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ABSTRACT

A general-purpose large-eddy simulation (LES)/probability density function (PDF)

methodology is developed for simulations of turbulent reacting flows. The LES/PDF

solver is a hybrid solution methodology consisting of (i) a finite volume (FV) method

for solving the filtered mass and momentum equations (LES solver), and (ii) the La-

grangian Monte Carlo based particle algorithm (PDF solver) for solving the modeled

transport equation of the filtered joint PDF of compositions. Both the LES and PDF

methods are developed and combined to form a hybrid LES/PDF simulator within the

OpenFOAM framework. The in situ adaptive tabulation (ISAT) method developed

by Pope [1] is incorporated into the new LES/PDF solver for efficient computations

of combustion chemistry with detailed reaction kinetics. The method is designed to

utilize a block structured mesh and can be readily extendible for the block unstruc-

tured grids. The three-stage velocity correction method of Zhang and Haworth [2]

is also incorporated into the hybrid algorithm to interpolate the LES velocity field

onto particle locations accurately and to enforce the consistency between the LES

and PDF solvers at the numerical solution level. The hybrid algorithm is also fully

parallelized using the conventional domain decomposition approach.

First, the consistency of the FV-LES solver and the Lagrangian-PDF solver is

examined by using the one-way coupling methodology developed by Wang and Pope

[3]. It is found that the LES and the PDF solvers exhibit very good consistency at

the numerical solution level demonstrating accurate coupling of the LES and PDF

algorithms. Then the performance of the three-stage velocity correction algorithm is

investigated to determine effects of each stage on the consistency of the LES and PDF

solvers and the computational cost required by each stage. The correction algorithm

is found to be very effective in enforcing the consistency conditions at the numerical
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solution level and first two stages are usually sufficient for simple reacting flows while

the third stage is needed in the case of more complex flows involving recirculation

regions. The predictive capability of the LES/PDF solver with the detailed chemistry

representation is then examined by simulating a turbulent piloted methane/air jet

diffusion flame (Sandia Flame-D). An augmented reduced mechanism (ARM1) [4]

is used for the description of methane/air combustion. The results are found to be

in very good agreement with the experimental measurements as well as with the

earlier LES/PDF simulations. Finally, the new LES/PDF solver is applied to study

a turbulent premixed flame from the Cambridge turbulent stratified flame series [5].

The results are found to be in reasonably good agreement with the experimental data.



ÖZET

Bu doktora tezinde, türbülanslı alevlerin sayısal modellenmesi için genel amaçlı

büyük çalkantı simülasyonu (Large Eddy Simulation-LES)/olasılık yoğunluk fonksiy-

onu (Probability Density Function-PDF) simülatörü geliştirilmiştir. LES/PDF çözücüsü

hibrit bir çözüm yöntemidir. Bu yöntemde, filtre edilmiş kütle ve momentum ko-

runumu denklemlerinin çözümü için sonlu hacimler yöntemi (LES çözücüsü) kul-

lanılmıştır. Türbülans-yanma etkileşimleri kimyasal bileşenlerin birleşik olasılık yoğunluk

fonksiyonu yöntemiyle modellenmiş ve model denklemlerinin sayısal çözümü için La-

grangian Monte Carlo tabanlı bir partikül algoritması (PDF çözücüsü) kullanılmıştır.

LES ve PDF çözücülerinin her ikisi de açık kaynaklı OpenFOAM yazılım paketi

içerisinde geliştirilmiş ve pakete tümüyle entegre edilmiştir. Detaylı kimyasal yanma

hesaplamalarının etkin bir şekilde yapılabilmesi için tablolama (the in situ adaptive

tabulation (ISAT)) metodu yeni LES/PDF çözücüsü ile birleştirilmiştir. Bu çalışmada

geliştirilen hibrit yöntem yapısal olmayan çözüm ağları esas alınarak geliştirilmiş

ama bütün hesaplamalar blok-yapılı (block-structured) çözüm ağlarında yapılmıştır.

Sayısal yöntem yapısal olmayan çözüm ağlarına kolaylıkla adapte edilebilir formdadır.

Zhang ve Haworth (2004) tarafından geliştirilen üç aşamalı hız düzeltme algoritması

mevcut LES/PDF yöntemine eklenmiş ve performansı gerçekçi türbülanslı alevlere

uygulanarak gösterilmiştir. Yeni LES/PDF çözücüsü ayrıca geleneksel alt bölgeye

ayırma (domain decomposition) yöntemi kullanılarak paralelleştirilmiştir. LES ve

PDF çözücüleri arasındaki tutarlılık Wang ve Pope (2011) tarafından geliştirilen

tek-yönlü birleştirme yöntemi kullanılarak test edilmiştir. Mevcut LES ve PDF

çözücülerinin sayısal çözüm seviyesinde çok tutarlı sonuçlar verdiği gösterilmiştir. Bu

LES ve PDF çözücülerinin doğru olarak birleştirildiklerine delalet etmektedir. Daha

sonrasında ise, üç aşamalı hız düzeltme algoritmasının her bir aşaması, LES ve PDF
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çözücülerinin tutarlılıkları üzerindeki etkilerini belirlemek ve hesaplama maliyetini

tespit etmek için incelenmiştir. Düzeltme metodu sayısal çözüm seviyesinde tu-

tarlılığın sağlanması açısından çok faydalı bulunmuştur. İlk iki aşama basit türbülans

alevleri için yeterli olmakla birlikte özellikle geri çevrimli ve karmaşık yapılı akış du-

rumlarında üçüncü aşama düzeltmeye ihtiyaç duyulduğu tespit edilmiştir. Daha son-

rasında ise, yeni hibrit LES/PDF çözücüsü bir detaylı kimyasal kinetik model kul-

lanılarak pilotlu bir jet difüzyon türbülanslı alevine (Sandia Flame-D) uygulanmıştır.

Metan/hava yanması indirgenmiş bir kimyasal mekanizma (ARM1) ile temsil edilmiştir.

Sonuçların deneysel veriler ve daha önceki LES/PDF simülasyon sonuçları ile çok

uyumlu oldukları gösterilmiştir. Son olarak, yeni LES/PDF çözücüsü Cambridge

seyrekleştirilmiş alev serisindeki ön-karışımlı türbülanslı bir aleve uygulanmıştır. Sonuçların

deneysel sonuçlar ile makul seviyede uyumlu oldukları görülmüştür.



ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Prof. Dr. Metin Muradoğlu for his
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Chapter 1

INTRODUCTION

More than 85% of the total energy production in the world still comes from burning

fossil fuels, i.e., converting chemical energy stored in hydrocarbon fuels first into

thermal energy and then into mechanical energy in energy conversion devices, e.g.,

gas turbines and reciprocating engines, and fossil-fuel power stations [11]. Nearly in all

practical energy conversion devices combustion takes place in a turbulent environment

mainly due to enhanced mixing [12]. Therefore understanding the fundamentals of

the turbulent reacting flow is crucial for increasing the efficiency of the combustion

devices, and decreasing the dangerous effects of combustion on the environment, e.g.,

formation of NOx, soot, and unburnt hydrocarbons (HC), in addition to CO2 that

contributes to the global warming.

Experimental methods play a crucial and indispensable role in the investigation

of turbulent combustion. The most advanced experimental methods are based on the

optical diagnostics. However they suffer from the difficulties in measuring quantities

in turbulent reacting flows due to limited optical access, soot, high temperature, etc.,

and high operating cost. On the other hand, the numerical investigations of turbulent

reacting flows have proven to be a very effective and powerful technique in understand-

ing the fundamentals of the turbulent combustion. The numerical methods are mainly

based on the numerical solution of the conservation equations for mass, momentum,

species mass fractions and energy. These equations provide a full description of the

reacting flows. However, numerical solution of the conservation equations of turbu-

lent reacting flows is notoriously difficult since the equations are highly non-linear

and involve a wide range of length and time scales. Turbulent flows have different
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sizes of motions (eddies). The range of eddy sizes mainly depends on the Reynolds

number, Re, of the turbulent flow such that the ratio of the largest to the smallest

eddies scales as Re3/4 [12]. In direct numerical solution of the conservation equations

without using any simplification (modeling), all the scales of a turbulent flow must be

calculated explicitly, which demands a very high computational cost. Since number

of floating-point operations required to complete a numerical simulation is typically

proportional to number of spatial grid points and number of time steps, one can es-

timate that the number of operations grows as Re3 [12]. Highly non-linear chemical

reactions and their interactions with the turbulent flow add a further complexity to

the problem and substantially increase the total computational cost. The method of

solving the conservation equations directly is called the direct numerical simulation

(DNS) method. Due to its high computational cost, the DNS method cannot be used

in the practical engineering problems, thus it is restricted to the turbulent reacting

flows with simple geometries and low Reynolds numbers.

In the most of the applications, predicting mean properties such as the mean reac-

tion rates or the mean velocity is sufficient from the engineering point of view. Thus

instead of resolving all the scales in a turbulent reacting flow, solving the equations

only for the mean properties is usually preferred. The conservation equations for the

mean properties are derived by taking an average of the instantaneous conservation

equations. Thus the mean properties are obtained by solving the mean conserva-

tion equations. This class of methods is generally known as the Reynolds-averaged

Navier-Stokes (RANS) methods. Since the RANS methods only calculate the mean

properties, the computational cost is much lower than that in the DNS method. How-

ever, the averaging of the instantaneous conservation equations introduces new terms

into the mean conservation equations, which cannot be generally expressed in terms of

the mean properties, causing the well-known closure problem. In the RANS approach,

the unclosed terms must be modelled. Various RANS models have been developed

and widely used in the turbulent flow simulations but they are not always satisfactory.

The practical combustion devices require rapid mixing of fuel and oxidizer and a short
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combustion time, which leads to very complicated flow patterns, including swirling

and recirculating regions. The RANS method is typically found to be insufficient to

predict these complex flows. Additionally, since the RANS method only calculates the

mean properties in turbulent reacting flows, it is typically not capable of predicting

the instabilities and pollution formation in complex flows characterized by swirling

and recirculating regions[13].

An advanced method that can predict the instabilities and pollution formation can

be derived by filtering (instead of averaging) the instantaneous conservation equations.

The solution of the filtered conservation equations gives the filtered (large scale)

properties of turbulent reacting flows. This approach is known as the large-eddy

simulation (LES) method. In the LES method, the turbulent flow is decomposed into

large scale (resolved) motions and the small scale (unresolved) motions by a filtering

operation. The large scale (energy containing and geometry dependent) motions are

explicitly calculated whereas the small scale motions are assumed to be universal

and geometry independent based on the Kolmogorov’s hypothesis [14]. Filtering the

instantaneous conservation equations also introduces unclosed terms in the filtered

conservation equations as occurs in the RANS method and these unclosed terms need

to be modelled. Thus both the RANS and the LES methods require modeling of the

unclosed terms in the mean and the filtered conservation equations, respectively.

In the RANS method, the unclosed terms represent the entire turbulent motions.

Therefore the turbulent motions are totally modelled in the RANS approach. On the

other hand, in the LES method, the large-scales of the turbulent motions are explicitly

calculated whereas the small-scales are modeled by the scale similarity assumption be-

tween the large and the small-scales. Thus, in the LES, instead of modeling all-scales

as it is the case for the RANS method, only the small-scales which are assumed to

have universal characteristics are modelled. The explicit solution of the large-scales

has proven to make the LES method very successful in simulations of nonreacting

turbulent flows [15, 16]. However, combustion requires fuel and oxidizer to be mixed

at the molecular level, thus the chemical reactions take place entirely at the smallest
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scales in the turbulent reacting flows. Consequently, the combustion does not have

large-scales in the turbulent reacting flows, thus the scale-similarity assumption can-

not be used for modeling the unclosed reaction terms [17]. Therefore, in the LES

method the unclosed reaction terms have to be entirely modelled as in the RANS

method [13]. Although the non-linear chemical reactions must be modelled in both

the RANS and LES methods in a similar way, the LES potentially gives more accurate

predictions than the RANS for the turbulent reacting flows than those given by the

RANS method [13, 18, 19]. The primary reason is that the combustion is driven in

great part by the rate of the mixing process largely driven by the large-scale turbulent

motions and the large scale motions are explicitly resolved in the LES method. As a

result, the predictive capability of the LES is expected to be better than that of the

RANS method [13, 17].

To model the interactions between turbulence and chemistry, various models have

been proposed in the literature [20, 21, 22, 23, 24]. According to Veynante and

Vervisch [25], the models can be classified based on the three physical approaches:

i) Geometric analysis, ii) turbulent mixing and iii) one-point statistics. The models

from the geometric analysis approach consider the flame front as a geometric surface

evolving with the underlying turbulent flow. Then the mean (or filtered) reaction rates

are modelled based on the geometric feature of the flame front such as flame area.

The geometric analysis approach typically assumes that the flame is thin compared

to all other length scales in the turbulent reacting flow. The turbulent mixing-based

models assume that the combustion is controlled by the mixing rate, thus they mainly

focus on modelling the turbulent mixing rate usually in terms of the scalar dissipation

rates. In this approach the combustion is assumed to be very fast, i.e., faster than

any time scale in turbulent reacting flow. The geometric surface and the turbulent

mixing-based approaches require strong assumption on time and length scales of the

turbulent reacting flows. In the one-point statistics approach, the mean (or filtered)

reaction rate can be obtained from the joint probability density function (PDF) of
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the chemical compositions as

ω̇ =

∫
ψ

ω̇ (ψ)P (ψ) dψ, (1.1)

where ψ is the sample-space variable of the chemical compositions (that will be ex-

plained in the next section) and P (ψ) is the joint probability density function of the

chemical species. Typically, in a turbulent reacting flow, the joint probability density

function varies from point to point and from time to time, thus it is a function of

space and time. Once the probability density function (PDF) of the chemical compo-

sitions is known, the mean combustion rate can be evaluated without any assumption

on both length and time scales. The transported probability density function (PDF)

method evolves the joint-PDF of compositions in space and time according to a mod-

elled transport equation. The PDF method can calculate the chemical reaction rates

exactly without using any model, thus it has the ability of predicting the challenging

processes such as local extinction and re-ignition [26, 27].

Initially, the PDF method was developed in the RANS context. In particular

advanced velocity-frequency-composition joint PDF method has formed a complete

model for turbulent reacting flows [28]. In the LES context, first proposed by Pope

[24], the PDF method combines its superior features with the LES, which gives rise to

the LES/PDF method. The LES/PDF method has been found to be highly effective

in simulation of laboratory-scale flames [29, 30, 31, 32, 33]. The model equations

of the LES/PDF method consist of the filtered mass and momentum equations, and

the filtered transport equation for the joint-PDF of chemical species. The first two

equations calculate the large-scale turbulent motions while modelling the effects of

small-scale motions. The modelled transport equation for the joint-PDF of chemical

compositions accounts for the evolution of the chemical species in both the physical

and compositions spaces.

Special attention should be paid to the development of an efficient and accurate

numerical algorithm for the solution of the LES/PDF model equations. Although the

numerical solution of the filtered mass and momentum equations can be obtained by
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the conventional methods such as finite volume or finite differences, the conventional

numerical methods are not feasible to solve the joint-PDF transport equation due to

its high dimensionality. The remaining alternative is the Monte Carlo method that

has proven to be suitable for solving the high dimensional problems. The Monte

Carlo based Lagrangian solution methods [9] are commonly used to solve the trans-

port equation of joint-PDF. Therefore the preferred solution methodology for the

LES/PDF model equations is a hybrid solver composed of an Eulerian finite volume

(or difference) method for the filtered mass and momentum equations (referred as

the LES solver), and a Monte Carlo based Lagrangian particle solver (referred as the

PDF solver). The hybrid LES/PDF solver provides a complete numerical solution

method for the LES/PDF model equations of the turbulent reacting flows.

In the Monte Carlo based Lagrangian solver (the PDF solver), the flow is repre-

sented by a large number of notional particles. Each particle evolves by a stochastic

differential equation (SDE) in the physical space and an ordinary differential equation

(ODE) in the composition space. The stochastic and ordinary differential equations

are constructed such that the statistics obtained from the particles are identical to

the statistics implied by the transport equation of the joint-PDF of compositions. In

the finite volume method (the LES solver), the computational domain is decomposed

into computational cells (Eulerian grid) and the numerical solutions are calculated at

the cell centers. The hybrid nature of the LES/PDF solver results in some impor-

tant numerical issues that need to be addressed. One of the most important issues

is the consistency between the LES and PDF solvers, i.e., they should be initialized

to be consistent with each other and the consistency should be preserved during the

simulation. The other numerical issues include tracking the Lagrangian particles over

the Eulerian grid, extracting the mean properties from the Lagrangian particles and

interpolating the Eulerian fields onto the Lagrangian particle locations. The coupling

of the Eulerian LES and Lagrangian PDF solvers constitutes an additional challenge

for the numerical method.

In the literature various hybrid LES/PDF solvers have been developed for sim-
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ulations of turbulent reacting flows. They have been mostly applied to laboratory

scale turbulent flames with simple geometries [3, 30, 18, 34, 35]. The main reason

is the limited capability of the existing LES/PDF solvers designed to work only on

the structured Eulerian grids. Previously Ansari et al. [36] and Ankur [37] have

addressed this issue and developed LES/PDF solvers that can employ unstructured

grids and thus perform simulations in complex geometries. While the former one is

developed within a commercial platform of ANSYS-FLUENT software, the latter is

implemented by combining the LES solver in OpenFOAM [38] with an existing PDF

solver written in FORTRAN.

In the present thesis, a new LES/PDF solver is developed in the OpenFOAM

framework. The new solver uses block structured grids and can be readily extended

to unstructured grids, and thus allows to perform LES/PDF simulations in complex

geometries of practical interest. The method is designed to employ the most advanced

physical models and numerical schemes available in the literature. Unlike the pre-

vious works we implement the new LES/PDF solver completely in the open-source

and free platform of OpenFOAM. Additionally, the PDF and LES solvers are both

built within OpenFOAM libraries, thus the same data structure can be used in both

solvers, which makes the data transfer between them very efficient and flexible. The

new solver is designed to have the capability of performing detailed chemistry simu-

lations using the in situ adaptive tabulation (ISAT) method [1] . Another important

contribution of the present work is the implementation and examination of the three

stage velocity correction method [2] within the LES/PDF context using a block struc-

tured grid. The velocity correction method was initially developed for unsteady and

steady RANS-PDF simulations, and then extended to the LES/PDF methods [39]

but it has not been fully tested for the LES/PDF simulations of turbulent flames of

practical importance. Celis and Silva [39] investigated the performance of the three

stage velocity correction method in the LES/PDF context but they considered only

a simple mixing layer flow and performed simulations only on a simple structured

uniform Cartesian grid. Thus, the present thesis is the first study about the perfor-
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mance of the method within the LES context using a complex block structured grid

for the realistic turbulent flames. Here, we implement the three stage velocity cor-

rection within the new LES/PDF solver, and then examine the performance of each

stage in terms of the mass consistency, accuracy and the computational cost. The

open-source and free OpenFOAM framework [38] is prefered since it is widely used in

both industry and academia, and includes a wide range of physical submodels.

In this thesis, the main contributions can be summarized as follows:

1. Development and validation of a new LES/PDF methodology entirely in the

OpenFOAM framework.

2. Implementation and performance assessment of the three stage velocity correc-

tion algorithm.

3. Examination of the consistency between the LES and the PDF solvers.

4. Investigation of the predictive capability of the new LES/PDF solver with de-

tailed chemistry representation for a piloted jet flame (Flame-D) and a bluff-

body stabilized flame (Cambridge flame).

The rest of the thesis is organized as follows. In the next chapter, the governing

equations of the reacting flows are briefly reviewed. The general characteristics of

turbulent flows are explained in Chapter 3. In Chapter 4, the PDF modeling for

the turbulent reacting flows is presented. In Chapter 5, the numerical methods used

to solve the model equations of the LES/PDF method are discussed. In Chapter 6,

the hybrid LES/PDF solver is applied to a methane/air jet diffusion flame and the

performance of the new solver is demonstrated. In Chapter 7, the method is applied

to a premixed turbulent flame from the Cambridge stratified turbulent flame series

[5]. The conclusions and future directions are presented in Chapter 8.
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GOVERNING EQUATIONS

2.1 Conservation Equations

In a reacting flow, the principal variables are the density, ρ, the velocity, ui, one vari-

able for energy (e.g., enthalpy h) and the mass fractions Yα for N chemical species. All

the information about the reacting flows can be obtained by solving the conservation

equations for the mass, momentum, energy and species mass fractions. The conser-

vation equations are briefly decribed here for a Newtonian fluid. The flow is assumed

to be incompressible, i.e., the density is independent of pressure. The equations are

presented and solved in the conservative form as follows:

1. The conservation of mass:

∂ρ

∂t
+
∂ρui
∂xi

= 0. (2.1)

As mentioned above, the flow is assumed to be incompressible so the density is

solely determined by the compositions.

