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ABSTRACT

Abundance of heat makes it a good candidate as an energy resource, but our ability

in manipulating heat is so limited. As a new way of heat control, thermal analogs of

non-reciprocal electronic devices, such as a diode, transistor, etc., caught attention in

many works. Recently, these works started to propose devices in the quantum domain,

and the proposed quantum thermal devices, especially diodes as our focus in this

thesis, still have optimization problems. In the cases of two interacting qubits diodes,

heat rectification is absent for resonant qubits. In this thesis, we consider a quantum

thermal diode composed of two interacting qubits, coupled with an optomechanical-

like coupling. We derive the global master equation and calculate the heat current

for both flat and Ohmic spectral densities to show the diode behavior. Quality of the

diode is quantified by a measure, called rectification factor. We numerically calculate

the rectification factor for a wide range of system parameters, including weak and

strong coupling regimes. We show that the unit rectification factor is obtained for

various parameters both in high and low temperature ranges. Most importantly,

almost unit rectification is possible even when the qubits have resonant transition

frequencies. We explain the physical mechanism leading to all these results, and we

show that the mechanism relies on allowed transition and/or bath couplings being

asymmetric. We also demonstrate that the asymmetry in transitions is achieved by

an asymmetry in free Hamiltonians of subsystems and/or interaction among them.

Demonstrations for the sources of asymmetry are carried with two toy models. One

of them is a single qubit, which is the smallest possible diode, and the other is a

three-level atom. Even though these two systems show diode behaviors, there is very

little control of the rectification direction, and two interacting qubits provide versatile

control of the diode.
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ÖZETÇE

Isı bolluğu onu enerji kaynağı olarak iyi bir aday yapar, ancak ısıyı manipüle

etme kabiliyetimiz çok sınırlıdır. Yeni bir ısı kontrol yöntemi olarak, diyot, transistör

vb. gibi karşılıklı olmayan elektronik cihazların termal analogları, birçok çalışmada

dikkat çekmiştir. Son zamanlarda, bu çalışmalar kuantum alanında cihazlar önermeye

başladı ve önerilen bu kuantum termal cihazları, özellikle bu tezde odaklandığımız

diyotlar, hala optimizasyon problemlerine sahiptir. İki etkileşimli qubit diyotu du-

rumunda, rezonans qubitler için ısı yönlendirmesi yoktur. Bu tez çalışmasında, op-

tomekanik benzeri bir kavrama ile birleşen etkileşim içindeki iki qubit oluşturduğu

bir kuantum termal diyodu ele alıyoruz. Global mastır denklemini türetiyoruz ve

diyot davranışını göstermek için hem düz hem de Ohmik spektral yoğunlukları için

ısı akımını hesaplıyoruz. Diyotun kalitesi, düzeltme faktörü olarak adlandırılan bir

ölçü ile ölçülüyor. Zayıf ve güçlü qubit etkileşim rejimleri de dahil olmak üzere çok

çeşitli sistem parametreleri için düzeltme faktörünü sayısal olarak hesaplıyoruz. Birim

düzeltme faktörünün hem yüksek hem de düşük sıcaklık aralıklarında çeşitli parame-

treler için elde edildiğini göstermekteyiz. En önemlisi, qubitler rezonant frekanslara

sahip olsalar bile neredeyse birim düzeltme mümkündür. Tüm bu sonuçlara yol açan

fiziksel mekanizmayı açıklıyoruz ve mekanizmanın izin verilen enerji geçişleri ve/veya

qubit-ısı banyosu etkileşimlerinin asimetrik olmasına bağlı olduğunu gösteriyoruz.

Ayrıca geçişlerdeki asimetrinin, alt sistemlerin serbest Hamiltonlularında bir asimetri

ve/veya bunların aralarındaki etkileşimi ile elde edildiğini de göstermekteyiz. Asimetri

kaynaklarını iki oyuncak modeli ile örneklendiriyoruz. Bunlardan biri, mümkün olan

en küçük diyot olan, tek qubit sistemi diğeri ise üç seviyeli bir atomdur. Bu iki sistem,

diyot davranışları gösterse de, düzeltme yönünün çok az kontrolü vardır ve etkileşim

içindeki iki qubit sistemi, diyotun çok yönlü kontrolünü sağlar.
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for giving me the opportunity to be a member of QuEST group and most of all for his

guidance and patience in every stage of my M.Sc. degree. His invaluable guidance in

research, teachings in the courses, and the collaborations he introduced always helped

me to find true inspiration and motivation. Finally, I will always feel in debt to him

for his extraordinary kindness and generosity in times of real need.

I thank hospitality of CTAMOP group in Queen’s University of Belfast and

Nanophysics group of Reykjav́ık University where some parts of this work had been

completed. I, beyond words, thank to Prof. Dr. Mauro Paternostro and Prof. Dr.

Andrei Manolescu for always helping in many stages by various means, including their

reviews on my reports and drafts. In addition to their academic support and excel-

lence, their kind and supporting personalities gave me motivation and self-esteem in

my works. I also thank to Asst. Prof. Dr. Neşe Aral for useful discussions on many
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Chapter 1

INTRODUCTION

Nature is fundamentally quantum mechanical. Yet, intricate quantum mechanical

behaviors, such as quantum coherence, are not present in everyday life, and our

macroscopic experience is dominantly classical. This is because ”quantumness” is

preserved only in isolated systems (or at least in low temperatures with very small

levels of noise). Therefore, quantum effects in biology [1, 2, 3] are quite surprising,

since these systems are open to noisy environments. One extraordinary effect is the

observation of long-lived quantum coherence in the excitation energy transfer (EET)

through photosynthetic pigment-protein complexes (PPCs) [4, 5, 6, 7, 8].

Techniques from theory of open quantum systems [9, 10, 11, 12, 13] are applied to

EET through PPCs to understand the effects of noise on the transport [14, 15, 16, 17,

18, 19, 20, 21]. It is shown that the exciton transport through dissipative quantum

networks (at zero temperature) can be enhanced by local dephasing [15], and an op-

timized interplay between free Hamiltonian evolution and thermal noise is shown to

increase the transport efficiency [16]. Enhancement of transport efficiency by the opti-

mization of dynamical interplay between the Hamiltonian of a disordered system and

pure dephasing is attributed to prevention from localization in disordered system [22]

with fully coherent dynamics [17, 18] and quantum Zeno effect of highly incoherent

dynamics [17, 18], and to line broadening [18, 19]. For the ordered systems, there is

no localization to overcome, yet fully coherent dynamics is not again more efficient

than the dynamics with an optimized noise [20]. This is related to an optimization be-

tween the destruction of dark states by noise and quantum Zeno effect caused by the

excessive amount of noise [19, 20]. Also, a structured noise, that is a non-Markovian
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environment composed of local oscillators on each transport site, has also shown to be

beneficial for the transport efficiency [19, 23, 24, 25, 26, 27, 28, 29]. It is argued that

the vibrational modes open up additional transport pathways, or dynamically adjust

the resonances to provide directionality in the transport network [24, 26, 27, 28].

These vibrational modes are also shown to support the lifetime of coherences to the

observed time-scales [23, 24, 25, 29, 30].

The noise-assisted transport idea proved in the works above is experimentally

tested and verified in various platforms [31, 32, 33, 34, 35, 36], yet there is still debate

on the role of coherence on the transport in Photosynthesis [37, 38]. Also, it has been

shown that introducing a sink, which is the common point in almost all of the above

studies, contradicts the second law of thermodynamics [39]. Therefore, adopting

the thermodynamical measures [40] to analyze the transport [28, 21] in a thermody-

namically consistent way, we shift our attention to quantum thermal non-reciprocal

devices, which are required to turn waste heat into useful resource [41, 42, 43, 44]

not only in energy-harvesting [45, 46], but also in information processing [47, 48]

and heat engines [49, 50]. Quantum non-reciprocal devices are theoretically pro-

posed [51, 52, 53, 54, 55, 56], and experimental works realized a single-photon optical

diode [57], a heat switch from coupled superconducting qubits [58], and photonic heat

valve [59].

This thesis first presents the background required for open quantum systems and

the derivation of Markovian master equation (MME), which is the main tool used

in almost all of the above theoretical studies. Then, toy model examples of MME

are presented to demonstrate what is MME and how to solve it. Finally, the working

principle of a quantum thermal diode of two interacting qubits [54, 55, 56] is explained

together with a discussion on how would a non-Markovian environment affect the

diode behavior.



Chapter 2

BACKGROUND

This chapter presents the required background from both quantum and statistical

mechanics. It starts with very basic but useful mathematical definitions and also

presents a method to solve coupled first order linear homogeneous differential equa-

tions. Then, density matrix formalism is introduced by considering ensemble average

of an observable for a mixed state, which is a statistical ensemble of pure states. Rig-

orous terminology divides the naming into two as density operator and density matrix,

which is a matrix representation of the operator in a chosen basis, we use the name

density matrix for both cases. It is already obvious that the statistical ideas play a

key role here. Therefore, this chapter also introduces required background from both

classical and quantum statistical mechanics. Another use of them is to reduce the dy-

namics of system-environments composite to only the system of interest by removing

the environment degrees of freedom with the use of their statistical properties. This

is done by deriving the quantum master equation in Born-Markov approximation.

Finally, a short review of quantum thermodynamics and non-Markovian methods are

presented.

2.1 A Short Description of Open Quantum Systems

Generic example is a system interacting with an environment at temperature T , as

shown in Fig. 2.1. The whole configuration, the system S plus the environment, is

closed, and its dynamics is described by the Liouville - von Neumann equation, which

is derived in the subsequent sections,

i~
d

dt
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
, (2.1)
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Figure 2.1: Open Quantum System. Effects of the environment, which exchanges

energy with the system, is described by MME. System plus environment is considered

as a closed composite

where ρ̂ is the density matrix introduced in the subsequent sections, and Ĥ is the

total Hamiltonian given as

Ĥ = ĤS + ĤR + ĤI, (2.2)

where ĤS, ĤR, and ĤI are respectively the system, environment, and system-environment

interaction Hamiltonians. When only the system S is of interest, its state ρ̂S(t) is ob-

tained by tracing out the environment degrees of freedom

ρ̂S(t) = TrR [ρ̂(t)] . (2.3)
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However, obtaining ρ̂(t) requires Eq. 2.1 to be solved, and it is not possible for most

systems. Therefore, Markovian master equation technique is developed to describe the

time evolution of ρ̂S by applying second order perturbation to 2.1 under Born-Markov

approximations, which is justified in weak system-environment coupling. Subsequent

sections present the derivation and description of involved approximations. Once the

environment degrees of freedom are traced out, dynamics of the system S is given by

an equation of the form

i~
d

dt
ρ̂S(t) =

[
ĤS, ρ̂S

]
+ L̂[ρ̂S], (2.4)

where L̂ is called Liouville super-operator (Liouvillian) adding the effects of environ-

ment to the unitary dynamics of S. Here, the term super-operator means an operator

(Liouvillian) that acts on other operators (density operator/matrix). The rest of this

section is basically all about obtaining the super-operator L̂ both in its general form

and for specific systems.

2.2 Mathematical Background

This section involves two parts. The first part summarizes the mathematical defini-

tions used in the Quantum mechanics, which are also useful in rigorous mathematical

approaches to open quantum systems. The second part introduces a method to solve

coupled differential equations, which is adopted in solving the Quantum master equa-

tions.

2.2.1 Hilbert and Banach Spaces

A vector space V is a set that is closed under vector addition and vector multiplication,

and it is defined by a set of axioms [60, 61, 62, 63]. A Banach space B is a complete

vector space with a norm ‖.‖ [12, 60, 63], and Hilbert spaces H are Banach spaces

with a norm given ‖f‖ =
√
〈f, f〉, where 〈f, g〉 is an inner product of the two vectors

f and g [60, 62, 63]. Completeness of a vector space means that all Cauchy sequences

converge to a limit [60, 63].
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An example of Hilbert spaces is the space of square integrable functions L2 [64],

meaning that the integral of f 2 over the whole real line is finite for any function

f ∈ L2. The norm for L2 is

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)dx, (2.5)

where f, g ∈ L2. Such functions are used as the wave functions (solutions to Schrödinger

equation) of quantum systems [64]. A More abstract version is to use a ket |.〉 to rep-

resent the state of a system, and an element in the dual space called bra 〈.| is used

to define the inner product〈.〉 [65].

