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ABSTRACT

In Chapter 1, we introduce the p-adic L-function of Amice & Velu and Vishik

associated to an eigenform f . We give an explicit construction of the underlying h-

admissible distribution and discuss in detail the analyticity and interpolation proper-

ties the L-function satisfies. We then study Stevens’ space of overconvergent modular

symbols in Chapter 2 and ultimately link the two discussions together via a theorem

in the final section.

iv



ÖZETÇE

Bölüm 1 ’de, Amice & Velu veVishik ’in bir özform f ile ilişkili p-adik L-fonksiyonunu

tanıttık. Altta yatan h-kabul edilebilir dağılımı açıkça yapılandırdık ve L-fonksiyonunun

tatmin ettiği analitiklik ve enterpolasyon özelliklerini ayrıntılı olarak tartıştık. Daha

sonra Bölüm 2 ’de, Stevens ’ın aşırı yakınsak modüler sembolleri alanına geçtik ve

sonunda iki tartışmayı son altbölümde bir teorem aracılığıyla birleştirdik.
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Chapter 0

Introduction

Conjecture 0.1. (BSD∞) Let E/Q be an elliptic curve defined over Q. Let ran

denote the order of vanishing of the complex L-series of E at s = 1 and ralg the

Z-rank of E(Q). Then,

(i) ran = ralg

(ii) L∗∞(E, s) =

∏
v cv · ΩE ·#X(E/Q)

(#E(Q)tor)2
· Reg∞(E/Q)

where L∗∞(E, s) is the leading non-zero coefficient of L∞(E, s) expanded at s = 1.

This is the Birch and Swinnerton-Dyer Conjecture, as formulated by Tate. The

conjecture relates arithmetic invariants of an elliptic curve E/Q to its complex-

analytic Hasse-Weil L-function L∞(E, s) and a p-adic analogue in the same spirit

had been long sought after, beginning with Mazur, Tate and Teitelbaum. A naïve yet

inviting attempt at formulating a p-adic version of the conjecture would be to replace

all complex analytic objects appearing in the statement with avatars of their putative

counterparts living in the p-adic realm, which would look like:

pseudo-Conjecture 0.2. (pseudo-BSDp) Let E/Q be an elliptic curve and p a

prime. Let ran denote the order of vanishing of the p-adic L-series of E at s = 1 and

ralg the Z-rank of E(Q). Then,

(i) ran = ralg

(ii) L∗p(E, s) =

∏
v cv · ΩE ·#X(E/Q)

(#E(Q)tor)2
· Regp(E/Q)
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where L∗p(E, s) is the leading non-zero coefficient of Lp(E, s) expanded at s = 1.

Voila! A p-adic version of the conjecture BSD∞, albeit with a caveat: It makes

no-sense; a priori. The p-adic L-function Lp is non-défini, so is the p-adic regulator

Regp. A long list of virtuoso mathematicians have been involved in the quest of

rigorously defining these objects, with an essential history of:

– Mazur & Swinnerton-Dyer defined the p-adic L-function Lp for a good ordinary

prime p. [MSD74]

– Amice & Velu and Vishik extended the definition of the p-adic L-function to

supersingular primes. [AV75] & [Vis76]

– Mazur, Tate & Teitelbaum gave a definition for the p-adic regulator Rp for an

ordinary prime p. [MTT86]

– Perrin-Riou, Bernardi & Perrin-Riou extended the definition of the p-adic reg-

ulator to supersingular primes. [BPR93] & [PR93]

These efforts culminate in the following precise statement of a bona fide p-adic BSD

conjecture:

Conjecture 0.3.
(
BSDp

)
(Mazur, Tate and Teitelbaum, Bernardi and Perrin-Riou)

Let E/Q be an elliptic curve and p a prime of good reduction. Let ran denote the order

of vanishing of Lp,α(E, s) at s = 1 and ralg the Z-rank of E(Q). Then,

(i) ran = ralg

(ii) L∗p,α(E, s) = εp,α ·
∏

v cv ·#X(E/Q)

(#E(Q)tor)2
· Regp,α(E/Q)

where L∗p,α(E, s) is the leading non-zero coefficient of Lp,α(E, s), α an ’allowable root’

and εp,α =
(
− α−

).
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Deja vu? It is deeply astonishing how closely a true formulation of BSDp re-

sembles the pseudo version forged out of thin air. Even the period ΩE is in fact not

missing but covertly embedded in L∗p,α(E, s).

The history given above is slightly misleading without a mention of the Modu-

larity Theorem: In truth, Mazur & Swinnerton-Dyer construct p-adic L-functions

for p-ordinary weight 2 eigenforms and define the p-adic L-function of a modular

elliptic curve E/Q to be that of the corresponding eigenform. Amice & Velu and

Vishik then extend this definition not only to encompass supersingular primes but

also arbitrary weight eigenforms. Succinctly speaking, the p-adic L-function they

associate to an eigenform f is integration against an h-admissible distribution µf,α

attached to f and an allowable root α. A proper construction of these distributions

is essentially achieved through defining linear maps of certain growth on locally poly-

nomial functions and extending these maps to a larger domain appropriately. The

resulting p-adic L-functions are then shown to be analytic and satisfy a certain growth

condition themselves. We offer an in-depth study of all these (and more) in Chapter 1.

An alternative approach to construct h-admissible distributions is through Stevens’

overconvergent modular symbols. In particular, the p-adic L-function of an eigenform

f with respect to an allowable α may be obtained in the following way: For fα a p-

stabilization of f , one constructs a pair of modular symbols ϕ±fα and lifts them to

overconvergent symbols Φ±fα , whose values on a certain divisor are the underlying

distributions µ±f,α. A thorough discussion of these objects and their theory is what

we do in Chapter 2. The final theorem we state (and prove) will be:

Φ±fα
(
{0} − {∞}

) ∣∣
Z×p

= µ±f,α

.
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We feel the need to express the severe injustice we did to p-adic L-functions by

confining them to the context of a p-adic BSD in our introduction. These functions

play a central role in Iwasawa Theory and constitute one half of the Main Conjecture

for Elliptic Curves. For a wonderful exposition on the subject, we refer the reader to

[Sp12].

∗ The set-up

Fix forever an odd prime p.

Fix an algebraic closure Q of Q in C and an algebraic closure Qp of Qp. Fix an

embedding Q ↪→ Qp. Let Cp denote the completion of Qp and | · | the absolute value

on Cp normalized so that |p| = 1/p. Denote the corresponding p-adic valuation on Cp

by ordp. Denote by log(·) the p-adic logarithm on C×p extended with log(p) = 0 and

by exp the p-adic exponential on |z| < p−1/(p−1).



Chapter 1

p-adic L-functions

Section 1.1 defines p-adic distributions in a general context detailing on [Lang].

Section 1.2 introduces h-admissible distributions on Z×p following [Vis76]. Section

1.3 chiefly deals with p-adic characters and L-functions on the character group Xp.

Section 1.4 is largely based on [Pol03] and studies p-adic L-functions of modular forms.

Section 1.5 specializes to elliptic curves and links p-adic L-functions to arithmetic

data. Main references for the chapter are [Vis76], [MTT86] and [Pol03].

1.1 p-adic Distributions

Let {Xn} be a sequence of finite sets and πn+1 : Xn+1 → Xn a family of surjective

maps such that (Xn, πn) forms a projective system

... Xn+1
πn+1−−−→ Xn

πn−−−→ Xn−1
πn−1−−−→ ...

Let X = lim←− Xn be the projective limit, and for each n, let rn : X → Xn denote

the natural projection map onto Xn. X is naturally a compact topological space

equipped with the projective limit topology, for which a basis of neighborhoods is

given by {r−1
n (x) : x ∈ Xn}.

Fix a complete local field K and let {µn : Xn → K} be a collection of maps

satisfying the following compatibility condition:

∑
y∈π−1

n+1(x)

µn+1(y) = µn(x)

A function g : X → K is called locally constant if there exists some n such that

the value g(x) depends only on rn(x). We may then consider g as a function on Xn
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simply by choosing a representative in X for each element of Xn. In such a case, we

use the terminology g factors through Xn. Clearly, if g : X → K factors through

Xn, then it also factors through Xm for m ≥ n. Let us denote the space of locally

constant functions g : X → K by C0(X). For g ∈ C0(X), let ng refer to the smallest

integer n such that g factors through Xn.

