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ABSTRACT 

 

Diseases are commonly the result of dysregulated complex interactions involving large 

sets of genes and proteins as products of these genes, and their cooperation with other 

cellular components. Interpreting protein-protein interactions at both network and 

molecular interaction levels with mutation knowledge requires a comprehensive research 

process that is fed from different sources. In this thesis, we developed a web-based tool, 

Gene2Phen, by integrating large-scale protein-protein interaction network, 3D protein 

structure information and interface mutation knowledge to aid researchers in exploring 

and comparing the molecular mechanism of different phenotypes. Gene2Phen works as 

an automatized pipeline tool to build, visualize and compare phenotype specific 

subnetworks, to examine protein- protein interactions associated with their structure and 

mutation data. Gene2Phen web tool prioritizes the human protein-protein network based 

on seed genes specific to a phenotype. From the prioritized-PPI network, users can 

generate a phenotype specific subnetwork. The phenotype-specific subnetworks can be 

visualized and compared interactively. Genome annotations and topological properties of 

each protein are shown in this interactive network representation. A unique feature of 

Gene2Phen is its ability to display 3D structural models of protein-protein interactions 

and their predicted protein-protein interfaces. Users can see the list of mutations which 

are mapped on predicted protein-protein interfaces. This allows users to study mutations 

altering protein-protein interfaces and their role in the phenotype-specific subnetworks. 

Gene2Phen, by automating the integration of protein-protein networks, protein structure, 

and disease - related mutations at large scale, will not only boost the productivity and 

efficiency, but it may be the leveraging step to the novel solutions/studies. 
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ÖZET 

 

Hastalıklar genellikle çok sayıda gen ve bu genlerin ürünü olan proteinlerin diğer hücresel 

bileşenlerle işbirliğiyle oluşturduğu karmaşık etkileşim mekanizmalarında meydana 

gelen bozulmalar sonucu gelişir. Protein – protein etkileşimlerini hem etkileşim ağı 

seviyesinde hem de mutasyon bilgisi ile birlikte moleküler seviyede incelemek ve 

yorumlamak, farklı kaynaklardan beslenen kapsamlı bir araştırma süreci gerektirir. Bu 

tezde, geniş ölçekli protein-protein etkileşim ağını, üç boyutlu protein yapısı bilgilerini 

ve etkileşim ara yüzlerinde görülen mutasyon bilgisini entegre ederek, araştırmacılara 

farklı fenotiplerin moleküler mekanizmalarını keşfetme ve diğer fenotiplerle 

karşılaştırmalarında yardımcı olacak web tabanlı bir araç olan Gene2Phen’i geliştirdik. 

Gene2Phen,  protein-protein etkileşimlerini yapılarına ve mutasyon verilerine bağlı 

olarak inceleyebilmek için geliştirilmiş olup fenotipe özgü alt ağların oluşturulması, 

görselleştirilmesi ve karşılaştırılması için otomatikleştirilmiş bir iletişim hattı işlevi 

görür. Gene2Phen web aracı, bir fenotipe özgü tohum genlerine dayalı olarak insan 

protein-protein etkileşim ağını önceliklendirir. Kullanıcılar, önceliklendirilmiş etkileşim 

ağından fenotipe özgü bir alt ağ oluşturabilirler. Fenotipe özgü alt ağlar görselleştirilebilir 

ve interaktif olarak karşılaştırılabilir. Bu interaktif ağ gösteriminde her protein, genom ek 

açıklamaları ve topolojik özellikleri ile birlikte gösterilir. Gene2Phen'i eşsiz kılan bir 

özelliği, protein-protein etkileşimlerinin üç boyutlu yapısal modellerini ve öngörülen 

protein-protein ara yüzlerini görüntüleme yeteneğidir. Kullanıcılar, tahmin edilen protein 

- protein ara yüzleri üzerine eşlenmiş olan mutasyonların listesini görebilirler. Bu özellik 

kullanıcıların protein - protein ara yüzlerini değiştiren mutasyonları ve bu mutasyonların 

fenotipe özgü alt ağlardaki yerlerini öğrenebilmelerini sağlar. Gene2Phen, protein-

protein ağlarının, protein yapısının ve hastalıkla ilgili mutasyonların büyük ölçekte 

entegrasyonunu otomatikleştirerek yalnızca verimliliği ve etkililiği artırmakla kalmayıp 

yeni çözümler ve araştırmalar için manivela gücü sağlayabilir.  
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Chapter 1 

INTRODUCTION 

 

Proteins have an important role in all phases of biological processes including 

metabolism, immunity, signaling etc. During these processes, organization of proteins 

constitutes complex forms which perform diverse functions acting as molecular machines 

inside the body [1]. To improve our comprehension of how gene functions and 

organizations are constituted at the level of an organism needs to investigate molecular 

interactions between all biological elements in cells. 

Since protein interactions perform important tasks in life-sustaining functions, 

occurrence of an abnormal condition which causes a disorder in protein interactions 

results in disease formation. Therefore, protein interactions have charge of healthy and 

diseased states in organisms since protein-protein interactions are central for both 

function and control [2]. A disease is rarely a result of an abnormality on a single gene, 

it is commonly the result of complex interactions involving large sets of genes and their 

cooperation with other cellular components. This basis leads to the advancement of the 

network-based approaches to comprehend human disease. Utilization of protein 

interaction networks during the investigation into molecular mechanism of a disease, 

helps us to understand how a specific phenotypic profile occurs [3]. This insight can 

increase the prevention, diagnosis, and treatment opportunities. 

Combining structural information to PPI networks is essential to have an 

understanding on the mechanism of interactions. This approach helps us to identify which 

interaction partners are competing with each other to bind the same region on a particular 

protein [4]. In addition diseases are commonly caused by mutations in these binding 

interfaces [5]. In this way, investigation of pathological variations as a subsidiary part of 

the human PPI network can help to find out the genotype to phenotype relationships 

behind human diseases. 
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Interpreting protein-protein interactions at both broadly network level and at 

individually structural level with mutation data requires a comprehensive study process 

that is fed from different sources for researchers. A tool that can automate this process 

would make their work easier. In this thesis, we developed a web-based tool by 

integrating large-scale protein-protein interaction network data, 3D protein structure 

information and mutation knowledge to aid researchers in exploring and comparing the 

molecular mechanism of different phenotypes. Our software works as an automatized 

pipeline tool to build, visualize and compare phenotype specific subnetworks, to predict 

and examine protein-protein interactions associated with their structure and mutation 

data. Gene2Phen (Genotype to Phenotype Sub-Networks) web-tool receives two sets of 

genes which acts as seed genes for prioritizing PPI network to generate two phenotype-

specific subnetworks. For network prioritization the tool uses guilt-by-association 

methods of GUILD software [6]. After resulting of the query, users will find an 

interactive representation of two phenotype-specific subnetworks.  Users can display 

details about proteins, interactions and mutations and have a look at the available 

structural data by clicking on the elements of the networks. Edges are colored based on 

the availability of structural information about the corresponding protein-protein 

interaction. To implement graph analysis and visualization functions on displayed 

subnetworks, we used Cytoscape js which is an open source JavaScript network library 

[7]. Then, these two subnetworks are enriched with structural information of 3D structural 

models of known protein-complexes and predicted its protein-protein interfaces. For 

predicting the interface structures of interacting couples, we used PRISM which is a 

template-based PPI prediction method [8]. When there are structures available for the 

selected PPI, they are shown in a JSmol view. Lastly, we mapped mutations on protein 

structures and on interaction interfaces. Our system obtains mutation knowledge from 

cBioPortal [9]. 

Although there are several tools for mapping and visualizing mutations on 3D 

protein structures in a network representation such as dSysMap [10], underlying reason 
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to this work is the lack of tools which enable easily visualize, analyze and compare 

different phenotype-specific subnetworks on the same network representation. Our 

software peaks generic PPI network visualization with its enriched interactive graph 

representation, gene prioritization, graph analysis options, 3D structural knowledge and 

mutation mapping. This study presents a better alternative when we need to analyze the 

common protein-protein interfaces among different networks or investigate mutations 

happening on the same or different proteins of the networks.  

The outline of the thesis is arranged as follows: Chapter 2 covers an extensive 

literature review on related work. This chapter starts with general information about 

protein-protein interaction networks and continues by explanation of genotype – 

phenotype relationship and PPI networks in human disease. Then it explains how 

topological properties and structural knowledge are used to make inference from 

biological networks. Finally, it provides a comprehensive summary about previous 

studies related to visualization, analysis and comparison of PPI networks. Chapter 3 

contains materials and methods to develop Gene2Phen tool, describes main 

functionalities provided to the users, and explain design and implementation details. 

Chapter 4 starts with introduction of the tool as a result of the work done with case studies. 

As the final chapter, Chapter 5 concludes this thesis study with discussions of the tool 

and the future works.  
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Chapter 2 

LITERATURE REVIEW 

 

This chapter covers an extensive literature review on related work. We start with 

general information about protein-protein interaction networks and continue by 

explanation of genotype – phenotype relationship and PPI networks in human disease. 

Then we explain how topological properties and structural knowledge are used to make 

inference from PPI networks. Finally, we provide a comprehensive summary about 

previous studies related to visualization, analysis and comparison of PPI networks.  

