The Dedekind Zeta Function and The Analytic Class

Number Formula

Cagatay Altuntas

A Dissertation Submitted to the
Graduate School of Sciences and Engineering
in Partial Fulfillment of the Requirements for

the Degree of
Master of Science
n

Mathematics

2

KN

KOC
UNIVERSITY

June 27, 2018



The Dedekind Zeta Function and The Analytic Class Number Formula

Kog¢ University
Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Cagatay Altuntasg

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Kazim Biiyiikboduk

Prof. Dr. Tolga Etgii

Assoc. Prof. Ayhan Giinaydin

Date:




to my family

iii



ABSTRACT

In this thesis, we first introduce number fields and their rings of integers. We show
that ring of integers Ok of a number field K is an integrally closed, Noetherian ring
such that its prime and maximal ideals coincide. Namely, O is a Dedekind domain.
To study Of in details, we present a geometric approach so that K is embedded inside
a finite dimensional real vector space. By doing so, we show that the class number
hy of K is finite. In addition, we characterize the group of units of Ok via geometric
methods. After that, we define the Dedekind zeta function (x(s) of a number field
K. Tt is a generalization of the Riemann zeta function ((s). Moreover, we present the

Analytic Class Number Formula which states that (x(s) converges for any Re(s) > 1

or1tr2 T2 RK
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where 7 is the number of real embeddings of K, ry is the number of non-conjugate

and has a simple pole at s = 1. Moreover, its residue is given by
complex embeddings, Ry is the regulator of K, Ak is the discriminant of K and

u(K) is the group of roots of unity in K. Lastly, we present various arguments to

evaluate hy for various number fields.
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OZETCE

Bu ¢aligmada ilk olarak say1 cisimleri ve bu say1 cisimlerinin cebirsel tamsay1 hal-
kalarina deginecegiz. Herhangi bir say1 cisminin cebirsel tamsayilar halkasinin tam-
sayica kapali bir Noether halkasi oldugunu ve asal ile maksimal ideallarinin értiistiigiinii
gosterecegiz. Bu halkay1 detaylica caligmak icin geometrik bir metod kullanacagiz.
Boylelikle, bu say1 cisminin ideal simif grubunun sonlu oldugunu gosterecegiz. FEk
olarak, geometrik yontemler ile herhangi bir cebirsel tamsayilar halkasinin tersinir
elemanlarini karakterize edecegiz. Sonrasinda ise, say1 cisimleri i¢in karmagik sayilar
tizerinde tanimli Dedekind zeta fonksiyonunu tanimlayip bu fonksiyonun 1 noktasinda
basit bir kutbu oldugunu gosterecegiz. Dahasi, fonksiyonun bu noktadaki kalintisinin
ilgili say1 cisminin degigmezleri tarafindan verildigini gorecegiz. Son olarak, say1 cisim-

lerinin ideal sinif sayisinin farklhi yollarla hesaplama yollarindan bahsedecegiz.
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INTRODUCTION

In this thesis, we study finite extensions of the field of rational numbers, called
number fields. Since the degree of the extension is finite, every element of a number
field is a root of a non-zero polynomial with coefficients in Q. The elements which
satisfy a non-zero, monic polynomial with integer coefficients constitute a subring of
the number field called ring of integers of K. The ring of integers Ok is a Noetherian,
integrally closed ring such that its prime and maximal ideals coincide. In general, the
unique factorization in Ok fails. On the other hand, the unique factorization property

is preserved in the set of ideals of O.

In the first chapter, we introduce the notion of integrality, and define Noetherian
rings together with Dedekind rings. In particular, we develop the necessary back-

ground in order to understand Ok and to show that it is a Dedekind domain.

In Chapter 2, we begin to study number fields and their rings of integers. Note
that if the degree of the number field over Q is 2, we call it quadratic and if the degree
is 3, it is called cubic. In this chapter, we study their rings of integers briefly. We see
that Ok is a Dedekind domain. In addition, we introduce the norm of an ideal and
recall the class group CI(K) of K. However, we are not able to show that the class

number of K is finite, yet.

Next, we study the geometry of number fields in Chapter 3. We introduce lattices
and develop geometrical techniques to understand the structure of O. To do so, we
embed O inside a finite dimensional real vector space. First, we prove that Cl(K),
namely the class number hx of K is finite. After that, we prove Dirichlet’s Unit

Theorem:



Let K be a number field of degree n over Q. Then,
Of =2 u(K) x zmr=t,

where n = r1 + 2ry such that r is the number of real embeddings of K, ry is the
number of non-conjugate complex embeddings of K and p(K) is the finite group of
roots of unity in K.

Thus, we characterize the unit group of Ok.

In Chapter 4, we introduce the Dedekind zeta function which is named for Julius
Wilhelm Richard Dedekind. Then, we present the main result of this thesis, the
Analytic Class Number Formula, which consists of important invariants of a number
field K.

Theorem. The Dedekind zeta function (x(s) converges for any s with Re(s) > 1,

has a simple pole at s =1 and

2T1+T27TT2RK
lim(s — 1)(x(s) = ————— h.

i (K| Ak]

where hg 1s the class number of K and Ry is the requlator of K.
The positive integer hyx measures how far is Ok being a PID. Loosely speaking,
A g measures the size of Og and Rx measures the density of units in O.

The formula was first introduced by Peter Gustav Lejeune Dirichlet in 1839. His
T(x)

work was not a residue calculation but he studied the limit as x goes to infinity,
where T'(x) is the number of ideals with norm bounded by z. By doing so, Dedekind
proved that lim,_,;+(s—1)(k(s) exists and given by the formula above for any number
field K.

Notice that on the left-hand side, we have an analytic object and on the right-hand
side we have arithmetic objects. So, we can say that aritmetic information can be
encoded by analytic objects.

In Chapter 5, we introduce different techniques to calculate the class number of

K. We present binary quadratic forms to calculate the class number of an imaginary

quadratic field. We continue with continged fractions, which can be useful to solve



Pell’s Equation. As a consequence, we find the fundamental unit of a real quadratic
number field. Then, via Minkowski’s bound, we study the structure of the ideal class
group and based on our knowledge on ideals of O. Finally, we evaluate the class

number of a quadratic number field via L—functions.



Chapter 1

PRELIMINARIES

1.1 Integrality

We first introduce the integrality of elements over a ring. In this thesis, a ring always
be a commutative ring with unity. Detailed arguments on the context can be found
in [1], [2] and [3].

Let B be a ring and A a subring of B.

Definition 1.1. An element o € B is integral over A if for some monic non-zero

polynomial f(X) € A[X] we have f(a) = 0.
The following theorem states equivalent conditions for an element to be integral.

Theorem 1.2. [1, Chapter 2.1, Theorem 1] Let o be an element of B. Then the

following statements are equivalent:
1. "+ ap_ 10" '+ Faja+ag =0 for some an_1,...,a0 € A and n € Z=1.
2. Ala] is a finitely generated A-module.

3. B has a subring containing A and o which s finitely generated as an A-module.

Proof. (1) = (2). Assume that y is an element of Ala] such that

for some a; € A for any ¢ =0,...,m.
It is enough to show that for any ¢ > n, o' can be written as a linear combination

of 1,...,a" ! with coefficients in A.
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We continue by induction on ¢ > n. Suppose first that ¢ = n. Then,

al=a"=—ayg—aa — - — a,_1a" L

Let @ > n and for any j < i — 1, suppose that o’/ can be written in terms of

1,a,...,a" ! Then,
o = —apad™" — g™ — o — o, _aiT!
and we are done.
(2) = (3). Taking B as A[a] gives the result.
(3) = (1). Let B is generated by s1,...,s, as an A-module. Since as; € B for

any ¢ =1,...,n, we can write

n
as; = E mMi;S;
J=1

for some m;; € A and 1 <14,j < n. Define the matrix M = (m;;)1<; j<, and let
S be the matrix (si,...,s,)T. Then, aS = MS or (ald — M)S = 0. However, S is

non-trivial therefore (a/d — M) must have a non-trivial kernel.
n—1

Thus, det(ald — M) = o™ + Z a;a' = 0 where each a; € A since the coefficients

1=0
of M belong to A. Therefore, we find the desired equation. [

An equation o +a,_1a" 1+ +aja+ag = 0 for some a,,_1,...,a0 € A, n € Z=!

is called an equation of integral depence of a over A.

Proposition 1.3. [1, Chapter 2.1, Proposition 1] Let {z1,...,xz,} C B be a finite
set of elements which are integral over A. If for any i, the element x; is integral over

Alxy, ...,z 1] then Alxq, ..., x,] is a finitely generated A-module.
By Theorem 1.2 and Proposition 1.3 we conclude the following:

Corollary 1.4. If a, 5 € B are integral over A, then so are o+ [ and af.
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The corollary above states that the set of integral elements over a ring constitutes
aring. In particular, if we set A’ := {a € Bla is integral over A}, then A’ is a subring

of B containing A.

Definition 1.5. Let B be a ring and A a subring of B.
The set of elements A = {a € Bla is integral over A} is called the integral
closure of A over B. If every element of B is integral over A, then B is said to be

integral over A. In this case, we also say that B is an integral extension of A.
Naturally, the following proposition arises:

Proposition 1.6. [1, Chapter 2.1, Proposition 2] Let A be a subring of a ring B and
B a subring of a ring C' so that B is integral over A and C' is integral over B. Then,

C' s integral over A.

Now, let us see what happens in an integral extension when we have a field instead

of a ring.

Proposition 1.7. Suppose that B is a domain, A is a subring of B such that B is
integral over A. Then, A is a field if and only if B is a field.

Proof. Let A be a field and take any non-zero element 5 € B. Since B is integral over
A, A[f] is a finite dimensional vector space over A by Theorem 1.2. Note that the
transformation a — fa is an A — linear transformation on A[S]. Since 8 # 0 and A
is a domain, the kernel of the transformation is trivial and the map is injective. Also,
since A[f] is a finite dimensional vector space, the map is surjective. Thus, there
exists some 3’ € A[f] such that 8" = 1. Therefore, B is a field.

On the other hand, if B is a field, take any non-zero @ € A. Then, there exist

a~! € B and it is integral over A so we can write

a "y 0"+ g Hag =0

for some a,_1,...,a0 € A. If we multiply both sides with a"~! we get
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and we are done.

]

Definition 1.8. Let A be a domain and K be its field of fractions. We call the
integral closure of A in K simply as integral closure of A. In addition, A is called

integrally closed if its integral closure is equal to itself.
For instance, any unique factorization domain is integrally closed. Let us prove it.
Example 1.9. If A is a unique factorization domain then it is integrally closed.

Proof. Let K = Frac(A) and o € K. Then " + ¢, 10" ' + -+ + cia+ ¢ = 0 for
some ¢,_1,...cy € A.

Since o = ¢ for some a,b € A, b # 0 we have ()" +¢,—1($)" '+ -+c¢1($)+co = 0.
Multiplying both sides with b results in a™ + be,_1a™ 1 + -+ - + 0" teja + by = 0.
Therefore, a" = by for some v € A and b divides a™ implies b divides a since A is a

UFD. As a conclusion, b is a unit and § = a € A. [
Now, let R be a ring and K C R be a field.

Definition 1.10. Let o € R. We say that « is algebraic over K if
Q" 4 ap_ 10" 4 aa 4 ag =0
for some a,,...,ap € K, not all equal to 0.

