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ABSTRACT

In the optimal obstacle placement with disambiguation (OPD) problem, we in-

vestigate how traversal length depends on the spatial pattern of the obstacles. In

the OPD problem an obstacle placing agent (OPA) wishes to insert (disk-shaped)

obstacles of two types as true or false obstacles in an environment so as to maxi-

mize the traversal length of a navigating agent (NAVA). NAVA is equipped with a

sensor that can only assign probabilities to each obstacle as being a true obstacle,

but does not know the actual status of the obstacle until it reaches the boundary of

the obstacle. When NAVA comes by the obstacle, it disambiguates the status of the

obstacle with a cost added to the traversal length. We first investigate the case when

OPA equips the overall working window with false and/or true obstacles together

where the whole obstacle pattern changing from uniformness to regularity and from

uniformness to clustering, then on the average, the mean traversal length tends to

increase (decrease) as the obstacle pattern changes from uniformness to regularity

(clustering). Secondly, we introduce M2k algorithm which is the modified version of

RD algorithm and mainly based on the effective choice of a subset of possible disam-

biguations. We observed that the trends for mean traversal length estimated by M2k

algorithm is similar to RD algorithm except for reducing the complexity time and

keeping relative error less than 2.5%. Moreover, we study the case when obstacles

are distributed inside various obstacle window types such as linear strips, V-shaped,

semicircular, and elliptical where we change the parameters such as location, orienta-

tion and curvature of these obstacle window forms. We also consider the case where

the true obstacles are placed randomly proportional to the areas of Voronoi polygons

or Delaunay triangles based on the allocation of the clutter points. On the average,

the elliptical window type (a continuous version of V-shaped) reveals to be the best
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performing in maximizing the traversal length of NAVA and as for tessellations, the

mean traversal length is essentially the same as the mean traversal length when ob-

stacles are distributed uniformly. On the other hand, we provide extensions of the

existing sub-optimal algorithms in the OPD problem, and introduce new ones for

NAVA. The goal is to find an algorithm to minimize the expected traversal length of

NAVA. We generalize the penalty-based functions used within the existing heuristic

algorithms, and combine possibly related algorithms in a single family. We provide a

guidance for choosing the algorithm from the defined family when the performance of

NAVA’s sensor varies from poor to almost perfect detection (of true obstacles). Our

results are supported by extensive Monte Carlo simulations and theoretical results for

some special types of graph structures are also provided.



ÖZETÇE

Belirsizliği giderme özellikli optimal engel yerleştirme (OPD) probleminde, yol

uzunluğunun uzaysal desen türlerine göre nasıl etkilendiğini araştırıyoruz. OPD

probleminde, navigasyon aracının (NAVA) gideceği yolu mümkün olduğunca uzun

tutmak için yüzeye engel yerleştirme aracı (OPA) tarafından gerçek veya sahte en-

geller yerleştirilmektedir. NAVA her diskin gerçek engel olma ihtimalini belirleyen

sensör ile donatılmış olup, disklerin gerçek veya sahte olduğunu diskin sınırlarına ge-

lene kadar bilmemektedir. Fakat NAVA diskin sınırlarında iken belirli bir maliyetin

toplam süreye/uzunluğa eklenmesi karşılığında disklerin gerçek veya sahte olduğunu

öğrenebilmektedir. ?lk olarak, OPA’nın çalışma bölgesine sahte ve/veya gerçek en-

gelleri tüm engel desenin tekdüzelikten düzenliliğe ve tekdüzelikten kümelenmeye

göre yerleştirilmesi sonucunda toplam geçiş uzunluğunun engel desenin tekdüzelik-

ten düzenliliğe göre artmakta ve tekdüzelikten kümelenmeye göre ise azalmaktadır.

İkinci olarak, RD algoritmasının değiştirilmiş versiyonu olan ve temel olarak disk

başına düşen belirsizlik nokta sayısının akıllıca seçilmesine bağlı olan M2k algorit-

masını tanıtmaktayız. M2k algoritması tarafından hesaplanan yol uzunluğunun RD

algoritması tarafından hesaplanan yol uzunluğu ile benzer eğilimler gösterdiğini gö-

zlemledik ve dahası hesaplama süresi azaltılmış olup, toplam geçiş uzunluğu en fazla

%2.5 sapmaktadır. Buna ek olarak, engellerin lineer, V-şeklinde, yarı çembersel, ve

eliptik gibi değişik şekil içinde dağılımları engel şekillerin lokasyon, oryantasyon, ve

kurvatür gibi parametrelerine göre incelenmiştir. Ayrıca, sahte engellerin yerleşimine

bağlı olarak Voronoi çokgen veya Delaunay üçgen alanlarına orantılı olacak şekilde

gerçek engellerin yerleştirilme durumu ele alınmıştır. Ortalama olarak, NAVA’nın

toplam geçiş uzunluğunu maksimuma çıkarmak için engel şekillerin arasından eliptik

engel şekli (V-şeklinin sürekli versiyonu) en optimal değeri vermektedir ve Dirichlet
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mozaiği gibi düzenlemeler için ise geçiş uzunluğu engellerin tekdüze dağılımındakine

yakın değeri vermektedir. Diğer taraftan, OPD problemindeki NAVA için mevcut op-

timal olmayan algoritmaları genişletmekteyiz ve yenilerini ortaya koymaktayız. Bu-

radaki asıl amaç, NAVA’nın beklenen geçiş uzunluğunu minimuma indiren algoritma

geliştirmektir. Mevcut sezgisel algoritmalarda kullanılan ağırlığa dayalı fonksiyonları

genelleştiriyoruz, ve benzer algoritmaları tek çatı altında birleştiriyoruz. NAVA’nın

sensör algılama (gerçek engel olma ihtimali) performans gücünün en zayıftan mükem-

mel dereceye kadar durumlarda birleştirilen algoritma kümesinden en optimal olanı

seçmeyi gösteriyoruz. Bizim sonuçlarımız kapsamlı Monte Carlo simülasyonları ile

desteklenmekle beraber, bazı özel graf biçimleri için teorik sonuçlar göstermekteyiz.
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Chapter 1

INTRODUCTION

The optimal obstacle placement with disambiguation (OPD) problem was first intro-

duced by Aksakalli and Ceyhan (2012). The OPD problem is the dual of the stochastic

obstacle scene (SOS) problem (Papadimitriou and Yannakakis, 1991), where the dis-

crete version is called the Canadian traveler’s problem (CTP) (Bar-Noy and Schieber,

1991). In the SOS problem, the main goal is finding the shortest path through an un-

known environment wherein a navigating agent (NAVA) plans the route from a given

starting point to a designated target point through randomly positioned disk shaped

regions that represent obstacles. In the version of the OPD problem of Aksakalli and

Ceyhan (2012), the navigation environment already contained clutter, i.e., false natu-

ral obstacles, and an obstacle placing agent (OPA) placed true obstacles in the same

environment. In practice this setting may arise in various situations, for example,

OPA can represent a naval warfare vehicle placing mines (i.e., true obstacles) on the

surface of a water body (such as a sea or ocean) which already has natural or artificial

obstacles (like rocks or debris). And, NAVA could be a battleship (from the opponent

forces to OPA) and wants to traverse from a source point to a target point which

might be located at the coast defended by OPA and its affiliates. Prior to NAVA’s

traversal, NAVA obtains the respective probabilities of the obstacle disks being true

obstacles by using its sensor. Throughout the traversal, when NAVA reaches a disk’s

boundary, it can disambiguate the disk and learn the actual status of it, i.e., whether

it is a true or false obstacle. The cost of the disambiguation for each disk is added

to the total traversal length (which contributes to the total cost in our optimization

problem). If the disambiguated disk is a false obstacle, then NAVA can pass through
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or over it; otherwise NAVA has to replan its route from the current location avoiding

the true obstacles until it reaches the target. From NAVA’s perspective, the task is

then finding the optimal path for reaching from the source point to the target, i.e., the

path with minimum expected traversal length. Conversely, the OPA’s goal is placing

the obstacles in a such a way that NAVA’s traversal length is maximized. Here, we

assume that NAVA uses a greedy algorithm called the RD algorithm (Aksakalli et al.,

2011) in choosing the optimal path. Hence, NAVA disambiguates any obstacle it runs

into and then always seeks a better policy and updates the algorithm accordingly. On

the other hand, OPA will search for a better placement of obstacles. We also con-

sider the version of the OPD problem where OPA has the capability of inserting both

true and false obstacles in the navigation environment. Although these optimization

problems have gained considerable attention in literature, few theoretical and efficient

optimal results have been found. In particular, Papadimitriou and Yannakakis (1991)

showed that the SOS problem is NP-hard, and as for the CTP with its variants, one

can find many heuristics for special cases wherein the optimal solution is attained

in some special graph structures (Nikolova and Karger, 2008; Xu et al., 2009; Bnaya

et al., 2009; Fried, 2013). Among these references, the work of Bnaya et al. (2009) is

the closest to ours. They introduce the sensing cost of an edge in the CTP problem

which is equivalent to the disambiguation cost of an obstacle in the SOS problem. In

this variant of CTP, additional actions, called remote sensing, are allowed where each

such action reveals the status of a non-incident edge for a certain cost. Indeed, allow-

ing remote-sensing makes CTP NP-hard even on disjoint-path graphs (Fried et al.,

2013).

Regarding the suboptimal algorithms for SOS problem, the BAO* algorithm of

Aksakalli (2007a), the simulated risk disambiguation (SRA) of Fishkind et al. (2007)

and the reset disambiguation algorithm (RDA) of Aksakalli et al. (2011) are among

the examples. Indeed, the RD algorithm is an efficient algorithm for discretized SOS

problem and yields an optimal value for graphs with two nodes (called parallel graphs

G = (V,E) with |V | = 2), and for disjoint-path graphs. In general, the discrete SOS
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problem for parallel graphs can be solved in O(|E|!) time complexity, but using the

policy dictated by the RD algorithm the complexity of solving the same problem re-

duces to O(|E| log |E|). Successful adaptations of all these heuristics to the discretized

SOS problem and the generalizations of both SRA and RDA were given in Aksakalli

and Ari (2014), which in turn is called the "distance to termination" (DT) algorithm.

The DT algorithm exploits the distance from current position of any obstacle to the

target point together with the corresponding probabilities of obstacles being true ob-

stacles.

As for CTP, several variants of it have been introduced and effective heuristic

algorithms are proposed. For example, in Bar-Noy and Schieber (1991) the recover-

able CTP was introduced where a blocked edge does not remain blocked forever, and

each vertex v has a recovery time `(v) ∈ [0,∞) for edges adjacent to v. They also

introduced the k-CTP, in which an upper bound of k blocked edges is given. Nikolova

and Karger (2008) studied another variant of the CTP where the cost of edges comes

from independent and identical distributions. Bnaya et al. (2008) introduced the sens-

ing cost in CTP which is closely related to our work. In the original CTP, the status

of an edge (i.e., whether it is blocked or not) can only be revealed upon reaching a

vertex incident to that edge. This kind of sensing is called the local sensing, and the

remote sensing refers to revealing the status of an edge from a distant location (Bnaya

et al., 2009). The sensing cost in the CTP is equivalent to the disambiguation cost in

SOS problem. Bnaya et al. (2015) studied the repeated-task CTP where a number of

navigating agents need to travel with the same goal, minimizing their combined travel

cost. Moreover, recently Aksakalli et al. (2016) developed an AO* based exact algo-

rithm, called the CAO* algorithm, for the CTP and they showed that the empirical

performance is better than other exact algorithms.
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1.1 Preliminaries

The most common notion of comparison of random variables is the stochastic order.

For any real valued random variable X, let FX(x) = P(X ≤ x) be the cumulative

distribution function of X.

Definition 1.1.1 If X and Y are random variables defined on the same sample space

Ω, then X is stochastically smaller than Y (X ≤st Y ) if FX(ω) ≤ FY (ω) for each

ω ∈ Ω.

Similar definition holds for ‘≥st’. There are many equivalent definitions describing

the stochastic ordering of random variables. The following is the most common way

of characterizing the stochastic ordering.

Definition 1.1.2 If X and Y are random variables defined on the same sample space

Ω, then X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ) for all non-decreasing functions f .

Where Ef(X) represents the expected value of f(X) with respect to the density

function of random variable X. Analogous definition holds for ‘≥st’.

Definition 1.1.3 Let Xn be a sequence of random variables defined on a sample space

Ω. We say that Xn is convergent in probability to a random variable X defined on Ω

if and only if

lim
n→∞

P (|Xn −X| > ε) = 0

for any ε > 0. X is called the probability limit of the sequence and the convergence in

probability is denoted by

Xn
P−→ X.
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1.2 Continuous SOS and OPD Problems

The continuous SOS problem is formally defined as follows: Consider a bounded

obstacle field Ω ⊂ R2. False obstacles (such as rocks, debris, fake mines) are assumed

to be located at points, XC , from a spatial point process C. Then, an Obstacle

Placing Agent (OPA) places true obstacles at the points, XO, where centers are

from another spatial point process O, possibly different from C. All false obstacles

(respectively true obstacles) are assumed to be disk shaped and centered at the points

in XC (respectively XO). A Navigating Agent (NAVA) wishes to traverse from a

given starting point, s ∈ Ω, to a target point, t ∈ Ω, and is equipped with a sensor

that assigns random probabilities pC : XC → [0, 1] and pO : XO → [0, 1] prior to

NAVA’s traversal. When observing a realization of these processes, the NAVA only

sees X := XC ∪ XO as obstacles, some of which maybe true obstacles. Let p(x) be

the probability that x ∈ XO, that is, x is a true obstacle for all x ∈ X. Then NAVA’s

detector assigns p(x) = pO for x ∈ XO and p(x) = pC for x ∈ XC . For every disk

center x, the obstacle disk Dx is an open region with a fixed radius r > 0. The

NAVA seeks to traverse a continuous (s, t) curve without hitting any true obstacle at

shortest achievable arc length (i.e., in shortest traversal length). We further suppose

that there is a dynamic disambiguation capability. Specifically, for all x ∈ X, when

the traversal curve is on the boundary of the disk, denoted as ∂Dx, (i.e., NAVA

comes right at the boundary of the obstacle), it has an option to disambiguate x,

that is, to learn x ∈ XO or not, but at a cost c > 0 added to the length of the

traversal curve. The NAVA can pass through disks that have been disambiguated

and found to be clutter (i.e., false obstacle), but has to avoid ambiguous disks as

well as disks that have been disambiguated and found to be true obstacles. How

the NAVA should route the continuous (s, t) traversal curve - and where and when

the disambiguations should be performed - in order to minimize the expected length

(including the disambiguation cost) of this curve is called the continuous SOS problem

(Papadimitriou and Yannakakis, 1991).

On the other hand, the problem of placing the obstacles so as to maximize the
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NAVA’s traversal length in the SOS problem, namely the optimal obstacle placement

with disambiguations (OPD) problem was introduced by Aksakalli and Ceyhan (2012).

Indeed, the OPD problem can be formulated as

max
XO

E [L(XO ∪XC)] such that XO ∩W c = ∅, |XO| = n,

where L(X) is the traversal length of NAVA given a set of hindrance (obstacle or

clutter) points of X and W ⊂ Ω is the window where obstacles are placed by the

OPA.

1.3 Discretized SOS and OPD Problems

For computational efficiency and convenience, we consider a discrete approximation of

the continuous setting on the 8-adjacency integer lattice as in Aksakalli et al. (2011).

Specifically, this discretization is stored as a graph G whose vertices are all of the pairs

of integers i, j such that 1 ≤ i ≤ imax and 1 ≤ j ≤ jmax where imax and jmax are given

integers. The obstacle field Ω is partitioned by an imax × jmax grid consisting of unit

squares and the vertices of the squares in the grid constitute the vertices of G. The

edges of G are determined by the adjacency of the vertices in the grid. That is, there

are edges between all pairs of the following four types of vertices: (1) (i, j) and (i+1, j)

with unit length, (2) (i, j) and (i, j + 1) with unit length, (3) (i, j) and (i+ 1, j + 1)

with length
√

2, and (4) (i+ 1, j) and (i, j + 1) with length
√

2 for i, j = 0, 1, . . . , 99.

Also, we add corner edges of unit length with pairs of vertices connecting (100, j) and

(100, j + 1), and vertices connecting (i, 100) and (i + 1, 100) for i, j = 0, 1, . . . , 99.

This discretization is called the 8-adjacency integer discretization of Ω. One vertex in

G is designated as the starting point, s, and another vertex in G is designated as the

target point, t (starting and target points are totally arbitrary). The NAVA wishes to

traverse from s to t in G, using only the edges that do not intersect any true obstacle

or ambiguous disks in the environment. If an edge intersects any ambiguous disk,

then a disambiguation of the disk may be performed from either endpoint of the edge

that are outside of the disk. The goal is to devise an algorithm (to be implemented
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by NAVA) that minimizes its expected traversal length by effecient exploitation of

the disambiguation capability and the information on the locations of the disks. We

call this discretization as the discretized SOS problem (D-SOSP), which in effect, is a

special case of the Canadian traveler’s problem.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows: In Chapter 2 we discuss choosing the

optimal obstacle pattern against a disambiguating navigating agent. In Chapter 3 we

introduce M2k algorithm for the OPD problem and investigate the trends for mean

traversal length by statistical analysis tools such as repeated measures ANOVA. In

Chapter 4 we investigate how the traversal length depends on obstacle window types

and tessellations. In Chapter 5 we consider heuristic algorithms for the OPD problem

and provide a guidance for choosing the best performing algorithm given the problem

setting. In Chapter 6 we present some theoretical results in the discrete SOS problem

for some special graphs and present directions for future research. In Chapter 7

presents conclusions and discussion.



Chapter 2

CHOOSING THE OPTIMAL OBSTACLE PATTERN

AGAINST A DISAMBIGUATING NAVIGATION AGENT

2.1 Introduction

In Aksakalli and Ceyhan (2012), NAVA uses the RD algorithm (Aksakalli et al.,

2011) to find the shortest path and authors mainly focus on two problems. First,

given a background clutter pattern, what would be the optimal number of obstacles

and the obstacle pattern to use so as to maximize the NAVA’s total traversal length.

Second, if OPA is given a certain number of obstacles, then what would be the

optimal way to place these obstacles among the given clutter locations. OPA places

the true obstacles uniformly inside various obstacle windows such as linear strips, V-

shaped and W-shaped windows together with the possibly natural pattern scenarios

of false obstacles with different pattern types such as uniform (homogeneous Poisson

process), clustered (Thomas and Matérn) and regular (hardcore and Strauss point

process) patterns (Baddeley et al., 2008). Aksakalli and Ceyhan (2012) provided

same evidence that on the average the traversal length of NAVA increases as the level

of regularity increases and decreases as the level of clustering increases. In overall

comparison, the mean traversal length of NAVA attains its maximum value when

the background clutter type is hardcore, and the obstacle form is V-shaped with 50

uniformly sampled obstacles.

In this section, we investigate how traversal length depends on obstacle pattern

changing from uniformness to regularity and from uniformness to clustering in a

more detailed fashion. For regularity, the effects of two parameters, the pairwise

distance between disk shaped obstacles and the number of such obstacles (i.e., its
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density) are investigated. As for clustering, the effects of the radius in which obstacles

accumulate around one or more cluster centers and the number of such cluster centers

are investigated. In Aksakalli and Ceyhan (2012) a few clutter types were considered,

but here we address more types of obstacle patterns and also study the case where

OPA can insert both false and true obstacles.

2.2 Experimental Setting

For simplicity, we take the study window (i.e., the navigation environment) to be

Ω = [0, 100] × [0, 100] and we insert a grid of unit squares on the study window, so

that we partition the window with 104 such squares. In each square we also insert the

diagonal line segments connecting nonadjacent vertices. We represent this square grid

partition (together with diagonals) as a graph G = (V,E) such that V is comprised

of vertices of the squares in the grid and edges are the edges of the squares together

with diagonals. Hence, we have edges between all pairs of the following four types of

vertices : (1) (i, j) and (i + 1, j) with unit length, (2) (i, j) and (i, j + 1) with unit

length, (3) (i, j) and (i + 1, j + 1) with length
√

2, and (4) (i + 1, j) and (i, j + 1)

with length
√

2 for i, j = 0, 1, . . . , 99. Also, we add corner edges of unit length with

pairs of vertices connecting (100, j) and (100, j + 1), and vertices connecting (i, 100)

and (i + 1, 100) for i, j = 0, 1, . . . , 99. This discretization is called the 8-adjacency

integer discretization of Ω. Without loss of generality, we take a starting point s on

the upper boundary of the study window, say s = (50, 100). And, for the target we

take a point on the opposite side of rectangular window, say t = (50, 1). In practice,

we can think of Ω as a section of sea near the coast which is going to be defended by

OPA, where NAVA could be a ship trying to navigate over the sea to reach the target

at the coast.

Here, OPA inserts disk shaped obstacles whose centers are generated from a ran-

dom point process. In this version, OPA determines only the distribution of the

obstacles, but not their exact locations. Each disk is either traversable (i.e., false or

clutter obstacle) or non-traversable (i.e., true obstacle) with their respective proba-
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bilities of being a true obstacle. In the OPD problem an obstacle is traversable if

it is of clutter type and non-traversable if it is a true obstacle. The traversable (re-

spectively, non-traversable) obstacles, i.e., clutter (respectively, true) obstacles, are

denoted with a set of circles whose centers are the set of points denoted by XC (re-

spectively, XO). NAVA wishes to traverse from the given starting point s to the target

point t inserted with a sensor assigning (random) probabilities pc : XC → [0, 1] and

po : XO → [0, 1] prior to its traversal. That is, the sensor assigns the status of disks

with the probability function f(x),

f(x) =


pc, x ∈ XC

po, x ∈ XO

0, otherwise

where pc and po are also random variables with density functions FC and FO, re-

spectively. The sensor would (preferably) attach high probabilities for true obstacles

compared to clutter. NAVA knows the exact locations of X = XC ∪ XO, but not

the actual status of disks, i.e., whether a disk is traversable or not, but only have a

probability which is suggestive of the actual status of the disks. Also suppose that

when the NAVA is located on the boundary of a disk, it disambiguates a disk at a

cost c > 0 added to the traversal length; i.e., NAVA can learn the actual status of the

disk with the specific cost c. NAVA disambiguates the obstacle and if the obstacle is

of clutter type, NAVA is able to traverse through it and can not traverse otherwise.

Each disk has a fixed radius of r = 4.5 units and the disk centers are sampled inside

[10, 90] × [10, 90] ensuring that there always exists a (possibly very long ) s, t walk.

The existence of such a long traversable path is based on the assumption that NAVA

must reach the target, but in an untimely manner (i.e., traversal length being larger

than a threshold) and for larger traversal times/lengths NAVA’s arrival at the target

(is assumed to) pose no threat to defending entities (including OPA). That is, NAVA’s

arrival on time to the target could make a difference for the state of affairs and if ar-

rival is sufficiently late, then we assume it is irrelevant from OPA’s perspective. The

disambiguation cost of a disk is taken to be c = 5, and in each part clutter proba-
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bilities pc are from Beta(2, 6) distribution, whereas true obstacle probabilities po are

from Beta(6, 2) distribution. From NAVA’s perspective, small probabilities indicate

that it is more likely to be traversable, whereas high probabilities show that it is

less likely to be traversable. The means of random variables sampled from Beta(2, 6)

and Beta(6, 2) are 0.25 and 0.75, respectively, which resonates with the idea that

the sensor assigning high probabilities to true obstacles. So, it is reasonable to work

with these skewed distributions for sensor’s capability of obstacle detection. These

choices (of the cost c and sensor probability distributions) are made in line with those

of Aksakalli and Ceyhan (2012) and Priebe et al. (2005). However, if one wants to

increase the sensor’s sensitivity, one might pick Beta(α, β) with α < 2, β > 6 for false

obstacles and Beta(α, β) with α > 6, β < 2 for true obstacles.

2.3 Obstacle Pattern Ranging from Uniformness to Regularity

In the OPD problem, we investigate how the traversal length varies as the obsta-

cle pattern changes. First, we equip the whole window with only false or only true

obstacles whose pattern changes from uniformness to regularity. We denote the num-

ber of clutter (false obstacles) by nc and the number of true obstacles by no. We

compute the traversal lengths for nc = 25, 50, 75, 100 and no = 25, 50, 75, 100. For

inserting obstacles conforming to regularity, the points that constitute the centers

of disk shaped obstacles are chosen from the Strauss process (Baddeley et al., 2008),

denoted as Strauss(n, d, γ), where n stands for the number of points, γ is the intensity

of the number of pairs of distinct points lying closer than d units; i.e., the parameter γ

controls ‘strength’ of interaction between points. For any fixed value of d, if γ = 1 the

density reduces to a uniform point process (i.e., the pattern becomes uniformness),

and if γ = 0 the density is a hard core process (i.e., completely regular pattern). For

values 0 < γ < 1, the process exhibits negative association (i.e., inhibition) between

points. Thus, in our simulations we choose the γ values from 0 to 1 with an increment

size of 0.1 units and we also consider various values of d varying from 0.5 to 11 with

an increment size of 0.5 units. Moreover, the whole window is inserted with both
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false and true obstacles together where the whole pattern changes from uniformness

to regularity for nc = 25, 50, 75 and no = 25, 50, 75 such that nc + no = 50, 75, 100.

In our data set γ, d and the number of obstacles (hence implicitly obstacle density)

are the main factors that influence the traversal length. In Aksakalli and Ceyhan

(2012), in the regularity pattern Strauss(nc, d, γ), the number of clutter was fixed to

be nc = 100, d was taken to be 5 and γ values were 0, 0.5, and 1. And, the number

of true obstacles no was taken to be 20, 30, 40, 50, and 60. They observed that

the NAVA tends to have higher traversal lengths for smaller γ values. In the current

study, we want to address how the traversal length changes when both d and γ change

under regularity by considering various values of d and γ simultaneously. Based on

our Monte Carlo simulations, on the average the traversal lengths tend to increase as

the obstacle pattern changes from uniformness to regularity.