2. The conservation of momentum:

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ ρgi, (2.2)

where the terms on the left-hand side represent the local rate of change and

convection of momentum while the terms on the right-hand side are the pressure

gradient, the molecular transport due to viscosity and the gravitational force,
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respectively. In Eq. (2.2), τij is the viscous stress tensor given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij, (2.3)

where µ is the coefficient of viscosity.

3. The conservation of species α:

∂ρYα
∂t

+
∂ρuiYα
∂xi

= −∂J
α
i

∂xi
+ ω̇α, α = 1, 2, ...N, (2.4)

where Yα is the mass fraction of the species α, and ω̇α is the chemical source

term representing the rate of production of species α by the chemical reactions.

The term Jαi on the right-hand side represents the diffusion flux modelled by

the binary flux approximation as

Jαi = −ρDα
∂Yα
∂xi

, (2.5)

where Dα is the mass diffusivity of species α. All the mass diffusivities Dα are

usually assumed to be proportional to the thermal diffusivity D defined as

D =
λ

ρcp
. (2.6)

where λ is the thermal conductivity and cp is the heat capacity of the mixture

at the constant pressure. The Lewis number is defined to be the ratio of the

thermal diffusivity to the mass diffusivity of species α as

Leα =
D

Dα

. (2.7)

Assuming unity Lewis number for all the species provides significant simplifi-

cations in the conservation equations for species mass fraction and energy. By

assuming unity Lewis number for all the species, the species mass conservation
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equation simplifies to be

∂ρYα
∂t

+
∂ρujYα
∂xj

=
∂

∂xj

(
ρD

∂Yα
∂xj

)
+ ω̇α. (2.8)

4. The conservation of energy: The energy conservation is usually expressed in

terms of the enthalpy or temperature. In terms of enthalpy, it can be written

as

∂ρh

∂t
+
∂ρuih

∂xi
=
∂p

∂t
+
∂uip

∂xi
− ∂Jqi
∂xi

+ q̇R (2.9)

where Jqi is the heat flux given by

Jqi = −λ ∂T
∂xi

+
N∑
α=1

hαJ
α
i . (2.10)

In Eq. (2.10), the first term represents the heat conduction while the last term

is the enthalpy transport due to the diffusive fluxes Jαi . The last term on the

right-hand side of Eq. (2.9) is the heat source term due to external sources such

as an electric spark or a laser but not due to heat release by combustion. The

enthalpy of a mixture is the mass-weighted sum of the species enthalpies hα,

i.e.,

h =
N∑
α=1

Yαhα. (2.11)

For an ideal gas the species enthalpy hα can be written as

hα = hα,ref +

∫ T

Tref

cpα(T )dT, (2.12)

where cpα is the specific heat of species α at constant pressure and T is the
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temperature in Kelvins. Differentiating Eq. (2.11) gives

dh = cpdT +
N∑
α=1

hαdYα, (2.13)

where cp is the heat capacity of the mixture at constant pressure calculated as

cp =
N∑
α=1

cpαYα. (2.14)

Considering a low Mach number flow, the pressure convection term can be

eliminated in Eq. (2.9), then inserting Eqs. (2.5), (2.10) and (2.13) into Eq.

(2.9), Eq. (2.9) can be written as

∂ρh

∂t
+
∂ρuih

∂xi
=
∂p

∂t
+

∂

∂xi

(
λ

cp

∂h

∂xi

)
+ q̇R (2.15)

−
n∑

α=1

hα
∂

∂xi

[(
λ

cp
− ρDα

)
∂Yα
∂xi

]
.

For the simplicity, assuming that the Lewis number is unity for all the species,

the pressure is constant, and neglecting any external source term for enthalpy,

q̇R = 0, and using Eq. (2.6), the enthalpy equation becomes

∂ρh

∂t
+
∂ρuih

∂xi
=

∂

∂xi

(
ρD

∂h

∂xi

)
. (2.16)

Note that the enthalpy equation contains no source term so it is a conserved

quantity.

Inserting Eqs. (2.4), (2.10) and (2.13) into Eq. (2.9), and assuming all spe-

cific heat capasities cp,i to be constant, neglecting the heat source term q̇R and

assuming the pressure to be constant, the conservation of energy can be also

expressed in terms of temperature as

∂ρT

∂t
+
∂ρuiT

∂xi
=
∂p

∂t
+

∂

∂xi

(
ρD

∂T

∂xi

)
+ ω̇T , (2.17)
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where the source term is given by

ω̇T = − 1

cp

n∑
α=1

hαω̇α. (2.18)

2.2 Chemical Reaction Rates

Chemical reactions usually take place through a series of elementary reactions known

as a chemical mechanism. In combustion, accurte description of chemical mechanism

is challenging but of crucial importance. Therefore a lot of research has been con-

ducted for accurate nodeling of the elementary reactions and the reaction rates. For

example, a chemical mechanism for the methane oxidation consisting of 277 reactions

and 49 species (GRI-Mech 2.11) [40] is commonly and successfully used to describe

the methane/air combustion. A sample chemical mechanism for H2−O2 combustion

is given in Table 2.1 in the standard CHEMKIN format [6] in order to show general

features of a typical chemical mechanism.

A chemical mechanism consisting of N species and M reactions can be written as:

N∑
α=1

νfαjMα �
N∑
α=1

νbαjMα for j = 1,M, (2.19)

where Mα is the chemical symbol of αth species, νfαj and νbαj are the forward and

backward stoichiometric coefficients of αth species in the jth reaction, respectively.

Mass conservation of species implies that

N∑
α=1

νfαjWα =
N∑
α=1

νbαjWα or
N∑
α=1

ναjWα = 0 for j = 1,M, (2.20)

where Wα is the molecular weight of species α and ναj = νfαj − νbαk.

For species α, the rate of mass produced by all M reactions, ω̇α, is

ω̇α =
M∑
k=1

ω̇α,k = Wα

M∑
k=1

ναkĠk. (2.21)
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Here Ġk is the process rate of kth elementary reaction and it can be written as

Ġk = Kfk

N∏
α=1

[Xα]ν
f
αk −Kbk

N∏
α=1

[Xα]ν
b
αk (2.22)

where Kfk and Kbk are the forward and backward rates of kth reaction and [Xα] is

molar concentrations of species α defined as

[Xα] =
ρYα
Wα

. (2.23)

The rates Kfk and Kbk are generally modelled using the Arrhenius law as

Kfk = AfkT
βkexp

(
− Ek
RT

)
, (2.24)

and

Kbk =
Kfk(

pa
RT

)∑N
α=1 ναk exp

(
∆S0

j

R
− ∆H0

j

RT

) , (2.25)

where Afk, βk and Ek are called pre-exponential constant, the temperature exponent

and the activation energy, respectively, and are provided as part of the chemical

mechanisms. In Table 2.1, the chemical mechanism consisting of 9 species and 19

reactions describes the H2 − O2 combustion and is shown here as an example. The

first column of the table contains the elementary reactions whereas the next columns

contain the data for Afk, βk and Ek, respectively.
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Table 2.1: A sample 9 species - 19 reactions chemical mechanism for H2 - O2 com-
bustion [6]. The columns contain the elementary reactions, and the data for Afk, βk
and Ek, from left to right.

ELEMENTS

H O N

SPECIES

H2 O2 OH O H H2O HO2 H2O2 N2

END

REACTIONS

1 H2+O2=OH+OH 1.700E13 0.00 47780.

2 H2+OH=H2O+H 1.170E09 1.30 3626.

3 H+O2=OH+O 5.130E16 -0.81 16507.

4 O+H2=OH+H 1.800E10 1.00 8826.

5 H+O2+M=HO2+M 2.100E18 -1.00 0.

third-body efficiencies /H2 3.3/ /O2 0./ /N2 0./ /H2O/21.0/

6 H+O2+O2=HO2+O2 6.700E19 -1.42 0.

7 H+O2+N2=HO2+N2 6.700E19 -1.42 0.

8 OH+HO2=H2O+O2 5.000E13 0.00 1000.

9 H+HO2=OH+OH 2.500E14 0.00 1900.

10 O+HO2=O2+OH 4.800E13 0.00 1000.

11 OH+OH=O+H2O 6.000E08 1.30 0.

12 H2+M=H+H+M 2.230E12 0.50 92600.

third-body efficiencies /H2 3./ /H 2./ /H2O 6.0/

13 O2+M=O+O+M 1.850E11 0.50 95560.

14 H+OH+M=H2O+M 7.500E23 -2.60 0.

third-body efficiencies /H2O 20.0/

15 HO2+H=H2+O2 2.500E13 0.00 700.

16 HO2+HO2=H2O2+O2 2.000E12 0.00 0.

17 H2O2+M=OH+OH+M 1.300E17 0.00 45500.

18 H2O2+H=H2+HO2 1.600E12 0.00 3800.

19 H2O2+OH=H2O+HO2 1.000E13 0.00 1800.

END
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TURBULENCE AND COMBUSTION MODELING

3.1 Characteristics of Turbulence

The most engineering flows are turbulent and many involve chemical reactions. The

origin of turbulence is instability of flow caused by growth of perturbations at a

high Reynolds number. For example, a laminar pipe flow becomes turbulent at the

Reynolds number of about 2000. In contrary to common occurrence in the practical

applications, an exact definition of turbulence is very difficult. However, general char-

acteristics of turbulent flows can be listed as: (1) Randomness - all flow properties

have random fluctuations. (2) Diffusivity - Turbulence significantly increases the mix-

ing of scalars and the rate of momentum, heat and mass transfer. (3) Large Reynolds

numbers - Turbulence occurs at large Reynolds numbers. (4) Three-dimensional vor-

ticity fluctuations - Turbulent flow is three dimensional and rotational. If a flow has

random motions with zero-vorticity, then it is not a turbulent flow. (5) Dissipation

- Turbulent flows are dissipative. The turbulent kinetic energy is always transferred

from the large scales to the small scales. At the smallest scale, the turbulent kinetic

energy is converted into the internal energy through the viscous dissipation. (6) Con-

tinuum - The smallest scale occurring in a turbulent flow is sufficiently larger than

the mean free path so the flow can be safely assumed to be continuum. (7) Property

of flow - Turbulence is not a property of fluid but a property of flow.

3.2 Statistical Description of Turbulence

Due to the random nature of turbulence, the main aim is to characterize the flow fields

in terms of their statistical distributions. To statistically describe a turbulent flow, the
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cumulative distribution and the associated probability density functions of any scalar

(for example the velocity component ui) are commonly used. Figure 3.1 shows two

different series of x-component of velocity u and the corresponding probability density

functions. The statistical moments and the correlations between two scalar fields play

an important role in the statistical description of the turbulent flow. The detailed

mathematical definitions of the cumulative distribution function and the probability

density function, and the statistical moments will be given in Chapter 4.

 

Figure 3.1: Two different series of x-component of the velocity vector u and the
corresponding probability density functions [7].

3.3 Turbulent Scales

A turbulent flow has a large range of time and length scales. The Richardson’s energy

cascade idea [41] provides a useful definition for the turbulent motions. The first

concept in Richardson’s energy cascade is that a turbulent flow consists of different

size of eddies that are defined as a correlated turbulent motion within a region of size l.

Figure 3.2 shows a schematic representation of different size of eddies in a turbulent

jet flow. Eddies of size l can be characterized by velocity u(l) and a time scale
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τ(l) ≡ l/u(l). A region of a small-scale eddy can be contained by a large-scale eddy

as demonstrated in Fig. 3.2. The interaction between different size of eddies has been

 

u(l) 

l 

fuel 

air 

air 

Figure 3.2: Schematic representation of different size of eddies in a turbulent jet flow.

well explained by Richardson’s idea of energy cascade [41]. Richardson stated that the

large eddies are unstable and break up to transfer their energy into the smaller eddies

[41]. And then these smaller eddies further break up into even smaller eddies until

the smallest size of eddies have a Reynolds number Re(l) = u(l)/l that is sufficiently

small so that the molecular viscosity dissipates the kinetic energy contained in these

eddies. The energy dissipation process is placed at the end of the energy cascade of the

eddies. Consequently, the rate of dissipation ε at the small scales can be determined

by the rate of energy transfer at the largest eddies, u2
0/τ0 = u3

0/l0 where l0, u0 and τ0

are the length, velocity and time scales of the largest eddies in the turbulent motion.

Although, Richardson’s cascade idea enlightens how the kinetic energy is trans-

ferred within the different sizes of eddies, it does not state any idea about the size of

the smallest eddies which are responsible for the dissipation of the kinetic energy. The

Kolmogorv hypotheses [14, 42] characterize the scales in the smallest eddies in turbu-

lent flows. Kolmogorov first stated that the directional information imposed by flow

geometry and boundary conditions is lost once the large eddies break up into small

size eddies. Therefore the small-scale turbulent motions are statistically isotropic.
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Additionally, Kolmogorov stated that the statistics of the small-scale motions have a

universal form that is uniquely determined by kinematic viscosity ν and dissipation

rate ε. Given these two parameters ν and ε, unique length, velocity, and time scales

can be formed as

η ≡
(
ν3

ε

)1/4

, (3.1)

uη ≡ (νε)1/4 , (3.2)

τη ≡
(ν
ε

)1/2

. (3.3)

These are called the Kolmogorov scales (the smallest scales in a turbulent flow).

Finally, the ratio of the smallest scale and the largest scale in a turbulent flow can be

determined from the scaling ε ∼ u3
0/l0 as

η

l0
∼ Re−3/4, (3.4)

uη
u0

∼ Re−1/4, (3.5)

τη
τ0

∼ Re−1/2. (3.6)

The ratio of the smallest size to the largest size of eddies is very important in com-

putational modeling of turbulent flows. In the numerical solution of the conservation

equations of a reacting flow without using any model for the turbulence, the com-

putational grid should be sufficiently fine to resolve the smallest scales and it should

be sufficiently large to contain the largest scales. Therefore the grid size used in the

DNS simulations should scale as Re3/4. Also the time step should be smaller than the

smallest time scale of the turbulent flow. Thus the computational cost scales as Re3.
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3.4 Modeling of Turbulent Flows

In the study of turbulent flows, there exist three main modeling approaches: the

direct numerical simulation (DNS), the Reynolds averaged Navier-Stokes (RANS)

and the large-eddy simulation (LES) methods. In the DNS method, the instantaneous

conservation equations, Eqs. (2.1), (2.2), (2.4), (2.9) and (2.17), are directly solved

without using any model and resolving all the length and time scales in the turbulent

motion. Thus the DNS resolves all turbulent scales from the largest to the Kolmogorov

scales.

In the RANS method, any field, φ, in a turbulent flow is decomposed into its mean

and fluctuating parts as

φ = 〈φ〉+ φ′. (3.7)

The solution for the mean fields, 〈φ〉, is obtained by solving the mean conservation

equations that are derived by taking an average of the instantaneous conservation

equation. In the RANS, the turbulence is totally modelled.

In the LES method, a filtering operation is applied to the turbulent motion to

obtain filtered fields by removing the small-scales. Mathematically the filtering oper-

ation can be expressed as

φf =

∫
φG(x− x′)dx′, (3.8)

where φf denotes the filtered field and G is the LES filter. In the LES, the governing

equations for the filtered fields are derived by applying the filtering operation to the

instantaneous conservation equations, Eqs. (2.1), (2.2), (2.4), (2.9) and (2.17). In this

approach, the large scale motions that are directly affected by boundary conditions are

explicitly calculated whereas the effects of small-scale motions are modelled. Figure

3.3 shows a sketch for a variation of a scalar field (e.g., temperature) calculated by

the DNS, the LES and the RANS methods.
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Figure 3.3: Typical time series of instantaneous, filtered and mean temperatures
computed at a point with DNS, LES and RANS methods, respectively [8].

Comparing the computational cost of the three approaches, the DNS method is

the most accurate but computationally the most expensive method since it must

resolve all turbulent scales. As mentioned before, the size of the computational grid

scales as Re3/4 and the total computational cost as Re3 in a DNS simulation. For

example, in a typical turbulent flow with a moderate level of Reynolds number, i.e.,

Re = 5000, considering the 3-dimensionality of turbulence, the computational grid

size must be at least order of millions because the grid should be sufficiently fine to

resolve the small-scale motions and the computational domain should be sufficiently

large to cover the large-scale motions. The computational cost required in a typical

DNS simulation is the order of million CPU hours [43, 44, 45]. Thus the DNS is

not a feasible method to be used in practical engineering problems. The DNS is

mostly used for academic purposes. On the other hand, the computational cost of

the RANS method is very low compared to that of the DNS since only the mean

fields are calculated in the RANS approach. Additionally, the computational cost

in RANS simulations can be made even smaller when the flow is statistically two

dimensional. Because of its low computational cost, the RANS method is used as a

standard method in practical engineering problems. In terms of computational cost,

the LES method lies between the DNS and the RANS approaches. The LES requires

much less computational cost than that of the DNS since the small-scale motions are
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modelled. However, the cost in the LES is often 100 to 1000 times higher than that

in the RANS methods since the large-scale motions are explicitly resolved [8] in the

LES. Inspite of relatively high cost of the LES, it has very important advantages over

the RANS method. Since the RANS method calculates only the mean fields, it is

not sufficient to precisely model the important processes of ignition and quenching

as well as the complex flows involveing swirling, unsteady features, whereas the LES

has proven to show good performance for accurate modeling of these events.

3.5 Modeling of Turbulence and Combustion

In many engineering problems, the main interest is to compute only the mean fields

in turbulent flows. The governing equations for the mean quantities can be derived by

taking the average of the instantaneous conservation equations for mass, momentum,

species and energy. As mentioned before, this approach is known as the Reynolds

averaged Navier-Stokes (RANS). Although the main focus is not on the RANS based

models in this study, the RANS method is first briefly discussed because of its his-

torical importance and simplicity in representing the modeling concepts for turbulent

combustion.

In the RANS approach, any flow quantity φ can be split into its mean and fluctu-

ation components as

φ = 〈φ〉mass + φ′, (3.9)

where 〈φ〉mass and φ′ denote the mass-weighted mean (the Favre-average mean) and

fluctuating components of φ. We note that 〈φ′〉mass = 0 by definition. The mass-

weighted average is defined as

〈φ〉mass =
〈ρφ〉
〈ρ〉

, (3.10)

where 〈.〉 denotes a volume or Reynolds averaged quantity. Using this decomposition

for all the flow quantities, the mean conservation equation can be obtained by tak-
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ing average of the instantaneous conservation equations. Details of derivations can

be found in standard textbooks, e.g., Pope [12]. The resulting mean conservation

equations can be written as

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 〈ui〉mass

∂xi
= 0, (3.11)

∂ 〈ρ〉 〈ui〉mass
∂t

+
∂ 〈ρ〉 〈ui〉mass 〈uj〉mass

∂xj
= −∂ 〈p〉

∂xi
+
∂ 〈τij〉
∂xj

−
∂ 〈ρ〉

〈
u′iu
′
j

〉
mass

∂xj
, (3.12)

∂ 〈ρ〉 〈h〉mass
∂t

+
∂ 〈ρ〉 〈ui〉mass 〈h〉mass

∂xi
= − ∂

∂xi

(〈
ρD

∂h

∂xi

〉)
− ∂ 〈ρ〉 〈u

′
ih〉mass

∂xi
. (3.13)

∂ 〈ρ〉 〈Yα〉mass
∂t

+
∂ 〈ρ〉 〈ui〉mass 〈Yα〉mass

∂xi
= − ∂

∂xi

(〈
ρD

∂Yα
∂xi

〉)
−∂ 〈ρ〉 〈u

′
iYα〉mass
∂xi

+〈ω̇α〉 .

(3.14)

As can be seen in Eqs. (3.11)-(3.14), the averaging of the instantaneous equations

gives rise to the new terms in the mean conservation equations. The new terms

cannot be generally expressed in terms of the known fields (the mean of density,

velocity, mass fractions or enthalpty). Therefore they are in the unclosed form and

responsible for the closure problem in turbulent (reacting) flows. The solution of the

mean conservation equations requires to close or model these terms. The unclosed

terms, 〈ρ〉
〈
u′iu
′
j

〉
mass

in Eq. (2.2) known as the Reynolds stresses, are often modelled

by the turbulent viscosity assumption as

〈ρ〉
〈
u′iu
′
j

〉
mass

= µt

(
∂ 〈ui〉mass

∂xj
+
∂ 〈uj〉mass

∂xi
− 2

3
δij
∂ 〈uk〉mass

∂xk

)
+

2

3
〈ρ〉 k, (3.15)

where µt is the turbulent dynamic viscosity, δij is the Kronecker delta and k is tur-

bulent kinetic energy defined as

k =
1

2
〈u′mu′m〉mass . (3.16)
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In the literature, various models have been proposed to model the turbulent viscosity

µt [46, 47, 48, 49].

