
A Framework for Task Placement on Multicore

Architectures

by

Pirah Noor Soomro

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

January 19, 2018



A Framework for Task Placement on Multicore Architectures
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ABSTRACT

Current multicore machines have a large number of cores and the number of cores

is expected to increase in upcoming exascale multicore machines. Binding parallel

tasks to cores according to a placement policy is one of the key aspects to achieve

good performance in multicore machines because it can reduce on-chip communica-

tion among parallel threads. Binding also prevents operating system from migrating

threads, which improves data locality. However, there is no single mapping policy that

works best among all different kinds of applications and machines because each ma-

chine has a different topology and each application exhibits different communication

pattern. Determining the best policy for a given application and for a given machine

requires extra programming effort. To relieve the programmer from that burden, we

argue the need for an automated task binding tool that generates mapping policy

specific to the machine topology and application behaviour.

We present BindMe, a thread binding library, that assists programmer to bind

threads to underlying hardware. BindMe incorporates state-of-the- art mapping al-

gorithms which use communication pattern in an application to formulate an efficient

task placement policy. We also introduce ChoiceMap, a communication aware map-

ping algorithm that generates a mapping sequence by respecting mutual priorities of

parallel tasks. ChoiceMap performs a fair mapping by reducing communication vol-

ume among cores. The algorithm can be used both in shared memory and distributed

memory systems. ChoiceMap is incorporated in BindMe and can be used as one of

the mapping options. We have tested BindMe with various applications from NAS

parallel benchmark. Our results show that choosing a mapping policy that best suits

the application behavior can increase its performance and no single policy gives the

best performance across different applications.
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ÖZETÇE

Mevcut çok çekirdekli sistemler çok sayıda işlemci çekirdeğine sahiptir ve yakın

zamanda kullanılmaya başlanacak olan exascale sistemlerde çekirdek sayısının daha

da artması beklenmektedir. Paralel işleri işlemcilere yerleştirmek çip içindeki islem-

ciler arasındaki iletişim miktarını azalttığından çok çekirdekli makinelerde perfor-

mansı arttırıcı bir etkendir. Ayrıca bu yöntem işletim sisteminin iş parçacıklarının

göç etmesini önleyerek veri yerelliğinin iyileştirilmesi de sağlamaktadır. Ancak, farklı

uygulamalar ve makineler arasında en iyi performansı sağlayacak tek bir paralel

işleri işlemcilere yerleştirme algoritması bulunmamakta çünkü her makinenin farklı

bir topolojisi bulunmakta ve her uygulama farklı bir iletişim örüntüsü sergilemekte-

dir. Bir uygulama veya bir makine için en uygun algoritmayı belirlemek, fazladan

programlama eforu gerektirmektedir. Yazılımcının bu yükünü ortadan kaldırmak

için, uygulama örüntüsüne ve makine topolojisine özel eşleme algoritması üretecek

otomatik bir iş atama aracının gerekliliğini savunmaktayız.

Bu amaç doğrultusunda bu tezde yazılımcıya iş parçacıklarını donanıma ata-

masında yardımcı olacak iş parçacığı atama kütüphanesini, BindMe aracını, sunuy-

oruz. BindMe, etkili bir iş yerleştirme ilkesini formülize etmek için uygulamadaki

iletişim örüntülerini kullanır ve en yeni eşleme algoritmalarını bünyesinde bulundur-

maktadır. Buna ilave olarak, paralel iş parçacıklarının ortak önceliklerini değerlendirerek

eşleme dizisi üreten iletişim bilinçine dayalı bir eşleme algoritması olan ChoiceMap’i

sunuyoruz. ChoiceMap, çekirdekler arası iletişim hacmini azaltarak dengeli bir eşleme

gerçekleştirmektedir. Algoritma hem dağıtık, hem paylaşımlı sistemlerde kullanılır.

BindMe, bünyesinde ChoiceMap algoritmasını da eşleme seçeneklerinden biri olarak

bulundurmaktadır. BindMe aracını, NAS paralel benchmark kapsamındaki bir çok

uygulamayla değerlendirdik. Bulgularımız gösteriyor ki, uygulama örüntülerine en

v



iyi uyacak eşleme ilkesini seçmek, uygulamanın verimini arttırmakta ve tek bir çeşit

eşleme algoritması farklı uygulamalarda en iyi performansı sağlayamamaktadır.
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School ofS cience and Engineering, Koç University for providing a nice environment

to focus on my studies and supporting my research expanses.

Last but not least, I am thankful to my family and friends from core of heart to

be with me through all tough times during my studies.

vii





TABLE OF CONTENTS

List of Tables xi

List of Figures xii

Nomenclature xiv

Chapter 1: Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 BindMe Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 ChoiceMap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Communication Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Machine Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3: Existing Mapping Solutions 8

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 General Mapping Policies . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Communication Aware Mappings . . . . . . . . . . . . . . . . . . . . 9

3.3.1 TreeMatch Algorithm . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.2 EagerMap Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ix



Chapter 4: ChoiceMap: A Fair Task Mapping Algorithm 15

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 ChoiceMap Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Hierarchy Mapping . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 Cycles in Choice Matrix . . . . . . . . . . . . . . . . . . . . . 18

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Mapping Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 5: BindMe: A thread binding tool 22

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Programming Interface of BindMe . . . . . . . . . . . . . . . . . . . . 22

5.3 Supporting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.1 Hwloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.2 Numalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.3 CommMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 6: Evaluation 28

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 NAS Parallel Benchmark (NPB) . . . . . . . . . . . . . . . . . 29

6.3.2 Image Segmentation Code . . . . . . . . . . . . . . . . . . . . 31

6.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.4.2 Communication Reduction between NUMA nodes . . . . . . . 35

6.4.3 Communication Volume Across NUMA Nodes . . . . . . . . . 38

Chapter 7: Conclusion 44

Bibliography 45

x



LIST OF TABLES

3.1 TreeMatch algorithm executed for example case . . . . . . . . . . . . 13

3.2 EagerMap algorithm executed for example . . . . . . . . . . . . . . . 13

4.1 Comparison of different mapping algorithms based on reduction in com-

munication volume by pairing . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Machine topology specification . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Configuration of test applications, granularity indicates cache line size

in bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Test applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Input size of class B and C for NAS applications . . . . . . . . . . . . 41

6.7 Communication volume (in Trillion communication events in terms of

cache line sharing) of LU (class C) between four NUMA nodes of KNL

with 64 threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



LIST OF FIGURES

2.1 Weighted task interaction graph (TIG) of a parallel application with 8

threads (left). Communication matrix of TIG (right) . . . . . . . . . 6

2.2 An example machine topology, Arity sequence = 1,2,2,2 . . . . . . . . 7

3.1 On the left, scatter placement policy is shown; task 9 goes to core 0

on socket 0, task 1 goes to core 2 on socket 1. On the right, compact

placement policy is shown; both task 0 and 1 are placed on the same

socket on core 0 and core 1. . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 An example machine topology, Arity sequence = 1,2,2,2 at level 0,1,2,3

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Left: Communication matrix, Right: Communication pattern . . . . 12

3.4 TreeMatch mapping sequence for level 3 . . . . . . . . . . . . . . . . 12

3.5 EagerMap mapping sequence for level 3 . . . . . . . . . . . . . . . . . 14

4.1 Choice matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Loop in choice matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Level 3: Pass 1: four processes got paired. . . . . . . . . . . . . . . . 20