2.3.1 Clutter Only Case

In this section, we consider the case of only clutter type obstacles being inserted into

the study window where obstacle pattern ranges from uniformness to regularity. Since

0 20 40 60 80 100

0
20

40
60

80
10

0 s

t

Figure 2.1: A realization of clutter disks (dashed circles) with nc = 40 from the

Strauss(nc = 40, d = 9, γ = 0) process.
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there are 11 different values of γ, 22 different values of d and together with 100 Monte

Carlo replication for each clutter number level nc, we have 11 × 22 × 100 = 24200

measurements. For each realization, the traversal length is computed by using RD

algorithm described in Aksakalli et al. (2011). An example for the realization of this

setting is given in Figure 2.1.

We investigate the trends in the mean traversal length of NAVA as a function of

the level of regularity of clutter points. First, we only consider the influence of γ

values (ignore d values) on the traversal length for each clutter number level. We

model the traversal length in this scenario as follows,

Yij = µj + βjXij + εij (2.1)

where i = 1, 2, ..., 24200 and j = 1, 2, 3, 4; Yij (i.e., the dependent variable) is the

ith traversal length of NAVA at jth clutter level, µj is the mean for clutter number

level j, βj is the rate of change in mean traversal length in clutter number level j,

Xij (continuous co-variate) is the corresponding gamma value of ith observation at jth

categorical group, and εij is the associated error term. Since nc takes a few values,
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Figure 2.2: Mean traversal length versus γ values for groups nc = 25, 50, 75, 100

together with overall plot (i.e., the average of all groups combined).

we take the number of clutter levels as a categorical variable rather than a numerical
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variable. Recall that for any fixed d, when γ = 1 the point pattern is uniform and

when γ = 0 the point pattern becomes completely regular. In Figure 2.2, we provide

interaction plots for different clutter number levels versus γ values and also overall

plot of the average of all groups versus γ values. In Figure 2.2, when the point pattern

changes from uniformness to regularity the average traversal lengths seem to remain

unchanged or increase slightly for all clutter number levels. We record the intercept

and slope values of regression lines for each clutter number level nc (see Table 2.1).

So, using ANCOVA (Seltman, 2012) with model given in Equation (2.1), we find

nc = 25 nc = 50 nc = 75 nc = 100

intercept 103.84 108.36 113.79 119.96

slope 0 0.03 0.12 0.26

Table 2.1: Intercept and slope values of regression lines for each categorical group nc.

out that there is a significant interaction between clutter number levels and γ values

(p-value<0.001). Hence, not all βj’s are equal, i.e., the lines in Figure 2.2 are not

all parallel to each other although the lines in the plot suggest otherwise. The next

intercept

nc = 50 nc = 75 nc = 100

nc = 25 <0.001 <0.001 <0.001

nc = 50 <0.001 <0.001

nc = 75 <0.001

(a)

slope

nc = 50 nc = 75 nc = 100

nc = 25 0.003 <0.001 <0.001

nc = 50 <0.001 <0.001

nc = 75 <0.001

(b)

Table 2.2: Significant level of differences (p-values) in intercept (a) and slope (b) for

each pair of groups.

natural question would be which clutter number levels have significantly different
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trends than other(s). To explain this, we repeat the model in Equation (2.1) for each

pair of groups to get the pairwise significance level of differences in intercept and slope

(see Table 2.2). From Table 2.2 it follows that both intercepts and slopes for clutter

number levels 25, 50, 75 and 100 are significantly different from each other. Thus,

the lines in Figure 2.2 have significantly different slopes except for nc = 25, 50.

So far, we have not taken into consideration the influence of the d values. Figure

2.3 shows the plots of the average traversal length versus d values. Observe that the
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Figure 2.3: Mean traversal length versus d values for groups nc = 25, 50, 75, 100 with

overall plot (i.e., the average of all groups combined).

change in d values influences the traversal lengths considerably for larger nc values.

The Figure 2.3 also suggest choosing nc ≥ 75 and d ≈ 6 for larger traversal length.

We fit the data set into the best quadratic polynomial because the curves in Figure 2.3

suggest that there is a concave down trend at least for nc = 75 and 100. In Figure 2.4,

we provide graphs separately for each clutter number level and show corresponding

fitted quadratic polynomial. Clearly, the concave down trend gets more emphasized

as the number of clutter increases. Also, for any fixed value of γ and when d ranges

from 0 to 8 the obstacle pattern gets more regular and hence yields higher traversal

length. But, when d is larger than 9 units the average traversal length decreases

sharply because the obstacle pattern leaves obstacle-free spaces in the region through
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which NAVA can quickly traverse without encountering any obstacle. These specific
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Figure 2.4: Mean traversal length versus d values for nc = 25, 50, 75, 100 together

with quadratic polynomial fit and (nonparametric) smoothing spline with smoothing

parameter p = 0.9863 . Notice that vertical axes are differently scaled.

threshold values of d are closely related to the radius of disk shaped obstacle (i.e.,

r = 4.5 units). When d = 9, recalling that r = 4.5, the disk-shaped obstacles become

tangent to each other. Thus, for values of d larger than 9 the obstacles are no longer

tangent and, so distances between obstacles increase resulting in a shorter path.

Regarding the plots in Figure 2.4, we consider the following model for the traversal
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coefficients \ groups nc = 25 nc = 50 nc = 75 nc = 100 overall

α 103.73 108.73 112.75 117.95 110.65

β 0.12 0.39 1.20 2.20 0.98

δ -0.01 -0.04 -0.12 -0.21 -0.10

Table 2.3: Coefficients of quadratic polynomial fitted to the data at each clutter

number level.

intercept

nc = 50 nc = 75 nc = 100

nc = 25 <0.001 <0.001 <0.001

nc = 50 <0.001 <0.001

nc = 75 <0.001

(a)

linear term

nc = 50 nc = 75 nc = 100

nc = 25 0.17 <0.001 <0.001

nc = 50 <0.001 <0.001

nc = 75 <0.001

(b)

quadratic term

nc = 50 nc = 75 nc = 100

nc = 25 0.07 <0.001 <0.001

nc = 50 <0.001 <0.001

nc = 75 <0.001

(c)

Table 2.4: Significant level of differences (p-values) of coefficient c (intercept) (a),

coefficient b (linear term) (b), and coefficient a (quadratic term) (c) at each pair of

clutter level.

length of NAVA,

Yij = αj + βjXij + δjX
2
ij + εij (2.2)

where i = 1, 2, . . . , 24200 and j = 1, 2, 3, 4 standing for nc = 25, 50, 75, 100, respec-
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tively; Yij is the ith traversal length of NAVA at jth group, Xij is the value of d at ith

treatment within jth group, and εij is an error term. The index j denotes the group

membership (i.e., clutter level). The coefficient estimates in Model (2.2) are presented

in Table 2.3. Table 2.4 suggests that the intercept values of all fitted polynomials in

Figure 2.4 are statistically different from each other. The linear and quadratic trends

for mean traversal length of clutter levels 25 and 50 are quite similar (see Table 2.4(b)

and Table 2.4(c)), whereas the other pairs significantly different.
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Figure 2.5: Contour plots of mean traversal length versus γ and d values for nc =

25, 50, 75, 100.
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We also consider the contour plot of the mean traversal lengths where the impacts

of both the γ and d values can be seen simultaneously (see Figure 2.5). The traversal

lengths are within a small range, especially for nc = 25, 50 (see Figures 2.5(a-b)).

However, for nc = 75, 100, there is much wider range for traversal length and also

a trend can be observed in these cases (see Figures 2.5(c-d)). Empirically the mean

traversal length is maximized when γ is less than 0.1 and when d is around 7 (from 6

to 8). On the average, for moderate values of d and the smaller values of γ we obtain

longer traversal lengths. Also observe that for large values of d, γ values have almost

no influence on the traversal length.

In summary, if the whole window is going to be inserted only with the false ob-

stacles with capability of varying the parameters of regularity (i.e., d and γ values),

then on the average, traversal lengths tend to increase as the clutter pattern changes

from uniformness to regularity. The γ values (esp. 0.1-1.0) have only mild influence

on the traversal length, while d (that is especially large for d values between 6-8) has

a substantial influence. Considering them together, from OPA’s perspective we rec-

ommend choosing moderate values of d (within 6 to 8) and smaller γ values (γ < 0.1)

in this setting so as to maximize the total traversal length of NAVA. We also observe

that the value d is closely related with the radius r of disk-shaped obstacle. From

OPA’s perspective the case d > 2r is not desirable since for d > 2r obstacles become

too sparse in the environment, whereas the optimal value of d takes place when the

ratio d/r is within the interval (1.33, 1.77) together with γ = 0.

2.3.2 True Obstacles Only Case

The simulation setting is as in the false obstacle only case in Section 2.3.1, with

nc being replaced by no. We repeat the same analysis done in Section 2.3.1, but

emphasize on the main differences here. For the same levels of number of obstacles,

γ and d values, the mean traversal lengths with the true obstacles tend to be longer

compared to the false obstacles. Using the model as in the Equation (2.1), we observe

that on the average the traversal length tends to increase as the true obstacle pattern
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changes from uniformness to regularity provided that d < 2r. The trends in traversal

length as γ increases is similar to the clutter only case (Figure 2.2), and the slopes

and intercept estimates (Table 2.5) are significantly different from each other (Tables

2.6).

no = 25 no = 50 no = 75 no = 100

intercept 104.06 111.78 137.63 204.21

slope 0 0.03 2.06 0.93

Table 2.5: Intercept and slope values of regression lines for each categorical group no.

intercept

no = 50 no = 75 no = 100

no = 25 <0.001 <0.001 <0.001

no = 50 <0.001 <0.001

no = 75 <0.001

(a)

slope

no = 50 no = 75 no = 100

no = 25 0.812 <0.001 <0.001

no = 50 <0.001 <0.001

no = 75 <0.001

(b)

Table 2.6: Significant level of differences (p-values) in intercept (a) and slope (b) for

each pair of groups.

When no equals 25 or 50, there still remains some obstacle-free spaces in the

environment where NAVA can traverse even without any disambiguation. So, the

γ values have almost no effect on the traversal length. When no = 75, the small

values of γ becomes more important. When obstacles are distributed more regularly,

NAVA starts to take risks (due to the greedy nature of the RD algorithm) rather than

circumnavigate the zero risk route. When no = 100, then the γ value again loses its

importance because we already have 100 obstacles which saturates the area regardless

of γ values. The mean traversal lengths versus d values are presented in Figure 2.6.
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Note that the trends are concave down and similar to the clutter only case (see Figure

2.3). By using a model as in Equation (2.2) we observe that fitted polynomials for
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Figure 2.6: Mean traversal length versus γ values for groups no = 25, 50, 75, 100

together with overall plot (i.e., the average of all groups combined).

true obstacle levels 25 and 50 are similar (hence have similar trends), but the others

are significantly different from each other.

We also present the contour plot of the mean traversal lengths versus γ and d

values in Figure 2.7 for no = 75, 100 only since for no = 25, 50 traversal length weakly

depends on d and γ values (hence are omitted). But, when no = 75 mean traversal

length is maximized for d values around 7 together with γ = 0. As for obstacle

number level no = 100, mean traversal length tends to have higher value for γ values

between 0.1 and 0.4, and for d values from 6 to 8.

In summary, if the whole window is to be inserted only with true obstacles with

capability of varying the regularity parameters (i.e., d and γ values), then on the

average traversal length tends to increase as true obstacle pattern changes from uni-

formness to regularity. From OPA’s perspective, considering γ and d values together,

we recommend choosing moderate values of d (around 6 to 8) and smaller γ values

(especially, 0.1<γ < 0.4).
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Figure 2.7: Contour plots of mean traversal length versus γ and d values for no =

75, 100.

2.3.3 True and False Obstacles Together

In this section we consider the setting in which OPA has the capability of inserting

both true and false obstacles simultaneously. The obstacle pattern changes from

uniformness to regularity for nc = 25, 50, 75 and no = 25, 50, 75 such that nc + no =

50, 75, 100. An example for the realization of this setting is given in Figure 2.8. From

our simulations (see Sections 2.3.1 and 2.3.2), we observe that true obstacles make

the traversal length much longer compared to false obstacles when the number of true

and false obstacles are same. Hence, from OPA’s perspective it is more desirable to

insert true obstacles rather than false obstacles (assuming OPA has sufficient amount

of both true and false obstacles). For the sake of simplicity, we only present the case

where nc = 25 and no = 25, 50, 75 such that nc + no = 50, 75, 100. The trend for

traversal length versus γ values for no = 25, 50, 75 with fixed nc = 25 false obstacles

is similar to the one in Figure 2.2. When the whole pattern is uniform (i.e., γ = 1)

the average traversal lengths are smaller and when the pattern is completely regular

(i.e., γ = 0) the average traversal lengths are larger. Based on our analysis, we
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Figure 2.8: The pattern is from the Strauss(nc +no = 50, d = 9, γ = 0) process where

dashed circles (nc = 25 with centers in XC) are the 25 false obstacles and solid circles

(no = 25 with centers in XO) are the 25 true obstacles.

find no significant difference between the true obstacle number levels 25 and 50 (p-

value=0.190), but the trend for true obstacle number level 75 is totally different from

the others.

Regarding the influence of d, for obstacle number levels 25, 50, and 75 we still

have a concave down trend similar to Figure 2.3 for mean traversal length as d values

increase. The mean traversal length is maximized when d is from 5.5 to 6.5.

We also present the contour plot of the mean traversal length versus γ and d

values in Figure 2.9 for (nc, no) = (25, 50) and (nc, no) = (25, 75). In the case

(nc, no) = (25, 25), traversal length seems to be not affected by d and γ values (hence

not presented). Notice that on the average the traversal lengths tend to have larger

values when γ values are less than 0.1 and when d values are from 6 to 8 units. For

the cases when the number of false obstacles are fixed 50 and 75, we obtain very

similar results as the case when the false obstacle number level is fixed to 25. Hence,

the plots for nc = 50 with no = 25, 50, 75 and nc = 75 with no = 25, 50, 75 cases are

not presented.
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Figure 2.9: Contour plots of the mean traversal length versus γ and d values when

(a) (nc, no) = (25, 50), (b) (nc, no) = (25, 75).

In summary, if the whole window is to be inserted with both false and true obsta-

cles together where the overall pattern changes from uniformness to regularity, then

on the average traversal lengths tend to increase. Based on our observation, in order

to maximize NAVA’s traversal length, we suggest choosing small γ values (less than

0.1) and moderate d values (from 6 to 8) for OPA to insert obstacles in the envi-

ronment. If feasible, we also recommend OPA insert more true obstacles than false

obstacles, and mix them so as to trick NAVA to run into more true obstacles and

hence do more disambiguations and replan its route to a longer path.

2.4 Obstacle Pattern Ranging from Uniformness to Clustering

In this section, we consider the case that OPA inserts obstacles from patterns chang-

ing from uniformness to clustering. To investigate this scenario we use the Matérn

clustering point process denoted Matérn(κ, r0, µ) wherein a given window, Ω, first

we uniformly generate ‘parent points’, and then for each parent point we generate

‘offspring points’, independently and uniformly distributed in a ball of radius r0 cen-
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tered around the parent. In the Matérn(κ, r0, µ) process, κ is the intensity of ‘parent’

points from Poisson process, each parent has a Poisson(µ) number of offsprings inde-

pendently and uniformly distributed in a disc of radius r0 centered around the parent

(Baddeley et al., 2008). Then parents are discarded from the region, and only off-

spring points are kept. Throughout this section the average number of points (i.e.,

offsprings µ) per parent point is taken to be 10, and the radius of a ball (r0) around

the parent varies from 5 to 50 with an increment size of 5 units. Notice that as the

radius gets larger, the pattern gets closer to uniformness.

In Aksakalli and Ceyhan (2012), the clustering pattern Matérn(κ, r0, µ), was em-

ployed with parameters κ = 10, r0 = 10, and µ = 10 so that on the average there

are κ × µ = 100 clutter points. And, the number of true obstacles no was taken to

be 20, 30, 40, 50, and 60. They observed that NAVA tends to have lower traversal

length for clustered point pattern. In the current study, we want to address how the

traversal length changes when both κ (hence µ) and r0 change under clustering by

considering various values of κ and r0 simultaneously. We investigate three different

cases. In line with Section 2.1, the whole window is inserted with clutter disks (i.e.,

false obstacles) only or true obstacles only, then the whole window is inserted with

both true and false obstacles together (see Figure 2.10). The number of parent points

κ is chosen to be 2, 4, 6 and 8 and for each parent there are on the average µ = 10

offsprings.

We present the mean traversal length versus clustering radius for the false obstacle

only and true obstacle only cases in Figure 2.11. If there are only false obstacles, then

as the pattern changes from uniformness to clustering, the average traversal length

decreases, especially for small values of cluster radius. For large values of cluster

radius the trend is almost same as in the uniformness pattern. Similarly, if there

are only true obstacles, as the pattern changes from uniformness to clustering, the

average traversal length decreases as the clustering radius decreases; and the rate of

decrease is remarkably sharp for smaller radius values. For the case when there are

both false and true obstacles, we investigate the situations where the number of false
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Figure 2.10: (a) A realisation of clutter disks from the Matérn(κ = 2, r0 = 15, µ = 10)

process shown in dashed circles. (b) The pattern is from the Matérn(8,15,10) process

where dashed circles indicate the false obstacles (nc = 60) and solid circles indicate

the true obstacles (no = 20).

obstacles is fixed to nc = 20 and the number of true obstacles no takes values 20, 40,

and 60. That is to say, we consider the pairs (nc, no) = (20, 20), (20, 40), and (20, 60).

The trend is similar to the cases in Figure 2.11 (hence not presented).

Based on our Monte Carlo simulation results, we observe that on the average

traversal length tends to decrease for true obstacles, false obstacle and both as the

clustering radius decreases and at a sharper rate for smaller radius values. When the

pattern gets more clustered, obstacles accumulate around one or multiple points (i.e.,

cluster centers) and as a result it is more likely to have more empty spaces inside the

window with a shorter length from s to t and this enables NAVA to attain a quick

traversal with encountering few or no obstacles.
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Figure 2.11: Mean traversal length versus cluster radius values when there are (a)

only clutter disks with nc = 20, 40, 60, 80 together with overall plot (i.e., the average

of all groups combined), (b) only true obstacles with no = 20, 40, 60, 80 together with

overall plot (i.e., the average of all groups combined). Notice that vertical axes are

differently scaled.

2.5 Stochastic Ordering of Traversal Lengths

We next consider the stochastic ordering of traversal lengths under various obstacle

patterns. Recall that NAVA is designed to traverse from source s to target t on an

(s, t) walk, with each edge weighted by the Euclidean distance and the disambiguation

cost of an obstacle. Given n (i.e., no+nc), let ρ = no/nc be the ratio of true obstacles

to false obstacles. Then, for any fixed ρ value, suppose that there are m many

distinct distances (avoiding loops) with ith distance occurring ki times. So, denote

such an (s, t) path as πij, i = 1, 2, . . . ,m and j = 1, 2, . . . , ki so that there are in

total M =
∑m

i=1 ki many (s, t) paths on the usual integer grid. When there are no

obstacles (n = 0) in the environment, let `ij be the corresponding Euclidean length

for path πij and without loss of generality we can assume that `1j < `2j < . . . < `mj.

Notice that for any fixed i, there are ki paths of equal length, i.e., `ij = `ij′ for any
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j, j′ = 1, 2, . . . , ki.

Now, let Lij be the traversal length for path πij in the presence of true or false

obstacles. In the absence of obstacles (n = 0) we have the equality Lij = `ij for all

i, j. When there are only false obstacles (n > 0 and ρ = 0, i.e., no = 0), then we need

to update the value of Lij by using the weight function defined by the RD algorithm.

Recall that, when there are only clutter disks the set X = XC where XC is the set

of points of centers of disk shaped obstacles Dr(x) (a disc of radius r centered at a

point x) for x ∈ XC with fixed radius r > 0. And, for x ∈ X, p(x) is the probability

that Dr(x) is a true obstacle with c(x) being the disambiguation cost of Dr(x). In

our case, the disambiguation cost c(x) = c > 0 is fixed. If we ignore the probabilities,

we have

Lij = `ij + wij × c with wij =
∑
x∈XC

1Dr(x)∩πij 6=∅

where wij gives the number of obstacles intersecting the edges of path πij. On the

other hand, if we do consider the probabilities of disk shaped obstacle being true

obstacle, then we update each edge of path πij. Namely, if e ∈ πij then,

w(e) = `(e) +
1

2
× F (e) with F (e) =

∑
x∈XC

1{Dr(x)∩e 6=∅} ×
(

c

1− p(x)

)

So that Lij =
∑

e∈πij w(e).

Notice that in the updated version for any fixed i, Lij 6= Lij′ in general, because

the number of obstacles intersecting the paths of same Euclidean length πij and πij′

may not be equal. If we consider all Lij values in the clutter only case in an array (1

byM) withM many entries so that L(k) is the kth smallest length, then RD algorithm

choses L(k) over L(k′) for k < k′.

Let LSij and LUij be the traversal lengths of path πij under regularity (γ = 0) and

uniformness (γ = 1), respectively. Under regularity, the path πij is more likely to

intersect an obstacle compared to uniformness. So, it is more likely that LUij ≤st LSij,

i.e., the traversal length is stochastically smaller under the uniformness compared

to that under regularity. Indeed, one can extend the above argument to the case
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that at fixed d, let Lγij denote the traversal length for Strauss(n, d, γ) pattern. Then,

Lγij ≥st L
γ′

ij whenever γ < γ′. Similarly, Lr0ij be the traversal length for Matérn(κ, r0, µ)

pattern and let LMij denote the traversal length of path πij under clustering (r0 ≈ 0)

for fixed κ, µ. Then for r0 < r′0, L
r0
ij ≤st L

r′0
ij since under Matérn(κ, r0, µ) pattern any

πij is less likely to hit an obstacle compared to that under Matérn(κ, r′0, µ) whenever

r0 < r′0. So, we have proved the following:

Proposition 2.5.1 : Whenever X = XC (i.e.,OPA only inserts false obstacles to

our standard window [0, 100]× [0, 100]), we have

(i) LMij ≤st LUij ≤st LSij (defined as above).

(ii) Lγij ≥st L
γ′

ij for γ < γ′.

(iii) Lr0ij ≤st L
r′0
ij for r0 < r′0.

In the true obstacle only case (n > 0 and ρ = ∞, i.e., nc = 0), if an obstacle

intersects a path then it renders that path non-traversable. So, if a shorter path

hits a true obstacle, RD resets the algorithm whenever NAVA hits the obstacle and

then picks another longer path. That is to say, when we have true obstacles the

total number of distinct traversable paths reduces compared to the clutter only case.

Hence, traversal length in the true obstacle case tends to be larger compared to that

in the false obstacle only case. Furthermore, by the same reason as above the same

stochastic orderings occur under regularity, clustering and uniformness patterns.

Proposition 2.5.2 : Whenever X = XO (i.e.,OPA only inserts true obstacles to our

standard window [0, 100]× [0, 100]), we have

(i) LMij ≤st LUij ≤st LSij

(ii) Lγij ≥st L
γ′

ij for γ < γ′.

(iii) Lr0ij ≤st L
r′0
ij for r0 < r′0.
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One can also write stochastic ordering for clutter only and true obstacle only cases

as follows. Let LCij be the traversal length of path πij under the clutter only case and

LOij be the traversal length of path πij under the true obstacle only case. Then with

the same obstacle pattern of nc = n in the clutter only case and no = n in the true

obstacle only case we have,

Proposition 2.5.3 : With the same obstacle pattern and the same number of obsta-

cles,

LCij ≤st LOij.

This holds because if true obstacles were also clutter, then we would have LCij
d
= LOij.

But, when NAVA runs into a true obstacle, then it has to stop and choose a longer

traversable path while if the obstacle was false NAVA would traverse through it. Since

the cost of disambiguation is same, we have a reduction in the number of traversable

paths under true obstacle only case with LCij values being more likely to be smaller

than LOij values. Let L
C,O
ij be the traversal length of path πij under the clutter & true

obstacle cases.

Corollary 2.5.3.1 : With the same obstacle pattern and the same number of obsta-

cles,

LCij ≤st L
C,O
ij ≤st LOij.

The result also extends to the mixed obstacle case. One can also show that with

everything else being same, and ρ = no/nc and keeping the number of clutter equal,

we have Lρij ≤st L
ρ′

ij whenever ρ < ρ′ (but, notice that this result does not extend

if the number of clutter values are different). Indeed, this case can be generalized

whenever total number of obstacles is fixed (we will be studied in detail in Section

2.6).

Proposition 2.5.4 : Whenever X = XC ∪XO, and nc is fixed, then for ρ < ρ′

(i) LMij ≤st LUij ≤st LSij
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(ii) Lγij ≥st L
γ′

ij for γ < γ′.

(iii) Lr0ij ≤st L
r′0
ij for r0 < r′0.

To conclude, at any path πij, the cost under regularity would tend to be higher

compared to uniformness. The main reason for this is that under regularity, it is more

likely for an obstacle to be placed on an edge on πij compared to uniformness, since

under regularity obstacles will be more evenly distributed compared to uniformness.

On the other hand, for any path πij the cost under clustering would tend to be lower

compared to uniformness. Because, under clustering the obstacle is less likely to

hit an edge on πij compared to uniformness. Since, under clustering obstacles will

be accumulated around parents or hotspots and thus form clumps so that πij has

more chance of not falling inside these clumps compared to uniformness. Thus, if

the obstacle pattern is regular then the probability of maximizing the mean traversal

length of NAVA is higher than any other cases.

2.6 Mean Traversal Length Versus Ratio of Number of True to False

Obstacles

So far we denote the number of clutter (false obstacles) by nc and the number of true

obstacles by no, and n = nc +no and we compute the traversal lengths for each nc, no

combinations. In this section, we investigate the trends for mean traversal length with

respect to the ratio ρ = no/nc when the sum no + nc is fixed. In our experimental

setting the total number of obstacles to be inserted into the study window is equal to

100. So, the case no = 0 corresponds to deploying the study window only with clutter,

and nc = 0 means inserting only true obstacles. To measure the traversal length for

intermediate values of pairs of (no, nc), we introduce a new variable ρ = no/nc taking

the values {0, 1/4, 1/2, 1, 2, 4,∞}. Thus, extreme cases of ρ = 0 is equivalent to the

case no = 0 and ρ =∞ is equivalent to the case nc = 0.