Observable of a quantum systems, more precisely the expectation value 〈Ô〉 of an

operator Ô, is obtained by applying the corresponding operator Ô of an observable

to a state |.〉 and then taking the inner product with dual of the state 〈.| [61, 64, 65]

〈Ô〉 = 〈.| Ô |.〉 . (2.6)

Operators form a Banach space with an operator norm, which tells the unitarity of an

operator [12, 63]. I do not present the definition of operator norm here, but unitary

operators have norms equal to 1. If an operator has a norm less than 1, it is called

as contraction [12, 63].

2.2.2 Solution to a System of Differential Equations

Here, solution for a specific system of differential equations (SDE) is presented to be

used in solving the MME. Consider the following SDE

ẋ1 = M11x1+ · · · +M1nxn,

... (2.7)

ẋn = Mn1x1+ · · · +Mnnxn,

which can be written in the matrix form as follows [66, 67, 68]

Ẋ︷ ︸︸ ︷
ẋ1

...

ẋn

 =

M︷ ︸︸ ︷
M11 · · · M1n

...
. . .

...

Mn1 · · · Mnn


X︷ ︸︸ ︷
x1

...

xn

 =⇒ Ẋ = MX. (2.8)
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There are two ways to solve the Eq. 2.8. First solution is written trivially as

X = eMtC, (2.9)

where C is a column matrix (a vector) of constants to be determined from the initial

values [66, 67, 68]. If the matrix M is diagonal, which means the equations are

not coupled to begin with, the matrix exponential and the solution is trivial. For

a coupled system, there are two ways to proceed after this point. First one is to

expand the exponential as a power series, which can be used easily in the numerical

calculations

eMt =
∞∑
k=0

tk

k!
M t. (2.10)

Second method is to first diagonalize the matrix M and then exponentiating it [66,

67, 68]. Diagonalization of a matrix can be performed by finding its eigenvalues,

which is a part of the second way to solve Eq. 2.8. Using the eigenvalues kj and

eigenvectors k of the matrix M , we can also write the solution of Eq. 2.8 as

X =
n∑
j=1

cje
kjtk, (2.11)

where cj are integration constant to be determined from initial conditions. I will use

and further explain these techniques in the subsequent chapters.

2.3 Quantum Mechanics

There are three equivalent ways to describe the dynamics of a quantum mechani-

cal system. These are commonly called as Schrödinger, Heisenberg, and Dirac (or

interaction) pictures. In this thesis and in general, Schrödinger picture is used ex-

tensively, but interaction picture is useful in the derivation of MME and is explained

in the subsequent sections. I do not present these pictures in detail, but it can be

found in standard text books [61, 65, 69, 70]. In the Schrödinger picture, state of

a closed quantum system is represented by its wave-function, which evolves under a
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unitary dynamics determined by the system Hamiltonian. Quantum mechanics is in-

trinsically probabilistic and the probability of an observable to have a certain value is

obtained by its expectation values. However, in realistic systems, there are also clas-

sical uncertainties, and these are incorporated into quantum mechanics with density

matrices [65, 71, 72, 73, 74].

In this section, pure and mixed states are introduced to lead our way to density

matrix formalism, and then the dynamics of this statistical treatment is derived.

Also, density matrix of a composite system and its reduction to a subsystem density

matrix with a partial trace operation is described. This section is a combination of

summaries for the topics from standard books [61, 64, 65, 69, 70, 71, 72, 73, 74, 75].

2.3.1 Pure States

For a closed quantum system with a given Hamiltonian Ĥ, eigenstates |ψi〉 of the

Hamiltonian (i.e. energy eigenstates) describe a basis for the Hilbert space of states.

Eigenstates are obtained form the eigenvalue equation

Ĥ |ψi〉 = Ei |ψi〉 , (2.12)

where Ei is the eigenenergy for the eigenstate |ψi〉. A pure state |Ψ〉 is a normal-

ized superposition of the eigenstates, which can be written for a Hilbert space with

dimension d as

|Ψ〉 =
d∑
i=0

ci |ψi〉 ,

where the ci are complex numbers, and the normalization condition is

〈Ψ|Ψ〉 = 1⇐⇒
d∑
i=0

|ci|2 = 1.

Time evolution of a pure state is given by the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 . (2.13)

Schrödinger equation will be used to obtain Liouville - von Neumann equation, which

describes the time evolution of density matrix. In order to introduce density matrix
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formalism, final concept needed from the pure state description is expectation value

for an observable O, which is calculated as

〈Ô〉 = 〈Ψ|Ô|Ψ〉 .

2.3.2 Mixed States and the Density Matrix

If a quantum system is a statistical ensemble of pure states |Ψj〉 with corresponding

weights wj, state of the system cannot anymore be described by a single state vector.

Yet, using the statistical weights wj, we can write the expectation of an observable

as the ensemble average

[Ô] ≡
∑
j

wj 〈Ψj|Ô|Ψj〉 . (2.14)

Using the completeness relation for a basis of the Hilbert space∑
b′

|b′〉 〈b′ | = 1.

Eq. 2.14 can be rewritten as

[Ô] =
∑
j

wj 〈Ψj|

∑
b′

|b′〉 〈b′ |

 Ô

∑
b′′

|b′′〉 〈b′′|

 |Ψj〉

=
∑
b′

∑
b′′

(∑
j

wj 〈b
′′|Ψj〉 〈Ψj|b

′〉

)
〈b′ |Ô|b′′〉

=
∑
b′

∑
b′′

〈b′′|

(∑
j

wj |Ψj〉 〈Ψj|

)
|b′〉 〈b′|Ô|b′′〉 . (2.15)

At this stage, we can define the density matrix as

ρ̂ =
∑
j

wj |Ψj〉 〈Ψj| . (2.16)

As shown below, this operator is used to calculate the ensemble average of a mixed

state for any observable. Also, elements of the matrix representation, called the

density matrix, in any basis |b′〉 is found as

ρb′′b′ = 〈b′′ |ρ̂|b′〉 =
∑
j

wj 〈b
′′ |Ψj〉 〈Ψj|b

′〉 . (2.17)
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Diagonal elements of this matrix give population for the corresponding eigenstate, and

off-diagonal elements are the correlations between eigenstates, called coherences.Now,

using the density matrix, we write ensemble average as

[Ô] =
∑
b′

∑
b′′

〈b′′ | ρ̂

1︷ ︸︸ ︷
|b′〉 〈b′ | Â |b′′〉

∑
b′′

〈b′′ |ρ̂Â|b′′〉 = Tr(ρ̂Â). (2.18)

Final relation tells that the ensemble average of a mixed state for any observable Â

is found by the trace of ρ̂Â in any basis.

2.3.3 Time Evolution of Density Matrix

We have introduced the formalism that properly describes a mixed state. Now, we use

this formalism to describe the time evolution of mixed states. Here, we still consider a

closed system so that dynamics of the pure states are described with the Schrödinger

equation. Then, from an initial state ρ̂(t0), density matrix at a later time t is written

as

ρ̂(t0) =
∑
j

ωj |Ψj, t0〉 〈Ψj, t0| → ρ̂(t) =
∑
j

ωj |Ψj, t〉 〈Ψj, t| . (2.19)

Taking time derivative of both sides in the second expression of Eq. 2.19, we write

d

dt
ρ̂(t) =

∑
j

ωj
∂

∂t
(|Ψj, t〉 〈Ψj, t|) =

∑
j

ωj

(
∂

∂t
(|Ψj, t〉) 〈Ψj, t|+ |Ψj, t〉

∂

∂t
(〈Ψj, t|)

)
.

(2.20)

We have the time derivative for a ket in Eq. 2.13, and it is given for a bra as

−i~ ∂
∂t
〈Ψ(t)| = 〈Ψ(t)| Ĥ(t). (2.21)

Then, by multiplying Eq. 2.20 with i~ and substituting time derivatives of bra and

ket states Eq. 2.13 and 2.20, we obtain the following relation

i~
d

dt
ρ̂(t) =

∑
j

ωj

[
Ĥ |Ψj, t〉 〈Ψj, t| − |Ψj, t〉 〈Ψj, t| Ĥ

]
= −

[
ρ̂, Ĥ

]
=
[
Ĥ, ρ̂

]
, (2.22)

called the Liouville - von Neumann equation describing time evolution of a quantum

statistical system.
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2.3.4 Composite Systems

Almost all systems of interest comprise multiple components. Therefore, this sec-

tion is about the density matrix of composite systems. State of a system with two

constituents, A and B, is written as (by direct product)

|ΨA+B〉 =
∑
i,j

αi,j |ai, bj〉 , (2.23)

where, αi,j = 〈ai, bj|ΨA+B〉 and |ai, bj〉 = |ai〉 ⊗ |bj〉. Normalization of the composite

state |ΨA+B〉 means that

∑
i,j

|αi,j|2 = 1.

If the factorization αi,j = α
(A)
i α

(B)
j is possible, then

|ΨA+B〉 =

[∑
i

α
(A)
i |ai〉

][∑
j

α
(B)
j |bj〉

]
≡ |ΨA〉 ⊗ |ΨB〉 ,

factorization of the state into states of the subsystems is also possible. The state of

a composite system that cannot be factorized into a product state of its subsystem

states is called an entangled state. Finally, the density matrix of the composite system

is just again the outer product of system states ρ̂A+B = |ΨA+B〉 〈ΨA+B|.

In the open quantum systems, we are interested in dynamics of the system in a

thermal bath, and MME is derived by tracing out the bath degrees of freedom by

taking partial trace. Assume that we are interested in the properties of system A,

and let TrB denote the operation of trace only over the subsystem B (partial trace).
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Density matrix of system A (so the state) is obtained as follows

TrB [|ΨA+B〉 〈ΨA+B|] = TrB

[(∑
i

αi |ai〉
∑
j

αj |bj〉

)(∑
k

α∗k 〈ak|
∑
l

α∗l 〈bl|

)]

=
∑
i,k

αiα
∗
k |ai〉 〈ak|TrB

(∑
j,l

αjα
∗
l |bj〉 〈bl|

)
=

∑
i,k

|ai〉 〈ak|
∑
j,l

αiαjα
∗
kα
∗
l δj,l

=
∑
i,k

|ai〉 〈ak|
∑
j

αi,jα
∗
j,k︸ ︷︷ ︸

cik

=
∑
i,k

cik |ai〉 〈ak| = ρ̂A, (2.24)

=⇒ TrB [ρ̂A+B] = ρ̂A. (2.25)

One additional assumption above is that the composite state is factorisable, which

guarantees that TrA [ρ̂A+B] ⊗ TrB [ρ̂A+B] = ρ̂A+B, but procedure is the same for any

composite state.

In above calculation, it may seem unambiguous whether or not the cik’s give the

correct matrix coefficients. Assume that expectation value of an observable ÔA of

system A is calculated as

〈ÔA〉 = 〈ΨA+B|ÔA|ΨA+B〉 =
∑
i,j,k,l

α∗k,lαi,j 〈ak|Ô|ai〉 〈bl|bj〉︸ ︷︷ ︸
δj,l

=
∑
i,j,k

α∗k,jαi,j 〈ak|Ô|ai〉

〈ÔA〉 =
∑
i,k

cik 〈ak|ÔA|ai〉 . (2.26)

By using the density matrix of system A given by the Eq. 2.24, this expectation value

is also calculated using the Eq. 2.18 as

[ÔA] = Tr
(
ρ̂AÔA

)
=
∑
i

〈ai|ρ̂AÔA|ai〉 =
∑
i,k

〈ai|ρ̂A|ak〉 〈ak|ÔA|ai〉 . (2.27)

In the second line, resolution of identity is used. Comparing Eq. 2.26 and 2.27, it is

seen that 〈ai|ρ̂A|ak〉 = cik, which is the same in Eq. 2.24.

2.4 Classical and Quantum Statistical Mechanics

This section firstly presents a derivation for Boltzmann probability distribution, and

then, by introducing a measure of disorder for the density matrix together with the
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defining properties of equilibrium, it is shown that the elements of density matrix in

thermal equilibrium are simply Boltzmann probabilities. Finally, density matrix for

a thermal bath of bosons is defined. This section is a combination of summaries for

the topics from standard books [65, 74, 75, 76, 77, 78, 79].