4.4 Level 3: Pass 2: other four processes got paired. . . . . . . . . . . . 20

4.5 ChoiceMap mapping sequence for level 3 . . . . . . . . . . . . . . . . 21

5.1 Overview of BindMe . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Example output of a machine by lstopo. . . . . . . . . . . . . . . . . 26

6.1 Schematic diagram of Intel KNL . . . . . . . . . . . . . . . . . . . . . 30

6.2 Schematic diagram of Intel Broadwell . . . . . . . . . . . . . . . . . . 30

xii



6.3 Communication matrices of BT, CG, LU, SP and MG class B and C

on Broadwell with 32 threads. We did not include MG Class B here

because its execution time is too short for a reliable evaluation . . . . 32

6.4 Communication matrices of BT, CG, LU, SP and MG on KNL with

fine and core granularity . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Execution time of NAS applications, class B and Image segmentation

application executed on Broadwell, granularity = core . . . . . . . . . 35

6.6 Execution time of NAS application, class B on Broadwell, granularity

= core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7 Execution time of NAS application, class C on KNL, granularity = core 36

6.8 Execution time of NAS application, class C on KNL, granularity = fine 37

6.9 Execution time of MG Class C executed on Intel Broadwell and Intel

KNL with fine granularity . . . . . . . . . . . . . . . . . . . . . . . . 37

6.10 Comparison of pair values generated by EagerMap, TreeMatch and

ChoiceMap with respect to best and worst pair values . . . . . . . . 39

6.11 Comparison of inter NUMA node communication . . . . . . . . . . . 43

6.12 Communication between four NUMA nodes . . . . . . . . . . . . . . 43

xiii



NOMENCLATURE

• PU : Processing Unit

• MPI : Message Passing Interface

• OMP : Open Multi-Processing

• GNU : GNU is Not Unix

• TIG : Task Integration Graph

• OS : Operating System

• GCC : GNU Compiler Collection

• ICC : Intel C Compiler

• NAS : NASA Advanced Supercomputing

• NPB : NAS Parallel Benchmark

• NUMA : Non-Uniform Memory Access

• SNC : Single NUMA Cluster

• KNL : KNights Landing

• API : Application Programming Interface

• CFD : Computational Fluid Dynamics

xiv



Chapter 1

INTRODUCTION

1.1 Motivation

As the number of cores increases in multicore architectures, task placements on cores

become an important performance parameter as optimal placement reduces the ex-

ecution time and power consumption on the chip. In early years of multicore, there

were only few cores thus, mapping threads to cores did not play a significant role in

performance. However, today’s chips are equipped with 10s of cores [Sodani et al.,

2016] and it is expected that the number of cores on a chip will double every two

to three years [Ang et al., 2014]. Having large number of cores on one chip causes

variance in communication latency among cores due to distance between them [Das

et al., 2013]. As a result, to avoid execution delays by communication, placement of

tasks should be done in a way to maximize the memory bandwidth and minimize the

latency.

When an application is executed in parallel there is an affinity among its parallel

tasks. Tasks that communicate the most in terms of amount of data would have high

affinity with each other. Existence of such affinity-based relation among tasks can be

utilized to place threads to reduce the communication time.

Current state-of-the-art shared memory programming models such as OpenMP

[Dagum and Menon, 1998] provide process affinity options. Even though these affinity

options facilitate thread binding, binding is performed without considering applica-

tion’s communication behavior. One solution is to device a binding sequence based

on the communication pattern of the application and bind the task according to that
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sequence. This solution is not portable because the programmer has to discover the

details of machine topology and bind the tasks accordingly.

1.2 BindMe Framework

We develop BindMe framework, which aids programmer in thread binding by discov-

ering the machine topology. It combines the information about the communication

pattern of an application and hardware topology and generates a binding sequence

by using various mapping algorithms. BindMe leverages existing tools and combines

them under a single framework. It uses the Numalize tool [Diener et al., 2016] to

extract communication information from an application and leverages hwloc [Bro-

quedis et al., 2010] to explore underlying hardware topology tree. Based on this

information it generates a mapping sequence using state of the art algorithms, such

as TreeMatch [Jeannot et al., 2014] and EagerMap [Cruz et al., 2015]. Tasks are then

automatically bound to cores according to the mapping sequence. Programmer has

the choice to set a mapping algorithm for generating the mapping sequence. BindMe

reduces this efforts with a single library call.

We have tested the BindMe library with the applications from NAS benchmark

[Jin et al., 1999]. Performance of the applications is evaluated in terms of execution

time by binding applications with five different mapping policies with the help of the

BindMe library. Our results show that choosing a mapping policy that best suits the

application behavior can increase its performance and no single policy gives the best

performance across different applications and architectures.

1.3 ChoiceMap Algorithm

We propose a mapping algorithm that utilizes application behavior and machine topol-

ogy to generate a mapping sequence. We model the mapping problem as a matching

problem where tasks are paired based on their priorities for partner tasks. Our algo-

rithm is based on the core concept of roommate matching algorithm [Irving, 1985] in

which every person has a priority list of all the other people as a potential roommate.
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People are paired based on their mutual priorities. Since the machine has a hierarchy

of resources, we apply this algorithm recursively and compose groups out of sub-

groups of threads. Our approach accurately captures task affinities in an application

and generates a fair mapping sequence.

Treematch [Jeannot et al., 2014] and Eagermap [Cruz et al., 2015] also analyze

communication pattern of an application and topology of the underlying machine to

generate a mapping sequence. However, these mapping algorithms do not consider

mutual priorities of tasks to be paired. We propose an algorithm that maps tasks by

pairing most mutually desired tasks together. Unlike other mapping algorithms, our

algorithm is more fair.

1.4 Contributions

This thesis has following contributions:

• We examined current binding options and ways to automate binding task.

• We developed BindMe that automatically binds tasks to execution units based

on a mapping policy by combining machine’s topology and application’s com-

munication information.

• We examined existing mapping solutions and their problems in detail.

• We designed ChoiceMap, a mapping algorithm that does fair mapping by ana-

lyzing communication matrix and machine topology.

1.5 Organization of Thesis

Chapter 2 provides necessary background on task placement. Chapter 3 discusses

the existing mapping solutions with examples. Chapter 4 discusses the ChoiceMap

algorithm. The BindMe tool is discussed in Chapter 5 along with its API, usage and

supporting tools. In Chapter 6 we evaluate mapping policies and compare choicemap

with existing solutions.Overall work of this thesis is concluded in Chapter 7.



Chapter 2

BACKGROUND

2.1 Introduction

Current parallel programming frameworks provide binding options that can be set

to bind tasks to cores in order to maximize cache usage and load balance among

cores. In this chapter we will discuss available binding options and requirements for

automatic binding.

Runtime libraries provide options to bind OpenMP threads. The interface is con-

trolled by environment variables. For example, Intel offers KMP AFFINITY which

is used to set binding policy for an application.

In GNU compilers, OpenMP thread binding can be done by setting an environment

variable, GOMP CPU AFFINITY. For binding threads of an application, binding

list should be assigned to GOMP CPU AFFINITY prior to execution. This requires

programmer to explore machine topology and analyze application behavior.

