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ABSTRACT

Price uncertainties are among the most critical challenges that retailers and man-

ufacturers have to face. For instance, companies whose operations require procuring

from commodity markets are exposed to commodity price fluctuations which experi-

ence sharp movements frequently. Besides random nature of customer demand, due

to this input and/or selling price volatility, there might be considerable variability in

firms’ profits. It is vital for these firms to consider price fluctuations in adjusting in-

ventory control and pricing policies, and take a variety of risk management measures.

In this dissertation, we consider such a firm where continuous price changes during

the planning horizon affect both unit payoff from sales as well as customer arrivals. In

a multi-period setting, we first investigate optimal price-dependent inventory control

policies and numerically illustrate how continuous price fluctuations affect optimal

controls and resulting payoffs. Then, we analyze optimal pricing policies assuming

that selling prices are determined both by market-driven random prices and firm’s

markup decision. We show that level of price variability has a negative effect on firms’

final profits. Finally, in a minimum-variance framework, we explore financial hedg-

ing strategies of the risk-sensitive firm. We assume inherent price dynamics of the

inventory item is correlated with prices of various products which are freely traded in

financial markets. This presents an opportunity for the firm to invest in a financial

portfolio of these products to manage its exposure to price and demand uncertainties

by observing the current inventory, wealth and price levels. In this environment, we

explicitly characterize dynamic variance-minimizing investment decisions of the firm

using dynamic programming. We then explore the risk reduction effects of minimum-

variance financial hedges through numerical examples and show that significant risk

reductions may be possible by using the right hedge.
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ÖZETÇE

Üretici ve perakendecilerin önlem alması gereken en kritik zorluklardan biri fiyat

belirsizlikleridir. Örneğin operasyonları emtia piyasalarından alım yapılmasını gerek-

tiren şirketler, sürekli değişen emtia fiyatlarına maruz kalmaktadırlar. Talepteki be-

lirsizliklerin dışında alış/satış fiyatlarındaki belirsizlikler, şirketlerin nakit akışlarında

önemli derecede değişkenliğe neden olmaktadır. Bu nedenle şirketler fiyatlardaki oy-

naklıkları göz önüne alan envanter ve fiyatlama politikaları geliştirmeli ve riskini kon-

trol edebileceği adımlar atmalıdırlar. Bu çalışmada, planlama dönemindeki sürekli

fiyat oynaklıkları yüzünden hem birim satış getirisi hem de müşteri geliş zaman-

ları etkilenen bir şirketin endüstriyel ve finansal operasyonları ele alınmaktadır. İlk

kısımda, çeşitli durumlarda en iyi çoklu-dönem envanter kontrolü politikaları analiz

edilip sayısal örneklerle fiyat değişimlerinin bu politikaları ve getirilerini nasıl etk-

iledikleri gösterilmektedir. İkinci kısımda, satış fiyatlarının piyasa-bazlı fiyatlardan

ve şirketin kar payı kararlarından etkilendiği durumda şirketin en iyi fiyatlama strate-

jileri incelenmekte ve fiyat oynaklıklarının şirketin nihai getirilerine negatif etkisi

teorik olarak gösterilmektedir. Son kısımda ise, riske-duyarlı bu şirketin finansal

risk azaltımı politikaları analiz edilmektedir. Üretilen ve/veya satışı yapılan ürünün

piyasa bazlı içsel fiyat hareketlerinin finansal piyasalarda alım-satımı yapılan çeşitli

ürünlerin fiyatlarıyla karşılıklı ilişkilerinin olduğu kabul edilmektedir. Bu da riske du-

yarlı şirketin finansal ürünlerden bir yatırım portföyü oluşturup, fiyat ve talep risk-

lerini yönetebilmesi için fırsat sağlamaktadır. Bu durumda şirketin envanter, varlık

ve fiyat seviyelerini gözlemleyip dinamik bir şekilde oluşturduğu minimum-varyans

yatırım kararları, dinamik programlama kullanılarak açık bir biçimde karakterize

edilmektedir. Doğru finansal yatırım kararlarının şirketin nakit akışlarında dikkate

değer risk azaltımları sağladıkları çeşitli sayısal örneklemelerle gösterilmektedir.
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NOMENCLATURE

P : Market price process, P = {Pt; t ≥ 0}

Λ : Intensity process, Λ = {Λt; t ≥ 0}

N : Demand process, N = {Nt; t ≥ 0}

λ(.) : Intensity function

f(.) : Selling price function

T : Customer arrival times, T = {Tn;n ≥ 1}

T : Length of a single sales period

M : Number of sales periods

x : Inventory level at the beginning of a period

y : Inventory level after ordering

p : Observed price at the beginning of a period

r : Interest rate per unit time

γ : Discount factor for a period, γ = e−rT

h (p) : Unit inventory holding cost

b (p) : Unit backorder (lost-sale) cost

Rt : Total discounted revenue until time t

rt(p) : Expected total discounted revenue until time t

c(y; p) : Expected one-period backorder and holding cost function

g(y; p) : Expected one-period profit function

Vk(x, p) : Maximum expected total discounted profit from period k

Gk(y; p) : Expected total discounted profit from period k

Ψk(y; p) : Expected discounted future profits from period k
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Sk(p) : Base-stock level in period k

sk(p) : Reorder point in period k

K : Fixed ordering cost

4f : Forward difference operator

zt(p) : Expected discounted price at time t

W : Wiener process, W = {Wt; t ≥ 0}

r(y; p) : Expected total discounted revenue function

α : Proportional sales markup

X : Individual customer demand process, X = {Xn;n ≥ 1}

Dn : Cumulative demand until nth customer

N(y) : Order of the last customer who makes a purchase

σX : Standard deviation of investment return X

ρX,Y : Correlation coefficient between X and Y

CF (y,N, P ) : Unhedged operational cash flow

θ : Financial investment strategy

S : Price process vector for financial securities

G(θ, S) : Payoff from financial investment strategy

HCF (y, θ,N, P, S) : Hedged cash flow

T : Set of trading times, T = {t0, ..., tn}

C : Covariance matrix of security prices, C = {Cij}

µ(y) : Covariance vector of cash flow and security prices

θ∗(y) : Optimal hedge as a function of operational decision

R[s,t] : Total revenue between times s and t

N[s,t] : Total demand between times s and t

Wk : Wealth level at the beginning of period k

Xk : Inventory level at the beginning of period k

xi





Chapter 1

INTRODUCTION

Today’s global economy leaves the firms with many critical challenges to deal

with in terms of uncertainties. Besides the random nature of customer demand, man-

ufacturers ad retailers usually have to consider the fluctuations in commodity prices,

exchange rates etc. as well for their supply chain operations. For instance, com-

panies whose operations require procuring from commodity markets are exposed to

commodity price fluctuations which experience sharp movements frequently. Unsta-

ble economies, supply disruptions due to uncontrolled factors such as earthquakes,

strikes, fluctuating exchange rates are all contributing factors to volatile commodity

prices or input materials. Considering the fact that a significant portion of manufac-

turers’ expenses are due to raw material costs, it is vital for firms to take a variety of

risk management measures against undesired price movements. Moreover, it is clear

that in this sort of price-fluctuating environments, firms’ operational policies such as

ordering and pricing as well as financial strategies are greatly affected.

Successful inventory management is an effective approach to mitigate risks due

to input or selling price fluctuations. Besides its importance in managing the usual

trade-off between holding, shortage and purchase costs, it can create additional value

in fluctuating price environments by adjusting the order sizes in response to the price.

Although it is common to design contracts with suppliers or use financial derivatives

to hedge against possible price risks, a successful inventory policy should also take the

evolution of prices into account in order to avoid downside risk or sometimes benefit

from advantageous variations (Chod et al. (2010), Caldentey and Haugh (2006)). For

instance a manufacturer, in anticipation of raw material price increases, can invest
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in inventory to avoid high purchase costs and thus benefit from high selling prices in

future.

Classical inventory models usually take purchase and selling prices as constants.

However, it is clear that for some products, input prices are volatile. Moreover, it

is common that selling prices in some industries may be difficult to predict as well.

For instance, a wholesaler that sells in a different currency will bear an exchange

rate risk in selling prices. Some industries such as apparel and high technology face

the problem of variable selling price due to rapid product substitution and short

life cycles. Jewelry retailers which buy and sell products that are made of precious

metals or stones such as gold, silver and diamond may reflect the fluctuation in input

prices to customers and may charge different prices to customers arriving at different

times. For inputs that are traded in commodity markets, there is a rich literature on

modeling commodity price processes. Sophisticated models are proposed to take into

account both long-term and short-term price volatilities. On the other hand, most

inventory models ignore the full effects of such input price volatilities.

This dissertation addresses the inventory management and pricing policies of a firm

where the inventory item faces price volatilities, especially within the ordering cycles.

Due to the nature of the item, input and selling prices as well as customer demand

are all affected from such price changes. After analyzing operational strategies, risk

hedging policies are investigated. Next, we summarize the main topics studied in the

subsequent chapters.

In Chapter 3 of this dissertation, we propose an inventory model that can po-

tentially integrate sophisticated input price processes with price dependent demand.

In particular, we propose and investigate a multi-period, single-item, periodic review

inventory control model where we explicitly model a continuous-time stochastic mar-

ket price process which determines both purchase and selling price and influences the

customer demand. In this environment, the arrival times of customers and the value

of the price process is important as they determine the sales revenue. The model,

which includes both price and demand uncertainties in continuous time, covers many



Chapter 1: Introduction 3

important simpler models as special cases. Our main contributions to the literature

are as follows. First, we capture the effects of continuous stochastic input and selling

price fluctuations and their effects on the continuous demand process in a tractable

model. The resulting model has both continuous time and discrete time components

and non-trivial within-period dynamics between fixed time points. Second, for this

model, we characterize the optimal ordering policy using dynamic programming. Fur-

ther, our characterization leads to numerically implementable solutions for practically

relevant price processes. Using these solutions, we also generate insights on the ef-

fect of price volatilities on optimal expected profits and inventory decisions. To our

knowledge, this has not been addressed before for such general price processes that

are consistent with the finance literature.

In Chapter 4, we examine how such a firm coordinates its inventory and pricing

decisions in a fluctuating-price environment. We assume that the selling price of the

item consists of a market-driven random price which constantly changes during sales

period and firm’s operational markup. Rather than determining selling price on its

own, the firm determines a proportional markup on the market price to reflect the

effect of prevailing commodity prices on the retail price. For this setting, we explic-

itly characterize the optimal inventory-markup strategy and theoretically analyze the

effect of price volatilities in firm’s optimal controls and profitability.

In Chapter 5, we analyze the financial hedging problem of a firm which is exposed

to commodity price fluctuations in its inventory operations. At prespecified trading

times throughout the sales season, we assume that the firm has the opportunity to

invest in available financial securities which are correlated with the commodity price

process. The risk-averse firm then aims to minimize the variance of the cash flow at the

end of the sales season for any inventory policy by exploiting these correlations. For

this setting, we characterize optimal static and dynamic variance-minimizing trading

policies which use the available information at each trading time. In a numerical

setting, we also investigate the effect of the number of trading periods and price

volatility on the effectiveness of financial hedging by using several derivative securities
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which are written on the underlying market price of the inventory item.

Apart from simple inventory models and special cases, this problem is known to be

challenging and few general results exist. Our contributions to the literature in this

part are two-fold. First, we apply a variance minimization approach to a rather general

multi-period inventory model where there are both selling price and demand risks that

are driven by a continuous stochastic price process. Second, we explicitly characterize

the minimum-variance hedge at each period by solving a stochastic dynamic program.

Despite the complexity of this dynamic program, its solution turns out to be relatively

simple. This leads to useful characterizations in some important special cases and

to implementable numerical solutions in general. Using this approach, we can then

characterize the benefits of financial hedging for different plausible financial portfolios.

The rest of this dissertation is organized as follows. In Chapter 2, we review

some of the related papers in inventory management and pricing literature that deal

with price uncertainties. Furthermore, several risk management approaches including

financial hedging are reviewed in the context of inventory operations. In Chapter

3, we introduce the problem formulation and analyze the optimal ordering policies

of the inventory system that involves price fluctuations. In Chapters 4 and 5, we

investigate pricing and dynamic financial hedging strategies for the models outlined

before, respectively. Last, in Chapter 6, we give our concluding remarks and share

our ideas for future studies. An appendix is provided at the end for some of the

derivations and lengthy proofs.



Chapter 2

LITERATURE REVIEW

In this chapter, we review some of the available operations models in literature

which mostly deal with volatile prices. Then, we outline several risk-sensitive models

involving financial hedging framework.

2.1 Inventory Models with Random Prices

A number of papers explore the effect of volatile purchase prices on inventory control

problems. Kalymon (1971) extends the classical inventory model of Scarf (1960) that

involves fixed ordering costs by incorporating random purchase price which is governed

by a Markov process. For such a system, he proves that a price dependent (s, S) policy

is optimal. Golabi (1985) considers a single-item and deterministic-demand inventory

system. He assumes that at the beginning of each cycle, the ordering price is a random

variable with a known distribution function. He derives a policy where it is optimal to

order for a number of next periods if the price falls into a certain interval. Gavirneni

(2004) studies a periodic review inventory problem where unit purchase cost at each

stage takes values from a discrete set according to a Markovian transition matrix.

He shows the optimality of order-up-to policies and presents conditions that lead

to monotone order-up-to levels. Chen et al. (2007) consider a multi-period pricing

and inventory management problem in discrete time and show that price dependent

base-stock policies are also optimal when additive exponential utility functions are

used to represent the risk sensitivity of the decision maker. Their results extend

to cases where demand and cost parameters are Markov-modulated. Berling and

Mart́ınez-de Albéniz (2011) investigate a Poisson demand system where the purchase

price is a Markov process to study the effect of price evolution on the optimal policy
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and its parameters. Specifically, they consider both geometric Brownian motion and

Ornstein-Uhlenbeck processes for the price. Utilizing the decomposition method of

Muharremoglu and Tsitsiklis (2008) they characterize optimal base-stock levels as a

series of thresholds and provide an algorithm to calculate them. Following their work,

Berling and Xie (2014) present simple heuristics to calculate those threshold levels

efficiently. Chen et al. (2014) study the impact of purchase price volatility in a multi-

period stochastic inventory system where input prices at each period are random and

independent of the demand distribution. They establish that higher price variability

results in lower costs.

Another related stream of literature is on inventory models with Markov-modulated

demand. In these papers typically demand distributions change over time, usually

dependent on an external stochastic process (see Song and Zipkin (1993), Özekici and

Parlar (1999), Cheng and Sethi (1999), Erdem and Özekici (2002), Gallego and Hu

(2004) and Gayon et al. (2009)). In our model, an internal price process modulates

the demand arrivals.

Our study differs from the above papers in following points. First, in addition to

input price fluctuations, we also model selling price fluctuations and their impact on

the demand process. In addition, in our case, the demand and the revenue within a

period depend on the continuous price process which connects the optimal ordering

policy to the properties of the price process.

A few authors study inventory systems with changing selling prices. Available

models usually consider an inflation rate or a deterministic continuous price decrease,

mostly in the context of the Economic Order Quantity (EOQ) model (Erel (1992),

Hariga (1995) and Khouja and Park (2003), and Yang et al. (2011)). Banerjee and

Meitei (2009) specifically dealt with the effect of changing selling price. Referring to

the price history of Nokia’s two mobile phone models, they consider a single period

stochastic demand inventory model with random lead time and continuously decreas-

ing selling price. They assume uniform demand over the selling season and investigate

retailer profitability by proving the existence of optimal solutions. In contrast to the
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above papers, we model the case of random demand modulated by a randomly fluctu-

ating price process and assume that the selling price is a general function of fluctuating

input price.

There are also some papers that consider firms that can buy from or sell in spot

markets where prices are constantly changing. Goel and Gutierrez (2006) consider

a multi-period stochastic inventory model where a firm may purchase from both

spot and future markets. Haksöz and Seshadri (2007) review existing models that

incorporate spot market procurements with volatile prices in several supply chain

operations. Katariya et al. (2014) consider a multi-period problem of a supplier that

has access to a volatile spot market and more stable long-term contractual customers

to sell items. In each period, the supplier decides on a production quantity and how

much to liquidate in the spot market. They show that the optimal policy consists of

two parameters and provide bounds on these. Guo et al. (2011), on the other hand,

consider a firm that can purchase at any time from a spot market and faces a random

demand at a later random time. The firm meets demand as much as possible and

salvages the leftovers, if any. They prove that optimal policy is a price-dependent

two-threshold policy. Secomandi (2010) studies the warehouse problem of a merchant

that is involved in commodity-trading activities. He assumes that in each period, the

spot price of the commodity evolves as a Markov process. In the presence of both

space and buy-sell limits, he shows that operational and financial decisions can not

be separated and the optimal policy is characterized by two-stage price-dependent

base-stock targets.

One key difference of our models is that we explicitly model the customer demand

process in detail and the firm do not have access to an ample spot market. Our model

in that sense is more appropriate for firms who may use commodities to manufacture

specialized products which are not easily traded in spot markets.

Overall, the models presented in this dissertation differ from existing models in the

sense that they incorporate the effect of random selling prices by explicitly modeling

a continuous-state stochastic price process. They also relate random purchase and
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selling prices through a multiplicative retail markup unlike classical models that take

selling price as constants or as a random variable unrelated to the purchase costs.

This case is applicable to situations where a firm is selling in a foreign currency

or selling a commodity-based item such that any price fluctuations in the material

cost also pass to customers as in the jewelry industry. In addition, instead of having

random demands that are realized at the end of sales periods, we model the individual

customer demand also as a stochastic process that depends on the prevailing stochastic

prices. Finally, to our knowledge, there are few results for the challenging lost sales

problem when demand is price dependent.

2.2 Joint Inventory Management and Pricing

A significant portion of operations management literature focuses on coordinated

inventory and pricing decisions. In all of these models, whether stochastic or deter-

ministic, customer demand is a function of selling price. Whitin (1955) was the first

to allow selling price to be set simultaneously with order quantity in the newsvendor

model. His method is to first determine the optimal ordering quantity as a function of

price and then find the corresponding optimal price. Reviews by Petruzzi and Dada

(1999), Chan et al. (2004) and Yano and Gilbert (2005) provide the current models in

joint inventory-pricing literature. Focusing on the newsvendor model, Petruzzi and

Dada (1999) investigate both additive and multiplicative demand models and provide

conditions that are sufficient to ensure unimodality of the profit function. With the

introduction of a base price, they are able show that the optimal price can be inter-

preted as the sum of base price and a premium. Federgruen and Heching (1999), on

the other hand, consider a multi-period inventory model with backorders where the

distributions of independent demand functions of each period depend on the price

charged at the current period. They show that optimal inventory pricing strategy

is a base-stock list-price policy which suggests to order up to the optimal base-stock

level and charge the optimal price of a given period if the state of inventory level is

less than that optimal base-stock level. Otherwise, it is optimal to order nothing and
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charge the unique optimal corresponding price for the current inventory level. Some

of available models incorporate risk-aversion in the problem as well. Agrawal and Se-

shadri (2000) decide both order quantity and selling price to maximize the expected

utility in a newsvendor setting. They show that a risk-averse retailer will set a higher

selling price and order less compared to a risk-neutral retailer. Chen et al. (2007) con-

sider joint pricing and ordering in a multi-period model with an exponential utility

objective.

With our model, we contribute to the literature by incorporating the effect of

fluctuating commodity prices into inventory and pricing decisions. Unlike traditional

models that use a demand function that has an error term and a deterministic part

which changes with respect to pricing decision, we decide on a proportional markup

and model a customer arrival process that is modulated by a stochastic price process

as well as the markup decision.

2.3 Risk-Sensitive Inventory Management

In this dissertation, we mainly consider inventory systems where a continuous and

Markovian commodity price process determines both the selling prices and instanta-

neous arrival rates of the customers. These both contribute to the total risk of the

final cash flow. Although in the next two chapters we analyze risk-neutral order-

ing and pricing policies, in Chapter 5 we take a risk-sensitive approach and examine

minimum-variance hedging policies. In this part it is worth reviewing some of the

available risk-sensitive inventory management models.

Although there are several papers that incorporate price related risks into inven-

tory models, the majority of the risk-sensitive inventory management literature deals

with alleviating demand related risks. Numerous approaches have been proposed in

which the objective function is adjusted to reflect risk preferences of the decision

maker. The most notable approaches include expected utility maximization, Mean-

Variance (MV) criterion, satisficing probability maximization, Value-at-Risk (VaR)

and conditional-Value-at-Risk (CVaR).
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Due to its analytical tractability, the expected utility criterion is relatively more

frequently used among the approaches outlined. Lau (1980) was the first to analyze

the newsvendor problem under the expected utility criterion. He uses nth-degree

polynomial approximation to a general utility function and provides a numerical so-

lution mechanism. Similarly, Eeckhoudt et al. (1995) use utility theory and consider a

risk-averse newsvendor to investigate the effects of changes in riskiness of background

wealth and demand. They conclude that as risk-aversion increases, the resultant op-

timal order quantity decreases. Under decreasing absolute risk aversion, they show

that increases in initial wealth also increase the number of orders. Bouakiz and Sobel

(1992) consider a multi-period inventory control problem where the objective is to

minimize the expected utility of discounted costs in finite and infinite planning hori-

zons. They characterize the optimal replenishment strategy as a base-stock policy

provided that ordering costs are linear. Chen et al. (2007) extend the finite hori-

zon problem studied in Bouakiz and Sobel (1992). They take a different economics

perspective and aim to maximize expected utilities from consumption flows rather

than typical cash flows to avoid the so called temporal risk problem. As thoroughly

explained in Smith (1998), this problem occurs when decision makers are sensitive

to the time at which uncertainties are resolved. Chen et al. (2007) prove that when

the additive utility is exponential, the optimal replenishment policies have the same

structure as those for risk-neutral cases, i.e., base-stock policies are optimal. When

general utility functions are used, on the other hand, optimal policies become wealth-

dependent.

Although a significant portion of available models use the expected utility frame-

work for capturing risk sensitivity of the decision maker, it only helps to reduce the

risks by adjusting the order quantity appropriately. However, these deviations in

these control variables may cause service levels to fall considerably and it is usually

better to have other risk reduction plans which also work for any ordering decision.

Finally, expected utility approach is often criticized being impractical since it is usu-

ally hard to estimate the utility function of an individual and usually they are not
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mathematically tractable for arbitrary utility functions.

Another approach that has received considerable attention in risk management is

the use of MV approach that Markowitz (1959) introduced on the portfolio selection

problem. In his study, Markowitz (1959) considers an investor who wants to allocate

his initial wealth among a number of risky assets to minimize the variance of the re-

turn while expecting a predetermined level of return. By utilizing the mean-variance

framework, he determines a set of efficient portfolios offering appropriate risk and re-

turn levels. Although it originated in finance, the mean-variance method is becoming

useful for any problem involving conflicting objectives. In the context of inventory

management, this approach is very similar to portfolio selection model in which the

returns are now the expected profits from inventory operations and the risk is the

variation of profits.

