctuations is persistent in active K-Ras. (A) 

Locations of R41 (β2) and D54 (β3) relative to SI & SII. (B) Distance distribution between 

Cα atoms of R41 and D54 in K-Ras-GTP (black) and K-Ras-GDP (red). Distance values 

between R41 (β2) and D54 (β3) populate at 3.90 Å during GTP binding; they populate at 5.46 

Å for GDP-bound K-Ras. (C) Time delayed autocorrelations for the fluctuations of the vector 

from D38 (Cα) to D57 (Cα). 
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3.3.3 Causality of Correlated Motions 

Correlated motions of proteins often have a direction or causal relationship[42]. Correlations 

in the fluctuations of two residues indicate interaction, which is necessary for allosteric 

transitions. However, this is not sufficient for understanding the dynamic phenomenon 

completely since these symmetric correlations do not contain information on driver and 

follower relationships. To deduce causality, CTCs need to be analyzed. Our observation is 

supported by recent work[42] that identified causality in correlated motions from MD 

simulations using an information theory measure of transfer entropy. This work, in turn, was 

built on a study by Schreiber, who introduced the entropy transfer concept for fluctuating 

environments[121]. We follow up on these ideas and introduce a new method to dissect 

dynamic correlations of all residue pairs of a protein to identify driver and follower residues. 

For this purpose, we evaluate strong time-delayed (=5ns) correlations between residue pairs. 

The strongest causal relations are as follows (Figure 3.6):  

SII motions drive SI in active K-Ras. SI-SII relationship is better understood by examining 

residues that drive their motions throughout the trajectory. Our causality calculations show 

that SI is driven by SII (Figure 3.6A and 3.7). We present CTC plots of R68(SII) with 

V29(SI) (Figure 3.7A) and with P34(SI) (Figure 3.7B) for active K-Ras. Red curve shows that 

the fluctuations of R68 at time t affect the fluctuations of V29 at time t+τ. Fluctuation decay 

of K-Ras residues is in the order of 1ns. The red curve persists for time periods that are an 

order of magnitude longer. The reverse does not show a significant correlation: V29 does not 

correlate with later fluctuations of R68. Previously, a study reported that SI loop at residues 

29–34 swings into the water using V29 and P34 as hinges during Ras inactivation[196]. We 

improved on this information by calculating time-delayed correlations and identified that SII 
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residues - especially R68 and D69- sustain active state conformation of SI by driving the 

motions of hinge residues V29 and P34. Another study also assessed the conformational 

transition of Ras from inactive to active state[147], where displacement of SII triggers the 

active state transition and SI follows SII after a lag time of multiple nanoseconds. Dominance 

of SII region motions was also observed in several studies[204, 205]. The nucleotide-bound 

form behavior is regulated by the relative arrangement of the two switches, rather than their 

individual conformations. We quantified this by verifying that SI fluctuations follow SII 

fluctuations in K-Ras-GTP. Since from information theoretic point of view correlations are 

regarded as information sources, we conclude that information flows from SII to SI. The 

directionality originates from the differences in the characteristic decay times. The problem is 

one of dynamics within few nanosecond time periods. Disruption of this flow is expected to 

interfere with the switch mechanism function, which is the basis of K-Ras activity.  

α3 and Loop 7 (L7) motions drive switch region (SI & SII) motions in active K-Ras (Figure 

3.6B). Fluctuations of the helical dimer interface residues of α3, E98 and R102[206] drive 

fluctuations of A66 (α2; SII), as shown in Figures3. 7C and 3.7D. Additionally, helical dimer 

interface residue S106 (L7) drives the motion of Y71 (α2; SII) (Figure3. 7E). On the other 

hand, fluctuations of R102 (α3) and S106 (L7) drive SI residues N26, D30, Y32 (Figures 3.7F 

to 3.7H). 

Correlated motions of α2 and α3-L7 have been described in other studies, which also 

emphasized the necessity of understanding their effect on protein function[33, 204, 207]. We 

contribute to this knowledge by identifying their cause and effect relations. Furthermore, in 

previous studies, starting from the allosteric interaction between α2 and α3-L7, a novel ligand 

binding pocket, termed p3, which includes residues of L7 was defined and targeted for lead 
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generation[33, 208, 209]. It was reported that ligand binding to p3 pocket weakens effector 

protein binding by allosterically stabilizing Ras effector binding site (SI). Another proposed 

allosteric mechanism is that ligand binding to p3 pocket changes the switch region 

conformation. Our results suggest that allosteric modulation of ligand binding may freeze the 

fluctuations of L7 and stabilize SI motions. This is based on our finding that motions of 

effector binding site (D30-Y32) are driven by S106 (L7). 

β2 and β3 both drive and follow residue motions in active K-Ras. Causality calculations 

suggest the following information flow in fluctuations: ILE21-GLN22 (α1) drives β2-β3 

(Figure 3.6 and 3.8); which drives Y157 (α5), Q61 (SII) and T74 (SII) (Figure 3.6 and 3.8, 

with details in Table 3.4). Specifically, the differences in the characteristic decay times in 

Figure 3.8A-B demonstrate that information flows from β2-β3 to Y157 (α5). These findings 

improve on the previous observations of Abankwa et al. where they defined β2–β3 and α5 as 

a novel conformational switch[210]. Most importantly, we showed that Q61 (SII) motions 

follow E49 motions (β2-β3) (Figure 3.8D). Abankwa et al. also observed that mutations in 

D47-E49 cause hyperactive Ras. Our findings support this too by showing that fluctuations of 

E49 of the wild type cause fluctuations of the catalytic residue Q61 within SII, whose proper 

positioning is essential for effective catalysis[162]. Based on these results, we suggest that 

mutations in D47-E49 region may alter E49 fluctuations that cause improper Q61 

fluctuations. Therefore, GTP catalysis is disrupted which results in constituently active K-

Ras.  
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Figure 3.6 Causality relations in active K-Ras motions. Directionality in causal 

relationships is illustrated with arrows. Arrows start from driver residues and end at follower 

residues. Both residue types are represented with yellow spheres and marked with their 

residue numbers. The secondary structures they belong to are in turquoise.  A) R68 (SII) 

drives V29 and P34(SI). B) E98 and R102 (α3) drive A66 (α2; SII). S106 (L7) drives Y71 

(α2; SII). R102 (α3) drives N26 and Y32(SI). S106 (L7) drives D30. C) ILE21-GLN22 (α1) 

drives β2-β3. D) I46 and D47 (β2-β3) drive Y157 (α5). 
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Figure 3.7 SII fluctuations drive SI fluctuations; α3-L7 motions drive switch region (SI 

& SII) motions in K-Ras-GTP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 show that the 

fluctuations of residue i at time t affect the fluctuations of residue j at a later time t+τ. All 

correlations (𝑪(𝝉)) are normalized with respect their value at zero (𝑪(𝟎)). (A) R68 (SII) 

drives V29(SI). (B) R68 drives P34(SI). (C) E98(α3) drives A66 (α2; SII). (D) R102 (α3) 

drives A66. (E) S106 (L7) drives Y71 (α2; SII). (F) R102 (α3) drives N26(SI). (G) R102 

drives Y32(SI). (H) S106 (L7) drives D30(SI). 

 

Table 3.4 The β2-β3 region acts as both the driver and the follower in active K-Ras. 

DRIVER RESIDUE(S) FOLLOWER RESIDUE(S) 

RESIDUE(S) NAME REGION RESIDUE(S) NAME REGION 

I21-GLN22  α1 Q43-L53 β2- β3 

I46-CYS51 β2- β3 Y157  α5 

I46-GLY48 β2- L3 T74  α2; SII 

E49 β3 Q61  SII 
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Figure 3.8 Fluctuations of ILE21-GLN22 (α1) drive the fluctuations of β2-β3. The red 

curves are for 〈Δ𝑅𝑖(𝑡)Δ𝑅𝑗(𝑡+𝜏)〉 and show that the fluctuations of residue i at time t affect the 

fluctuations of residue j at a later time t+τ. (A), (B) I21 drives I46 and D47, respectively. (C)-

(H) Q22 drives V44, V45, I46, D47, G48 and E49, respectively. 

 

4 CAUSALITY RELATIONSHIPS BETWEEN RESIDUE 

PAIRS OF MUTANT K-RAS PROTEINS 

4.1 INTRODUCTION 

In order to identify the effects of mutations to the protein dynamics, we analyzed mutant K-

Ras dynamics in depth and compare the dynamics of WT and mutant proteins. For this 

purpose, we performed long time scale MD simulations of the most frequently observed 

mutant K-Ras proteins in cancer patients; G12V, G12D, G12C. We performed 900 ns MD 

simulations of the both active and inactive forms of each of these mutant K-Ras proteins. We 

analyzed mutant K-Ras dynamics in depth by applying our novel method CTC to the data 

from MD simulations of mutant K-Ras proteins and thereby identify driver-responder residue 

pairs in mutant K-Ras proteins’ motions. Then we compared the results for different mutant 

K-Rases to reveal effects of the mutations onto causal relationships in K-Ras dynamics.  

In the previous chapter, we applied CTC method to WT K-Ras data and obtained the results 

which are consistent with the experimental data. In this chapter, we developed a customized 

script for faster and more accurate calculation of the CTC in analysis of long time scale MD 

simulations. Our updated CTC method can quickly identify the causality in protein dynamics. 

We demonstrate the simplicity of computing CTC functions in studying protein dynamics by 

applying it to understand K-Ras motions. While correlations between the fluctuations of 
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residue pairs have already been shown in several Ras protein studies[203, 207, 211], despite 

extensive literature on K-Ras, there has been little attention on the role of causality (or 

directionality) in correlation dynamics of its residues. 

We anticipate that our CTC method can quantify the changes due to the mutations or drug 

binding in protein dynamics. This computational tool will be easily applicable to the analysis 

of simulation data from different proteins to understand causality in their dynamics, which 

can then similarly be utilized in drug discovery. From this perspective, our method has the 

potential to set a novel paradigm for drug design by directing attention to changes in protein 

dynamics. The latter is in close relation to changes in protein function whose restoration to 

normal is the target of all drug design activities. 

4.2 METHODS 

4.2.1 MD simulations of mutant proteins 

We have performed all-atom MD simulations of Mg
+2

GTP-bound K-Ras and Mg
+2

GDP-

bound K-Ras for G12C, G12D and G12V mutant forms. We obtained the structures of K-Ras-

GTP
WT

 and K-Ras-GDP
WT

 from Chapter 3, with the final K-Ras-GTP
WT

 structure in active 

(close) state and the final K-Ras-GDP
WT

 structure in inactive (open) state after 300ns-

simulation. We constructed the mutant K-Ras
G12C

, K-Ras
G12D

, K-Ras
G12V

 structures based on 

K-Ras-GTP
WT

 and K-Ras-GDP
WT

 by respectively mutating glycine to cysteine, aspartate, at 

position 12 using DS 4.5 software. We optimized the protein complex with Clean Geometry 

tool of DS. We used NAMD 2.11 with AMBER ff99SB and GAFF[189]. We performed 

energy minimization of the initial model after we introduced mutation in K-Ras. Then, we run 

the MD simulations of each complex by following the same MD simulation protocol in the 
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previous study[212]. We applied minimization for 10,000 steps and equilibration for 500,000 

steps. After equilibration, we performed 1 microsecond MD simulations, and saved atomic 

coordinates �̂� of all atoms every 10 ps. We used the last 900 ns of the simulation trajectories 

in all computations. To eliminate all rotational and translational motions, we aligned the to the 

first frame using VMD software 1.9.2[93].  

4.3 Identification of causality relationships between protein residue pairs 

To predict causality between correlated residue pairs of a protein, we follow the six steps 

below for all pairs (ij) of its residues. (The algorithmic steps of our method are presented in 

Figure 4.1): 

Step I: Correlation Calculation 

We predict the correlation between two residues (Cij) by calculating Pearson correlation 

coefficient (Cij (ΔRi, ΔRj)) of residue i fluctuations (ΔRi) with residue j fluctuations (ΔRj). 

Pearson correlation coefficients lie in the range of -1 ≤ Cij ≤ 1 and they are symmetric (Cij 

=Cji). If motions of two residues are independent, Cij = 0. If the two residues always move in 

parallel in the same direction, then they are perfectly positively correlated, and Cij = 1. If they 

always move in parallel in opposite directions, they are perfectly negatively correlated, and Cij 

= -1. 

Step II: Selection of Correlated Residue Pairs 

In order to estimate whether there is a significant correlation within a residue pair, we aim to 

determine a cutoff value for Cij between 0 and ±1. Since correlation is an effect size, we 

describe the significance of the correlations on system basis. First, we sort all Cij values in the 
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system in a descending order and then separate negative and positive ones. Then, we draw 

log-log plots of Cij values and find the convergence point for both negatives and positives. 

Finally, we define the Cij value at the convergence point as “Cij – cutoff”. We select the 

residue pairs of which Cij values are between Cij – cutoff and ±1 and accept them as 

“correlated residue pairs” in the protein. 

 

Figure 4.1 The flow diagram of CTC analysis. 
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Step III: CTC Calculation 

We calculated CTC of fluctuations of the residues 𝐶𝑖𝑗(𝜏) with the same formula in Chapter 4. 