MPI [Gropp et al., 1996], another common parallel programming framework also

provides options to bind processes to cores. MPI process launcher (e.g. mpirun or

mpiexec) support various binding switches. -bind-to-X, where X can be a node, core

or socket, binds the processes to said topology level and signals operating system not

to migrate the process out of that level X. -bind-to-X switch is used with combination

of -byX switch (X refers to node or core or socket). This switch represents the binding

granularity by following a round robin [Shreedhar and Varghese, 1996] mapping policy.

User can specify a custom binding strategy by using a -hostfile option. The file

contains more detailed and machine specific information, such as number of processes

to be assigned to each node with a mapping policy represented by -map-by-X switch.

Although MPI process launcher provides a detailed interface to bind the processes
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according to intuition of the user. Similar to OpenMP, it requires expertise of user

that s/he must know machine topology and applications behavior.

The main purpose of task mapping is to get benefit from data locality and shared

memory bandwidth. The execution behavior of a parallel application provides an

insight of task affinities for determining a good mapping strategy. For this purpose

application is executed once to record communication behavior which is used by

mapping algorithm to generate mapping sequence. Mapping algorithms also require

information about machine topology to determine total processing units for mapping

sequence. We further explain these two inputs in order to understand how they can

be used for designing a more complex mapping algorithm.

2.2 Communication Matrix

In a parallel application, task affinity is represented as the amount of data communi-

cated between tasks. More data communicated between two tasks indicates a strong

affinity between those tasks. In a shared memory environment, we consider that

communication between two threads occur if they share the same cache line.

Communication behavior of an application can be represented as a communication

graph or task integration graph [Long and Clarke, 1989]. As shown in Figure 2.1,

for a parallel application using 8 threads, the vertices represents threads and edges

between two vertices, represent communication. The weight on edges represents the

amount of communication between the two corresponding threads. Communication

graph can be converted into a communication matrix, which would contain amount

of communication between thread pairs where the indices represent the thread IDs.

The communication matrix is symmetric and the zero diagonal matrix, as shown

in Figure 2.1. Communication aware mapping algorithms analyze communication

matrix to generate a mapping sequence for a parallel application.
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Figure 2.1: Weighted task interaction graph (TIG) of a parallel application with 8

threads (left). Communication matrix of TIG (right)

2.3 Machine Topology

In order to map tasks to processing units, machine architecture should be analyzed

first. It gives an insight about the number of tasks to be grouped at each level of

topology tree.

Computing resources in a machine can be represented as a tree, where the root

represents the machine and the leaf nodes represent logical processing units. Typically

a topology tree is symmetric but it does not have to be. Figure 2.2 shows an example

machine topology for only its processing units, omitting storage units. The machine

topology tree can be converted into an arity sequence, which represents the number of

objects at each level of the topology tree. The topology tree of 4 levels in Figure 2.2

is represented by an arity sequence of 1, 2, 2, 2. Mapping algorithm uses this arity

sequence to determine the number of tasks in a single group at a given level of topology

tree.
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Figure 2.2: An example machine topology, Arity sequence = 1,2,2,2



Chapter 3

EXISTING MAPPING SOLUTIONS

3.1 Introduction

There are various mapping solutions available and the main focus in all mapping

policies is, ”How to arrange threads on cores such that the arrangement reduces inter-

core communication, improve cache locality and overall execution time. ”. Mapping

solutions are categorized into two domains. One of the domain includes such policies

that simply binds threads to cores as in OpenMP (Intel compiler) without taking the

application behavior into account. On the other hand, second domain includes those

mapping algorithms that analyze a specific application on a particular architecture

and generate a mapping sequence based on case specific features such as communi-

cation behavior and machine topology. For the purpose of reference we name them

as general mapping and application specific policies respectively. This chapter covers

these two approaches with their examples in detail and discusses short comings which

need to be considered for better mapping.

3.2 General Mapping Policies

The main purpose of such binding is to prevent OS from migrating threads between

different processing units during execution of an application since thread migration

can also lead to page migration which results into lowering the application perfor-

mance. Next we will consider three binding options supported by Intel compiler.

Scatter : Figure 3.1 shows an example of scatter mapping supported in OpenMP,

where tasks are equally distributed on resources. An application with 4 threads and

affinity set to the scatter mode will get equal number of tasks on both NUMA nodes.
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Compact: This policy supports data locality with an assumption that there exists

more communication and data sharing between neighboring threads. Figure 3.1 shows

an example of compact policy. The threads are placed so that all processing units of

node 0 are occupied first and then next node is utilized for additional threads.

Balanced Balanced is yet another mapping policy which lies in between compact

and scatter in terms of benefits. In balanced threads are equally distributed among

all cores but threads in the same cores are neighboring threads. Thus balanced policy

gets benefit of load balancing as in scatter and also improves cache utilization by

placing neighbor threads together, as in compact.

OMP PROC BIND: Another mapping policy designed for OpenMP nested

tasks based applications is provided by OpenMP 4.5, OMP PROC BIND. OMP PROC BIND

specifies whether processes can migrate throughout the execution or remain at there

binding sites. It also specifies thread affinity policy for the corresponding nesting

level. Master means that nested threads should be placed at the same place where

master thread resides. Close specifies that nested threads should be bound close to

master threads. In spread, nested threads are distributed sparsely across the bind-

ing sites. In this thesis we do not consider nested parallelism in applications so we

have focused only on scatter and compact policies for evaluations, which are most

commonly used.

3.3 Communication Aware Mappings

A more case specific mapping can be formulated by analyzing application behavior

and the topology of the machine on which application executes. There are various

algorithms available in literature which analyze communiaction matrix of an applica-

tion which is generated beforehand and an information of hardware hierarchy. Two

of the latest algorithms are discussed below in the context of communication aware

mapping:
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Figure 3.1: On the left, scatter placement policy is shown; task 9 goes to core 0 on

socket 0, task 1 goes to core 2 on socket 1. On the right, compact placement policy

is shown; both task 0 and 1 are placed on the same socket on core 0 and core 1.

3.3.1 TreeMatch Algorithm

TreeMatch applies two main steps to generate a mapping sequence. Firstly all the

possible combinations for given set of tasks are generated. The generated combi-

nations contain pairs with common tasks, for example (1,5), (2,5), (3,5) and so on.

TreeMatch converts these redundant pairs into a graph of incompatibilities. The ver-

tices represents task pairs and there is an edge between two pairs if the corresponding

pairs contain a common task. For example there will be an edge between (1,5) and

(2,5) because 5 is a common task between the two pairs, hence the two pairs are

incompatible. This graph is referred to as complement of Kneser Graph [Poljak and

Tuza, 1987] in literature. Independent sets of task pairs are generated by processing

the graph. An independent set contains task pairs with no common task. In the

second step the quality of independent sets is determined by picking the best combi-

nation of pairs. In this step the vertices are ranked by the value that represents the

amount of communication reduced by pairing two tasks, where smaller is better. An

independent set of task pairs with smaller values is generated by applying heuristics

such as; ranking vertices by smallest values first and greedily building a maximal inde-

pendent set. Once groups are generated, topology information is used to map tasks to

processing units. Generated sequence represents binding site of threads corresponding
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Figure 3.2: An example machine topology, Arity sequence = 1,2,2,2 at level 0,1,2,3

respectively

to an index of sequence.

3.3.2 EagerMap Algorithm

EagerMap on the other hand deals with the mapping problem with a different ap-

proach. It implements a greedy strategy. For a given task, it searches for a winner

task which is the most communicating task with the given task. Pairs are generated

by searching for winner tasks. Once all pairs are generated, a topology tree is used

to determine group of task pairs. EagerMap applies the same procedure iteratively

to generate a mapping sequence for a given machine topology.