2.1 Protein-protein interaction networks 

 Proteins are biological macromolecules which are fundamental components for 

organisms and perform in almost every process within cells such as sensing the 

environment, regulating the activity of metabolic and signaling enzymes and DNA 

replication [11]. Proteins mainly vary from each other according to their amino acid 

sequences, which are defined by the nucleotide sequence of their genes. Then they 

usually end up some distinct three-dimensional structures which specify their activity. 

Initial studies on how genes function at the molecular level examined and 

identified protein interactions individually, however today we know that this paradigm is 

not adequate for explaining biological processes within organisms and the subject is more 

complicated. Genes, proteins and other biological entities usually accomplish their 

functions within an intricate network of interactions, therefore, a single biomolecule has 

an impact on a broad range of other cell components. Accordingly, analyzing PPIs on the 

network basis become crucial to understand various biological functions and processes. 

A comprehensive, integrative approach which includes PPI networks has been 

established throughout the years [12]. 
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Generic representation of PPI networks is node-edge diagrams. In a protein-

protein interaction network, nodes represent proteins and edges represent physical 

interactions between proteins. Figure 2.1 shows the interaction between HRAS and RAF1 

and illustrates the corresponding representation in a PPI network. 

 

Figure 2.1 Representation of nodes (proteins) and an edge (interaction) in a PPI network 

Protein-protein interaction networks have been utilized more and more to 

acknowledge the molecular basis of diseases. Current and promising PPI network 

applications on diseases can be categorized into four according to their objectives, which 

are, recognition of new disease genes, definition of their network features, identification 

of disease associated subnetworks and network-based disease classification [13]. This 

thesis concentrates on identifying disease-related subnetworks and recognition of new 

disease genes. 

2.2 Genotype-phenotype relationship using networks 

Before focusing on genotype-phenotype relationship, we need to define genotype 

and phenotype concepts individually. Genotype basically means the complete genetic 

characteristics of an organism which can be revealed by genome sequencing. However, 

this concept can also refer to a specific gene or gene sets related to a disease. On the other 
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hand, phenotype implies our actual physical features which are generally visible. 

Similarly, phenotype concept can also refer to specific observations such as healthy or 

different diseased states of an organism. Thus, phenotype can be considered as the 

outcome of genotype with environmental factors. Sickle cell disease is a common way to 

explain genotype to phenotype relation.  A red blood cell is normally in a round shape 

which makes it carry large amount of oxygen molecules. A mutation on the gene 

responsible for haemoglobin changes the shape of red blood cells into a crescent. That 

causes low levels of oxygen transport leading to sickle cell anaemia.   

Genotype – phenotype relationships have been investigated with different 

approaches. “One gene – one enzyme – one function” concept was suggested by Beadle 

and Tatum, later Hartwell et al. introduced a new idea in 1999 [14]. Their theory suggests 

that rather than the individual properties of one protein, the whole complex generally 

determines the phenotype. Subsequent studies on large-scale protein-protein interactions 

largely confirmed Harwell’s modularity approach, while Tatum’s linear-relationship 

hypothesis is turning into an exception case for explaining genotype-phenotype 

relationships [15]. Generally, genotype–phenotype relationships are complex, this fact 

can be illustrated with examples of coronary heart disease and diabetes which are the 

most common polygenic human diseases.  

Screening phenotypes throughout the genome alongside sequencing information 

obtained from patients generate high scaled, complex genotype and phenotype data [16]. 

New advances which consider the modularity of biological systems are needed to model 

and predict phenotypes, especially complex phenotypes from genotype information. The 

main goal is to provide predictive models of the disease mechanisms of complex diseases 

as well as define healthy states. The reason is that we hope accurate models will likely 

drive novel approaches to personalized medicine, where we better understand the genetic 

background of patients and can predict their proteome response to the environment in the 

context of their interacting gene products [17]. Still, many significant challenges remain 

to developing a network-based understanding of biology. In this thesis, two of these 
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challenges we concentrate on is how the candidate network markers are identified and 

how the phenotype-specific subnetworks are selected from this candidate set.  

2.3 Phenotype-specific subnetworks with network prioritization algorithms 

The concept of gene prioritization become more and more popular with the states 

of both the progress made in computational biology and the large amount of genomic 

data publicly available. This concept was introduced in 2002 [18],  and the first approach 

to solve this problem was described. Then, many different algorithm have been 

introduced (Figure 2.2) [19]. The principle was almost common among all strategies, 

which is called ‘guilt-by association’: the most favourable candidates will be the ones 

that are similar to the genes already known to be associated to desired biological interest. 

 

Figure 2.2 A summary of recent computational methods for prioritization of candidate 

genes, and their input/output requirements [19]. 

 

Functional annotations are generally the base of current disease candidate gene 

prioritization methods however they are limited. Therefore, when network-based 

candidate gene prioritization methods which are integrated with functional annotation 

performs better than all other gene features or annotations [20]. 

Phenotype-specific subnetwork prediction is another important aspect as much as 

prioritization of candidate gene. Similar to gene prioritization methods, subnetwork 
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prediction has various computational methods, however, scoring the network is the 

common point of all strategies in order to obtain a candidate disease related subnetwork. 

Scoring a subnetwork could be performed according to to gene expression profiles, co-

expression or set cover approach etc. 

In the previous study of our work, Engin et al. created two different metastasis 

PPI networks for breast cancer, and involve protein structures to explain the genotype-

phenotype relationships [21]. In that study, they generated PPI subnetworks by using 

initially known phenotype-related seed genes for both brain and lung metastasis, and they 

scored each interaction with following guilt-by-association principle [6]. After defining 

a cut-off as a threshold, they obtained brain metastasis subnetwork and lung metastasis 

subnetwork. 

2.4 Network topology and PPI networks  

The proteins and the protein-protein interactions create a network with several 

topological properties. Besides the knowledge on proteins and their interactions, 

knowledge of topological properties of the PPI networks can be used to create accurate 

models for predicting unknown protein-protein interactions and their biological 

significance on disease phenotypes [22]. PPI networks are need to be examined by their 

topological properties in order to distinguish the candidate disease genes because the 

genes which are related to same disease phenotype may be in the same functional 

pathways or probably have interactions with each other. Topological analysis of PPI 

networks also helps us to compare and characterize networks [23]. Several topological 

measures such as node degree, betweenness, closeness, clustering coefficient may 

contribute to the prediction of phenotype-gene association.  

On earlier studies, topological centrality was considered as one of the key 

measures [24]. Topological centrality generally consists of node degree and betweenness 

centrality. Node degree of a gene indicates the number of interactions the gene has with 

its neighboring genes. Betweenness centrality of a gene corresponds to the number of 
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shortest paths passing through that node. Hub nodes are selected as proteins with high 

node degree scores. Nodes with high betweenness centrality score are called bottleneck 

nodes representing the critical points of the network since they control most of the 

information flow in the network. 

In earlier studies, Barabasi and Albert used growth and preferential connectivity 

principles in order to define the scale-free topology. According to these principles, scale-

free networks grow as new nodes interact with the already-exist nodes in the network, 

and the new nodes favor to be attached the nodes with more connections. This mechanism 

creates the term hubs and presence of hubs is the key feature of scale-free networks [25]. 

Later, the evolutionary origin of scale-free topology is explained with biological 

evidences and its characteristic features such as topological robustness against accidental 

failures, relationship between being in the hub status and controlling viability or cell 

growth on complex biological networks are investigated [26].  

At first, network studies focused highly on hub proteins. Among the studies 

investigating lethality and centrality in protein networks, one suggests that likelihood that 

removal of a protein will prove lethal correlates with the node degree of the protein. The 

showed in their results that, even though non-hub proteins constitute about 93% of the 

total number of proteins, only about 21% of them are essential. On the other hand, Hub 

proteins are covered only the 0.7% of all proteins, but single deletion of 62% or so of 

these proves lethal. This implies that hub proteins are three times more likely to be 

essential than non-hub proteins. [27] However, then it is proposed that the correlation 

between hubness and lethality is not depend on the structure of network. The reason is 

that hub proteins possess a vast number of interactions, which is why they are more likely 

to get involved in essential protein-protein interactions. These findings bring new aspects 

on the topological robustness  [28].   

Han et al. suggested that in protein-interaction network of yeast, there are two 

categories of protein hubs: (i) party hubs interacting with most of their partners 
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concurrently, (ii) date hubs interacting with their partners at different times or in different 

locations. Even the party and date hubs have similar essentiality [29], their removal will 

effect on the network connectivity differently. The removal of date hubs falls the all 

network apart, while the removal of party hubs does not have an effect on the connectivity 

of global network. 

Yu et al is one of the first studies emphasizing the importance of betweenness. In 

their study, they categorized all proteins as hub-bottlenecks, non-hub-bottlenecks, hub-

non-bottlenecks and non-hub-bottlenecks. Figure 2.3 shows a schematic diagram of 

bottleneck and the four categories of nodes in a network. Yu et al stated that date hubs 

correspond mostly to hub-bottlenecks, while the party-hubs correspond mostly to hub–

non-bottlenecks. From point of view of gene essentiality, they concluded that in 

regulatory networks, betweenness centrality is better determinant, while node degree is 

much more effective in PPI networks [30]. 