Lemma 1.1. If g ∈ C0(X) factors through Xn, then for m ≥ n,

∑
x∈Xm

g(x)µm(x) =
∑
x∈Xn

g(x)µn(X)

Proof. It is obviously enough to prove form = n+1, which we do by suitably grouping

the terms appearing in the sum and using the compatibility condition on {µn}:

∑
x∈Xn+1

g(x)µn+1(x) =
∑
x∈Xn

∑
y∈π−1

n+1(x)

g(y)µn+1(y)

=
∑
x∈Xn

g(x)
∑

y∈π−1
n+1(x)

µn+1(y) =
∑
x∈Xn

g(x)µn(x)

Proposition 1.2. A compatible family {µn} defines aK-linear functional µ : C0(X)→

K given by

µ(g) =
∑
x∈Xng

g(x)µng(x)

Proof. We will simultaneously show that µ is well-defined and additive. For g1, g2 ∈

C0(X), let n := max{ng1 , ng2}. Then g1, g2 and g1 + g2 all factor through Xn and the

lemma above implies

∑
x∈Xngi

gi(x)µngi (x) =
∑
x∈Xn

gi(x)µn(x)
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Thus;

µ(g1 + g2) =
∑
x∈Xn

(g1 + g2)(x)µn(x)

=
∑
x∈Xn

g1(x)µn(x) +
∑
x∈Xn

g2(x)µn(x) = µ(g1) + µ(g2)

Definition 1.3. We call µ a distribution on X and use the notation

µ(g) =:

∫
g dµ

We now have a well defined notion of integration on C0(X), which we wish to

extend to larger spaces of functions. In the case that the values µn(x) are all bounded

above, we will be able to do so all the way up to the space of continuous K-valued

functions on X, which we denote by C(X). We remark that locally constant functions

X → K are continuous, and in fact, the space of all such functions C0(X) is dense in

C(X). Let us start with a couple of lemmas.

Lemma 1.4. For g ∈ C0(X),

∣∣∣∣∫ g dµ

∣∣∣∣ ≤ ‖g‖ ·‖µ‖
where ‖·‖ denotes the sup norm and ‖µ‖ means supn{‖µn‖}.

Proof. As g is in C0(X), it must factor through Xn for some n. We then have

∣∣∣∣∫ g dµ

∣∣∣∣ =

∣∣∣∣∣∣
∑
x∈Xn

g(x)µn(x)

∣∣∣∣∣∣ ≤ max
x∈Xn

∣∣g(x)
∣∣ ·∣∣µn(x)

∣∣ ≤ ‖g‖ ·‖µ‖
where the first inequality follows from the ultra-metric property of K.
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Lemma 1.5. Every continuous function g ∈ C(X) can be uniformly approximated by

a sequence of locally constant functions, i.e. there exists a sequence {gn} ⊂ C0(X)

such that ‖g − gn‖ → 0.

Definition 1.6. A distribution µ is called a measure if ‖µ‖ <∞

Proposition 1.7. A measure µ uniquely extends to a K-linear functional µ : C(X)→

K given by

µ(g) = lim
n→∞

∫
gn dµ

where g ∈ C(X) and {gj} ⊂ C0(X) uniformly approximate g.

Proof. Uniqueness follows directly from the definition. For the existence part, we

need to show that
∣∣∫ gn dµ− ∫ gm dµ

∣∣→ 0. But∣∣∣∣∫ gn dµ−
∫
gm dµ

∣∣∣∣ =

∣∣∣∣∫ gn − gm dµ

∣∣∣∣ ≤ ‖gn − gm‖ ·‖µ‖
where the inequality relation is given by the above lemma. Since we know that

‖gn − gm‖ → 0 and by assumption ‖µ‖ <∞, we get the desired result.

Definition 1.8. For µ a measure on X and g ∈ C(X), define

∫
g dµ := µ(g)

Later on, we will attach p-adic distributions to modular forms and construct p-

adic L-functions via integrating against these distributions. For a modular form f

that is ordinary at p, the resulting distribution will be a measure and the theory of

integration presented above will be adequate. However; when f is supersingular at

p, our construction will yield an unbounded distribution, against which we still wish

to integrate functions that are not necessarily locally constant. To develop a suitable
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concept of integration, from now on we narrow our focus down to the case X = Z×p
and follow Amice & Velu [AV75] and Vishik [Vis76] in introducing h-admissible distri-

butions. Before doing so, we slightly adjust our notation and present a useful lemma

for constructing distributions on Z×p :

Notation: For µ a distribution on Z×p ,

µ(a+ pnZp) := µ(χa+pnZp)

µ(g, a+ pnZp) := µ(g · χa+pnZp)

Lemma 1.9. Let I denote the collection of subsets of Z×p that are of the form a+pnZp
and let µ : I → Cp be a map satisfying the compatibility condition

µ(a+ pnZp) =

p−1∑
b=0

µ(a+ bpn + pn+1Zp)

Then µ uniquely extends to a p-adic distribution on Z×p .

Proof. Adapt Proposition 1.2 to the notation above or see [Kob].

1.2 h-admissible Distributions

For a non-negative real number h, let Ch(Z×p ) denote the space of Cp-valued func-

tions on Z×p which are locally given by polynomials of degree less than or equal to h.

For example, consistent with our earlier notation, C0(Z×p ) describes locally constant

Cp-functions on Z×p . For U an open compact subset of Z×p , let χU denote the set char-

acteristic function of U . In what follows, both an element a ∈ Z×p and its projection

on Z/pnZ will be denoted by a.
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Definition 1.10. An h-admissible distribution on Z×p is a Cp-linear map µ : Ch(Z×p )→

Cp which satisfies the following growth condition:

∀i, 0 ≤ i ≤ h, sup
a∈Z×p

∣∣∣∫a+pnZp(x− a)idµ
∣∣∣ = O(pn(h−i)) as n→∞

where
∫
a+pnZp(x− a)idµ := µ((x− a)i · χa+pnZp).

In the case of measures, we were able to extend µ to a linear functional on the

space of continuous functions, whereas for an h-admissible distribution, the relevant

domain of extension will be locally analytic functions, which we now define.

Definition 1.11. Let Y be an open compact subset of Zp. A function F : Y → Cp

is said to be locally analytic if there exists a covering U of Y by sets of the form

U = a+ pmZp such that F is representable as a convergent power series

F (z) =
∞∑
n=0

cn(x− a)n

on every U = a+ pmZp ∈ U with cn ∈ Cp. We denote the Zp-module of all Cp-valued

locally analytic functions on Y by C la(Y ).

The condition U = a+pmZp is non-restrictive as sets of this form constitute a basis

for Zp. We remark that by the compactness assumption on the subset Y , a locally

analytic function F ∈ C la(Y ) is representable by finitely many power series. Note

that convergence of a power series
∑
cn(x− a)n on a+ pmZp is characterized by the

criterion |cn| · p−mn → 0 as n → ∞. Finally, let us record the following relationship

between functions Z×p → Cp :

C0(Z×p ) ⊂ . . . Ch(Z×p ) ⊂ · · · ⊂ C la(Z×p ) ⊂ C(Z×p )
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Theorem 1.12. (Vishik) An h-admissible distribution µ on Z×p extends to a linear

map µ : C la(Z×p )→ Cp.

Proof. Below we present the main argument of the proof as found in [Vis76] and

in doing so, we concretely define µ(F ) for a locally analytic function F and an h-

admissible distribution µ. For details, see Lemma 1.5 and 1.6 in [Vis76] .

Let F ∈ C la(Z×p ), h′ = [h] and choose a system of representatives Λm of Z×p mod pm.

Consider the sums of the form

Sm(F ) :=
∑
b∈Λm

∫
b+pmZp

h′∑
i=0

F (i)(b)

i!
(x− b)idµ

obtained by using the first h′ terms of the power series expansions of F . The limit

lim
m→∞

Sm(F ) exists and is independent of the choice of representatives Λm. Set µ(F ) :=

lim
m→∞

Sm(F ).

Definition 1.13. For F ∈ C la(Z×p ) and µ an h-admissible distribution, define

∫
Z×p
F dµ := µ(F )

1.3 p-adic Characters and L-functions

Our primary interest is to integrate a particular class of locally analytic functions,

namely the p-adic characters of Z×p , against h-admissible distributions. Let Xp be the

group of continuous homomorphisms Z×p → C×p , i.e.

Xp := Homcont(Z×p ,C×p )

We have the decomposition

Z×p ' (Z/pZ)× ⊕ (1 + pZp)
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which in turn decomposes Xp into

Xp ' X((Z/pZ)×)⊕X(1 + pZp)

whereX(·) := Homcont( · ,C×p ). We call the characters in the componentX((Z/pZ)×)

tame and those in X(1 + pZp) wild. As is clear from the above decomposition, every

character χ ∈ Xp can be uniquely written as a product of a tame and a wild character.

Below are two examples of p-adic characters that will be of particular interest:

• For an integer j ≥ 0 and a finite order character ϕ of p-power conductor,

characters of the form

xjϕ(x)

• For s ∈ Zp and x ∈ Z×p ,

〈x〉s := exp(s log〈x〉) :=
∞∑
r=0

sr

r!
(log〈x〉)r

where 〈x〉 :=
x

ω(x)
∈ 1 + pZp with ω denoting the Teichmüller character.