𝐶𝑖𝑗(𝜏) represents the correlations of ΔRj  at time t + 𝜏 with earlier ΔRi values at time t, where 𝜏 

is the time-delay, while 𝐶𝑗𝑖(𝜏) represents the reverse. If the fluctuations of residue i drive the 

fluctuations of residue j, then 𝐶𝑖𝑗(𝜏) > 𝐶𝑗𝑖(𝜏). If 𝐶𝑗𝑖(𝜏) > 𝐶𝑖𝑗(𝜏), residue j drives residue i 

because the fluctuation ΔRj 
at time t is correlated with future fluctuations of ΔRi. However, at 

𝜏 =0, the equality 𝐶𝑖𝑗(0)=𝐶𝑗𝑖(0) holds. 

Step IV: Time-Delay vs. CTC Map 

We calculate CTC of a residue pair (𝐶𝑖𝑗(𝜏) and 𝐶𝑗𝑖(𝜏)) for different time-delay (𝜏) values and 

draw both 𝐶𝑖𝑗(𝜏) − 𝜏 and 𝐶𝑗𝑖(𝜏) − 𝜏 curves in the time-delay vs. CTC map to assess the decay 

of residue correlations by time-delay. In those maps, X-axis is time delay (𝜏) and Y axis is 

CTC of i and j for 𝜏 (𝐶𝑖𝑗(𝜏)). All 𝐶𝑖𝑗(𝜏) and 𝐶𝑗𝑖(𝜏) values are normalized with respect their 

value at zero (𝐶𝑗𝑖(0)). 

Step V: Selection of Residue Pairs which have Asymmetric Decay Curves in Time-Delay vs. 

CTC Map  

We determine if decay curves of 𝐶𝑖𝑗(𝜏) − 𝜏 and 𝐶𝑗𝑖(𝜏) − 𝜏 are asymmetric and 𝐶𝑖𝑗(𝜏) is 

greater than 𝐶𝑗𝑖(𝜏) for all 𝜏 values. To quantify the difference between the two decay curves, 

first we calculate the area of the region bounded above by y = 𝐶𝑖𝑗(𝜏) and bounded below by 

y= e
-1

. We defined this area as “A(𝐶𝑖𝑗(𝜏))”. Similarly, we calculate “A(𝐶𝑖𝑗(𝜏))”, too. Then we 

calculate the absolute value of the difference between “A(𝐶𝑖𝑗(𝜏))” and “A(𝐶𝑗𝑖(𝜏))” and define 

it as “Δ𝐶𝑖𝑗(𝜏)” and use it in the next step. 

Step VI: Identification of Driver-Responder Residue Pairs 
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We calculate all Δ𝐶𝑖𝑗(𝜏) values for all ij pairs, we sorted them in a descending order and then 

drew log-log plots to find the convergence of Δ𝐶𝑖𝑗(𝜏) values. The convergence point is the 

threshold. We then assumed that all ij pairs correspond to Δ𝐶𝑖𝑗(𝜏) values over the threshold 

are driver-responder candidates. 

4.4 RESULTS  

4.4.1 Causality relationships in K-Ras
G12C

-GTP 

SII motions drive Loop 7 (L7) in active K-Ras
G12C

. Our causality calculations show that L7 is 

driven by SII (Figure 4.9A-B). We present CTC plots of 62 (SII) with 104 (L7) (Figure 4.9A) 

and with 108 (L7) (Figure 4.9B) for active K-Ras. Red curve shows that the fluctuations of 62 

at time t affect the fluctuations of 104 and 108 at time t+τ. 

SII motions drive SI in active K-Ras
G12C

. Our causality calculations show that SI is driven by 

SII (Figure 4.9C). We present CTC plots of 65(SII) with 35(SI) (Figure 4.9C). Red curve 

shows that the fluctuations of 65 at time t affect the fluctuations of 35 at time t+τ. 

P loop motions drive SII. We present CTC plots of 17(P loop) with 65(SII) (Figure 4.9D). 

Red curve shows that the fluctuations of 17 at time t affect the fluctuations of 65 at time t+τ. 

β4 motions drive SII. We present CTC plots of 80(β4) with 65(SII) (Figure 4.9E). Red curve 

shows that the fluctuations of 80 at time t affect the fluctuations of 65 at time t+τ. 

Residue 116 motions drive SII. Fluctuations of 116 at time t affect the fluctuations of 65 at 

time t+τ, as shown in Figure 4.9F.  
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Figure 4.2 Causality relations in K-Ras
G12C

-GTP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 

show that the fluctuations of residue i at time t affect the fluctuations of residue j at a later 

time t+τ. X axes is for t values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized 
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with respect their value at zero (𝑪(𝟎)) and shown in Y axes. (A) 62 (SII) drives 104(L7). (B) 

62 drives 108(L7). (C) 65(SII) drives 35(SI). (D) 17 (P loop) drives 65. (E) 80 (β4) drives 65 

(SII). (F) Residue 116 drives 65(SII). 

4.4.2 Causality in K-Ras
G12C

-GDP 

SI and β4 motions drive SII motions in inactive K-Ras
G12C

 (Figure 4.10). Fluctuations of the 

SI residue E31 drive fluctuations of Q61 (SII), as shown in Figure 4.10A. Additionally, β4 

residue F78 drives the motion of Q61 (SII) (Figure 4.10B).  

 

Figure 4.3 Causality relations in K-Ras
G12C

-GDP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 

show that the fluctuations of residue i at time t affect the fluctuations of residue j at a later 

time t+τ. X axes is for t values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized 

with respect their value at zero (𝑪(𝟎)) and shown in Y axes. (A) 31 (SI) drives Q61 (SII). (B) 

F78 (β4) drives Q61 (SII). 

4.4.3 Causality in K-Ras
G12V

-GTP 

P loop and β4 drive α3 motions in active K-Ras
G12V

. Figures 4.11A-B show G12-G13 (P 

loop) and residues 83 and 88 of α3. 

SII motions are driven by β3 and α4 motions. Figure 4.11C shows residue 52 drives Q61 and 

Figure 4.11D shows residue 135 drives 66. 
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Figure 4.4 Causality relations in K-Ras
G12V

-GTP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 

show that the fluctuations of residue i at time t affect the fluctuations of residue j at a later 

time t+τ. X axes is for t values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized 

with respect their value at zero (𝑪(𝟎)) and shown in Y axes. . (A) G12 (P loop) drives residue 

83(α3). (B) G13 (P loop) drives residue 88(α3). (C) Residue 52(β3) drives Q61(SII). (D) 

Residue 135 (α4) drives 66. 

4.4.4 Causality in K-Ras
G12V

-GDP 

We found that causality relations in active K-RAS
G12V 

motions disappear in the inactive form 

and new relations doesn’t occur. 
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4.4.5 Causality in K-Ras
G12D

-GTP 

SII motions are main drivers in active K-Ras
G12D

. Our causality calculations show that SII 

drives both the P-loop and β3 motions. We present CTC plots of 70(SII) with 9(P loop) 

(Figure 4.12A) and 69(SII) with 54(β4) (Figure 4.12B) for active K-Ras
G12D

. 

 

Figure 4.5 Causality relations in K-Ras
G12V

-GTP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 

show that the fluctuations of residue i at time t affect the fluctuations of residue j at a later 

time t+τ. X axes is for t values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized 

with respect their value at zero (𝑪(𝟎)) and shown in Y axes. (A) Residue 70 (SII) drives 

residue 9(P loop). (B) Residue 69 (SII) drives residue 54(β4).  

4.4.6 Causality in K-Ras
G12D

-GDP 

C-terminal motions are driven by switch region (SI & SII) motions in inactive K-Ras
G12D

. 

Fluctuations of residue 162 (C-terminal) are driven by fluctuations of residues 36(SI) and 57, 

76 (SII) as shown in Figures 4.13A, B, C, respectively. 

SII motions are driven by β4 and α3 motions. Figure 4.13D shows residue 79(β4) drives 

65(SII) and Figure 4.13E shows residue 95(α3) drives 69(SII). 
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SI motions drives β3. Fluctuations of residue 32 at time t affect the fluctuations of 41 at time 

t+τ, as shown in Figure 4.13F. 

 

Figure 4.6 Causality relations in K-Ras
G12D

-GDP. Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 

show that the fluctuations of residue i at time t affect the fluctuations of residue j at a later 
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time t+τ. X axes is for t values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized 

with respect their value at zero (𝑪(𝟎)) and shown in Y axes. (A) 36 (SI) drives 162(C-

terminal). (B) 57(SII) drives 162. (C) 76(SII) drives 162. (D) 17 (P loop) drives 65. (E) 79 

(β4) drives 65 (SII). (F) Residue 95 drives 69(SII). 

 

5 THE DYNAMIC BASIS OF ONCOGENIC K-RAS 

MUTATION: COMPARISION OF WILD TYPE AND 

MUTANT K-RAS 

5.1 INTRODUCTION 

In order to obtain more detailed information on mutant K-Ras dynamics, we focus on the 

most frequently observed K-Ras mutation, G12D. Here, we present how the most recurrent K-

Ras oncogenic mutation, G12D, leads to structural, conformational and dynamical changes 

that impair K-Ras function using a new integrated MD simulation data analysis approach we 

have developed to quantify the changes in K-Ras in response to G12D mutation. We analyzed 

the MD-simulation data of K-Ras
WT 

and K-Ras
G12D

. We first studied the structural changes in 

K-Ras upon G12D mutation, and discovered salt bridges that are either formed or destroyed 

upon mutation. Second, we evaluated the changes in the pair-wise distances between residues 

and quantified the local volume changes to identify changes in protein conformation. Third, 

we identified changes in protein dynamics though a multi-step process where we (i) quantified 

the residue fluctuations; (ii) evaluated correlation of residue fluctuations and identified lost or 

newly formed correlations upon mutation; (iii) calculated the characteristic decay times of 

residue fluctuations; and (iv) identified residue pairs that are causally related (i.e., residue 

pairs that show driver-responder behavior). Finally, we related the observed structural 
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changes to conformational and dynamical ones, which enabled us to identify the important 

changes that affect protein function. Overall, our study identifies regulatory sites on K-

Ras
G12D

, which can enhance our understanding of its dynamics and assist in the development 

of direct inhibitors.  

5.2 METHODS 

5.2.1 MD simulations  

We performed all-atom MD simulations for Mg
+2

GTP-bound K-Ras
WT

. We obtained the  K-

Ras-GTP
WT

 structure from the final frame of the 300 ns simulation of active (close) state 

protein described in Chapter 3. We we performed 1 microsecond MD simulations following 

the protocols from Chapter 3. We saved atomic coordinates �̂� of all atoms every 10 ps and 

used the last 900 ns of the simulation trajectories in all computations. To eliminate all 

rotational and translational motions, we aligned the trajectories to the first frame using VMD 

software 1.9.2[93]. We visualized the trajectories with VMD. To identify salt bridges formed 

in the protein during the MD simulations, we used Salt Bridges Plugin, Version 1.1, of VMD. 

5.2.2 Pairwise distance calculations 

To quantify the effect of the G12D mutation on the distances between residue pairs, we 

developed a new computational algorithm. We detail our algorithm in Figure 5.1. Briefly; we 

first assumed K-Ras
WT 

as the initial state and K-Ras
G12D 

as the final state. Then, we calculated 

the distances between Cα atoms of two residues (i, j) as we described in Chapter 3. GNM 

studies in the literature typically assume the maximum Cα-Cα distance for the separation 

between two contacting residues ~7.2Å[195, 213], and label it the ‘first coordination 

shell’[214, 215]. We followed this same protocol and determined the first coordination shell 
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around a selected residue by choosing its Cα as the center of a volume V with a radius of r1 

~7.2 Å[195]. However, because the contribution of non-bonded pairs to higher order 

coordination shells may also be significant[215, 216], we also studied residue pairs that are 

within their ‘second coordination shell’ in K-Ras
WT

 structure. We defined this second 

coordination shell at twice the volume of the first, with a radius of ~9.1 Å[215]. 

For every residue pair (i,j) where j is in the second coordination shell of i, we first calculated 

their time-averaged distances in K-Ras
WT

 (�̅�ij WT) and in K-Ras
G12D

 (�̅�ij G12D). We then 

calculated the difference (∆�̅�𝑖𝑗) between �̅�ij WT and �̅�ij G12D, where ∆�̅�𝑖𝑗 = �̅�ij G12D - �̅�ij WT. The 

magnitude of the difference is the degree of distortion resulting from the G12D mutation. We 

present ∆�̅�𝑖𝑗 values in the pairwise distances map (Figure 5.2) where a positive value 

indicates that a residue pair moves apart upon G12D mutation, while a negative value 

indicates that the pair gets closer. Then, we identified the residue pairs (ij) which are distorted 

by G12D mutation significantly. For this purpose, we selected the residue pairs that have the 

greatest (positive and negative) ∆�̅�𝑖𝑗 values. We assumed that the residue pairs whose ∆�̅�𝑖𝑗 

values are greater than 2.75 or smaller than -1.35 showed the most significant distance 

changes. For those identified residue pairs, we also drew the distribution graphs W(Rij) of 

their distances (Rij) during the simulations of  K-Ras
WT

 and K-Ras
G12D

. 

