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ABSTRACT

In this thesis, we �rst introduce number �elds and their rings of integers. We show

that ring of integers OK of a number �eld K is an integrally closed, Noetherian ring

such that its prime and maximal ideals coincide. Namely, OK is a Dedekind domain.

To study OK in details, we present a geometric approach so thatK is embedded inside

a �nite dimensional real vector space. By doing so, we show that the class number

hK of K is �nite. In addition, we characterize the group of units of OK via geometric

methods. After that, we de�ne the Dedekind zeta function ζK(s) of a number �eld

K. It is a generalization of the Riemann zeta function ζ(s). Moreover, we present the

Analytic Class Number Formula which states that ζK(s) converges for any Re(s) > 1

and has a simple pole at s = 1. Moreover, its residue is given by
2r1+r2πr2RK

|µ(K)|
√
|∆K |

hK

where r1 is the number of real embeddings of K, r2 is the number of non-conjugate

complex embeddings, RK is the regulator of K, ∆K is the discriminant of K and

µ(K) is the group of roots of unity in K. Lastly, we present various arguments to

evaluate hK for various number �elds.
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ÖZETÇE

Bu çal�³mada ilk olarak say� cisimleri ve bu say� cisimlerinin cebirsel tamsay� hal-

kalar�na de§inece§iz. Herhangi bir say� cisminin cebirsel tamsay�lar halkas�n�n tam-

say�ca kapal� bir Noether halkas� oldu§unu ve asal ile maksimal ideallarinin örtü³tü§ünü

gösterece§iz. Bu halkay� detayl�ca çal�³mak için geometrik bir metod kullanaca§�z.

Böylelikle, bu say� cisminin ideal s�n�f grubunun sonlu oldu§unu gösterece§iz. Ek

olarak, geometrik yöntemler ile herhangi bir cebirsel tamsay�lar halkas�n�n tersinir

elemanlar�n� karakterize edece§iz. Sonras�nda ise, say� cisimleri için karma³�k say�lar

üzerinde tan�ml� Dedekind zeta fonksiyonunu tan�mlay�p bu fonksiyonun 1 noktas�nda

basit bir kutbu oldu§unu gösterece§iz. Dahas�, fonksiyonun bu noktadaki kal�nt�s�n�n

ilgili say� cisminin de§i³mezleri taraf�ndan verildi§ini görece§iz. Son olarak, say� cisim-

lerinin ideal s�n�f say�s�n�n farkl� yollarla hesaplama yollar�ndan bahsedece§iz.
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INTRODUCTION

In this thesis, we study �nite extensions of the �eld of rational numbers, called

number �elds. Since the degree of the extension is �nite, every element of a number

�eld is a root of a non-zero polynomial with coe�cients in Q. The elements which

satisfy a non-zero, monic polynomial with integer coe�cients constitute a subring of

the number �eld called ring of integers of K. The ring of integers OK is a Noetherian,

integrally closed ring such that its prime and maximal ideals coincide. In general, the

unique factorization in OK fails. On the other hand, the unique factorization property

is preserved in the set of ideals of OK .

In the �rst chapter, we introduce the notion of integrality, and de�ne Noetherian

rings together with Dedekind rings. In particular, we develop the necessary back-

ground in order to understand OK and to show that it is a Dedekind domain.

In Chapter 2, we begin to study number �elds and their rings of integers. Note

that if the degree of the number �eld over Q is 2, we call it quadratic and if the degree

is 3, it is called cubic. In this chapter, we study their rings of integers brie�y. We see

that OK is a Dedekind domain. In addition, we introduce the norm of an ideal and

recall the class group Cl(K) of K. However, we are not able to show that the class

number of K is �nite, yet.

Next, we study the geometry of number �elds in Chapter 3. We introduce lattices

and develop geometrical techniques to understand the structure of OK . To do so, we

embed OK inside a �nite dimensional real vector space. First, we prove that Cl(K),

namely the class number hK of K is �nite. After that, we prove Dirichlet's Unit

Theorem:



Let K be a number �eld of degree n over Q. Then,

O×K ∼= µ(K)× Zr1+r2−1.

where n = r1 + 2r2 such that r1 is the number of real embeddings of K, r2 is the

number of non-conjugate complex embeddings of K and µ(K) is the �nite group of

roots of unity in K.

Thus, we characterize the unit group of OK .

In Chapter 4, we introduce the Dedekind zeta function which is named for Julius

Wilhelm Richard Dedekind. Then, we present the main result of this thesis, the

Analytic Class Number Formula, which consists of important invariants of a number

�eld K.

Theorem. The Dedekind zeta function ζK(s) converges for any s with Re(s) > 1,

has a simple pole at s = 1 and

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2RK

|µ(K)|
√
|∆K |

hK .

where hK is the class number of K and RK is the regulator of K.

The positive integer hK measures how far is OK being a PID. Loosely speaking,

∆K measures the size of OK and RK measures the density of units in OK .

The formula was �rst introduced by Peter Gustav Lejeune Dirichlet in 1839. His

work was not a residue calculation but he studied the limit
T (x)

x
as x goes to in�nity,

where T (x) is the number of ideals with norm bounded by x. By doing so, Dedekind

proved that lims→1+(s−1)ζK(s) exists and given by the formula above for any number

�eld K.

Notice that on the left-hand side, we have an analytic object and on the right-hand

side we have arithmetic objects. So, we can say that aritmetic information can be

encoded by analytic objects.

In Chapter 5, we introduce di�erent techniques to calculate the class number of

K. We present binary quadratic forms to calculate the class number of an imaginary

quadratic �eld. We continue with continued fractions, which can be useful to solve
2



Pell's Equation. As a consequence, we �nd the fundamental unit of a real quadratic

number �eld. Then, via Minkowski's bound, we study the structure of the ideal class

group and based on our knowledge on ideals of OK . Finally, we evaluate the class

number of a quadratic number �eld via L−functions.

3



Chapter 1

PRELIMINARIES

1.1 Integrality

We �rst introduce the integrality of elements over a ring. In this thesis, a ring always

be a commutative ring with unity. Detailed arguments on the context can be found

in [1], [2] and [3].

Let B be a ring and A a subring of B.

De�nition 1.1. An element α ∈ B is integral over A if for some monic non-zero

polynomial f(X) ∈ A[X] we have f(α) = 0.

The following theorem states equivalent conditions for an element to be integral.

Theorem 1.2. [1, Chapter 2.1, Theorem 1] Let α be an element of B. Then the

following statements are equivalent:

1. αn + an−1α
n−1 + · · ·+ a1α + a0 = 0 for some an−1, . . . , a0 ∈ A and n ∈ Z≥1.

2. A[α] is a �nitely generated A-module.

3. B has a subring containing A and α which is �nitely generated as an A-module.

Proof. (1) =⇒ (2). Assume that y is an element of A[α] such that

y =
m∑
i=0

aiα
i

for some ai ∈ A for any i = 0, . . . ,m.

It is enough to show that for any i ≥ n, αi can be written as a linear combination

of 1, . . . , αn−1 with coe�cients in A.
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We continue by induction on i ≥ n. Suppose �rst that i = n. Then,

αi = αn = −a0 − a1α− · · · − an−1α
n−1.

Let i > n and for any j ≤ i − 1, suppose that αj can be written in terms of

1, α, . . . , αn−1. Then,

αi = −a0α
i−n − a1α

i−n+1 − · · · − an−1α
i−1

and we are done.

(2) =⇒ (3). Taking B as A[α] gives the result.

(3) =⇒ (1). Let B is generated by s1, . . . , sn as an A-module. Since αsi ∈ B for

any i = 1, . . . , n, we can write

αsi =
n∑
j=1

mijsj

for some mij ∈ A and 1 ≤ i, j ≤ n. De�ne the matrix M = (mij)1≤i,j≤n and let

S be the matrix (s1, . . . , sn)T . Then, αS = MS or (αId −M)S = 0. However, S is

non-trivial therefore (αId−M) must have a non-trivial kernel.

Thus, det(αId−M) = αn +
n−1∑
i=0

aiα
i = 0 where each ai ∈ A since the coe�cients

of M belong to A. Therefore, we �nd the desired equation.

An equation αn+an−1α
n−1 + · · ·+a1α+a0 = 0 for some an−1, . . . , a0 ∈ A, n ∈ Z≥1

is called an equation of integral depence of α over A.

Proposition 1.3. [1, Chapter 2.1, Proposition 1] Let {x1, . . . , xn} ⊆ B be a �nite

set of elements which are integral over A. If for any i, the element xi is integral over

A[x1, . . . , xi−1] then A[x1, . . . , xn] is a �nitely generated A-module.

By Theorem 1.2 and Proposition 1.3 we conclude the following:

Corollary 1.4. If α, β ∈ B are integral over A, then so are α± β and αβ.
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The corollary above states that the set of integral elements over a ring constitutes

a ring. In particular, if we set A′ := {α ∈ B|α is integral over A}, then A′ is a subring

of B containing A.

De�nition 1.5. Let B be a ring and A a subring of B.

The set of elements A′ = {α ∈ B|α is integral over A} is called the integral

closure of A over B. If every element of B is integral over A, then B is said to be

integral over A. In this case, we also say that B is an integral extension of A.

Naturally, the following proposition arises:

Proposition 1.6. [1, Chapter 2.1, Proposition 2] Let A be a subring of a ring B and

B a subring of a ring C so that B is integral over A and C is integral over B. Then,

C is integral over A.

Now, let us see what happens in an integral extension when we have a �eld instead

of a ring.

Proposition 1.7. Suppose that B is a domain, A is a subring of B such that B is

integral over A. Then, A is a �eld if and only if B is a �eld.

Proof. Let A be a �eld and take any non-zero element β ∈ B. Since B is integral over

A, A[β] is a �nite dimensional vector space over A by Theorem 1.2. Note that the

transformation a 7→ βa is an A− linear transformation on A[β]. Since β 6= 0 and A

is a domain, the kernel of the transformation is trivial and the map is injective. Also,

since A[β] is a �nite dimensional vector space, the map is surjective. Thus, there

exists some β′ ∈ A[β] such that ββ′ = 1. Therefore, B is a �eld.

On the other hand, if B is a �eld, take any non-zero α ∈ A. Then, there exist

α−1 ∈ B and it is integral over A so we can write

α−n + an−1α
−n+1 + · · ·+ a1α

−1 + a0 = 0

for some an−1, . . . , a0 ∈ A. If we multiply both sides with αn−1 we get
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α−1 = −(a0α
n−1 + a1α

n−2 + · · ·+ an−1) ∈ A

and we are done.

De�nition 1.8. Let A be a domain and K be its �eld of fractions. We call the

integral closure of A in K simply as integral closure of A. In addition, A is called

integrally closed if its integral closure is equal to itself.

For instance, any unique factorization domain is integrally closed. Let us prove it.

Example 1.9. If A is a unique factorization domain then it is integrally closed.

Proof. Let K = Frac(A) and α ∈ K. Then αn + cn−1α
n−1 + · · · + c1α + c0 = 0 for

some cn−1, . . . c0 ∈ A.

Since α = a
b
for some a, b ∈ A, b 6= 0 we have (a

b
)n+cn−1(a

b
)n−1+· · ·+c1(a

b
)+c0 = 0.

Multiplying both sides with bn results in an + bcn−1a
n−1 + · · · + bn−1c1a + bnc0 = 0.

Therefore, an = bγ for some γ ∈ A and b divides an implies b divides a since A is a

UFD. As a conclusion, b is a unit and a
b

= α ∈ A.

Now, let R be a ring and K ⊆ R be a �eld.

De�nition 1.10. Let α ∈ R. We say that α is algebraic over K if

anα
n + an−1α

n−1 + · · ·+ a1α + a0 = 0

for some an, . . . , a0 ∈ K, not all equal to 0.

Let us say that an 6= 0, so, since K is a �eld anαn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

implies that αn + bn−1α
n−1 + · · ·+ b1α+ b0 = 0 for some bn−1, . . . , b0 ∈ K. Thus, for

an algebraic element α ∈ R there exists a non-zero, monic polynomial f(X) ∈ K[X]

satisfying f(α) = 0.

In addition, anαn + an−1α
n−1 + · · ·+ a1α+ a0 = 0 in which not all the coe�cients

are zero, it can be said that αn, . . . , α, 1 are linearly dependent. If β ∈ R is not



8 Chapter 1: Preliminaries

algebraic over K then it is called transcendental over K. In this case, for any n ∈ Z≥0

the elements {1, β, . . . , βn} are linearly independent.

Let α ∈ R be an element which is algebraic over K.

Write αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0 for some an−1, . . . , a0 ∈ K. By Theorem

1.2, K[α] is �nitely generated, therefore, K[α] is a vector space over K of �nite

dimension.

De�nition 1.11. R is algebraic over K if every element of R is algebraic over K. In

particular, if R is a �eld then it is called an algebraic extension of K

De�nition 1.12. Let L be a �eld and K ⊆ L a sub�eld of L. The �eld L is a

K-vector space and its dimension over K is denoted by [L : K].