Let us say that a, # 0, so, since K is a field a,0" + a,_ja" ' +- - +aa+ag =0
implies that a™ + b,_1a™ ' 4+ -+ - + bja + by = 0 for some b,,_1,...,by € K. Thus, for
an algebraic element o € R there exists a non-zero, monic polynomial f(X) € K[X]
satisfying f(a) = 0.

In addition, a,a™ + a,_ 1™t + - -+ a0+ ag = 0 in which not all the coefficients

are zero, it can be said that o™,...,a,1 are linearly dependent. If § € R is not
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algebraic over K then it is called transcendental over K. In this case, for any n € Z=°
the elements {1, 53, ..., 3"} are linearly independent.

Let o € R be an element which is algebraic over K.

Write a” + a,_10" ' +-- - +aja+ay = 0 for some a,_1,...,ay € K. By Theorem
1.2, Kla] is finitely generated, therefore, K[a| is a vector space over K of finite

dimension.

Definition 1.11. R is algebraic over K if every element of R is algebraic over K. In

particular, if R is a field then it is called an algebraic extension of K

Definition 1.12. Let L be a field and K C L a subfield of L. The field L is a

K-vector space and its dimension over K is denoted by [L : K].

Let o € R be an algebraic element over K. Define the following homomorphism:

¢: K[X]—= R
f(X) = fla)
a— a,Va e K

Let us make some observations. Since K is a field, K[X] is a principal ideal
domain. Therefore, Ker(y) C K[X] is a principal ideal so that it is generated by
a single element. Also if « is algebraic over K, then we have a non-trivial element
in Ker(p), so Ker(¢) # (0). Therefore, there exists a monic, nonzero polynomial
f(X) € K[X] such that Ker(p) =< f(X) >. Here, f(X) is determined by K
and « uniquely. Lastly, image of ¢ is K[a] and we have the canonical isomorphism

K[X]/ < f(X) >= Ka].

Definition 1.13. f(X) € K[X] in the argument above is called the minimal polyno-

mial of « over K and will be denoted as m,(X).

The minimal polynomial m, (X) is irreducible and for any ¢g(X) € K[X] satisfying
g(a) = 0, we have m,(X)|g(X).
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Proposition 1.14. If f(X) € K[X] is a non-constant polynomial, then there exists

some finite extension L of K such that f(X) splits into linear factors over L.

Definition 1.15. K is called algebraically closed if any non-constant f(X) € K[X]

can be written as a product of linear factors in K.

It can be shown via Zorn’s Lemma that any field can be embedded into an alge-

braically closed field.

Definition 1.16. An extension L of K is called an algebraic closure of K if every

polynomial over K splits into linear factors over L. We will denote L by K.
Now, let L; and L, be two fields containing K.

Definition 1.17. Suppose that ¢ : L1 — Lo is a field isomorphism. If, p(a) = a for
any a € K then ¢ is called a K — isomorphism of L, onto L. In this case, they are

called conjugate over K or K — isomorphic.

Definition 1.18. Let a1,y belong to L; and Lo respectively. If there exists a
K —isomorphism ¢ : K(a;) — K(ag) such that ¢(a;) = ag then, a; and «ay are

called conjugate over K.

Before closing this subsection, we will give the following theorems without proofs.
They will be quietly used in Chapter 2 and Chapter 3. (See [1, Chapter 2.4| for the
proofs).

Theorem 1.19. [1, Chapter 2.4, Theorem 1] Let L be an extension of K of degree n.
Then, there exist n—many distinct K —isomorphisms from L to any field containing

K.

Theorem 1.20 (Primitive Element Theorem). [1, Chapter 2.4, Corollary 1] Suppose
that K s finite or of characteristic 0 and L is an extension of K of degree n. Then,

there exists an element v € L such that L = K (7).
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1.2 Norm and Trace

In this section, let us say that B be a ring and A C B a subring where B is a free
A-module of finite rank n unless otherwise is stated.
Now, let o be an element of B.

Define the following map, an A-module endomorphism:
o : B— B

T — ax

If we choose a base for B, then p, can be represented by an n x n matrix. By
trace and determinant of u,, we mean the trace and determinant of this matrix,

respectively. It is important to note that they are independent of the choice of base

for B.

Definition 1.21. The trace of p, is called the trace of a relative to B and A and is
denoted by Trp a(«). Determinant of i, is called the norm of « relative to B and A

and is denoted by Np/a(cv).

Also, we can define the characteristic polynomial of « relative to B and A,
XB/a(X). It is defined as the characteristic polynomial of 1., namely, det (X - I — 14).
After doing some matrix arithmetic we can show that if o, 5 € B,
then T'rg/a(a+53) = Trp/a(a)+Trp/a(B). Also, we have Ng/a(af) = Npja(a)Npa(B).
In particular, for any a € A, Trp/a(ac) = aTrpja(o) and Npja(aa) = a"Np/a(a).

Proposition 1.22. [1, Chapter 2.6, Proposition 1] Assume that F is a finite field or
a field of characteristic 0, E an algebraic extension of F with [E : F] =n and « € E.

Furthermore, assume that aq, . .., «, are the roots of my(X), the minimal polynomial

of a over K, such that o is repeated [E : Fayl| times. Then, Xp/r(X) = H(X—ai)

=1

s Trgp(o) = Zozi and Ng/r(a) = Ho‘i'
=1 i1

Therefore, x1/x(X) = (M (X)) EK
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Proposition 1.23. [1, Chapter 2.6, Proposition 1] Given an extension L/K of de-
gree n where K is of characteristic 0, a € L that is algebraic over K with minimal

polynomial mq(X) we have xp/kx(X) = (Mg (X)) Kl

Proposition 1.24. Let A be a domain, K = Frac(A) and of characteristic 0, L
a finite extension of K. Suppose that o € L is an integral element over A with
characteristic polynomial relative to L and K: xp/x(X) = X" + ¢ X"+ +
a1 X +co. Then, ¢,_1,...co and both TTL/K(a) and Nk (a) are integral over A.

Proof. By Proposition 1.22, we can say that x,/x(X) = (X —aq)... (X —ay). There-
fore, the coefficients of the polynomial are sums of products of o}s. We also know
that each «; is a conjugate of o so that there exists a K — isomorphism ; from
K[a] into K|o;] such that ¢;(«) = «;. Furthermore, since « is integral over A,
a™ + Q1™ - aga+ ag = 0 is satisfied for some a,,_1,...,a0 € A. Applying
@; to this equation, we conclude that «; is integral over A. Then by Corollary 1.4,

we get the result. O
As a consequence, we have the following corollary:

Corollary 1.25. In addition, if A is integrally closed, then
Ap—1,-..,00 and T’T‘L/K(Oé), NL/K(Oé) € A

Now, we define the discriminant of a collection elements of B. It is quite important

because it can be used to check whether a collection of elements give a base or not.

Definition 1.26. Let B be a ring, A a subring of B such that B is a free A-module of
finite rank n and let z4,...,z, € B. We define the discriminant of (z1,...,z,) C B"

as det(Trpja(z;x;)). We denote it by D(z1,...,x,) and it is an element of A.

Proposition 1.27. [1, Chapter 2.7, Proposition 3] Let F be a finite field or of
characteristic 0, E an extension of F' of degree n and let o1,...,0, be the distinct
F — isomorphisms from E to F. Then, for any x1,...,7, € E, D(z1,...,2,) =
det(04(7)) < jan- If {21, 20} is a base for E over F, then D(x1,...,x,) # 0.
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Proof. Let M = (0i(;))1<ij<n Then, (MTM);; = o1(x;)o1(x))+ - +0o,(x:)on(z;) =
al(xixj) —+ -+ Un<CL’Z‘ZEj) = T’I“B/A(l’il’j).

For the second part, see [1, Chapter 2.7, Proposition 3. O

The following theorem gives an important property of the integral closure of a

ring inside a field extension. Before the proof, we give a remark:

Remark 1.28. Considering L as a finite dimensional K-vector space, we can say that
the bilinear form (o, ) — Trp/x(af) is non-degenerate: if Trp x(aB) = 0 for any
B € L then o = 0. In addition, if (xy,...,x,) is a base of L over K, then there exists

a base (y1,...,yn) of L over K where

Trir(zy;) = i, (1 < 0,7, < n).

Theorem 1.29. [1, Chapter 2.7, Theorem 1] Suppose that A is an integrally closed
ring, K = Frac(A), L an extension of K of degree n, A" the integral closure of A in

L and K has characteristic 0. Then, for some free A-module C of rank n, A’ is an

A — submodule of C.

Proof. Assume that (ey,...,e,) is a base of L over K. Every e; satisfies an equation

n—1
i

of the form a,el + a,—1€]”" +--- 4+ aie; +ap = 0 with a; € A for every j =0,...,n
and a, can be chosen to be non-zero. Multiplying the equation by a"~! gives us
(a4n€)™ + Qp_1(ane;)" ' + -+ aya”"3(ane;) + a”tag = 0. Therefore, a,e; is integral
over A. Set e; = ane;. Then we have that (e},...,e,) is a base of L over K and
e; € A’ for any i.

Now, by the remark above, we have a basis

(fi,..., fn) of L over K and TTL/K(e;fj) = 0,5, (1 <i,7,<n). Take any z € A"

z can be written as Z b; f; for some b; € K. Since e; € Afor any i, e,z € A, thus,
j=1

Trri(e;z) € A by Corollary 1.25. Therefore, Ty x(e;2) = TrL/K(Z bief;) =

J=1
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ijTrL/K(e;fj) = ijéij = b;. In conclusion, b; € A for any i, therefore A’ is a

j=1 j=1

submodule of Z Af; which is a free A-module. O]

Jj=1

Corollary 1.30. In addition, if A is PID then A’ is a free A-module of rank n.

Proof. We know by [1, Chapter 1.5, Theorem 1] that A" is a free A-module of rank
¢, 0 < g < n. However, we know by Theorem 1.29 above that A’ contains a base of

L over K. Thus, A’ is a free A-module of rank exactly n. m

1.3 Noetherian Rings
Let A be a ring and M an A-module. Then, the following statements are equivalent:

Theorem 1.31. [1, Chapter 1.4, Theorem 1]

1. Any collection of submodules of M that is non-empty contains a mazimal ele-

ment.
2. Any increasing sequence of submodules of M is stationary.

3. Any submodule of M 1s finitely generated.

Proof. (1) = (3). Let N < M and C = {E < N|FE is finitely generated}.
C contains 0 so that it is non-empty. Then, it has a maximal element, say E. If
E & N then for some x € N — E, (E, ) is a finitely generated submodule of N and
E Z (E,x). This contradicts with the maximality of E.

(3) = (2). Let (E;)ien be an increasing sequence of submodules of M. Let us
say that £ = U E;. We can say that F is generated by elements {eq, ..., ex} where

ieEN
e; € E,, fori=1,... k. Now, set n = max(n;).
/ 1<i<k
Then, U E,CE,CE,,;C---C U E;. Therefore, E,,; = E,, for any j € N so
iEN iEN

the sequence is stationary.
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(2) = (3). Suppose that N < M is not finitely generated so we can find
elements z; € N for some 7 € I where I is a countable index set. Now, consider
the sequence of submodules (1) C (x1,22) C .... The sequence does not terminate

because otherwise N would be finitely generated, thus, we are done. O]

Definition 1.32. M is called a Noetherian A-module if one of the statements above

holds. A is called a Noetherian ring if it is Noetherian as an A-module.
Now let us give the following proposition without a proof.