2.4.1 Boltzmann Probability Distribution

In classical thermodynamics and statistical mechanics, entropy is defined respectively

as

dS =
d̄Qrev

T
, (2.28)

S = kB ln(Ω), (2.29)

where d̄Qrev is the infinitesimal heat reversibly given to the system at the temperature

T , and Ω = eS/kB is the number of possible micro-states for a given macro-state for

discrete systems and phase space volume containing the states satisfying macroscopic

constraints for continuous systems. Total energy UT = UR + UA of a system A and

its environment R is constant, and the number of states is written as a function of

system energy UA as

Ω(UA) = ΩA(UA)× ΩR(UT − UA). (2.30)

The first law of thermodynamics, which is about the conservation of energy, is math-

ematically stated as

dU = d̄Q+ d̄W, (2.31)

dU = d̄Q+
∑
i

Jidxi, (2.32)

where Ji are generalized forces with their conjugate general displacements dxi, and

d̄Q is infinitesimal heat. Then, using the entropy definition given in Eq. 2.28, we

obtain a relation for the number of states for a specific energy U by firstly obtaining

a relation for the temperature as follows

1

T
=

(
∂S

∂U

)
xi

= kB

(
∂ ln Ω

∂U

)
xi

, (2.33)

Ω = γeU/kBT . (2.34)
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Then, for a particular energy Ei of the system A, we have the number of states from

Eq. 2.30 as

Ω(Ei) = 1× ΩR(UT − UA) = γe(UT−Ei)/kBT . (2.35)

From this relation, we write the total number of accessible micro-states of a discrete

system as

Ntotal =
∑
j

Ω(Ej) = γeUT/kBT
∑
j

e−Ej/kBT . (2.36)

The basic assumption of classical statistical mechanics is that all the possible quantum

states are equally probable, equal a priori. Therefore, the probability of system A

having the particular energy Ei is the ratio of number of micro-states with this energy

to total number of micro-states, which is given by

pi =
Ω(Ei)∑
jW (Ej)

=
e−Ei/kBT∑
j e
−Ej/kBT

=
e−Ei/kBT

Z
, (2.37)

where the partition function Z ≡
∑

j e
−Ej/kBT is defined. Eq. 2.37 is the Boltzmann

probability distribution, and it will give us an intuition about the elements of density

matrix for a system in equilibrium with a thermal bath through their structural

similarity.

2.4.2 Density Matrix of a System in Thermal Equilibrium

Defining properties of equilibrium include, maximized entropy, definite system energy,

and steady probability distribution. We make use of these properties to derive the

density matrix of a system in thermal equilibrium. For this purpose, let us first

introduce a measure of disorder for the system

σ = −Tr (ρ̂ ln ρ̂) . (2.38)

Meaning of σ is rather clear if we use the basis in which ρ̂ is diagonal

σ = −
∑
j

ρ
(diag)
jj ln ρ

(diag)
jj . (2.39)
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Since each element ρ
(diag)
jj is a real number between 0 and 1, σ is positive semidefinite.

For a completely random ensemble, every state (with N number of them) is populated

equally ρdiag
jj = 1

N
, then

σ = −
N∑
j=1

1

N
ln

(
1

N

)
. (2.40)

If the state is normalized
∑

j ρ
diag
jj = 1, the maximum value is σ = 1. For a pure state,

σ has its lowest value 0, because only one of the states j is occupied, the rest of ρdiag
jj

will be zero and for that one particular occupied state ρ
(diag)
ii = 1 =⇒ ln ρdiag

ii = 0, so

σpure = 0. Simply by stating that entropy is a measure of this order in thermodynamic,

here is a good position to introduce von-Neumann entropy

S = kBσ. (2.41)

Now, we use the properties of thermal equilibrium stated above

• Entropy is maximized =⇒ δσ = 0,

• Energy is definite =⇒ [Ĥ] = Tr(ρ̂Ĥ) = U ,

=⇒ δ[Ĥ] =
∑

k δρkkEk,

• Probabilities are steady =⇒ δTr ρ̂ =
∑

k δρkk = 0.

We can combine all there conditions with the use of Lagrange multipliers as

∑
k

δσ︷ ︸︸ ︷
δρkk ln ρkk + δρkk +

βδ[Ĥ]︷ ︸︸ ︷
δρkkβE+

γδtrρ︷ ︸︸ ︷
γδρkk, (2.42)

which is equal to zero and is written as

∑
k

δρkk [ln ρkk + 1 + βEk + γ] = 0, (2.43)

Eq. 2.43 is zero independent of δρkk. Therefore, we must have

ln ρkk + 1 + βEk + γ = 0, (2.44)
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which gives the following relation for diagonal density matrix elements

ρkk = exp(−βEk − γ − 1) =
e−βEk

eγ+1
. (2.45)

Since the partition function is a normalization factor the probabilities, and diagonal

density matrix elements are populations, we define Z from the normalization condition

as ∑
j

ρjj = 1 = e−γ−1

(∑
j

e−βEj

)
Z ≡ eγ+1 =

(∑
j

e−βEj

)
. (2.46)

Then, diagonal density matrix elements in Eq. 2.45 are written as

ρkk =
e−βEk

Z
=

e−βEk∑
j e
−βEj

. (2.47)

These matrix element have the same form as in Eq. 2.37, which means that probability

distributions in the thermal state are the same. Therefore, we can identify β as kBT

and finally write the density matrix of a system in thermal equilibrium as

ρ̂ =
exp

(
−βĤ

)
Z

, (2.48)

with the partition function defined as Z = Tr
(
e−βĤ

)
.

2.4.3 Density Matrix of a Bosonic Thermal Bath

This bath model can be used for a bath of photon or phonon gas. Let us consider a

bath of bosons at temperature T , the probability pn, that a certain mode of the field

is excited with n photons is obtained from Boltzmann probability distribution as

pn =
e−EnkBT∑
m e
−Em/kBT

. (2.49)

Here, En = ~ωn
(
n+ 1

2

)
is the quantized energy levels of the bosonic field, and the

1
2

term is called the zero-point (or vacuum) energy. Using the short hand A =

exp
(
− ~ωn
kBT

)
together with the geometric series relation

a+ ar + ar2 + ... =
∞∑
k=0

ark =
a

1− r
for |r| < 1, (2.50)
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we first write the probabilities as pn = An∑
m Am

, and use
∑

mA
m = 1

1−A to write te

probabilities as

pn = (1− A)An =

[
1− exp

(
− ~ωn
kBT

)]
exp

(
−n~ωn
kBT

)
, (2.51)

Therefore, the density matrix for a single-mode thermal filed, which is a mixed state

of number states with the Boltzmann is given by

ρ̂thermal =
∑
n

pn |n〉 〈n| =
[
1− exp

(
− ~ωn
kBT

)]∑
n

exp

(
−n~ωn
kBT

)
|n〉 〈n|

=

[
1− exp

(
− ~ωn
kBT

)]∑
n

exp

(
−~ωnâ†â

kBT

)
|n〉 〈n|

ρ̂thermal =

[
1− exp

(
− ~ωn
kBT

)]
exp

(
−~ωnâ†nân

kBT

)
. (2.52)

This can be put into more compact form as in Eq. 2.48

ρ̂ =
e−β~ωnâ

†â

Tr
(
e−β~ωnâ†â

) .
Another form of the thermal bath density matrix is obtained by first calculating the

average number of photons as

n̄ =
∑
m

mpm = (1− A)
∑
m

mAm = (1− A)A
∂

∂A

∑
m

Am(1− A)A
∂

∂A

(
1

1− A

)
= (1− A)

−A
(1− A)2

=
A

1− A

n̄ =
exp

(
− ~ωn
kBT

)
1− exp

(
− ~ωn
kBT

) =
1

exp
(

~ωn
kBT

)
− 1

. (2.53)

Then, using the probabilities in Eq. 2.49, density matrix of a thermal field is written

as

ρ̂thermal =
∑
n

n̄n

(1 + n̄)n+1
|n〉 〈n| . (2.54)

This can be generalized to multi-mode thermal bath of bosons using the multi-mode

Fock states, |n1
k〉 ⊗ |n2

k〉 ⊗ |n3
k〉 ⊗ · · · ≡ |n1

kn
2
kn

3
k . . . n

l
k . . .〉 ≡

⊗
l |nlk〉 ≡ |{nk}〉, where
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subscript represents a certain multi-mode state, and superscripts are for the individual

modes. Then from the basic definition of density matrix, it is written as

ρ̂multi =
∑
k

pk |{nk}〉 〈{nk}| , (2.55)

where the probability of a certain multi-mode state is just multiplication of the prob-

abilities for individual modes pk = p1
k × p2

k × · · · =
∏

l p
l
k also written as

pk =
∏
l

[
1− exp

(
− ~ωl
kBT

)]
exp

(
−n

k
l ~ωl
kBT

)
. (2.56)

Substituting this Eq. 2.56 in, multi-mode thermal bath density matrix is written as

ρ̂multi =
∑
{nk}

∏
l

[
1− exp

(
− ~ωl
kBT

)]
exp

(
−n

l
k~ωl
kBT

)
|{nk}〉 〈{nk}| , (2.57)

ρ̂multi =
∏
l

e−~ωlâ
†
l âl/kBT

(
1− e−~ωl/kBT

)
. (2.58)

Finally, the average number of excitations for a certain mode is calculated by the sum

of excitation number in a multi-mode state times the probability of that multi-mode

state over all the multi-mode states as

n̄l =
∑
k

nlkpk. (2.59)

We will make use of this density matrix and the average excitation number when we

are tracing out the environment degrees of freedom deriving the MME.

2.5 Derivation of the Markovian Master Equation

This section first summarizes the quantum dynamical semigroup [10, 11, 12, 80, 81, 82]

and then provides the microscopic derivation of master equation in Born-Markov

approximation (MME) using the interaction picture [78, 79, 83, 84]. Finally, by

considering a specific model, harmonic oscillator in a bosonic thermal bath, the MME

is put into Lindblad form [80, 81, 84]. This section is a combination of summaries for

the topics from above references.
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2.5.1 Quantum Dynamical Semigroup

Dynamical semigroup concept is used for classical Markov processes, and the word

”semi” means that the process is irreversible. In other words, one-parameter family

describing the conditional transition probabilities of a Markov process is defined only

for positive time differences τ = t2− t1, where t2>t1. Quantum dynamical semigroup

is the direct generalization of the same ideas to quantum Markov processes used to

describe the open quantum systems (OQS). Using this direct analogy, quantum MME

is written from the classical master equation of a Markov process by replacing the

classical probability distribution with a density matrix as

d

dt
ρ̂(t) = L̂ρ̂(t). (2.60)

Formal solution of the Eq. 2.60 is just Λ(τ)ρ̂(tinitial), where τ ≡ tfinal − tinitial. One-

parameter family of maps {Λ(τ), τ ≥ 0} are used to describe the dynamics of an OQS,

and they satisfy the following properties

• Λ(t1)Λ(t2) = Λ(t1 + t2) - semigroup property (Markovian)

• Tr (Λ(τ)ρ̂(tinitial)) = Tr (ρ̂) - Trace preservation

• Λ(τ)ρ̂(tinitial) ≥ 0 - Positivity (for ρ̂ ≥ 0)

• lim
τ→0

Λ(τ)ρ̂(tinitial) = ρ̂(tinitial) - Continuity

Positivity is replaced by a stronger condition, complete positivity, to properly treat

the entangled states. After this point, I just summarize the quantum dynamical semi-

group technique by writing the MME for a single qubit, but more detail on quantum

dynamical semigroup can be found in Refs. [10, 11, 12, 80, 81, 82]. Considering a

open quantum system associated with a n-dimensional Hilbert space H, completely

positive dynamical map (omitting (tinitial)) is written by a Kraus decomposition as

Λ(τ)ρ̂ =
∑
α

Ŵαρ̂Ŵ
†
α, (2.61)
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where Ŵα are bounded operators on H with
∑

α Ŵ
†
αŴα = 1. Then, using the above

properties of the dynamical mapping together with this decomposition and a complete

basis of orthonormal operators {F̂i, i = 1, · · · , n2} for the Liouville space [85, 86]

corresponding to the considered finite dimensional Ĥ, most general form of L is derived

to be

L̂ρ̂ = −i
[
Ĥ, ρ̂

]
+

n2−1∑
i,j=1

κij

D̂[F̂ ]︷ ︸︸ ︷(
F̂iρ̂F̂

†
j −

1

2
{F̂ †j F̂i, ρ̂}

)
, (2.62)

where Ĥ is Hamiltonian of the system, D̂[F̂ ] is the Lindblad dissipator of the op-

erator F̂ , κij are positive constants to be determined from environment correlations

and system-environment coupling strength, and the identity operator 1 of {F̂i, i =

1, · · · , n2} is discarded in the sum. For a two level with the following Hamiltonian

ĤTLS =
ω

2
σ̂z, (2.63)

basis of the corresponding Liouville space can be {1, σ̂+, σ̂−, σ̂z}, where σ̂’s are Pauli

spin operators. Then, master equation of a two level system is written as

˙̂ρ = − i
~

[
ĤTLS, ρ̂

]
+ κ−D̂[σ̂−] + κ+D̂[σ̂+] + κzD̂[σ̂z], (2.64)

where κ’s are determined by bath correlations, which obey the (Kubo-Martin-Schwinger)

KMS conditions for a thermal bath. Terms in this equation are detailedly discussed

in the subsequent chapter.