The other unclosed term is the species turbulent fluxes 〈ρ〉 〈u′iYα〉mass appering

in Eq. (3.14). This term is usually modelled by the classical gradient diffusion

assumption as

〈ρ〉 〈u′iYα〉mass = − µt
Scα

∂ 〈Yα〉mass
∂xi

, (3.17)

where Scα is the turbulent Schmidt number for species α. In Eq. (3.14), the term for

laminar diffusive fluxes for species,
〈
ρD Yα

∂xi

〉
, is usually modelled as

−
〈
ρD

Yα
∂xi

〉
= −〈ρ〉 〈D〉mass

∂ 〈Yα〉mass
∂xi

. (3.18)

Following the same procedures, the unclosed terms in the conservation of enthalpy

are modelled as

〈ρ〉 〈u′ih〉mass = − µt
Scα

∂ 〈h〉mass
∂xi

, (3.19)

and

−
〈
ρD

h

∂xi

〉
= −〈ρ〉 〈D〉mass

∂ 〈h〉mass
∂xi

. (3.20)

The last but the most challenging unclosed term is the chemical reaction source term,

〈ω̇α〉. To demonstrate the degree of its complexity, let’s consider a simple irreversible

reaction between fuel (F ) and oxidizer (O) as

mF + nO → P, (3.21)

where P denotes the product. Then the fuel mass reaction rate ω̇F is typically ex-
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pressed as

ω̇F = −WFA1T
β1exp

(
−E1

T

)
[XF ]m[XO]n, (3.22)

where A1, β1 and E1 are pre-exponential constant, the temperature exponent and

the activation energy, respectively. In Eq. (3.22), WF is the molecular weight of the

fuel, T is temperature, and [XF ] and [XO] are the molar concentrations of fuel and

oxygen, respectively. The reaction rate ω̇F is highly non-linear as seen in Eq. (3.22),

thus the average reaction rate, 〈ω̇F 〉 cannot be easily written as a function of mean

fields of mass fractions, density and mean temperature. Therefore the modelling the

average reaction rate gives rise to the most challenging task in turbulent combustion

modelling.

Since it is not possible to express the mean reaction rates in terms of mean quan-

tities, the models to close the mean reaction rate term are generally derived from

a physical analysis. As mentioned before, Veynante and Vervisch [25] classified the

physical approaches into three groups: Geometric analysis, turbulent mixing based

approach and one-point statistics approach. These approaches are depicted schemat-

ically in Fig. 3.4. In the geometrical analysis, the flame front that is generally

represented as iso-surface of a mass fraction is described as a geometrical surface

evolving with the turbulent flow. In this approach, the flame is assumed to be very

thin compared to all scales in the turbulent flame, and the mean reaction rate is

calculated based on the geometric feature of the flame front such as flame surface

density. The level set model [50] is commonly used to determine the location of the

flame front. In the turbulent mixing based approach, the models are developed by

assuming that the chemical time scales are much shorter than the turbulent time

scales such that the chemical reactions occur much faster than the turbulent mixing.

Therefore the reaction rates are mainly controlled by the rate of turbulent mixing.

The eddy break up (EBU) model [51] and eddy dissipation concept (EDC) [52] are

commonly used models based on the very fast chemistry assumption. In the one-point

statistics approach, the mean reaction rates are computed naturally from the joint
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PDF as

¯̇ωα =

∫
ψ1,ψ2,...ψN

ω̇α(ψ1, ψ2, ...ψN)p(ψ1, ψ2, ...ψN)dψ1, dψ2, ...dψN , (3.23)

where ω̇α is the instantaneous reaction rate of species α calculated by the Arrhe-

nius law, ψi (i = 1, 2, ..., N) are the sample space variables for compositions, and

p(ψ1, ψ2, ...ψN) is the joint probability density function of the compositions. The

models in the one-point statistics approach does not depend on the flame structure,

thus they can calculate the mean reaction rates for premixed (fuel and oxidizer are

mixed before reactions ), non-premixed and partially premixed flames as well as fast

and slow chemistry without requiring any modeling assumption. In the transported

PDF, a transport equation is solved to calculate the joint PDF of chemical species.

The mean reaction rate is then calculated via Eq. (3.23) without using any model

since it is in the closed form. However, in the transport equation, the molecular dif-

fusion term is in unclosed form and should be modelled as will be discussed in the

next chapter. In this thesis, the transported PDF model is employed to model the

mean reaction rates. The detail of the method will be provided in the next chapter.
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Figure 3.4: Three different modeling approaches: The geometric analysis, the turbu-
lent mixing based approach, and the probability density function approach [8].



Chapter 4

THE PDF MODELING OF TURBULENT REACTING

FLOWS

In the turbulent reacting flows, any field φ (e.g., the mass fraction of a species, a

velocity component of the flow) at a particular position x0 and time t0 takes different

values in each realization. This is due to the chaotic nature of the turbulent flows.

Therefore, the value of φ cannot be determined at a given position and time before-

hand from the values of given realizations. However, we can attribute a value for its

probability of being in a given interval. The PDF methods calculate the probabilities

of the fields in turbulent reacting flows for being in a given interval by solving mod-

elled transport equations. In this section, before explaining the modelled transport

equations for the PDF, we first introduce the basic statistical concepts used in the

PDF methods. Then the joint PDF methods in both RANS and LES contexts are

presented. After that, the hybrid solution method is represented for the numerical

solution of the LES/PDF model equations. Finally, the in situ adaptive tabulation

(ISAT) method [1] is describe for the calculations of combustion chemistry.

4.1 The Basic Statistical Concepts

In a typical experiment for a turbulent mixing-layer as sketched in Fig. 4.1, the

measured quantities at a particular position x0 and time t0 will be different in each

realization of the experiments. Although the flow is governed by the same determin-

istic equations with nominally the same initial and boundary conditions, any slight

difference in flow conditions (i.e., small change in air movement in the environment)

can lead to totally different flow characteristics. In an experiment, the small changes

in boundary or initial conditions cannot be controlled (or measured) thus the result-
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Figure 4.1: A sketch of a planar turbulent mixing layer

ing flow properties cannot be determined beforehand. Therefore the flow properties

in the turbulent flows are treated as random variables. For example, the velocity

and temperature fields at the position a in Fig. 4.1 are random variables. A sample

space of random variable is defined as the space from which the random variable can

take values. An event of a random variable is then defined as a subset (region) of

the sample space. Figure 4.2 depics a sample space and a region corresponding to

an event A ≡ 1/3 ≤ φ < 2/3. The probability of the occurrence of the event A is

denoted by

P (A) ≡ P (1/3 ≤ φ < 2/3). (4.1)

The probability of any event is a real number between zero and one. If the occurrence

of the event A is impossible then P (A) = 0. If the occurrence of the event A is certain

then P (A) = 1.

To describe the characteristics of a random variable, the convenient way is to

define the distribution function of the random variable. A distribution function gives

the probability of a region for a random variable as

Fφ(ψ) ≡ P (φ < ψ), (4.2)
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Figure 4.2: (a) Sample space (ψ-space) for a random variable φ, with the sample
point ψ = φ. (b) Sample space showing the region corresponding to the event A ≡
1/3 ≤ φ < 2/3 where p1 sample point for which A occurs and p2 is the sample point
for which A does not occur.

where ψ is sample space variable of the random varible of φ. Then from the definition,

the probability of event in Fig. 4.2 is computed as

P (A) = P (1/3 ≤ φ < 2/3),

= P (φ < 2/3)− P (φ < 1/3), (4.3)

= Fφ(2/3)− Fφ(1/3),

which is sketched in Fig. 4.3 . The probability of any region smaller than −∞ is zero

and smaller than ∞ is one, i.e.,

P (φ < −∞) = Fφ(−∞) = 0, P (φ <∞) = Fφ(∞) = 1. (4.4)

The distribution function Fφ is a non-decreasing function taking values from zero to

one as φ increases from −∞ to ∞.

The probability density function (PDF) of the random variable φ is then defined
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Figure 4.3: Sample space showing the region 1/3 ≤ φ < 2/3 as the difference between
the regions φ < 1/3 and φ < 2/3.

by

fφ(ψ) ≡ d

dψ
Fψ(ψ). (4.5)

The PDF, fφ(ψ), is the probability per unit ψ. Then fφ(ψ)dψ gives the probability of

φ being in an infinitesimal interval of ψ ≤ φ < ψ+dψ. Figure 4.4 schematically shows

the distribution function Fφ(ψ) and the corresponding probability density function

fφ(ψ) of a random variable φ. The PDF is a non-negative function, i.e.,

 

Figure 4.4: The distribution function Fφ(ψ) (left) and the corresponding probability
density function fφ(ψ) (right) [9].

fφ(ψ) ≥ 0. (4.6)
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The normalization condition requires that,

∫ ∞
−∞

fφ(ψ)dψ = 1. (4.7)

Its values at the positive and negative infinities are zero, i.e.,

fφ(−∞) = fφ(∞) = 0. (4.8)

For any function K(φ), the mean is then defined as the expectation of K as

〈K〉 =

∫ ∞
−∞

fφ(ψ)K(ψ)dψ. (4.9)

Any random variable can be decomposed into its mean and fluctuating parts as

K ≡ 〈K〉+K ′. (4.10)

The central moments are then defined as

〈
K ′

m〉
=

∫ ∞
−∞

fφ(ψ) (K(ψ)− 〈K(ψ)〉)m dψ, (4.11)

where m is a positive number. For instance, the second central moment

〈
K ′

2
〉

=

∫ ∞
−∞

fφ(ψ) (K(ψ)− 〈K(ψ)〉)2 dψ, (4.12)

is called the variance, var(K), and its standard deviation is defined as squared-root

of the variance as

sdev(K) =
√
var(K) =

(〈
K ′

2
〉)1/2

. (4.13)

Typically in a turbulent reacting flow, a large number of species, N , are used to rep-

resent the combustion chemistry. Consequently, instead of a single random variable,

jointly distributed random variables of φ = {φ1, φ2, ..., φN} should be considered to
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describe turbulent reacting flows. The properties of the distribution function and the

probability density function can be straightforwardly extended from those of the sin-

gle random variable. For example, the probability of an event A ≡ {φ1 < ψ1 and φ2 <

ψ2} is written as

P (A) = P (φ1 < ψ1, φ2 < ψ2) = Fφ1φ2(ψ1, ψ2), (4.14)

which gives the probability of φ1 being smaller than ψ1 and φ2 being smaller than ψ2.

Then the joint probability density function fφ1φ2 can be defined as

fφ1φ2(ψ1, ψ2) =
∂2Fφ1φ2(ψ1, ψ2)

∂ψ1∂ψ2

. (4.15)

By definition, the PDF of φ1 (as also called the marginal PDF) can be obtained from

the joint PDF fφ1φ2 by integration over all possible realizations of φ2 as

fφ1(ψ1) =

∫ +∞

−∞
fφ1φ2(ψ1, ψ2)dψ2. (4.16)

The covariance of φ1 and φ2 is defined as

〈φ′1φ′2〉 =

∫ +∞

−∞

∫ +∞

−∞
(ψ1 − 〈φ1〉)(ψ2 − 〈φ2〉)fφ1φ2(ψ1, ψ2)dψ1dψ2. (4.17)

In general case, the probability of an event A ≡ {φ1 < ψ1, φ2 < ψ2, ... , φN < ψN}

for jointly distributed random variables of φ = {φ1, φ2, ..., φN} is written as

P (A) = P (φ1 < ψ1, φ2 < ψ2, ..., φN < ψN) = Fφ1φ2...φN (ψ1, ψ2, ..., , ψN), (4.18)

then the joint probability density function fφ1φ2...φN can be defined as

fφ1φ2......φN (ψ1, ψ2, ..., ψN) =
∂NFφ1φ2...φN (ψ1, ψ2, ..., ψN)

∂ψ1∂ψ2...∂ψN
. (4.19)
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Finally, the covariance of φ1, φ2,...,φN is defined as

〈φ′1φ′2...φ′N〉 =

∫ +∞

−∞

∫ +∞

−∞
...

∫ +∞

−∞
(ψ1 − 〈φ1〉)(ψ2 − 〈φ2〉)...(ψN − 〈φN〉) (4.20)

fφ1φ2......φNdψ1dψ2...dψN .

In the most of the turbulent reacting flows, the statistics of a random field φ

change in space and time thus the PDF of the field φ is a function of space x and

time t. Therefore writting the PDF of the field φ as fφ(ψ;x, t) is convenient. Note

that the density function of φ has the dimensions of φ−1 [53].

4.2 PDF Modeling of Turbulent Reacting Flows

In a turbulent reacting flow, the main interest is to compute the mean and variance

of any function K(φ,x, t). As presented in the previous section, knowing the joint

PDF f(ψ;x, t) of compositions at every point x and time t, the statistics of any

function K(φ,x, t) in turbulent reacting flows can be calculated at any position and

time. In the PDF modeling of turbulent reacting flows, a modelled transport equation

for the joint PDF of (velocity and) compositions are solved to evolve the joint PDF

in space and time. The transport equation of the joint PDF of compositions (and

velocity) is directly derived from its definition and the conservation equations. The

PDF modeling of the turbulent reacting flows was initially developed in the RANS

context. Therefore the PDF models in the RANS context are briefly described first

in this section. Then the joint PDF of compositions in the LES context is discussed.

4.2.1 The Joint Compositions PDF Method in the RANS Context

In the joint compositions PDF method, we consider the composition variables of

mass fractions of chemical species and enthalpy as random variables and consider the

transport of their joint PDF instead of their finite moments.

The one-point, one-time, mass-weighted joint PDF of compositions at location x
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and time t is defined as

〈ρ〉 fφ(ψ;x, t) ≡ ρ(ψ) 〈δ(ψ − φ)〉 , (4.21)

where ρ is density, and ψ = (ψ1, ψ2, ...ψnφ) is the sample space variable of the com-

positions. The delta function δ(ψ − φ) is called the fine-grained PDF. Note that,

the joint PDF of compositions is defined by averaging the fine-grained PDF of the

compositions. Then the transport equation for the mass-weighted joint PDF of the

compositions can be derived from Eq. (4.21), and the conservation of mass fractions

and enthalpy equations using the standard techniques and can be written as [53]

∂ 〈ρ〉 fφ
∂t

+
∂ 〈ρ〉 〈u〉i fφ

∂xi
+

∂

∂xi
[〈ρ〉 〈u′i|ψ〉 fφ] = (4.22)

∂

∂ψj

[
〈ρ〉 fφ

〈
1

〈ρ〉
∂J ji
∂xi

∣∣∣∣ψ
〉]

− ∂

∂ψj

[
〈ρ〉 fφω̇φj

]
,

where Jαi denotes the molecular diffusion fluxes of the composition j in direction xi.

The first two terms on the left-hand side represent the rate of change following the

mean flow, the last term represents the transport of fφ in the physical space due to the

fluctuating velocity u′i = ui − 〈u〉i and the term 〈u′i|ψ〉 is the mean of the fluctuating

velocity conditional upon the event φ = ψ. The conditional mean is in the unclosed

form and thus should be modelled. It is usually modelled by the gradient diffusion

assumption as

〈ρ〉 〈u′i|ψ〉 fφ = −DT
∂fφ
∂xi

, (4.23)

where DT is the turbulent diffusivity. The first term on the right-hand side of Eq.

(4.22) represents the change of fφ in the composition space due to the molecular

mixing, which is also in the unclosed form. Modeling this term is the challenging part

of the PDF models since the joint PDF of compositions contains only the one-point
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and one-time information. Therefore it does not contain the correlations between the

two- or multi-points required to calculate the molecular mixing. Note that modeling

the molecular mixing term is still an active research area. The models developed for

this term are generally called the mixing models. There are several mixing models

available in the literature [54, 55, 56]. The interaction by exchange with the mean

(IEM) is the simplest mixing model widely used in the PDF simulations. In the IEM

mixing model [57], the term

〈
1
〈ρ〉

∂Jji
∂xi

∣∣∣∣ψ〉 is modelled by

〈
1

〈ρ〉
∂J ji
∂xi

∣∣∣∣ψ
〉

= −1

2
CφΩ(ψj − 〈φj〉), (4.24)

where Cφ is model constant usually taken as Cφ = 2.0 and Ω is the mixing frequency

that needs to be modelled separately. Finally, the last term in Eq. (4.22) represents

the change of fφ in the composition space due to reaction. We note that this term is

closed, thus it does not require any modeling. Being the reaction term in the closed

form makes the PDF model superior over the other turbulent combustion models.

4.2.2 Joint Velocity and Compositions PDF Modeling in the RANS Context

In the joint PDF of compositions modeling, the term 〈u′|ψ〉 has to be modelled

separately, thus the chemical compositions and the flow velocity are treated by distinct

models. However the velocity and compositions have strong correlations in the RANS

context [53]. To overcome these shortcomings, the joint velocity and compositions

PDF fuφ(u,ψ;x, t) model has been developed [58].

The one-point, one-time, mass-weighted Eulerian joint PDF of velocity and com-

positions at location x and time t is defined as

〈ρ〉 fuφ(u,ψ;x, t) ≡ ρ(ψ) 〈δ(v − u)δ(ψ − φ)〉 , (4.25)

where ρ is the density, and ψ = (ψ1, ψ2, ...ψnφ , ) and v = (v1, v2, v3) are the sample

space variables of the compositions and velocity, respectively. The delta functions
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δ(ψ − φ) and δ(v − u) are the fine-grained PDFs of the compositions and velocity,

respectively. The exact transport equation of the mass-weighted joint PDF of velocity

and compositions can be derived directly from the conservation equations using the

standard techniques and given by [58]

〈ρ〉 ∂fuφ
∂t

+ 〈ρ〉Vi
∂fuφ
∂xi

− ∂ 〈p〉
∂xi

∂fuφ
∂Vi

=
∂

∂Vi

[〈(
− τij
∂xj

+
∂p′

∂xi

)∣∣∣∣V ,ψ〉 fuφ]
(4.26)

+
∂

∂ψj

[
fuφ

〈
∂J ji
∂xi

∣∣∣∣V ,ψ
〉]
− ∂

∂ψj

(
〈ρ〉 fuφω̇φj

)
.

The terms on the left-hand side represent rate of change in time, transport in physical

space by both mean and fluctuating components of velocity, transport in velocity

space by the mean pressure gradient, respectively. All the terms on the left hand

side appear to be in the closed form. The first term on the right-hand side represents

transport in the velocity space due to the molecular viscosity and the gradient of the

fluctuating pressure conditional upon the event u = v and φ = ψ. This term is in

the unclosed form and needs to be modeled. The Langevin models are widely used

for this purpose. For instance, the simplified Langevin model [59] is given as

〈(
− τij
∂xj

+
∂p′

∂xi

)∣∣∣∣V ,ψ〉 fuφ =

(
1

2
+

3

4
C0

)
Ω (Vi − 〈Ui〉) fuφ (4.27)

+
1

2
C0kΩ

fuφ
∂Vi

,

where C0 is the model constant usually taken as C0 = 2.1, Ω is the turbulent frequency

that needs to be modeled separately, and k is the turbulent kinetic energy. The second

term represents the change of fuφ in the compositions space due to molecular mixing

conditional upon the event u = v and φ = ψ. This term is also unclosed and can be

modeled by assuming that the mixing is independent of the velocity, i.e.,

fuφ

〈
∂J ji
∂xi

∣∣∣∣V ,ψ
〉

= fuφ

〈
∂J ji
∂xi

∣∣∣∣ψ
〉
. (4.28)
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Then the molecular mixing are modelled using mixing models such as the IEM model

as discussed in the previous section i.e., Eq. (4.24). Finally, the last term in Eq.

(4.26) represents the change of fuφ in composition space due to the reaction and it is

also in the closed form.