Let α ∈ R be an algebraic element over K. De�ne the following homomorphism:

ϕ : K[X]→ R

f(X) 7→ f(α)

a 7→ a,∀a ∈ K

Let us make some observations. Since K is a �eld, K[X] is a principal ideal

domain. Therefore, Ker(ϕ) ⊆ K[X] is a principal ideal so that it is generated by

a single element. Also if α is algebraic over K, then we have a non-trivial element

in Ker(ϕ), so Ker(ϕ) 6= (0). Therefore, there exists a monic, nonzero polynomial

f(X) ∈ K[X] such that Ker(ϕ) =< f(X) >. Here, f(X) is determined by K

and α uniquely. Lastly, image of ϕ is K[α] and we have the canonical isomorphism

K[X]/ < f(X) >∼= K[α].

De�nition 1.13. f(X) ∈ K[X] in the argument above is called the minimal polyno-

mial of α over K and will be denoted as mα(X).

The minimal polynomial mα(X) is irreducible and for any g(X) ∈ K[X] satisfying

g(α) = 0, we have mα(X)|g(X).
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Proposition 1.14. If f(X) ∈ K[X] is a non-constant polynomial, then there exists

some �nite extension L of K such that f(X) splits into linear factors over L.

De�nition 1.15. K is called algebraically closed if any non-constant f(X) ∈ K[X]

can be written as a product of linear factors in K.

It can be shown via Zorn's Lemma that any �eld can be embedded into an alge-

braically closed �eld.

De�nition 1.16. An extension L of K is called an algebraic closure of K if every

polynomial over K splits into linear factors over L. We will denote L by K.

Now, let L1 and L2 be two �elds containing K.

De�nition 1.17. Suppose that ϕ : L1 → L2 is a �eld isomorphism. If, ϕ(a) = a for

any a ∈ K then ϕ is called a K − isomorphism of L1 onto L2. In this case, they are

called conjugate over K or K − isomorphic.

De�nition 1.18. Let α1, α2 belong to L1 and L2 respectively. If there exists a

K − isomorphism ϕ : K(α1) → K(α2) such that ϕ(α1) = α2 then, α1 and α2 are

called conjugate over K.

Before closing this subsection, we will give the following theorems without proofs.

They will be quietly used in Chapter 2 and Chapter 3. (See [1, Chapter 2.4] for the

proofs).

Theorem 1.19. [1, Chapter 2.4, Theorem 1] Let L be an extension of K of degree n.

Then, there exist n−many distinct K− isomorphisms from L to any �eld containing

K.

Theorem 1.20 (Primitive Element Theorem). [1, Chapter 2.4, Corollary 1] Suppose

that K is �nite or of characteristic 0 and L is an extension of K of degree n. Then,

there exists an element γ ∈ L such that L = K(γ).
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1.2 Norm and Trace

In this section, let us say that B be a ring and A ⊆ B a subring where B is a free

A-module of �nite rank n unless otherwise is stated.

Now, let α be an element of B.

De�ne the following map, an A-module endomorphism:

µα : B → B

x 7→ αx

If we choose a base for B, then µα can be represented by an n × n matrix. By

trace and determinant of µα, we mean the trace and determinant of this matrix,

respectively. It is important to note that they are independent of the choice of base

for B.

De�nition 1.21. The trace of µα is called the trace of α relative to B and A and is

denoted by TrB/A(α). Determinant of µα is called the norm of α relative to B and A

and is denoted by NB/A(α).

Also, we can de�ne the characteristic polynomial of α relative to B and A,

χB/A(X). It is de�ned as the characteristic polynomial of µα, namely, det (X · I − µα).

After doing some matrix arithmetic we can show that if α, β ∈ B,

then TrB/A(α+β) = TrB/A(α)+TrB/A(β). Also, we haveNB/A(αβ) = NB/A(α)NB/A(β).

In particular, for any a ∈ A, TrB/A(aα) = aTrB/A(α) and NB/A(aα) = anNB/A(α).

Proposition 1.22. [1, Chapter 2.6, Proposition 1] Assume that F is a �nite �eld or

a �eld of characteristic 0, E an algebraic extension of F with [E : F ] = n and α ∈ E.

Furthermore, assume that α1, . . . , αn are the roots of mα(X), the minimal polynomial

of α over K, such that αi is repeated [E : F [αi]] times. Then, χE/F (X) =
n∏
i=1

(X−αi)

, TrE/F (α) =
n∑
i=1

αi and NE/F (α) =
n∏
i=1

αi.

Therefore, χL/K(X) = (mα(X))[L:K[α]].
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Proposition 1.23. [1, Chapter 2.6, Proposition 1] Given an extension L/K of de-

gree n where K is of characteristic 0, α ∈ L that is algebraic over K with minimal

polynomial mα(X) we have χL/K(X) = (mα(X))[L:K[α]].

Proposition 1.24. Let A be a domain, K = Frac(A) and of characteristic 0, L

a �nite extension of K. Suppose that α ∈ L is an integral element over A with

characteristic polynomial relative to L and K: χL/K(X) = Xn + cn−1X
n−1 + · · · +

c1X + c0. Then, cn−1, . . . c0 and both TrL/K(α) and NL/K(α) are integral over A.

Proof. By Proposition 1.22, we can say that χL/K(X) = (X−α1) . . . (X−αn). There-

fore, the coe�cients of the polynomial are sums of products of α′is. We also know

that each αi is a conjugate of α so that there exists a K − isomorphism ϕi from

K[α] into K[αi] such that ϕi(α) = αi. Furthermore, since α is integral over A,

αm + am−1α
m−1 + · · ·+ a1α+ a0 = 0 is satis�ed for some am−1, . . . , a0 ∈ A. Applying

ϕi to this equation, we conclude that αi is integral over A. Then by Corollary 1.4,

we get the result.

As a consequence, we have the following corollary:

Corollary 1.25. In addition, if A is integrally closed, then

an−1, . . . , a0 and TrL/K(α), NL/K(α) ∈ A.

Now, we de�ne the discriminant of a collection elements of B. It is quite important

because it can be used to check whether a collection of elements give a base or not.

De�nition 1.26. Let B be a ring, A a subring of B such that B is a free A-module of

�nite rank n and let x1, . . . , xn ∈ B. We de�ne the discriminant of (x1, . . . , xn) ⊆ Bn

as det(TrB/A(xixj)). We denote it by D(x1, . . . , xn) and it is an element of A.

Proposition 1.27. [1, Chapter 2.7, Proposition 3] Let F be a �nite �eld or of

characteristic 0, E an extension of F of degree n and let σ1, . . . , σn be the distinct

F − isomorphisms from E to F . Then, for any x1, . . . , xn ∈ E, D(x1, . . . , xn) =

det(σi(xj))
2
1≤i,j≤n. If {x1, . . . , xn} is a base for E over F , then D(x1, . . . , xn) 6= 0.
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Proof. LetM = (σi(xj))1≤i,j≤n. Then, (MTM)ij = σ1(xi)σ1(xj)+· · ·+σn(xi)σn(xj) =

σ1(xixj) + · · ·+ σn(xixj) = TrB/A(xixj).

For the second part, see [1, Chapter 2.7, Proposition 3].

The following theorem gives an important property of the integral closure of a

ring inside a �eld extension. Before the proof, we give a remark:

Remark 1.28. Considering L as a �nite dimensional K-vector space, we can say that

the bilinear form (α, β) 7→ TrL/K(αβ) is non-degenerate: if TrL/K(αβ) = 0 for any

β ∈ L then α = 0. In addition, if (x1, . . . , xn) is a base of L over K, then there exists

a base (y1, . . . , yn) of L over K where

TrL/K(xiyj) = δij, (1 ≤ i, j,≤ n).

Theorem 1.29. [1, Chapter 2.7, Theorem 1] Suppose that A is an integrally closed

ring, K = Frac(A), L an extension of K of degree n, A′ the integral closure of A in

L and K has characteristic 0. Then, for some free A-module C of rank n, A′ is an

A− submodule of C.

Proof. Assume that (e1, . . . , en) is a base of L over K. Every ei satis�es an equation

of the form ane
n
i + an−1e

n−1
i + · · · + a1ei + a0 = 0 with aj ∈ A for every j = 0, . . . , n

and an can be chosen to be non-zero. Multiplying the equation by an−1
n gives us

(anei)
n + an−1(anei)

n−1 + · · ·+ a1a
n−2
n−1(anei) + an−1

n a0 = 0. Therefore, anei is integral

over A. Set e
′
i = anei. Then we have that (e

′
1, . . . , e

′
n) is a base of L over K and

e
′
i ∈ A′ for any i.

Now, by the remark above, we have a basis

(f1, . . . , fn) of L over K and TrL/K(e
′
ifj) = δij, (1 ≤ i, j,≤ n). Take any z ∈ A′.

z can be written as
n∑
j=1

bjfj for some bj ∈ K. Since e
′
i ∈ A for any i, e

′
iz ∈ A′, thus,

TrL/K(e
′
iz) ∈ A by Corollary 1.25. Therefore, TrL/K(e

′
iz) = TrL/K(

n∑
j=1

bje
′

ifj) =
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n∑
j=1

bjTrL/K(e
′

ifj) =
n∑
j=1

bjδij = bi. In conclusion, bi ∈ A for any i, therefore A′ is a

submodule of
n∑
j=1

Afj which is a free A-module.

Corollary 1.30. In addition, if A is PID then A′ is a free A-module of rank n.

Proof. We know by [1, Chapter 1.5, Theorem 1] that A′ is a free A-module of rank

q, 0 ≤ q ≤ n. However, we know by Theorem 1.29 above that A′ contains a base of

L over K. Thus, A′ is a free A-module of rank exactly n.

1.3 Noetherian Rings

Let A be a ring and M an A-module. Then, the following statements are equivalent:

Theorem 1.31. [1, Chapter 1.4, Theorem 1]

1. Any collection of submodules of M that is non-empty contains a maximal ele-

ment.

2. Any increasing sequence of submodules of M is stationary.

3. Any submodule of M is �nitely generated.

Proof. (1) =⇒ (3). Let N ≤ M and C = {E ≤ N |E is �nitely generated}.

C contains 0 so that it is non-empty. Then, it has a maximal element, say E. If

E 6⊆ N then for some x ∈ N − E, (E, x) is a �nitely generated submodule of N and

E 6⊆ (E, x). This contradicts with the maximality of E.

(3) =⇒ (2). Let (Ei)i∈N be an increasing sequence of submodules of M . Let us

say that E =
⋃
i∈N

Ei. We can say that E is generated by elements {e1, . . . , ek} where

ei ∈ Eni for i = 1, . . . , k. Now, set n = max
1≤i≤k

(ni).

Then,
⋃
i∈N

Ei ⊆ En ⊆ En+1 ⊆ · · · ⊆
⋃
i∈N

Ei. Therefore, En+j = En for any j ∈ N so

the sequence is stationary.
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(2) =⇒ (3). Suppose that N ≤ M is not �nitely generated so we can �nd

elements xi ∈ N for some i ∈ I where I is a countable index set. Now, consider

the sequence of submodules (x1) ⊆ (x1, x2) ⊆ . . . . The sequence does not terminate

because otherwise N would be �nitely generated, thus, we are done.

De�nition 1.32. M is called a Noetherian A-module if one of the statements above

holds. A is called a Noetherian ring if it is Noetherian as an A-module.

Now let us give the following proposition without a proof.

Proposition 1.33. [1, Chapter 3.1, Proposition 1] Assume that A is a ring, M

an A-module and M ′ ≤ M .Then, M is Noetherian if and only if M ′ and M/M ′ is

Noetherian.

Corollary 1.34. Assume that M1, . . . ,Mn are Noetherian A-modules. Then,
n∏
i=1

Mi

is a Noetherian A-module.

Proof. We haveM1
∼= M1×{0} ≤M1×M2 and the quotientM1×M2/M1×{0} ∼= M2.

Then, by above proposition M1 ×M2 is Noetherian. By induction on n, we conclude

the result.

Corollary 1.35. If A is Noetherian and M is a �nitely generated A-module, then M

is Noetherian.

Proof. Let us say that the A-module M is generated by n elements.

Then, we know by [1, Chapter 1.4] that M is isomorphic to a quotient of a free

module, namely An/M ′. By Corollary 1.34, An is Noetherian. Then, by Proposition

1.33 we conclude the result.

We will close this section with the proposition below.

Proposition 1.36. Suppose that A is Noetherian and integrally closed in its �eld of

fractions K. Suppose also that K has characteristic 0 and L is a �nite extension of K

of degree n. De�ne A′ to be the integral closure of A in L. Then, A′ is a Noetherian

ring and �nitely generated as an A-module.



Chapter 1: Preliminaries 15

Proof. By Theorem 1.29, we can say that A′ is a submodule of a free A-module of

rank n. In addition, A′ is a �nitely genetared A-module and by the corollary above,

it is Noetherian as an A-module. Lastly, the ideals of A′ correspond to A-submodules

of A′ so that they satisfy the conditions to be Noetherian given in Theorem 1.31.