The use of MV approach in inventory management began with Lau (1980) who uses

an MV objective function for the newsvendor problem to incorporate risk-aversion. He

shows that the expected profit maximizer yields an upper bound on the optimal order

quantity. Choi et al. (2008) consider both mean-downside risk and mean-variance on

two cases where the selling price is a decision variable or not. They conclude that

for both cases optimal order quantities are the same regardless of the two objective

functions. Berman and Schnabel (1986), Choi et al. (2008) and Wu et al. (2009) also

utilize MV framework on single-period inventory problems. Few works employ MV

approach in multi-period inventory models. Chen and Federgruen (2000) consider a

base-stock policy for a single item inventory system. Using the MV method, they

construct the efficient frontier for two performance measures: long-run holding costs

and a measure that is a function of both the expectation and the variance of customer

waiting time.

A different line of research is the use of satisficing probability maximization

method, which is basically maximizing the probability of achieving a target profit

level. This method is particularly useful for a decision maker if satisfying a certain

profit level is more important than the level of extra profit. Lau (1980) and Sankara-
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subramanian and Kumaraswamy (1983) consider satisficing probability maximization

objective in newsvendor models. Lau and Lau (1988) and Li et al. (1991) extend their

works to two-product cases of the newsvendor model. Parlar and Weng (2003) use

probability of achieving the expected profit instead of a fixed target profit. This

approach is not very popular compared to the expected utility and the MV method

since it does not specifically deal with the variations in operational profits.

A more recent approach used in the context of risk-averse inventory management

is value-at-risk (VaR), a downside risk measure that is commonly used in financial

risk management. By definition, VaR is the lowest amount that will not be exceeded

with a given probability level (see Jorion (2007)). In the context of inventory manage-

ment, lowest amount refers to the lowest profits associated with a specific inventory

replenishment policy. Luciano et al. (2003) apply VaR on an infinite-horizon problem

with no lead time and constant order quantity at the beginning of each replenishment

cycle. Özler et al. (2009) investigate a multi-product newsvendor problem using VaR

as a risk measure. They derive exact distribution functions for the two-product case

and develop an approximation for the general N -product case. An alternative to VaR

is the conditional value-at-risk (CVaR) measure which is defined as the conditional

expectation of losses above the VaR value. Gotoh and Takano (2007) consider the

minimization of CVaR in the context of the newsvendor problem. They show that,

due to its convexity, usage of CVaR leads to tractable problems. Ahmed et al. (2007)

analyze coherent risk measures such as CVaR and mean-absolute deviation in a multi-

period single-item inventory problem. Coherent risk measures are a class of functions

satisfying certain axioms introduced in Artzner et al. (1999). According to these ax-

ioms, although CVaR is coherent, VaR is not, since it does not satisfy convexity and

subadditivity.

2.4 Financial Hedging

There is a growing interest in integrating supply chain operations and risk hedging

with financial instruments. It is understood that the existence of financial instruments
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whose movements are correlated with the random components in firms’ operations,

usually allow decision makers to hedge against possible risks (Gaur and Seshadri

(2005), Caldentey and Haugh (2006)). It is well known that firms often use financial

products to hedge apparent risks involving price or exchange-rate uncertainty. For

instance, a firm procuring from a commodity market may hedge their risk using

commodity futures. Another example would be a producer selling to a foreign market

in foreign currency units. This also presents an opportunity to invest in derivatives

of the particular foreign currency as it will be correlated with producer’s profits in

the domestic currency.

Unlike the expected utility and the MV methods which only adjust the order

quantities to manage the inventory risks, financial hedging approach takes a more

proactive role and promises to reduce the risks for any inventory policy in the presence

of relevant financial products. Considering the variety of financial products offered

in developed economies, financial hedging may provide a good opportunity for risk-

sensitive firms to control their risks.

The first study that investigates the effect of financial markets on inventory poli-

cies is Anvari (1987). He uses the well-known Capital Asset Pricing Model (CAPM)

in a newsvendor setting with no setup cost. In case of normally distributed demand,

he shows that optimal order quantity varies as the covariance between demand and

market returns change. Chung (1990) enhances Anvari’s model by sharpening the

optimality conditions and showing that the optimal strategy can be simplified to a

single equation regardless of the sign of covariance. Gaur and Seshadri (2005) con-

sider hedging demand risk in inventory models motivated by the statistical finding

that demand for discretionary purchase items and the S&P 500 index are highly cor-

related. In a newsvendor framework, they analyze both perfect and imperfect hedging

cases and characterize the optimal hedge. Caldentey and Haugh (2006) examine the

problem of dynamically hedging a risk-averse firm’s operational profits in continuous

time. Their central modeling insight is to view operational profits as an asset in

the firm’s portfolio and address the hedging problem as one of the most extensively
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studied problems in the finance literature: financial hedging in incomplete markets.

They give a fairly general modeling insight where the decision maker’s objective is to

maximize the expected utility from profits by simultaneously considering both opera-

tional and trading strategies. Chen et al. (2007) consider the opportunity of financial

hedging in their multi-period inventory control models where inventory and trading

decisions are made at discrete time points. They further assume that security prices

and cost parameters are world-driven, i.e., they are modulated by an external envi-

ronmental process. They show that under a partially complete financial market, full

hedging is possible if additive exponential utility functions are used. Ding et al. (2007)

attack the problem of integrating the operational and financial hedging decisions of

a firm selling to both foreign and domestic markets. Such a firm will obviously face

demand and exchange rate uncertainties. As an operational hedge, the firm may post-

pone their capacity commitment until uncertainties are resolved. This can be done

using capacity allocation option. As a financial hedge, the firm may use currency op-

tions for protection against exchange-rate risk. Using MV approach in their models,

the authors conclude that expected profit increase and risk reduction is possible via

operational and financial hedging. Chod et al. (2010) investigate when operational

and financial hedging are substitutes and complements. Ni et al. (2016) introduce a

certainty equivalent operator to find optimal hedging-consistent decisions in presence

of non-financial random factors that can not be hedged through financial markets.

In an illustrative example on commodity procurement and storage, they show the

optimality of base-stock policies and characterize the financial hedging portfolio.

Recent works by Okyay et al. (2014), Sayın et al. (2014) and Tekin and Özekici

(2015) extend Gaur and Seshadri (2005) by incorporating supply uncertainty and

discuss the implication of using expected utility and mean-variance objective functions

in financial hedging context. In particular, Okyay et al. (2014) find the variance

minimizing financial portfolio for a given order quantity. We also take a similar

approach but our models are more general since they capture continuous-time price

fluctuations and their influence on demand as well as multi-period cases with dynamic
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decision making.

Few papers consider both random demand and fluctuating prices in the context

of financial hedging. Kouvelis et al. (2013) analyze the inventory operations of a risk-

averse firm that procures from both a volatile spot market and a long-term supplier.

Exposed to both demand and price uncertainty, the firm is assumed to have access

to financial securities written on the commodity price. In a multi-period setting, the

objective of the decision maker is to dynamically maximize the interperiod mean-

variance utility of the firm’s cash flow. In a similar work, Kouvelis et al. (2015) study

the same setting in Kouvelis et al. (2013) without a long-term supplier. Assuming

that the objective is to maximize the mean-variance utility of the terminal wealth,

they characterize optimal time-consistent inventory and financial hedging policies.

Our work differs from Kouvelis et al. (2013) and Kouvelis et al. (2015) in two major

ways. First, we analyze a rather different operational model where the main ran-

domness is due to within-period price fluctuations. More specifically, in each decision

interval, a continuous stochastic price process drives both selling prices and demand

arrivals in our model. Moreover, in the multi-period case, leftover inventory is not

liquidated at each period and is carried over to satisfy customer demand which makes

the dynamic program of joint-optimization rather intractable Second, in the context

of financial hedging, we focus on the specific objective of variance minimization where

the decision maker seeks a minimum-variance hedge for any given operational policy.

This objective has some nice features. First, by definition, the operational policies are

independent of the financial portfolio and operational profits can be accounted for in-

dependently. Therefore, the financial hedge supports the operation towards variance

reduction without enforcing operational policy changes. Second, it turns out that

the minimum-variance hedge leads to tractable solutions. This allows experimenting

with different operational policies to computationally explore non-dominated mean-

variance policies. Moreover, the formulation also leads to a tractable solution in a

multi-period setting with a dynamic ordering policy where inventory carrying is al-

lowed. This provides a hedging approach for general multi-period inventory problems.



Chapter 3

INVENTORY MODELS WITH RANDOMLY

FLUCTUATING PRICES

In this chapter, we investigate the ordering policies and their implications for a

series of inventory systems where the main randomness is due to randomly fluctuating

prices during sales cycles. More specifically, we consider systems such that a stochas-

tic price process affect both input and selling prices as well as customer arrivals.

These models may be relevant for firms which manufacture or procure items which

consists of a market-driven component whose price is constantly changing according

to an external process, and then the firm sells those items considering its own opera-

tional costs and random market price of the component. When price fluctuations are

reflected in the selling price of the item, then consequently the customer arrivals are

affected.

The models presented in this chapter belong to the class of periodic-review inven-

tory models where an ordering decision is made at predefined time points. The main

distinction from the current inventory management literature is that these models

also incorporate the effect of random selling prices by modeling customer demand as

a process rather than a single random variable. This type of modeling which explicitly

considers within-period price fluctuations proves to be very important as these fluc-

tuations affect ordering, pricing as well as risk-hedging policies of the firm which will

be examined in the upcoming chapters. In the next section, we present the specifics

of these models.
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3.1 Model Setting

In all of the models considered in upcoming sections, we assume that there exists

a nonnegative Markov process P = {Pt; t ≥ 0} with state space R+ = [0,∞) which

models the input price of the inventory item. We call this the market price of the

item to denote its relation to the market-driven component of the inventory item. We

also assume that items are sold at arriving customers according to a nonnegative and

deterministic selling price function f > 0, that is if a customer arrives at time t, then

the corresponding selling price at that time is f (Pt) . The general selling price function

f may include any potential proportional and/or incremental markups that the firm

sets. Note that unless f is a constant function, the firm passes any fluctuations

in market price of the item to customers. A constant selling price function is the

standard assumption in most basic inventory management models. For now, we do

not assume any particular form for the selling price function f . However in some

special cases in this chapter and throughout Chapter 4, we will specifically assume

that the firm uses a multiplicative selling price function f (p) = αp where α ≥ 1 is

the proportional retail markup.

For the inventory system, we assume that there are M periods whose lengths are

equal to T units of time where at the beginning of each sales period the firm places

an order. Based on our definition, the values of the random prices at review times

(i.e., PT , P2T , ..) are the random purchase prices for the firm. Unlike most of the

inventory management papers that model customer demand as a random variable

to be realized at the end of each review period, we assume that there is a customer

arrival process and it is modulated by the random price process that we consider. This

also explicitly incorporates the effect of fluctuating selling prices into the operational

model. More specifically, we assume that the unit customer demand process is a

modulated Poisson process where stochastic arrival rate at time t is Λt = λ (Pt) and

λ(.) is a deterministic, nonnegative function of random price realizations. Customers

arrive according to this process and at each arrival they demand one unit of the item.

This is relaxed at Section 3.5 as we investigate the compound Poisson case where each
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customer demands a random amount of the item.

We do not necessarily assume that λ(.) is a decreasing function of price. If, for

example, the firm deals with commodity-based items whose prices are constantly

changing and can be freely traded in markets, the demand for these types of products

does not necessarily decrease as price increases. Customers may also be willing to

buy in anticipation of future price increases even if prices have already increased.

In our setting, since arrival rate is a function of stochastic price, we have a stochas-

tic arrival rate process Λ = {Λt; t ≥ 0} which modulates the customer arrival process.

These types of models are referred as doubly stochastic Poisson processes introduced

by Cox (1955), or shortly, Cox processes. If Λ is a deterministic function rather than

a stochastic process, we have a non-stationary Poisson process. Since we assume that

P is a Markov process, Λ is also Markovian.

We denote the customer purchase process by N = {Nt; t ≥ 0} where Nt denotes

the number of sales by time t and N0 = 0. The arrival times of the customers form

a random sequence T = {Tn;n ≥ 1} where T and N are related as {Tn ≤ t} =

{Nt ≥ n} . Here we remark that equal period length assumption is not a necessity

and the models presented in this chapter can easily be extended to cover variable

period lengths. The structure of the optimal policies remains unchanged.

At the beginning of each period, the decision maker observes the current price

and inventory level to make an ordering decision. We assume that there is no lead

time and the entire order is received immediately at the beginning of each period.

We investigate two distinct cases where, at first, we allow backordering for unsatisfied

demands. Secondly, we consider the lost-sale case. We specify the basics of these

models in Section 3.2 and Section 3.3, respectively.
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Figure 3.1: An overview of the inventory system.

We define the following additional notation:

x : Inventory level at the beginning of a period

y : Inventory level after ordering

p : Observed price at the beginning of a period

r : Interest rate per unit time

γ : Discount factor for a period
(
γ = e−rT

)
h (p) : Inventory holding cost per unit as a function of initial market price p,

b (p) : Backorder (or lost-sale) cost per unit as a function of initial market price p

We assume that for each period, unit inventory holding and unit backorder (or

lost-sale) costs are general nonnegative functions of initial price for that period. The

reasoning for the holding cost to depend on the initial price is clear as it consists of

physical storage costs as well as the opportunity costs for the inventory investments.

Since we assume that market prices represent the purchase prices, it is natural that

unit inventory holding cost for the product is a function of initial price p. For the

backorder or lost-sale costs, the reasoning is not as straightforward as the holding cost.
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Usually, backorder costs depend on the selling price of the item and the length of the

backorder period for any customer, etc. However, since the distribution of both selling

prices and customer demand processes are determined by the initial market price in

our models, we can simply use an approximate value for the backorder cost b (p) where

it is a general nonnegative function of initial market price. Note that typical constant

unit holding and backorder costs are just special cases where h (p) = h and b (p) = b

for some constants h and b.

3.2 Backorder Case

In this model, we allow backordering customer demand in case of inventory shortage.

We assume that in case of a backorder, the selling price is set and paid at the time

of customer arrival rather than at the time of actual product delivery. In other

words, any unsatisfied customer is charged at the time of arrival. We assume that

the backordered demand is satisfied at the beginning of the next period. At every

period, the decision maker observes the current price p and inventory level x to make

an ordering decision which maximizes the expected total discounted profits. Since we

assume that the unit demands arrive according to a doubly stochastic Poisson process

which is modulated by a Markovian price process and the length of intervals are the

same, the probability distribution of number of sales in any interval only depend

on the initial price at the beginning of that period. That is, they are conditionally

independent. In addition, given the initial price P0, the probability distribution of

total demand until time t is a Poisson random variable with random mean measure,

i.e.,

P {Nt = k | P0} = E

[
e−MtMk

t

k!
| P0

]
where

Mt =

t∫
0

λ (Ps) ds

is the expected number of arrivals until time t given market prices. Note that in

case each customer demands one unit of the item, expected total demand during time
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interval [0, t] is given by

E [Nt|P0] = E [Mt|P0] =

t∫
0

E [λ (Ps) |P0] ds.

Expected Discounted Revenue

For both backorder and lost-sales models, total revenue in each period is calculated

by summing the revenue from each sale. However, based on the particular backorder

setting we investigate, the item is sold to each arriving customer regardless of stock

availability and each backordered customer yields a backorder and repurchase cost.

Let us define the total discounted revenue collected in time interval [0, t] for any t > 0

as

Rt =
Nt∑
n=1

e−rTnf (PTn) . (3.1)

Note that f (PTn) is the selling price for the nth customer who arrived since the

beginning of the period and e−rTn is to discount the unit revenue to the beginning

of the period. Summation is performed until the arrival of last customer, i.e., Ntth

customer where Nt is the total number of customers who arrived by time t. In this

chapter, we assume that the decision maker is risk-neutral and aims to maximize the

expected total discounted profit. For this, let us first define expected total discounted

revenue during [0, t] as a function of initial price by

rt (p) = E [Rt | P0 = p] . (3.2)

Note that the expectation in (3.1) is taken with respect to the random components;

number of arrivals Nt, arrival time vector T (the former can be obtained from the

latter) and market prices between [0, t], i.e., {Pt; t ∈ [0, t]}. The expected discounted

revenue function in (3.2) can be computed as follows

rt (p) = E [Rt | P0 = p]

=

t∫
0

e−rsE [f (Ps)λ (Ps) |P0 = p] ds. (3.3)
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The derivation is given in Appendix. Note that in case λ is constant, i.e., customers

arrive according to a regular Poisson process with constant rate, then

rt (p) = λtf t(p)

where

f t(p) =

t∫
0

e−rsE [f (Ps) |P0 = p] ds

is the average discounted selling price and λt is the expected number of customers

arrived by time t.

A similar approach for the total revenue also appears in Grubbström (2010) who

considers a single-period problem where demand is modeled as a compound renewal

process. He assumes that selling price is constant and customers that arrive according

to a renewal process demand a random amount of the product. There is no fixed sales

period and items are sold until all inventory is depleted. Although in our model we

sum all individual revenues from each arriving customer, our model construction is

somewhat different in the sense that we have a finite sales season and selling price is

a stochastic process that also modulates the customer arrival process.

Model Dynamics

The dynamics of the backorder model is as follows. At the beginning of any period, if

the current inventory level and market price are x and p respectively, and order-up-to

level decision is y ≥ x, (x and y are integers) the immediate expected profit for the

period is

g (y;x, p) = −p (y − x) + rT (p)− c (y; p) (3.4)

where

c (y; p) = E
[
b (p) (NT − y)+ + h (p) (y −NT )+ | P0 = p

]
(3.5)

and we define x+ = max(0, x). The first term in (3.4) is the total purchase cost

for y units ordered at the initial price p. Second term is the total revenue collected

until time T and the last term is the one-period backorder and inventory holding cost
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function given in (3.5) in which a cost of b (p) ≥ 0 is charged for each unit backordered

and a cost of h (p) ≥ 0 is charged for every remaining unit. Note that NT denotes the

number of arrivals during the period and one-period expected profit is independent

of the period. This is due to the fact that conditional random prices

PkT+Tn | PkT
d
= PTn | P0

have the same distribution for any period k since market price process is assumed to

be Markovian and time-homogeneous This in turn implies that N is also Markovian

whose distribution depends only on the initial market price p. Remember that we do

not put any restriction on the price process except the Markov property. Since, for

now, we assume that each demand is of size 1, the state space for inventory level in

backorder case is Z, i.e., set of integers.

In the last period, without loss of generality, we assume that all remaining items

are lost, i.e., there is no salvage value. However, at the current price, the firm is

required to raise the inventory level to zero if it turns out to be negative, meaning

that there are backordered customers.

For now, we assume that the decision maker is risk-neutral and aims to maximize

the expected total discounted profits. We use dynamic programming to solve this

problem to optimality. We define the value function Vk(x, p) as the maximum expected

total discounted profit for periods from k to M if the initial inventory is x and price

is p. We also define the expected discounted one-period revenue function with initial

price p as

g(y; p) = −py + rT (p)− c (y; p) . (3.6)

Then, the dynamic programming equation (DPE) is

Vk(x, p) = max
y≥x

Gk(y; p) + px (3.7)

where

Ψk(y; p) = E [Vk+1(y −NT , PT )|P0 = p] (3.8)

and

Gk(y; p) = g(y; p) + γΨk(y; p). (3.9)
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Note that Ψk(y; p) is the expected discounted total future profits for the remaining

periods. Since we allow backorders, the inventory level for the next period upon

ordering decision y is y − NT , which in fact can be negative. For any period k, the

risk-neutral firm aims to maximize Gk(y; p), which is the sum of the expected one-

period profit, g(y; p), and expected discounted future profits, γΨ(y; p), resulting from

the ordering decision. Additionally, since we assume that the seller serves all arriving

customers, the revenue term is independent of decision variable y. Since there is no

salvaging, for each (x, p) pair the terminal value function is

VM+1(x, p) = −px−

where x− = (−x)+.

Optimal Ordering Policy

Now we present the structural properties of Gk(y; p) and the form of the optimal

policy. In the following discussion, 4f(x) = f(x + 1) − f(x) represents the forward

difference of a discrete function f.

Theorem 3.1 For 0 ≤ k ≤ M , Vk (x, p) is concave in x and Gk(y; p) is concave in

y for every p and a price-dependent-base-stock policy is optimal, i.e., there exists a

base-stock level Sk(p) for each period k such that if the inventory level is less than

the base-stock level, it is optimal to raise the inventory up to Sk(p); otherwise, it is

optimal to order nothing. Moreover, optimal base-stock level for period k is given by

Sk(p) = inf

{
y ≥ 0 : P {NT ≤ y | P0 = p} ≥ −p+ b (p) + γ 4Ψk(y; p)

b (p) + h (p)

}
. (3.10)

Proof. We proceed by induction. First note that the terminal value function

VM+1(x, p) is concave in x for each p. Now assume that Vk+1(x; p) is concave in

x for some k ≤ M. Then, Ψk(y; p) given in (3.8) is concave in y by the linear-

ity of expectation. Note also that for each p, one-period expected profit g(y; p)

in (3.6) is concave in y since −py is linear and b (p) ≥ 0, h (p) ≥ 0 ensure that

−E [b (p) (NT − y)+ + h (p) (y −NT )+ | P0 = p] is concave. This makes Gk(y; p) given
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in (3.9) and consequently Vk(x, p) concave functions of y and x, respectively. By induc-

tion argument, Vk (x, p) and Gk(y; p) are concave for each period k. Clearly, concavity

of Gk(y; p) ensures that the optimality of a base-stock policy with a base-stock level of

Sk (p) which is the maximizer of Gk(y; p). To calculate the base-stock level for period

k, we can apply the first-order optimality condition on Gk(y; p). More specifically,

Sk(p) = inf {y ≥ 0 : 4Gk(y, p) ≤ 0}

= inf {y ≥ 0 : 4g(y; p) + γ 4Ψk(y; p) ≤ 0}

= inf {y ≥ 0 : −p+ b (p)P {NT ≥ y + 1| P0 = p}

−h (p)P {NT ≤ y| P0 = p}+ γ 4Ψk(y; p) ≤ 0}

= inf

{
y ≥ 0 : P {NT ≤ y| P0 = p} ≥ −p+ b (p) + γ 4Ψk(y; p)

b (p) + h (p)

}
which is (3.10) .

We have established that a price-dependent-base-stock-type policy is optimal.

This is consistent with similar models with discrete dynamics such as Chen et al.

(2007). Next, we present the more explicit single-period solution. First, we define

expected discounted price process as

zt(p) = E
[
e−rtPt|P0 = p

]
.

Corollary 3.1 The optimal base-stock level at period M is given by

SM(p) = inf
{
y ≥ 0 : E

[
(b (p) + h (p) + γPT ) 1{NT≤y} | P0 = p

]
≥ −p+ b (p) + zT (p)

}
.