In the following subsections, we investigate the case where the obstacle pat-

tern changes from the complete spatial uniformness (uniformness) to regularity. We
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use 11 × 11 partition of (γ, d) ∈ (0, 1) × (1, 11) (i.e., γ and d are parameters of

Strauss(n, d, γ)), so our current investigation is much more detailed for γ compared

to Aksakalli and Ceyhan (2012), and investigation for d is different from that in

Aksakalli and Ceyhan (2012).

We also investigate the case where the obstacle pattern changes from the uniform-

ness to clustering. In our experimental setting, we choose the κ values {1, 2, 3, ..., 10, 11}

and the radius r0 around the parent varies from 5 to 50 units with an increment size

of 5 units (i.e., κ and r0 are parameters of Matérn(κ, r0, µ)). As the radius gets larger,

the pattern formed is getting closer to uniformness. In Aksakalli and Ceyhan (2012),

the cluster radius r0 and the average offspring per parent µ were both taken to be 10.

In our study, we increase the range of r0 and κ values.

2.6.1 Obstacle Pattern Ranging from Uniformness to Regularity

Our goal is to determine the trend for the mean traversal length of NAVA as a function

of the level of regularity. In our experimental setting, there are 11 different values of d

(1, 2, ..., 10, 11), 11 different values of γ (0, 0.1, ..., 0.9, 1), 7 different values of ρ (0, 1/4,

1/2, 1, 2, 4, inf), and 100 Monte Carlo simulations for each of these combinations.

First, we only consider the influence of γ values, and then we will discuss the effect of d

values. We model the traversal length as in Equation (2.1) where the categorical level

will be ρ. Since there are 7 categorical groups, for simplicity we split the corresponding

interaction plots into two parts. In Figure 2.12(a) we show the interaction plot of mean

traversal length versus γ values for groups ρ = 0, 1/4, 1/2, 1 and the overall plot (i.e.,

the average of all 7 distinct ρ groups). And, in Figure 2.12(b) we show the interaction

plot of mean traversal length versus γ values for groups ρ = 1, 2, 4,∞ and the overall

plot.

We observe that the intercept values for ρ = 1/4, 1/2 are not significantly different

from ρ = 0 (p-values 0.4071, 0.0524, respectively). And, the slopes of regression lines

for ρ = 1/4, 1/2, 1 are not significantly different than the slope of group ρ = 0 (p-

values 0.9817, 0.7207, 0.1984, respectively). Moreover, the slope values for all groups
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Figure 2.12: Mean traversal length versus γ values for groups (a) ρ = 0, 1/4, 1/2, 1

together with overall plot (the average of all 7 distinct ρ groups), (b) ρ = 1, 2, 4,∞

together with overall plot (the average of all 7 distinct ρ groups). Notice that vertical

axes are differently scaled.

are positive (Table 2.7), which means that the mean traversal length tends to increase

as the gamma (γ) values decrease. In all groups, the average traversal length is

maximized when γ = 0 (i.e., when the pattern is completely regular) and the mean

traversal length tends to increase as ρ gets larger (i.e., intercept value increases as

ρ increases). It is also interesting that the overall trend of mean traversal length is

almost the same as the case ρ = 2 (see Figure 2.12(b)).

Moreover, in Figure 2.13 we show the plot of mean traversal length versus ρ values

for various choices of γ and the contour plot of mean traversal length versus γ and

ρ values. In Figure 2.13(a), the mean traversal length tends to be higher (and thus

maximized) when γ = 0 for each ρ values. And, in Figure 2.13(b) layers of color are

formed for each different values of ρ implying that the mean traversal length tends

to be larger as ρ value increases. For fixed ρ value, the trend when γ = 0 is different

from other values of γ showing that the traversal length is maximized when γ = 0.

Figure 2.13(b) also summarizes the plots given in Figure 2.12.
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Figure 2.13: (a) Mean traversal length versus ρ values for groups γ = 0, 0.4, 0.6, 1, (b)

average contour plot of mean traversal length versus γ and ρ values.

ρ = 0 ρ = 1/4 ρ = 1/2 ρ = 1 ρ = 2 ρ = 4 ρ =∞

intercept 119.50 120.69 122.29 126.73 137.52 154.55 201.07

slope 0.29 0.29 0.36 0.56 1.15 2.33 1.14

Table 2.7: Intercept and slope values of regression lines for each categorical group ρ.

We also record the intercept and slope values of regression lines for each categorical

group ρ (see Table 2.7). If we repeat the model as in Equation (2.1) for each pair

of groups, then we will get the pairwise significance levels of differences in intercept

and slope similar to Table 2.2. Thus, we have more information about how exactly

each categorical group differs from one another. For instance, Table 2.7 and Figure

2.12 shows that although the intercepts are different for ρ = 2 and ρ =∞ groups, the

trend for mean traversal length of NAVA is similar since their slopes (1.15 and 1.15,

respectively) are not significantly different (p-value=0.974).

Next, we consider the effect of d values on mean traversal length of NAVA for

different ρ groups. Similar to Figure 2.3, we will fit the data set into the best quadratic
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Figure 2.14: Mean traversal length versus d values for groups (a) ρ = 0, 1/4, 1/2, 1

together with overall plot (the average of all 7 distinct ρ groups), (b) ρ = 1, 2, 4,∞

together with overall plot (the average of all 7 distinct ρ groups). Notice that vertical

axes are differently scaled.

polynomial and record the corresponding coefficients because the curves in Figure 2.14

suggest a concave down trend. In Figure 2.14, we provide graphs separately for ρ levels

ρ = 0, 1/4, 1/2, 1 and ρ = 1, 2, 4,∞ together with overall plot (the average of all 7

distinct ρ groups) in order to observe the general trend. Clearly, mean traversal length

gets higher, reaches a peak and then decreases as d values increase. And, concave

down trend gets more emphasized as the ρ increases.

Moreover, in Figure 2.15 we show the plot of mean traversal length versus ρ values

for various choices of d and the contour plot of mean traversal length versus d and ρ

values. In Figure 2.15(a), the mean traversal length tends to be higher when d = 6

(and similarly between 5 and 8) for each ρ values. Observe that when d gets smaller

values (less than 3) or larger values (greater than 9), then the mean traversal length

tends to be smaller than the case d is between 5 and 8. In Figure 2.15(b) layers

of color are formed for each different values of ρ implying that the mean traversal

length tends to be larger as ρ value increases. Figure 2.15(b) also summarizes the
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Figure 2.15: (a) Mean traversal length versus ρ values for groups d = 1, 4, 6, 10, (b)

average contour plot of mean traversal length versus d and ρ values.

plots (concave down trend) given in Figure 2.14.

We also present the contour plot of the mean traversal lengths versus γ and d

values in Figures 2.16 and 2.17. Notice that on the average the traversal length

tends to have larger values when γ values are less than 0.1 and when d values are

concentrated around 7 for ρ levels ρ = 0, 1/4, 1/2, 2. As the ρ values increases, the

contour plots get more emphasized and for ρ = 1 level the mean traversal length is

maximized when γ is less than 0.1 and d is around 5 and 7. In Figure 2.17, for ρ = 4

the average traversal length is maximized when γ is less than 0.1 and d is around 5

and 8. Unlike previous cases, for ρ = inf the mean traversal length tends to have

higher values when γ is between 0.1 and 0.4 together with d values between 6 and 8.

Based on the overall contour plot of ρ levels (see Figure 2.17(d)), we observe that the

NAVA tends to have higher mean traversal length for smaller γ values (i.e., smaller

than 0.1) and moderate d values around 7. As a consequence, for fixed number of

obstacles n = no+nc the ratio ρ = no/nc is also important in maximizing the traversal

length of NAVA. So,
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Figure 2.16: Overall average contour plots of the mean traversal length versus γ and

d values for (a) ρ = 0, (b) ρ = 1/4, (c) ρ = 1/2, and (d) ρ = 1.

Proposition 2.6.1 : Whenever X = XC ∪ XO, and n = nc + no is fixed, then

Lρij ≤st L
ρ′

ij for ρ < ρ′.

Thus, from OPA’s perspective considering γ and d values together, we recommend

choosing moderate values of d (around 7) and smaller γ values (less than 0.1). And,

given the total number of obstacles (n = nc + no is fixed), we recommend to choose

ρ value as large as possible so as to maximize the total traversal length of NAVA.
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Figure 2.17: Overall average contour plots of the mean traversal length versus γ and

d values for (a) ρ = 2, (b) ρ = 4, (c) ρ = ∞, and (d) overall (the average of all ρ

levels).

2.6.2 Obstacle Pattern Ranging from Uniformness to Clustering

In this Section, we investigate the trend for mean traversal length of NAVA as a

function of the level of clustering. To generate the clustering point pattern we use

Matérn(κ, r0, µ) as in Section 2.4. In our experimental setting, there are 11 different

values of κ (i.e., 1, 2, . . . , 11), 11 different values of cluster radius r0 (i.e., 5, 10, . . . , 50),
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7 different values of ρ (i.e., 0, 1/4, 1/2, 1, 2, 4,∞), and 100 Monte Carlo simulations

for each these combinations. Since the total number of obstacle is fixed to n = 100,

so on the average the µ value automatically equals to n/κ.

Ignoring κ, in Figure 2.18 we observe that the mean traversal length tends to

decrease as the cluster radius r0 decreases for each ρ level (concave down decrease

trend). That is to say, the mean traversal length tends to decrease as the obstacle

pattern changes from uniform to clustering. In all groups, the average mean traversal

length is maximized when the obstacle pattern is uniform and minimized when the

obstacle pattern is clustered. The trends is concave down, and as the ρ value increases

the decrease for mean traversal length gets more emphasized.
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Figure 2.18: Mean traversal length versus r0 values for groups (a) ρ = 0, 1/4, 1/2, 1

together with overall plot (the average of all 7 distinct ρ groups), (b) ρ = 1, 2, 4,∞

together with overall plot (the average of all 7 distinct ρ groups). Notice that vertical

axes are differently scaled.

Ignoring r0, in Figure 2.19 the mean traversal length tends to increase as the

number of parent points increases for each ρ level (concave down increase trend).

But, the increase in trend slows down after κ = 5 because as the number of parent

points increases the obstacles pattern gets less clustered. In both Figures 2.18 and
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Figure 2.19: Mean traversal length versus κ values for groups (a) ρ = 0, 1/4, 1/2, 1

together with overall plot (the average of all ρ levels), (b) ρ = 1, 2, 4,∞ with overall

plot (the average of all ρ levels). Notice that vertical axes are differently scaled.

2.19, the overall plot is similar to the group level ρ = 2. Moreover, in Figure 2.20

we show the plot of mean traversal length versus ρ values for various choices of r0

and the contour plot of mean traversal length versus r0 and ρ values. In Figure 2.20

(a), the mean traversal length tends to be higher when r0 = 50 (i.e., eventually CSR)

for each ρ values. In Figure 2.20 (b) layers of color are formed for each different

values of ρ implying that the mean traversal length tends to be larger as ρ value

increases. Figure 2.20 (b) also summarizes the plots (concave down trend) given in

Figure 2.18. Similarly, in Figure 2.21 (a) as the number of parent points (κ) decreases

(i.e., eventually clustering) the mean traversal length tends to be smaller for each ρ

value. And, in Figure 2.21 (b) the mean traversal length increases as the ρ value

increases.

In summary, we observe that from uniformness to clustering, traversal length

tends to decrease. Hence, clustering obstacle patterns are not preferable in OPA’s

perspective. That is, OPA should avoid clustering obstacle patterns as much as

possible and simply choose uniformness if uniformness and various clustering schemes
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Figure 2.20: (a) Mean traversal length versus ρ values for groups r0 = 5, 15, 30, 50,

(b) average contour plot of mean traversal length versus r0 and ρ values.
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Figure 2.21: (a) Mean traversal length versus ρ values for groups κ = 1, 3, 6, 10, (b)

average contour plot of mean traversal length versus κ and ρ values.

are the only available options. So far, we have observed that the mean traversal length

is maximized for moderate values of d (from 6 to 8) together with small values of γ

(less than 0.1). We also observed that to maximize the traversal length of navigating
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agent (NAVA), obstacle placing agent (OPA) should insert more true obstacles than

false obstacles. Under these circumstances, we can also decide in what proportion

of true obstacles to false obstacles should be used so as to maximize the traversal

length of NAVA. We plot the mean traversal length versus no and nc values for pairs

(d, γ) = (6, 0), (d, γ) = (7, 0), and (d, γ) = (8, 0). In Figure 2.22, we see that on the

average the mean traversal length is maximized when no is around 80 together with

nc less than 20.
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Figure 2.22: Overall average contour plots of the mean traversal length versus no and

nc values when (a) (d, γ) = (6, 0), (b) (d, γ) = (7, 0), and (c) (d, γ) = (8, 0).
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2.7 Summary

We investigate how the traversal length of NAVA changes as the obstacle pattern

changes from uniformness to regularity, and from uniformness to clustering for various

pairs of numbers of clutter and true obstacles nc, no. In our experimental setting, we

simulated various combinations of both false and true obstacle number levels. Based

on our investigation with extensive Monte Carlo simulations, we found that traversal

lengths are higher under regularity than those under uniformness which tend to be

higher that those under clustering.

Under regularity, we investigate the influence of the two parameters d and γ. Given

the number of obstacles, the γ is the intensity of the number of pairs of distinct points

lying closer than d units. In all cases, clutter only, true obstacle only and mixture

of false and true obstacle, we recommend choosing moderate values of d (around 7)

together with small values of γ (between 0 and 0.1).

Moreover, given the total number of obstacles, the ratio of true versus false ob-

stacles is another important factor for the traversal length. Taking all of these into

consideration, to achieve optimal value we recommend choosing moderate values of

d (around 7) and smaller γ values (less than 0.1). And, given the total number of

obstacles (i.e., n = nc + no is fixed), we also recommend choosing ρ value as large as

possible in order to maximize the total traversal length of NAVA.

Under clustering obstacle pattern, the cluster radius r0 and the number of parent

points κ are found to be important. Here, the κ stands for the number of accumu-

lation points and r0 stands for the radius at which obstacles accumulate around the

accumulation point. We do not recommend choosing clustering point pattern since it

is not feasible. The number of true obstacles clearly dominates the number of false

obstacles, again the parameter ρ plays an important role in determining the trend of

traversal length when the total number of given obstacles is fixed. Hence, all things

considered for optimal values we do not recommend using the clustering obstacle

pattern in order to maximize the total traversal length of NAVA.

When the obstacle pattern and the number of obstacles kept same, then the traver-
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sal length under cluttering pattern is stochastically less than or equal to the traversal

length under uniformness, and which is also stochastically less than or equal to the

traversal length under regularity. Thus, mean traversal length is maximized then

the obstacle pattern is regular. Moreover, the traversal length in clutter only case

is stochastically less than or equal to the traversal length in mixture case which is

also stochastically less than or equal to the traversal length in true obstacle case only.

Concerning the precision of sensor, as the sensor of NAVA increases the traversal

length tends to be the more accurate and yields closer value to optimal solution.

In our future research, we are going to investigate the case where OPA places both

true and false obstacles deterministically. We want to investigate whether knowing

the exact locations of obstacles gains an advantage for OPA or not. Besides, concern-

ing the theoretical results OPD has many similarities with classical CTP problem.

We will prove our results for more general graphical settings by inspiring from current

theoretical results belonging to CTP problem. In OPD problem only disambiguation

capability was considered, but we also like to consider the problem with neutralization

capability. Under feasible conditions, we will study the OPD problem by both dis-

ambiguation and neutralization capabilities together depending on the circumstances

that NAVA and OPA encounters.

Another aspect of OPD problem is considering the study window in a 3-dimensional

setting. That is to say, we would like to investigate the OPD problem in higher dimen-

sion as well starting from three dimensional case. In 3-D case, NAVA may represent

the submarine that wishes to reach from one source point to a target destination

avoiding underwater mines. And, OPA may be the opponent forces wishing to place

mines so as to maximize the total traversal length of NAVA.



Chapter 3

M2K ALGORITHM FOR THE OPD PROBLEM

3.1 Introduction

In this section, we investigate how traversal length behaves for various M2k algo-

rithms. We will use the same experimental setup of Aksakalli and Ceyhan (2012),

but compute the traversal length by M2k algorithm for various integer values of k.

Based on our Monte Carlo simulations, we observe that the trends for mean traversal

length computed by RD algorithm and M2k algorithm are essentially similar. So,

instead using the greedy algorithm we recommend using M2k algorithm where few

disambiguations take place, and hence decrease the complexity cost compared to the

original RD algorithm.

3.2 Experimental Setting

3.2.1 Background Clutter Generation

In our simulation setting, we use 6 different types of point processes for sampling cen-

ters of disk-shaped clutters. These are homogeneous (HPP) and inhomogeneous (IP)

Poisson processes, Matérn and Thomas point processes, and Hardcore and Strauss

point processes. Among these Matérn and Thomas processes are clustered point

processes, while Hardcore and Strauss processes are regular point processes (Badde-

ley, 2010). The number of clutter is fixed to 100, and the number of obstacles are

20,30,40,50 and 60 respectively. As for obstacle window forms, we use a total of 19

different obstacle placement patterns. Obstacles are uniformly sampled within four

different window forms: the entire background window itself (P), linear strips (L),

V-shaped (V) and W-shaped (W) polygonal windows.
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Formally, a spatial point process X is a finite random subset of a bounded region

Ω ⊂ R2. A realization of this point process, on the other hand, is called a spatial point

pattern. Mainly there are three types of spatial point patterns; independent patterns,

cluster patterns where points tend to be close to one another and regular patterns

where points tend to repel each other. In this section, we consider two patterns from

each one of these three groups and the background clutter disk centers are generated

from those six spatial point processes (Aksakalli and Ceyhan (2012)).

The homogeneous Poisson process with constant intensity λ is also called complete

spatial randomness (CSR), where the intensity will be denoted by CSR(λ). For any

region Ω, the CSR point process has four properties: (1) the number of points in Ω is a

Poisson random variable, (2) number of points in any two disjoint regions Ω and Ω′ are

independent random variables, (3) the expected number of points in Ω is λ×area(Ω),

and (4) points in Ω are independently and uniformly distributed (given the number of

points). In our case, λ is taken to be 100. As for the inhomogeneous Poisson process, it

is a modification of CSR where the intensity is not constant, but varies from location

to location. Specifically, the intensity is a function in two dimensional Euclidean

space. Let IP (λ(h)) denote the inhomogeneous Poisson process with intensity λ(h)

where h ∈ R2. Here, the intensity function λ(h) specifies the value of λ on the

plane. Properties of IP (λ(h)) are the same as those of CSR(λ) with the last two

properties modified as follows: (3′) the expected number of points in Ω is
∫

Ω
λ(h)dh,

and (4′) points in Ω are independently identically distributed (i.i.d) with probability

density f(h) = λ(h)
[∫

Ω
λ(h)dh

]−1. In our case, we take the intensity function as

λ(x, y) = 0.037e(10−y)/40 as in Aksakalli and Ceyhan (2012). Notice that, the intensity

only depends on y and decreases as y increases. Here, obstacles get denser as one gets

closer to a target point. An illustration of both CSR and IP is shown in Figure 3.1.

For clustering, the Matérn point process, denoted by M(λ, µ, σ), is constructed

by first generating a Poisson point process of “parent” points with intensity λ. Each

parent point is then replaced by a random cluster of points where the number of points

in each cluster is sampled from a Poisson distribution with parameter µ. These so
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(b) Inhomogeneous Poisson

Figure 3.1: Sample realizations from homogeneous and inhomogeneous point pro-

cesses. The parameters are: (a) CSR(100) and (b) IP
(
0.037e(10−y)/40

)
. Indeed, on

the average 100 points are generated by using these distribution parameters, but by

using the rejection sampling we fix them to exactly 100 points.

called “child” points are placed independently and uniformly inside a disk with fixed

radius r centered at the parent point. In our case, we work withM(10, 10, 10). Similar

to the Matérn point process, the Thomas process, denoted by T (λ, µ, σ), is constructed

by first generating a Poisson point process of “parent” points with intensity λ. A

random cluster of points replaces each parent point with the number of points per

cluster being sampled from a Poisson distribution with parameter µ. In contrast

with the Matérn point process, positions of these child points in the Thomas point

process are isotropic Gaussian displacements centered at the cluster parent location

with standard deviation σ. In our case, we work with T (10, 10, 5) as in Aksakalli and

Ceyhan (2012). An illustration of both Matérn and Thomas is shown in Figure 3.2.

For regular, the probability density function of the hardcore process is that of

the Poisson process with intensity function λ conditioned on the event that no two

points generated by the process are closer than d units apart, hence denoted by
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Figure 3.2: Sample realizations from Matérn and Thomas point processes. The pa-

rameters are: (a)M(10, 10, 10) and (b) T (10, 10, 5). Indeed, on the average 100 points

are generated by using these distribution parameters, but by using the rejection sam-

pling we fix them to exactly 100 points.

HC(λ, d). The Strauss process, denoted S(λ, d, γ), on the other hand, generalizes

the hardcore process by incorporating a γ ∈ [0, 1] parameter that controls of the

interaction between points. The process exhibits more regularity for smaller values

of γ, and less regularity for large γ. For γ = 0, the Strauss process becomes hardcore

process, and for γ = 1, it reduces to CSR. In our case, we work with HC(100, 5) and

S(100, 5, 0.5) as in Aksakalli and Ceyhan (2012). An illustration of both Hardcore

and Strauss is shown in Figure 3.3.

In our computational experiment (see Section 2.2), the graph G = (V,E) is the 8-

adjacency integer discretization of [0, 100]× [0, 100] with s = (50, 100) and t = (50, 1).

Each disk has a fixed radius of r = 4.5 units and the disk centers are sampled inside

[10, 90]× [10, 90] ensuring that there always exists(possibly very long) a s, t walk. The

disambiguation cost is taken to be c = 5. And, clutter probabilities are sampled from

Beta(2,6), whereas obstacle probabilities are sampled from Beta(6,2). These choices
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Figure 3.3: Sample realizations from Hardcore and Strauss point processes. The

parameters are: (a) HC(100, 5) and (b) S(100, 5, 0.5). Indeed, on the average 100

points are generated by using these distribution parameters, but by using the rejection

sampling we fix them to exactly 100 points.

are made in line with the ones in Aksakalli and Ceyhan (2012) and Priebe et al.

(2005). Also, we let the significance level of the test be 0.01.

In particular, let P = [10, 90]× [10, 90] which will be the window for clutter center

points. In all six types of clutter distributions, the sample size generated is equal to

exactly 100 points. As for obstacle window forms, we consider a total of 19 different

sampling windows. The first is the polygon P = [10, 90]× [10, 90], there are 8 different

linear windows of width equals to 10 units and with their top left corner y coordinate

being 90,80,...,20, and 5 different V-shaped and W-shaped windows, respectively, with

their top left corner y coordinate being 90,80,...,50. The difference between the top

and bottom y coordinates of each one of these 10 polygons is taken to be 50 units.

The width of polygonal shape is 10 units (Aksakalli and Ceyhan, 2012).

For example, L70 is the polygon whose four corner points are (10,70), (90,70),

(90,60) and (10,60) clock-wise starting with the top left corner. We also take number
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of obstacles to be 20, 30, 40, 50, and 60 for each of the 19 obstacle sampling windows.

Thus, the realization of obstacle patterns are denoted by the sampling window fol-

lowed by the number of obstacles. For example, P:40 and L70:40 refer to the obstacle

patterns sampled within the P and L70 windows, respectively, with 40 obstacle center

points inside their respective windows. These choices also ones made as in Aksakalli

and Ceyhan (2012) for comparative purposes. Hence, the treatment factors are the

“background clutter type”, the “obstacle placement window” and the “number of the

obstacles”. The first has 6 different types, the second has 19 types and the third has

5 different types resulting in a total of 570 treatment combinations. Our main goal is

to investigate how traversal length changes according to treatment factors when the

NAVA uses the greedy RD algorithm and its variants M2k algorithm.

3.3 M2k Algorithm

In the original version of RD algorithm, the average number of edges that disk-shaped

obstacles intersect in a 8-discretization setting is 88. So, prior to the traversal, NAVA

assigns edge weight to all edges intersecting the disks using the cost of disambiguation

and the probability of being a true obstacle of a disk (Chapter 5). But, M2k algorithm

is based on the effective choice of the number disambiguations. As an example let

us consider the case k = 3, then NAVA updates only 23 edges for each disk-shaped

obstacle and assigns ∞ for the rest. An example of the choice of 8 disambiguation

points for disks are shown below (see Figure 3.3). M16 and M4 algorithms are defined

analogously. The advantage of using the M2k algorithm is that the complexity time is

reduced when computing the traversal length of NAVA and the mean traversal length

is well estimated. For example, the complexity time of running M16 algorithm is at

least 5 times faster than the RD algorithm, and the mean traversal length estimated

by M16 algorithm deviates at most 2.5% relative error from the traversal length

estimated by RD algorithm.
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Figure 3.4: A total of 8 disambiguation points are labeled in each disk-shaped obstacle.

3.4 Repeated Measures ANOVA

Our data set consists of traversal lengths computed by the RD algorithm and its

variants under various conditions that we have described above. Hence, the back-

ground clutter types are Complete Spatial Randomness (CSR), inhomogeneous Pois-

son (IP) pattern, Matérn (M) pattern, Thomas (T) pattern, hardcore (HC) pattern,

and Strauss (S) pattern. For simplicity the clutter types are numbered from 1 to

6, which in turn, correspond to CSR, IP, M, T, HC, and S patterns, respectively.

Similarly, the obstacle window types are numbered from 1 to 19 corresponding to P,

L90, L80,..., L20, V90, V80,..., V50, W90, W80,..., W50, respectively. The obstacle

number levels are also numbered from 1 to 5 corresponding to 20, 30, 40, 50, 60, re-

spectively. Thus, we denote the traversal length as Lijkl which is the traversal length

of the measurement l for clutter type i, obstacle window type j, obstacle number level

k with l = 1, 2, ..., 100, i = 1, 2, ..., 6, j = 1, 2, ..., 19, and k = 1, 2, ..., 5, respectively.

Note that Lijkl, Lij′kl, Lijk′l, Lij′k′l are estimated on the same background clutter

type i, and hence they are potentially correlated. Similarly, the expected traversal

lengths within the respective obstacle window types or obstacle number levels can also

correlated (positively or negatively). In order to deal with and take into account such

possible correlations, we use repeated measures ANOVA. We use the repeated mea-
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sures ANOVA to compare the traversal length differences between treatment factors.

