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ABSTRACT

In the last decade, there has been a major development to understand the properties of

non-thermal baths, which can be used as a fuel for quantum heat engines. The efficiency

of such engines can surpass the classical Carnot bound, and these engines can even operate

with a single heat bath and an information reservoir. Quantum coherent particle clusters

are one of the examples of such non-thermal baths. Decoherence is the major obstacle for

utilizing the advantages of quantum coherent fuels. Increasing the number of particles and

thus the amount of coherence can overcome this obstacle. However, the analytical studies

of such non-thermal reservoirs were investigated only up to three coherent particles, and for

the general coherent multi-particle fuels results were obtained numerically. In this thesis,

we analytically show how coherences are classified in N-qubit clusters in terms of their

interaction with the working fluid. We demonstrate that these coherent N-qubit clusters

can thermalize, coherently drive the working mode, or can be used to engineer effective

squeezed thermal bath. We show that the steady-state temperature of the working mode

can scale linearly or quadratically with the number of the qubits in the cluster. We also

construct an Otto engine using our model and show that we can increase efficiency bound.

Finally, we propose how we can implement our model in a circuit-QED platform.
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ÖZETÇE

Son on yılda, kuantum ısı motorları için yakıt olarak kullanılabilen termal olmayan rez-

ervuarların özelliklerini anlamak için büyük bir gelişme olmuştur. Bu motorların verimliliği

klasik Carnot sınırını aşabilir ve bu motorlar tek bir ısı rezervuarı ve bir bilgi deposuyla bile

çalışabilir. Bu tür termal olmayan rezervuarların örneklerinden biride kuantum uyumlu

parçacık kümeleridir. Kuantum uyumlu yakıtların avantajlarından yararlanmanın önündeki

en önemli engel de eşevresizliktir. Parçacıkların sayısının artırılması ve dolayısıyla uyum-

luluğun artması bu engeli ortadan kaldırabilir. Bununla birlikte, bu tür termal olmayan

rezervuarların analitik çalışmaları sadece üç tane uyumlu parçacığa kadar incelenmiş ve

genel uyumlu çoklu parçacık yakıtlar için sonuçlar nümerik olarak elde edilmiştir. Bu tez

çalışmasında, biz analitik olarak uyumluluğun N-qubit kümelerle, çalışma akışkanları ile

etkileşimleri açısından, sınıflandırılabileceğini gösterdik. Bu uyumlu N-qubit kümelenmelerinin,

çalışma modunu tutarlı bir şekilde hareket ettirebildiğini, ya da etkili sıkışmış termal rez-

ervuarı kurmak için kullanılabileceğini gösteriyoruz. Çalışma modunun sabit durum sıcaklığının,

kümedeki qubit sayısı ile doğrusal veya kuadratik olarak ölçeklenebileceğini göstermekteyiz.

Modelimizi kullanarak bir Otto motoru da tasarlıyoruz ve verimlik sınırının artırabileceğimizi

gösteriyoruz. Son olarak, modelimizi bir devre QED platformunda nasıl uygulayabileceğimizi

öneriyoruz.
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Chapter 1

INTRODUCTION

1.1 Nonthermal Baths

Traditionally the dynamics of thermodynamic systems is described by the systems inter-

acting with reservoirs at thermal equilibrium. However, this is an idealistic model. In

fact, non-equilibrium systems are widely present in nature, some of the examples of such

states being sunlight, biological cells, and laser light [1]. Over the past decade, a major

development has been made to understand the dynamics of the systems interacting with

non-equilibrium thermal baths. Non-equilibrium properties in reservoirs can arise because

of multiple reasons. We cannot define a temperature for the bath if not all of the modes

in the reservoir are at the same temperature. Also, reservoir cannot be in thermal equilib-

rium if a bath is spatially non-homogeneous. Moreover, quantum features such as quantum

correlations, entanglement and coherences become more prominent in small-scale systems.

1.2 Quantum Heat Engines

These quantum features have essential role in Quantum heat engines [2]. Similar to its

classical counterpart, QHE is a device that operates between hot and cold baths and extracts

work from the heat flow. Since the engine is governed by the quantum mechanic laws, in

order to enhance the efficiency it is important to take advantage of quantum features. For

example, quantum correlations and entanglement can create a work output [3], and can be

used to construct quantum heat engines [4, 5], enhancing efficiency and work [6]. Another

difference of QHE from classical ones is that the efficiency of QHE can surpass the Carnot

bound without violating thermodynamic laws.
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Scully and collaborators showed this by proposing a photo-Carnot engine which uses

quantum coherences as a resource [7]. The quantum systems are said to be coherent if there

is a constant phase difference among them. Scully and collaborators introduced a fuel called

phaseonium consisting of an ensemble of three-level atoms having coherence between its

two ground states, and let this atoms interact one by one with the cavity field. As illustrated

in Fig. 1.1, one of the mirrors moves due to light pressure and acts as a piston. The beam

of three-level atoms act as a nonthermal reservoir. Therefore it is possible to extract work

and build a Carnot engine using this system. They showed that the efficiency of the engine

depends on the phase of the coherences and for a certain phase it can surpass the Carnot

efficiency. It is even possible extract work from a single heat reservoir. This result later

led to studies on quantum heat engines incorporating non-thermal reservoirs with quantum

coherences [8, 9, 10].

Pressure

𝑻𝒄

Figure 1.1: Quantum heat engine

1.3 Coherent multi-qubit nonthermal baths

Theoretical explanation of why the efficiency of such quantum heat engines can surpass

Carnot limit is as follows. Carnot bound takes into account only heat transfer between

thermal reservoirs, whereas non-thermal baths can transfer not only heat but also additional

work to the working object [11]. In addition, coherences alter the temperature of the reser-

voir to a new effective one. Taking into account this new effective temperature, Carnot



Chapter 1: Introduction 3

bound should be redefined. These coherences can be used to create effective heat and work

reservoirs. Coherences have a specific location in the density matrix of coherent qubit sys-

tems, and each location has a disjoint effect on the working mode. For example, nonthermal

bath comprised of coherent three-qubit system can thermalize, coherently drive or create a

squeezed field in the cavity [12, 13]. Considering thermalization coherences, when qubits

were in symmetric W-states they increased the temperature significantly compared to the

case without any coherences. GHZ states can even thermalize to an infinite temperature.

Main interest of this thesis is a non-thermal thermalization. Non-thermal baths in-

corporating quantum coherence can be obtained using single two-level [14], single three-

level [7], two-particle [15], three-particle [12], and multi-particle [10, 16] systems. How-

ever, the analytical classification of coherences in terms of their disjoint contribution to the

working mode was investigated only up to three particle systems [12], and for the general

coherent multi-particle fuels results were obtained numerically. Therefore, there are no

related reports analytically showing the classification of coherences for N qubit fuels. Fur-

thermore, decoherence, which is the process of losing coherences, can be a major stumbling

block to utilize the advantages of quantum coherences. Because of the non-ideal conditions,

qubits interact with their surrounding environment and as a result of non-unitary dynamics,

they irreversibly lose coherences. It was shown for the single three-level fuel case that if

the quality factor of the cavity is not high then because of the dephasing quantum-classical

transition occurs [17]. Increasing the amount of coherences can counter this effect. For

example, as a generalization of the three-level phaseonium fuel case, N+1-level atom fuels

with coherent N lower levels can beat decoherence [18]. The number of coherences scales

quadratically N2 for high N. In this case the decoherence is slower than quadratic increase

of coherences for high N. Hence, we increase the amount coherences in the non-thermal

fuel by using coherent N-atom fuels.