(3.11)

Proof. Note that because of the terminal value function VM+1(x, p) and (3.8) ,

γ 4ΨM(y; p) = −γ 4 E
[
PT (NT − y)+ | P0 = p

]
= γE

[
PT (NT − y)+ | P0 = p

]
− γE

[
PT (NT − y − 1)+ | P0 = p

]
= γE

[
PT
[
(NT − y)+ − (NT − y − 1)+

]
| P0 = p

]
= γE

[
PT1{NT≥y+1} | P0 = p

]
= γE

[
PT
(
1− 1{NT≤y}

)
| P0 = p

]
= zT (p)− γE

[
PT1{NT≤y} | P0 = p

]
. (3.12)
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Substituting (3.12) in (3.10) for k = M yields (3.11) .

Note that if −p+ b (p) + zT (p) ≤ 0, the optimal base-stock level will be SM(p) =

0. Although it does not affect the concavity of the expected profit function, it is

reasonable to assume that −p+ b (p)+zT (p) ≥ 0. −p+ b (p)+zT (p) can economically

be interpreted as the expected cost of ordering one less unit. If it is negative, it is

optimal to order zero.

We have an explicit formula for the base-stock level of the last period. Therefore,

we can analyze the behavior of the optimal base-stock level SM(p) as a function of

initial price p. It is clear that the stochastic behavior of the market prices conditional

on the initial price and the behavior of the deterministic rate function λ (.) play a

key role. We make the following three assumptions in which the first two are very

plausible for a real-life inventory system and the third can be justified in the context

of the specific model setup.

Assumption 3.1 Pt stochastically increases in the initial price P0 = p.

Assumption 3.2 λ(.) is a decreasing function.

Assumption 3.3 −p+ b (p) + zT (p)is decreasing in p.

Theorem 3.2 If assumptions 3.1, 3.2 and 3.3 hold, SM (p) is decreasing in initial

price p.

Proof. Consider the characterization of SM(p) in (3.11). Note that increasing the

initial price stochastically increases the prices Pt between [0, T ] by Assumption 3.1.

This consequently decreases the number of sales NT stochastically by Assumption

3.2. This in turn implies that the left-hand side of the infimum, increases in p. By

Assumption 3.3, −p+ b+ zT (p) is decreasing which makes SM(p) decreasing in p.

Assumption 3.1 requires that the future prices are stochastically higher if the

initial price is higher, which is highly intuitive and satisfied by the most practical

stochastic price processes. For instance, let us assume that price follows a geometric

Brownian motion process:

Pt = P0e
vt+σWt
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with drift v and volatility σ where Wt is a Wiener process with E [Wt] = 0 and

V ar (Wt) = t. Then, Assumption 3.1 trivially holds.

Assumption 3.2, on the other hand, requires that the deterministic rate function

λ (.) is a decreasing function of price. Although there may be cases that violate this

assumption in volatile markets as explained before, it is a very common assumption

in the literature that the customer demand decreases as the price increases. We only

need this assumption to show the monotonicity of SM (p). Price-dependent base-stock

policy is an optimal ordering policy regardless of the structure of λ (.) .

Assumption 3.3 requires that sum of the expected discounted price increase until

time T and the unit backorder cost is decreasing in the initial price. Note that we can

interpret both b (p) and zT (p) −p as the loss from ordering one less unit. The latter

is due to the difference between two successive ordering prices (discounted) while the

former is by the definition of backorder cost. Therefore, Assumption 3.3 essentially

implies that total loss from ordering one less unit should be lower for higher initial

market prices. If −p + b(p) + zT (p) does not decrease in initial price p, one can find

cases where optimal base-stock level does not decrease as initial price increases.

The result in Theorem 3.2 can also be proved by showing that 4GM(y, p) is

decreasing in p, i.e., GM(y, p) is submodular under Assumptions 3.1, 3.2 and 3.3.

However, in either approach, a conclusion can not be drawn for intermediate periods

k < M. This is also consistent with the findings of Kalymon (1971).

3.3 Model with Lost-Sales

In this section, we explore the lost sales case where we assume that any arriving

customer that can not find an available item is lost. This case is more challenging

than the backorder case because the expected revenue now depends on the ordering

policy. To our knowledge, few results on the structure of the optimal policy exist for

the lost sales case with price-dependent demand even for simpler models.

In analogy with the backorder model, let us write the expected total revenue
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during a period as a function of initial price p and order-up-to decision y as

r(y; p) = E

[
NT∧y∑
n=1

e−rTnf (PTn) | P0 = p

]

=

y∑
n=1

E
[
e−rTnf (PTn) 1{Tn≤T} | P0 = p

]
(3.13)

where a∧b = min(a, b). Note that only the revenue term is different than the previous

model by which we now collect revenues until the firm runs out of inventory, i.e., until

the arrival of (NT ∧ y)th customer. The total expected discounted one-period profit

can be written similarly as

g(y; p) = −py + r(y; p)− c (y; p) . (3.14)

We write the dynamic programming equation for period k as in (3.7) where Gk(y; p)

is given in (3.9) and with a slight change in the future expected profit which is given

as

Ψk(y; p) = E
[
Vk+1((y −NT )+ , PT )|P0 = p

]
.

Since there is no backordering, the inventory level can not be negative in the next

period. It should be zero if the demand turns out to be more than the total inventory

in the current period.

As in the backorder case, we assume that the salvage price is zero. Therefore, the

terminal value function for the lost-sale model is

VM+1(x, p) = 0. (3.15)

Optimal Ordering Policy

In this section, we present the structural properties of Gk(y; p) and the form of the

optimal policy. Note that we can use the transformations

(y −NT )+ = y −
y∑

n=1

1{Tn≤T} (3.16)
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and

(NT − y)+ = NT − y + (y −NT )+ = NT −
y∑

n=1

1{Tn≤T}. (3.17)

Moreover, trivially,

y =

y∑
n=1

1.

Then, by using (3.16) and (3.17), (3.14) becomes

g(y; p) =

y∑
n=1

E
[
1{Tn≤T}

(
e−rTnαPTn + b+ h

)
− p− h | P0 = p

]
− b (p)E [NT | P0 = p] . (3.18)

One-period expected discounted profit function g(y; p) consists of a finite sum where

the upper limit of the summation is the decision variable y. and a constant. Clearly,

the behavior of this function is directly determined by the behavior of the inner terms.

In the following discussion, the terms decreasing and increasing refer to weak

monotonicity.

Assumption 3.4 E
[
1{Tn≤T}

(
e−rTnf (PTn) + b (p) + h (p)

)
| P0 = p

]
is decreasing in

n.

Theorem 3.3 Under Assumption (3.4) , Gk(y; p) is concave in y and Vk(x; p) is con-

cave in x for every p and a base-stock policy is optimal, i.e., there exists a base-stock

level Sk(p) for each period k such that if the inventory level is less than the base-stock

level, it is optimal to raise the inventory up to Sk(p); otherwise, it is optimal to order

nothing. Moreover, optimal base-stock level for period k is given by

Sk(p) = inf {y ≥ 0 : P {NT ≤ y | P0 = p}

≥
−p+ b (p) + E

[
1{Ty+1≤T}e

−rTy+1f
(
PTy+1

)
| P0 = p

]
+ γ 4Ψk(y; p)

b (p) + h (p)

}
.

(3.19)
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Proof. We prove the result by induction. First note that terminal value function

VM+1 (x, p) is trivially concave. Now assume that for any k ≤M, Vk+1(x, p) is concave.

Note that forward differences of the one-period profit function in (3.18) is

4g (y, p) = E
[
1{Ty+1≤T}

(
e−rTy+1f

(
PTy+1

)
+ b (p) + h (p)

)
− p− h (p) | P0 = p

]
which is also decreasing in y under Assumption (3.4) . This makes g(y, p) concave

in y since bE [NT |P0 = p] is a constant. Since Vk+1(x, p) is concave by induction,

Ψk(y; p) is concave which makes Gk (y, p) concave. This in turn implies that Vk(x, p) =

max
y≥x

Gk(y; p) + px is concave in x. By induction, it is true that Vk(x, p) and Gk(y; p)

are concave for all periods k and initial price p which suggests the existence of an

optimal price-dependent base-stock type policy for this inventory model. Similar

to the backorder model, optimal base-stock level for any period k can be found by

analyzing the forward difference of Gk(y; p). More specifically,

Sk(p) = inf {y ≥ 0 : 4Gk (y; p) ≤ 0}

= inf
{
y ≥ 0 : E

[
1{Ty+1≤T}

(
e−rTY+1f

(
PTy+1

)
+ b (p) + h (p)

)
| P0 = p

]
−p− h (p) + γ 4Ψk(y; p) ≤ 0}

= inf
{
y ≥ 0 : E

[
1{Ty+1≤T} | P0 = p

]
≤
p+ h (p)− γ 4Ψk(y; p)− E

[
1{Ty+1≤T}e

−rTy+1f
(
PTy+1

)
| P0 = p

]
b (p) + h (p)

}
= inf {y ≥ 0 : P {NT ≥ y + 1 | P0 = p}

≤
p+ h (p)− γ 4Ψk(y; p)− E

[
1{Ty+1≤T}e

−rTy+1f
(
PTy+1

)
| P0 = p

]
b (p) + h (p)

}
= inf {y ≥ 0 : P {NT ≤ y | P0 = p}

≥
−p+ b (p) + E

[
1{Ty+1≤T}e

−rTy+1f
(
PTy+1

)
| P0 = p

]
+ γ 4Ψk(y; p)

b (p) + h (p)

}
.

For the single-period problem, the optimal order quantity is

SM(p) = inf {y ≥ 0 : P {NT ≤ y | P0 = p}
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≥
−p+ b (p) + E

[
1{Ty+1≤T}e

−rTy+1f
(
PTy+1

)
| P0 = p

]
b (p) + h (p)

}
. (3.20)

Note that Assumption 3.4 is the necessary condition for g (y, p) to be concave. A

sufficient condition, on the other hand, is the case of expected discounted price zt(p)

being decreasing in time. We give the motivation in the following result.

Proposition 3.1 If the expected discounted price zt(p) given initial price p is de-

creasing in t, then E
[
1{Tn≤T}

(
e−rTnf (PTn) + b (p) + h (p)

)
| P0 = p

]
is decreasing in

n.

Proof. Note that (b (p) + h (p))E
[
1{Tn≤T} | P0 = p

]
is decreasing in n as arrival

times Tn’s form an increasing sequence which makes 1{Tn≤T} decreasing. Now define

ϕ (t, p) = E
[
e−rtf (Pt) 1{t≤T} | P0 = p

]
Note that if zt(p) is decreasing in t, ϕ (t, p) is decreasing in t as 1{t≤T} is decreasing

in t. Now, we can write

E
[
e−rTnf (PTn) 1{Tn≤T} | P0 = p

]
= E [ϕ (Tn, p)]

which is decreasing in n since Tn is increasing in n.

Proposition 3.1 is very easy to verify for most price processes. For instance, for

the geometric Brownian motion process given earlier, the expected discounted price

at time t is zt(p) = pe(µ+
1
2
σ2−r)t. Observe that if µ + 1

2
σ2 − r ≤ 0, then expected

discounted price is nonincreasing in time and Assumption 3.4 is satisfied.

Unfortunately, the situation may be more complicated when Assumption 3.4 does

not hold and its violation may lead to non-base-stock situations even in very simple

cases. For instance, consider the following case where f(p) = 2p, b = h = 0 and

λ (t) = 40, i.e., customer arrivals are Poisson, independent of the prices. Also assume

that the price process is deterministic but is a function of time, such that

Pt =

 50− 80t 0 ≤ t < 0.5

80t− 30 0.5 ≤ t ≤ 1
.
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Figure 3.2: A price process that leads to a non-base-stock system.

This simple price process yields a non-base-stock system as observed in Figure 3.2

which plots the expected total profits as a function of order quantity. We observe two

critical points, which are local maxima y(1) = 12 and y(2) = 37. The optimal policy

in this case is to order Q = 12 − x units when 0 ≤ x < 12, to order nothing when

12 ≤ x ≤ 20, to order Q = 37−x units when 21 ≤ x < 37 and to order nothing when

x ≥ 37. It turns out that the revenue function may lose properties such as concavity

(and even quasiconcavity) if the prices exhibit changing or upward patterns.

Note that we investigated optimal ordering policies for several rather general mod-

els. In the next part, we assume a specific form for the price and demand processes
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and derive some managerial analysis.

Special Case: Demand is Independent of Prices

For the lost-sale model, we consider a single-period special case to derive some closed

form characterizations. Assume that customer arrival process is independent of

stochastic price movements and let N be a Poisson process with rate λ. Also as-

sume that P is a geometric Brownian motion process with a mean price process given

by

E [Pt | P0] = P0e
µt, for t ≥ 0

where µ ∈ R. For the sake of simplicity, we also assume that inventory holding and

backorder costs as well as the interest rate is zero, i.e., h(p) = b(p) = r = 0. Assume

also that selling price function is proportional to the prevailing prices and f (p) = αp

where α ≥ 1 and µ < λ. Then, we have the following result.

Corollary 3.2 Optimal base-stock level is given by

y∗ (p) = inf

n ≥ 0 : P
{
NT ≤ n

}
≥ 1− 1

α
(

λ
λ−µ

)n+1


where NT ∼ Poisson ((λ− µ)T ).

Proof. Note that by (3.20) , optimal base-stock level is given by

y∗ (p) = inf
{
n ≥ 0 : E

[
1{Tn+1≤T}αPTn+1|P0 = p

]
− p ≤ 0

}
= inf

{
n ≥ 0 : E

[
1{Tn+1≤T}αpe

µTn+1 |P0 = p
]
− p ≤ 0

}
. (3.21)

Assume that T n ∼ Erlang(n, λ − µ) and NT ∼ Poisson ((λ− µ)T ). Since Tn+1 ∼

Erlang(n+ 1, λ), (3.21) can be written as

y∗ (p) = inf

n ≥ 0 : αp

∫
[0,T ]

λn+1tne−λt

n!
eµtdt− p ≤ 0


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= inf

n ≥ 0 : αp

(
λ

λ− µ

)n+1 ∫
[0,T ]

(λ− µ)n+1tne−(λ−µ)t

n!
dt− p ≤ 0


= inf

{
n ≥ 0 : αp

(
λ

λ− µ

)n+1

P
{
T n+1 ≤ T

}
− p ≤ 0

}

= inf

{
n ≥ 0 : αp

(
λ

λ− µ

)n+1

P
{
NT ≥ n+ 1

}
− p ≤ 0

}

= inf

n ≥ 0 : P
{
NT ≤ n

}
≥ 1− 1

α
(

λ
λ−µ

)n+1

 . (3.22)

Note that if µ = 0, i.e., the price process is a martingale, then (3.22) reduces to

y∗ (p) = inf

{
n ≥ 0 : P {NT ≤ n} ≥ α− 1

α

}
where NT ∼Poisson(λT ) .

We remark here that if µ ≤ 0, i.e., expected discounted price process is nonin-

creasing, Assumption 3.4 is satisfied by Proposition 3.1. Observe that if µ < 0, then

both left-hand and right-hand side of (3.22) will be increasing functions of n which

does not guarantee the unimodality of the objective function.

Some Managerial Insights

• Note that as retail markup α increases, optimal base-stock level increases. For

the special case where customer arrivals are independent of selling prices, it is

straightforward that increasing the potential revenue from a sale increases the

optimal order quantity. Note that this result may not be valid in the general

model where customer arrival rate depends on the prevailing random prices.

For instance, in the case of decreasing rate function λ, the behavior of αpλ (αp)

becomes important. We perform an in-depth analysis in Section 4 where markup

α is also a decision variable.

• Assume that µ < 0. Then, it is evident from (3.21) that as µ decreases, optimal

base-stock level decreases, which is intuitive in the sense that as selling prices
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are decreasing and customers keep arriving at the same rate, it is optimal to

reduce the ordering amounts.

3.4 Partially Backorder Setting

Backorder and lost-sale models that we examined in Section 3.2 and 3.3, respectively,

can be considered as two extreme cases for the firm’s operations. The reason is that

in the backorder case we analyzed, all unsatisfied customers are assumed to accept

backordering with probability 1 and to pay the prevailing selling price. In the lost-sale

case, on the other hand, each unsatisfied customer is assumed to be lost completely.

Since we explicitly use the arrival times and selling prices in the revenue calculation,

we can easily extend these two extreme cases to other models where there are partial

backorders and to another case where backordered customer pays the price at the

time of next replenishment. These extensions are straightforward combinations of

these models. In the former case, for example, we can write the total revenue as a

summation similar to (3.3), but each summation term is multiplied with a probability

of backorder. In the latter case where backordered customers agrees to pay the price

at the end of the sales period, we can write the expected total discounted revenue as

r(y; p) = E

[
NT∧y∑
n=1

e−rTnf (PTn) + (y −NT )+ e−rTf (PT ) | P0 = p

]

which can be treated similar to the lost-sale model.

In the next section, we relax the unit demand assumption and analyze a compound

Poisson demand case.

3.5 Compound-Poisson Demand Case

So far, we assumed that each arriving customer demands a unit of the product. In this

section, we extend this model to a case where each arriving customer requires ran-

dom amounts of the product independent of the arrival process. Stochastic amounts

of each demand forms an independent and identically distributed random sequence
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{Xn;n ≥ 1} which are drawn from a continuous distribution having a cumulative dis-

tribution function F. Customer arrival process is the same as in the models previously

analyzed in which it is a doubly stochastic Poisson process modulated by the market

price process P . We again assume that the decision maker sets the order-up-to levels

at the beginning of each period and as customers arrive, the selling price is determined

according to price process P .

In compound-Poisson demand model, more interesting case is the lost sales case.

Since the revenue terms will be independent of the ordering decision, the backorder

case will be very similar to the previous backorder model with unit demands. There-

fore, we start our analysis with the lost sale case. In particular, we assume that at

any period, if the last arriving customer’s demand exceeds on-hand inventory, the

customer is partially satisfied. The remaining part of this sale along with future sales

in that period are assumed to be lost forever. Finally, we assume that the customers

will always require a positive amount, i.e., there is no possibility that they will require

nothing. To this end, we define the following new notation. We let

Dn =
n∑
k=1

Xk

to denote the cumulative demand including the nth customer. We additionally define

N(y) = inf {n ≥ 1;Dn ≥ y}

to denote the order of the last customer who makes a purchase (full or partial) for y

units to be depleted. Observe that this quantity is independent of the period length

T. It basically indicates how many customers should arrive for the current inventory

to be sold. Note that in case of unit demand (i.e., Xn = 1, ∀n ≥ 1), N(y) = y.

With the introduction of new notations, the expected total discounted profit in

kth period given initial price p is given in (3.9) where the one-period expected profit

now becomes

g (y; p) = −py + r(y; p)− c (y; p) (3.23)
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where the expected total discounted revenue is

r(y; p) = E

N(y)−1∑
n=1

e−rTnXnf (PTn) 1{Tn≤T}

+e−rTN(y)
(
y −DN(y)−1

)
f
(
PTN(y)

)
1{TN(y)≤T}|P0 = p

]
(3.24)

and expected total inventory-related costs (lost-sale and holding) is

c (y; p) = E
[
b (p) (DNT − y)+ + h (p) (y −DNT )+ | P0 = p

]
. (3.25)

The first summation inside the expectation in (3.24) is the total discounted revenue

collected from fully satisfied customers during the period. The subsequent term,

on the other hand, is the revenue collected from the possibly-last customer who is

partially satisfied. Note also that, the only distinction between inventory-related

expected costs between unit demand (3.5) and compound Poisson demand case (3.25)

is that instead of NT , we now write DNT to denote total amount of demand in a

period. Here we also remark that in case of unit demand, (3.24) reduces to (3.13)

since N(y) = DN(y) = y.

As in the previous models, we denote future profits as

Ψk(y; p) = E
[
Vk+1((y −DNT )+ , PT )|P0 = p

]
and the value function for period k and the boundary condition as (3.7) and (3.15) ,

respectively.

We now analyze the structural properties of Gk (y; p) to find the structure of the

optimal ordering policy. However, it is difficult to perform a probabilistic analysis as

in the unit demand case since there are additional random variables such as N(y) and

Xn. We proceed with a sample path analysis on Gk (y; p) . For now, consider N(y), Tn

and Xn as the realizations of these random variables. Observe that the firm will only

be able to sell an additional infinitesimal amount dy when TN(y) ≤ T, since otherwise,

the last customer will arrive after this period (although we might have a positive

amount of inventory). This is due to the definition of N(y). If TN(y) ≤ T , the firm
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sells dy units with a total revenue of dye−rTN(y)f
(
PTN(y)

)
. Therefore, we can write

the marginal expected revenue as

r′ (y; p) = lim
dy↓0

r (y + dy; p)− r(y; p)

dy

= E
[
e−rTN(y)f

(
PTN(y)

)
1{TN(y)≤T}|P0 = p

]
. (3.26)

Note that in this analysis, the possibility that DN(y) is exactly y is ruled out. However,

this is not an issue since P
{
DN(y) = y

}
= 0 as Xn’s are assumed to be continuous

random variables and, by definition of N(y), the last customer is always partially

satisfied. We remark that in the unit demand lost-sale case, profit-to-go function for

any period is concave under Assumption (3.4). For the compound Poisson demand

case, we also need a condition to ensure concavity.

Assumption 3.5 The expected discounted price zt(p) is decreasing in t.

Theorem 3.4 Gk (y; p) is concave in y and Vk(x; p) is concave in x and a base-stock

policy is optimal, i.e., there exists a base-stock level Sk(p) for period k such that if the

inventory level is less than the base-stock level, it is optimal to raise the inventory up

to Sk(p); otherwise, it is optimal to order nothing. Moreover, optimal base-stock level

for period k is

Sk (p) = inf {y ≥ 0 : P {DNT ≤ y | P0 = p}

≥
−p+ b (p) + E

[
1{TN(y)≤T}f

(
PTN(y)

)
e−rTN(y)|P0 = p

]
+ γΨ′k(y; p)

b (p) + h (p)

 .

(3.27)

Proof. First note that the terminal value function VM+1 (x, p) = 0 is trivially concave.

Now assume that for some k < M, Vk+1 (x, p) is concave. Then, γΨk(y; p) is concave.

Note also that N(y) is increasing in y and the same reasoning as in Proposition

(3.1) applies here; that is, (3.26) is decreasing if the expected discounted price is a

decreasing function of time, i.e., if zt(p) is decreasing in t. Therefore, r(y; p) given in

(3.24) is concave. Moreover, since both h(p) and b(p) are positive parameters, it is
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clear that −E
[
b(p)(DNT − y)+ + h(p) (y −DNT )+ |P0 = p

]
is also a concave function

and the one-period profit function g (y; p) given in (3.23) is concave. Since both

g (y; p) and γΨk(y; p) are concave, so is Gk(y, p). This in turn makes Vk(x, p) given

in (3.7) concave. By induction, Vk(x, p) is concave for all k. Then, it is clear that

Gk(y, p) is concave for all k. To characterize the optimal base-stock levels, consider

the first-order optimality condition for Gk (y; p),

G′k (y; p) = −p+ r′(y; p) + b (p)P {DNT > y | P0 = p}

− h (p) {DNT ≤ y | P0 = p}+ γΨ′k(y; p)

= −p+ b (p) + γΨ′k(y; p) + E
[
e−rTN(y)αPTN(y)

1{TN(y)≤T}|P0 = p
]

− (h (p) + b (p))P {DNT ≤ y | P0 = p}

= 0

which can also be written as

P {DNT ≤ y | P0 = p} =
−p+ b (p) + E

[
e−rTnαPTN(y)

1{TN(y)≤T}
]

+ γΨ′k(y; p)

b (p) + h (p)
.