The conditions of repeated measures ANOVA are similar to that of usual ANOVA, ex-

cept that independence is not required and an assumption about the relations among

the repeated measures is added. The repeated measures ANOVA assumptions are;

(i) the dependent variable is normally distributed, (ii) the homogeneity of covariance

matrices is required, (iii) independence between predictor factors, and (iv) sphericity,

which refers that the variance of repeated measures are all equal, and the correlations

among the repeated measures are all equal (Aksakalli and Ceyhan, 2012). The main

advantage of using the repeated measures ANOVA rather than standard ANOVA

is that we obtain more precise information in comparison of our results. Moreover,

as mentioned in Aksakalli and Ceyhan (2012), we consider four types of variance-

covariance (var-cov) structure; (i) unstructured (UN), (ii) autoregressive (AR1), (iii)

autoregressive heterogenous (ARH1), and (iv) compund symmetry (CS).

First we investigate the type(s) and level(s) of interaction for each pair of treat-

ment combination factors. Consider the following model with four different variance-

covariance (var-cov) structures:

Lijkl = µ0 + µCi + µOj + µNOl + εijkl (3.1)

where µ0 is the overall mean, µCi is the mean for clutter type i, µOj is the mean for

obstacle type j, µNOi is the mean for obstacle number level k, and εijkl is the error

with l = 1, 2, ..., 100, i = 1, 2, ..., 6, j = 1, 2, ..., 19, and k = 1, 2, ..., 5, respectively. The

var-cov structures we consider are compound symmetry (CS), autoregressive var-cov

structure (AR1), autoregressive var-cov structure heterogeneous (i.e., with different

variances) at obstacle types (ARH1-OT), and autoregressive var-cov structure het-

erogeneous (i.e., with different variances) at obstacle number levels (ARH1-ON).

3.4.1 Overall Comparison of Traversal Lengths

Analogous to Aksakalli and Ceyhan (2012), let us investigate the type and levels of

interaction for each pair of treatment combination factors by using the model given

in Equation 3.1. The model comparisons (with degrees of freedom (df), AIC, -log
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likelihood values) are presented in Table 3.1 for the traversal length estimated by

RD algorithm. The model comparisons for traversal length estimated by M16, M8

an M4 are also similar, and hence we do not provide them separately. Note that

the model with ARH1-OT var-cov structure seems to be the best model, since it

has the smallest AIC smallest -log likelihood values. Similarly, ARH1-OT values

when the traversal length is estimated by M16, M8 and M4 algorithms are 549741.70,

528238.90 and 496291.10, respectively. The p-values shown in Table 3.1 are based

on the likelihood ratio of the best model (which is ARH1-OT) and the model in the

corresponding row. With ARH1-OT model, we observe significant differences between

clutter types, obstacle type, and obstacle number levels. The interaction plots RD

and M8 algorithms are shown in Figures 3.5, 3.6. The interaction plots of M16 and

M4 are similar, and hence omitted.

var-cov structure df AIC -log likelihood L-ratio p-value

CS 30 587112.9 293526.5 11760.17 <0.0001

AR1 30 587102.6 293521.3 11749.83 <0.0001

ARH1-ON 34 581590.7 290761.4 6229.987 <0.0001

ARH1-OT 48 575388.7 287646.4 - -

Table 3.1: The comparisons of the models in Equation (1) when the traversal length

is estimated by RD algorithm.

RD algorithm case:

When obstacle number levels are ignored (i.e., when only interaction between ob-

stacle type/forms and clutter types are considered), we find that obstacle and clutter

types do not have significant interaction (p = 0.0214), neither do obstacle forms and

clutter types (p = 0.122) which means that the trends in mean length plotted in

Figures 3.5(a)-(b) and are not significantly different from being parallel. Hence, it is

reasonable to compare the main effects of clutter and obstacle types on the traversal

length. According to our simulation results, we find that the traversal lengths are
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significantly different between background clutter types (p < 0.0001) and between

obstacle types (p < 0.0001). Similarly, traversal lengths are significantly different be-

tween clutter types (p < 0.0001) and between obstacle forms (p < 0.0001). Also note

that, on the average at each obstacle type or form, Matérn and Thomas clutter types

tend to yield shorter traversal lengths; whereas Hardcore and Strauss clutter types

tend to yield longer traversal lengths. Hardcore clutter tends to yield the longest

traversal lengths, which suggests that the more regular the clutter type, the longer

the traversal lengths. Moreover, at each obstacle type or form, the average traver-

sal lengths (in ascending order) are for P, W-shaped, linear, and V-shaped obstacle

forms. When clutter types are ignored (i.e., when only interaction between obstacle

types/forms and obstacle number levels are considered), we find significant interaction

between obstacle type and obstacle number levels (p < 0.0001), and between obsta-

cle form and obstacle number levels (p < 0.0001), which means the trends in mean

traversal lengths plotted in Figures 3.5(d)-(e) are significantly non-parallel. Hence,

it is not reasonable to compare the mean traversal lengths for obstacle types/forms

and obstacle number levels, but instead, for example, it will make sense to compare

the mean traversal lengths for obstacle number levels at each obstacle type or form.

At P and W-shaped obstacle forms, traversal lengths tend to increase as the obstacle

number increases; at linear and V-shaped obstacle forms, traversal lengths exhibit a

concave down trend (i.e., increase, reach a peak, and then decrease); for linear and

V-shaped windows the shortest lengths occur at 20 obstacles, but longest lengths oc-

cur at 40 and 50 obstacles, respectively. This behavior is due to the increase in the

disk-shaped obstacles (true obstacle and clutter) density that makes the NAVA to

decide to traverse along the boundary more often. Moreover, for 20 and 30 obstacles,

the largest (on the average) traversal lengths occur for linear obstacle forms, and for

40-60 obstacles, longest occurs for V-shaped obstacle forms. At each obstacle number

level, the shortest traversal lengths occur for the P obstacle form.

When obstacle types are ignored (i.e., when only interaction between clutter type

and obstacle number levels are considered), we find significant interaction between
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clutter type and obstacle number levels (p < 0.0001), which means the trend in mean

traversal length plotted in Figure 3.5(c) is significantly non-parallel. Hence we do

not test for the main effects of clutter types and obstacle number levels. Instead, we

compare the mean traversal length values for obstacle number levels at each clutter

type. On the average at each clutter type, traversal lengths tend to increase as the

obstacle number increases (up to 40 obstacles) but the lengths for 50 and 60 obstacles

are very similar. At each obstacle number level, the longest traversal lengths occur

for Hardcore clutter type, and the shortest traversal lengths occur for Thomas clutter

types.

The shortest and longest traversal length performances are presented in Table 3.2.

In our overall comparison, the shortest length is about 118 units which occurs at

T:P:20, T:W90:20, M:W80:20, and M:P:20 treatment combinations, and the longest

length is about 206 units which occurs at HC:V80:50 treatment combination.

M16 algorithm case:

When the other factor is ignored, we find significant interactions for all pair of

treatment factors plotted as in Figures 3.5, 3.6. In all those subfigures, their respective

p−values are strictly less than 0.0001, which means the trend in mean traversal length

are significantly non-parallel. On the average, Hardcore clutter types tend to yield

longer traversal lengths and Matérn or Thomas clutter types tend to yield shorter

traversal lengths. Also, V−shaped obstacle forms tend to dominate others for each

clutter type and obstacle number levels except 20 and 30 obstacle number levels. At

P and W-shaped obstacle forms, traversal lengths tend to increase as the obstacle

number increases; at linear and V-shaped obstacle forms, traversal lengths exhibit a

concave down trend (i.e., increase, reach a peak, and then decrease).

We record the shortest and longest traversal length performances as in Table 3.2.

In our overall comparison, the shortest length is about 119 units which occurs at

M:W:80:20 and T:W90:20 treatment combinations, and the longest length is about

186 units which occur at HC:V:50:50 and T:W90:60 treatment combinations.

M8 algorithm case:
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When obstacle number levels are ignored (i.e., when only interaction between

obstacle type/forms and clutter types are considered), we find significant interaction

between obstacle type and clutter type (p = 0.0024), which means the trend in mean

traversal length plotted in Figure 3.6(a) is significantly non-parallel. Hence, it is not

reasonable to compare the mean traversal lengths for obstacle types and clutter types,

but instead, for example, it will make sense to compare the mean traversal lengths for

obstacle types at each clutter type. Similarly, when the other factor is ignored, we find

significant interactions for all pair of treatment factors plotted in Figure 3.6. In all

four sub-cases, their respective p−values are strictly less than 0.0001. As it was in RD

algorithm, on the average Hardcore clutter types tend to yield longer traversal lengths

and Matérn and Thomas clutter types tend to yield shorter traversal lengths. Also,

unsurprisingly V−shaped obstacle forms tend to dominate others for each clutter type

and obstacle number levels. Although Hardcore clutter type and V−shaped forms

tend to give longer traversal lengths on the average as the obstacle number levels

increase, it is crucial to note that after certain point all of them give close values.

The shortest and longest traversal length performances are presented in Table3.3.

In our overall comparison, the shortest length is about 121 units which occurs at

M:P:20 and M:W:80:20 treatment combinations, and the longest length is about 177

units which occur at IP:V:50:60 and HC:V70:40 treatment combinations.

M4 algorithm case:

When the other factor is ignored, we find significant interactions for all pair of

treatment factors plotted as in Figures 3.5, 3.6. In all those subfigures, their respective

p−values are strictly less than 0.0001, which means the trend in mean traversal length

are significantly non-parallel. On the average Hardcore clutter types tend to yield

longer traversal lengths and Matérn or Thomas clutter types tend to yield shorter

traversal lengths. Also, V−shaped obstacle forms tend to dominate others for each

clutter type and obstacle number levels except for CSR clutter type and 20 obstacle

number level. At each clutter type and obstacle form, on the average the traversal

lengths increase as the number of obstacles increase. Moreover, when obstacle number
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level ignored it can be seen from the graph that the trend in traversal lengths is

constant for all regular background clutter type at each obstacle form.

We record the shortest and longest traversal length performances as in Table 3.2.

In our overall comparison, the shortest length is about 122 units which occurs at

M:W:80:20 and M:P:20 treatment combinations, and the longest length is about 174

units which occur at IP:V:50:60 and HC:V50:60 treatment combinations.
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Figure 3.5: The interaction plots for each pair of treatment factors (obstacle

type/form, clutter type, and obstacle number) when the other factor is ignored. The

traversal length is estimated by RD algorithm.
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Figure 3.6: The interaction plots for each pair of treatment factors (obstacle

type/form, clutter type, and obstacle number) when the other factor is ignored. The

traversal length is estimated by M8 algorithm.
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Figure 3.7: The plots of mean traversal length versus obstacle window type, clutter

type, and obstacle number level when computed by RD, M16, M8, and M4 algorithms,

respectively.
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Overall-RD algorithm

SHOSTEST LONGEST

traversal length(s) treatment types(s) traversal length(s) treatment type(s)

RD Algorithm 117.87, 118.03 T:P:20, T:W90:20 206.73 HC:V80:50

118.08, 118.10 M:W80:20, M:P:20

Clutter type

CSR 125.06 W80:20 200.65, 200.60 V50:60, V70:60

Inhom. Poisson 126.93 W60:20 196.03, 187.44 V50:60, V60:60

Matérn 118.08, 118.10 W80:20, P:20 196.21, 195 V60:60, V60:50

Thomas 117.87, 118.03 P:20, W90:20 199.06 V90:60

Hardcore 134.71 W90:20, V50:20 206.73 V80:50

134.84, 135.39 W70:20, P:20

Strauss 128.84, 129.68 W80:20, P20 195.82, 195.15 V90:50, V90:60

Obstacle form

P 117.87, 118.1 T:20, M:20 160.52 HC:60

Linear 127.13, 128.46 L30:T:20, L40:M:20 186.05, 185.23 L90:S:40, L90:HC:40

V-shaped 120.65 V50:T:20 206.73 V80:HC:50

W-shaped 118.03, 118.08 W90:T:20, W80:M:20 191.73, 186.02 W90:T:60, W80:HC:60

184.21, 184.15 W90:HC:60, W80:CSR:60

Number of Obstacles

20 117.87, 118.03 T:P:20, T:W90:20 154.21, 148.79 IP:L90:20, IP:L80:20

118.08, 118.10 M:W80:20, M:P:20 148.79, 146.32 IP:L80:20, HC:L80:20

146.15 S:L90:20

30 121.13, 121.49 M:P:30, T:P:30 177.34 HC:L80:30

40 127.65, 129.03 T:P:40, M:P:40 192.58 HC:V70:40

50 136.73 M:P:50 206.73 HC:V80:50

60 143.74 T:P:60 200.65, 200.64 CSR:V50:60, HC:V50:60

Table 3.2: The shortest and longest traversal lengths and the corresponding treatment

types for overall comparisons, and comparisons at specific clutter types, obstacle

types, and obstacle numbers when the traversal length is computed by RD algorithm.
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Overall-M8 algorithm

SHOSTEST LONGEST

traversal length(s) treatment types(s) traversal length(s) treatment type(s)

M8 Algorithm 121.58, 121.82 M:P:20, M:W80:20 177.11, 175.79 IP:V50:60, HC:V70:40

122.56, 122.74 T:W60:20, T:P:20

Clutter type

CSR 131.29 W80:20 171.71, 170.59 V50:40, V70:50

Inhom. Poisson 133.63 W50:20 177.11, 173.91 V50:60, V50:50

Matérn 121.58, 121.82 P:20, W80:20 168.59, 167.89 V50:60, V50:40

Thomas 122.56, 122.74 W60:20, P:20 175.01, 171.04 W90:60, V50:40

Hardcore 144.45, 144.97 P:20, W80:20 175.79, 175.04 V70:40, V50:50

Strauss 136.45, 137.35 W80:20, P20 169.15, 167.98 V50:60, V70:40

Obstacle form

P 121.58, 122.74 M:20, T:20 169.57, 165.44 HC:60, HC:50

Linear 140.14 L50:M:30 166.71, 165.45 L90:HC:30, L90:CSR:30

V-shaped 123.84 V60:T:20 177.11, 175.79 V50:IP:60, V70:HC:40

W-shaped 121.82, 122.56 W80:M:20, W60:T:20 175.01, 172.67 W90:T:60, W90:HC:60

Number of Obstacles

20 121.58, 121.82 M:P:20, M:W80:20 155.63, 154.70 HC:L80:20, HC:L50:20

30 127.60, 128.81 M:P:30, T:W50:30 167.29 HC:V80:30, HC:V90:60

40 133.84 T:P:40 175.79 HC:V70:40

50 145 T:V90:30, T:V60:50 175.04, 174.30 HC:V50:50, HC:V80:50

60 145.61 T:L50:60 177.11, 175.01 IP:V50:60, T:W90:60

Table 3.3: The shortest and longest traversal lengths and the corresponding treatment

types for overall comparisons, and comparisons at specific clutter types, obstacle

types, and obstacle numbers when the traversal length is computed by M8 algorithm.
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3.5 Summary

In this work we investigated the differences in trends of traversal length of NAVA

computed by M16, M8, and M4 algorithms compared to the traversal length com-

puted by RD algorithm carried out by Aksakalli and Ceyhan (2012). To gain more

power and precision in our analysis, we used similar statistical analysis tools, i.e.,

the repeated measures of ANOVA. Extensive Monte Carlo simulations indicate that

as the background clutter distribution gets more regular (clustered), on the average,

the traversal length tends to be longer (shorter) when M2k algorithm is deployed for

values of k = 2, 3, 4. In terms of shortest and longest traversal lengths, the trends are

essentially same for each M16, M8, M4 algorithms compared to RD algorithm i.e.,

the shortest occur when the background clutter is clustered, and the longest traversal

length occur when the background clutter type is from regular such Hardcore point

process. Moreover, the main advantage of using M2k algorithms, for example M16

algorithm, that the complexity time is at least 5 times faster than RD algorithm and

the computed traversal length is within 2.5% error.

Moreover, the similar trends among RD and M2k can also be observed in Figure 3.7

at each background clutter type, obstacle window form, and obstacle number levels.

For each algorithm, the mean traversal length tends to be higher when the background

clutter type is regular (Figure 3.7(a)), or when true obstacles are uniformly distributed

inside V-shaped obstacle window form (Figure 3.7(b)), and the mean traversal length

tends to increase as the number of obstacles increase (Figure 3.7(c)).



Chapter 4

DEPENDENCE OF TRAVERSAL LENGTH ON OBSTACLE

WINDOW TYPES AND TESSELLATIONS

4.1 Introduction

In this Chapter, we investigate how traversal length depends on obstacle window

forms. In Aksakalli and Ceyhan (2012) a few obstacle forms were considered, but in

this article we address more types of obstacle forms. For linear strips, we change the

width and the location of strip (from target to source point). For V-shaped obstacle

forms, we change the distance between the upper lips of V-shape and the location of

V-shaped obstacle form. And for semi-circle obstacle form the inner and the outer

radii are fixed, we only change the location of semi-circle obstacle form.

In Chapter 2, we have observed that when the entire working space is equipped

with only false obstacles, then the Hardcore point pattern (regular) tends to yield

larger traversal length. Thus, for a given fixed number of false obstacles we use the

Hardcore point pattern for clutter points. And, true obstacles inside the obstacle

forms will be distributed uniformly. Moreover, we will investigate the case where true

obstacles are distributed inside obstacle window forms as regular as possible using the

Strauss point pattern.

Moreover, we investigate the case where OPA knows the exact locations of ob-

stacles. We study the trends in mean traversal length when the true obstacles are

placed randomly proportional to the areas of Voronoi polygons or Delaunay triangles

based on the allocation of the clutter points. We investigate the case when the true
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obstacles are placed around the vertices of Voronoi polygons or around the centroids

of Delaunay triangles. By performing these operations we aim to cover the study win-

dow as far as possible, and thus maximize the traversal length of NAVA. Based on our

Monte Carlo simulations, on the average the mean traversal length is essentially the

same as the mean traversal length when obstacles are distributed completely random

(uniformness).

In our computational experiment (see Section 2.2), the graph G = (V,E) is the 8-

adjacency integer discretization of [0, 100]× [0, 100] with s = (50, 100) and t = (50, 1).

Each disk has a fixed radius of r = 4.5 units and the disk centers are sampled inside

[10, 90]× [10, 90] ensuring that there always exists(possibly very long) a s, t walk. The

disambiguation cost is taken to be c = 5. And, clutter probabilities are sampled from

Beta(2,6), whereas obstacle probabilities are sampled from Beta(6,2). These choices

are made in line with the ones in Aksakalli and Ceyhan (2012) and Priebe et al.

(2005).

4.2 Obstacle Window Types

4.2.1 Linear Strip Window

In the OPD problem, we investigate how the traversal length varies as the obstacle

window form changes. Let denote by nc and no the number of false and true obstacles,

respectively. In Aksakalli and Ceyhan (2012) nc was equal to 100 and no values were

20, 30, 40, 50, 60. We will use the same numbers, but in order to maximize the mean

traversal length we will use Hardcore(nc, d) (Strauss(nc, d, γ) point process with γ = 0)

point process for clutter pattern with parameters nc = 100 and d = 5, 6, 7, 8 (Chapter

2). As for true obstacles, the centers of disk-shaped obstacles will be distributed

uniformly inside the linear strip with width ` (Figure 4.1). By using the same Hardcore

point process for true obstacles, we will also investigate the case when true obstacles

are distributed as regular as possible inside linear strips. Together with the width ` of

linear strip, we also change the location of strip; close to target, at center, and close

to source. Let L10, L50, L90 be linear strips locating at the bottom, center, and at
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the top in an working environment. Here, L10 refers to the leftmost bottom corner of

strip that is close to target, L50 refers to the midpoint of left width of strip locating

at center, and L90 refers to the leftmost upper corner of strip that is close to source.
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Figure 4.1: The background clutter pattern is from the Hardcore(100, 5) (dashed

circles) process and no = 20 true obstacles are uniformly distributed inside the linear

strip of width ` = 10 (solid circles).

In the work of Aksakalli and Ceyhan (2012), the longest traversal length occurred

when the background clutter type was of Hardcore(100, 5) point process with no = 40

true obstacles uniformly distributed inside the linear strip of width ` = 10 locating

at the bottom of working space (i.e., close to target).

In Figure 4.2 we observe that the traversal length is maximized when the obstacle

number level is no = 40 provided that the width of linear strip ` is less than or equal

to 15 and that linear strip locates at the bottom in an environment. In Figure 4.2

the background clutter pattern is from Hardcore(100, 5), but we will also investigate

the trend of traversal length when the background clutter changes as well.

Next, In Figure 4.3 the traversal length is again maximized when the obstacle

number level is no = 40 regardless of width of linear strip `, but this time the traversal

length is larger than the case when the clutter pattern is Hardcore(100, 5). When
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Figure 4.2: Mean traversal length versus (a) width ` of linear strip and (b) location

of linear strip for no = 20, 30, 40, 50, 60 provided that background clutter type is

Hardcore(100, 5). Notice that vertical axes are differently scaled.
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Figure 4.3: Mean traversal length versus (a) width ` of linear strip and (b) location

of linear strip for no = 20, 30, 40, 50, 60 provided that background clutter type is

Hardcore(100, 6). Notice that vertical axes are differently scaled.
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the clutter pattern is Hardcore(100, 7) (see Figure 4.4), then the traversal length is

maximized when no = 40 and linear width ` = 15. Moreover, as we have already

observed, the linear strip should locate closer to the target point. And, finally when

the clutter pattern is Hardcore(100, 8) the traversal length is again maximized for the

true obstacle number level no = 40 with width ` = 5, and locating at the bottom in

the study window (see Figure 4.5).
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Figure 4.4: Mean traversal length versus (a) width ` of linear strip and (b) location

of linear strip for no = 20, 30, 40, 50, 60 provided that background clutter type is

Hardcore(100, 7). Notice that vertical axes are differently scaled.

4.2.2 V-Shaped Window

We will use similar setting as in Section 4.2.1 where the true obstacle window form

is V-shaped, and true obstacles are uniformly distributed inside the V-shaped form

(Figure 4.6). Let the distance between two upper lips of V-shaped obstacle window be

v, then we consider various v values ranging from 20 to 80 with an increment size of

20. Together with the v value, we also change the location of V-shaped obstacle form;

close to target, at center, and close to source. Let V50, V70, and V90 be V-shaped

obstacle forms locating at the bottom, center, and at the top of the study window.
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Figure 4.5: Mean traversal length versus (a) width ` of linear strip and (b) location

of linear strip for no = 20, 30, 40, 50, 60 provided that background clutter type is

Hardcore(100, 8). Notice that vertical axes are differently scaled.

V50 refers to leftmost upper corner of V-shaped obstacle that follows the points

(10, 50), (10, 40), (50, 10), (90, 40), (90, 50), (50, 20) in counter-clock wise direction and

forms the desired V-shaped polygon. V70 and V90 are defined analogously. In the

work of Aksakalli and Ceyhan (2012), the longest traversal length occurred when

the background clutter type was of Hardcore(100, 5) point process with no = 50

true obstacles uniformly distributed inside the V-shaped obstacle form with v = 80

locating at the top of working space (i.e., close to target).

When the background clutter pattern is from Hardcore(100, 5) we observe that

the traversal length tends to increase as the distance v between upper lips of V-

shaped obstacle form increases for no greater than or equal to 40 (Figure 4.7(a)),

and maximized for true obstacle number level no = 50 together with the location of

obstacle form at the top of study window (Figure 4.7(b)). We will also investigate

the trend of traversal length when the background clutter changes as well.

Since, the trends in mean traversal length under the background clutter pattern

Hardcore(100, 5), Hardcore(100, 6), and Hardcore(100, 7) are similar, we only provide
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Figure 4.6: The background clutter pattern is from the Hardcore(100, 5) (dashed

circles) process and no = 20 true obstacles are uniformly distributed inside the V-

shaped obstacle window with distance v = 80 between two upper lips (solid circles).

the plot for the case Hardcore(100, 5) (Figure 4.8). In Figure 4.8, contrary to other

cases, the traversal length tends to be larger for obstacle number level no = 40 than

the obstacle number level no = 50. Moreover, in all cases the traversal length tends

to be larger when the obstacle form is located at the top of the study window (i.e.,

location of V-shaped obstacle form is V90).

In Table 4.1, the maximum traversal length changes with respect to the back-

ground obstacle pattern. For Hardcore clutter patterns with d = 5, 6, 7, the mean

traversal length is maximized for the obstacle number level no = 50, whereas for the

clutter pattern with d = 8, the mean traversal length is maximized for the obstacle

number level no = 40.

We observed that the mean traversal length tends to be larger when the V-shaped

obstacle window form is located close to the source point. Let w be the distance be-

tween the vertex of V-shaped obstacle window form and the coordinate point (50, 10).

We will investigate the trend of mean traversal length of NAVA when the upper two

lips of the obstacle form are fixed as shown in Figure 4.9, but the distance w changes



Chapter 4: Dependence of Traversal Length on Obstacle Window Types and Tessellations69

20 40 60 80

distance between upper lips of V-shape (v)

130

140

150

160

170

180

190

200

m
ea

n 
tr

av
er

sa
l l

en
gt

h

n
o
=20 n

o
=30 n

o
=40 n

o
=50 n

o
=60

(a)

 V50  V70  V90

location of V-shape

130

140

150

160

170

180

190

200

210

m
ea

n 
tr

av
er

sa
l l

en
gt

h

v = 80

n
o
=20 n

o
=30 n

o
=40 n

o
=50 n

o
=60

(b)

Figure 4.7: Mean traversal length versus (a) v value and (b) location of V-shaped

window for no = 20, 30, 40, 50, 60 together with v = 80 provided that the background

clutter type is Hardcore(100, 5). Notice that vertical axes are differently scaled.
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Figure 4.8: Mean traversal length versus (a) v value and (b) location of V-shaped

window for no = 20, 30, 40, 50, 60 with v = 80 provided that background clutter type

is Hardcore(100, 8). Notice that vertical axes are differently scaled.
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no = 40;no = 50

v = 80 V50 V70 V90

HC(nc = 100, d = 5) 187.63; 201.47 181.49; 180.67 189.33; 199.44

HC(nc = 100, d = 6) 189.62; 193.29 190.58; 192.13 181.12; 185.06

HC(nc = 100, d = 7) 183.24; 192.00 191.80; 199.06 194.55; 186.49

HC(nc = 100, d = 8) 186.28; 199.35 197.59; 184.60 201.75; 189.19

Table 4.1: Comparison of mean traversal lengths for obstacle number levels no = 40

and no = 50.

from 0 to 70 with an increment size of 10 units. Note that the total area of V-shaped

obstacle window form still remains to be 80 units as w varies (for consistency the area

of all obstacle forms are 800 units).
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Figure 4.9: The background clutter pattern is from the Hardcore(100, 5) (dashed

circles) process and no = 20 true obstacles (solid circles) are uniformly distributed

inside the V-shaped obstacle window with distance w = 10 between the vertex of the

obstacle from and the point (50, 10).
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In Figure 4.10, the mean traversal length is maximized when w = 10 (or w = 20)

for true obstacle number level no = 60. Moreover, for each true obstacle number level

we have a concave down trend for mean traversal lengths, and observe that when

w = 70 then the obstacle form takes the shape of linear strip which we have already

discussed in previous sections.
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Figure 4.10: Overall mean traversal length versus w values for no = 20, 30, 40, 50, 60.