We may also view Dirichlet characters of p-power conductor as p-adic characters in

a natural way. Indeed, for χ :
(
Z/pnZ

)× → C×, the following composition yields an

element of Xp :

Z×p �
(
Z/pnZ

)× χ−→ Q× ↪→ C×p

The character group Xp admits a natural identification with p − 1 copies of the

open unit disc of Cp, upon which it acquires an analytic structure for which the map

χ 7→
∫
Z×p
χ dµ is locally analytic. Below we describe this identification in detail.
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Let T := {u ∈ C×p : |u − 1| < 1} denote the open unit disc of Cp and let γ be a

topological generator of 1 + pZp, e.g. γ = 1 + p. For each u ∈ T , define a particular

wild character χu ∈ X(1 + pZp) via

χu : 1 + pZp −→ C×p

γ 7−→ u

By continuity of the characters, for any χ ∈ X(1+pZp) we have
∣∣χ(γ)− 1

∣∣ < 1. Thus

{χu}u∈T accounts for all the possible wild characters and the injective map

ϕ : T ∼−→ X(1 + pZp)

u 7−→ χu

is surjective. Using the isomorphism ϕ, we may identify the group of characters

χ ∈ Xp of trivial tame part with T and carry the analytic group structure of T onto

X(1 + pZp). We can then naturally extend this identification to whole of Xp via

translating the T -structure to each of the p− 1 components:

Xp '
p−1
t
i=1
T

Using the above identification, we say that a function F : Xp → Cp is analytic

if, when restricted to each one of the p − 1 components, F is given by an analytic

function T → Cp. In other words, F : Xp → Cp is analytic if on each component

of Xp, F is representable by a power series Σcn(u − 1)n which converges on T with

cn ∈ Cp. If F : Xp → Cp and G : Xp → Cp are two analytic functions, then the

notation F = O(G) means that on each component of Xp the following holds:

sup
|u−1|<r

|F (u)| = O

(
sup
|u−1|<r

|G(u)|

)
as r → 1−
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Theorem 1.14. (Amice and Velu, Vishik) For a fixed h-admissible distribution µ,

define a map

L( · , µ) : Xp −→ Cp

via

L(χ, µ) =

∫
Z×p
χ dµ

Then L( · , µ) : Xp → C×p is analytic in u and is O(logh(·))

Proof. See [Vis76] Theorem 2.3.

Let us discuss the theorem above a bit more concretely. LetK be a finite extension

of Qp and suppose all the values the h-admissible distribution µ assumes are contained

in K. Fix a topological generator γ of 1 + pZp. The first part of the theorem then

says, for each tame character ψ ∈ Xp, there exists a power series gµ,ψ ∈ K[[T ]] such

that, if χ ∈ Xp has tame part ψ and wild part χu, then

L(χ, µ) = gµ,ψ(χu(γ)− 1) = gµ,ψ(u− 1) =
∑
n≥0

aµ,ψ,n(u− 1)n

The second part, namely the growth condition on L( · , µ), is characterized by the

property that each power series gµ,ψ =
∑
aµ,ψ,nT

n satisfies
∣∣aµ,ψ,n∣∣ = O(nh).

Definition 1.15. Let L(µ, ψ, T ) := gµ,ψ(T ) where ψ is a tame character and gµ,ψ is

as described above.

Remark 1.16. L(µ, ψ, T ) depends on the choice of a generator γ, but since the

dependence is light, we omit γ from our notation.

1.4 p-adic L-functions of Modular Forms

Let f ∈ Sk(N, ε) be a normalized cusp form of weight k, level N prime to p and

character ε. Assume that f is a Hecke eigenform with Tnf = anf and let Kf be the
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number field generated by an together with the values of ε. Let Of = OKf be the

ring of integers of Kf . Denote by α1 and α2 the roots of the Hecke polynomial of f

at p, i.e.

x2 − apx+ ε(p)pk−1 = (x− α1)(x− α2)

We call αi an allowable root if ordp(αi) < k−1. Note that there always exists at least

one allowable root as ordp(α1α2) = pk−1.

Now fix an allowable root α ∈ {α1, α2}. We will construct a pair of h-admissible

distributions µ±f,α using the period integrals

Φ(f, P, r) := 2πi

∫ r

i∞
f(z)P (z)dz

where r ∈ Q and P ∈ Z[T ] of degree ≤ k − 2. To this end, let

η(f, P ; a,m) := Φ

(
f, P (−mz + a),

a

m

)
and fix ±-parts of η by setting

η±(f, P ; a,m) :=
η(f, P ; a,m)± η(f, P ; a,−m)

2

Theorem 1.17. (Manin) There exist two non-zero complex numbers Ω+
f and Ω−f such

that

η±(f, P ; a,m)

Ω±f
∈ Of

for all a, m ∈ Z and P ∈ Z[T ] of degree ≤ k − 2.

Definition 1.18. With everything as above, define

λ±(f, P ; a,m) :=
η±(f, P ; a,m)

Ω±f
∈ Of
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Before going any further, let us shed some light on our motivations behind intro-

ducing λ±. Recall that our intent is to attach a certain pair of p-adic h-admissible

distributions µ±f,α to our cuspidal eigenform f depending on the allowable root α. As

it often is the case in literature, we could have defined a working distribution µf,α

using the map η instead of obtaining a pair µ±f,α via λ±, albeit with a compromise:

that distribution would not be guaranteed to take values in Cp since η does not nec-

essarily assume algebraic values. At this point, this would merely trigger a practical

inconvenience rather than a theoretical obstacle: As implied by the above theorem

due to Manin, η takes values in an at most 2-dimensional vector space over Cp under

our fixed embedding Q ↪→ Qp, and [Vis76] in fact defines h-admissible distributions

in a way to perfectly accommodate such a case. We instead follow [Pol03] and obtain

two distributions µ±f,α through the maps λ±. Although we do not have an Iwasawa

theoretic focus, our preference to do so will become fruitful when we present an alter-

native construction of µ±f,α using ’overconvergent modular symbols’, but for now, let

us just return to our freshly defined maps λ±.

Proposition 1.19. λ±(f, P ; a,m) depends only on a mod m for a fixed P .

Proof. Observe that it suffices to prove the statement for η. For b ∈ Z,

η(f, P ; a+ bm,m) = Φ

(
f(z), P (−mz + a+ bm),

a+ bm

m

)
= 2πi

∫ a+bm
m

i∞
f(z)P (−mz + a+ bm)dz

Following a change of variables z 7→ z + b, we find

η(f, P ; a+ bm,m) = 2πi

∫ a/m

i∞
f(z + b)P (−mz + a)dz

= 2πi

∫ a/m

i∞
f(z)P (−mz + a)dz = η(f, P ; a,m)
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We are now ready to define the pair of distributions µ±f,α. Let v be the prime of

Kf lying over p and denote by K the completion of Kf at v. Note that λ± take values

in K under our fixed embedding Q ↪→ Qp.

Definition 1.20. For a+ pnZp ⊂ Z×p and P of degree ≤ k − 2, set

µ±f,α(P, a+ pnZp) =
λ±(f, P ; a, pn)

αn
− ε(p)pk−2λ±(f, P ; a, pn−1)

αn+1
∈ K(α)

Lemma 1.21. µ±f,α defines a distribution on Z×p .

Proof. The fact that µ±f,α is well-defined follows at once from the previous proposition.

To see that µ±f,α does indeed define a distribution, observe that the compatibility

relation

µ±f,α(P, a+ pnZp) =

p−1∑
b=0

µ±f,α(P, a+ bpn + pn+1Zp)

is satisfied as f is assumed to be an eigenform for Tp and then use the lemma given

at the end of Section 1.1.

If p is ordinary for f , then ordp(ap) = 0 by definition and there is a unique allowable

root α that is necessarily a p-adic unit. Hence the distribution µ±f,α is bounded and

defines a measure. If, however, f is supersingular at p, that is p | ap, then both α1

and α2 are allowable non-unit roots and µ±f,α is not p-adically bounded.

Proposition 1.22. µ±f,α is h-admissible for h = ordp(α) < k − 1.

Proof. See Lemma 3.8 in [Vis76].

By the proposition above and Theorem 1.12, we may integrate locally analytic

Cp-functions on Z×p against µ±f,α. The integral
∫

(·) dµ±f,α : C la(Z×p )→ Cp thus defined

satisfies the following:
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Proposition 1.23. Assume that F ∈ C la(Z×p ) is given by a convergent power series∑
n cn(x− a)n on a+ pmZp. Then,

∫
a+pmZp

F dµ±f,α =
∑
n

cn

∫
a+pmZp

(x− a)ndµ±f,α

Proof. See (IV) of the theorem in §11 [MTT86].