(3.28)

However, since the distribution of DNT has a mass at y = 0, (3.28) should be corrected

as (3.27). Note that if Xk = 1 for all k, then (3.27) reduces to (3.19) since N (y) = y

and DNT = NT .

In the case of complete backordering, the extension to compound Poisson demand

is much simpler. As before, the revenue terms do not depend on the order-up-to

decision y. Therefore, the analysis for this extension will be exactly the same as in

Section 3.2 when we replace NT with DNT and take expectations accordingly.

3.6 Fixed Ordering Cost Case

In previous sections, only variable unit purchase costs were incorporated in the profit

function. However, it is well-known that independent of the order size, a prevalent

fixed cost may be incurred for each order. This may be a fixed cost of using a vehicle

of transportation for procurement, etc. Previous analysis can be extended to the case
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where there is a fixed order cost of K > 0 for each positive order amount. In this

case, the value function for period k becomes

Vk(x, p) = G∗k(x, p) + px (3.29)

where

G∗k(x, p) = max

{
Gk(x; p), max

y≥x
Gk(y; p)−K

}
.

The first function inside maximum operator refers to not ordering. In the last period,

we assume that there is no fixed cost and the terminal value function is again given

by VM(x, p) = −K − px− for the backorder case and VM(x, p) = 0 for the lost-sale

case. Existence of a fixed order cost fundamentally changes the structure of the

problem since we do not necessarily have concave profit functions as in the linear

order cost case. Therefore, a base-stock policy is not usually suboptimal for this case.

For this problem, the profit-to-go function that is being maximized at each period is

K−concave.

Theorem 3.5 Gk(y; p) is K-concave for any initial price p and a price-dependent

(s, S) policy is optimal, i.e., there exists sk (p) ≤ Sk (p) such that whenever the inven-

tory level x is below sk(p), it is optimal to order up to Sk(p); otherwise it is optimal not

to order. The optimal order-up-to level is given by (3.10) and (3.19) for the backorder

and lost-sale cases, respectively and the reorder level is given by

sk(p) = inf {x ≥ 0 : Gk(x, p) ≥ Gk(Sk(p), p)−K} .

Proof. Note that the proof is valid for both backorder and lost-sale cases under

Assumption 3.4 for the latter. Let us proceed with the backorder case. Note that

VM(x, p) = −K − px− is K-concave. Now assume that Vk+1(x, p) is K-concave in x

for some k ≤M−1. Then Ψk(y; p) given in (3.8) is K-concave which makes γΨk(y; p)

γK−concave which in turn makes Gk(y; p) in (3.9) K-concave since g (y; p) is concave.

Then G∗k(x; p) is also K−concave in x and this leads to Vk(x, p) being K−concave

(Porteus (2002)). This clearly implies that a price-dependent (s, S) policy is optimal.
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3.7 Some Relevant Price Processes

In this section, we review some of the important financial price processes that are

used to model the movements of financial instruments, commodities, exchange rates,

etc. One of the most important financial price models is the geometric Brownian

motion. In this model, the stock price at time t is given by the following stochastic

differential equation

dSt = µdt+ σdWt

where W is a Wiener process, µ and σ are the drift and volatility terms. This model

is the basis for Black-Scholes option pricing formulas and due to its simplicity, the

calculations with this process are relatively easy and lead to closed-form solutions

(see Baxter and Rennie (1996)).

Another well-known price model is the Ornstein-Uhlenbeck process where the

prices follow

dSt = −κ (µ− St) dt+ σdWt.

In this model, the prices tend to revert to their long-term mean µ with a degree

of volatility σ and a reversion rate parameter κ. This model is particularly useful

when one models commodity price processes as they are known to exhibit some

mean-reversion (Baxter and Rennie (1996)). A more specialized model developed

by Schwartz and Smith (2000), on the other hand, uses both of the above models

to represent the commodity price movements by taking into account both long and

short-term behaviors. In the short-term, the commodity prices show mean-reversion

properties whereas in the long term they revert to an equilibrium. In particular, it is

assumed that market prices follow

Pt = eχt+ξt (3.30)

where χt is an Ornstein-Uhlenbeck process

dχt = −κχtdt+ σχdW
(χ)
t
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which models the short-term deviations by reverting towards zero. On the other hand,

long-term equilibrium level ξt is a Brownian motion process

dξt = µξdt+ σξdW
(ξ)
t .

Moreover, W
(χ)
t and W

(ξ)
t are correlated Wiener processes with a correlation coefficient

of ρ, i.e.,

dW
(χ)
t dW

(ξ)
t = ρdt

(see Schwartz and Smith (2000)).

In our numerical setup, we use a risk-neutral probability measure that makes

the price process given in (3.30) a martingale to test the effect of price volatilities

on the optimal expected profits and optimal controls. This is particularly interesting

since changing the volatility related parameters of a martingale price process does not

change its expected values in time, which we desire in order to capture the sole effect

of volatility. To find a risk-neutral version of (3.30), we first define two independent

Brownian motions W 1,W 2 and equivalently write

W
(ξ)
t = W 1

t

and

W
(χ)
t = ρW 1

t +
√

1− ρ2W 2
t .

Applying Ito’s formula to Pt one can find that

dPt =

(
−κχt + µξ + σχ + σχσξρ+

σ2
χ

2
+
σ2
ξ

2

)
Ptdt

+ (σξ + σχρ)PtdW
1
t + σχ

√
1− ρ2PtdW 2

t .

Cameron-Martin-Girsanov Theorem for n-factor models state that there exists a prob-

ability measure Q such that

dPt = σ1PtdW
(1)
t + σ2PtdW

(2)
t (3.31)

is a martingale where

σ1 = (σξ + σχρ)
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and

σ2 = σχ
√

1− ρ2

and W
(1)
t ,W

(2)
t are two independent Brownian motions with respect to Q (see, for

example, Baxter and Rennie (1996)). Note that analytical Ito’s solution for (3.31) is

Pt = P0e
−1/2(σ2

1+σ
2
2)t+σ1W

(1)
t +σ2W

(2)
t (3.32)

In our model, we will use (3.32) as our market price process.

The next section gives a numerical example and a sensitivity analysis on the price

parameters for the lost-sale model that is analyzed in Section 3.3.

3.8 Numerical Analysis

In this section, we conduct a numerical analysis on the lost-sale model and aim to

investigate the effect of some parameters (especially price related parameters) on the

value function. For the demand process, we use three different rate functions, namely

exponential, normal and piecewise linear rate functions. The exponential rate function

is assumed to have the form

λE (p) = λEe
−θαp (3.33)

where θ is a sensitivity parameter for the arriving customers. Note that this sort

of a rate function applies to the cases where individual customer arrivals form an

independent Poisson process with rate λE and arriving customers have i.i.d. reserva-

tion prices which are exponentially distributed random variables with parameter θ.

Similarly, the normal rate function is assumed to have the form

λN (p) = λN

(
1− Φ

(
αp− µN
σN

))
(3.34)

where Φ is the cumulative distribution function of the standard normal random vari-

able and µN and σN are the mean and standard deviation, respectively. Finally, the

piecewise linear rate function is of the form

λL (p) = (A−Bαp)+ (3.35)
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where A represents a potential arrival rate and B represents the customer sensitivity.

We use these functions to test the effect of different rate functions to price changes

on the optimal expected profits.

For the price process P, we use the risk-neutral model in (3.31) and employ a sim-

ulation approach to estimate the one-period expected profits since a direct analytical

approach is challenging in the lost sale model for this price process. Steps of this

Monte-Carlo simulation is as follows:

Simulation of Price and Arrival Paths

To simulate the price process given in (3.31) , we use n = 100 equally-spaced dis-

cretization of each unit of time, i.e., the interval [0, 1]. In addition, we use N = 2000

as the replication number which is statistically significant and does not lead to large

computing times. Here are the steps to simulate price and arrival processes.

• Using the incremental independence and Gaussian properties of Wiener pro-

cesses, we first generate N Normal(0, 1/n) random variables for both W
(1)
t and

W
(2)
t . This is due to the fact that for k = 1/n

Wtk −Wt(k−1) ∼ Normal(0, 1/n).

Cumulative sum of these incremental realizations gives random paths for Wiener

processes W
(1)
t and W

(2)
t . We then use these Wiener realizations in the analytical

Ito’s solution given in (3.32) to generate the desired price process.

• Remember that conditional on the price path, doubly stochastic process of cus-

tomer arrivals reduces to an ordinary nonhomogeneous Poisson process. There-

fore, for each sample path of market prices P , we generate a nonhomogeneous

Poisson arrival stream. More specifically, we utilize the thinning algorithm

of Lewis and Shedler (1979). According to thinning algorithm, for each price

path, we find the maximum realized intensity λmax and generate a Poisson pro-

cess with this maximum rate. At each arrival time, we additionally generate an
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independent uniform random variable

U ∼ Uniform(0, 1)

and accept the arrival if U < ΛU/λmax where ΛU is the realized intensity at time

U, i.e., ΛU = λ (PU) for the particular rate function. This way, the stream of

accepted arrivals form a nonhomogeneous Poisson arrival vector.

Note that using these price and arrival time realizations, expected revenue and

profit functions can easily be computed. To solve the dynamic programs outlined in

earlier sections, we also use a simulation approach along with a state space reduction

approximation which are explained next.

Dynamic Programming Approximation

Since we use a two-factor geometric Brownian process to model the market price

process, unbounded state space, i.e., R+ is very problematic for solving the dynamic

programming equations to optimality. To overcome this problem, we use another

discretization for the price state to compute value functions. In particular, at any

period, we equally discretize possible price realizations to find price states. Moreover,

we increase the number of possible discretized states as we proceed in periods. The

steps of this approximation are as follows:

• For the first period k = 1, we find maximum and minimum values in realizations

of PT and divide the corresponding interval into l = 100 equal intervals whose

middle points are assumed to be price states. Then, the probability distribution

is also evident since as each price realization as a result of simulation falls into

a particular interval.

• For any intermediate period k we use the same logic. However, since the gap

between minimum and maximum price realizations increase, we now divide the

corresponding interval into kl equal intervals. In this approach, one can think

of state space for random prices as an horizontal and increasing cone.
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Numerical Setup and Sensitivity Results

Throughout this numerical analysis, we take initial price P0 = 100, selling price

function f(p) = αp with α = 4, fixed holding cost h = 5, fixed lost-sale cost b = 20 and

the interest rate r = 0. For the demand rate functions, we use A = 380, B = 0.8 for the

linear case, λE = 160, θ = 0.0025 for the exponential case and finally λN = 120 and

mean and standard deviation of the normal distribution as µN = 400 and σN = 100,

respectively. Note that each rate function gives the same result for p = P0 = 100.

However, each of them have different robustness to changes in price which will be

important in the following sensitivity analysis.

For the lost-sale model, we first analyzed how the optimal expected profits change

with respect to the magnitude of price volatility. Note that, since the price process

given in (3.32) is a martingale, i.e., constant in expectation, altering the values of

σξ and σχ increases only the volatility of within-period prices. We take M = 4, i.e,

we solve a 4-period dynamic programming recursion and with ρ = 0.3, σξ = 0.05,

we change the value of σχ from 0 to 0.2. As observed in 3.3, for each rate function

in (3.33), (3.34) and (3.35) we observe that the optimal expected profits decrease as

the price volatility increases. This suggests that price volatilities are undesirable for

the firm. There are also differences in the magnitude of the effect of volatility for

these rate functions. Clearly, this is due to the robustness of these functions to price

changes. However, for each of the three rate functions, we observed the negative effect

of increased volatility on the optimal expected profits. This observation holds for the

vast majority of the cases with plausible parameter values. Only in some extreme

cases where, for instance, a more volatile price process leads to much higher arrival

rates, the optimal expected profits increase. In terms of optimal base-stock levels,

on the other hand, we do not particularly observe any monotonicity with respect to

price volatility.

A similar sensitivity analysis can also be conducted to observe the effect of corre-

lation parameter ρ. We observe that as the value of ρ increases, the value of optimal

expected profits decrease. This is again due to the fact that a higher ρ means a more
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Figure 3.3: Effect of price volatility on optimal expected profits.

volatile price process. More specifically, the variance of Pt given in (3.32) is

V ar (Pt) = P 2
0

(
eσ

2
ξ+2σξσχρ+σ

2
χ − 1

)
which is an increasing function of ρ.

In another numerical setup, we compare our proposed model with a deterministic

approximation model to test the effectiveness of modeling price fluctuations explicitly.

In particular, we take the model in Kalymon (1971) as benchmark, where prices are

constant within sales periods, however they are still random with the same probability

distribution at the end (and beginning) of each period. We again use the price process

given in (3.31) with ρ = 0.3 and σξ = 0.05. Note that, since we use a martingale

price process, the expected prices do not differ from the initial price in time. For a

given volatility level σχ, we find the optimal base-stock levels for both models and use

them in the proposed model that considers within-period price fluctuations to make

a consistent comparison between resulting expected profits. We use the piecewise

linear rate function given in (3.35) as the rate process and assume that B = 0.8.
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Figure 3.4: Deviation from optimal results when approximate model is used.

Other parameters are assumed as P0 = 100, α = 4, b = 20, h = 5, T = 1. For three

potential customer arrival rates (A = 340, A = 360, A = 380), Figure 3.4 shows the

percentage deviation from optimal expected profits for different volatility (σχ) levels.

Figure 3.4 shows that as prices get more volatile, then the benefit of using the

proposed model that explicitly considers within-period price fluctuations increases.

We also note that the benefit of using the proposed model greatly increases when the

potential arrival rate A decreases since a lower A implies an arrival rate process which

is more prone to price increases. In other words, if A is low, then there will be more

occurrences with zero arrival rate if price are more volatile.

Although it is intuitive, we also remark here that as period length T increases,

then the gap between deterministic approximation and the proposed model increases.

This can be observed in Figure 3.5 which plots the percentage deviation from optimal

expected profit with respect to changes in within-period length when second approx-

imate model is used. This is for the single-period model and the period length is

increased from T = 0.6 to T = 3 for three different volatility levels.
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Figure 3.5: Effect of period length on the gap with the approximate model.

We also observe that as the number of periods increase, the percentage devia-

tion from optimal expected profits decreases. This is also intuitive as the decision

maker has additional opportunities to react to price changes as the number of or-

dering periods are higher. The effect of the number of periods can be observed in

Figure 3.6 which plots the percentage deviation from optimal expected profit when

the benchmark model is used as an approximation with respect to number of periods.

3.9 Summary

In this chapter, we analyzed an inventory management problem where purchase and

selling prices are described by a continuous-time stochastic price process which also

influences the customer demand. In contrast with most of the existing literature,

within each period demand arrives continuously and is influenced by the continuous

price process. In this setting, sales revenues depend on individual arrival times of

demands and not only on total accumulated demand. We show that for the backorder

case, price-dependent base-stock policies are optimal under standard assumptions.
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Figure 3.6: Effect of number of periods on the gap with the approximate model.

This implies that in any ordering period, the firm’s order-up-to decision is only affected

from observed market price, which stochastically describes the evolution of upcoming

prices and customer arrivals. Moreover, this also extends to the more challenging lost

sales and compound Poisson cases under additional plausible conditions. A violation

of these may lead to non-base-stock environment even for very simple price cases. In a

numerical setting where market prices are modeled as a two-factor price process, it is

observed that price volatility has a significant effect on expected profits and optimal

inventory policies. In particular, if expected future prices remain the same, increased

volatility leads to smaller expected profits. In addition, these examples illustrate

that modeling within-period price fluctuations in contrast with available models in

existing literature is more advantageous as the level of price volatility increases. This

is observed by comparing the proposed model and several approximate models that

ignore price fluctuations. It is also observed that as period lengths increase or number

of ordering opportunities decrease, then the advantage of explicit modeling increases.



Chapter 4

MARKUP PRICING IN THE PRESENCE OF PRICE

FLUCTUATIONS

Besides a successful inventory management policy, pricing is one of the most effec-

tive tools that a firm has in order to increase its revenues. The impact of a successful

pricing strategy lies in its effect on sales as price is one of most critical determi-

nants of customer demand. By effectively controlling the demand, firms also have

the potential to create a more efficient supply chain due to decreased variability and

better management of the mismatch between supply and demand. Even more value

can be created by integrating pricing decisions with inventory, production and dis-

tribution decisions. As much as it is essential for manufacturing firms to coordinate

these decisions rather than employing a decentralized approach, integration of pric-

ing and inventory decisions has the potential of thoroughly increasing supply chain

effectiveness (Chan et al. (2004)).

In classical inventory-pricing models, firms are assumed to control the sales prices

freely. However, for some firms, the nature of the inventory item may prevent them

from controlling the selling prices fully. An example is for firms selling and/or pro-

ducing commodity-based products whose underlying prices are market-determined

and prevailing input price volatilities pass to customers to an extent. If one sells a

commodity-based item, for instance, material, labor and overhead costs as well as

prevailing commodity prices need to be considered in determining the selling price

to stay profitable. Although it may be argued that profit margins are only based

on marginal costs (more specifically, wholesale price at the time of inventory replen-

ishment), the decision maker can not overlook prevailing market prices at the time

of customer demand due to high competition. On the other hand, accounting for
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volatilities in pricing decisions is rather overlooked in the literature.

In this chapter, we further delve into backorder model analyzed in Section 3.2 and

investigate how altering the selling prices affects firm’s profitability. In particular,

we now assume that the firm sells a rather specialized product to its customers and

has the power to influence the sales prices. With this model, we contribute to the

literature by incorporating the effect of fluctuating commodity prices into inventory

and pricing decisions. Unlike traditional models that use a demand function that

has an error term and a deterministic part which changes with respect to pricing

decision, we assume that the firm sets a proportional markup for constantly changing

market prices. Again, customer arrivals are modeled as a process that is modulated

by the stochastic price process as well as the markup decision. In this section, we also

investigate how the level of fluctuations in market prices affect optimal performance

measures.

4.1 The Model

As in Chapter 3, we again assume that stochastic evolution of the market prices is

given by the process P = {Pt ; t ≥ 0} with state space R+ = (0,∞). For this section,

we do not necessarily assume that P is Markovian and time-stationary. However,

we assume that P has continuous sample paths. We use a particular multiplicative

form for the selling price function f and assume that the selling price for the item

at any time t is merely αPt where α > 1 is the firm’s markup. This implies that the

selling prices are both determined by the stochastic price process and markup. The

firm sets the proportional markup α and ordering decision y at the beginning of sales

horizon t = 0. Note that unlike traditional pricing models in the literature, in this

model the firm cannot fully determine the selling price. To a degree, the firm has

to pass price fluctuations to the customer, but has the freedom to influence it via a

proportional constant. This is an appropriate setting if the firm sells products where

inherent price fluctuations somehow pass to the customer which is typical in jewelry,

or gold retailers. In addition, this setting applies to the non-price-taker firms which
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sell exclusive products so that they have more freedom to control markups.

For this model, to account for random prices and their affects on customer demand,

we again assume that individual customers arrive according to a doubly-stochastic

Poisson process with a stochastic intensity measure Λα = {Λα
t = λ (αPt) ; t ≥ 0} where

λ (.) is a nonnegative deterministic function of random selling price. Note that we

changed the notation for stochastic intensity process to Λα to denote its connection

to markup control. For the operational setting, we use the compound Poisson model

analyzed in Section 3.5 where at each arrival, customers demand a random amount

of product independent of the price process. Remember that we let X = {Xn;n ≥ 1}

denote the stochastic individual demands where we assume that each Xn is positive,

independent and identically distributed with common expectation µ.

We also denote the customer arrival process as Nα = {Nα
t ; t ≥ 0} where super-

script α denotes its connection to our control variable α. We additionally define Dn

as the cumulative demand by nth customers so that

Dn =
n∑
k=1

Xk.

With this notation, total random demand during sales season is DNα
T
.

We assume a backorder setting and assume that if there is not enough on-hand

inventory, newly arrived customers are charged at the prevailing selling price and

satisfied at time t = T. This case is applicable to situations where the firm sells

exclusive products such that arriving customers may be unable to find elsewhere.

Jewelry stores, for instance, usually take orders for diamond rings etc. to be supplied

later, yet their selling prices are determined considering the current market prices of

diamond and gold at the time of customer order, not the market prices at the time of

delivery. To keep the model simpler, we do not assume any physical holding cost or

salvage revenue in our analysis, i.e., h = 0, yet by discounting all future cash flows, we

are capturing the opportunity costs associated with the firm’s capital investment. We

assume that the firm incurs a penalty cost of b for each unit of backordered demand.

The firm needs to raise the inventory level up to zero by purchasing at the market

price PT at time T in case of backorders during the sales season. .
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We assume that b+E[PT ]− P0 > 0 where P0 is the initial price at time 0, which

states that underage cost, i.e., cost of ordering one less unit is positive. If this is

not satisfied, then the firm does not order at all and simply backorders each arriving

customer. The objective of the firm is to maximize the expected total discounted

profit by simultaneously setting order-up-to level and proportional markup.

Now, let Rα
T denote the total random revenue until time T, which is generated by

summing individual revenues from sales. More specifically,

Rα
T =

Nα
T∑

n=1

e−rTnαPTnXn

where Tn denotes the arrival time of nth customer and, as stated before, Nα
T is the

total number of individual customers arrived by time T when markup is α. Also,

αPTnXn is the random revenue obtained from the nth customer. We also discount all

individual revenues to time 0 by multiplying them with e−rTn where r is the interest

rate per unit time. The risk-neutral firm is concerned with the expected revenue until

time T as a function of retail markup α, which we denote as

rT (α) = E [Rα
T ] .

In a compact form, expected total sales revenues until time T can be written as

rT (α) = µ

T∫
0

e−rtE [αPtλ (αPt)] dt (4.1)

where µ = E [Xn] . Note that this is a special case of expected total revenue given in

(3.3) with f (p) = αp and E [Xn] = µ whose derivation is given in Appendix. We will

also frequently use the probability distribution of Nα
T although it does not appear in

(4.1) . But first let us define P = {Pt; t ∈ [0, T ]} as the random prices in the sales

horizon [0, T ]. With this notation, Nα
T , total number of individual customers who

arrived during [0, T ] is Poisson with conditional random mean

Mα
T = E [Nα

T | P ] =

T∫
0

λ(αPt)dt. (4.2)
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Expected total sales, on the other hand, is

dT (α) = E
[
DNα

T

]
= E

 Nα
T∑

n=1

Xn

 = µE [Mα
T ]

= µ

T∫
0

E [λ(αPt)] dt. (4.3)

Assuming that there is no initial inventory, we write the expected total profit as

a function of markup α and order-up-to level y as

g(y, α) = −P0y + rT (α)− E
[
(b+ PT ) (DNα

T
− y)+

]
(4.4)

where the first term denotes the total purchase cost, the second term denotes the

expected total discounted revenue and the last term denotes the backorder and re-

purchase costs. The objective of the decision maker is to solve

max
α>0,y≥0

g(y, α)

by choosing a proportional markup α ∈ (0,∞) and an order-up-to level y ∈ [0,∞)

Next section characterizes the form of the optimal inventory-markup pricing policy.