1.4 Our Model

In our system, we use single qubit instead of a micromaser as a working fluid as shown

in Fig. 1.2. A beam of identically prepared coherent N-qubit clusters interacts with the
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single qubit. The clusters arrive randomly and each cluster interacts with the qubit for

a short time, and replaced by the next cluster. Single-atom engines have already been

proposed and experimentally realized using ion traps [19, 20, 21]. Homogeneity is the

main advantage of our system. Both non-thermal bath and the working fluid are realized

using qubits and therefore there is no interface challenge.

𝒈

σ0

σ𝑖

Figure 1.2: N-qubit fuel interacting the single qubit

Another possible way to realize the system experimentally is Circuit QED [22, 23,

24]. This thesis shows that coherent N-qubit fuel depending on the type of coherences can

behave as a squeezed bath, coherently drive the qubit, or thermalize the qubit to a certain

temperature. These coherences are classified according to their locations in the density

matrix of the N-qubit fuel. For instance, the coherences which thermalize the working

qubit classified as heat exchange coherences (HEC) are located along the main diagonal

in the Wigner-Jordan blocks. We show analytically the dependence of the thermalization
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temperature of the working fuel on the number of the qubits in the cluster is quadratic, thus

verifying previous numerical approximations [10]. In addition, it is possible to engineer

squeezed thermal bath using our model. In chapter 2 we derive the master equation for a

small number of qubits, namely two, three and four-qubit cases. We show how coherences

are classified, and see that there is a certain pattern for location of these coherences in the

density matrix of the qubit cluster. In chapter 3 we generalize this result to N-qubit case,

and verify that the coherences are located with a specific pattern. In chapter 4 we show

how heat exchange coherences can be thermally generated. In chapter 5 we investigate

how to harvest heat exchange coherences and how they thermalize the working qubit. In

chapter 6 we show how effective squeezed thermal bath can be engineered using qubits

only. In chapter 7 we construct the Otto engine using our model and analyze its efficiency.

In chapter 8 we present circuit QED system to implement our model.



Chapter 2

PRELIMINARY

The classification of coherences in terms of their disjoint contribution to the working

fluid has already been obtained [12] for the multi-qubit fuels with up-to three qubits. Before

obtaining the generalized result for N qubit cluster, here we try to reproduce the master

equation for the cases of two, three and four coherent qubit clusters. Clusters of coherent

qubits repeatedly interact with single working qubit at random time intervals. The clusters

arrive randomly to the single qubit with the rate p.

Working Qubit

Coherent Qubit Pair Fuel

Qubit pairs arrive randomly at a rate p

Figure 2.1: This is an example of our model for the case of coherent two-qubit fuel

We assume ideal environment conditions ignoring atomic dephasing and relaxation.

Each clusters have a density matrix ρf before interaction, and the single qubit has ρq. Dur-

ing interaction the total density matrix is given as ρ(t) = ρf (t)
⊗

ρq(t). We assume that

all the qubits have the same transition frequency ω. Then the interaction is governed by the

total Hamiltonian which is given as

H = Hq +Hf +Hint (2.1)
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where the first, second and third terms

Hq =
~ω
2
σz0,

Hf =
N∑
i=1

~ω
2
σzi ,

Hint = ~g
N∑
i=1

(σ+
i σ
−
0 + σ−i σ

+
0 )

(2.2)

are working qubit, N-qubit cluster, and interaction Hamiltonians respectively. Operators

σzi , σ
+
i , σ

−
i are Pauli z, raising and lowering operators respectively. The interaction is

a dipole-dipole. We assumed that the working qubit interacts with the same interaction

strength g with each qubit in the cluster. We move to the interaction picture, and the evo-

lution is governed by the time-evolution propagator U(τ) = exp(−iHintτ), where τ is the

interaction time. We use another assumption that the interaction is short time such that

gτ << 1. Under this assumption, the propagator can be expressed to the second order and

the examples for two and three-qubit cases are given in the Appendix A.

Because of the randomness of the interactions the evolution of the total density matrix

during time δt has two possibilities, it either changes or stays constant which is described

as [13].

ρ(t+ δt) = pδtU(τ)ρ(t)U †(τ) + (1− pδt)ρ(t) (2.3)

The master equation of the total density matrix in the limit δt→ 0 is obtained as

ρ̇(t) = p(U(τ)ρ(t)U †(τ)− ρ(t)). (2.4)

We can obtain the master equation for the qubit by tracing out the cluster qubit density

matrix

ρ̇q(t) = p
[ N∑
i,j=1

aij

N∑
n=1

Uni(τ)ρq(t)[Unj(τ)]† − ρq(t)
]
, (2.5)

where aij are the density matrix elements of the qubit cluster ρf (t). Uni(j) are the matrix

elements of the time-evolution propagator U(τ). Expanding Uni and Unj we find that the

master equation can be written as

ρ̇q(t) = −i[Heff , ρq] + Lsρq + Lhρq (2.6)
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where the terms in the master equation are given as

Heff =pgτ(λσ+
0 + λ∗σ−0 )

Lsρ =µ(εσ+
0 ρqσ

+
0 + ε∗σ−0 ρqσ

−
0 )

Lhρ =µ
rd
2

[2σ−0 ρqσ
+
0 − σ+

0 σ
−
0 ρq − ρqσ+

0 σ
−
0 ] + µ

re
2

[2σ+
0 ρqσ

−
0 − σ−0 σ+

0 ρq − ρqσ−0 σ+
0 ]

(2.7)

and µ = p(gτ)2. We can observe that each terms in master equation corresponds to a spe-

cific interaction type of the heat bath and the working mode. The first term corresponds

to the effective driving of the qubit with coherent field. The second term is the effective

coupling of the qubit with the squeezed bath. The third term is the effective interaction of

the qubit with the thermal bath. Coefficients of the effective Hamiltonian and the Lindbla-

dians depend on the location of the off-diagonal coherences of the qubit cluster and hence

classified accordingly. Table 2.1 shows coefficients for two-qubit fuel. The Appendix B

contains coefficients for three and four-qubit fuels, and Fig. 2.2 illustrates the density ma-

trices.

re 2a11 + a22 + a23 + a32 + a33

rd 2a44 + a22 + a23 + a32 + a33

λ a12 + a13 + a24 + a34

ε a14

Table 2.1: The Lindbladian coefficients in the master equation for two-qubit fuel case
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(a) 4-qubit fuel

(b) 3-qubit fuel

Displacement

Squeezing

Heat-exchange

Populations

Ineffective

(c) 2-qubit fuel

Figure 2.2: Density matrices of the qubit clusters in the computation basis

From Fig. 2.2 we can observe that there is a clear pattern for location of the coherences.

The density matrices are defined in computation basis as shown in Fig. 2.3 to illustrate this.

In this basis, the top left entry is related with the most excited states. As we go down along

the diagonal, the number of excitations in the entries decreases, and the bottom right corner

entry is related to the ground state.

Coherences have a disjoint contribution to the master equation. The main diagonal

block matrices are associated with heat exchange coherences (HECs). HECs couple the

states with the same energy and they contribute to Lhρ. The blocks adjacent to the main

diagonal ones are related with displacement coherences. Displacement coherences cou-
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Figure 2.3: The energy levels of the fuel qubits.

ple the states differing by one excitation contribute to and they contribute to Heff. The

blocks adjacent to the displacement coherences are associated with squeezing coherences.

Squeezing coherences couple the states differing by two excitations and they contribute to

Lsρ. Ineffective coherences cannot contribute to the master equation.



