
Runtime Race Detection for Shared Memory

Programming Models

by

Hassan Salehe Matar

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Computer Sciences and Engineering

June, 2018

Runtime Race Detection for Shared Memory Programming Models

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Hassan Salehe Matar

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Asst. Prof. Dr. Didem Unat

Asst. Prof. Dr. Ayşe Yılmazer

Prof. Dr. Attila Gürsoy

Assoc. Prof. Dr. Öznur Özkasap

Asst. Prof. Dr. Tankut Barış Aktemur

Date:

To Ibrahim and Ismail

iii

ABSTRACT

This dissertation proposes methods for detecting runtime data races in three

shared memory programming models: (i) OpenMP tasks, (ii) dataflow programming

models such as Atomic DataFlow (ADF), and (iii) the POSIX Threads in embedded

systems. The need for methods of detecting races in these models is fueled by the

fact that they are commonly used in the HPC, parallel programming, and concur-

rent programming communities but there is a lack of tools to detect races in these

programming models.

A determinacy race is a condition which occurs when concurrently executing enti-

ties (e.g; tasks) access the same memory location without specified ordering between

them and at least one access is a write to that memory location. As a result, a pro-

gram with determinacy races may produce different final output results at different

runs on the same input. One potential problem when writing parallel programs with

OpenMP is to introduce determinacy races where for a given input, the program may

unexpectedly produce different final outputs at different runs. Such startling behav-

ior can result from the incorrect ordering of OpenMP tasks. We present a method

to detect determinacy races in OpenMP tasks at runtime. Based on OpenMP pro-

gram semantics, our proposed solution models an OpenMP program as a collection

of tasks with inferred dependencies among them where a task is implicitly created

with a parallel region construct or explicitly created with a task construct. We define

happens-before relation among tasks based on such dependencies for determining an

execution order when detecting determinacy races. Based on this formalization, we

developed a tool, TaskSanitizer, which detects and reports concurrent memory ac-

cesses whose tasks do not have common dependencies. Finally, TaskSanitizer works

at runtime, has been able to find bugs in micro-benchmarks and it is reasonably effi-

iv

cient to be utilized in a working environment. Archer is an efficient tool for detecting

data races in OpenMP programs between concurrent threads. In contrast, we detect

determinacy races where ordering between concurrent components is missing. Archer

may fail to detect such cases and it also misses concurrent tasks executed by the same

thread. By building the happen-before relations on tasks rather than threads, we can

catch these situations.

We decided to call determinacy races in ADF as output nondeterminism because

all tasks are atomic and therefore different final program outputs can be observed

at different runs of the same buggy program and input. Output nondeterminism is

possible if programmer does not specify necessary dependency between tasks which

access the same memory locations. This is possible as implementing highly concurrent

programs can be challenging because programmers can easily introduce unintended

nondeterminism, which has the potential to affect the program output. Such un-

intended nondeterminism is output nondeterminism which is a special determinacy

race where a program produces different final outputs at different runs on the same

input, without such intention of the programmer. We propose and implement a

technique for detecting output nondeterminism in applications developed on shared

memory systems with dataflow execution model. Such nondeterminism bugs may be

caused by missing or incorrect ordering of task dependencies that are used for ensur-

ing certain ordering of tasks. The proposed method is based on the formulation of

happens-before relation on tasks in a dataflow dependency graph. Its implementation

is composed of two main phases; log recording and detection. For recording the nec-

essary information from the execution, the tool instruments the dataflow framework

and the applications, on top of the LLVM compiler infrastructure. Later it processes

the collected log and reports on the found output nondeterminism in the execution.

The tool can integrate well with the development cycle to provide the programmer

with a testing framework against possible nondeterminism bugs. To demonstrate its

effectiveness, we study a set of benchmark applications written in Atomic DataFlow

programming model and report on real nondeterminism bugs in them.

Lastly, we propose EmbedSanitizer, a tool for detecting concurrency data races in

32-bit ARM-based, multithreaded, POSIX Threads C/C++ applications. We moti-

vate the idea of detecting data races in embedded systems software natively; with-

out virtualization or emulation or use of alternative architecture. Detecting data

races in applications on a target hardware provides more precise results and increased

throughput and hence enhanced productivity of the developer. EmbedSanitizer ex-

tends ThreadSanitizer, a race detection tool for 64-bit applications, to do race de-

tection for 32-bit ARM applications. We evaluate EmbedSanitizer using PARSEC

benchmarks on an ARMv7 CPU with 4 logical cores and 933MB of RAM. Our race

detection results precisely match with results when the same benchmarks run on

64-bit machine using ThreadSanitizer. Moreover, the performance overhead of Em-

bedSanitizer is relatively low as compared to running race detection on an emulator,

which is a common platform for embedded software development.

This dissertation proposes a method for detecting determinacy races and it demon-

strates its effectiveness using the OpenMP tasks. Moreover, it presents a technique

for detecting determinacy races, dubbed output nondeterminism, in dataflow pro-

gramming models such as the ADF. Lastly, it proposes a tool for detecting data races

in 32-bit POSIX Threads applications for embedded systems. It is with anticipation

that this dissertation will benefit both the industry and research communities. It also

opens doors for further research on race detection for better solutions.

ÖZETÇE

Bu tez, üç paylaşımlı bellek programlama modelinde yarış durumu tespit ede-

bilmek için yöntemler sunuyor: (i) OpenMP görevleri, (ii) Atomik DataFlow (ADF)

gibi veri-akışı programlama modelleri, ve (iii) gömülü sistemlerdeki POSIX iş iplik-

leri. Bu modellerde yarıs durumlarını tespit etme ihtiyacı HPC, paralel programlama

ve koşut zamanlı programlama topluluklarında sıkca kullanılması gerçeğinden güç

almıştır ama bu programlama modellerinde yarış durumu tespit edecek araçların ek-

sikliği bulunmaktadır.

Belirlilik yarışı, koşut yürüyen varlıklar (mesela görevler) aynı hafıza bölgesine

aralarında belirli bir sıralama olmadan eriştiklerinde ve içlerinden en az bir erişim

o bölgeye yazma olduğunda oluşan bir durumdur. Sonuç olarak, belirlilik yarışı

içeren programlar aynı girdinin farklı koşumlarında farklı sonuç çıktısı üretebilirler.

OpenMP ile paralel program yazarken potansiyel problemlerden biri belirlilik yarışı

oluşmasıdır öyle ki verilen girdi için program farklı koşumlarında beklenmedik bir

şekilde farklı son çıktılar üretebilir. Böyle şaşırtan davranışlar OpenMP görevlerinin

yanlış sıralanmasından doğabilir. OpenMP görevlerindeki belirlilik yarışlarının işleyış

süresi içinde tespiti için bir yöntem sunuyoruz. OpenMP programlarının anlamına

dayanarak, önerdiğimiz çözüm, bir OpenMP programını aralarında çıkarım bağımlılıkları

olan görev koleksiyonları olarak modelliyor, öyle ki her görev ya üstü kapalı olarak bir

parallel bölge yapısı tarafından yaratılıyor ya da doğrudan bir görev yapısı tarafından

yaratılıyor. Biz belirlilik yarışlarını tespit ederken yürütme sırasını belirlemek için

böyle bağımlılıklara dayanan bir önce-olur ilişkisi tanımlıyoruz. Bu biçimselleştrimeye

dayanarak görevlerin ortak bağımlılıklarının olmadığı koşut hafıza erişimlerini tespit

eden ve raporlayan TaskSanitizer isimli aracı geliştirdik. Son olarak, TaskSanitizer

işleyiş süresinde çalışıyor, mikro-değerlendirme deneylerinde hataları bulabildi ve çalışma

vii

ortamlarında faydalanılabilecek kadar etkili. Archer OpenMP programlarında koşut

zamanlı iş iplikleri arasında veri yarış durumu tespiti için etkili bir araçtır. Aksine,

biz koşut zamanlı bileşenler arasında sıralama olmadığı durumlarda oluşan belirlilik

yarışlarını tespit ediyoruz. Archer bu durumları tespit etmekte başarısız olabilir ve

aynı iş iplikleri tarafından çalıştırılan koşut görevleri kaçırıyor. İş iplikleri yerine

görevler üzerinde önce-olur ilişkisi inşa ederek bu durumları yakalayabiliyoruz.

ADF’deki belirlilik yarışlarını çıktı belirsizliği olarak adlandırmaya karar verdik

çünkü bütün görevler atomiktir ve bu yüzden hatalı program ve girdinin farklı koşumlarında

farklı çıktılar gözlemlenebilir. Eğer programcı aynı hafıza bölgelerine erişen görevler

arasındakş gerekli bağımlılıkları belirlemezse, çıktı belirsizliği mümkün hale gelir. Bu

durum gayet mümkündür çünkü yüksek seviyede koşut zamanlı programları gerçeklemek

çetrefilli bir iştir ve programcılar kolayca program çıktısını etkileme potansiyeline

sahip istemsiz belirsizlikler uygulamaya koyabilir. Böyle istemsiz belirsizlikler pro-

gramcının niyeti dışında aynı girdi ile farklı koşumlarda farklı sonuçlar üreten özel be-

lirlilik yarışlarıdır. Veri-akışı çalışma modelli paylaşımlı bellek sistemlerde geliştirilmiş

uygulamalardaki çıktı belirsizliğini tespit etmek için bir teknik öneriyor ve gerçekliyoruz.

Böyle belirsizlik hataları görevlerin bazı sıralamalarını sağlamak için kullanılan görev

bağımlılıklarının eksik veya yanlış sıralanmasından dolayı oluşabilir. Önerilen yöntem,

veri-akışı bağımlılık çizgesinde görevler üzerinde önce-olur ilişkisinin formüle edilme-

sine dayanmaktadır. Gerçeklemesi iki ana fazdan oluşur: günlük kayıtları ve tespiti.

Yürütümden gerekli bilgiyi kaydetmek için, araç LLVM derleyici altyapısı üzerinde,

veri-akışı çatısı ve uygulamalarını ölçüm araçlarıyla donatır. Sonra, yürütümde bulu-

nan çıktı belirsizliklerinden toplanan günlük ve raporları işler. Programcıya olası be-

lirsizlik hatalarına karşın bir test çatısı sağlamak için, araç geliştirme döngüsüne ente-

gre edilebilir. Etkinliğini göstermek için, ADF modelinde yazılan bir değerlenmdirme

deney kümesi ile çalıştık ve onlardaki gerçek belirsizlik hatalarını raporladık.

Son olarak; 32-bit ARM tabanlı, çok iş örgülü, POSIX iş örgüleri kullanan C/C++

uygulamalarında koşut zamanlı veri yarışlarını tespit eden bir araç olan Embed-

Sanitizer’ı öneriyoruz. Gömülü sistem yazılımlarında koşut zamanlı veri yarışlarını

sanallaştırma, emülasyon ya da başka bir mimari kullanmadan yerel olarak tespit etme

fikrini teşvik ediyoruz. Hedef donanınmda çalışan uygulamalardaki veri yarışlarını

tespit etmek daha kesin sonuçlar, artan verimlilik sağlar ve böylece geliştiriciye yüksek

üretkenlik sağlar. EmbedSanitizer, 64-bit uygulamalar için bir yarış algılama aracı

olan ThreadSanitizer’ı 32-bit ARM uygulamalarında yarış tespiti yapacak şekilde

geliştirir. EmbedSanitizer’ı 933MB RAM’i ve 4 mantıksal çekirdeği olan ARMv7

işlemcili bir makinede PARSEC değerlendirme deneylerini kullanarak değerlendiriyoruz.

Yarış tespiti sonuçlarımız aynı değerlendirme deneyinin ThreadSanitizer kullanan 64-

bit bir makinede verdiği sonuçlarla eksiksiz biçimde uyuşmakta. Ayrıca, EmbedSan-

itizer’ın başarım ek yükleri gömülü yazılım geliştirmek için yaygın bir platform olan

bir emülatörde yarış algılamasını çalıştırmaya göre daha düşük.

Bu tez, belirlilik yarışlarını tespit etmek için bir yöntem sunuyor ve OpenMP

görevlerini kullanarak etkililiğini gösteriyor. Buna ek olarak, ADF gibi veri akışı

programlama modellerinde belirlilik yarışlarını tespit etmek için bir yöntem sunuyor.

Son olarak, bu tez gömülü sistemlerde 32-bit POSIX iş örgüleri uygulamalarındaki

veri yarışlarını tespit etmek için bir araç sunuyor. Bu tezin hem endüstriye hem de

araştırma topluluklarına faydalı olacağı bekleniyor. Ayrıca bu tez yarış algılamada

daha iyi çözümler için ileri araştırmaların kapısını açıyor.

ACKNOWLEDGMENTS

I send my special gratitude to my adviser Asst. Prof. Didem Unat. She has

been inspirational and motivational to excel in my PhD studies and research. She

has also been the reason for me to successfully fulfill my PhD. My thanks to Assoc.

Prof. Serdar Tasiran for securing funding for my entire PhD candidature. I recognize

the warmth and care of my former MSRC research lab-mates who made me feel at

home at Koç University and Istanbul: Erdal Mutlu, Ismail Kuru, Burcu Kulahçioǧlu

Özkan, and Suha Orhun Mutluergil. My research colleagues at ParCoreLab Muham-

mad Nufail Farooqi, Najeeb Ahmad, Muhammad Aditya Sasongko, Pirah Noor Soomro,

Burak Bastem, Mohammad Laghari, Doǧa Dikbayır, and Can Aknesil have been great

sources of knowledge and a new family which has been nurturing me. Special thanks

to my thesis jury which comprises my thesis advisor, Prof. Dr. Attila Gürsoy, Assoc.

Prof. Dr. Öznur Özkasap, Asst. Prof. Dr. Ayşe Yılmazer from Istanbul Technical

University, and Asst. Prof. Dr. Tankut Barış Aktemur from Özyeǧin University. I

am also grateful of the research funding from the Affordable Safe & Secure Mobility

Evolution (ASSUME) project for smart mobility. Lastly, special thanks to Arçelik

A.Ş for providing a television, software and technical support for my research.

I would also like to express my deepest gratitude to my wife and my whole family

for their patience throughout my research.

x

TABLE OF CONTENTS

List of Tables xiv

List of Figures xv

Nomenclature xvii

Chapter 1: Introduction 1

Chapter 2: Background on Race Detection 6

2.1 Data Races . 6

2.2 Determinacy Races . 7

2.3 Race Detection . 9

2.4 Race Detection Algorithms . 10

2.5 Race Detection Tools . 12

Chapter 3: Related Work 13

3.1 Race Detection for OpenMP . 13

3.2 Nondeterminism Detection . 14

3.3 Race Detection for POSIX Threads 16

3.3.1 Race Detection of POSIX Threads in Embedded Systems . . . 17

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for

OpenMP Tasks 18

4.1 Introduction . 18

4.2 Background in OpenMP Tasks . 19

4.3 Determinacy Race Detection . 21

xi

4.3.1 Definition and Motivating Example 21

4.3.2 Formalizing Task Operations 22

4.3.3 Happens-Before Relations Between Task Operations 23

4.3.4 Determinacy Race Detection Algorithm 25

4.4 Implementation . 27

Chapter 5: DFinspec: Nondeterminism Detection for ADF 30

5.1 Introduction . 30

5.2 Motivation . 31

5.3 Proposed Approach . 32

5.3.1 Defining Actions of a Dataflow Application 32

5.3.2 Happens-before Relation of Task Actions 33

5.3.3 Output Nondeterminism Detection Rules 35

5.3.4 Nondeterminism Detection Algorithm 36

5.3.5 Commuting Tasks . 39

5.4 Implementation . 43

5.5 Runtime Instrumentor . 43

5.6 Application Instrumentor . 44

5.7 Logger . 44

5.8 DFchecker: Output nondeterminism detection 46

5.9 Detecting commuting writer tasks . 49

Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit

Embedded ARM 51

6.1 Introduction . 51

6.2 Motivation . 53

6.3 Method . 54

6.4 Architecture and Workflow . 54

6.4.1 Installation . 56

xii

Chapter 7: Evaluation 57

7.1 Evaluating Runtime Determinacy Race Detection for OpenMP Tasks 57

7.1.1 Precision Evaluation of TaskSanitizer 59

7.1.2 Comparing Detection with Archer 60

7.1.3 Overhead Evaluation . 61

7.2 Evaluation on Detecting Output Nondeterminism for ADF 61

7.2.1 Detecting Real Output Nondeterminism Bugs 63

7.2.2 Detecting Synthesized Output Nondeterminism Bugs 65

7.2.3 False Output Nondeterminism Due to Commutativity 67

7.2.4 Overhead . 68

7.2.5 Limitations . 70

7.3 Results on Race Detection for POSIX Threads in 32-bit Embedded ARM 70

7.3.1 Precision Evaluation . 71

7.3.2 Performance Evaluation . 72

Chapter 8: Conclusion 74

Bibliography 76

xiii

LIST OF TABLES

5.1 Summary of logging formats . 45

7.1 Comparing detection results of TaskSanitizer against Archer 59

7.2 Experimental results from 10 applications and the motivating bank

example. 64

7.3 Showing number of synthetic bugs added into dataflow applications

and a number of those detected by DFinspec 66

7.4 Showing both real bugs and false alarms. The false alarms were due

to commutative tasks and were eliminated altogether by applying the

algorithm discussed in section 5.3.5. 68

7.5 Execution times and overheads of instrumentation, logging and output

nondeterminism detection phases of DFinspec. 69

7.6 Experimental results to compare race detection in ARMv7 using Em-

bedSanitizer vs in x86 64 with ThreadSanitizer. 72

xiv

LIST OF FIGURES

2.1 Example program with a data race at line 3 between threads T1 and T2. 7

2.2 OpenMP example illustrates explicit and implicit tasks and their logi-

cal flow dependency between tasks. The code example has a determi-

nacy race. 8

4.1 OpenMP example illustrates explicit and implicit tasks and their logi-

cal flow dependency between tasks. The code example has a determi-

nacy race. 20

4.2 Defining a task as a sequence of tasksegments (taskseg) and synchro-

nizations . 23

4.3 Example with four categories of HB relation among operations of tasks 25

4.4 Showing implementations of TaskSanitizer: architecture and tool flow 27

5.1 A simple banking ADF example (a) code with nondeterministic behav-

ior between WithdrawTask, DepositTask and CommissionTask. The

flow graph (b) shows dependency between these tasks indicating that

DepositTask, WithdrawTask and CommissionTask are concurrent. The

code in (c) shows the correct implementation of the code in (a). The

flow graph (d) shows the correct dependency which ensures that Com-

missionTask executes last, thus ensuring a deterministic execution of

the banking operations. DepositTask and WithdrawTask can execute

in any order because they can not affect the final output. 31

5.2 happens-before formulas for capturing the ordering of actions in a

dataflow application. 35

xv

5.3 The architecture and action flow of DFinspec tool. 43

6.1 A motivating example with two threads concurrently accessing a shared

queue. A thread in (a) reads video signals from TV antenna and puts

them into the queue, (b) reads from the queue and display to a screen. 53

6.2 High level abstraction of ThreadSanitizer and EmbedSanitizer in LLVM/-

Clang. In (a) ThreadSanitizer : essential LLVM modules for race de-

tection. In (b) EmbedSanitizer : same modules modified to instrument

and detect races for 32-bit ARM . 55

6.3 Showing the automated process for building ThreadSanitizer for the

first time. 56

7.4 Slowdown of determinacy race detection in programs as input size in-

creases . 61

7.5 Task dependency graph of sparse linear algebra showing a missing de-

pendency (shown as a dash line) between the bmod and lu0 operations.