4.2 Optimal Inventory Control & Markup Pricing

In this section, we analyze the behavior of the expected profit function g (y, α) with

respect to y and α and corresponding optimal inventory and markup pricing strategies.

We begin by analyzing the optimal inventory policy for a fixed markup decision α.

Note that for the backorder case, assuming a general sales-price function and a unit-

demand setting, we already characterized the form of optimal ordering policies in

Section 3.2. On the other hand, we only presented results and derivations for the

lost-sale compound Poisson case in Section 3.5. Below, we give the result for the

backorder and compound-Poisson demand case.
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Optimal Inventory Policy for a Given Markup

In the following sections, we will use φ (y;α) = P
{
DNα

T
= y
}

and Φ (y;α) = P
{
DNα

T
< y
}

to denote the probability density and cumulative distribution functions of DNα
T

eval-

uated at y, respectively.

Theorem 4.1 Given markup α, g (y, α) is concave in order-up-to level y and a base-

stock policy is optimal, i.e., it is optimal to order up to the optimal base-stock level

y∗(α) if initial inventory is less than y∗(α); otherwise, it is optimal to order nothing.

The optimal base-stock level is given by

y∗ (α) = inf

{
y ≥ 0 : E

[
(b+ PT ) 1{

DNα
T
≤y

}] ≥ b+ E [PT ]− P0

}
. (4.5)

Proof. The first and second-order derivatives of g(y, a) with respect to y is given by

gy(y, α) = −P0 + E

[
(b+ PT ) 1{

DNα
T
≥y

}]
= −P0 + b+ E [PT ]− E

[
(b+ PT ) 1{

DNα
T
<y

}] (4.6)

and

gyy(y, α) = −E
[
(b+ PT )

∂

∂y
E

[
1{

DNα
T
<y

} | P
]]

(4.7)

= −E
[
(b+ PT )

∂

∂y
Φ (y;α|P)

]
(4.8)

= −E [(b+ PT )φ (y;α|P)] . (4.9)

Observe that (4.7) is negative for all y and α. Since expected profit is concave, a

base-stock policy is optimal. For each markup level α, the optimal base-stock level is

the maximizer of g(y, α) which is found by,

y∗ (α) = inf

{
y : −P0 + b+ E [PT ]− E

[
(b+ PT ) 1{

DNα
T
<y

}] ≤ 0

}
= inf

{
y : E

[
(b+ PT ) 1{

DNα
T
≤y

}] ≥ b+ E [PT ]− P0

}
.
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Concavity of the objective function ensures that a base-stock inventory policy is

optimal given markup and optimal base-stock level is given by (4.5). In the next

section, we analyze the behavior of expected total profit function with respect to the

markup for fixed inventory level.

Optimal Markup for a Given Inventory Level

In this section, we make the following reasonable assumptions and prove a series of

lemmas that will lead to our main characterization. Analogues of these assumptions

in models without price volatilities are quite common in pricing literature, Ziya et al.

(2004).

Assumption 4.1 λ (x) is convex decreasing.

Assumption 4.2 xλ (x) is concave.

The next two lemmas establish that the expected total revenue is concave and

expected total sales is convex in markup level.

Lemma 4.1 The expected total discounted revenue rT (α) is concave in markup α.

Proof. Note that since xλ (x) is concave, αPtλ (αPt) is concave in α for each Pt

which makes e−rtE [αPtλ (αPt)] , hence rT (α) given in (4.1) is concave in α.

Lemma 4.2 The expected total demand (sales) dT (α) is convex decreasing in markup

α.

Proof. Since λ (.) is convex decreasing, λ(αPt) is convex decreasing for each Pt which

makes E [λ (αPt)] , hence dT (α) given in (4.3) convex decreasing in α.

From now on, we also use the notation

4kE
[
(y −Dk)

+] = E
[
(y −Dk+1)

+ − (y −Dk)
+]

and

42
kE
[
(y −Dk)

+] = E
[
(y −Dk+2)

+ − 2 (y −Dk+1)
+ + (y −Dk)

+]
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to denote the first and second-order forward differences. We will also make use of the

following lemma in forthcoming analysis.

Lemma 4.3 E
[
(y −Dk)

+] and E
[
(Dk − y)+

]
are integer convex in k.

Proof. For any discrete function to be integer convex, the second-order forward

differences should be positive. Note that,

4kE
[
(y −Dk)

+] = E
[
(y −Dk+1)

+ − (y −Dk)
+]

= E
[
(y −Dk −Xk+1)

+ − (y −Dk)
+] .

Using

(a− b)+ = a−min {a, b}

for any a, b ∈ R, we can write

4kE
[
(y −Dk)

+] = −E
[
min

{
Xk+1, (y −Dk)

+}] . (4.10)

As k increases, −E
[
min

{
Xk+1, (y −Dk)

+}] increases so that the second-order dif-

ference with respect to k is nonnegative, i.e., 42
kE
[
(y −Dk)

+] ≥ 0. Similarly,

E
[
(Dk − y)+

]
= E

[
Dk − y + (y −Dk)

+]
is also integer convex in k.

In the following characterizations, (Mα
T )′ = ∂

∂α
Mα

T , (Mα
T )” = ∂2

∂α2M
α
T , r

′
T (α) =

∂
∂α
rαT and r′′T (α) = ∂2

∂α2 r
α
T denote first and second order derivatives of Mα

T and rαT

given in (4.2) and (4.1) respectively.

Theorem 4.2 Assume that y is fixed. Then g(y, α) is concave in α and optimal

markup α∗ (y) is found by solving

r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]
= 0.

(4.11)
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Proof. It is shown in the Appendix that the first and second-order partial derivatives

of g(y, a) with respect to α are given by

gα (y, α) = r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]
and

gαα(y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT ) (Mα

T )′′E
[
4
(
y −DNα

T

)+ | P]]
− E

[
(b+ PT )

(
(Mα

T )′
)2
E
[
42
(
y −DNα

T

)+ | P]] ,
respectively. By Lemma 4.1 and Lemma 4.2, r′′T (α) < 0 and (Mα

T )′′ > 0. Additionally,

by Lemma 4.3, the last term is also negative. Observe also that,

E
[
4
(
y −DNα

T

)+ | P] = −E
[
min

{
XNα

T+1,
(
y −DNα

T

)+} | P] ≥ −E [XNα
T+1

]
= −µ.

Then the following inequality holds:

gαα(y, α) ≤ r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]

+ µE
[
(b+ PT ) (Mα

T )′′
]

− E
[
(b+ PT )

(
(Mα

T )′
)2
E
[
42
(
y −DNα

T

)+ | P]]
= r′′T (α)− E

[
(b+ PT )

(
(Mα

T )′
)2
E
[
42
(
y −DNα

T

)+ | P]] ≤ 0.

The last inequality is due to Lemma 4.3 and r′′T (α) ≤ 0. Since gαα(y, α) ≤ 0, expected

total profit is concave in markup α for each inventory level y. We can find the optimal

markup by setting the first partial derivative with respect to α equal to zero, i.e.,

gα(y, α) = 0, which is given in (4.11) .

In Theorem 4.1 and Theorem 4.2, we characterize the optimality equations for con-

trols y and α. The decision maker simultaneously solves equations (4.5) and (4.11) to

find the optimal controls. Next proposition explains that the expected profit function

is submodular in two control variables which leads to several monotonicity properties

for the optimal controls.

Proposition 4.1 g (y, a) is submodular. Consequently, optimal inventory level y∗ (α)

is decreasing in α and optimal markup α∗ (y) is decreasing in y.
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Proof. We show the submodularity of g (y, α) by showing that gyα (y, α) < 0. Note

that

gyα(y, α) = −E
[
(b+ PT ) (Mα

T )′
(
P
{
DNα

T
+ 1 < y | P

}
− P

{
DNα

T
< y | P

})]
as shown in the Appendix. Note that since (Mα

T )′ ≤ 0 and P
{
DNα

T+1 ≤ y | P
}
≤

P
{
DNα

T
≤ y | P

}
, the derivative of the expected profit function with respect to each

variable is negative, i.e., gyα(y, α) < 0. Moreover, observe that in (4.5) , as α in-

creases 1{
DNα

T
<y

} increases for fixed y which results in lower y∗ (α) . Similarly, since

gyα (y, α) < 0, gα (y, α) is lower for higher values of y that is gα (y, α) is decreasing in

y. Then, it is clear that α∗ (y) is lower for higher values of y.

In this section, we explicitly characterize the optimality equations for the two

controls, markup and inventory level, and prove that optimal decisions are decreasing

functions of each other. In other words, if the firm has more inventory on hand, for

instance, he should charge a lower markup, which is highly intuitive. Similarly, for

higher values of markup, if given, the firm needs to hold less inventory as less number

of customers are expected to arrive during the sales season. In the next section, we

theoretically analyze the effect of volatile market prices on the expected revenues,

sales and profits.

4.3 The Effect of Price Variability on Expected Profit

In our model, we used a general stochastic price process where we assume that it has

continuous and nonnegative price paths. In this section we analyze how the optimal

expected profits change with respect to the variability of this price process. We use

convex ordering of random variables and stochastic processes in our analysis. The

following definitions are from Müller and Stoyan (2002).

Definition 4.3 Let X and Y denote two generic random variables. X is said to pre-

cede Y in convex order (increasing convex order, decreasing convex order) if E [f (X)] ≤

E [f (Y )] for all convex (increasing convex, decreasing convex) functions f, i.e.,

X ≤
cx(icx,dcx)

Y ⇔ E [f (X)] ≤ E [f (Y )]
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for all convex (increasing convex, decreasing convex) functions f .

Similar to convex ordering of random variables, the definition of convex ordering

of stochastic processes is the following.

Definition 4.4 Let X = {Xt; t ≥ 0} and Y = {Yt; t ≥ 0} denote two stochastic pro-

cesses. Then,

X ≤
cx,icx,dcx

Y ⇔ E [f (Xt)] ≤ E [f (Yt)]

for all t ≥ 0 and for all convex (increasing convex, decreasing convex) functions f.

In other words, two stochastic processes are said to be convexly ordered if random

values at each time are convexly ordered. Convex orders are generally used to order

random variables in terms of their variabilities. A property of the convex orders is

the following.

Remark 4.5 If X ≤
cx
Y , then E [X] = E [Y ] and V ar (X) ≤ V ar (Y ) . That is,

convexly ordered random variables are also ordered in magnitude of their variances

although their mean are the same.

In the rest of this chapter, we will use two market price processes, namely, P (1) ={
P

(1)
t ; t ≥ 0

}
and P (2) =

{
P

(2)
t ; t ≥ 0

}
to compare the expected revenues, profits and

sales that are previously examined. Analogously, we denote their corresponding rate

processes (intensity measures) as Λ(1) and Λ(2) where Λ(i) =
{

Λ
(i)
t = λ

(
αP

(i)
t

)
; t ≥ 0

}
for i = 1, 2 and corresponding counting measures as N (i) =

{
N

(i)
t ; t ≥ 0

}
. Let us

denote r
(i)
T (α) , d

(1)
T (α) and g(i)(y, α) as the expected revenue, expected sales and

expect profit functions under market price process P (i) for i = 1, 2.

Next two lemmas show that a more variable price process leads to lower expected

revenues and higher expected sales.

Proposition 4.2 If P (1) ≤
cx
P (2), then r

(1)
T (α) ≥ r

(2)
T (α) for each α ∈ R+.
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Proof. Note that since αPtλ (αPt) is a concave function of Pt by Assumption 4.2,

P
(1)
t ≤

cx
P

(2)
t implies

E
[
αP

(1)
t λ

(
αP

(1)
t

)]
≥ E

[
αP

(2)
t λ

(
αP

(2)
t

)]
.

Then it is easy to see that

r
(1)
T (α) = µ

T∫
0

e−rtE
[
αP

(1)
t λ

(
αP

(1)
t

)]
dt ≥ µ

T∫
0

e−rtE
[
αP

(2)
t λ

(
αP

(2)
t

)]
dt = r

(2)
T (α) .

Proposition 4.3 If P (1) ≤
cx
P (2), then d

(1)
T (α) ≤ d

(2)
T (α) for each α ∈ R+.

Proof. Similar to the proof of Proposition 4.2, since λ (αPt) is a convex function of

Pt by Assumption 4.1, P
(1)
t ≤

cx
P

(2)
t implies

E
[
λ
(
αP

(1)
t

)]
≤ E

[
λ
(
αP

(2)
t

)]
.

Then it is easy to see that

d
(1)
T (α) = µ

T∫
0

E
[
λ
(
αP

(1)
t

)]
dt ≤ µ

T∫
0

E
[
λ
(
αP

(2)
t

)]
dt = d

(2)
T (α) .

Next proposition proves that if the market price processes are convexly ordered,

so are their rate processes.

Proposition 4.4 If P (1) ≤
cx
P (2), then Λ(1) ≤

icx
Λ(2).

Proof. Let t ≥ 0 be fixed and f be an increasing convex function. Then, note that

f (λ) is convex where it can be shown

f (λ)′ = λ′f ′ (λ)

and

f (λ)′′ = λ′′f ′ (λ) + (λ′)
2
f ′′ (λ) ≥ 0
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since λ is convex by Assumption 4.1 and f ′ ≥ 0 by the assumption. Since f (λ) is

convex,

E
[
f
(

Λ
(1)
t

)]
= E

[
f
(
λ
(
αP

(1)
t

))]
≤ E

[
f
(
λ
(
αP

(2)
t

))]
= E

[
f
(

Λ
(2)
t

)]
.

Since this is true for any convex increasing f and t ≥ 0, Λ(1) ≤
icx

Λ(2).

We use the following proposition from B laszczyszyn and Yogeshwaran (2009) that

links the convex ordering of intensity measure of a doubly-stochastic Poisson process

to the counting measure.

Proposition 4.5 Λ(1) ≤
cx,icx,dcx

Λ(2) implies N (1) ≤
cx,icx,dcx

N (2).

Proof. See B laszczyszyn and Yogeshwaran (2009).

Note that by Proposition 4.4 and Proposition 4.5, one can straightforwardly assert

the following corollary.

Corollary 4.1 P (1) ≤
cx
P (2) implies N (1) ≤

icx
N (2).

Proof. Follows from Proposition 4.4 and Proposition 4.5.

Lemma 4.4 P (1) ≤
cx
P (2) implies E

[
P

(1)
T (D

N
α(1)
T
− y)+

]
≤ E

[
P

(2)
T (D

N
α(2)
T
− y)+

]
.

Proof. Assume that P (1) ≤
cx
P (2). Then by Corollary 4.1, N (1) ≤

icx
N (2). Together with

this relationship, we will use the relationship between convex ordering of conditional

random variables and convex ordering of their unconditional counterparts. It is known

that if two random variables are convex ordered, so are their conditional counterparts,

(Leskelä et al. (2017)). Then, we can write

P (1) ≤
cx
P (2) ⇒

{
P

(1)
t ; t ∈ [0, T )

}
| PT ≤

cx

{
P

(2)
t ; t ∈ [0, T )

}
| PT

⇒ N
(1)
T | PT ≤

icx
N

(2)
T | PT .

Now assume that PT is given. Then,

E
[
(D

N
α(1)
T
− y)+ | PT

]
= E

[
E
[
(D

N
α(1)
T
− y)+ | Nα(1)

T

]
| PT

]
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≤ E
[
E
[
(D

N
α(2)
T
− y)+ | Nα(2)

T

]
| PT

]
= E

[
(D

N
α(2)
T
− y)+ | PT

]
.

This is due to the fact that E
[
(DNα

T
− y)+ | Nα

T

]
is an increasing convex function of

Nα
T by Lemma 4.3. From here, it follows that

E
[
P

(1)
T (D

N
α(1)
T
− y)+

]
= E

[
P

(1)
T E

[
(D

N
α(1)
T
− y)+ | P (1)

T

]]
≤ E

[
P

(2)
T E

[
(D

N
α(2)
T
− y)+ | P (2)

T

]]
= E

[
P

(2)
T (D

N
α(2)
T
− y)+

]
.

The following theorem uses the previous lemmas and is the main result of this

section. It indicates that a more variable price process leads to lower expected profits.

Theorem 4.6 If P (1) ≤
cx
P (2), then g(1)(y, α) ≥ g(2)(y, α) for all y and α.

Proof. To prove that expected profits are ordered, we first write g (y, α) given in

(4.4) as

g(y, α) = −p0y + rT (α)− E
[
(b+ PT ) (DNα

T
− y)+

]
.

Then the result is clear by Proposition 4.2 and Lemma 4.4.

Corollary 4.2 Let g∗(i) = max
α>0,y≥0

g(i)(y;α) denote the optimal expected profit under

market price process P (i). If P
(1)
t ≤

cx
P

(2)
t , then g(1)∗ ≥ g(2)∗.

Proof. Let (y∗(i), α∗(i)) be the optimal controls for the model with price process P (i).

Then

g(1)(y∗(1), α∗(1)) ≥ g(1)(y∗(2), α∗(2)) ≥ g(2)(y∗(2), α∗(2)).

Corollary 4.2 suggests that as the price variability increases the optimal expected

profit decreases.
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4.4 Summary

This chapter investigates a single-period, joint inventory-pricing problem of a firm

that faces stochastic price volatilities. In particular, a continuous underlying random

price process affects the selling prices, which consequently alters the customer arrival

process. Besides continuous market price fluctuations, the firm is not a price-taker

and is able to control a multiplicative sales markup to influence customer arrivals

and effective selling prices in order to maximize expected profits. This setting ap-

plies to the cases where the firm sells rather exclusive products such that it has the

power to control his markup freely. This kind of a pricing problem is not addressed

in the existing literature in which most typical models use selling price as the control

variable. Assuming that the firm has a fixed amount of stock on hand, we prove

that the expected profit function is concave in markup level and explicitly charac-

terize the optimality condition. Studying monotonicity properties of the expected

profit function, we are able to show that as the inventory level increases, the optimal

markup decreases. Similarly, we show that as the markup increases, optimal base-

stock level decreases. Last, we analyze how the variability of the price process affects

the optimal expected revenues and profits. We utilize the concept of convex ordering

of random processes and find that as the prices become more variable, optimal ex-

pected revenues and profits decrease. This intuitively highlights that price variability

is disadvantageous for the firm which also supports the numerical findings of Chapter

3.



Chapter 5

FINANCIAL HEDGING OF SYSTEMS WITH

RANDOMLY FLUCTUATING PRICES

Employing successful inventory and pricing strategies are great operational hedges

for firms to mitigate their risks. However, there are always other undesired uncertain-

ties which may put these firms into financial distress if not well managed. Financial

hedging is one of the most effective ways to confront such risk exposures for risk-averse

firms. A financial hedge is an investment position taken in a financial market to offset

the risks of another investment. For instance, a multinational firm that sells to foreign

markets may use currency options to mitigate its exchange rate risk on sales revenue.

A manufacturer that needs to procure its raw material from a volatile commodity

market, on the other hand, may use available futures written on the price of that

commodity to fix its procurement cost against undesirable fluctuations. Moreover, it

is known that through risk reduction, financial hedging increases a firm’s value (Froot

et al. (1993)).

Various approaches were proposed to incorporate the risk sensitivity of the de-

cision maker in supply chain operations. These approaches include well-known ex-

pected utility and mean-variance (MV) formulations, maximizing satisficing proba-

bility and downside risk methods such as value-at-risk (VaR) and conditional value-

at-risk (CVaR). In inventory management literature, in particular, these methods are

based on adjusting the ordering policy so as to reduce the risks at the expense of ex-

pected profit. Financial hedging, on the other hand, is the practice of risk reduction

through external investments in financial markets. In case of a significant correlation

between the random operational cash flow of the firm and a financial index or security,

a firm may reduce the risk of its random cash flow for any operational inventory policy
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using the right hedge (Gaur and Seshadri (2005), Caldentey and Haugh (2006)).

In this chapter, we take a risk-sensitive approach and analyze various financial

hedging policies to minimize the risk associated with previously analyzed cash flows.

More specifically we investigate optimal static and dynamic financial hedging strate-

gies utilizing a minimum-variance hedging framework, which leads to useful charac-

terizations and implementable solutions.

Next, we briefly review the minimum-variance framework and subsequently give

details about dynamic applications for a price-fluctuating inventory setting.

5.1 Minimum-Variance Hedging

In this part, in order to illustrate minimum-variance hedging framework, we review

the application for some basic operational settings. Assume that a firm involves in

some operational activities and has a random return of X at time T . Assume also

that there is an investment opportunity (such as a traded financial instrument) that

yields a unit random return Y at time T which has some correlation with X. To keep

the firm only focusing on operational activities, let us also assume that the price of

the financial instrument is such that the expected net return from this investment is

zero (the frequently made martingale assumption). Under the latter assumption, the

only reason to make such a financial investment is to exploit the correlation between

X and Y to better manage the overall financial risk.

A reasonable risk management objective is to minimize the total variance of the

profit. The firm needs to decide how much to invest in Y to minimize the variance of

the total cash flow at T

min
a

V ar(X + aY ).

We can write

V ar(X + aY ) = V ar(X) + a2V ar(Y ) + 2aCov(X, Y ).

This is a convex function in a and the minimizing value of a is given by:

a∗ = −Cov(X, Y )

V ar(Y )
. (5.1)
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We can then characterize the reduction in variance between the unhedged cash

flow X and the hedged cash flow X + a∗Y as

∆ = V ar(X)− V ar(X + a∗Y ).

After some simplification

∆ =
Cov(X, Y )2

V ar(Y )
= ρ2X,Y V ar(X)

and the relative reduction with respect to the unhedged cash flow is:

∆R = ∆/V ar(X) = ρ2X,Y

where ρX,Y is the correlation coefficient between X and Y.

It is clear from the characterization in (5.1) that if there is a negative correlation

between the random operational payoff and external investment yield, then one should

buy a∗ units of Y . Similarly, in the case of positive correlation, one should shortsell

a∗ units of Y , if possible, in order to minimize the cash flow variance. Moreover,

the relative reduction in variance is directly characterized by ρ2X,Y . Note that as

|ρX,Y | increase, the relative variance reduction increases. At the extreme, a perfect

correlation (ρX,Y = 1 or ρX,Y = −1) leads to a 100% reduction in variance.

Another way of looking at a∗ is in terms of relative variances is

a∗ = −ρX,Y
σX
σY

(5.2)

where σX and σY are standard deviations of X and Y, respectively. The characteri-

zation given in (5.2) clearly exhibits the relationship between optimal hedge and the

riskiness of operational and external investments as well as their degree of correlation.