Additionally, to quantify the changes in local volumes upon G12D mutation, for each residue 

i we calculated the average of all ∆�̅�ij values according to formula of 〈∆�̅�𝑖〉 = ∑ ∆�̅�𝑖𝑗𝑗 𝑁𝑛⁄ , 

where Nn is the number of residues j which are in the second coordination shell of residue i. In 

detail, for a residue i, we chose it as the center of a volume V with a radius of 9.1 Å (the 

second coordination shell ) and defined the residues j within this volume V as the neighbors 

of residue i. Then, we calculated the total change in the distance between residue i and its 
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neighbors, ∑ ∆�̅�𝑖𝑗𝑗 , and divided it by number of neighbors ∑ ∆�̅�𝑖𝑗𝑗 𝑁𝑛⁄ . The resulting 〈∆�̅�𝑖〉 

value is a measure of the change in volume around residue i due to G12D mutation. 

.  

Figure 5.1 The algorithm for calculating the change of distances between residue pairs (∆�̅�ij) 

upon G12D mutation. 

5.2.3 Pairwise correlation calculations 

We calculated the correlations between the fluctuations of residue pairs (Cij) as described in 

Chapter3. For any residue pair, this value ranges from -1 to 1, where Cij= 0 if the residue 
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fluctuations are independent; Cij=1 for perfectly positively correlated residue pairs, and Cij=-

1 for perfectly negatively correlated residue pairs. 

5.2.4 Time delayed correlations and characteristic decay time calculations 

We calculated time-delayed correlation of two fluctuations 𝐶𝑖𝑗(𝜏)  and autocorrelations 𝐶𝑖𝑖(𝜏) 

of each protein residue as described in Chapter 3. For each residue i we calculated the time-

delay value (τ) where the autocorrelation decay curve of the residue i reaches to 0.5 and 

accepted this time-delay value as the characteristic decay time of the residue i. We adopted 

the 0.5 criterion instead of the commonly used 1/e decay criterion because the criterion we 

adopted was a better indicator of short time relaxation differences whereas the latter led to 

values too close to each other. 

5.3 RESULTS 

5.3.1 Structural Changes 

Close-Range Electrostatic Interactions in K-Ras
WT

 and K-Ras
G12D

 

Substitution of a non-polar, non-charged amino acid –glycine- with a negatively-charged 

amino acid –aspartate- triggers several conformational and dynamical changes in K-Ras
G12D

. 

With the plausible assumption that the negatively-charged residue D12 may cause new 

electrostatic interactions within the protein and those interactions can be the sources of 

conformational changes upon G12D mutation, we compared the close-range electrostatic 

interactions (i.e. salt bridges) in K-RAS
WT 

and K-RAS
G12D

. In the mutated structure, D12 

forms salt bridges with K16 (P-loop) and K88. Additionally, K16 forms a salt bridge with 

D57 in K-RAS
G12D

. However, those interactions are not present in K-RAS
WT

. To identify the 
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effects of the new electrostatic interactions caused by G12D mutation, we then investigated 

the conformational changes in K-Ras.  

5.3.2 Conformational Changes 

Pairwise Distance Calculations 

We compared the distances between residue pairs within their second coordination shell in K-

Ras
WT

 and K-Ras
G12D

. Figure 5.2 shows ∆�̅�ij values for all residue pairs where K-Ras
WT 

is the 

reference and K-Ras
G12D

 is the final structure. As seen from the abundance of positive ∆�̅�ij 

values in Figure 5.2, the dominant distortion of the protein upon mutation is expansion. The 

SII region (T58-T74) moves away from the phosphate binding loop (P-loop, G10-S17), SI 

(Q25-Y40), α3 (T87-K104) in K-Ras
G12D

. The SI region also moves away from the P-loop. In 

detail, all the P-loop residues move away from T58-R68 (SII) residues as a block. Secondly, 

the residues in the segment P34-Y40 of SI move away from N-terminal residues of SII (D57-

Q61). Thirdly, the α2 helix of SII moves away from α3, D92-R102. Fourth, SI residues move 

away from the P-loop residues. On the other hand, SI residues (F28-Y32, Y32-I36) obtain a 

closer conformation and an H-bond between D33 and I36 is established. This causes the T35-

E37 part of SI to move away from the P-loop residues, G13-K16.  

The most significant changes in distance were between residue pairs Q61 (SII)-A11, G12D, 

G13 (P-loop), E37(SI)-D57 (SII) and S65 (SII)-H95(α3). Residues R68, M72 and Y96 were 

also more distant in K-Ras
G12D

. On the other hand, some residue pairs significantly 

approached in K-Ras
G12D

, including E63-R68, M72-G75 and R73-K104, demonstrated by 

their negative ∆�̅�ij values in Figure 5.2. 
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Figure 5.2 Difference of the averaged pairwise distances (∆�̅�ij) where K-Ras
WT

 is the 

initial and K-Ras
G12D

 is the final state. A) Red dots (positive ∆�̅�ij values) show that pairs 

become distant and blue dots (negative ∆�̅�𝒊𝒋  values) show that pairs become closer in K-

Ras
G12D

. B) Sample scheme for the most significant results. The width of bars shows the 

magnitude of the ∆�̅�𝒊𝒋  values. 

5.3.3 Distance distributions 

To uncover the conformational differences between wild type and mutant K-Ras and to 

thereby better understand the effects of the G12D mutation, we calculated the probability 

distributions of the distances between pairs of residues that exhibited the largest changes in 

our distance calculations. We observed that K-Ras
WT

 is characterized by Gaussian-shaped 

distribution curves with stable distance values. We use the term 'stable' in the sense that the 

distribution is sharply peaked with small dispersion around the peak. However, mutant K-Ras 

shows significant deviations from the Gaussian, except for the residue pair E37 (SI)-D57 

(SII). 

Distance distributions of the residue pairs which underwent the largest change due to G12D 

mutation are shown in Figure 5.3. These are the distances between the alpha carbons of 
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residue pairs Q61-A11, Q61-G12D and Q61-G13, respectively, as shown in Fig. 5.3A-C. 

Their distribution patterns show marked differences between WT and mutant K-Ras. In WT 

K-Ras, they exhibit narrow distance distribution with smaller peak values compared to the 

mutant form. Residues A11, G12 and G13 reside at the P-loop. The P-loop has an omega 

shape and it forms a turn at the C-terminal neighbouhood of G12. As shown in Figure 5.3A-B, 

A11 and G12 are located within H-bond distance from Q61, while G13 is more distant from 

Q61 in WT. Furthermore, we observed that G12 (side chain H atom) forms an H-bond with 

G60 (backbone O atom), the neighbor of G60, in WT. However, when G12 is mutated to D12, 

this H-bond disappears because of the bulkier side chain of D12. In the absence of this H-

bond, D12 and its neighbors move away from Q61. The broadened distance distribution 

values of the mutated system are indicators of lost hydrogen bonds.  

We observed an H-bond between D38 (SI) and D57 (SII) in K-Ras
WT

 simulations. However, 

this H-bond dissappers in K-Ras
G12D

 simulations that results in moving away of D57 from 

D38 and more remarkably E37. The absence of this H-bond in K-Ras
G12D

 is indicated in 

Figure 5.3D where the peak distance value is greater in the K-Ras
G12D

.  

Among all pairs, the S65-H95 pair undergoes the largest conformational change upon 

mutation. S65 –part of the α2- moves away from H95 –part of the α3- in K-Ras
G12D

 (Figure 

5.3E). K-Ras simulations show that this significant change results from the brakeage of the 

salt bridge between α2 and α3 helices. These two helices interact through the salt bridge 

between R68 and D92 in K-Ras
WT

. However, G12D mutation breaks the R68-D92 salt bridge 

and causes the α2 and α3 helices to be distant from each other. The distant conformation of α2 

and α3 in K-Ras
G12D

 can be implied by Figure 5.3E: The distance distribution curve of S65 

(α2)-H95 (α3) has a larger distance peak value.Distances between the residues R68, M72 and 

Y96 are also more stable in K-Ras
WT

 as shown in Figure 5.3F-H. 
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Figure 5.3 Distribution of distances between residue pairs in K-Ras
WT

 (black) and K-

Ras
G12D

 (red). (A) Distance distribution of residue pair Q61-A11 (B) Distance distribution of 

residue pair Q61G-12D (C) Distance distribution of residue pair Q61-G13 (D) Distance 

distribution of residue pair E37-D57. (E) Distance distribution of residue pair S65-H95. (F) 

Distance distribution of residue pair R68-M72. (G) Distance distribution of residue pair M72-

Y96. (H) Distance distribution of residue pair R68-Y96. 

Figure 5.4 displays the distance distributions of the residue pairs which significantly 

approached in K-Ras
G12D

. We observed that in K-Ras
G12D

, E63-R68 pair was in a closer 

conformation during the simulations (Figure 5.4A). This conformation may result from the 

fact that residues adjacent to E63, Y64 and S65, which make H-bond with R68 and D69, 

respectively. Those H-bonds are established between the backbone H atoms of Y64 & S65 

and the backbone O atoms of R68 & D69 only K-Ras
G12D

. Additionally, during the K-Ras
G12D

 

simulations R73-K104 pair also has a closer conformation which may result from the H-bonds 

between R73-D105 and G75-K104 (Figure 5.4B). 

On the other hand, Figure 5.4C shows that the residue pair of M72-G75 switches between two 

conformations in K-Ras
WT

, one is closer conformation around 5.5 Å and the other one is 

distant conformation around 8.5 Å. However, their distance distribution is single peaked at 5.5 

Å in K-Ras
G12D

 that is similar to the closer conformation in K-Ras
WT

. We observed that M72 

forms H-bond with G75 only in K-Ras
G12D

 simulations. This H-bond between M72 and G75 

may cause the single peaked distance distribution of them. 
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Figure 5.4 Distance distributions of residue pairs in K-Ras
WT

 (black) and K-Ras
G12D

 

(red). (A) Distance distribution of residue pair E63-R68. (B) Distance distribution of 

residue pair R73-K104. (C) Distance distribution of residue pair M72-G75. 

Changes in Local Volume upon Mutation 

Fluctuations of a residue take place within the first or second coordination shell around it. In 

this volume, there are several other residues, which are either near neighbors along the chain 

or neighbors of spatially distant residues. Residues will have different number of neighbors as 

has been shown by GNM[195]. A residue with a smaller number of neighbors will show 

larger fluctuations than another reside with a larger number of neighbors. Therefore, the 

neighborhood of a given residue has significant effect on its fluctuations, and as we will show 

here there is also a significant effect on the dynamics. In order to understand which parts of 

K-Ras move away from their neighbors and which parts approach upon mutation, we 

calculated the average of ∆�̅�ij values for each residue, 〈∆�̅�𝑖〉. Figure 5.5 shows that most of 

the protein parts, especially the P-loop and SII, move away from their neigbours after G12D 

mutation. 

 

Figure 5.5 〈∆�̅�𝒊〉 values. K-RasWT is the initial and K-RasG12D is the final state. 

Positive values indicate the residues which move away from their neighbors and negative 

values indicates the residues which approach to their neighbors. 
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We identified the residue pairs which underwent the largest distance change due to G12D 

mutation above. Furthermore, we aimed to show how much each residue in the identified 

pairs deviates from its neighbours. For this purpose, we compared the individual ∑ ∆�̅�𝑖𝑗𝑗  

values of the residues in the identified pairs (Table 5.1). We found that residues which 

become distant in K-Ras
G12D

 also move away from their neighbors. However, the residues 

become closer in K-Ras
G12D

 obtain different conformations relative to their neighbors.  

 

 

Table 5.1 Sum of ∆�̅�ij values in K-Ras 

Residue 

Pair 

Conformation 

in K-Ras
G12D

 

Residue Number Sum of ∆𝑹𝒊𝒋
̅̅ ̅̅  (Å) 

11-61 distant 

61 24.72 

11 33.70 

12-61 distant 12 24.47 

13-61 distant 13 24.35 

37-57 distant 

37 11.02 

57 9.45 

65-95 distant 

65 25.59 

95 10.42 
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68-72-96 distant 

68 15.57 

72 6.23 

96 9.58 

63-68 closer 63 17.23 

73-104 closer 

73 1.03 

104 - 2.50 

72-75 closer 

72 6.23 

75 -4.19 

 

5.3.4 Dynamic changes 

Residue Fluctuations 

To predict the effects of the G12D mutation on flexibility of K-Ras, we calculated the RMSF, 

a measure of the average atomic fluctuations, value of each residue in K-Ras
WT 

and K-

Ras
G12D

. Figure 5.6 shows that the fluctuations of central residues of SII are increased in K-

Ras
G12D

. 
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Figure 5.6 RMSF values of K-Ras
WT

 (black) and K-Ras
G12D

 (red) residues. 

Pairwise Correlation Calculations of Residue Fluctuations 

Regulation of protein dynamics is strictly coordinated by the correlations of residue 

fluctuations. Figure 5.7 presents pairwise correlations of residue fluctuations (𝐶𝑖𝑗), where we 

show the results for K-Ras
WT

 and K-Ras
G12D

 in the left and right panels, respectively. 

Our results showed that K-Ras
G12D

 is marked by an increase in correlated motions of residues 

in comparison with K-Ras
WT

. Specifically, β3-SII residues become negatively correlated with 

the residues of the P-loop, SI, and β4-α3. 
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Figure 5.7 Correlation coefficient maps of K-Ras
WT

 and K-Ras
G12D

. Red dots show 

positive correlations and blue dots show negative correlations. Residue indices 1-165 refer to 

K-Ras. 

Characteristic Decay Times of Residue Fluctuations 

Fluctuations of protein residues have characteristic decay times Figure 5.8 shows the 

characteristic decay times of residues in the P-loop, SI and SII are longer in K-Ras
G12D

. 

Moreover, SII residues show the longest correlation decay times within the K-Ras
G12D

 

residues. 