This causes an output nondeterminism bug captured by our tool and

manually verified. 65

7.6 Task graphs of applications showing removed data flow dependencies

to introduce output nondeterminism bugs 65

7.7 Slowdown comparison of race detection on ARMv7 vs on Qemu-ARM 73

xvi

NOMENCLATURE

AC - Account

API - Application Programming Interface

ADF - Atomic DataFlow

CPU - Central Processing Unit

DAG - Directed Acyclic Graph

HB - Happens-Before Relation

HPC - High Performance Computing

ID - Unique Identifier

IR - LLVM’s Intermediate Representation of Code

JIT - Just-In-Time Compilation

LLVM - Low Level Virtual Machine

MB - Megabyte

OpenMP - Open Multi-Processing

OMPT - OpenMP Performance Tools API

POSIX - The Portable Operating System Interface

QEMU - Quick Emulator

TBB - Intel Threading Building Blocks

TV - Television

xvii

Chapter 1

INTRODUCTION

Multicore systems are everywhere; from smartphones to televisions, to tablets,

to clusters. This has forced programmers to write applications that benefit from

concurrency that these systems provide in terms of performance and efficiency. Un-

fortunately, reasoning about concurrency is hard and challenging in order to write

logically and semantically correct programs while attaining optimum performance

and efficiency. It is even trickier to write concurrent software for shared memory

where concurrently executing entities (e.g; threads) read from and write to common

memory locations and their updates are visible to other entities. Moreover, the mech-

anisms to coordinate the access to these locations can lead to program inconsistency

and performance degradation.

To address some of the challenges for writing software for shared memory multi-

core systems, experts have devised programming models. A programming model for

multicore is a paradigm or a way of expressing parallelism in concurrent programs. It

simplifies reasoning about concurrency by providing Application Programming Inter-

faces (API) that programmers use to express different concurrency semantics in their

program. Moreover, these models provide mechanisms for enforcing program consis-

tency and improved performance. The commonly used programming models for writ-

ing parallel applications for shared memory multicore systems are: (i) OpenMP [4,18],

(ii) dataflow programming models such as the Atomic DataFlow(ADF) [27], and (iii)

the POSIX Threads [14].

OpenMP [4, 18] is the commonly used programming model in the High Perfor-

mance Computing(HPC) community for shared memory programs. In OpenMP,

2 Chapter 1: Introduction

programmers specify their parallel parts of their code using the pragma compiler

directive and a compiler with OpenMP support interprets these pragmas and injects

appropriate OpenMP APIs to ensure consistent parallel execution of the program.

The OpenMP runtime is responsible for creating threads, transparently from the

programmer, which execute parallel parts of the program. Moreover, the runtime

uses available hardware resources (e.g; available CPUs) to optimize performance of

the programs. For program correctness, the API provides thread synchronization

constructs which are expressed as clauses or attributes in the pragma directive or

through explicit API calls.

Programming data-parallel programs in OpenMP is straightforward for improved

performance, however, writing correct task-parallel programs can be challenging.

Specifically, the programmer has to use specific pragma attributes to specify shar-

ing of memory locations between parallel regions to ensure consistent executions.

More importantly, a keen understanding of the API, program design and reasoning

about concurrency is necessary to implement task-parallel programs which attain

high runtime performance. To leverage these challenges to the runtime, OpenMP has

introduced shared memory dataflow execution model [3]. In OpenMP tasks, program-

mers specify computations in units called tasks which can be executed by concurrent

threads. Moreover, a programmer specifies execution ordering between tasks exe-

cuting in shared memory through data dependencies where a succeeding task never

executes until the preceding task terminates.

In similar fashion to OpenMP tasks, Atomic Dataflow (ADF) [27] is a shared

memory programming model where tasks execute atomically; intermediate memory

updates are not visible until task terminates. This guarantees that if two concurrent

tasks update the same memory location, only one task is guaranteed to progress at

a time. In this model, specifying task ordering through data dependency avoids the

cost of identifying the conflicting tasks while maintaining program consistency.

POSIX Threads [14], also known as Pthread, is a widely used execution model in

shared memory programs. In this model, a programmer specifies parallel computa-

Chapter 1: Introduction 3

tions in software threads which are scheduled for execution by the operating system.

Despite its efficient API support, it is the programmer’s responsibility to ensure that

threads access shared memory variables using atomic constructs supported by the

hardware or with proper synchronization mechanisms provided by the model (e.g;

mutexes, condition variables, etc) both for program correctness and runtime perfor-

mance.

Despite a key success of these programming models, programmers can introduce

data races into their programs. A data race (or a race condition) is a condition which

occurs when two concurrently executing threads access a shared memory location

without proper synchronization and at least one of these accesses (or operations) is a

write [51, 56]. In this context, the term access or accesses refers to a set of memory

operations with at least one memory write. Availability of data races in a program can

be a symptom of other concurrency errors such as atomicity and linearizability viola-

tions, deadlocks, and nondeterministic behaviors like memory violations and program

crashes. A race can occur if shared variables are accessed by different threads without

a common synchronization to protect those variables. In OpenMP tasks and ADF,

a determinacy race may occur when concurrently executing tasks access the same

memory location without specified ordering between them and at least one access is a

write to that memory location. There is a subtle difference between a data race and

a determinacy race. A data race is caused by improper synchronization of concurrent

threads on shared memory accesses while a determinacy race is due to missing of

ordering between two concurrent entities which access common shared memory loca-

tions. Finally we decided to call determinacy races in ADF as output nondeterminism

because all tasks are atomic and therefore different final program outputs can be ob-

served at different runs of the same program and input. Output nondeterminism is

possible if programmer does not specify necessary dependency between tasks which

access the same memory locations. As a result, different final outputs are produced

at different program runs [44]. This behavior may be undesired for some applications

like the scientific workloads where accuracy of the results is important.

4 Chapter 1: Introduction

There have been efficient tools for detecting data races in shared memory pro-

gramming models. Archer detects data races in OpenMP applications [9]. Moreover,

ThreadSanitizer [61] and Intel Inspector [31] are industrial-level race detection tools

for POSIX Threads applications. Unfortunately, these tools are still insufficient as

they have a number of limitations. Archer detects data races in OpenMP programs

between concurrent threads and therefore it fails to detect races between concurrent

tasks in case they are scheduled to and are executed by one thread. Therefore, it

traces improper synchronization of threads rather than improper ordering of execu-

tion entities (e.g; tasks). Furthermore, to our knowledge, there is no prior work on

output nondeterminism detection in dataflow applications in shared memory, such as

the ADF. Finally, Intel Inspector detects data races only in x86 64 platforms whereas

ThreadSanitizer supports only 64-bit platforms.

In this dissertation, we propose techniques for detecting data races in the com-

monly used shared memory programming models to address the limitations of the

research in the literature. In particular, we propose the following:

(a) A technique for detecting runtime determinacy races in OpenMP tasks;

(b) A method for detecting output nondeterminism in Atomic DataFlow(ADF) ap-

plications; and

(c) An approach for detecting data races for POSIX Threads programs in 32-bit em-

bedded systems.

This dissertation is organized as follows. Background on data race detection is

presented in Chapter 2, while the related work is discussed in Chapter 3. In Chapter

4 we propose a technique for detecting runtime determinacy races for OpenMP tasks.

Our key contributions are: (a) A formal definition of the determinacy races and a

technique for detecting such races in OpenMP tasks. To our knowledge, no prior

work has been done for detecting determinacy races in OpenMP tasks with mixed

structures of critical and non-critical sections. (b) Determinacy race detection tool

for OpenMP called TaskSanitizer [46]. (c) Evaluation of our method using micro-

Chapter 1: Introduction 5

benchmark applications and comparison of results against a race detection tool for

OpenMP programs.

In Chapter 5 we propose DFinspec, our method for detecting output nondeter-

minism in ADF applications, with three main contributions: (a) A happens-before

relation which captures the partial relations between tasks in a dataflow program

running on shared memory. Our relation can handle the dynamic creation of tasks as

program runs; (b) An automatic output nondeterminism error detection tool, which

implements the happens-before relation model and detects bugs on real applications.

The tool is modular and can be extended to detect output nondeterminism bugs in

applications developed on programming models combining dataflow constructs with

shared memory; (c) An evaluation of our proposed solution, which shows that it is

capable of discovering real and synthesized output nondeterminism errors in a set of

applications written in ADF.

Chapter 6 discusses our proposed solution for detecting data races in POSIX

Threads for embedded systems software. Our key contributions on detecting races

for embedded systems are: (a) A tool for detecting data races in C/C++ multi-

threaded programs for 32-bit embedded ARM. The tool is easily accessed through

Clang compiler chain like ThreadSanitizer ; (b) We motivate the idea of supporting

race detection in native embedded systems hardware and show usability of race detec-

tion to such architectures; (c) Evaluation of applicability of our approach by detecting

races in real TV software and by running PARSEC benchmark applications on a TV

with ARM Cortex A17 (ARMv7) CPU and limited memory of 933 MB.

The remaining parts of the dissertation are organized as following. Chapter 7

discusses evaluation strategies and experimental results for the methods we propose.

Finally, the conclusion is presented in Chapter 8.

Chapter 2

BACKGROUND ON RACE DETECTION

In this section we discuss concepts related to race detection and categorize them

into five groups. First, we provide a definition of a data race. Second, we introduce

a special type of data races called determinacy races. Third, we talk about race

detection in general. Fourth, we present race detection algorithms in literature and

classify them based on their underlying methods and efficiency. We finalize by ex-

amining race detection tools and their limitations on detecting data races in shared

memory programming models.

2.1 Data Races

A data race [51] occurs when two concurrently executing units (e.g; threads) access

a shared memory location without proper synchronization and at least one of these

accesses is a write. It occurs if three conditions are satisfied in a concurrent pro-

gram [56]: (a) presence of memory accesses performed on a shared memory location

by different threads, (b) at least one of them is a write, and (c) they are performed

without a common synchronization.

As an example in POSIX Threads execution model, a data race to a shared mem-

ory can occur if it is not protected by the same lock in all of its accesses by concurrent

threads. Figure 2.1 shows a simple Pthread example where two threads concurrently

increment a shared variable counter at line 3. The access in thread T1 is protected

by a lock lck1 whereas access in T2 is protected by a different lock lck2. Since no

same lock is used to access counter, there is a data race.

Presence of data races in a program can be a symptom of other concurrency errors

such as atomicity and linearizability violations, or deadlocks. Moreover, data races

Chapter 2: Background on Race Detection 7

/** Function for thread T1 */

1 void forThread1(void *) {

2 pthread_mutex_lock(lck1);

3 counter++;

4 pthread_mutex_unlock(lck1);

5 }

/** Function for thread T2 */

1 void forThread2(void *) {

2 pthread_mutex_lock(lck2);

3 counter++;

4 pthread_mutex_unlock(lck2);

5 }

int counter = 0;

Figure 2.1: Example program with a data race at line 3 between threads T1 and T2.

may result in unpredictable behaviors like memory violations and program crashes.

In general, data races have different consequences depending on the type of software.

First, presence of data races in real-time systems like medical devices, automotive and

airplanes can cause human tragedy. Incidents of Therac-25, a radiotherapy medical

device, have caused human losses in the past due to data races [41]. Second, data

races can cause inconsistent program results which may impact on research finding

or on scientific applications and enterprise systems, respectively. Last, degradation of

quality of services in less critical applications such as TV broadcasting software, and

internet browsing tools may be played in part by presence of data races. These races

may produce inconsistent results or program crashes that can just be eliminated by

restarting the program. Nevertheless, finding and fixing data races in any software is

vital to ensure safe, secure and consistent program execution.

2.2 Determinacy Races

A determinacy race is a condition which occurs when concurrently executing entities

(e.g; tasks) access the same memory location without specified ordering between them

and at least one access is a write to that memory location [22,40,57,58]. As a result, a

program with determinacy races may produce different final output results at different

runs on the same input [44]. Determinacy races are possible if the programmer does

8 Chapter 2: Background on Race Detection

1 int main() {
2 int i = 0;
3 #pragma omp parallel num_threads(2)
4 #pragma omp single
5 {
6 #pragma omp task shared(i) // task t
7 #pragma omp critical(lock_i)
8 { i = 1; }
9
10 #pragma omp task shared(i) // task u
11 #pragma omp critical(lock_i)
12 { i = 2; }
13 }
14 printf ("i=%d\n",i);
15 return 0;
16 }

"single" task 2

i = 1
i = 2

print "i"

task u
task t

int i = 0

implicit initial task

task 1
task 0

(a) Example code (b) Task dependency

Figure 2.2: OpenMP example illustrates explicit and implicit tasks and their logical
flow dependency between tasks. The code example has a determinacy race.

not specify necessary dependency between concurrent tasks which access the same

memory locations. Since there is no specific order defined by the programmer, the

scheduler is free to execute the tasks in any order or concurrently.

Formally, a determinacy race occurs between two tasks if the following two con-

ditions are satisfied: (i) there is no ordering between these tasks enforced by task

dependency, and (ii) both tasks access a common shared memory location and at

least one access is a write. If simultaneously runnable tasks modify the same memory

locations, different scheduling (i.e; order of execution) of these tasks may result in

nondeterministic final values on these memory locations.

We have provided a simple OpenMP program in Figure 2.2, where there is no

specified dependency between tasks t and u . As a result, their critical sections can

execute in any order and thus the final result for i can either be 1 or 2 despite the

fact that accesses to the shared variable are protected by a common lock. Unless

the developer intends the program to behave as such, only one deterministic result is

expected. The same issue arises if one of the tasks reads the value of i in a critical

region and the other task writes to i. It is worth noting that in a typical program

these two tasks might have been created in separate function calls, thus the critical

sections may be well far apart from each other and can be easily overlooked.

Chapter 2: Background on Race Detection 9

A tasking program is implemented as data flowing between tasks while concur-

rent updates on the shared memory are protected by shared memory synchronization

mechanisms such as locks, transactional memory, etc. [23, 27, 53]. Since a program-

mer has to specify dependency among concurrent tasks which access common shared

memory, it can be difficult to implement a large application that is error-free; some of

the dependencies can be easily missed. If simultaneously runnable tasks concurrently

execute and modify the same memory locations, different scheduling (i.e; order of

execution) of these tasks may result in nondeterministic final values on these memory

locations due to determinacy races.

Not only a proper synchronization of memory accesses is necessary but also a

proper ordering of these memory operations ensures the absence of determinacy races.

Even though discovering such errors is difficult as it needs a deep exploration of differ-

ent orderings of executing tasks, detecting them is necessary to ensure the correctness

and reliability of applications.

2.3 Race Detection

Identifying data races in concurrent programs is necessary to eliminate concurrency

bugs. Race detection is a technique which aims to find races in concurrent programs

for shared memory models. In general settings, it involves locating parts of the pro-

gram which exhibit a race and is programmer’s responsibility to revisit their program

codes and fix relevant issues. One advantage of race detection is its automation that

is generally more efficient and resource effective than human’s manual inspection

of the source code. Therefore, there is an active research on detecting data races

for concurrent applications to aid programmers in identifying them for elimination

[9, 22,24,25,28,29,31,33–35,40,44,47–49,54,60,61,64,66,67,72].

There are two approaches to detecting data races in concurrent programs. The first

is static race detection where program is analyzed at source or binary level without

running it [33, 35, 49, 66, 67]. The common approach to identify shared memory

locations statically is by symbolic execution. Unfortunately, detecting races statically

10 Chapter 2: Background on Race Detection

is insufficient or unsound because it does not include the runtime behavior of the

program and thus it tends to produce significant number of false positives and false

negatives. A false positive is a warning about the presence of a data race where in

reality there is none, and false negative means that the tool fails to report a real race

in the program.

The second line of work that is commonly used for detecting races is runtime

or dynamic race detection [9, 24, 25, 28, 31, 44, 48, 54, 60, 61, 64, 72]. In this setting,

races are detected based on program events – such as memory reads, writes and

synchronization operations – at runtime while the program executes. These events can

be identified through instrumentation which inspects binary by identifying relevant

operations and injecting runtime monitors which report when these events happen

at runtime. Runtime race detection can be on-the-fly or post-mortem. On-the-fly

race detection occurs when the event happens while the program is running whereas

post-mortem involves collection of program events at runtime and race detection is

done once the program terminates. Detection of races in these scenarios depends on

whether the race exhibits itself in the program execution. It can as well be hidden or

obscured depending on the given program input.

2.4 Race Detection Algorithms

Race detection algorithms aim to detect and signal races in concurrent programs.

They are normally implemented in independent runtime libraries which are injected

by race detection tools into programs for detecting races. Algorithms keep metadata

which track ordering or synchronization of program events in concurrent programs.

A race detection algorithm is said to be precise if it does not produce any false alarms

(false-positives or false negatives) about races for a given execution of a program [24].

On the other hand, sound race detection algorithms avoid false positives but may miss

real races (i.e; false negatives) [62]. Unsound race detection algorithms, nevertheless,

contain both false positives and false negatives [60].

The most common algorithms for race detection rely on either happens-before [38]

Chapter 2: Background on Race Detection 11

or lockset-based approaches [60] or the hybrid of these approaches [12, 61]. Lockset

algorithms track all synchronization locks which a thread acquires to access shared

memory locations. This helps to identify memory locations accessed without locks or

common locks as sources of races [60]. Moreover, they compute a set of locks acquired

to access a shared memory location [60]. The aim is to see if all accesses to a shared

memory by different threads in the program use common locks. Lockset approaches

tend to be unsound and are undesired for practical race detection.

A happens-before is a partial relation, among program events, which aims to infer

ordering among them and help identify events not ordered but access common memory

locations as sources of data races [24, 54]. Event w happens before event x if there

is an enforced ordering such that w is guaranteed to execute before x in timeline. In

concurrent programs, an order can be enforced by one of the following scenarios:

(a) Program order: events in a thread program sequence are assumed to execute in

their order;

(b) Synchronizes-with order: a lock release is ordered before its subsequent acquire;

(c) Transitive closure of events: if event x happens-before event y and that y happens-

before event z, then x happens-before z.