Proposition 1.33. [1, Chapter 5.1, Proposition 1] Assume that A is a ring, M
an A-module and M’ < M.Then, M is Noetherian if and only if M' and M /M’ is
Noetherian.

Corollary 1.34. Assume that My, ..., M, are Noetherian A-modules. Then, H M;

i=1
1s a Noetherian A-module.

Proof. We have M; = M; x{0} < M; x M, and the quotient My x My /My x{0} = M.
Then, by above proposition M; x M, is Noetherian. By induction on n, we conclude

the result. 0

Corollary 1.35. If A is Noetherian and M is a finitely generated A-module, then M

1s Noetherian.

Proof. Let us say that the A-module M is generated by n elements.

Then, we know by [1, Chapter 1.4] that M is isomorphic to a quotient of a free
module, namely A™/M’'. By Corollary 1.34, A" is Noetherian. Then, by Proposition
1.33 we conclude the result. O

We will close this section with the proposition below.

Proposition 1.36. Suppose that A is Noetherian and integrally closed in its field of
fractions K. Suppose also that K has characteristic 0 and L is a finite extension of K
of degree n. Define A’ to be the integral closure of A in L. Then, A’ is a Noetherian

ring and finitely generated as an A-module.
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Proof. By Theorem 1.29, we can say that A’ is a submodule of a free A-module of
rank n. In addition, A’ is a finitely genetared A-module and by the corollary above,
it is Noetherian as an A-module. Lastly, the ideals of A’ correspond to A-submodules

of A’ so that they satisfy the conditions to be Noetherian given in Theorem 1.31. [J

Lemma 1.37. [1, Chapter 3.3, Lemma 3] If A is Noetherian and I is an ideal of A,
then for some prime ideals pq, ..., p, we have py...p,, C I. If A is a Noetherian domain

and 0 # I is an ideal of A, then qy...q, C I for some non-zero prime ideals q1, ..., qy.

Proof. We will prove the second part of the theorem since the first part follows from
the same argument. Suppose that A is a Noetherian domain. Let C' be the collection
of non-zero ideals of A that does not contain a product of non-zero prime ideals. Let
C be non-empty. A is Noetherian, therefore we have a maximal element [ € C. [
is not prime because otherwise it would lie in C, so that for some z,y € A, x ¢ |
and y ¢ I, xy € I. Now, (I,z) and (/,y) are two ideals that properly contain
and they do not belong to C' since I is maximal. Therefore, p;...p, C (I,z) and
qi1-.-9s € (I,y) , for some prime ideals pq,...,p, and qq,...,qs-
Finally, since zy € I we have p;...p,q1...q9s C (I,z)(I,y) C I, a contradiction.
O

1.4 Dedekind Domains

Definition 1.38. Let A be an integral domain. A is called a Dedekind domain if the

following statements are satisfied:

1. A is Noetherian.
2. A is integrally closed.

3. Every non-zero prime ideal of A is maximal.

For instance, any PID is Dedekind.
Now, we give a crucial theorem on the structure of Dedekind domains. The theo-

rem allows us to say that for any number field K, Ok is a Dedekind domain.
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Theorem 1.39. [1, Chapter 3.4, Theorem 1] Suppose that A is a Dedekind domain
with Frac(A) = K, L is a finite extension of K of degree n and A’ is the integral
closure of A in L. Suppose also that the characteristic of K is 0. Then, A" is a finitely

generated A-module and a Dedekind domain.

Proof. First of all, A" is integrally closed by definition. Also, by Proposition 1.36, we
can say that A’ is a Noetherian ring and finitely generated as an A-module. We show
that every non-zero prime ideal of A’ is maximal and we are done.

Let P # (0) be a prime ideal of A" and take a non-zero element o € P. Since «
is integral over A, we can write an equation of integral depence of o over A with a

smallest degree possible as:

A" 4 ap "t aatag=0

for some a,_1,...,a1,a9 € A.

We can say that ag # 0 because otherwise we would have an equation of degree
n — 1. Let us denote the ideal generated by « inside A’ with A’a. Then, by the
equation above ap € A/aN A C PN A, therefore, PN A # (0). It can be verified
that P N A is a prime ideal of A and since A is a Dedekind domain, it is maximal.
Thus, A/(P N A) is a field. Now, since A’ is integral over A, we can say that A’"/P
is integral over A/(P N A). This is because if we take an element 3 from A’/P then
we can write an equation of integral depence of 5 over A and re-write the equation
modulo PN A. To add, we can say that A/(PNA) can be identified with a subring of
A’/P. Then by Proposition 1.7, we conclude that A’/P is a field and P is a maximal
ideal of A’. O

Let us call the ideals of A as integral ideals. Suppose that I is an A — submodule
of K so that for some 0 # a € A, af C A. In this case [ is called a fractional ideal
of A. Any integral ideal is a fractional ideal. Ideal operations on fractional ideals
are defined similarly. Fractional ideals give a monoid under multiplication with the

identity element A.
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Theorem 1.40. /1, Chapter 3.4, Theorem 2] Suppose that A is a Dedekind Domain.
If A is not a field, then every prime ideal of A is invertible and inverse of a prime

ideal is a fractional ideal of A.

Proof. Let p be a prime ideal of A. Since A is not a field and p is maximal, p # (0).
Define p’ = {a € K|ap C A}. p is a fractional ideal of A.
Now, A C p’ since for any x € A, zp C A. We have pp’ C A and p = pA C p'p.
Thus, p C pp’ € A but A is a Dedekind domain so we have either pp’ = A or pp’ = p.

If the latter holds, take an arbitrary element o € p’. For any n € N,

Therefore, for any 0 # p € p’, and n € N, p € (a™p). So, for any non-zero v € p,
z"y € p C A. Thus, Ala] is a fractional ideal of A and recall that A is Noetherian,
therefore Ala] is a finitely generated A-module. Thus, « is integral over A. In
addition, A is integrally closed so that oo € A. As a conclusion, p’p = p implies that
p = A.

Now, take 0 # § € p. By Lemma 1.37, for some prime ideals q,...,qs, we have
q1-..9s € AB = (f). Choose smallest possible s, so we have p O A8 D q; ... qs which
implies that p D q; for some i. Maximality of p implies that p = q;. Without loss of
generality, say ¢; = q1

Let us define an ideal a = q5...qs. Then, A O pa and since s is chosen to be the
smallest number as possible, Af 2 a. Therefore, there exists a € a where a ¢ AfS.
Lastly, since A3 D pa we have A3 D pa so that paB~! C A but then, a3~! must be
in p’ by the definition of p’. However, we know that a ¢ A and this implies that
af~! ¢ A. Therefore, p’ # A. O

Theorem 1.41. [1, Chapter 3.4, Theorem 3] Suppose that A is a Dedekind domain.
Then, every non-zero fractional ideal of A can be uniquely written as a product of
prime ideals of A with integer exponents. Moreover, the monoid of non-zero fractional

ideals of A is a group.
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Proof. Let us start with an observation. Let J be any fractional ideal so that we have
aJ C A for some non-zero a € A. Therefore, J = (aJ)(aA)~. Thus, if we prove the
statement for any integral ideal of A, we conclude the result.

Now, let S be the set of non-zero integral ideals of A which does not admit a
prime ideal factorization and suppose that it is not empty. Since A is Noetherian, S
has a maximal element, say I. We have [ # A since A is the empty product of prime
ideals. Then, I is contained in a maximal ideal m of A. Let m’ be the inverse of m.
We have I C m, which implies that /m’ C mm’ = A. Moreover, m’ 2 A thus Im’ D [
Now, since m’ # A, Im’ is an ideal that does not lie in S. Thus, Im’ = p;...p; for
some prime ideals py,...,p;. Therefore, I = Im'm = p;...p;m and we conclude that

every ideal is a product of prime ideals.
S

t

Now, assume that an ideal I has two prime factorizations pr = quj for
i=1 j=1

some integers ey, ..., €, f1,..., f;. Then, for any : = 1,... s we have p; D H;'=1 q;-vj.

As a conclusion, p; D q; for some q; , j = 1,...,t. However, since prime ideals are
maximal we have p;, = q;. By cancelling out the factors, we conclude that the prime
factorization is unique. . .

Finally, if we have [ = H p;* then the inverse of I is written as H p, “. Therefore,
non-zero fractional ideals fi'g;m a group under ideal multiplication?:1 [

Let us denote the group of fractional ideals by Ix. As we define principal ideals,
we define principal fractional ideals. [ is a principal fractional ideal if it is of the form
Ax for some x € K*. The set of principal fractional ideals are denoted as Py and
actually Pk is a subgroup of Ix. Then, define the quotient group CI(K) = Ix/Pk.
It is called the ideal class group of A and we will work on this group in details in the

following chapters.



Chapter 2

NUMBER FIELDS

Number fields are the main objects of this thesis. A number field K is a finite
degree extension of (. They always have characteristic 0. In this chapter, we make
a brief introduction to number fields and most importantly, we will notice that the
ring of integers of a number field is a Dedekind domain.

Now, let K be a number field of degree n over Q.

Definition 2.1. The set of elements {a € K|« is integral over Z} is called the ring
of integers of K. It is denoted by Ok.

By Corollary 1.4, Ok is a ring.
Any element o € C that is integral over Z is called an algebraic integer.
Now, let us give a proposition, which states that for any o € K, we can find some

z € Z so that za € Ok.
Proposition 2.2. QO0x = K.

Proof. 1f we show that K C QOg, we are done. The aim is, for any element o € K,
to find some z € Z, 8 € Ok such that o = 2

_z'

So let a € K, there exists f(X) € Q[X], the minimal polynomial of . Let us say

that
Qn-1 1 ai Qo
fX)=X"+—X"4+.- -+ X+ —
bn—l bl bU
Qn-1 ai Qg
and we have f(«a) = a"+b—a"_1 +-- -+b—a+ = 0. Our aim is to find a non-zero,
n—1 1 0

monic polynomial g(X) € Z[X] such that g(8) = 0 where § = za for some z € Z, so
b€ Ok.



20 Chapter 2: Number Fields

Since the polynomial f € Q[X], we have to get rid of the rational coefficients and
get integer ones.
The most natural idea is to multiply these coefficients with least common multiples

of denominators of them, set D = lem(bo, by, ...,b,-1). Then, Df € Z[X].

Qp—1 ay Qo

Notice that f(«a) = o™+ "l —a4+ —=0.
bn—l bl bO
Ap—1 ay Qo
Therefore D" f(a) = D"a™ + D"—a" ' + .-+ 4+ D"—a + D"— = 0, thus

bn—l bl bO

An—1 ao

(Da)" + D——(Da)" * + ..+ D"~ 12 (Da) +D"—=0
n—1 bl bO

Now say g(X) = X"—l—D B R 12 X+D"—€Z[X]
bn 1 bl bO

Finally, set 2 = D and we have § = za = Da. Thus,

g(B) = g(Da) = (Da)" + Dan_l(pa)”*1 4+ 4+ D" 12 (Da) + D" — = 0.

n—1 bl

Corollary 2.3. Ok spans K over Q.

By Chapter 1, we can state some results on Og. In particular, we can say that
Ok is integrally closed by Theorem 1.39.

Moreover, by Corollary 1.30, we have the following proposition:
Proposition 2.4. Ok s a free Z-module of rank n.
Now, let us define an important invariant of a number field:

Definition 2.5. Let K be a number field of degree n and let (z1,...,x,) be a Z basis
for Ok. Then, the discriminant of K is defined as the discriminant D(z4, ..., x,) and

it is denoted by Ag.