Lemma 1.37. [1, Chapter 3.3, Lemma 3] If A is Noetherian and I is an ideal of A,

then for some prime ideals p1, ..., pn we have p1...pn ⊆ I. If A is a Noetherian domain

and 0 6= I is an ideal of A, then q1...qn ⊆ I for some non-zero prime ideals q1, ..., qn.

Proof. We will prove the second part of the theorem since the �rst part follows from

the same argument. Suppose that A is a Noetherian domain. Let C be the collection

of non-zero ideals of A that does not contain a product of non-zero prime ideals. Let

C be non-empty. A is Noetherian, therefore we have a maximal element I ∈ C. I

is not prime because otherwise it would lie in C, so that for some x, y ∈ A, x /∈ I

and y /∈ I, xy ∈ I. Now, (I, x) and (I, y) are two ideals that properly contain I

and they do not belong to C since I is maximal. Therefore, p1 . . . pr ⊆ (I, x) and

q1 . . . qs ⊆ (I, y) , for some prime ideals p1, . . . , pr and q1, . . . , qs.

Finally, since xy ∈ I we have p1 . . . prq1 . . . qs ⊆ (I, x)(I, y) ⊆ I, a contradiction.

1.4 Dedekind Domains

De�nition 1.38. Let A be an integral domain. A is called a Dedekind domain if the

following statements are satis�ed:

1. A is Noetherian.

2. A is integrally closed.

3. Every non-zero prime ideal of A is maximal.

For instance, any PID is Dedekind.

Now, we give a crucial theorem on the structure of Dedekind domains. The theo-

rem allows us to say that for any number �eld K, OK is a Dedekind domain.
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Theorem 1.39. [1, Chapter 3.4, Theorem 1] Suppose that A is a Dedekind domain

with Frac(A) = K, L is a �nite extension of K of degree n and A′ is the integral

closure of A in L. Suppose also that the characteristic of K is 0. Then, A′ is a �nitely

generated A-module and a Dedekind domain.

Proof. First of all, A′ is integrally closed by de�nition. Also, by Proposition 1.36, we

can say that A′ is a Noetherian ring and �nitely generated as an A-module. We show

that every non-zero prime ideal of A′ is maximal and we are done.

Let P 6= (0) be a prime ideal of A′ and take a non-zero element α ∈ P . Since α

is integral over A, we can write an equation of integral depence of α over A with a

smallest degree possible as:

αn + an−1α
n−1 + · · ·+ a1α + a0 = 0

for some an−1, . . . , a1, a0 ∈ A.

We can say that a0 6= 0 because otherwise we would have an equation of degree

n − 1. Let us denote the ideal generated by α inside A′ with A′α. Then, by the

equation above a0 ∈ A′α ∩ A ⊆ P ∩ A, therefore, P ∩ A 6= (0). It can be veri�ed

that P ∩ A is a prime ideal of A and since A is a Dedekind domain, it is maximal.

Thus, A/(P ∩ A) is a �eld. Now, since A′ is integral over A, we can say that A′/P

is integral over A/(P ∩ A). This is because if we take an element β̄ from A′/P then

we can write an equation of integral depence of β over A and re-write the equation

modulo P ∩A. To add, we can say that A/(P ∩A) can be identi�ed with a subring of

A′/P . Then by Proposition 1.7, we conclude that A′/P is a �eld and P is a maximal

ideal of A′.

Let us call the ideals of A as integral ideals. Suppose that I is an A− submodule

of K so that for some 0 6= α ∈ A, αI ⊆ A. In this case I is called a fractional ideal

of A. Any integral ideal is a fractional ideal. Ideal operations on fractional ideals

are de�ned similarly. Fractional ideals give a monoid under multiplication with the

identity element A.
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Theorem 1.40. [1, Chapter 3.4, Theorem 2] Suppose that A is a Dedekind Domain.

If A is not a �eld, then every prime ideal of A is invertible and inverse of a prime

ideal is a fractional ideal of A.

Proof. Let p be a prime ideal of A. Since A is not a �eld and p is maximal, p 6= (0).

De�ne p′ = {α ∈ K|αp ⊆ A}. p is a fractional ideal of A.

Now, A ⊆ p′ since for any x ∈ A, xp ⊆ A. We have pp′ ⊆ A and p = pA ⊆ p′p.

Thus, p ⊆ pp′ ⊆ A but A is a Dedekind domain so we have either pp′ = A or pp′ = p.

If the latter holds, take an arbitrary element α ∈ p′. For any n ∈ N,

αnp ⊆ · · · ⊆ αp ⊆ p.

Therefore, for any 0 6= p ∈ p
′
, and n ∈ N, p ∈ (αnp). So, for any non-zero γ ∈ p,

xnγ ∈ p ⊆ A. Thus, A[α] is a fractional ideal of A and recall that A is Noetherian,

therefore A[α] is a �nitely generated A-module. Thus, α is integral over A. In

addition, A is integrally closed so that α ∈ A. As a conclusion, p′p = p implies that

p′ = A.

Now, take 0 6= β ∈ p. By Lemma 1.37, for some prime ideals q1, . . . , qs, we have

q1 . . . qs ⊆ Aβ = (β). Choose smallest possible s, so we have p ⊇ Aβ ⊇ q1 . . . qs which

implies that p ⊇ qi for some i. Maximality of p implies that p = qi. Without loss of

generality, say qi = q1

Let us de�ne an ideal a = q2 . . . qs. Then, Aβ ⊇ pa and since s is chosen to be the

smallest number as possible, Aβ 6⊇ a. Therefore, there exists a ∈ a where a /∈ Aβ.

Lastly, since Aβ ⊇ pa we have Aβ ⊇ pa so that paβ−1 ⊆ A but then, aβ−1 must be

in p′ by the de�nition of p′. However, we know that a /∈ Aβ and this implies that

aβ−1 /∈ A. Therefore, p′ 6= A.

Theorem 1.41. [1, Chapter 3.4, Theorem 3] Suppose that A is a Dedekind domain.

Then, every non-zero fractional ideal of A can be uniquely written as a product of

prime ideals of A with integer exponents. Moreover, the monoid of non-zero fractional

ideals of A is a group.
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Proof. Let us start with an observation. Let J be any fractional ideal so that we have

αJ ⊆ A for some non-zero α ∈ A. Therefore, J = (αJ)(αA)−1. Thus, if we prove the

statement for any integral ideal of A, we conclude the result.

Now, let S be the set of non-zero integral ideals of A which does not admit a

prime ideal factorization and suppose that it is not empty. Since A is Noetherian, S

has a maximal element, say I. We have I 6= A since A is the empty product of prime

ideals. Then, I is contained in a maximal ideal m of A. Let m′ be the inverse of m.

We have I ⊆ m, which implies that Im′ ⊆ mm′ = A. Moreover, m′ ) A thus Im′ ) I

Now, since m′ 6= A, Im′ is an ideal that does not lie in S. Thus, Im′ = p1 . . . pl for

some prime ideals p1, . . . , pl. Therefore, I = Im′m = p1 . . . plm and we conclude that

every ideal is a product of prime ideals.

Now, assume that an ideal I has two prime factorizations
s∏
i=1

peii =
t∏

j=1

q
fj
j for

some integers e1, . . . , es, f1, . . . , ft. Then, for any i = 1, . . . , s we have pi ⊇
∏t

j=1 q
fj
j .

As a conclusion, pi ⊇ qj for some qj , j = 1, . . . , t. However, since prime ideals are

maximal we have pi = qj. By cancelling out the factors, we conclude that the prime

factorization is unique.

Finally, if we have I =
s∏
i=1

peii then the inverse of I is written as
s∏
i=1

p−eii . Therefore,

non-zero fractional ideals form a group under ideal multiplication.

Let us denote the group of fractional ideals by IK . As we de�ne principal ideals,

we de�ne principal fractional ideals. I is a principal fractional ideal if it is of the form

Ax for some x ∈ K×. The set of principal fractional ideals are denoted as PK and

actually PK is a subgroup of IK . Then, de�ne the quotient group Cl(K) = IK/PK .

It is called the ideal class group of A and we will work on this group in details in the

following chapters.



Chapter 2

NUMBER FIELDS

Number �elds are the main objects of this thesis. A number �eld K is a �nite

degree extension of Q. They always have characteristic 0. In this chapter, we make

a brief introduction to number �elds and most importantly, we will notice that the

ring of integers of a number �eld is a Dedekind domain.

Now, let K be a number �eld of degree n over Q.

De�nition 2.1. The set of elements {α ∈ K|α is integral over Z} is called the ring

of integers of K. It is denoted by OK .

By Corollary 1.4, OK is a ring.

Any element α ∈ C that is integral over Z is called an algebraic integer.

Now, let us give a proposition, which states that for any α ∈ K, we can �nd some

z ∈ Z so that zα ∈ OK .

Proposition 2.2. QOK = K.

Proof. If we show that K ⊆ QOK , we are done. The aim is, for any element α ∈ K,

to �nd some z ∈ Z, β ∈ OK such that α = β
z
.

So let α ∈ K, there exists f(X) ∈ Q[X], the minimal polynomial of α. Let us say

that

f(X) = Xn +
an−1

bn−1

Xn−1 + · · ·+
a1

b1

X +
a0

b0

and we have f(α) = αn+
an−1

bn−1

αn−1 + · · ·+
a1

b1

α+
a0

b0

= 0. Our aim is to �nd a non-zero,

monic polynomial g(X) ∈ Z[X] such that g(β) = 0 where β = zα for some z ∈ Z, so

β ∈ OK .
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Since the polynomial f ∈ Q[X], we have to get rid of the rational coe�cients and

get integer ones.

The most natural idea is to multiply these coe�cients with least common multiples

of denominators of them, set D = lcm(b0, b1, . . . , bn−1). Then, Df ∈ Z[X].

Notice that f(α) = αn +
an−1

bn−1

αn−1 + · · ·+
a1

b1

α +
a0

b0

= 0.

Therefore Dnf(α) = Dnαn +Dn
an−1

bn−1

αn−1 + · · ·+Dn
a1

b1

α +Dn
a0

b0

= 0, thus

(Dα)n +D
an−1

bn−1

(Dα)n−1 + · · ·+Dn−1
a1

b1

(Dα) +Dn
a0

b0

= 0

Now say g(X) = Xn +D
an−1

bn−1

Xn−1 + · · ·+Dn−1
a1

b1

X +Dn
a0

b0

∈ Z[X].

Finally, set z = D and we have β = zα = Dα. Thus,

g(β) = g(Dα) = (Dα)n +D
an−1

bn−1

(Dα)n−1 + · · ·+Dn−1
a1

b1

(Dα) +Dn
a0

b0

= 0.

Corollary 2.3. OK spans K over Q.

By Chapter 1, we can state some results on OK . In particular, we can say that

OK is integrally closed by Theorem 1.39.

Moreover, by Corollary 1.30, we have the following proposition:

Proposition 2.4. OK is a free Z-module of rank n.

Now, let us de�ne an important invariant of a number �eld:

De�nition 2.5. Let K be a number �eld of degree n and let (x1, . . . , xn) be a Z basis

for OK . Then, the discriminant of K is de�ned as the discriminant D(x1, . . . , xn) and

it is denoted by ∆K .

It is important to note that ∆K is independent from the choice of basis. To show

that, let us take two bases for OK , (x1, . . . , xn) and (y1, . . . , yn). We can �nd some
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aij, bst ∈ Z so that yi =
∑n

j=1 aijxj and xs =
∑n

t=1 bstxt for 1 ≤ i, j, s, t ≤ n. Then

D(y1, . . . , yn) = (det(aij))
2D(x1, . . . , xn) andD(x1, . . . , xn) = (det(bst))

2D(y1, . . . , yn).

Thus, D(y1, . . . , yn) = (det(aij))
2(det(bst))

2D(y1, . . . , yn). Therefore, (det(aij))
2 = 1

and we conclude that D(x1, . . . , xn) = D(y1, . . . , yn).

2.1 Ideals in OK

In this section, we will study the ideals of OK but �rst, let us start with the following

crucial observation.

Theorem 2.6. OK is a Dedekind Domain.

Proof. Observe that Z is a PID, thus, a Dedekind domain. The �eld of fractions of

Z is Q and K is a �nite extension of Q. The integral closure of Z in K is OK and K

has characteristic 0. Therefore, by Theorem 1.39, we conclude that OK is a �nitely

generated Z-module and a Dedekind domain.

Therefore, OK is a Noetherian ring, integrally closed and its prime ideals are

maximal.

Recall that we de�ne the norm of an element in the previous chapter. It can be

seen that if η ∈ OK×, then NK/Q(η) = ±1. We will characterize the units of OK later.

We can also de�ne a norm on the ideals of OK . OK is a free abelian group of rank

n and any ideal I ⊆ O is of rank n too, therefore we expect that |OK/I| is �nite. Let

us proceed by de�ning the norm of an ideal.

Proposition 2.7. [1, Chapter 3.5, Proposition 1] Let I be a non-zero ideal of OK.