2.5.2 Interaction Picture

Until this point we made use of Schrödinger picture, and now interaction is introduced

to be used for the derivation of MME. As the name suggests, interaction picture is

useful when there is interaction such tthat the total Hamiltonian can be split into a

free part Ĥ0 and an interaction part ĤI(t)

Ĥ(t) = Ĥ0 + ĤI(t). (2.65)
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Evolution of a pure state is unitary for a closed system, and it is described by the

unitary-evolution operator Û(t, t0) as

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 with Û(t0, t0) = 1. (2.66)

Using this relation, time evolution of a density matrix is rewritten in terms of unitary

evolution operator as

ρ̂(t) =
∑
j

pj |Ψj, t〉 〈Ψj, t| =
∑
n

pnÛ(t, t0) |Ψj, t0〉 〈Ψj, t0| Û †(t, t0)

= Û(t, t0)ρ̂(t0)Û †(t, t0). (2.67)

Substituting the unitary evolution relation Eq. 2.66 into the Schrödinger equation

Eq. 2.13, we get the equation of motion for unitary evolution operator as

i~
∂

∂t
Û(t, t0) = Ĥ(t)Û(t, t0), (2.68)

which has a solution in terms of a Hamiltonian, that commutes at different times, as

Û(t, t0) = exp

[
1

i~

∫ t

t0

dt
′
Ĥ(t

′
)

]
. (2.69)

Then, by partitioning the Hamiltonian as in Eq. 2.65, the unitary operation is divided

into two parts as

Û(t, t0) =

Û0(t,t0)︷ ︸︸ ︷
exp

[
1

i~
Ĥ0(t− t0)

] ÛI(t,t0)︷ ︸︸ ︷
exp

[
1

i~

∫ t

t0

dt
′
HI(t

′
)

]
,

(2.70)

Now, we are in a position to define the observables and density matrix in the inter-

action picture using expectation value of an observable Ô. Using partitioned unitary

operator, expectation value of an observable Ô(t) is written as

〈Ô(t)〉 ≡ 〈Ô〉t = Tr(Ôρ̂(t)) = tr(ÔÛ(t, t0)ρ̂(t0)Û †(t, t0))

〈Ô〉t = Tr
(
ÔÛ0(t, t0)ÛI(t, t0)ρ̂(t0)Û †I (t, t0)Û †0(t, t0)

)
. (2.71)

t Using the cyclic property of trace that is Tr(ABC) = Tr(BCA) = Tr(CAB), we get

〈Ô〉t = Tr
(
ÔI(t)ρ̂I(t)

)
,
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where ÔI(t) = Û †0(t, t0)ÔÛ0(t, t0) and ρ̂I(t) = ÛI(t, t0)ρ̂(t0)Û †I (t, t0), or alternatively

ρ̂I(t) = Û †0(t, t0)ρ̂(t)Û0(t, t0).

These equations are constructed in a way that at time t = t0 interaction pic-

ture observables and density matrix coincide with the corresponding operators in

Schrödinger picture. Above relations tell that, in the interaction picture, observable

operators are evolved by free Hamiltonian, and density matrix is evolved by interac-

tion Hamiltonian, which can also be obtained by the transformation of Schrödinger

picture density matrix using free evolution unitary operator. It is straightforward to

show that the interaction picture Hamiltonian
˜̂
HI(t), which evolves the interaction

picture states, is obtained from the interaction Hamiltonian by the transformation

ˆ̃H(t) = Û †0(t, t0)Ĥ(t)Û0(t, t0 = Û †0(t, t0)(Ĥ0 +HI(t))Û0(t, t0)

= Û †0(t, t0)Ĥ0Û0(t, t0)︸ ︷︷ ︸
Ĥ0

+ Û †0(t, t0)ĤI(t)Û0(t, t0)︸ ︷︷ ︸
ˆ̃HI(t)

ˆ̃H(t) = Ĥ0 + ˆ̃HI(t). (2.72)

In the third line, free unitary evolution operators had no effect on free Hamiltonian,

because they commute, and the order can be changed to cancel unitary operators.

2.5.3 Master Equation in the Interaction Picture

In Schrödinger picture, we have i~ρ̇(t) =
[
Ĥ, ρ̂(t)

]
for the time evolution a den-

sity matrix, and the density matrix transforms into interaction picture as, ρ̂I(t) =

Û †0(t, t0)ρ̂(t)Û0(t, t0), more explicitly,

ρ̂I(t) = exp(−Ĥ0(t− t0)

i~
)ρ̂(t) exp(

Ĥ0(t− t0)

i~
).

Differentiating the both sides of this relation and substituting the relation for ˙̂ρ to-

gether with the interaction picture Hamiltonian in Eq. 2.72, we obtain the equation
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of motion for the interaction picture density matrix as

˙̂ρI(t) = − 1

i~

[
Ĥ0, ρ̂I(t)

]
+

1
i~ [Û†0 Ĥ(t)Û0,Û0ρ̂Û

†
0 ]= 1

i~

[
ˆ̃H(t),ρ̂I(t)

]︷ ︸︸ ︷
exp(−Ĥ0(t− t0)

i~
)
∂ρ̂(t)

∂t
exp(

Ĥ0(t− t0)

i~
)

=
1

i~

[
H̃(t)− Ĥ0, ρ̂I(t)

]
=

1

i~

[
ˆ̃HI(t), ρ̂I(t)

]
(2.73)

From this equation, we will obtain the master equation by a direct (formal) integration

and substitute it back to get

ρ̂I(t) = ρ̂I(0) +
1

i~

∫ t

0

[
ˆ̃HI(t

′
), ρ̂I(t

′
)
]
dt
′
, (2.74)

˙̂ρI(t) =
1

i~

[
ˆ̃HI(t), ρ̂I(0)

]
− 1

~2

∫ t

0

[
ˆ̃HI(t),

[
ˆ̃HI(t

′
), ρ̂I(t

′
)
]]
dt
′
. (2.75)

In addition to the approach that we follow to derive the MME here, time-dependent

perturbation by means of Dyson series (essentially the same with our method but

with a subtle difference), projection operators approach, and other methods are also

used [87, 88, 89, 90].

Now, consider that ρ̂I(t) represents the state of a system S plus an environment

R composite, and we are interested in the subsystem S. Then, we obtain the density

matrix of subsystem ρ̂SI
(t) by tracing over environment degrees of freedom as

˙̂ρSI
(t) =

1

i~
TrR

[
ˆ̃HI(t), ρ̂I(0)

]
− 1

~2

∫ t

0

TrR

[
ˆ̃HI(t),

[
ˆ̃HI(t

′
), ρ̂I(t

′
)
]]
dt
′
. (2.76)

After this point, we will make a set of assumptions to simplify the master equation.

First, we will assume that
[

ˆ̃HI(t), ρ̂I(0)
]

= 0, which may not be considered as an

approximation, since it could explicitly be included in the derivation by removing

a term from interaction Hamiltonian and adding it to system Hamiltonian. Second

assumption is the Born approximation, which depends on the coupling between system

and environment being weak so that no further correlation is build up between S and R

other than the initial correlations, and the environment density matrix is practically

not affected by the interactions, i.e. stays the same over time. This assumption

enables us to factorize the density matrix ρI(0) at t = 0 and ρI(t) at any later time,
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if it is initially separable as

ρ̂I(0) = ρ̂SI
(0)R̂0, (2.77)

ρ̂I(t) = ρ̂SI
(t)R̂0, (2.78)

where R̂0 is the density matrix of the environment, which does not change over time

scales of observation. Last assumption, namely Markov approximation, is to reduce

the master equation into a true (time-local) differential equation. Assumption is that

the correlation functions of the environment vary at a time scale much shorter than the

characteristic time of the dynamics of S. In other words, environment memory time is

much shorter than system response time. With this assumption, time-nonlocal part

of density matrix is removed by the replacement ρSI
(t
′
) → ρSI

(t). Then, we finally

obtain the master equation in Born-Markov approximation as

˙̂ρSI
(t) = − 1

~2

∫ t

0

TrR

[
ˆ̃HI(t),

[
ˆ̃HI(t

′
), ρ̂SI

(t)R0

]]
dt
′
. (2.79)

2.5.4 Lindblad Form

Despite being derived with critical assumptions, Eq. 2.79 has a rather general form,

and it is applicable for many systems, since it makes no assumptions on the type

of system-environment interaction. In this part, starting from the master equation

only in Born approximation, that is Eq. 2.76 without the commutator and with a

separable ρ̂I(t), we first make us of a specific model to further simplify the form of

master equation, and then we will put it into Lindblad form.

Before continuing with the derivation, a digression to motivate all these long cal-

culations seems appropriate here. For a single quantum system, deriving the master

equation with all these details is useful to ease the derivation of MME for composite

interacting quantum systems. Details on this are presented in the subsequent chap-

ters, but we highlight the key points, which give useful insights and intuitions for the

derivation of composite system MMEs, along with the derivation.



Chapter 2: Background 25

A Specific Form of Interaction

Before focusing on our specific model, let us first assume an interaction Hamiltonian

of the form

ĤI = ~
∑
i

ŝiΓ̂i, (2.80)

where ŝi are system, and Γ̂i are environment operators. Then, the master equation

in Born approximation is obtained by transforming the interaction Hamiltonian into

interaction picture and substituting it into Eq. 2.76 as

ˆ̃HI(t) = ~
∑
i

e(i/~)(ĤS+HR)tŝiΓ̂ie
−(i/~)(ĤS+HR)t

= ~
∑
i

ˆ̃si(t)︷ ︸︸ ︷(
e(i/~)(ĤS+HR)tŝie

−(i/~)(ĤS+HR)t
) ˆ̃Γi(t)︷ ︸︸ ︷(

e(i/~)(ĤS+HR)tΓ̂ie
−(i/~)(ĤS+HR)t

)
,

˙̂ρSI
(t) = −

∑
i,j

∫ t

0

TrR

[
ˆ̃si(t)

ˆ̃Γi(t),
[
ˆ̃sj(t

′
)ˆ̃Γj(t

′
), ρ̂SI

(t
′
)R0

]]
dt
′

= −
∑
i,j

∫ t

0

dt
′
{(

ˆ̃si(t)ˆ̃sj(t
′
)ρ̂SI

(t
′
)− ˆ̃sj(t

′
)ρ̂SI

(t
′
)ˆ̃si(t)

)
〈ˆ̃Γi(t)ˆ̃Γj(t

′
)〉R

+
(
ρ̂SI

(t
′
)ˆ̃sj(t

′
)ˆ̃si(t)− ˆ̃si(t)ρ̂SI

(t
′
)ˆ̃sj(t

′
)
)
〈ˆ̃Γj(t

′
)ˆ̃Γi(t)〉R

}
, (2.81)

where we have used the cyclic property of trace, and the correlation functions are

given as

• 〈ˆ̃Γi(t)ˆ̃Γj(t
′
)〉R = TrR

[
R0

ˆ̃Γi(t)
ˆ̃Γj(t

′
)
]
,

• 〈ˆ̃Γj(t
′
)ˆ̃Γi(t)〉R = TrR

[
R0

ˆ̃Γj(t
′
)ˆ̃Γi(t))

]
.

A Harmonic Oscillator in a Bath of Bosons

Now, we will make us of the above approach for a harmonic oscillator in a bosonic

thermal bath for which the Hamiltonian is

Ĥ = ĤS + ĤR + ĤI,
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where free system Hamiltonians are respectively given for the system and bath as

ĤS = ~ωâ†â, (2.82)

ĤR =
∑
j

~ωj b̂†j b̂j, (2.83)

and the interaction between them are given as ĤI =
∑

j ~gj
(
â†b̂j + âb̂†j

)
. Here, â and

â† are respectively bosonic annihilation and creation operators of the Harmonic oscil-

lator system, and they obey the commutation relation
[
â, â†

]
= 1. These operators

for the bosonic bath are respectively b̂ and b̂†. Finally, ω and ωj are the frequencies

of Harmonic oscillator system and jth mode of the bosonic bath, respectively.