Chapter 3

COHERENT N-QUBIT FUEL

From the density matrices obtained for 2-4 coherent fuels we cannot make a general

statement about the classification and location of coherences for larger clusters. For this

case, a general master equation is needed. Fig. 1.2 illustrates our model. This a central

spin model [25], and is the special case of the Gaudin spin model [26]. In order to derive

the master equation we use collective spin operators. The interaction Hamiltonian is given

as

Hint = ~g
N∑
i=1

(σ+
i σ
−
0 + σ−i σ

+
0 ) = ~g(J+σ

−
0 + J−σ

+
0 ), (3.1)

where σ−i = |gi〉〈ei|, σ+
i = |ei〉〈gi| are lowering and raising Pauli operators and J± =∑N

i=1 σ
±
i are collective raising and lowering spin operators of the N qubit cluster which

expresses the fact that qubits inside the fuel clusters interact collectively with the working

qubit in the specified time interval. Eq. (3.1) is directly or effectively applicable to various

systems involving central spin models. For example, it can be used to describe nuclear

spin baths in quantum dots [27, 28], nitrogen-vacancy center [29], and nuclear magnetic

resonance systems [30]. This model can also be used to describe effective spin systems

in coupled microcavities [31, 32], and coupling in superconducting qubits [33, 34], and

molecular nanomagnets [35, 36].

We consider the evolution of the system in the interaction picture associated with the

self-Hamiltonians, Hq and Hf , and the total system evolves unitarily during interaction

time τ by the propagator U(τ) = exp(−iHintτ/~), which can be expressed as follows

U ≈ 1− igτ(J+σ
−
0 + J−σ

+
0 )

− (gτ)2

2
(J+J−σ

−
0 σ

+
0 + J−J+σ

+
0 σ
−
0 ),

(3.2)
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up to second order in gτ . Before each interaction, the total density matrix of the working

qubit and atomic cluster can be written as the product of two ρ(t) = ρf (t)
⊗

ρq(t). From

now on we drop zero subscript in the Pauli matrices of the working qubit. Since the working

qubit interacts randomly with the fuel qubits at a rate p, in a given time interval δt, ρ(t)

either evolves under Eq. (3.2) or remains intact

ρ(t+ δt) = pδtU(τ)ρ(t)U †(τ) + (1− pδt)ρ(t). (3.3)

In the limit δt → 0, the master equation describing the dynamics of the working qubit can

be obtained by tracing out the degrees of freedom of atomic cluster

ρ̇q(t) = Trf [p(U(τ)ρ(t)U †(τ)− ρ(t))]

= −i[Heff, ρq] + Lsρq + Lhρq,
(3.4)

where the effective Hamiltonian, Heff, and Lindblad dissipators in the master equation are

given as

Heff =pgτ(λσ+ + λ∗σ−),

Lsρ =µ(εσ+ρqσ
+ + ε∗σ−ρqσ

−),

Lhρ =µ
rd
2

[2σ−ρqσ
+ − σ+σ−ρq − ρqσ+σ−],

+ µ
re
2

[2σ+ρqσ
− − σ−σ+ρq − ρqσ−σ+],

(3.5)

with µ = p(gτ)2 and the coefficients are presented in Table 3.1.

re 〈J+J−〉

rd 〈J−J+〉

λ 〈J−〉

ε 〈J−J−〉

Table 3.1: The Lindbladian coefficients in the master equation

We describe the density matrix in the computational basis {|e1e2 . . . en−1en〉, |e1e2 . . . en−1gn〉,

|e1e2 . . . gn−1en〉, . . . , |g1g2 . . . gn−1gn〉}. Derived master equation for general case con-

firms the results from previous chapter about the classification of coherences according to
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their location. The unitary dynamics induced by Heff, couples states differing by one exci-

tation and elements of ρf that are involved in this process are called displacement coher-

ences. The physical mechanism coupling the states differing by two excitations is described

by Lsρ where the coherences associated with it are called squeezing coherences. Finally,

physical processes coupling states at the same energy that induce an emission or absorption

processes are due to Lhρ and associated coherences are labeled as heat-exchange coher-

ences (HECs).

Let us describe HECs in a more detail. They are located in the off-diagonals ofC(N, k)×

C(N, k) sized blocks running through the main diagonal of ρf , with N being the number

of fuel qubits and k = 0, 1, . . . , N is the number of excitations and presented as solid red

squares in Fig. 3.1.

Figure 3.1: Density matrix of the fuel qubits in the computation basis. As described by the

master equation in Eq. (3.4) each state of the fuel qubit has specific role in the evolution

of the working qubit. The main diagonal squares are the states representing heat-exchange

coherences and populations that thermalize the working qubit. Squares with vertical lines

are the displacement coherences, and squares with grid are the squeezing coherences.
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These blocks are known as Jordan-Wigner or Dicke blocks in the density matrix and

number of them together with their size can be determined by looking at the Pascal’s tri-

angle depicted in Fig. 3.2. On the other hand, displacement and squeezing coherences

which are located between the states differing single and double excitations are presented

in squares with blue vertical stripes and grids, respectively. However, there are certain el-

ements that do not have any effect on the final state of the working qubit. These elements

can both be present in the specified blocks or outside of them and they are called ineffective

coherences and depicted as blank white squares.

1 1

1 1

1 1

1 1

1 1

2

3 3

4 46

5 51010

1 qubit

2 qubits

3 qubits

4 qubits

5 qubits

Figure 3.2: For each number of N-qubit fuels we can find the size of the HECs blocks from

Pascal’s triangle. The size for 1-5 qubit clusters is shown here, and for higher number of

clusters the dimension of HECs blocks can be calculated similarly.
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THERMAL GENERATION OF HEAT EXCHANGE COHERENCES

We present here how HECs can be generated from a thermal environment. By collec-

tive coupling to the thermal environment an ensemble of two-level atoms, it is possible to

generate heat-exchange coherences [37]. This is possible only when the average distance

between clusters is less than the wavelength of the photons in the heat bath. We can use

this model in the present case.

Heat Bath N-qubit 

Cluster

∆Q

തn, T

Figure 4.1: Thermal generation of the HECs in N-qubit cluster

The master equation in the interaction picture associated with respect to the self-Hamiltonians

of the qubits in the cluster is given in the standard Lindblad form as

dρf
dt

= L(ρf ) = D−(ρf ) +D+(ρf ). (4.1)

The terms on the right-hand side will be specified below. The aforementioned collective
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coupling to the thermal reservoir is possible only when the constituents of the fuel cluster

are spatially close to each other. In this limit, it is possible to express the dissipators in

Eq. (4.1) in terms of the collective spin operators and they have the following form

D−(ρf ) = γ0(n̄+ 1)(J−ρfJ+ −
1

2
{J+J−, ρf}),

D+(ρf ) = γ0n̄(J+ρfJ− −
1

2
{J−J+, ρf}),

(4.2)

where γ0 is the spontaneous emission rate, n̄ is the mean number of photons at a given tem-

perature determined by the Planck distribution and D− and D+ describe thermally induced

emission and absorption processes, respectively.

We now present an analytical method to calculate the steady state, again for the ground

initial state, for any number of qubits ρf (t = 0) = |g1g2 . . . gN〉〈g1g2 . . . gN |. Observe

that, with a master equation consisting of dissipators involving absorption and emission

processes, such as the ones given in Eq. (4.2), it is only possible to populate the Dicke

blocks of the density matrix in the steady state which are nothing but the HECs. In this

case, we can write the time evolved state of the system as follows

ρf =



DN+1 0 . . . 0 0

0 DN . . . 0 0
...

... . . . ...
...

0 0 . . . D2 0

0 0 . . . 0 D1


. (4.3)

Here, Di is the Wigner-Jordan block matrix, which can be decomposed as follows Di =

diUi with Ui being the matrix of ones and di is its entries. Ui has the dimension pi× pi, and

pi = C(N, i − 1) corresponds to the ith element in the Pascal’s triangle for particular N .