In particular, as p-adic characters are locally analytic, we may view
∫

(·) dµ±f,α as

a Cp-functional on Xp = Homcont(Z×p ,C×p ) and define an L-function as in Section 1.3

depending on f and α.

Definition 1.24. With everything as above, the p-adic L-function of f with respect

to α, Lp (f, α, ·) : Xp → Cp is defined to be

Lp(f, α, χ) := L(χ, µ
sgn(χ)
f,α ) =

∫
Z×p
χ dµ

sgn(χ)
f,α

Remark 1.25. Lp(f, α, ·) depends on the choice of the periods Ω±f , which are only

defined up to an element of Of .

By Theorem 1.14, Lp(f, α, ·) is analytic on Xp and thence given by a convergent

power series Lp(f, α, ψ, T ) on each component, where Lp(f, α, ψ, T ) is as described in

Definition 1.15 and the preceding discussion. Hence

Lp(f, α, ψχu) = Lp(f, α, ψ, u− 1)

The following proposition characterizes Lp(f, α, ·) through an interpolation property

and a growth condition.
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Proposition 1.26. Lp(f, α, ·) is the unique analytic O(logh) map Xp → Cp satisfying

Lp(f, α, x
jϕ) =

1

αn
· p

n(j+1)

(−2πi)j
· j!

τ(ϕ−1)
· L(f, ϕ−1, j + 1)

Ω±f

for every character xjϕ(x) ∈ Xp, where ϕ is of finite order with conductor pn, j is an

integer with 0 ≤ j ≤ k− 2, h = ordp(α), τ denotes the Gauss sum and L(f, ϕ−1, s) is

the complex L-function of f twisted by ϕ−1.

Proof. See §14 of [MTT86] .

Remark 1.27. The proposition above may be interpreted as follows: For characters

of the form χ = xjϕ(x) with ϕ ∈ Xp of finite order and p-power conductor, 0 ≤

j ≤ k − 2, the values Lp(f, α, xjϕ) can be obtained by evaluating the power series

Lp(f, α, ψ, T ) at T = γjζpn − 1, where ζpn is a pn-th root of unity satisfying xjϕ(x) =

ψχγjζpn and ψ is appropriately chosen. Proposition 1.26 then says that as χ runs

along all such characters, the values Lp(f, α, ψ, γjζpn − 1) agree with the right hand

side of the equality given in the statement, i.e. Lp(f, α, ·) satisfies an interpolation

property. Furthermore, this interpolation property uniquely determines Lp(f, α, ·)

with the added condition that the interpolating function is O(log(1 + T )h) for h =

ordp(α).

1.5 p-adic L-functions of Elliptic Curves

Let E/Q be an elliptic curve of conductor N and let f = fE be the modular form

associated to E by the Modularity Theorem ([Wi95], [TW95], [BCDT01]) so that f

is a cuspidal normalized eigenform on Γ0(N) of weight 2 with Kf = Q. Assume that

E has good reduction at the prime p. Further assume that if p is supersingular for E,

then ap = 0. Note that this last assumption is automatically satisfied for all primes

> 3 by Hasse’s bound.
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Let α1, α2 be the roots of the Hecke polynomial of E at p so that

x2 − apx+ p = (x− α1)(x− α2)

Then α ∈ {α1, α2} is an allowable root if ordp(α) < 1. If p is ordinary for E,

ordp(ap) = 0 and there is a unique allowable α, which is a p-adic unit. If p supersin-

gular for E, bearing in mind our assumption ap = 0, we get α1 = −α2 with each root

having p-adic order 1/2 and thence two choices for an allowable α.

We define the p-adic L-function of E with respect to an allowable root α to be

the p-adic L- function of f with respect to the same allowable root, i.e.

Lp,α(E,χ) := Lp(f, α, χ)

Observe that in the k = 2 case, we may considerably simplify the notation we

introduced in Section 1.4 in the process of defining µ±f,α. Indeed, as the polynomial

P appearing in λ± and µ±f,α was of degree ≤ k− 2, we may discard the P component

and adopt the following notation:

Φf (r) := 2πi

∫ r

i∞
f(z)dz

[
a

m

]±
:= λ±(f, 1, a,m) =

Φf (r)± Φf (−r)
2

· 1

ΩE

∈ 

c
· Z

Remark 1.28. The reason for the appearance of 1
c

factor is that the period ΩE

does not necessarily satisfy Theorem 1.17. However, denominators of
[
a
m

]± remain

bounded as a and m vary in Z. See [Man72].
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With this new notation, the pair of distributions attached to E are given as

µ±E,α(a+ pnZp) :=
1

αn

[
a

pn

]±
− 1

αn+1

[
a

pn−1

]±
∈ Qp(α)

and the p-adic L-function of E with respect to α is

Lp,α(E,χ) := L(µ
sgn(χ)
E,α , χ)

By Theorem 1.14, Lp,α(E, ·) is analytic in u upon identifying Xp with
p−1
t
i=1
T . Thus,

as in Definition 1.15, Lp,α(E,χ) is given by a power series Lp,α(E,ψ, T ) ∈ Qp(α)[[T ]]

depending on the tame part ψ of χ. We henceforth denote Lp,α(E,ψ, T ) by Lp,α(E, T )

for ψ trivial.

Proposition 1.29. Lp,α(E, T ) satisfies the interpolation properties

Lp,α(E, ζpn − 1) =
1

αn+1
· pn+1

τ(χ−1
ζpn

)
·
L(E,χ−1

ζpn
, 1)

ΩE

Lp,α(E, 0) =

(
1− 1

α

)2

· L(E, 1)

ΩE

where L(E,χ−1
ζpn
, s) is the L-function of E twisted by χ−1

ζpn
, ζpn is a primitive pn-th root

of unity and χζpn is as defined in Section 1.3.

Proof. See Proposition 1.26 and Remark 1.27. See also [MTT86] and [Sp15].

Remark 1.30. The reason n + 1 instead of n appears in the powers of α and p on

the right hand side is that χζpn is considered as a character of Z/pnZ and as such has

conductor pn+1.
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In literature, one often encounters Lp,α(E, T ) expressed (and sometimes con-

structed) in the s variable (e.g. [MTT86], [SW13]), a formulation we may obtain

through a variable change T = γs−1 − 1. More precisely, recall the p-adic character

〈·〉s : Z×p → C×p given in Section 1.3 via

〈x〉s = exp(s log〈x〉)

for s ∈ Zp and define

Lp,α(E, s) :=

∫
Z×p
〈x〉s−1dµE,α(x)

where µE,α = µ+
f,α and the notation dµE,α(x) is to signify the variable we are inte-

grating against.

The character 〈x〉s−1 clearly has trivial tame part, so it must be of the form χu for

some u ∈ T = {z ∈ C×p : |z − 1| < 1}. Furthermore, once we determine u for 〈x〉s−1,

we know that Lp,α(E, s) is given by a power series expression of the form
∑
an(u−1)n.

To this end, let γ be a topological generator of 1 + pZp. Recall that the character χu

is characterized by the property χu(γ) = u. Correspondingly, for 〈·〉s−1 : Z×p → C×p
we have

〈γ〉s−1 = exp
(
(s− 1) log γ

)
and thus Lp,α(E, s) is given by

Lp,α(E, s) =
∑
n≥0

an

(
exp

(
(s− 1) log γ

)
− 1
)n

where an are the coefficients of Lp,α(E, T ), i.e.
∑

n anT
n = Lp,α(E, T ). To ease the

notation, we write AB for exp (B logA). The power series expansion for Lp,α(E, s)

then reads
∑
an(γs−1 − 1)n.

Remark 1.31. The two constructions are indeed equivalent: As explained above,

〈·〉s−1 is merely another way of writing χγs−1 and every u ∈ T may be represented as

γs−1 for a unique s ∈ Zp. Thus switching between the two expressions of the p-adic

L-function amounts to a variable change T = γs−1 − 1.
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Proposition 1.32. Lp,α(E, s) is analytic in s,

Lp,α(E, s) =
∞∑
n=0

bn(s− 1)n

and the coefficients bn are given by

bn =
1

n!

∫
Z×p

(
log〈x〉

)n
dµE,α

Proof. See §11 and §13 in [MTT86].

Apart from p-adically interpolating the special values of the Hasse-Weil L-series,

the p-adic L-function encodes intrinsic arithmetic data about the elliptic curve E.

Indeed, the leading non-zero coefficient of Lp,α(E, T ) relates closely to algebraic in-

variants of E via the p-adic BSD conjecture.