Our interaction Hamiltonian includes two pairs of operators, so the summation

index i in Eq. 2.80 runs from 1 to 2. Therefore, when the summation in Eq. 2.81

is distributed explicitly into the integral, there appear 8 terms in parentheses of

environmental correlations, but only 4 of them would have non-vanishing correlations.

In order to explicitly calculate them, let us first identify the related operators and

transform them into interaction picture, and then let us write the full form of master

equation. First, we identify the operators as

ŝ1 = â and Γ̂1 = Γ̂† ≡
∑
j

gjb
†
j,

ŝ2 = â† and Γ̂2 = Γ̂ ≡
∑
j

gjbj.

Then, transform the operators into interaction picture,

ˆ̃s1(t) = eiω0â†âtâe−iω0â†ât = âe−iω0t, (2.84)

ˆ̃s2(t) = eiω0â†âtâ†e−iω0â†ât = â†eiω0t, (2.85)

ˆ̃Γ1(t) = ˆ̃Γ†(t) = exp

(
i
∑
n

ωnb̂
†
nb̂nt

)(∑
j

gj b̂
†
j

)
exp

(
−i
∑
m

ωnb̂
†
mb̂mt

)
=

∑
j

gj b̂
†
je
iωjt, (2.86)

ˆ̃Γ2(t) = ˆ̃Γ(t) = exp

(
i
∑
n

ωnb̂
†
nb̂nt

)(∑
j

gj b̂j

)
exp

(
−i
∑
m

ωnb̂
†
mb̂mt

)
=

∑
j

gj b̂je
−iωjt, (2.87)
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where we used the fact that operators of different environment oscillators commute.

One of the most useful point in this derivation is the identification of interaction

picture coupling operators Eq. 2.84 and 2.85. Importance of this identification is

apparent in the end result, and we emphasize its importance there.

Finally, by substituting the Eq. 2.84 - 2.87 in Eq. 2.81, we obtain the master

equation as

˙̂ρSI
(t) = −

∫ t

0

dt
′
{(

ââρ̂SI
(t
′
)− âρ̂SI

(t
′
)â
)
e−iω0(t+t

′
) 〈ˆ̃Γ†(t)ˆ̃Γ†(t

′
)〉R

+
(
ρ̂SI

(t
′
)ââ− âρ̂SI

(t
′
)â
)
e−iω0(t+t

′
) 〈ˆ̃Γ†(t′)ˆ̃Γ†(t)〉R

+
(
ââ†ρ̂SI

(t
′
)− â†ρ̂SI

(t
′
)â
)
e−iω0(t−t′ ) 〈ˆ̃Γ†(t)ˆ̃Γ(t

′
)〉R

+
(
ρ̂SI

(t
′
)â†â− âρ̂SI

(t
′
)â†
)
e−iω0(t−t′ ) 〈ˆ̃Γ(t

′
)ˆ̃Γ†(t)〉R

+
(
â†âρ̂SI

(t
′
)− âρ̂SI

(t
′
)â†
)
eiω0(t−t′ ) 〈ˆ̃Γ(t)ˆ̃Γ†(t

′
)〉R

+
(
ρ̂SI

(t
′
)ââ† − â†ρ̂SI

(t
′
)â
)
eiω0(t−t′ ) 〈ˆ̃Γ†(t′)ˆ̃Γ(t)〉R

+
(
â†â†ρ̂SI

(t
′
)− â†ρ̂SI

(t
′
)â†
)
eiω0(t+t

′
) 〈ˆ̃Γ(t)ˆ̃Γ(t

′
)〉R

+
(
ρ̂SI

(t
′
)â†â† − â†ρ̂SI

(t
′
)â†
)
eiω0(t+t

′
) 〈ˆ̃Γ(t

′
)ˆ̃Γ(t)〉R ,

}
, (2.88)

where four distinct correlation functions are

• 〈ˆ̃Γ†(t)ˆ̃Γ†(t
′
)〉R =

∑
j,k gjgke

iωjteiωkt
′
TrR

(
R0b̂

†
j b̂
†
k

)
,

• 〈ˆ̃Γ(t)ˆ̃Γ(t
′
)〉R =

∑
j,k gjgke

−iωjte−iωkt
′
TrR

(
R0b̂j b̂k

)
,

• 〈ˆ̃Γ†(t)ˆ̃Γ(t
′
)〉R =

∑
j,k gjgke

iωjte−iωkt
′
TrR

(
R0b̂

†
j b̂k

)
,

• 〈ˆ̃Γ(t)ˆ̃Γ†(t
′
)〉R =

∑
j,k gjgke

−iωjteiωkt
′
TrR

(
R0b̂j b̂

†
k

)
.

First two of these correlations are zero, and they eliminate the first and last two terms

in the master equation Eq.2.88. They (two are given below the others are calculated
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similarly) are calculated using multi-mode Fock states as

TrR

(
R̂0b̂

†
j b̂
†
k

)
=

∑
i

〈{ni}|R̂0b̂
†
j b̂
†
k|{ni}〉 =

∑
i

〈{ni}|R̂0

√
nji + 1

√
nki + 1|{ni}k+1,j+1〉

=
∑
i

√
(nji + 1)(nki + 1) 〈{ni}|

∏
I

e−~ωIb̂
†
I b̂I/kBT

(1− e−~ωl/kBT )−1
|{ni}k+1,j+1〉

=
∑
i

∏
I

e−~ωIn
i,k+1,j+1
l /kBT

(1− e−~ωI/kBT )−1

√
(nji + 1)(nki + 1) 〈{ni}|{ni}k+1,j+1〉︸ ︷︷ ︸

=0

= 0,

=⇒ 〈ˆ̃Γ†(t)ˆ̃Γ†(t
′
)〉R = 0, (2.89)

where we used the orthogonality of multi-mode Fock states. Also, orthogonality of

multi-mode states is used in a way that superscripts read the modified mode of the

certain state |{ni}〉, and +/− means excitation number is increased/decreased.

Other correlations are related to the average excitation number of the bath and

are calculated as

TrR

(
R̂0b̂

†
j b̂k

)
=

∑
i

〈{ni}|R̂0b̂
†
j b̂k|{ni}〉 =

∑
i

〈{ni}|R̂0

√
nji

√
nki |{ni}k−1,j+1〉

=
∑
i

√
njin

k
i 〈{ni}|

∏
I

e−~ωIb̂
†
I b̂I/kBT

(1− e−~ωI/kBT )−1
|{ni}k−1,j+1〉

=
∑
i

∏
I

e−~ωln
i,k−1,j+1
I /kBT

(1− e−~ωI/kBT )−1︸ ︷︷ ︸
pi,k−1,j+1

∑
i

√
njin

k
i 〈{ni}|{ni}k−1,j+1〉︸ ︷︷ ︸

=δj,k

,

=⇒ TrR

(
R̂0b̂

†
j b̂k

)
= δj,ke

−~ωj/kBT e−~ωk/kBT
∑
i

njipi = δj,kn̄
j. (2.90)

In above calculation, the exponential part is due to probability correction, and Kro-

necker delta is deliberately kept, since there is a further sum on j and k. Finally, the

correlation function becomes

〈ˆ̃Γ†(t)ˆ̃Γ(t
′
)〉R =

∑
j,k

gjgke
iωjte−iωkt

′

δj,kn̄
j =

∑
j

|gj|2 eiωj(t−t
′
)n̄(ωj, T ).
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Similarly, the others are calculated as

〈ˆ̃Γ(t)ˆ̃Γ(t
′
)〉R = 0, (2.91)

〈ˆ̃Γ†(t′)ˆ̃Γ(t)〉R =
∑
j

|gj|2 e−iωj(t−t
′
)n̄(ωj, T ), (2.92)

〈ˆ̃Γ(t)ˆ̃Γ†(t
′
)〉R =

∑
j

|gj|2 e−iωj(t−t
′
) [n̄(ωj, T ) + 1] , (2.93)

〈ˆ̃Γ(t
′
)ˆ̃Γ†(t)〉R =

∑
j

|gj|2 eiωj(t−t
′
) [n̄(ωj, T ) + 1] . (2.94)

The non-vanishing environment correlation functions still involve a summation over

the modes. Since there are infinite number of modes, sum is changed to an integral

by introducing the density of states g(ω) such that g(ω)dω is the number of modes

with frequencies in the interval ω to ω+ dω. Then, defining t− t′ ≡ τ , non-vanishing

correlations are written as

〈ˆ̃Γ†(t)ˆ̃Γ(t− τ)〉R =

∫ ∞
0

dωeiωτg(ω) |gw|2 n̄(ω, T ), (2.95)

〈ˆ̃Γ(t− τ)ˆ̃Γ†(t)〉R =

∫ ∞
0

dωeiωτg(ω) |gw|2 [n̄(ω, T ) + 1], (2.96)

〈ˆ̃Γ(t)ˆ̃Γ†(t− τ)〉R =

∫ ∞
0

dωe−iωτg(ω) |gw|2 [n̄(ω, T ) + 1], (2.97)

〈ˆ̃Γ†(t− τ)ˆ̃Γ(t)〉R =

∫ ∞
0

dωe−iωτg(ω) |gw|2 n̄(ω, T ). (2.98)

Then, the master equation in Born approximation with non-vanishing correlations is

˙̂ρSI
(t) = −

∫ t

0

dτ

{(
ââ†ρ̂SI

(t− τ)− â†ρ̂SI
(t− τ)â

)
e−iω0τ 〈ˆ̃Γ†(t)ˆ̃Γ(t− τ)〉

+
(
ρ̂SI

(t− τ)â†â− âρ̂SI
(t− τ)â†

)
e−iω0τ 〈ˆ̃Γ(t− τ)ˆ̃Γ†(t)〉

+
(
â†âρ̂SI

(t− τ)− âρ̂SI
(t− τ)â†

)
eiω0τ 〈ˆ̃Γ(t)ˆ̃Γ†(t− τ)〉

+
(
ρ̂SI

(t− τ)ââ† − â†ρ̂SI
(t− τ)â

)
eiω0τ 〈ˆ̃Γ†(t− τ)ˆ̃Γ(t)〉

}
. (2.99)

Markov Approximation

With out any detailed discussion on time scales, stating that if τ is in the order of

environment memory time, Markov approximation, which is to assume that t >> τ ,
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will be the replacement of ρ̂SI
(t − τ) → ρ̂SI

(t) and the extension of τ integration

to infinity as the limit t → ∞. With these replacements, master equation in Born-

Markov approximation is written in a more compact form as

˙̂ρSI
= κ1(âρ̂SI

â† − â†âρ̂SI
− ρ̂SI

ââ† + â†ρ̂SI
â) + κ∗1(â†ρ̂SI

â− ââ†ρ̂SI
− ρ̂SI

â†â+ âρ̂SI
â†)

+κ2(âρ̂SI
â† − â†âρ̂SI

) + κ∗2(âρ̂SI
â† − ρ̂SI

â†â), (2.100)

where the coefficient are given as,

κ1 = lim
t→∞

∫ t

0

dτ

∫ ∞
0

dωe−i(ω−ω0)τg(ω) |gω|2 , (2.101)

κ2 = lim
t→∞

∫ t

0

dτ

∫ ∞
0

dωe−i(ω−ω0)τg(ω) |gω|2 n̄(ω, T ). (2.102)

These integrals are easier to carry, if time integral is taken first. Then, with the use

of Cauchy principal value of an improper integral and residue theorem, these factors

are found to be

κ1 = πg(ω0) |gω0|
2 + i∆ ≡ κ

2
+ i∆, (2.103)

κ2 = πg(ω0) |gω0|
2 n̄(ω, T ) + i∆

′ ≡ κ

2
n̄+ i∆

′
, (2.104)

where we defined

∆ ≡ P

∫ ∞
0

dω
g(ω) |gω|2

ω0 − ω
, (2.105)

∆
′ ≡ P

∫ ∞
0

dω
g(ω) |gω|2

ω0 − ω
n̄(ω, T ). (2.106)

Substituting these in and reorganizing the master equation Eq. 2.100, we get

˙̂ρSI
= −i∆

[
â†â, ρS

]
+

κ

2
(2âρ̂SI

â† − â†âρ̂SI
− ρ̂SI

â†â)

+ κn̄(âρ̂SI
â† + â†ρ̂SI

â− â†âρ̂SI
− ρ̂SI

ââ†). (2.107)

Lindblad Form

The density matrix in Eq. 2.107 is still in the interaction picture, and it is transformed

into the Schrödinger picture as

ρ̂SI
= e(i/~)ĤStρ̂S(t)e−(i/~)ĤSt. (2.108)
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Then, its time derivative is written as

˙̂ρSI
=

1

i~

[
ĤS, ρ̂S

]
+ e(i/~)ĤSt ˙̂ρS(t)e−(i/~)ĤSt. (2.109)

Substituting the Eq. 2.108 and 2.109 into the Eq. 2.107 and reorganizing it to leave

only ˙̂ρS on the left hand side, each right hand term gets multiplied by unitary operators

from both sides. Commutator relation would not be effected by that, and the other

operators transform as

e−(i/~)ĤStâρ̂SI
â†e(i/~)ĤSt = e−(i/~)ĤStâ

(
e(i/~)ĤStρ̂Se

−(i/~)ĤSt
)
â†e(i/~)ĤSt

=
(
e−(i/~)ĤStâe(i/~)ĤSt

)
ρ̂S

(
e−(i/~)ĤStâ†e(i/~)ĤSt

)
= âρ̂Sâ

†. (2.110)

Finally, the master equation in Born-Markov approximation becomes

˙̂ρS = −iω′0
[
â†â, ρS

]
+

κ

2
(2âρ̂Sâ

† − â†âρ̂S − ρ̂Sâ
†â)

+ κn̄(âρ̂Sâ
† + â†ρ̂Sâ− â†âρ̂S − ρ̂Sââ

†). (2.111)

where ω
′
0 ≡ ω0 + ∆ is the shifted energy level due to system-environment coupling,

called Lamb shift. Finally, it will be put into Lindblad form by using the commutation

relation of harmonic oscillator creation and annihilation operators. Also, neglecting

the energy shift, it is written as

˙̂ρS = − i
~

[
ĤS, ρS

]
+
κ

2
(n̄+1)(2âρ̂Sâ

†− â†âρ̂S− ρ̂Sâ
†â)+

κ

2
n̄(2â†ρ̂Sâ− ââ†ρ̂S− ρ̂Sââ

†).