 

Figure 2.3 Schematic showing a bottleneck and the four categories of nodes in a 

network 
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2.5 Integrating structural information to PPI networks 

A PPI network representation provides so much information about the sets of 

interacting proteins like whether two proteins are binding or do not, or the number of 

interactions a protein can have. Addition of structural knowledge to the PPI networks 

creates an extra dimension of data to the representation. Knowledge on structural details 

of two protein’s interactions allows us to detect many other proteins trying to bind the 

same region on the surface of other proteins. On the other hand, this extra knowledge 

may help us to realize which interactions are unlikely to happen concurrently. Besides, 

there may be protein pairs using the similar interface architectures in order to interact 

with each other. The drug targeting on anyone of these PPIs will has a high probability 

of targeting the others as well, since the tendency of ligands to bind to similar binding 

sites. Moreover, determining the interface region of a PPI helps us to locate whether the 

mutations occur in the interface or not [21]. 

Previously known complex 3D structures are one of the best sources of protein 

interaction data in order to identify putative interactions of other proteins [31]. The 

mechanism of interactions has been understood better recently, after the incorporating 3D 

protein structure information to PPI networks. In 2006, Kim et al. integrated structural 

information with yeast PPINs [32]. They compared and structurally mapped edges by 

using sequence similarity to known complexes. They analyze the interfaces of each 

interaction. If a common partner protein uses the same interface while interacting with 

other the partners, these interactions are categorized as mutually exclusive. If the partners 

use different interfaces, those interactions are categorized as simultaneously possible.  

However, there are limitations on known structural data and also there are 

limitations on the classical network node-and-edge representation which shows only 

which proteins interact; not how they interact [33]. Structural networks provide this 

information. Protein-protein interface structures can indicate which binding partners can 

interact simultaneously and which are competitive and can help forecasting potentially 

harmful drug side effects. From this standpoint, structural PPI networks enable to figure 
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out the disease phenotypes. Kar et al.[34]’s analysis on protein interfaces of cancer related 

structural networks shows that the strength and specificity of the interactions of hub 

proteins/cancer proteins are different than the interactions of non-hub/non-cancer 

proteins, respectively.  

Currently, large-scale cancer genome sequencing projects generates massive 

amounts of somatic mutation data, however, how to identify driver mutations and 

significantly mutated genes remains a great challenge [35]. By constructing a 3D 

structural human PPI network, Wang et al. systematically examine relationships between 

genes, mutations and associated disorders [36]. They find that in-frame mutations are 

mostly occur on the interfaces regions of binary interactions, and disease specificity is 

affected by different mutations located on different locations of an interface. They also 

predict 292 candidate genes for 694 unknown disease-to-gene associations. In another 

study, Engin et al. [21] mapped over 1.2 million non-synonymous somatic cancer 

mutations onto 4,896 experimentally determined protein structures and analyzed their 

spatial distribution. Then they use all available human protein complexes on PDB to 

construct a bipartite structural PPI network. Analysis of frequently mutated cancer genes 

within this network revealed that tumor-suppressors, but not oncogenes, are significantly 

enriched with functional mutations in homo-oligomerization regions. These studies show 

combination of point mutation data of 3D structures and PPI network help us to 

understand human disease mechanisms. 

To integrate structural information to PPI networks we surely need to resolved 3D 

structure data. Although the experimental methods have provided thousands of 

interactions, this amount just corresponds quite small part of the whole genome size and 

also experimental methods are time consuming and expensive. Also, a large number of 

PPIs for non-modelled species are still uncertain. The demand for additional PPIs has led 

to the development of the computational prediction approaches of PPIs over the past 

decade. Some examples of these approaches are Prism, Haddock, Rosetta, and ZDOCK. 
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Template-based protein–protein interaction prediction tools are widely used 

computational approaches. These computational techniques also provide valuable 

insights for protein engineering and drug discovery. Hence, more efficient and less error 

prone computational techniques for protein–protein interaction prediction and structural 

modeling are of paramount importance in the biological sciences [8]. 

 

Figure 2.4 Schematic representation of template-based prediction [8] 

 

2.6 Related Software 

dSysMap [10] is a web-source used for mapping the disease-related missense 

mutations on the protein-protein interaction network which makes it one of the most 

important software related to our work. This genotype to phenotype relationship is used 

for developing deeper explanations for human diseases.  

dSysMap has its own database for wide variety of human diseases. Users could 

visualize the constructed networks and build their own networks by giving list of proteins 
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of interest. Users can navigate through the network, viewing the positions of disease-

related mutations on the nodes and edges as well as on the high-resolution structures of 

proteins and complexes. However dSysMap is limited to experimentally known 

interactions and it does not have a network prioritization feature. Table 2.1 lists the other 

related software to this thesis with brief summaries. 

Table 2.1 Currently available software that is related to our work. 

Software Name Description 

Structure-PPi [37] 

- Allow to analyze the effect of Single-Nucleotide 

Variants (SNVs) over functional sites, P-P 

interfaces, other annotated mutations on 3D 

structure of protein complex 

The MI Bundle [38] 

- Building disease networks 

- Identify variations in molecular complexes that 

may affect molecular interactions 

- Integrated analyses at the genomics, molecular, 

network and structural biology levels 

PinSnps [39] 

- Performs data analyses of PPI networks by using 

genetic and functional information mapped onto 

protein structures like genetic variants, SNPs, 

mutants’ impact on the protein 

ELASPIC [40] 

- Evaluate the effect of mutations protein structures 

in the UniProt database 

- Allows predicted modeled wild-type and mutated 

structures, to be managed and viewed online and 

downloaded 

G23D [41] 
- Allows mapping of genomic positions/variants on 

3D protein structures 
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- Provides structural modeling of mutations 

- Allows analysis of intramolecular contacts of 

protein, functional predictions and predictions of 

thermo-stability changes 

StructMAn [42] 

- Analyzes the possible location of the amino acid 

residue corresponding to non-synonymous single 

nucleotide variants (nsSNVs) in the 3D protein 

structure relative to other proteins, nucleic acids 

and low molecular-weight ligands 

MutaBind [43] 

- Performs Mutation Mapping 

- Calculate change in binding affinity 

- No network visualization and analysis 

 

Although having similar functionalities, the point that distinguishes Gene2Phen 

from the other related software is bringing all the following range of capabilities which 

are network prioritization, generating phenotype-specific subnetworks, interactive 

network visualization, displaying 3D structural models of PPIs and their predicted 

protein-protein interfaces, mutation mapping on interface structure and simultaneous 

phenotype-specific sub-network comparison together. Especially populating the PPI 

network with structural models and mutation mapping along with sub-network 

comparison constitutes the main contribution and novel part of this thesis work. 

Gene2Phen tool provides various distinguishing biological uses, such as 

identification of new disease candidate genes or potential drug targets, or to predict novel 

disease associations. As an example, structural analysis on phenotype specific 

subnetworks may show that some PPI interfaces in two compared subnetworks have the 

same evolutionary origin which may be involved in similar molecular pathways that are 

shared by these two phenotypes. In addition, mapping the mutations on the interface 
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regions of the proteins in two compared sub-networks may reveal that some mutations to 

be involved in the mechanisms differentiating between two phenotypes. 

Another distinctive usage of Gene2Phen tool can be detection of proteins trying to bind 

the same region on the surface of other proteins, so that users can identify mutually 

exclusive interactions which are unlikely to happen concurrently. Besides, there may be 

protein pairs using the similar interface structure in order to interact with each other, this 

deduction helps drug targeting since these PPIs will has a high probability of targeting 

the others as well. 
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Chapter 3 

Gene2Phen – A Web-based tool to build, visualize and compare 

phenotype specific subnetworks with their structure and mutation 

data 

 

In this chapter, the materials and methods for design and implementation of Gene2Phen 

(Genotype to Phenotype) Web Tool are presented. The section starts with the preview 

and a brief commentary on main functionalities that user can find at Gene2Phen, and this 

is followed by step-by-step explanation of the inputs, processing steps and output features 

in the methodology workflow. This is followed by software architecture of the system, 

database management information, and web-based properties related to interactive 

network visualization.  

3.1 Main Functionalities of Gene2Phen Web Tool 

The main functions that users can take advantage of by using Gene2Phen tool can be 

listed and summarized as follows: 

 Users can prioritize the human protein-protein interaction network according to 

desired set of genes that user aim to investigate. The tool ranks all interactions in 

the human PPI network according to the level of being associated with desired set 

of genes. In the generated scored-PPI network, higher scores imply higher 

associability to those genes and therefore higher probability of being related to 

investigated phenotype.   

 Users can generate a phenotype specific subnetwork from the scored-PPI network 

by selecting a cut-off score. The tool eliminates the interactions which have a 

lower association score than the selected cut off score, thus generates a desired 

phenotype-specific subnetwork. Via cut-off score selection users can control the 

level of specificity since choosing higher threshold score causes narrowing the 

subnetwork down further.  
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 Users can visualize generated phenotype-specific subnetworks as a generic 

network representation. In this representation, nodes indicate proteins and edges 

indicate physical interactions between proteins. The displayed phenotype specific 

subnetwork provides a bird’s eye view of all interactions to the user and a general 

framework that the user can easily get into the details.  

 Users can enrich their research by examining the topological significance of 

proteins in the phenotype-specific subnetworks. The tool displays the phenotype-

specific subnetwork with numerical degree centrality, closeness centrality and 

betweenness centrality values for each protein when the user hovers the mouse on 

them. These centrality scores help users to identify whether the protein is a hub 

or bottleneck in the network or not. 