 

Figure 5.8 Characteristic decay times of residue fluctuations in K-Ras
WT

 (black) and K-

Ras
G12D

 (red). 

Causality between the Residue Fluctuations in K-Ras
G12D

 

We analyzed mutant K-Ras dynamics in depth by applying time delayed correlation analysis 

to MD simulation data of K-Ras
G12D

 and identified driver-responder residue pairs in K-

Ras
G12D

 motions in Chapter 4. Our causality calculations show that SII drives both the P-loop 

and β3 motions.  
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5.3.5 Relations between the changes in K-Ras structure-conformation-dynamics 

Relation between Structural and Conformational Changes in K-Ras
G12D

 

Formation of new salt bridges results in distortion of backbone Cα atoms in K-Ras
G12D

. 

Salt bridges are formed between the sidechain atoms of the residues D12 (P-loop)-K16 (P-

loop) and K16-D57 (SII) upon G12D mutation. We also discovered that SII region becomes 

distant from the P-loop and that they both move away from their neighbors in K-Ras
G12D

. MD 

simulations of K-Ras
G12D

 show that sidechains of K16 -D57 pair approach each other and 

form salt bridges, while their backbone Cα atoms move away from each other as shown in 

Figure 5.9. Therefore, we may conclude that the new salt bridges formed between the P-loop 

and SII residues cause more distant conformation of these two regions and moving away of 

both of them from their neighbors. As a consequence of these structural and conformational 

changes in SII region, this region also becomes distant from SI and α3 regions. 

 

Figure 5.9 Distance distribution of residue pair K16 (Cα)-D57 (Cα) in K-Ras
WT

 (black) 

and K-Ras
G12D

 (red). 

Relation between Structural and Dynamical Changes in K-Ras
G12D
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Our K-Ras
G12D

 simulations showed the formation of salt bridge between of D12 (P-loop) and 

K16 (P-loop). After observed this salt bridge which occurs after mutation, we aimed to 

determine if the approaching of D12 and K16 via salt bridge causes changes in distant regions 

of K-Ras
G12D

. For this purpose, we first described a connectivity vector, ΔR12→16, between 

D12 and K16 following the same definition in Chapter 3. We then described connectivity 

vectors between the correlated residue pairs in K-Ras
G12D

. Finally, we calculated the 

correlations of ΔR12→16 with the other connectivity vectors. We identified that ΔR12→16 is 

significantly correlated with ΔR60→70, ΔR61→75 and ΔR60→82. Consequently, approaching of 

D12-K16 pair as a result of salt bridge formation between them affects the dynamics of 

distant residue pairs such as G60-Q70, Q61- G75 and G60-F82. 

Relation between Conformational and Dynamic Changes in K-Ras
G12D

 

Fluctuations of dilated regions become negatively correlated in K-Ras
G12D

. We observed that 

negative correlations occur between the regions which become distant from each other and 

also from their neighbors after G12D mutation. Combination of distance and correlation 

calculations gives us the relation between conformational and dynamic changes in the protein 

as a result of the mutation in its structure (Figure 5.10). 
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Figure 5.10 Comparison of the distance and correlation changes due to G12D mutation. 

(A) 〈∆�̅�𝒊〉 values (B) Pairwise correlation coefficients (C) Difference of the averaged pairwise 

distances (∆�̅�ij) 

Relation between Negative Correlations and Characteristic Decay Times in K-Ras
G12D

 

We showed that fluctuations of SII region become negatively correlated with fluctuations of 

the P-loop, SI and α3 regions. Moreover, fluctuations of these regions have the longest 

correlation decay times in the protein (Figure 5.11). We wanted to see whether increased 

negative correlations between the residue fluctuations slow down the autocorrelation decay of 

the residue fluctuations. Therefore we investigated the relationship between the extent of 

correlations and decay rates. To identify the relation between the negative correlation values 

and the autocorrelation decay times, we calculated the average of negative correlation values 

for each residue of K-Ras
G12D

. Figure 5.12 exhibits that the residues whose fluctuations more 
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negatively correlated with the other parts of the protein has longer characteristic decay times.

 

Figure 5.11 Comparison of characteristic decay times and pairwise correlations in K-

Ras
G12D

. (A) Characteristic decay times of K-Ras
G12D

 residues. (B) Pairwise correlations in 

K-Ras
G12D

. 
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Figure 5.12 Comparison of characteristic decay times and averaged negative 

correlations in K-Ras
G12D

. (A) Characteristic decay times of K-Ras
G12D

 residues. (B) 

Averaged negative correlation values per residue. 

Relation between RMSF Values and Characteristic Decay Times in K-Ras
G12D 

Autocorrelations of the residue fluctuations tend to decay slowly as fluctuation magnitudes of 

the residue increase. As identified by our calculations, residues of SII region have the longest 

characteristic decay times and the greatest RMSF values. To determine if there is a relation 

between RMSF values and the autocorrelation decay times, we drew the plot of RMSF vs. 

decay times per residue. Figure 5.13 displays that autocorrelation decay times become longer 

as the fluctuation values increase. The straight line is a least squares line through the points. 

 

Figure 5.13 Relation between residue fluctuations and their decay times. 

Relations between Negative Correlations, Characteristic Decay Times and Causality in K-

Ras
G12D

 

Causality relationships occur within the negatively correlated residue pairs. We identified the 

driver-responder residue pairs in K-RAS
G12D

 dynamics. All of those pairs correspond to 

regions of the protein which exhibit negative correlations during MD simulations. 
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In causality relationship between K-Ras
G12D

residue pairs, fluctuations of the driver residues 

show greater autocorrelation decay times compared to those of the responder residues. To 

understand the source of the causality relations in K-Ras
G12D

, we compared the characteristic 

decay time of each residue in the driver-responder residue pairs. The driver residues have 

longer decay times than the responders. Slow decay of autocorrelation of residue fluctuations 

by time-delay corresponds to a specific form of “persistence”. Therefore, we drew the 

autocorrelation decay curves of each residue in the driver-responder pairs (Figure 5.14). Our 

results show that the autocorrelation curves with slow decay correspond to driver residues. 

 

Figure 5.14 Autocorrelations for the fluctuations of the residues that are drivers or 

responders in K-Ras
G12D

. A to C: Red curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒋(𝒕 + 𝝉)〉 show that the 

fluctuations of residue i at time t affect the fluctuations of residue j at a later time t+τ. X axes 

is for 𝒕 values from 1 ns to 100ns. All correlations (𝑪(𝝉)) are normalized with respect their 

value at zero (𝑪(𝟎)) and shown in Y axes. D to F: Curves for 〈∆𝑹𝒊(𝒕)∆𝑹𝒊(𝒕 + 𝝉)〉 show that 

fluctuations of residue i at time t affect its fluctuations at a later time t+τ.  Red curves 
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correspond to autocorrelations with slow decay. X axes is for 𝒕 values from 1 ns to 100ns. (A) 

Q70 (SII) fluctuations drive V9 (P-loop) fluctuations. (B) Residue Q70 (SII) fluctuations 

drive C80 (β4) fluctuations. (C) D69 (SII) fluctuations drive D54 (β3) fluctuations. (D) 

Autocorrelations of residues Q70(driver)-V9(responder). Red line is autocorrelation decay 

curve of residue Q70, black line is autocorrelation decay curve of residue V9. (E) 

Autocorrelations of residues Q70(driver)-C80(responder). Red line is autocorrelation decay 

curve of residue Q70, black line is autocorrelation decay curve of residue C80. (F) 

Autocorrelations of residues D69(driver)-D54(responder). Red line is autocorrelation decay 

curve of residue D69, black line is autocorrelation decay curve of residue D54. 

5.4 DISCUSSION 

K-Ras is a small GTPase protein and its intrinsic GTPase function is accelerated by GAP 

proteins. In active K-Ras-GTP, the P-loop, SI and SII parts are bound to the phosphate groups 

of GTP and are responsible for the GTPase function of K-Ras. However, G12D mutation in 

the P-loop impairs GTP hydrolysis and freezes K-Ras in its active state[14], causing 

uncontrollable cellular growth and evasion of apoptotic signals[217-219]. In order to quantify 

conformational and dynamical changes caused by G12D mutation, we combined different 

MD data analysis methods. Indeed, we could identify the relation between the conformational 

changes of residues and the alterations in their dynamic correlations. Furthermore, we could 

also show the causality between the residue pairs and its relationship with the persistency of 

residue fluctuation in K-Ras
GTP

 for the first time. 

The broad distribution of Q61-P-loop distances has an effect on GTP hydrolysis function of 

K-Ras
G12D

. In G12D mutation, glycine residue is substituted by aspartate with bulkier side 

group and this structural change of the P-loop affect the conformations of other active site 

regions, SI and SII, as observed in the previous studies[218, 220-222]. Our distance 

calculations show that after G12D mutation, the P-loop residues 11, 12, 13 move away from 

SII residue Q61. Moreover, Q61-A11, Q61-G12D and Q61-G13 distances display broad 

distributions (Figure 5.3). Since Q61 is known as a catalytic residue playing a critical role in 
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both intrinsic and GAP-mediated GTP hydrolysis[15], the highly variable character of the P-

loop-Q61 distance may affect the GTP hydrolysis in K-Ras
G12D

. Furthermore, our distance 

calculations also show that the residues in SII move away from some residues in SI, α3 and 

distances between those residue pairs also display broad distributions in K-Ras
G12D

 (Figure 

5.3). Considering the increased fluctuations of SII, we may say that the broad distance 

distributions with larger peak values between SII and the other parts of the protein arise from 

higher flexibility of SII in K-Ras
G12D

. 

Moving away of E37 from D57 in K-Ras
G12D

affects the Raf effector binding. E37 and D57 

been identified as hot-spot residues for the interaction of K-Ras with Raf protein[223]. 

Moreover, impairment of the interaction of K-Ras- Raf by G12D mutation has been observed 

in the previous studies[224, 225]. Our distance analyses exhibit that these two hot-spot 

residues move away from each other and also from their neighbors in K-Ras
G12D

. These 

conformational changes of E37- D57 pair may disrupt the binding of K-Ras
G12D

 to Raf 

protein. 

Approaching of residues R73 and K104 upon mutation affects the PI3Kγ effector binding. 

Pairwise distance calculations indicated that the distances of residue pairs 63-68, 72-75 and 

73-104 significantly decreased upon G12D mutation. Among the all pairs, 73-104 has own 

significance since R73 is critical for interaction with the effector protein PI3Kγ[226], which is 

preferably activated by K-Ras
G12D

 with higher binding affinity[224, 225]. Additionally, the 

backbone carbonyls of R73 interact with the amino sidechain of K104[227]. Therefore, the 

decreased distance between R73 and K104 in K-Ras
G12D

 (Figure 5.3) may affect the 

interaction of these residues that allows PI3Kγ binding with higher affinity.  

Distant conformations of active site residues may disturb the GTPase function in K-

Ras
G12D

. K-Ras undergoes conformational changes when it binds to GTP. The P-loop, SI and 
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SII constitute the active site of the protein that binds to phosphate groups of GTP and 

participate in GTP hydrolysis[15]. SI and SII are also responsible for controlling the binding 

to effector molecules. Conformational changes in the active site affect K-Ras interactions with 

the GAPs which amplify the GTPase activity of K-Ras[228]. Our distance calculations 

showed that the active site residues of K-Ras
G12D

 move away from their neighbors (Figure5.5) 

in consequence of the structural change in the P-loop. Moreover, SII fluctuations increase in 

the mutant form (Figure 5.6). These observations are consistent with the previous 

studies[218]. Since conformations of the active site play important roles in GTPase activity of 

K-Ras and its binding ability to GAPs, we postulate that the deviation of active site residues 

may impair the GTP hydrolysis and also GAP binding ability which leads to the constitutively 

active K-Ras
G12D

. 

G12D mutation augments the correlations between SII and the regions by increasing the 

flexibility of SII. As seen in the pairwise correlation maps, K-Ras
G12D

differs markedly from 

K-Ras
WT

 and display increased levels of fluctuation correlations between SII residues and the 

other parts of the protein. This is consistent with Figure 12 which demonstrates that the 

amplitude of the SII fluctuations is larger than K-Ras
G12D

. These results have been observed 

in a previous study, too[218]. 
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6 INTRINSIC DYNAMICS OF MUTANT K-RAS: 

COMPARISON OF ACTIVE AND INACTIVE MUTANT K-

RAS 

6.1 INTRODUCTION 

K-Ras, the most frequently mutated oncoprotein in human cancers[1-3], is found in inactive 

GDP-bound and active GTP-bound states, as we stated ın Chapter 1[13, 14]. It can bind and 

activate its downstream effector proteins only in its active state[15]. However, oncogenic K-

Ras mutations lock the protein into a constitutively activate state in which K-Ras prolongs 

downstream signaling associated with oncogenic cell growth[15, 20-22]. In Chapter 5, we 

investigated how G12D mutation, the most prevalent mutation in cancer patients, alters the 

regulation of K-Ras dynamics that results in constitutively active K-Ras
G12D

. However, for 

selectively inhibit the constitutively active K-Ras
G12D

 by drug binding, we need to identify 

differences between active and inactive K-Ras
G12D

. Since structural studies are not enough to 

identify pockets which are found only on active K-Ras
G12D

 surface that inhibitor drugs can 

selectively bind to, we compared active and inactive K-Ras
G12D

 dynamics to identify such 

pockets. We performed detailed analysis of both active K-Ras
G12D

-GTP and inactive K-

Ras
G12D

-GDP dynamics and provided quantitative, comprehensive descriptions of these two 

states from extensive MD simulations. 