Among these two approaches, happens-before algorithms are precise: in a given

concurrent program execution with races, they always report at least one real race

[24]. One example of happens-before algorithms is FastTrack [24]. It is an efficient

and precise race detection algorithm which improves on purely happens-before vector

clock algorithms such as DJIT++ [54]. FastTrack optimizes performance by show-

ing that majority of memory access patterns do not require a whole vector clock to

detect data races. Instead, an epoch, a simple pair of thread identifier and clock

suffices. Without sacrificing precision, this significantly improves the performance of

race detection of a single memory access from O(n) to O(1) where n is the number of

concurrent threads in the program under test. Moreover, its runtime performance is

better than most of the race detection algorithms in the literature [72]. Finally, there

are further improvements to FastTrack algorithm but tend to sacrifice precision [28].

12 Chapter 2: Background on Race Detection

2.5 Race Detection Tools

Race detection tools implement algorithms to detect races in applications. There

are two types of tools commonly used to detect races. The first is a set of tools for

detecting races statically, without running the program under test [55,67]. The other

is for runtime race detection tools which perform race detection based on events at

runtime [9,25,31,44,61]. Furthermore, there are two methods employed to get events

information at runtime. A commonly used method is through instrumentation of

program source code or binary. This injects callbacks which monitor the occurrence

of events with time when the target program runs. The second approach is the use

of special event signals implemented in virtual machines as in RoadRunner [25].

Race detection tools can be characterized based on three categories: precision,

performance, software and hardware target. Precision is related to the guarantee of

detecting races when indeed there are in a particular execution trace. Precise race

detection tools rely on algorithms they implement. Tools which implement HB-based

algorithms, like FastTrack and DJIT++, tend to be precise whereas Lockset-based

tools are unsound. Runtime performance of race detection tools depends on the com-

putational complexity of the race detection employed as well as the instrumentation

technique used in the tool. Moreover, performance optimization of the tool in overall

improves performance. Compile-time instrumentation as in [9, 44, 61], outperforms

binary instrumentation mostly done by tools like Intel PIN [43] and DynamoRio [13].

One of the most successful tools is ThreadSanitizer [61]. It uses custom optimiza-

tion and a combination of HB and Lockset race detection algorithms to achieve both

runtime performance and more precision. In our proposed tools we aim at more preci-

sion and high performance. Moreover, FastTrack [24] is a precise (no false negatives)

race detection algorithm for multithreaded applications originally implemented in the

RoadRunner dynamic framework [25] for Java programs. RoadRunner instruments

the bytecodes of the program and performs the runtime analysis to detect races. It

also supports other race detection algorithms like Eraser [60].

Chapter 3

RELATED WORK

Our related work focuses on race detection for shared memory programming mod-

els: OpenMP tasks, Atomic Dataflow(ADF), and POSIX Threads. We also discuss

the differences between related works and our proposed solutions.

3.1 Race Detection for OpenMP

Archer is an efficient tool for detecting data races in OpenMP programs between

concurrent threads [9]. Through LLVM, it uses static analysis polyhedral techniques

to ignore sequential code and instrument concurrent portion of the program. Then it

uses runtime analysis to detect races in those parts by employing ThreadSanitizer [61]

race detector in the background. In contrast, we detect determinacy races where

ordering between concurrent components is missing. Archer may fail to detect such

cases and it also misses concurrent tasks executed by the same thread. By building the

happen-before relations on tasks rather than threads, we can catch these situations.

Determinacy race detection in [63] targets task-based programming models with

async, finish and future constructs. There are works on detecting determinacy races

in a very strict two-dimensional pipeline parallel program structures which restrict

task dependency to at most two [20, 71]. Other works target determinacy races [22,

40, 57, 58] for structured parallelism programming models like X10 and Habanero.

Most work targets data race detection [24,36,45,60,61] which manifest as a result of

improper synchronization in programs.

DFinspec [44] proposes a technique for detecting output nondeterminism for Atomic

Dataflow (ADF) [27] programs due to missing or improper ordering among tasks. It

assumes that all concurrent portions of the program execute in atomic tasks. Unlike

14 Chapter 3: Related Work

ADF, in OpenMP tasks are not atomic, thus the proposed solution in DFinspec would

not work on OpenMP programs. The Starsscheck tool [15] identifies inconsistencies

in pragma annotations for programs written in Starss programs [37]. The tool veri-

fies that the programmer correctly annotates the application by checking the input

and output dependencies of tasks. By assuming that a task accesses shared memory

through only input dependencies, it fails to detect concurrent tasks accessing shared

memory locations that are not specified through input dependencies.

A closely related work [22] proposes an algorithm for detecting determinacy races

for Cilk programs [11] in which a spawned thread may execute concurrently with

parent or sibling threads. These threads may need proper synchronization for shared

memory accesses. We target OpenMP tasks where a task becomes runnable when

all its dependencies are satisfied. Vechev et. al [66] uses a static sequential analysis

to verify determinism for task-based parallel programs by leveraging numerical ab-

stractions. They locate code sections that can execute concurrently and check for

dependent memory accesses between those sections.

Differently from the related work, we propose a technique for detecting deter-

minacy races at runtime for OpenMP tasks which to our knowledge has not been

explored before. Moreover, we do not explicitly check for inconsistency in pragma

annotations as is done by Starsscheck [15]. We rather detect determinacy races which

can be caused by missing necessary dependencies among tasks.

3.2 Nondeterminism Detection

Most of the recent research focus on detecting data races in structured multithreaded

programs [22, 40, 52, 57]. Another closely related work by Feng and Leiserson [22]

proposes an algorithm for detecting data races (named as determinacy races) for

multithreaded applications developed in Cilk [11]. They target structured multi-

threaded programs in which a spawned thread may execute concurrently with parent

or sibling threads and may need proper synchronization for shared memory accesses.

On the other hand we target dataflow applications where a task becomes runnable

Chapter 3: Related Work 15

when it receives all incoming tokens. A similar work by Lee and Schardl presents

two algorithms for detecting data races for Cilk programs that contain reducers and

hyperobjects [40].

DDOS [30] detects nondeterminism in distributed systems where the source of

nondeterminism might be related to network issues, timing variations in the operat-

ing system and message arrival order. In our case, the source of nondeterminism is

due to missing data dependencies among computing entities. Devietti et al. [19] have

a different approach to the problem of nondeterminism. They present techniques for

ensuring determinism in multithreaded programs by suggesting hardware modifica-

tions such that the multithreaded applications execute deterministically with very low

performance overhead. Their work does not address the nondeterminism problem in

dataflow tasks on shared memory because the concept of threads is abstracted away

by the dataflow runtime and scheduler.

Vechev et. al [66] propose a static analysis approach to verify determinism for

multithreaded programs. Their approach targets task-based parallel programs to

simplify reasoning while applying sequential analysis. With the help of numerical

abstractions, they locate portions of code that can execute concurrently and check

for dependent memory accesses between them and report nondeterminism. Since their

approach is static, it tends to generate false alarms. Moreover their technique relies

on numerical abstractions which are computationally expensive.

SingleTrack [59] is a dynamic analysis tool for verifying conflict freedom and exter-

nal serializability of deterministically parallel multithreaded programs. This verifica-

tion ensures deterministic execution of multithreaded programs but does not address

nondeterminism as we are addressing in our tool.

We supplement the related work by defining the problem of output nondetermin-

ism and propose a technique implemented as a tool to detect it in concurrent dataflow

programming models that target shared memory systems. This nondeterminism bugs

may be caused by missing or incorrect ordering of task dependencies that are used

for ensuring certain ordering of task executions.

16 Chapter 3: Related Work

3.3 Race Detection for POSIX Threads

S. Hong and M. Kim surveyed a number of tools for detecting races in multithreaded

programs [29]. Nevertheless we discuss a few tools related to our proposal.

ThreadSanitizer [61] is an industrial-level and open-source race detection tool for

Go, and C/C++ concurrent applications for 64-bit architectures and it is accessible

through GCC and LLVM/Clang [39] using a compiler flag. It instruments the program

under compilation by identifying shared memory and synchronization operations and

injecting race detection runtime callbacks. The instrumented executable is then run

on a target platform for detecting races. ThreadSanitizer has been successful mainly

for two reasons. First, it uses a hybrid of happens-before and lockset algorithms to

improve its precision. Second, it uses 64-bit architectural capability to store race

detection meta-data called shadow memory for performance and memory efficiency.

The authors of ThreadSanitizer claim that extending it for 32-bit applications is

unreliable and problematic [6]. We adopt its instrumentation part to implement a

race detection tool for 32-bit POSIX Threads embedded systems applications.

Intel Inspector XE [31] and Valgrind DRD [7,50] are tools similar to ThreadSan-

itizer [61] in detecting data races for C/C++ concurrent programs. Additionally,

despite running on native hardware, they have limited support for emerging platforms

like the 32-bit ARM architectures; a target for one of our proposed projects.

Olszewski et at. propose Aikido; a framework and a tool for detecting data races

on a general multithreaded program [52]. It uses both hardware support, through a

hypervisor, and dynamic binary rewriting techniques to detect shared data at a coarse

granularity (a shared page). Aikido needs a hypervisor and instrumentation of the

shared pages using the DynamoRIO [13] instrumentation platform and this relatively

slows down the program. Differently from Aikido, we propose a solution for detecting

races on the target embedded hardware.

Chapter 3: Related Work 17

3.3.1 Race Detection of POSIX Threads in Embedded Systems

Zeus Virtual MachineR© Dynamic Framework [68,69] is a hardware-agnostic platform

which contains tools for detecting runtime data races for kernel and user-space mul-

tithreaded applications. These tools rely on virtualization and may have overhead

challenges and may abstract away real target system interactions with external pe-

ripherals like sensors. Moreover, these tools are proprietary and no much relevant

information is in the literature.

Most of the related solutions for detecting data races in embedded systems do

target low end interrupt based, non-multithreaded embedded systems [16, 64, 65, 70].

Therefore, these solutions can not directly apply to the POSIX multithreaded soft-

ware for embedded systems. Moreover, Keul [35] and Chen [17] use static analysis

techniques for race detection in interrupt-driven systems applications. Unfortunately,

these techniques do not capture the runtime behavior of the program. Therefore, they

fail to infer many of execution patterns which would otherwise result in data races.

Chapter 4

TASKSANITIZER: RUNTIME DETERMINACY RACE

DETECTION FOR OPENMP TASKS

4.1 Introduction

OpenMP 3.0 introduced shared memory task execution model [2] in which program-

mers specify computations in units called tasks, which can be executed by concurrent

threads. In OpenMP 4.0 [3], a programmer can specify execution order between

tasks through in and out data dependencies, where a succeeding task waits for the

completion of the preceding task’s execution. Even though programmers have more

flexibility to express various types of parallelism with the new tasking attributes, these

new features can introduce subtle bugs if the operational semantics and scheduling

policy of the OpenMP runtime are not reasoned about. One of such concurrency

bugs is a determinacy race which occurs when concurrently executing entities access

the same memory location without specified ordering between them and at least one

access is a write to that memory location [22,40,57,58]. As a result, a program with

determinacy races may produce different final output results at different runs on the

same input [44]. Determinacy races are possible if the programmer does not specify

necessary dependency between concurrent tasks which access the same memory lo-

cations. Since there is no specific order defined by the programmer, the scheduler is

free to execute the tasks in any order or concurrently.

The existing state-of-the-art runtime race detection tools for OpenMP such as

Archer [9] – and general race detectors [29]– check for proper locking in programs

which protects shared memory objects but can fail to detect determinacy races which

stem from improper ordering of executions. Protecting memory accesses with critical

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 19

sections or other explicit locking is not sufficient to avoid determinacy races. Rather,

proper ordering of the executing entities is essential to avoid undesirable nondeter-

minism in OpenMP programs for correctness.

We present an algorithm to detect determinacy races in OpenMP programs by uti-

lizing the concept of OpenMP tasks and their dependencies. Unlike the state-of-the-

art race detection tools [9] that rely on happens-before model at thread level, we apply

happens-before model at task level, which provides the advantage of reducing random-

ness due to scheduling. We implement our algorithm as an open source tool based on

compile-time instrumentation through LLVM [39] compiler pass to instrument shared

memory accesses in the program. The tool uses the OpenMP Performance Tools API

(OMPT) [21] to monitor OpenMP-related events such as task creation, scheduling,

and execution. In summary, the main contributions of this research are:

• A formal definition of the determinacy races and a technique for detecting such

races in OpenMP tasks. To our knowledge, no prior work has been done for

detecting determinacy races in OpenMP tasks with mixed structures of critical

and non-critical sections.

• Determinacy race detection tool for OpenMP called TaskSanitizer [46].

• Evaluation of our method using micro-benchmark applications and comparison

of results against a race detection tool for OpenMP programs.

4.2 Background in OpenMP Tasks

Explicit tasks in OpenMP can be created with the construct omp task, which is readily

available since OpenMP 3.0 [2]. For each task, OpenMP creates a work block which

includes a sequence of program statements and the data environment. This block is set

aside to be executed by a thread until the runtime schedules it. Starting with OpenMP

4.0 [3], it is possible to specify execution order among explicit tasks using the depend

clause, where a programmer specifies input and output data dependencies between

20 Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks

1 int main() {
2 int i = 0;
3 #pragma omp parallel num_threads(2)
4 #pragma omp single
5 {
6 #pragma omp task shared(i) // task t
7 #pragma omp critical(lock_i)
8 { i = 1; }
9
10 #pragma omp task shared(i) // task u
11 #pragma omp critical(lock_i)
12 { i = 2; }
13 }
14 printf ("i=%d\n",i);
15 return 0;
16 }

"single" task 2

i = 1
i = 2

print "i"

task u
task t

int i = 0

implicit initial task

task 1
task 0

(a) Example code (b) Task dependency

Figure 4.1: OpenMP example illustrates explicit and implicit tasks and their logical
flow dependency between tasks. The code example has a determinacy race.

tasks. A collection of tasks through dependencies forms an implicit task dependency

graph in which a task is not runnable until all its dependencies are satisfied. The

runnable tasks can then be scheduled by the OpenMP runtime. If two or more tasks

are simultaneously runnable at a given point in time, they can execute in any order

or concurrently.

Every part of an OpenMP program executes in a task assigned to one or more

threads. For example, implicit tasks can be generated at parallel regions with the

OpenMP parallel construct and each implicit task is executed to completion by one

thread in the thread group of the parallel region [2]. Figure 4.1 shows a simple

OpenMP program, where a default implicit task is created as part of the main pro-

gram. This task then creates two implicit tasks through the parallel region at line 3.

One of these tasks executes the single region at line 4, which creates two explicit tasks

t and u at lines 6 and 10, respectively. Both of these tasks have critical sections, in

which they set different values to a shared variable i. This example has a determinacy

race which is explained in detail in Section 4.3.

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 21

4.3 Determinacy Race Detection

In this section, we first define determinacy races and present motivation on detecting

them with the help of an OpenMP example. Then, we formally define a task with

its operations and we devise happens-before (HB) relations between these operations

for capturing partial ordering among them. Finally we use the defined HB relations

to present our algorithm for detecting determinacy races.

4.3.1 Definition and Motivating Example

Determinacy race occurs between two tasks if the following two conditions are satis-

fied: (i) there is no ordering between these tasks enforced by task dependency, and

(ii) both tasks access a common shared memory location and at least one access is a

write. If simultaneously runnable tasks modify the same memory locations, different

scheduling (i.e; order of execution) of these tasks may result in nondeterministic final

values on these memory locations.

Many runtime race detection algorithms [24, 60, 61] do not take the notion of

dependency into account. They monitor proper synchronization of threads on memory

accesses to detect races. In this work, we monitor the proper ordering of tasks and

critical sections to ensure that different possible ordering of critical sections in these

tasks always generate a single, deterministic final program state. This helps the

programmer to notice if nondeterminisim was not intentional.

We have provided a simple OpenMP program in Figure 4.1, where there is no

specified dependency between tasks t and u . As a result, their critical sections can

execute in any order and thus the final result for i can either be 1 or 2 despite the

fact that accesses to the shared variable are protected by a common lock. Unless

the developer intends the program to behave as such, only one deterministic result is

expected. The same issue arises if one of the tasks reads the value of i in a critical

region and the other task writes to i. It is worth noting that in a typical program

these two tasks might have been created in separate function calls, thus the critical

sections may be well far apart from each other and can be easily overlooked.

22 Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks

4.3.2 Formalizing Task Operations

In order to establish HB relations and set up rules between tasks for detecting deter-

minacy races, we first define relevant task operations:

• create(t,u): task t creates task u .

• wait(t,u): task t awaits termination of task u at taskwait or at a barrier.

• read(t,mem): task t reads value from shared memory location mem .

• write(t,mem,v): task t writes value v to shared memory location mem .

• out(t,u,x): signifies dependency from task t to task u through storage loca-

tion x . Task t is the predecessor and u is the dependent task.

• in(u,t,x): signifies dependency from task t to task u through storage location

x . Task u becomes runnable once t completes its execution.

Having defined task operations, we elaborate on shared memory accesses and as-

sociate them to segments of a task, rather than the task itself. We define a task

as an enclosed sequence of unique tasksegments and synchronization operations exe-

cuted together, as shown in Figure 4.2. A tasksegment is a sequence of consecutive

shared memory accesses between two synchronization operations in a task. There-

fore, a synchronization operation in a task ends the current tasksegment and a new

tasksegment starts at the next shared memory access operation in the task after the

synchronization operation. We define synchronization operations as operations which

trigger execution among tasks and are create, wait, out, and in. For example,

Figure 4.3 shows three tasks (a parent and two child tasks) but contains four taskseg-

ments. In other words, in our formal task operations we differentiate the code bodies

(e.g. tasksegment s1 and tasksegment s4) that result from imperfectly nested tasks.

Since this is necessary to establish HB relations, we revise the shared memory access

operations as follows:

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 23

create(t,u), wait(t,u), out(t,u,x),
in(u,t,x), taskseg(t,s) task

t
≣ []+

read(t,s,mem), write(t,s,mem,v)taskseg
(t,s)

≣ []+

Figure 4.2: Defining a task as a sequence of tasksegments (taskseg) and synchroniza-
tions

• read(t,s,mem) shared memory access that appears in tasksegment s where

task t reads a value from shared memory location mem .

• write(t,s,mem,v) shared memory access that appears in tasksegment s where

task t writes value v to shared memory location mem .

4.3.3 Happens-Before Relations Between Task Operations

For partial ordering of operations in an OpenMP program, we use happens-before

(HB) ordering of events [38] by employing dependency among synchronization op-

erations. Happens-before relation is a transitive-closure relation. For given three

operations a, b, and c if there is an HB relation from a to b and from b to c, then

there is an HB relation from a to c. We will infer this relation while categorizing

HB relations between tasks operations. We use symbol ≺ to refer to an HB relation

in general and use <π to refer to an inferred HB relation due to transitive-closure

property.

a ≺ b ∧ b ≺ c → a <π c

We identify four types of HB edges among operations between tasks. These are

(i) an HB relation among memory operations performed within a tasksegment; (ii)

between a task and its child task through create; (iii) relation between out and in

dependency operations; and (iv) relation at wait operation. We then use these HB

relations to infer HB relations among tasksegments in tasks.