Conjecture 1.33.
(
BSDp

)
(Mazur, Tate and Teitelbaum, Bernardi and Perrin-

Riou) Let E/Q be an elliptic curve and assume E has good reduction at p. Let

ran denote the order of vanishing of Lp,α(E, T ) at T = 0 and ralg the Z-rank of E(Q).

Then,

(i) ran = ralg

(ii) L∗p,α(E, T ) =

(
1− 1

α

)2

·
∏

v cv ·#X(E/Q)

(#E(Q)/tor)2
· Reg 1

β
(E,Q)

where L∗p,α(E, T ) is the leading non-zero coefficient of Lp,α(E, T ), α an allowable root

(unique if p is ordinary) and β =
p

α
.

Remark 1.34. The version of the p-adic BSD given above is as formulated in [Col04]

and [Sp15]. For the individual treatments of ordinary and supersingular cases, see

[MTT86] and [BPR93]. For definitions of the arithmetic quantities appearing on the

right hand side, see [Silv]. For Reg 1
β
(E/Q), see [PR03] and [SW13]. For a detailed

exposition, see [BMS12], [Sp15] and [Sp17].
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In the p-supersingular case (and under certain hypotheses detailed in the statement

of the theorem below), the existence of two separate p-adic L-functions Lp,α(E, s)

and Lp,β(E, s) allows one to construct global non-torsion points on E as suggested by

Perrin-Riou in [PR93].

Theorem 1.35. (Büyükboduk) Let E/Q be an elliptic curve of square free conductor

N and assume that E has good supersingular reduction at p. Further assume that the

residual representation ρE : GQ,S → Aut(E[p]) is surjective, where S is the set of all

rational primes dividing Np and the Archimedean place. Then,

P := expV

(
ω∗ ·

√
δE ·

(
(1− 1/α)−2 · L′p,α(E, s)

∣∣
s=1
− (1− 1/β)−2 · L′p,β(E, s)

∣∣
s=1

) )

is a Q-rational point on E of infinite order.

Proof. For a proof and descriptions of the terms appearing in the formula, see [Büy15].

Remark 1.36. A similar formula is proved in [KP07] assuming the conjecture BSDp.

The result above is unconditional.

We will not discuss any further instances where the p-adic L-functions come into

play but let us just say that they are plentiful in the realm of Iwasawa theory. The

upshot for us is the following: Knowledge about Lp,α(E, T ) translates into knowledge

about E.

To determine Lp,α(E, T ), Stein and Wuthrich provide the following algorithm in

[SW13]: Pick γ = p + 1 as the topological generator of 1 + pZp and for each n ≥ 1,

define a polynomial

Pn(T ) =

p−1∑
a=1

pn−1−1∑
j=0

µE,α

(
ω(a)(1 + p)j + pnZp

)
· (1 + T )j

 ∈ Qp(α)[T ]
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where ω denotes the Teichmüller character. Write
∑

j an,jT
j for Pn(T ) and

∑
j ajT

j

for Lp,α(E, T ). Then lim
n→∞

an,j = aj.

As can be observed from the way polynomials Pn are constructed, the algorithm

above is exponential in p, which renders computations to a high p-adic accuracy in-

feasible in practice. As an alternative, one might attempt to use Proposition 1.32 and

compute the values µE,α(xn), which, however, would require constructing Riemann

sums as in the proof of Theorem 1.12 and thus would yield an algorithm which is as

well exponential in p.

A different approach is to use overconvergent modular symbols to compute the val-

ues µE,α(xn), as has been done in [DP06], [KP07] and [PS11]. A careful study of these

objects leads to an algorithm that is polynomial in p, which is thence very effective

in carrying out computations in practice to a high p-adic accuracy. Computational

complexities involving such calculations are discussed in detail in [DP06].

An in-depth study of overconvergent modular symbols not only enables an efficient

algorithm for carrying out calculations but also presents a truly elegant way of con-

structing p-adic L-functions of Amice & Velu and Vishik. In the next chapter, we

leave aside computational concerns and focus on the theoretical side of these objects

as first introduced by Stevens in [Ste94] and later refined in [PS11].



Chapter 2

Overconvergent Modular Symbols

Section 2.1 is introductory and follows closely [Pol11]. In Section 2.2, classical

modular symbols are presented and a particular pair ϕ±f are attached to a cusp form

f . Overconvergent modular symbols are introduced in Section 2.3. Section 2.4 estab-

lishes links between the two types of objects and studies the lifts of modular symbols

to overconvergent symbols. In Section 2.5, µ±f,α is realized as the value of the over-

convergent symbol Φ±fα lifting ϕ±fα . Main references for the chapter are [Ste94] and

[PS11].

2.1 Eichler-Shimura Relation

Let ∆0 := Div0(P1(Q)) be the group of degree 0 divisors on P1(Q), Γ a congruence

subgroup of level N and f a weight 2 cusp form on Γ. Define a map Ψf on divisors

of the form {s} − {r} to C via

{s} − {r} 7−→ 2πi

∫ s

r

f(z) dz

and extend to whole ∆0 appropriately using Cauchy’s Theorem. In this way, f gives

rise to a map Ψf ∈ Hom(∆0,C).

∆0 has a natural left Z[GL2(Q)]-module structure where GL2(Q) acts via linear

fractional transformations on a divisor D. For example, if D = {s} − {r} and γ ∈ Γ,

then γD = {γs} − {γr}. Correspondingly, we define an action of Γ on Hom(∆0,C)

as follows: For ϕ ∈ Hom(∆0,C), set (ϕ | γ) := ϕ(γD). In particular, for Ψf we have,

(Ψf | γ)(D) = Ψf (γD) = 2πi

∫ γs

γr

f(z) dz
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= 2πi

∫ γs

γr

(cz + d)−2f(γz) dz = 2πi

∫ s

r

f(z) dz = Ψf (D)

so that Ψf is invariant under the action of Γ. To indicate this invariance, we write

Ψf ∈ SymbΓ(C), where

SymbΓ(C) := {ϕ ∈ Hom(∆0,C) : ϕ | γ = ϕ for all γ ∈ Γ}

is what we call the space of C-valued modular symbols on Γ.

By our above construction of Ψf out of a weight 2 cusp form on Γ, it is evident

that S2(Γ,C) ↪→ SymbΓ(C). Eichler-Shimura theory yields a much finer result:

Theorem 2.1. (Eichler-Shimura) Let Γ = Γ1(N) for some N . Then

SymbΓ(C) ' S2(Γ,C)⊕M2(Γ,C)

In fact, there is a good deal more we can say about the Eichler-Shimura isomor-

phism above. But before doing so, let us extend our notion of a modular symbol

slightly to encompass those arising from higher weight cusp forms.

Let Vg(C) := Symg(C2) be the space of homogeneous polynomials of degree g in

C[X, Y ] and let S := {
(

a b
c d

)
∈ M2(Z) : ad − bc 6= 0} denote the semigroup of

2× 2 matrices with integer entries and non-zero determinant. We endow Vg(C) with

a right action of S by setting

(P | γ)(X, Y ) := P ((X, Y ) | γ∗) := P (dX − CY,−bX + aY )

where P ∈ Vg(C), γ =
(

a b
c d

)
∈ S and γ∗ =

(
d −b
−c a

)
.
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Now let f ∈ Sk+2(Γ,C) be a cusp form of an arbitrary weight k+2 on a congruence

subgroup Γ and, in an analogous fashion to weight 2 case, define

Ψf ({s} − {r}) = 2πi

∫ s

r

f(z)(zX + Y )kdz ∈ Vk(C)

for a divisor {s}−{r} ∈ ∆0 and extend Ψf appropriately to an element ofHom(∆0, Vk(C)).

The action of the semigroup S on Vk(C) induces a right action Hom(∆0, Vk(C)) given

by

(ϕ | γ)(D) := ϕ(γD) | γ

for ϕ ∈ Hom(∆0, Vk(C)) and γ ∈ S. Note that in particular, any congruence subgroup

⊂ SL2(Z) acts on Hom(∆0, Vk(C)) through the action of S as defined above. We then

define the space of Vk(C) valued modular symbols on Γ to be

SymbΓ(Vk(C)) := {ϕ ∈ Hom(∆0, Vk(C)) : ϕ | γ = ϕ for all γ ∈ Γ}

Let us show that Ψf ∈ SymbΓ(Vk(C)). We have

Ψf (γD) = 2πi

∫ γs

γr

(zX + Y )kf(z)dz

= 2πi

∫ s

r

((az + b)X + (cz + d)Y )kf(z)dz

= Ψf (D) | γ−1

and thus Ψf | γ = Ψf for any γ ∈ Γ.