4.2.3 Semicircular Window

We will use similar setting as in Section 4.2.1 but the true obstacle window form is

semicircular, and true obstacles are uniformly distributed inside the Semicircle form

(Figure 4.11). We also change the location of semicircular obstacle form; close to

target, at center, and close to source. Let SC50, SC70, and SC90 be semicircular

obstacle window forms locating at the bottom, center, and at the top of the study

window. SC50 refers to the center of semicircle where outer radius is 40 units and

inner radius is 33 units. Since, we want all obstacle forms to have almost equal areas

(for consistency), inner and outer radii of semicircle are chosen accordingly. That is

to say, linear strip of width 10 units has area of 800 units, V-shaped with v = 80 has

area of 800 units, and semicircle with given radii has area of 800 units. SC70 and

SC90 are defined analogously.
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Figure 4.11: The background clutter pattern is from the Hardcore(100, 5) (dashed

circles) process and no = 20 true obstacles are uniformly distributed inside the semi-

circular obstacle window form (solid circles).

When the background clutter pattern is from Hardcore(100, 5) we observe that

the traversal length tends to be larger for true obstacle levels no = 50 and no = 60 re-

gardless of the location of semicircular obstacle form (Figure 4.12). Since, the trends

in mean traversal length under the background clutter pattern Hardcore(100, 5),

Hardcore(100, 6), Hardcore(100, 7), and Hardcore(100, 8) are similar, we only pro-

vide the plot for the cases Hardcore(100, 5) and Hardcore(100, 8) (Figure 4.12), and

maximum is attained in the case of background clutter type Hardcore(100, 6) at true

obstacle level no = 60 (Table 4.2).

In Figure 4.12(a), the mean traversal length tends to be larger for obstacle number

level no = 50 than no = 60, whereas in Figure 4.12(b) we observe the reverse inclusion.

Moreover, in Table 4.2 we observe that traversal lengths are larger than that in Table

4.1, i.e., the semicircular obstacle window form yields higher traversal length compared

to the V-shaped obstacle window form.

We observed that the mean traversal length tends to be larger when the semicir-

cular obstacle form is located close to the source point. To generalize this idea, let u
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Figure 4.12: Mean traversal length versus location of semicircular obstacle window

form for no = 20, 30, 40, 50, 60 provided that the background clutter type is (a)

Hardcore(100, 5) and (b) Hardcore(100, 8).

no = 50; no = 60

SC50 SC70 SC90

HC(nc = 100, d = 5) 194.11; 206.77 208.98; 197.14 208.13; 196.53

HC(nc = 100, d = 6) 190.99; 208.06 205.22; 222.92 203.68; 192.02

HC(nc = 100, d = 7) 211.14; 211.70 202.14; 206.68 203.40; 195.53

HC(nc = 100, d = 8) 219.55; 199.72 203.14; 203.63 204.88; 215.12

Table 4.2: Comparison of mean traversal lengths for obstacle number levels no = 50

and no = 60.

be the distance between the vertex of semicircular obstacle form and the coordinate

point (50, 10). We will investigate the trend of mean traversal length of NAVA when

the upper two lips of the obstacle form are fixed as shown in Figure 4.13, but the

distance u changes from 0 to 70 with an increment size of 10 units. Note that the
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total area of elliptical window obstacle form still remains to be 800 units as u varies

(for consistency the area of all obstacle forms are 800 units). Note that when u = 40,

the elliptical obstacle form turns out to be the semicircular obstacle form.
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Figure 4.13: The background clutter pattern is from the Hardcore(100, 5) (dashed

circles) process and no = 20 true obstacles (solid circles) are uniformly distributed

inside the elliptical obstacle with distance u = 20 between the vertex of the obstacle

from and the point (50, 10).

In Figure 4.14, the mean traversal length is maximized when u = 20 for true

obstacle number level no = 60. Moreover, for each true obstacle number level we have

a concave down trend for mean traversal lengths.

4.3 Placing True Obstacles in a Regular Fashion

We will use similar setting as in Section 4.2.1 where obstacle forms will still remain

same, but the true obstacles inside obstacle forms will be placed as regular as possible.

To achieve this, we will use Hardcore(no, d2) point pattern for true obstacle pattern

inside obstacle forms with parameters no = 20, 30, 40 and d2 = 5, 6, 7, 8(Technical

Report 4). Exploiting results from previous sections (Sections 4.2.1, 4.2.2, 4.2.3); for
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Figure 4.14: Overall mean traversal length versus u values for no = 20, 30, 40, 50, 60.

linear obstacle form we will use linear strip window locating close to target (L10) with

width ` = 10, for V-shaped obstacle window for we will use V-shaped form locating

close to source point (V90) with distance between its upper lips equal to v = 80, and

for semicircular obstacle window form we will use semicircle form locating close to

the source point (SC90).
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Figure 4.15: Mean traversal length versus d2 values (regularity parameter for no) for

no = 20, 30, 40 provided that the background clutter type is Hardcore (overall average

of Hardcore(nc = 100, d) with d = 5, 6, 7, 8).
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In Figure 4.15, we observe that the mean traversal length tends to be larger for true

obstacle level no = 20. In Section 4.2.1, the largest traversal length was around 190

units and this value was achieved when no = 40 true obstacles uniformly distributed

inside the linear obstacle form. Whereas, when true obstacles are distributed regularly,

the mean traversal length is maximized for true obstacle number level no = 20, and

it has value around 250 units which is considerably higher than 190 units.

no = 20

d2 = 5 d2 = 6 d2 = 7 d2 = 8

HC(nc = 100, d = 5) 221.68 244.66 252.29 238.58

HC(nc = 100, d = 6) 230.18 227.13 241.98 243.93

HC(nc = 100, d = 7) 219.02 237.35 246.45 243.80

HC(nc = 100, d = 8) 224.24 241.45 262.49 241.01

Table 4.3: Mean traversal length versus d2 values for no = 20 inside L10 obstacle form

with background clutter type Hardcore(nc = 100, d) where d = 5, 6, 7, 8.

In Table 4.3, we provide mean traversal lengths separately for each background

clutter type together with the regularity parameter for true obstacle number no (i.e.,

true obstacles are distributed regularly inside linear strip using Hardcore(no, d2) point

pattern). Hence, the mean traversal length is maximized (262.49 units) when the

background clutter type is from Hardcore(nc = 100, d = 8) together with no = 20

true obstacles are distributed regularly inside the linear strip using Hardcore(no =

20, d2 = 7) point pattern.

In Figure 4.16, we observe that the mean traversal length tends to be larger for

true obstacle level no = 30. In Section 4.2.2, the largest traversal length was around

200 units (Table 4.1) and this value was achieved when no = 40 (or no = 50) true

obstacles uniformly distributed inside the V-shaped obstacle window form. Whereas,

when true obstacles are distributed regularly, the mean traversal length is maximized

for true obstacle number level no = 30, and it has value around 260 units which is
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substantially higher than 200 units.
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Figure 4.16: Mean traversal length versus d2 values (regularity parameter for no) for

no = 20, 30, 40 provided that the background clutter type is Hardcore (overall average

of Hardcore(nc = 100, d) with d = 5, 6, 7, 8).

In Table 4.4, we provide mean traversal lengths separately for each background

clutter type together with the regularity parameter for true obstacle number no (i.e.,

true obstacles are distributed regularly inside V-shaped obstacle using Hardcore(no, d2)

point pattern). Hence, the mean traversal length is maximized (277.95 units) when

the background clutter type is from Hardcore(nc = 100, d = 8) together with no =

30 true obstacles are distributed regularly inside the V-shaped obstacle form using

Hardcore(no = 30, d2 = 7) point pattern.

On the other hand, from the construction shown in Figure 4.9 we observed that the

mean traversal length tends to be larger when w = 10 (Figure 4.10). We investigated

the trend of mean traversal length when true obstacles are placed regularly inside the

new V-shaped obstacle form with w = 10, and we observe that the mean traversal

length is maximized for true obstacle number level no = 30 with regularity parameter

d2 = 6 (i.e., 405 units, Figure 4.17).

In Figure 4.18, we observe that the mean traversal length tends to be larger for

true obstacle levels no = 20 or no = 30. In Section 4.2.3, the largest traversal length
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no = 30

d2 = 5 d2 = 6 d2 = 7 d2 = 8

HC(nc = 100, d = 5) 260.76 239.73 252.76 251.17

HC(nc = 100, d = 6) 235.37 251.42 262.10 234.58

HC(nc = 100, d = 7) 250.76 235.98 267.27 242.75

HC(nc = 100, d = 8) 259.49 248.21 277.95 255.67

Table 4.4: Mean traversal length versus d2 values for no = 30 inside V90 obstacle

form with background clutter type Hardcore(nc = 100, d) where d = 5, 6, 7, 8.
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Figure 4.17: Mean traversal length versus d2 values (regularity parameter for no) for

no = 20, 30, 40 provided that the background clutter type is Hardcore (overall average

of Hardcore(nc = 100, d) with d = 5, 6, 7, 8).

was around 230 units (Table 4.2) and this value was achieved when no = 50 (or

no = 60) true obstacles uniformly distributed inside the semicircular obstacle form.

Whereas, when true obstacles are distributed regularly, the mean traversal length is

maximized for true obstacle number level no = 30, and it has value around 316 units

which is noticeably higher than 230 units.

In Table 4.5, we provide mean traversal lengths separately for each background
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Figure 4.18: Mean traversal length versus d2 values (regularity parameter for no) for

no = 20, 30, 40 provided that the background clutter type is Hardcore (overall average

of Hardcore(nc = 100, d) with d = 5, 6, 7, 8).

clutter type together with the regularity parameter for true obstacle number no

(i.e., true obstacles are distributed regularly inside semicircular obstacle form using

Hardcore(no, d2) point pattern). Hence, the mean traversal length is maximized (328

units) when the background clutter type is from Hardcore(nc = 100, d = 5) together

with no = 30 true obstacles are distributed regularly inside the semicircular obstacle

form using Hardcore(no = 30, d2 = 5) point pattern.

no = 30

d2 = 5 d2 = 6 d2 = 7 d2 = 8

HC(nc = 100, d = 5) 319.38 315.64 328.40 269.65

HC(nc = 100, d = 6) 294.70 305.35 300.56 274.10

HC(nc = 100, d = 7) 293.41 298.99 314.12 250.69

HC(nc = 100, d = 8) 303.33 325.05 322.52 274.93

Table 4.5: Mean traversal length versus d2 values for no = 30 inside SC90 obstacle

form with background clutter type Hardcore(nc = 100, d) where d = 5, 6, 7, 8.
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On the other hand, from the construction shown in Figure 4.13 we observed that

the mean traversal length tends to be larger when u = 20 (Figure 4.14). We inves-

tigated the trend of mean traversal length when true obstacles are placed regularly

inside the elliptical obstacle form with u = 20, and we observe that the mean traversal

length is maximized for true obstacle number level no = 30 with regularity parameter

d2 = 6 (i.e., 465 units, Figure 4.19).
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Figure 4.19: Mean traversal length versus d2 values (regularity parameter for no) for

no = 20, 30, 40 provided that the background clutter type is Hardcore (overall average

of Hardcore(nc = 100, d) with d = 5, 6, 7, 8).

4.4 Voronoi and Delaunay Tessellations

Given a set of finite (two or more) points in the Euclidean plane, we associate all

locations in that space with the closest member(s) of the point set with respect to

the Euclidean distance. The result is a tessellation of the plane into a set of the

regions associated with members of the point set. We call this tessellation the Voronoi

diagram generated by the point set, and regions constituting the Voronoi diagram

Voronoi polygons (Okabe et al. (2000)). Formally,

Definition 4.4.1 (Voronoi Tessellation) Let P = {p1, p2, . . . , pn} ⊂ R2 and In =
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{1, 2, . . . , n}. We call the region given by

V (pi) = {p ∈ R2 | ‖p− pi‖ ≤ ‖p− pj‖ for j 6= i, j ∈ In}

the Voronoi polygon of pi, and the set given by

V (P ) = {V (p1), V (p2), . . . , V (pn)}

the Voronoi diagram of P .

Similarly, as a planar graph has its dual graph, the dual tessellation of a Voronoi

diagram is called the Delaunay triangulation. A Delaunay triangulation of D(P ) is a

triangulation of P such that no point in P is inside the circumcircle of any triangle

T in D(P ). If nv is the number of Voronoi vertices of Voronoi diagram V (P ), then

the set D(P ) = {T1, T2, . . . , Tnv} satisfies

convex hull (CH) of P = ∪nv
i=1Ti,

such that [Ti \ ∂Ti] ∩ [Tj \ ∂Tj] = ∅, j 6= i, j ∈ Inv . For illustration, the Voronoi

and Delaunay tessellations of 100 randomly selected points from R2 are presented in

Figure 4.20.

4.4.1 Results and Analysis

In our experimental setting, there are mainly two cases that we investigate. In the

first case, the number of uniformly sampled false obstacles (nc) is fixed to 100, and the

number of true obstacles (no) is considered to be 20, 30, 40, 50, and 60. For the fixed

number of false obstacles (nc = 100), Voronoi and Delaunay tessellation is carried out,

and then true obstacles from the set {20, 30, . . . , 60} are placed around the vertices of

Voronoi polygons and the centroids of Delaunay triangulation, respectively. Moreover,

true obstacles are also placed proportional to areas of Voronoi polygons and Delaunay

triangles. These four types of settings are compared to the case where true obstacles

are distributed uniformly inside the study window. In Figure 4.21(a), we observe that

as the number of obstacles increase the average mean traversal length increases as well.
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Figure 4.20: (a) Voronoi diagram and (b) Delaunay triangulation of 100 sample points.
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Figure 4.21: For the CSR background clutter type, the mean traversal length (a)

when true obstacles are placed around vertices and centroids of tessellations, and (b)

when true obstacles are placed proportional to tile areas of tessellations.

When true obstacles are uniformly distributed the mean traversal length tends to be

larger than the mean traversal length when true obstacles placed around vertices of

Voronoi polygons or around centroids of Delaunay triangles. So, from OPA’s point of
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view, in this case knowing the exact places of obstacles does not give an advantage in

aiming to maximize the total traversal length of NAVA. On the other hand, in Figure

4.21(b) we observe that when obstacles placed proportional to tessellation areas, then

it tends to yield higher traversal length than the case where obstacles are distributed

uniformly. Especially, there is a noticeable increase in mean traversal length when

obstacles are placed inside Delaunay triangles proportional to their areas. Note that in

Figure 4.21, the maximum mean traversal length is less than 165 units. However, for

the CSR background clutter type together when true obstacles are uniformly placed

inside the V-shaped obstacle form, then the mean traversal lengh can achieve as much

as 178 units (Aksakalli and Ceyhan (2012) and Technical Report 4).
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Figure 4.22: For the Hardcore(nc = 100, d) background clutter type (combined all

d = 5, 6, 7, 8 cases), the mean traversal length (a) when true obstacles are placed

around vertices and centroids of tessellations, and (b) when true obstacles are placed

proportional to tile areas of tessellations.

In the second case, we will repeat the first case with slight modification. In

this case, false obstacles are placed as regular as possible using the hardcore point

pattern and the rest of the setting is kept similar. For the regular background clutter

pattern we use the Hardcore(nc = 100, d) point process where d = 5, 6, 7, 8 as in
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Technical Report 4. In Figure 4.22, we observe similar trends as in Figure 4.21.

Mean traversal length in Figure 4.21(a) tends to be smaller than in Figure 4.22(a)

since in the previous case the background clutter type was from CSR and in the latter

case it was from Hardcore (regular). When true obstacles are placed proportional to

the tile areas of tessellations, on the average the mean traversal length for Delaunay

case tends to be higher than the uniform case and for Voronoi case it tends to be

smaller than the uniform case. In either cases, note that the maximum average

traversal length is less than 165 units. But, when the background clutter type is

regular (from hardcore point process) and true obstacles are uniformly distributed

inside V-shaped obstacle form, then the mean traversal length tends to have around

190 units (Aksakalli and Ceyhan, 2012). Indeed, using the same number of false and

true obstacles (but different obstacle forms) as in this problem setting, we observed

that the mean traversal length can be as high as 450 units (Section 4.2.3).

4.5 Summary

In the OPD problem, on the behalf of OPA, we wish the traversal length of NAVA to

be as larger as possible. To achieve this, we choose the clutter pattern as regular as

possible i.e., the background clutter pattern is Hardcore(nc, d) where nc is the number

of false obstacles, and d represents the distance such that there is no pairwise disk-

shaped obstacles closer than d units (see Chapter 2). Together with this setting, true

obstacles are uniformly distributed inside various obstacle forms such as linear strip,

V-shaped, and semicircular obstacle window forms. In linear obstacle window form,

the traversal length tends to be larger for true obstacle number level no = 40 and that

linear strip is locating at the bottom of study window (i.e., close to target point). In

V-shaped obstacle form, the traversal length tends to be larger for obstacle number

levels no = 40 or 50 depending on the background clutter type (i.e., Hardcore(nc, d)

with d = 5, 6, 7, 8). In semicircular obstacle form, the traversal length yields higher

values for true obstacle number levels n0 = 50 or 60. Note that, to attain consistent

results the total area covered by obstacle forms are fixed to 800 units. Based on our
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Monte Carlo simulations, we observe that in overall comparison the traversal length

is maximized when obstacle form is the elliptical obstacle window locating close to

the source point.

Next, we investigated the case when the background clutter type is again of Hard-

core type but true obstacles are distributed as regular as possible rather than uniform.

One of advantages of studying this situation is that the traversal length might be max-

imized using fewer true obstacles. According to our results, when the background clut-

ter type is from Hardcore(nc = 100, d = 8) together with no = 20 true obstacles dis-

tributed regularly inside the linear strip obstacle form using Hardcore(no = 20, d2 = 7)

point pattern, the mean traversal length is 262.49 units which yields higher value than

the case when no = 40 true obstacles are distributed uniformly inside the linear strip

(i.e., approximately 190 units). Notice that, in each of these two cases the background

clutter patterns remains the same.

Moreover, working with the same background clutter types but changing true

obstacle from linear strip to V-shaped obstacle form (specifically V90), we obtain

even higher mean traversal lengths. The mean traversal length attains the value of

277.95 units when background clutter type is from Hardcore(nc = 100, d = 8) together

with 30 true obstacles are distributed regularly inside V-shaped obstacle form using

Hardcore(no = 30, d2 = 30) point pattern. On the other hand, recall that when

true obstacles are distributed uniformly inside V-shaped obstacle form, the longest

mean traversal was of 201.75 units for true obstacle number level no = 50. Thus,

again the traversal length is maximized for V-shaped obstacle form using fewer true

obstacles. When we consider the V-shaped obstacle form as shown in Figure 4.9, the

mean traversal length tends to be larger compared to standard V90 obstacle form.

The mean traversal length is about 210 when no = 60 true obstacles are uniformly

distributed (Figure 4.10), and 405 units when no = 30 true obstacles are regularly

distributed (Figure 4.17). So, in order to maximize the mean traversal length we

recommend using the V-shaped obstacle form as shown in Figure 4.9 among V-shaped

obstacle forms.
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Finally, in Sections 4.2.1, 4.2.2, 4.2.3 we observed that among obstacle forms the

elliptical obstacle form yields the longest mean traversal when true obstacles are uni-

formly distributed inside obstacle window forms (i.e., linear strip, V-shaped, semicir-

cular, and elliptical) for various background clutter types from Hardcore(nc = 100, d)

with d = 5, 6, 7, 8. And, in the case of Semicircle obstacle form the longest mean

traversal length has value of 222.92 units when clutter type is from Hardcore(nc =

100, d = 6) together with 60 true obstacles distributed uniformly inside semicircu-

lar obstacle form (SC70). But, when true obstacles are distributed regularly inside

semicircular shape (SC90) using Hardcore(no = 30, d2 = 5) the mean traversal length

attains the longest value of 328.40 units (which is considerably higher than 222.92

units). When we consider the elliptical obstacle form as shown in Figure 4.13, the

mean traversal length tends to be larger compared to standard SC90 obstacle form.

The mean traversal length is about 230 when no = 60 true obstacles are uniformly

distributed (Figure 4.14), and 465 units when no = 30 true obstacles are regularly dis-

tributed (Figure 4.19). Hence, the mean traversal length is maximized when 30 true

obstacles are distributed regularly (i.e., Hardcore(no = 30, d2 = 6)) inside the elliptical

obstacle form as shown in Figure 4.13 (u = 20) together with Hardcore(nc = 100, d)

background clutter type for d = 5, 6, 7, 8.

On the other hand, we observed that knowing the exact locations of obstacles

does not provide significant gain for NAVA more advantage than knowing only the

distribution of obstacles. Placing true obstacles proportional to areas of Voronoi

polygons or Delaunay triangles, which are based on the allocation of clutters, seems to

have less effect on maximizing the total traversal length of NAVA. The mean traversal

length with respect to tessellations results in slightly higher than the uniformness

case, so we do not recommend using the tessellations so as to maximize the traversal

length.



Chapter 5

HEURISTIC ALGORITHMS FOR THE OPD PROBLEM

5.1 Introduction

We will present some current algorithms used in solving the discretized SOS problem

(D-SOSP). Taking the advantage of those algorithms’ weaknesses, we mainly focus

on developing new algorithms and improving them, and generalize the family of such

algorithms. By Monte Carlo simulations, we will compare the empirical performances

of the present and new algorithms. Moreover, we will adapt the algorithms and the

penalty functions to discrete SOSP (i.e., a graph version) together with CTP where

sensing is allowed.

5.2 Algorithms for NAVA

Consider the discretized version of SOS problem. Let G be a graph defined in Section

2.2 with vertex set V and edge set E. Also, suppose that D = Dx is a disk with center

x ∈ X = XC∪ XO with given radius r > 0. Given a disambiguation problem instance,

our goal is to find an s, t walk in G = (V,E) such that the total traversal length

is minimized with a dynamic disambiguation cost. Here, a walk is an alternating

sequence of vertices and edges, starting and ending at a vertex, in which each edge is

adjacent in the sequence to its two endpoints. And, a path is a walk without repeated

vertices or edges. NAVA can disambiguate only when situated on the boundary of a

disk, i.e, when situated at the point of the edge intersecting the disk. NAVA has an

option to learn whether D is traversable or not, at a cost c added to the total length

of the traversal (throughout the rest of article we assume that all heuristic algorithms

always disambiguate in a greedy manner). In the RD algorithm, prior to the NAVA’s



88 Chapter 5: Heuristic Algorithms for the OPD Problem

traversal all edges are equipped with the weight function w(e),

w(e) = `(e) +
1

2

|X|∑
i=1

1{e∩Di 6=∅} ×
(

c

1− pi

)

where `(e) is the length of an edge e in the Euclidean sense and 1A is the indicator

function for event A. In the RD algorithm, we simplify the notation and prefer the

following,

wRD(c, p) = `(e) +
1

2

|X|∑
i=1

1{e∩Di 6=∅} × FRD(c, pi)

where we denote the penalty function by FRD(c, p) = c
1−p associated with the RD

protocol (Aksakalli et al., 2011). Next, NAVA determines the shortest s, t path in

G with respect to the edge weights wRD(c, p) (i.e., the shortest path is found by

using the Dijkstra’s algorithm (Cormen et al., 2009), and traverses this path until it

encounters the first ambiguous edge e = uv intersecting one or more disks Di. Since

the algorithm is greedy, NAVA uses its disambiguation option at vertex u and learns

the actual status of the disk(s) Di at cost c. If Di is traversable (i.e., obstacle is false),

then we remove Di from the graph and continue the walk (i.e., reset the algorithm). If

Di is non-traversable (i.e., obstacle is true), then we set pi = 1 and update the weights

of the graph G, that is we delete all edges intersecting the disk(s) Di (disambiguating

an edge will consist of disambiguating all disks the edge enters, at a fixed cost per

disk). NAVA replans the route from the vertex u until it reaches the target t by

disambiguating and replanning as necessary. This protocol with associated weight

function wRD is the reset disambiguation (RD) Protocol of Aksakalli et al. (2011).

In the simulated risk (SR) algorithm of Fishkind et al. (2007), authors use the

penalty function

FSR(α, p) = α log

(
1

1− p

)
where α is a constant. But, the main disadvantage of the SR algorithm is the “fine-

tune” penalty term via the α parameter for improved performance. In Aksakalli et al.
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(2011), authors show that the algorithm using the penalty function FRD performs bet-

ter than the algorithm using the penalty function FSR and illustrate this by simulated

experiments.

Our goal is to define a better performing algorithm compared to both RD and

DT algorithms. Observe that when the disambiguation cost is zero or small, then

the RD algorithm becomes useless because in the computation of wRD(c, p) we lose

the probabilistic information and the disambiguation cost effects. To overcome this

problem, the disambiguation cost should be additive in the penalty function. Also,

unfortunately the RD algorithm fails to see the whole picture and may lead NAVA into

a local trap. This argument is supported by the work of Aksakalli and Ceyhan (2012),

where the mean traversal length of NAVA tends to be larger when the true obstacles

are uniformly distributed inside a V-shaped obstacle form in an environment with

uniformly distributed clutter (i.e., false obstacle) point pattern compared to other

obstacle window types. To avoid such instances, we proposed the following penalty

function

FP (c, p) = c+
5p

1− p1−p

Based on our simulation results, we observe that an algorithm is better than the

RD algorithm in the sense that the former algorithm gives smaller mean traversal

length. We present and discuss the simulation results in the following sections.