24 Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks

1. HB by program order: This is the basic type of HB relation where program

operations within a tasksegment are ordered according to their execution sequence.

Similarly, tasksegments within a task are ordered by program order.

2. HB relation by task dependency: If tasks t and u have a commonly specified

data dependency such that u has an input dependency from t , then all tasksegments

– as well as their enclosing memory operations – in t happen-before all tasksegments

in u .

out(t, u, x) ≺ in(u, t, x)

∀taskseg(t,a)∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

3. HB relation between a task and its child task: tasksegments of a task

which execute before creating a child task happens-before the tasksegments executed

in the created child task. For two tasks t and u :

create(t, u)

∀taskseg(t,a)taskseg(t,a) <π create(t, u)→ ∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

4. HB relation at taskwait and barrier synchronizations: The last operation

of a child task happens before the taskwait or implicit barrier synchronization oper-

ation of the parent task. Therefore, all tasksegments of such task have HB relation

with subsequent tasksegments of the parent task after the wait operation is completed.

wait(t, u)

∀taskseg(t,a)wait(t, u) <π taskseg(t,a) → ∀taskseg(u,b)taskseg(u,b) <π taskseg(t,a)

We use example Figure 4.3 to illustrate the four categories of HB relations. The

memory operations at lines 11 and 12 belong to the same tasksegment s3 and thus

are ordered by program order. Moreover, there is an HB relation between memory

operations at lines 4 and 7 because their corresponding tasksegments have an HB re-

lation through task creation synchronization operation as task t executing the single

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 25

1 #pragma omp single
2 { // task t
3 total = 42;
4 count = 0;
5 #pragma omp task depend(out:x)
6 { // task u
7 count++;
8 }
9 #pragma omp task depend(in:x)
10 { // task v
11 int temp = total + count;
12 total = temp;
13 }
14 #pragma omp taskwait
15 print(total) // task t
16 }

tasksegment s1

tasksegment s2

tasksegment s3

tasksegment s4

HB relation by task
creation

HB relation by task
dependency

HB relation by program
order

HB relation by task wait

Figure 4.3: Example with four categories of HB relation among operations of tasks

region creates an explicit task u at line 5. Moreover, all operations in tasksegment s2

happen-before all operations in tasksegment s3 because of specified dependency be-

tween tasks u and v . Finally, memory operations in tasksegments s3 and s4 happen

before the print statement in tasksegment s4 because of the wait synchronization

operation at line 14. Without taskwait, we would not be able to establish an HB

relation between s4 with s2 or s3.

4.3.4 Determinacy Race Detection Algorithm

Algorithm 4 provides pseudo-code for determinacy race detection between any two

memory operations (α and β) in an OpenMP program. Between lines 4 and 9, it

retrieves information of the operations: their task identifiers (IDs), tasksegment IDs

as well as the memory addresses they accessed. Then at line 10, the algorithm checks

if the operations access the same memory location and belong to two different tasks

and tasksegments. At line 11, it checks if the corresponding tasksegments do not have

an HB relation as inferred using the four HB types from Section 4.3.3. If there is no

HB, then it reports a determinacy race bug if one operation is a write and the other

a read at lines 12 and 13. In the case that they both are write actions, it reports a

26 Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks

determinacy race if they are not commutative (lines 14 - 16).

Algorithm 4 Detecting determinacy race between two shared memory operations

1: procedure checkDeterminacyRace(α, β)

2: Input: α . a shared memory operation

3: Input: β . another shared memory operation

4: t ← getTaskID(α)

5: u ← getTaskID(β)

6: seg1 ← getTasksegmentID(α)

7: seg2 ← getTasksegmentID(β)

8: mem1 ← getMemoryAddress(α)

9: mem2 ← getMemoryAddress(β)

10: if mem1 = mem2 and t 6= u and seg1 6= seg2 then . on different tasks

11: if not HappensBefore(seg1, seg2) then . check if no HB

12: if isWrite(α) 6= isWrite(β) then . one write, one read

13: reportBug(α, β)

14: else if isWrite(α) and isWrite(β) then . both write

15: if not isCommutative(α, β) then . check commutativity

16: reportBug(α, β)

17: end if

18: end if

19: end if

20: end if

21: end procedure

Detecting Commutative Operations:

Shared memory accesses can result in falsely detected determinacy races if these

accesses involve in commutative arithmetic operations between same-lock critical sec-

tions. Two concurrent arithmetic operations on a shared memory location are com-

mutative if their order of execution does not alter the final value produced. For

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 27

OpenMP
Code

Shared Memory
Access

Instrumentation

Determinacy Race
Detection Runtime

Executable

Linking

OMPT
Callbacks

Determinacy
Race

Detection
Error

Report

1
2 3

4

5 6

Figure 4.4: Showing implementations of TaskSanitizer: architecture and tool flow

example, if var += temp1 and var -= temp2 are in two different same-lock critical

sections, then re-ordering them does not affect the final value of var. Thus in line 16

of Algorithm 4, we use the formalization of commutativity operation detection pro-

posed in [44] to identify such memory actions and do not report determinacy races

on them.

4.4 Implementation

As shown in Figure 4.4, we implement our method as a tool that has three main

parts (i) instrumentation; (ii) inferring happens-before relation between program op-

erations; and (iii) determinacy race detection at runtime.

1. Instrumentation: We instrument an OpenMP program source code at compile-

time through LLVM / Clang infrastructure [39]. The instrumentation injects our

determinacy race detection runtime callbacks, which implement Algorithm 4, in

step 2©. We customize the shared memory instrumentation module of Thread-

Sanitizer [61] to identify shared memory operations and associated source code

line numbers and functions for traceability in case of determinacy races. More-

over, we identify and store program statements which are in critical sections.

These are later used by our algorithm to detect commutative operations on po-

tential determinacy races where our tool does not report them if the ordering

of those critical sections does not alter the final output.

28 Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks

2. Constructing HB relations: To capture HB ordering between tasks and op-

erations, we implemented a module that uses the OMPT interface [21] in step

3© of Figure 4.4 to register callbacks which capture synchronization operations.

First, we locate the implicit tasks as well as explicit tasks defined using the

tasking clause for specifying the ordering of program events. Second, task de-

pendencies through depend clause as well as custom synchronization idioms such

as locks and barriers are located to reason about the happens-before ordering.

Finally, we use these operations to infer HB relations between task operations.

Moreover, we assign a unique identification to each task and tasksegment at

creation, during program execution. This has three advantages (a) Unique ID

differentiates different instances of the same task code block or tasksegment ex-

ecuted at different times. (b) A task may run to completion by a single thread

or its parts may be scheduled to different threads. Similarly two concurrent

tasks may be executed by the same thread. Our approach is transparent from

threads, hence regardless which thread(s) execute a task, a unique ID preserves

its dependencies with other tasks and avoids false determinacy race alarms.

(c) Each tasksegment has the same set of HB meta-data, as opposed to each

memory operation, thus unique ID of the tasksegment is used to retrieve HB

metadata for each of its memory operations.

3. Runtime determinacy race detection: As shown in Figure 4.4, we link

the library we implemented at step 3© to produce the instrumented executable

binary, which executes at step 4©. At step 5© relevant program events are

captured at runtime and detection is performed and a bug report is generated

in step 6©. The tool reports a pair of line numbers where a common shared

memory location was accessed by concurrent tasks. This pair is helpful for

the developer to revisit the source code and eliminate determinacy races. This

module also implements the technique proposed in [44] to check if operations

with determinacy races are commutative as they execute in critical sections of

the same lock given that their execution order does not affect final output of

Chapter 4: TaskSanitizer: Runtime Determinacy Race Detection for OpenMP Tasks 29

the program to reduce false positives.

Chapter 5

DFINSPEC: NONDETERMINISM DETECTION FOR ADF

5.1 Introduction

A task is a basic unit of computation in dataflow applications comprising a sequence

of program statements that make use of the application data. In a dataflow program,

a task graph is a collection of tasks connected through dependencies on data or tokens.

Tasks are connected together by unique token buffers which create a data dependency

such that a task which completes its execution triggers a succeeding task connected

through the buffer by sending a token. A task becomes runnable when all tokens

required by the task are available. If more than one task is simultaneously runnable

at a given point in time, they can execute in any order or concurrently.

If simultaneously runnable tasks concurrently execute and modify the same mem-

ory locations, different scheduling (i.e; order of execution) of these tasks may result

in nondeterministic final values on these memory locations. Output nondetermin-

ism in dataflow applications running on shared memory can occur between two tasks

if the following two conditions are satisfied: (i) there is no ordering between these

tasks enforced by a data dependency edge in the dataflow graph, and (ii) both tasks

write different data values to the same shared memory location, or one task modi-

fies the memory location while the other only reads from that location. Indeed, these

conditions apply for all settings regardless whether a whole task is protected by trans-

actional memory as in [27], or synchronization primitives such as internal locks [32,53].

We refer to nondeterminism arising due to these conditions in a program as output

nondeterminism because it may produce different final outputs at different runs on

the same input.

Chapter 5: DFinspec: Nondeterminism Detection for ADF 31

5.2 Motivation

token4token3

token2token1
token3token2token1

OpenAccountTask

DepositTask WithdrawTask CommissionTask

OpenAccountTask

DepositTask WithdrawTask

CommissionTask

(a) (b) (c) (d)

Figure 5.1: A simple banking ADF example (a) code with nondeterministic behav-
ior between WithdrawTask, DepositTask and CommissionTask. The flow graph (b)
shows dependency between these tasks indicating that DepositTask, WithdrawTask
and CommissionTask are concurrent. The code in (c) shows the correct implemen-
tation of the code in (a). The flow graph (d) shows the correct dependency which
ensures that CommissionTask executes last, thus ensuring a deterministic execution
of the banking operations. DepositTask and WithdrawTask can execute in any order
because they can not affect the final output.

In dataflow applications the output nondeterminism can occur when a programmer

misses necessary dependency between concurrent tasks. We provide a simple bank

simulation example in Figure 5.1 to motivate the problem we are addressing. The

idea behind this example is the simulation of bank operations using tasks where the

intended last operation is the calculation of the commission using a given rate and

the current balance in the bank account. We show that if the programmer misses

necessary data dependency among the tasks, the program produces nondeterministic

final results. To understand this missing dependency we provide both the wrong and

correct implementations.

Figure 5.1(a) simulates four bank account operations namely; account initializa-

tion, depositing, withdrawing and commissioning implemented in the ADF program-

ming model. Assume that the intention of the programmer is to make Commission-

Task execute after all other operations as in Figure 5.1(c). Instead the programmer

mistakenly implements the ADF program that creates four tasks to perform these

bank operations as in 5.1(a) and 5.1(b). In this program the first task OpenAccount-

Task initializes the account balance balance, and then it sends tokens to three tasks

32 Chapter 5: DFinspec: Nondeterminism Detection for ADF

CommissionTask, DepositTask and WithdrawTask (lines 3-5), which are concurrent

to each other. Upon receiving the token, each task executes its action. Notice that

all three tasks (DepositTask, WithdrawTask and CommissionTask) update balance

in arbitrary order as dependency among them does not exist (see Figure 5.1(b)). In

ADF, by default, a task is atomic, or non-preemptive [27]. Therefore, either Commis-

sionTask executes and completes before any of WithdrawTask and DepositTask or

both or vice versa. Depending on which task executes first, the final value of balance

differs, which is not the intention of the programmer.

To eliminate the nondeterminism bug, it suffices to add task dependencies from

DepositTask and WithdrawTask to CommissionTask, as in Figure 5.1(c) at lines 9

and 14. This ordering creates data dependency among these tasks as shown in Figure

5.1(d). In the given example, the ordering between WithdrawTask and DepositTask

does not matter because these two tasks commute; the scheduler can nondeterminis-

tically schedule these tasks without affecting the final program output.

5.3 Proposed Approach

We develop an algorithm for detecting nondeterminism in dataflow applications run-

ning on shared memory. Our algorithm uses happens-before relations that we devise

for partially ordering different actions performed by the tasks. In this section we pro-

vide a formal definition of the happens-before relations and necessary rules to capture

nondeterminism, and then state our detection algorithm.

5.3.1 Defining Actions of a Dataflow Application

To detect nondeterminism in dataflow applications running on shared memory we

need to identify and model all relevant program actions performed by a task. The

set of actions, denoted as Actions, can be used to represent the relevant operations

performed by a dataflow program. We first define the list of actions and then set

up rules for those actions that are necessary to capture the ordering of events in an

execution trace of a dataflow application. These actions are:

Chapter 5: DFinspec: Nondeterminism Detection for ADF 33

• start(tid): a task with a unique identification tid starts execution. This is

the first action of a task once scheduled by the runtime.

• send(tid,token,buff): a task tid sends a token value token to another task

through output token buffer with identifier buff.

• receive(tid,token,buff): a task tid receives a token value token from an-

other task through input token buffer buff.

• read(tid,addr): a memory access where task tid reads a value from a memory

address addr.

• write(tid,addr,val): a memory access where task tid writes value val to a

memory address addr.

• end(tid): a task tid terminates execution. This is the last action of a task

before its termination.

In the subsequent discussions, we will often omit the parameters of the action

instances performed by a task and we will refer to individual parameters of an action

in the form of action.parameter. For example, to refer to tid argument of an action

instance β = send(tid,token,buff) we will use β.tid.

We classify tasks as reader or writer tasks based on their accesses to a shared

memory location. A task is reader of addr if all of its accesses to addr are read

operations. On the other hand, a task is writer of address addr if it writes at least once

to that address. This classification is used in Section 5.3.3 to define rules necessary

for detecting output nondeterminism. In the subsequent discussions, the write action

of a task to a memory address denotes its last write action to that location and, for

simplicity, the read action is the first read action to the memory location.

5.3.2 Happens-before Relation of Task Actions

Having defined the actions, we now provide a definition of happens-before relation

between the actions of tasks. The happens-before relation is a partial ordering of

actions performed within a task or between tasks. This gives a formal way of setting

an order between actions in an execution trace. Given any two actions α and β, we

34 Chapter 5: DFinspec: Nondeterminism Detection for ADF

say that action α happens-before action β if there is a partial order between them and

this order puts α before β in an execution. If α and β are performed by the same

task, we say that there is a happens-before relation between them ensured by program

order. If these actions are performed by different tasks, their happens-before relation

is ensured by data dependencies between these tasks. Actions of task A happen before

actions of task B if A sends a token to B which resumes execution after receiving the

token through an input token buffer.

To formally define a happens-before relation between the actions performed by

tasks, we adopt a notation presented in [47]. The happens-before relation, denoted

as ≺ ⊆ Action × Action is a binary relation that is irreflexive and transitive. For a

given finite execution trace of actions π = α0.α1.....αn we denote α <π β if action

α happens before action β in π. The necessary rules to capture the happens-before

relation among actions in an execution trace of a dataflow program are as follows:

• Start: This rule orders the start action of a task before all the other actions

performed by the same task. The start action of a task tid happens-before all

actions subsequently performed by that task. Formally, this rule is summarized

in formula (1) in Figure 5.2.

• Token: This rule sets the ordering between send and receive actions of the same

token through the same data buffer by two different tasks. It specifies that the

send action of a token happens-before the receive action of the same token (rule

2 in Figure 5.2).

• Read/Write: Specifies the ordering of memory actions on a given memory lo-

cation. Memory actions in a task are ordered by program order. For actions

in different tasks, the order is preserved if there is a happens-before relation

between these tasks.

• End: This rule captures the fact that all actions in a task are ordered to happen

before the task terminates.

Chapter 5: DFinspec: Nondeterminism Detection for ADF 35

(1) Start:
α = start, β ∈ {send, receive, read, write, end}, α.tid = β.tid

α ≺ β
(2) Token:

α = send, β = receive, α.buff = β.buff , α.token = β.token

α ≺ β
(3) Read/Write:

α, β ∈ {read, write}, α.addr = β.addr, α <π β

α ≺ β
(4) End:
α ∈ {send, receive, read, write, end}, β = end, α.tid = β.tid

α ≺ β

Figure 5.2: happens-before formulas for capturing the ordering of actions in a dataflow
application.

Motivating example revisited We revisit the motivating example in Figure 5.1

to elaborate the rules summarized in Figure 5.2. There is data dependency between

OpenAccountTask and CommissionTask which forms a happens-before relation be-

tween these tasks. As rule 2 implies, the action to send token1 by OpenAccountTask

happens before the action to receive token1 by CommissionTask. Similarly there is

a happens-before relation between OpenAccountTask and DepositTask since Ope-

nAccountTask sends token2 and DepositTask receives it. This is also true between

OpenAccountTask and WithdrawTask on token3. Hence, by the transitive closure of

happens-before relation, all memory access actions to the variable balance in Ope-

nAccountTask do happen before those in the remaining three tasks. Unfortunately

this is not the case between any pair of the tasks CommissionTask, WithdrawTask

and DepositTask since there is no specified data dependency edge between these tasks

and thus no happens-before relation among them.

5.3.3 Output Nondeterminism Detection Rules

Using the happens-before rules we modeled in the previous section, we propose an

algorithm for detecting nondeterminism in a dataflow application on shared mem-

ory. A program developed on a dataflow programming model on shared memory is

36 Chapter 5: DFinspec: Nondeterminism Detection for ADF

nondeterministic if the following two criteria hold:

1. There exists two writer tasks with actions α = write(tid1,addr,val1),

and β = write(tid2,addr,val2), respectively, which write different values

(val1 6= val2) to the same memory location addr. Or, there exists a reader

task and a writer task with actions α = read(tid1,addr), and

β = write(tid2,addr,val2), respectively, which access the same memory lo-

cation addr.

2. The two tasks, α.tid1 and β.tid2, which performed the actions in (1) do not

have a happens-before relation; α ⊀ β and β ⊀ α.

Our algorithm detects nondeterminism on a shared memory location addr when

there are two memory access actions in a dataflow execution trace π performed by

two different tasks which satisfy the two conditions above. Formally, given two write

actions α = write(tid1,addr,val1) and β = write(tid2,addr,val2) with tid1 6=

tid2 and val1 6= val2, or a read and write actions; α = read(tid1,addr) and β =

write(tid2,addr,val2) with tid1 6= tid2, then there is a nondeterminism error on

addr if neither of the following rules is satisfied:

1. α <π send(tid1, token, buff) and receive(tid2, token, buff) <π β, or

2. β <π send(tid2, token, buff) and receive(tid1, token, buff) <π α

5.3.4 Nondeterminism Detection Algorithm

By applying the rules in section 5.3.3 to detect nondeterminism, we develop a non-

determinism detection algorithm summarized in Algorithm 1. The algorithm loops

through all the actions in the execution trace π of a dataflow program. When the

algorithm encounters a start action in π, it creates a new happens-before set of iden-

tifiers of tasks which happen before this task. When the action is a receive action, the

happens-before set of the receiver task is expanded by adding all task identifiers from

Chapter 5: DFinspec: Nondeterminism Detection for ADF 37

the happens-before set of the task which sent the token. This preserves the happens-

before transitive closure of actions. When a memory access action is inspected in π,

the algorithm checks for output nondeterminism between concurrent memory actions

inspected so far to the associated memory location. The check applies the rules in

section 5.3.3 with the help of transitive happens-before set of the task that performed

this action. In the following paragraphs we walk through the algorithm pseudocode

and provide details.