It is important to note that Ay is independent from the choice of basis. To show

that, let us take two bases for Ok, (z1,...,2,) and (y1,...,y,). We can find some
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aij,bst € Z so that y; = Z?Zl aije; and x5 = > ¢ bgyay for 1 < 4,j,s,t < n. Then
D(yi,...,yn) = (det(a;;))*D(z1, ..., x,) and D(z1, ..., x,) = (det(bs))*D(y1, - - ., Yn)-
Thus, D(y1, ..., yn) = (det(a;;))*(det(bs))?*D(y1, ..., yn). Therefore, (det(a;;))* =1
and we conclude that D(xy,...,x,) = D(y1,...,Yn).

2.1 Ideals in Ok

In this section, we will study the ideals of Ok but first, let us start with the following

crucial observation.
Theorem 2.6. Ok is a Dedekind Domain.

Proof. Observe that Z is a PID, thus, a Dedekind domain. The field of fractions of
Z is Q and K is a finite extension of Q. The integral closure of Z in K is Ok and K
has characteristic 0. Therefore, by Theorem 1.39, we conclude that Ok is a finitely

generated Z-module and a Dedekind domain. ]

Therefore, O is a Noetherian ring, integrally closed and its prime ideals are
maximal.

Recall that we define the norm of an element in the previous chapter. It can be
seen that if n € Ok ™, then Nk g(n) = £1. We will characterize the units of O later.

We can also define a norm on the ideals of Og. O is a free abelian group of rank
n and any ideal I C O is of rank n too, therefore we expect that |Og /| is finite. Let

us proceed by defining the norm of an ideal.

Proposition 2.7. [1, Chapter 3.5, Proposition 1] Let I be a non-zero ideal of Of.
Then, |Ok /1| is finite and for any non-zero o € Ok, Nk o(aOk) = [Nk ().

We define the norm of I as Ng,g(/) = |O/I|. Also, note that for any non-
zero ideals I,.J of Ok, Ngjo(I)Nko(J) = Nijo(lJ) is satisfied ([1, Chapter 3.5,
Proposition 2]).

We can see the prime ideals of Ok as prime numbers in some sense. Since O is
a Dedekind domain, non-zero prime ideals are maximal and every non-zero ideal has

a prime ideal decomposition.
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Also, we have the ideal class group CI(K) of Ok. The equivalence relation ~ on
CIl(K) is given as I ~ J whenever ol = J for some a € K*. The size of this group

is finite and it will be proven in the next chapter.
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GEOMETRY OF NUMBER FIELDS

Let K be a number field. Recall that we defined the quotient group I /P,
the ideal class group CI(K) of Ok. In this chapter, we will show that the quotient
group CI(K) is finite. The order of CI(K) is called the class number hx of K. To
add, we will characterize the structure of Og*. To do that, we need some geometric
arguments.

Let us begin with a definition.

Definition 3.1. Let I' C R"™ be an additive subgroup. I' is called discrete if for any
compact set S, I' N S is finite.

Theorem 3.2. [1, Chapter 4.1 Theorem 1] If ' C R" is discrete, then I" is generated

as a Z-module by at most n vectors linearly independent over R.
Now, let us define a lattice.

Definition 3.3. A discrete subgroup I' C R™ which is a Z-module of rank n is called

a lattice.

Definition 3.4. Let T' be a lattice with a Z basis v = {vy,...,v,}. Define the set

Or = {z e R"|zx = Zaivi, 0 < a; < 1}. Then, ®r is called a fundamental domain
i=1
for I'. The volume of I' is defined as the Lebesgue measure pu(®r) of & C R™.

Let us make some observations. As a side note, let I' be a lattice which has
two Z bases {v1,...,v,} and {ws,...,w,} and let the volume of the corresponding
fundamental domains be p(®r,) and pu(®Pr, ) respectively. Then, u(®r,) = pu(dr, ).
(See, [1, Chapter 4.1, lemma 1]).

Therefore, the volume of a lattice is independent from the choice of a basis.

Next, let us find the volume of a lattice.
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Proposition 3.5. [2, Chapter 7, Proposition 7.5] Let I' = Zvy + - - -+ Zv,, be a lattice
in R”, where v; = (i1, ..., ai). Then, vol(I") = | det(a;;)|.

n

Proof. Let {ej,...,e,} be the standard basis for R”. We have v; = Z a;je; and let
i=1
us say that an arbitrary point in the space has coordinates (z1,...,x,) with respect

to the standard basis. Then,

vol(I") = / ldxy ... dx,.
or

Let us change the standard basis to {v,...,v,}. Since any vector v; is given as
n

V; = Z Q;5€5, the Change of basis matrix is A = (aij)lgi,jsn.
i=1
For any arbitrary element x = (x1,...,2,) € R”, it can be written that x =

n n
Zﬂﬁi@i = Zyivi where 0 < y; < 1. That is because the coordinates of & with
i=1 =1

respect to the basis {vy,...,v,} are 0 <y; < 1.
So,

vol(T") = / ldz; ...dx,, = / | det(A)|dy; . . . dyp,
(DF q>1"

since the Jacobian of the transformation is | det(A)|. Then, we have

1 1
/ |det(A)]dy1...dyn—/ / [ det(A)|dys . . dyn — | det(A)).
(ol 0 0
]

Theorem 3.6 (Minkowski). [1, Chapter 4.1, Theorem 2] Assume that T is a lattice
in R™ and S a measurable subset with p(S) > v(I'). Then, for somex #y €S, x—y

belongs to T'.

Proof. Let s = (s1...,8,) € S. Forany s;,i = {1,...,n}, s; = [s;]+; with o; € [0,1)

so that s = p+ h for some p € &p and h € I'. Therefore, S = U ®r + h. Since the
her
union is disjoint, u(S) = ZM(S N(®r + h)).
her
For any h, it can be written that (S N (Pr+h)) = u((S —h) N (Pr+h—h)) =

u((S = h) N ®p).
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Since v(T') = u(®r) > Y " p((S—h)N®r) = > u(S N (Pr+ h)) = u(S), which
hel hel
contradicts with the assumption, Z w((S — h) N ®r) cannot be a disjoint sum. Then,

hel
for some distinct hy, ho € T, (S—h1)N(S—he)NPr # (. If 2 belongs to the intersection,

z:zl—hl :Zg—hg for some 214529 GS,hl,hQ € I' so that Zl—ZQZhQ—hl e H

and z; # 2z since hy, hy are distinct. O

Corollary 3.7 (Minkowski’s Convex Body Theorem). [I1, Chapter 4.1, Corollary 1]
Assume that T is a lattice in R™ and S a measurable subset of R™ where S is convex

and symmetric with respect to 0. If S satisfies at least one of
1. p(S) > 2"(I)
2. u(S) > 2"v(Tl), S is compact.

then SN T contains a non-zero element.

Proof. 1. pu(S) > 2"v(T) implies that 27"u(S) = u(35) = pu(S") > v(T'). Applying

Minkowski’s theorem yields there exist distinct 2/,7’ € S’ and 2’ —y' € H where
= %93 and iy = %y for some x,y € S. The set S is symmetric with respect to
0, thus, —y € S and convexity of S implies that %x + %(—y) =2'—y €S. In

conclusion, 0 # 2’ —y € SNT.

2. The proof is similar and can be found in [1, Chapter 4.1, Corollary (b)]
[

Minkowski’s theorem and the arguments on lattices provide the tools that we can
implement on number fields and their ring of integers. Now, we will embed number
fields inside vector spaces to get information about the corresponding ring of integers.

Let K be a number field with ring of integers O and [K : Q] = n. Recall that
€ € Ok is a unit if and only if Ng,g(e) = £1 and there are n—many embeddings of

K into C -or into any field containing K-.
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If 0 : K — C is any of these embeddings, it is called real when o(K) C R holds.
Otherwise, it is called complez. Given a complex embedding 7, its conjugate is given
by 7(x) = 7(x) which is an embedding of K. Complex embeddings come in pairs,
so if we have r{-many real and ro-many conjugate pair of complex embeddings, then
n = ry + 2ry holds.

Let us fix some notation. p denotes any real embedding and 7 denotes any complex
embedding. Then, the embeddings of K are given as

{P1y oo Pris Tl ey Trgs Trgtdy - -, Torg - 1f we let 7,7 to denote a complex pair of

embeddings, the embeddings of K is then given as {p1,...,0r, T1, 1, -+ Tras Tras |

since the complex embeddings come in pairs.

Then, K can be embedded into an n—dimensional vector space as follows:

U: K —R"xC?

a— (pr(a),...,pr(a), 7(@),... 7€)

Remark 3.8. The map VU is called the canonical embedding of K in R™ x C™ and

it, is generally identified with R™ as C = R? as a vector space.

Another identification may be done as follows:
Forany y € K, y > (T1,...,Tpy, 21, -, 2my) € R x C2,

Then, (1, ..., Tr, 21,y 2ry) = (X1, ..oy 2, Re(21), Im(21), ..., Re(2ry), IM(2,)).

Proposition 3.9. If H is a free Z-submodule of K of rank n with a Z base {e1, ..., e,},
then W(H) is a lattice in R™ so that its volume vol(V(H)) = 27| l<de1;< (ilej))]-
717]77’,’7’

Proof. Let A, ., be the matrix whose i’ column is

[Wr(ei), - s (ei), Re(@r,a(€q), Im(tryga(ed)) -, Re(tny(€3)), Im(yr, (€4))]

such that the column vector is the coordinates of W(e;) with respect to the canonical
basis of R".
For any z € C, Re(z) = %% and I'm(z) = % holds.
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Using the equalities and applying column operations we conclude that

det(A) = (20) ™ det(vi(e;)).

1<i,j,<n

The set {e1,...,e,} form a basis for K over Q. By Proposition 1.27, we have
1<det< (¢i(e;)) # 0, thus, det(A) # 0. Furthermore, det(A) # 0 implies that the
<ij<n
vectors W(e;) are linearly independent over R. Therefore, W(H) gives a lattice in R™.

By Proposition 3.5, its volume is

|det(A)| = |(2i)7" det (¢ile;))| =27 det (¢i(e))-

1<i,j<n 1<i,j<n

O

Corollary 3.10. U(O) is a lattice in R™ with volume vol (¥ (Ok)) = 27| Ak|z.
In addition, if 0 # I C Ok is an ideal, V(I) is a lattice with volume

vol (¥ (1)) = 27| Ak |2 Nigso 1)
(See, [1, Chapter 4.2, Proposition 2/).

So far, we embed a number field into an n—dimensional vector space. Now, let us

give an important proposition on the ideals of Ok.

Proposition 3.11. Let I C Ok be a non-zero integral ideal. Then, there exists an

element 0 # x € I such that

4 ! )
Ne@)] < | — | SIAx]*Nije(l).
Proof. Assume that ¢ € R>? and define
Dei={(z1,. . @y, 20,0, 2) ER X C 0 ) g +2) |z < e}
i=1 j=1

The set D, is compact, convex and symmetric with respect to 0. By a calculation
r2

™ Cc

given in [1, Chapter 4, Appendix| we have u(D,.) = 2™ 5| o
n!