For example, in case of i = 1, U1 = 1 is the ground state, and d1 is the population of all the

qubits in the ground state. Together with the normalization condition

Tr(ρf ) =
N+1∑
i=1

Tr[Di] = 1, (4.4)

and making use of the identity Tr[Di+1] = (n̄/(n̄ + 1))Tr[Di], which is proven in Ap-
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pendix C, we can find the elements of the Wigner-Jordan blocks di’s as follows

di =
(1− r)ri−1

(1− rN+1)pi
, (4.5)

where r = n̄/(n̄ + 1). Therefore, we have shown that it is possible to extend the scheme

proposed previously in [37], to generate N-qubit fuels for any N , by coupling them to a

thermal reservoir in order to manipulate the state of a working qubit.



Chapter 5

HARVESTING HEAT EXCHANGE COHERENCES

5.1 Effective Thermalization of the Working Qubit

We introduce our harvesting scheme of HECs. Since these states contain non-zero elements

only in the Dicke blocks through the main diagonal as shown in Fig. 3.1 and zero squeezing

and displacement coherences ε = λ = 0, the master equation derived for the evolution of

the working qubit upon randomly interacting with N-qubit fuel clusters in Eq. (3.4) takes

the form

ρ̇q(t) =µ
rd
2

[2σ−ρqσ
+ − σ+σ−ρq − ρqσ+σ−]+

+ µ
re
2

[2σ+ρqσ
− − σ−σ+ρq − ρqσ−σ+].

(5.1)

The steady-state solution of the above equation is calculated to be

ρss =
1

re + rd

re 0

0 rd

 . (5.2)

From here, using Kubo-Martin-Schwinger (KMS) detailed-balance condition [38], we can

define the effective temperature of the working qubit as

Tq = − ~ω
kbln( re

rd
)
, (5.3)

which explicitly depends on the HECs of the fuel qubits. The effective temperature of

the qubit is positive if rd > re. The working qubit is not in thermal equilibrium with the

coherent qubit clusters, but it is in thermal equilibrium with the effective environment [12]

described by the master equation Eq. 5.1. If we assume that this effective environment is

consisted of harmonic oscillators, we can also define the average photon number of this

bath as

n̄ =
1

exp( ~ω
kbTq

)− 1
. (5.4)



Chapter 5: Harvesting Heat Exchange Coherences 19

5.2 Simulation of the Interaction of the Cluster with the Qubit

Here we present the simulation in Python of the interaction of the cluster with the working

qubit in order to show how the effective temperature of the qubit evolves. We choose

clusters consisting of two coherent qubits as shown in Fig. 2.1. These coherent pair qubits

are in thermal equilibrium at temperature T = 3.22K. We assume that the pairs arrive

regularly without randomness and that there is no dephasing and decay in the qubits. The

transition frequency of all of the qubits is the same ω = 6.4GHz. The interactions strength

is g = 42MHz, and the interaction time is τ = 1ns. Since the qubit’s density matrix is

always diagonal, we can define the effective temperature of the qubit as in Eq. 5.3. We plot

this effective temperature vs. time graph.

1 2 3 4 5
Time (μs)

0.5

1.0

1.5

2.0

2.5

3.0

Effective Temperature (K)

Figure 5.1: Evolution of the effective temperature of the qubit

From the above figure we cannot say exactly that the qubit reaches a steady-state, but its

effective temperature approaches the temperature of the coherent qubit pairs quickly. This

shows that the clusters increase the effective temperature of the qubit fast.
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5.3 Thermally Generated Fuel

We are now going to introduce our harvesting scheme of the fuel clusters generated by the

method introduced in the previous Chapter 4. Since these states contain non-zero elements

only in the Dicke blocks through the main diagonal as shown in Fig. 3.1 and zero squeezing

and displacement coherences, we calculate excitation re and de-excitation rd coherences.

Using block diagonal shape of the density matrix of the fuel qubits given in Eq. (4.3),

we can find the populations of ρss, from by calculating the expectation values shown in

Table 3.1 as

re =Tr[J−ρfJ+] =
N+1∑
i=1

diTr[J−UiJ+]

=
N+1∑
i=1

di(N − i+ 2)2pi−1

=
N∑
i=1

(1− r)iri(N − i+ 1)

(1− rN+1)
,

(5.5)

and

rd =Tr[J+ρfJ−] =
N+1∑
i=1

diTr[J+UiJ−]

=
N+1∑
i=1

dii
2pi+1

=
N∑
i=1

(1− r)iri−1(N − i+ 1)

(1− rN+1)
.

(5.6)

Then, their ratio can be calculated as

re
rd

=
n̄

(n̄+ 1)
= r. (5.7)

From KMS detailed balance condition we can define the temperature of the working qubit

as T = −~ω/(kbln(r)). It can be seen that this temperature is independent of the number

of fuel qubits and is only dependent on the average number of photons n̄ in the environment

where fuel qubits were prepared. This leads us to the conclusion that the coherences created

due to coupling with thermal photons, can only reflect the temperature of that environment
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to the working qubit. Under this circumstances, there is no direct quantum advantage pro-

vided by fuel qubits prepared in this setup.

5.4 Thermally Entangled Fuel

Heat 

Bath
തn, T

N-qubit Cluster

at thermal 

equilibrium 

𝛒𝐭𝐡

Adding HECs 

to the cluster

𝛒𝐭𝐡 + 𝛔

Figure 5.2: Thermally entangled fuel is created by adding HECs to the cluster at thermal

equilibrium

We consider the N-qubit fuel formed by adding HECs coherences to the N-qubit cluster

at thermal equilibrium. The density matrix will be block diagonal in this case too. It has

the same structure as given in Eq. (4.3), and can be expressed as ρf = ρth + σ. The first

term ρth corresponds to the density matrix of the cluster if it were in thermal equilibrium,

and the second term σ is the HECs. This kind of fuel is a generalized form of a thermally

entangled pair of qubits [5]. We consider adding σ such that each block Di has the same

entries. The blocks are expressed as Di = diUi. Since ρth is thermal, the relation di+1/di =

n̄/(1 + n̄) = r holds, where n̄ is the number of photons corresponding to the temperature

of the ρth. The normalization condition gives

di =
ri−1

(1 + r)N
. (5.8)
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The interaction of this fuel and the working qubit is governed by Eq. (5.1), and the qubit’s

final state is the same as Eq. (5.2). We calculate the populations of the qubit using the

expectation values given in Table 3.1 as

re =Tr[J−ρfJ+] =
N+1∑
i=1

diTr[J−UiJ+] =

=
N+1∑
i=2

ri−1(N − i+ 2)N !

(1 + r)N(i− 2)!(N − i+ 1)!
=

=
r(N + r)N

(1 + r)2
,

(5.9)

and

rd =Tr[J+ρfJ−] =
N+1∑
i=1

diTr[J+UiJ−] =

=
N∑
i=1

ri−1iN !

(1 + r)N(i− 1)!(N − i)!
=

=
N(1 + rN)

(1 + r)2
.

(5.10)

Using the ratio of the populations re/rd, and KMS detailed balance condition we can ex-

press define the steady-state temperature as

T = − ~ω
kbln( r(N+r)

1+Nr
)
. (5.11)

At high number of qubits we can obtain the temperature as

T ≈ ~ω(1 +Nr)

kb(1− r2)
≈ ~ωNr
kb(1− r2)

. (5.12)

The temperature increases linearly as the number of the qubits increases. This is expected

because we added HECs coherences to the cluster which was at thermal equilibrium. It

costs additional energy to add HECs, therefore it is reasonable that temperature of the

working qubit will be larger than the temperature of the cluster at thermal equilibrium ρth.
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5.5 Athermal Fuel

5.5.1 Ideal Environment Case

Let us consider the N-qubit fuel having a density matrix such that only single Wigner-

Jordan block is non-zero, and all other blocks are zero.