(2.112)

This form is important mainly because of two points. First is the meaning of each

term on the right-hand side. Unitary evolution Eq. 2.22 of the system-environment

composite is reduced to the unitary evolution of the system plus the second and third

terms both of which have dephasing effects while the latter de-excites and the former

excites the system. They reflect the environmental effects on the open system, and

their role is demonstrated in the next chapter using the single qubit case.

The second and more important point is better explained by writing the MME
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Eq. 2.112 in a more compact form with Lindblad dissipator, defined in Eq. 2.62,

˙̂ρS = − i
~

[
ĤS, ρS

]
+ κ(n̄+ 1)(D̂[â]) + κn̄(D̂[â†]), (2.113)

where Lindblad dissipator are respectively written using the operators in Eq. 2.84 and 2.85,

and the average excitation number n̄ is calculated using the frequency of their phase

in Eq. 2.84 and 2.85. Since, they are not used at any other point in the derivation, if

we identify the interaction picture coupling operators of a composite system by dress-

ing it, we trivially write the MME using those operators as above with coefficients

(1 + n̄) and n̄ for negative and positive phases, respectively. Deriving the MME of

a composite system, an additional approximation is used in some cases, called the

secular approximation. All these are detailedly discussed in the subsequent chapters.

2.6 Quantum Thermodynamics

In this section, we briefly introduce the quantum counter-parts of classical thermo-

dynamical laws and definitions. We do not detailedly discuss them, but more details

are presented in many works [91, 90, 92, 93, 94, 95]. Zeroth law of thermodynamics

is about the transitivity of thermal equilibrium and enables the definition of temper-

ature. In quantum thermodynamics, it is imposed by the requirement of no energy

flow between subsystems in thermal equilibrium, which is equivalent to tensor product

state of subsystems satisfy the KMS condition. First law is again on the conserva-

tion of energy, which requires definitions of heat and work. These are defined for a

quantum system by writing the expectation value of its Hamiltonian as

〈Ĥ〉 = constant = Tr
[
ρ̂Ĥ
]
, (2.114)

and imposing that its time derivative should be constant

d

dt
〈Ĥ〉 = Tr

[
˙̂ρĤ
]

︸ ︷︷ ︸
J

+ Tr
[
ρ̂

˙̂
H
]

︸ ︷︷ ︸
W

, (2.115)
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where J and W are respectively defined as heat and work. With these definitions at

hand, finally we define second law, which is about the direction of heat flow, as

dS(ρ̂)

dt
−

N∑
i=1

Ji(t)
Ti
≥ 0, (2.116)

which impose that sum of all the steady state (entropy is maximized, so Ṡ = 0) heat

currents to the system should be zero. This form of second law also satisfy the heat

current direction, which is always from hot to cold.

2.7 non-Markovian Techniques

We will not make use of non-Markovian techniques in this thesis, but we present

a short discussion on the implications of non-Markovianity on the quantum ther-

mal diode. Therefore, very short review together with some key references on non-

Markovian master equations is presented here. MME is derived by considering a

weak system-environment coupling, and non-Markovian approach is adopted, if the

system is not weakly coupled to its environment. An exact solution would be non-

Markovian, and there are techniques to carry non-Markovian analysis without exactly

solving it. Two extensive reviews on non-Markovian dynamics are Refs. [96, 97],

and a very short list of non-Markovian methods is: (i) perturbative approaches, like

time-convolutionless (TCL), Nakajima-Zwanzig time-nonlocal ME [98], (ii) a non-

perturbative method [99], (iii) method of correlated projection superoperators [100],

(iv) dynamics using time-evolving matrix product operators [101], and (v) Quantum-

trajectory approach [102]. Among many works on non-Markovian ME’s, particularly

important ones for quantum thermal diode analysis are Refs. [103, 104] for two inter-

acting qubits and Refs. [105, 106, 107] for a single qubit.



Chapter 3

APPLICATION AND NUMERICAL IMPLEMENTATION

OF MARKOVIAN MASTER EQUATION

In this chapter, MME is analyzed using two different cases of a single two-level

system (qubit), as shown in Fig. 3.1, to better understand its structure and to exem-

plify the numerical implementation method. The first case is a qubit coupled with

a single thermal bath, which demonstrates the thermalization process and is shown

in Fig. 3.1 (a). Second case is with two thermal baths at different temperatures, as

shown in Fig. 3.1 (b), and it is a good example to introduce steady state heat currents.

3.1 Two-Level System Thermalization

In this part, we consider the case depicted in Fig. 3.1 (a). MME for a two level system

(qubit) is obtained by mathematical means in Eq. 2.64 with some undetermined

coefficients, κ+, κ−, κz. After deriving the MME for a harmonic oscillator Eq. 2.113,

we claimed that the coefficients are determined by the interaction picture operators

with which the system couples to the environment. Qubit-bosonic field interaction

Hamiltonian obtained in rotating wave approximation is called as Jaynes-Cummings

model [108] and is given by

ĤI = ~g(σ̂+ ⊗ â+ σ̂− ⊗ â†), (3.1)

where g is the qubit-field coupling strength. By a straight transformation of the

coupling operators σ̂− and σ̂+ to interaction picture, we would see that the coefficients

κ− and κ+ should respectively be κL(1 + n̄L) and κLn̄L, if our claim is true. Here, the

constant κL is determined by the qubit-environment coupling strength g. In order to
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Figure 3.1: Two Level System (Qubit) Cases. (a) Qubit with a transition fre-

quency ω is couple to a thermal bath at temperature TL with a rate κL. (b) It is also

coupled to a second thermal at temperature TR with a rate κR.

demonstrate that these are indeed the correct coefficients, we use the fact that qubit

has to equilibrate with its environment at temperature TL. Before doing that, we first

describe the qubit system more detailedly and then show that the term with κz in

Eq. 2.64 is a pure-dephasing term, which is energy conserving.

3.1.1 System Description

In all the below qubit thermalization calculations, we use the matrix representation

of density matrix, and we calculate the dynamical evolution of the matrix elements.

Since we look for a thermal qubit at the end, it is better to use energy basis for which

the eigenenergy probabilities, in this case, diagonal elements, have to satisfy the Gibbs

distribution of temperature TL. We start by defining the ground and excited states
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of the qubit, respectively, as follows

|e〉 =

1

0

 , and |g〉 =

0

1

 ,

with their respective eigenenergies as Ee = 1
2
~ω and Eg = −1

2
~ω. Then, creation and

annihilation operators are defined as

σ̂− ≡ |g〉 〈e| =

0

1

(1 0
)

=

0 0

1 0

 ,

σ̂+ ≡ |e〉 〈g| =

1

0

(0 1
)

=

0 1

0 0

 .

Using these, we write the matrix representations of the other Pauli spin operators in

the chosen basis as

σ̂z = σ̂+σ̂+ − σ̂−σ̂+ =

1 0

0 −1

 , (3.2)

σ̂y = i(σ̂− − σ̂+) =

0 −i

i 0

 , (3.3)

σ̂x = σ̂+ + σ̂− =

0 1

1 0

 , (3.4)

Finally, we write a pure qubit state as the super-position of energy eigenstates as

|Ψ〉 = Ce |e〉+ Cg |g〉 ,

where Ce and Cg are complex numbers such that |Ce|2+|Cg|2 = 1. Then, the elements

of this density matrix is calculated as follows

ρ̂Ψ = |Ψ〉 〈Ψ| =


ρee = 〈e|ρ̂|e〉 = |Ce|2 ρeg = 〈e|ρ̂|g〉 = CeC

∗
g

ρge = 〈g|ρ̂|e〉 = CgC
∗
e ρgg = 〈g|ρ̂|g〉 = |Cg|2

 .

As mentioned earlier and is seen from above equation, diagonal elements of the den-

sity matrix are the corresponding populations, and off-diagonal elements, called co-

herences, contain phase information of the state. What an environment cause is
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the erasion of this phase information, which is called as de-phasing, and change the

pure state to a mixed with populations satisfying the probabilities imposed by the

environment temperature (for the thermalization case).

3.1.2 Pure Dephasing Term

Qubit MME Eq. 2.64 contains the term κzD̂[σ̂z], which is an energy conserving pure

dephasing. This means that it has no effect on populations of the density matrix

written in energy basis, and it only erases the coherences. Such terms are easily

identified by the commutation of the operator in Lindblad dissipators, σ̂z in this

case, and the system Hamiltonian, ~
2
ωσ̂z in this case, being zero. In other words, if

an operator Ô commutes with the Hamiltonian Ĥ, meaning
[
Ĥ, Ô

]
= 0, then the

Lindblad dissipator D̂[Ô] only dephases the system. Now, we show that this is indeed

the case by writing the dissipator explicitly in the matrix form as

D̂[σ̂z] = σ̂zρ̂σ̂z −
1

2
(

1︷︸︸︷
σ̂zσ̂z ρ̂+ ρ̂

1︷︸︸︷
σ̂zσ̂z)

=

1 0

0 −1

ρee ρeg

ρge ρgg

1 0

0 −1

−
ρee ρeg

ρge ρgg


=

 ρee −ρeg
−ρge ρgg

−
ρee ρeg

ρge ρgg


= −2

 0 ρeg

ρge 0

 . (3.5)

On the left hand side of the MME Eq. 2.64, we haveρ̇ee ρ̇eg

ρ̇ge ρ̇gg

 ,

then we see that the Eq. 3.5 contributes only to the equations of motion for the

coherences, and it is given as

ρ̇eg = f(ρ̂)− 2κzρeg,

ρ̇ge = g(ρ̂)− 2κzρge,
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where f(ρ̂) and g(ρ̂) represent the terms due to other parts of the right hand side

of MME, which are examined in the subsequent section. Here, it is obvious that the

term D̂[σ̂z] brings a damping term into the coherence equation of motions.

3.1.3 Population Dynamics

Here, effects of the remaining terms in MME are shown by calculating each individual

parts of the terms in their matrix form. An example of such calculation for the first

term in D̂[σ̂−] is as follows

σ̂−ρ̂σ̂+ =

0 0

1 0

ρee ρeg

ρge ρgg

0 1

0 0

 =

0 0

0 ρee

 .