Then, |OK/I| is �nite and for any non-zero α ∈ OK, NK/Q(αOK) = |NK/Q(α)|.

We de�ne the norm of I as NK/Q(I) = |O/I|. Also, note that for any non-

zero ideals I, J of OK , NK/Q(I)NK/Q(J) = NK/Q(IJ) is satis�ed ([1, Chapter 3.5,

Proposition 2]).

We can see the prime ideals of OK as prime numbers in some sense. Since OK is

a Dedekind domain, non-zero prime ideals are maximal and every non-zero ideal has

a prime ideal decomposition.
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Also, we have the ideal class group Cl(K) of OK . The equivalence relation ∼ on

Cl(K) is given as I ∼ J whenever αI = J for some α ∈ K×. The size of this group

is �nite and it will be proven in the next chapter.
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GEOMETRY OF NUMBER FIELDS

Let K be a number �eld. Recall that we de�ned the quotient group IK/PK ,

the ideal class group Cl(K) of OK . In this chapter, we will show that the quotient

group Cl(K) is �nite. The order of Cl(K) is called the class number hK of K. To

add, we will characterize the structure of OK×. To do that, we need some geometric

arguments.

Let us begin with a de�nition.

De�nition 3.1. Let Γ ⊆ Rn be an additive subgroup. Γ is called discrete if for any

compact set S, Γ ∩ S is �nite.

Theorem 3.2. [1, Chapter 4.1 Theorem 1] If Γ ⊆ Rn is discrete, then Γ is generated

as a Z-module by at most n vectors linearly independent over R.

Now, let us de�ne a lattice.

De�nition 3.3. A discrete subgroup Γ ⊆ Rn which is a Z-module of rank n is called

a lattice.

De�nition 3.4. Let Γ be a lattice with a Z basis v = {v1, . . . , vn}. De�ne the set

ΦΓ = {x ∈ Rn|x =
n∑
i=1

αivi, 0 ≤ αi < 1}. Then, ΦΓ is called a fundamental domain

for Γ. The volume of Γ is de�ned as the Lebesgue measure µ(ΦΓ) of ΦΓ ⊆ Rn.

Let us make some observations. As a side note, let Γ be a lattice which has

two Z bases {v1, . . . , vn} and {w1, . . . , wn} and let the volume of the corresponding

fundamental domains be µ(ΦΓv) and µ(ΦΓw) respectively. Then, µ(ΦΓv) = µ(ΦΓw).

(See, [1, Chapter 4.1, lemma 1]).

Therefore, the volume of a lattice is independent from the choice of a basis.

Next, let us �nd the volume of a lattice.
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Proposition 3.5. [2, Chapter 7, Proposition 7.5] Let Γ = Zv1 + · · ·+Zvn be a lattice

in Rn, where vi = (ai1, . . . , ain). Then, vol(Γ) = | det(aij)|.

Proof. Let {e1, . . . , en} be the standard basis for Rn. We have vi =
n∑
i=1

aijej and let

us say that an arbitrary point in the space has coordinates (x1, . . . , xn) with respect

to the standard basis. Then,

vol(Γ) =

∫
ΦΓ

1dx1 . . . dxn.

Let us change the standard basis to {v1, . . . , vn}. Since any vector vi is given as

vi =
n∑
i=1

aijej, the change of basis matrix is A = (aij)1≤i,j≤n.

For any arbitrary element x = (x1, . . . , xn) ∈ Rn, it can be written that x =
n∑
i=1

xiei =
n∑
i=1

yivi where 0 ≤ yi < 1. That is because the coordinates of ΦΓ with

respect to the basis {v1, . . . , vn} are 0 ≤ yi < 1.

So,

vol(Γ) =

∫
ΦΓ

1dx1 . . . dxn =

∫
ΦΓ

| det(A)|dy1 . . . dyn,

since the Jacobian of the transformation is | det(A)|. Then, we have

∫
ΦΓ

| det(A)|dy1 . . . dyn =

∫ 1

0

· · ·
∫ 1

0

| det(A)|dy1 . . . dyn = | det(A)|.

Theorem 3.6 (Minkowski). [1, Chapter 4.1, Theorem 2] Assume that Γ is a lattice

in Rn and S a measurable subset with µ(S) > v(Γ). Then, for some x 6= y ∈ S, x− y

belongs to Γ.

Proof. Let s = (s1 . . . , sn) ∈ S. For any si, i = {1, . . . , n}, si = [si]+αi with αi ∈ [0, 1)

so that s = p + h for some p ∈ ΦΓ and h ∈ Γ. Therefore, S =
⋃
h∈Γ

ΦΓ + h. Since the

union is disjoint, µ(S) =
∑
h∈Γ

µ(S ∩ (ΦΓ + h)).

For any h, it can be written that µ(S ∩ (ΦΓ + h)) = µ((S − h) ∩ (ΦΓ + h− h)) =

µ((S − h) ∩ ΦΓ).
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Since v(Γ) = µ(ΦΓ) ≥
∑
h∈Γ

µ((S − h) ∩ ΦΓ) =
∑
h∈Γ

µ(S ∩ (ΦΓ + h)) = µ(S), which

contradicts with the assumption,
∑
h∈Γ

µ((S − h) ∩ ΦΓ) cannot be a disjoint sum. Then,

for some distinct h1, h2 ∈ Γ, (S−h1)∩(S−h2)∩ΦΓ 6= ∅. If z belongs to the intersection,

z = z1 − h1 = z2 − h2 for some z1, z2 ∈ S, h1, h2 ∈ Γ so that z1 − z2 = h2 − h1 ∈ H

and z1 6= z2 since h1, h2 are distinct.

Corollary 3.7 (Minkowski's Convex Body Theorem). [1, Chapter 4.1, Corollary 1]

Assume that Γ is a lattice in Rn and S a measurable subset of Rn where S is convex

and symmetric with respect to 0. If S satis�es at least one of

1. µ(S) > 2nv(Γ)

2. µ(S) ≥ 2nv(Γ), S is compact.

then S ∩ Γ contains a non-zero element.

Proof. 1. µ(S) > 2nv(Γ) implies that 2−nµ(S) = µ(1
2
S) = µ(S ′) > v(Γ). Applying

Minkowski's theorem yields there exist distinct x′, y′ ∈ S ′ and x′−y′ ∈ H where

x′ = 1
2
x and y′ = 1

2
y for some x, y ∈ S. The set S is symmetric with respect to

0, thus, −y ∈ S and convexity of S implies that 1
2
x + 1

2
(−y) = x′ − y′ ∈ S. In

conclusion, 0 6= x′ − y′ ∈ S ∩ Γ.

2. The proof is similar and can be found in [1, Chapter 4.1, Corollary (b)]

Minkowski's theorem and the arguments on lattices provide the tools that we can

implement on number �elds and their ring of integers. Now, we will embed number

�elds inside vector spaces to get information about the corresponding ring of integers.

Let K be a number �eld with ring of integers OK and [K : Q] = n. Recall that

ε ∈ OK is a unit if and only if NK/Q(ε) = ±1 and there are n−many embeddings of

K into C -or into any �eld containing K̄-.
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If σ : K ↪→ C is any of these embeddings, it is called real when σ(K) ⊆ R holds.

Otherwise, it is called complex. Given a complex embedding τ , its conjugate is given

by τ(x) = τ(x) which is an embedding of K. Complex embeddings come in pairs,

so if we have r1-many real and r2-many conjugate pair of complex embeddings, then

n = r1 + 2r2 holds.

Let us �x some notation. ρ denotes any real embedding and τ denotes any complex

embedding. Then, the embeddings of K are given as

{ρ1, . . . , ρr1 , τ1, . . . , τr2 , τr2+1, . . . , τ2r2}. If we let τ, τ to denote a complex pair of

embeddings, the embeddings of K is then given as {ρ1, . . . , ρr1 , τ1, τ1, . . . , τr2 , τr2 , }

since the complex embeddings come in pairs.

Then, K can be embedded into an n−dimensional vector space as follows:

Ψ : K ↪→ Rr1 × Cr2

α 7→ (ρ1(α), . . . , ρr1(α), τ1(α), . . . , τr2(α))

Remark 3.8. The map Ψ is called the canonical embedding of K in Rr1 × Cr2 and

it is generally identi�ed with Rn as C ∼= R2 as a vector space.

Another identi�cation may be done as follows:

For any y ∈ K, y 7→ (x1, . . . , xr1 , z1, . . . , zr2) ∈ Rr1 × Cr2 .

Then, (x1, . . . , xr1 , z1, . . . , zr2) 7→ (x1, . . . , xr1 , Re(z1), Im(z1), . . . , Re(zr2), Im(zr2)).

Proposition 3.9. If H is a free Z-submodule of K of rank n with a Z base {e1, . . . , en},

then Ψ(H) is a lattice in Rn so that its volume vol(Ψ(H)) = 2−r2| det
1≤i,j,≤n

(ψi(ej))|.

Proof. Let An×n be the matrix whose ith column is

[ψ1(ei), . . . , ψr1(ei), Re(ψr1+1(ei)), Im(ψr1+1(ei)) . . . , Re(ψr2(ei)), Im(ψr2(ei))]

such that the column vector is the coordinates of Ψ(ei) with respect to the canonical

basis of Rn.

For any z ∈ C, Re(z) = z+z̄
2

and Im(z) = z−z̄
2i

holds.
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Using the equalities and applying column operations we conclude that

det(A) = (2i)−r2 det
1≤i,j,≤n

(ψi(ej)).

The set {e1, . . . , en} form a basis for K over Q. By Proposition 1.27, we have

det
1≤i,j≤n

(ψi(ej)) 6= 0, thus, det(A) 6= 0. Furthermore, det(A) 6= 0 implies that the

vectors Ψ(ei) are linearly independent over R. Therefore, Ψ(H) gives a lattice in Rn.

By Proposition 3.5, its volume is

| det(A)| = |(2i)−r2 det
1≤i,j≤n

(ψi(ej))| = 2−r2| det
1≤i,j≤n

(ψi(ej))|.

Corollary 3.10. Ψ(OK) is a lattice in Rn with volume vol(Ψ(OK)) = 2−r2|∆K |
1
2 .

In addition, if 0 6= I ⊆ OK is an ideal, Ψ(I) is a lattice with volume

vol(Ψ(I)) = 2−r2|∆K |
1
2NK/Q(I)

(See, [1, Chapter 4.2, Proposition 2]).

So far, we embed a number �eld into an n−dimensional vector space. Now, let us

give an important proposition on the ideals of OK .

Proposition 3.11. Let I ⊆ OK be a non-zero integral ideal. Then, there exists an

element 0 6= x ∈ I such that

|NK/Q(x)| ≤

 4

π

r2

n!

nn
|∆K |

1
2NK/Q(I).

Proof. Assume that c ∈ R>0 and de�ne

Dc := {(x1, . . . , xr1 , z1, . . . , zr2) ∈ Rr1 × Cr2 :

r1∑
i=1

|xi|+ 2

r2∑
j=1

|zj| ≤ c}.

The set Dc is compact, convex and symmetric with respect to 0. By a calculation

given in [1, Chapter 4, Appendix] we have µ(Dc) = 2r1

π
2

r2

cn

n!
.
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Choose c so that µ(Dc) = 2nv(Ψ(I)). Therefore, we have

2r1

π
2

r2

cn

n!
= 2n−r2|∆K |

1
2NK/Q(I).

Note that the equality above yields cn = 2n−r1π−r2n!|∆K |
1
2NK/Q(I). By Corollary

3.7, there exist an element 0 6= x ∈ I such that Ψ(x) ∈ Dc and

|NK/Q(x)| =
r1∏
i=1

|ρi(α)|
r2∏
j=1

|τj(α)|2.

For any n positive numbers a1, . . . , an, n
√
a1a2 . . . an ≤ a1+···+an

n
holds. Therefore,

|NK/Q(x)| ≤

(
1

n

r1∑
i=1

|ρi(x)|+ 2

n

r2∑
j=1

|τj(x)|

)n

≤
cn

nn

since Ψ(x) ∈ Dc. Finally, recall that we have cn = 2n−r1π−r2n!|∆K |
1
2NK/Q(I).

Thus, we conclude that

|NK/Q(x)| ≤
1

nn
2n−r1π−r2n!|∆K |

1
2NK/Q(I).

Using the equality n = r1 + 2r2, we have

|NK/Q(x)| ≤

 4

π

r2

n!

nn
|∆K |

1
2NK/Q(I).

Corollary 3.12. In the ideal class group of OK, each class contains an integral ideal

I with

NK/Q(I) ≤

 4

π

r2

n!

nn
|∆K |

1
2 .

Proof. Let C be a class in Cl(K) and J ∈ C. We know that J−1 is a fractional ideal

and for some non-zero α ∈ OK we have αJ−1 = J̃ ⊆ OK . By Proposition 3.11, there

exists a non-zero element x ∈ J̃ such that

|NK/Q(x)| ≤

 4

π

r2

n!

nn
|∆K |

1
2NK/Q(J̃).
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Then, we can say that

|NK/Q(x)|

NK/Q(J̃)
=
NK/Q(xOK)

NK/Q(J̃)
= NK/Q(xJ̃−1) ≤

 4

π

r2

n!

nn
|∆K |

1
2 .