The looping through all actions in the execution trace π starts at line 9. At line

10, it checks if the current action under test represents the start of a new task in

which case the algorithm constructs a new set containing the identifier of the task

itself at line 11. We refer to this set as a HB set. At line 12 it is stored in a list of

HB sets for future retrievals. At line 13 if the current action is a send action, it is

stored in a tokens set (line 14). This information is later retrieved, at lines 15 and

16, when a receive action with the same token value and the buffer ID is processed

from π. Since this matches the sender and the receiver of the token, the HB set of

the receiver task of the token inherits the HB set of the sender at lines 17 and 18.

This constructs a happens-before transitive closure of actions performed by these two

tasks.

Starting at line 19, the rest of the algorithm concentrates on nondeterminism

detection for a memory access action. There are two conditions associated with each

memory access action in the execution trace π: (a) a first read action by a reader

task which performs only reads on the memory location; (b) the last write action by

a writer task which performs at least one write to the memory location. In case of

(a), among all concurrent tasks actions to the memory location before are retrieved at

line 20, the corresponding writer and reader tasks that do not have a happens-before

relation with the current task performing the action are identified and the values

they wrote are compared with the current value at lines 23 - 25. Nondeterminism is

reported, at line 24, if the current writing task is different than the previous writing

task, the values written by these tasks are different and the tasks involved do not

38 Chapter 5: DFinspec: Nondeterminism Detection for ADF

have a happens-before relation between them. In case of (b), there is nondeterminism

between the reader task of β.addr and all concurrent writer tasks which do not have

HB relation with that task (lines 28 - 31). Similarly, there is nondeterminism in the

case that β is a read action with all concurrent writes which do not have HB relation

with the performing task. After these checks, the relevant information about the

current memory access is saved for future output nondeterminism checking at line 33.

Algorithm 1 has worst-case and best-case computation complexity of O(n2) and

Ω(n), respectively, where n is the number of actions in the execution trace. A possible

scenario for the worst case is when there are n writes to a single address by different

n tasks. Moreover, the best case is when there are no tokens involved and no shared

memory accesses. There are a number of technical improvements and optimization

to this algorithm. We describe some of them in Section 5.4.

Algorithm 1 Detecting output nondeterminism

1: procedure checkNonDeterminism(π)

2: Input: π . an execution trace

3: Var β, α . actions

4: Set γaddr . concurrent memory accesses to β.addr

5: List MemACsets . concurrent memory accesses to addresses

6: Set HBsets . happens-before sets for tasks

7: Set HBβ . HB set for a task of action β

8: List Tokens . stores tokens already sent

9: for β in π do

10: if β is start then

11: HBβ ← {β}

12: HBsets← HBsets ∪ {HBβ}

13: else if β is send then

14: Tokens.insert(β)

15: else if β is receive then

Chapter 5: DFinspec: Nondeterminism Detection for ADF 39

16: α← Tokens.get(β.token)

17: HBsender ← HBsets.get(α)

18: HBβ ← HBβ ∪HBsender ∪ {α}

19: else if β is memory access then

20: γaddr ←MemACsets.get(β.addr)

21: for α in γaddr do

22: if β is write and α is write and β.tid 6= α.tid then

23: if β.val 6= α.val and α.tid /∈ HBβ.tid then

24: ReportNondeterminism(β, α)

25: end if

26: else if β is write and α is read OR

27: β is read and α is write then

28: if β.tid 6= α.tid and α.tid /∈ HBβ.tid then

29: ReportNondeterminism(β, α)

30: end if

31: end if

32: end for

33: γaddr ← γaddr ∪ {β}

34: end if

35: end for

36: end procedure

5.3.5 Commuting Tasks

Our proposed output nondeterminism detection algorithm fails to capture precisely all

concurrent action patterns that lead to output nondeterminism in a dataflow program

on shared memory by two concurrent writer tasks. One possible case is that it fails to

capture commuting operations by commutative tasks. We give a simple definition to

identify commutative tasks and propose a solution to eliminate the nondeterminism

errors reported by our algorithm.

40 Chapter 5: DFinspec: Nondeterminism Detection for ADF

Two concurrent writer tasks are commutative if a change in their execution order

does not change the final output of the program. As an example consider two tasks,

tid1 and tid2, incrementing a value at a memory location addr. As long as these

tasks are atomic the execution order between these tasks does not matter. Our

algorithm for detecting output nondeterminism proposed in the previous section has

a limitation because our definition of happens-before relation for a given execution

does not identify commuting writer tasks and therefore the algorithm flags them as

a source of output nondeterminism because the values written by each task to the

memory location is different. However this is not a real bug because the final program

output is the same regardless of task execution order.

To overcome this limitation and reduce false alarms, we provide a simple definition

to identify commutative writer tasks. Consider two tasks with IDs tid1 and tid2 which

both modify a shared memory address addr by applying a sequence of one of the

simple reduction operations1. Assume that the task tid1 performs a sequence, say

S1, of n such operations whose one of operands is addr and each operation in this

sequence can be denoted as αi for 1 ≤ i ≤ n. Similarly, tid2 performs a sequence S2

of m reduction operations of the same type whose one of operands is addr and each

operation can be denoted as βj for 1 ≤ j ≤ m as shown in Listing 5.1.

Listing 5.1: Sequences of reduction operations which involve addr as operand. S1

belongs to task tid1 and S2 to tid2.

S1 = α1 α2 α3 . . . αn

S2 = β1 β2 β3 . . . βm.

Then the writer tasks tid1 and tid2 commute on shared memory addr if these two

sequences only contain a commutative reduction operation, thus these operators can

be performed in any order without affecting the final result of addr. One way to

verify that the basic reduction operations involving addr as operand from both S1

and S2 sequences are commutative is to symbolically execute them combined in two

1A reduction operation can be one of the following operations: +, −, ∗, /, &, |, ˆ, &&, ‖, min
and max.

Chapter 5: DFinspec: Nondeterminism Detection for ADF 41

alternatives: operations on addr from tid1 followed by those in tid2, and vice versa,

as shown in the following expression:

α1α2α3...αnβ1β2β3...βm ≡ β1β2β3...βmα1α2α3...αn

Once Algorithm 1 on section 5.3.4 detects an output nondeterminism for write-

write cases (lines 23 - 25), we traverse through the sequence of operations on each task,

starting from the beginning of the task up to the memory access which showed non-

determinism, and identify the operations which use the memory address as operand

and construct the sequences S1 and S2. Next, arithmetic operations in S1 commute

with those in S2 if the following rule holds.

(1) ∀αi∈S1∀βj∈S2 αiβj ≡ βjαi

Algorithm 2 checks if two tasks tid1 and tid2 commute at memory write actions

α and β, respectively. The inputs to this algorithm are the sequences of all actions

and arithmetic operations of the two tasks, the write actions α and β which indicated

nondeterminism, and the address addr where nondeterminism occurred. At lines 8

- 14 it searches for all types of basic arithmetic and logic reduction operations with

addr as operand from execution sequence of task tid1. It stores these operations in a

set, at line 11. This set contains unique reduction operators at the end of search. At

line 15 a similar procedure is repeated for actions and operations in task tid2 where

a separate set of operators is generated.

The algorithm checks if the rule one above is satisfied by the reduction operations

on the shared memory addr, at lines 16 - 20, by comparing the two sets Opα and Opβ.

If they contain only commutative reduction operations which can arbitrarily operate

in any order without affecting final result then we have proved that the tasks commute

at memory write actions α and β. Otherwise the tasks tid1 and tid2 do not commute

and the detected output nondeterminism is reported. Algorithm 2 can be executed

between the lines 23 and 24 in Algorithm 1 to verify whether the detected output

nondeterminism is a false warning or not due to commutative operations. Finally, the

computation complexity of Algorithm 2 is Θ(|S1||S2|), where S1 and S2 are sequences

42 Chapter 5: DFinspec: Nondeterminism Detection for ADF

of all actions from two writer tasks involved in commutative operations.

Algorithm 2 Checking if two tasks commute on memory operations at an address

addr.

1: function ifCommute(S1, S2, α, β, addr)

2: Input: S1 . sequence of all actions from tid1

3: Input: S2 . sequence of all actions from tid2

4: Input: addr . memory location in question

5: Input: α, β . nondeterministic actions by tid1, tid2

6: Set Opα . reduction operators on addr by tid1

7: Set Opβ . reduction operators on addr by tid2

8: for αi in S1 and αi 6= α do

9: if αi is a reductionOp then

10: if addr ∈ operands(αi) then

11: Opα := Opα ∪ {αi}

12: end if

13: end if

14: end for

15: . Repeat Line 8-14 for β and S2

16: if Opα commutes with Opβ then

17: return true

18: else

19: return false

20: end if

21: end function

Chapter 5: DFinspec: Nondeterminism Detection for ADF 43

Clang C/C++ Frontend

Runtime
Instrumentor

Application
Instrumentor

LoggerLib

Executable DFchecker

Runtime
signature file

LLVM Middle-end
DFlogger 2

dataflow
runtime

source code

application
source code

HBlog.txt

TraceLog.txt

Error
Report

1

4

5

6 7
8

LLVM
Linker

LLVM
Backend

3

2 Preprocessed code of dataflow runtime & program passed to LLVM middle-end
3 Runtime signatures loaded to runtime and memory access instrumentors

5

4 instrumented program + library for logging dataflow operations linked

6

7

Dataflow runtime and application source codes as input to LLVM frontend 1

8

LLVM backend produces instrumented executable with logging
Instrumented executable logs all dataflow operations to log files
The log files used as input to the non-determinism checking tool
Non-determinism tool reports all errors

Figure 5.3: The architecture and action flow of DFinspec tool.

5.4 Implementation

In this section we present the DFinspec tool that we have developed for detecting

output nondeterminism. We start with the components of the tool and their functions.

Then we discuss how the tool detects output nondeterminism in dataflow programs.

Lastly, we discuss how we address the false alarms due to commutative tasks and

certain limitations of the tool.

The architecture of DFinspec is shown in Figure 5.3 and it mainly comprises three

flow actions. First, it instruments the program and its dataflow runtime by inject-

ing special functions which are launched during program execution. These functions

record information about task actions discussed in Section 5.3.1 for nondeterminism

detection. The instrumentation is done at compile time through the middle-end of the

LLVM/Clang compiler. Second, the recorded information about actions performed

by tasks is saved into log files. Lastly, our tool uses these log files to do output non-

determinism checking using Algorithm 1. The main modules of the tool are discussed

in the following sections.

5.5 Runtime Instrumentor

This module accepts the function signatures (dataflow API), which initialize and

terminate the dataflow runtime, from an input file. Then it instruments the runtime

44 Chapter 5: DFinspec: Nondeterminism Detection for ADF

to identify them to serve as initialization and termination points for the logging

module. The signature file provides extension flexibility to support more than one

dataflow runtimes. This module also instruments the runtime to identify send actions

that output tokens to other tasks, which is important for establishing happens-before

relations between senders and receivers of tokens.

5.6 Application Instrumentor

This module tracks the beginning and the ending of a task and adds logging call-

backs at these points to log the starting and ending of task execution. The logged

information helps to identify and categorize all relevant actions performed by a task.

Moreover, it tracks relevant function calls to receive tokens in the task which are used

to establish task dependency – hence the happens-before relation between tasks. To

do this, it instruments all library calls related to incoming tokens in a task by inserting

appropriate logging function callbacks for registering the tokens. This module also

inserts a logging callback which logs the memory address and the value read from or

written to the address for each load and store instruction, respectively.

5.7 Logger

Logging actions: The injected callbacks by the instrumentation record to a log file

the relevant information of actions executing inside the tasks. One of the challenges

with logging is to find an efficient and compact form to present the logged data. We

devise the log format below for each logged line to save space and simplify the parsing

of the recorded logs.

< tid >< actionID >< extraParameters >

In this format;

• tid is a unique identification number of a task that performed the action. All

actions performed by this task are uniquely identified by this tid.

Chapter 5: DFinspec: Nondeterminism Detection for ADF 45

• actionID is one-character code representing the type of an action.

• extraParameters represents extra information of the logged action; e.g. for

memory actions, extraParameters translates to the tuple<address><value>

<lineNo>. There are no extra parameters for the action end(tid). Table 5.1

summarizes all the extended formats of extraParameters for different actions

of a dataflow program.

Action Action ID Extra parameters
start(tid) B <task name>
receive(tid,token,buff) C <sender task ID>
send(tid,token,buff) S <buffer ID>
read(tid,addr,val) R <address><lineNo>
write(tid,addr,val) W <address><value><lineNo>
end(tid) E -

Table 5.1: Summary of logging formats

At instrumentation phase, it is difficult to identify all actions that belong to tasks

and exclude others which belong to the runtime or outside the task regions. Therefore,

we develop a simple check during logging of an action to identify if the action has

executed inside a task. Basically, when a task performs an action, a relevant callback

is executed to check if the action is start(tid) and a flag is set in the logger to mark

that a task with ID tid has started execution. Likewise if the action is end(tid) ,

the logger is notified that the task has completed its execution and further logging

for that task stops. The rest of the actions are logged normally if the task has started

execution and has not terminated.

The module also determines reader and writer tasks for each shared memory and

logs relevant actions to the file. For each reader task of a given memory location, it

logs to the file only the first read action. To identify a task as reader of a memory

address and record its first read, the logger module tracks all the task accesses to the

address to verify that all are read accesses. If task writes at least once to that address

46 Chapter 5: DFinspec: Nondeterminism Detection for ADF

then it becomes a writer task. Similarly, it logs only the last write action of a writer

task for an address because only the result of this action is visible to other tasks

in ADF. To classify a task as a writer and eventually save its write to an address,

the module tracks all task writes to that address and records the last. With this

approach, only one memory access per task is saved to the log file for each address,

greatly reducing the log size.

Logging happens-before relation between tasks: To improve efficiency and

performance of output nondeterminism detection, we log the information about data

dependency between tasks into a separate file, called HBlog.txt as shown in Figure 5.3.

In a program if there is data flowing through a token from task tid1 to task tid2 then

there is a happens-before relation between these tasks and therefore a pair of task

IDs “tid1 tid2” is recorded in this file. This log file is generally very small in size

compared to the log file which records the actions in a given execution.

In our implementation, each token is uniquely identified by its value and address

of the token buffer it passes through from the sender to the receiver. We keep a simple

hash map of these token values and the memory addresses as keys and the unique

identifier of the task which sends the token. When a new task receives a token, a

lookup is performed in the hash map using the token value and the buffer address to

retrieve the sender’s identifier. This establishes the relation between the sender and

the receiver of the token.

5.8 DFchecker: Output nondeterminism detection

Output nondeterminism detection is done once the information of all actions in an

execution trace are logged into a file. The DFchecker module of our tool performs

the detection by analyzing the log file line-by-line. Before parsing the action log file,

a simple directed acyclic graph (DAGgraph) is constructed from the happens-before

log file. The vertices of this graph are the identifiers of tasks and the edges are the

dataflow dependencies between tasks. The tail of an edge designates the source of a

Chapter 5: DFinspec: Nondeterminism Detection for ADF 47

token and the arrow points to the receiver.

To maintain the happens-before relation between tasks as a transitive closure, we

use a data structure similar to Serial-bag in the SP-algorithm [22]. In our implementa-

tion an Sbag is a simple set of unique task identifiers which represent a happens-before

relation. An Sbag of a given task contains the integer IDs of tasks which happened

before this task. Accessing this structure has an overall O(1) complexity because it

uses unordered map implementation from the C++11 programming language [5].

To minimize the memory usage and computation, a task inherits (does not copy)

the Sbag from the preceding (parent) task which has token output in a buffer to this

task. Therefore no new Sbag is created when a task starts execution unless it is an

initial task or its parent task has multiple token output buffers to different tasks. This

means if a terminating task outputs token in buffers to different succeeding tasks, only

one of the new child tasks inherits its Sbag and the remaining tasks clone it. To do

this, an Sbag of a task keeps the count of succeeding tasks; an information obtained

from the happens-before log file. This count is decremented by one when a succeeding

task clones the Sbag. A task inherits the Sbag when the count reduces to one.

Algorithm 3 presents an efficient algorithm for constructing happens-before transi-

tive closures in linear time. At lines 8 and 9, it uses the DAGgraph to check if the new

task has tasks which sent tokens to it. Then at lines 10 - 16 it searches for an Sbag

to inherit from the Sbags of the preceding sender tasks. In the case that there are no

preceding tasks that send tokens to the new task, a new Sbag is created at lines 19 -

23. Finally, the task IDs in the Sbags of these preceding tasks are merged to form a

transitive closure of happens-before between this task and the preceding tasks (lines

24 - 29). At line 28 the child count chCount is decremented by one for each Sbag

of the preceding tasks so that the future succeeding tasks that have happens-before

relation with these tasks can inherit the Sbag.

The DFchecker module implements the output nondeterminism detection Algo-

rithm 1 which is executed for every action in the action log file(i.e; trace). If the log

line of an action represents the start of a new task, then Algorithm 3 is launched

48 Chapter 5: DFinspec: Nondeterminism Detection for ADF

to create a happens-before Sbag of this task. The rest of actions in the trace are

processed as discussed in Section 5.3.4. Finally, output nondeterminism detected is

reported only if the corresponding tasks do not commute (see Section 5.3.5).

Algorithm 3 Constructing happens-before transitive closure.

1: function generateTaskHB(tid)

2: Input: tid . tid is a task identifier

3: Var sBag . SBag of a task tid

4: Var pBag . SBag of a parent task to tid

5: Graph DAGgraph . graph of nodes and tokens

6: Set serial bags . holds the SB bags of tasks

7: Set parentTasks . sets of parent tasks IDs to tid

8: parentTasks ← DAGgraph.getParents(tid)

9: if parentTasks is not Empty then

10: for p tid in parentTasks do

11: pBag ← serial bags.getSBag(p tid)

12: if pBag.chCount ≡ 1 then

13: pBag.append(p tid)

14: pBag.Count ← DAGgraph.childs(tid)

15: end if

16: end for

17: serial bags.setOwner(tid, sBag)

18: end if

19: if no serial bags.getSBag(tid) then

20: sBag ← createNewSbag(tid)

21: sBag.chCount ← |DAGgraph.Childs(tid)|

22: serial bags.addSBag(tid, sBag)

23: end if

24: for p tid in parentTasks do

Chapter 5: DFinspec: Nondeterminism Detection for ADF 49

25: pBag ← serial bags.getSBag(p tid)

26: sBag.append(pBag)

27: sBag.appendParent(p tid)

28: decrement pBag.chCount

29: end for

30: end function

5.9 Detecting commuting writer tasks

The output nondeterminism detection algorithm cannot identify commuting actions

between concurrent tasks (see Section 5.3.5) as it relies on different values written to

a shared memory by these tasks. Therefore, we extend DFinspec tool to detect the

commuting writer tasks actions.