'
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Choose ¢ so that p(D,) = 2"v(¥(I)). Therefore, we have

r2
T c"

) EZQHWIAK\%NK/@(I)-

Note that the equality above yields ¢" = 2”_T1ﬂ_“2n!]AK\%NK/Q(I). By Corollary
3.7, there exist an element 0 # x € I such that ¥(z) € D, and

T2
|Nijo(a |—H!pl W17
j=1

For any n positive numbers ay, ..., a,, {/a1az ... a, < B4 holds. Therefore,

Cn
oo < (13510 + 25510 ) < 5
since ¥(z) € D,.. Finally, recall that we have ¢" = 2”_’"17r_7’2n!|AK]%NK/Q(I).

Thus, we conclude that

1 1
[Nijg(e)] < 22" m | Ak |2 Nigjo(1).
Using the equality n = r; 4+ 2ry, we have

2
4 n! .
|Nijo(r)] < - EIAKPNK/@(I)-

]

Corollary 3.12. In the ideal class group of Ok, each class contains an integral ideal

I with

T2

4 n! )
Nipl) < | — JAVER

nn
Proof. Let € be a class in CI(K) and J € €. We know that J~! is a fractional ideal

and for some non-zero a € Ok we have a.J ! =J C Ok. By Proposition 3.11, there

exists a non-zero element z € J such that

4 N n! ) .
[N /o(r)] < = EMKPNK/@U)‘
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Then, we can say that

[Nko(@)|  Nijo(zOk) i 4\
= = Nggglad ™) < [ =] —|Ax]E
NK/Q(J) NK/Q(J) (e n
Thus, I = zJ ! is the desired ideal. O

This bound is called Minkowski’s Bound in the literature. We are almost done.

Proposition 3.13. Fix a number b € N. Then, there are only finitely many ideals

with norm bounded by b.

Proof. Let I C Ok be a non-zero integral ideal with N /g(/) < b. Then, we have
I =p$t...pém for some prime ideals p; and e; € Z>°. Note that each prime factor

p; comes from a prime number p such that p;[pOf. Also, we have

Nio(I) = Niop1)™ - Nrg(Pm)™

where p; has norm p* for some prime number p and k € Z>° such that k is bounded
by n. Since the possible prime numbers p are bounded by b and the possible prime
ideals that can appear in a factorization are also bounded, there can be only finitely

many ideals with bounded norm. O]
We are ready to prove the main theorem of this section:

Theorem 3.14 (Dirichlet). [1, Chapter 4.3, Theorem 2] The ideal class group Cl(K)
of Ok 1s finite.

Proof. By Corollary 3.12, an integral ideal can be chosen from each ideal class of K
so that its norm is bounded by Minkowski’s bound. It is known by Proposition 3.13
that the ideals with a bounded norm is a finite set. Thus, CI(K) is finite. O

We can say that hx measures how far is Ok of being a principal ideal domain.

Proposition 3.15. Ok is a principal ideal domain if and only if Ok is a unique

factorization domain.



30 Chapter 3: Geometry of Number Fields

Proof. We only need to prove the necessity part. Since any integral ideal has a prime
ideal decomposition, if we show that the prime ideals are principal, we are done. Now,
suppose that Ok is a UFD and let p be any non-zero prime ideal of Ok. Take any
non-zero element p € p. Since Ok is UFD, we can write p = 7{* ... 75 for some
irreducible elements 7;. Then, m; € p for some i € {1,...,m}. In a UFD, irreducible
elements are prime and (7;) C p is a prime ideal. Also, since prime ideals are maximal,

we have p = (m;). O

3.1 Units in Ok and Dirichlet’s Unit Theorem

Our aim is to study units of O which have a multiplicative structure. Minkowski’s
theorem works on vector spaces and they have an additive structure. In order to relate
these two concepts, we need to find a way that translates multiplicative structures to
additive ones.

Recall that K is embedded into an n—dimensional vector space as follows:
U:K—R*xC"?

Q= (Pl(a)w--aPm(O‘)w-'77'1(04)7--‘»7'7’2(0‘))'

To add, recall that for any o € K, norm map Nk g sends a to

279

Ngjola) = Hﬂz‘(a) HTJ‘(@) = sz‘(a) HTj(@)W = Hpi(a) H |75 ()]

A similar map N’ can be defined on R™ x C™ as follows:

N':R" xC? 5 R

1 T2
(X1 ey Ty 21y e e vy Zrg) Ha:ZH |2
i=1 =1

Actually, as Ng/g(a) being the determinant of the map, multiplication by a on
the Q-vector space K, the map N'(«) is the determinant of the multiplication by «
map on R™ x C,

As a result, we have the following commutative diagram:
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K YR x ™2

lNK/Q lN’

Q— >R

Remark 3.16. For any a € K, N'(V(a)) = Ng/g(a).

Now, let us expand the diagram. Define the following maps:

I': (R™ x C?)* — R
(T4, Ty 21, - oy Zry) = (log(|z]), .. ., Jog(|2, |), Jog (|21 %), - . - s log(| 2, %))
and
[:R*—=R
x — log(|z|).

In addition, define ¢ on R™ "2 as follows:

t:R"T2 5 R

(yh s 7yr1+r2) = Y1 + -+ Yri+ry-

Together with Remark 3.16, we have the following diagram which is also commutative:

KX v \ (RT‘1 X CT‘Q)X U \ RT‘1+T’2

b b

Q — R —— R

We know that the units of O is given as Og™ = {e € O : Ng/g(€e) = £1}.

Let us define B = {v € (R xC")*|N'(v) = £1} and T = {w € R"""2|t(w) = 0}.

Note that (R™ x C™)* consists of elements that has non-zero coordinates. We
define addition and multiplication on (R™ x C")* coordinate-wise. Therefore, for
any v € (R™ x C™)* we have v~ ! € (R™ x C™2)*.

Then, Ok™ is mapped into B via ¥ and the map I’ takes B into T" C R" "2,

Therefore, we have the composite map ¢ =1 o ¥ : K — R"™%"2 guch that
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¢lox Ok = B — T SR,

Note that the subspace T has dimension 1y + 7o — 1. Finally, set T' = (O ™).
We will understand the structure of I'. Now, let us denote the group of roots of unity
in K by u(K). The group pu(K) is finite because otherwise we could find elements

which have arbitrarily large degree over Q.
Proposition 3.17. [2, Chapter 7, Proposition 7.26] The kernel of the map p is p(K).

Proof. If o € p(K) then |p;(o)] = |7j(a)] =1 for any 1 < i < rpand 1 < j <.
Therefore, I'(V(a)) = 0 and u(K) C ker(y). On the other hand, if o € ker(p)
then |p;(«)| = |7j(a))| = 1 for any embedding p; and 7;. So, we can say that VU(«) is
contained in a bounded region inside (R™ xC"?)*. Furthermore, ¥(«) is also contained
inside the lattice ¥(Og). There are finitely many possible W(«)’s since lattices are
discrete, therefore, ker(y) is finite. It is also true that ker(y) is a multiplicative
group. Then, by [1, Chapter 1.6, Theorem 1|, it consists of roots of unity so any

element of ker(y) is a root of unity. O

Now, we can also say that I' is a subgroup of 7. That is because ¢ is a homomor-
phism from (Ox*,-) into (T, +) C R™*"2,

We continue to understand the structure of I' with the following proposition.
Proposition 3.18. /2, Chapter 7, Proposition 7.28] T is a discrete subgroup of T.

Proof. Take any ball C' of radius ¢ > 0 inside 7.

We have (I')"1(TNC) = ) "1 T)N)"H(C) = ¥(Ox)*)N (") ~H(C). Now, since
(I"7YC) € B, (I')"}(C) lies inside a bounded region in R x C™. Thus, it lies inside
a ball of some radius.

In addition, since ¥(Of) is discrete, U(Ox™) N (I')71(C) C ¥(Ox) N (I')7HC) is
finite. Then, if we apply [’ again, we conclude that U(Ox™*)NC =T'NC is finite. O

By the above proposition, we see that I' is discrete. Now, our aim is to show that

' is a lattice. We start with the following proposition.
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Proposition 3.19. Assume that I' is a lattice in R™ x C™ and for some

bi,...,by, Bi,..., B, € R

o
4

by...by(Bi,...,B,)" > vol(T)

%
is satisfied. Then, there exist an element v = (V1,...,Up,01,...,0p,) # 0 in T

such that |vs| < bs for any 1 < s <y and |0j| < B; for any 1 < j <.
Proof. Let us define the subset C' of R™ x C™ such that for any
v=(V1,...,Up,01 +ids,..., ¢, +id,) € C,

|vs| < b for any s =1,...,7; and |¢; + id;|> < B;* for any j = 1,..., 7y,
The set C'is a cartesian product of r;— many intervals of length 2b, and ro— many

circles of radius B;. Therefore,

vol(C) = (2by) ... (2b.)(B1?) ... (7B,,?) = 2" 7"2by ... b, (B ... B,,)%

4

Thus, by hypothesis, vol(C) > 27" | —| wol(T') = 222"290l(T") = 2"vol(T)
T

since we have r; + 2ry = n.
Note that C' is convex and symmetric with respect to 0. Now, by Corollary 3.7,
Minkowski’s Convex Body Theorem, this inequality gives us that there exists a non-

zero element v € C' such that v € I'. O]

Proposition 3.20. There exist a bounded region
Cp CB={ve (R" xC?)*|N'(v)==+1}

such that

B= | imCs.

neOk ™
Proof. Take any element v € B. We know by Corollary 3.10 that the lattice ¥(Ok)
has volume vol (U (O)) = 27"2|A|'/2. We can say that the lattice v (Ox) has volume
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2772| Ak |'/? too since, the determinant of the multiplication by v is N'(v) = £1. Now,
find by,...,b,,Bi,...,B,, € R such that

T2 T2 T2

2 4 4
b1 ce brl(Bl N Bm)z > ; |AK|1/2 = % Q_TQIAKP/Q = UOl(W(O}())

™

Define C' = {(z1,..., %, 21,...,2r,) € R x C"

|| < b, |z] < Bj}.

Then, by Proposition 3.19 above, there exists a non-zero element x € C' such that
z € vU(Ok).

Now, we can write z = yW(v) for some v € Ok. If we apply N’ to the equality, we
get N'(z) = N'(v)N'(¥(v)) = £Nk/q(7). Thus, Nk/g(7) is bounded. Let us say that
|Nk/o(7)| < m. We know by Proposition 3.13 that there are finitely many integral
ideals with a given norm. To add, note that |Ng/q(v)| is the norm of the principal
ideal vOg. Thus, up to units, we can say that there are finitely many elements with
bounded norm.

Now, let {71,...,7s} be the set of non-associate elements of norm at most m. Let
us write v = 719, for some unit 7 and v, € {y1,...,7s}. Thus, z = y¥(y) implies
that y = 2W(y) ™" = 2P (n~"9) " = 2W ()" (n).

Next, let us define Cp as {c € B|c € ¥(y;) 'C for some k}. It is known that C' is
bounded. Furthermore, C'p is the union of finitely many translates of C'. Therefore,
Cp is also bounded. Lastly, for any element y € B, we have y = zW(n) for some
x € Cpgandne Og.

Thus,

Corollary 3.21. I' is a lattice in T'.

Proof. Proposition 3.20 above says that there is a bounded region

Cp C B C (R™ x C™)*
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such that

NEOK*
Now, let us say that Cy = '(Cp). By definition of C, for any
V=(T1,. . Ty, 21,5 2m) € C C B, we have N'(v) = £1. Also, each component
x;, 2; is bounded; since N'(v) = [[;1, || [T;Z, |2j] = 1. Therefore, I'(C’) is bounded
in T
Similarly, for every ~y;, the translate I'(¥(;)~'C) is bounded in T
Thus, Cy = I'(Cp) is bounded in 7.