Thus, I = xJ̃−1 is the desired ideal.

This bound is called Minkowski's Bound in the literature. We are almost done.

Proposition 3.13. Fix a number b ∈ N. Then, there are only �nitely many ideals

with norm bounded by b.

Proof. Let I ⊆ OK be a non-zero integral ideal with NK/Q(I) < b. Then, we have

I = pe11 . . . pemm for some prime ideals pi and ei ∈ Z>0. Note that each prime factor

pi comes from a prime number p such that pi|pOK . Also, we have

NK/Q(I) = NK/Q(p1)e1 . . . NK/Q(pm)em

where pi has norm pk for some prime number p and k ∈ Z>0 such that k is bounded

by n. Since the possible prime numbers p are bounded by b and the possible prime

ideals that can appear in a factorization are also bounded, there can be only �nitely

many ideals with bounded norm.

We are ready to prove the main theorem of this section:

Theorem 3.14 (Dirichlet). [1, Chapter 4.3, Theorem 2] The ideal class group Cl(K)

of OK is �nite.

Proof. By Corollary 3.12, an integral ideal can be chosen from each ideal class of K

so that its norm is bounded by Minkowski's bound. It is known by Proposition 3.13

that the ideals with a bounded norm is a �nite set. Thus, Cl(K) is �nite.

We can say that hK measures how far is OK of being a principal ideal domain.

Proposition 3.15. OK is a principal ideal domain if and only if OK is a unique

factorization domain.
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Proof. We only need to prove the necessity part. Since any integral ideal has a prime

ideal decomposition, if we show that the prime ideals are principal, we are done. Now,

suppose that OK is a UFD and let p be any non-zero prime ideal of OK . Take any

non-zero element p ∈ p. Since OK is UFD, we can write p = πe11 . . . πemm for some

irreducible elements πi. Then, πi ∈ p for some i ∈ {1, . . . ,m}. In a UFD, irreducible

elements are prime and (πi) ⊆ p is a prime ideal. Also, since prime ideals are maximal,

we have p = (πi).

3.1 Units in OK and Dirichlet's Unit Theorem

Our aim is to study units of OK which have a multiplicative structure. Minkowski's

theorem works on vector spaces and they have an additive structure. In order to relate

these two concepts, we need to �nd a way that translates multiplicative structures to

additive ones.

Recall that K is embedded into an n−dimensional vector space as follows:

Ψ : K ↪→ Rr1 × Cr2

α 7→ (ρ1(α), . . . , ρr1(α), . . . , τ1(α), . . . , τr2(α)).

To add, recall that for any α ∈ K, norm map NK/Q sends α to

NK/Q(α) =

r1∏
i=1

ρi(α)

2r2∏
j=1

τj(α) =

r1∏
i=1

ρi(α)

r2∏
j=1

τj(α)τj(α) =

r1∏
i=1

ρi(α)

r2∏
j=1

|τj(α)|2.

A similar map N ′ can be de�ned on Rr1 × Cr2 as follows:

N ′ : Rr1 × Cr2 → R

(x1, . . . , xr1 , z1, . . . , zr2) 7→
r1∏
i=1

xi

r2∏
j=1

|zj|2.

Actually, as NK/Q(α) being the determinant of the map, multiplication by α on

the Q-vector space K, the map N ′(α) is the determinant of the multiplication by α

map on Rr1 × Cr2 .

As a result, we have the following commutative diagram:
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K Rr1 × Cr2

Q R

Ψ

NK/Q N ′

Remark 3.16. For any α ∈ K, N ′(Ψ(α)) = NK/Q(α).

Now, let us expand the diagram. De�ne the following maps:

l′ : (Rr1 × Cr2)× → Rr1+r2

(x1, . . . , xr1 , z1, . . . , zr2) 7→ (log(|x1|), . . . , log(|xr1|), log(|z1|2), . . . , log(|zr2|2))

and

l : R× → R

x 7→ log(|x|).

In addition, de�ne t on Rr1+r2 as follows:

t : Rr1+r2 → R

(y1, . . . , yr1+r2) 7→ y1 + · · ·+ yr1+r2 .

Together with Remark 3.16, we have the following diagram which is also commutative:

K× (Rr1 × Cr2)× Rr1+r2

Q× R× R

Ψ

NK/Q

l′

N ′ t

l

We know that the units of OK is given as OK× = {ε ∈ OK : NK/Q(ε) = ±1}.

Let us de�ne B = {v ∈ (Rr1×Cr2)×|N ′(v) = ±1} and T = {w ∈ Rr1+r2|t(w) = 0}.

Note that (Rr1 × Cr2)× consists of elements that has non-zero coordinates. We

de�ne addition and multiplication on (Rr1 × Cr2)× coordinate-wise. Therefore, for

any v ∈ (Rr1 × Cr2)× we have v−1 ∈ (Rr1 × Cr2)×.

Then, OK× is mapped into B via Ψ and the map l′ takes B into T ⊆ Rr1+r2 .

Therefore, we have the composite map ϕ = l′ ◦Ψ : K → Rr1+r2 such that
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ϕ
∣∣
OK×

: OK× → B → T ⊆ Rr1+r2 .

Note that the subspace T has dimension r1 + r2 − 1. Finally, set Γ = ϕ(OK×).

We will understand the structure of Γ. Now, let us denote the group of roots of unity

in K by µ(K). The group µ(K) is �nite because otherwise we could �nd elements

which have arbitrarily large degree over Q.

Proposition 3.17. [2, Chapter 7, Proposition 7.26] The kernel of the map ϕ is µ(K).

Proof. If α ∈ µ(K) then |ρi(α)| = |τj(α)| = 1 for any 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2.

Therefore, l′(Ψ(α)) = 0 and µ(K) ⊆ ker(ϕ). On the other hand, if α ∈ ker(ϕ)

then |ρi(α)| = |τj(α)| = 1 for any embedding ρi and τj. So, we can say that Ψ(α) is

contained in a bounded region inside (Rr1×Cr2)×. Furthermore, Ψ(α) is also contained

inside the lattice Ψ(OK). There are �nitely many possible Ψ(α)'s since lattices are

discrete, therefore, ker(ϕ) is �nite. It is also true that ker(ϕ) is a multiplicative

group. Then, by [1, Chapter 1.6, Theorem 1], it consists of roots of unity so any

element of ker(ϕ) is a root of unity.

Now, we can also say that Γ is a subgroup of T . That is because ϕ is a homomor-

phism from (OK×, ·) into (T,+) ⊆ Rr1+r2 .

We continue to understand the structure of Γ with the following proposition.

Proposition 3.18. [2, Chapter 7, Proposition 7.28] Γ is a discrete subgroup of T .

Proof. Take any ball C of radius c ≥ 0 inside T .

We have (l′)−1(Γ∩C) = (l′)−1(Γ)∩ (l′)−1(C) = Ψ((OK)×)∩ (l′)−1(C). Now, since

(l′)−1(C) ⊆ B, (l′)−1(C) lies inside a bounded region in Rr1 ×Cr2 . Thus, it lies inside

a ball of some radius.

In addition, since Ψ(OK) is discrete, Ψ(OK×) ∩ (l′)−1(C) ⊆ Ψ(OK) ∩ (l′)−1(C) is

�nite. Then, if we apply l′ again, we conclude that Ψ(OK×)∩C = Γ∩C is �nite.

By the above proposition, we see that Γ is discrete. Now, our aim is to show that

Γ is a lattice. We start with the following proposition.
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Proposition 3.19. Assume that Γ is a lattice in Rr1 × Cr2 and for some

b1, . . . , br1 , B1, . . . , Br2 ∈ R>0,

b1 . . . br1(B1, . . . , Br2)2 >

 4

π

r2

vol(Γ)

is satis�ed. Then, there exist an element v = (v1, . . . , vr1 , ṽ1, . . . , ṽr2) 6= 0 in Γ

such that |vs| < bs for any 1 ≤ s ≤ r1 and |ṽj| < Bj for any 1 ≤ j ≤ r2.

Proof. Let us de�ne the subset C of Rr1 × Cr2 such that for any

v = (v1, . . . , vr1 , c1 + id1, . . . , cr2 + idr2) ∈ C,

|vs| < bs for any s = 1, . . . , r1 and |cj + idj|2 < Bj
2 for any j = 1, . . . , r2.

The set C is a cartesian product of r1− many intervals of length 2bs and r2− many

circles of radius Bj. Therefore,

vol(C) = (2b1) . . . (2br1)(πB1
2) . . . (πBr2

2) = 2r1πr2b1 . . . br1(B1 . . . Br2)2.

Thus, by hypothesis, vol(C) > 2r1πr2

 4

π

r2

vol(Γ) = 2r122r2vol(Γ) = 2nvol(Γ)

since we have r1 + 2r2 = n.

Note that C is convex and symmetric with respect to 0. Now, by Corollary 3.7,

Minkowski's Convex Body Theorem, this inequality gives us that there exists a non-

zero element v ∈ C such that v ∈ Γ.

Proposition 3.20. There exist a bounded region

CB ⊆ B = {v ∈ (Rr1 × Cr2)×|N ′(v) = ±1}

such that

B =
⋃

η∈OK×
i(η)CB.

Proof. Take any element v ∈ B. We know by Corollary 3.10 that the lattice Ψ(OK)

has volume vol(Ψ(OK)) = 2−r2|∆|1/2. We can say that the lattice vΨ(OK) has volume
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2−r2|∆K |1/2 too since, the determinant of the multiplication by v is N ′(v) = ±1. Now,

�nd b1, . . . , br1 , B1, . . . , Br2 ∈ R>0 such that

b1 . . . br1(B1 . . . Br2)2 >

 2

π

r2

|∆K |1/2 =

 4

π

r2

2−r2 |∆K |1/2 =

 4

π

r2

vol(Ψ(OK)).

De�ne C = {(x1, . . . , xr1 , z1, . . . , zr2) ∈ Rr1 × Cr2
∣∣|xi| < bi, |zj| < Bj}.

Then, by Proposition 3.19 above, there exists a non-zero element x ∈ C such that

x ∈ vΨ(OK).

Now, we can write x = yΨ(γ) for some γ ∈ OK . If we apply N ′ to the equality, we

get N ′(x) = N ′(v)N ′(Ψ(γ)) = ±NK/Q(γ). Thus, NK/Q(γ) is bounded. Let us say that

|NK/Q(γ)| < m. We know by Proposition 3.13 that there are �nitely many integral

ideals with a given norm. To add, note that |NK/Q(γ)| is the norm of the principal

ideal γOK . Thus, up to units, we can say that there are �nitely many elements with

bounded norm.

Now, let {γ1, . . . , γs} be the set of non-associate elements of norm at most m. Let

us write γ = η−1γk for some unit η and γk ∈ {γ1, . . . , γs}. Thus, x = yΨ(γ) implies

that y = xΨ(γ)−1 = xΨ(η−1γk)
−1 = xΨ(γk)

−1Ψ(η).

Next, let us de�ne CB as {c ∈ B|c ∈ Ψ(γk)
−1C for some k}. It is known that C is

bounded. Furthermore, CB is the union of �nitely many translates of C. Therefore,

CB is also bounded. Lastly, for any element y ∈ B, we have y = xΨ(η) for some

x ∈ CB and η ∈ OK .

Thus,

B =
⋃

η∈OK×
i(η)CB.

Corollary 3.21. Γ is a lattice in T .

Proof. Proposition 3.20 above says that there is a bounded region

CB ⊆ B ⊆ (Rr1 × Cr2)×
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such that

B =
⋃

η∈OK×
i(η)CB.

Now, let us say that CH = l′(CB). By de�nition of C, for any

v = (x1, . . . , xr1 , z1, . . . , zr2) ∈ C ⊆ B, we have N ′(v) = ±1. Also, each component

xi, zj is bounded; since N ′(v) =
∏r1

i=1 |xi|
∏r2

j=1 |zj| = 1. Therefore, l′(C) is bounded

in T .

Similarly, for every γk, the translate l′(Ψ(γk)
−1C) is bounded in T .

Thus, CH = l′(CB) is bounded in T .

Now, recall that we have

B =
⋃

η∈OK×
i(η)CB.

Then,

l′(B) = T =
⋃

η∈OK×
(ϕ(η) + CH).

On the other hand, we know that Γ = ϕ(OK×) so that we can write

T =
⋃
h∈Γ

(h+ CH).

Since CH is bounded, we can say that the distance between 0 and any element of

CH is at most m. Therefore, there cannot be any element in {h + CH : h ∈ Γ} that

has distance greater than m to any point of Γ. So, in the case that the span of Γ has

strictly smaller dimension than T , we could �nd a point of T that is arbitrarily far

from the span of Γ.

Thus, we conclude that Γ is a lattice.

Now, we are ready to give the striking Dirichlet's Unit Theorem. Let us set

r = r1 + r2 − 1.