In the next section, we utilize the minimum-variance concept outlined in this

part for the operational settings of previous chapters. That is for inventory models

which involve both demand uncertainties and continuous random price fluctuations.

Since the main randomness is due to a market price process which affect purchase

and selling prices as well as customer arrival times, we will assume that there exists

financial securities which are correlated with this price process. We then analyze the
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relationship between this random price process, operational decisions and optimal

hedges in both single and multi-period settings.

5.2 Minimum-Variance Hedging for Inventory Models with Demand

and Price Uncertainty

As in previous chapters, we consider operational cash flows that are dependent on

operational decisions y, a random input price process P and a random customer

demand process N (which may depend on P ). This leads to a random operational

cash flow CF (y,N, P ). Typical operations analysis then looks for the value of y that

maximizes E[CF (y,N, P )] or some other measure that may take into account risk

considerations. In Chapter 3, assuming that the firm is risk-neutral, we had analyzed

the optimal value of y that maximizes E[CF (y,N, P )]. Let us now assume that there

are some financial securities whose prices are denoted by S which are correlated with

the price process P . Let us also denote by θ the investment strategy (the amounts to

invest in each of the securities) and by G(θ, S) the payoff from the financial portfolio

constructed via investment strategy θ. It is by now well established that there may

be benefits in investing in such a portfolio to hedge the operational cash flow. Let us

denote by HCF the hedged cash flow:

HCF (θ, y,N, P, S) = CF (y,N, P ) +G (θ, S) .

This chapter focuses on the following variance minimization problem for a given

operational policy y:

min
θ
V ar (HCF (θ, y,N, P, S))

This formulation has some nice properties that may be appealing conceptually.

Intrinsically, the financial hedge, quantified by θ is dependent on the operational

decision y but the operational decision which may depend on other longer term factors

does not depend on the financial portfolio. This underlines the fact that the operation

is the main focus and know-how of the firm and the financial hedge is a support to the

operations and may be provided separately if operational parameters are shared. We
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can then further specialize to explore different trade-offs. In particular, one consistent

benchmark is to take operational decisions that maximize the expected unhedged cash

flows E[CF (y,N, P )] and find the corresponding optimal financial hedge.

Another nice feature of the minimum-variance formulation is that it leads to a

structured optimization problem whose solution can be obtained explicitly even for

complicated price and demand processes as we show in the coming subsections. More-

over, in Section 5.3, we show that, under this formulation, it is possible to obtain a

dynamic programming formulation for multi-period inventory problems and compute

its solution in a tractable manner. While other multi-period inventory models that

consider financial hedging (such as Kouvelis et al. (2013), Kouvelis et al. (2015)) do

not allow carrying inventory from one period to the next, our formulation enables

handling inventory carrying.

It is useful to contrast the minimum-variance approach with the well-known mean-

variance optimization objective that investigates the trade-offs between the expected

payoff and its variance. For a complete understanding of the mean-variance type

risk trade-off, one needs to trace the efficient frontier of non-dominated solutions.

By definition, the minimum variance approach yields minimum variances for each

operational policy. If the operational policy space is small and structured (as in the

single ordering opportunity case where a base-stock policy is optimal), one can easily

trace the efficient frontier numerically by searching over this space for all minimum

variance policies. We present such an example in Section 5.4. Even if the policy

space is complicated (as in multi-period models where the optimal ordering policy

is a base-stock policy with a different target level at each period), the operational

decision may take into account a smaller subset of plausible policies for which the

efficient frontier can be traced numerically.

Next, we specify the inventory models, corresponding operational policies and the

input price, demand and security price processes to consider different cases. The

models are also general enough to cover many commonly encountered special cases in

the inventory literature (only demand or price uncertainty, periodic vs. continuous
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demand, etc.).

5.2.1 Single-Period Model with Dynamic Hedging

In this section, we analyze the financial risk hedging of a single-item single-period

inventory model with fluctuating prices and randomly arriving demand in continuous

time. More specifically, we again assume that the stochastic process P = {Pt; t ≥ 0}

denotes the market prices which are compounded to time T for the product where P0

represents the unit purchase price at time 0. As in Chapter 3, we assume that the

selling price of the item at any time t is given by f (Pt) where f is the firm’s general

selling price function which is assumed to be positive.

On the operations side, we assume that planning horizon is [0, T ] and the firm

has a single inventory order opportunity at time 0. We assume that customers arrive

according to a stochastic process during the sales period and demand one unit of the

item. The sales revenue depends on customer arrival times as well as prevailing selling

prices at those times. In case of shortage, arriving customer demands are assumed to

be backordered and satisfied at time T. To incorporate the effect of random selling

prices on the customer demand, we assume that customers arrive according to a

doubly stochastic Poisson process with the intensity process Λ = {Λt = λ (Pt) ; t ≥ 0}

where λ is a nonnegative function. The rate function λ determines the dependency

between selling prices and customer arrivals. We use N = {Nt : t ≥ 0} to denote the

customer (or demand) arrival process where Nt is the total number of demand by

time t. Here, we also note that throughout this chapter, the prices of all inventory

and financial products are assumed to be compounded to time T.

To keep the model general, we assume that the firm incurs a unit holding cost

h(PT ) for each unit of unsold items and a total backorder cost of b(PT ) for each unit

of backordered items. Note that the backorder cost b(PT ) potentially includes any

penalty or goodwill cost as well as the repurchase cost PT for the backordered de-

mand. A standard example would be b(PT ) = b + PT where b is a penalty cost and

PT is the repurchase cost at time T. The holding cost, on the other hand, may involve
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any physical storage or opportunity costs as well as any salvage revenue which may

also be random considering the nature of the product that the firm sells. Our results

hold for the general functions h(PT ) and b(PT ), and we will assume so throughout

this chapter except for some special cases and the numerical analysis in Section 5.4.

The operational setting we consider, although quite general, is appropriate for situa-

tions where stochastic prices possibly pass to consumers, hence affect both customer

demand and retail margins. For this operational model, we can write the total cash

flow at time T from operational decisions as

CF (y,N, P ) = −P0y +

NT∑
j=1

f
(
PTj
)
−
[
b (PT ) (NT − y)+ + h (PT ) (y −NT )+

]
(5.3)

where y is the order quantity at time 0. This is slightly different from operational

setting given in (3.4) and (3.5) , as now backorder and holding costs are also functions

of random prices at the end of planning horizon, i.e., PT . This is to generalize the

model to incorporate any repurchasing or salvaging costs in the backorder and holding

cost functions. Note that in the multi-period inventory management problem in

Chapter 3, these costs were modeled explicitly, so that backorder and holding costs

were only functions of observed prices at the beginning of each period. We remark

here that as in Chapter 3, the first term in (5.3) is the total purchase cost for y

units whereas the second term is the total revenue from sales. It is generated by

summing individual revenues for all arriving customers where Tj is the arrival time

of jth customer and f
(
PTj
)

is the selling price at that time. The summation is

performed until the NT th customer, i.e., the last customer who arrived during the

sales period. The last term is the total backorder and holding costs where (NT − y)+

and (y −NT )+ denote the total number of shortages and overages, respectively.

It is obvious that the firm is exposed to certain risks in its inventory operations.

These risks are mostly related to market prices as they influence both selling prices

and customer demand. We propose a dynamic financial hedging strategy to alleviate

both price and demand risks for this inventory system. We assume that there are some

financial securities available in the market and the firm has certain opportunities to
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invest in them. In particular, we assume that there are M financial securities which

are correlated with the market price process P. We let S =
(
S(1), S(2), ..., S(M)

)
denote

the price processes for these securities where S(i) =
{
S
(i)
t ; t ≥ 0

}
. For each i = 1, ..,M,

S(i) represents the price process of security i that is compounded to time T.

We assume that there are prespecified trading times T = {t0, t1, t2, ..., tn−1, tn}

with 0 = t0 < t1 < ... < tn−1 < tn = T for the firm. In this section, we assume

that the firm decides on a single order quantity at the beginning of the selling season

and then applies a dynamic hedging strategy based on its stocking decision in order

to minimize the variance of total cash flow at the end of selling season. A dynamic

hedging strategy uses available information at trading times about the states of market

and security prices as well as current inventory level to decide on a financial position

for each financial security. We let θ = (θ0, θ1, ..., θn−1) denote a financial hedging

strategy where θk =
(
θ
(1)
k , ..., θ

(M)
k

)
is a column vector that represents the financial

positions to hold at time tk for securities i = 1, ..,M. With this formulation, we can

write the final payoff at time T for the financial hedging strategy θ as

G (θ, S) =
M∑
i=1

n−1∑
k=0

θ
(i)
k

(
S
(i)
tk+1
− S(i)

tk

)
=

n−1∑
k=0

θTk 4 Sk

where 4Sk = Stk+1
− Stk is an M × 1 column vector that consists of financial payoffs

(compounded to time T ) of holding a unit of each security during [tk, tk+1] . We define

the total hedged cash flow as the sum of operational and financial profits

HCF (θ, y,N, P, S) = CF (y,N, P ) +G (θ, S) . (5.4)

In general, we seek financial hedges to minimize the variance of the total cash flow

for any ordering policy y. But a plausible objective of the decision maker may be to

solve

max
y≥0

E [HCF (θ (y) , y,N, P, S)]

subject to θ (y) = arg min
θ

V ar (HCF (θ, y,N, P, S)) .
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In other words, the problem is to find the order quantity which maximizes the ex-

pected total hedged cash flow at time T while using a financial hedging strategy

that minimizes the variance. Compared to conventional objective functions in the

literature such as mean-variance utility, this particular objective function points to

a certain type of risk preference such that it selects the inventory policy that max-

imizes the mean hedged cash flow while ensuring that the variance is minimized

through hedging. Note that mean-variance maximization objectives are of the form

E[CF ] − αV ar(CF ) where α is the risk-sensitivity parameter that determines how

much weight to be given to risk-minimization compared to mean-return maximiza-

tion. In our formulation, for any inventory policy, we give complete characterization of

hedging policies in a single-period setting. Additionally, in a multi-period setting, we

characterize the value function and show that dynamic variance-minimizing hedging

policies can be found in an efficient and tractable way. This enables one to implement

numerical considerations even for large number of trading periods and consequently

try out different operational policies to generate a risk-return schema. In other words,

a risk-return efficient frontier can be generated in both static and dynamic settings

and this is possible for a very general class of operational settings. We also illustrate

this in Section 5.4.

Before we start analyzing the dynamic hedging model in detail we first proceed

with a special case where there is only a single trading opportunity at t = 0 and the

firm is not allowed to revise his portfolio dynamically. We call this the static hedging

model. Here, we also remark that the proofs for some of the technical results are

provided in the Appendix.

5.2.2 Static Hedging Model

In this part, we assume that T = {t0 = 0, t1 = T}, i.e., there is only a single trading

opportunity initially at time 0. Then, a minimum variance hedge for any order

quantity y is found by minimizing the variance of (5.4) , i.e., by solving

θ (y) = arg min
θ

V ar
(
CF (y,N, P ) + θT 4 S

)
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where 4S = 4S0 = ST − S0 and θ = θ0 =
(
θ
(1)
0 , ..., θ

(M)
0

)
. Note that we can rewrite

the objective function as

V ar
(
CF (y,N, P ) + θT 4 S

)
= V ar (CF (y,N, P )) + V ar

(
θT 4 S

)
+ 2Cov

(
CF (y,N, P ) , θT 4 S

)
= V ar (CF (y,N, P )) + θTCθ + 2θTµ (y) (5.5)

where C is an M ×M covariance matrix with entries

Cij = Cov
(
4S(i),4S(j)

)
= Cov

(
S
(i)
T , S

(j)
T

)
.

The last equality is due to the fact that at time t = 0, the prices of securities are

known with certainty and S
(i)
0 is constant for all i = 1, ...M. Additionally, µ (y) is an

M × 1 column vector where its ith element is

µi (y) = Cov
(
CF (y,N, P ) ,4S(i)

)
= Cov

(
NT∑
j=1

f
(
PTj
)
, S

(i)
T

)
− Cov

(
h (PT ) (y −NT )+ , S

(i)
T

)
− Cov

(
b (PT ) (NT − y)+ , S

(i)
T

)
. (5.6)

Note that if we assume that given price process P , customer arrival process N is

independent of S, then we can write the first term in (5.6) as

Cov

(
NT∑
j=1

f
(
PTj
)
, S

(i)
T

)
=

T∫
0

Cov(f (Pu)λ(Pu), S
(i)
T )du. (5.7)

whose derivation is given in the Appendix.

Theorem 5.1 The objective function in (5.5) is convex in θ and the minimum-

variance hedge for an order quantity y is given by

θ∗ (y) = −C−1µ (y) . (5.8)

Proof. The first-order optimality condition for the objective in (5.5) is obtained by

setting the gradient equal to zero so that 2Cθ+ 2µ (y) = 0 which gives θ∗ (y) in (5.8).
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Note also that the second order condition is satisfied since the Hessian matrix is 2C

which is always positive semi-definite since C is a covariance matrix.

Theorem 5.1 gives the minimum variance portfolio for any order quantity y. Note

that we only need a covariance matrix of security prices and a covariance vector

between the random cash flow and security prices to compute the minimum-variance

hedge. In the upcoming sections, we also show that with a few changes this structure

is preserved. Substituting (5.8) in (5.4) , we obtain

HCF (θ∗ (y) , y,N, P, S) = CF (y,N, P )− µ (y)T C−14 S (5.9)

since (C−1)
T

= C−1.

The next theorem characterizes the optimal order quantity that maximizes the

expected value of the final cash flow with the minimum-variance hedging portfolio.

We first state the following assumption to ensure the uniqueness of optimal order

quantity.

Assumption 5.1 The function

E
[
(h (PT ) + b (PT )) 1{NT≤y}

]
− Cov

(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)T
C−1E [4S]

is strictly increasing in y.

As we will see later, Assumption 5.1 is always satisfied if E [4S] = 0, i.e., the

securities are martingales, and if the demand process N is independent of the market

price process.

Theorem 5.2 Under Assumption 5.1, the optimal order quantity that maximizes

(5.9) is

y∗ = inf
{
y ≥ 0 : E

[
(h (PT ) + b (PT )) 1{NT≤y}

]
−Cov

(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)T
C−1E [4S]

≥ −P0 + E [b (PT )]− Cov (b (PT ) , ST )T C−1E [4S]
}
. (5.10)
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Note that no restriction is put on financial securities for the result given in Theo-

rem 5.2. A very plausible special case for the financial securities is that they do not

yield any positive values in expectation. In other words, they can not be used for

speculative purposes, rather, they can be used for hedging. Next corollary presents

the expectation-maximizing order quantity when E [4S] = 0.

Corollary 5.1 If the securities are assumed to be fairly priced, i.e., E [4S] = 0,

Assumption 5.1 is always satisfied and the optimal order quantity reduces to the risk-

neutral solution

y∗ = inf
{
y ≥ 0 : E

[
(h (PT ) + b (PT )) 1{NT≤y}

]
≥ −P0 + E [b (PT )]

}
. (5.11)

Note that the assumption of E [4S] = 0 is common in the finance literature. It

implicitly assumes that the financial market itself is complete such that there exists

a risk-neutral probability measure that makes the underlying stock price process a

martingale. This measure can then be used to find fair prices of financial derivatives

of this stock which, in turn, are also martingales. The complete financial market is a

natural assumption and it allows the decision makers to use derivative securities for

hedging purposes. In the static hedging case, we do not need to impose a complete

financial market assumption to characterize both optimal inventory and hedging poli-

cies. However, in the dynamic hedging case, we will assume that the financial market

itself is complete and the security prices follow martingale price processes in order

to ensure the separability of the dynamic programming formulations. Note that al-

though the financial market is complete, our model falls into the world of partially

complete markets since there are certain risks (demand related risks) that can not be

removed by financial hedging (see Caldentey and Haugh (2006)).

Next, we analyze another special case of the static hedging model where we assume

that the market prices do not affect the demand process.
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Special Case: Demand process is independent of market prices.

In this section we assume that N = {Nt; t ≥ 0} is a Poisson process with rate λ inde-

pendent of the market price process P and security price processes S. The following

corollary characterizes the optimal hedging portfolio and order quantity.

Corollary 5.2 If N is a Poisson process with rate λ independent of P and S, the

optimal hedging portfolio is given by θ∗ (y) = −C−1µ (y) where

µ (y) = λ

T∫
0

Cov (f (Pt) , ST ) dt− E
[
(y −NT )+

]
Cov (h (PT ) , ST )

− E
[
(NT − y)+

]
Cov (b (PT ) , ST ) . (5.12)

Moreover, the optimal order quantity that maximizes the expected cash flow while using

the minimum-variance portfolio θ∗ (y) reduces to

y∗ = inf {y ≥ 0 : P {NT ≤ y}

≥ −P0 + E [b (PT )]− Cov (b (PT ) , ST )T C−1E [4S]

E [h (PT )] + E [b (PT )]− Cov (h (PT ) + b (PT ) , ST )T C−1E [4S]

}
(5.13)

Observe that (5.10) reduces to (5.13) when the dependency between P and N

is removed which then yields the well-known critical-fractile Newsvendor solution is

obtained. This is also further refined if we again assume that financial securities do

not bring any value in expectation. It is clear that the critical fractile only consists

of traditional underage and overage costs in this case. This can be easily observed in

the next corollary.

Corollary 5.3 If all securities are martingales, then E [4S] = 0 and the optimal

order quantity that maximizes the expected hedged cash flow is

y∗ = inf

{
y ≥ 0 : P {NT ≤ y} ≥ −P0 + E [b (PT )]

E [h (PT )] + E [b (PT )]

}
.
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Special case: Hedging with a Single Future.

In this section, we analyze another special case where there is a single future written

on PT under the assumption that N is independent of P and S. It is clear that

futures are the most widely used and most effective financial contracts in financial

risk hedging. This fact is also numerically demonstrated in Section 5.4.

We assume that S is a future on PT , which implies S0 = P0, ST = PT , (Baxter

and Rennie (1996)). Then, 4S = PT − P0. Recall that both S and P represents the

values that are compounded to time T. Note also that

C = Cov(4S,4S) = V ar (PT ) . (5.14)

To keep the exposition simple, we also define specific holding and backorder func-

tions. In particular, we assume that the firm incurs a constant penalty cost b and

a repurchase cost of PT for each unit of backordered demand, i.e., b (PT ) = b + PT .

Similarly, we assume that the firm incurs a holding cost of h, which may include

physical storage costs as well as opportunity costs. Let us further assume that the

firm salvages the remaining items at δ fraction of the market price at time T which

yields a total holding cost function of h (PT ) = h− δPT . Assume also that δ ∈ [0, 1].

Note that with these assumptions, the total operational cash flow to be hedged is

−P0y +

NT∑
j=1

f
(
PTj
)
− (h− δPT ) (y −NT )+ − (b+ PT ) (NT − y)+ .

The next corollary characterizes the optimal order quantity and the minimum-variance

hedge when there is only the future with terminal time T available for hedging.

Corollary 5.4 If only a single future contingent on PT is used and there are no in-

termediate trading points, the order quantity that maximizes the expected total hedged

cash flow is

y∗ = inf

{
y ≥ 0 : P {NT ≤ y} ≥ b

b+ h+ (1− δ)P0

}
. (5.15)

and the optimal position on the future for any order quantity y is

θ∗ = E
[
(NT − y)+

]
− δE[(y −NT )+]− λ

∫
[0,T ]

βtdt
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where

βt =
Cov (f (Pt) , PT )

V ar (PT )
.

Corollary 5.4 characterizes the optimal number of future contracts to be bought

or sold in order to minimize the variance of the final cash flow when the order-

up-to level is y at time 0. Under the assumption that N is independent of P, it

is clear that the three components in θ∗ respectively hedge the random repurchase

cost −PT (NT − y)+ , the random salvage revenue δPT (y −NT )+and the total sales

revenue
NT∑
j=1

f
(
PTj
)
. It is intuitive that the decision maker should take a E

[
(NT − y)+

]
units of long position on the future in order to eliminate the price risk in the repurchase

of backordered items. Note that there is still randomness in demand as one can not

eliminate the risk associated with (NT − y)+ since N is independent of security price

movements. This is similar for the salvage risk as well where the firm should take

a δE
[
(y −NT )+

]
units of short position on the future, to mitigate the price risk.

The last term, on the other hand, partially eliminates the price related risks in the

operational cash flow. This is due to the fact that only a single future contingent on

the market price at time T is used for hedging whereas the revenue term is affected

by all realized market prices during [0, T ] .

Moreover, we can establish that the higher the order level y, the lower θ∗ (y) is.

This can be easily observed using the transformation (y −NT )+ = (NT − y)++y−NT

and writing

θ∗ = (1− δ)E
[
(NT − y)+

]
− δy + δλT − λ

T∫
0

βtdt.

Note that the inventory model analyzed in this chapter is rather general in the

sense that it involves both selling price and demand uncertainty. Moreover, the selling

prices and backorder and holding costs are represented in terms of general functions.

This allows us to consider a number of special cases and extensions based on the

analyzed model. For instance, if we assume that the selling price function is constant

and zero, i.e., if f = 0 and both backorder and holding costs are constants such as b

and h, then this is a typical example of a single period newsvendor model with only
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demand uncertainty. More specifically, for this special case the cash flow reduces to

CF (y,N, P ) = −P0y − b (NT − y)+ − h (y −NT )+

where only the demand NT is affected by the market prices P which are correlated

with the financial securities. This is similar to the single period model considered in

Gaur and Seshadri (2005) in which the authors specifically assumed that the demand

is a linear function of the price of a financial asset.

The newsvendor example was a pure demand uncertainty example. If we assume

that both b (p) = h (p) = 0 and the inventory decision is y = 0, then, as a special

case, this can be considered as a make-to-order model with negligible processing times

where the cash flow reduces to

CF (y,N, P ) =

NT∑
j=1

f
(
PTj
)
.

Note that the manufacturer produces and sells the product to individual customers

as they arrive depending on a general selling price function f . If we further assume

that f (p) = αp, then this is the typical revenue stream of currency exchange offices

where the market price process P may represent the movements of dollar currency

with respect to euro and α is the percentage commission that the exchange office

obtains from each transaction.

In the next section, we generalize the previous analysis by allowing the firm to

change its portfolio at each trading time after observing the available information.