Now, recall that we have

Then,
'B)=T= J (¢(n)+Cn).

nEOK ™
On the other hand, we know that I' = (O ™) so that we can write
T = U (h+ Ch).
her
Since Cy is bounded, we can say that the distance between 0 and any element of
Cp is at most m. Therefore, there cannot be any element in {h+ Cy : h € I'} that
has distance greater than m to any point of I'. So, in the case that the span of I' has
strictly smaller dimension than 7T, we could find a point of T' that is arbitrarily far
from the span of I'.
Thus, we conclude that I is a lattice. O

Now, we are ready to give the striking Dirichlet’s Unit Theorem. Let us set

r=1r+ry—1.

Theorem 3.22 (Dirichlet’s Unit Theorem). [2, Chapter 7, Theorem 7.31] Let K be

a number field of degree n over Q where n = ri + 2ry. Then,

O = u(K)x7Z.
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X

In other words, there exist ny, ..., n. € Og™ such that anyn € Og™ can be written

uniquely as
n=qn .y
for some ¢ € u(K) and e; € Z.

Proof. By Proposition 3.17, the kernel of ¢ is u(K) and ¢(Og™) = T = Z" by

Corollary 3.21 since the dimension of T is r{ + 19 — 1 = 7.

Lastly, we close this section with one last definition.

Definition 3.23. The units ny,...,7n, € O™ are called a set of fundamental units.



Chapter 4

THE ANALYTIC CLASS NUMBER FORMULA

In this chapter, we give the analytic class number formula which consists of im-
portant invariants of a ring of integers. Some statements will be given without proofs
and the details can be found in [1],[2] and [5].

The Riemann zeta function ((s) is defined for any s € C as

S|
() =3 —

ns
n=1

provided that Re(s) > 1. Now, let us define the Dedekind zeta function of a number

field, which is a generalization of ((s).

Definition 4.1. Let K be a number field. Then, the Dedekind zeta function of K is
defined as

1
Cels) = > NeroD®

0£ICOK

for s € C. Recall that we can factorize the ideals of Ok uniquely. The Dedekind
zeta function is absolutely convergent for s € C with Re(s) > 1 and it has the

following Euler product :

1
o= I 1= Nkjo(p)~™

0#pC0Ok, prime

Remark 4.2. If we take K = Q, we have Ng/o(/)® = n® since any ideal 0 # I C Z
is of the form nZ for some positive n € Z. Thus, (p(s) = ((s).
To add, let us take K = Q(i). We have Ox = Z[i]. It is known that Ok

is a Euclidean domain, thus, a PID. Therefore, the integral ideals are of the form
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(a + bi)Ok for some a,b € Z. Also, we have Ngu)o((a + bi)Ok) = a* + b By
Dirichlet’s Unit Theorem we have that Ox = u(K) = {£1, +:i}.

Notice that, for any 0 # I = (a + bi) C Ok and € € O™ we have

(a 4+ bi)Ok = €(a + bi)Ok. Thus, (a + bi),(—a — bi),(—=b + ai) and (—a — bi)
generate the same ideal. Therefore, we only consider the pairs (a,b) € Z° x Z>°.

Thus,
1 1
o= ¥ s Y
oircnp YRR L G5 g (02 )
Given a number field K of degree n, recall that we have n = r; 4+ 2r, many

embeddings of K into C with real embeddings p;, ..., p,, and non-conjugate complex

embeddings o4, ...,0,,. By Dirichlet’s Unit Theorem, we see that
OKX = M(K) x 27"

where r = ry +1ry — 1.

Recall that we have a commutative diagram:

KX 14 (er x CTQ)X U R+

bl

Q¥ —— R —F— R

So, Ok ™ is mapped into r-dimensional subspace T of R™ "2 via ¢. The image
©(O%) is a lattice T" inside T' = {w € R"*"2|t(w) = 0} C R"*72,

Finally, by Dirichlet’s Unit Theorem, we can say that any element n € Ox ™ can
be written as (ni*...nt for some ¢ € u(K) and ey ..., e, € Z uniquely.

Thus, the vectors ¢(n1),...,¢(n,) give a basis for the lattice [' and they span T.

So, we have

0 K — R

= (log(lp1(2)]), -, log(|pr, ()]), log(Im(2)[*), . . Jog (|73, (2)[))-

For simplicity, say that ¢(z) = (p1(2), ..., @r+r(x)). Define the matrix A;; =

(pi(n;)) where 1 <i <ry+ryand 1 < j <ry+ry—1so that n;’s are the fundamental
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units. Take any (11 47y —1) X (r; +72 — 1)-minor of this matrix and take determinant.
Regulator of K, R, is defined as the absolute value of the resulting determinant.
In this section, our goal is to prove the following theorem, the Analytic Class

Number Formula:

Theorem 4.3 (Analytic Class Number Formula). /2, Chapter 10, Theorem 10.9]
The Dedekind zeta function (k(s) converges for any s with Re(s) > 1 with a simple

pole at s =1 and

(s — 1)0x(s) = K
im(s — 1)(x(s) = ——————— hg
s 1(K) /B

where hy 1s the class number of K and Ry 1is the requlator of K.

To prove the theorem, we need some arguments from geometry. We begin by

defining a cone.

Definition 4.4. Given a subset X C R", if z € X and ¢ € R>? implies that cz € X,

then it is called a cone.

A cone can be defined similarly in R™ x C"2, namely, in any real vector space.

Now, let us start the proof of our main theorem with the following proposition:

Proposition 4.5. [2, Chapter 10, Proposition 10.11] Let X C R™ be a cone. Assume
that f : X — R>° is a function satisfying f(cx) = " f(x) for any x € X and c € R>Y.
Let the set U = {x € X|f(z) < 1} be bounded with volume w = vol(U) such that
w# 0 and let T be a lattice in R™ with volume v = vol(T"). Then,

1
() =2
= f(x)
w
converges for Re(s) > 1 and we have lin%(s —1)z(s) = —.
S— v

Proof. For any positive real number m, we can say that vol(=T') = % since we work

in an n-dimensional real vector space.
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Now, define G(m) to be |[{z € X' N U}|. Then,

w=vol(U) = lim G(m)i — v lim G(m)

m—00 mm m—oo MM

Furthermore, we can say that G(m) is the number of elements in
{r eTNX|f(x) <m"}.

That is because these elements are the elements x’ of %X satisfying f(2') < 1.
Moreover, since I' is a lattice and U is bounded, G(m) is finite. Therefore, we can

order the elements of I' N X as

0< fla1) < flas) < ...

Now, set m; to be f(z;)%. By our observation on the function G(m), we have
G(m; —m') < i < G(m;) for any m’ € R>%. If we multiply the inequality by ﬁ,

we get

G(m; —m') [ m; —m/ i G(m;)

(m; —m/)" m; m;" m;"
w

Note that if we take limit as m; goes to oo, then outer fractions go to — by our
v

limit calculation in the beginning. Therefore, taking limit as m; goes to oo gives us

y i y i vol(U)  w
meyoo mn oo f(z)  wolD) v

Thus, we can say that for any positive real number m, there exists 4,, such that

for any i > i,, we have

w 1 1 w 1
ml| < ——< —+m | -
v

v i f(a) t

Taking s power of the terms and summing over i starting from i,, gives us
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w >~ 1
—— -< |- —.
_— ;Zs S e (o) X
> 1
Now, let us make an observation on —
ZS
im—1 1
It b that . S0, for R > 1
can be seen that ((s le ZZI =z + ZZZ o, for Re(s) , C(s)
converges, its residue at s =1 is 1. Therefore,
. . = 1
lim(s — 1)¢(s) = lim(s — 1) Z <=t

Similarly, notice that z(s) converges for any s with Re(s) > 1

Now, let us multiply the terms in the inequality with (s — 1) and take limit as

goes to 1:

w Sl w | 1
li -1 | —— — < li —1) - <1 -1 | — —
slgi(s ) S—m ZZ: = sliq s Z f 1m(s ) " +m 25

which yields

f —m <lim(s — 1)z(s) <

v s—1

—m

SH RS

by our observation above.
Thus, since m > 0 is arbitrary, we conclude that
w

lim(s — 1)z(s) = o

s—1

]

This theorem is a crucial part of proving the Analytic Class Number Formula. We

will construct a cone X and a lattice I'. Then, by taking |N’| as f, we will be able to

use this proposition.
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Now, let us work on the Dedekind zeta function of K. For each class C' € CI(K)

define the following function:

CeCI(K)
We will re-write z¢ in a different way by manipulating the sum. So, let us make
some observations.
In the previous chapter, it is mentioned that CI(K) is a finite group of order hy.
Therefore, the class C has its inverse C~! inside Cl(K) such that CC~! = Pg. Take
any integral ideal J € C~1. Then, for any I € C, I.J is principal, call it < o > for

some « € Ok. Taking norm on the both sides yields

Ngo(IJ) = Nigjo(< a>) = [Ng/g(a)|.

Since the norm is multiplicative, we get Ny o(/)Ng/o(J) = |Nkjg(a)|. Also, since
IJ =< a > we can say that J divides < a >.

Therefore, we can write the sum running over the elements « as:

NK/Q J 3

=2

Jl<a>

= Niejo(J Z Nero@F

O./
| K/Q J|<o>

x/ola

Moreover, J divides < o > which means that < a >C J. Thus, a € J.

Note that if a and & are associates then < o >=< & >. Therefore, we consider
only non-associate elements «. So, we can say that the elements o runs over the
non-associate elements of J. Let us say that these elements belong to the subset

J*CJ.

We will manipulate the sum once more, so, let us define the following lattice:

'=0(J)={z € R™" x C?|z = V¥(«) for some a € J}
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and the subset Q of R™ x C™ as

Q={zeR" xC"?|x=V(«a) for some a € J*}.

Finally, recall that we have Nk, = N'(¥). Since we count the non-associate

members « of J and by the equality above, our sum can be re-written as:

20(s) = Niio()' D s |N,

EASY)

Our next step is to define a particular cone X C R™ x C™. X will contain
elements x such that x = ¥(a) for some a and = # U(a') for any associate o/ of
a. In conclusion, we write 2 as I' N X and writing |N'(x)| instead of f(x) will make
Proposition 4.5 a crucial tool.

Now, recall that the vectors ¢(n1),...,o(n,) span T C R™"2 where ny,...,n,
are fundamental units. Our aim is to span R™%"2 so we need one additional linearly

independent vector. For this reason, let us define a vector

~

Y= (@17 S ¢T17¢T1+17 ) 957“1+T‘2) € RTIJFTQ

such that for every ¢ = 1,...,r; we have ¢; = 1 and for every j =r1 +1,...,r1 + 19
we have ¢; = 2. So ¢ is of the form (1,...,1,2,...,2) where each of the ri-many real
components is equal to 1 and each of the ro-many complex components is equal to 2.

Then, we can say that the vectors ¢, ¢(n1), ..., ¢(n,) give a basis for R"*"2. There-

fore, for any I'(z) € R™""2 we can write

I'(x) = ép+crp(m) + -+ co(ny)

for some ¢, ¢y, ...,c. € R.
Recall that the set T"is given as {w € R™"*"2|t(w) = 0} where the function ¢ is

given as

t:R"T2 5 R

(yh cee 7y7’1+7”2) =yt Yritry-
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Notice also that for any fundamental unit n;, we have ¢(n;) € T" and t(¢(n;)) =
log1 = 0.