We characterized persistent correlated motions within the MD simulations of active K-

Ras
G12D

-GTP and inactive K-Ras
G12D

-GDP, we mapped the correlated motion patterns within 

their residues individually, and then compared them each other and with the K-Ras
WT

. Our 
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results showed that active K-Ras
G12D

-GTP is marked by an increase in correlated motions of 

residues comparing to both inactive K-Ras
G12D

-GDP and K-Ras
WT

-GTP. 

We, then, aimed to understand the source of correlated motions in active active K-Ras
G12D

-

GTP. For this purpose, we identified the residue pairs which have the most significant 

correlated motions in active K-Ras
G12D

-GTP. Then we counted H-bonds between those 

residues and the protein during the simulations of active and inactive K-Ras
G12D

-GDP. 

In addition to H-bond calculations, we compared the distribution of distances between those 

residue pairs for active and inactive K-Ras
G12D

-GDP. In order to identify which residues’ 

motions cause the changes in distance distributions, we also compared the distribution of 

residue fluctuations.  

We used a statistical thermodynamics interpretation of residue motions to quantify the 

deformation in K-Ras
G12D

 that is caused by the mutation and inactivation. We describe the 

deformation as “strain”, in terms of relative displacement of residues in the protein. We 

calculated the pairwise strain values by comparing active K-Ras
G12D

-GTP with inactive K-

Ras
G12D

-GDP and K-Ras
WT

-GTP, respectively. 

6.2 METHODS 

For calculations of fluctuations, cross-correlations and pairwise distances and their 

distribution, we used the same methods in Chapter 4. 

6.2.1 Calculation of pairwise strain values  

We assumed that the strain as a description of deformation in terms of relative displacement 

of residues in the protein. We made different expressions of a strain values depending on 

whether it is defined with respect to the reference or the final configuration of the protein. We 
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defined the strain between two residues (strainıj) by the formula of 

𝒔𝒕𝒓𝒂𝒊𝒏𝒊𝒋 =
𝑅′𝑗̅̅ ̅̅̅

𝑭𝑰𝑵𝑨𝑳
−𝑅′𝑗̅̅ ̅̅̅

𝑹𝑬𝑭𝑬𝑹𝑬𝑵𝑪𝑬

𝑅′𝑗̅̅ ̅̅̅
𝑹𝑬𝑭𝑬𝑹𝑬𝑵𝑪𝑬

, where 𝑅′𝑗
̅̅ ̅̅  is the distance of the two residues. We calculate 

the strain values between residue pairs following the algorithm in Figure 6.1. 

 

Figure 6.1 Algorithm of the pairwise strain value calculation. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Comparison of residue pair correlations 

To identify if the fluctuations of one residue are related to fluctuations of another residue, we 

calculated the correlations of all residue-residue pairs in both active and inactive K-Ras
G12D

. 

As shown in Figure 6.2, correlation coefficient maps of active and inactive K-Ras
G12D

 exhibit 

different patterns. Active K-Ras
G12D 

shows increased correlations between residue pairs. 

We, then, identified residue pairs that have the most significant correlations in active K-

Ras
G12D

. We found out two groups of correlated residues, where residues 64 and 67 act as the 

cores of the correlations as shown in Figure 6.3. In the first group, residue 67 motions are 

correlated with residues 17, 36 and 66; in the second group residue 67 motions are correlated 

with residues 14, 82, 90, 100 and 125. 

 

Figure 6.2 Cross-correlation coefficient maps for active and inactive K-Ras
G12D

. Red dots 

show positive correlations (1 ≥ C(ΔRi, ΔRj ) ≥ 0.6) and blue dots show negative correlations 
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(-0.45 ≥ C(ΔRi, ΔRj ) ≥ -1). Residues indices 1-165 refer to K-Ras
G12D

. (A) Correlated 

fluctuations of K-Ras
G12D

-GTP (B) Correlated fluctuations of K-Ras
G12D

-GDP 

 

Figure 6.3 Scheme of the two groups of residue pairs which have the most significant 

correlations in active K-Ras
G12D

. (A) Residue 67 motions are correlated with residues 17, 36 

and 66. (B) Residue 67 motions are correlated with residues 14, 82, 90, 100 and 125. 

6.3.2 H-bonds calculation 

To understand the sources of increased correlated motions in active K-Ras
G12D

, we calculated 

the average number of H-bonds that are established between each correlated residues and the 

protein throughout the simulation. We compared the average number of H-bonds in active and 

inactive forms; however, there is no significant difference between them. 

6.3.3 Comparison of distance and fluctuation distributions of correlated residue 

pairs 

After identification of the residue pairs whose fluctuations become significantly correlated in 

active K-Ras
G12D

, we compared the distribution of distances between those residue pairs for 

active and inactive K-Ras
G12D

 (Figures 6.4-6.11). Distance distribution graphs exhibit that 

inactive K-Ras
G12D

 is characterized by Gaussian-shaped distribution curves with stable 

distance values. However, distribution curves for active K-Ras display significant deviations 

from the Gaussian. Although average of the distance values between the residue pairs are 
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almost similar, those distances are quite changeable in active K-Ras
G12D

 while they are almost 

stable in inactive K-Ras
G12D

. Consequently, activation of K-Ras
G12D

 causes correlated motions 

of residue pairs by destabilizing their relative conformations. We, then, aimed to understand 

which residues’ motions cause those highly changeable residue pair distances in active K-

Ras
G12D

. Considering that irregular individual fluctuations of residues may cause the changes 

in distances, we calculated the fluctuations of each residue in the identified residue pairs for 

every time step of the active and inactive K-Ras
G12D

 simulation. Then we compared the 

distribution patterns of individual residue fluctuations for active and inactive K-Ras
G12D

. 

Fluctuation distribution curves in Figures 6.4-6.11 revealed that fluctuations of residues 64 

and 67 increase and also become irregular upon activation of K-Ras
G12D

. Interestingly, 

fluctuations of the same residues become correlated with the others acting as the cores of the 

correlated fluctuations in active K-Ras
G12D

. However, fluctuations of the other residues, which 

are correlated with the residues 64 and 67, are stable around the similar values in both active 

and inactive K-Ras
G12D

. We may conclude that increased and changeable fluctuations of the 

residues 64 and 67 in active K-Ras
G12D

 allow them become correlated different parts of the 

protein. Knowing the fluctuation value is a measure of flexibility[56], our results indicate that 

activation of K-Ras
G12D

 increases the flexibility of SII at residues 64 and 67. Moreover, 

thanks to the flexible nature of residues 64 and 67, these residues can move with the other 

parts of the protein in correlation. Those correlated motions which arose from the flexible SII 

may prolong the active state of K-Ras
G12D

.  

Residues 67&17 

In Figure 6.4A, distance distributions show that the distance of 67-17 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 67, as shown in 

Figure 6.4B and 6.4C. 
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Figure 6.4 Distance and fluctuation distributions of residues 67 and 17 in K-Ras
G12D

. (A) 

Distance distribution between and residues 67-17 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 67 (C) Fluctuation distribution of residue 17. 

Residues 67&36 

In Figure 6.5A, distance distributions show that the distance of 67-36 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 67, as shown in 

Figure 6.5B and 6.5C. 
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Figure 6.5 Distance and fluctuation distributions of residues 67 and 36 in K-Ras
G12D

. (A) 

Distance distribution between and residues 67-36 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 67. (C) Fluctuation distribution of residue 36. 

Residues 67&56 

In Figure 6.6A, distance distributions show that the distance of 67-56 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 67, as shown in 

Figure 6.6B and 6.6C. 
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Figure 6.6 Distance and fluctuation distributions of residues 67 and 56 in K-Ras
G12D

. (A) 

Distance distribution between and residues 67-56 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 67. (C) Fluctuation distribution of residue 56. 

Residues 64&14 

In Figure 6.7A, distance distributions show that the distance of 64-14 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 64, as shown in 

Figure 6.7B and 6.7C. 
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Figure 6.7 Distance and fluctuation distributions of residues 64 and 14 in K-Ras
G12D

. (A) 

Distance distribution between and residues 64-14 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 64. (C) Fluctuation distribution of residue 14. 

Residues 64&82 

In Figure 6.8A, distance distributions show that the distance of 64-82 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 64, as shown in 

Figure 6.8B and 6.8C. 
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Figure 6.8 Distance and fluctuation distributions of residues 64 and 82 in K-Ras
G12D

. (A) 

Distance distribution between and residues 64-82 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 64. (C) Fluctuation distribution of residue 82. 

Residues 64&90 

In Figure 6.9A, distance distributions show that the distance of 64-90 is not stable in active K-

Ras
G12D

 and this instability is caused by the increased fluctuations of residue 64, as shown in 

Figure 6.9B and 6.9C. 
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Figure 6.9 Distance and fluctuation distributions of residues 64 and 90 in K-Ras
G12D

. (A) 

Distance distribution between and residues 64-90 in active (black) and inactive K-Ras
G12D

 

(red). (B) Fluctuation distribution of residue 64. (C) Fluctuation distribution of residue 90. 

Residues 64&100 

In Figure 6.10A, distance distributions show that the distance of 64-100 is not stable in active 

K-Ras
G12D

 and this instability is caused by the increased fluctuations of residue 64, as shown 

in Figure 6.10B and 6.10C. 
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Figure 6.10 . Distance and fluctuation distributions of residues 64 and 100 in K-Ras
G12D

. 

(A) Distance distribution between and residues 64-100 in active (black) and inactive K-

Ras
G12D

 (red). (B) Fluctuation distribution of residue 64. (C) Fluctuation distribution of 

residue 100. 

Residues 64&125 

In Figure 6.11A, distance distributions show that the distance of 64-125 is not stable in active 

K-Ras
G12D

 and this instability is caused by the increased fluctuations of residue 64, as shown 

in Figure 6.11B and 6.1C. 
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Figure 6.11 Distance and fluctuation distributions of residues 64 and 125 in K-Ras
G12D

. 

(A) Distance distribution between and residues 64-100 in active (black) and inactive K-

Ras
G12D

 (red). (B) Fluctuation distribution of residue 64. (C) Fluctuation distribution of 

residue 125. 

6.3.4 Comparison of pairwise strain values 

In order to quantify the relative displacement between the residue pairs as a result of 

activation, we calculated the strain of all residue-residue pairs where the reference state is 

inactive K-Ras
G12D

 and the final state is active K-Ras
G12D

. Figure 6.12 shows the pairwise 

strain values. Since the strain of a residue pair implies the dilatation rate, positive strain values 

indicate the local dilatation and negative strain values indicate the local compression in the 

protein. As seen in Figure 6.12A, SI and the P-loop, β3 become dilated after activation of  K-

Ras
G12D

. On the other hand, residues within α2 and α3 become compressed.  
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We, then, calculated the strain of all residue-residue pairs while the reference state is K-Ras
WT

 

and the final state is K-Ras
G12D

, to quantify the relative displacement between the residue 

pairs as a result of mutation. As seen in Figure 6.12B, SI and the P-loop, β3 become dilated 

after activation of K-Ras
G12D

. On the other hand, residues within α2 become compressed. 

Considering the similarities between two graphs in Figure 6.12 such as dilatation of SI and the 

P-loop, β3 and compression of α2, G12D mutation have the same effect with the activation of 

the protein on these regions. 

 

Figure 6.12 Pairwise strain values in K-Ras. Positive values are red and negative values are 

blue. (A) The reference state is inactive K-Ras
G12D

 and the final state is active K-Ras
G12D

. (B) 

The reference state is WT K-Ras and the final state is mutant K-Ras. 
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7 DRUG BINDING INTO THE NOVEL TARGET POCKET IN 

MUTANT K-RAS 

7.1 INTRODUCTION 

Despite more than three decades of extensive research, we still have no drugs that no effective 

direct inhibitors of K-Ras in the clinic, leading perception that the most frequently mutated 

oncoprotein in human cancers, K-Ras, is “undruggable”. Since structural studies alone are not 

enough to reveal drug target pockets on protein surface, only the studies that combine 

structural and dynamical analysis have been able to show promising results. Unfortunately, 

those studies include only G12C mutant while the dynamic regulation of the other mutants 

remain unknown. Since protein activity is related to its dynamics, we considered that 

knowledge of the dynamic regulation of mutant K-Ras can be utilized for identifying drug 

target sites on K-Ras surface. Therefore, we aimed to understand the dynamic regulation to 

the most frequently mutated K-Ras, G12D. However, identification of the effects of 

oncogenic mutation G12D on dynamic regulation of K-Ras requires a deep understanding of 

wild-type K-Ras dynamics. Thus, we first performed comprehensive analysis of intrinsic K-

Ras dynamics that serve as a reference point for mutant K-Ras analysis. We, then, analyzed 

K-Ras
G12D

 dynamics and compared the results for K-Ras
G12D

 and K-Ras
WT

. We observed that 

the residue 12 can make a salt bridge with K16 when it’s mutated to aspartic acid. In K-

Ras
G12D

, residues D12 and K16 become closer via this salt bridge and the convergence of this 

pair establishes correlations with the conformations of the other residue pairs such as G60-

Q70 (α2) and G60-F82 (β4). Moreover, among the residues of these pairs Q70 (α2) acts as the 

driver of the β4 region including F82. Along with the comparison of wild-type and mutant 
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protein, we also compared the active and inactive forms of the protein to identify possible 

drug target sites which are specific to the active form of mutant K-Ras
G12D

. Detailed analysis 

and comparison of active and inactive K-Ras
G12D

 dynamics support the specific importance of 

residue F82 for active K-Ras
G12D

 dynamics. Our analysis showed that fluctuations of F82 are 

highly correlated with fluctuations of Y64. These results provided guidance for prediction of 

drug target sites on mutant K-Ras surface. 