Once our algorithm signals output nondeterminism at a memory address addr

between two write actions from two tasks that do not have happens-before relation,

DFinspec accesses the history to addr from each task to identify all actions and basic

arithmetic operations manipulating addr. It determines if these two groups of actions

and arithmetic operations would be intertwined without affecting the final result of

addr. To do this, the tool keeps the sequences of program instructions of each task

body in the form of LLVM ’s intermediate representation (IR) [39]. It uses them in

Algorithm 2 to determine if the write actions from these tasks commute on addr and

thus the tool does not report output nondeterminism.

To illustrate how DFinspec checks for commutativity, consider the concurrent tasks

DepositTask and WithdrawTask in the motivating example from section 5.2. Listing

5.2 shows the relevant IR of these tasks. At line 1, DepositTask reads from memory

the current value of balance and stores it into register %a. At line 2 it adds 200 to

this value and stores the result into another register %b. Finally at line 3 it stores the

content of register %b back to balance. On the other hand, WithdrawTask loads the

current content of balance into register %x. Then at line 5 it subtracts the content

50 Chapter 5: DFinspec: Nondeterminism Detection for ADF

of %x with 500 and stores the result in register %y. Finally it stores back the final

value to balance at line 6.

From the IR, we can deduce that DepositTask performs an addition operation;

balance := balance + 200 and WithdrawTask performs a subtraction operation;

balance := balance - 500. These tasks can execute in any order without affecting

the final value of balance as they are commutative, hence DFinspec does not report

output nondeterminism on them.

Listing 5.2: Instructions of WithdrawTask and DepositTask from the motivating ex-

ample

DepositTask

1 : %a = load f l o a t , f l o a t ∗ @balance , a l i g n 4

2 : %b = fadd f l o a t %a , 2 .000000 e+02

3 : store f l o a t %b , f l o a t ∗ @balance , a l i g n 4

WithdrawTask

4 : %x = load f l o a t , f l o a t ∗ @balance , a l i g n 4

5 : %y = fsub f l o a t %x , 5 .000000 e+02

6 : store f l o a t %y , f l o a t ∗ @balance , a l i g n 4

This approach for eliminating false alarms has limitations because the backtracking

analysis is static. Moreover, we examine the instructions at basic block level without

considering branches within a task body which may also modify shared memory loca-

tion under test. It is an open research to extend our implementation to follow nested

basic blocks and function calls.

Chapter 6

EMBEDSANITIZER: RACE DETECTION FOR

PTHREAD IN 32-BIT EMBEDDED ARM

Techniques for detecting data races at runtime in pthread applications are still in

demand. The main problem with available solutions are limited in part by at least one

of (a) runtime overhead, (b) low race detection precision, (c) dependency on target

hardware architecture. First, solutions with high overhead are impractical in large

applications. Second, tools with high false alarms degrade programmer productivity

by manually filtering real races from false warnings. Last, runtime race detection

involves instrumentation which relies on the target hardware instruction architecture.

Many practical solutions are platform-specific and thus there is always need for solu-

tions for each available hardware architecture. In this regard we propose a method

for detecting data races in Pthread applications running on 32-bit embedded systems.

We first introduce the problem, motivate it, and propose our solution.

6.1 Introduction

Embedded systems are everywhere: from TVs to robots to smartphones to Internet

of Things. Moreover, the computing capability of these systems has tremendously

increased in recent years due to multicore support. This has enabled the implementa-

tion of complex multithreaded parallel applications. Unfortunately, these applications

are prone to concurrency errors such as data races. These bugs are hard to detect in

nature and the availability of relevant tools for embedded systems is still limited.

Most of the software development environment for Embedded systems rely on

hardware emulations, which tend to be slow. Race detection of embedded system

software through emulation can add even more overhead. Nevertheless, to run soft-

52 Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit Embedded ARM

ware for race detection on a real hardware not only provides precise race reports but

also is faster and hence more productive. On the other hand, many practical race

detection tools for C++ applications have not focused on embedded system archi-

tectures. Therefore, the alternative is to compile 32-bit embedded C++ applications

for other architectures and do race detection there. Unfortunately, some parts of the

software that use special features of the target hardware may not be checked due

to unavailability of such features in the alternative platforms. Further, it is more

appealing to use full features of the software on the target devices for race detection.

We propose a tool named EmbedSanitizer [1,45] for detecting data races for mul-

tithreaded 32-bit Embedded ARM software at runtime by running the instrumented

application in the target platform. There are two advantages of this approach: (a)

parts of software which use unique features, like sensors and actuators, can be ana-

lyzed. (b) enhanced developer productivity and throughput attained due to increased

performance of race detection compared to hardware emulator. Our tool modifies

ThreadSanitizer [61] to support race detection for the embedded ARMv7 architec-

ture. Moreover, LLVM/Clang is modified to support EmbedSanitizer so it launches

in a similar manner to ThreadSanitizer. For simplicity, EmbedSanitizer has an auto-

mated script which downloads necessary components and builds them together with

LLVM/Clang as a cross-compiler. Multithreaded C/C++ programs through this com-

piler are instrumented and finally run on the target 32-bit ARM hardware for race

detection.

Our key contributions on detecting races for embedded systems are:

(a) We present a tool for detecting data races in C/C++ multithreaded programs for

32-bit embedded ARM. The tool is easily accessed through Clang compiler chain like

ThreadSanitizer.

(b) We motivate the idea of supporting race detection in native embedded systems

hardware and show usability of race detection on such architectures.

(c) We evaluate our tool and show its applicability by running PARSEC benchmark

applications on a TV with ARMv7 CPU.

Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit Embedded ARM 53

6.2 Motivation

We aim to promote utilization of existing race detection tools by adapting them

to different hardware architectures. To show benefits of this approach, consider a

theoretical multithreaded example in Figure 6.1. It models a TV software component

which has two concurrent threads. ReceiveThread reads TV signals from an antenna

and puts data in a shared queue queue. Then DisplayThread removes the data

from the queue and displays on the TV screen. For the sake of motivation, the

implementation of the queue is abstracted away but uses no synchronization to protect

concurrent accesses. Since ReceiveThread and DisplayThread do not use a common

a lock (LK1 & LK2 are used) to protect accesses to queue, there is a data race at lines

5(a) and 4(b).

1 void ReceiveThread() {

2 while(true) {

3 Signal s = receive(); // from antenna

4 acquire_lock(LK1)

5 queue.put(s);

6 release_lock(LK1)

7 }

8 }

1 void DisplayThread() {

2 while(true) {

3 acquire_lock(LK2)

4 Signal s = queue.get();

5 release_lock(LK2)

6 display(s); // to screen

7 }

8 }

0 VideoSignalQueue queue;

(a) (b)

Figure 6.1: A motivating example with two threads concurrently accessing a shared
queue. A thread in (a) reads video signals from TV antenna and puts them into the
queue, (b) reads from the queue and display to a screen.

Assume that the developer chooses a method other than the proposed one for race

detection. She has two challenges: (1) Modeling the receipt as well as the display

of the video signal data. (2) After that, she can do race detection on an alternative

architecture, emulation or virtualization rather than the target architecture. Further

overhead is incurred if emulation or virtualization is used. Conversely, the target

hardware already has these features and may be faster and thus increasing developer

productivity. Moreover, the advantage of instrumenting program and later detecting

54 Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit Embedded ARM

races on a target hardware is that the developer uses real features for receiving and

displaying the signals. This aligns exactly well with our proposed solution.

6.3 Method

EmbedSanitizer improves on ThreadSanitizer. It can also be launched through Clang’s

compiler flag -fsanitize=thread. To achieve this, we modified the LLVM/Clang

compiler argument parser to support instrumentation of 32-bit ARM programs when

the relevant flag is supplied at compile time. Next, EmbedSanitizer enhances parts

of the ThreadSanitizer to instrument the target program. Furthermore, it replaces

the 64-bit race detection runtime with a custom implementation of the efficient and

precise FastTrack race detection algorithm, for 32-bit platforms. In this section, we

discuss the important parts of EmbedSanitizer as well as its simplified installation

process.

6.4 Architecture and Workflow

Workflow of the ThreadSanitizer and the changes done by EmbedSanitizer are de-

scribed in Figure 6.2. Figure 6.2(a) shows default and unmodified relevant compo-

nents of ThreadSanitizer in LLVM/Clang. In Figure6.2(b) these parts are modified

to enable instrumentation and detection of races for 32-bit ARM applications.

At 1© in Figure 6.2(a), the Clang front-end reads the compiler arguments and

parses them. If the target architecture is 64-bit, Clang passes the program under

compilation through ThreadSanitizer compiler pass for instrumentation 2©. The pass

then identifies all shared memory operations in the program and injects relevant race

detection callbacks which are implemented in a race detection runtime library called

tsan. Furthermore, the instrumented application and the runtime are linked together

by the linker 3© to produce an instrumented executable 4©. This executable once

runs on a target 64-bit platform, it reports race warning in the program. We modify

components in the workflow as discussed next.

Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit Embedded ARM 55

(a) ThreadSanitizer in LLVM/Clang

>$ clang Progam64.cpp -fsanitize=thread

ArgParser

ThreadSanitizer
Linker

Tsan runtime

Program64.exe

LLVM/Clang

1

2

3

3

4

(b) EmbedSanitizer in LLVM/Clang

>$ clang ProgamARMv7.cpp -fsanitize=thread

ArgParser

ThreadSanitizer
Linker

Esan runtime

ProgramARMv7.exe

LLVM/Clang

1

2

3

3

4

ARMv7 support

Sync support

Figure 6.2: High level abstraction of ThreadSanitizer and EmbedSanitizer in LLVM/-
Clang. In (a) ThreadSanitizer : essential LLVM modules for race detection. In (b)
EmbedSanitizer : same modules modified to instrument and detect races for 32-bit
ARM

(a) Enabling Instrumentation of 32-bit ARM Code in LLVM/Clang: We

modify the argument parser of LLVM/Clang to support instrumentation once Embed-

Sanitizer is in place, Figure 6.2(b). Therefore, if -fsanitize=thread flag is passed

while compiling a program for 32-bit ARM code, the instrumentation takes place.

To do this we identified the locations where Clang processes the flag and checks the

hardware before skipping the launching of ThreadSanitizer instrumentation module

because of unsupported architecture.

(b) Modifying the ThreadSanitizer Instrumentation Pass: Despite its in-

strumentation pass, ThreadSanitizer has become complex, partly due to its integra-

tion into the LLVM’s compiler runtime. We extended the available instrumentation

pass to identify and instrument synchronization events and inject relevant callbacks

and kept instrumentation of memory accesses as it is.

(c) Implementation of Race Detection Runtime: The default race detection

runtime in ThreadSanitizer uses memory shadow structures which rely on 64-bit ar-

56 Chapter 6: EmbedSanitizer: Race Detection for PThread in 32-bit Embedded ARM

chitectural support. Due to the complicated structure of ThreadSanitizer, it was not

possible to adopt its runtime for 32-bit ARM platform. Therefore, we implemented

a race detection runtime by applying the FastTrack race detection algorithm. The

library is then compiled for 32-bit ARM and is linked to the final executable of the

embedded program at compile time.

6.4.1 Installation

Figure 6.3 shows the building process of LLVM compiler infrastructure with Em-

bedSanitizer support. To simplify this process we developed an automated script

with five steps. In the first step, it downloads the LLVM source code from the re-

mote repository. Then it replaces files of the LLVM/Clang compiler argument (flags)

parser with our modified code to enable ThreadSanitizer support for ARMv7. Third,

the LLVM code is compiled using GNU tools to produce a cross-compiler which tar-

gets 32-bit ARM and supports our tool, EmbedSanitizer. Fourth, the race detection

runtime which we implemented is compiled separately and integrated into the built

cross-compiler binary. Finally, the built cross-compiler is installed which can eventu-

ally be used to compile 32-bit ARM applications with race detection support. This

whole process is applied once.

Download LLVM/Clang source code

Replace Clang argument parser & instrumentation
with modified versions for 32-bit ARM

Build the modified version of LLVM/Clang as
cross-compiler

Build our custom race detection runtime

Install the built cross-compiler, ready for
instrumenting ARM’s 32-bit applications

1

2

3

4

5

Figure 6.3: Showing the automated process for building ThreadSanitizer for the first
time.

Chapter 7

EVALUATION

In this chapter we present and discuss evaluation results from detecting deter-

minacy races in OpenMP tasks. Moreover, we show a complete set of experimental

evaluation for detecting output nondeterminism in ADF applications. Finally, we

present experimental results for detecting data races in POSIX Threads applications

in 32-bit embedded systems.

7.1 Evaluating Runtime Determinacy Race Detection for OpenMP Tasks

We evaluate our tool on nine micro-benchmarks on three categories: (a) the number

and nature of determinacy races reported as well as no determinacy races reported in

correct programs, (b) detection comparison with Archer [9], (c) the runtime overhead

with respect to input size. We first provide a brief summary of the applications before

discussing evaluation results. The first five applications are custom implementations

with races, accessible through TaskSanitizer1.

• RacyBackgroundExample: implements the example in Figure 4.1. There

are two tasks each containing a critical section associated with the same lock.

One task sets 1 to shared variable i while the other sets 2 without enforced

dependency thus exhibiting a determinacy race as these operations do not com-

mute even though they are in critical sections.

• RacyBanking: We mimic the motivating banking example in [44]. An initial

task sets the account balance to 1000. Then three concurrent tasks access the

1https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks

58 Chapter 7: Evaluation

account balance without specified dependency among them, thus causing three

determinacy races and the updates on the account do not commute.

• RacyFibonacci: This program computes Fibonacci of a given number n using

memoization technique of caching intermediate results in a shared integer array.

A task for n creates two concurrent child tasks to compute Fibonacci of n-1

and n-2, respectively, and each stores its result in the memoization array. The

task then sums the results from the array after a synchronization barrier with

the child tasks. There are determinacy races in this example on five program

locations between two concurrent sibling tasks as they access the memoization

array without inferred dependency between them.

• RacyMapReduce: constructs histogram of words from a text file. It splits

the input text into four chunks. Then each chunk is processed by map tasks.

The partial results are merged into a final histogram by reduce tasks which are

concurrent to each other, exhibiting four determinacy races while inserting new

words into the final histogram and updating word counts.

• RacyPointerChasing: traverses a singly-linked list and creates an explicit

task for each node to insert a number to the node for the purpose of forming

an arithmetic sequence in the linked-list. In this program, two random nodes

in the list mistakenly contain common memory address for storing their terms

which breaks the arithmetic sequence. As a result, their corresponding tasks

concurrently write values to the memory, causing a determinacy race.

• sectionslock1-orig-no: As part of the DataRaceBench micro-benchmark suite

[42], this program creates two parallel sections, which have critical sections in

which one section increases a shared variable by 1 and other section increases

it by 2. There are no determinacy races because these operations in critical

sections commute and our tool does not report a bug.

Chapter 7: Evaluation 59

• taskdep1-orig-no: As part of DataRaceBench, the program creates two ex-

plicit tasks with the first task setting 1 to a shared variable and the succeeding

sibling task setting 2. These tasks have specified dependency between them and

thus no determinacy races.

• taskdep3-orig-no: As part of DataRaceBench, this program creates two ex-

plicit tasks. The first task has dependency with each of the other sibling tasks

which are concurrent to each other. Since the concurrent tasks only read from

a shared variable, there is no determinacy race.

• taskdependmissing-orig-yes: As part of DataRaceBench, this program cre-

ates two concurrent explicit tasks which have no dependency in between. They

modify a shared variable and thus constitute a determinacy race.

Table 7.1: Comparing detection results of TaskSanitizer against Archer

TaskSanitizer Archer
Application Input size Number of tasks Known races Races found Races found
RacyBackgroundExample - 6 1 1 0
RacyBanking - 11 3 3 2
RacyFibonacci 5 137 8 8 11
RacyMapReduce - 17 4 4 1
RacyPointerChasing 14 34 1 1 0
sectionslock1-orig-no - 2 0 0 0
taskdep1-orig-no - 6 0 0 0
taskdep3-orig-no - 8 0 0 0
taskdependmissing-orig-yes - 6 1 1 0 or 1

7.1.1 Precision Evaluation of TaskSanitizer

Table 7.1 lists the reported bugs by our tool, TaskSanitizer and number of determinacy

races known in advance for micro-benchmarks. In RacyBackgroundExample two

concurrent tasks execute two critical sections which each sets different value to a

shared memory location. This exhibits a determinacy race since the tasks do not

have HB relation and their memory operations do not commute in critical sections.

Our tool does not check for commutativity in remaining buggy programs as their

60 Chapter 7: Evaluation

operations happen outside critical sections. Even though tasks with critical sections in

sectionslock1-orig-no do have dependency, there is no determinacy race reported

because increment operation in these sections commute. Finally, our tool does not

report false positives in the remaining programs.

7.1.2 Comparing Detection with Archer

We compare our determinacy race detection results with data race detection results

of Archer [9], which is an efficient tool based on ThreadSanitizer for detecting data

races. Data race detection in Archer differs from determinacy race detection in our

approach on two essences: (i) It relies on thread-level concurrency and thus it fails to

detect races in concurrent tasks scheduled to execute by the same thread. (ii) It aims

at detecting violations of locking critical sections which have shared memory accesses

whereas our method focuses on different ordering of events leading to determinacy

races.

As shown on Table 7.1, Archer failed to detect races in RacyBackgroundEx-

ample and RacyPointerChasing despite multiple runs. Archer fails to detect the

race in RacyBackgroundExample because memory operations are protected by a

common lock. However, our tool detects determinacy races because the locks do not

enforce deterministic ordering and thus the program can produce different results at

different runs.

Archer does not detect a race in taskdependmissing-orig-yes and other buggy

programs when concurrent tasks in the program are scheduled to execute with one

thread. Therefore, Archer detects the race only if two tasks are executed by different

threads whereas our tool detects the determinacy race in the program at all runs.

This is because Archer depends on program threads to infer concurrency whereas

our approach abstracts away threads and detects determinacy races at task level.

Moreover, the number of races it reported on the remaining buggy programs varied

from zero to the expected depending on scheduling of concurrent tasks to different

threads. However it detected two races in RacyBanking and did not produce false

Chapter 7: Evaluation 61

alarms in correct programs.

7.1.3 Overhead Evaluation

Even though the focus of this work is the method for detecting determinacy races, we

also measured the slowdown of determinacy race detection in the micro-benchmark

applications which accept varying input sizes, namely RacyFibonacci and Racy-

PointerChasing as shown in Figure 7.4. By increasing input size, we calculated

execution times of the application without determinacy race detection as well as with

detection. We calculated slowdown by dividing detection time by execution time

without detection. The determinacy race detection slowdown from this experimental

setting ranges from 1.0 to 1.26X.