5.2.3 Dynamic Hedging Model

In this section, we consider a dynamic hedging model where, similar to the static

hedging model, we assume that an inventory decision is made at t = 0 and the sales

period is between [0, T ] . However, for this case we assume that security prices S(i) ={
S
(i)
t ; t ≥ 0

}
are Markovian and follow martingale price processes, i.e., E

[
S
(i)
t |Fu

]
=

S
(i)
u for all i and u < t where Fu is the filtration until time u. We also assume that given

Pt and St, {Pu;u > t} is independent of St and given St {Su;u > t} is independent of
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Pt. Our aim is to find the minimum-variance dynamic hedging strategy, i.e., for fixed

y, the objective is to solve

min
θ
V ar (HCF (θ, y,N, P, S)) = E

(CF (y,N, P ) +
n−1∑
k=0

θTk 4 Sk

)2


− E [CF (y,N, P )]2 . (5.16)

Note that the last term is due to each S(i) being a martingale, i.e., E [4Sk] = 0 for

each k. Then the problem is equivalent to minimizing the second moment of the final

hedged cash flow, i.e.,

min
θ
E

(CF (y,N, P ) +
n−1∑
k=0

θTk 4 Sk

)2
 . (5.17)

Then, objective function given in (5.17) is separable in terms of dynamic program-

ming, i.e., it can be solved by backward induction. First, let us define the total

demand between t1 and t2 for any t1 < t2 as N[t1,t2]. Then the total demand during

the kth period is N[tk,tk+1]. Similarly, we define the total revenue from sales during

[tk, tk+1] as

R[tk,tk+1] =

N[tk,tk+1]∑
j=1

f
(
PTj+tk

)
where Tj denotes the arrival time of jth customer after time tk. Observe that the total

revenue during [0, T ] is

n−1∑
k=0

R[tk,tk+1] = R[t0,tn] =

NT∑
j=1

f
(
PTj
)
.

We also need another state to keep track of the current level of the profit. We define

the wealth at the beginning of period k + 1 as

Wk+1 = Wk +R[tk,tk+1] + θTk 4 Sk

where we suppose that the initial wealth is W0 = 0. Note that the total wealth at

the beginning of period k + 1 is the sum of wealth at the beginning of period k and
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operational and financial gains during [tk, tk+1]. On the other hand, inventory level

at the beginning of period k + 1 is

Xk+1 = Xk −N[tk,tk+1] (5.18)

with initial condition X0 = y where y is the order-up-to decision at time 0. Observe

that we can write the objective function given in (5.17) as

E

(CF (y,N, P ) +
n−1∑
k=0

θTk 4 Sk

)2
 = E

[(
Wn −

[
b (Ptn) (−Xn)+ + h (Ptn)X+

n

])2]
.

We construct the dynamic programming formulation by the equation

Vk (x,w, p, s) = min
θk
E
[
Vk+1

(
Xk+1,Wk+1, Ptk+1

, Stk+1

)
|Xk = x,Wk = w,Ptk = p, Stk = s]

= min
θk
E
[
Vk+1

(
x−N[tk,tk+1], w +R[tk,tk+1] + θTk 4 Sk, Ptk+1

, Stk+1

)
|Ptk = p, Stk = s] (5.19)

where the boundary condition is

Vn (x,w, p, s) =
(
w − b (p) (−x)+ − h (p)x+

)2
.

Note that at each trading period the decision maker observes the current inventory

level, wealth, market price and security prices to construct a portfolio in order to

minimize the second moment of the final payoff.

Minimum Variance Hedging Strategy.

The following theorem characterizes the optimal hedging policy and the form of the

value function. First let us define, similar to the previous model, a covariance matrix

Ck (s) for period k with elements

Ck (s)ij = Cov
(
S
(i)
tk+1

, S
(j)
tk+1
| S(i)

tk
= s(i), S

(j)
tk

= s(j)
)

(5.20)

and a covariance vector µk (x, p, s) with elements

µk (x, p, s)j = Cov
(
R[tk,tn] − b (Ptn)

(
N[tk,tn] − x

)+ − h (Ptn)
(
x−N[tk,tn]

)+
,
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S
(j)
tk+1
| Ptk = p, S

(j)
tk

= s(j)
)

(5.21)

where R[tk,tn] is the total revenue from period k to the last period. Furthermore, let

us define

gk (x,w, p) = E
[(
w +R[tk,tn] − b (Ptn)

(
N[tk,tn] − x

)+
−h (Ptn)

(
x−N[tk,tn]

)+)2 | Ptk = p

]
(5.22)

which denotes the second moment of the operational cash flows from period k to the

last period given the wealth, inventory and market price levels w, x and p. Last, we

define the following recursion

hk (x, p, s) = −µk (x, p, s)T Ck (s)−1 µk (x, p, s)

+ E
[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
| Ptk = p, Stk = s

]
for k = n− 1, n− 2, ..., 0 with the terminal condition hn (x, p, s) = 0. These functions

will be used in characterization of the optimal hedging policy for a given order-up-to

level y. Although the recursion is complicated, we show that there is a surprisingly

nice characterization of the value function and the optimal portfolio which is given in

the next theorem.

Theorem 5.3 (a) The value function at any period k is

Vk (x,w, p, s) = gk (x,w, p) + hk (x, p, s) .

(b) The minimum-variance portfolio at period k is

θ∗k (x, p, s) = −Ck (s)−1 µk (x, p, s)

Theorem 5.3 characterizes the optimal trading policy for a given initial order y. If

the firm wishes to use the inventory level y∗ that maximizes the expected total hedged

cash flow, it is found by (5.11) and the optimal trading strategy at the initial period

is

θ∗0 (x = y∗, p, s) = −C0 (s)−1 µ0 (y∗, p, s) .
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Theorem 5.3-(a) offers a powerful decomposition of variance terms where the lead-

ing term depends on wealth state and denotes the second moment of the operational

hedged cash flow. The latter term, on the other hand, does not depend on the wealth

which is the only state that is affected by hedging decisions at each period. This sep-

aration allows us to find the result in 5.3-(b) in an efficient and tractable way which

proves to be very useful in numerical implementations. Note that one can further

write µk (x, p, s)j as

µk (x, p, s)j =

T∫
tk

Cov(f (Pu)λ(Pu), S
(j)
tk+1
|Ptk = p, S

(j)
tk

= s(j))du

− Cov
(
b (PT )

(
N[tk,tn] − x

)+
, S

(j)
tk+1
|Ptk = p, S

(j)
tk

= s(j)
)

− Cov
(
h (PT )

(
x−N[tk,tn]

)+
, S

(j)
tk+1
|Ptk = p, S

(j)
tk

= s(j)
)

using the identity in (5.7) .

5.3 Multi-period Inventory Model with Dynamic Hedging

In this section, we generalize the single period inventory model with dynamic finan-

cial hedging such that the decision maker may simultaneously revise both inventory

level and hedging portfolio at each period. To this end, we slightly modify the cost

structure and assume that a penalty cost of b and a holding cost of h are incurred at

each period for the backordered and remaining items, respectively. We assume that

there is also a clearance opportunity and in the last period, the firm purchases the

backordered items at the market price Ptn and sells the remaining ones at δPtn . Note

that both of them are functions of the market price at time T. In financial hedging,

we employ a similar analysis by first fixing an ordering strategy, and then finding

the minimum-variance hedging policy. Here, we also note that the following analy-

sis is also valid if the frequency of trading is higher than the frequency of inventory

replenishment, i.e., between two inventory replenishments, there can also be multi-

ple trading opportunities. However, for exposition, we only consider the case where

both financial and inventory decisions are only taken at the beginning of each period
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simultaneously.

Let us define an admissible ordering policy as a decision rule that is a function of

the inventory level, wealth, the product market price and the financial security prices

at the beginning of each period where admissible action space is Yk (x,w, p, s) =

{y ∈ N; y ≥ x} where N is the set of nonnegative integers. Let y = [y0, ..., yn−1] be

any admissible ordering policy. We define Xk as the inventory level at the beginning

of time tk. Different than (5.18) , the evolution of the inventory level for period k is

Xk+1 = yk −N[tk,tk+1]

with the initial condition X0 = 0 since at each period the inventory level is raised

up to the level yk. For notational convenience, let us define the time T compounded

value of the cash flow between [ti, tj] , i.e., between periods i and i+1, under ordering

policy y as

CF y
[ti,tj ]

=

j−1∑
k=i

CF y
[tk,tk+1]

where

CF y
[tk,tk+1]

= −Ptk (yk −Xk) +R[tk,tk+1] − b (−Xk+1)
+ − hX +

k+1

for k ≤ n − 2. Note that the terms are purchase cost, sales revenue and backorder

and holding cost for period k. For the last period, we define

CF y
[tn−1,tn]

= −Ptn−1 (yn−1 −Xn−1) +R[tn−1,tn] − (b+ Ptn) (−Xn)+ − (h− δPtn)X +
n

where the only difference from intermediate periods is the inclusion of repurchasing

from the market and salvaging terms. With these notations, total operational cash

flow at time T is CF y
[t0,tn]

. Similar to (5.4), we can write the total hedged cash flow

as

HCF (y, θ,X, P,N, S) = CF y
[t0,tn]

+
n−1∑
k=0

θTk
(
Stk+1

− Stk
)

(5.23)

where the last term is the financial profit generated from portfolio decisions. We

define the wealth process by

Wk+1 = Wk + CF y
[tk,tk+1]

+ θTk
(
Stk+1

− Stk
)
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where we initially suppose W0 = 0. With these formulations, we can rewrite the

hedged cash flow in (5.23) as

HCF (y, θ,X, P,N, S) = Wn.

Minimum-Variance Hedging Strategy for a given Ordering Policy

We first use dynamic programming to find the minimum-variance hedging strategy for

any admissible ordering policy y = [y0, ..., yn−1]. Since the security prices are assumed

to be martingales, similar to the previous models, the objective is to minimize the

second moment of the total hedged cash flow. We define the dynamic programming

equation under ordering policy y as

Vk (x,w, p, s; y) = min
θk
E
[
Vk+1

(
Xk+1,Wk+1, Ptk+1

, Stk+1
; y
)

| Xk = x,Wk = w,Ptk = p, Stk = s]

= min
θk
E
[
Vk+1

(
yk −N[tk,tk+1], w + CF y

[tk,tk+1]
+ θTk 4 Sk, Ptk+1

, Stk+1
; y
)

| Xk = x, Ptk = p, Stk = s] (5.24)

with the boundary condition

Vn (x,w, p, s; y) = w2.

As in the previous model, the states of the system are defined as inventory level x,

wealth level w, market price p and security price vector s. The value function given in

(5.24) represents the minimum value of the second moment of the final cash flow at

period n given the states at period k and the ordering policy y. The following theorem

characterizes the optimal trading strategy for a given admissible ordering policy y.

Let us first define

gk (x,w, p; y) = E

[(
w + CF y

[tk,tn]

)2
| Xk = x, Ptk = p

]
which mainly represent the second moment of the operational profits from period k

to the last period n. Note that with this definition

gn (x,w, p; y) = w2 = Vn (x,w, p, s; y) (5.25)
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since CF[tn,tn] = 0. Let us also define the recursion

hk (x, p, s; y) = −µk (x, p, s; y)T Ck (s)−1 µk (x, p, s; y)

+ E
[
hk+1

(
Xk+1Ptk+1

, Stk+1
; y
)
| Ptk = p, Stk = s

]
for k = n− 1, n− 2, ..., 0 with the terminal condition hn (x, p, s; y) = 0. This will be

used in characterizing the optimal trading strategy. Similar to the previous model,

Ck (s) is the covariance matrix defined in (5.20) . This is the covariance matrix of the

security prices for any period k + 1 given the security prices at period k. Similarly,

the covariance vector µk (x, p, s) with elements

µk (x, p, s; y)j = Cov
(
CF y

[tk,tn]
, S

(j)
tk+1
| Xk = x, Ptk = p, S

(j)
tk

= s(j)
)

represents the covariances between the security prices for period k+1 and the random

operational cash flow from period k to the last period n given the ordering policy y,

initial inventory level x, market price p and security price vector s.

Theorem 5.4 (a) The value function at any period k is

Vk (x,w, p, s; y) = gk (x,w, p; y) + hk (x, p, s; y) .

(b) The minimum-variance portfolio at period k is

θ∗k (x, p, s; y) = −Ck (s)−1 µk (x, p, s; y) . (5.26)

As in the single period inventory model, at each period, the decision maker chooses

the order-up-to level independent of the portfolio decision. Then he chooses his port-

folio. In Section 3.2, we already showed that for each period, a price-dependent

base-stock policy is optimal (see Theorem 3.1). The decision maker may use the

expectation-maximizing ordering strategy and then based on this, the characteriza-

tion in (5.26) can be used to minimize the variance dynamically for that policy.

The multi-period inventory model analyzed in this section also covers a selection

of inventory models available in the literature. For instance, if we assume that the

selling price function is f = 0 and there is no repurchasing and salvaging, then this is

one of the typical models where there is both demand and purchase price uncertainty.

This is very similar to the model considered in Kalymon (1971).
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5.4 Numerical Analysis

In this section, we numerically analyze the effect of financial hedging on price and

demand risks using particular derivative securities written on the market prices of the

inventory item. As in Chapter 3, to model the market prices, we use the two-factor

model of commodity prices proposed by Schwartz and Smith (2000), which models

both the short-term and long-term properties of prices. In particular, it is again

assumed that market prices follow

Pt = P0e
−1/2(σ2

1+σ
2
2)t+σ1W

(1)
t +σ2W

(2)
t (5.27)

where σ1 = (σξ + σχρ) and σ2 = σχ
√

1− ρ2 with W
(1)
t ,W

(2)
t being two independent

Brownian motions with respect to Q. This is the same setting in Section 3.8. Note

that the price process P is a martingale under Q. For the financial securities, we

assume that there is a future and a call option with a strike price of K on the value

of PT which the firm may use to hedge his risks. Note that since the market price

process is itself a martingale, its derivative securities follow martingale price processes

as well. Let us assume that S(1) and S(2) are price processes for the future and call

option, respectively. Then, the fair price of the future at time t is

S
(1)
t = Pt

whereas the fair-price of the call option is

S
(2)
t = E

[
(PT −K)+ | Pt

]
assuming that both P and S represent values that are compounded to time T.

We assume that T = 1 and use P0 = 20, σχ = 0.25, σξ = 0.15 and ρ = 0.3 as

the financial parameters. Note that since we use a martingale price process for the

market prices, E [Pt] = P0 = 20. For the call option, we take the strike price K = 20.

For the operational setting, we take the selling price function as f (p) = αp and

assume that α = 2. The backorder cost function and holding cost functions are as-

sumed to be b (p) = 4 + p and h (p) = 1, respectively. For the demand process, we
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assume that the rate function is piecewise linear in the selling price. That is, the

instantaneous arrival rate at time t is

Λt = (A−BαPt)+

where we assume that A = 90 and B = 0.7 and αPt is the selling price at time t.

Note that A is a parameter that denotes the potential customer arrival rate whereas

B represents the sensitivity of the customers to price changes.

Figure 5.1: Mean-variance efficient frontier.

We use the same simulation setting in Section 3.8, i.e., we first generate a price

path using (5.27) and then conditional on these prices, we generate a nonhomogeneous

arrival stream using the thinning algorithm. This in turn enables us to generate

simulated profit realizations.

In our numerical setting, we compare four different cases of cash flow streams for

different scenarios. These cases are the following.

• Case 1: Unhedged cash flow (referred to as “undhedged”)

• Case 2: The hedging portfolio consists of a single future (referred to as “future”)
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• Case 3: The hedging portfolio consists of a single call option (referred to as “call

option”)

• Case 4: The hedging portfolio consists of a future and a call option (referred to

as “Call option & future”)

We first show that one can easily generate the efficient risk-return frontier numer-

ically to perform a detailed risk-sensitivity analysis for the decision maker. This is

possible due to the tractability and efficiency of finding variance-minimizing hedging

policies for any given ordering policy. Figure 5.1 exhibits the mean-variance efficient

frontier for the single period static hedging case. These curves are generated by com-

puting the optimal hedging policy for varying order quantities. The decision maker

then may choose the desired mean-variance level according to his/her risk preference.

Figure 5.2: Effect of number of trading periods on risk reduction.

The rest of the numerical analysis is performed for the expected profit maximiza-
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tion objective to have consistent comparisons across models. We first test the effect

of number of trading periods and different portfolios on the standard deviation of

the total profit. Note that the above economic parameters result in an optimal or-

der quantity as 51 with an expected profit of 1145.70 and a standard deviation of

336.97 which are also observed in Figure 5.1. The order quantity which maximizes

the expected hedged profit (which is equal to the expected operational profit since

the price process is a martingale) is found by using Corollary 5.3. Here one can also

observe that if price volatilities are disregarded and it is assumed that market price is

constant at Pt = 20, then λt = 90− (0.7)(2)(20) = 62 which yields the optimal order

quantity as 54. The difference is due to price volatilities and their effects on opera-

tional policies. The effect of price volatility on the optimal order quantity becomes

greater as customer sensitivity to price changes increases.

It is clear that even though using the call option and the future does not change

the expected profits, they help to reduce the variance. As seen in Figure 5.2, for

static hedging (n = 1) and dynamic hedging cases with different number of trading

times (n = 2, n = 5, n = 10 and n = 20) using only the future does a better job in

variance reduction than using only the call option. It is obvious that using both of

them reduces the variance even further. Note also that as more trading opportunities

become available, the more variance reduction takes place. For the case of 20 trading

periods, nearly 50% reduction in standard deviation is observed. Another illustrative

example can also be seen in Figure 5.3 which plots the histograms of unhedged and

hedged cash flows for a number of different trading periods where hedging is performed

using both future and call option. Note that as the number of trading periods increase,

the distribution of total profits gets narrower and more clustered around the mean

compared to unhedged profits which is wider. This implies that extreme values are

more likely to occur when the cash flow is not hedged using financial instruments.

Observing Figure 5.3, it is also logical to assert that employing theoretically and

computationally tractable minimum-variance framework, one can also improve other

risk measures such as semivariance. Note that semivariance is defined as the variance
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Figure 5.3: Histogram of unhedged and hedged cash flows.

of observations below a target level such as mean. It is clear that for this inventory

system, if financial products are used for variance minimization, then the semivariance

also decreases as the distribution function of total profit is getting narrower on the

left side as well, i.e., the undesirable low profit outcomes.

Knowing the effects of both call option and future leads us to consider different

strike prices as well. For the single period model, with the same financial and economic

parameters, it turns out that when both securities are used, a strike price of K = 21

on the option gives the minimum variance for the final cash flow (expected profits
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and order quantity are the same). For the case where only a call option is used, it is

expected that for K = 0 the minimum variance value is achieved as the security is

now the same security as the future. As the value of the strike price K gets larger,

the minimum variance value decreases. The reason is that for very small values of

K the call option practically behaves like a future and this finding is in line with

the result in Figure 5.2 where it was observed that the effect of using the future is

greater in total risk reduction. Similarly, for large values of K, the call option does

not yield any value and is useless in hedging. Consequently, when both a call option

and the future are used, as K gets larger the standard deviation decreases until a

certain point, and then it starts to increase again which is also observed in Figure

5.4. It is also interesting to observe that one can do quite well in risk reduction by

using only a call option with strike price K = 10. One should however note that call

options with all strike prices may not be available in the market and one may have

to choose among those available using the results of Figure 5.4.

Figure 5.4: Effect of strike price for the call option on risk reduction.

Next, we investigate the effect of varying the customer price sensitivity parameter
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B. It turns out that as B increases, the effect of hedging on risk reduction decreases

as percentage reduction in standard deviation of the total profit (hence the variance)

decreases (Figure 5.5). A larger B results in lower instantaneous arrival rate for each

price realization, hence the expected number of customers arriving during each period

decreases. This consequently decreases the expected total profit and its maximizing

order quantity. At extremely high values of B the effective demand is near-zero and

the profits are stable but vanishing.

Figure 5.5: Effect of price sensitivity on risk reduction.

Next, we numerically analyze the effect of price volatility on the effect of financial

hedging. For this case, we take the number of trading periods n = 5 and we assume

that B = 0, i.e., customers are insensitive to the price changes and they arrive accord-

ing to a Poisson process with rate A = 90 independent of the market price process.

While fixing all the economic parameters, we alter the value of short-term volatility

σχ between 0 and 0.7. Note that as the value of σχ changes, the expected prices do

not change since they are martingales and since demand is independent of market
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Figure 5.6: Effect of price volatility on risk reduction.

prices, the order quantity that maximizes the expected profit is also unchanged. As

seen in Figure 5.6, for this case, we observe that as the price volatility increases, the

percentage reduction in standard deviation of the dynamically hedged cash flow also

increases.

The effect of backorder costs to the variability of cash flow is rather anticipated.

For instance, if the backorder cost increases, the critical fractile and consequently the

expectation-maximizing order quantity increase. Although for each inventory decision

one obtains a smaller mean profit, variance of the cash flow increases. As a result,

increasing backorder costs leads to an increased coefficient of variation in all four cases

considered.
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5.5 Summary

This chapter addresses the dynamic financial hedging problem of a fairly general in-

ventory model with stochastic demand and prices and a number of financial securities

that are correlated with the underlying price process. The risk-averse firm exploits

these correlations by taking positions in the financial market and aims to find a hedg-

ing strategy that minimizes the variance of the total cash flow for any ordering policy.

In the case where there is a single hedging and inventory ordering opportunity, we

characterize the optimal variance-minimizing portfolio. The optimal hedging portfolio

consists of a a covariance matrix of security prices and a covariance vector between

security prices and random cash flow. We refine the characterization for the special

cases of independent demand and price, martingale security prices and the case where

there is a single future available in the market.

Second, we analyze the dynamic hedging version of the single period inventory

model by assuming that there is a fixed number of trading periods in which the

decision maker may revise his initial portfolio using the available information about

the market and security prices and current inventory. This is a much more complicated

setting but under martingale security prices assumption, we show that the dynamic

programming formulation has a separability property and we exploit this to obtain a

dynamic minimum-variance portfolio for any ordering policy. One nice feature of our

approach is that it leads to numerically implementable solutions.

In the last part, we use simulation to test the effect of financial hedging in risk

reduction in a numerical analysis. We use a risk-neutral two-factor price process and

observe that using a future does a better job in hedging than a call option. We

also observe that as the number of trading periods increases, the amount of variance

reduction increases.
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CONCLUDING REMARKS

In this dissertation, we analyzed ordering, pricing and financial hedging policies for

a fairly general inventory system with price and demand uncertainties. In particular,

we consider an operational setting where purchase and selling prices are described by

a continuous-time stochastic price process which, then, also influences the customer

demand. In contrast with most of the existing literature, within each period demand

arrives continuously and is modulated by the continuous price process. In this setting,

sales revenues depend on individual arrival times of demands and not simply on total

accumulated demand. This is an appropriate model for consumer demand that is

strongly affected by fluctuating market prices that are transferred to the customer.

Clearly the existence of this price process has an effect on operational policies such as

inventory ordering and even pricing if the firm is allowed to alter the selling price to an

extent. It is also clear that such a cash flow exhibits many undesirable uncertainties for

a risk-averse firm. Especially, besides random customer demand, fluctuating market

prices add another level to the cash flow’s overall risk. However, if the underlying price

process of the inventory item has some correlation with price evolution of freely-traded

financial securities in financial markets, then this clearly presents an opportunity for

the firm to alleviate apparent risks.

In Chapter 3, we analyze how fluctuating price environment affect firm’s order-

ing policies. In both backorder and lost-sale settings, we show that price-dependent

base-stock policies are optimal under some plausible conditions whose violation has a

potential to lead to non-base-stock cases. We also observe through numerical illustra-

tions that price volatility has a significant negative effect on firm’s expected profits.

In addition, we show that the proposed model has some apparent advantages over
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approximate models that ignore price volatilities within ordering cycles.