3.3.3 Examples

In order to understand the logic of mapping algorithms let us consider a dummy

topology shown in Figure 3.2 and an example of communication matrix (Figure 3.3).

We will use this example to demonstrate working of mapping algorithms.

TreeMatch first generates all combination
(
p
n

)
of tasks for a given level. Here n

represents total tasks and p represents number of tasks per combination. For example

for given case, pairs for level 3 are generated. First of all possible combinations of

tasks are created. In our case
(
2
8

)
= 28 possible pairs are generated. Out of these

combination, next step is to find n/p pairs that do not have any task in common.

In order to generate independent tasks, a graph of incompatibilities is generated in

which vertices represent task pairs and an edge between two pairs represent that
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Figure 3.3: Left: Communication matrix, Right: Communication pattern

there is a task in common. An independent set of task pairs can be generated by

processing the graph by any greedy algorithm. An independent set of pairs does not

means that it is good in quality as well. For example in the matrix pairing 0 with 5 is

better than pairing 0 with 2 as 0 is communicating most with 5 instead of 2. Placing

most communicating tasks together reduces communication. Therefore pairs in inde-

pendent sets generated are given a value that represents communiaction reduction if

respective tasks get paired. For example for pair (0,5) total communication volume

of 0 is 31 and that of 5 is 103. Sum of their communication is 134. if paired together

the communication would be reduced by 22, so the total communication of the pair

would be 112 which is assigned as value of pair(It is represented as V ∗ in Figure 3.1).

Smaller value is better. Once all pairs are annotated with their values, independent

pairs with smaller values are selected for final pairing sequence. In Figure 3.1 best

and worst combinations of each task is shown. It can be seen TreeMatch managed to

be in between best and worst combinations. Complete sequence for level 3 is shown

in Table 3.4

Figure 3.4: TreeMatch mapping sequence for level 3
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Table 3.1: TreeMatch algorithm executed for example case

0 1 2 3 4 5 6 7

Pair V* Pair V* Pair V* Pair V* Pair V* Pair V* Pair V* Pair V*

0-1 71 1-0 71 2-0 69 3-0 75 4-0 79 5-0 112 6-0 80 7-0 78

0-2 69 1-2 88 2-1 88 3-1 90 4-1 92 5-1 133 6-1 97 7-1 101

0-3 75 1-3 90 2-3 92 3-2 92 4-2 88 5-2 133 6-2 75 7-2 63

0-4 79 1-4 92 2-4 88 3-4 76 4-3 76 5-3 113 6-3 99 7-3 95

0-5 112 1-5 133 2-5 133 3-5 113 4-5 127 5-4 127 6-4 105 7-4 97

0-6 80 1-6 97 2-6 75 3-6 99 4-6 105 5-6 118 6-5 118 7-5 116

0-7 78 1-7 101 2-7 63 3-7 95 4-7 97 5-7 116 6-7 78 7-6 78

B(0,2) 69 B(1,0) 71 B(2,7) 63 B(3,0) 75 B(4,3) 76 B(5,0) 112 B(6,2) 75 B(7,3) 63

W(0,5) 112 W(1,5) 133 W(2,5) 133 W(3,5) 113 W(4,5) 127 W(5,1) 133 W(5,6) 118 W(7,5) 116

TM(0,6) 80 TM(1,7) 101 TM(2,3) 92 TM(3,2) 92 TM(4,5) 127 TM(5,4) 127 TM(6,0) 80 TM(7,1) 101

B = Best, W = Worst, TM = TreeMatch

V* = Pairing value

Table 3.2: EagerMap algorithm executed for example

Tas number Task list Winner task Pair

0 1,2,3,4,5,6,7 5 (0,5)

1 2,3,4,6,7 4 (1,4)

2 3,6,7 7 (2,7)

3 6 6 (3,6)

EagerMap applies a greedy approach to look for the best partner for a given

task. EagerMap picks a task and searches for its winner task. Winner task is another

task which communicates the most with the given task. For example as shown in

Table 3.2, EagerMap first looks for task 0. By looking at communication matrix,

most communicating task with 0 is task 5. Both tasks are paired and removed from

tasks list. It next looks for winner of task 1. From the available tasks list task 4

is the most communicating one and gets paired with 1. The process goes on until

task list is empty. Complete sequence is shown in Figure 3.5. Different mapping

solutions solve the mapping problem with a different approach. TreeMatch generates

a mapping sequence with an exhaustive search approach, where all communications
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Figure 3.5: EagerMap mapping sequence for level 3

are considered to pick the best ones. EagerMap searches for the winner task without

considering communication priorities of winning task. For example winning task

might have another most communicating task, but since winning task is excluded

from the search, it is no longer considered for its own winner task. Considering

these shortcomings, we designed our own algorithm for communication aware mapping

discussed in next chapter.



Chapter 4

CHOICEMAP: A FAIR TASK MAPPING ALGORITHM

4.1 Introduction

ChoiceMap leverages the communication matrix and machine topology for determin-

ing a mapping. However, our algorithm creates a fair mapping and treats each thread

equally. Every thread has its own choice list based on the amount of communication

it does with other threads. This chapter discusses ChoiceMap in detail.

Pairing threads according to their choice lists results in a mapping sequence that

reduces the communication distances. This problem resembles genderless stable mar-

riage problem [McVitie and Wilson, 1971] or roommate matching problem [Irving,

1985] in literature, where a person is paired with another person by considering pref-

erences of both sides. We model the task affinities with a choice matrix, thus creating

more opportunities for the tasks to get paired with the best possible task by consid-

ering mutual priorities.

A choice matrix is an (n x (n − 1)) matrix, where n represents total number of

parallel tasks. The row index i represents the task number and column index j rep-

resents priority of a given task with respect to task i. Choice matrix is suitable to

use for pairing since it provides a straightforward understanding of task affinity. For

example in EagerMap a winner task is paired with the given task which is similar

to pairing a task with its first choice. But that results in an unfair pairing because

winner task might have another task as its first choice. Assume that task t commu-

nicates the most with task t′. On the other hand, task t′ communicates the most

with task t′′, where t′′ 6= t. Our algorithm pairs tasks based on their nearest and

mutually prioritized choices. As an example, Figure 4.1 shows choice matrix of the

communication matrix shown in Figure 3.3.
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Figure 4.1: Choice matrix

4.2 ChoiceMap Algorithm

Algorithm 1 presents the ChoiceMap algorithm, which takes two inputs: aritySequence

and commMatrix. AritySequence represents arity of nodes at each level of machine

topology and commMatrix represents the amount of communication between threads

in an application. The algorithm is iterated for every level in the machine hierarchy.

In line 6, choice matrix (chMatrix) is generated from the communication matrix. We

assume that total number of tasks are equal to the number of processing units in the

machine. Starting from line 10, for every task, we first compute the nearest choice

from chMatrix and name it as candidate. We check, if the task is also nearest choice

of candidate, then we pair both tasks (task and candidate). After pairing, both tasks

are removed from search space, thus invalidating them to be a candidate of any other

tasks which are not paired yet. Removing tasks from priority lists of all other tasks

results in a change in choices of the remaining tasks. Thus there are more chances

for the less desirable tasks to be paired since the strong competitors are gone. In this

way it guarantees that all the tasks will get paired on the basis of some priority. The

process repeats until all the tasks get paired.