Therefore,
t(l'(x)) = (@) + crt(p(m)) + - -+ + et (n)) = et(P).
Thus, t(I'(z)) =¢(14+---+1+42--- 4 2) = én. Lastly, notice that
t(l'(z)) = log |N'(x)|

so ¢ = +log |N'(z)|. We are ready to define the desired cone.

Let X CR™ x C™ be the set of elements x satisfying the following properties:

1. N'(z) # 0.
2. for any coefficient ¢; of I'(z) we have 0 < ¢; <1 foreachi=1,...,r.
2m
3. If x; is the first component of z, we have 0 < arg(z;) < Pl
i

We claim that the set X is a cone. Let us show that.

For any ¢ € R > 0, N'(cx) = ¢"N'(x) # 0. Also, I'(cx) = (log )¢+ I'(z) and since
U'(z) = ¢+ cro(m) + -+ + cp(ny), the coefficients ¢(n;) do not change and satisfy
the condition.

To add, arg(cx1) = arg(z,) since streching the vector does not affect the argument.

Therefore, for any 2 € X and ¢ € R”?, cx € X. Thus, we conclude that
X CR" x(Cm
is a cone.

Lemma 4.6. If y € R" and N'(y) # 0, then y can be written uniquely as x -V (n) for

somexr € X CR™ x C" andn € Og™.

Proof. Let us write I'(y) as dp+dyo(m)+- - -+d,o(n,) for some d, dy, . .., d, € R. For
any j = 1,...,r, we can write d; = m;+ f; where m; € Z and f; € [0, 1), the fractional

part of d;. Now, let us write a unit w as u =n™ ...n" and set z =y - U(u™').
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Assume that the argument of the first component of z, arg(z;) = 6. Then, we can

find an integer m such that

2mm 2m
(K]~ Tu(E)[

Next, take ( € u(K) such that the first component of the image of ¢ under the
map V: K — R x C* is U4(() = eTHCRT,

Now, set x =y - U(u~1) - ¥(¢™). We will show that » € X.

By assumption N'(y) # 0 and we have y - U(u™t) - U(¢™) = N'(z) # 0.

0<60—

The coefficients f; (j = 1,...,r) of x satisfy 0 < f; < 1 by our construction.
Finally, argument arg(z;) of the first component of z lies inside [0, —2 \u(K ) by our
choice of (. Thus, x lies in the cone X.

The equality x =y - U(u™!) - ¥(¢™) implies that y = ¥(n) for some unit n € O.

In addition, the decomposition of y is unique by the construction. [

So, we prove that if « € O then there is a unique element & of {& € Ok |a is associate to a}
such that U(a) € X.
Recall that we have the lattice

['=V(J)={z € R" x C?|z = ¥(a) for some o € J}
and J* is defined as the non-associate member of J so that we also have
Q={zeR" xC"?|x=V(«a) for some a € J*}.

Thus, we can write Q as I' N X.
Then,

e} ( NK/@ Z ’N’

can be written as
1
zo(s) = Nijo(J)’ Z V@)

zel'NX
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Now, to evaluate this sum via Proposition 4.5 we have to find vol(U) = w and
vol(I') = v where U = {z € X||N'(z)| < 1}.
By Corollary 3.10, the volume of the lattice I' = W(.J) is 2‘T2|AK|%NK/Q(J).

Therefore, we only need the volume of U.

2" "2 R e
Proposition 4.7. The volume of w of U is ———.
()|
Proof. See, |2, Chapter 10, Proposition 10.14] n
Let us put everything together:
(5 — 1)20(s) = Nral) = Nisal) :
lim(s — 1)z¢(s) = Ngo(J)— = Ngo(J -
s—1 A /Q (K| 2-72| A |2 Nig oo (J)
2T1+T27TT2RK

TSIV

Note that the sum is independent from the class C'.

Recall that we write (x(s) as Z zc(s) and there are only finitely many ideal

CeCU(K)
classes. The number of these classes is the class number hy of K, thus:

2r1+r27rr2RK
lim(s — 1)Ck(s) =

S %
e ()11 AK]|
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APPLICATIONS

In this chapter, we briefly cover various concepts in order to compute the class
number of a number field. We mainly focus on the quadratic number fields, number
fields of degree 2 over Q. A quadratic number field K is given by K = @(\/c_l) for
some square-free integer d.

Let us state some results on quadratic number fields first.

Remark 5.1. Let K = Q[vd] be a quadratic number field. Then, we have the

following;:

1. Og = Z[Vd] and Ak = 4d, if d = 2,3 (mod 4).

2. Og = Z[%Y4) and Ag =dif d=1 (mod 4).

Now take any prime number p. The ideal pOk is an ideal of Ok generated by p,

so it can be written as a product of prime ideals. We have 3 cases:
1. p splits in K if pOx = P'Q’ for some distinct prime ideals P’, )’ of norm p.
2. pis inert in K if pOy is a prime ideal of O of norm p?.
3. pis ramifed in K if pOx = P? for some prime ideal P of Ok of norm p.

Now, let us begin with Binary Quadratic Forms.

5.1 Binary Quadratic Forms

Definition 5.2. A binary quadratic form is a homogeneous polynomial of degree 2
and of the form p(x,y) = az? + bwy + cy? for some integers a, b and c.

The discriminant of the binary quadratic form ax?+bxy+cy? is defined as b*> —4ac.
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We will write (a,b, ¢) for the binary quadratic form az? + bzy + cy? in short.

Definition 5.3. A quadratic form p(z, y) is called positive definite if for any =,y € R,
we have f(x,y) > 0 and f(x,y) = 0 implies that (z,y) = 0.

Now, let us we have a quadratic form (a,b,c). We look for the conditions that is
needed to have a positive definite form.
b2

b o\2
ar? +bry+ et =alz+—y) +[(c—— )2
2a 4a

First of all, @ must be greater than 0, in order to say that (a,b,c) is positive
definite because taking (x,y) = (1,0) gives a negative value. The same is valid for
¢ by symmetry. To add, if we look at the equation above, (¢ — %) must be positive
to have a positive definite form. Equivalently, we must have b*> — 4ac < 0. Thus, we

have the following corollary:

Corollary 5.4. [2, Chapter 6, Corollary 6.10] The quadratic form (a,b, c) is positive
definite if and only if a > 0 and b* — 4ac < 0.

Remark 5.5. Let K be an imaginary quadratic number field. So, K = @(\/3) for
some negative square-free integer d. Then, the norm Ng/q(z + y\/a) of any element

z + yv/d is a positive definite quadratic form: x2 + (—d)y>.

Now, we make an observation and after that, we define an equivalence relation on
the set of quadratic forms.

b
Let v be the vector (x,y)T and say A = (Z 2 ) Then, the form
B (&
p(z,y) = ax® + bry + cy?
can be written as p(z,y) = v Av.

Definition 5.6. The quadratic forms p(z,y) and ¢(x,y) are said to be equivalent if

. . . mir Mig
q(z,y) = p(m112 + maay, ma1 & + magy) for some invertible matrix M =

Ma1 Ma22

in GLy(Z).
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Equivalently, since M is invertible, det(M) = +1 so that p(z,y) and ¢(x,y) are
equivalent if the substitution (x,y) +— (mi1x + miay, ma1x + maogy) transforms one to
another for some mqq, M2, Ma1, Mg € Z with mi1mos — miamo; = £1.

They are called properly equivalent if m1m95 —miams; = 1 which is the case that

when M € SLy(Z).

Let us take a form p(z,y) as vT Av as above.

Notice that

mi1 M2 z mi1x + My

Mol  Mo2 Y M1 T + Mooy

Thus, we can write p(my12+mqoy, Mo1x+maooy) = (Mv)T A(Mv) = v (MTAM )v.

Now, let us say that the form ¢(z,y) corresponds to a matrix B. Then, it can be
said that p and ¢ are equivalent if B = MTAM for some M € GLy(7Z) and properly
equivalent if M € SLy(Z).

In some cases, writing a form in terms of matrices makes things easier and help
one to come up with various conclusions. For instance, one can prove the following

theorem:

Theorem 5.7. (1), (% ) generate SLy(Z) (For the proof, see [2, Chapter 6, Corol-
lary 6.18]).

Now, let us give a remark and continue with reduced quadratic forms.
Remark 5.8. Equivalent forms have the same discriminant.

Both equivalences give an equivalence relation on the quadratic forms. In fact,
on the set of binary quadratic forms of fixed discriminant, we have these equivalence

relations.

Definition 5.9. The binary quadratic form (a, b, ¢) is called reduced if either

—a<b<cor0<b<a=c
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Now, let us take a positive-definite form p(z,y) = (a, b, ¢) and define the following

transformations:
1. Ty : (x,y) = (z +y,y) which gives (a,b,c) — (a,2a+ b,a+ b+ c).
2. Ty : (x,y) — (z,y — z) which gives (a,b,c) — (a,b—2a,a — b+ c).
3. T3 : (x,y) — (y, —x) which gives (a,b,c) — (¢, —b,a).

The transformations 17, 15, T5 generate properly equivalent forms. If we start with
a positive definite quadratic form and apply the algorithm in [2, Chapter 6.4] we get a
reduced form after finitely many steps and they are properly equivalent. We actually

have more than that:

Theorem 5.10. /2, Chapter 6, Theorem 6.14] Assume that p(x,y) is a positive defi-
nite binary quadratic form. Then, there exist a unique reduced form r(x,y) such that

p(z,y) is properly equivalent to r(z,vy).
Now, recall that if K = Q(v/d) for some square-free d € Z<° with discriminant
Ag. Then, we have

d ifd=1 (mod4)
Ak =

4d ifd=2,3 (mod 4)

Also, we mentioned that discriminant of a form can be defined too. Let us say that
(a,b,c) is a quadratic form with discriminant d. So, we focus on the forms (a,b,c)
with discriminant d = Ag that is negative.

Moreover, we define bijective functions between the set proper equivalence classes
of quadratic forms of discriminant d = A and the set of ideal classes in Q. Briefly,
for any representative (a,b,c) we send it to an ideal class such that the ideal repre-
senting the class has Z-basis «, 8 consisting of a,b and c. Conversely, for any ideal
I C Ok we can find two generators such that [ is of the form aZ + (b+ ¢y)Z for some
v € K. Thus, we can send [ to a form (a, b, ¢). It is important to mention that either

case, the maps are well-defined (For details, see [2, Chapter 6.5]).
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Proposition 5.11. The number of reduced quadratic forms with fived discriminant

s finite.

Proof. Let (a,b,c) be a reduced form with discriminant d so we have 0 < b <a<ec.
Thus, 0 < b® < ac and this implies that —4ac < b? — 4ac < ac — 4ac = —3ac.

Therefore, —4ac < d < —3ac and we can bound ac as

<ac<_—j
— _3'

|4,

Since (a, b, c) is reduced, 0 < a < ¢ so that a® < ac. Thus,

C .
S — 3

Therefore, a is bounded and since |b] < a, b is bounded too. There are finitely

many choices for a and b. Thus, together with the equality b*> — 4ac = d, we can say

that there are finitely many choices for c. O]

We see that the collection of positive definite binary quadratic forms with fixed dis-
criminant is finite, thus, we prove that the ideal class group of an imaginary quadratic
field is finite. Moreover, we can evaluate the class number of an imaginary quadratic
field by counting the related reduced forms.

Now, we give the main theorem of this section:

Theorem 5.12. [2, Chapter 6, Theorem 6.19]
Assume that the number of reduced quadratic forms with discriminant A is pg.