The seemingly peculiar action we introduced on the polynomial spaces Vg(C) is

characterized by the property that the association f 7→ Ψf is S-equivariant, where S

acts on f via the standard action of GL2(Q) on modular forms. We wish to translate

this fact into a Hecke equivariance property between the two spaces. To this end,

through the action of S on Vk(C), we bestow a Hecke-action on SymbΓ(Vk(C)) with

the operator T` being defined by the action of the double coset Γ
(

1 0
0 `

)
Γ for each
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prime `. Invoking Eichler-Shimura theory now gives the following delicate result:

Theorem 2.2. (Eichler-Shimura) Let Γ = Γ1(N) for some N . Then there is a Hecke

equivariant isomorphism

SymbΓ(Vk(C)) ' Sk+2(Γ,C)⊕Mk+2(Γ,C)

2.2 Classical Modular Symbols

We now switch to a p-adic setting and define classical modular symbols within

this context. Define a semigroup Σ0(p) := {
(

a b
c d

)
∈ M2(Zp) : (a, p) = 1, c ∈

pZp, ad− bc 6= 0} and let V be a right Zp[Σ0(p)] module. Σ0(p) induces an action on

Hom(∆0, V ) given by

(ϕ | γ)(D) = ϕ(γD) | γ

for ϕ ∈ Hom(∆0, V ), D ∈ ∆0 and γ ∈ Σ0(p). Let Γ ⊂ Γ0(p)∩Γ1(N) be a congruence

subgroup of level Np with (N, p) = 1 and observe that Γ has a right action on V and

Hom(∆0, V ) inherited from Σ0(p). We define the space of V -valued modular symbols

on Γ to be

SymbΓ(V ) := {ϕ ∈ Hom(∆0, V ) : ϕ | γ = ϕ for all γ ∈ Γ}

Note that the matrix
(
−1 0
0 1

)
∈ Σ0(p) acts as an involution on SymbΓ(V ) and

decomposes SymbΓ(V ) into ±1-eigenspaces

SymbΓ(V ) ' SymbΓ(V )+ ⊕ SymbΓ(V )−

Hypothesis: We henceforth keep the assumption Γ ⊂ Γ0(p)∩Γ1(N) for any congru-

ence subgroup we denote by Γ.

Through the action of Σ0(p) on V , we may define a Hecke-action on SymbΓ(V )

with T` acting via the double coset Γ
(

1 0
0 `

)
Γ for a prime `. We adopt the standard
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nomenclature for the Hecke operators so that the operator Tq is to be renamed Uq if

q divides the level of Γ. We then have,

ϕ | T` = ϕ |
(

` 0
0 1

)
+

`−1∑
a=0

ϕ |
(

1 a
0 `

)

ϕ | Uq =

q−1∑
a=0

ϕ |
(

1 a
0 q

)
for all ϕ ∈ SymbΓ(V ).

For the most part, we will involve ourselves with two very specific right Zp[Σ0(p)]-

modules, namely V = Vk(Qp) and V = Dk, both of which are yet to be defined.

In what follows, we introduce Vk(Qp) & Dk, the dual objects SymbΓ(Vk(Qp)) &

SymbΓ(Dk) and discuss in detail how they relate to one another.

We let Vk := Vk(Qp) := Symk(Q2
p) denote the space of homogeneous polynomials

of degree k in Qp[X, Y ]. Σ0(p) acts on Vk on the right via

(P | γ)(X, Y ) := P (dX − cY,−bX + aY )

for P ∈ Vk and γ ∈ Σ0(p). In essentially the same way Vk(C) is related to cusp forms

on C, Vk(Qp) is related to cusp forms on Qp as made precise below.

Let Sk+2(Γ,Q) denote the space of weight k + 2 cusp forms in Sk+2(Γ,C) whose

q-expansions at ∞ have all rational coefficients. As is well known, there exists an

isomorphism Sk+2(Γ,C) ' Sk+2(Γ,Q)⊗QC since Sk+2(Γ,C) admits a basis consisting

of cusp forms contained in Sk+2(Γ,Q). Analogously, for any Q-algebra R, we define

Sk+2(Γ, R) to be Sk+2(Γ,Q)⊗Q R.

To a cusp form f ∈ Sk+2(Γ,Qp), we attach a pair of modular symbols ϕ±f ∈

SymbΓ(Vk)
± ⊗Qp by setting

ϕ±f ({s} − {r}) =
πi

Ω±f

(∫ s

r

f(z) (zX + Y )k dz ± (−1)k
∫ −s
−r

f(z) (zX − Y )k dz

)
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where the periods Ω±f are chosen so that ϕ±f take only integral values and at least one

unit value. Note that if f ∈ Sk+2(Γ,C) is an eigenform for the full Hecke-algebra,

then f sits inside Sk+2(Γ,Q) and we may view f as an element of Sk+2(Γ,Qp) under

our fixed embedding Q ↪→ Qp. In that case, f and ϕ±f share the same system of

eigenvalues, and in fact, ϕ±f generates the f -isotypic subspace of SymbΓ(Vk)
± ⊗ Qp.

We highlight the fact that ϕ±f are essentially the ± parts of 2πi
∫
f(z)(zX + Y )kdz

normalized with respect to Ω±f .

2.3 Overconvergent Modular Symbols

We now set out to construct what we call the space of locally analytic distributions

on Zp, which we denote by D. We realize D as the continuous dual of locally analytic

functions on Zp after suitably topologizing the latter space. As a first step in our

construction, for each r ∈ |C×p |, we set

B[Zp, r] := {z ∈ Cp : ∃a ∈ Zp with |z − a| ≤ r}

For example we have,

r ≥ 1 =⇒ B[Zp, r] is the closed disc in Cp of radius r around 0

r = 1/p =⇒ B[Zp, r] is the disjoint union of p discs of radius 1/p

around the points 0, 1, ..., p− 1

Let A[r] denote the Qp-algebra of rigid analytic functions on B[Zp, r].

r ≥ 1 =⇒ A[r] = {F (z) = Σanz
n ∈ Qp[[z]] : |an| · rn → 0}

r = 1/p =⇒ A[r] = {functions on B[Zp, r] which are analytic

on each of the p discs of radius 1/p}
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Each A[r] is a Banach algebra under the sup norm ‖F‖r = supz∈B[Zp,r]
∣∣F (z)

∣∣ and for

r1 > r2, there is a continuous injection A[r1] ↪→ A[r2].

Now let A denote the set of locally analytic Qp valued functions on Zp. As

Zp ⊂ B[Zp, r] for any r > 0, we have restriction maps A[r] → A. Since Zp is

compact, any element of A is representable by finitely many power series and any

such power series must be in the image of A[r] in A for some r. Thus

A = lim−→r>0
A[r]

We endow A with the inductive limit topology, the strongest topology for which all

inclusions A[r] ↪→ A are continuous, and set

D := Homcont(A,Qp)

to be the space of locally analytic distributions. Equivalently, if we define D[r] :=

Homcont(A[r],Qp) to be the continuous Qp-dual of A[r], we can realize D as

D = lim←−
r>0

D[r]

equipped with the projective limit topology. Note that we have natural continuous

injections

A[r] ↪→ A and D ↪→ D[r]

for any r > 0. Further note that D[r] is a Banach space under the norm

‖µ‖r = sup
F∈A[r], F 6=0

∣∣µ(F )
∣∣

‖F‖

We henceforth denote A[1] and D[1] by A and D respectively.
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The distribution spaces D and D admit a right action of the semigroup Σ0(p).

Indeed, for each k ≥ 0, Σ0(p) has a weight k left action on A (resp. A) given by

(γ |k F )(z) = (a+ cz)kF

(
b+ dz

a+ cz

)

which induces a right action on D (resp. D) via

(µ |k γ)(F ) = µ(γ |k F )

We write Dk and Dk to incorporate the weight k action of Σ0(p) into our notation.

When thought together with this action, Dk and Dk assume a right Zp[Σ0(p)]-module

structure.

Definition 2.3. The space SymbΓ(Dk) is a space of overconvergent modular symbols

of level Γ considered together with the weight k action of Σ0(p) for Dk = Dk or Dk.

Let us elaborate on the Hecke structure on SymbΓ(Dk). Due to our running

hypothesis Γ ⊂ Γ0(p)∩Γ1(N), the p-th Hecke operator on SymbΓ(Dk) is given by the

action of Up. Let us denote the matrix
(

1 a
0 pn

)
by γ(a, pn) and let Φ ∈ SymbΓ(V )

be a Up-eigensymbol with eigenvalue λ. We then have

Φ(D) = λ−n(Φ | Un
p )(D)

= λ−n
pn−1∑
a=0

Φ
(
γ(a, pn)D

)
| γ(a, pn)

Now, each Φ
(
γ(a, pn)D

)
defines a distribution in D. For an arbitrary µ ∈ D and

F ∈ A,

(
µ | γ(a, pn)

)
(F ) = µ

(
F (a+ pnz)

)
=
(
µ | γ(a, pn)

)
(F · χa+pnZp)
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so that µ | γ(a, pn) is zero on F outside of a+ pnZp, i.e.