 Users can retrieve genome annotations for each protein in the phenotype-specific 

subnetwork. To investigate protein-protein interactions associated with a 

phenotype or disease, researchers mostly need to access some biological 

information about the genes which are expressed and used in synthesis of 

functional gene products, generally proteins. When the user clicks on a gene the 

tool provides short and detailed description, aliases, chromosome location, 

UNIPROT ID and GENE ID for each gene in the network. 

 Users can go into the details on predicted possible interface structures of 

interacting protein-protein pairs in the phenotype-specific subnetworks. The tool 

provides the template interface which used to predict the PDB-PDB interaction, 

along with energy scores and structure information of predicted interfaces. Users 

may need to identify competitive interaction partners which can bind the same 

interface region on a specific protein, so that they can detect which interactions 

can happen at the same time and which cannot. From another perspective, in the 

case of ligands which are prone to attach to similar binding region, a drug which 

targets any of these structurally similar protein-protein interactions will be likely 

to target the others as well.  
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 Users can view 3D structural models of known protein-complexes and their 

predicted protein-protein interfaces. For selected PDB-PDB interaction, user can 

visualize the complex structure, can identify the non-interface and interface 

residues of both two proteins, can download contacts of interface residues and the 

PDB file of the complex structure. The downloaded PDB file can be viewed with 

other visualization tools afterwards.   

 Users can see the list of mutations which are mapped on predicted protein-protein 

interfaces. For each mutation on predicted interface structure, the tool provides 

information about mutation status (e.g. somatic), mutation type (e.g. missense 

mutation), amino acid change (e.g. P99S), functional impact score, chromosome 

number, reference allele and variant allele. 

 Users can use all features of the tool for analyzing and comparing two phenotypes 

at the same time. Our tool is designed as all output features and results can be 

displayed in same frame in order to make easier to investigate two different 

phenotypes concurrently. 

3.2 Workflow of Methodology 

 Our methodology stages have been tailored to the needs of researchers working 

on genotype to phenotype relationships. With the escalation in large scale methods to 

map functional connections between genes, many researchers are now examining data 

sets as networks. Main reason of this tendency is that genes usually perform their 

functions by interacting with other genes and in overall picture they construct biological 

networks which serve as molecular machines or dynamic biological pathways [26]. Due 

to the functional cooperation of genes and in PPI networks, researchers have shaped their 

studies towards a reverse approach that diseases or other phenotypic variations are 

derived from some perturbations of this molecular networks by genetic and 

environmental effects [44]. 

In this direction, interpreting protein-protein interactions from broadly network 

level to individually structural level with mutation data requires a comprehensive study 
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process that is fed from different sources for researches on genotype-phenotype 

relationship. We have developed a web-based software works as an automatized pipeline 

tool to build, visualize, analyze and compare phenotype specific subnetworks, to predict 

protein-protein interactions associated with their structure and mutation data. The tool 

only demands sets of seed genes from users according to which phenotypes are 

investigated, then it automatizes the research methodology below (Figure 3.1) and brings 

into use.  

First, the system ranks human protein – protein interaction network for both two 

different phenotypes according to seed gene sets coming from user’s selection. The 

ranking logic is basically based on being associated with specific seed genes which are 

known to be associated with a phenotype, makes this gene probable to be related to same 

phenotype. Then the scored human PPI network is filtered by a cut-off value and 

phenotype specific subnetworks are generated. After that, interactive visualization part is 

coming to play and topological scores for nodes, phenotype scores for edges and gene 

annotations enhances the generic network representation. Then, these two subnetworks 

are enriched with structural information of predicted protein-complexes and its protein-

protein interfaces. If there are available structures of the predicted PPI, user can visualize 

it. Lastly, mutations are mapped on interaction interfaces of complex structures.  

The subsequent sections follow the workflow of the methodology in Figure 3.1, 

and explains the input data which comes from user, the processing steps of Gene2Phen, 

and the output features provided in detail. 
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Figure 3.1 Workflow of the methodology followed in Gene2Phen 

3.3 Inputs 

3.3.1 Seed Genes 

To detect disease gene candidates for investigated phenotypes, Gene2Phen takes 

advantage of guilt-by-association methods. The logic behind these algorithms can be 

illustrated as follows: Let us consider that a company needs to recruit new software 



22 

Chapter 3: Gene2Phen 

 

 

engineers for their open positions and the headhunters of the company are seeking 

talented candidates who have expertise in software development. In case of a large 

number of applications, both narrowing down the candidate pool with prescreening 

interviews and the one-by-one interviews with all candidates would be time consuming 

and mostly inaccurate. To have a shorter hiring time and higher rate of acceptance, they 

may consider using an alternative recruitment method called employee referral which 

means to search potential candidates from their existing employees’ networks. In this 

logic, starting from their employees as known to be good engineers and motivating them 

to refer a candidate would be an effective strategy.  

In a similar manner, when researchers need to identify new candidate genes that 

responsible for investigated phenotype, guilt-by-association methods which ranks all 

genes based on their proximity to known disease genes (seeds) and narrows down the 

number of candidates therefore these methods provide user for focusing on the highly 

associated genes and increase the accuracy. In this project, Gene2Phen tool requires to 

get a set of seed genes from user for both two investigated phenotypes for network 

prioritization process. User can pick their seed genes by searching the literature on genes 

which are identified as linked to a phenotype in experimental studies such as RNA-

sequencing, microarray analysis etc. The input format for seed genes is the official gene 

symbol approved by the Human Gene Nomenclature, which is a short-abbreviated 

version of the gene name [A3].  

3.3.2 Cutoff Score 

The human PPI network that is used in this project includes 12,834 genes and 

339,811 gene-gene interactions.  After the step of ranking human PPI is done, cutoff score 

parameter is needed for filtering PPIs of the whole network to make easier to study. The 

cutoff score can have any value between zero and one. If the user sets the cutoff score to 

the minimum (zero), since the tool would not be able to eliminate any interaction even if 

it is completely unrelated to the phenotype, the output would be the whole human PPI 

network to the user. On the contrary, if the user sets the cutoff score to the maximum 
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(one), the tool eliminates all interactions except the few possible seed gene – seed gene 

interactions which are already known to be related to the phenotype by user, therefore the 

output network would be extremely specific that is not able to give any insight for new 

candidate genes. Between zero and one, users can try various values to generate 

phenotype specific subnetworks in different size and to control the level of specificity 

since choosing higher threshold score makes the subnetwork smaller.  

3.4 Processing Steps 

3.4.1 Ranking Human PPI for Phenotype 1 and 2 

For ranking of human PPI network, we used a software named GUILD, a 

network-based disease candidate gene prioritization framework. GUILD (Genes 

Underlying Inheritance Linked Disorders) includes several algorithms of “guilt-by-

association” to prioritize a list of candidate genes associated with a phenotype. Guilt-by-

association approaches are based on a set of genes associated with a phenotype, named 

seeds, and the tendency that other genes associated with the same phenotype will interact 

with the seeds as previously explained in Chapter 3.3.1.  

GUILD consists of implementations of 8 algorithms: NetScore, NetZcore, 

NetShort, NetCombo, fFlow, NetRank, NetWalk and NetProp [6]. We employed the 

NetCombo algorithm in GUILD using the default parameters as in to rank all the proteins 

of the human PPI network. This algorithm combines the algorithms of NetScore, 

NetZcore and NetShort.  

NetScore adopts a message-passing scheme such that each node sends the 

information associated with it as a message to all its neighbors and the neighbors convey 

these messages to their neighbors. NetScore takes into consideration alternative shortest 

paths within the distance of at most number of iterations links at each so-called repetition-

cycle. At the end of the repetition cycle, the node scores are updated according to 

messages received so far and the message passing is restarted. 
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NetZcore assigns a normalized score using the distribution of the scores of 

neighboring nodes. The normalization uses a random model of networks and it is 

calculated with the Z-score formula: z=(x-m)/s, where m is the average of scores of 

neighboring nodes with similar distribution in the random network and s is the standard 

deviation. The distribution is obtained with hundred network-replicates obtained by 

randomly shuffling the scores among nodes with similar degree. 

NetShort accumulates the weighted shortest path lengths between a node and the 

rest of nodes in the network, where each edge-weight is inversely proportional to the 

average of the scores of the two nodes connected by the edge (i.e. edges connecting high 

scoring nodes are shorter). 

NetCombo combines the output scores from NetScore, NetZcore and NetShort in 

a consensus scheme by averaging normalized scores (z-scores) of a node in these 

methods. It requires the output files of NetScore, NetZcore and NetShort. 

 

 

Figure 3.2 Basic I/O representation of GUILD 

 

Since network prioritization process is performed under the guidance of two 

different set of seed genes for each phenotype, there will be calculated two phenotype 

scores for all edges in the human PPI network. For network prioritization process, 
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Gene2Phen tool generates input node file and input edge file to make GUILD algorithms 

work on.    

Input node file: 

Input node scores file containing node (e.g. gene) identifier followed by its 

phenotypic relevance score (e.g. association with the disease phenotype for that 

protein/gene) on each line. The values need to be separated by whitespace(s). That is; 

<node_id> <node_score> 

 At this stage, Gene2Phen only has two sets of seed genes about the phenotypic 

relevance of nodes in the network. Therefore, to prioritize them, it sets the node scores of 

seed genes to 1, while the rest of the nodes is set to 0.001. 