Finally, using detailed analysis of K-Ras
G12D

 dynamics and comparing them with the wild-

type and inactive forms, we identified a novel drug target pocket in K-Ras
G12D

 that has not 

been shown in the previous experimental and computational studies. This pocket is observed 

in only active K-Ras
G12D

 and it disappears in K-Ras
WT

 (Figure 7.1). 

In order to identify the small molecules that fit into novel binding site on K-Ras
G12D

 surface, 

we systematically tested all the drugs in the experimental molecules catalog (SHARDS) of 

ZINC database[229] by applying docking methodologies. We prioritized drug candidates 

based on their predicted binding affinities to this pocket and predicted success in blocking the 

activity of K-Ras
G12D

. We selected the drug candidate which has the best score for further 

analysis. In order to determine that if it selectively binds to K-Ras
G12D

, we docked this 

molecule to K-Ras
WT

. Finally, we modified the selected molecule to allow new ligand-protein 

interactions. We anticipate that our novel approach will provide new insights to understanding 

mutant K-Ras dynamics and identify therapy candidates for the treatment of mutant K-Ras 

driven cancers. 
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Figure 7.1 A novel drug target pocket in active K-Ras
G12D

 

7.2 METHODS 

Molecular docking 

From known drugs libraries, we found out those that bind to the novel pocket by following the 

steps below: 

 We selected drugs from ZINC database - experimental molecules catalog (SHARDS) - 

to identify those that show highest binding affinity to the identified drug target pocket 

of K-Ras
G12D

. 

 We docked the selected drugs into the identified drug binding pocket by using 

Molegro molecular docking software (MVD 6.0)[230]. In MVD 6.0.software, 

MolDock Optimizer search algorithm was chosen. Number of runs was set as 50. 

Results of the virtual screening run were ranked by using the rerank score. The rerank 
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score in MVD provides an estimate of the strength of interaction between the protein 

and the ligand. Affinity is the strength of binding of a single molecule to its ligand and 

the lowest score shows highest binding affinity.  

 We rank-ordered these drugs based on their binding affinities since the best docking 

score means strongest protein- ligand interaction. We chose the drugs with the top 30 

scores. We then focused only on these 30 drugs that show high binding affinity. 

 We visualized these drugs by MVD to determine the common poses of the drugs. 

Then we identified the best scored ligand among the most common poses as drug 

candidate for further analysis. 

Molecular Modification 

We added new fragments to the identified drug candidate to create new interactions between 

the drug molecule and K-Ras
G12D

 by using DS software. 

7.3 RESULTS 

Drug candidates that show highest binding affinity to K-Ras
G12D

 

Table 7.1 shows the docking scores of the molecules with the top 30 rerank scores (Rerank 

scoring system of MVD quantifies the strength of protein-ligand interaction). We determined 

the common poses among these 30 molecules by visualizing them with MVD. The first two 

molecules in Table 7.1 showed quite different binding modes compared to the binding modes 

of other molecules. Thus, we excluded them in the next steps. We identified that the best 

scored ligand among the cluster of most common poses is ZINC82876140. Figure 7.1 shows 

the binding mode of the molecule ZINC82876140 which has the highest binding affinity.  
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Table 7.1 Docking scores of the drugs with the top 30 scores 

Rank Ligand Docking score 

1 
ZINC57218755 -67.1863 

2 
ZINC61844075 -67.0736 

3 
ZINC82876140 -66.7022 

4 
ZINC72206331 -66.5293 

5 
ZINC82873889 -66.5194 

6 
ZINC36876291 -66.3662 

7 
ZINC82876113 -65.9373 

8 
ZINC77266257 -65.8855 

9 
ZINC19404492 -65.6665 

10 
ZINC79436139 -65.6045 

11 
ZINC82870781 -65.4727 

12 
ZINC82873884 -65.3918 

13 
ZINC19263862 -65.3676 

14 
ZINC71500171 -64.9284 

15 
ZINC77274969 -64.857 
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16 
ZINC11627993 -64.7142 

17 
ZINC41062015 -64.5531 

18 
ZINC50283449 -64.5405 

19 
ZINC36870965 -64.2502 

20 
ZINC52595550 -64.1224 

21 
ZINC50283874 -63.9558 

22 
ZINC83341005 -63.5133 

23 
ZINC62779868 -63.467 

24 
ZINC62780028 -63.4094 

25 
ZINC41062030 -63.3795 

26 
ZINC16943550 -62.5627 

27 
ZINC50284402 -61.495 

28 
ZINC37295030 -60.3184 

29 
ZINC82635551 -55.2547 

30 
ZINC82635442 -55.1782 
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Figure 7.2 The molecule (red) which has the best score is bound to the novel drug target 

pocket of K-Ras
G12D

. (A) Surface representation of the novel pocket and the bound ligand. 

(B) Zoom-out display of K-Ras
G12D

- ligand complex. 

Binding selectivity of the best scored ligand for K-Ras
G12D

 

We tested the selectivity of this ligand for binding to K-Ras
G12D

. For this purpose we docked 

ZINC82876140 to K-Ras
WT

. It gave a very bad binding score in K-Ras
WT

 complex (-35.7233) 

compared to K-Ras
G12D

 complex (-66.7022) that indicated the very low binding affinity of 

ZINC82876140 to K-Ras
WT

 . Consequently, results for the ligand- K-Ras
WT

 docking show the 

selective binding affinity of ZINC82876140 to K-Ras
G12D

.  

Modification of the best scored ligand 

We added fragments to ZINC82876140 to allow additional protein-ligand interactions. Figure 

XA and B display the interactions within the K-Ras
G12D

- ZINC82876140 complex and K-

Ras
G12D

- ZINC82876140 (modified) complex, respectively. New fragments added to the 
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original ligand cause new interactions with the protein. Although we were able to obtain new 

interactions by adding fragments, this can be a start point for advance drug design efforts. 

 

Figure 7.3 Protein(K-Ras
G12D

) -ligand (ZINC82876140) interactions. Interacting protein 

atoms are blue and ligands are red. H-bonds are green, salt bridges are cyan, 

hydrophobic interactions are purple and the other electrostatic interactions are orange. 

and protein-ligand interactions are green. (A) K-Ras
G12D

- ZINC82876140 complex. (B) K-

Ras
G12D

- ZINC82876140 (modified) complex. Modifications are indicated by yellow. 

7.4 OTHER APPLICATIONS OF MOLECULAR DOCKING 

7.4.1 Fight against Crimean Congo Hemorrhagic Fever Virus: Do we have any 

alternative drug? 

7.4.1.1 Introduction 

Crimean Congo Hemorrhagic Fever (CCHF) is the most important tick-borne viral disease of 

humans, causing increasing numbers of fatal outbreaks or sporadic cases across wide 

geographic area [231, 232]. A sudden onset of high fever and hemorrhagic manifestations are 

characteristics of the disease. The causative agent of the illness is Crimean Congo 

Hemorrhagic Fever Virus (CCHFV), a nairovirus in the family Bunyaviridae. World Health 
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Organization classifies CCHFV as biosafety level 4 (BSL4) pathogen. It is considered as a 

dangerous public health threat and a potential bio-terrorism agent in the wider world[233, 234]. 

In contrast with severity of the virus, currently no FDA-approved (The Food and Drug 

Administration) specific antiviral therapy is available. The only treatment for this neglected 

illness is postexposure administration of ribavirin, and the efficacy of this prophylaxis is in 

doubt[235]. Moreover, the requirement to study with it under BSL4conditions hinders 

essential experiments. Therefore, discovery of effective drugs for treatment of CCHF disease 

is now a priority for both public health and biodefense agencies. 

Considering drug development stages, drug repositioning is an advantageous strategy to 

discover new and innovative indications of existing drug compounds for infectious and 

neglected diseases.[236, 237] Because it bypasses many time consuming steps, drug 

repositioning technique accelerates antiviral drug development process. A structural or 

functional protein of a virus can be a target for repositioning drugs. 

Viral capsid proteins of encapsidated viruses are emerging as interesting targets for the 

development of new potent antiviral agents.(8) Capsid proteins tightly encloses viral genetic 

material to constitute ribonucleoprotein (RNP) complexes. Only in RNP form viral genome is 

replicated, transcribed and packaged into new progeny particles. Therefore, capsid proteins 

accepted as new potential targets of therapeutic agents against to HIV, coronaviruses[238] and 

other enveloped viruses[239]; influenzaviruses[240] and other negative-sense single-stranded 

RNA (ss (-)RNA) viruses[241]. Infectivity of bunyaviruses also depends on RNP 

formation[242]. Their three-segmented genome consists of small (S),medium (M), and large 

(L) RNA segments, which encode a viral nucleocapsid protein, glycoprotein precursor, and 

polymerase proteins respectively[243]. CCHFV nucleocapsid proteins are synthesized as 

monomers then they establish RNPs by oligomerization and RNA binding. It is recently 
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revealed that CCHFV nucleocapsid protein displays a distinct metal-dependent DNA-specific 

endonuclease activity in monomeric form[243]. 

The aim of this study is to discover new antiviral drugs that substitute ribavirin in CCHFV 

treatment. Drug repositioning strategy was followed in design of the research. Due to this 

strategy, molecular docking techniques were used for discovering possible drug candidates. 

This study is unique for its computational approach to CCHF treatment within the scope of 

drug repositioning manner. Resultant compounds will open new horizons on viral therapeutic 

development. Outputs may be used in therapies of all fatal viral hemorrhagic fevers. 

7.4.1.2 Methods 

Drug repositioning 

Drug repositioning is simply identifying and developing new uses for existing drugs[244]. 

Therefore, this method skips time consuming steps of traditional drug discovery process such 

as Lipinski’s rule of five, preclinical and clinical trials. Considering that any antiviral drug or 

even any FDA approved drug can be candidate for CCHF therapy, drug repositioning method 

was followed in the current study to accelerate the discovery of new inhibitor drugs for 

CCHFV. For identification of the possible CCHFV inhibitors from existing drugs that can 

bind to the viral capsid protein molecular docking programs were used in drug repositioning 

manner. Figure 7.4 summarizes the design of the study and following paragraphs explain the 

details of each step of the study. 
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Figure 7.4 Scheme of the study design 

Molecular docking 

CCHFV capsid protein was selected as the target. Crystal structure of nucleocapsid protein 

was obtained from PDB (ID: 4AKL)[245]. Crystal structure of nucleocapsid protein was 

modified with DS 4.0 by saving only monomer form after removing the water molecules. 

MVD was used for virtual screening of protein. Electrostatic surface charge distribution was 

scanned. A large positively charged pocket on the protein was inspected. Constituent residues 

of this pocket were identified. In addition to identified pocket residues, the active site residues 

of nucleocapsid, which are responsible for protein function, were identified by literature-

based search. CCHFV nucleocapsid protein distinct endonuclease activity was discovered by 

Guo et al[243]. Their mutational analyses revealed that R384, E387, K411, H453 and Q457 

residues participated in a featured domain that served as viral endonuclease. Consequently, 

combination of silico inspections and literature data revealed that the largest pocket of the 
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protein includes the endonuclease activity site residues. Therefore, this endonuclease activity 

site was defined as target for molecular docking.  

Drug molecules for molecular docking part were collected from ZINC Drug Databese (Zdd) 

library and Indofine Natural Products (INP) catalog. Zdd includes all drugs that have been 

approved for use in human and are commercially available as pure compounds. Along with 

Zdd, INP was chosen for its new promising natural compounds. In addition to these two 

libraries, antiviral compounds in the literature were collected by using the following steps: (i) 

It was considered that the antiviral drugs which disturb the other RNA viruses’ lifecycles may 

arrest CCHFV’s action through the capsid protein, since the functional mechanism of the 

target nucleocapsid protein is unclear. (ii) Therapeutic molecule names of well- known RNA 

viruses’ infections (HIV, HCV, influenza, SARS) and other viral hemorrhagic fevers (Lassa, 

Ebola, Dengue,Rift Valley) was obtained from abstracts of published articles by PUBMED 

advance search tool[246]. (iii) Moreover, all approved and investigational antiviral drugs in 

Drug Bank database were collected[247]. Three library sets -Zdd, INP and the selected 

antivirals- were compiled as Mol2 file for molecular docking part. 

In molecular docking part, two different molecular docking softwares were used for virtual 

screening and identifying the correct binding mode of molecules in a comparative manner. 

The first software was MVD 6.0. In this program, MolDock Optimiser search algorithm was 

chosen. Number of runs was set as 20. Results of the virtual screening run were ranked by 

using the rerank score. The rerank score in MVD provides an estimate of the strenght of 

interaction between proteins and ligands. The lowest score shows highest binding affinity. 

The second software was GOLD. In this program, ChemPLP (Piecewise Linear Potential) 

scoring function was selected. Other parameters were set as default. Docking results were 
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arranged by their PLP Fitness Scores. In GOLD software, the higher fitness score means the 

better docked pose. 