ρm =



0 0 . . . 0 0 0

0 0 . . . 0 0 0

. . .

0 0 Dm 0 0 0

. . .

0 0 . . . 0 0 0

0 0 . . . 0 0 0


. (5.13)

We assume that Dm matrix has entries which are all equal to each other, and from

normalization condition it can be expressed as

Dm =
1

pm
Um (5.14)

where pm is the dimension of the Wigner-Jordan block and equal to the corresponding ele-

ment in Pascal’s triangle. Similar to the thermal fuel case, in order to determine the steady-

state temperature, we again calculate re and rd using the form of ρf given in Eq. (5.13) as

re =
1

pm
Tr[J−UmJ+] =

1

pm
(N −m+ 2)2

(
N

m− 2

)
,

rd =
1

pm
Tr[J+UmJ−] =

1

pm
m2

(
N

m

)
.

(5.15)

So that their ratio is given as

re
rd

=
(N −m)m+ 3m−N − 2

(N −m)m+m
= 1 +

2m−N − 2

(N −m)m+m
. (5.16)

From KMS condition, we can define the steady state temperature of the working qubit

as follows

T = − ~ω
kbln( (N−m)m+3m−N−2

(N−m)m+m
)
. (5.17)



24 Chapter 5: Harvesting Heat Exchange Coherences

One thing that we can immediately observe is that the final temperature depends on the

location of the Dm. For example, if m = 1 which corresponds to the ground state, the final

temperature will be zero. When it is located around the center, in the limit of large fuel

clusters, i.e. large N , the effective temperature of the working qubit can be approximated

as

T ≈ ~ω
kb

(N −m)m+m

N − 2m+ 2
. (5.18)

In contrary to the case where the coherences are thermally distributed, the scaling is

quadratic with the size of the fuel clusters when we have non-thermally distributed co-

herence blocks. We can observe that if Wigner-Jordan block is located on the lower half

m < (N+2)/2 the temperature is positive, and if it is on the upper side it becomes negative.
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1000
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kB

(Kelvin)

m=N/2, for even N

Figure 5.3: Effective temperature scaling for m = N/2, and even number of qubits in the

cluster
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m=N/4, for even N

m=3N/4, for even N
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Figure 5.4: Effective temperature scaling for m = N/4 and m = 3N/4 cases, and even

number of qubits in the cluster

This is because if it is located on the upper side, more states are in an excited state. As

m goes away from the central region towards the edges the scaling becomes less quadratic.

These are illustrated in Fig. 5.3 and Fig. 5.4. Similar graphs can be obtained for odd number

of qubits in the cluster too. Therefore, it is possible to conclude that, in order to observe

an advantage over just exposing the working qubit to a thermal environment, one needs to

consider fuel clusters that has a biased populations of HEC blocks.

5.5.2 Effects of Decoherence

The results in the previous subsection are valid for ideal environmental conditions. Here

we analyze how decoherence effects play role in the temperature scaling. In this case, if we

denote the off-diagonal elements in the density matrix or in other words coherences as C,
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due to decoherence the coherences are factorized by ξC [17]. Decoherence factor satisfies

|ξ| ≤ 1, and ξ = 0 corresponds to the complete decoherence, while ξ = 1 corresponds to

the complete coherence. Since our system is surrounded by the environment, atomic re-

laxation and atomic dephasing effects are present. We consider three types of decoherence

factors such as ξ = exp(−x), ξ = exp(−xN), and ξ = exp(−xN2), where x = γφ/γ is

the ratio of atomic dephasing and relaxation rates [18]. We plot the scaling of the effective

temperature of the qubit depending on the number of qubits in the cluster for three differ-

ent decoherence factors. Using parameters given in [18, 17], we plot the graphs for even

number of qubits in the cluster, and the graphs for odd number qubits is similar.

A. Figures for m = N/2
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Figure 5.5: Effective temperature scaling for decoherence factor ξ = exp(−x) with x =

0.15, 0.1, 0.05, 0.001
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(a) ξ = exp(−xN) with x = 0.14, 0.12, 0.1, 0.08
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(b) ξ = exp(−xN2) with x = 0.012, 0.01, 0.008, 0.006

Figure 5.6: Scaling of the effective temperature
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From the above figures we can observe that decoherence factor becomes important

when ξ = exp(−xN2). The scaling becomes linear instead of quadratic.

B. Figures for m = N/4, and m = 3N/4
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(a) ξ = exp(−x) with x = 0.15, 0.1, 0.05, 0.001
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(b) ξ = exp(−xN) with x = 0.14, 0.12, 0.1, 0.08

Figure 5.7: Scaling of the effective temperature
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m = N /4

m = 3N /4
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Figure 5.8: Effective temperature scaling for decoherence factor ξ = exp(−xN2) with

x = 0.012, 0.01, 0.008, 0.006

Decoherence factor of ξ = exp(−xN2) also becomes important for the cases shown

above. In this case, the linear scaling vanishes.

5.6 Work Output Potential and Lorenz Curves

We examine these coherent blocks as a resource theory. Here we consider thermo-majorization

criterion as a relative distance of our athermal blocks to the thermal Gibbs state [39].

According to this criterion if we order the probabilities of the system ρi in the way as

p(E1)eβE1 > p(E2)eβE2 > . . . in the decreasing order where β is the temperature of the

system that we take as a reference, and do the same ordering for system ρj . Then if we plot

Lorenz curves of the points (
∑
eβEk ,

∑
p(Ek)) of each system, the transition ρi → ρj is

possible if and only if the Lorenz curve of ρi is above the curve of ρj . Thermo-majorization

criterion is valid for the states with cohrences too if the density matrix is positive. Athermal

systems that we consider are positive, and each ρm state corresponds to the state withm−1
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excitations. The ordering for ρm will be as eβ(m−1)~ω0 > 0 as the state with m − 1 excita-

tions has probability p = 1, and the Lorenz curves for each state is illustrated in Fig. 5.9.

Z

1

1𝑒−β𝑁ħω0 𝑒−β(𝑁−1)ħω0 𝑒−β(𝑁−2)ħω0

Probability

Figure 5.9: Lorenz curves for athermal states with the Gibbs state as a reference state. State

ρN+1 withN excitations lies above all other states. Also, thermally generated and thermally

entangled states have the same Lorenz curves as the Gibbs state

Lorenz curves show the maximal work that can be obtained from the system [40]. For

example, thermally generated coherent fuel has the same Lorenz curve as the Gibbs state

and cannot produce additional work. Thermally entangled qubit fuels have a Lorenz curve

as the Gibbs state too because they can be diagonalized to the state with an effective temper-

ature. Athermal fuels, on the other hand, have a potential to extract useful work. However

the reverse is also true in order to create such athermal states additional work must be sup-

plied which corresponds to raising the Lorenz curve up to the desired one. This brings to a

conclusion that in order to utilize the benefits of athermal states we need to pay the cost of
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creating such states.