Then, the class number hy of an imaginary quadratic field @(\/E) 15 equal to pi .
We will finish this section with the following example:

Example 5.13. Let K = Q(—13), so Ag = —52. We look for reduced forms
(a,b,c) of discriminant b* — 4ac = —52. We mentioned in the proof of Proposition
5.11 that % <ac< %, equivalently, 13 < ac < 17 must be satisfied.

Now, if ac = 13 and b = 0, then we must have (1,0, 13) since 0 < a < c.

If ac = 14, then b = +2 and we have four possibilites in this case:
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1. (1,2,14): it is not reduced since |b| > a.

2. (1,-2,14): again it is not reduced since |b| > a.

o

(2,2,7): Tt is reduced.
4. (2,-2,7): It is not reduced since b = —a.

Now, if ac = 15, then > = 8 and if ac = 16, then b?> = 12 so we can not find such

Lastly, if ac = 17, then b = +4 but we can not find such a, ¢ to satisfy
4=|b<a<ec.

Therefore, the only reduced forms of discriminant —52 are (1,0, 13) and (2,2, 7).
Thus, the class number hyx of K is 2. So, it is not a UFD.

5.2 Continued Fractions

In the previous subsection, we worked on the imaginary quadratic fields and presented
a way to find their class numbers. Now, we work on real quadratic fields. The most
significant difference between these two quadratic number fields is that real ones have
infinitely many units. To find their units, we must find the fundamental unit 7 of the
real quadratic field since the units are of the form +n" for some n € Z by Dirichlet’s
Unit Theorem.

Let K = @(\/E) be a real quadratic field. For instance, let us assume that

Ok = Z[V/d] and take any unit a 4+ bv/d € Ok . Then,

Ngjgla+bVd) = a* — db* = £1

so that the units are the solutions of a Pell’s equation, 2? — dy* = £1. It is known
that when d € Z>° and is square-free, the equation has infinitely many solutions and
the general solution gives us the fundamental unit of the real quadratic field.

Now, observe that we can write V2 as:
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1 1 1 1
/21 V2+1 + B t oo

2+

The expression on the right hand side is called the continued fraction for v/2. We
use [1;2,2,...] = [1;2] for the expression in short.

Now, let d € Z7° be a square-free integer. We will give some facts without proofs.

Proposition 5.14. The continued fraction for \/d is given as [bo; by . .. by] for some

positive integers by, ..., by so that by = 2by.

i = LA [ 1 _
Now, let us say that we can write v = by + b1+b2ii = by + — by + or=si
such that there exists k& € Z~° where y; = 7,4 for some j. The smallest possible k is
called the period of Vd.
Now, let us fix some notation.

Definep o =0,q 2 =1,p 1 =1,¢.1=0,py = |7] and g = 1. Tf y = [bo; b1bs .. .],
then py = appr_1 + Pr2 and g = apqr_1 + gr_2. Set Ag = 0,Cy = 1, 7 = V/d and

- 2
bo = |10]. Also, define A, = b,C, — Ay, Crpy = d i’;ﬂ y Yo+l = \/3;”—?;“ and
bni1 = |Vns1]. Then, A, C,, € Z for any n and ~,, = bn—l—#ﬂ, thus v = [bo; b1, b, - . . |.

Lastly, we have that p,? — dg,? = (—1)""*A, ;. (For the proofs, see [2, Chapter
8.2].)
The fraction % is called n'* convergent to .

Now, we can give some results on solving Pell’s equation.

Theorem 5.15. Suppose that d € 770 is square-free. Then, x> —dy? = 1 has infinitely
many solutions and x? — dy* = —1 has infinitely many solutions if the period of \/d

s odd.

Proof. We have p,? — dg,?> = (—=1)""A, 1. The sequence (v,) repeats with some
period k, therefore (A,) repeats with the same period. We have Ny = 1 so that
Ny, = 1 for any ¢ € Z=°. Then, for any n = ik — 1 where i or k even (p,,q,) solves
22 —dy? = 1. Therefore, Pell’s equation has infinitely many solutions. If k is odd and

n =ik — 1 with i odd, (p,, ¢,) is a solution for x> — dy* = —1. O
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Theorem 5.16. Suppose that d € Z>° is square-free and say n'" convergent to \/d
is L. Suppose also that m € Z with |m| < Vd. Then, for any solution (u,v) of

22 — dy* = m with (u,v) = 1 we have s = p, and t = q, for some n.

To sum up, we can find the units u 4+ vv/d with the convergents to vd. So, we
look for convergents 2 with pn? — dg,? = +1. We see in the proof of Theorem 5.15
that the values of p,2 — dg,? repeats with period k of Vd.

So, if d = 2,3 (mod 4), then the first pair (p,, ¢,) that satisfies p,2 — dg,? = +1
gives the fundamental unit of K, p, + ¢,v/d. However, if d = 1 (mod 4) then we seek
for a+bv/d = %1 for some a,b € 3Z. Thus, we need to solve (2a)? — d(2b)? = +4 and
it has a solution by Theorem 5.16. So, in this case, the first pair of (p,, ¢,) satisfying

+1 or £4 gives the fundamental unit of K.

5.3 Class Number Calculations via Minkowski’s Bound

In this section, we introduce a method to find the class number of any number field.
We will give an example on real quadratic fields since we presented a method for

imaginary quadratic fields. Now, we give the main theorem of this section:

Theorem 5.17. Let K be a number field of degree n and ¢ € R be a constant such
that every ideal class contains an ideal I with Nijo(I) < v. Let {Pi,..., Py} be
the set of prime ideals of Ok with Nko(P;) < v for any i =1,...,m and say that
C; = [P is the class of P, in CI(K). Then, {C,...,Cy} generates CI(K). In

log 7

addition, hx < Z%ZJinog?.

Proof. By Proposition 3.13, we can say that there are finitely many prime ideals P
with Nk /g(P) < v. Let us say that they are {P,..., P,}. Now take any C' € CI(K)
and an ideal I € C with Ng/o(/) < v. Let Q" ... Q" be the decompositon of I for
some prime ideals @)1, ..., Q;. Then, H§:1 Nk o(Q:i)® < v implies that Nk ,o(Q;) < v
for any ¢ = 1,...,0. Thus, {Q1,...,Q;} C{P,...,P,} and CI(K) is generated by
Cy,...,Ch.

For the last part, see [3, Chapter 4, Corollary 4.2] O
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T2
n!
We can take v as Minkowski’s bound | —| —|Ag|2 given in Corollary 3.12
T n"

since it satisfies the condition of the theorem.

Now, let us see an example:

Example 5.18. Let K = Q(v/82). Then, we have n = 2,7, = 2,7, = 0, A = 328
and Minkowski’s bound M = 9.05. Lastly, Ox = Z[/82].

Prime ideals have norm p™ for some prime number p with m € N and their norm
must be less than M so we consider the primes less than M. Thus, we consider the
factors of pO to find the prime ideals we are looking for.

By [2, Chapter 5.8, Proposition 5.42|, 20 = P2, 30y = P3P; and 5,7 are inert
so we consider the prime ideals Py, P; and P; only.

Note that 20k = P? ~ (1) and since 30k = P3P ~ (1), we can say that CI(K)
is generated by P, and Ps.

Now let B = 10 4+ v/82. We have Nk o(BOk) = 18 so SOk has a prime factor
with norm 3. Since 3 f10+ /82, B ¢ 30k = PsPs, 3Ok is divisible by one of P; and
Py. Let Py divides the ideal so we have 30k = P,P;2, a principal ideal. Therefore,
P, ~ P;% and we conclude that CI(K) is generated by the class of Ps. Now, we have
[P2]? = 1 and [P3]? = [P] therefore the order of [P;] divides 4. Let us show that P,
is not principal.

Suppose that P? = (a)? for some a = (a + b\/82) € Z[/82].

Thus, 20 =< (a + bv/82)? >. Then, 2 = ((a + bv/82)?)u for some u € Og ™. By
Dirichlet’s Unit Theorem (Theorem 3.22), u = +n™ for some n € Z where 7 is the
fundamental unit of K. Let us find the fundamental unit by considering the continued
fraction of v/82. It is given as [9;18]. By the method we introduced in the previous
section we conclude that 7 = 9++/82. Thus, u = (9 ++/82)" for some n € Z. Then,
2 = (a + bv/82)*u = £(a + bv/82)%(9 + /82)" implies that u must be positive. By
taking the norm of both sides we conclude that n = 2k for some k € Z. Finally, we

have
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2 = (a+bV/82)%(9 + v82)*.

Then, v/2 = (a + bv/82)(9 + v/82)* = o’ + 1//82 for some o',V € Z[v/82] but this
implies that v/2 € Z[\/@] which is a contradiction.

Thus, P, is not principal, so [Ps] has order 4 and CI(K) is generated by [Ps].
Therefore, CI(K) = Z/4Z and hyx = 4.

5.4 Explicit Class Number Formula
A Dirichlet character modulo n is a group homomorphism
X :(Z/nZ)* — C — {0}.

It can be extended to Z/nZ by setting x(a) = 0 for any a with (a,n) > 1. We
call y as principal if it is the trivial homomorphism and non-principal otherwise. A
character is primitive (mod k) if for any divisor a < k of k, there exists b € Z with
b=1 (mod k) provided that (a,b) =1 and x(b) # 1.

We define the Dirichlet L-function with Dirichlet character y as

for Re(s) > 1.
Now, suppose that K is a quadratic field. Recall that a prime number either splits,

ramifies or is inert. Define

p

1 if p splits

X(p) =< =1 ifpis inert

0 if p ramifies
\

Then, x gives a real primitive character modulo |Ag|. Actually, this character is
the Kronecker symbol (|Ag/|,-) (We encourage the reader to see [5], [6], [7]).

For this character, we have
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Ck(s) = C(s)L(s, x)-

Then, if we multiply both sides with (s — 1) and take limit as s goes to 1:

27'1+7“27r7"2 RK
- hK —
1K)V Ak

Now, if K is a real quadratic field, then we have r; = 2,7, = 0, |u(K)| = 2, and

L(1,x).

Ry = n where 7 is a fundamental unit. Thus, we have:

VIAK]

hix = L(1,x).
K 210g77 (aX)

On the other hand, if K is an imaginary quadratic field, then we have r; = 0,7y = 1

and Ry = 1. Therefore, we conclude:

hx = X)-

|N(K)2‘7T\/|AK| L.

Thus, the value of L(1,x) can be useful to make assumptions on hy. However,
note that it is not easy to compute L(1, ) sometimes. Lastly, in our case
L(1,x) # 0 and this plays a fundamental role on proving Dirichlet’s theorem on

arithmetic progressions:

Theorem 5.19 (Dirichlet’s Theorem on Arithmetic Progressions). Let a,b € Z>°
such that (a,b) = 1. Then, there exist infinitely many prime numbers p of the form

an + b for somen € Z>°.
Proof. |7, Chapter 4]. O

Example 5.20. Let K = @(\/ﬁ) with fundamental unit n = 1 + /2. We have
AK = 8. Thus,

V8

hyg=—— L(1,y) ~ 1.605 L(1, ).
K = a1 V) (1,x) (1,%)
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We have

1 1
Ll,x)=1—>—<
However, the value of L(1, ) is between 1 —
Thus, hx < 1.605. Therefore, hy must be 1.

1

7

1

3

1

9

and 1 — § + £ so that L(1,x) < 1.
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