µ | γ(a, pn)(F ) = µ | γ(a, pn)
∣∣
a+pnZp

(F )

By a slight abuse of language, we say that µ has support contained in a+pnZp. Thus,

if Φ ∈ SymbΓ(Dk) is a Up-eigensymbol, then the operator Un
p breaks Φ(D) into pn

distributions each essentially operating on a disc of the form a + pnZp. Denoting

Φ(γ(a, pn)D) | γ(a, pn) by Φa,n(Dn) for notational simplicity, we get

Φ(D)(f) = λ−n
pn−1∑
a=0

Φa,n(Dn)(f · χa+pnZp) = λ−n
pn−1∑
a=0

Φa,n(Dn)(f)

2.4 The Specialization Map

We now proceed to establish a link between the spaces of overconvergent modular

symbols SymbΓ(Dk) and classical modular symbols SymbΓ(Vk) as introduced in Sec-

tion 2.2. More specifically, we will construct a Hecke equivariant map ρ∗k called the

specialization map, which restricts to an isomorphism between certain well-behaved

subspaces.

Theorem 2.4. Let Dk = Dk or Dk. Then the map

ρk : Dk −→ Vk(Qp)

µ 7−→
∫

(Y − zX)kdµ

is Σ0(p)-equivariant, where the integration takes place with respect to z and the vari-

ables X & Y are treated as coefficients.
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Proof. Let us verify for the k = 2 case via explicit calculations. For µ ∈ D2 and(
a b
c d

)
∈ Σ0(p) we have;

ρ2

(
µ |2

(
a b
c d

))
=

∫
(Y − zX)2 d

(
µ |2

(
a b
c d

))
=

2∑
j=0

(−1)j
(

2

j

)
µ

((
a b
c d

)
|2 zj

)
Xj Y 2−j

= µ
(
(a+ cz)2

)
Y 2 − 2µ

(
(b+ dz)(a+ cz)

)
XY + µ

(
(b+ dz)2

)
X2

= µ(1)(−bX + aY )2 − 2µ(z)(dX − cY )(−bX + aY ) + µ(z2)(dX − cY )2

= ρ2(µ) |
(

a b
c d

)
The general proof follows from obvious modifications to the case we considered above.

Remark 2.5. As can be observed in the calculations above, the expression µ(zj)

appears within the coefficient of the XjY k−j term for 0 ≤ j ≤ k. Also, recall that the

modular symbols in Vk correspond to modular forms of weight k + 2. Further, recall

our running hypothesis Γ ⊂ Γ0(p) ∩ Γ1(N).

Theorem 2.6. ρk induces a surjective Hecke equivariant map

ρ∗k : SymbΓ(Dk) −→ SymbΓ(Vk)

via

ρ∗k (Φ) (D) =ρk
(
Φ(D)

)
Proof. Hecke equivariance follows at once from the Σ0(p)-equivariance of ρk and re-

mains true if we replace Dk with Dk since Dk ↪→ Dk. For surjectivity, see [PS11]

Theorem 5.1 and Corollary 5.4.
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The map ρ∗k is what we refer to as the specialization map and it enables us to

view the space of classical modular symbols as a quotient of overconvergent modular

symbols. We highlight the fact that ρ∗k maps an infinite dimensional space to a finite

dimensional one and thence has an infinite dimensional kernel. In what follows, we

describe ker(ρ∗k) in terms of the operator Up.

Definition 2.7. Let f be an eigenform of weight k + 2 on Γ, ϕ an eigensymbol in

SymbΓ(Vk), Φ an overconvergent eigensymbol in SymbΓ(Dk) or SymbΓ(Dk). We de-

fine the slope of θ at p to be the valuation of its Up-eigenvalue for θ = f, ϕ,Φ.

Lemma 2.8. Slope of a weight k + 2 eigenform f on Γ is at most k + 1.

Proof. Let α = ap(f) be the Up-eigenvalue of f . If f is new at p, then α = ±pk/2 and

thus f has slope k/2. If f is old at p, then α, viewed as an element of Q, satisfies

αα = pk+1 and hence 0 ≤ ordp(α) ≤ k+ 1. As such, slope of f (at p) is at most k+ 1

as claimed.

Now, the specialization map ρ∗k : SymbΓ(Dk) → SymbΓ(Vk) is Hecke equivariant

and Up acts on the image with slope at most k + 1. Thus the entire subspace of

SymbΓ(Dk) of slope > k + 1 must be in the kernel of ρ∗k. The following control

theorem due to Stevens extends this simple observation and gives an isomorphism

result between small slope subspaces. We adopt the notation that if V is a Zp[Γ]-

module endowed with a Hecke action, V (<h) refers to the subspace obtained by taking

a direct sum over the generalized Up-eigenspaces of V on which Up acts with slope

strictly less than h.
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Theorem 2.9. (Stevens) ρ∗k restricted to slope < k + 1 subspace of SymbΓ(Dk)

SymbΓ(Dk)
(<k+1) ρ∗k−−−−→ SymbΓ(Vk)

(<k+1)

is a Hecke equivariant isomorphism.

Proof. See [PS11] Theorem 5.12

Recall that the space of locally analytic distributions Dk injects into Dk, which

lends itself to an inclusion SymbΓ(Dk) ↪→ SymbΓ(Dk). Focusing instead on the finite

slope subspaces, we now establish an isomorphism relation.

Theorem 2.10. For any h <∞, the inclusion

SymbΓ(Dk)(<h) ↪→ SymbΓ(Dk)
(<h)

is an isomorphism.

Proof. Let Φ ∈ SymbΓ(Dk)
(<h). We will show that for any divisor D ∈ ∆0, Φ(D)

defines a locally analytic distribution in D , i.e. Φ(D) ∈ D and hence Φ ∈ SymbΓ(Dk).

Since h < ∞, the linear operator Up is injective on both spaces and as the spaces

are finite dimensional, Up is an automorphism of both. Therefore, Φ must be in the

image of Un
p for all n. Let Ψ ∈ SymbΓ(Dk) be such that Ψ | Un

p = Φ and let γ(a, pn)

denote the matrix
(

1 a
0 pn

)
∈ Σ0(p). Then, for any divisor D ∈ ∆0 we have

Φ(D)(F ) = (Ψ | Un
p )(D)(F ) = =

pn−1∑
a=0

(
Ψ | γ(a, pn)

)
(D)(F )

=

pn−1∑
a=0

(
Ψ
(
γ(a, pn)D

)
| γ(a, pn)

)
(F )

=

pn−1∑
a=0

Ψ
(
γ(a, pn)D

)
(γ(a, pn) | F )
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Now, for any function F ∈ A[p−n], the translation γ(a, pn) | F lands in A[1] = A and

thus the distributions Ψ
(
γ(a, pn)D

)
∈ D can be evaluated at γ(a, pn) | g. Therefore,

Φ(D) naturally extends to a distribution in D[p−n] through our calculations above.

Since n was arbitrary and D is given by the limit lim←−r>0
D[r], we get Φ(D) ∈ D.

The following then is an immediate consequence of the two preceding theorems:

Corollary 2.11. The composition

SymbΓ(Dk)(<k+1) ∼−→ SymbΓ(Dk)
(<k+1) ∼−−→

ρ∗k

SymbΓ(Vk)
(<k+1)

defines a Hecke equivariant isomorphism.

The corollary above is the main result we have been after. It says that if ϕ is

a small slope Up-eigensymbol in SymbΓ(Vk), then there is a unique overconvergent

Up-eigensymbol Φ in SymbΓ(Dk) lifting ϕ with the same Up-eigenvalue as ϕ.

2.5 p-adic L-functions via Overconvergent Modular Symbols

Recall that the space of analytic distributions D injects into D[r] for every r > 0.

Further recall that each D[r] is a Banach space under the norm

‖µ‖r = sup
F∈A[r], F 6=0

∣∣µ(F )
∣∣

‖F‖

The two together imply that D is naturally equipped with a family of norms {‖·‖r}r>0

satisfying ‖µ‖r1 ≥ ‖µ‖r2 for r1 ≤ r2.

Proposition 2.12. Let Φ ∈ SymbΓ(Dk) be a Up-eigensymbol of slope h. Then for

any D ∈ ∆0, the distribution Φ(D) satisfies
∥∥Φ(D)

∥∥
r

= O(r−h) as r → 0+.

Proof. See Definition 6.1 and Lemma 6.2 of [PS11].
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Corollary 2.13. For Φ as above and D ∈ ∆0 arbitrary, restriction of Φ(D) to Z×p is

h-admissible.