Input edge file: 

Input edge scores file containing node identifier followed by score of the edge its 

phenotypic relevance score (e.g. association with the disease phenotype for the 

proteins/genes it is connecting) and node identifier (the interaction partner) on each line. 

The values are separated by whitespace(s). Thus, a line in this file looks like; 

<node_id> <edge_score> <node_id> 

 Before the network prioritization process, our human PPI network is not 

weighted, therefore the input edge scores file always has the same content, first node ID, 

second node ID and a symbolic value of the edge score between them (one) in order to 

register that they are interacted. 

Output node file: 

Output node scores file containing node identifier followed by its “calculated” 

phenotypic relevance score (e.g. association with the disease phenotype for that 

protein/gene) on each line. The values are separated by whitespace(s). The format of a 

line would be; 

<node_id> <node_score> 

 Gene2Phen uses the output node file to generate output edge file. Two output 

node files are generated for two phenotypes. 
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Output edge file: 

Output edge scores file containing two node identifiers followed by their 

“calculated” phenotypic relevance scores (e.g. association with the disease phenotype for 

that protein/gene) for two phenotypes on each line. The values are separated by 

whitespace(s). The format of a line would be; 

<node_id1> <node_id2> <edge_score1><edge_score2> 

 As an input for generating output edge scores file, Gene2Phen use the input edge 

file and output node files of two phenotypes. For each interaction on each line in the input 

edge file, it retrieves the calculated phenotype-1 scores of interacting nodes, takes the 

average and write to the <edge_score1>, then repeats the same process for phenotype-2. 

3.4.2 Filtering PPIs According to the Cut-off Value 

Once Gene2Phen completes the stage of ranking human PPI network, each 

interaction in the output edge-scores file passes through the filtering phase. If an 

interaction does not have a phenotype score above the threshold for neither phenotype-1 

nor phenotype-2, it is filtered by the tool. This phase is the key for generating phenotype-

specific subnetworks. 

 

 

Figure 3.3 Filtration phase of human PPI network according to the phenotype scores. 
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3.4.3 Generating Phenotype Specific Subnetworks 

 At this intermediary step, output edge scores file - which only includes two gene 

IDs and two phenotype scores for each interaction - is evolved to a file contains a 

collection of two types of objects (i.e. nodes and edges) with comprehensive data coming 

from the database tables, in JSON (JavaScript Object Notation) format. JSON is a 

lightweight data-interchange format. It is easy for people to read and write. It is also easy 

for machines to parse and generate. 

Even the BIANA ID is the key value for each interaction, users will need to see 

other details and identifiers for the elements in phenotype specific subnetworks, also for 

proceeding the next steps which generates the output features of the tool will use these 

data. Therefore, Entrez Gene ID, UniProt ID, HUGO gene symbol and a short description 

is added to the data object of each node (Figure 3.4). 

 

Figure 3.4 JSON content for nodes 

 Alongside the data pairs explained above for each node, phenotype-1 and 

phenotype-2 scores, an interaction ID, availability status of structure for the interaction, 

PDB counts and PDB sets for Gene-1 and Gene-2 is added to the edge elements.  
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Figure 3.5 JSON format for edges 

Generated JSON file of phenotype specific subnetworks will be used as an input 

for generating interactive network visualization, and the output features which will be 

explained following sections. 

3.4.4 Generating Interactive Network Visualization 

At the interactive network visualization step, Cytoscape.js, an open source 

network library called is highly utilized. Using this library allows to easily display and 

manipulate enhanced, interactive network representation for phenotype specific 

subnetworks. 

The main feature of the library is to provide an opportunity to display and manage 

graphs interactively. In Gene2Phen, when user clicks on a node, annotation panel displays 

the details about selected gene. Clicking on an edge brings a table of predicted PDB-PDB 

interactions for selected edge. Mouseover events of nodes and makes the tooltips pop up, 

node tooltips display topological scores of the selected node while edge tooltips display 

phenotype-1 and phenotype-2 scores. The library also allows selection, pinch-to-zoom, 
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and panning for both touch and non-touch operated devices. Cytoscape.js depends on 

event-driven model with a core API [9].  

During initialization phase, Cytoscape.js receives the graph elements and their 

style properties, layout options, and any other graph properties as JSON objects which is 

generated in the previous step. Style properties are compatible with CSS standards. 

Gene2Phen tool also exploits several layout graphs. Users can choose a suitable layout 

algorithm according to the context and size of their graph.  

3.5 Output Features 

3.5.1 Topological Scores 

If users want to see topological scores of a gene, they can hover with the mouse over 

the node and a tooltip will pop out. Node tooltips display the degree centrality, 

normalized degree centrality, closeness centrality, normalized closeness centrality and 

betweenness centrality. To generate the tooltips that displays topological scores, 

Gene2Phen tool utilizes the built-in functions of Cytoscape.js library for each algorithm. 

 Degree centrality is defined as the number of links occurrence upon a node (the 

number of edges that a node has). Nodes that have higher degree centrality are 

considered as more important since they are hubs in a network, they can take 

charge in several pathways, can spread information to many nodes or can prevent 

the network from breaking up.  

 Normalized degree centrality is normalization of degree centrality score of a node. 

 Closeness centrality is defined as the average proximity to other nodes. Nodes 

which have higher proximity average means that those nodes are closer to the 

other nodes which are assumed to be more important.  

 Normalized closeness centrality is normalization of closeness centrality score. 

 Betweenness centrality is defined as fraction of shortest paths that pass through 

the node. Higher betweenness centrality means that node tends to connect other 

nodes which makes them critical (bottleneck) in the networks. 
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3.5.2 Phenotype scores 

At the network prioritization step, the algorithms of GUILD software score the 

genes, not interactions between genes. Therefore, Gene2Phen tool calculates the edge 

phenotype scores by getting the average of phenotype scores of interacting genes 

calculated by GUILD. When a user hovers with the mouse over an edge, phenotype-1 

and phenotype-2 scores are displayed. Phenotype scores get a value between zero and 

one, and higher values indicates higher associability to that phenotype. 

3.5.3 Gene Annotations 

For all nodes in the phenotype specific subnetworks, user can find annotation data 

which includes description, aliases, short description, chromosome location, UniProt ID 

and Gene ID of selected gene. Annotation data is obtained from BioGene. BioGene is a 

simple web service where scientists can query a gene and retrieve information about its 

functions and references. It primarily uses Entrez Gene, a gene database provided by 

NCBI [45]. Query results of the tool are exhaustive; therefore, the tool extract only some 

fundamental elements from annotation data for ease of use.  

3.5.4 Populating edges of PPI network with structural models 

Up to this stage, Gene2Phen provides a common representation style for 

phenotype specific subnetworks which is a graph demonstration. In these graphs, nodes 

represent the genes and edges represent gene interactions. This concept provides a global 

picture of biological processes and protein function. However, without having molecular 

and structural-level data about which proteins can interact with, or which interactions can 

occur at the same time, or which residues would be on the interface; it is not possible to 

deeply understand functional roles and binding mechanisms of proteins in phenotypic 

variation. Therefore, Gene2Phen adds new perspective to generic network representation 

by mapping all structurally-known protein products of a gene to each node, and all 

predicted protein-protein interactions of two genes to each edge. 
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Figure 3.6 Illustration of populating edges of the subnetworks with structural data 

  

 Gene2Phen obtains all data on structural prediction of protein-protein 

interactions from its database which consist of PRISM results. PRISM (PRotein 

Interactions by Structural Matching) is a template-based protein interaction prediction 

tool and needs the 3D structures of queried genes stored in PDB database. Since it takes 

PDB IDs as an input, our tool firstly fetches the PDB sets of two interacting genes from 

gene2pdb table in database, then lists all possible combinations for PDB-PDB 

interactions for the selected edge. Then it connects to the PRISM results table and fetches 

the results for each PDB pairs (Figure 3.6). Prediction results of PRISM consists of 3 

items which are interface, binding energy score and 3D structure data. Binding energy 

scores of predicted complexes are calculated by using Fiberdock [46]. 

3.5.5 3D View of Complex Structures 

 For each predicted PDB-PDB interaction, Gene2Phen demonstrates the 3D view 

of complex structure via JSMol molecule viewer applet. JSMol JMolApplet is a web 

browser JavaScript application that can be integrated easily into web pages as Gene2Phen 
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[47]. Besides viewing the structure, users also can download the complex structure in as 

a pdb file, and contacts of interface residues as a txt file.  

3.5.6 Mapped Mutations on Interfaces 

For each predicted PDB-PDB interaction, Gene2Phen maps mutations on 

interface region and displays annotation data of those mutations in a list view. A 

schematic diagram of mutation mapping steps can be seen in Figure 3.7.  

Gene2Phen obtains the mutation data from CBioPortal, is a web application that 

allows users to explore, visualize, and analyze cancer genomics data [9]. CBioPortal Web 

API provides direct programmatic access to all genomic data stored within the server. 

Their web service is REST-based, this means that users can make a query by 

concatenating input entries to the base URL and receive the output data as a TXT or an 

XML response. At the first step of mutation mapping process, Gene2Phen requests the 

full set of annotated extended mutation data for Gene1 and Gene2. This output data also 

gives the residue indexes of mutations on the gene, however, a residue-level mapping of 

UniProtKB entries to PDB entries is required to be able to identify whether those 

mutations are on one of two interacted PDBs or not. 