20 70 120

1

1.05

1.1

fibonacci number (n)

S
lo

w
d

ow
n

RacyFibonacci

100 200 300

1.15

1.2

1.25

number of nodes

S
lo

w
d

ow
n

RacyPointerChasing

Figure 7.4: Slowdown of determinacy race detection in programs as input size in-
creases

7.2 Evaluation on Detecting Output Nondeterminism for ADF

In this section, we provide experimental results for ten of the Berkeley dwarfs [8],

which are implemented in ADF as a part of the DaSH benchmark suite [26]. In the

evaluation we also include the motivating example that we presented in Section 5.2.

We conduct two types of experiments. First, we apply our tool to the motivating

example and the benchmark applications using reasonable input sizes to detect any

62 Chapter 7: Evaluation

output nondeterminism errors in them. Then we introduce synthetic bugs on to four

of the error-free applications to check if the tool detects them. We evaluate the

following applications from the benchmark suite:

(a) Branch and bound implements an approximation algorithm to solve the Travel-

ing Salesman Problem (TSP), where it uses an assignment problem to generate lower

bounds. In this application some tasks are responsible for generation of subproblems

and others for solving them and determining lower bounds for the next iterations.

(b) Combinatorial logic performs bit-level operations on large data set. In the

simple implementation in the benchmark suite, some tasks read and divide the input

into small chunks and the rest count the number of 1s from the input data.

(c) Dense linear algebra in this setting performs matrix multiplication of real dense

matrices. Individual worker tasks concurrently compute values for a number of result

matrix cells by using rows and columns from two input dense matrices, respectively.

(d) Finite state machine implements pattern matching algorithm using pattern

characters as finite states. It takes a large chunk of text as input and finds all

occurrences of the matching pattern. The initial tasks partition the input text into

smaller chunks whereas find tasks take them and search for the pattern. If a match

is found, the position is stored into a doubly linked list shared among the find tasks.

(e) Graph models constructs a logical graph from an observation binary input.

From this input the nodes of the graph are variables and edges are modelled as

conditional probabilities.

(f) Map Reduce constructs a word histogram from a text input file. The initial

tasks divide the input into chunks and these chunks are later individually read and

put in lists by the map tasks where are sorted and partial histograms per chunk are

calculated by the reduce tasks. The sum tasks aggregate the partial results to the

final histogram.

(g) Sparse linear algebra performs LU decomposition of a sparse real matrix stored

in compressed-storage format. Since we detected a real output nondeterminism bug

in this application, more information is provided in Section 7.2.1.

Chapter 7: Evaluation 63

(h) Spectral methods implements 3D fast Fourier transform (FFT) algorithm. fftx

task computes FFT along x-plan, whereas transposeXY and transposeZX perform

transpose operations. Moreover, barrier tasks synchronize the transpose tasks.

(i) Structured grid uses iterated Jacobi approach to compute a square mesh. In

this application, the computation is partitioned into a number of tasks which perform

a number of iterations before sending tokens to new computation tasks.

(j) Unstructured grid is similar to structured grid but it works on irregular set of

triangular planes.

7.2.1 Detecting Real Output Nondeterminism Bugs

Table 7.2 shows the results of the DFinspec tool applied to the applications as they are

available in the benchmark suite. The table shows the input size and task count of each

application. Our tool identified two output nondeterminism bugs in the motivating

bank example discussed on Section 5.2. In addition from the DaSH benchmark suite,

DFinspec detects one real output nondeterminism bug in the Sparse linear algebra

application due to a missing dependency that the authors of this application might

have forgotten to add. DFinspec also detects three bugs in Finite state machine

caused by concurrent access of a doubly linked list where the shared pointers are

modified. In Unstructured grid, the bug is due to concurrent access to a shared

memory location which acts as temporary buffer for local operations. Our tool did

not report any output nondeterminism bugs from the remaining applications which

have correct dependencies that we verified by manual inspection and output analysis.

Case study: SparseLU decomposition Our tool detected output nondetermin-

ism in sparse linear algebra application. Sparse linear algebra performs LU decom-

position on an n*n dimensional sparse matrix A whose elements are square blocks of

size m*m. Generally n is larger than m. Given matrix A, this application performs

the matrix operations in an iterative manner along the diagonal of the matrix. Each

iteration i begins with an lu0 operation at the diagonal entry block A[i,i]. Then

64 Chapter 7: Evaluation

Application name Input size Task count Bugs found
motivating bank example - 4 2
branch bound 500 TSP nodes 1362 0
combinatorial logic 131072 bits 69 0
dense linear algebra 1000x1000 matrix 1000 0
finite state machine 104M characters 203 3
graph models 2000 states 1198 0
map reduce 146729 words 128 0
sparse algebra 6x6 matrix 19 1
spectral methods 256x256 matrix 320 0
structured grid 64x64 matrix 2152 0
unstructured grid 853 grid vertices 332 1

Table 7.2: Experimental results from 10 applications and the motivating bank exam-
ple.

forward Gaussian elimination (fwd) is performed on each of the matrix blocks in the

corresponding row i starting at block entry A[i, i+1] to A[i, n]. Moreover bdiv op-

erations are performed on all blocks from A[i+1, i] to A[n, i] in the corresponding

column i. To complete the iteration, bmod operates on all the inner block elements

of the matrix from element A[i+1, i+1] to A[n,n] each using the block elements from

the corresponding row and column that were updated by fwd and bdiv, respectively.

To summarize, lu0 operation on a diagonal entry triggers fwd operations on all

elements in the corresponding row. Moreover, it triggers bdiv operations on the matrix

blocks in the corresponding column. bdiv and fwd operations then trigger bmod

operations in the inner blocks which eventually trigger lu0, fwd, and bdiv operations

in the next iteration. This is partly captured by a dependency graph in Figure 7.5.

Incorrect assignment of dependency tokens between tasks executing lu0, bmod,

bdiv and fwd operations would lead to output nondeterminism into the application.

Figure 7.5 shows a missing dependency between bmod(2,2) i1 task which executes

bmod operation at block A[2,2] at iteration 1 and lu0 (2,2) task which executes lu0

operation at A[2,2] during iteration 3. This means there is no execution order en-

forced between these tasks: either task can execute before the other and the final

computation in the matrix can be different. To show that this is the case and affirm

Chapter 7: Evaluation 65

InitialTask1 InitialTask2 InitialTask3InitialTask4InitialTask5

lu0(0,0)

bdiv(1,0) fwd(0,2) fwd(0,1) bdiv(2,0)

bmod(1,2) i1 bmod(1,1) i1 bmod(2,2) i1 bmod(2,1) i1

lu0(1,1)

fwd(1,2) bdiv(2,1)

bmod(2,2) i2

lu0(2,2)

missing dependency

Figure 7.5: Task dependency graph of sparse linear algebra showing a missing depen-
dency (shown as a dash line) between the bmod and lu0 operations. This causes an
output nondeterminism bug captured by our tool and manually verified.

that this is a really determinism violation we enforced different orders of execution of

these tasks. Different orderings of tasks produced different final matrices.

InitialTask

SolveTask1 SolveTask2

GeneratorTask3 GeneratorTask4

SolveTask5

SolveTask6

SolveTask7

SolveTask8

X

X

(a) Branch bound

InitialTask

ReadTask1

CalculateTask2 ReadTask3

CalculateTask4 ReadTask5

CalculateTask6 ReadTask7

X

(b) Combinatorial logic

InitialTask0

ComputeTask1

ComputeTask2

ComputeTask3

ComputeTask4

ComputeTask5

ComputeTask6

BacktrackTask7

X
X

(c) Graph models

InitialTask1

MapTask2

ReduceTask3

SumTask4

InitialTask5

MapTask6

ReduceTask7

SumTask8

X

(d) MapReduce

Figure 7.6: Task graphs of applications showing removed data flow dependencies to
introduce output nondeterminism bugs

7.2.2 Detecting Synthesized Output Nondeterminism Bugs

To access the capability of our tool in detecting output nondeterminism bugs, we

injected synthetic bugs into the benchmark applications which originally do not have

66 Chapter 7: Evaluation

output nondeterminism bugs. Basically we broke some task dependencies for the

tasks that modify shared memory addresses. Our purpose was to check if our tool

was able to detect those bugs and report them.

We injected the output nondeterminism bugs by removing dependency between

tasks without altering their execution flow. Figure 7.6 shows dependency edges that

were removed. To decide where to remove dependencies we first ran the applications

and generated the output task graphs (see Figure 7.6). From these graphs we selected

a few dependencies and removed them so that their corresponding tasks would execute

in any order thus potentially affecting the final program output.

Table 7.3 lists the benchmarks with the number of synthetic bugs injected and

found. Indeed our tool was able to detect all of the synthesized bugs with the exception

of the bug added in combinatorial logic.

In the case of combinatorial logic, we removed data dependencies between the tasks

ReadTask3 and CalculateTask4. ReadTask3 reads a portion of input data set from

a file and creates a block of data for CalculateTask4 which then reads it and counts

the number of 1s. Since ReadTask3 and CalculateTask4 have a producer-consumer

relation, removing data dependency edge between them introduces a serious bug

which affects the final output. Unfortunately our tool was not able to detect this bug

because our definition of output nondeterminism bases on write actions not write-

read actions between participating tasks. This is not the case for ReaderTask3 and

CalculateTask4 because CalculateTask4 only reads the data from memory locations

that were modified by ReadTask3.

Application name Input size Task count Bugs introduced Bugs detected
branch bound 12 TSP nodes 9 2 2
combinatorial logic 9824 bits 8 1 1
graph models 36 states 8 2 2
map reduce 1478 words 8 1 1

Table 7.3: Showing number of synthetic bugs added into dataflow applications and a
number of those detected by DFinspec

Chapter 7: Evaluation 67

7.2.3 False Output Nondeterminism Due to Commutativity

In sections 5.3.5 and 5.9 we discussed that our output nondeterminism detection

algorithm (Algorithm 1) generates false alarms mostly because it fails to identify

commuting writer tasks actions. These actions are concurrent writes to a share mem-

ory from tasks which do not have happens-before relation but they commute (i.e; their

execution order does not change the final output) on the set of these actions. Table

7.4 compares the real bugs with the number of false alarms reported by our tool before

applying the the algorithm described in Section 5.3.5.

The false alarm in the motivating example is due to commutative operation by

DepositTask and WithdrawTask on a variable balance. Since DepositTask adds 200

to and WithdrawTask reduces 500 from balance, the order of these operations does

not matter and leaves balance with one final value. False alarms in combinatorial

logic are due to the tasks which count number of 1s from chunks of input data and add

the result to a global counter. These tasks do commute because the order of addition

into the counter does not matter. Similarly, the sum tasks in map reduce commute

because they perform reduction operations by aggregating histogram of individual

input words. In graph models all ComputeTask tasks increment a shared variable

called states processed to keep the number of input chunks already processed.

Since these are aggregate operations, the compute tasks indeed commute and the

reported warnings due to these actions are false alarms.

In branch and bound, there were false alarms from a few solve tasks due to accessing

two global variables which store the suboptimal result and an upper bound. In each

branch-and-bound iteration the solve tasks try to improve the suboptimal result by

taking it to a better next solution state. To do so, a solve task first reads the result

from the global memory and in case it produces a better result it writes it back to the

global variable. Since each solve task tries to access different next state of the current

suboptimal solution, their order of actions on these global variables can be arbitrary

and does not affect the final result of the execution, hence the tasks commute.

In dense linear algebra a number of tasks use sub-rows and sub-columns of the

68 Chapter 7: Evaluation

operand matrices to partially compute and later reduce their results to a single cell

of the result matrix. These commuting writer tasks have task dependency specified

in the program and thus have happens-before relation.

Application name Input Task Real False alarms due to
size count bugs commutative operations

motivating bank example - 4 2 1
branch bound 500 TSP nodes 1362 0 2 recurring on 6 tasks
combinatorial logic 131072 bits 69 0 1 recurring on 33 tasks
dense linear algebra 1000x1000 matrix 1000 0 0
finite state machine 104M characters 803 3 1 recurring on 102 tasks
graph models 2000 states 1198 0 1 recurring on 1196 tasks
map reduce 146729 words 128 0 2 recurring on 32 tasks
sparse algebra 6x6 matrix 19 1 0
spectral methods 256x256 matrix 320 0 5
structured grid 64x64 matrix 2152 0 0
unstructured grid 853 grid vertices 332 1 2

Table 7.4: Showing both real bugs and false alarms. The false alarms were due to com-
mutative tasks and were eliminated altogether by applying the algorithm discussed
in section 5.3.5.

7.2.4 Overhead

To assess the feasibility of our DFinspec tool, we present execution times and over-

heads of instrumentation, action logging, and detection phases of the tool. Instru-

mentation at compile time uses LLVM compiler pass we developed to identify all task

actions and add callbacks which collect relevant information at runtime for output

nondeterminism detection. To evaluate overhead of the pass, two execution times for

each application are measured: compilation time without instrumentation and with

instrumentation. These results are reported on columns 2 and 3, respectively, and the

resulting overhead on column 4 in Table 7.5. From the ten applications, the instru-

mentation overhead ranges between 17% and 82%. Instrumenting at compile-time is

significantly faster than using runtime binary instrumentation frameworks like Intel

PIN [43] and DynamoRIO [13] which heavily rely on Just-In-Time (JIT) compilation.

To measure the impact of logging the task actions, we first collect the execution

time of each uninstrumented application (column 7). Then the execution time of the

Chapter 7: Evaluation 69

instrumented application as it logs the task actions (column 8). The slowdown due

to logging ranges between 5.5x and 86.3x. The logging slowdown is due to the fact

that all the content is sequentially written to a single file and is protected by a global

lock. We have improved the logging overhead by: (a) decreasing write frequency to

the disk by accumulating large chunks of data before writing to a log file, (b) using

C++11’s unordered maps which guarantee constant-time complexity [5] for storing

and accessing logging metadata. (c) eliminating most part of shared metadata by

using C++11 thread local specifier for thread local storage. (d) logging only one

access (read or write) per task as in the case of ADF tasks, the last write action by

a task to an address is sufficient to detect nondeterminism.

The last column in Table 7.5 shows execution times of detecting output nondeter-

minism by parsing an action log file for each application. These results are relatively

reasonable. However, we notice that the overhead increases with the log file size,

which depends on the application and input size.

Compilation Execution Detection
Application Base Instrumen- Slow- Input Task Base With Log- Slow- Log Analysis

name (sec) tation (sec) down Size Count (sec) ging (sec) down Size Time (sec)

2*branch bound 2*1.42 2*1.92 2*1.34x 500 nodes 1362 2.35 87.91 37.4x 1.5 GB 148.89
2000 nodes 4468 7.66 409.13 53.4x 5.8 GB 638.71

2*combinatorial logic 2*0.63 2*0.75 2*1.18x 131,072 bits 69 12.73 70.81 5.6x 74 KB 0.06
2,097,152 bits 1029 204.21 1123.79 5.5x 1.2 MB 0.37

2*dense linear algebra 2*0.26 2*0.31 2*1.20x 1000x1000 matrix 1000 7.73 167.40 21.6x 707 MB 57.84
2000x2000 matrix 8000 65.18 1353.79 20.8x 5.8 GB 490.55

2*finite state machine 2*0.46 2*0.54 2*1.17x 104M characters 803 1.41 85.37 60.5x 2.9 GB 177.89
800M characters 803 7.33 173.87 86.3x 5.7 GB 378.43

2*graph models 2*0.61 2*0.84 2*1.38x 2000 states 798 14.33 827.91 57.7x 18 GB 1475
4000 states 798 63.41 4952.95 78.1x 119 MB 3.38

2*map reduce 2*0.82 2*1.41 2*1.71x 146,729 words 128 0.62 4.43 7.1x 52 MB 16.42
1,173,848 words 512 4.18 29.50 7.1x 373 MB 46.90

2*sparse algebra 2*0.63 2*0.95 2*1.52x 1250x1250 matrix 1878 3.28 75.82 23.1x 312 MB 35.86
2000x2000 matrix 6259 10.47 263.83 25.2x 1.2 GB 125.83

2*spectral methods 2*0.47 2*0.86 2*1.82x 128x128 matrix 320 0.26 8.27 31.8x 190 MB 16.92
256x256 matrix 320 1.45 78.56 54.2x 1.5 GB 134.95

2*structured grid 2*0.47 2*0.63 2*1.34x 64x64 matrix 2152 0.55 21.11 38.4x 406 MB 35.14
128x128 matrix 4383 2.75 133.39 48.5x 4.1 GB 294.40

2*unstructured grid 2*0.65 2*0.92 2*1.41x 853 vertices 332 0.06 2.09 34.8x 46 MB 3.81
21333 vertices 726 1.61 101.77 63.2x 2.7 GB 271.97

Table 7.5: Execution times and overheads of instrumentation, logging and output
nondeterminism detection phases of DFinspec.

70 Chapter 7: Evaluation

7.2.5 Limitations

Our main contribution is to present a technique and a tool for detecting output nonde-

terminism in dataflow applications on shared memory. However, the current version

of the tool has a number of limitations. Despite the fact that our technique targets

all dataflow programs, our tool has only been experimented with the applications

developed for ADF, which ensures all tasks are atomic. We plan to extend it to sup-

port and experiment on other models. Nonetheless our demonstration with the ADF

applications covers the wide spectrum of dataflow applications on shared memory in

general because they are similar.

Another limitation is that the tool misses a sound and complete algorithm for

detecting commuting writer tasks although our current approach eliminates most of

the false alarms due to commuting writer tasks.

The number and type of bugs detected by our tool depend on the execution trace

collected. In turn it depends on the type and nature of the application and the

input size. Moreover, since our analysis works with a single execution trace for each

application at a time, it can not detect all bugs reflected only on other possible

execution traces of the program.

7.3 Results on Race Detection for POSIX Threads in 32-bit Embedded

ARM

Our ultimate goal is to evaluate our approach by detecting data races in POSIX mul-

tithreaded smart TV software. However, we evaluated our primary implementation of

the approach by detecting races on a set of Pthread PARSEC benchmark applications

by running them in the 32-bit embedded ARM smart TV.

Our preliminary evaluation is based on two categories. First, we want to see how

the precision of race detection in EmbedSanitizer deviates from that of ThreadSani-

tizer [61] since EmbedSanitizer extends it by using its instrumentation features, and

implements a custom FastTrack [24] for detecting races. Second, we want to compare

the overhead of EmbedSanitizer when running on a target embedded device against

Chapter 7: Evaluation 71

when running on an emulator. The key motivation is to show that running race

detection on a target device is better than on emulation.

For experimental setup, we built LLVM/Clang, with EmbedSanitizer tool, as a

cross-compiler in a development machine running Ubuntu 16.04 LTS with Intel i7

(x86 64) CPU and 8 GB of RAM. As our benchmarks, we picked four(4) of the

PARSEC benchmark [10] applications. We adapted them to Clang compiler and our

embedded system architecture. A short summary about the applications we used for

evaluation is given below.