Thermally generated Dicke type of fuel is equivalent to the infinite heat bath since it

thermalizes the qubit to the same temperature independent of the number of qubits in the

cluster. Thermally entangled N-qubit fuel thermalizes linearly depending on the number of

qubits because every qubit acts as a resource and contributes energy. The quadratic scaling

for the case of athermal fuels is thermodynamically inconsistent, because we didn’t take

into account dephasing, and we expect the scaling to become linear too.
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ENGINEERING SQUEEZED THERMAL BATH

Squeezed thermal baths can enhance the efficiency of quantum heat engines and surpass

Carnot bound [9, 20, 41, 42]. Because of the difficulty of embedding atom in squeezed

vacuum, it is practical to engineer the atom and squeezed bath interaction [43]. In this

artificial squeezed bath interaction, it is possible to observe the same effects such as the

difference in the decay rates of the phase decay [44]. Here we present how we can engineer

squeezed thermal bath using our model. We can mimic the same interaction if we consider

the N-qubit cluster with nonzero HECs and squeezing coherences, and zero displacement

coherences λ = 0. The master equation of the interaction of the single qubit with the

N-qubit cluster is written as

ρ̇q(t) =Lsρq + Lhρq = µ(εσ+ρqσ
+ + ε∗σ−ρqσ

−)+

+ µ
rd
2

[2σ−ρqσ
+ − σ+σ−ρq − ρqσ+σ−] + µ

re
2

[2σ+ρqσ
− − σ−σ+ρq − ρqσ−σ+],

(6.1)

where µ = p(gτ)2. By using new notations n̄ = re/(rd − re), γ = µ(rd − re), Meiφ =

−2εµ/γ, we can express the master equation in the standard form as

ρ̇q =
1

2
γ(n̄+ 1)(2σ−ρqσ

+ − σ+σ−ρq − ρqσ+σ−) +
1

2
γn̄(2σ+ρqσ

− − σ−σ+ρq − ρqσ−σ+)−

− γMeiφσ+ρqσ
+ − γMe−iφσ−ρqσ

−.

(6.2)

This master equation corresponds to the interaction of the qubit with the squeezed thermal

bath with the following characteristics

n̄ = Nth(cosh2r + sinh2r) + sinh2r

M = (Nth + 1)cosh(r)sinh(r).
(6.3)
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Nth is the effective average photon number of the bath, and r is the squeezing parameter.

By choosing proper HECs re, rd, and squeezing coherences ε, we can engineer an effective

squeezed thermal bath with certain average photon number Nth, and squeezing parameter

r. Moreover, the following inequality

|M |2 ≤ n̄(n̄+ 1) (6.4)

holds [45]. This inequality ensures that the density matrix ρq is positive definite and trace-

preserving. In order to satisfy this condition HECs and squeezing coherences should obey

the following inequality

4|ε|2 ≤ rerd. (6.5)
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SINGLE QUBIT HEAT ENGINE

7.1 Bloch Equations of Qubit

We first derive the Bloch equations for the qubit interacting with general non-thermal bath.

In this case, all the coherences such as HECs, squeezing, and displacing coherences are

present. The master equation is given as

ρ̇q(t) = −i[Heff, ρq] + Lsρq + Lhρq =

= −i[pgτ(λσ+ + λ∗σ−), ρq] +
1

2
γ(n̄+ 1)(2σ−ρqσ

+ − σ+σ−ρq − ρqσ+σ−)+

+
1

2
γn̄(2σ+ρqσ

− − σ−σ+ρq − ρqσ−σ+)− γMeiφσ+ρqσ
+ − γMe−iφσ−ρqσ

−.

(7.1)

The solution to this master equation in the form of Bloch equations is as follows

˙〈σx〉 =− γ

2
(2n̄+M +M∗ + 1)〈σx〉 −

iγ

2
(M −M∗)〈σy〉+

1

2
ipgτ(λ− λ∗)〈σz〉,

˙〈σy〉 =− γ

2
(2n̄+M +M∗ + 1)〈σy〉 −

iγ

2
(M −M∗)〈σx〉 −

1

2
pgτ(λ+ λ∗)〈σz〉,

˙〈σz〉 =− γ[(2n̄+ 1)〈σz〉+ 1]− 2ipgτ [(λ− λ∗)〈σx〉+ i(λ+ λ∗)〈σy〉].

(7.2)

Their steady-state solution is given as

〈σx〉ss =
iγpgτ

4
[(2n̄+M +M∗ + 1)(λ− λ∗) + (M −M∗)(λ+ λ∗)]

d
,

〈σy〉ss =
−γpgτ

4
[(2n̄+M +M∗ + 1)(λ+ λ∗)− (M −M∗)(λ− λ∗)]

d
,

〈σz〉ss =
γ2

4
[(2n̄+M +M∗ + 1)2 + (M −M∗)2]

d
,

(7.3)
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where d is

d =
[
(pgτ)2((M −M∗)(λ2 − λ∗2)− 2|λ|2(2n̄+M +M∗ + 1))−

− γ2(2N + 1)

4
((2n̄+M +M∗ + 1)2 + (M −M∗)2)

]
.

(7.4)

The energy of the qubit is related to 〈σz〉. From 〈σz〉ss, we see that all the coherences

contribute to the final energy of the qubit. However, if there is no displacing coherences

λ = 0, the steady-state energy depends only on HECs, and off-diagonal elements of ρq

vanish. In this case, the steady-state energy of the qubit becomes

〈Hq〉ss = −~ωq
2

1

2n̄+ 1
. (7.5)

From this result we can observe that the squeezing coherences cannot contribute to the

final energy of the qubit if the displacing coherneces are zero. In this case, the steady-state

energy depends on HECs only.

7.2 Otto Cycle

We consider single qubit heat engine undergoing Otto cycle. The Otto cycle consists of

four strokes, isentropic compression, hot isochore, isentropic expansion, and cold isochore.

Compression, expansion, and isochoric processes imply that the working mode has a vol-

ume. However, we use qubit as a working mode. This raises a question as to how to run an

Otto cycle using a single qubit. Quantum version of the first law of thermodynamics should

be expressed in this case. The internal energy of the qubit is given as

U = 〈Hq〉 = Tr[ρqHq]. (7.6)

The change in the internal energy is expressed as

dU = Tr[dρqHq] + Tr[ρqdHq]. (7.7)

This resembles the classical first law of thermodynamics

dU = d̄Q+ d̄W, (7.8)
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and therefore we can define work and heat for quantum systems as [46, 47, 48]

d̄Q = Tr[dρqHq],

d̄W = Tr[ρqdHq].
(7.9)

In isentropic process there is no heat exchange with the heat reservoir d̄Q = 0. Using

this, we can formulate isentropic process as the process with constant qubit density matrix.

Similar to the classical case, the working mode does not perform work in isochoric process

in quantum version. Since the Hamiltonian of the qubit depends on the transition frequency

Hq = ~ωσz0/2, isochore corresponds to the constant transition frequency process.

N-qubit clusters at thermal equilibrium at temperature Tc will simulate effective cold

thermal bath. Thermally entangled qubit clusters as shown in Sec. 5.4 will model the hot

non-thermal bath. They are generated by adding HECs coherences to the N-qubit cluster at

temperature Th. Due to HECs the effective temperature of the non-thermal bath increases

to T ∗h .

Entropy vs. Frequency

Thermal
Non-

thermal

Figure 7.1: Otto cycle with single qubit as a working mode

Fig. 7.1 shows complete Otto cycle. The four strokes are described as follows:

1) Isentropic compression A→ B. The qubit is initially at a thermal state in contact with



Chapter 7: Single Qubit Heat Engine 37

cold bath at temperature βc and average photon number n̄c. Qubit’s density matrix and

average energy is given as

ρq =
e−

1
2
βc~ωcσ̂z

2cosh(1
2
βc~ωc)

, 〈Hq〉A = −~ωc
2

1

2n̄c + 1
(7.10)

It is isentropically compressed until its frequency becomes ωh. During isentropic process

the density matrix stays constant, and the qubit’s density matrix at state B is the same as in

state A. Therefore, the following transition occurs

〈Hq〉A = −~ωc
2

1

2n̄c + 1
→ 〈Hq〉B = −~ωh

2

1

2n̄c + 1
. (7.11)

2) Hot Isochore B→ C. The qubit is brought into contact with the hot non-thermal bath at

effective temperature β∗h with average photon number n̄h+∆n̄. Qubit relaxes isochorically

to the state C.