4.2.3 Joint Compositions PDF Modeling in the LES Context

The joint PDF of the compositions, f(ψ;x, t), in the LES context is defined as

the one-point, one-time mass density joint PDF of compositions conditioned on the

resolved velocity field, ũ, which can be defined as

f(ψ;x, t) ≡
∫ ∞
−∞

ρ(y, t)δ(ψ − φ(y, t))G(y − x)dy, (4.29)

where δ is an N -dimensional delta function of components, and ψ is the sample space

variable for the compositions. G is high-pass filter satisfying the condition

∫
G(y − x)dy = 1, ∀x. (4.30)

Applying the filter to the density field results in

ρ̄ =

∫
ρG(y − x)dy, (4.31)

where ρ and ρ̄ are the instantaneous and the filtered (resolved) density fields, respec-

tively. Note that, the joint PDF of compositions in the LES context is obtained by

filtering the fine-grained PDF of the compositions. The mass density function f has

the following properties [53]

f(ψ;x, t) ≥ 0, (4.32)

∫
f(ψ;x, t)dψ = ρ̄, (4.33)



Chapter 4: The PDF Modeling of Turbulent Reacting Flows 39

and for any flow properties φ,

∫
φ(ψ,x, t)f(ψ;x, t)dψ = ρφ(x, t) = ρ̄φ̃(x, t), (4.34)

where φ̃ is the Favre-filtered (resolved) property. Then the transport equation for the

compositions joint PDF in the LES context can be derived from the definition of the

joint PDF, Eq. (4.29), and the conservation equations using the standard techniques

[34, 29], and is given by

∂f

∂t
+
∂ũif

∂xi
+
∂
(
ũ′′|ψ

)
f

∂xi
=

∂

∂ψj

f
ρ̄

 ∂J ji
∂xi

∣∣∣∣∣ψ
+

∂

∂ψj
[fSj(ψ)] . (4.35)

The last term in Eq. (4.35) represents the change of f in the compositions space due

to the reaction, and it is in the closed form. The first two terms on the left-hand

side represent the rate of change following the filtered (resolved) flow. The last term

on the left-hand side represents the transport of f in the physical space due to the

small-scale (unresolved) velocity u′′ = u − ũ where the term of ũ′′|ψ is the mean of

unresolved velocity conditional upon the event φ = ψ and appears to be unclosed.

This term is usually modelled by the gradient diffusion assumption as

ρ̄
(
ũ′′i |ψ

)
f = −D̃T

∂f

∂xi
. (4.36)

The first term on the right-hand side of Eq. (4.35) represents the change of f in

the compositions space due to the molecular mixing and J ji is the molecular diffusion

term. First using the binary flux approximation for the molecular diffusion flux, J ji

can be approximated as

J ji = −ρD∂φj
∂xi

. (4.37)
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Then the conditional diffusion term is modelled as [60]

1

ρ̄

∂

∂xi

(
ρD

∂φj
∂xi

) ∣∣∣∣ψ = −Ω
(
ψj − φ̃j

)
+

1

ρ̄

∂

∂xi

(
ρ̄D̃

∂φ̃j
∂xi

)
, (4.38)

where the first term on the right hand side represents the interaction by exchange

with the mean (IEM) mixing model [57] and the second term is the mean drift term

[60]. In Eq. (4.38), Ω denotes the scalar mixing frequency and it can be modelled as

Ω = Cφ
D̃ + D̃T

∆2
, (4.39)

where Cφ is a model constant determined by the sensitivity study on the statistics

obtained by the simulations, and ∆ is the LES filter size. We note that, in the RANS

context, the joint PDF of compositions is defined as the mean of the fine-grained

PDF of composition whereas the joint PDF of compositions is defined as the filtered

fine-grained PDF of compositions in the LES context.

4.3 LES/PDF Modeling of Turbulent Reacting Flows

In the LES context, the fields in the turbulent reacting flows are separated into the

large (resolved) and small (unresolved) scales by applying a high band-pass filtering

operation. For example, the density field ρ in a turbulent flow is decomposed as

ρ = ρ̄+ ρ′′, (4.40)

where ρ̄ and ρ′′ are the filtered (resolved) and the subgrid (unresolved) parts of the

density field, respectively. For a given field φ in a turbulent flow, the Favre-filtered

field φ̃ can be defined as

φ̃ =
1

ρ̄

∫
ρφG(y − x)dy. (4.41)

As introduced in Section 4.2.3, the Favre-filtered fields can be obtained from the
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PDF as

φ̃(x, t) =
1

ρ̄

∫
φ(ψ,x, t)f(ψ;x, t)dψ, (4.42)

where φ = {Y1, Y2, ..., YN , h} where Yi is the mass fraction of ith composition, h is the

enthaply and N is the number of species, f(ψ;x, t) is the one-point, one-time mass

density joint PDF of compositions conditioned on the resolved velocity field, ũ, as

discussed in Section 4.2.3. Additionally, the resolved density field ρ̄ is obtained as

ρ̄ =

∫
f(ψ;x, t)dψ. (4.43)

Then, the governing equations for the filtered mass and momentum can be directly

derived by applying filtering operations to the instantaneous equations of mass and

momentum, i.e., Eqs. (2.1) and (2.2). The resulting evolution equations for the

filtered mass and momentum are summarized here and details can be found in the

standard textbooks such as [12], and are written as

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0, (4.44)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̄

∂xi
+
∂τij
∂xj

+
∂Tij
∂xj

, (4.45)

where τij is the resolved viscous stress tensor given by

τij = µ̃

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3

∂ũk
∂xk

δij

)
= 2µ̃S̃ij, (4.46)

and Tij = ρ̄ũiũj − ρ̄ũiuj is the subfilter stresses, and is often modelled by the Boussi-

nesq eddy viscosity assumption [61], i.e.,

Tij = ρ̄ũiũj − ρ̄ũiuj = 2µ̃tS̃ij −
2

3
ρ̄q2δij, (4.47)
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where S̃ij is the resolved strain rate defined as

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)
. (4.48)

In Eq. (4.47), q2 is the subgrid kinetic energy defined

q2 =
1

2

(
ũkũk − ũ2

k

)
. (4.49)

Note that the subgrid kinetic energy, q2, is the isotropic part of the residual stress,

and it can be absorbed in the pressure and thus needs not to be modelled in low

Mach number flows [62]. In Eq. (4.47), µ̃t is the turbulent eddy viscosity. Using the

Smagorinsky model [63], it is given by

µ̃t = Cµρ̄∆2|S̃|, where |S̃| =
√
S̃ijS̃ij, (4.50)

where ∆ is the filter width. The model coefficient Cµ is computed using the dynamic

Smagorinsky model proposed by Moin et al. [62] as

Cµ =
〈LijMij〉sgs
〈MklMkl〉sgs

, (4.51)

where L is called the Leonard term [64] and is defined as

Lij = (̂̄ρũiũj)−
1

ˆ̄ρ
( ̂̄ρũi ̂̄ρũj). (4.52)

M is a model term given by

Mij = 2ˆ̄ρ∆̂2| ˆ̃S|2 − 2∆2̂̄ρ|S̃|2. (4.53)

In Eqs. (4.52) and (4.53), the terms with caret ( ·̂ ) are the test-filtered quantities,

and ∆̂ denotes the test-filter width typically taken as double the size of the LES

filter, ∆, i.e., ∆̂ = 2∆. In Eq. (4.51), the operator 〈·〉sgs is an averaging operator
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over LijMij and MklMkl, and is used to ensure the numerical stability. The average

could be taken over the whole computational domain or over a small vicinity. In

this work, we use the Lagrangian averaging method proposed by Meneveau [65]. In

this method, two transport equations are solved to evolve the Lagrangian averages,

FLM = 〈LijMij〉Lagrangian and FMM = 〈MklMkl〉Lagrangian. The transport equations

for FLM and FMM are are given by

∂(ρ̄FLM)

∂t
+
∂(ρ̄ũiFLM)

∂xi
=

ρ̄

Trelax
(LijMij − FLM) , (4.54)

and

∂(ρ̄FMM)

∂t
+
∂(ρ̄ũiFMM)

∂xi
=

ρ̄

Trelax
(MijMij − FMM) , (4.55)

where Trelax is the relaxation time scale evaluated as

Trelax = θ ∆ (ρ̄)1/2 (FLMFMM)−1/8 , where θ = 1.5. (4.56)

The model coefficient Cµ is then obtained as

Cµ =
FLM

FMM

. (4.57)

The turbulent diffusivity, D̃T , is calculated from the turbulent eddy viscosity as

ρ̄D̃T =
µ̃T
ScT

, (4.58)

where ScT is the turbulent Schmidt number taken as Sc = 0.4 [66]. The molecular

viscosity, µ̃, and the molecular diffusivity, D̃, are approximated by an empirical fit to

the laminar flame calculations as µ̃/ρ̄ = a0(T̃ /T0)b1 and D̃ = a0c0(T̃ /T0)b2 where T̃ is

the resolved temperature. In this study we select the coefficients as a0 = 2.22× 10−5

m2/s, b1 = 1.658, b2 = 1.77, c0 = 1.22 and T0 = 300K based on a laminar flame

calculation performed using the CHEMKIN library for a methane/air combustion
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with the GRI 2.11 mechanism [40].

4.4 Solution Methodology for the LES/PDF Model Equations

In the LES/PDF modeling of the turbulent reacting flows, the complete set of the

modelled filtered conservation and joint PDF equations can be written as

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0, (4.59)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂p̄

∂xi
+ 2

∂

∂xj

(
µ̃eff S̃ij

)
, (4.60)

∂f

∂t
+
∂ũif

∂xi
=− ∂

∂xi

(
D̃T

ρ̄

∂f

∂xi

)
+

∂

∂ψα
(fΩ(ψα − φ̃α))

− ∂

∂ψα

(
f

1

ρ̄

∂

∂xi

(
ρ̄D̃

∂φ̃α
∂xi

))
+

∂

∂ψα
(fSα(ψ)) . (4.61)

where µ̃eff = µ̃+ µ̃T . The filtered density used in Eqs. (4.59) and (4.60) is obtained

from the joint PDF of compositions as

ρ̄(x, t) =

∫
f(ψ;x, t)dψ. (4.62)

The filtered pressure field can be computed from the Poisson equation in the form

∂2p̄

∂xixi
=
∂2ρ̄

∂t2
− ∂2ρ̄ũiũj
∂xi∂xj

+ 2
∂2µ̃eff S̃ij
∂xi∂xj

, (4.63)

which is obtained by taking divergence of the filtered momentum equations and using

the filtered mass conservation equation.

The filtered conservation of mass and momentum equations, Eqs. (4.59) and

(4.60), and the Poisson equation for the pressure can be solved numerically by con-

ventional methods such as finite volume or finite difference techniques. However, the

transport equation for the joint PDF of compositions requires a special treatment due
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to its high dimensionality. The dimensions of Eq. (4.61) is the sum of the number of

species and enthalpy and three-dimensions for physical space and one-dimension for

time, i.e., Eq. (4.61) evolves in Ns + 4 dimensional space where Ns is the number of

species plus enthalpy. Considering the large number of species involved in a typical

combustion problem, the transport equation of the joint PDF (Eq. (4.61)) cannot be

solved using the conventional techniques such as finite volume or finite difference be-

cause the computational cost increases exponentially with the number of dimensions

in these methods.

Pope proposed [9] an alternative solution methodology based on the Monte Carlo

method in the Lagrangian point of view for the joint PDF equation. In this approach,

the flow is represented by a large number of notional Lagrangian particles. Then a

set of stochastic differential equations are constructed that govern the evaluation of

particle properties in such a way that the particles exhibit the same joint PDF as the

one obtained from the solution of the modeled joint PDF transport equation. The

models for the particle position and compositions are given by [9]

dX∗j =

[
ũj +

1

ρ̄

∂(ρ̄D̃T )

∂xj

]∗
dt+

[
2D̃∗T

]1/2

dW ∗
j , (4.64)

dφ∗α = −Ω∗(φ∗α − φ̃∗α)dt+

[
1

ρ̄

∂

∂xj

(
ρ̄D̃

∂φ̃α
∂xj

)]∗
dt+ Sα(φ∗)dt, (4.65)

where the term dW ∗ denotes the Wiener increment. Equation (4.64) evolves the

particles in the physical space while Eq. (4.65) evolves the particles in the composi-

tion space. The terms on the right-hand side of Eq.(4.65) represent the evolution of

compositions due to turbulent and molecular diffusions, and chemical reactions, re-

spectively. The superscript “∗” denotes the Lagrangian particle properties or the LES

fields evaluated at the particle locations. Here, we note that the statistics obtained

from the particle equations, Eqs. (4.64, 4.65), are identical to those obtained from

the modeled joint PDF equation, i.e., Eq. (4.61). The mean field can be obtained
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from the particle properties. For instance,

φ̃ =
〈m∗φ∗〉
〈m∗〉

, (4.66)

which approximates

φ̃ =
1

ρ̄

∫
ψ

φdψ, (4.67)

where 〈·〉 denotes a summation over the particles in a given cell.

The resulting solution methodology is composed of two main components: (i) An

Eulerian numerical method for solving the filtered conservation equations for the mass

and momentum (from now on we refer it as the LES solver). (ii) A Lagrangian Monte

Carlo method for the transport equation for the joint PDF of compositions (from now

on we refer it as the PDF solver). The LES and the PDF solvers together form the

hybrid LES/PDF solver to be used for the simulations of the turbulent reacting flows.

4.4.1 The Hybrid LES/PDF solver

The main roles of the LES and PDF components can be summarized as:

1. The LES solver explicitly calculates the large-scale turbulent motions and pro-

vides the filtered velocity and pressure fields to the PDF solver.

2. The PDF algorithm solves the modeled evolution equation of the joint com-

positions PDF and provides the filtered density field (or quantities needed to

compute the filtered density field) to the LES solver.

The LES solver calculates the velocity, ũi, and pressure, p̄, fields by solving Eqs.

(4.59), (4.60) and (4.63). In addition, the LES method also calculates the turbulent

viscosity µ̃T and diffusivity D̃T as well as the mixing frequency Ω. The PDF solver

evolves the particles in the physical and compositions spaces and calculates the filtered

density ρ̄, the Favre-filtered temperature T̃ and mass fractions Ỹi.
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In the LES solver, the filtered density, ρ̄, is required to solve Eqs. (4.59), (4.60)

and (4.63). Moreover, the Favre-filtered temperature, T̃ , is required to obtain the

molecular viscosity µ̃, and diffusivity D̃ according to the empirical fit to laminar flame

calculations. On the other hand, the PDF solver requires the fields of Favre-filtered

velocity, ũi, the molecular and turbulent diffusivity, (D̃ and D̃T ), and the mixing

frequency Ω in the particle equations, i.e., Eqs. (4.64) and (4.65). Therefore, the

LES supplies the Favre-filtered velocity, ũi, the molecular and turbulent diffusivity,

(D̃ and D̃T ), and the mixing frequency, Ω, fields to the PDF solver in each time step.

In turns, the LES solver gets the filtered density ρ̄ and the Favre-filtered temperature

T̃ from the PDF solver. Figure 4.5 shows a schematic representation of the data

transfer between the LES and PDF solvers in the hybrid method.
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PDF 

solver 
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Figure 4.5: The schematic representation of the data transfer between the LES and
PDF solvers.

While the data transfer from the LES solver to the PDF solver is usually performed

by a trilinear interpolation, the filtered density feedback from the PDF solver to the

LES solver is a challenging task due to the stochastic nature of the particle fields.

The filtered fields obtained by the PDF solver contain the stochastic noise, thus using

the noisy filtered density field directly in the LES solver is prone to cause a significant

numerical instability problem. Note that this numerical instability is mainly caused

by the term containing time derivative of the filtered density in the pressure equation.

To overcome this difficulty, we employ the transported specific volume (TSV)

method developed by Popov et al. [67]. In the TSV method, the change in the resolved

specific volume due to transport in the physical space (Eq. (4.64)) is calculated by the

LES solver and the change due to turbulent mixing, molecular diffusion, and chemical

reactions (the terms on the right hand side of Eq. (4.65), respectively) is calculated by
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the PDF solver. For this purpose, the evolution equation for the specific volume, υ̃, is

derived from the modeled filtered joint PDF equation and augmented by a relaxation

term, and the resulting equation can be written as

ρ̄
∂υ̃

∂t
+ ρ̄

∂ (ũj υ̃)

∂xj
= ρ̄

∂

∂xj

(
D̃T

∂υ̃

∂xj

)
+ Sυ + ω̇υ, (4.68)

where Sυ is the source term defined as

Sυ ≡
{
〈υ̇∗〉
〈υ∗〉

}
, (4.69)

where 〈υ̇〉 is the weighted sum of the rate of change of particle specific volume in a

given cell due to mixing, molecular diffusion, and chemical reaction, while 〈υ〉 is the

weighted sum of particle specific volume in the same cell. The last term on the right

hand side of Eq. (4.68) is the relaxation term of the form

ω̇υ = ρ̄
υ̃PDF − υ̃

τ
, (4.70)

where υ̃PDF is the specific volume obtained from the particles in the PDF method as

follows

υ̃PDF =

{
〈m∗υ∗〉
〈m∗〉

}
. (4.71)

Here m∗ and υ∗ are the mass and specific volume of particles, and τ is the relax-

ation time taken as τ = 4∆t in this work. The resulting hybrid LES/PDF solver is

schematically shown in Fig. 4.6. After successfully solving the transport equation for
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Figure 4.6: The TSV coupling of the LES and PDF algorithms in the hybrid LES/PDF
method.
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the specific volume, υ̃, the filtered density field ρ̄ used in the solution of the equation

in the LES solver is obtained as

ρ̄ =
1

υ̃
. (4.72)

4.5 Calculation of Combustion Chemistry: In Situ Adaptive Tabulation

Method

In the PDF method, the compositions of particles are advanced in the composition

space by taking the turbulent mixing, molecular diffusion and chemical reactions into

account. This can be written compactly as

dφ(t)

dt
= M(t) + S(φ[t]), (4.73)

where M(t) denotes the rate of change due to mixing and molecular diffusion while

S(φ[t]) denotes the rate of change due to the chemical reactions. Equation (4.73) is

solved by using a fractional time step method. In this approach, time integration is

performed for the mixing and molecular diffusion as

dφ(t)

dt
= M(t), (4.74)

then the integration is carried out for the change due to the chemical reaction as

dφ(t)

dt
= S(φ[t]). (4.75)

The details of the fractional time stepping method will be provided in the next section.

In this section we only focus on the solution of Eq. (4.75).

Equation (4.75) is a system of highly non-linear stiff ordinary differential equations

(ODEs) with a dimension of number of species plus enthalpy. The ODE system is stiff

because of the wide disparity of the timescales of the chemical reactions that range

from 10−9 s to 1 s in a typical combustion process [1]. The solution of Eq. (4.75) takes
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the particle composition from φn = φ(tn) to φn+1 = φ(tn + ∆t) in the composition

space, which is called the reaction mapping, R(φn) as schematically shown in Fig.

4.7.

( )n
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1 ( ) ( )n n

nt t R     

 

Figure 4.7: The sketch of the reaction mapping R(φn) in composition space.

In calculation of the combustion chemistry with a detailed representation, the

main task is to calculate the reaction mapping R(φn) for every Lagrangian particle at

each time step where the sum of the particles is order of millions and the number of

time steps is order of tens of thousands in a typical LES/PDF simulation. Therefore,

considering the stiffness of the ODE system and the large number of particles, the

calculations of the reaction mapping requires a huge computational cost making the

simulations infeasible for practical engineering problems. To overcome this difficulty,

Pope [1] has proposed a tabulation method in which the tabulation tables are created

and grown during the simulation. The method is called In Situ Adaptive Tabula-

tion (ISAT). In the ISAT method, a reaction mapping of a query point, R(φq), is

approximated by a linearized mapping based on a tabulation point (φn) as

R(φq) ≈ Rl(φq) ≡ R(φn) + δRl. (4.76)
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In Eq. (4.76), δRl is defined as

δRl ≡ Aδφ = δR +O(|δφ|2), (4.77)

where A is the mapping gradient matrix given by

Aij(φ) ≡ ∂Ri(φ)

∂φj
, (4.78)

and δφ is the displacement between tabulation point φn and the query point φq

while δR is the displacement between the tabulation reacting mapping R(φn) and the

mapping for the query point R(φq). Figure 4.8 shows a sketch for the mapping of a

query point. For a query point φq close to the tabulation point φn, the local error is

n

( )nR 

q

( )qR 

R



 

Figure 4.8: The sketch for the reaction mappings, R(φn) and R(φq), and the defini-
tions of the displacements δφ and δR.

defined as

ε ≡
∣∣B (R [φq]−Rl [φq]

)∣∣ =
∣∣B (δR− δRl

)∣∣ , (4.79)

where B is a scaling matrix. The local error defined by Eq. (4.79) is the exact local

error introduced by the linearized mapping. The calculation of the local error in Eq.