In analysis of docking results, the results from each docking tool were ranked by their scores 

where the best docking score means strongest protein- ligand interaction. Compounds that 

took placed near the top of these two groups compared with each other.  

As an additional step, structure-based discovery of candidates and re-docking were also 

performed. It was observed that some best scored candidates shared similar structure. After 

identification of the ligands that had higher binding affinity, those ligands’ SMILE forms 

uploaded ZINC structure-based search tool. Compounds retrieved from search results were 

docked in the same way of previous ligands. Re-docking results were analyzed to find the 

best-scored molecule among the similar structures.  

7.4.1.3 Results 

Darunavir, saquinavir, and sofosbuvir are best-scored antivirals (Table 7.2) and their 

molecular structures are shown in Figure 7.5. Darunavir and saquinavir are HIV-1 protease 

inhibitors that block the proteolytic processing of precursor polypeptides Gag and Gag-Pol. 

(Cleavage of Gag and Gag-Pol is required for the formation of an infectious virion). 

Darunavir and saquinavir have been formally approved for clinical use in the treatment of 

AIDS. On the other hand, sofosbuvir is a hepatitis C virus nucleotide analog NS5B 

polymerase inhibitor. It has been approved for the treatment of chronic hepatitis C infection  
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Figure 7.5 Active site residues of CCHFV nucleocapsid protein and bound saquinavir. 

(A) Endonuclease activity site residues (R384, E387, K411, H453,Q457) are represented by 

violet ball and sticks. Saquinavir is represented by red sticks. (B) Saquinavir (red) is bound to 

drug target pocket. The residues make up the binding site pocket are represented by cyan ball 

and sticks.  

Table 7.2 Best scored antiviral candidates. ZINC numbers, names, rerank scores. 

ZINC NUMBER             MOLECULE NAME        RERANK SCORE 

39552192 darunavir -129.409 

2698553 saquinavir -115.266 

64526913 sofosbuvir -105.553 

 

 

 

Figure 7.6 Structures of the best scored antivirals. 
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Among the FDA approved drugs cephalosporin antibiotics got highest rerank scores. 

Cephalosporins are bactericidal β-lactam antibiotics. They inhibit enzymes in the cell wall of 

susceptible bacteria, disrupting cell synthesis. We, then, collected all the cephalosporin in 

ZINC database and used for re-docking. Docking results showed that cefditroen 

pivoxil,cefteram pivoxil, cefpodoxime proxetil, cefpirom sulfate and ceftiofur (used in 

veterinary medicine) have high rerank scores similar to cefpiramide and cefonicid. We display 

list of the cephalosporin molecules and their scores in Table 7.3. 

Table 7.3 Best scored cephalosporin antibiotics 

ZINC NUMBER             MOLECULE NAME        RERANK SCORE      

3916973 Cefditoren Pivoxil -144.156 

3871961 Cefteram Pivoxil -139.778 

15449382 Cefpodoxime Proxetil -129.883 

21985848 Cefpirome Sulfate -126.131 

4215267 Ceftiofur -125.724 

4215275 Cefuzonam Sodium -125.053 

26892366 Cefmenoxime Hydrochloride -125.052 

3830428 Cefonicid Sodium -107.253 

 

 

Itraconazole - a triazole antifungal agent for fungal infections- showed highest binding 

affinity after cephalosporins among the FDA approved drugs. The other azol derivatives 

posaconazole and ketoconazole also show high binding affinity. We also obtained the 

http://zinc.docking.org/synonym/Cefuzonam%20Sodium
http://zinc.docking.org/synonym/CEFONICID%20SODIUM
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molecules whose structures similar to itraconazole from ZINC database and docked them into 

target CCHFV nucleocapsid protein. Among the similar structures ravuconazole –a phase I/II 

antifungal- also proved high binding affinity. The list of the azole derivative drugs and their 

structures are shown in Figure 7.7 and Table 7.4. 

Table 7.4 Best scored azol derivatives. ZINC numbers, names, rerank scores. 

ZINC NUMBER             MOLECULE NAME        RERANK SCORE      

4097343 Itraconazole -123.313 

3938482 Posaconazole -114.915 

643138 Ketoconazole -106.072 

600547 Ravuconazole -105.065 

 

 

 

Figure 7.7 Structures of the best scored azol derivatives. 

In conclusion this molecular docking study gave three promising results that will be used for 

treatment of CCHFV, a dangerous but neglected disease. Because drug repositioning 

technique was used, there is no need to evaluate druglikness of the resultant molecules.  

Although computational results were great, real effects of them on the CCHFV can only be 

seen by in vitro and in vivo researches. 
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7.4.1.4 Discussion 

Nucleocapsid protein of CCHFV mechanism of function has not been proved yet. The 

major challenge for this study was defining target residues that have certain important roles in 

nucleocapsid function. Information from the literature was not enough to support in silico 

analyses of the nucleocapsid protein. It possesses a racket- shaped overall structure with two 

major parts: a “head” and a “stalk” domain. Carter et al. defined possible RNA binding site of 

head domain[245]. However, the study of Guo et al. demonstrated the weakness of CCHFV 

nucleocapsid protein RNA binding affinity. They revealed endonuclease activity domain 

(R384, E387, K411, H453,Q457). Carter et al. also worked on this domain. They presented 

this domain as possible dimer interface and considered that it could mediate the RNP 

formation. In silico analyses of the N protein in this study proved that endonuclease activity 

domain constituted most significant cleft of the whole protein. Because visual data match up 

with literature- based data only for endonuclease activity pocket, the pocket selected as the 

target for compound binding. 

Itraconazole has very high score that makes it an attractive drug candidate. Other azole 

derivatives also have great binding affinity. Especially itraconazole perfectly matches with the 

binding cavity that is presented obviously in virtual screening results(Fig.7.8A). Recent 

studies showed that azole derivatives are promising HIV non-nucleoside reverse transcriptase 

inhibitors[248, 249]. These compounds bind to the reverse transcriptase and stop the viral 

replication. After modifications azoles can mimics nucleic acids[250]. Therefore, modified 

azoles may be beneficial for CCHF treatment. 
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Figure 7.8 Azole derivatives (red) are in the binding cavity (cyan) of CCHFV 

nucleocapsid protein. (A) Binding pose of itraconazole into the binding cavity. (B) 

Posaconazole in the binding cavity. (C) Ketoconazole in the binding cavity. (D) 

Ravuconazole in the binding cavity. 

7.4.2 Antiviral activity of an N-allyl acridone against dengue virus 

7.4.2.1 Introduction 

Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread 

causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing 

incidence of this pathogen, there are no antiviral drugs or vaccines currently available for 

treatment or prevention. In a previous screening assay, we identified a group of N-allyl 

acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted 

to viral RNA replication of one of the most active DENV-2 inhibitors was further 

characterized. 
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 The compound 10-allyl-7-chloro-9(10H)-acridone, designated 3b, was active to inhibit the in 

vitro infection of Vero cells with the four DENV serotypes, with effective concentration 50% 

(EC50) values in the range 12.5-27.1 µM, as determined by virus yield inhibition assays. The 

compound was also effective in human HeLa cells. No cytotoxicity was detected at 3b 

concentrations up to 1000 µM. Mechanistic studies demonstrated that virus entry into the host 

cell was not affected, whereas viral RNA synthesis was strongly inhibited, as quantified by 

real time RT-PCR. The addition of exogenous guanosine together with 3b rescued only 

partially the infectivity of DENV-2.  

The acridone derivative 3b selectively inhibits the infection of Vero cells with the four DENV 

serotypes without a direct interaction with the host cell or the virion but interfering 

specifically with the intracellular virus multiplication. The mode of antiviral action for this 

acridone apparently involves the cellular enzyme inosine-monophospahe dehydrogenase 

together with another still unidentified target related to DENV RNA synthesis. 

In this study, we performed an extensive docking modeling between the compound 3b and the 

postulated target protein IMPDH to explore if an interaction is possible at the molecular level.  

7.4.2.2 Methods 

Molecular docking 

Crystal structures of the proteins were obtained from PDB. In DS program, proteins were 

modified by removing hetatoms from the structures. Ligand structure was checked with 

MarvinSketch and its geometry optimised by DS. PDB file formats of the proteins and mol2 

or sd file formats of the ligands were uploaded to all currently used softwares. The active sites 

of the enzymes were determined by combining literature data with virtual screening 

observations. DS was used as virtual screening tool.  
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MVD and GOLD molecular docking softwares were used together in a comparative manner. 

The searching space was specified that includes the active site properly. All explicit 

hydrogens were added into the structures. MolDock Score were used in MVD docking setup 

with the following settings: for the local search, MolDock Simplex Evolution algorithm was 

applied with a maximum of 2000 iterations per search. Fifty independent docking runs were 

carried out. Positions of the hydrogens for any hydrogen donors (both in 3b and in the 

enzyme) were optimised. The Ignore Similar Poses option was used to avoid reporting to 

similar poses. All poses returned from the runs were clustered according to the root-mean 

square deviation (RMSD) criterion and similar poses were removed (keeping the best-scoring 

one). Different poses of the compounds were ranked by their rerank scores and the best 

docked conformation was selected. More negative score indicates higher binding affinity. In 

Gold docking setup, Gold Genetic Algorithm was used with the slow option. ChemPLP 

method was chosen as the scoring function and ChemScore was the rescoring function. 

Search options of Genetic Algorithm were automatically configured by the programme. 

Resulting poses were ranked by their PLR fitness functions and Chemscore ∆G values. In 

GOLD higher fitness score means better docked pose. 

7.4.2.3 Results and Discussion 

In order to explore if an interaction is possible at the molecular level, an extensive docking 

modeling was performed between the compound 3b and the postulated target protein IMPDH. 

The three-dimensional structure of human IMPHD was obtained from Protein Data Bank 

(Accession Number: 1NF7). Molegro and GOLD molecular docking softwares were used 

together for effective pose prediction and virtual screening. For determining the best pose, 

Molegro’s rerank scoring function and GOLD’s ChemPLP fitness score were used. Opposite 

of the rerank scoring, higher ChemPLP fitness score means better docked pose. Comparative 
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docking results showed that the compound 3b occupied the active site of IMPHD with a 

rerank score of -80.6446 and ChemPLP score of 51.0029, Chemscore ∆G of -25.0379. Two 

hydrogen bond interactions were identified with the backbone amino acid residues SER327 

and GLY328. Moreover, 26 hydrophobic interactions with 11 residues including active site - 

CYS331- were observed (Figure 7.9A).  

Next we analyzed how 3b binds to native ligand´s interaction sites within the enzyme by 

using Molegro.  Nicotinamide adenine dinucleotide (NAD) and inosine monophosphate (IMP) 

are chemically active native ligands of IMPDH which is an enzyme that catalyzes the NAD-

dependent oxidation of IMP[251, 252]. Redocking was applied to NAD and IMP for fair and 

accurate comparison. Complex form of IMPHD bound to its native ligands is stored in Protein 

Data Bank (Accession Number: 1NFB). After determining the residues which interact with 

NAD and IMP separately, ligands were removed from the 1NFB structure. Then NAD and 

IMP were docked back into the protein. 3b-IMPHD docking was done by targeting the 

interaction regions of natural substrates.  

It is known from the crystallographic studies that NAD binding site includes 11 structural 

amino acids[253] (Figure 7.9B). Redocking of NAD gave -117.426 rerank score, conversely, 

docking of 3b to this NAD binding site gave -67.4364 rerank score. Relatively low binding 

score of 3b revealed that this site does not fit for it (Figure 7.9C). As for IMP, the substrate 

binds to the enzyme through CYS331 and the other 11 amino acids (Figure 7.9D).  IMP’s 

docking back into IMPHD gave score of -112.119. When the compound 3b was docked in the 

IMP activity region, it made a hydrogen bond with the side chain residue SER68 by resulting 

rerank score of -82.2138 (Figure 7.9E). Then, the results implied that 3b showed higher 

binding affinity to IMP activity site than NAD activity site. 
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In addition to 3b-NAD/IMP activity site interaction analysis, we investigated 3b interactions 

with the inhibitory regions of two IMPDH antagonists: RIB monophosphate and C2-

Mycophenolic Adenine Dinucleotide (MYD). RIB monophosphate and MYD show their 

antagonistic activity by blocking access to active site of IMPHD. Following the previous 

part’s method, the position of 3b when it interacts with each binding region of those two 

inhibitors was figured out. The three-dimensional structure of IMPHD- RIB monophosphate, 

MYD complex was obtained from Protein Data Bank (Accession number: 1NF7). As 

presented in the previous crystallographic study, RIB monophosphate and MYD bind to their 

inhibitory pockets by making hydrogen bonds and hydrophobic interactions[254] (Figure 

7.9F,H). At first, they were docked back into their pockets. Best-fitting poses’ rerank scores 

were -116.695 for RIB monophosphate and -130.851for MYD. Later, 3b was docked into 

each drug’s inhibitory pocket. 3b presented high affinity to RIB monophosphate binding 

region by resulting rerank score of 82.2913. (Figure 7.9G). In contrast, it showed low affinity 

to MYD inhibitory cavity (Figure 7.9I). 
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Figure 7.9 Docking modeling between the compound 3b and the postulated target 

protein IMPDH. (A) 3b binds to the active site of the IMPHD enzyme through 2 hydrogen 

bonds and hydrophobic interaction. (B) IMP interaction cavity consists of SER68, MET70, 

GLY328, SER329, ILE330, CYS331, GLU335, ASP364, GLY365, GLY366, GLY387, 

SER388. (C) 3b made a hydrogen bond with SER68 and hydrophobic interactions with 

SER68, MET70, ASP274, SER275, SER276, ASN303, ARG322, GLY324, MET325, 

SER327, GLY328, SER329, GLU335, ASP364, GLY365. (D) NAD interaction pocket 

residues are THR45, THR252, HIS253, ASP274, SER275, SER276, PHE282, ASN303, 

ARG322, HIS466, GLN469. (E) Two hydrogen bonds existed between 3b and ASN303, 

ARG322. 3b also made hydrophobic interactions with SER276, ASN303, ARG322, MET325, 
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GLY326, CYS331, ILE332, GLN334, LEU337. (F) RIB binding site includes SER68, 

MET70, ARG322, GLY328, SER329, ILE330, CYS331, ASP364, GLY365, GLY366, 

GLY387, SER388, TYR411, GLY413, MET414, GLY415, GLN441. (G) 3b made hydrogen 

bonds with SER327, GLY328 and hydrophobic interactions with PRO69, MET70, SER275, 

ASN303, ARG322, GLY324, GLY326, SER327, GLY328, ASP364, GLY365.(H) HIS253, 

ASP274, SER275, SER276, PHE282, ASN303, ARG322, GLY324, MET325, GLY326, 

CYS331, THR333 involves in MYD activity cavity. (I) 3b made hydrophobic interactions 

with ASP274, SER275, SER276, ASN303, GLY324, MET325, GLY326, SER327, GLY328, 

ASP364. 