After calculating all such parts of the terms and combining them all, effects of the

terms are obtained as

−i
[
ĤTLS, ρ̂

]
= −iω

 0 −ρeg
ρge 0

 , (3.6)

κ−D̂[σ̂−] = κ−(2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) = κ−

−2ρee −ρeg
−ρge 2ρee

 , (3.7)

κ+D̂[σ̂+] = κ+(2σ̂+ρ̂σ̂− − σ̂−σ̂+ρ̂− ρ̂σ̂−σ̂+) = κ+

2ρgg −ρeg
−ρge −2ρgg

 , (3.8)

where, also in the rest of the thesis, we take ~ = kB = 1. One remark here is that

all the right hand side terms Eq. 3.5 - 3.8 have zero trace, and the populations are

uncoupled from the coherences. Therefore, each term, so does their sum, is trace

preserving, which means sum of the diagonal terms remains the same. It is obviously

seen and also well-known that the unitary part Eq. 3.6 brings an oscillatory behavior

to the coherences. The other two terms Eqns 3.7 and 3.8, on the other hand, gives

population equations of motion as

ρ̇ee = −2κ−ρee + 2κ+ρgg, (3.9)

ρ̇gg = 2κ−ρee − 2κ+ρgg. (3.10)
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Since the dynamical mapping is completely positive and trace preserving, probabilities

are conserved, meaning ρgg + ρee = 1. This can be used to easily uncouple and solve

the differential equations in Eq. 3.9 and 3.10. However, we are interested in their

steady state solutions, which are obtained again using the condition ρgg + ρee = 1

with ρ̇ee = ρ̇gg = 0 and are given as

ρss
ee =

κ+

κ+ + κ−
,

ρss
gg =

κ−
κ+ + κ−

.

Imposing that the qubit have to thermalize at the temperature TL, we write their

ratio, which have to satisfy Gibbs distribution, as

ρss
ee

ρss
gg

=
κ+

κ−
= e(Eg−Ee)/TL = e−ω/TL ,

which is also know as detailed balance. Again with the use of ρgg + ρee = 1, we

easily find that ρss
ee = cn̄L and ρss

ee = c(1 + n̄L), where c is a constant required for

normalization. Then, using these we find the rates as κ+ = κLn̄L and κ+ = κL(1 +

n̄L), which agrees with our claim, and we drop the subscript L after this point.

So far, we show that the unitary part and the last term of Eq. 2.64 are energy

conserving terms and have no effect on population dynamics, and the other terms of

right hand side of Eq. 2.64 determine the population dynamics. Therefore, we write

MME by ignoring the energy conserving terms and keeping the other terms with their

determined coefficients as

˙̂ρ = κ(1+ n̄)D̂[σ̂−]+κn̄D̂[σ̂+] =

−κ(1 + n̄)ρee + κn̄ρgg −1
2
κ(1 + 2n̄)ρeg

−1
2
κ(1 + 2n̄)ρge −κ(1 + n̄)ρee + κn̄ρgg

 .

(3.11)

Now, we further investigate these terms, and their effects are best understood by

considering them individually. For example, if the only right hand side term of MME

was κ(1 + n̄)D̂[σ̂−] term, it would read asρ̇ee ρ̇eg

ρ̇ge ρ̇gg

 =
κ

2
(n̄+ 1)

−2ρee −ρeg
−2ρge 2ρee

 .
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It is quite obvious here that the excited stated population is decreasing while the

ground state is getting populated with the same rate. Also, it is obvious that the

coherences die, since their rate is proportional to the negative of them. In short, this

term de-excites and de-phases the system. Similar approach to κ(n̄)D̂[σ̂+] term is

used to understand its effects. Starting with the assumption that only right hand

side term was κ(n̄)D̂[σ̂+], master equation would readρ̇ee ρ̇eg

ρ̇ge ρ̇gg

 =
κ

2
n̄

 2ρgg −ρeg
−2ρge −2ρg

 .

We here see that this term does exact opposite of the κ(1 + n̄)D̂[σ̂−] term to the

populations, which means it populates excited states. However, the coherences again

dies away. In short, this term excites and de-phases the system.

To sum up, D̂[σ̂−] and D̂[σ̂+] respectively de-excites and excites the system, while

both of them erase the coherences. Their coefficients (1 + n̄) and n̄ determines a

balance between the de-excitation and excitation processes, which is also known as

detailed balance. Combined effect of all the terms on coherences is that they die away

(gets damped) with an oscillatory behavior (under damping).

3.1.4 Solving the Equations of Motion

In the previous part, we obtained equations of motion for each density matrix element,

and we can easily solve the equations of motion by straightforward decoupling. Even

though the process to obtain equations of motions and solving them is straightforward

algebra, it is a rather long one even for such a small system, whose matrix is just two-

by-two. Therefore, other approaches, either numerical or analytical, are required for

bigger systems, especially for the ones, like a harmonic oscillator, with an infinite

number of density matrix elements.

One of the analytical approaches is to obtain the equations of motion for the

expectation values of the relevant observables, which is discussed and demonstrated

in the next section. For a system of coupled first order ordinary differential equations,

we already introduce a method in the Sec. 2.2.2, and we show in above analysis that
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density matrix elements make up such a system. Only difference here is that, instead

of the variable vector X and coefficient matrix M , we here respectively have the

density matrix ρ̂ and the Liouville super-operator (Liouvillian) L̂.

The Liouvillian L̂ and the density matrix ρ̂ become respectively a matrix and

vector in the Liouville (super)space [85, 86] corresponding to the system Hilbert space

Ĥ. This transformation is known as vectorization (vecing or flattening) of the density

matrix [109, 110, 111, 112], and its derivation starts by projecting the master equation

into the basis used to write the density matrix, which is energy basis in our case. The

detailed calculations and explanations about the vecing are given the Refs. [109, 110,

111, 112].

We here describe the vectorization method by considering an n-dimensional Hilbert

space H and apply it to the two level system example. In the method, we first flatten

the n× n density matrix ρ̂ to an n2 vector ~ρ by moving columns of the ρ̂ below each

other as

ρ̂ =



ρ11 · · · ρ1n

...
. . .

...

ρk1 · · · ρkn
...

. . .
...

ρn1 . . . ρnn


=⇒ ~ρ =



ρ11

...

ρ1n

...

ρk1

...

ρkn
...

ρn1

...

ρnn



. (3.12)

In the general form of MME Eq. 2.62, there are three types of the (super)operations

constructed from an operator Ô together with its Hermitian conjugate Ô† acting onto

the density matrix ρ̂: Ô and Ô† acts together on ρ̂ from (i) left or (ii) right, or (iii) one
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acts from right, the other from left. Such type of super-operators are shown below,

and they are transformed into Liouville space operators acting on vector ~ρ as

Ôρ̂Ô† =⇒ ((Ô†)T ⊗ Ô)~ρ, (3.13)

Ô†Ôρ̂ =⇒ (1⊗ (Ô†Ô))~ρ, (3.14)

ρ̂Ô†Ô =⇒ ((Ô†Ô)⊗ 1)~ρ, (3.15)

where superscript T means matrix transpose, and ⊗ is just the direct product. Then,

we write MME in the Liouville space as

d

dt
~ρ = L~ρ, (3.16)

where L is an n2 × n2 matrix given as

L = −i(1⊗Ĥ−Ĥ†⊗1)+
n2−1∑
i=1

κi

(
F̂ †i ⊗ F̂i −

1

2
(1⊗ F̂ †i F̂i + (F̂ †i F̂i)

T ⊗ 1)

)
. (3.17)

In Sec. 2.2.2, we show the general solution for this type of differential equations to be

the exponentiation of L as

~ρ = eLt ~C, (3.18)

where ~C is included constants of integration determined by the initial conditions.

After this point, numerical implementation is quite possible and easy. We either

make an matrix exponentiation, which is easily done a power series expansion, or

diagonalize L, which corresponds to uncoupling of the equations.

Diagonalization can be carried by finding eigenvalues of the matrix. This approach

has another use in MME. L is a trace preserving map, which makes its rows (or

columns) linearly dependent and ensures det(L) = 0. Therefore, there exists at least

one zero eigenvalue, and its eigenvector determines the steady state. In other words,

we are now able to obtain steady state solution by obtaining the zero eigenvalue and

its eigenvector.

Now, let us apply this technique to qubit example of this section. The matrix L
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of the qubit MME (without the dephasing term) reads

L = −i(1⊗ ĤTLS − Ĥ†TLS ⊗ 1) + κ(1 + n̄)(F̂ †i ⊗ F̂i −
1

2
(1⊗ F̂ †i F̂i + (F̂ †i F̂i)

T ⊗ 1))

=


−κ(1 + n̄) 0 0 κn̄

0 iω − κ
2
(1 + n̄) 0 0

0 0 −iω − κ
2
(1 + 2n̄) 0

κ(1 + n̄) 0 0 −κn̄

 . (3.19)

The eigenvalues with corresponding eigenvectors of L are respectively calculates as

{0,−κ(1 + 2n̄), iω − κ
2
(1 + 2n̄),−iω − κ

2
(1 + 2n̄)} , (3.20)

{


n̄

1+n̄

0

0

1

 ,

−1

0

0

1

 ,


0

1

0

0

 ,


0

0

1

0

} . (3.21)

Then solution of the Eq. 3.16 is written in the form given in Eq. 2.11 as

~ρ(t) =


ρee

ρge

ρeg

ρgg

 = c1e
0∗t


n̄

1+n̄

0

0

1

+c2e
−κ(1+2n̄)t


−1

0

0

1

+c3e
(iω−κ

2
(1+2n̄))t


0

1

0

0

+c4e
(−iω−κ

2
(1+2n̄))t


0

0

1

0

 ,

which obviously show that coefficients of all the other eigenvectors converges to zero

as t → ∞, and steady state is determined by the zero eigenvector. Only remaining

calculation is to find c1, which is easily be calculated from steady state solution by

imposing the probability conservation ρee + ρgg = 1 as

~ρ(t) =


ρee

ρge

ρeg

ρgg

 =


c1n̄
1+n̄
− c2e

−κ(1+2n̄)t

c3e
iω−κ

2
(1+2n̄)t

c4e
−iω−κ

2
(1+2n̄)t

c1 + c2e
−κ(1+2n̄)t

 =⇒ ~ρss =


ρee

ρge

ρeg

ρgg

 =


c1n̄
1+n̄

0

0

c1

 , (3.22)

ρee + ρgg =
c1n̄

1 + n̄
+ c1 = 1 =⇒ c1 =

1 + n̄

1 + 2n̄
, (3.23)
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which expectedly gives the detailed balance of the populations as ρee = n̄
1+2n̄

and ρgg =

1+n̄
1+2n̄

. Also, density vector at any time t is easily obtained from above by imposing the

initial conditions, and its transformation to density matrix is quite straightforward.

These techniques are implemented in a Python library called Qutip [113]. Qutip

offers several ways to use these techniques and handles numerical error details, both

of which are out of the scope of this thesis. Qutip is extensively used in this thesis,

so it is reassuring to present some results calculated by the master equation solver of

Qutip for qubit system and compare them with analytical solutions.

Numerical vs Analytical Results

We consider three different bath qubit configurations. In order to explain these cases,

we first introduce an effective temperature definition by means of spin polarization,

which is defined as the expectation value of σ̂z operator, 〈σ̂z〉 = ρee − ρgg. In ther-

mal equilibrium, populations satisfy the Gibbs ratio ρee
ρgg

= e−ω/T , then we define an

effective (for non-equilibrium cases) temperature from the populations as

T =
−ω

ln ρee
ρgg

=
−ω

ln 1+〈σ̂z〉
1−〈σ̂z〉

(3.24)

With this equation, we convert any polarization value to corresponding temperature

and then to average excitation number. In below explanations, we indicate temper-

atures with the corresponding polarization values. In the calculations, we fix the

bath temperature to 〈σ̂z〉 = −0.5, and create three initial pure qubit states with

〈σ̂z〉 = −0.2, 〈σ̂z〉 = −0.8,〈σ̂z〉 = −0.5, which are respectively colder (green), hot-

ter (red), and at equal temperature (blue) compared to bath. Other parameters are

ω = 1 and κ = 0.2

Fig. 3.2 shows the population evolution over time. In all there cases, populations

converges to the Gibbs distribution imposed by the bath temperature,〈σ̂z〉 → −0.5. In

the analytical calculations, we see that the coherences die away, Fig. 3.3 and Fig. 3.4

show respectively that both imaginary and real parts of the coherences converge to

zero. In all the plots, numerical results perfectly agrees the analytical calculations.
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Figure 3.2: Qubit Thermalization. Populations converges to the Gibbs distribution

of the bath temperature. Three different cases are as shown in the legends. Colored

dots show analytical result, black solid lines are numerical.