In Chapter 4, we investigate the markup pricing problem of the firm that faces

stochastic price volatilities. Although a portion of market-driven prices pass to the

customer, the firm also sets a multiplicative markup to control its potential customer

demand, hence revenues. This is a different kind of a pricing problem since the

existing models use selling price as the control variable and the firm has full control

on the price. We characterize the optimal controls for both markup and stock levels,

and show their reverse effects on each other. Last, we theoretically prove that price

volatilities are disadvantageous for the firm in the special case with convex order

stochastic properties.

Finally, in Chapter 5, we assume that the firm has access to a financial market

and may invest in potential portfolios of financial products which are correlated with

the underlying market price process of the inventory item. In this setting, we assume

that after committing to an ordering strategy, the firm tries to minimize the variance

of the final cash flow by applying a dynamic trading strategy. This objective assumes

that operation is the main focus and know-how of the firm, and finance department

supports the firm by reducing the risk with dynamically constructed portfolios. On

the other hand, this framework leads to nice and implementable characterizations

which make it useful for various complicated operational dynamics. For the inventory

setting, we find explicit characterizations of optimal portfolios for various cases and

through numerical illustrations, we show the effect and efficiency of financial hedging

on risk reduction.

A few other research directions can be considered for the class of models analyzed

in this dissertation. First, our assumption of a risk-neutral decision maker can be

relaxed. In the backorder model, for instance, the firm has the risk of repurchasing

the backordered items later at a higher price. By introducing an appropriate risk-

measure, risk-sensitive inventory management in the presence of fluctuating costs

and revenues can be examined. While the operational setting in minimum-variance

hedging covers many interesting inventory models as special cases, a similar approach
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is likely to work in other inventory systems that are not covered. In the financial

hedging context, one may also be interested in studying the case where security price

processes give nonzero expected payoffs. This requires a new dynamic programming

formulation as the objective function, the variance of the final cash flow, seems to lose

its separability properties. In minimum-variance framework, another consideration

would be to introduce a budget constraint on the financial investments as for now, we

assume that the decision maker may invest any amount to reduce the variance. Last,

instead of variance minimization, one may want to use other risk-measures such as

value-at-risk and conditional value-at-risk as the objective functions for the inventory

models with continuous price fluctuations as these objectives are also gaining attention

in finance literature.
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APPENDIX

Derivation of Expected Total Revenue given in (3.3)

Let P = {Ps : s ∈ [0, t]} . Then,

rt (p) = E

[
Nt∑
n=1

e−rTnf (PTn)

]
= E

[
E

[
Nt∑
n=1

e−rTnf (PTn) | P

]]

= E

[
∞∑
k=0

P {Nt = k | P}E

[
k∑

n=1

e−rTnf (PTn) | P , Nt = k

]]
.

Note that conditioned on Nt = k and P , Tn is the order statistics of k i.i.d. random

variables on [0, t] with cumulative distribution function

Φ (s) =

s∫
0

λ(Pu)du

t∫
0

λ(Pu)du

(7.1)

and probability density function

φ (s) = Φ′ (s) =
λ(Ps)

t∫
0

λ(Pu)du

on 0 ≤ s ≤ t. Then,

rt (p) = E

[
∞∑
k=0

P {Nt = k | P} kE
[
e−rT̃f

(
PT̃
)
| P
]]

where T̃ is a random variable with distribution Φ given in (7.1) . This implies that

rt (p) = E
[
E [Nt | P ]E

[
e−rT̃f

(
PT̃
)
| P
]]

= E

E [Nt | P ]


t∫
0

e−ruf (Pu)λ(Pu)du

t∫
0

λ(Pu)du


 .
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Note that

E [Nt | P ] =

t∫
0

λ(Pu)du

which implies that

rt (p) =

t∫
0

e−ruE [f (Pu)λ(Pu)] du.

Derivation of Partial Derivatives of g(y, α)

Let P = {Ps : s ∈ [0, T ]}.

First-order derivative of g (y, α) with respect to α is

gα (y, α) =
∂

∂α
E
[
Rα
T − (b+ PT )DNα

T
− (b+ PT ) (y −DNα

T
)+
]
.

We find

∂

∂α
E
[
(b+ PT )DNα

T

]
=

∂

∂α
E
[
E
[
(b+ PT )DNα

T
| P
]]

= E

[
(b+ PT )

∂

∂α
E
[
DNα

T
| P
]]

= µE
[
(b+ PT ) (Mα

T )
′
]

and

∂

∂α
E
[
(b+ PT ) (y −DNα

T
)+
]

=
∂

∂α
E
[
E
[
(b+ PT ) (y −DNα

T
)+ | P

]]
= E

[
(b+ PT )

∂

∂α
E
[
(y −DNα

T
)+ | P

]]
(7.2)

where

∂

∂α
E
[
(y −DNα

T
)+ | P

]
=

∂

∂α

∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk)

+
]

=
∂

∂α

∞∑
k=0

(
e−M

α
T (Mα

T )k

k!
E
[
(y −Dk)

+])

=
∞∑
k=0

(
(Mα

T )′
(
−e
−Mα

T (Mα
T )k

k!
+
e−M

α
T (Mα

T )k−1

(k − 1)!

)
E
[
(y −Dk)

+])

= − (Mα
T )′

∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk)

+]
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+ (Mα
T )′

∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk+1)

+] .
We defined earlier that 4k (y −Dk)

+ = (y −Dk+1)
+ − (y −Dk)

+ . This makes

∂

∂α
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′
∞∑
k=0

P {Nα
T = k | P}E

[
4k (y −Dk)

+]
= (Mα

T )′E
[
4
(
y −DNα

T

)+ | P] (7.3)

Finally, we find

gα (y, α) = r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

− E
[
(b+ PT ) (Mα

T )′E
[
4
(
y −DNα

T

)+ | P]]
= r′T (α)− µE

[
(b+ PT ) (Mα

T )
′
]

− E
[
(b+ PT ) (Mα

T )′4
(
y −DNα

T

)+]
.

In another notation, we can write

gα (y, α) = r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]
.

By (7.2), second-order derivative with respect to α is

gαα (y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT )

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]]
where we can write by (7.3) that

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′′E
[
4
(
y −DNα

T

)+ | P]
+ (Mα

T )′
∂

∂α
E
[
4
(
y −DNα

T

)+ | P] .
Performing a similar analysis for finding (7.3), one can write

∂

∂α
E
[
4
(
y −DNα

T

)+ | P] = (Mα
T )′E

[
42
(
y −DNα

T

)+ | P]
which leads to

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′′E
[
4
(
y −DNα

T

)+ | P]
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+
(
(Mα

T )′
)2
E
[
42
(
y −DNα

T

)+ | P]
and

gαα (y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]

− E
[
(b+ PT ) (Mα

T )′′E
[
4
(
y −DNα

T

)+ | P]]
− E

[
(b+ PT )

(
(Mα

T )′
)2
E
[
42
(
y −DNα

T

)+ | P]]
= r′′T (α)− µE

[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT ) (Mα

T )′′4
(
y −DNα

T

)+]
− E

[
(b+ PT )

(
(Mα

T )′
)242

(
y −DNα

T

)+]
.

Finally, partial derivative with respect to each variable is:

gy(y, α) = −P0 + E

[
(b+ PT ) 1{

DNα
T
≥y

}]
= −P0 + b+ E [PT ]− E

[
(b+ PT ) 1{

DNα
T
<y

}]
and

∂

∂α
gy(y, α)

= − ∂

∂α
E

[
(b+ PT ) 1{

DNα
T
<y

}]
= −E

[
(b+ PT )

∂

∂α
E

[
1{

DNα
T
<y

} | P
]]

= −E
[
(b+ PT )

∂

∂α
P
{
DNα

T
< y | P

}]
= −E

[
(b+ PT )

∂

∂α

∞∑
k=0

(
e−M

α
T (Mα

T )k

k!
F (k) (y)

)]

= −E

[
(b+ PT ) (Mα

T )′
(
∞∑
k=0

− e−M
α
T (Mα

T )k

k!
F (k) (y) +

∞∑
k=1

e−M
α
T (Mα

T )k−1

(k − 1)!
F (k) (y)

)]

= −E

[
(b+ PT ) (Mα

T )′
(
∞∑
k=0

− e−M
α
T (Mα

T )k

k!
F (k) (y) +

∞∑
k=0

e−M
α
T (Mα

T )k

k!
F (k+1) (y)

)]
= −E

[
(b+ PT ) (Mα

T )′
(
P
{
DNα

T
+ 1 < y | P

}
− P

{
DNα

T
< y | P

})]
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Proof of (5.7)

Note that similar to the derivation of (3.3), under the assumption that given P , N is

independent of S, one can easily find

E

[
NT∑
j=1

f
(
PTj
)
ST

]
=

T∫
0

E [f (Pu)λ(Pu)ST ] du

and

E

[
NT∑
j=1

f
(
PTj
)]

=

T∫
0

E [f (Pu)λ(Pu)] du.

Then

Cov

(
NT∑
j=1

f
(
PTj
)
, ST

)
= E

[
NT∑
j=1

f
(
PTj
)
ST

]
− E

[
NT∑
j=1

f
(
PTj
)]
E [ST ]

=

T∫
0

E [f (Pu)λ(Pu)ST ] du−
T∫
0

E [Puλ(Pu)]E [ST ] du

=

T∫
0

Cov(f (Pu)λ(Pu), ST )du

Proof of Theorem 5.2

First note that the first-order forward difference of µ (y) given in (5.6) is

4µ (y) = µ (y + 1)− µ (y)

= Cov
(
b (PT ) (NT − y)+ , ST

)
− Cov

(
b (PT ) (NT − y − 1)+ , ST

)
+ Cov

(
h (PT ) (y −NT )+ , ST

)
− Cov

(
h (PT ) (y −NT + 1)+ , ST

)
= Cov

(
b (PT ) 1{NT≥y+1}, ST

)
− Cov

(
h (PT ) 1{NT≤y}, ST

)
= Cov (b (PT ) , ST )− Cov

(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)
.

Similarly, first-order difference of CF (y,N, P ) is

4CF (y,N, P ) = −P0 + b (PT ) 1{NT≥y+1} − h (PT ) 1{NT≤y}

= −P0 + b (PT )− (h (PT ) + b (PT )) 1{NT≤y}.
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We find the optimal order quantity as

y∗ = inf {y ≥ 0 : 4E [HCF (θ∗ (y) , y,N, P, S)] ≤ 0}

= inf
{
y ≥ 0 : E

[
4CF (y,N, P )−4µ (y)T C−14 S

]
≤ 0
}

= inf
{
y ≥ 0 : −P0 + E [b (PT )]− E

[
(h (PT ) + b (PT )) 1{NT≤y}

]
−Cov (b (PT ) , ST )T C−1E [4S]

+Cov
(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)T
C−1E [4S] ≤ 0

}
= inf

{
y ≥ 0 : E

[
(h (PT ) + b (PT )) 1{NT≤y}

]
−Cov

(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)T
C−1E [4S]

≥ −P0 + E [b (PT )]− Cov (b (PT ) , ST )T C−1E [4S]
}
.

Under Assumption 5.1, the left hand side of the inequality is increasing in y, which

ensures that there exists a unique optimal solution since the right hand side is con-

stant.

Proof of Corollary 5.2

Note that for the general case, we already established the form of the optimal hedging

portfolio by (5.8). Now consider µ (y) given in (5.6) . Then since arrival rate is constant

T∫
0

Cov(f (Pu)λ(Pu), ST )du = λ

T∫
0

Cov (f (Pt) , ST ) dt

and due to independence of N from S and P,

Cov
(
h (PT ) (y −NT )+ , ST

)
= E

[
(y −NT )+

]
Cov (h (PT ) , ST )

and

Cov
(
b (PT ) (NT − y)+ , ST

)
= E

[
(NT − y)+

]
Cov (b (PT ) , ST ) .

This gives

µ (y) = λ

T∫
0

Cov (f (Pt) , ST ) dt− E
[
(y −NT )+

]
Cov (h (PT ) , ST )
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− E
[
(NT − y)+

]
Cov (b (PT ) , ST ) .

Using the optimal order quantity characterization for the general case given in (5.10),

we get

y∗ = inf
{
y ≥ 0 : E

[
(h (PT ) + b (PT )) 1{NT≤y}

]
−Cov

(
(h (PT ) + b (PT )) 1{NT≤y}, ST

)T
C−1E [4S]

≥ −P0 + E [b (PT )]− Cov (b (PT ) ,4S)T C−1E [4S]
}

= inf {y ≥ 0 : P {NT ≤ y}E [h (PT ) + b (PT )]

−P {NT ≤ y}Cov (h (PT ) + b (PT ) , ST )T C−1E [4S]

≥ −P0 + E [b (PT )]− Cov (b (PT ) , ST )T C−1E [4S]
}

= inf {y ≥ 0 : P {NT ≤ y}

≥ −P0 + E [b (PT )]− Cov (b (PT ) , ST )T C−1E [4S]

E [h (PT )] + E [b (PT )]− Cov (h (PT ) + b (PT ) , ST )T C−1E [4S]

}
.

Proof of Corollary 5.4

Note that

Cov (h (PT ) + b (PT ) , ST ) = Cov (h+ b+ (1− δ)PT , PT )

= (1− δ)V ar (PT ) . (7.4)

and

Cov (b (PT ) , ST ) = Cov (b+ PT , PT ) = V ar (PT ) . (7.5)

Putting (5.14), (7.4) and (7.5) in (5.13) gives (5.15) .

To compute optimal hedge, we use (5.12), which gives

θ∗ (y) = −C−1µ (y)

= −
λ
T∫
0

Cov (f (Pt) , PT ) dt− E
[
(y −NT )+

]
Cov (h− δPT , ST )

V ar (PT )

+
E
[
(NT − y)+

]
Cov (b+ PT , ST )

V ar (PT )
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= E
[
(NT − y)+

]
− δE

[
(y −NT )+

]
− λ

T∫
0

Cov (f (Pt) , PT )

V ar (PT )
dt

= E
[
(NT − y)+

]
− δE

[
(y −NT )+

]
− λ

T∫
0

βtdt

Proof of Theorem 5.3

We use induction. Note that the claim is true for period n since R[tn,tn] = 0 and

N[tn,tn] = 0. Now assume that

Vk+1 (x,w, p, s) = gk+1 (x,w, p) + hk+1 (x, p, s) .

Then, by (5.19)

Vk (x,w, p, s)

= min
θk
E
[
Vk+1

(
x−N[tk,tk+1], w +R[tk,tk+1] + θTk 4 Sk, Ptk+1

, Stk+1

)
| Ptk = p, Stk = s

]
= min

θk
E
[
gk+1

(
x−N[tk,tk+1], w +R[tk,tk+1] + θTk 4 Sk, Ptk+1

)
| Ptk = p, Stk = s

]
+ E

[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
|Ptk = p, Stk = s

]
. (7.6)

Note that second term is independent of θ and the problem is equivalent to minimizing

the first part. The optimization problem can be written as

min
θk
E
[
gk+1

(
x−N[tk,tk+1], w +R[tk,tk+1] + θTk 4 Sk, Ptk+1

)
|Ptk = p, Stk = s

]
= min

θk
E
[(
w +R[tk,tk+1] + θTk 4 Sk +R[tk+1,tn] − b (Ptn)

(
N[tk+1,tn] +N[tk,tk+1] − x

)+
−h (Ptn)

(
x−N[tk,tk+1] −N[tk+1,tn]

)+)2 | Ptk = p, Stk = s

]
= min

θk

{
E

[(
w +R[tk,tn] − b (Ptn)

(
N[tk,tn] − x

)+ − h (Ptn)
(
x−N[tk,tn]

)+)2 |Ptk = p

]
+ E

[(
θTk 4 Sk

)2 | Stk = s
]

+2θTkE
[(
w +R[tk,tn] − b (Ptn)

(
N[tk,tn] − x

)+ − h (Ptn)
(
x−N[tk,tn]

)+)4 Sk

| Ptk = p, Stk = s]}

= min
θk

{
gk (x,w, p) + V ar

(
θTk Stk+1

| Stk = s
)
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+2θTk Cov
(
R[tk,tn] − b (Ptn)

(
N[tk,tn] − x

)+ − h (Ptn)
(
x−N[tk,tn]

)+
, Stk+1

| Ptk = p, Stk = s)}

= min
θk

{
gk (x,w, p) + θTk Ck (s) θk + 2θTk µk (x, p, s)

}
. (7.7)

Note that the preceding equations followed since E [4Sk] = 0 for all trading periods

k. Similar to the single-period problem, the optimal portfolio is

θ∗k = arg max
θk

{
gk (x,w, p) + θTk Ck (s) θk + 2θTk µk (x, p, s)

}
= −Ck (s)−1 µk (x, p, s) . (7.8)

Putting (7.8) in (5.19) and using (7.6) and (7.7) , we obtain

Vk (x,w, p, s) = gk (x,w, p) + θ∗Tk Ck (s) θ∗k + 2θ∗Tk µk (x, p, s)

+ E
[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
|Ptk = p, Stk = s

]
= gk (x,w, p) +

(
Ck (s)−1 µk (x, p, s)

)T
Ck (s)

(
Ck (s)−1 µk (x, p, s)

)
− 2

(
Ck (s)−1 µk (x, p, s)

)T
µk (x, p, s)

+ E
[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
|Ptk = p, Stk = s

]
= gk (x,w, p) + µk (x, p, s)T Ck (s)−1Ck (s)Ck (s)−1 µk (x, p, s)

− 2µk (x, p, s)T Ck (s)−1 µk (x, p, s)

+ E
[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
|Ptk = p, Stk = s

]
= gk (x,w, p)− µk (x, p, s)T Ck (s)−1 µk (x, p, s)

+ E
[
hk+1

(
x−N[tk,tk+1], Ptk+1

, Stk+1

)
|Ptk = p, Stk = s

]
= gk (x,w, p) + hk (x, p, s) .

Proof of Theorem 5.4

We use induction. Note that by (5.25) and hn = 0, the claim (a) is true for period n.

Now assume that

Vk+1 (x,w, p, s; y) = gk+1 (x,w, p; y) + hk+1 (x, p, s; y)
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for any k ≤ n− 2.Then, by (5.19)

Vk (x,w, p, s; y)

= min
θk
E
[
Vk+1

(
Xk+1,Wk+1, Ptk+1

, Stk+1
; y
)
| Xk = x,Wk = w,Ptk = p, Stk = s

]
= min

θk

{
E
[
gk+1

(
Xk+1,Wk+1, Ptk+1

; y
)
| Xk = x,Wk = w,Ptk = p, Stk = s

]
+E

[
hk+1

(
Xk+1, Ptk+1

, Stk+1
; y
)
|Xk = x, Ptk = p, Stk = s

]}
.

Note that second part is independent of θ since only the wealth evolution, i.e., Wk+1

is affected by the portfolio decision. Therefore, optimal θ is found by minimizing the

first part. Note that we can write

min
θk
E
[
gk+1

(
Xk+1,Wk+1, Ptk+1

; y
)
| Xk = x,Wk = w,Ptk = p, Stk = s

]
= min

θk
E
[
gk+1

(
Xk+1, w + CF y

[tk,tk+1]
+ θTk 4 Sk, Ptk+1

; y
)

| Xk = x,Wk = w,Ptk = p, Stk = s]

= min
θk
E

[(
w + CF y

[tk,tk+1]
+ CF y

[tk+1,tn]
+ θTk 4 Sk

)2
|Xk = x, Ptk = p, Stk = s

]
= min

θk
E

[(
w + CF y

[tk,tn]
+ θTk 4 Sk

)2
| Xk = x, Ptk = p, Stk = s

]
We now take the square of the expression in the last equality which leads to

min
θk

{
E

[(
w + CF y

[tk,tn]

)2
|Xk = x, Ptk = p

]
+ E

[(
θTk 4 Sk

)2 | Stk = s
]

+ 2θTkE
[(
w + CF y

[tk,tn]

)
4 Sk | Xk = x, Ptk = p, Stk = s

]
= min

θk

{
gk (x,w, p) + V ar

(
θTk Stk+1

| Stk = s
)

+2θTk Cov
(
CF y

[tk,tn]
, Stk+1

| Xk = x, Ptk = p, Stk = s
)}

= min
θk

{
gk (x,w, p) + θTk Ck (s) θk + 2θTk µk (x, p, s)

}
.

Similar to the single-period problem, the optimal portfolio is

θ∗k = arg max
θk

{
gk (x,w, p) + θTk Ck (s) θk + 2θTk µk (x, p, s)

}
= −Ck (s)−1 µk (x, p, s) .



Chapter 7: Appendix 111

Putting θ∗k in (5.19), we obtain

Vk (x,w, p, s; y)

= gk (x,w, p; y) + θ∗Tk Ck (s) θ∗k + 2θ∗Tk µk (x, p, s; y)

+ E
[
hk+1

(
Xk+1, Ptk+1

, Stk+1
; y
)
|Ptk = p, Stk = s,Xk = x

]
= gk (x,w, p; y) +

(
Ck (s)−1 µk (x, p, s; y)

)T
Ck (s)

(
Ck (s)−1 µk (x, p, s; y)

)
− 2

(
Ck (s)−1 µk (x, p, s; y)

)T
µk (x, p, s; y)

+ E
[
hk+1

(
Xk+1, Ptk+1

, Stk+1
; y
)
|Ptk = p, Stk = s,Xk = x

]
= gk (x,w, p; y) + µk (x, p, s; y)T Ck (s)−1Ck (s)Ck (s)−1 µk (x, p, s; y)

− 2µk (x, p, s; y)T Ck (s)−1 µk (x, p, s; y)

+ E
[
hk+1

(
Xk+1, Ptk+1

, Stk+1
; y
)
|Ptk = p, Stk = s,Xk = x

]
= gk (x,w, p; y)− µk (x, p, s; y)T Ck (s)−1 µk (x, p, s; y)

+ E
[
hk+1

(
Xk+1, Ptk+1

, Stk+1
; y
)
|Ptk = p, Stk = s,Xk = x

]
= gk (x,w, p; y) + hk (x, p, s; y) .
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A. P. Katariya, E. Tekin, and S. Çetinkaya. A capacitated replenishment-liquidation

model under contractual and spot markets with stochastic demand. Probability in

the Engineering and Informational Sciences, 28(02):223–269, 2014.

M. Khouja and S. Park. Optimal lot sizing under continuous price decrease. Omega,

31(6):539–545, 2003.

P. Kouvelis, R. Li, and Q. Ding. Managing storable commodity risks: The role of

inventory and financial hedge. Manufacturing & Service Operations Management,

15(3):507–521, 2013.

P. Kouvelis, Z. Pang, and Q. Ding. Dynamic financial hedging strategies for a storable

commodity with demand uncertainty. Working Paper, 2015.

A. Lau and H. Lau. Maximizing the probability of achieving a target profit in a

two-product newsboy problem. Decision Sciences, 19:392–408, 1988.

H. Lau. The newsboy problem under alternative optimization objectives. Journal of

the Operational Research Society, 31:525–535, 1980.
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