Proof. After rewriting the growth condition given in Definition 1.10 as

sup
a∈Z×p

∣∣∣µ ((x− a)i · χa+pnZp
)∣∣∣∥∥(x− a)i · χa+pnZp
∥∥ = O(pnh) as n→∞

the corollary follows at once from the proposition above.

Let f ∈ Sk+2(N, ε) be a cuspidal normalized eigenform of weight k + 2, level

N with (N, p) = 1 and character ε as in Section 1.4. Fix a choice of periods Ω±f

satisfying Theorem 1.17 and let α1 and α2 denote the roots of the Hecke polynomial

x2 − ap(f)x + ε(p)pk. Recall that αi is called allowable if ordp(αi) < k + 1. Fix an

allowable root α ∈ {α1, α2} and call the other root β. Set

fα(z) = f(z)− βf(pz)

Then fα is a weight k + 2 eigenform on a congruence subgroup Γ ⊂ Γ1(N) ∩ Γ0(p)

with the same Hecke eigenvalues as f away from p and Up-eigenvalue α. We note that

Γ satisfies our running hypothesis on congruence subgroups.

Recall that the h-admissible distributions µ±f,α attached to f with respect to the

allowable root α are explicitly given by

µ±f,α(P, a+ pnZp) =
λ±(f, P ; a, pn)

αn
− ε(p)pkλ±(f, P ; a, pn−1)

αn+1
∈ K(α)

where P is a polynomial of degree ≤ k and λ± are as defined in Section 1.4.

Proposition 2.14. With f and fα as above,

µ±f,α(P, a+ pnZp) =
λ±(fα, P ; a, pn)

αn
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Proof. As fα(z) = f(z)− βf(pz),

α−nλ±(fα, P ; a, pn)

= α−n

(∫ a/pn

i∞
P (−pnz + a)fα(z)dz ±

∫ −a/pn
i∞

P (pnz + a)fα(z)dz

)
πi

Ω±f

= α−n
(
A± −B±

) πi
Ω±f

where A± and B± are

A± =

∫ a/pn

i∞
P (−pnz + a)f(z)dz ±

∫ −a/pn
i∞

P (pnz + a)f(z)dz

B± =

∫ a/pn

i∞
P (−pnz + a)βf(pz)dz ±

∫ −a/pn
i∞

P (pnz + a)βf(pz)dz

Performing a change of variables pz 7→ z in B± and using αβ = ε(p)pk we find

λ±(fα, P ; a, pn)

αn
=
λ±(f, P ; a, pn)

αn
− ε(p)pk−2λ±(f, P ; a, pn−1)

αn+1

As fα is an eigenform the full Hecke algebra, it lies inside the subspace Sk+2(Γ,Q).

Viewing then fα as an element of Sk+2(Γ,Qp) under our fixed embedding Q ↪→ Qp,

denote by ϕ±fα the associated modular symbol in SymbΓ(Vk(Qp))
± ⊗Qp as defined in

Section 2.2. Explicitly,

ϕ±fα
(
{s} − {r}

)
=

πi

Ω±f

(∫ s

r

fα(z) (zX + Y )k dz ± (−1)k
∫ −s
−r

fα(z) (zX − Y )k dz

)

Since fα and ϕ±fα share the same system of eigenvalues and α is allowable, ϕ±fα is

of slope < k + 1. By Corollary 2.11, there exists a unique overconvergent modular

symbol Φ±fα ∈ SymbΓ(Dk)± ⊗ Qp lifting ϕ±fα , i.e. Φ±fα satisfies ρ∗k(Φ
±
fα

) = ϕ±fα . Since

the specialization map ρ∗k is Hecke equivariant and ϕ±fα is a Up-eigensymbol with

eigenvalue α, Φ±fα also must be a Up-eigensymbol with the same Up-eigenvalue.



Chapter 2: Overconvergent Modular Symbols 41

Theorem 2.15. Restriction of Φ±fα
(
{0} − {∞}

)
to Z×p is the p-adic distribution µ±f,α

attached to f , or in no words,

Φ±fα
(
{0} − {∞}

) ∣∣
Z×p

= µ±f,α

Proof. Let h = ordp(α). Then Φ±fα
(
{0} − {∞}

)
and µ±f,α are both h-admissible by

Corollary 2.13 and Proposition 1.22 respectively. Therefore it suffices to establish

equality whenever the two distributions are evaluated on Ch(Z×p ). As functions in

Ch(Z×p ) are locally given by polynomials of degree ≤ h < k + 1 and distributions are

additive, we may further reduce to the case of showing equality for functions that are

of the form zj · χa+pnZp for 0 ≤ j ≤ k.

Now, the overconvergent modular symbol Φ±fα is a Up-eigensymbol with eigenvalue

α. Therefore,

Φ±fα
(
{0} − {∞}

)
= α−n

(
Φ±fα | U

n
p

) (
{0} − {∞}

)
= α−n

pn−1∑
a=0

Φ±fα
(
{a/pn} − {∞}

)
| γ(a, pn)


As discussed after Definition 2.3, the distributions Φ±fα

(
{a/pn} − {∞}

)
| γ(a, pn) ap-

pearing in the above sum have support fully contained in a+pnZp for a = 0, . . . , pn−1.

Thus, for zj · χa+pnZp ∈ Ch(Z×p ),

Φ±fα
(
{0} − {∞}

)
(zj · χa+pnZp) (*)

= α−n
(

Φ±fα
(
{a/pn} − {∞}

)
| γ(a, pn)

)
(zj · χa+pnZp)

= α−n Φ±fα
(
{a/pn} − {∞}

)
( (pnz + a)j )

We may now use the specialization map ρ∗k to make explicit that final line above. By

definition of ρ∗k,

ρ∗k(Φ
±
fα

)({a/pn} − {∞}) = ρk

(
Φ±fα

(
{a/pn} − {∞}

))



42 Chapter 2: Overconvergent Modular Symbols

The right hand side of the above equality reads

ρk

(
Φ±fα

(
{a/pn} − {∞}

))
=

∫
(Y − zX)k dΦ±fα

(
{a/pn} − {∞}

)
(A)

while the left hand side is given by

ρ∗k(Φ
±
fα

)
(
{a/pn} − {∞}

)
= ϕ±fα

(
{a/pn} − {∞}

)
=

πi

Ω±f

(∫ a/pn

i∞
fα(z) (zX + Y )k dz ± (−1)k

∫ −a/pn
i∞

fα(z) (zX − Y )k dz

)
(B)

so the two expressions labeled (A) and (B) must match coefficient by coefficient. For

example, the coefficient in front of the Y k term in (A) is Φ±fα
(
{a/pn} − {∞}

)
(1) and

is
∫ a/pn
i∞ fα(z) dz ±

∫ −a/pn
i∞ fα(z) dz in (B). Accordingly, we must have

Φ±fα
(
{a/pn} − {∞}

)
(1) =

πi

Ω±f

(∫ a/pn

i∞
fα(z) dz ±

∫ −a/pn
i∞

fα(z) dz

)

Similarly, equating the coefficients appearing in front of the XY k−1 terms, we find

Φ±fα
(
{a/pn} − {∞}

)
(z) =

πi

Ω±f

(∫ a/pn

i∞
(−z)fα(z) dz ±

∫ −a/pn
i∞

z fα(z) dz

)

Continuing in this way, we extract the values Φ±fα
(
{a/pn} − {∞}

)
(zj) for 0 ≤ j ≤ k

and using linearity of Φ±fα
(
{a/pn} − {∞}

)
, we arrive at the following: For a polyno-

mial Q of degree ≤ k;

Φ±fα
(
{a/pn} − {∞}

) (
Q(z)

)
=

πi

Ω±f

(∫ a/pn

i∞
Q(−z) fα(z) dz ±

∫ −a/pn
i∞

Q(z) fα(z) dz

)
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In particular, assigning (pnz + a)j to Q(z) and substituting in (∗) we get,

Φ±fα
(
{0} − {∞}

)
(zj · χa+pnZp)

= α−n Φ±fα
(
{a/pn} − {∞}

)
( (pnz + a)j )

= α−n
πi

Ω±f

(∫ a/pn

i∞
(−pnz + a)j fα(z) dz ±

∫ −a/pn
i∞

(pnz + a)j fα(z) dz

)

where the last line precisely is α−nλ±(fα, z
j; a, pn). But by Proposition 2.14,

λ±(fα, z
j; a, pn)

αn
= µ±f,α(zj · χa+pnZp)

and therefore Φ±fα
(
{0} − {∞}

) ∣∣
Z×p

and µ±f,α agree on all of Ch(Z×p ) by linearity. Both

distributions being h-admissible then implies that they are one and the same.
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