• Blackscholes: parallelizes the calculation of pricing options of assets using the

Black-Scholes differential equation.

• Fluidanimate: uses spatial partitioning to parallelize the simulation of fluid

flows which are modeled by the Navier-Stokes equations using the renowned

Smoothed particle hydrodynamics.

• Streamcluster: is a data-mining application which solves the k-means clustering

problem.

• Swaptions: employs Heath-Jarrow-Morton framework with Monte Carlo simu-

lation to compute the price of a set of Swaptions.

7.3.1 Precision Evaluation

Precision indicates how effective is a method on detecting real races. For our tech-

nique on detecting races for POSIX Threads applications in embedded systems, we

compare the race reports detected by EmbedSanitizer against ThreadSanitizer. To

do this we run the same benchmark applications with ThreadSanitizer, as well as

with EmbedSanitizer. The instrumented program using ThreadSanitizer is run on an

x86 64 machine, whereas the binary compiled through EmbedSanitizer is executed on

ARM Cortex A17 TV. In this setting of four PARSEC benchmark applications, in

an application where ThreadSanitizer reported races, EmbedSanitizer also reported

72 Chapter 7: Evaluation

Table 7.6: Experimental results to compare race detection in ARMv7 using Embed-
Sanitizer vs in x86 64 with ThreadSanitizer.

Input ThreadSanitizer EmbedSanitizer

Benchmark size Threads Addresses Reads Writes Locks Races Races

Blackscholes 4K options 2+1 28686 5324630 409590 0 NO NO

Fluidanimate 5K particles 2+1 149711 25832663 8457516 790 YES YES

Streamcluster 512 points 2+1 11752 21710589 352605 2 YES YES

Swaptions 400 simulations 2+1 243945 11000763 3377226 0 NO NO

them as shown in Table 7.6. Therefore EmbedSanitizer did not sacrifice any race

detection precision.

7.3.2 Performance Evaluation

Runtime performance is a determining factor on practicability of a race detection

method. Therefore, to compare race detection slowdown of our approach, we ran

non-instrumented and instrumented versions of the benchmarks on embedded TV

with ARM-Cortex A17 CPUs of 4 logic cores and 933MB of RAM, and on Qemu-

ARM emulator running on a workstation. The slowdown is calculated as a ratio of the

execution time of the instrumented program with race detection on and the execution

time of the program without race detection. The number of threads was 3 because

using the full set of 4 logical cores was crashing the TV. Next, the input sizes were

the same in each benchmark setting. Results in Figure 7.7 show that detecting races

in an emulator incurs between 13x and 371x slowdown whereas the slowdown in the

TV is between 12x and 214x. In overall, results in Figure 7.7 suggest that detecting

races in a target hardware is faster than in an emulator.

Chapter 7: Evaluation 73

Blackscholes Fluidanimate Streamcluster Swaptions

0

200

400

12

214

114 110

13

367 371

197

S
lo

w
d
ow

n

ARMv7 Qemu-ARM emulation

Figure 7.7: Slowdown comparison of race detection on ARMv7 vs on Qemu-ARM

Chapter 8

CONCLUSION

In this dissertation, we have discussed techniques we researched for detecting data

races for shared memory programming models at runtime. In our approaches, we

have targeted the commonly used models: (i) OpenMP tasks, (ii) the shared memory

dataflow programming models such as Atomic DataFlow (ADF), and (iii) the POSIX

Threads (Pthread) for embedded systems.

We proposed a method to detect determinacy races in OpenMP tasks where un-

intended missing dependency between tasks can result in nondeterministic execution.

We define happens-before relation among tasks based on their dependencies for de-

termining an execution order when detecting determinacy races and implement our

algorithm as a tool on top of ThreadSanitizer. We evaluated our solution with a set

of small applications in terms of bug detection and overhead. The tool successfully

finds bugs in benchmarks and its efficiency is reasonable.

We presented an output nondeterminism detection technique for parallel program-

ming models that combine dataflow semantics with shared memory programming

constructs. We provided a happens-before relation definition between dataflow tasks

and formulated our output nondeterminism detection technique upon that. We also

devised a commutativity check for minimizing the reported false positives on com-

muting tasks. To show the effectiveness of our technique, we implemented an output

nondeterminism detection tool called DFinspec for ADF applications by instrument-

ing them at compile time using LLVM compiler infrastructure. We tested the tool on

several applications written in ADF programming model and reported real and syn-

thesized bugs. It is an open research area to expand our tool by providing support for

similar other tasking models like the Intel TBB which can benefit a wider community.

Chapter 8: Conclusion 75

Finally, we presented a tool called EmbedSanitizer, for detecting data races for

applications targeting 32-bit ARM architecture. EmbedSanitizer extends ThreadSan-

itizer, a race detection tool widely accessible through Clang and GCC, by enhancing

its instrumentation. Moreover, we implemented our own 32-bit version of race de-

tection runtime to replace ThreadSanitizer ’s race detection runtime which is incom-

patible with 32-bit ARM. Our custom race detection library adopts FastTrack, an

efficient and precise happens-before based algorithm. To evaluate the consistency of

EmbedSanitizer, we used four PARSEC benchmark applications. First, we evaluated

the precision of the tool by comparing the race report behavior with that of Thread-

Sanitizer. Next, we compared its slowdown with running race detection on the Qemu

emulator as a representative for testing ARM code in a high-end developer platform.

Detecting races in shared memory programming models is NP-hard. To detect all

races in a program, all possible executions of a program need to be done and their

traces checked for races. This dissertation does not propose solutions for detecting all

races in a program. However, it proposes methods for detecting races in programming

models where such methods are insufficient.

BIBLIOGRAPHY

[1] Embedsanitizer: https://www.github.com/hassansalehe/embedsanitizer.

[2] OpenMP 3.0 API, www.openmp.org/wp-content/uploads/spec30.pdf.

[3] OpenMP 4.0 Complete Specifications, http://www.openmp.org/wp-

content/uploads/OpenMP4.0.0.pdf.

[4] OpenMP Specifications, Available: http://openmp.org/.

[5] std::unordered map. http://en.cppreference.com/w/cpp/container/unordered map.

[6] ThreadSanitizer Documentation, https://clang.llvm.org/docs/ThreadSanitizer.html.

[7] Valgrind DRD, 2017.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,

D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.

The landscape of parallel computing research: A view from berkeley. Techni-

cal Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley, Dec 2006.

[9] S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna, M. Schulz,

G. L. Lee, J. Protze, and M. S. Müller. Archer: Effectively spotting data races in

large openmp applications. In 2016 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 53–62, May 2016.

[10] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Uni-

versity, January 2011.

Bibliography 77

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: An efficient multithreaded runtime system. SIGPLAN Not.,

30(8):207–216, Aug. 1995.

[12] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional detection

of data races. In Proceedings of the 31st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’10, pages 255–268, New

York, NY, USA, 2010. ACM.

[13] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adap-

tive dynamic optimization. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimiza-

tion, CGO ’03, pages 265–275, Washington, DC, USA, 2003. IEEE Computer

Society.

[14] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1997.

[15] P. M. Carpenter, A. Ramirez, and E. Ayguade. Euro-Par 2010 - Parallel Process-

ing: 16th International Euro-Par Conference, Ischia, Italy, August 31 - Septem-

ber 3, 2010, Proceedings, Part I, chapter Starsscheck: A Tool to Find Errors in

Task-Based Parallel Programs, pages 2–13. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[16] R. Chen, X. Guo, Y. Duan, B. Gu, and M. Yang. Static data race detection

for interrupt-driven embedded software. In 2011 Fifth International Conference

on Secure Software Integration and Reliability Improvement - Companion, pages

47–52, June 2011.

[17] R. Chen, X. Guo, Y. Duan, B. Gu, and M. Yang. Static data race detection

for interrupt-driven embedded software. In 2011 Fifth International Conference

Bibliography 78

on Secure Software Integration and Reliability Improvement - Companion, pages

47–52, June 2011.

[18] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-memory

programming. IEEE Comput. Sci. Eng., 5(1):46–55, Jan. 1998.

[19] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: Deterministic shared memory

multiprocessing. In Proceedings of the 14th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS

XIV, pages 85–96, New York, NY, USA, 2009. ACM.

[20] D. Dimitrov, M. Vechev, and V. Sarkar. Race detection in two dimensions.

In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’15, pages 101–110, New York, NY, USA, 2015. ACM.

[21] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty, R. Di-

etrich, X. Liu, E. Loh, and D. Lorenz. OMPT: An OpenMP Tools Application

Programming Interface for Performance Analysis, pages 171–185. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013.

[22] M. Feng and C. E. Leiserson. Efficient detection of determinacy races in cilk

programs. Theory of Computing Systems, 32(3):301–326, 1999.

[23] A. Fernndez, V. Beltran, X. Martorell, R. Badia, E. Ayguad, and J. Labarta.

Task-based programming with ompss and its application. In L. Lopes, J. ilinskas,

A. Costan, R. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci,

S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S. Scott, S. Lankes,

C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, editors, Euro-Par

2014: Parallel Processing Workshops, volume 8806 of Lecture Notes in Computer

Science, pages 601–612. Springer International Publishing, 2014.

Bibliography 79

[24] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race de-

tection. In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, pages 121–133, New York, NY,

USA, 2009. ACM.

[25] C. Flanagan and S. N. Freund. The roadrunner dynamic analysis framework

for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, PASTE ’10,

pages 1–8, New York, NY, USA, 2010. ACM.

[26] V. Gajinov, S. Stipić, I. Erić, O. S. Unsal, E. Ayguadé, and A. Cristal. Dash: A

benchmark suite for hybrid dataflow and shared memory programming models:

with comparative evaluation of three hybrid dataflow models. In Proceedings of

the 11th ACM Conference on Computing Frontiers, CF ’14, pages 4:1–4:11, New

York, NY, USA, 2014. ACM.

[27] V. Gajinov, S. Stipic, O. Unsal, T. Harris, E. Ayguade, and A. Cristal. In-

tegrating dataflow abstractions into the shared memory model. In Computer

Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th

International Symposium on, pages 243–251, Oct 2012.

[28] O.-K. Ha and Y.-K. Jun. An efficient algorithm for on-the-fly data race detection

using an epoch-based technique. Sci. Program., 2015:13:13–13:13, Jan. 2015.

[29] S. Hong and M. Kim. A survey of race bug detection techniques for multithreaded

programmes. Software Testing, Verification and Reliability, 25(3):191–217, 2015.

[30] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble. Ddos: Taming nondeterminism

in distributed systems. In Proceedings of the Eighteenth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’13, pages 499–508, New York, NY, USA, 2013. ACM.

Bibliography 80

[31] Intel. Intel Inspector XE. https://software.intel.com/en-us/intel-inspector-xe,

2017.

[32] IntelTBB. Intel threading building blocks.

http://www.threadingbuildingblocks.org/docs/help/reference/flow graph.htm,

2017.

[33] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate

static data-race detection for concurrent programs. In Proceedings of the 19th

International Conference on Computer Aided Verification, CAV’07, pages 226–

239, Berlin, Heidelberg, 2007. Springer-Verlag.

[34] G. Kestor, O. S. Unsal, A. Cristal, and S. Tasiran. T-rex: A dynamic race

detection tool for c/c++ transactional memory applications. In Proceedings of

the Ninth European Conference on Computer Systems, EuroSys ’14, pages 20:1–

20:12, New York, NY, USA, 2014. ACM.

[35] S. Keul. Tuning static data race analysis for automotive control software. In

2011 IEEE 11th International Working Conference on Source Code Analysis and

Manipulation, pages 45–54, Sept 2011.

[36] I. Kuru, H. S. Matar, A. Cristal, G. Kestor, and O. Unsal. Parv: Paralleliz-

ing runtime detection and prevention of concurrency errors. In S. Qadeer and

S. Tasiran, editors, Runtime Verification, pages 42–47. Springer Berlin Heidel-

berg, 2013.

[37] J. Labarta. Starss: A programming model for the multicore era. In PRACE

Workshop ”New Languages & Future Technology Prototypes” at the Leibniz Su-

percomputing Centre in Garching (Germany), 2010.

[38] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

Bibliography 81

[39] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In Proceedings of the 2004 International Symposium

on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar

2004.

[40] I.-T. A. Lee and T. B. Schardl. Efficiently detecting races in cilk programs

that use reducer hyperobjects. In Proceedings of the 27th ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’15, pages 111–122, New

York, NY, USA, 2015. ACM.

[41] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.

Computer, 26(7):18–41, 1993.

[42] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin. Dataracebench:

A benchmark suite for systematic evaluation of data race detection tools. In

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’17, pages 11:1–11:14, New York, NY,

USA, 2017. ACM.

[43] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis

tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’05,

pages 190–200, New York, NY, USA, 2005. ACM.

[44] H. S. Matar, E. Mutlu, S. Tasiran, and D. Unat. Output nondeterminism detec-

tion for programming models combining dataflow with shared memory. Parallel

Computing, 71:42 – 57, 2018.

[45] H. S. Matar, S. Tasiran, and D. Unat. EmbedSanitizer: Runtime Race Detection

Tool for 32-bit Embedded ARM, pages 380–389. Springer International Publish-

ing, Cham, 2017.

Bibliography 82

[46] H. S. Matar and D. Unat. Source code and user guide for euro-par 2018 paper:

Runtime determinacy race detection for openmp tasks. Figshare (2018). Code.,

https://doi.org/10.6084/m9.figshare.6392252, 2018.

[47] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and M. Vechev. Sdnracer:

Detecting concurrency violations in software-defined networks. In Proceedings of

the 1st ACM SIGCOMM Symposium on Software Defined Networking Research,

SOSR ’15, pages 22:1–22:7, New York, NY, USA, 2015. ACM.

[48] E. Mutlu, V. Gajinov, A. Cristal, S. Tasiran, and O. Unsal. Dynamic verification

for hybrid concurrent programming models. In B. Bonakdarpour and S. Smolka,

editors, Runtime Verification, volume 8734 of Lecture Notes in Computer Science,

pages 156–161. Springer International Publishing, 2014.

[49] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for java. In

Proceedings of the 27th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’06, pages 308–319, New York, NY, USA,

2006. ACM.

[50] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic

binary instrumentation. SIGPLAN Not., 42(6):89–100, June 2007.

[51] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and

formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, Mar. 1992.

[52] M. Olszewski, Q. Zhao, D. Koh, J. Ansel, and S. Amarasinghe. Aikido: Accel-

erating shared data dynamic analyses. In Proceedings of the Seventeenth Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XVII, pages 173–184, New York, NY, USA, 2012.

ACM.

Bibliography 83

[53] A. Pop and A. Cohen. Openstream: Expressiveness and data-flow compilation of

openmp streaming programs. ACM Trans. Archit. Code Optim., 9(4):53:1–53:25,

Jan. 2013.

[54] E. Pozniansky and A. Schuster. Multirace: efficient on-the-fly data race de-

tection in multithreaded c++ programs: Research articles. Concurrency and

Computation: Practice & Experience, 19(3):327–340, 2007.

[55] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Practical static race detec-

tion for c. ACM Trans. Program. Lang. Syst., 33(1):3:1–3:55, Jan. 2011.

[56] S. Qadeer and S. Tasiran. Runtime verification of concurrency-specific correct-

ness criteria. International Journal on Software Tools for Technology Transfer,

14(3):291–305, 2012.

[57] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Efficient data race

detection for async-finish parallelism. In Proceedings of the First International

Conference on Runtime Verification, RV’10, pages 368–383, Berlin, Heidelberg,

2010. Springer-Verlag.

[58] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scalable and precise

dynamic datarace detection for structured parallelism. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’12, pages 531–542, New York, NY, USA, 2012. ACM.

[59] C. Sadowski, S. N. Freund, and C. Flanagan. Programming Languages and

Systems: 18th European Symposium on Programming, ESOP 2009, Held as

Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, chapter SingleTrack:

A Dynamic Determinism Checker for Multithreaded Programs, pages 394–409.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Bibliography 84

[60] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A

dynamic data race detector for multi-threaded programs. In Proceedings of the

Sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97, pages

27–37, New York, NY, USA, 1997. ACM.

[61] K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data race detection in

practice. In Proceedings of the Workshop on Binary Instrumentation and Appli-

cations, WBIA ’09, pages 62–71, New York, NY, USA, 2009. ACM.

[62] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound predictive

race detection in polynomial time. In ACM SIGPLAN Notices, volume 47, pages

387–400. ACM, 2012.

[63] R. Surendran and V. Sarkar. Dynamic determinacy race detection for task paral-

lelism with futures. In Y. Falcone and C. Sánchez, editors, Runtime Verification,

pages 368–385, Cham, 2016. Springer International Publishing.

[64] G. M. Tchamgoue, K. H. Kim, and Y.-K. Jun. Dynamic Race Detection Tech-

niques for Interrupt-Driven Programs, pages 148–153. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2012.

[65] G. M. Tchamgoue, K. H. Kim, and Y.-K. Jun. Verification of data races in con-

current interrupt handlers. International Journal of Distributed Sensor Networks,

9(11):953–593, 2013.

[66] M. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic verification of deter-

minism for structured parallel programs. In Proceedings of the 17th International

Conference on Static Analysis, SAS’10, pages 455–471, Berlin, Heidelberg, 2010.

Springer-Verlag.

[67] J. W. Voung, R. Jhala, and S. Lerner. Relay: static race detection on millions of

lines of code. In Proceedings of the the 6th joint meeting of the European software

Bibliography 85

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, pages 205–214. ACM, 2007.

[68] B. Wire. Parallocity licenses zeus virtual ma-

chine dynamic analysis framework to h3c technologies.

http://www.businesswire.com/news/home/20121211005482/en/Parallocity-

Licenses-Zeus-Virtual-Machine%C2%AE-Dynamic-Analysis, 2012.

[69] B. Wire. Akamai selects parallocity’s zvm-u dynamic software analysis frame-

work. http://www.businesswire.com/news/home/20130305005107/en/Akamai-

Selects-Parallocity%E2%80%99s-ZVM-U-Dynamic-Software-Analysis, 2013.

[70] X. Wu, Y. Wen, L. Chen, W. Dong, and J. Wang. Data race detection for

interrupt-driven programs via bounded model checking. In 2013 IEEE Seventh

International Conference on Software Security and Reliability Companion, pages

204–210, June 2013.

[71] Y. Xu, I.-T. A. Lee, and K. Agrawal. Efficient parallel determinacy race detection

for two-dimensional dags. In Proceedings of the 23rd ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’18, pages 368–380,

New York, NY, USA, 2018. ACM.

[72] M. Yu, S.-M. Park, I. Chun, and D.-H. Bae. Experimental performance compar-

ison of dynamic data race detection techniques. ETRI Journal, vol. 39, no. 1,

Feb. 2017, 39(1):124–134, Feb. 2017.