〈Hq〉B = −~ωh
2

1

2n̄c + 1
→ 〈Hq〉C = −~ωh

2

1

2n̄h + ∆n̄+ 1
. (7.12)

3) Isentropic expansion C→ D. The qubit undergoes an isentropic process and its density

matrix stays constant during the whole expansion. Isentropic expansion changes the qubit’s

frequency to ωc and the following transition occurs

〈Hq〉C = −~ωh
2

1

2(n̄h + ∆n̄) + 1
→ 〈Hq〉D = −~ωc

2

1

2n̄h + ∆n̄+ 1
.

(7.13)

4) Cold Isochore D → A. Finally the qubit is brought into contact with cold heat bath.

Qubit then relaxes to the initial thermal state

〈Hq〉D = −~ωc
2

1

2(n̄h + ∆n̄) + 1
→ 〈Hq〉A = −~ωc

2

1

2n̄c + 1
. (7.14)

The heat received from the hot reservoir is given as

Qh = 〈Hq〉C − 〈Hq〉B =
~ωh

2

2(n̄h + ∆n̄− n̄c)
(2(n̄h + ∆n̄) + 1)(2n̄c + 1)

, (7.15)

and the heat given to the cold reservoir is given as

Qc = 〈Hq〉D − 〈Hq〉A =
~ωc
2

2(n̄h + ∆n̄− n̄c)
(2(n̄h + ∆n̄) + 1)(2n̄c + 1)

. (7.16)
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Using these results, we can obtain the efficiency of the Otto engine as

η = 1− Qc

Qh

= 1− ωc
ωh
. (7.17)

The efficiency of the engine depends only on the ratio of the transition frequencies. How-

ever, the efficiency is bounded by the Carnot bound. Even though the hot bath is non-

thermal, we can obtain the efficiency bound by assigning an effective temperature to it [11].

As we showed in Sec. 5.4 thermally entangled fuel thermalizes the qubit to a hotter effective

temperature than the thermal qubit cluster

n̄h + ∆n̄ =
1

exp( ~ωh

kbT
∗
h

)− 1
. (7.18)

The efficiency bound is given as

η ≤ 1− Tc
T ∗h
, (7.19)

and this efficiency bound is greater than the efficiency of the type of engine with the hot

bath which is at thermal equilibrium without coherences

1− Tc
T ∗h

> 1− Tc
Th
. (7.20)

This shows that HECs can increase the efficiency bound of the quantum heat engine.
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CIRCUIT QED IMPLEMENTATION OF OUR MODEL

8.1 Circuit Model

In this chapter, we demonstrate how we can use circuit QED to model the interaction of the

working qubit with the coherent two-qubit cluster. We use three transmons embedded in a

resonator, and they are placed at the antinodes of the first harmonic. We assume that the

resonator is in a vacuum state, and the transmons are strongly detuned from the resonator.

Figure 8.1: Experimental Setup.

In this case the setup can be modeled as in the Fig. 8.2 [49]. By using current coils,

which control the flux through transmons, it is possible to tune the transition frequency of

the qubits.
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Figure 8.2: Model circuit.

The transmons are at the charge degeneracy points(ng = 1/2). The circuit models

the interaction of the transmons with the resonator, and it can be described by the Tavis-

Cummings Hamiltonian

HTC = ωra
+a+

3∑
i=1

ωai
2
σzi +

3∑
i=1

gi(a
+σ−i + aσ+

i ). (8.1)

Since the qubits are detuned from the resonator we can adiabatically eliminate the resonator-

qubit interaction term using the following transformation

U = exp[
3∑
i=1

gi
∆i

(a+σ−i − aσ+
i )]. (8.2)

Using Baker-Hausdorff formula and expanding to second order in gi we get the following

effective Hamiltonian

Heff ≈ [ωr +
3∑
i=1

g2
i

∆i

σzi ]a
+a+

1

2

3∑
i=1

[ωai +
g2
i

∆i

]σzi +
g1g2(∆1 + ∆2)

2∆1∆2

(σ+
1 σ
−
2 + σ−1 σ

+
2 )+

+
g1g3(∆1 + ∆3)

2∆1∆3

(σ+
1 σ
−
3 + σ−1 σ

+
3 ) +

g2g3(∆2 + ∆3)

2∆2∆3

(σ+
2 σ
−
3 + σ−2 σ

+
3 ).

(8.3)
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This Hamiltonian is similar to the total Hamiltonian of the interaction of a pair of qubits

with the working qubit, and is a valid candidate for simulation of such interaction. The

frequency of the resonator is shifted by± g2i
∆i

, and its sign shows whether the qubit is excited

or grounded. Thus it is a possible way for measuring the state of the qubits. Strong detuning

of the qubits from each other turns off the qubit-qubit interaction.

Qubits 2 and 3 will model the atomic pair beam, and the qubit 1 will be the working

qubit. Qubits 2 and 3 interact with qubit 1 for a short period of time τ , and then the

interaction is turned off. We reset the qubit pair to the initial state. Depending on the type

of interaction, the initial state of the qubit pair is either thermal state or non-thermal state.

After resetting, the interaction can be turned on again, and then the procedure is repeated

again.

8.2 Resetting Qubit Pair to a Thermal State

We show how the qubit pair can be reset to the thermal state. The resonator cavity can be

thermalized by applying thermal radiation to its input [50, 51] as shown in the figure below.

𝐒𝐰𝐡𝐢𝐭𝐞

ω𝐫

𝐂𝐢𝐧𝐃 𝐑𝐞𝐬𝐨𝐧𝐚𝐭𝐨𝐫

Figure 8.3: White noise source with power spectral density Swhite is centered at the resonator

frequency. It can be controlled using variable attenuation D. When connected to the input

of the resonator it acts as a thermal radiation source.
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This creates thermal photons in the cavity with average number given as

n̄th =
1

exp( ~ωr
kBTr

)− 1
. (8.4)

Thus we can assign Tr temperature to the resonator cavity. In order to reset the transmons to

thermal state we need to tune them to the resonator by changing the transition frequency. To

accomplish this we send current pulse to the current coils which create flux. On resonance,

the qubit reaches the thermal state at temperature of the cavity Tr [50]. After this we can

detune the transmons from the cavity and interact them with the working qubit again.

8.3 Resetting to a Non-thermal state

We show how we can reset the qubit pairs to the thermally entangled state. We will consider

the following non-thermal state

ρnth =


d3 0 0 0

0 d2 c 0

0 c d2 0

0 0 0 d1

 . (8.5)

If we diagonalize this state U−1ρnthU with unitary transformation given as

U =


1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1

 , (8.6)

we obtain the state

ρ0 =


d3 0 0 0

0 d2 + c 0 0

0 0 d2 − c 0

0 0 0 d1

 . (8.7)

If the coherences are less than the diagonal entries c � d2, the diagonal state ρ0 can

be approximated as a thermal state. In the previous section, we already showed how we
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can generate a thermal qubit pair. Also, any unitary matrix U of dimension N can be

decomposed into N generalized quantum Householder reflection (QHR) matrices [18, 52,

53]. In our case, transformation matrix U is a four-dimensional matrix, and we need four

generalized QHRs

U = M(ν1, φ1)M(ν2, φ2)M(ν3, φ3)M(ν4, φ4), (8.8)

where M(νi, φi) = 1 + (eiφi − 1)|νi〉〈νi|. The normalized vector |ν1〉 and phase φ1 are

defined as [52]

|ν1〉 =
1

e−iφ1 − 1

√
2sin(φ1

2
)

|1− u11|
(|u1〉 − |e1〉), (8.9)

where, |u1〉 is the first column of U, and φ1 = 2arg(1− u11)− π. For the rest of νi we take

|ui〉′ as the respective ith column of M(νi−1,−φi−1) . . .M(ν1,−φ1)U matrix instead of U.