The molecular docking studies performed provide useful information about 3b-IMPHD 

interaction. The binding orientation of 3b to human IMPHD was found in order to predict the 

affinity and activity of the compound. As the docking results presented, 3b showed the best-fit 

orientation when it was docked into active site, IMP and RIB monophosphate binding site of 

IMPHD (Figure 7.10). 

 

Figure 7.10 Prediction affinity about 3b-IMPHD interaction (A) Binding of 3b to IMPDH 

active site. (B) Binding of 3b to RIB monophosphate inhibitory site. (C) Binding of 3b to IMP 

activity site. 

7.4.3 The interplay between viperin antiviral activity, lipid droplets and Junín 

mammarenavirus multiplication 

7.4.3.1 Introduction 

Junín arenavirus infections are associated with high levels of interferons in both severe and 

fatal case cases. Upon Junín virus (JUNV) infection a cell signaling cascade initiates, that 
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ultimately attempts to limit viral replication and prevent infection progression through the 

expression of host antiviral proteins. The interferon stimulated gene (ISG) viperin has drawn 

our attention as it has been highlighted as an important antiviral protein against several viral 

infections. The studies of the mechanistic actions of viperin have described important 

functional domains relating its antiviral and immune-modulating actions through cellular lipid 

structures. In line with this, through silencing and overexpression approaches here we 

identified viperin as an antiviral ISG against JUNV. In addition, we found that lipid droplets 

structures are modulated during infection suggesting its relevance for proper virus 

multiplication. The confocal microscopy images also revealed possible viperin-JUNV protein 

interactions that might be participating in this antiviral pathway at lipid droplet level.  

In this study, we aimed to gain more insight on the viperin anti-JUNV mechanism. For this 

purpose, we investigated nucleocapsid (N) protein of JUNV and viperin protein interaction by 

using protein-protein docking tools in a comparative manner. Our results will help to 

understand the factors mediating innate immunity in arenavirus infection and may lead to the 

development of pharmacological agents that can boost their effectiveness thereby leading to 

new treatments for this viral disease. 

7.4.3.2 Methods 

Protein-protein docking 

The structure of JUNV N protein was retrieved from Protein Data Bank (PDB, ID: 

4K7E)[255]. It is the crystal structure of the C-terminal domain (residues 341-564) with 2.2 Å 

resolution. Missing residues were added by Chimera software [256] . The crystal structure 

with 1.7 Å resolution of viperin protein was also retrieved from PDB (ID:5VSM) [257]. 

Viperin was docked into N protein utilizing two different protein-protein docking softwares, 
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ClusPro [258] and ZDock [259], in a comparative manner. These programs produced different 

complex models and the most common viperin–N interaction model was selected. 

7.4.3.3 Results and Discussion 

We investigated N and viperin protein interaction by using protein-protein docking tools in a 

comparative manner. In the docking part, we obtained N-viperin protein complex structure. 

The resulting model showed that C-terminal domain of JUNV N protein interact with viperin 

(Figure 7.11). In particular, the first group of predicted interactions is between α4 and β5 

residues of N and α4 residues of viperin; the second group of them is between α5 and α6 

residues of N and α3 residues of viperin. 

According to predicted models from docking studies, the C-terminal of N protein would be 

involved in the interaction with α3 and α4 residues on viperin. Previous studies determined 

that C-terminal domain of JUNV N (residues 341-564) might possess other important 

functions besides the exonuclease activity. Moreover, it has been indicated that amino acid 

residues between positions 394 and 502 (a part of N C-terminal) could be involved in zinc 

binding [260]. Viperin α3 belongs to the conserved central domain characteristic for the S-

adenosylmethionine (SAM) enzyme family [261].  Moreover, this in silico interaction was 

confirmed with co-transfection experimental approach. The arenaviral N is the most 

abundantly expressed viral protein in infected cells. N forms a complex with the viral 

polymerase to transcribe viral mRNAs and synthesize viral genomic RNAs during viral 

replication [262]. Interestingly, it was observed a significant inhibition in RNA transcription 

in viperin transfected-JUNV infected cell cultures. Our results suggest that JUNV RTC might 

be recruited to these lipid structures and use them as platforms for viral transcription, where 

viperin might be interacting with N in order to counteract this essential function. 
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Figure 7.11 Interaction of viperin and JUNV N proteins (A) Theoretical analysis of VIP- 

JUNV interaction. Ribbon schematic binding complex of viperin (blue) and JUNV N C-

terminal domain (grey). Residues involved in interaction site are shown as red ribbon. 

Reverse view of the complex showing other interacting residues. (B) Detailed projection of 

interacting residues of viperin-JUNV N complex. H-bonds are represented with green sticks 

and other electrostatic intaractions  are represented by cyan sticks. Both interactions showed 

in (A) and (B) were predicted using ClusPro and ZDock docking softwares.
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8 CONCLUSION 

In this thesis, we used different MD simulation data analysis techniques to study the 

regulation mechanisms of K-Ras dynamics and to understand the effects of nucleotide binding 

and mutations on regulation of protein dynamics. Using MD simulations of K-Ras we 

compared the dynamic characteristics of active and inactive WT proteins (Chapter 3), WT and 

mutant proteins (Chapter 5) and active and inactive mutant proteins (Chapter 6). Developing a 

novel method that predicts causality between residue pairs of a protein we identified the 

causality relationships in regulation of K-Ras dynamics (Chapter 3 and 4). Lastly, combining 

the results from the Chapters 3-6, we identified a novel drug target pocket on K-Ras
G12D

-GTP 

complex that is important for dynamic regulation of K-Ras. We screened a library of 

compounds against this novel drug target pocket by using docking techniques (Chapter 7). 

Additionally, we demonstrated the applications of docking techniques into three other drug 

design problems, too. 

Oncogenic K-Ras is a high priority drug target in cancer treatment. To develop new direct 

inhibitors that selectively bind to mutant K-Ras conformations while sparing those of WT K-

Ras, it is necessary to first understand the dynamic activity of the WT protein in detail.  

To evaluate the nucleotide binding dependent changes in K-Ras stability, we used stiffness 

and RMSF calculations and proved that GTP binding rigidifies and hence stabilizes K-Ras 

motions. These results are in agreement with previous experimental and computational K-Ras 

studies[203, 263, 264]. Our calculations that use stiffness, RMSF and correlation graphs 

(Figure 1-2, S1) confirm that GTP-binding increases K-Ras stiffness and thereby decreases 

fluctuation amplitudes, leading to distinct correlation patterns. These striking changes in GTP-
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bound-K-Ras dynamics enable its GTPase activity. Note that this nucleotide exchange is the 

first step in active to inactive transition[221, 265-271]. Overall, our results support the well-

established allosteric nature of K-Ras activation[268], which has been suggested to play an 

important role in GTPase activity[272]. Although correlated fluctuations are necessary for 

allosteric information flow, their longer correlation decay times are also of crucial importance 

for complete allosteric transition. We calculated time-dependent autocorrelations of 

fluctuation vectors between residue pairs and discovered that correlations of K-Ras-GTP are 

stronger and persist for longer correlation times during simulations. Their persistency may 

allow complete allosteric information flow in K-Ras-GTP. 

We broadened our analysis to quantify causality in allosteric regulation of K-Ras function. 

The most important results from our study are on causality. We applied a simple but powerful 

method that we defined as CTC into protein dynamics. To understand K-Ras dynamics, we 

investigated whether fluctuations of any residue caused fluctuations of another. Our results 

revealed the information flow in K-Ras switch mechanism and that SII fluctuations drive SI 

fluctuations. This prediction is an essential validation of our approach since the dominance of 

SII motions over SI motions was observed in previous experimental and computational 

studies[204, 205]. Surprisingly, in addition to the canonical switch mechanism, our algorithm 

also revealed causality relations in the novel switch mechanism that includes β2–β3 and α5, 

where β2–β3 motions drive α5. Moreover, fluctuations of α3-L7 drive fluctuations of SI and 

SII. Interestingly, previous studies reported that Ras effector binding site (SI) is allosterically 

stabilized by ligand binding into a novel pocket that includes L7[33, 208, 209]. Our results 

explain the allosteric effect of ligand binding on SI motions by showing the information flow 

from L7 to SI. 
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After characterized WT K-Ras dynamics in detail, we aimed to understand the mechanisms 

by which oncogenic mutations disturb WT K-Ras dynamics and thereby its function. Despite 

decades of research, the relationship between oncogenic K-Ras mutations and changes in K-

Ras protein conformation and dynamics remain to be understood. We showed how the most 

recurrent K-Ras oncogenic mutation, G12D, leads to structural, conformational and 

dynamical changes that impair its function. We have used a new integrated MD simulation 

data analysis approach we have developed to quantify the changes in K-Ras. Our results show 

that D12 makes a salt bridge with K16 (P loop) which also makes a salt bridge with D57 (SII) 

after G12D mutation. These salt bridges cause conformational changes in the active site 

where SII moves away from the P-loop, SI (Q25-Y40) and α3. Furthermore, negative 

correlations occur between the fluctuations of these divergent parts: SII fluctuations become 

negatively correlated between the P-loop, SI (Q25-Y40) and α3 fluctuations. These negative 

correlations slow down the characteristic decay times of the residue fluctuations. The 

fluctuations of SII residue D57 show the highest negative correlations with other parts of the 

protein and also the longest characteristic decay times among the K-Ras
G12D

 residues. On the 

other hand, causality relations occur between the negatively correlated residue pairs and the 

residues with longer characteristic decay times act as the drivers in the driver-responder pairs. 

Overall, our study identifies regulatory sites on K-Ras
G12D

, which can enhance our 

understanding of its dynamics and assist in the development of direct inhibitors. 

We successfully investigated how G12D mutation, the most recurrent K-Ras mutation, affects 

the regulation of K-Ras dynamics that results in constitutively active K-Ras
G12D

. However, for 

selective targeting of active K-Ras
G12D

, we need to define the differences between active and 

inactive K-Ras
G12D

. We found that the activation of K-Ras
G12D

 causes correlated motions of 

residue pairs by destabilizing their relative conformations. In active K-Ras
G12D

 dynamics, 
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residues 64 and 67 act as the cores of the correlated motions, however this correlation patterns 

disappear in the inactive form. Additionally, our strain calculations showed that SI and the P-

loop, β3 become dilated after activation of K-Ras
G12D

. On the other hand, residues within α2 

and α3 become compressed. 

All of these results guided in identification of drug target sites on K-Ras
G12D

-GTP surface. 

Using detailed analysis of K-Ras
G12D

 dynamics and comparing them with the WT and inactive 

forms, we identified a novel target pocket on K-Ras
G12D

-GTP surface that has not been shown 

in the previous experimental and computational studies. This novel pocket is shown in only 

K-Ras
G12D

-GTP complex while it disappears in K-Ras
WT

-GDP. Using molecular docking 

method, we screened a library of small molecules against this novel pocket. 

We also demonstrated other successful applications of molecular docking. In the first 

application, we identified drug candidates that can bind into the capsid protein of CCHFV. In 

the second application, we demonstrated the possible interaction between a target protein and 

a drug whose inhibitory effects was shown experimentally. In the last application, we 

predicted the interaction between two proteins that bind each other in the experiments.  

The regulatory mechanisms of K-Ras dynamics and the novel drug binding pocket that we present 

may help in drug discovery efforts to develop direct inhibitors of mutant K-Ras for treatment of 

cancer in the future. The computational tools we introduce are also easily applicable to the 

analysis of simulation data from different proteins to understand causality in their dynamic 

regulations, which can then similarly be utilized in drug discovery. From this perspective, our 

approach has the potential to set a novel paradigm for drug design by directing attention to 

changes in protein dynamics. We conclude by emphasizing that understanding the regulation of 

protein dynamics is crucial for having a complete in-depth picture of protein function; 

identifying the molecular mechanisms of mutations; and development of better drugs. 
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Note: Chapter 3[212] and Part 7.4.2[273] published in peer-reviewed journals. The studies in 

Chapters 4-7 will be submitted. 
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