4.2.1 Hierarchy Mapping

Pairing tasks only at the deep most level of hierarchy does not fully satisfies task

affinity. As in a parallel application, communication is not limited between two tasks.
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Algorithm 1 ChoiceMap’s Algorithm

1: procedure ChoiceMap(aritySequence, commMatrix)

2: mappingSequnce := {} . set of pairs

3: depth← getDepth(aritySequence) . total levels of machine topology

4: for level in {depth− 1...0} do

5: n sites← getTotalSites(aritySequence, level)

6: chMatrix← generateChoiceMatrix(commMatrix, n sites)

7: paired := 0 . number of tasks paired in a pass

8: while paired ≤ n sites do . loop untill all tasks get paired

9: prev paired← paired

10: for task in {0...n sites− 1} do

11: candiddate← getNearestChoice(task, chMatrix)

12: if task == getNearestChoice(candidate, chMatrix) then

13: mappingSequence := mappingSequence ∪

{pair(task, candidate)}

14: invalidate(task, candidate, chMatrix)

15: paired := paired+ 2

16: if prev paired == paired then. if no tasks get paired during the pass

17: solveCycle(commMatrix, chMatrix,mappingSequence)

18: aggregate(commMatrix,mappingSequence, level + 1)

19: return mappingSequence

t1 t3 t4 t5 t8

Figure 4.2: Loop in choice matrix
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In order to map task pairs to upper level nodes in the machine topology, the task

pairs are grouped and treated as a single task. The process is repeated until the

root of the topology tree. The communication matrix is also aggregated to represent

communication volume between task pairs as shown in Algorithm 1, line 18. In a

communication matrix, C(i, j) represents communication volume of task i with task

j. Aggregated matrix A of order (n/2, n/2) is defined as:

A(i′, j′) = C(i′(i), j′(i)) + C(i′(i), j′(j)) + C(i′(j), j′(i)) + C(i′(j), j′(j)) (4.1)

Where i′ and j′ represent ith and jth task pair from previous level respectively. Note

that pairing tasks is a bottom up procedure. Once aggregated, the choice matrix is

generated from aggregated matrix and mapping is performed. Mapping is iteratively

performed until the root node of the topology. A mapping sequence corresponding to

the nodes of a given level is generated in every iteration.

4.2.2 Cycles in Choice Matrix

It may happen at any stage of pairing that no tasks get paired at the end of a pairing

loop. This means that the choice matrix has a cycle in it. For example as shown in

Figure 4.2a task 3 chooses 4, 4 chooses 5, 5, chooses 8 and 8 chooses 3. That means

there are no tasks that are the nearest choices of each other. In order to proceed

further we need to detect cycle and break the loop, as shown in Listing 2. For solving

the loop, we first select a task from the cycle (say, α). We select α as the smallest

task number in the cycle, just for the sake of simplicity. To break the cycle we pair

the task α to one of its desirers that communicates the most with it (max comm α).

After pairing we invalidate the paired tasks. Choice matrix is now cycle free and

remaining tasks can be paired.
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Algorithm 2 Cycle Solving

1: procedure solveCycle(chMatrix, commMatrix,mappingSequence)

2: α← gettask(chMatrix) . select a task from cycle to break it

3: α desirers← getDesirersOf(α, chMatrix)

4: max comm α← getMostCommunicatingTask(α, α desirers, commMatrix)

5: pair(α,max comm α,mappingSequence)

6: invalidate(α,max comm α, choiceMatrix)

7: paired+ = 2 . paired 2 tasks

8: return mappingSequence

4.3 Example

We now explain working of ChoiceMap with the help of an example case. Referring

to Figure 3.2 shows machine topology of our example case. An example of commu-

nication matrix shown in Figure 2.1b will be used. ChoiceMap first generates choice

matrix from communication matrix as shown in Figure 4.1. The pairing procedure

starts from the deepest most level. According to our example we have 8 parallel tasks

and for level 3 we need to group them in pairs. During first pass Figure 4.3, task

3 and task 5 are the nearest (first) choice of each other. ChoiceMap saves them as

a pair and removes them from the choice matrix. In this way paired tasks are not

considered again and other tasks get an opportunity to get paired with their most

communicating task from available list of tasks. Four tasks get paired in first pass,

and four in second pass as shown in Figure 4.4. The algorithm repeats the same

procedure for every level of the topology tree. The pairing sequence of ChoiceMap

for level 3 is shown in Figure 4.5. ChoiceMap produces the best possible pairs unlike

TreeMatch and EagerMap. Pairing comparison for real applications is discussed in

Chapter 6.
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Figure 4.3: Level 3: Pass 1: four processes got paired.

Figure 4.4: Level 3: Pass 2: other four processes got paired.
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Figure 4.5: ChoiceMap mapping sequence for level 3

Table 4.1: Comparison of different mapping algorithms based on reduction in com-

munication volume by pairing

0 1 2 3 4 5 6 7

Pair V* Pair V* Pair V* Pair V* Pair V* Pair V* Pair V* Pair V*

0-1 71 1-0 71 2-0 69 3-0 75 4-0 79 5-0 112 6-0 80 7-0 78

0-2 69 1-2 88 2-1 88 3-1 90 4-1 92 5-1 133 6-1 97 7-1 101

0-3 75 1-3 90 2-3 92 3-2 92 4-2 88 5-2 133 6-2 75 7-2 63

0-4 79 1-4 92 2-4 88 3-4 76 4-3 76 5-3 113 6-3 99 7-3 95

0-5 112 1-5 133 2-5 133 3-5 113 4-5 127 5-4 127 6-4 105 7-4 97

0-6 80 1-6 97 2-6 75 3-6 99 4-6 105 5-6 118 6-5 118 7-5 116

0-7 78 1-7 101 2-7 63 3-7 95 4-7 97 5-7 116 6-7 78 7-6 78

B(0,2) 69 B(1,0) 71 B(2,7) 63 B(3,0) 75 B(4,3) 76 B(5,0) 112 B(6,2) 75 B(7,3) 63

W(0,5) 112 W(1,5) 133 W(2,5) 133 W(3,5) 113 W(4,5) 127 W(5,1) 133 W(5,6) 118 W(7,5) 116

TM(0,6) 80 TM(1,7) 101 TM(2,3) 92 TM(3,2) 92 TM(4,5) 127 TM(5,4) 127 TM(6,0) 80 TM(7,1) 101

EM(0,5) 112 EM(1,4) 92 EM(2,7) 63 EM(3,6) 99 EM(4,1) 92 EM(5,0) 112 EM(6,3) 99 EM(2,7) 63

CM(0,6) 80 CM(1,4) 92 CM(2,7) 63 CM(3,5) 113 CM(4,1) 92 CM(5,3) 113 CM(6,0) 80 CM(7,2) 63

B = Best, W = Worst, TM = TreeMatch, EM = EagerMap, CM = ChoiceMap

V* = Pairing value

4.4 Mapping Comparison

Based on communication reduction formula discussed in Section 3.3.3, we compare

the ability of ChoiceMap in terms of picking better pairs for a mapping sequence.