For the case of unitary transformation matrix U given in Eq. 8.6, we obtain φ1 = φ2 =

φ3 = φ4 = π, with one-dimensional phase gate as M(ν4, φ4) = Φ(0, 0, 0, φ4). The normal-

ized vectors of QHRs are given as |ν1〉 = [0, 0, 0, 0]T , |ν2〉 = [0,−0.383, 0.924, 0]T , |ν3〉 =

[0, 0, 0, 0]T . Standard QHRs can be implemented using magnetic pulses on flux qubits. We

can realize non-thermal bath in practice with this method. After resetting, the interaction

of the qubit pair with the single qubit is turned on again.
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CONCLUSION

We investigated how coherent N-qubit clusters can act as a non-thermal bath. These

identically prepared clusters repeatedly interact with the single qubit. We showed that co-

herences can be classified according to their location in the density matrix of the cluster.

These coherences have a disjoint contribution to the interaction with the single qubit. They

can model effective thermal bath, and can coherently drive the qubit. Also, they can engi-

neer effective squeezed thermal bath.

We focused on heat exchange coherences (HECs), and studied how they contribute to

the effective temperature of the qubit. We found that HECs produced from the thermal en-

vironment cannot increase the effective temperature of the qubit more than the temperature

of the thermal environment. In order to increase the effective temperature, we need to per-

form additional work. For example, we considered thermally entangled and athermal fuels.

The former contributes to the effective temperature rise of the qubit, and the temperature

scales linearly with the number of the qubits in the cluster. Athermal fuels also contribute

to the effective temperature increase, and the scaling for this kind of fuel with the number

of qubits is quadratic.

Furthermore, we proposed Otto engine using our model and found its efficiency. The

efficiency depends only on the transition frequencies. However, we showed that the effi-

ciency bound can increase if we add HECs to our clusters.

Finally, we proposed how we can implement our model on a circuit QED platform. We

used transmons, and showed how a transmission line resonator can mediate the interaction

between the qubits.

To sum up, we demonstrated that non-thermal baths are a promising resource to create

efficient quantum heat engines. The main advantage of our model is that it is consisted of
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qubits only, and therefore there will not be interface challenge.
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Appendix A

TIME-EVOLUTION OPERATOR

A.1 2-qubit fuel

U(τ) =


1− (gτ)2σ−0 σ

+
0 −igτσ−0 −igτσ−0 0

−igτσ+
0 1− (gτ)2

2
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2
−igτσ−0
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0 1− (gτ)2σ+
0 σ
−
0

 . (A.1)

A.2 3-qubit fuel

U(τ) =
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2
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Appendix B

COEFFICIENTS OF THE LINDBLADIANS IN THE MASTER

EQUATION

B.1 2-qubit fuel

re 2a11 + a22 + a23 + a32 + a33

rd 2a44 + a22 + a23 + a32 + a33

λ a12 + a13 + a24 + a34

ε a14

Table B.1: The Lindbladian coefficients in the master equation for 2-qubit case

B.2 3-qubit fuel

re 3a11 + 2a22 + 2a23 + 2a44 + a55 + a66 + a77 + a23 + a24 + a34 + a32 + a42 + a43 + a56 + a57 + a67 + a65 + a75 + a76

rd a22 + a23 + a44 + 2a55 + 2a66 + 2a77 + 4a88 + a23 + a24 + a34 + a32 + a42 + a43 + a56 + a57 + a67 + a65 + a75 + a76

λ a12 + a13 + a14 + a25 + a26 + a35 + a37 + a46 + a47 + a58 + a68 + a78

ε a15 + a16 + a17 + a28 + a38 + a48

Table B.2: The Lindbladian coefficients in the master equation for 3-qubit case
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B.3 4-qubit fuel

re 4a11 + 3(a22 + a33 + a44 + a55) + 2(a66 + a77 + a88 + a99 + a1010 + a1111) + a1212 + a1313 + a1414 + a1515+

+a23 + a24 + a25 + a34 + a35 + a45 + a32 + a42 + a43 + a52 + a53 + a54 + a67 + a68 + a69 + a610 + a78 + a79 + a711+

+a810 + a811 + a910 + a911 + a1011 + a76 + a86 + a87 + a96 + a97 + a106 + a108 + a109 + a117 + a118 + a119 + a1110+

+a1213 + a1214 + a1215 + a1314 + a1315 + a1415 + a1312 + a1412 + a1413 + a1512 + a1513 + a1514

rd a22 + a33 + a44 + a55 + 2(a66 + a77 + a88 + a99 + a1010 + a1111) + 3(a1212 + a1313 + a1414 + a1515) + 4a1616+

+a23 + a24 + a25 + a34 + a35 + a45 + a32 + a42 + a43 + a52 + a53 + a54 + a67 + a68 + a69 + a610 + a78 + a79 + a711+

+a810 + a811 + a910 + a911 + a1011 + a76 + a86 + a87 + a96 + a97 + a106 + a108 + a109 + a117 + a118 + a119 + a1110+

+a1213 + a1214 + a1215 + a1314 + a1315 + a1415 + a1312 + a1412 + a1413 + a1512 + a1513 + a1514

λ a12 + a13 + a14 + a15 + a26 + a29 + a210 + a37 + a39 + a311 + a48 + a410 + a411 + a56 + a57 + a58 + a613 + a614+

+a713 + a715 + a814 + a815 + a912 + a913 + a1012 + a1014 + a1112 + a1115 + a1216 + a1316 + a1416 + a1516

ε 2(a16 + a17 + a18 + a19 + a110 + a111 + a212 + a213 + a214 + a312 + a313 + a315 + a412 + a414 + a415 + a513 + a514+

+a515 + a616 + a716 + a816 + a916 + a1016 + a1116)

Table B.3: The Lindbladian coefficients in the master equation for 4-qubit case



Appendix C

RATIO OF THE SUCCESSIVE WIGNER-JORDAN BLOCK

TRACES

The density matrix ρf , we can either be written using the product basis |m1,m2, . . . ,mN〉

with mi = ±1/2, or the total spin (Dicke) basis |jm〉 with j = N/2 and m = −j . . . j.

Note that, each m corresponds to a Wigner-Jordan block in the product basis. If initially

ρf (0) has no finite element between states of different m, then the dynamics governed by

Eq. 4.1 do not mix elements with different m, meaning

ρf (0) =
∑
jm

ρjm(0)|jm〉〈jm| −→ ρf (t) =
∑
jm

ρjm(t)|jm〉〈jm|. (C.1)

In our case, all the qubits in the cluster are initially at the ground state and therefore, only

ρjm=−N/2 = 1. The effect of the time evolution under L(ρf ) in the Dicke basis will be

to thermally populate every |j,m〉 with m = −j . . . j corresponding to the temperature T

such that ρjm = e−k~ω/T/Z, where k is the number of excitations and Z =
∑N

n=0 e
−n~ω/T ,

as depicted below.

0

0

00

0

0

𝑗 = 𝑁/2

𝑚 = −𝑗… 𝑗

𝑗 = 𝑁/2
𝑚 = −𝑁/2

ℒ(ρf)

Now, if we transform to computation basis by a unitary transformation, the population

of every |j,m〉 state will be distributed to the corresponding Wigner-Jorden block. Hence,
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the relation between the ratio of the populations of |j,m〉 and |j,m − 1〉 states is directly

related to the ratio of the traces of two consecutive Wigner-Jordan blocks. These ratios can

then be determined as

Tr[Di+1]

Tr[Di]
=
e[−(k+1)~ω]/T

e[−k~ω]/T
= e−~ω/T =

n̄

n̄+ 1
. (C.2)

0

0

0

𝑚 = −𝑗… 𝑗

𝑗 = 𝑁/2

𝑼
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