(4.79) requires the calculation of the reaction mapping of the query point. However,
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the calculation of the reaction mapping for each query point eliminates the advantage

of tabulation methods. Thus, the local error can be approximated by considering a

constant approximation instead of linear approximation for the mapping. Considering

a constant approximation, the reaction mapping for a query point can be written as

R(φq) ≈ Rc(φq) ≡ R(φn). (4.80)

Consequently the corresponding local error is

εc ≡ |B (R [φq]−Rc [φq])| = |B (R [φq]−R [φn])| . (4.81)

From Eqs. (i.e., 4.76), (4.77) and (4.81), the corresponding local error can be written

as

εc = |BAδφ| . (4.82)

The region of accuracy of a tabulation point φn consists of the query points whose

local errors are smaller than a given error tolerance εtol. The region of accuracy is

chosen to be a hyper-ellipsoid, called as the ellipsoid of accuracy (EOA) which is

schematically shown in Fig. 4.9.

 

tol 

tol 

tol 

n

Figure 4.9: The sketch of the ellipsoid of accuracy of the query point φn.
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For a given query point φq, ISAT performs the following operations to evaluate

the reaction mapping for φq:

1. Estimate the local error of φq, εc, using Eq. (4.82).

2. If the local error εc is smaller than the speficied error tolerans εtot, i.e., φq is

within the EOA. Then the reaction mapping is approximated as

Rl(φq) = R(φn) + A(φn)(φq − φn). (4.83)

Returning Rl(φq) completes the ISAT algorithm. This is called as retrieving

(R).

3. If the local error εc is greater than the speficied error tolerans εtot, then perform

direct integration and evaluate the reaction mapping R(φq).

4. The local error is measured by Eq. (4.77) (ε = |B (R [φq]−R [φn])|). If the

measured local error is smaller than the specified error tolerance, than the EOA

is grown to include the query point φq. The growth of the EOA is represented

in Fig. 4.10. This process is called as growth (G).

5. If the local error calculated at the previous step is greater than the specified error

tolerance, ISAT adds {φq, R(φq) and A(φq)} as a new record to the tabulation

tables. This process is called as addition (A).

6. After the growth and addition steps (steps 4 and 5), ISAT returns R(φq).
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n

q
EOA before growth 

EOA after growth 

Figure 4.10: The sketch of the growth of the ellipsoid of accuracy to include φq.



Chapter 5

NUMERICAL METHOD

The numerical methods used to solve the governing equations in the LES/PDF

method are discussed in this chapter. First we present the methods used in the LES

solver. The spatial discretization of the transport equations, the time integration, and

the velocity-pressure coupling are described. In the Lagrangian Monte Carlo particle

method, the fractional time integration algorithm and the numerical methods for the

particle tracking, mean estimation from the particles, and interpolation back on the

particles are discussed. Finally, the three-stage velocity correction method for the

Lagrangian particles is presented.

5.1 The LES solver

The LES method solvers the filtered conservation equations for the mass and momen-

tum by using a finite volume method. In this section, we present the discretization of

the mass and momentum equations in space and time. Then, the iterative solution

procedure and velocity-pressure coupling method are discussed.

5.1.1 The Finite Volume Method

In the finite volume method, the computational domain is discretized by control vol-

umes (CV) which do not overlap and completely fill the computational domain. All

vector and scalar fields are located at the cell centers. In this approach, the numer-

ical solution for the conservation equations is seeked at the computational points P

located at the center of the control volume as sketched in Fig. 5.1. The cell center

point xP of a control volume VP is defined as the center of the mass of the cell and
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P f 
Sf 

Figure 5.1: A typical computational cell used in the FV method. P denotes the cell
center, i.e., the center of mass while f is the center of the face. Sf is the outward
pointing face area vector defined as Sf = Sfn where Sf is the surface area of the face
and n is the unit vector.

is given by

∫
Vp

(x− xP ) dV = 0. (5.1)

Each control volume is surrounded by flat faces such that each face is shared only by

two control volumes. The filtered equation can be written in the general form of a

transport equation as

∂ρφ

∂t
+
∂ρuiφ

∂xi
− ∂

∂xi

(
ρD

∂φ

∂xi

)
= Sφ, (5.2)

where φ is a flow property, D is diffusion coefficient and Sφ is the source term. In the

finite volume method, Eq. (5.2) is satisfied in a control volume VP around the point

P as

∫ t+∆t

t

[
∂

∂t

∫
VP

ρφdV +

∫
VP

∂ρuiφ

∂xi
dV −

∫
VP

∂

∂xi

(
ρD

∂φ

∂xi

)
dV

]
dt

=

∫ t+∆t

t

[∫
VP

SφdV

]
dt (5.3)
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Using the Gauss’ theorem, the convective terms (i.e., the second term on the left-hand

side) can be written as

∫
VP

∂ρuiφ

∂xi
dV =

∫
S

(ρuiφ)nidS =
∑
f

Sfi (ρuiφ)f

∼=
∑
f

Sfi (ρui)f φf =
∑
f

Fφf (5.4)

where the index f denotes the index of the face of the control volume, Si is the ith

component of the surface area vector of the face f , and F = Si (ρui)f represents the

mass flux through the face f , and φf is the value of φ at the cell face f . In Eq.

(5.4), the fields are required to be evaluated on the cell faces. The values on the

faces are calculated by interpolating the values from the cells sharing the face f as

schematically shown in Fig. 5.2 using the basis function as

φf = wPφP + wNφN , (5.5)

where P and N are the indices of the cells sharing the face f . In Eq. (5.5), wP and

wN are the basis functions of the cells calculated as

wP =
|fN |
|PN |

, (5.6)

and

wN = 1− wP , (5.7)

where |PN | and |fN | are the distance between the cell center locations, and the

distance between Nnd cell center location and the face center location f .

Using the same procedure as the for the convective term, the diffusion term (the
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𝛟f 

Figure 5.2: Face Interpolation. P and N are the cell center locations. f is the face
center location.

third term on the left-hand side) can be approximated as

∫
VP

∂

∂xi

(
ρD

∂φ

∂xi

)
dV =

∑
f

Si

(
ρD

∂φ

∂xi

)
f

=
∑
f

(ρD)f Si

(
∂φ

∂xi

)
f

. (5.8)

We need to evaluate the gradient term ∂φ
∂xi

on the cell faces. The simplest way is to

first evaluate the gradient vectors at the cell centers and then interpolate to find the

values at cell faces using the same basis functions as in Eq. (5.5). Thus we get

(
∂φ

∂xi

)
f

= wP

(
∂φ

∂xi

)
P

+ wN

(
∂φ

∂xi

)
N

, (5.9)

where the gradient terms at the cell centers can be approximated as the volume

averaged values, i.e.,

(
∂φ

∂xi

)
P

∼=
1

VP

∫
VP

∂φ

∂xi
dV

=
1

VP

∫
S

φdSi ∼=
∂φ

∂xi

∑
f

Siφf , (5.10)

where the divergence theorem has been used to convert the volume integral into the
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surface integral. An alternative way of computing the gradient term at cell faces is

(
∂φ

∂xi

)
f

∼= |S|
φN − φP
|d|

, (5.11)

where d is the displacement vector between the cell centers P and N as shown in

Fig. 5.3. Although both of the method Eq. (5.9) and Eq. (5.11) are second-order

 

d S 

P N f 

Figure 5.3: d denotes the displacement vector between cell center P and N , S is the
surface are vector.

accurate the first method uses larger computational molecule, thus the first term of

the truncation error is bigger than that of the latter method. However, the second

method cannot be used in non-orthogonal grids [68]. In this study, the first method

is employed.

The term on the right-hand side of Eq. (5.2) is a source term which can be a

general function of φ. The source term can be approximated by linearizing it as

follows:

Sφ(φ) ∼= Su + Spφ, (5.12)

where Su and Sp are the linearization coefficients. Then the integral over the compu-



60 Chapter 5: Numerical Method

tational domain can then be written as

∫
VP

Sφ(φ)dV ∼=
∫
VP

(Su + Spφ) dV

=

∫
VP

SudV +

∫
VP

SpφdV

= SuVP + Sp

∫
VP

[φP + (x− xP ) · (∇φ)P ] dV

= SuVP + SpφPVP +

[∫
VP

(x− xP )dV

]
︸ ︷︷ ︸

= 0

·(∇φ)P

= SuVP + SpφPVP . (5.13)

By inserting the spatially discretized terms into Eq. (5.3), the semi-discrete equation

can be written as

∫ t+∆t

t

[(
∂ρφ

∂t

)
P

VP +
∑
f

Fφf −
∑
f

(ρD)f Si

(
∂φ

∂xi

)
f

]
dt

=

∫ t+∆t

t

[SuVP + SPVPφP ] dt. (5.14)

The time integration is performed using a second-order time discretization method.

The first approach is the Crank-Nicholson scheme in which the time derivative is

approximated as

(
∂ρφ

∂t

)
P

∼=
ρn+1
P φn+1

P − ρnPφnP
∆t

, (5.15)

and

∫ t+∆t

t

φ(t)dt ∼=
1

2

(
φn + φn+1

)
, (5.16)

where

φn+1 = φ(tn + ∆t) and φn = φ(tn). (5.17)
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Then Eqs. (5.2), (5.3) and (5.14) can be combined to get

ρn+1
P φn+1

P − ρnPφnP
∆t

VP +
1

2

(∑
f

F n+1φn+1
f −

∑
f

(ρD)n+1
f Si

(
∂φ

∂xi

)n+1

f

)

+
1

2

(∑
f

F nφnf −
∑
f

(ρD)nf Si

(
∂φ

∂xi

)n
f

)

= SuVP +
1

2
SpVP

(
φn+1
P + φnP

)
. (5.18)

This equation requires value of φ at cell centers as well as at cell faces. Since all the

quantities are stored at cell centers, we need to evaluate values at cell faces using

values at cell centers. Values at faces are interpolated from the two cells sharing the

face by using the linear basis function (Eq. (5.5)). Therefore for a control volume,

Eq. (5.18) can be rearranged to have a system of algebraic equations in the form

aPφ
n+1
P +

∑
N

aNφ
n+1
N = RP , (5.19)

where the summation is done over all N neighboring cells. Equation (5.19) can be

written compactly as

[A][φ] = [R], (5.20)

where [A] is a sparse matrix with aP being on the diagonal and aN being off the

diagonal, [φ] is the solution vector, and [R] is the residual vector.

A second way of the time discretization of the transport equation is a three time

level method known as the backward differencing scheme which is a fully implicit

scheme with a second order of accuracy [69]. Using the backward differencing scheme,
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the transport equation can be written as

3
2
ρn+1
P φn+1

P − 2ρnPφ
n
P + 1

2
ρoPφ

o
P

∆t
VP +

∑
f

F n+1φn+1
f −

∑
f

(ρD)n+1
f Si

(
∂φ

∂xi

)n+1

f

= SuVP + SpVPφ
n+1
P . (5.21)

where

φo = φ(tn −∆t). (5.22)

It has been found that the backward differencing scheme is more robust than the

Crack-Nicholson scheme [38]. Therefore, the backward differencing scheme is used in

this study for the time discretization of the transport equations.

5.1.2 Finite Volume Discretization of Filtered Flow Equations

The discretization of the filtered momentum equations using the finite volume method

described in the previous section results in an algebraic equation in the form

aP ũ
n+1
i,P +

∑
N

aN ũ
n+1
i,N = Qn+1

ũi
−
(
δp̄n+1

δxi

)
P

, (5.23)

where P denotes the quantities evaluated at cell center of the control volume while N

denotes the quantities evaluated at the cell center of the neighboring control volumes.

Equation (5.23) is a non-linear equation since the coefficients of aP and aN depend

on ũn+1
i . The linearization of Eq. (5.23) is performed by evaluating the coefficients of

aP and aN by using the velocity fields that are known from previous time steps. The

filtered continuity equation can be written in discrete form as

(
∂ρ̄

∂t

)n+1

P

+

[
δ
(
ρ̄ũn+1

i

)
δxi

]
P

= 0. (5.24)
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where the second term on the left hand side is evaluated using the finite volume

method.

5.1.3 The Pressure-Velocity Coupling

In a low Mach number turbulent reacting flows, density is solely determined from the

compositions and independent of the pressure field. In this case, the mass conservation

equation decouples from the momentum equation and the pressure field acts to modify

the velocity field such that the mass conservation is satisfied. In this work, the

pressure-velocity coupling is achieved by the PISO method [70]. In the PISO method,

the velocity field is first predicted by using the known pressure field. For this purpose,

the discretized momentum equation is written as [69]

aP ũ
n+1,∗
i,P +

∑
N

aN ũ
n+1,∗
i,N = Qn

ũi
−
(
δp̄n

δxi

)
P

. (5.25)

Then the predicted velocity field ũn+1,∗
i,P can be calculated as

ũn+1,∗
i,P = H(ũ∗i )−

1

aP

(
δp̄n

δxi

)
P

, (5.26)

where

H(ũ∗i ) =
Qn
ũi
−
∑

N aN ũ
n+1,∗
i,N

aP
. (5.27)

Equation (5.25) is a non-symmetric linear systems solved iteratively using the pre-

conditioned bi-conjugate gradients method [71]. The predicted velocity field ũn+1,∗
i,P

does not generally satisfy the continuity equation since the pressure field used is taken

from the previous time step. The velocity field is corrected by

ũn+1
i,P = H(ũ∗i )−

1

aP

(
δp̄n+1

δxi

)
P

. (5.28)
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Multiplying both sides of Eq. (5.28) by the filtered density field ρ̄, taking discrete

divergence and using Eq. (5.24), we get a Poisson equation for p̄n+1 in the form

δ

δxi

[
ρ̄

aP

(
δp̄n+1

δxi

)]
P

=

[
δ (ρ̄H(ũ∗i ))

δxi

]
P

+

(
∂ρ̄

∂t

)n+1

P

(5.29)

which is solved iteratively using the preconditioned conjugate gradients method [71].

Note that
(
∂ρ̄
∂t

)n+1

P
is discretized using backward scheme. Using the solution of the

Poisson equation, the velocity field can be corrected through Eq. (5.28). This is called

as the first correction of the PISO method. The second correction can be performed by

calculating H(ũ∗i ) using the corrected velocity through Eq. (5.27). Then the second

pressure equation using the new H(ũ∗i ) is solved for the second correction velocity.

The details of the PISO algorithm can be found in the original paper by Issa [70] and

in the standard textbooks such as Peric and Ferziger [69]. The PISO algorithm used

in the present study can be summarized as follows:

1. Calculate the coefficients of aP and aN , and the source term of Q in Eq. (5.25)

using the values from the preceding iteration. If this is the first outer iteration,

use the values from the previous time step.

2. Calculate the predicted velocity field from Eq. (5.26).

3. Solve the pressure equation (Eq.(5.29)).

4. Apply the first correction to the velocity field (Eq. (5.28)).

5. Calculate H(ũ∗i ) using the corrected velocities, then solve the second pressure

equation to update the pressure field, and apply the second correction. This

gives the corrected velocity field, ũmi .

6. Solve for the transport equation for the resolved specific volume (Eq. (4.68)).

7. If the residuals in the momentum and the scalar equations become smaller than
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the given error tolerans, terminate the iteration and assign them as the values

at the new time step. Otherwise, repeat the iteration starting from the step 1.

5.2 PDF Solver

In the PDF method, the flow is represented by a large number of Lagrangian particles.

Each particle carries the properties of the physical position, X(t), and the scalar

values, φ(t). The particle properties are evolved by Eqs. (4.64) and (4.65) which can

be written in the general from as

dX∗j (t) = Dj(X
∗
j (t), t)dt+ b(X∗j (t), t)dWj(t), (5.30)

dφ∗α(t) = A(X∗j (t), φ∗α(t), t)dt. (5.31)

Equation (5.30) is an Ito stochastic differential equation (SDE) and the coefficients

of Dj and b are the drift and scalar diffusion coefficients, respectively. Equation

(5.31) is a random differential equation because of the randomness of the coefficient

A(X∗j (t), φ∗α(t), t). Equation (5.31) can be solved by a standard ordinary differential

equation (ODE) solver. This section presents the numerical methods used to solve

the coupled particle equations, i.e., Eqs. (4.64) and (4.65) in the general context of

the hybrid LES/PDF method.

5.2.1 Time Stepping Method for the Particle Equations

The coupled particle equations, Eqs. (4.64) and (4.65), are solved using a fractional

time stepping method in which a fractional time step is taken for each physical pro-

cesses: Transport in physical space T, mixing and molecular diffusion M, and reaction

R. The three physical processes of T, M and R are represented by following equations:

T : dX∗j =

[
ũj +

1

ρ̄

∂(ρ̄D̃T )

∂xj

]∗
dt+

[
2D̃∗T

]1/2

dW ∗
j , (5.32)
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M : dφ∗α = −Ω∗(φ∗α − φ̃∗α)dt+

[
1

ρ̄

∂

∂xj

(
ρ̄D̃

∂φ̃α
∂xj

)]∗
dt, (5.33)

R : dφ∗α = Sα(φ∗)dt. (5.34)

The first order accurate fractional time stepping methods are commonly used to

advance the particle properties from time level n to n + 1 [30, 18, 72, 35, 3]. In a

typical first order method, each fractional step is taken sequentially for the transport

T, mixing M and reaction R for a full time step ∆t. This is called the TMR method.

In this study, we use the first order fractional time stepping scheme (TMR) to

integrate the particle equations (Eqs. (4.64) and (4.65)). We describe the method in

detail below where the superscripts (.)n and (.)n+1 denote the properties at time tn

and tn + ∆t, respectively.

1. At the beginning of the particle time step, the particles are moved in the physical

space for a full time step ∆t according to Eq. (5.32). The time integration is

performed using the first-order Euler scheme [73] as

X∗,n+1
j = X∗,nj +

[
ũnj +

1

ρ̄n
∂ρ̄nDn

T

∂xj

]∗
∆t+ (2Dn

T∆t)1/2 η∗j , (5.35)

where η∗ is a standardized Gaussian random variable. To control the numeri-

cal error introduced by this simple first-order scheme, and maintain numerical

stability, time step for each particle is determined according to the particle

Courant number defined as C∗ ≡ |u∗|∆t∗/Le where |u∗| is the LES velocity at

the particle location and Le is a characteristic length of the eth computational

cell. The time step size is split into substeps when ∆t∗ is smaller than the time

step used in the LES solver. In this study, we set the particle Courant number

to a fixed value of C∗ = 0.1.

2. For the calculation of mixing and molecular transport, we mainly follow the

method developed by Viswanathan et al. [74]. At the new of particle positions

X∗,n+1 , the particle compositions are updated due to the mixing and molec-
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ular diffusion according to Eq. (5.33). In the mixing and molecular transport

fractional step, the particle compositions evolve by

M : dφ∗α = −Ω∗(φ∗α − φ̃∗α)dt+

[
1

ρ̄

∂

∂xj

(
ρ̄D̃

∂φ̃α
∂xj

)]∗
dt. (5.36)

Time integration of Eq. (5.36) is achieved using a semi-analytical first-order

scheme, i.e.,

φ∗,kα = φ∗,nα + c∗,n
(
φ̃∗,nα − φ∗,nα

)
+ ∆φ̃∗,nα (5.37)

where superscript (.)k denotes the intermediate step between the mixing and

reaction and c∗,n = 1− exp (−Ω∗,n∆t). The term φ̃∗,nα is the mean composition

evaluated at the new positionX∗,n+1, and ∆φ̃α is the mean drift term calculated

on the LES grid as

∆φ̃nα =

[
1

ρ̄n
∂

∂xj

(
ρ̄nD̃n∂φ̃

n
α

∂xj

)]
∆t, (5.38)

where the terms in the angle brackets on the right hand side are first evaluated

at the LES cell centers using the finite volume approach, are then interpolated

at the cell vertices and finally onto the particle locations (that will be discussed

in the next sections).

3. Using the particle composition φ∗,kα as the initial condition, the reaction frac-

tional step is performed using the ISAT [1] package

dφ

dt
= S(φ). (5.39)

The scheme described above is nominally first-order in time. However, several

second order accurate fractional time stepping schemes have been also developed by

Wang et al. [75]. A second-order fractional time stepping method usually involves a
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combination of half-time fractional steps. For example, the TMRMT [75] scheme can

be summarized as follows:

1. T : Using a weakly second order time stepping scheme such as the scheme

developed by Cao and Pope [73], the particle positions are advanced in the

physical space by a half-time step according to Eq. (5.32).

2. M : Evolve the particle compositions by a half-time step due to the mixing and

molecular diffusion according to Eq. (5.33).

3. R : Advance the particle compositions by a full-time step due to the chemical

reactions according to Eq. (5.34).

4. M: Repeat the step 2.

5. T : Repeat the step 1.

The details of the second order TMRMT method can be found in [75]. Note that

the LES fields used in the PDF solver are located at time of tn+1/2 = tn + 0.5∆t.