This is shown in Table 4.1. For every task we generate pairs, for example for N tasks,

there are N−1 pairs for every task as a task can not be paired with itself. A pair value

is calculated for each pair which represents the quality of the pair. If a pair value is

small then its quality is good because it means it performs less communication with

the rest of the tasks. In the Table 4.1 Best refers to a pair with smallest pair value

(V ∗) and Worst refers to a pair with largest pairing value (V ∗). It can be observed

from the table that ChoiceMap picks the best possible pair candidate for every task.
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BINDME: A THREAD BINDING TOOL

5.1 Introduction

Binding an application according to its communication behavior and matching with

the machine topology requires extra efforts from the programmer. The BindMe li-

brary encapsulates all the complexities of the binding process such as discovering

machine hierarchy, generating a mapping sequence from available mapping policies

and then binding parallel tasks. This chapter discusses the implementation and usage

of BindMe.

BindMe automatically discovers machine topology and generates a mapping se-

quence according to the policy specified by the programmer. Figure 5.1 gives an

overview of the BindMe library. BindMe generates machine topology by using the

hwloc tool [Broquedis et al., 2010]. A Mapping sequence is generated by the policy

specified by the programmer. Some mapping policies require communication matrix

for mapping. For those policies, BindMe utilizes the Numalize tool, which captures

the communication between threads.

5.2 Programming Interface of BindMe

BindMe packs all the complexities of a binding process in just one function call,

namely bindme(). An overview of the function is given in Listing 1. The function

should be called at the initialization phase of an application program. All threads

will be placed on their respective processing units before the main computation of

the application starts.

In the internals of the function, we first create the topology tree of underlying ma-
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Figure 5.1: Overview of BindMe

chine using the hwloc [Broquedis et al., 2010] tool, which discovers all the memory and

execution units. An arity sequence is generated from the machine topology. In line 12,

a mapping sequence is generated by providing the arity sequence, communication ma-

trix and type of the mapping algorithm, which are specified by the programmer. Com-

munication matrix is ignored if the type of mapping algorithm is simple (e.g. scatter or

compact). Once a mapping sequence is generated, an OpenMP parallel region is cre-

ated, and then every thread binds itself on an execution unit with respect to its thread
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ID.

1 boolean bindme(Policy mapPolicy , Granularity g){

2

3 boolean status = true;

4 Topology topo = getTopology ();

5 Sequence arSeq = generateAritySequence(topo);

6 Sequence mapSeq; // mapping sequence

7 if(mapPolicy == COMPACT || mapPolicy == SCATTER)

8 mapSeq = generateMapSeq(mapPolicy , arSeq);

9 else //if mapPolicy = TREEMATCH or EAGERMAP or CHOICEMAP

10 {

11 CommMatrix cm = getCommunicationMatrix ();

12 mapSeq = generateMapSeq(mapPolicy , arSeq , cm);

13 }

14 int threadID;

15 int bindingSite;

16 #pragma omp parallel shared(topo , mapSeq , status) private(threadID , bindingSite)

17 {

18 threadID = omp_get_thread_num ();

19 bindingSite = mapSeq[threadID ];

20 //bind each thread to its respective binding site with given granularity(CORE or

FINE)

21 bindThread( topo , bindingSite , g, &status);

22 }

23 return status;

24 }

Listing 5.1: main steps of bindme(). Some details are omitted for clarity.

bindme() is called by specifying a mapping policy and granularity. Mapping policies

available in BindMe are :

• SCATTER

• COMPACT

• EAGERMAP

• TREEMATCH

• CHOICEMAP

Binding granularity options available in BindMe are:
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• CORE: binds to cores

• FINE: binds to logical processing units (for example Hyperthreads)

For binding an application according to ChoiceMap with fine granularity we call

bindme() as: bindme(CHOICEMAP, FINE); The default mapping option is

COMPACT and default binding granularity is FINE.

5.3 Supporting Tools

BindMe leverages different tools to automate the task placement. BindMe uses the

hwloc tool for exploring machine topology and binding threads/processes to execution

units. Communication matrices are generated by Numalize and CommMonitor. We

will now discuss them one by one.

5.3.1 Hwloc

It is an open source and portable HardWare Locality project, in short hwloc. It pro-

vides a set of command line tools and APIs to examine hardware topology. It provides

details of processor, memory and channel type in a machine. lstopo, a command line

tool of hwloc provides graphical representation of the hardware resources, an example

is shown in Figure 5.2. It shows the machine being examined has 2 NUMA nodes, 4

cores per node with 2 logical processors (hyperthreads) in each core. Hwloc provides

an interface to bind tasks (thread or process) to a desired processing unit. BindMe

uses the hwloc interface for examining machine topology, binding tasks and checking

site of execution of task (where a thread or process is running).

5.3.2 Numalize

Numalize [Diener et al., 2016] is a tool for detecting communication in shared memory.

It is a cache simulator based on the Pin dynamic binary instrumentation tool [Luk

et al., 2005]. The tool traces all memory accesses of an application at the granularity

of a cache line, we set the cache line to 64 bytes in our study. Numalize detects
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Figure 5.2: Example output of a machine by lstopo.

communication when different threads access the same cache line. The output of Nu-

malize is a communication matrix of size (total threads X total threads). When a large

application is executed with Numalize, the runtime is slowed down by about 100 times

the normal execution time. This is because Numalize utilizes binary instrumentation

tool and monitors every load and store in memory. In some cases Numalize crashes

because of the large memory requirements of an application in addition to its own

internal data structures.

5.3.3 CommMonitor

The communication matrices of several applications cannot be extracted by using

Numalize. This is due to the large memory consumption overhead by Numalize,

which causes it to crash and a huge slowdown in execution time (almost 100 times of

the normal execution time of the application).

To cope with this problem, one of our group mates, Sasongko developed a tool

- CommMonitor for detecting communication between threads. CommMonitor is

based on perf event open system call. By using this tool, we can extract communi-
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cation matrices even for large applications. The memory consumption and execution

time overhead of this tool is much smaller than Numalize, it adds less than 10% of

the overhead to the application since this tool makes use of hardware performance

counters for event-based sampling.

In order to capture communication matrix from an application, we set perf event open

in our tool to perform sampling with sample frequency ten thousands. Furthermore

we also set CommMonitor to monitor two events; all loads micro operation and all

stores micro operations. For each sampled event, i.e. memory load or memory store,

we obtain the thread id of the thread which causes the event and the memory address

that is accessed. By using the thread id and the address information of memory access

events, our tool is able to generate the communication matrix which represents the

communication intensity among the threads.

For our evaluation, we used both tools. The cases where Numalize fails, we used

CommMonitor instead.
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EVALUATION

6.1 Introduction

We evaluate BindMe using applications from various scientific domains. BindMe

supports five mapping policies to bind an application according to the mapping policy

selected by the programmer. In this chapter we perform evaluation of mapping policies

using BindMe. We also compare ChoiceMap with other mapping algorithms.

Application execution behavior depends on various parameters such as underlying

machine topology, programming model, problem size, number of parallel tasks and

cache line size. There is no single mapping policy that is best in all cases that is why

different mapping policies are tested given a particular set of parameters. BindMe

facilitates picking a best mapping policy for the application on a particular machine.

6.2 Testbed

We used two platforms to test BindMe with different applications. One is Intel KNL

(KNights Landing) and the other is Intel Broadwell. Figure 6.1 and 6.2 show the

schematic diagrams of both machines. KNL is configured with SNC4 (Single NUMA

Cluster) mode, which means 4 NUMA (Non-Uniform Memory Access) nodes. We

have used 8 tiles per NUMA node. Each tile houses 2 cores and each core has 4

hyperthreads. In total we have 68 cores (272 hyperthreads) divided as 16 and 17

cores per node. Figure 6.2 shows machine topology of Broadwell. It has 2 NUMA

nodes, 10 cores on each node. We have used 8 cores per NUMA node because our

mapping algorithms works for the power of 2 nodes at every level of machine topology.