Theorem 3.22 (Dirichlet's Unit Theorem). [2, Chapter 7, Theorem 7.31] Let K be

a number �eld of degree n over Q where n = r1 + 2r2. Then,

O×K ∼= µ(K)× Zr.
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In other words, there exist η1, . . . , ηr ∈ OK× such that any η ∈ OK× can be written

uniquely as

η = ζηe11 . . . ηerr

for some ζ ∈ µ(K) and ei ∈ Z.

Proof. By Proposition 3.17, the kernel of ϕ is µ(K) and ϕ(OK×) = Γ ∼= Zr by

Corollary 3.21 since the dimension of T is r1 + r2 − 1 = r.

Lastly, we close this section with one last de�nition.

De�nition 3.23. The units η1, . . . , ηr ∈ OK× are called a set of fundamental units.



Chapter 4

THE ANALYTIC CLASS NUMBER FORMULA

In this chapter, we give the analytic class number formula which consists of im-

portant invariants of a ring of integers. Some statements will be given without proofs

and the details can be found in [1],[2] and [5].

The Riemann zeta function ζ(s) is de�ned for any s ∈ C as

ζ(s) =
∞∑
n=1

1

ns

provided that Re(s) > 1. Now, let us de�ne the Dedekind zeta function of a number

�eld, which is a generalization of ζ(s).

De�nition 4.1. Let K be a number �eld. Then, the Dedekind zeta function of K is

de�ned as

ζK(s) =
∑

06=I⊆OK

1

NK/Q(I)s

for s ∈ C. Recall that we can factorize the ideals of OK uniquely. The Dedekind

zeta function is absolutely convergent for s ∈ C with Re(s) > 1 and it has the

following Euler product :

ζK(s) =
∏

06=p⊆OK , prime

1

1−NK/Q(p)−s
.

Remark 4.2. If we take K = Q, we have NK/Q(I)s = ns since any ideal 0 6= I ⊆ Z

is of the form nZ for some positive n ∈ Z. Thus, ζQ(s) = ζ(s).

To add, let us take K = Q(i). We have OK = Z[i]. It is known that OK
is a Euclidean domain, thus, a PID. Therefore, the integral ideals are of the form
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(a + bi)OK for some a, b ∈ Z. Also, we have NQ(i)/Q((a + bi)OK) = a2 + b2. By

Dirichlet's Unit Theorem we have that OK ∼= µ(K) = {±1,±i}.

Notice that, for any 0 6= I = (a+ bi) ⊆ OK and ε ∈ OK× we have

(a + bi)OK = ε(a + bi)OK . Thus, (a + bi), (−a − bi), (−b + ai) and (−a − bi)

generate the same ideal. Therefore, we only consider the pairs (a, b) ∈ Z>0 × Z>0.

Thus,

ζQ(i)(s) =
∑

06=I⊆Z[i]

1

NK/Q(I)s
=

∑
(a,b)∈Z>0×Z>0

1

(a2 + b2)s
.

Given a number �eld K of degree n, recall that we have n = r1 + 2r2 many

embeddings of K into C with real embeddings ρ1, . . . , ρr1 and non-conjugate complex

embeddings σ1, . . . , σr2 . By Dirichlet's Unit Theorem, we see that

OK× ∼= µ(K)× Zr

where r = r1 + r2 − 1.

Recall that we have a commutative diagram:

K× (Rr1 × Cr2)× Rr1+r2

Q× R× R

Ψ

NK/Q

l′

N ′ t

l

So, OK× is mapped into r-dimensional subspace T of Rr1+r2 via ϕ. The image

ϕ(O×K) is a lattice Γ inside T = {w ∈ Rr1+r2|t(w) = 0} ⊆ Rr1+r2 .

Finally, by Dirichlet's Unit Theorem, we can say that any element η ∈ OK× can

be written as ζηe11 . . . ηerr for some ζ ∈ µ(K) and e1 . . . , er ∈ Z uniquely.

Thus, the vectors ϕ(η1), . . . , ϕ(ηr) give a basis for the lattice Γ and they span T .

So, we have

ϕ : K → Rr1+r2

x 7→ (log(|ρ1(x)|), . . . , log(|ρr1(x)|), log(|τ1(x)|2), . . . , log(|τr2(x)|2)).

For simplicity, say that ϕ(x) = (ϕ1(x), . . . , ϕr1+r2(x)). De�ne the matrix Aij =

(ϕi(ηj)) where 1 ≤ i ≤ r1 + r2 and 1 ≤ j ≤ r1 +r2−1 so that ηj's are the fundamental
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units. Take any (r1 +r2−1)×(r1 +r2−1)-minor of this matrix and take determinant.

Regulator of K, RK , is de�ned as the absolute value of the resulting determinant.

In this section, our goal is to prove the following theorem, the Analytic Class

Number Formula:

Theorem 4.3 (Analytic Class Number Formula). [2, Chapter 10, Theorem 10.9]

The Dedekind zeta function ζK(s) converges for any s with Re(s) > 1 with a simple

pole at s = 1 and

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2RK

|µ(K)|
√
|∆K |

hK

where hK is the class number of K and RK is the regulator of K.

To prove the theorem, we need some arguments from geometry. We begin by

de�ning a cone.

De�nition 4.4. Given a subset X ⊆ Rn, if x ∈ X and c ∈ R>0 implies that cx ∈ X,

then it is called a cone.

A cone can be de�ned similarly in Rr1 × Cr2 , namely, in any real vector space.

Now, let us start the proof of our main theorem with the following proposition:

Proposition 4.5. [2, Chapter 10, Proposition 10.11] Let X ⊆ Rn be a cone. Assume

that f : X → R>0 is a function satisfying f(cx) = cnf(x) for any x ∈ X and c ∈ R>0.

Let the set U = {x ∈ X|f(x) ≤ 1} be bounded with volume ω = vol(U) such that

ω 6= 0 and let Γ be a lattice in Rn with volume υ = vol(Γ). Then,

z(s) =
∑
Γ∩X

1

f(x)s

converges for Re(s) > 1 and we have lim
s→1

(s− 1)z(s) =
ω

υ
.

Proof. For any positive real number m, we can say that vol( 1
m

Γ) = υ
rn

since we work

in an n-dimensional real vector space.
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Now, de�ne G(m) to be |{x ∈ 1
m

Γ ∩ U}|. Then,

ω = vol(U) = lim
m→∞

G(m)
υ

mn
= υ lim

m→∞

G(m)

mn
.

Furthermore, we can say that G(m) is the number of elements in

{x ∈ Γ ∩X|f(x) ≤ mn}.

That is because these elements are the elements x′ of 1
m
X satisfying f(x′) ≤ 1.

Moreover, since Γ is a lattice and U is bounded, G(m) is �nite. Therefore, we can

order the elements of Γ ∩X as

0 < f(x1) ≤ f(x2) ≤ . . .

Now, set mi to be f(xi)
1
n . By our observation on the function G(m), we have

G(mi −m′) < i ≤ G(mi) for any m′ ∈ R>0. If we multiply the inequality by 1
(mi)n

,

we get

G(mi −m′)
(mi −m′)n

mi −m′

mi

n

<
i

mi
n
≤
G(mi)

mi
n
.

Note that if we take limit as mi goes to ∞, then outer fractions go to
ω

υ
by our

limit calculation in the beginning. Therefore, taking limit as mi goes to ∞ gives us

lim
mi→∞

i

mi
n

= lim
i→∞

i

f(xi)
=
vol(U)

vol(Γ)
=
ω

υ
.

Thus, we can say that for any positive real number m, there exists im such that

for any i ≥ im we have

ω
υ
−m

 1

i
<

1

f(xi)
<

ω
υ

+m

 1

i
.

Taking sth power of the terms and summing over i starting from im gives us
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ω
υ
−m

s
∞∑
i=im

1

is
<

∞∑
i=im

1

f(xi)s
<

ω
υ

+m

s
∞∑
i=im

1

is
.

Now, let us make an observation on
∞∑
i=im

1

is
.

It can be seen that ζ(s) =
∞∑
i=1

1

is
=

im−1∑
i=1

1

is
+

∞∑
i=im

1

is
. So, for Re(s) > 1, ζ(s)

converges, its residue at s = 1 is 1. Therefore,

lim
s→1

(s− 1)ζ(s) = lim
s→1

(s− 1)

 ∞∑
i=im

1

is

 = 1.

Similarly, notice that z(s) converges for any s with Re(s) > 1.

Now, let us multiply the terms in the inequality with (s − 1) and take limit as s

goes to 1:

lim
s→1

(s− 1)

ω
υ
−m

s
∞∑
i=im

1

is
< lim

s→1
(s− 1)

∞∑
i=im

1

f(xi)s
< lim

s→1
(s− 1)

ω
υ

+m

s
∞∑
i=im

1

is

which yields

ω

υ
−m ≤ lim

s→1
(s− 1)z(s) ≤

ω

υ
−m

by our observation above.

Thus, since m > 0 is arbitrary, we conclude that

lim
s→1

(s− 1)z(s) =
ω

υ
.

This theorem is a crucial part of proving the Analytic Class Number Formula. We

will construct a cone X and a lattice Γ. Then, by taking |N ′| as f , we will be able to

use this proposition.
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Now, let us work on the Dedekind zeta function of K. For each class C ∈ Cl(K)

de�ne the following function:

zC(s) =
∑
I∈C

1

NK/Q(I)s
.

Then, we can write ζK(s) as:

ζK(s) =
∑

C∈Cl(K)

zC(s).

We will re-write zC in a di�erent way by manipulating the sum. So, let us make

some observations.

In the previous chapter, it is mentioned that Cl(K) is a �nite group of order hK .

Therefore, the class C has its inverse C−1 inside Cl(K) such that CC−1 = PK . Take

any integral ideal J ∈ C−1. Then, for any I ∈ C, IJ is principal, call it < α > for

some α ∈ OK . Taking norm on the both sides yields

NK/Q(IJ) = NK/Q(< α >) = |NK/Q(α)|.

Since the norm is multiplicative, we get NK/Q(I)NK/Q(J) = |NK/Q(α)|. Also, since

IJ =< α > we can say that J divides < α >.

Therefore, we can write the sum running over the elements α as:

zC(s) =
∑
J |<α>

NK/Q(J)s

|NK/Q(α)|s
= NK/Q(J)s

∑
J |<α>

1

|NK/Q(α)|s
.

Moreover, J divides < α > which means that < α >⊆ J . Thus, α ∈ J .

Note that if α and α̃ are associates then < α >=< α̃ >. Therefore, we consider

only non-associate elements α. So, we can say that the elements α runs over the

non-associate elements of J . Let us say that these elements belong to the subset

J∗ ⊆ J .

We will manipulate the sum once more, so, let us de�ne the following lattice:

Γ = Ψ(J) = {x ∈ Rr1 × Cr2|x = Ψ(α) for some α ∈ J}
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and the subset Ω of Rr1 × Cr2 as

Ω = {x ∈ Rr1 × Cr2|x = Ψ(α) for some α ∈ J∗}.

Finally, recall that we have NK/Q = N ′(Ψ). Since we count the non-associate

members α of J and by the equality above, our sum can be re-written as:

zC(s) = NK/Q(J)s
∑
x∈Ω

1

|N ′(x)|s
.

Our next step is to de�ne a particular cone X ⊆ Rr1 × Cr2 . X will contain

elements x such that x = Ψ(α) for some α and x 6= Ψ(α′) for any associate α′ of

α. In conclusion, we write Ω as Γ ∩X and writing |N ′(x)| instead of f(x) will make

Proposition 4.5 a crucial tool.

Now, recall that the vectors ϕ(η1), . . . , ϕ(ηr) span T ⊆ Rr1+r2 where η1, . . . , ηr

are fundamental units. Our aim is to span Rr1+r2 so we need one additional linearly

independent vector. For this reason, let us de�ne a vector

ϕ̂ = (ϕ̂1, . . . , ϕ̂r1 , ϕ̂r1+1, . . . , ϕ̂r1+r2) ∈ Rr1+r2

such that for every i = 1, . . . , r1 we have ϕ̂i = 1 and for every j = r1 + 1, . . . , r1 + r2

we have ϕ̂j = 2. So ϕ̂ is of the form (1, . . . , 1, 2, . . . , 2) where each of the r1-many real

components is equal to 1 and each of the r2-many complex components is equal to 2.

Then, we can say that the vectors ϕ̂, ϕ(η1), . . . , ϕ(ηr) give a basis for Rr1+r2 . There-

fore, for any l′(x) ∈ Rr1+r2 we can write

l′(x) = ĉϕ̂+ c1ϕ(η1) + · · ·+ crϕ(ηr)

for some ĉ, c1, . . . , cr ∈ R.

Recall that the set T is given as {w ∈ Rr1+r2|t(w) = 0} where the function t is

given as

t : Rr1+r2 → R

(y1, . . . , yr1+r2) 7→ y1 + · · ·+ yr1+r2 .
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Notice also that for any fundamental unit ηj, we have ϕ(ηj) ∈ T and t(ϕ(ηj)) =

log 1 = 0.