Additionally, to maintain the second-order accuracy in the TMRMT, the transport

equation as in the form of Eq. (5.32) should be integrated by using a second-order

accurate time integration method. In the literature, various second-order accurate

schemes have been proposed [73, 76, 77, 78] for the integration of the Ito SDE in the

same form as Eq. (5.32).

Wang and Pope [3] have compared the performance of the first-order and the

second-order time stepping methods using a turbulent jet diffusion flame as the test

case. They have observed that the first order methods can perform as well as the

second order accurate methods for the turbulent jet diffusion flame.

5.2.2 Parallel Particle Tracking Algorithm

In the PDF solver, the Lagrangian particles move in the physical space according

to Eq. (5.32). For this purpose, the filtered velocity field as well as the turbulent
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frequency and diffusivity must be interpolated onto the particle location from the

vertices of the host cell in which the particle resides. Therefore, the cell containing

a given particle should be known. The simplest but computationally expensive way

is to search for all the computational cells in the domain. However, considering the

large number of particles, this method is not feasible due to high computational cost

required. Tracking the particles as they move from one cell to an other constitutes

a computationally feasible alternative and remedies this deficiency. Although, the

tracking the particles on structured grids can be performed easily, the tracking on

unstructured grids is not a simple task and requires a special treatment. In this study,

we use OpenFOAM’s particle tracking libraries to track the Lagrangian particles in

the PDF solver. The libraries use the algorithm proposed by MacPherson et al. [79].

Fos simplicity, the algorithm is explained here only for the 2D case but it can be

extended to the 3D case straightforwardly. Consider a particle located at the position

A in a given cell (host cell) and moves to a new position B as shown in Fig. 5.4. If

the point B is within the same cell as the point A, then B is assigned as the new

position of particle at the new time step and this assignment completes the tracking

for the current time step. However, if the particle intersects a face of the cell at a

point P then it stops at P and changes its pointer for the cell to the neighboring

cell, and then continues its motion within the neighboring cell until reaching the final

destination of point B. The intersection point P can be computed as

P = A+ λf (B −A) (5.40)

where λf is the fraction of the line segment AP to the segment |AB|, and can be

calculated as

λf =
(Cf −A) · Sf
(B −A) · Sf

, (5.41)

where Cf is the center of the face and Sf is the face unit normal vector.

In the particle tracking, the parallel algorithm used in the current LES/PDF
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method must be also taken into account since the particles cross the subdomain

boundaries frequently. In the OpenFOAM, the parallelization is achieved by the

conventional domain decomposition method in which the computational domain is

divided into subdomains. Each subdomain is assigned to an individual processor,

which performs the calculations on its own subdomain. The data transfer required

between the processors is performed through the faces shared by the individual pro-

cessors, called the inter-processors-faces. In the PDF solver, when a particle that is

initially assigned to processor k, moves and hits an inter-processors-face shared by

processors k and l, then the particle is transferred from processor k to l using the

MPI communication. The tracking algorithm can be summarized as follows:

1. Label initially all the particles as “active”.

2. For a given particle, calculate λ values for all the faces of the host cell.

3. Find the minimum value λmin in the interval 0 ≤ λ ≤ 1, among all the λf

values. The face associated with λmin is to be crossed by the particle.

4. If λmin is equal to zero, then the final destination, the point B, is inside the host

cell, then move the particle directly to the point B and complete the tracking.

5. If λmin is greater than zero, first move the particle until the point P at the

interface, and reduce the particle’s tracking time tktrack as

tk+1
track = tktrack − λ∆t, (5.42)

where tktrack denotes the remaining time of a particle to complete a time step.

Note that ttrack = ∆t at the beginning of the movement.

6. If the face crossed by the particle is an internal face (shared by two cells both

in the same subdomain), then change the cell pointer of the particle to the

neighboring cell.
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7. If the face crossed by the particle is inter-processor-face between the host proces-

sor k and a neighboring processor l, then add the particle index into a particle

transfer list holding the indices of the particles to be transferred from the pro-

cessor k to l, and label the particle as “passive”.

8. For all the “active” particles, repeat the steps from 2 to 7 until tktrack of all

“active” particle becomes zero.

9. Transfer all the particles in the particle transfer lists between processors via a

MPI communication.

10. For all the particles having tktrack bigger than zero, repeat the steps from 1 to

9 until the particle transfer list becomes empty. This ensures that the tracking

time for all the particles is reduced to zero.

 

Sf Cf 

A B P 

Cell 1 Cell 2 

Figure 5.4: The schematic representation of the OpenFOAM particle tracking algo-
rithm on an unstructured grid.

5.2.3 Mean Estimation From Particles

In the LES/PDF method, the mean particle fields obtained from the Lagrangian

particles are required to evolve the particle composition due to mixing and molecular

diffusion according to Eq. (5.33). Additionally, the some mean particles fields, i.e.,

mean temperature, specific volume, etc. are feedback from the PDF solver to the

LES solver. Therefore estimation the mean properties from the Lagrangian particles
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is one of the most important part of the LES/PDF methodology. The simplest way

of estimating the means from the particles is to take an ensemble average over all the

particles in a given cell. This is called the “particle-in-cell” (PIC) method. Although

it is easy to implement, the mean fields obtained by the PIC exhibit discontinuities

across the cell boundaries, which may results in reduction in numerical accuracy and

even some numerical instability problems. A better method to estimate the mean

properties can be formed by weighting the particles by linear basis functions. This is

called the “cloud-in-cell” (CIC) method. The mean properties obtained by the CIC

method are continuous across the computational cells. In this study, we follow the

CIC method proposed by Zhang and Haworth [2] which is originated from the work

by Dreeben and Pope [80]. In this approach, the mean values are evaluated at the

cell vertecies. The mean at jth vertex is obtained from the particles within the cells

that share the jth vertex (a set of cells, Cj). The mean at jth vertex can be estimated

as

φ̃(j) =

∑
k∈Cj

∑N [k]

i=1 ω
(i)φ(i)bα(ζ(i))∑

k∈Cj

∑N [k]

i=1 ω
(i)bα(ζ(i))

, (5.43)

where ω(i) is the weight of the individual particle (e.g., its mass), subscript α (α =

1, ..., 8) is the local index corresponding to the jth vertex, and bα is the linear basis

function of a given particle corresponding to the jth vertex. Here the linear basis

function bα is based on the logical coordinates ζi of the particles within the computa-

tional cells. The logical coordinate system ζi is formed by transforming the physical

coordinate system xi in each cell. We use the isoparametric transformation of Zhang

and Haworth [2] to define the local coordinates (also called the logical coordinates).

Within a computational cell, the physical coordinates xi are transformed into the

logical coordinates ζi as shown in Fig. 5.5. As explained in [2], the logical coordinates

of any point in a computational cell can be approximated using the heights of the
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point from the faces of the cell as

ζ1 =
h1

h1 + h2

, ζ2 =
h3

h3 + h4

, ζ3 =
h5

h5 + h6

, (5.44)

where hi is the height of the point from the ith face of the cell as shown in Fig. 5.5.

Then the linear basis functions for each vertex can be written as

b1 = (1− ζ1) (1− ζ2) (1− ζ3) , b2 = ζ1 (1− ζ2) (1− ζ3) ,

b3 = ζ1ζ2 (1− ζ3) , b4 = (1− ζ1) ζ2 (1− ζ3) , (5.45)

b5 = (1− ζ1) (1− ζ2) ζ3, b6 = ζ1 (1− ζ2) ζ3,

b7 = ζ1ζ2ζ3, b8 = (1− ζ1) ζ2ζ3.
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Figure 5.5: Isoparametric representation. The logical coordinates (ζ1, ζ2, ζ3) (left).
The logical coordinates (η1, η2) on a face of the cell (right).

5.2.4 Interpolation of the Mean Values Onto Particles

The mean estimation method described in the previous section calculates the mean

properties at the cell vertices. Some mean properties such as mean composition are

used in the particle equations, thus they need to be evaluated at the particle locations.
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On the other hand, some of the mean properties from the particles, i.e., the mean

specific volume and the mean temperature are needed in the LES solver, thus they

are required to be evaluated at the cell centers. In addition, various mean fields are

needed for the post processing purpose. Therefore, the mean properties at the cell

vertices are interpolated onto the Lagrangian particle locations and also the cell center

locations by using the linear basis functions presented in the previous section as

φ̃(i) =
∑
α

φ̃(j)bα(ζ(i)), (5.46)

where φ̃(j) is the mean field at the jth global vertex. ζ i is the logical coordinate of ith

particle (or cell center of ith cell) and j is the global index of the vertex and α is the

local index in a cell of the jth global index.

5.2.5 Interpolation of the Finite Volume Fields on Particle Positions

In the particle equations, ũi, Ω, ρ̄, D̃, D̃T are required at the Lagrangian particle

positions. Thus the LES fields need to be evaluated at the particle locations at each

time step. The LES solver stores the LES fields at the cell centers. To evaluate

the fields at the Lagrangian particle locations, they need to be interpolated from

the cell centers onto the particle locations. For this purpose, the LES fields are first

interpolated onto the cell vertices. After evaluating the LES fields at the cell vertices,

they are interpolated onto the particle locations from the cell vertices in the same way

as one for the interpolation of the particle mean properties in the previous section.

The LES fields are first evaluated at the cell vertices from the cell centers as

φ(j) =
∑
k∈Cj

bα(ζk)φ̃k/
∑
k∈Cj

bα(ζk), (5.47)

where Cj is a set of cells sharing the jth vertex, bα(ζk) are the linear basis functions

associated with the jth vertex (α is the local index within the cell corresponding to

the global index j), and φ̃k is the LES fields located at the cell center of the kth cell.
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After evaluating the LES fields at the cell vertices, they are interpolated onto particle

locations in the same way as explained in the previous section, i.e., Eq. (5.46).

5.2.6 Particle Number Control

The PDF solver is initialized with a nominal number of particles, Np, in each FV

cell. During a simulation, it is desired to keep the number of particles in each FV

cell within a specified range. Here, we use a range of
√

2Np
2
≤ Np ≤

√
2Np. The

particle control algorithm is designed to keep the number of particles within this

range throughout the simulation. When the number of particle in a cell drops below

the lower limit, the heaviest particle (based on the volume or mass) is determined in

the cell and it is split into two by keeping the other properties the same but halving

its volume and mass. This splitting process is repeated until the number of particles

exceeds the lower limit. The split particles initially occupy the same location but

drift from each other quickly due to the stochastic nature of Eq. (5.32). In the case

of an excessive number of particles in a cell, we cluster the lightest particle in the

cell (say, particle a) with the closest particle to it (in physical space) (say, particle b).

The mean properties and the total mass and volume obtained from particles a and b

are assigned to the particle b, and the particle a is deleted. This clustering process is

repeated until the number of particles reduces below the upper limit.

5.2.7 Three-Stage Velocity Correction Method

The consistency condition in the hybrid LES/PDF method requires that the mean

particle mass distribution in the PDF method should be consistent with the fluid mass

distribution in the LES solver, and this consistency should be satisfied throughout

the simulation. In the LES/PDF method, the equations solved by finite volume-LES

method and the equations, solved by the Lagrangian Monte Carlo PDF algorithm

are mathematically consistent. However, inconsistency may arise due to accumula-

tion of numerical error. To satisfy this condition, various correction methods have

been proposed in the literature [81, 28, 82, 83]. In this study, a three-stage velocity
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correction method developed by Zhang and Haworth [2] is employed to enforce the

consistency condition. The method can be applied to unstructured finite volume grids

for complex geometries. The method consists of three stages:

• Stage 1: The cell centered velocity fields are first interpolated onto the cell

vertices using Eq. (5.47), i.e.,

uli =
∑
k∈Cl

bα(ζk)uki /
∑
k∈Cl

bα(ζk), (5.48)

where Cl is the set of the cells that share the vertex l, bα(ζk) is the basis function

associated with the kth cell that contributes to the vertex l. Here index α is

the local index within the cell corresponding to the global index l. Then the

velocities are interpolated from the cell vertices onto the particle locations using

Eq. (5.46) as

upi =
∑
α

ulibα(ζp), (5.49)

where ζp is the logical coordinate of the particle location, bα(ζp) is the basis

function associated with the vertex l, and uli is the velocity at the lth vertex.

• Stage 2: The mass flux from the kth cell across the face f implied by the trilinear

interpolation scheme for the velocity and density fields (e.g., Eq. (5.49)) is

denoted by Qk,f,TL and can be written as

Qk,f,TL = Af
∑
k∈f

bα(ζp)ρk(uk1n
k,f
1 + uk2n

k,f
2 + uk3n

k,f
3 ), (5.50)

where Af is the face area, nk,f = (nk,f1 , nk,f2 , nk,f3 ) is the outward-pointing unit

normal vector of the face f , and ζp is the logical coordinate of the face center,

bα(ζp) is the basis function associated with the vertex k where α is the local

index within the cell corresponding to the global index k.
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In general, the mass flux Qk,f,TL is not equal to the mass flux in the finite volume

(LES) solver Qk,f,FV . The main purpose in this stage is to introduce correction

velocities at cell vertices in order to make Qk,f,FV and Qk,f,TL consistent. The

correction fluxes can be written as

Q̂k,f = Qk,f,FV −Qk,f,TL (5.51)

= Af
∑
k∈f

bα(ζp)ρk(ûk,ν1 nk,f1 + ûk,ν2 nk,f2 + ûk,ν3 nk,f3 ),

where the hat .̂ is used to denote the correction mass fluxes and the correction

velocities at the cell vertices. For each computational cell, there are 24 velocity

components ûk,fi to be determined (three velocity components for each of eight

vertices ν). Although, there are 24 velocity components to be determined, only

six equations exist, thus the linear system is underdetermined. To circumvent

this problem, the normal components of the correction mass fluxes are assumed

to be uniform across each of the six faces of the kth cell. This requires that the

normal components of the multiplication of the density and correction velocity

at each vertices of a face f are equal. Therefore, we have additional three

equations for each face as

ρl1(ûk,ν11 nk,f1 + ûk,ν12 nk,f2 + ûk,ν13 nk,f3 ) = ρl2(ûk,ν21 nk,f1 + ûk,ν22 nk,f2 + ûk,ν23 nk,f3 ),(5.52)

ρl1(ûk,ν11 nk,f1 + ûk,ν12 nk,f2 + ûk,ν13 nk,f3 ) = ρl3(ûk,ν31 nk,f1 + ûk,ν32 nk,f2 + ûk,ν33 nk,f3 ),

ρl1(ûk,ν11 nk,f1 + ûk,ν12 nk,f2 + ûk,ν13 nk,f3 ) = ρl4(ûk,ν41 nk,f1 + ûk,ν42 nk,f2 + ûk,ν43 nk,f3 ),

where ν1, ν2, ν3 and ν4 denote the local indices for four the vertices of face

f (correponding to the global vertices l1, l2, l3 and l4, respectively). Three

equations for each face, thus eighteen additional equations in total can be used

to form a complete set of the mass correction equations. For each computational

cell, 24 velocity components of the correction velocity can be determined by

solving a linear equation system. Note that the correction velocities at a vertex
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shared by two neighboring cells may not be the same for the each cell.

• Stage 3: In this stage, the velocity correction is formulated in the same way as

Stage 2, i.e.,

ˆ̂
Qk,f = Af

∑
k∈f

bα(ζp)ρk(ˆ̂uk,ν1 nk,f1 + ˆ̂uk,ν2 nk,f2 + ˆ̂uk,ν3 nk,f3 ), (5.53)

where
ˆ̂
Qk,f is the correction mass flowrate at cell k across face f , and ˆ̂ui is

the correction velocity at ith vertex. The Stage 3 aims to eliminate the time-

scaled deviation between the fluid mass in the LES solver mk,FV and the particle

mass in the PDF solver mk,p associated with the cell k. Here, the time-scaled

deviation referred as mass residual, Rk, is defined as

Rk ≡ mk,FV −mk,p

τS3

, (5.54)

where τS3 is a relaxation time scale defined as τS3 = α∆t where α is a specified

coefficient. The main purpose of this stage is to calculate mass flowrates
ˆ̂
Qk,f

that satify

Rk = −
∑
f∈k

ˆ̂
Qk,f . (5.55)

Equation (5.55) is in the same form as the discretized pressure Poisson equation

and can be solved using the same solver. The solution of Eq. (5.55) gives the

stage 3 velocity correction ˆ̂ui. The particle positions are advanced according to

the Stage 3 velocity correction to enforce the mass consistency between the LES

and the PDF solvers.

A summary of the three-stage-velocity correction algorithm is given as follow:

1. Interpolate the LES velocities from the cell centers to the cell vertices, referred

as US1
c from Eqs. (5.48) and (5.49).
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2. Calculate the Stage 2 correction velocity, US2
c , at the cell vertices from Eq.

(5.51).

3. Using the combined velocity, US1
c + US2

c , move the particles in the physical

space according to Eq. (5.35).

4. Calculate the particle mass residual, Rk, for each cell.

5. Then, solve the linear equation system Eq. (5.55) for the Stage 3 velocity, US3
c .

6. Advance the particle positions due to the Stage 3 velocity US3
c to enforce the

mass consistency.

More details of the velocity correction method can be found in [2].



Chapter 6

THE PILOTED METHANE/AIR JET DIFFUSION

FLAME

The new hyrid LES/PDF solver described in the previous chapters is first applied

to a piloted methane/air jet diffusion flame (Sandia Flame D) [84]. In this chapter,

we first present the experimental configuration and the computational setup for the

Sandia Flame D. Then the consistency between the LES and the PDF solvers is ex-

amined using the one-way coupling method with a simple flamelet model. The details

of the consistency conditions and the one-way coupling method are presented in this

section. Then extensive simulations are performed using a detailed chemical mech-

anism and the results are compared with the experimental measurements as well as

the previous LES/PDF simulations. Then the performance of the velocity correction

method is demonstrated. For this purpose, the effects of each stage of the three-stage

method are examined separately and all together. Finally, the performance of the

LES/PDF solver is discussed for the computational efficiency.

6.1 Experimental Configuration

The schematic of the burner is shown in Fig. 6.1. The burner consists of a central

fuel jet surrounded by a pilot nozzle. An air-coflow surronds both the pilot and fuel

jets. The dimensions of the burner are summarized in Table 6.1. The fuel jet is

a mixture of 25% methane and 75% air by volume. The pilot flame is a lean (the

equivalence ratio, φ = 0.77) mixture of C2H2, H2, air, CO2, and N2 with the same

nominal enthalpy and equilibrium composition as methane/air at this equivalence

ratio. The jet bulk velocity is Uj = 49.6 m/s corresponding to a Reynolds number of

Re = 22400, temperature is 294 K and pressure is 0.993 atm. The pilot and coflow
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bulk velocities are 11.4 m/s and 0.9 m/s, respectively. More details about this flame

are available in Barlow et al. [84].

 

 

Fuel 

jet 

Pilot flow 

Air Coflow 

Figure 6.1: Schematic of the burner exits (right), and the pictures of the flame (left)
[10]

6.2 Computational Setup

The computational domain is selected to be [0,60D]×[0,20D]×[0,2π] in the axial (x),

radial (r) and azimuthal (θ) directions, respectively. The domain is discretized using

a non-uniform 256×128×32 block structured cylindrical grid as shown in Fig. 6.2.

The grid is concentrated near the nozzle in the axial and radial directions.

The instantaneous inlet velocities of the fuel jet are obtained from a separate LES

turbulent pipe flow simulation. For this purpose, LES simulation is performed for a

turbulent pipe flow with the same dimension as the fuel jet inlet. In the pipe flow
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Table 6.1: Dimensions of the Sandia piloted jet flame burner

Main jet inner diameter, D = 7.2 mm

Pilot annulus inner diameter = 7.7 mm

Pilot annulus outer diameter = 18.2 mm

Burner outer wall diameter = 18.9 mm

simulation, flow is initialized to have the experimentally measured mean velocity pro-

file at the fuel jet inlet with small random perturbations. The periodic boundary

conditions are applied at the inlet and outlet, and no-slip boundary conditions are

used at the wall of the pipe. The pipe flow simulation is first performed until the

turbulent flow reaches a statistically stationary state, and then the flow velocities on

a plane perpendicular to the pipe axial direction are stored in a file as time series

with a specified time step size. Then the velocities stored in the file are retrieved and

interpolated on the grid points in the fuel jet inlet during the LES/PDF simulations.