The distance to termination (DT) algorithm of Aksakalli and Ari (2014) has out-

performed all previous algorithms in many cases they considered. Aksakalli and Ari

(2014) propose that any meaningful penalty function needs to be monotonically non-

decreasing in c and p. This idea is also supported by work of Ye et al. (2011) reporting

how the RD algorithm behaves when the sensor of NAVA changes from poor to per-

fect detection of true obstacles. Based on this observation, Aksakalli and Ari (2014)

experimented with a large number of penalty functions with additive cost terms that

are also monotonically nondecreasing in c and p. As a result, they come up with the
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following penalty function

FDT (c, p) = c+

(
dt

1− p

)− log(1−p)

where dt is the Euclidean distance from the center of disk D to the target point t.

Observe that, the penalty function FDT (c, p) grows exponentially faster than others

when p values increase. This property of the DT algorithm distinguishes it from

others. It takes almost no risk and prefers to disambiguate as few obstacles as possible

on its way. A similar idea was also mentioned in the work of Bnaya et al. (2008,

2009), where sensing in CTP problem corresponds to a disambiguation option in the

D-SOSP. They consider always sense (cost=0), never sense (cost=infinity), constant

sense (cost=constant), and sense cost proportional to the distance from the current

location to the starting point s. In traditional CTP, the zero-risk path from s to

t is assumed to have very large value (i.e., using chopper rather than driving), and

hence the navigating agent will not prefer it unless all edges in the given graph G are

revealed to be blocked. Whereas, in the D-SOSP the study window is [0, 100]×[0, 100]

and obstacles are distributed inside [10, 90]× [10, 90], so there is always a path from

s to t circumnavigating obstacles. Due to the penalty function’s characteristic, the

DT algorithm is reluctant to disambiguate obstacles in a greedy manner and prefers

not to take any risk because the zero-risk path always remains to be as the plausible

choice and thus is taken for granted.

We also introduce an algorithm called the ‘benchmark algorithm’ for comparative

purposes. In this algorithm, NAVA knows both the location and the status of all

obstacles, but (admittedly) still disambiguates whenever runs into an obstacle in a

greedy manner. That is to say, NAVA assigns the probabilities for true obstacles as 1

and for false obstacles as 0 before the traversal, and follows the usual RD algorithm’s

steps to find the traversal length. If an obstacle is clutter, then NAVA traverses over

it and the disambiguation cost is added to the traversal length. However, in the

benchmark algorithm, NAVA never disambiguates true obstacles because it knows

the actual status of obstacles and its sensor already assigned 1 as the probability of

being true obstacle. And, when p = 1 the value of FRD(c, p) becomes ∞. Hence, this
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benchmark algorithm provides the shortest possible traversal length that any similar

heuristic algorithm can achieve. Moreover, let us denote the zero-risk algorithm by Z

where no disambiguation take places in finding the shortest s, t walk.

Concerning the complexity of greedy algorithms, running time of finding the

shortest path in a graph G = (V,E) using the classical Dijkstra’s algorithm is

O(|E| + |V | log |V |) (Cormen et al., 2009). In the D-SOS problem, if the working

window is Ω = [0, n] × [0, n], then running time for finding the shortest path by the

Dijkstra’s algorithm is O(n2 log(n)). Analogously, the running time for finding the

traversal length in the D-SOSP by using the RD algorithm is O(n2 log(n)|X|r4) (and

hence, B, DT algorithms as well).

5.3 A Unifying Framework for FRD, FP , and FDT

We introduce a penalty function encompassing the previous ones. Consider the fol-

lowing function

Fk(c, p) = c+

(
1

1− p

)k
where k is a nonnegative integer.

Our goal is to find a value k such that FRD is sufficiently approximated by Fk for

values of p in the interval [0, 0.9]. Here, it is reasonable to consider the interval [0, 0.9]

rather than [0, 1] since as p gets closer to 1, all penalty functions (i.e., FRD,FP ,FDT ,

and Fk) get extremely large. One common way of efficient approximation is using

the L2 norm, i.e., find k such that ‖FRD(c, p)− Fk(c, p)‖L2 is minimized where the

L2 norm is defined as ‖Fk(c, p)‖L2 =
(∫
|Fk(c, p)|2 dp

)1/2
with respect to the variable

p. To achieve this, we fix the disambiguation cost c > 0, otherwise the k values may

change as c changes. For example, when c = 1 then FRD(c, p) is closely approximated

by F1(c, p), but when c = 5 then FRD(c, p) is closely approximated by F2(c, p). Thus,

for any fixed value of c there always exist positive integers k such that any heuristic

penalty function can be approximated by the penalty functions of the form Fk(c, p).

To keep it simple throughout the article we let c = 5 (see Section 5.4), and in Figure
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5.1(a) we observe that the range of FRD(c, p) and F2(c, p) coincides in the interval

[0, 0.9]. Similarly, in Figure 5.1(b) we see that the range of FP (c, p) and F3(c, p)

coincides in the interval [0, 0.9]. Based on our simulation results, the expression dt in

the penalty function FDT can be also replaced by ds (i.e., the distance from the center

of disk D to the starting point s). This idea encourages us to replace dt by d(s, t)/2

where d(s, t) is the Euclidean distance between points s and t. In our experimental

setting, d(s, t)/2 = 50 (see Section 5.4). Throughout this section, we use dt = 50 in

our plots to present the costs with FDT penalty function, whereas in the actual DT

algorithm we do not fix dt = 50. Thus, in Figure 5.1(c) we observe that the range

of FDT (c, p) with dt = 50 and F5(c, p) coincides in the interval [0, 0.7]. The intervals

[0, 0.7] and [0, 0.9] are sufficient to observe the behavior of the penalty functions. Since,

for p values greater than 0.7 or 0.9 all penalty functions tend to increase exponentially.

Among these penalty functions, the FRD(c, p) has the longest rate of increase and the

FDT (c, p) has the highest rate of increase with respect to the variable p. For instance,

the maximum value that FRD(c, p) can attain on the interval [0, 0.9] is less than 100

units, whereas the maximum value of the FP (c, p) on the same interval is about 450

units. On the other hand, the penalty function FDT (c, p) reaches the value 450 units

even in a smaller interval [0, 0.7], and grows exponentially on the interval [0.7, 0.9]. As

a consequence, we claim that the penalty functions FRD(c, p),FP (c, p) and FDT (c, p)

can be approximated by the penalty function of the form Fk(c, p) for some positive

integer value of k.

Thus, we have the following proposition,

Proposition 5.3.1 : Let c = 5 be given, then

(i) the penalty function FRD(c, p) can be approximated by F2(c, p) on the interval

p ∈ [0, 9],

(ii) The penalty function FP (c, p) can be approximated F3(c, p) on the interval p ∈

[0, 9],
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Figure 5.1: Pairwise comparison of the penalty functions FRD, FP , FDT with the

penalty function Fk for k = 2, 3, 5. Note that both vertical and horizontal values are

differently scaled.
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(iii) The penalty function FDT (c, p) can be approximated F5(c, p) on the interval p ∈

[0, 7].

Proof : Recall that for any fixed k, the L2 norm of the function Fk(c, p) with respect

to the variable p in an interval [a, b] is defined as

‖Fk(c, p)‖L2 =

(∫ b

a

|Fk(c, p)|2 dp
)1/2

.

Since Fk(c, p) < Fk′(c, p) for each p ∈ [a, b] whenever k < k′, it is enough to check the

following inequalities

‖FRD(c, p)− F2(c, p)‖L2 ≤ ‖FRD(c, p)− Fk(c, p)‖L2 for k = 1, 3 on [0, 0.9]

‖FP (c, p)− F3(c, p)‖L2 ≤ ‖FP (c, p)− Fk(c, p)‖L2 for k = 2, 4 on [0, 0.9]

‖FDT (c, p)− F5(c, p)‖L2 ≤ ‖FDT (c, p)− Fk(c, p)‖L2 for k = 4, 6 on [0, 0.7]

Observe that,

‖FRD(c, p)− F0(c, p)‖L2 = 10.9, ‖FRD(c, p)− F1(c, p)‖L2 = 8.6

‖FRD(c, p)− F2(c, p)‖L2 = 7.7, ‖FRD(c, p)− F3(c, p)‖L2 = 131.5

‖FRD(c, p)− F3(c, p)‖L2 = 1186.2

on the interval [0, 0.9]. Similar argument applies to other cases. Thus the proof

follows. �

Corollary 5.3.1.1 For any fixed value of c there always exist positive integers k1, k2, k3

such that the penalty functions FRD(c, p),FP (c, p), and FDT (c, p) can be approximated

(with respect to the L2 norm) by the penalty functions of the form Fk1(c, p), Fk2(c, p),

Fk3(c, p) respectively on the unit interval p ∈ (0, 1).

Indeed, we can replace a positive integer value k by a positive real number and

find the best k such that the value FRD(c, p), for instance, is approximated by the

value Fk(c, p). For fixed c, we can find k := k(c) such that ‖FDT (c, p)− Fk(c, p)‖L2 is

minimized on the interval p ∈ (0, 1). Formally,

k(c) = arg mink ‖FRD(c, p)− Fk(c, p)‖L2
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As the c value changes the k(c) value also changes, and from Figure 5.2 we observe

that there is an upper bound for k(c), i.e, 0 ≤ k(c) ≤ 2. Recall that when c = 5 and

k is a positive integer, we have already proved that for the penalty function FRD the

value of k(c) equals to 2 (see Proposition 5.3.1(i)) which can be also observed from

Figure 5.2 as well.
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Figure 5.2: Disambiguation cost c versus k(c) values when p ∈ (0, 1) (when the penalty

function FRD approximated by the penalty function Fk).

5.4 Experimental Setting

Let imax = jmax = 100 (see Section 1.3) and define the corresponding graph by

G = (V,E). We take a starting point s on the upper boundary of the study window,

say s = (50, 100). And, for a target point we take a point on the opposite side

of square window, say t = (50, 1). These choices are reasonable because, as an

example, if we consider the working window as a part of a seashore, then s represents

the place where opposing forces (attack position) stand and t represents the place

where defensive forces (defense position) protect. Take the radius of obstacles to be

r = 4.5 units and disambiguation cost c = 5 (constant cost). Let pc and po be from

distributions FC=Beta(4 − λ, 4 + λ) and FO=Beta(4 + λ, 4 − λ) where λ = 2. The
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centers x ∈ X = XC ∪ XO of disk shaped obstacles are uniformly sampled from

[10, 90] × [10, 90] to ensure that there always exists a (possibly very long) s, t walk.

The number of clutter disks we considered are nc = 25, 50, 75, 100, 125 and the number

of true obstacles we considered are no = 25, 50, 75, 100, 125. Finally, to control the

precision of the sensor of NAVA assigning probabilities to obstacles, we simulate on

various values of λ. If λ = 0, then sensor has no precision (i.e., NAVA determines its

path by a blind sensor). That is to say, the probability of being true obstacle is 1/2

i.e., NAVA decides by a coin flip about the status of the obstacle. And, if λ = 4, then

sensor has full precision (i.e., NAVA determines its path in perfect detection of true

obstacles).

In our simulation setting, we take λ = 2. These choices are made in line with

those of Aksakalli and Ari (2014), Aksakalli and Ceyhan (2012), Ye et al. (2011), and

Priebe et al. (2005).
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Figure 5.3: Comparison of mean traversal lengths computed by the RD and ALG(2)

algorithms, (a) when there are only clutter disks with nc ∈ {50, 75, . . . , 200}, (b) and

when there are only true obstacles with nc =∈ {50, 75, . . . , 200} with 95% confidence

intervals for the mean traversal length computed by the RD and ALG(2) algorithms,

respectively.
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Let the algorithm using the penalty function Fk(c, p) be denoted as the ALG(k)

algorithm. Based on the plots in Figure 5.1, we claim that the algorithms RD, P,

and DT can be characterized by the ALG(k) algorithms for appropriate values of k.

Indeed, these three algorithms correspond to ALG(2), ALG(3) and ALG(5), respec-

tively. To support this argument, we computed the traversal length by using these

algorithms with 100 Monte Carlo replications. When there are false obstacles only

(i.e., X = XC), then it can be seen from Figure 5.3(a) that on the average the RD and

ALG(2) algorithms behave almost the same. Similarly, when there are true obstacles

only (i.e., X = XO), then it can be see from Figure 5.3(b) that on the average the RD

and ALG(2) algorithms behave almost identical where we presented respective 95%

confidence intervals for the mean traversal length computed by the RD algorithm and

the ALG(2) algorithm.

Moreover, in the mixture case, we show that the mean traversal lengths for dif-

ferent combinations of (nc, no) (see Table 5.1) computed by the RD and ALG(2)

algorithms. We observe that the mean traversal length computed by the RD algo-

rithm is well approximated by the mean traversal length computed by the ALG(2)

with percentage error at most 2%. The percentage error is referred to the difference

between an experimental value and the known value. Formally, if LRD, LALG(2), are

the traversal lengths estimated by the RD and ALG(2) algorithms, respectively. Then

the percentage error with respect to LRD is defined as,

percentage error =

∣∣∣∣LALG(2) − LRD
LRD

∣∣∣∣× 100

Also, observe that the mean traversal length tends to have larger value when there

are more true obstacles than false obstacles. But, when the number of both false and

true obstacles are large enough, the study window is saturated by obstacles so that

the NAVA circumnavigates and performs no disambiguation (also see Figure 5.3).

Analogously, when NAVA uses the P and ALG(3) algorithms under the same

experimental setting, then the empirical comparison of mean traversal lengths are

presented in Figure 5.4 and in Table 5.2. We observe that the mean traversal length

computed by using the algorithm P is well approximated by using the ALG(3) algo-
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no

25 50 75 100

nc

25 109.41; 109.48 119.19; 119.75 149.91; 149.88 213.71; 209.02

50 115.87; 116.06 127.71; 129.23 161.41; 160.36 184.51; 183.16

75 120.95; 121.23 134.99; 135.37 164.68; 166.34 175.61; 174.52

100 128.75; 128.77 145.98; 145.45 177.11; 175.88 169.16; 170.12

Table 5.1: Comparison of mean traversal lengths estimated by the RD (shown in

bold) and ALG(2) algorithms for various pairs of (nc, no) with percentage error less

than 2%.

rithm. Moreover, comparing the performances of the RD and P algorithms (hence

ALG(2) and ALG(3) ), on the average the mean traversal length computed by the

P algorithm is less than the mean traversal length computed by the RD algorithm

i.e., specifically when there are more true obstacles than false obstacles (Table 5.1

versus Table 5.2). Analogous trends can be observed for the mean traversal length

no

25 50 75 100

nc

25 109.50; 109.54 117.68; 117.63 139.16; 139.19 175.87; 176.63

50 115.24; 115.30 125.66; 125.62 146.16; 146.40 166.08; 166.93

75 121.11; 121.16 133.27; 133.52 152.65; 152.69 164.23; 163.33

100 128.94; 128.93 143.30; 143.55 161.17; 161.96 166.28; 166.21

Table 5.2: Comparison of mean traversal lengths computed by the P (shown in bold)

and ALG(3) algorithms for various pairs of (nc, no) with percentage error less than

0.5%

computed by the DT and ALG(5) algorithms (see Figure 5.5 and Table 5.3). But,

when comparing the empirical performances of the DT and P algorithms, it turns out
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Figure 5.4: Comparison of mean traversal lengths estimated by the P and ALG(3)

algorithms, (a) when there are only clutter disks with nc ∈ {50, 75, . . . , 200}, (b) and

when there are only true obstacles with nc =∈ {50, 75, . . . , 200} with 95% confidence

intervals for the mean traversal length computed by the P and ALG(3) algorithms,

respectively.

that the mean traversal length computed by the DT algorithm tends to have smaller

values than the mean traversal length computed by the P algorithm (Table 5.2 versus

Table 5.3).

Thus, we empirically observed that when the disambiguation cost c = 5 together

with the sensor precision variable λ = 2, the algorithms RD, P, and DT can be

closely approximated by the ALG(2), ALG(3) and ALG(5) algorithms. This result

can be extended to the general case, but this time when approximating the RD, P,

and DT algorithms note that the k value in the ALG(k) algorithm may change as the

disambiguation cost c changes (see Figure 5.2).

Proposition 5.4.1 : Let c = 5, then for any fixed λ the mean traversal lengths of

NAVA computed by the algorithms RD,P and DT can be approximated by the mean

traversal lengths computed by the ALG(k) algorithms for k = 2, 3, 5, respectively.
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Figure 5.5: Comparison of mean traversal lengths estimated by the DT and ALG(5)

algorithms, (a) when there are only clutter disks with nc ∈ {50, 75, . . . , 200}, (b) and

when there are only true obstacles with no ∈ {50, 75, . . . , 200} with 95% confidence

intervals for the mean traversal length computed by the DT and ALG(5) algorithms,

respectively.

no

25 50 75 100

nc

25 109.74; 109.63 116.94; 117.14 135.99; 133.01 153.03; 152.02

50 116.48; 116.83 126.57; 127.24 145.12; 145.09 157.59; 157.32

75 121.54; 122.05 135.71; 136.48 155.54; 155.52 164.68; 163.98

100 129.94; 130.34 144.52; 147.09 161.31; 162.00 167.19; 167.17

Table 5.3: Comparison of mean traversal lengths computed by the DT (shown in

bold) and ALG(5) algorithms for various pairs of (nc, no) with percentage error less

than 1%.

Proof : The proof follows from the proposition 5.3.1. �

In the false obstacle only case, the traversal length computed by all three RD,
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P, and DT algorithms (hence ALG(2), ALG(3), and ALG(5)) give similar results

(Figures 5.3(a), 5.4(a), and 5.5(a)), but in the true obstacle only case the worst per-

forming one is the RD algorithm and the best performing one is the DT algorithm

(Figures 5.3(b), 5.4(b), and 5.5(b)). The DT algorithm avoids disambiguations when

encountered by true obstacles on its way, whereas both the RD and P algorithms

do take risk and do not attempt to choose the immediate zero-risk path (unlike the

DT algorithm). This situation can be explained by analyzing the total number of

disambiguations in computing the traversal length by all these algorithms. In Figure

5.6(a), the false obstacle only case, the average number of disambiguations carried out

by the RD and P algorithms are almost same, whereas it decreases with the DT algo-

rithm as the number of false obstacles increase. On the other hand, in Figure 5.6(b),

the true obstacle only case, the average number of disambiguations performed by the

RD algorithm increases first, reaches its peak, and decreases as the number of true

obstacles increase. As for the P algorithm, the average number of disambiguations is

always less than 1. Interestingly, the average number of disambiguations used by the

DT algorithm is close to zero, i.e., the DT algorithm avoids disambiguations when

encountered by the true obstacles on its way, takes no risk, and inclined to choose the

plain zero-risk path. So far, we have investigated the trends in mean traversal length

computed by the ALG(k) algorithms for k = 2, 3, 5 when the disambiguation cost

c = 2, and the sensor precision parameter λ = 2. The next natural question would

be how exactly the ALG(k) algorithm depends on sensor’s detection parameter λ if

the value of c is fixed.

5.5 ALG(k) Algorithm and Sensor Precision

Prior to the traversal of NAVA, the corresponding marks (probabilities of non-

traversability) of disk shaped obstacles are assigned by the sensor of NAVA. The

pc and po come from distribution functions FC and FO with Beta(4 − λ, 4 + λ) and

Beta(4 + λ, 4− λ) distributions. The higher probability values indicate higher proba-

bility of non-traversability, and vice versa. If λ = 0, then NAVA has no capability of
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Figure 5.6: Comparison of average number of disambiguations when the mean traver-

sal length is estimated by the RD, P, and DT algorithms, (a) when there are only

clutter disks with nc ∈ {50, 75, . . . , 200}, (b) and when there are only true obstacles

with no ∈ {50, 75, . . . , 200}. Note that vertical axes are differently scaled.

distinguishing true obstacles from clutter (distinguishes them in random with prob-

ability 1/2). If λ = 4, then NAVA has perfect sensing capability to detect true and

false obstacles.

In Figure 5.7(a) as the λ value increases (i.e., sensor precision increases), on the

average the mean traversal length decreases and converges to some value (i.e., the

benchmark value) with each ALG(k) algorithm for k = 1, 2, 3, 4, 5, but at different

rates of convergence. When there are only clutter disks, on the average the ALG(1)

algorithm performs best and the ALG(5) is the worst one. Similarly, in Figure 5.7(b),

the mean traversal length again decreases and converges to some value (i.e., the

benchmark value) under each algorithm ALG(k) for k = 1, 2, 3, 4, 5, but at different

rates of convergence. When there are only true obstacles, now the reverse ordering

is observed. In this case, on the average the ALG(5) algorithm is the best and the

ALG(1) is the worst one. Hence, the following proposition holds.

Proposition 5.5.1 : Let LALG(k)(λ) be the traversal length computed by the algorithm
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Figure 5.7: Comparison of mean traversal lengths estimated by the ALG(k) algo-

rithms, (a) when there are only clutter disks with nc = 50, 75, 100, 125, (b) and when

there are only true obstacles with nc = 50, 75, 100, 125. Notice that vertical axes are

differently scaled. Note that vertical axes are differently scaled.

ALG(k) under the sensor precision parameter λ for the given problem setting (see

Section 5.4). Then,

• For fixed k and for any λ > λ′ we have LALG(k)(λ) ≤st LALG(k)(λ
′) when X = XC

or X = XO,

• For fixed λ and for any k > k′ we have LALG(k)(λ) ≥st LALG(k′)(λ) when X =

XC,

• For fixed λ and for any k > k′ we have LALG(k)(λ) ≤st LALG(k′)(λ) when X =

XO,

where ‘ ≥st’ stands for ‘stochastically larger than’ and ‘ ≤st’ stands for ‘stochastically

smaller than’.

Proof : (Sketch) (a) Let k be given and suppose that X = XC (clutter only case). For
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any disk shaped false obstacleD0 let pλ be its probability of being true obstacle coming

from the distribution Beta(4− λ, 4 + λ). Next, suppose that we change the precision

of sensor so that it assigns pλ′ for D0 coming from the distribution Beta(4−λ′, 4+λ′).

Since the corresponding means of distributions Beta(4−λ, 4+λ) and Beta(4−λ′, 4+λ′)

are (4− λ)/8 and (4− λ′)/8, then for λ > λ′ we have pλ ≤st pλ′ . That is to say, as λ

value increases (increase in precision) the detection of the probability of disk shaped

obstacle being a true obstacle increases, and as a result the penalty value coming from

Fk(c, p) increases as well. In this case, it is more likely for NAVA to choose longer

path rather than shorter path. Hence, LALG(k)(λ) ≤st LALG(k)(λ
′). Similar arguments

apply for the case X = XO (true obstacle only case).

(b) For any fixed λ (sensor precision is fixed) as k value increases the penalty

function Fk(c, p) also increases. As penalty value increases it is more likely for NAVA

to choose a longer path. Hence, LALG(k)(λ) ≥st LALG(k′)(λ) whenever k > k′ and

X = XC (clutter only case).

(c) The idea is similar to (b). When there are true obstacles only (X = XO), then

small values of k lead to increase the number of disambiguations and the traversal

length. However, for large values of k the penalty values increase so as to avoid

potential disambiguations and hitting true obstacles. Thus, for k > k′ we have the

relation LALG(k)(λ) ≤st LALG(k′)(λ).

In both Figures 5.7(a)-(b), the mean traversal length monotonically decreases as

the λ approaches to 4. When the λ is sufficiently close to 4, the sensor precision

of NAVA becomes perfect in detecting the true obstacles. That is to say, pc ≈ 0

and po ≈ 1, and recall that in computing the benchmark value the corresponding

probabilities pc and po were set to be 0 and 1 because NAVA knows the status of all

obstacles prior to traversal. Hence,

Corollary 5.5.1.1 In false or true obstacle only cases, the mean traversal length

estimated by the algorithm ALG(k) converges to the mean traversal length estimated

by the benchmark algorithm as λ→ 4 for any fixed value of k, i.e.,

LALG(k)(λ)→ LB as λ→ 4
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whenever X = XC or X = XO.

From Proposition 5.5.1, we can choose the best performing algorithm when λ is

given and X = XC or X = XO. We still do not know how to choose the best per-

forming algorithm when there is a mixture of both false and true obstacles uniformly

generated in the traversal environment.
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Figure 5.8: Comparison of mean traversal lengths estimated by the ALG(k) algo-

rithms when there are total nc + no number of obstacles uniformly generated with

nc = 25, 50, 75, 100 and no = 25, 50, 75, 100.

In Figure 5.8, there are a total of nc + no obstacles uniformly generated with

nc = 25, 50, 75, 100 and no = 25, 50, 75, 100. Apparently, ALG(5) is the overall best

algorithm. We already observed that the preference of ALG(k) may change according

to the number of false and true obstacles. To illustrate this, let us investigate the

case when nc + no = 100. Because of our simulation setting, this can only occur with

the pairs (nc, no) = (25, 75), (50, 50), (75, 25). In Figure 5.9(a), as expected ALG(5)

is the best choice to find the shortest route for the case (nc, no) = (25, 75), since,

ALG(5) performs better than others when there are more true obstacles than false

obstacles (see Figure 5.7(b)). In Figure 5.9(b), we observe that both ALG(4) and

ALG(5) perform better than others with the case (nc, no) = (50, 50). However, in
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Figure 5.9(c) ALG(2) and ALG(3) are better than others. Thus, in the uniform case

the choice of the algorithm depends on the number of true obstacles no, on the number

clutter disks nc, and the sensor parameter λ. The only common thing in Figures 5.8
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Figure 5.9: Comparison of mean traversal lengths estimated by the ALG(k) algo-

rithms, (a) for (nc, no) = (25, 75), (b) for (nc, no) = (50, 50), (c) and for (nc, no) =

(75, 25). Notice that vertical axes are differently scaled.

and 5.9 is that the mean traversal length converges to the benchmark value as the

sensor precision of NAVA increases. Thus, we can generalize the Corollary 5.5.1.1
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Corollary 5.5.1.2 The mean traversal length estimated by the ALG(k) algorithm

converges to the mean traversal length estimated by the benchmark algorithm as λ→ 4

for any fixed value of k, i.e.,

LALG(k)(λ)→ LB as λ→ 4

whenever X = XC ∪XO.