Each core has two hyperthreads. Table 6.1 summarizes the topology specification of
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Table 6.1: Machine topology specification

Machine NUMA Nodes Cores per NUMA node Hyperthreads per core

KNL 4 16/17 4

Broadwell 2 8 2

both machines.

6.3 Evaluation

We chose test applications that perform high volume of communication across parallel

threads. The test applications are kernels from various scientific domains such as

image processing and computational fluid dynamics (CFD). We used OpenMP C

version of NAS parallel benchmark version 3.0. We also tested BindMe with an

image segmentation application.

6.3.1 NAS Parallel Benchmark (NPB)

We used five applications from NPB [Jin et al., 1999]; SP, LU, BT, CG and MG.

SP (Scaler Pantadigonal solver) solves a synthetic CFD problem. It computes inde-

pendent systems of non-diagonally dominant, scalar, pentadiagonal equations. LU

(Lower Upper) solves regular-sparse lower and upper triangular systems from CFD.

BT (Block Tridiagonal) also solves multiple, independent systems of non-diagonally

dominant, block tridiagonal equations. MG (MultiGrid) is a simplified multigrid cal-

culation. It processes highly structured long distance communication and tests both

short and long distance data communications. In CG, conjugate gradient is used to

compute an approximation to the smallest eigenvalues of a large, sparse and symmet-

ric matrix. It performs unstructured grid computations. Table 6.3 summarizes the

description of the benchmarks used for evaluation. We have used two classes of NAS

applications, B and C. Classes represent the problem size of test applications. Table
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Figure 6.1: Schematic diagram of Intel KNL

Figure 6.2: Schematic diagram of Intel Broadwell

6.4 shows input size of class B and C for respective applications. Figure 6.3 show the

communication matrices of NAS applications for class B and C on Broadwell with 32

threads. Binding granularity is set as fine. Figure 6.4 shows communication matrices

of NAS applications generated on KNL. We tested NAS applications (Class C) with

64 (granularity = core) and 256 (granularity = fine) threads on KNL. More details

of parameters used for testing are summarized in Table 6.2. The communication ma-

trices for class B are generated from default Numalize tool. For class C we modified

the ganularity of memory monitoring to 24 in Numalize to support large input sizes.

Applications like SP, BT and MG perform near neighborhood communications

(Figure 6.3 a, d, i and Figure 6.4 a, d, e ). Such applications get benefit from the
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mapping policy in which neighboring threads are placed close to each other. Those

applications in which communication is not between direct neighbors but between

farthest threads require more careful mapping policies for binding. CG shows all to

all communication which means every thread communicates with every other thread.

Applications with irregular communication or non-neighbor communication pattern

requires efficient mapping policy that reduces inter node communication and improves

cache locality.

6.3.2 Image Segmentation Code

This is an application from Rodinia benchmarks [Che et al., 2009] which processes an

image for segmentation. It generates clusters of same pixel colors in the image. The

communication behavior changes by changing input image, but remains the same

from run to run if provided the same input image. Figure 6.3 j and 6.4 k show

communication matrix of the application by processing a large image of size 9000 x

7000 pixels on Broadwell and KNL respectively.

6.4 Evaluation Metrics

For evaluation of mapping policies we chose a set of metrics that shows runtime

improvement of application performance as well as quality of mapping algorithms

based on some analytical models.

6.4.1 Execution Time

A good mapping policy results in reduction of inter-core communication and better

cache utilization thus reducing execution time. Figures 6.5, 6.6, 6.7 and 6.8 com-

pare normalized execution time with respect to worst mapping policy. We tested five

NAS benchmarks executed with five different mapping options available in BindMe;

Compact, Scatter, EagerMap, TreeMatch and ChoiceMap, on both machines. Differ-

ent mapping policies showed better results for different applications. Since Compact

places neighbor threads close to each other, it performs better in those applications
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(a) BT class B (b) CG class B (c) LU class B

(d) SP class B (e) BT class C (f) CG class C

(g) LU class C (h) SP class C (i) MG class C

(j) Image segmentation on Broad-

well

Figure 6.3: Communication matrices of BT, CG, LU, SP and MG class B and C on

Broadwell with 32 threads. We did not include MG Class B here because its execution

time is too short for a reliable evaluation
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(a) BT threads 64 (b) CG threads 64 (c) LU threads 64

(d) SP threads 64 (e) MG threads 64 (f) BT threads 256

(g) CG threads 256 (h) LU threads 256 (i) SP threads 256

(j) MG threads 256 (k) Image segmentation on KNL

Figure 6.4: Communication matrices of BT, CG, LU, SP and MG on KNL with fine

and core granularity
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in which near neigborhood communication pattern is dominant. Scatter balances

computation load, it performed better in case of BT because of a significant all to all

communication behavior of BT. TreeMatch, EagerMap and ChoiceMap apply their

own strategies to generate a mapping sequence, ChoiceMap performed better in many

cases. In some cases EagerMap and ChoiceMap generated almost the same mapping

sequence. TreeMatch did not perform well overall, but in some cases (SP with 64

threads on Intel KNL) it is better then other mapping policies.

The communication pattern of BT shows near neighborhood communication but

BT also shows a significant volume of all to all communication. The all to all com-

munication behavior of BT dominates over near-neighbor communication behavior

thus Scatter performs better in this case since Scatter balances computation load.

ChoiceMap performed better on KNL with 256 threads.

CG performs all to all communication, in this case compact and mapping algo-

rithms perform better by realizing task affinities due to communication. However on

Intel KNL with 256 threads,there is no clear winner policy.

LU does not perform near neighborhood communication, instead the communi-

cation is between farther threads, thus mapping by realizing communication pattern

produces better results in the case of LU. The execution time of LU on both machines

show that the mapping sequence generated by mapping algorithms is better than gen-

eral mapping policies (Compact, Scatter). LU class C executed with 256 threads on

KNL shows that ChoiceMap performs the best in capturing right pairs for mapping

sequence.

SP also shows near neighbor communication along with thread 0’s communication

with all threads. Figures 6.5 and 6.6 shows execution times of SP, ChoiceMap performs

better in SP with class C and B. However on Intel KNL, with 64 threads TreeMatch

performs better than other policies. This shows Compact cannot be always the best

choice for an application that apparently shows near-neighborhood communication,

in some cases ChoiceMap successfully detected the best pairs to be grouped together.

This point is discussed in more detail in next section.
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MG exhibits near-neighbor communication behavior thus in this case Compact

and ChoiceMap perform better on KNL, since ChoiceMap is based on mutual task

priorities, it capturs the affinities in the case of MG. However on Broadwell there is no

clear winner for MG. Figuer 6.9 shows execution time of MG class C executed on Intel

Broadwell and Intel KNL. It can be concluded from the figure that the winner mapping

policy for the same application on different machines can be different. Therefore a

mapping policy must be selected by trying all options. With BindMe it is relatively

easy to test different mapping options in order to pick the best performing one.