The interpolation is performed using the cylindrical coordinates. Note that the inter-

polated velocities at the fuel jet inlet may not have the same mean and rms profiles

as the experimental measurements at the fuel jet inlet. Therefore, instead of directly

using the interpolated velocities following [85], we apply the turbulent inlet velocity

at the fuel jet computed as

usi (r, θ, t) = 〈ui(r)〉m + αi(r)
[
uli(r, θ, t)−

〈
uli(r)

〉]
(6.1)

where 〈ui(r)〉m and
〈
uli(r)

〉
are the mean values of the experimental and the interpo-

lated velocities, respectively, and uli(r, θ, t) is the interpolated instantaneous velocity

while usi (r, θ, t) is the scaled instantaneous velocity to be used at the fuel jet inlet.

The scaling parameter αi(r) is used to match the interpolated fluctuating velocities

with the experimental fluctuating velocities, and it is computed as

αi(r) =
〈u′i(r)〉l
〈u′i(r)〉m

, (6.2)
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where 〈u′i(r)〉m is the experimental measurement of the rms velocity and 〈u′i(r)〉l is

the rms of the interpolated velocity calculated as

〈u′i(r)〉l =

√〈
uli(r, θ, t)

2
〉
−
〈
uli(r)

〉2
. (6.3)

At the pilot nozzle exit, we use the experimental mean radial profile of the axial

velocities as the inlet boundary conditions by neglecting the turbulent fluctuations

The inlet velocity of the air-coflow is set to a value of 0.4 m/s. At the wall-lips

between the fuel jet and pilot flame as well as between the pilot and the coflow,

the slip boundary conditions are applied. At the outlet, the zero-gradient boundary

conditions are used for all the fields. At the far fields, the slip boundary conditions

are applied. In the PDF solver, about 20 particles per grid cell are used in all the

results presented in this chapter.

 

Figure 6.2: The block structured grid used in the simulations.



84 Chapter 6: The Piloted Methane/Air Jet Diffusion Flame

6.3 The Consistency Between LES and PDF Solvers

In this section, we first examine the numerical consistency between the LES and PDF

solvers. For this purpose, we follow the one-way coupling methodology proposed by

Wang and Pope [3]. In the one-way coupling methodology, the equations solved by

the LES and the PDF solvers are mathematically consistent. Additionally the LES

and the PDF solvers are coupled in a one-way fashion to isolate the numerical error

regarding the fully coupled scheme. Since the equations solved by the LES and PDF

solvers are equivalent at the level of the first and second moments and scalar fields

are computed redundantly in the both solver, the one-way coupling method is very

useful to examine the numerical consistency between the LES and the PDF solvers.

In the remaining of this section, the details of the one-way coupling methodology are

presented and then the numerical consistency between the LES and PDF solvers is

demonstrated through comprehensive simulations.

6.3.1 The Moment Equations

In the one-way coupling, we first derive the transport equations for the first two

moments of compositions directly from the modelled joint PDF evolution equation

(Eq. (4.61)): The Favre-filtered transport equations of the first two moments of the

compositions are given by [74]

∂
(
ρ̄φ̃α

)
∂t

+
∂
(
ρ̄ũjφ̃α

)
∂xj

=
∂

∂xj

(
ρ̄
(
D̃ + D̃T

) ∂φ̃α
∂xj

)
+ ρ̄S̃, (6.4)

∂
(
ρ̄φ̃2

α

)
∂t

+
∂
(
ρ̄ũjφ̃2

α

)
∂xj

=
∂

∂xj

(
ρ̄D̃T

∂φ̃2
α

∂xj

)
+ 2φ̃α

∂

∂xj

(
ρ̄D̃

∂φ̃α
∂xj

)
− 2ρ̄Ω

(
φ̃2
α − φ̃2

α

)
+ 2ρ̃S̃αφα,

(6.5)

where φ̃α and φ̃2
α are the filtered mass fraction and mass fraction square of species α

and S̃ and S̃φ are the chemical source terms. The moment equations and the modeled

transport equations for the joint-PDF are mathematically consistent at the level of
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the first and second moments. This mathematical consistency is used here to verify

the numerical consistency of the LES and the PDF solvers.

The solution of the moment equations by the LES solver is a challenging task

due to the number of composition fields and the unclosed chemical source terms. To

overcome this difficulty, we use a conservative scalar field (the mixture fraction field

ξ̃) as the composition variable (ξ̃ = φ̃). Thus the moment equations simplify to be

∂
(
ρ̄ξ̃
)

∂t
+
∂
(
ρ̄ũj ξ̃

)
∂xj

=
∂

∂xj

(
ρ̄
(
D̃ + D̃T

) ∂ξ̃

∂xj

)
, (6.6)

∂
(
ρ̄ξ̃2
)

∂t
+
∂
(
ρ̄ũj ξ̃2

)
∂xj

=
∂

∂xj

(
ρ̄D̃T

∂ξ̃2

∂xj

)
+ 2ξ̃

∂

∂xj

(
ρ̄D̃

∂ξ̃

∂xj

)
− 2ρ̄Ω

(
ξ̃2 − ξ̃2

)
.

(6.7)

Here, we note that the chemical source terms disappeared since the mixture fraction

is a conserved scalar. These two scalar equations can be solved by the LES method

numerically using the numerical methods as discussed in Section 5.

Additionally, in the PDF solver, the particle equations are solved only for a single

composition of mixture fraction (ξ). Then the resolved fields of mixture fraction and

square of mixture fraction are obtained from the particles by

ξ̃PDF =
〈m∗ξ∗〉
〈m∗〉

, (6.8)

ξ̃2
PDF =

〈
m∗ξ∗2

〉
〈m∗〉

, (6.9)

where m∗ and ξ∗ are the particle mass and mixture fraction, respectively.

6.3.2 The One-way Coupling Methodology

Although the equations solved by the LES and the PDF solvers are mathematically

consistent, the numerical inconsistency may arise due to the accumulation of nu-

merical errors and the different numerical solution methodologies used in the LES
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and PDF solvers. Here, we investigate the consistency between the LES and the PDF

fields at the numerical solution level. To avoid the numerical error due to the coupling

method described in Section 4, we use the one-way coupling methodology developed

by Wang and Pope [3].

In the one-way coupling methodology, as its name implies, the data transfer occurs

only in the one direction, from the LES solver to the PDF solver. The fields calculated

by the PDF solver are used only for the output purpose, i.e., there is no feedback

from the PDF solver to the LES solver as schematically shown in Fig. 6.3. The LES

algorithm solves the filtered equations for the mixture fraction and the square of the

mixture fraction fully coupled with the filtered flow equations. In the PDF solver, the

particle equations (Eqs. (4.64) and (4.65)) are solved only for a single composition

of the mixture fraction (ξ) using the fields ũi, ρ̄, Ω, D and DT taken from the LES

solver.

In the LES solver, the chemistry is represented by a single laminar flamelet profile

obtained by FlameMaster [86] software using GRI 2.11 mechanism [40] by specifying

a nominal strain rate of an = 100 s−1. The resolved species mass fraction, Ỹ , temper-

ature, T̃ , and density, ρ̄, are pretabulated with the resolved mixture fraction, ξ̃, and

the square of mixture fraction, ξ̃2. Once ξ̃ and ξ̃2 are computed from Eqs. (6.6) and

(6.7), then the resolved density ρ̄ is obtained from the tabulation table as a function

of ξ̃ and ξ̃2.

At each time step, the PDF solver receives the fields ũi, ρ̄, Ω, D̃ and D̃T from the

LES solver, then solves the particle equations (Eqs. (4.64) and (4.65)) with a single

composition of mixture fraction (ξ).

6.3.3 Results

In the one-way coupled LES/PDF simulation, the fields of the resolved mixture frac-

tion, ξ̃, square of mixture fraction, ξ̃2, and temperature, T̃ , are computed redundantly

by the LES and PDF solvers. To compare the numerical results from the LES and

PDF solvers with each other as well as with the experimental data, we take time
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Figure 6.3: Schematic representation of one-way coupled (left) and two-way coupled
(right) LES/PDF solver.

average of the resolved fields denoted by 〈·〉. We first present radial profiles of the

time-averaged resolved velocity 〈ũi〉 and resolved axial turbulence intensity 〈u′′〉 to

show that the flow fields are well captured in the simulations. Then the time-averaged

LES and PDF results of the resolved mixture fraction, 〈ξ̃〉, and resolved temperature,

〈T̃ 〉, as well as the rms of mixture fraction 〈ξ̃′′〉 = (〈(ξ̃)2〉 − 〈ξ̃〉2)1/2 and the rms

of temperature, 〈T̃ ′′〉, are plotted to demonstrate the numerical consistency. Figure

6.4 shows the time-averaged profiles of the LES and PDF fields with the experiment

measurements at four axial locations of x/D =7.5, 15, 30 and 45. As can be seen in

this figure, the mean axial velocity and turbulence intensity are in good agreement

with the experimental data, showing that the flow fields are well captured. The time-

averaged resolved mixture fraction 〈ξ̃〉 and the rms of mixture fraction 〈ξ̃′′〉 from the

LES and PDF solvers are compared. The numerical results from the two solvers are

in excellent agreement, demonstrating that the LES and PDF solvers are consistent

at the level of numerical solution. Additionally this consistency indicates very good

performance of the calculations in the PDF solver, i.e., the particle tracking, mean

estimation and interpolation. The time-averaged resolved temperature 〈T̃ 〉 from the

LES and the PDF solvers are almost identical while very slight discrepancies occur in

the rms of the temperature 〈T̃ ′′〉 fields obtained by the two solvers. Consequently, the

excellent agreement between the numerical results from the LES and the PDF solvers

show that the two solvers have high level of consistency at the numerical solution

level. Although, a simple flamelet model is used in the simulations, the agreement

with the experimental data is also very good.
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Figure 6.4: The one-way coupling. The radial profiles of time-averaged resolved
axial velocity, the resolved turbulence intensity, resolved mixture fraction, the rms
of mixture fraction, resolved temperature and the rms of temperature, from top to
bottom at four axial location of x/D =7.5, 15, 30 and 45 from left to right. Symbols,
the experimental data; blue line, the LES results; black dashed line, the PDF results.
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6.4 Detailed Chemistry Calculations

The detailed chemistry simulations are performed using the augmented reduced mech-

anism (ARM1) that includes 16-species and 12-reactions [4]. The chemical species and

the elementary reactions are given in Table 6.2. The rates of the elementary reactions

are obtained dynamically from the GRI 2.11 mechanism [40]. In the PDF solver, each

particle carries the mass fractions of chemical species and the enthalpy. Figure 6.5

shows the computational modules used in the detailed chemistry calculations. The

LES algorithm solves the filtered mass and momentum equations, and then the PDF

solver performs the step 1 and 2 in the TMR fractional time stepping method while

the third step is performed by the ISAT module to evolve the particles in the com-

position space due to the chemical reactions. The simulations are performed for ten

flow-through times based on jet bulk velocity to reach a statistically stationary state,

then an additional ten flow-through times are performed to collect the statistics from

the instantenous resolved fields. For instance, the instantenous resolved temperature

field is shown in Fig. 6.6.

  

 LES PDF 

, , , ,i Tu D D  

, ,PDF S T  
ISAT 

*,k

  
 

*,n

  

Figure 6.5: The computational modules used in the detailed chemistry calculations.

Figure 6.7 presents the time-averaged radial profiles of the resolved temperature,

〈T̃ 〉, and resolved species mass fractions, 〈Ỹ 〉, of CO2, CO, O2 and CH4 at four axial

locations of x/D =7.5, 15, 30 and 45. The numerical results are compared with the

experimental data as well as with the results from a previous LES/PDF simulations

[87] at the locations where they are available. At the locations of x/D = 7.5 and 15,

the results are in very good agreement with the experimental data and at the location

of x/D = 15 the results produced in the present study are closer to the experimental

data than those from the previous LES/PDF simulations. At the location of x/D =
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Table 6.2: The augmented reduced mechanism for the methane/air combustion in-
cluding 16 species - 12 reactions (ARM1) [4].

ELEMENTS

H O C N

SPECIES

H2 O2 OH HO2 H2O2 HO2 H CO CO2 C2H2 C2H4 C2H6 CH2O CH4 CH3 N2

END

REACTIONS

1 O2 + 2 CO = 2 CO2

2 H + O2 + CO = OH + CO2

3 H2 + O2 + CO = H + OH + CO2

4 HO2 + CO = OH + CO2

5 O2 + H2O2 + CO = OH + HO2 + CO2

6 O2 + 0.50 C2H2 = H + CO2

7 O2 + CH3 + CO + C2H4 = CH4 + CO2 + CH2O + 0.50 C2H2

8 O2 + 2CH3 = H2 + CH4 + CO2

9 O2 + 2CH3 + CO = CH4 + CO2 + CH2O

10 O2 + CH3 + CO = H + CO2 + CH2O

11 O2 + CO + C2H6 = CH4 + CO2 + CH2O

12 H + OH = H2O

END
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Figure 6.6: Lagrangian particles used in the Sandia Flame D simulations that are
colored by the instantaneous resolved temperature at a time step after reaching a
statistically stationary state.
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Figure 6.7: Radial profiles of time-averaged resolved temperature T and resolved
species mass fractions of CO2, CO, O2 and CH4 from top to bottom, at axial locations
x/D = 7.5, 15, 30 and 45, from left to right. Symbols, the experimental data; black
line, the present LES/PDF simulation; blue dashed line, the previous LES/PDF
simulation.
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30, the experimental data are reproduced with a slight discrepancy close to the center

line. However, the trend in the results is consistent with the trend observed in the

previous LES/PDF simulations. At the location of x/D = 45, although the trends

are similar in the present and the previous LES/PDF simulations, the discrepancy

between experimental data and the numerical results is visible.

Figure 6.8 shows the rms of temperature, 〈T ′′〉, and species mass fractions, 〈Y ′′〉,

of CO2, CO, O2 and CH4 together with the experimental data and the results from

the previous LES/PDF simulations. Similar observations can be made for the rms

values. At the locations of x/D = 7.5 and 15, the present LES/PDF results are in

good agreement with the experimental data and markedly better than the previous

LES/PDF simulations of Hiremath et al. [87]. At locations of x/D = 30 and 45,

the rms values of the present and previous LES/PDF simulations have very similar

trends: They both produced the rms values slightly smaller than those of experimental

measurements.

6.5 Performance of the Velocity Correction Method

In this section, we investigate performance of the three-stage velocity correction algo-

rithm in enforcing the consistency between the particle mass density, ρkP , defined as

the total particle mass in the kth cell divided by the volume of the cell, and the finite

volume density, ρkFV , at the numerical solution level. In this thesis, the three-stage

velocity correction method is incorporated into the LES/PDF solver for the block

structured grids but it can be readily extended to the unstructured grids to perform

simulations in more complex geometries such as the gas turbine combustors. It is

emphasized here that this is the first study that the three-stage velocity correction

method is incorporated into an LES/PDF solver for the complex geometries. Its per-

formance is assessed through extensive simulations of a turbulent piloted jet diffusion

flame (Sandia Flame D) using the fully coupled LES/PDF solver. First, performance

of the each stage is examined separately and then performance of the three-stages

is demonstrated. The key parameter used in the assessment of the performance of
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Figure 6.8: Radial profiles of time-averaged the rms of temperature and the rms
of species mass fractions of CO2, CO, O2 and CH4 from top to bottom, at axial
locations x/D = 7.5, 15, 30 and 45, from left to right. Symbols, the experimental
data; black line, the present LES/PDF simulation; blue dashed line, the previous
LES/PDF simulation.
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the three-stage velocity correction method is the deviation between the particle mass

density, ρP , and the finite volume density, ρFV , defined for the kth cell as [2]

dρk ≡ ρkP − ρkFV
ρkFV

. (6.10)

A global indicator can then be derived from the deviation between the particle and

FV densities by taking the root-mean-square value of dρk over the computational

domain as [2]

ρRMS ≡

(∑NE
k=1

(
dρk
)2

NE

)1/2

, (6.11)

where NE is the total number of grid cells used in the simulation.

Figure 6.9 shows the contour plot of the instantaneous deviations between particle

mass and FV densities on the whole computational domain. The simulations are

repeated using no correction (Stage 1), the first-level correction (Stage 1 and 2), and

the second level correction (Stage 1-3) with two different relaxation time parameter

of α = 25 and α = 100. The time relaxation parameter α is used to relax the

corrections for the mass residual Rk = (mk,FV −mk,P )/(α∆t) where ∆t is the time

step used in the simulation. In the simulations with no correction (Stage 1), the

deviations between the particle mass and FV densities are very large. The deviations

are significantly reduced in the simulations with the first-level correction (Stage 1 and

2). The improvement in the particle mass distribution with Stage 1 and 2 shows that

the interpolated velocities used in the particle transport have a significant role in the

consistency between the PDF and the LES solvers. Although the first-level correction

reduces the deviations, there is considerable level of deviations between particle mass

and FV densities. The second-level correction (Stage 1-3) further eliminates the

deviations and results in very good consistency between two density fields. The two

figures on the right hand side of Fig. 6.9 show the deviations in the simulations using

the second-level correction with two different time relaxation parameters of α =25 and

100. The relaxation parameter is expected to be critically important in maintaining
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numerical stability of the LES/PDF simulations. To determine its influence on the

numerical stability and the satisfaction of the consistency condition, simulations are

repeated using α =1, 10, 25 and 100. It is found that a numerical instability arises

for the cases of α =1 and α =10 due to excessive correction velocities that become

as large as the jet velocity at the inlet. Therefore the simulations are completed

only for the values of α =25 and 100. The results are shown in Fig. 6.9. As can

be seen in this figure, the deviations in the density fields in the simulations using

α = 25 are smaller than those compared with α = 100. As expected, using a short

relaxation time scale results in a better consistency between the particle mass and

FV density fields. On the other hand, a short relaxation time scale tends to result in

a numerical instability due to the excessive corrections. Therefore there is a trade off

between the consistency and numerical stability, and the relaxation time scale should

be selected carefully such that the consistency condition is effectively enforced while

the numerical stability and robustness are maintained even in severe cases.

     

1 

-1 

0 

Figure 6.9: The deviation between particle mass density and FV density fields com-
puted using (from left to right) no correction (Stage 1), the first-level correction (Stage
1 and 2), and the second-level correction (Stage 1-3 ) with time relaxation parameter
of α=100, and the second-level correction (Stage 1-3 ) with time relaxation parameter
of α=25.
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Figure 6.10 shows the time evolution of the root-mean-square of the deviation

between particle mass and FV densities in the simulations with (i) no correction (Stage

1), (ii) the first-level correction (Stage 1 and 2), (iii) the second-level correction (Stage

1-3) with time relaxation parameter of α = 25, and (iv) the second-level correction

(Stage 1-3) with time relaxation parameter of α = 100. The simulation with no

correction results in the highest deviation with about ρRMS = 0.4. Moreover ρRMS

continues to increase slightly as simulation proceeds. The first-level correction (Stage

1 and 2) reduces the value of ρRMS by 25% compared to the case of no correction

applied. Additionally, ρRMS does not seem to increase during the simulation in the

case of the first-level correction. The second-level corrections (Stage 1-3) with both

values of α = 25 and α = 100, ρRMS is reduced below 0.2. It can be also seen that the

second-level correction with α =25 results in a smaller ρRMS than that with α =100.

Moreover, ρRMS does not increase during the simulations in both cases of α = 25 and

α = 100.

The performance of the three-stage correction algorithm is also investigated through

the one-way coupling methodology. For this purpose, the three-stage velocity correc-

tion method is incorporated into the one-way coupled LES/PDF solver and simula-

tions are performed for the Sandia Flame D case using various stages of the three-stage

velocity correction algorithm. In particular, one-way coupled simulations are carried

out using (i) no correction (Stage 1), (ii) the first-level correction (Stage 1 and 2), (iii)

the second-level correction (Stage 1-3) with time relaxation parameter α = 25, and

(iv) the second-level correction (Stage 1-3) with time relaxation parameter α = 100

and the results are compared for the consistency between the LES and particle fields.

The level of consistency between the results from the LES and the PDF solvers using

different stages of the three-stage velocity correction method shows the effects of each

stage separately. The time-averaged resolved mixture fraction is compared first along

the centerline, and then at the axial locations of x/D = 30 and 45. Figure 6.11 shows

the time-averaged resolved mixture fraction computed by the LES and PDF solvers

along the centerline. As it can be seen in this figure, the results obtained by the PDF
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Figure 6.10: The time evolution of the rms of deviation between particle mass and
FV densities ρRMS. Red dashed line, no correction (Stage 1); blue dashed line, the
first-level correction (Stage 1 and 2); blue dashed dot line, the second-level correction
(Stage 1-3) with α =100; blue solid line, the second-level correction (Stage 1-3) with
α =25.
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solver with no correction (Stage 1) significantly deviate from the result calculated by

the LES solver. The first-level correction (Stage 1 and 2) greatly improves the con-

sistency between the LES and PDF results, but very slight discrepancies appear at

the axial locations of x/D =15 and 30. These discrepancies are completely removed

when the second-level correction (Stage 1-3) with α =25 is applied yielding excellent

agreement between the LES and PDF fields. To show the effects of the relaxation

time scale parameter α, simulations are also performed for α = 25 and α = 100,

and the results are compared in Fig. 6.12. This figure shows that the second-level

correction with α =100 yields overall good consistency between the LES and PDF

solutions. However the discrepancy slightly increases as α increases from α = 25 to

α = 100.