In the uniform case, we claim that when the triple (no, nc, c, λ) is given, then we

can choose the best performing algorithm ALG(k) by modifying the penalty function

Fk(c, p) where k := k(no, nc, c, λ). Another approach would be considering the ratio

ρ = no/nc. For our special cases of experimental setting, if ρ ≤ 1, then we recommend

choosing the ALG(2) or ALG(3) algorithm. If ρ > 1, then choose the ALG(4) or

ALG(5) algorithm. For the extreme cases, if no = 0 then it is reasonable to choose

ALG(1). And, if nc = 0 then it is reasonable to choose the ALG(5) algorithm.

5.6 ALG(k) Algorithm and the Disambiguation Cost

In Section 5.5, we have discussed about the behaviour of the ALG(k) algorithm when

the disambiguation cost was taken to be c = 5. But, when the constant disambigua-

tion cost changes then a question of interest is which type of algorithm should be

chosen among the ALG(k)’s. We already investigated the trends in mean traversal

length when the sensor parameter λ changes. So, to keep it simple we will fix λ = 2

and consider the disambiguation cost c = 1, 3, 5, 7, 9 units. The centers of disk shaped

obstacles are again uniformly generated inside the working window.

In Figure 5.10, we observe that the ALG(3), ALG(4), and ALG(5) algorithms

clearly outperform the others. But, as we have seen in Figure 5.8 this might not be

the general case. For a detailed investigation, consider the case when nc + no = 100

which occurs for the pairs (nc, no) = (25, 75), (50, 50), (75, 25).

In Figures 5.11(a-b), we observe that the ALG(5) algorithm outperforms the oth-

ers. Indeed, the performance of the ALG(4) algorithm is similar to the performance

of the ALG(5) algorithm with a slight difference. But, in Figure 5.11(c) we have
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Figure 5.10: Comparison of mean traversal lengths estimated by the ALG(k) algo-

rithms when there are total nc + no number of obstacles (combination of all (nc, no)

pairs) uniformly generated with nc, no ∈ {25, 50, 75, 100}.

different candidates for the best performing algorithm i.e., the ALG(2) and ALG(3).

And, even in some cases the algorithm ALG(1) gives smaller mean traversal length

than others. These results are consistent with those in Section 5.5. Also, observe

that as the disambiguation cost value c increases, the mean traversal length increases

as well, and for large values of c the mean traversal length tends to be equal to the

zero-risk path. Since, as c value increases disambiguating obstacles gets expensive for

all algorithms, ALG(k) algorithms will eventually avoid disambiguations whenever

encounter true obstacles on the way of NAVA’s traversal.
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Figure 5.11: Comparison of mean traversal lengths estimated by the ALG(k) algo-

rithms, (a) for (nc, no) = (25, 75), (b) for (nc, no) = (50, 50), (c) and for (nc, no) =

(75, 25). Notice that vertical axes are differently scaled.

5.7 Convergence of Traversal Length Under ALG(k) Algorithm

In this section, we investigate the behavior of the ALG(k) algorithm for nonnegative

values of k as the number of obstacles increases. Suppose that, there are only clutter

disks in the working environment. Then, previous sections suggest using the ALG(1)
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algorithm to attain the shortest s, t path. Also, if there are only true obstacles, then

the better performing algorithms are the ALG(k)’s with large k values. For simplicity,

in our experimental computation we fix λ = 2, c = 5.
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Figure 5.12: (a) Mean traversal length estimated by benchmark, ALG(1), ALG(2)

algorithms versus nc with nc ∈ {50, 75, . . . , 325}. (b) Mean traversal length estimated

by the benchmark, ALG(4), ALG(5) algorithms versus no with no ∈ {50, 75, . . . , 250}

. Notice that horizontal axes are differently scaled.

Figure 5.12 suggests that the best performing algorithm in finding the shortest s, t

walk when there are clutter disks only is the ALG(k) algorithm with smaller k and

when there are true obstacles only is ALG(k) algorithm with larger k, respectively.

Indeed, if X = XC (false obstacle only) then taking k = 0 will give the benchmark

value for the mean traversal length. As we have discussed before, the benchmark

value is the optimal (i.e., lowest) value that any heuristic algorithm can achieve. If

X = XO (true obstacle only), then taking k = 5 or larger will give approximately the

benchmark value for the mean traversal length. Thus, we have the following theorem

Theorem 5.7.1 : For fixed c and λ, let LB and LALG(k)(λ) be the traversal lengths

computed by the benchmark (B) algorithm and the ALG(k) algorithm, respectively.



Chapter 5: Heuristic Algorithms for the OPD Problem 111

Then,

1. LALG(k)(λ) = LB for k = 0 when X = XC

2. LALG(k)(λ)↘ LB as k tends to ∞ when X = XO

Proof : (Sketch) (1) When X = XC , then in computing the benchmark value, NAVA

knows location and status of all obstacles. In this case, NAVA does not need to use

the sensor, and thus probability of being true obstacle is irrelevant. Discarding the

probability is equivalent to setting k = 0 in the penalty function Fk(c, p). Hence,

the traversal length computed by the ALG(0) algorithm is same as the the traversal

length computed by the B algorithm, and equality LALG(k)(λ) = LB holds for k = 0

with any λ.

(2) For any k > k′, if NAVA disambiguates some disk shaped obstacle D0 using the

penalty function Fk, then it will also disambiguateD0 when using the penalty function

Fk′ (Fk(c, p) is increasing with respect to k), and thus will follow the same path. If

NAVA does not disambiguate under the ALG(k) algorithm and continues its route

using path π0, but it disambiguates some obstacle D1 under the ALG(k′) algorithm,

then NAVA will learn the actual status of an obstacle (i.e., true obstacle) at a constant

cost c and will force to replan its route to some path π1 with length greater than or

equal to π0. If NAVA does not disambiguate under neither the ALG(k) nor ALG(k′)

algorithm, then computed traversal lengths will be identical. Hence, we obtain a

decreasing sequence {LALG(k)(λ)}k∈N converging to LB. Taking k large enough means

appointing very large penalty value to an edge intersecting the obstacle which is

equivalent to deleting the blocked edge. So, LALG(k)(λ)↘ LB follows as k →∞.

But, we still do not have an efficient algorithm when there are both clutter and

true obstacles in the environment. From the idea of Theorem 5.7.1, we construct a

new algorithm called T(α) (T comes from the word threshold), where α ∈ (0, 1) is the

probability threshold in which an obstacle should or should not be disambiguated.

When a problem instance is given, the main idea of the T(α) algorithm is choosing

the value k in penalty function Fk(c, p) by using the threshold parameter α. If FT (α)
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is the penalty function used by the algorithm T(α), then formally,

FT (α)(c, p) =

Fk(c, p) with k = 0 if p < α

Fk(c, p) with k = log(z0−c)
log(1/(1−α))

if p ≥ α

where z0 is the traversal length of the zero risk path (computed by the Z algorithm)

from s to t.

Since the obstacle centers are sampled uniformly inside the region [10, 90]×[10, 90]

and r = 4.5 then as the number of obstacles increases, the region [5, 95] × [5, 95] is

extensively occupied. So, to simplify our computation in simulations, it is reason-

able to assign the value of the z0 as the Euclidean distance following the vertices

s, (95, 95), (95, 5), t which yields 180.45 units. For example, when c = 5 and threshold

α = 0.5 we obtain the corresponding k = 7.5. NAVA is only given the corresponding

probabilities of disks being true obstacles, so choose the threshold α = 0.5. Otherwise,

loosening (i.e., decreasing α) or strengthening (i.e., increasing α) the threshold value

might cause the loss of clutter or true obstacle information which is not a desirable

situation, as it might cause instability in the performance of the algorithm.

In Figure 5.13, we observe that the empirical performance of the algorithm T(0.5)

is similar to the ALG(2) algorithm and the ALG(5) algorithm when there are only

false obstacles and only true obstacles, respectively. So, in general when there are

both clutter and true obstacles, on the average the mean traversal length computed by

the T(0.5) algorithm does not converge to the benchmark value. The main drawback

of the penalty function FT (0.5) is that it strictly separates clutter and true obstacles

from each other by the given threshold α = 0.5.

To overcome this drawback, we increase the number of thresholds. Let

us divide the interval [0, 1] into 20 equal subintervals with length 0.05 units.

And, let the vector I = (0, 0.05, 0.10, . . . , 0.95, 1.00) be the corresponding end

points. Similarly, for any fixed positive integer k̃ define the vector K =

(0, k̃/10, 2k̃/10, . . . , 10k̃/10, . . . , 20k̃/10). If p1, p2, . . . , p|X| are the probabilities (of

being a true obstacle) of disk shaped obstacles, then let m0 be the mean of p′is, i.e.,
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Figure 5.13: (a) Mean traversal length versus nc computed by the B, ALG(2), T(0.5)

algorithms with nc ∈ {50, 75, . . . , 325}. (b) Mean traversal length versus no com-

puted by the B, ALG(5), T(0.5) algorithms with no ∈ {50, 75, . . . , 250} . Note that

horizontal axes are differently scaled.

m0 = 1
m′

∑|X|
i=0 pi. Then, perform the following operation

Set K(i) = K(i) + (i− 11)k̃/10 if I(i) ≤ m0 < I(i+ 1) for i = 1, 2, ..., 10,

and, K(i) = K(i) + (i− 10)k̃/10 if I(i) ≤ m0 < I(i+ 1) for i = 11, 12, ..., 20.

At the end of this operation, some values of vector K might be negative depending on

m0. To avoid this, set K(i) = 0 if K(i) is negative and K(i) = 2k̃ if K(i) is greater

than 2k̃. Now, consider the following penalty function,

FMT (k̃)(c, p) = Fk(c, p) with k = K(i) if I(i) ≤ p < I(i+ 1) for i = 1, 2, ..., 20.

In Figure 5.14, we observe that the new MT(k̃) algorithm (MT comes from words

mean and threshold) with k̃ = 7 is better than the DT algorithm when there are

either only false obstacles or only true obstacles. Indeed, for these special cases on

the average the benchmark value is well estimated by the traversal length estimated

by the FMT (7)(c, p) penalty function.
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Figure 5.14: (a) Mean traversal length versus nc estimated by the B, DT, MT(7)

algorithms with nc ∈ {50, 75, . . . , 325}. (b) Mean traversal length versus no computed

by the B, DT, MT(7) algorithms with no ∈ {50, 75, . . . , 250} with 95% confidence

intervals for the benchmark value. Notice that horizontal axes are differently scaled.

To investigate the new algorithm in detail, we consider it for different pairs of

(nc, no). Thus, in Figure 5.15 we observe that on the average the MT(k̃) algorithm

with k̃ = 7 outperforms the DT algorithm. For example, in Figure 5.15(a) when

(nc, no) = (25, 100) the mean traversal length computed by the algorithm MT(7) is

smaller than the mean traversal length computed by the DT algorithm.

The fact that when there are mixture of both true and false obstacles, the MT(k̃)

algorithm does not converge to the benchmark value, encourages us to improve the

MT(k̃) algorithm. Instead of dividing the unit interval [0, 1] into 20 equal parts in the

construction of the algorithm, we divide the interval into n (default n = 100) equal

parts. And, we choose k̃ = 2, 4, 6, 8 in our setting (see Algorithm 1). Using this al-

gorithm, we estimate the benchmark value for different pairs (nc, no) with 100 Monte

Carlo replications. In Figures 5.16 and 5.17, the mean traversal length estimated by

the improved MT(k̃) algorithm almost coincides with the benchmark value. Deter-
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Figure 5.15: Comparison of mean traversal lengths estimated by the B, DT, MT(7)

algorithms, (a) for nc = 25 with no ∈ {25, 50, . . . , 200}, (b) and for nc = 75 with

no ∈ {25, . . . , 200} with 95% confidence intervals for the benchmark value.

mining the optimal choice of k̃ to approximate the benchmark value more accurately

is a topic of ongoing research.

So far, we have discussed the penalty functions Fk(c, p) and their empirical perfor-

mances for positive integer k values. We also developed various effective algorithms

converging to the benchmark value for some special cases. Although the MT(k̃) al-

gorithm with k̃ = 7 outperforms the DT algorithm, in general it does not converge

to the benchmark value. Moreover, by improving the MT(k̃) algorithm we deduced

better estimations for the benchmark value by considering k̃ = 2, 4, 6, 8.

On the other hand, for any given problem setting, on the average the benchmark

value can also be approximated by the ALG(k) algorithm with appropriate choice

of positive integer k values. From Figures 5.18 and 5.19 we observe that on the

average the benchmark value is well approximated by the ALG(k) algorithm. In

our simulations, we considered the integer values of k between 0 and 6 with 100

Monte Carlo replications. For each pair of (nc, no), we used the best possible penalty
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Figure 5.16: Comparison of mean traversal lengths estimated by the B and MT (k̃)

algorithms, (a) for nc = 25 with no = 25, 50, 75, 100, (b) and for nc = 50 with

no = 25, 50, 75, 100 with 95% confidence intervals for the benchmark value.
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Figure 5.17: Comparison of mean traversal lengths estimated by the B and MT (k̃)

algorithms, (a) for nc = 75 with no ∈ {25, 50, . . . , 100}, (b) and for nc = 100 with

no ∈ {25, 50, . . . , 100} with 95% confidence intervals for the benchmark value.
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Figure 5.18: Comparison of mean traversal lengths estimated by the B and ALG(k)

algorithms, (a) for nc = 25 with no = 25, 50, 75, 100, (b) and for nc = 50 with

no = 25, 50, 75, 100 with 95% confidence intervals for the benchmark value.
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Figure 5.19: Comparison of mean traversal lengths estimated by the B and ALG(k)

algorithms, (a) for nc = 75 with no = 25, 50, 75, 100, (b) and for nc = 100 with

no = 25, 50, 75, 100 with 95% confidence intervals for the benchmark value.
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function Fk(c, p) which approximates the corresponding benchmark value. In some

cases, we found almost the same value as the benchmark value and in the worst case

(see Figure 5.19(b)), on the average the heuristic traversal length results in less than

1.5% percentage error.

5.8 MT(k̃) Algorithm
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Algorithm 1: The psuedo code of the penalty function FMT (k̃).
Input: X = XC ∪XO

pi: the non-traversability probability of the disk shaped obstacle Di

c: the disambiguation of an obstacle

k̃: the range (0, 2k̃) to choose k values

n: the number of subintervals in (0, 1)

Output: The penalty function FMT (k̃)(c, p)

Define n + 1 dimensional arrays I :=
(
0, 1

n
, . . . , n−1

n
, 1
)

and K :=(
0, 2k̃

n
, . . . , (n−1)2k̃

n
, 2k̃
)

Compute m0 = 1
|X|
∑|X|

i=1 pi

for i := 1 to n
2
do

if I(i) ≤ m0 < I(i+ 1) then

K(i)← K(i) +
(
i− n

2
− 1
)

2k̃
n

end if

end for

for i := n
2

+ 1 to n do

if I(i) ≤ m0 < I(i+ 1) then

K(i)← K(i) +
(
i− n

2

)
2k̃
n

end if

end for

for i := 1 to n do

if K(i) < 0 then

K(i)← 0

else if K(i) > 2k̃ then

K(i)← 2k̃

end if

end for

for j := 1 to |X| do

for i := 1 to n do

if I(i) ≤ pj < I(i+ 1) then

k ← K(i)

FMT (k̃)(c, pj)← Fk(c, pj)

end if

end for

end for
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5.9 Summary

Exploiting penalty functions in current greedy algorithms for NAVA, we managed

to unify them in a single family of penalty functions. For each fixed disambiguation

cost value c, the penalty function FRD(c, p) of the RD algorithm, the penalty function

FP (c, p), and the penalty function of the FDT (c, p) can be approximated by the penalty

function of the form Fk(c, p) with k = 2, 3, 5, respectively (Corollary 5.3.1.1). And, if

ALG(k) is the algorithm to compute the heuristic traversal length demonstrated on

the penalty function Fk(c, p), then on the average mean traversal lengths computed

by the RD, P, and DT algorithms can be approximated by the mean traversal lengths

computed by the algorithms ALG(k) for k = 2, 3, 5, consecutively (Proposition 5.4.1).

Note that, as k gets larger (k ≥ 5) the penalty function Fk(c, p) yields larger edge

weights, and thus the algorithm ALG(k) becomes reluctant to take risks and avoids

disambiguations along the NAVA’s traversal. This explains why the DT algorithm

avoids disambiguations (unlike the RD and P algorithms) when encountered by the

true obstacles on its way, taking no risk, and inclined to choose plain zero-risk path

(Figure 5.6).

Let LALG(k)(λ) be the traversal length computed by the ALG(k) algorithm under

the sensor precision parameter λ for the given problem setting (see Section 5.4), then

in special circumstances such as for the false obstacle only or true obstacle only cases

the benchmark value (computed by the algorithm B) can be evaluated exactly by

choosing the values k = 0 and k ≥ 5, respectively. Moreover, in some special cases we

have the stochastic ordering for the traversal length LALG(k)(λ) with respect to both k

and sensor precision variable λ (Proposition 5.5.1). For instance, in the false obstacle

only case LALG(k)(λ) ≤st LALG(k)(λ
′) for λ > λ′ and LALG(k)(λ) ≥st LALG(k′)(λ) for

k > k′. And, as the sensor precision tends to perfect detection the traversal length

LALG(k)(λ) approaches to the benchmark value LB (Corollaries 5.5.1.1-5.5.1.2).

The disambiguation cost value c is another important variable in determining

the trend of the mean traversal length computed by the corresponding heuristics

algorithms. We observed that as the disambiguation cost increases, the mean traversal
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length increases up until the algorithm chooses the zero-risk path and performs no

disambiguations. The change in disambiguation cost c does not alter the trend in

traversal length under fixed sensor precision and same number of obstacles. As the

disambiguation cost increases the number of disambiguations carried out by NAVA

decreases, hence the traversal length tends to be larger (trend is concave down and

logarithmic increase).

Since, all heuristics algorithms are greedy we introduce the idea of disambiguation

of an obstacle based on the threshold parameter α, i.e., if the corresponding probabil-

ity (of being true obstacle) p of any disk shaped obstacle is less than α, then perform

the disambiguation, and otherwise bypass the obstacle without taking no risk. Based

on this idea, we characterized the penalty function FT (α)(c, p) and empirically showed

that the mean traversal length computed by the algorithm T(0.5) (demonstrated on

the FT (0.5) penalty function) is less than or equal to the mean traversal length com-

puted by the ALG(5) algorithm. On the average the mean traversal length computed

by the algorithm T(0.5) does not converge to the benchmark value and the main

drawback of the penalty function FT (0.5) is that it strictly separates clutter and true

obstacles from each other by the given threshold α = 0.5. In the given problem setting

(see Section 5.4), loosening (i.e., decreasing α) or strengthening (i.e., increasing α)

the threshold value might cause the loss of clutter or true obstacle information which

is not a desirable situation, as it might cause instability in the performance of the

algorithm.

To overcome this handicap, we make use of the mean of all probabilities pi of

obstacles, and define the new penalty function FMT (k̃)(c, p) (see Algorithm 1) and the

corresponding MT(k̃) algorithm. Simply, it smartly decides which threshold parame-

ter α should be imposed by taking the mean of probabilities into consideration before

the traversal of NAVA. Indeed, the MT(k̃) algorithm is the improved version of the

ALG(k) algorithm by considering the k value as a vector component and taking into

account the mean of probabilities of obstacles. Here, if m0 is the average of probabil-

ities then we divide the unit interval [0, 1] and the interval [0, 2k̃] into 100 equal parts
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(default). Then, we generate the vector K, with dimension equal to the number of

obstacles, in accordance with m0 lying in the same divided subinterval of [0, 1] (see

Algorithm 1). For smaller m0 (such as clutter only case) the components of K tend

to be smaller, and for larger m0 (such as true obstacle only case) the components

of K tend to be larger. We showed that in many cases the benchmark value can be

approximated within a 1.5% percentage error by using the MT(k̃) algorithm for some

appropriate choices of k̃ (see Figures 5.16-5.17). On the other hand, the benchmark

value can be also approximated by using the ALG(k) algorithm for some positive

integer values of k, and this approximated value lies within a 95% confidence interval

for the benchmark value (see Figures 5.18-5.19).

In our future research, we will improve our algorithms and show that the bench-

mark value can be approximated more accurately. The heuristic algorithms that we

argued are defined and studied for our problem setting. The penalty functions and

the corresponding algorithms can be also applied or modified to solve other problems

such as the Canadian traveler’s problem of Papadimitriou and Yannakakis (1991),

the discrete SOSP of Aksakalli (2007b), the discretized OPD of Aksakalli and Ceyhan

(2012), the repeated-task CTP of Bnaya et al. (2015), and the CTP-Tree of Fried

(2013). Another aspect field of study of algorithms is the competitive analysis of

heuristic algorithms where the ratio of heuristic and worst case performances are in-

vestigated (Borodin and El-Yaniv, 1998). The work of Westphal (2008) and Xu et al.

(2009) are some competitive analyzes related to our problem. We will analyze the

competitive analysis of existing algorithms such as the RD, P and DT algorithms,

and carry out similar study for our heuristic ALG(k) and MT(k̃) algorithms.
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THEORETICAL RESULTS

6.1 Introduction

As we have discussed in Chapter 5, in the original CTP, the status of an edge (i.e.,

whether it is blocked or not) can only be revealed upon reaching a vertex incident

to that edge. This kind of sensing is called the local sensing, and the remote sensing

refers to revealing the status of an edge from a distant location (Bnaya et al., 2009).

The sensing cost in the CTP is equivalent to the disambiguation cost in the D-SOSP.

In the classical CTP problem (Papadimitriou and Yannakakis, 1991), a navigating

agent is given a connected graph G = (V,E) together with its initial source s ∈ V ,

and a target vertex t ∈ V . In addition, each edge e ∈ E has an Euclidean length `(e),

and is blocked with a probability p(e), where p(e) is known to the NAVA. Each edge

e is either blocked (and hence, not traversable), or unblocked (and hence, traversable

at a cost of `(e)). The status of an edge is remained fix throughout the traversal and

is initially unknown to the NAVA. NAVA can learn the status of an edge e only upon

reaching the vertex incident on e. Since the exact traversal length is uncertain until the

end, the task is to devise a traveling strategy which gives an optimal (or suboptimal)

expected traversal length. Considering the similarity between the discrete version

of the SOS problem and CTP with sensing, we add a property for NAVA where it

can disambiguate an edge e with cost c(e), and learn whether the edge is traversable

or not upon arrival at a node incident on e. Thus, an instance of the discrete SOS

problem is a 7-tuple G = (V,E, p, `, c, s, t), where

• (V,E) is a connected (undirected) graph with vertex set V and edge set E,

• p : E −→ [0, 1] defines the blocking (non-traversability) probabilities of edges,
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• ` : E −→ R+ defines the Euclidean lengths of edges,

• c : E −→ R+ ∪ {0} defines the disambiguation costs of edges, and

• s, t ∈ V are the source and target locations, respectively.

For example, if E = {e1, e2, ..., en}, then

• p = {p1, p2, ..., pn} is the corresponding edge probabilities,

• ` = {`1, `2, ..., `n} is the Euclidean lengths of edges, and

• c = {c1, c2, ..., cn} is the disambiguation costs of edges, respectively.

For any discrete SOSP instance G = (V,E, p, `, c, s, t) with |E| = n ∈ N, let the values

`, c, s, t are fixed but p changes according to some distribution. Then, it is reasonable

to define the expected traversal length from the source s to the target t under the

policy π relative to the distribution of p i.e., denoted by TG,πn (p) = T πn (p). That is,

T πn (p) is a random variable defined from [0, 1]n to R depending on p. Then, formally

we are interested in minπ T
π
n (p) for any fixed n and realization of p. But, in this study

we go beyond the scope and investigate the properties of the random variable T πn (p)

for some specific distributions of p.

6.2 RD Algorithm for the Discrete SOSP

The reset disambiguation (RD) algorithm introduced in Aksakalli et al. (2011) is

optimal for some special types of graphs. Briefly, all edges are assigned by the edge

weight function h(e) = `(e) + c(e)/(1− p(e)), and then the shortest s, t walk is found

using Dijkstra’s algorithm. Whenever a probabilistic edge e with probability p(e) > 0

is encountered through traversal, NAVA has an option to disambiguate it at a cost

c(e) added to the total traversal length, and thus learn whether e is traversable or not.

If e is found to be traversable, then NAVA continues its walk through e, otherwise

e is removed from the graph. We repeat this procedure until the target point is
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reached. For a given discrete SOSP instance G = (V,E, p, `, c, s, t), by running the RD

algorithm we find the deterministic traversal length denoted by L(G,RD). To perform

this action, we add one more information for each edge e ∈ E. Let b : E → {0, 1} be

a random variable such that b(e) = 0 if e is traversable, and b(e) = 1 otherwise. For

each instance G(b) = (V,E, p, b, `, c, s, t) the random variable b is determined before

the traversal depending on p with some decision process or values of b can also be

set randomly independent of p. Analogous to T πn (p), let LG(b),π
n (p) = Lπn(p) be the

deterministic traversal length from the source s to the target t under the policy π

relative to the distribution of p. That is, Lπn(p) is a random variable defined from

[0, 1]n to R depending on p. Then, formally we are interested in minπ L
π
n(p) for any

fixed n and realization of p. But, in this study we go beyond the scope and investigate

the properties of the random variable Lπn(p) for some specific distributions of p.

6.3 Graphs with Two Nodes

Theorem 6.3.1 :(Aksakalli (2007b)) Let G = (V,E, p, `, c, s, t) be any discrete SOSP

instance with V = {s, t} and |E| = n, then the policy induced by the RD algorithm

gives the optimal expected traversal length for any fixed p. Namely,

TOPTn (p) = min
π
T πn (p) = TRDn (p). (6.1)

In the above theorem, w.l.o.g we can assume that p1 = 0, c1 = 0, and p2, p3, ..., pn any

numbers between 0 and 1. Otherwise, the value of T πn (p) would be infinite for any

policy π.