Figure 6.5: Execution time of NAS applications, class B and Image segmentation

application executed on Broadwell, granularity = core

6.4.2 Communication Reduction between NUMA Nodes

To compare the quality of pairs generated by the mapping algorithm we calculated the

communication reduction value. This formula is previously introduced in TreeMatch

algorithm to generate pairs, as explained in Section 3.3.3. Communication reduction
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Figure 6.6: Execution time of NAS application, class B on Broadwell, granularity =

core

Figure 6.7: Execution time of NAS application, class C on KNL, granularity = core

value Crv of a pair (i, j) is calculated by the equation Figure 6.1.

Crv(i, j) =
N∑
t=0

C(i, t) +
N∑
t=0

C(j, t)− 2C(i, j) (6.1)
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Figure 6.8: Execution time of NAS application, class C on KNL, granularity = fine

Figure 6.9: Execution time of MG Class C executed on Intel Broadwell and Intel

KNL with fine granularity

where i and j are tasks in a pair and C is communication matrix of order (N ∗ N).

N refers to total number of tasks.

The best pair is the one with smallest Crv value. The worst pairs is the one with

largest Crv value. We generate all possible combinations of N tasks and pick the best

and worst pair for every task. We then compare pair values generated by the mapping
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algorithm. A good mapping policy should generate pairs which are as close as possible

to the best pairs, however best and worst pairing for all tasks is not possible. Because

a sequence of best or worst pairs contains multiple pairs with common task, which is

not possible for mapping.

Mapping with better communication reduction value results in improved data

locality. As it reflects that large possible volume of communication is done inside

the node at a given level. Thus most of the shared data is available in the shared

memory of communicating threads, this results in improved data locality. Figure

6.10 shows that for every task ChoiceMap is almost the same as the best pairing.

EagerMap and ChoiceMap generated almost the same pairs for SP on Broadwell at

leaf level, therefore both algorithms resulted into better mapping sequence, it is also

reflected from the execution time of SP class C on Broadwell (6.6) . The difference

in execution time is caused by mapping done at upper levels of topology. However it

is not always true, as in Figure 6.10 image segmentation application shows a slight

difference in ChoiceMap and EagerMap pairing. The irregular communication pattern

of the application resulted into difference in pairing across mapping algorithms. The

better pairing of ChoiceMap resulted into reduced execution time of the application

as shown in Figure 6.5.

6.4.3 Communication Volume Across NUMA Nodes

A good mapping reduces communication volume across the NUMA nodes or sockets,

thus improving locality. To test the quality of mapping policies we compare com-

munication amount between the nodes after mapping tasks according to a mapping

policy. A good mapping policy should reduce the amount of communication across

the NUMA nodes, that means most of the communication should be performed inside

the NUMA node resulting in improved data locality.

To compare communication volume across the nodes, we tested communication

matrix of LU (class C) generated on KNL with 64 threads. KNL has 4 NUMA nodes

(Figure 6.12) with 16 cores per node. Figure 6.11 compares the average, minimum
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Figure 6.10: Comparison of pair values generated by EagerMap, TreeMatch and

ChoiceMap with respect to best and worst pair values

and maximum inter-NUMA node communication with respect to applied mapping. It

can be observed that ChoiceMap results in the least communication volume for inter-

NUMA node communication. This improvement is also reflected from execution time

of LU on KNL, representing ChoiceMap, and Compact as the better mapping policies.

Table 6.7 shows the over all communication across the NUMA nodes with respective

mappings.
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Table 6.2: Configuration of test applications, granularity indicates cache line size in

bytes

Benchmark Class Iterations Threads Machine Tool

BT C 30 32 Broadwell Numalize (Granularity = 26)

LU C 60 32 Broadwell Numalize (Granularity = 26)

SP C 25 32 Broadwell Numalize (Granularity = 26)

CG C 75 32 Broadwell Numalize (Granularity = 26)

MG C 20 32 Broadwell Numalize (Granularity = 26)

BT B 200 32 Broadwell Numalize (Granularity = 26)

LU B 250 32 Broadwell Numalize (Granularity = 26)

SP B 400 32 Broadwell Numalize (Granularity = 26)

CG B 75 32 Broadwell Numalize (Granularity = 26)

ImgSeg 9K X 7K N/A 32 Broadwell CommMonitor

BT C 10 64 KNL Numalize (Granularity = 24)

LU C 60 64 KNL Numalize (Granularity = 24)

SP C 25 64 KNL Numalize (Granularity = 24)

CG C 75 64 KNL Numalize (Granularity = 24)

MG C 20 64 KNL Numalize (Granularity = 24)

BT C 5 256 KNL Numalize (Granularity = 24)

LU C 10 256 KNL Numalize (Granularity = 24)

SP C 2 256 KNL Numalize (Granularity = 24)

CG C 75 256 KNL Numalize (Granularity = 24)

MG C 20 256 KNL Numalize (Granularity = 24)

ImgSeg 9K X 7K N/A 64 KNL CommMonitor
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Table 6.3: Test applications

Benchmarks Input class

LU: Solves regular-sparse lower and upper triangular sys-

tems from CFD

B,C

SP: It computes independent systems of non-diagonally

dominant, scalar, pentadiagonal equations

B,C

CG: Conjugate gradient method used to find smallest eigen-

values of a large, sparse and symmetric matrix

B,C

BT: solves multiple, independent systems of non diagonally

dominant, block tridiagonal equations

B,C

MG: a simplified multigrid calculation. It processes highly

structured long distance communication and tests both

short and long distance data communications

C

Image Segmentation: It generates clusters of same pixel col-

ors in the image

Image of 9000 X 7000 pixels

Table 6.4: Input size of class B and C for NAS applications

Application B C

SP 1023 1623

BT 1023 1623

LU 1023 1623

MG 2563 5123

CG 75000 150000
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Table 6.7: Communication volume (in Trillion communication events in terms of cache

line sharing) of LU (class C) between four NUMA nodes of KNL with 64 threads

Nodes Compact Scatter Eagermap Treematch ChoiceMap

0-1 9.83 11.16 7.57 22.08 8.51

0-2 7.66 8.81 6.54 12.31 7.76

0-3 9.10 10.89 6.95 7.51 6.63

1-2 8.25 11.02 8.21 7.89 8.18

1-3 6.18 7.76 7.12 12.84 6.16

2-3 6.52 11.20 8.84 21.11 8.67

Sum 47.53 60.83 45.22 83.73 45.90

Average 7.92 10.14 7.54 13.96 7.65

Max 9.83 11.20 8.84 22.08 8.67

Min 6.18 7.76 6.54 7.51 6.16
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Figure 6.11: Comparison of inter NUMA node communication

Figure 6.12: Communication between four NUMA nodes
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CONCLUSION

In a multicore machine, binding parallel tasks to cores according to a mapping

policy that satisfies the application behavior is an important performance boosting

factor. We introduce the BindMe tool that assists programmer to bind threads to

cores for better performance. BindMe automatically explores machine topology and

binds threads to processing units according to a mapping policy which is selected by

the programmer. BindMe has a user friendly interface to bind threads to hardware

with a granularity defined by the programmer. Our experiments show that there is

no one best mapping policy for all kinds of applications. Therefore BindMe facil-

itates in selecting a mapping policy which performs better for an application on a

given machine. We also present a mapping algorithm, ChoiceMap that does map-

ping more fairly by considering mutual priorities of tasks. Our experiments show

that ChoiceMap generates pairs of good quality by reducing overall communication

of resulting pairs and it also reduces inter-node communication volume. ChoiceMap

is implemented in BindMe as one of the mapping policies.
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