While many links are provided to Protein Data Bank (PDB) files, getting a 

regularly updated mapping between UniProtKB entries and PDB entries at the chain or 

residue level is not straightforward. At the second step, we have utilized PDBSWS, a 

automatically maintained database which performs a residue-level mapping  by aligning 

the sequences from PDB and UniProtKB [48]. PDBSWS is also REST-based, when 

Gene2Phen tool makes queries for interacting PDBs, PDBSWS returns residue-level 

mapping of given PDB and related genes. From the first step of mutation mapping, the 

tool has the residues of all mutations on the interacting genes, by combining those two 

outputs gives all mutations on predicted complex. However, at this stage we still have no 

clue about the mutations on interface residues since the tool does not have the interface 

residues of given PDB-PDB interactions yet.  
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At the last step, Gene2Phen makes another RESTful query to obtain the interface 

residues of selected PDB-PDB interaction. After having the interface residues and 

combining with the previously obtained all mutation data on predicted complex, by 

checking whether mutations are on the interface or not, Gene2Phen accomplishes the 

mutation mapping on interface region of selected PDB-PDB interaction. 

 

 

Figure 3.7 A schematic diagram of mutation mapping 
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3.6 Software Architecture 

  

Figure 3.8 The structure of Gene2Phen tool  

 

In this project PHP is employed as server-side scripting language. It is currently 

the most popular server-side scripting language. PHP supports all major operating 

systems and wide range of databases including MySQL.  

In the database part of Gene2Phen web tool MySQL is utilized. MySQL is the 

most popular relational database management system. MySQL can provide concurrent 

multi user access to its databases. SQL statements to select, insert and update the fields 

of tables are embedded into PHP codes. 

JavaScript is one of the three main languages for web development part of the 

project along with HTML and CSS. HTML is used to define the content of the pages of 

Gene2Phen, CSS is used to specify the appearance of visualization and layout details, 
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while JavaScript programs the behaviour of the output features of the tool. Especially 

Cytoscape.js, an open network library written in JavaScript for analysis and visualization 

is highly utilized in generating interactive network visualization step. The 

implementation details will be explained on the following pages. 

External sources of the Gene2Phen tool are mostly have Web APIs, excluding 

GUILD software which its standalone version is used.  Yet these sources are mostly 

employed at the generation steps of output features, excluding GUILD which is employed 

at the network prioritization phase. 

Python scripts are more readable and easy to understand in comparison with PHP, 

therefore processing steps are implemented in Python. These scripts are employed by the 

client side and connect to database tables or external sources when needed.  

Database tables of Gene2Phen tool are explained in detail at the following 

sections. 

3.7 Database  

3.7.1 The human protein - protein interaction network 

There are numerous databases consisting of experimental data on protein 

interactions. To work with a comprehensive protein-protein interaction network, all data 

needs to be queried accurately and overlapping data should be combined. Because when 

such an overlap occurs, it affects reliability since the methods to get data may be different, 

the source organism may be different, or same data may be organized in different ways. 

To avoid these possible issues, we used a human PPI network generated via BIANA 

(Biological Integration and Network Analysis) bioinformatics tool. BIANA brings 

numerous databases together and handles integration of data which has different 

identifiers. When two proteins have the same sequence data, the same UNIPROT 

accession number or the same Entrez Gene ID, BIANA assumes that those two proteins 

are the same. 
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Our tool uses the same database version with the current version of GUILDIFY 

(web version of GUILD) uses, which is BIANA integrated database release from March 

2013 (includes UniProt, GO, OMIM, Drugbank, HPRD, IntAct, DIP, BioGrid, MPACT 

and Reactome databases) (Table 3.1).  

Table 3.1 BIANA integrated database release from March 2013 

Database Name Database Version 

SWISSPROT Mar 2013 

TREMBL Mar 2013 

OMIM Jul 2013 

GO Jun 2013 

DRUGBANK Jul 2013 

BIOGRID Jan 2013 

DIP Jan 2013 

HPRD Apr 2010 

INTACT Jan 2013 

MINT Dec 2011 

MPACT Oct 2008 

REACTOME Dec 2012 

 

The human PPI network taken from BIANA integrated database release is located 

to interactome table in our database. The detailed description of interactome table is given 

at Table 3.2. The meaning of each column is explained below. 

Field: The name of the corresponding column in the database table. 

Type: The type of individual values the column can have. Numbers in parenthesis 

indicate the size allocated in bytes for each value. 

Key: Shows whether the column act as part of a primary key (PK) for that table. 

Default: The default value assigned to that column if one is not set explicitly. 
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Extra: Miscellaneous information. 

Table 3.2 Description of interactome table. 

Field Type Null Key Default Extra 

biana_id varchar(10) NO PK NULL  

gene_symbol varchar(20) NO  NULL  

gene_id varchar(10) NO  NULL  

uniprot_id varchar(20) NO  NULL  

description varchar(200) NO  NULL  

 

Interactome table has 5 columns which are biana_id, gene_symbol, gene_id, 

uniport_id, description. Biana_id is the primary key of the interactome table. Since 

BIANA ID numbers are specific to GUILD software, we added gene_id, uniport_id and 

gene_symbol to the table so that users can distinguish genes with global identifiers. This 

table is employed at generating phenotype specific subnetworks (Chapter 3.4.3) step 

when the filtered output edge-score network is enhanced for generating json files of the 

subnetworks. 

3.7.2 gene2pdb table 

Gene2pdb table has three columns which are gene_id, pdb_count, and pdbs. Gene 

ID is the primary key of gene2pdb table. Pdb_count stores the number of protein 

structures available in database for each gene and pdbs column stores the PDB IDs of 

those structures’ as a concatenated string.  

Table 3.3 Description of gene2pdb table  

Field Type Null Key Default Extra 

gene_id varchar(10) NO PK NULL  

pdb_count int(11) NO  NULL  

pdbs varchar(2000) NO  NULL  

 

Gene2pdb table is employed at populating PPI edges with structural models. 

When an interaction is selected, the tool retrieves the PDB counts of interacting genes, 
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and takes the Cartesian products of two sets of PDBs to predict possible PDB-PDB 

interactions. 

3.7.3 PRISM Results Table 

PRISM database keeps all user information data available, target structures, 

template structures, prediction results Multiprot results etc. PRISM database consists of 

9 tables (Table 3.4). Gene2Phen tool only utilizes the results table.  

Table 3.4 All tables in prismDatabase 

Tables_in_prismDatabase 

ip_addr 

Job 

Jobs 

Multiprot 

Passed 

Results 

Targets 

Templates 

templatesN 

 

Results table (Table 3.5) contains final prediction results from PRISM runs. It 

includes target protein information, which interface is used as a template, energy value 

of the interaction, location of the generated complex protein and date value that indicates 

prediction time of the job. Gene2Phen utilizes the results table at “populating edges of 

PPI network with structural models” phase (Chapter 3.5.4).  

Table 3.5 Description of results table 

Field Type Null Key Default Extra 

target1 varchar(30) NO PK NULL  

target2 varchar(30) NO PK NULL  

interface varchar(30) NO PK NULL  

energy double NO  NULL  

structure varchar(200) NO PK NULL  

date_column timestamp NO  CURRENT_TIMESTAMP  
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When an interaction is selected, after the tool takes the Cartesian products of two 

sets of PDBs to predict possible PDB-PDB interactions, Gene2Phen queries the result 

table in condition that target1 and target2 is equal to each interaction partners in the list 

of possible PDB-PDB interactions. Result queries return interface, energy and structure 

columns. 

3.7.4 Mutation Files 

 Mutation files for each gene is retrieved from CBioPortal through the Web API 

and downloaded. Gene2Phen tool requests the full set of annotated extended mutation 

data and downloads in tsv format it is not previously downloaded. The tab-delimited file 

contains following columns: Entrez gene ID, HUGO gene symbol, case ID, sequencing 

center responsible for identifying the mutation, somatic or germline mutation status, 

mutation type (such as nonsense, missense or frameshift), validation status, amino acid 

change, predicted functional impact score by Mutation Assesor, links to the various views 

from Mutation Assessor, chromosome where the mutation occurs, start and end position 

of mutation and mutation profile id. Gene2Phen tool utilizes to the downloaded mutation 

files at the mutation mapping stage on predicted interfaces. Since these files contains all 

mutations are observed on a gene, the tool eliminates those are not on the contact region 

of interacting PDBs. Then it displays interface mutations with the data coming from 

selected columns of the mutation files.  

3.8 Implementation with Cytoscape.js library 

The architecture of Cytoscape.js consists of two main parts, the graph instance 

named “core” and the collection. The core is the main entry point into the library. From 

the core, layouts can be run, viewport can be altered, and other operations are performed 

on the graph as a whole. The core provides several functions to access elements in the 

graph. Each of these functions returns a collection, a set of elements in the graph. 

Functions are available on collections that allow us to get data about elements in the 

collection, filter the collection, perform operations on the collection, and traverse the 

graph about the collection, and so on.  
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Gestures 

The visualization panel supports several gestures: Grab and drag background to pan, grab 

and drag nodes, mouse wheel to zoom, tap to select, tap background to unselect, tap hold 

background to unselect, etc. 