A weather for a CTP instance with edges E is a subset W ⊆ E representing

the edges that are traversable in that weather. Weather W is called good if s and t

remain connected only when using edges in W . Otherwise, W is called bad (Eyerich

et al. (2010)). Now, let G = (V,E, p, `, c, s, t) be any discrete SOSP instance with

V = {s, t}, |E| = n, and the values of p are independent and identically distributed

(i.i.d) from uniform (0, 1) distribution. We form a weather as following; if p(e) < 0.5

then set e as traversable, and blocked otherwise. That is, we are forming G(b) instance
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from given G instance, i.e., b(e) = 0 if p(e) < 0.5, and b(e) = 1 if p(e) ≥ 0. By using

RD algorithm, we compute the deterministic length LRDn (p) for this instance. As the

number of edges tends to infinity, we claim that the expected traversal length TRDn (p)

and deterministic traversal length LRDn (p) converge in probability to the same value.

To prove our claim, we start with some special cases.

Theorem 6.3.2 : Let G = (V,E, p, `, c, s, t) be any discrete SOSP instance with

V = {s, t} and |E| = n. And suppose that G(b) is a good weather induced by the

instance G for any realization of p. If

• the distribution of pi for all i = 2, ..., n is i.i.d from uniform (0, 1) distribution

with p1 = 0,

• the Euclidean distances `i = 1, for all i = 2, ..., n with fixed `1 = a ∈ R+,

• the disambiguation costs ci = 5, for all i = 2, ..., n with c1 = 0, then

TRDn (p)− LRDn (p)
P−→ 0 as n→∞. (6.2)

Lemma 6.3.2.1 : Let G = (V,E, p, `, c, s, t) be discrete SOSP instance with V =

{s, t} and |E| = n. And suppose that G(b) is a good weather induced by the instance

G for any realization of p. Under the conditions of Theorem 2, we have

LRDn (p) = a for a ≤ 6, and

LRDn (p)
P−→ 6 as n→∞ for all a > 6.

Proof : By using the weight function h(e) = `(e) + c(e)/(1 − p(e)) for any edge

e ∈ E, we compute h1, h2, ..., hn and sort them in an increasing order, since Dijkstra’s

algorithm would start with the smallest edge weight. Let π be a permutation of the

set {1, 2, ..., n} such that

hπ(1) < hπ(2) < ... < hπ(n) (6.3)
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Because of the property of the function h and the given conditions, it is not hard

to see that the above ordering always implies the ordering of pi’s for i = 2, 3, ..., n,

i.e, the order statistics of p2, p3, ..., pn. According to the RD policy, the edge order

that we are going to follow will be eπ(1), eπ(2), ..., eπ(n). For each CTP instance G, we

generate good weather G(b) instance so as to find the deterministic length. As we

have discussed before, each edge is assigned to be traversable if the corresponding

edge probability is less than 1/2 and blocked otherwise. Thus, the RD algorithm will

terminate when it for the first time encounters pπ(i) < 1/2 for some i. If a ≤ 6, then

h1 = a and 6 = 1 + 5/(1− 0) < `i + ci/(1− pi) = hi for all i = 2, 3, ..., n. In this case,

RD dictates to start with edge e1 and clearly LRDn (p) = a for any instance G(b) and

realization of p. Now, suppose that a > 6. Then, h1 = a = hπ(i) for some i ≥ 1.

Case 1: If a ≤ hπ(1), then RD dictates to start with edge e1 and clearly LRDn (p) = a.

But, this occurs with probability

P
(
a ≤ hπ(1)

)
= P

(
1− 5/(a− 1) ≤ pπ(1)

)
(6.4)

Case 2: If hπ(1) < a and pπ(1) ≥ 1/2, then RD dictates to start with edge eπ(1) and

continues until it reaches the edge eπ(i) = e1 because in this case all pi ≥ 1/2 for all

i = 2, 3, ..., n. So, LRDn (p) equals to `π(i) +
∑i

k=1 cπ(k) = a + (i) × 5 = 5i + a where

i ≥ 2. But, this occurs with probability

P
(
hπ(1) < a and pπ(1) ≥ 1/2

)
= P

(
1/2 ≤ pπ(1) < 1− 5/(a− 1)

)
(6.5)

Case 3: If hπ(1) < a and pπ(1) < 1/2, then RD dictates to start with edge eπ(1) and

clearly LRDn (p) = `π(1) + cπ(1) = 6. And, this occurs with probability

P
(
hπ(1) < a and pπ(1) < 1/2

)
= P

(
pπ(1) < min (1− 5/(a− 1), 1/2)

)
. (6.6)

It suffices to show that the probabilities in (6.4) and (6.5) converges to zero as n tends

to infinite. Observe that pπ(1) is the minimum of p2, p3, ..., pn, so we know explicitly its

probability density function which depends on n. It is well known that the kth order

statistics of n i.i.d uniform (0, 1) distributed random variables is Beta(k, n + 1 − k)
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distribution. So, pπ(1) has probability density function (1 − x)n−2 × (n − 1). The

probability in (6.4) becomes,

P
(
a ≤ hπ(1)

)
= P

(
1− 5/(a− 1) ≤ pπ(1)

)
=

∫ 1

1−5/(a−1)

(n− 1)(1− x)n−2dx

=

(
5

a− 1

)n−1

−→ 0 as n→∞.

And the probability in (6.5) becomes,

P
(
hπ(1) < a and pπ(1) ≥ 1/2

)
= P

(
1/2 ≤ pπ(1) < 1− 5/(a− 1)

)
=

∫ 1−5/(a−1)

1/2

(n− 1)(1− x)n−2dx

=

(
1

2

)n−1

−
(

5

a− 1

)n−1

−→ 0 as n→∞.

which completes the proof of Lemma 6.3.2.1.

On the other hand, in order to compute the expected traversal length induced by

RD algorithm we no longer need good weather. Since, we are not interested in the

deterministic value of traversal length.

Lemma 6.3.2.2 : Let G = (V,E, p, `, c, s, t) be any discrete SOSP instance with

V = {s, t} and |E| = n. Under the conditions of Theorem 2, we have

TRDn (p) = a for a ≤ 6, and (6.7)

TRDn (p)
P−→ 6 as n→∞ for all a > 6. (6.8)

Proof : We are going to use the same ordering induced by RD algorithm given

in (6.3). Thus, RD dictates to start with edge eπ(1) and so on. In this case, the

computation will be terminated whenever e1 is encountered. For the discrete SOSP

instance, actually we have an explicit form of the expected traversal length given in

Aksakalli (2007b). Namely,

TRDn (p) =
n∑
i=1

(∏
j<i

pπ(j)

)(
1− pπ(i)

)
hπ(i) where pπ(0) = 1. (6.9)
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Moreover, this expression gives the optimal expected traversal length for any realiza-

tion of p (Theorem 6.3.1). If a ≤ 6, then a = h1 ≤ 6 < hi for i = 2, 3, ..., n. So, in the

ordering (6.3) we get π(1) = 1. Since, p1 = pπ(1) = 0,
∏

j<i pπ(j) = 0 for all i ≥ 2. In

this case, TRDn (p) becomes

TRDn (p) =
1∑
i=1

(∏
j<i

pπ(j)

)(
1− pπ(i)

)
hπ(i)

= pπ(0)

(
1− pπ(1)

)
hπ(1)

= a.

Which proves the first part of Lemma 2. Now, suppose that a > 6.

Case 1: If a ≤ hπ(1), then RD dictates to start with edge e1 and clearly TRDn (p) = a.

But, this occurs with probability

P
(
a ≤ hπ(1)

)
= P

(
1− 5/(a− 1) ≤ pπ(1)

)
(6.10)

which converges to zero as n tends to infinity (6.4).

Case 2: If hπ(1) < a, then there exist k = k(n) ≥ 2 such that pπ(k) = 0. That is to

say, the value h1 occurs between (k − 1)th and (k + 1)th indices in the ordering (6.3).

hπ(1) < hπ(2) < ... < hπ(k−1) < h1 = hπ(k) < hπ(k+1) < ... < hπ(n) (6.11)

Since the ordering of hi does not change the ordering of pi, the above inequality

implies that

pπ(1) < pπ(2) < ... < pπ(k−1) < 1− 5/(a− 1) < pπ(k+1) < ...pπ(n) (6.12)

Observe that the index k may change as n changes for fixed value of a. In this case

RD dictates to start with edge eπ(1) and continues until it reaches the edge eπ(k) = e1

because
∏

j<i pπ(j) = 0 for i > k. So, TRDn (p) becomes,
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TRDn (p) =
k∑
i=1

(∏
j<i

pπ(j)

)(
1− pπ(i)

)
hπ(i)

=
k−1∑
i=1

(∏
j<i

pπ(j)

)(
6− pπ(i)

)
+

(∏
j<k

pπ(j)

)
(1− pπ(k))hπ(k)

= 6 + 5
k−2∑
i=1

i∏
j=1

pπ(j) + (a− 1)
k−1∏
j=1

pπ(j).

From (6.12) and 5 < a− 1, we have the following inequality,

TRDn (p) ≤ 6 + (a− 1)
k−1∑
i=1

i∏
j=1

pπ(j)

≤ 6 + (a− 1)pπ(1)

k−2∑
i=0

(
1− 5

a− 1

)i
≤ 6 + pπ(1)(a− 1)2/5

This upper bound is independent of k. Since, pπ(1) converges in probability to zero as

n tends to infinity, we deduce that TRDn (p) converges in probability to 6 as n tends

to infinity, which completes the proof of Lemma 2.

Corollary 6.3.0.1 ( of Lemma 6.3.2.2): For any fixed a, we have that TRDn (p) <

C(a) where the constant C(a) only depends on a. Indeed, C(a) = a for a ≤ 6, and

C(a) = 6 + (a− 1)2/5 for a > 6. For a < 6, from Lemma 6.3.2.2 and the Dominated

Convergence Theorem it follows that ETRDn (p) converges to 6 as n tends to infinity.

Proof of Theorem 6.3.2: By combining Lemma 6.3.2.1 and Lemma 6.3.2.2, and using

the Slutsky’s theorem the result follows.
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As we have discussed in Chapter 5, both ALG(k) and MT(k̃) might be used as a

heuristic algorithms in discrete SOS problem. So, we have the following conjecture;

Conjecture: Let G = (V,E) be a graph with |E| = m and s, t ∈ V be given source

and target points, respectively. Let E ′ ⊂ E be the probabilistic edges (in a grid these

are edges intersecting the obstacles) with |E ′| = m′. For each edge e ∈ E, denote

by l(e), c(e), p(e) the Euclidean distance of edge e, the disambiguation cost of edge e,

and the probability of non-traversability of edge e, respectively. Thus, c(e) = 0 and

p(e) = 0 for e ∈ E − E ′. For any given problem instance with fixed sensor precision

parameter λ, let LB is the traversal length of benchmark value, LALG(k)(λ) is the

traversal length computed by the ALG(k) algorithm, and LMT (k̃, λ) be the traversal

length computed by the MT (k̃) algorithm, then

ELALG(k)(λ) ≈ ELB for some k,

and,

ELMT (k̃, λ) ≈ ELB for some k̃.

6.3.1 Empirical Results

Under the conditions of Theorem 6.3.2, we have carried out 100 Monte Carlo simula-

tion for each value of a and n. The values of a are 6, 8, 10, 20, 30, and the values of n

are 10, 100, 1000, 10000. For each combined treatment of a and n, we have generated

the values of p from uniform (0, 1) distribution 100 times, and exhibit the average

values of corresponding LRDn (p) and TRDn (p) in Table 6.1.

6.4 Generalization of OPD Problem

Another aspect of OPD problem is considering the study window in a higher dimen-

sional setting. That is to say, we would like to investigate the OPD problem in higher
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Mean of TRDn (p) Mean of LRDn (p)

a = 6

n = 10 6 6

n = 100 6 6

n = 1000 6 6

n = 10000 6 6

a = 8

n = 10 6.625949 6.08

n = 100 6.041687 6.00

n = 1000 6.005609 6.00

n = 10000 6.000471 6.00

a = 10

n = 10 6.740787 6.00

n = 100 6.049613 6.00

n = 1000 6.005848 6.00

n = 10000 6.000658 6.00

a = 20

n = 10 6.889451 6.00

n = 100 6.049774 6.00

n = 1000 6.005096 6.00

n = 10000 6.000451 6.00

a = 30

n = 10 6.880909 6.54

n = 100 6.044417 6.00

n = 1000 6.005060 6.00

n = 10000 6.000458 6.00

Table 6.1: For any fixed values of a and n, there are 100 realizations of values of p

selected randomly from uniform (0, 1) distribution. And, we exhibit the corresponding

mean values.

dimension as well starting from three dimensional case. In 3-D case, NAVA may

represent the submarine that wishes to reach from one source point to a target des-

tination avoiding underwater mines. And, OPA may be the opponent forces wishing
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to place mines so as to maximize the total traversal length of NAVA.

6.4.1 Higher Dimensional Discretization

We want to discretize any finite subset G of Rd where d ≥ 1. Let G be a graph with

vertices are integer lattices and edges be usual lattice edges. Additionally, in any

dimension d, draw edges between all pairs of vertices of G such that the Euclidean

norm between these pair of vertices is at most
√
d units. Without loss of generality,

suppose that G contains the origin of Rd, and under this construction, let k be the

number of edges in G connected to the origin. This is called the k-adjacency integer

lattice discretization, and it is the generalizaiton of the 8-adjacency integer lattice

discretization given in Aksakalli et al. (2011). For any interior point x of G ∩ Zd,

there are exactly k lattice points incident to v, that is where the name is coming from.

Example 6.4.1 : Let d = 1, then Z1 is an axis line and clearly there are only 2 edges

in G connected to the origin, and the Euclidean norm from the origin to these vertices

is at most
√

1 units. Namely, the vertices {1,-1}. Respective Euclidean norms are

‖0− 1‖2 =
√

1 and ‖0− (−1)‖2 =
√

1.

Example 6.4.2 : If d = 2, then Z2 is an usual square lattice and clearly there

are only 8 edges in G connected to the origin and the Euclidean norm from the

origin to these vertices is at most
√

2 units. Namely, the vertices {(1,0),(0,1),(-

1,0),(0,-1)} with 1 units apart, and the vertices {(1,1),(-1,1),(-1,-1),(1,-1)} with
√

2

units apart from the origin. Sample computations are ‖(0, 0)− (1, 0)‖2 = 1 and

‖(0, 0)− (1, 1)‖2 = 2. This is the 8-adjacency integer lattice discretization (Aksakalli

et al. (2011)).

In d dimensional case, indeed k is the number of integer lattice points inside a sphere

of radius
√
d centered at the origin. For small values of d, there is a closed formula

and we are going to present some corresponding values of k. As for large values of d,
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there is a nice asymptotic result.

Proposition 6.4.1 (Nguyen and Stern (2005)) : Let N(n, r) be the number of integer

points in the n-dimensional sphere of radius
√
r centered at the origin: that is, N(n, r)

is the number of (x1, x2, ..., xn) ∈ Zn such that
∑d

i=1 x
2
i ≤ r. Then, we have the

following induction formula:

N(n, r) =

b√rc∑
j=−b√rc

N(n− 1, r − j2). (6.13)

This allows to compute N(n, r) numerically when n and r is are not too large, since

the running time is clearly polynomial in (n, r) (see Table 6.2). In our case, we are

interested in the value of N(n, r) when n = d and r = d.

Corollary 6.4.1.1 : In d dimension, k = N(d, d)−1 with N(1, 1) = 3 and N(2, 2) =

9.

Proof of Proposition 6.5.1 (Galante (2005)): When n = 1, then just look at the

number of integer points in an interval about the origin. Note that from 0 to
√
r

(excluding zero) there are b
√
rc points and similarly from 0 to −

√
r (excluding zero)

there are b
√
rc points , where b

√
rc denotes the usual greatest integer function. So,

counting the origin, there are

N(1, r) = 2
⌊√

r
⌋

+ 1. (6.14)

points in the interval.

When n = 2, at each integer lattice j on the x-axis inside the circle, there is an

interval of radius
√
r − j2, and from (6.14) we know how to count the numnber of

points in this interval. The j values we are counting will range from b
√
rc to −b

√
rc.

So that,
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N(2, r) =

b√rc∑
j=−b√rc

N(1, r − j2) =

b√rc∑
j=−b√rc

2
⌊√

r − j2
⌋

+ 1. (6.15)

which will give the exact solution in Z2.

Now, we can use the similar logic and generalize the the induction formula for

higher dimensions. In Zn, the problem becomes counting the number of points

(x1, x2, ..., xn) with all the xi integers in the n-dimensional sphere of radius
√
r cen-

tered at the origin. But, just as in Equation (6.13), we observe that the points in the

n-dimensional sphere are arranged so that we can count them in (n − 1) dimension

sphere of radius
√
r − x2

n with xn ranging from −b
√
rc to b

√
rc. So that,

N(n, r) =

b√rc∑
j=−b√rc

N(n− 1, r − j2) with N(1, r) = 2
⌊√

r
⌋

+ 1. (6.16)

which completes the proof of the proposition.

dimension=d radius=
√
d k = N(d, d)− 1

1 1 2

2
√

2 8

3
√

3 26

4 2 88

Table 6.2: Some values of k in d-dimensional case

When n grows to infinity, sharp estimates of N(n, r) are known when r is proportional

to n (Mazo and Odlyzko (1990)), in which case N(n, r) is exponential in n.
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6.5 Future Research

In our future research, we will try to prove our results for more general graphical

settings by inspiring from current theoretical results belonging to CTP problem. In

OPD problem only disambiguation capability was considered, but we also like to

consider the problem with neutralization capability. Under feasible conditions, we

will study the OPD problem by both disambiguation and neutralization capabilities

together depending on the circumstances that NAVA and OPA encounters.

We will also improve our algorithms and show that the benchmark value can be

approximated more accurately. The heuristic algorithms that we argued are defined

and studied for our problem setting. The penalty functions and the corresponding

algorithms can be also applied or modified to solve other problems such as the Cana-

dian traveler’s problem of Papadimitriou and Yannakakis (1991), the discrete SOSP of

Aksakalli (2007b), the discretized OPD of Aksakalli and Ceyhan (2012), the repeated-

task CTP of Bnaya et al. (2015), and the CTP-Tree of Fried (2013). Another aspect

field of study of algorithms is the competitive analysis of heuristic algorithms where

the ratio of heuristic and worst case performances are investigated (Borodin and El-

Yaniv, 1998). The work of Westphal (2008) and Xu et al. (2009) are some competitive

analyzes related to our problem. We will analyze the competitive analysis of existing

algorithms such as the RD, P and DT algorithms, and carry out similar study for our

heuristic ALG(k) and MT(k̃) algorithms. Concerning the discrete SOSP, we will try

to prove our Conjecture stated in the previous section.
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CONCLUSIONS AND DISCUSSION

First, we investigated how the traversal length of NAVA changes as the obstacle

pattern changes from uniformness to regularity, and from uniformness to clustering

for various pairs of numbers of clutter and true obstacles nc, no. In our experimental

setting, we simulated various combinations of both false and true obstacle number

levels. Based on our investigation with extensive Monte Carlo simulations, we found

that traversal lengths are higher under regularity than those under uniformness which

tend to be higher that those under clustering.

Under regularity, we investigate the influence of the two parameters d and γ. Given

the number of obstacles, the γ is the intensity of the number of pairs of distinct points

lying closer than d units. Given the total number of obstacles (i.e., n = nc + no is

fixed), the ratio (ρ) of true versus false obstacles is another important factor for the

traversal length. In all cases, we recommend choosing moderate values of d (around

7) together with small values of γ (less than 0.1) and choosing ρ value as large as

possible in order to maximize the total traversal length of NAVA. Under clustering

obstacle pattern, the cluster radius r0 and the number of parent points κ are found

to be important. Here, the κ stands for the number of accumulation points and r0

stands for the radius at which obstacles accumulate around the accumulation point.

We do not recommend choosing clustering point pattern since it is not feasible.

When the obstacle pattern and the number of obstacles kept same, then the traver-

sal length under cluttering pattern is stochastically less than or equal to the traversal

length under uniformness, and which is also stochastically less than or equal to the

traversal length under regularity. Thus, mean traversal length is maximized then

the obstacle pattern is regular. Moreover, the traversal length in clutter only case
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is stochastically less than or equal to the traversal length in mixture case which is

also stochastically less than or equal to the traversal length in true obstacle case only.

Concerning the precision of sensor, as the sensor of NAVA increases the traversal

length tends to be the more accurate and yields closer value to optimal solution.

We also investigated the differences in trends of traversal length of NAVA com-

puted by M16, M8, and M4 algorithms compared to the traversal length computed by

RD algorithm carried out by Aksakalli and Ceyhan (2012). Simply, M2k algorithm is

based on the effective choice of number of disambiguation, and the main advantage

of using this algorithm is the reduced complexity time with nice approximation of

traversal lengths within 2.5% relative error. To gain more power and precision in

our analysis, we used similar statistical analysis tools, i.e., the repeated measures of

ANOVA, and extensive Monte Carlo simulations indicate that the trends of mean

traversal lengths are essentially similar for each M16, M8, M4 algorithms compared

to RD algorithm.

In the OPD problem, on the behalf of OPA, we wish the traversal length of NAVA

to be as larger as possible. To achieve this, we choose the clutter pattern as regular

as possible i.e., the background clutter pattern is Hardcore(nc, d) where nc is the

number of false obstacles, and d represents the distance such that there is no pairwise

disk-shaped obstacles closer than d units (see Chapter 2). Together with this setting,

true obstacles are uniformly distributed inside various obstacle forms such as linear

strip, V-shaped, and semicircular, and elliptical obstacle window types. Note that,

to attain consistent results the total area covered by obstacle forms are fixed to 800

units. Based on our Monte Carlo simulations, we observe that in overall comparison

the traversal length is maximized when obstacle type is the elliptical obstacle window

locating close to the source point.

Next, we investigated the case when the background clutter type is again of Hard-

core type but true obstacles are distributed as regular as possible inside obstacle

window types rather than uniform. One of advantages of studying this situation is

that the traversal length might be maximized using fewer true obstacles. For in-
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stance, when we consider the elliptical obstacle window type as shown in Figure 4.13,

the mean traversal length tends to be larger compared to standard SC90 obstacle

form. The mean traversal length is about 230 when no = 60 true obstacles are

uniformly distributed (Figure 4.14), and 465 units when no = 30 true obstacles are

regularly distributed (Figure 4.19). Hence, the mean traversal length is maximized

when 30 true obstacles are distributed regularly (i.e., Hardcore(no = 30, d2 = 6))

inside the elliptical obstacle form as shown in Figure 4.13 (u = 20) together with

Hardcore(nc = 100, d) background clutter type for d = 5, 6, 7, 8.

On the other hand, we observed that knowing the exact locations of obstacles

does not provide significant gain for NAVA more advantage than knowing only the

distribution of obstacles. So we do not recommend using tessellations based on the

allocation of clutters so as to maximize the traversal length.

Exploiting penalty functions in current greedy algorithms for NAVA, we managed

to unify them in a single family of penalty functions. For each fixed disambiguation

cost value c, the penalty function FRD(c, p) of the RD algorithm, the penalty function

FP (c, p), and the penalty function of the FDT (c, p) can be approximated by the penalty

function of the form Fk(c, p) with k = 2, 3, 5, respectively (Corollary 5.3.1.1). And, if

ALG(k) is the algorithm to compute the heuristic traversal length demonstrated on

the penalty function Fk(c, p), then on the average mean traversal lengths computed

by the RD, P, and DT algorithms can be approximated by the mean traversal lengths

computed by the algorithms ALG(k) for k = 2, 3, 5, consecutively (Proposition 5.4.1).

Note that, as k gets larger (k ≥ 5) the penalty function Fk(c, p) yields larger edge

weights, and thus the algorithm ALG(k) becomes reluctant to take risks and avoids

disambiguations along the NAVA’s traversal. This explains why the DT algorithm

avoids disambiguations (unlike the RD and P algorithms) when encountered by the

true obstacles on its way, taking no risk, and inclined to choose plain zero-risk path

(Figure 5.6).

Since, all heuristics algorithms are greedy we introduce the idea of disambiguation

of an obstacle based on the threshold parameter α, i.e., if the corresponding probabil-
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ity (of being true obstacle) p of any disk shaped obstacle is less than α, then perform

the disambiguation, and otherwise bypass the obstacle without taking no risk. Based

on this idea, we characterized the penalty function FT (α)(c, p) and empirically showed

that the mean traversal length computed by the algorithm T(0.5) (demonstrated on

the FT (0.5) penalty function) is less than or equal to the mean traversal length com-

puted by the ALG(5) algorithm. On the average the mean traversal length computed

by the algorithm T(0.5) does not converge to the benchmark value and the main

drawback of the penalty function FT (0.5) is that it strictly separates clutter and true

obstacles from each other by the given threshold α = 0.5. In the given problem setting

(see Section 5.4), loosening (i.e., decreasing α) or strengthening (i.e., increasing α)

the threshold value might cause the loss of clutter or true obstacle information which

is not a desirable situation, as it might cause instability in the performance of the

algorithm.

To overcome this handicap, we make use of the mean of all probabilities pi of

obstacles, and define the new penalty function FMT (k̃)(c, p) (see Algorithm 1) and the

corresponding MT(k̃) algorithm. Simply, it smartly decides which threshold parame-

ter α should be imposed by taking the mean of probabilities into consideration before

the traversal of NAVA. Indeed, the MT(k̃) algorithm is the improved version of the

ALG(k) algorithm by considering the k value as a vector component and taking into

account the mean of probabilities of obstacles. Here, if m0 is the average of probabil-

ities then we divide the unit interval [0, 1] and the interval [0, 2k̃] into 100 equal parts

(default). Then, we generate the vector K, with dimension equal to the number of

obstacles, in accordance with m0 lying in the same divided subinterval of [0, 1] (see

Algorithm 1). For smaller m0 (such as clutter only case) the components of K tend

to be smaller, and for larger m0 (such as true obstacle only case) the components

of K tend to be larger. We showed that in many cases the benchmark value can be

approximated within a 1.5% percentage error by using the MT(k̃) algorithm for some

appropriate choices of k̃ (see Figures 5.16-5.17).
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