Therefore,

t(l′(x)) = ĉt(ϕ̂) + c1t(ϕ(η1)) + · · ·+ crt(ϕ(ηr)) = ĉt(ϕ̂).

Thus, t(l′(x)) = ĉ(1 + · · ·+ 1 + 2 · · ·+ 2) = ĉn. Lastly, notice that

t(l′(x)) = log |N ′(x)|

so ĉ = 1
n

log |N ′(x)|. We are ready to de�ne the desired cone.

Let X ⊆ Rr1 × Cr2 be the set of elements x satisfying the following properties:

1. N ′(x) 6= 0.

2. for any coe�cient ci of l′(x) we have 0 ≤ ci < 1 for each i = 1, . . . , r.

3. If x1 is the �rst component of x, we have 0 ≤ arg(x1) <
2π

|µ(K)|
.

We claim that the set X is a cone. Let us show that.

For any c ∈ R > 0, N ′(cx) = cnN ′(x) 6= 0. Also, l′(cx) = (log c)ϕ̂+ l′(x) and since

l′(x) = ĉϕ̂ + c1ϕ(η1) + · · · + crϕ(ηr), the coe�cients ϕ(ηj) do not change and satisfy

the condition.

To add, arg(cx1) = arg(x1) since streching the vector does not a�ect the argument.

Therefore, for any x ∈ X and c ∈ R>0, cx ∈ X. Thus, we conclude that

X ⊆ Rr1 × Cr2

is a cone.

Lemma 4.6. If y ∈ Rn and N ′(y) 6= 0, then y can be written uniquely as x ·Ψ(η) for

some x ∈ X ⊆ Rr1 × Cr2 and η ∈ OK×.

Proof. Let us write l′(y) as d̂ϕ̂+d1ϕ(η1)+ · · ·+drϕ(ηr) for some d̂, d1, . . . , dr ∈ R. For

any j = 1, . . . , r, we can write dj = mj+fj wheremj ∈ Z and fj ∈ [0, 1), the fractional

part of dj. Now, let us write a unit u as u = ηm1
1 . . . ηmrr and set z = y ·Ψ(u−1).
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Assume that the argument of the �rst component of z, arg(z1) = θ. Then, we can

�nd an integer m̄ such that

0 ≤ θ −
2πm̄

|µ(K)|
<

2π

|µ(K)|
.

Next, take ζ ∈ µ(K) such that the �rst component of the image of ζ under the

map Ψ : K → Rr1 × C× is Ψ1(ζ) = e
2πi
|µ(K)| .

Now, set x = y ·Ψ(u−1) ·Ψ(ζm̄). We will show that x ∈ X.

By assumption N ′(y) 6= 0 and we have y ·Ψ(u−1) ·Ψ(ζm̄) = N ′(x) 6= 0.

The coe�cients fj (j = 1, . . . , r) of x satisfy 0 ≤ fj < 1 by our construction.

Finally, argument arg(x1) of the �rst component of x lies inside [0, 2π
|µ(K)|) by our

choice of ζ. Thus, x lies in the cone X.

The equality x = y ·Ψ(u−1) ·Ψ(ζm̄) implies that y = Ψ(η) for some unit η ∈ OK .

In addition, the decomposition of y is unique by the construction.

So, we prove that if α ∈ OK then there is a unique element α̃ of {α̃ ∈ OK |α̃ is associate to α}

such that Ψ(α̃) ∈ X.

Recall that we have the lattice

Γ = Ψ(J) = {x ∈ Rr1 × Cr2|x = Ψ(α) for some α ∈ J}

and J∗ is de�ned as the non-associate member of J so that we also have

Ω = {x ∈ Rr1 × Cr2 |x = Ψ(α) for some α ∈ J∗}.

Thus, we can write Ω as Γ ∩X.

Then,

zC(s) = NK/Q(J)s
∑
x∈Ω

1

|N ′(x)|s

can be written as

zC(s) = NK/Q(J)s
∑

x∈Γ∩X

1

|N ′(x)|s
.
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Now, to evaluate this sum via Proposition 4.5 we have to �nd vol(U) = ω and

vol(Γ) = υ where U = {x ∈ X
∣∣|N ′(x)| ≤ 1}.

By Corollary 3.10, the volume of the lattice Γ = Ψ(J) is 2−r2|∆K |
1
2NK/Q(J).

Therefore, we only need the volume of U .

Proposition 4.7. The volume of ω of U is
2r1πr2RK

|µ(K)|
.

Proof. See, [2, Chapter 10, Proposition 10.14]

Let us put everything together:

lim
s→1

(s− 1)zC(s) = NK/Q(J)
ω

υ
= NK/Q(J)

2r1πr2RK

|µ(K)|
1

2−r2|∆K |
1
2NK/Q(J)

=
2r1+r2πr2RK

|µ(K)|
√
|∆K |

.

Note that the sum is independent from the class C.

Recall that we write ζK(s) as
∑

C∈Cl(K)

zC(s) and there are only �nitely many ideal

classes. The number of these classes is the class number hK of K, thus:

lim
s→1

(s− 1)ζK(s) =
2r1+r2πr2RK

|µ(K)|
√
|∆K |

hK .
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APPLICATIONS

In this chapter, we brie�y cover various concepts in order to compute the class

number of a number �eld. We mainly focus on the quadratic number �elds, number

�elds of degree 2 over Q. A quadratic number �eld K is given by K = Q(
√
d) for

some square-free integer d.

Let us state some results on quadratic number �elds �rst.

Remark 5.1. Let K = Q[
√
d] be a quadratic number �eld. Then, we have the

following:

1. OK = Z[
√
d] and ∆K = 4d, if d ≡ 2, 3 (mod 4).

2. OK = Z[1+
√
d

2
] and ∆K = d if d ≡ 1 (mod 4).

Now take any prime number p. The ideal pOK is an ideal of OK generated by p,

so it can be written as a product of prime ideals. We have 3 cases:

1. p splits in K if pOK = P ′Q′ for some distinct prime ideals P ′, Q′ of norm p.

2. p is inert in K if pOK is a prime ideal of OK of norm p2.

3. p is ramifed in K if pOK = P 2 for some prime ideal P of OK of norm p.

Now, let us begin with Binary Quadratic Forms.

5.1 Binary Quadratic Forms

De�nition 5.2. A binary quadratic form is a homogeneous polynomial of degree 2

and of the form p(x, y) = ax2 + bxy + cy2 for some integers a, b and c.

The discriminant of the binary quadratic form ax2+bxy+cy2 is de�ned as b2−4ac.
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We will write (a, b, c) for the binary quadratic form ax2 + bxy + cy2 in short.

De�nition 5.3. A quadratic form p(x, y) is called positive de�nite if for any x, y ∈ R,

we have f(x, y) ≥ 0 and f(x, y) = 0 implies that (x, y) = 0.

Now, let us we have a quadratic form (a, b, c). We look for the conditions that is

needed to have a positive de�nite form.

ax2 + bxy + cy2 = a

(
x+

b

2a
y

)2

+

(
c− b2

4a

)
y2.

First of all, a must be greater than 0, in order to say that (a, b, c) is positive

de�nite because taking (x, y) = (1, 0) gives a negative value. The same is valid for

c by symmetry. To add, if we look at the equation above, (c − b2

4a
) must be positive

to have a positive de�nite form. Equivalently, we must have b2 − 4ac < 0. Thus, we

have the following corollary:

Corollary 5.4. [2, Chapter 6, Corollary 6.10] The quadratic form (a, b, c) is positive

de�nite if and only if a > 0 and b2 − 4ac < 0.

Remark 5.5. Let K be an imaginary quadratic number �eld. So, K = Q(
√
d) for

some negative square-free integer d. Then, the norm NK/Q(x + y
√
d) of any element

x+ y
√
d is a positive de�nite quadratic form: x2 + (−d)y2.

Now, we make an observation and after that, we de�ne an equivalence relation on

the set of quadratic forms.

Let v be the vector (x, y)T and say A =
(
a b

2
b
2
c

)
. Then, the form

p(x, y) = ax2 + bxy + cy2

can be written as p(x, y) = vTAv.

De�nition 5.6. The quadratic forms p(x, y) and q(x, y) are said to be equivalent if

q(x, y) = p(m11x+m12y,m21x+m22y) for some invertible matrix M =

m11 m12

m21 m22


in GL2(Z).
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Equivalently, since M is invertible, det(M) = ±1 so that p(x, y) and q(x, y) are

equivalent if the substitution (x, y) 7→ (m11x+m12y,m21x+m22y) transforms one to

another for some m11,m12,m21,m22 ∈ Z with m11m22 −m12m21 = ±1.

They are called properly equivalent if m11m22−m12m21 = 1 which is the case that

when M ∈ SL2(Z).

Let us take a form p(x, y) as vTAv as above.

Notice that

Mv =

m11 m12

m21 m22

x
y

 =

m11x+m12y

m21x+m22y


.

Thus, we can write p(m11x+m12y,m21x+m22y) = (Mv)TA(Mv) = vT (MTAM)v.

Now, let us say that the form q(x, y) corresponds to a matrix B. Then, it can be

said that p and q are equivalent if B = MTAM for some M ∈ GL2(Z) and properly

equivalent if M ∈ SL2(Z).

In some cases, writing a form in terms of matrices makes things easier and help

one to come up with various conclusions. For instance, one can prove the following

theorem:

Theorem 5.7. ( 1 1
0 1 ), ( 0 1

−1 0 ) generate SL2(Z) (For the proof, see [2, Chapter 6, Corol-

lary 6.18]).

Now, let us give a remark and continue with reduced quadratic forms.

Remark 5.8. Equivalent forms have the same discriminant.

Both equivalences give an equivalence relation on the quadratic forms. In fact,

on the set of binary quadratic forms of �xed discriminant, we have these equivalence

relations.

De�nition 5.9. The binary quadratic form (a, b, c) is called reduced if either

−a < b ≤ c or 0 ≤ b ≤ a = c.
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Now, let us take a positive-de�nite form p(x, y) = (a, b, c) and de�ne the following

transformations:

1. T1 : (x, y) 7→ (x+ y, y) which gives (a, b, c) 7→ (a, 2a+ b, a+ b+ c).

2. T2 : (x, y) 7→ (x, y − x) which gives (a, b, c) 7→ (a, b− 2a, a− b+ c).

3. T3 : (x, y) 7→ (y,−x) which gives (a, b, c) 7→ (c,−b, a).

The transformations T1, T2, T3 generate properly equivalent forms. If we start with

a positive de�nite quadratic form and apply the algorithm in [2, Chapter 6.4] we get a

reduced form after �nitely many steps and they are properly equivalent. We actually

have more than that:

Theorem 5.10. [2, Chapter 6, Theorem 6.14] Assume that p(x, y) is a positive de�-

nite binary quadratic form. Then, there exist a unique reduced form r(x, y) such that

p(x, y) is properly equivalent to r(x, y).

Now, recall that if K = Q(
√
d) for some square-free d ∈ Z<0 with discriminant

∆K . Then, we have

∆K =

d if d ≡ 1 (mod 4)

4d if d ≡ 2, 3 (mod 4)

Also, we mentioned that discriminant of a form can be de�ned too. Let us say that

(a, b, c) is a quadratic form with discriminant d̃. So, we focus on the forms (a, b, c)

with discriminant d̃ = ∆K that is negative.

Moreover, we de�ne bijective functions between the set proper equivalence classes

of quadratic forms of discriminant d̃ = ∆K and the set of ideal classes in OK . Brie�y,

for any representative (a, b, c) we send it to an ideal class such that the ideal repre-

senting the class has Z-basis α, β consisting of a, b and c. Conversely, for any ideal

I ⊆ OK we can �nd two generators such that I is of the form aZ+ (b+ cγ)Z for some

γ ∈ K. Thus, we can send I to a form (a, b, c). It is important to mention that either

case, the maps are well-de�ned (For details, see [2, Chapter 6.5]).
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Proposition 5.11. The number of reduced quadratic forms with �xed discriminant

is �nite.

Proof. Let (a, b, c) be a reduced form with discriminant d̃ so we have 0 ≤ |b| ≤ a ≤ c.

Thus, 0 ≤ b2 ≤ ac and this implies that −4ac ≤ b2 − 4ac ≤ ac − 4ac = −3ac.

Therefore, −4ac ≤ d̃ ≤ −3ac and we can bound ac as

−d̃
4
≤ ac ≤ −d̃

3
.

Since (a, b, c) is reduced, 0 ≤ a ≤ c so that a2 ≤ ac. Thus,

a2 ≤ ac ≤ −d̃
3
.

Therefore, a is bounded and since |b| ≤ a, b is bounded too. There are �nitely

many choices for a and b. Thus, together with the equality b2 − 4ac = d̃, we can say

that there are �nitely many choices for c.

We see that the collection of positive de�nite binary quadratic forms with �xed dis-

criminant is �nite, thus, we prove that the ideal class group of an imaginary quadratic

�eld is �nite. Moreover, we can evaluate the class number of an imaginary quadratic

�eld by counting the related reduced forms.