Style and Layout 

For visualization, the container, elements, style, and layout options usually should be set.  

Style: Style is used for modifying the visual details in the network, such as differentiating 

edges which are more associated to phenotype-1, phenotype-2 and the edges which do 

not have structural data by using eles.addClass(), eles.removeClass(), etc..    

Layout: In graph visualization, layout is used for algorithmically positioning the nodes 

in the graph. Which layout is initially run is specified by the name field. In the 

visualization panel, Springy, which is a force directed layout algorithm in JS is used.  

Springy simulates the real world physics to make the network looks attractive with 

realistic motion. In visualization panel we prefer to limit the running time of Springy 

layout with 4000 ms in order to keep the balance between attractive design and usable 

design since Springy layout does not allow to zoom in/out.  

In case of visualizing very large networks, springy layout cannot working effectively 

since the calculations required for simulation becomes costly. In such cases our tool uses 

plainer layout named “cose”.  

3.8.3 Events 

Mouse over node event: Displays a tooltip which returns topological scores of the node 

by using eles.degreeCentrality(),eles.betweennessCentrality(),eles.closenessCentrality(), 

eles.degreeCentralityNormalized(), eles.closenessCentralityNormalized(), 

http://js.cytoscape.org/#notation/elements-json
http://js.cytoscape.org/#style
http://js.cytoscape.org/#layouts
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Mouse over edge event: Displays a tooltip which returns phenotype scores of the edge 

by using e.data.score1 and e.data.score2 from json file of the generated phenotype 

specific subnetworks. 

Click node event: Displays Gene Annotation table of selected gene. 

Click edge event: Displays the PDB-PDB Interaction table of selected interaction. 

Checkbox filter event: Hides the edges which have no structure by using 

cy.getElementById(i).addClass('filtered') 
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Chapter 4 

RESULTS AND CASE STUDY 

4.1 Gene2Phen Web Tool  

The Gene2Phen web tool serves as an automatized pipeline to build, visualize and 

compare phenotype specific subnetworks, to predict and examine protein-protein 

interactions associated with their structure and mutation data. 

Gene2Phen web-tool receives two sets of genes which acts as seed genes for 

prioritizing PPI network to generate two phenotype-specific subnetworks. For network 

prioritization the tool uses guilt-by-association methods of GUILD software. [6] After 

resulting of the query, users will find an interactive representation of two phenotype-

specific subnetworks.  Users can display details about proteins, interactions and 

mutations and have a look at the available structural data by clicking on the elements of 

the networks. Edges are colored based on the availability of structural information about 

the corresponding protein-protein interaction. To implement graph analysis and 

visualization functions on displayed subnetworks, we used Cytoscape js which is an open 

source network library written in JS. [7] Then, these two subnetworks are enriched with 

structural information of 3D structural models of known protein-complexes and predicted 

its protein-protein interfaces. For predicting the interface structures of interacting 

couples, we used PRISM which is a template-based PPI prediction method. [8] When 

there are structures available for the selected PPI, they are shown in a JSmol view. Lastly, 

we mapped mutations on protein structures and on interaction interfaces. Our system 

obtains mutation knowledge from cBioPortal. [9] 

4.2 Gene2Phen Web Tool Usage 

Users can access the Gene2Phen features through three pages:  

1) The Gene2Phen main page for entering the two sets of genes for query,  

2) The Selection and Submission page to select or eliminate genes for submission, 
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3) The Results page to display the phenotype-specific subnetworks with all visualization, 

comparison and analysis functionalities. 

4.2.1 Main Page 

The Main page is used to initiate the first step of generating phenotype-specific 

subnetworks, which is network prioritization. For this step our tool uses network-

topology based prioritization algorithms in GUILD to score relevance of gene products 

with respect to given gene symbols.  

 

Figure 4.1 Overview of Gene2Phen main page 

First, BIANA, a knowledge base containing data integrated from publicly 

available major data repositories, is queried with two sets of genes for two phenotypic 

profiles. Then these gene products are fed to a human interaction network (created using 

BIANA) as seed proteins. Finally, a score of relevance for each gene product in the 

network is calculated by the selected prioritization algorithm.   
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In order to enter a query which consist of a list of genes, user should separate the 

list by semicolons (e.g., BRCA1; BRCA2; TP53). Then, users can submit the prediction 

request (Figure 4.1). The tool use NetCombo as the default prioritization algorithm to 

execute the GUILD. The request will be put in a job queue to be executed in a cluster 

environment dedicated to the Gene2Phen server. Users will be given a link to follow the 

progress of their job status. Additionally, users can provide their e-mail addresses in the 

optional e-mail field to be notified when their jobs are submitted and their jobs are 

completed. After submission of the query, Selection and Submission page will be 

displayed. 

4.2.2 Selection and Submission Page  

First, for the user-provided gene symbols, BIANA-KB is queried and the products 

of the genes (e.g. proteins) associated with these gene symbols are listed. At this step, 

user may choose to use a subset of the listed genes or may choose all of them (Figure 

4.2). Next, the products of these genes are used as seeds (initial gene-phenotype 

annotations) and NetCombo (default) method or any other selected method implemented 

in GUILD framework is run on a human protein-protein interaction network. The 

resulting scores are then listed along with the descriptive information of the gene products 

such as UniProt id, gene symbol, and description. 

When the user selects the seed genes among the listed genes and presses the button 

for job submission, a link will be given for tracking the job submission process.  When 

this process is completed, user will be able to access all visualization, comparison and 

analysis features of generated phenotype-specific subnetworks at the Results Page via 

this given link. 
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Figure 4.2 Overview of Selection and Submission Page 
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4.2.3 Results Page 

The previous page provides the links for the Result Page. This link is going to be 

available as soon as the scores are calculated by the server. "Access to results" link on 

this web page can be used go to the Result Page (when available). 

In this page you can see two phenotype-specific subnetworks at Network 

Visualization Panel. (Figure 4.3) At the top left of the page user can find an interactive 

representation of the protein-protein interaction networks results from the query of the 

user. At the top right of the page Gene Annotation Panel is located. When user clicks on 

an edge, PDB-PDB Interactions Panel appears at the bottom. 

 

Figure 4.3 Overview of Results Page 

 

4.2.3.1 Network Visualization Panel 

At this panel user will find an interactive representation of the protein-protein 

interaction networks (Figure 4.4). Nodes in this network represent proteins while edges 

represent protein-protein interactions (PPIs), as collected from public PPI databases.  
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The edges are colored based on the availability of structural information about the 

corresponding interaction: 

 

Interactions which more associated with  Phenotype-1 

 

Interactions which more associated with  Phenotype-2 

 

Interaction without structural data 

 

Figure 4.4 Network representation at the visualization panel 

 

Interactive network representation means that you can move the nodes around, 

and you can select proteins (by clicking on the nodes) or interactions (by clicking on the 

edges). When user clicks on a protein or an interaction, our tool shows their 

corresponding details (including their structures and the mutations that can be mapped on 

them) in the Gene Annotation Panel and PDB-PDB Interactions Panel. Also, if users want 

to see details about one interaction, they can hover with the mouse over the edge and 

a tooltip will pop out (Figure 4.5). 

 

Figure 4.5 An edge tooltip example from the Network Visualization Panel 



48 

Chapter 4: Results and Case Study 

 

 

Edge tooltips show the relevance scores for two phenotypic profiles. In order to 

be shown an edge in this panel, at least one of two phenotype scores must be higher than 

the selected threshold by the user.  

Likewise, if users want to see details about one protein, they can hover with the 

mouse over the node and a tooltip will pop out (Figure 4.6). Node tooltips show the 

topological properties of the protein which are degree centrality, normalized degree 

centrality, closeness centrality, normalized closeness centrality and betweenness 

centrality. 

 

Figure 4.6 A node tooltip example from the Network Visualization Panel 

 

4.2.3.2 Gene Annotation Panel 

Inside Gene Annotation Panel user can find description, aliases, short description, 

chromosome location, UniProt ID and Gene ID data for the selected protein (Figure 4.7). 

Annotation data is obtained from BioGene.  
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Figure 4.7 An example from the Gene Annotation Panel 

 

4.2.3.3 PDB-PDB Interaction Panel 

This panel shows the list of PRISM predictions, the interface of each PDB-PDB 

interactions, energy values of the interaction and three-dimensional structure of the 

prediction. Users could visualize three-dimensional structures by selecting the panels 

built with JSmol framework. Figure 4.8 shows the panel which gives to the user ability 

to screen the three-dimensional structure (Figure 4.9), download the structure on PDB 

format and create a text file involving the list of interfaces and interacting residues. 
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Figure 4.8 PRISM predictions for all PDB-PDB interactions of ELANE and CSF3 

genes and the mutations data on predicted interfaces. 

 

 

Figure 4.9 A sample JSmol view of PRISM prediction data of a PDB-PDB interaction. 

In addition, on the same page, users can list the cancer-related point mutations located on 

the interfaces of protein complexes predicted by PRISM in the column next to PRISM 

predictions called “Mutations” (Figure 4.10). The mutation data about selected gene 
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interactions is derived from cBioPortal web site. The filtration is done after eliminating 

the mutations not located on selected PDB’s of those genes and the mutations not located 

on predicted interface even on the PDB.  