The radial profiles of the time-averaged resolved mixture fraction
〈
ξ̃
〉

from the

LES solver and the PDF solver using different levels of correction are plotted in

Fig. 6.13. In addition, Fig. 6.12 also shows that results from the PDF solver using

the second-level correction (Stage 1-3) with α = 25 are found to be in excellent

agreement with the results from the LES solver at both of the axial locations. The

results from the PDF solver using the first-level correction (Stage 1 and 2) are in

very good agreement with the results from the LES solver. At the axial location

of x/D = 30, the PDF results are slightly smaller than those from the LES solver

close to the centerline. The results from the PDF solver using no correction (Stage

1) generally follow the trend in the results from the LES solver. However, there are

significant discrepancies between the LES and PDF results in this case.

In conclusion, the first-level (Stage 1 and 2) and the second-level (Stage 1-3) cor-

rections significantly improve the consistency between the LES and the PDF solvers.

For the Sandia flame D case, the second level correction results in about 50% less

error compared to the first level correction in terms of the rms of deviations between

the particle and FV density fields. The one-way coupled LES/PDF simulations of

the Sandia flame D performed using the first-level and the second-level corrections

indicate that both levels yield good consistency between the LES and PDF fields.
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Figure 6.11: The LES and PDF results of the time-averaged resolved mixture fraction
along the centerline for the Sandia Flame D. Solid line, LES; dashed line, PDF with
no correction (Stage 1), dotted line, PDF with the first-level correction (Stage1 and
2), dotdash line, PDF with the second-level correction (Stage 1-3) with α = 25.
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Figure 6.12: The LES and PDF results of the time-averaged resolved mixture fraction
along the centerline for the Sandia Flame D. Solid line, LES; dashed line: PDF with
the second-level correction (Stage 1-3) with α = 100; dotdash line, PDF with the
second-level correction (Stage 1-3) with α = 25.
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Figure 6.13: The LES and PDF results of the radial profiles of the time-averaged
resolved mixture fraction at two different axial locations, left: x/D=30 and right:
x/D=45 for the Sandia Flame D. Solid line, LES; dashed line, PDF with no correction
(Stage 1), dotted line, PDF with the first-level correction (Stage 1 and 2), dotdash
line, PDF with the second-level correction (Stage 1-3) with α = 25.

However, the simulation with the second-level correction results in a slightly better

consistency than the results computed using only the first-level correction.

6.6 Computational Cost

In this study, the simulations are performed using a 256×128×32 cylindrical-type

block structured grid as shown in Fig. 6.2 with about 20 particles per cell. The com-

putational domain is decomposed into 96 subdomains and simulations are performed

using 48 CPUs of 2.40GHz Intel Xeon with multithreading technique (96 threads in

total). The simulations are carried out for ten flow-through times based on the fuel jet

bulk velocity to reach a statistically stationary state, and then an additional ten flow-

through times were performed to collect the statistics. In total, about 100,000 time

steps are marched in each simulation and the simulations are completed in 12 days

wall-clock time. The relative computational cost of each component of the LES/PDF

simulations is presented in Fig. 6.14. As can be seen in this figure, about 85% of the

total computational time is consumed by the PDF solver. Additionally, 85% of the
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computational time of the PDF solver is consumed by the three main processes of

transport T, mixing M and reaction R. The reaction module of the PDF solver con-

sumes about 30% of the total computational time whereas the mixing and transport

processes consume about 20% and 22% of the total computational time, respectively.

The LES solver consumes only 15% of the total computational time. The computa-

tional time elapsed by the new LES/PDF solver is of the same order of those reported

in the previous LES/PDF simulations [[3, 32, 33]].
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Figure 6.14: The percentage of computational cost of LES and PDF solver as well as
the transport T, mixing M and reaction R calculations in PDF solver. TMR represent
the total percentage of elapsed time of transport, mixing and reaction in PDF solver.

In this section, we also examine the computational cost of the three-stage velocity

correction method. The computational cost required by each stage in the method is

investigated separately. Here, we first define the computational cost of using each

stage of the velocity correction method, and then give relative cost of each stage. The

cost for Stage 1 consists of the cost of interpolation of the LES velocities first from the

cell centers to the cell vertices and then from cell vertices onto the particle locations,

and the cost of tracking particles in the computational domain. The cost of using

the Stage 2 correction is equal to the cost of solving a linear system of equations

for each cell to calculate the Stage 2 velocity corrections at cell vertices. Finally
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Stage 3 requires solving an equation similar to the discrete pressure Poisson equation

to obtain the Stage 3 velocity corrections at the cell centers, and then moving the

particles with this correction velocity using the Stage 1 and 2. In Fig. 6.15, the time

consumed by each stage is presented. As seen, the Stage 1 requires a considerable

amount of time since it performs the tracking of the particles in the computational

domain. The additional cost for using the Stage 2 correction is about 8% of the cost

of the Stage 1. However, using the Stage 3 correction requires more than the total

cost of Stage 1 and 2.

 
0 1 2 3

stage 1

stage 1,2

stage 1,2,3

stage 1

stage 2

stage 3

Figure 6.15: The elapsed time by the particle transport module in the PDF solver
per time step in seconds. The blue bar, the time elapsed by the Stage 1; the red bar,
the time elapsed by the Stage 2 and the green bar, the time elapsed by the Stage 3.



Chapter 7

THE CAMBRIDGE STRATIFIED FLAMES

In many practical combustion devices, the combustion occurs in a stratified regime

in which the fuel concentration varies in the physical space. This stratification could

be due to the design constraints or insufficient time to mix the fuel and oxidizer

completely. On the other hand, the stratification could be created intentionally to

increase the flame stabilization in the lean combustion. Haworth et al. [88] and

Jimenez et al. [89] have described the main characteristics of a stratified flame.

The schematic in Fig. 7.1 shows the main characteristics of a stratified flame. A

primary premixed flame front propagates into reactants whose concentrations vary in

space. Behind the flame front, the fuel-rich reactant results in hot products and fuel

fragments whereas the fuel-lean reactant produces hot products and O2. Thus behind

the primary flame front, the hot fuel fragments and O2 create the secondary flame

zone.

 

Fuel-Rich 

Reactant 

Fuel-Lean 

Reactant 

Hot Products  

and 

 O2 

Hot Products 

and 

Fuel fragments 

Primary premixed flame 

Secondary 

Reaction Zone 

Figure 7.1: A schematic of turbulent flame propagation into a stratified fuel concen-
tration.
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In the literature, the turbulent combustion models have been developed mainly for

the two canonical regimes: i) non-premixed combustion in which the fuel and oxidizer

are completely segregated before reaction takes place, and ii) premixed combustion

in which the fuel and oxidizer are perfectly mixed beforehand. Common occurrence

in practical devices and the potential benefits to increase the stability in the lean

combustion have increased the motivation for modeling the stratified turbulent flames.

Generally the models for the stratified combustion are developed by extending the

existing models for the premixed combustion. Proch and Kempf [90] developed an

artificially thickened flame method with a tabulated chemistry and Nambully et al.

[91, 92] have developed a model based on the mixture fraction and a progress variable.

The two methods were successful to predict the main properties in the turbulent

reacting flow.

The PDF method is a regime independent method since the chemical reaction

source term is in the closed form. Therefore the PDF method has a great potential to

successfully model the premixed, nonpremixed and stratified turbulent flames without

requiring any modifications. We apply the new LES/PDF solver to a bluff-body

burner from the Cambridge Stratified Flame series. We first describe the experimental

configuration briefly and then present the LES/PDF simulation results.

7.1 Experimental Configuration

The schematic of burner is shown in Fig. 7.2. The burner consists of a central bluff

body surrounded by two annular fuel jets, i.e., the inner and the outer jets. In the

most annulus, air-coflow is supplied to prevent entrainment of the ambient air. The

dimensions of the burner are summarized in Table 7.1. The concentrations of the fuel

from the inner and the outer jets are varied systematically to investigate the effects

of the stratification. The fuel concentration configurations are given in Table 7.2.

The bulk velocity at the inlets are given in Table 7.3. The flames are stabilized by

a recirculation behind the bluff body. More details about this flame are available in

Sweeney et al. [5, 93].
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Table 7.1: Dimensions of the stratified bluff body burner.

Bluff body diameter = 12.7 mm

Inner jet annulus diameter = 23.6 mm (wall thickness = 0.9 mm)

Outer jet annulus diameter = 34.8 mm (wall thickness = 0.9 mm)

Table 7.2: The equivalence ratio in the inner and the outer fuel jets in the stratified
bluff body burner [5].

Case φi φo

SwB1 0.75 0.75

SwB5 1.0 0.5

SwB9 1.125 0.375

Table 7.3: Bulk velocities at the inlets and corresponding reynolds numbers [5].

Ubulk Corresponding Reynolds number

inner fuel jet 8.31 5960

outer fuel jet 18.7 11500

air coflow 0.4 -
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Figure 7.2: A schematic of the stratified bluff body burner [5].

7.2 Computational Setup

The computational domain is selected to be [200mm]×[100mm]×[0,2π] in the axial

(x), radial (r) and azimuthal (θ) directions, respectively. The domain is discretized

using a non-uniform 192×96×32 block structured cylindrical-type grid. The grid is

concentrated near the nozzle in axial direction and in the shear region between the

fuel jets in the radial direction.

In the fuel jets, the instantaneous inlet velocities are obtained from two separate

turbulent pipe flow simulations. We use the same method as explained in the previous

chapter to interpolate the inlet velocities from the turbulent pipe flow simulations.

The inlet velocity of the air-coflow is set to a value of 0.4 m/s. At the bluff body and

wall-lips, the slip boundary conditions are applied. At the outlet, the zero-gradient

boundary conditions are imposed for all the fields while the slip boundary conditions

are used at the far field, i.e., on the lateral surface. In the PDF solver, about 40

particles per cell are used due to the complex flow fields of recirculation behind the

bluff body.
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7.3 Results

The numerical results from the simulation with the detailed chemistry calculations are

presented in this section. For the methane/air combustion, the ARM1 [4] chemistry

mechanism is used. Figure 7.3 presents the time-averaged radial profiles of resolved

axial velocity
〈
Ũ
〉

and the rms of the resolved axial velocity
〈
ũ′′
〉

at four axial lo-

cations of x = 2, 10, 30 and 50 mm. The mean axial velocity profiles are in good

agreement with the experimental measurements at the locations of x = 2, 10, 30 mm.

Close to the centerline the numerical results are slightly bigger than the experimental

measurements for all the three locations. At the axial location of x = 50 mm, the

numerical results are evidently bigger than the experimental data. The rms of the

resolved axial velocity is in good agreement at the locations of x = 2 mm and 10 mm.

The trend of the rms velocity is similar to the trend in the experimental data but the

numerical results significantly overpredict the experimental measurements, especially

in the downstream locations of x = 30 mm and 50 mm .
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Figure 7.3: The radial profiles of time-averaged resolved axial velocity (top), resolved
turbulence intensity (bottom) at four axial location of x =2, 10, 30 and 50 mm. The
symbols: The experimental data; solid line: The LES/PDF results.

Figure 7.4 shows the time-averaged radial profiles of the resolved temperature〈
T̃
〉

at the axial locations of x = 10, 20, 30, 40 and 50 mm. At the axial locations
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of x = 10, 20 mm, the radial profiles of the mean temperature match well with

the experimental data. At the axial location of x = 30 mm, the radial profile of

mean temperature is in agreement with the experimental data but slight discrepancy

appears in the gradient of the mean temperature. At the axial location of x = 40

and 50 mm the trend in the radial profiles of the mean temperature is similar to

the experimental data but the peak temperatures are underestimated and also the

gradients of the mean temperature in the radial profiles are not reproduced well in

the numerical results. The radial profiles of the rms temperature are shown in Fig.

7.5. The peak of the rms temperature in the radial profiles are lower than the peak

of the experimental measurements at all the axial locations. The width of the rms

temperature profiles at the locations of x = 30, 40 and 50 mm are larger than that

in the experimental data which is consistent with the discrepancy observed in the

gradient of the mean temperature radial profiles at these locations.

The time-averaged radial proles of mass fractions of
〈
ỸCO2

〉
and

〈
ỸCO

〉
are plotted

in Fig. 7.4. The observations for the mean ỸCO2 profiles are very similar to the

observations for the mean temperature profiles. However the peak of the radial profiles

of mean ỸCO2 are smaller than the experimental data. At the axial locations of x = 10

mm, 20 mm, the results are in good agreement with the experimental measurement

while at the locations x = 30, 40 and 50 mm discrepancies in the gradient of the

radial profiles appear as in the case of the mean temperature. The maximum value of

the radial profiles of the mean ỸCO are in good agreement with the maximum values

of the experimental data. At the locations of x = 10, 20 mm, the radial profiles

match with the experimental data very well, however, at locations of x = 30, 40 and

50 mm, the width of the radial profiles is larger than that of the experimental data

as was also the case of the rms temperature profiles. The rms of the mass fraction of〈
Ỹ ′′CO2

〉
and

〈
Ỹ ′′CO

〉
are presented in Fig. 7.5. As observed in the rms temperature

profiles, the rms mass fraction profiles are wider than the profiles of the experimental

data. Additionally, the maximum values of the rms of the mass fraction profiles are

smaller than those of the experimental data.
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Figure 7.4: The radial profiles of the time-averaged resolved temperature and the
resolved mass fractions of CO2 and CO at four axial location of x=10, 20, 30 and 50
mm. The symbols: The experimental data; The solid line: The LES/PDF results.
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Figure 7.5: The radial profiles of the time-averaged rms of temperature and the rms
of mass fraction of CO2 and CO at four axial location of x=2, 10, 30 and 50 mm.
The symbols: The experimental data; The solid line: The LES/PDF results.
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CONCLUSIONS AND FUTURE DIRECTION

8.1 Conclusions

The PDF method has been shown to be superior model for the prediction of turbulent

reacting flows. In this thesis, a general purpose LES/PDF methodology is developed

for the simulations of turbulent reacting flows in complex geometries. The LES/PDF

solver consists of two components (i) a finite volume method based LES solver, and

(ii) a Lagrangian Monte Carlo method based PDF solver. The two components of the

hybrid LES/PDF solver are developed entirely within the OpenFOAM framework. In

literature, this is the first general purpose LES/PDF solver developed entirely within

an open-source library. The OpenFOAM library is chosen as a working platform

due to its large range of physical modules such as soot formation and evaporation.

The new LES/PDF solver has the capability of performing the detailed chemistry

calculations. In situ adaptive tabulation (ISAT) method developed by Pope [1] is

incorporated to accelerate the detailed chemical kinetics calculations. The three-stage

velocity correction method [2] is also incorporated into the LES/PDF solver for the

block structured grids. This is the first time that the three-stage velocity correction is

implemented and truly tested in the LES/PDF methodology in the block structured

grids.

The accuracy and the numerical consistency of the LES and the PDF solvers are

examined through the one-way coupling method [3]. For this purpose, a turbulent

piloted methane/air jet diffusion flame (Sandia Flame-D) simulations are performed

using a simple flamelet chemistry model. The fields of the resolved mixture fraction

and temperature calculated by the LES and the PDF solvers are compared. The

results from the two solvers are in very good agreement demonstrating the accuracy
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of the numerical methods in the LES and the PDF solvers as well as their consistency.

The performance of the three-stage velocity correction method is examined to show

the effects of the each stage on the numerical accuracy and the consistency of the

two solvers. The first-level correction is found to be very efficient in reducing the

numerical error and enforcing the consistency between the LES and the PDF solvers.

Furthermore, the second-level correction is found to be very effective in eliminating

any deviation between the mass densities of the LES and the PDF solvers, which

mat crucially important especially in the case of complex flows involving swirling and

recirculation regions. Additionally, the computational cost required by each stage is

also investigated. The computational cost of the first-level correction is defined as the

time required to solve the linear equation system to determine the first-level velocity

correction. It is found that the first-level correction increases the computational

time consumed by the particle tracking algorithm only by 8%. However, the second-

level correction increases the computational cost of the particle tracking by two folds.

Because the second-level correction solves an equation in the same form as the discrete

pressure equation, and then the Stage 1 and 2 are used again to move the particles

with the second-level correction velocities.

The Sandia Flame-D simulations are performed using the new LES/PDF solver

with the detailed chemistry representation. The ISAT method is employed in the de-

tailed chemical kinetics calculations. The methane/air combustion is described with

an augmented reduced mechanism (ARM1) consisting of 12 steps and 16 species [4].

It is found that the numerical results are in very good agreement with the experi-

mental measurements. The statistical moments of the key chemical species are also

predicted quite accurately. The results from the new LES/PDF solver match with

the experimental measurements better than those from the previous LES/PDF sim-

ulations [87]. The improvement in the numerical results can be attributed to the

performance of the particle tracking and the velocity correction methods used in the

present PDF solver.

The computational cost of the new LES/PDF solver on block structured grid
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is also examined. The PDF component of the LES/PDF solver consumes 85% of

the total computational time consumed by the LES/PDF solver. The ratio of the

computational cost of the PDF component to the cost of the LES/PDF solver is in

the same order of the ratio of the previous PDF solver [33]. This indicates that the

new PDF solver on a block structured grid, and employing the three-stage velocity

correction can be computationally as efficient as the previous PDF solver of Wang

and Pope [3] on a simple structured grid without any velocity correction algorithm.

Finally, the new LES/PDF solver with the detailed chemistry representation is

applied to study a turbulent premixed flame from the Cambridge turbulent stratified

flame series [5]. The methane/air combustion is described using the ARM1 chemical

mechanism as used in the Sandia Flame-D simulations. The results are found to be in

reasonably good agreement with the experimental data. The recirculation zone, and

the temperature profiles are predicted accurately at the upstream locations close to

bluff body. However, some discrepancies are apparent between the numerical results

and the experimental data at the downstream locations. This could be attributed to

the fact that the model coefficient used in the IEM mixing model is not optimal.

8.2 Recommendations for Future Work

The general purpose LES/PDF solver on a block structured grid for a complex ge-

ometry is found to be very efficient in the simulations of the turbulent reacting flows.

Moreover, its predictive capability and the order of accuracy of the numerical schemes

used can be further improved by conducting some future work as summarized below:

1. The new LES/PDF solver is developed for turbulent combustion simulations

in complex geometries using block structured hexahedral computational cells.

The solver can be straightforwardly extendable to unstructured grids. Then the

performance of the solver on unstructured grid should be tested in the future.

2. In this work we used unity Lewis number assumption for all the chemical species,

thus the differential diffusivity effects are neglected. Barlow [94] has reported
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that the differential diffusivity of species has strong effect on the recirculation

zones, thus the differential diffusivity should be considered in the simulations of

flows dominated by recirculation region. In the LES/PDF solver, the differential

diffusivity can be implemented by following the work by McDermott and Pope

[60].

3. In the PDF solver, the particle equations are solved by the first order time

stepping method. Although Wang and Pope [3] have reported that the first

order method performs as well as the second order methods, Popov and Pope

[83] have reported that the second order particle transport methods increase the

consistency between the PDF and LES solvers. Wang et al. [75] have presented

various second order particle tracking methods. In terms of computational effi-

ciency, the method developed by Cao and Pope [73] can be implemented on the

unstructured grids while the others increase the computational cost significantly.

As a future work, the second order time stepping method, namely TMRMT, can

be implimented to achieve the second order accuracy in the present LES/PDF

method.

4. The parallelization in the present LES/PDF method is performed by decom-

position of the computational domain such that each subdomain has about the

same number computational cell (thus the same order of number of particles).

This significantly balances the load in the LES solver and the particle transport

and mixing in PDF solver. However, the load due to chemical reactions in the

PDF solver performed by the ISAT module may not be optimized since some

regions may include stiff chemical reactions (for example subdomains including

the flame sheat between pilot flame and fuel jet) but in some regions chemical

reactions may not take place at all (for example in a subdomain including only

air-coflow). Dynamic load balancing can be done to optimize the computational

load in all subdomains.
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