Now, we give the main theorem of this section:

Theorem 5.12. [2, Chapter 6, Theorem 6.19]

Assume that the number of reduced quadratic forms with discriminant ∆K is pK.

Then, the class number hK of an imaginary quadratic �eld Q(
√
d) is equal to pK .

We will �nish this section with the following example:

Example 5.13. Let K = Q(−
√

13), so ∆K = −52. We look for reduced forms

(a, b, c) of discriminant b2 − 4ac = −52. We mentioned in the proof of Proposition

5.11 that 52
4
≤ ac ≤ 52

3
, equivalently, 13 ≤ ac ≤ 17 must be satis�ed.

Now, if ac = 13 and b = 0, then we must have (1, 0, 13) since 0 ≤ a ≤ c.

If ac = 14, then b = ±2 and we have four possibilites in this case:
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1. (1,2,14): it is not reduced since |b| > a.

2. (1,-2,14): again it is not reduced since |b| > a.

3. (2,2,7): It is reduced.

4. (2,-2,7): It is not reduced since b = −a.

Now, if ac = 15, then b2 = 8 and if ac = 16, then b2 = 12 so we can not �nd such

b.

Lastly, if ac = 17, then b = ±4 but we can not �nd such a, c to satisfy

4 = |b| ≤ a ≤ c.

Therefore, the only reduced forms of discriminant −52 are (1, 0, 13) and (2, 2, 7).

Thus, the class number hK of K is 2. So, it is not a UFD.

5.2 Continued Fractions

In the previous subsection, we worked on the imaginary quadratic �elds and presented

a way to �nd their class numbers. Now, we work on real quadratic �elds. The most

signi�cant di�erence between these two quadratic number �elds is that real ones have

in�nitely many units. To �nd their units, we must �nd the fundamental unit η of the

real quadratic �eld since the units are of the form ±ηn for some n ∈ Z by Dirichlet's

Unit Theorem.

Let K = Q(
√
d) be a real quadratic �eld. For instance, let us assume that

OK = Z[
√
d] and take any unit a+ b

√
d ∈ OK×. Then,

NK/Q(a+ b
√
d) = a2 − db2 = ±1

so that the units are the solutions of a Pell's equation, x2 − dy2 = ±1. It is known

that when d ∈ Z>0 and is square-free, the equation has in�nitely many solutions and

the general solution gives us the fundamental unit of the real quadratic �eld.

Now, observe that we can write
√

2 as:
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√
2 = 1 + (

√
2− 1) = 1 +

1
1√
2−1

= 1 +
1√

2 + 1
= 1 +

1

2 + 1√
2−1

= 1 +
1

2 + 1
2+ 1

2+...

.

The expression on the right hand side is called the continued fraction for
√

2. We

use [1; 2, 2, . . . ] = [1; 2] for the expression in short.

Now, let d ∈ Z>0 be a square-free integer. We will give some facts without proofs.

Proposition 5.14. The continued fraction for
√
d is given as [b0; b1 . . . bk] for some

positive integers b0, . . . , bk so that bk = 2b0.

Now, let us say that we can write γ = b0 + 1
b1+ 1

b2+ 1
...

= b0 + 1
γ0

= b0 + 1
b1+ 1

γ2

= . . .

such that there exists k ∈ Z>0 where γj = γj+k for some j. The smallest possible k is

called the period of
√
d.

Now, let us �x some notation.

De�ne p−2 = 0, q−2 = 1, p−1 = 1, q−1 = 0, p0 = bγc and q0 = 1. If γ = [b0; b1b2 . . . ],

then pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2. Set A0 = 0, C0 = 1, γ0 =
√
d and

b0 = bγ0c. Also, de�ne An+1 = bnCn − An, Cn+1 = d−Cn+1
2

An
, γn+1 =

√
d+Cn+1

An+1
and

bn+1 = bγn+1c. Then, An, Cn ∈ Z for any n and γn = bn+ 1
γn+1

, thus γ = [b0; b1, b2, . . . ].

Lastly, we have that pn2 − dqn2 = (−1)n+1An+1. (For the proofs, see [2, Chapter

8.2].)

The fraction pn
qn

is called nth convergent to γ.

Now, we can give some results on solving Pell's equation.

Theorem 5.15. Suppose that d ∈ Z>0 is square-free. Then, x2−dy2 = 1 has in�nitely

many solutions and x2 − dy2 = −1 has in�nitely many solutions if the period of
√
d

is odd.

Proof. We have pn2 − dqn
2 = (−1)n+1An+1. The sequence (γn) repeats with some

period k, therefore (An) repeats with the same period. We have N0 = 1 so that

Nik = 1 for any i ∈ Z≥0. Then, for any n = ik − 1 where i or k even (pn, qn) solves

x2−dy2 = 1. Therefore, Pell's equation has in�nitely many solutions. If k is odd and

n = ik − 1 with i odd, (pn, qn) is a solution for x2 − dy2 = −1.
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Theorem 5.16. Suppose that d ∈ Z>0 is square-free and say nth convergent to
√
d

is pn
qn
. Suppose also that m ∈ Z with |m| <

√
d. Then, for any solution (u, v) of

x2 − dy2 = m with (u, v) = 1 we have s = pn and t = qn for some n.

To sum up, we can �nd the units u + v
√
d with the convergents to

√
d. So, we

look for convergents pn
qn

with pn2 − dqn2 = ±1. We see in the proof of Theorem 5.15

that the values of pn2 − dqn2 repeats with period k of
√
d.

So, if d ≡ 2, 3 (mod 4), then the �rst pair (pn, qn) that satis�es pn2 − dqn2 = ±1

gives the fundamental unit of K, pn + qn
√
d. However, if d ≡ 1 (mod 4) then we seek

for a+ b
√
d = ±1 for some a, b ∈ 1

2
Z. Thus, we need to solve (2a)2−d(2b)2 = ±4 and

it has a solution by Theorem 5.16. So, in this case, the �rst pair of (pn, qn) satisfying

±1 or ±4 gives the fundamental unit of K.

5.3 Class Number Calculations via Minkowski's Bound

In this section, we introduce a method to �nd the class number of any number �eld.

We will give an example on real quadratic �elds since we presented a method for

imaginary quadratic �elds. Now, we give the main theorem of this section:

Theorem 5.17. Let K be a number �eld of degree n and c ∈ R be a constant such

that every ideal class contains an ideal I with NK/Q(I) ≤ υ. Let {P1, . . . , Pm} be

the set of prime ideals of OK with NK/Q(Pi) ≤ υ for any i = 1, . . . ,m and say that

Ci = [Pi] is the class of Pi in Cl(K). Then, {C1, . . . , Cm} generates Cl(K). In

addition, hK ≤
∑bυc

i=2 n
log i
log 2 .

Proof. By Proposition 3.13, we can say that there are �nitely many prime ideals P

with NK/Q(P ) ≤ υ. Let us say that they are {P1, . . . , Pm}. Now take any C ∈ Cl(K)

and an ideal I ∈ C with NK/Q(I) ≤ υ. Let Q1
e1 . . . Ql

el be the decompositon of I for

some prime ideals Q1, . . . , Ql. Then,
∏l

i=1NK/Q(Qi)
ei ≤ υ implies that NK/Q(Qi) ≤ υ

for any i = 1, . . . , l. Thus, {Q1, . . . , Ql} ⊆ {P1, . . . , Pm} and Cl(K) is generated by

C1, . . . , Cm.

For the last part, see [3, Chapter 4, Corollary 4.2]
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We can take υ as Minkowski's bound

 4

π

r2

n!

nn
|∆K |

1
2 given in Corollary 3.12

since it satis�es the condition of the theorem.

Now, let us see an example:

Example 5.18. Let K = Q(
√

82). Then, we have n = 2, r1 = 2, r2 = 0,∆K = 328

and Minkowski's bound M ≈ 9.05. Lastly, OK = Z[
√

82].

Prime ideals have norm pm for some prime number p with m ∈ N and their norm

must be less than M so we consider the primes less than M . Thus, we consider the

factors of pO to �nd the prime ideals we are looking for.

By [2, Chapter 5.8, Proposition 5.42], 2OK = P 2
2 , 3OK = P3P̃3 and 5, 7 are inert

so we consider the prime ideals P2, P3 and P̃3 only.

Note that 2OK = P 2
2 ∼ (1) and since 3OK = P3P̃3 ∼ (1), we can say that Cl(K)

is generated by P2 and P3.

Now let β = 10 +
√

82. We have NK/Q(βOK) = 18 so βOK has a prime factor

with norm 3. Since 3 6 |10 +
√

82, β /∈ 3OK = P3P̃3, βOK is divisible by one of P3 and

P̃3. Let P3 divides the ideal so we have βOK = P2P3
2, a principal ideal. Therefore,

P2 ∼ P−2
3 and we conclude that Cl(K) is generated by the class of P3. Now, we have

[P2]2 = 1 and [P3]2 = [P2] therefore the order of [P3] divides 4. Let us show that P2

is not principal.

Suppose that P 2
2 = (α)2 for some α = (a+ b

√
82) ∈ Z[

√
82].

Thus, 2O =< (a + b
√

82)2 >. Then, 2 = ((a + b
√

82)2)u for some u ∈ OK×. By

Dirichlet's Unit Theorem (Theorem 3.22), u = ±ηn for some n ∈ Z where η is the

fundamental unit of K. Let us �nd the fundamental unit by considering the continued

fraction of
√

82. It is given as [9; 18]. By the method we introduced in the previous

section we conclude that η = 9+
√

82. Thus, u = ±(9+
√

82)n for some n ∈ Z. Then,

2 = (a + b
√

82)2u = ±(a + b
√

82)2(9 +
√

82)n implies that u must be positive. By

taking the norm of both sides we conclude that n = 2k for some k ∈ Z. Finally, we

have
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2 = (a+ b
√

82)2(9 +
√

82)2k.

Then,
√

2 = (a+ b
√

82)(9 +
√

82)k = a′ + b′
√

82 for some a′, b′ ∈ Z[
√

82] but this

implies that
√

2 ∈ Z[
√

82] which is a contradiction.

Thus, P2 is not principal, so [P3] has order 4 and Cl(K) is generated by [P3].

Therefore, Cl(K) ∼= Z/4Z and hK = 4.

5.4 Explicit Class Number Formula

A Dirichlet character modulo n is a group homomorphism

χ : (Z/nZ)× → C− {0}.

It can be extended to Z/nZ by setting χ(a) = 0 for any a with (a, n) > 1 . We

call χ as principal if it is the trivial homomorphism and non-principal otherwise. A

character is primitive (mod k) if for any divisor a < k of k, there exists b ∈ Z with

b ≡ 1 (mod k) provided that (a, b) = 1 and χ(b) 6= 1.

We de�ne the Dirichlet L-function with Dirichlet character χ as

L(s, χ) =
∞∑
n=1

χ(n)

ns

for Re(s) > 1.

Now, suppose that K is a quadratic �eld. Recall that a prime number either splits,

rami�es or is inert. De�ne

χ(p) =


1 if p splits

−1 if p is inert

0 if p rami�es

Then, χ gives a real primitive character modulo |∆K |. Actually, this character is

the Kronecker symbol (|∆K |, ·) (We encourage the reader to see [5], [6], [7]).

For this character, we have
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ζK(s) = ζ(s)L(s, χ).

Then, if we multiply both sides with (s− 1) and take limit as s goes to 1:

2r1+r2πr2RK

|µ(K)|
√
|∆K |

hK = L(1, χ).

Now, if K is a real quadratic �eld, then we have r1 = 2, r2 = 0, |µ(K)| = 2, and

RK = η where η is a fundamental unit. Thus, we have:

hK =

√
|∆K |

2 log η
L(1, χ).

On the other hand, ifK is an imaginary quadratic �eld, then we have r1 = 0, r2 = 1

and RK = 1. Therefore, we conclude:

hK =
|µ(K)|

√
|∆K |

2π
L(1, χ).

Thus, the value of L(1, χ) can be useful to make assumptions on hK . However,

note that it is not easy to compute L(1, χ) sometimes. Lastly, in our case

L(1, χ) 6= 0 and this plays a fundamental role on proving Dirichlet's theorem on

arithmetic progressions:

Theorem 5.19 (Dirichlet's Theorem on Arithmetic Progressions). Let a, b ∈ Z>0

such that (a, b) = 1. Then, there exist in�nitely many prime numbers p of the form

an+ b for some n ∈ Z>0.

Proof. [7, Chapter 4].

Example 5.20. Let K = Q(
√

2) with fundamental unit η = 1 +
√

2. We have

∆K = 8. Thus,

hK =

√
8

2 log(1 +
√

2)
L(1, χ) ≈ 1.605 L(1, χ).
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We have

L(1, χ) = 1− 1

3
− 1

5
+

1

7
+

1

9
− . . .

However, the value of L(1, χ) is between 1− 1
3
and 1− 1

3
+ 1

5
so that L(1, χ) < 1.

Thus, hK < 1.605. Therefore, hK must be 1.
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