 

Figure 4.10 Mutations on Interface Residues of 1CD9_A and 4NZL_A 

  

4.3 Case Study   

As a case study, we traced the findings of two previous studies from our research 

group from 2013 [21] and 2015 [48]. Both studies focus on brain and lung metastasis 

differentiation of breast cancer with structure-integrated PPI network analysis. To 

understand the molecular mechanism of these two metastases, they have generated brain 

and lung metastasis subnetworks. These subnetworks are generated with brain and lung 

metastasis mediator genes which are identified by Massagué and his coworkers in 2005 

and 2009 [49, 50] (Table 4.1).    

Table 4.1: Breast cancer lung and brain metastasis associated gene sets 

Genes significantly associated with 

breast cancer lung metastasis 

Genes significantly associated with 

breast cancer brain metastasis 

MMP1 MMP1 

RARRES3 RARRES3 

FSCN1 FSCN1 

ANGPTL4 ANGPTL4 

LTBP1 LTBP1 

PTGS2 PTGS2 

KYNU SEPP1 

TNC LAMA4 
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C10orf116 PLOD2 

CXCL1 COL13A1 

 CXCR4  SCNN1A 

KRTHB1 (KRT81) RGC32 

VCAM1 PELI1 

LY6E TNFSF10 

EREG B4GALT6 

NEDD9 HBEGF 

MAN1A1 CSF3 

ID1  

 

In our case study, we utilized the same seed genes in order to construct phenotype 

specific subnetworks. Size of network will differentiate by choosing various cutoff values 

therefore we tried various of them in a wide range from 0 to 1. In Figure 4.11, brain and 

lung metastasis subnetworks are generated with 0.5 cutoff score and represented in one 

merged network embodiment. In this network, interactions which painted in pink are 

more associated with brain metastasis while the green ones has higher associability with 

lung metastasis and the grey edges has no structure since its connecting nodes does not 

have a 3D structure stored in PDB database. Figure 4.11 demonstrates the brain and lung 

metastasis subnetworks with 0.5 cutoff .  
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Figure 4.11 Brain and lung metastasis subnetwork with 0.5 cutoff threshold 

 

4.3.1 ELANE – VCAM1 & ELANE - CXCR4 

In the previous study, some novel candidate genes/proteins which are previously 

not associated with brain and lung metastasis of breast cancer profiles were identified as 

these genes might be important and need to be further examination by using experimental 

methods [48]. Elastase neutrophil expressed protein (ELANE) was one of the genes 

which were identified as associated to lung metastasis according to topological analysis 

and literature search.  
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In the lung metastasis subnetwork, CXCR4, ELANE, CCR5, NEDD9, DPP4, 

MMP9 and MMP2 are considered as hub-bottleneck proteins. After identification of these 

topologically significant nodes, gene annotations are examined. In this case study we will 

focus on ELANE protein. 

Elastases form a subfamily of serine proteases that hydrolyze many proteins in 

addition to elastin. Humans have six elastase genes which encode structurally similar 

proteins. The encoded preproprotein is processed to generate the active protease. 

Following activation, this protease hydrolyzes proteins within specialized neutrophil 

lysosomes, called azurophil granules, as well as proteins of the extracellular matrix. The 

enzyme may play a role in degenerative and inflammatory diseases through proteolysis 

of collagen-IV and elastin. This protein also degrades the outer membrane protein A of 

E. coli as well as the virulence factors of such bacteria as Shigella, Salmonella and 

Yersinia. Mutations in this gene are associated with cyclic neutropenia and severe 

congenital neutropenia [RefSeq, Jan 2016].  

 

Figure 4.12: ELANE entry in KEGG Pathway database 

 

In Figure 4.12 the KEGG [51] entry for ELANE protein is shown, also Figure 

4.13 presents the detailed description of the KEGG pathways which ELANE is involved 

(transcriptional misregulation in cancer, systemic lupus erythematosus). It seems that this 
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enzyme play an active role on tumor progression that leads to metastasis in human breast 

cancer. Since ELANE have a role on producing cytokines and chemokines that are crucial 

for both inflammation and cancer, it is considered as this enzyme play an important role 

on tumor progression [52]. Akizuki et al. found that breast cancer patients with poor 

survival rate have high concentration of ELANE [53].  

 

 

Figure 4.13: KEGG pathways that ELANE is participated 
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In addition, as can be seen in Figure 4.12, ELANE is first neighbor of lung 

metastasis seed genes and hub-bottlenecks CXCR4 and VCAM1. When we consider all 

these topological analysis and annotation data, ELANE can be considered as a good 

candidate for mediating lung metastasis subnetworks.  

 

 

Figure 4.14 ELANE-CXCR4, ELANE-VCAM1 and ELANE-CSF interactions 

 

4.3.2 ELANE – VCAM1 & ELANE – CSF3 

Another interesting finding about ELANE - which can be also seen at Figure 4.12 

- is that ELANE is an interaction partner for both VCAM1 from the lung metastasis 
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subnetwork and CSF3 from the brain metastasis subnetwork so it is possible to switch 

one to another. Both genes have employed as seed genes in their metastasis subnetworks 

therefore interaction and switching mechanisms of ELANE with these two genes are 

needed to be investigated since it might change the course of the metastasis. 

   After selecting the edge of ELANE and VCAM1, we see that all energy scores 

are negative which means these predictions are sufficient to see them possible (Figure 

4.13). Then we proceed to mutation mapping for each PDB-PDB interaction for ELANE-

VCAM1 complexes and focused on mutations on the ELANE PDBs. 

 

Figure 4.15 PRISM predictions for the protein products of ELANE and VCAM1 
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At Figure 4.14, all interface mutations may occur on PDB structures of ELANE 

in a complex form with VCAM1 are listed. 

 

 

 

 

 

 

 

Figure 4.16 All interface mutations on PDB structures of ELANE interacts with 

VCAM1 

 

Same procedures are followed for finding all interface mutations on PDB 

structures of ELANE in a complex form with CSF3 for comparison. After selecting the 

edge of ELANE and CSF3, we observe that all binding energy scores are negative 

therefore these predictions seem to be realistic interfaces (Figure 4.15). Then we proceed 

to mutation mapping for each PDB-PDB interaction for ELANE-CSF3 complexes and 

focused on mutations on the ELANE PDBs (Figure 4.16). 
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Figure 4.17 PRISM predictions for the protein products of ELANE and CSF3 

 

 

 

 

Figure 4.18 All interface mutations on PDB structures of ELANE interacts with CSF3 

 

When we put together all findings about ELANE mutations on ELANE-VCAM and 

ELANE-CSF3, we observe that Q141E, N209I, G210W, G210E, C187Y mutations only 

occur on interface region of ELANE-VCAM complex while V101L mutations only 

occurs on ELANE-CSF3 interface (Table 4.2). Among these 6 mutations, only Q141E is 

obtained from a lung cancer related study [54]. Therefore other five mutations can be 

good candidates for future studies.  
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Table 4.2 ELANE Mutations on ELANE-VCAM and ELANE-CSF3 interactions 

Locations ELANE Mutations 

Interface of ELANE-VCAM  Q141E, N209I, G210W, G210E, R163C, 

G164R, R78H, C187Y, R91Q 

Interface of ELANE-CSF3  R78H, R163C, G164R, R91Q, V101L 

Mutual for ELANE-VCAM and  

ELANE-CSF3 interfaces 

R78H, R163C, G164R, R91Q 

Only on ELANE-VCAM interface Q141E, N209I, G210W, G210E, C187Y 

Only on ELANE-CSF3 interface V101L 

 

Also this observation can be interpreted as these mutations may change the 

interaction behaviors of ELANE and cause to function for a different type of metastasis 

in breast cancer; such as instead of brain metastasis, lung metastasis may happen because 

of the mutation that occurs on the interface regions of ELANE. Therefore, these 

mutations could be considered as more important and they would be prioritized for 

experimental studies. 
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Chapter 5 

CONCLUSION 

 

In this thesis, we aim to develop a web-based tool by integrating human protein-

protein interaction network, structural prediction of protein - protein interactions and 

interface mutations to help researchers in exploring and comparing the molecular 

mechanism of different phenotypes. Our software works as an automatized pipeline tool 

to build, visualize and compare phenotype specific subnetworks, to predict and examine 

protein-protein interactions associated with their structure and mutation data. 

By using Gen2Phen web tool users can prioritize the human protein - protein 

network according to desired set of genes that they aim to investigate. From the scored-

PPI network, they can generate a phenotype specific subnetwork by putting a cut-off 

score. The tool visualizes generated phenotype-specific subnetworks as an interactive 

network representation. Topological significance and genome annotations of each 

proteins are displayed in this interactive network representation. With the aid of 

Gen2Phen users can go into the details on predicted possible interface structures of 

interacting protein pairs in the phenotype-specific subnetworks. Our tool shows 3D 

structural models of known protein-complexes and their predicted protein-protein 

interfaces. Users can see the list of mutations which are mapped on predicted protein-

protein interfaces. Users can use all features of the tool for analyzing and comparing two 

phenotypes at the same time. 

As a case study for testing the functionalities of Gen2Phen, we traced genotype 

to phenotype relationship studies on brain and lung metastasis subnetworks of breast 

cancer. Topological scores and gene annotations guided us to identify new candidate 

disease proteins in two subnetworks. Structural knowledge and mutation mapping 

provided observation of mutually exclusive proteins and game changer interface 

mutations among different phenotypes. 
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