3.1.5 Heat Current

Now, we make use of the heat current definition Eq. 2.115 to show that the thermo-

dynamical laws are satisfied. Heat current for the qubit is calculated by using the

matrix form of its MME Eq. 3.11 as

J = Tr
[

˙̂ρĤ
]

= Tr

−κ(1 + n̄)ρee + κn̄ρgg −1
2
κ(1 + 2n̄)ρeg

−1
2
κ(1 + 2n̄)ρge −κ(1 + n̄)ρee + κn̄ρgg

ω
2

0

0 −ω
2


= κ(n̄ρgg − (1 + n̄)ρee). (3.25)
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Figure 3.3: Qubit Thermalization. Coherences dies away in every case, and this

plot shows the imaginary part. Three different cases are as shown in the legends.

Colored dots show analytical result, black solid lines are numerical.

In the steady state, which is the thermal equilibrium by the zeroth law, there has to

be zero heat current by first laws of thermodynamics. By substituting the detailed

balance result of the populations into Eq. 3.25, we find Jss = 0.

We also check the second law by the heat current directions. If TS ≥ TB, then

ρee ≥ n̄
1+2n̄

. Therefore, let ρee = n̄
1+2n̄

+ δ with some non-negative number δ ≥ 0,

which of course should not violate probability requirements, then ρgg = 1+n̄
1+2n̄

− δ.

Substituting these into Eq. 3.25, we get J = −κδ(1+2n̄), which is a negative number.

This means that heat flows out of the system. With the similar line of arguments, it

is easy to show when TS ≤ TB, J becomes positive, which means heat flows into the
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Figure 3.4: Qubit Thermalization. Coherences dies away in every case, and this

plot shows the real part. Three different cases are as shown in the legends. Colored

dots show analytical result, black solid lines are numerical.

system. These situations are shown in Fig. 3.5 for the three cases considered in the

previous part.

Also, D̂[σ̂−] and D̂[σ̂+] terms of the MME, which shown to respectively de-exites

and excites the system, can be analyzed with the heat current by them as

J− = Tr
[
(1 + n̄)D̂[σ̂−]Ĥ

]
= −κ(1 + n̄)ρee ≤ 0 (3.26)

J+ = Tr
[
n̄D̂[σ̂+]Ĥ

]
= κn̄ρgg ≥ 0. (3.27)

This mean that D̂[σ̂−] and D̂[σ̂+] terms respectively drains and pumps heat into the

system, as expected. With a similar calculation, heat current for the unitary part and
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Figure 3.5: Qubit Thermalization. Heat flows from hot to cold. Three different

cases are as shown in the legends. Colored dots show analytical result, black solid

lines are numerical.

the pure-dephasing term, which are shown to be energy conserving, are shown to be

zero.

3.2 Non-Equilibrium Two-Level System

Two-level system (qubit) coupled to two thermal baths, shown in Fig. 3.1, does not

reach to thermal equilibrium, unless of course TR = TL. Yet, it reaches to a steady

state, and total steady state heat current into the system is zero, which means that it

gets heat from the hot bath and dumps the same amount into the cold bath as required

by the first and second laws of thermodynamics. First law requires the conservation of
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energy, which is satisfied by total zero current, and the second law enforces that heat

flows from hot to cold. In this section, we show that the dynamics under MME satisfies

the second law, and we introduce another approach to calculate the heat current

together with the expectation values of the system observables without explicitly

calculating the density matrix elements. First, we present the MME and solve it with

the differential equation approach of the previous section.

3.2.1 Master Equation

In this scenario, MME in its closed form reads as

˙̂ρ = −i
[
Ĥ, ρ̂

]
+ L̂Lρ̂+ L̂Rρ̂ ≡ L̂ρ̂. (3.28)

The second and third terms on the right hand side of the master equation are super-

operators describing the effects of left (L) and right (R) baths, respectively. They are

given in terms of Lindblad dissipators as

L̂B = κB(1 + n̄B)
[
D̂[σ̂−] + e−βBωD̂[σ̂+]

]
, (3.29)

where B = L, R stand for the baths, and βB = 1/TB is the inverse temperature

for bath B. Using the energy basis and the matrix approach of the previous section,

equations of motion for the density matrix elements are written as

˙̂ρ =


−(A+B)ρee + (Ae−βLω +Be−βRω)ρgg −(A

2
(1 + e−βLω) + B

2
(1 + e−βRω) + iω)ρeg

−(A
2
(1 + e−βLω) + B

2
(1 + e−βRω)− iω)ρge (A+B)ρee − (Ae−βLω +Be−βRω)ρgg

 ,

where the constants are defined as A = κL(1 + n̄L) and B = κR(1 + n̄R). Using the

techniques introduced in the previous section, dynamics of the each element can be

obtained. It is obvious that coherences again dies away, and the uncoupled equations

of motion for the populations are given as

ρ̇ee = − (A(1 + e−βLω) +B(1 + e−βRω))ρee + Ae−βLω +Be−βRω (3.30)

ρ̇gg = − (A(1 + e−βLω) +B(1 + e−βRω))ρgg + A+B.
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Both of these equations are in the form: af(t) + b = ḟ , which has a solution of the

form f(t) = ceat− a
b
. The constant a is the same for both, and it is a negative number.

Therefore, their steady state solution converges to the constant part −a
b
. Then, we

directly write steady state solution for the populations as

ρss
ee =

Ae−βCω +Be−βHω

A(1 + e−βCω) +B(1 + e−βHω)
, (3.31)

ρss
gg =

A+B

A(1 + e−βCω) +B(1 + e−βHω)
. (3.32)

Since e−βBω < 1 for positive temperatures, ρss
gg > ρss

ee, which means that there occurs

no population inversion, unless one of the temperature is negative. Also, it is easy to

see that ρss
ee + ρss

gg = 1.

Figure 3.6: Steady State Heat Current. When TR > TL, J ss
R is positive.

In order to check the consistency with first and second laws of thermodynamics,
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we calculate the total heat current from both baths to the system as

JTotal = Tr
[
((L̂L + L̂R)ρ̂)Ĥ

]
= Tr

[
L̂Lρ̂Ĥ

]
+ Tr

[
L̂Lρ̂Ĥ

]
= JL + JR. (3.33)

Then, substituting the steady state solutions of populations Eq. 3.31 and 3.32 in, we

find the heat currents in the steady state as

J ss
L = Tr

[
L̂Lρ̂Ĥ

]
= ωA(e−βLωρgg − ρee) =

ωκLκR(n̄L − n̄R)

κR(1 + 2n̄R) + κL(1 + 2n̄L)
,(3.34)

J ss
R = Tr

[
L̂Rρ̂Ĥ

]
= ωB(ρgg − e−βRωρee) =

ωκLκR(n̄R − n̄L)

κR(1 + 2n̄R) + κL(1 + 2n̄L)
.(3.35)

Sum of these two terms gives thermodynamically consistent total steady state heat

current, that is JTotal = J ss
L +J ss

R = 0 as required by the first law. Also, heat current

direction enforced by the second law is from hot to cold bath, which is shown in

Fig 3.6 by plotting J ss
R . Parameters of the Fig 3.6 are ω = 100κL = 100κR = 1

Heat flow into system is positive by our convention, and Fig 3.6 shows that J ss
R

is positive when right bath is the hotter than left bath TR > TL. Since we show

above that the total steady state heat current is zero, this means that heat flows into

the system from the hotter bath (right one), and the same amount leaks into the

cold one (left bath). When the temperature configuration is changed TR < TL, heat

current becomes negative, which shows the consistency with second law. One other

observation, which is detailedly discussed in the diode chapter 5, is that this heat

current can be non-reciprocal.

3.2.2 Observable Dynamics

One other approach of MME is to use it in Heisenberg picture to calculate expectation

values of observables. They can be used to calculate heat currents, which is demon-

strated below. This approach is especially useful in the infinite density matrix cases,

like harmonic oscillators. Matrix approach is still useful and can be called as the

last resort, if the observable dynamic approach is not possible [111], which requires a

closed set of coupled differential equations of observable expectations.
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MME in Heisenberg picture reads for an observable operator Ô (its expectation

value to be precise) as [110, 111, 112]

˙̂
O = L̂†Ô = i

[
Ĥ, Ô

]
+

n2−1∑
i,j=1

κij

(
F̂ †i ÔF̂j −

1

2
{F̂ †j F̂i, Ô}

)
. (3.36)

We equivalently write the equation of motion for the expectation value of an observ-

able Ô as

d

dt
〈Ô〉 =

d

dt
Tr
[
ρ̂Ô
]
. (3.37)

Now, we apply these techniques to obtain the heat current expression for the non-

equilibrium qubit without explicitly calculating its density matrix. We start by writ-

ing the heat current due to one of the baths B as

JB = κB(1 + n̄B) Tr
[
D̂[σ̂−]Ĥ

]
+ κBn̄B Tr

[
D̂[σ̂+]Ĥ

]
. (3.38)

An example calculation for the elements in this expression is given as

Tr
[
D̂[σ̂−]Ĥ

]
=

ω

2
Tr

[
(σ̂−ρ̂σ̂+ −

1

2
σ̂+σ̂−ρ̂−

1

2
ρ̂σ̂+σ̂−)σ̂z

]
=

ω

2
Tr

[
ρ̂(σ̂+σ̂zσ̂− −

1

2
σ̂+σ̂−σ̂z −

1

2
σ̂zσ̂+σ̂−)

]
=

ω

2
Tr

[
ρ̂(σ̂+(σ̂+σ̂− − σ̂−σ̂+)σ̂− −

1

2
σ̂+σ̂−σ̂z −

1

2
σ̂zσ̂+σ̂−)

]
=

ω

2
Tr

[
ρ̂(−σ̂+σ̂−σ̂+σ̂− −

1

2
σ̂+σ̂−σ̂+σ̂− −

1

2
σ̂+σ̂−σ̂+σ̂−)

]
=

ω

2
Tr [ρ̂(−2σ̂+σ̂−σ̂+σ̂−)] =

ω

2
Tr [ρ̂(−2σ̂+σ̂−)] = −ω

2
Tr [ρ̂(σ̂z + 1)]

= −ω
2

(〈σ̂z〉+ 1), (3.39)

where we used the definitions and commutation relations of Pauli operators together

with the cyclic property of trace. With very similar lines of calculations, other terms

are calculated to give the total heat current expression for bath B as

JB = −ω
2
κB(1 + 2n̄B) 〈σ̂z〉 −

ω

2
κB. (3.40)
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Then, all we need to calculate is 〈σ̂z〉 to find the heat current, so we calculate it using

the approach in Eq.3.37 as

d

dt
〈σ̂z〉 = Tr

[
˙̂ρσ̂z

]
= κL(1 + n̄L) Tr

[
D̂[σ̂−]σ̂z

]
+ κLn̄L Tr

[
D̂[σ̂+]σ̂z

]
+κR(1 + n̄R) Tr

[
D̂[σ̂−]σ̂z

]
+ κRn̄R Tr

[
D̂[σ̂+]σ̂z

]
.

Terms of this equation misses only the ω
2

factor of the Hamiltonian. Therefore, by

the same approach of Eq. 3.39, we write the equation of motion for σ̂z as

d

dt
〈σ̂z〉 = −κR(1 + 2n̄R) 〈σ̂z〉 − κR − κL(1 + 2n̄L) 〈σ̂z〉 − κL, (3.41)

which has the solution given as

〈σ̂z〉 = Ce−(κR(1+2n̄R)+κL(1+2n̄L))t − κL + κR

κR(1 + 2n̄R) + κL(1 + 2n̄L)
, (3.42)

where C is the integration constant to be determined by the initial conditions. Steady

state solution of this equation is the constant term at the end. Then, by substituting

it into the Eq.3.40, we obtain the steady state heat currents as

J ss
L = =

ωκLκR(n̄L − n̄R)

κR(1 + 2n̄R) + κL(1 + 2n̄L)
, (3.43)

J ss
R = =

ωκLκR(n̄R − n̄L)

κR(1 + 2n̄R) + κL(1 + 2n̄L)
, (3.44)

which are the same as in Eq. 3.34. This method proves to be useful in the way

that it does not require for us to explicitly calculate the density matrix. However, it

requires a closed set of equations, which is obtained for other models in the subsequent

chapters, and it may not always be possible.



Chapter 4

LOCAL VS GLOBAL MARKOVIAN MASTER

EQUATIONS

In this chapter, we present two different approaches of MME adopted for the

multipartite quantum systems, namely local and global approaches [89, 114, 115, 116,

117]. In the previous chapter, we consider a single quantum system coupled to thermal

baths and analyze its thermodynamical consistencies. Now, we turn our attention

to composite systems and show that local approach may give thermodynamically

inconsistent results [115, 116]. Then, we derive the global MME, which corrects the

inconsistencies.

4.1 Local Approach

Local (or phenomenological) MME relies on a weak coupling among the subsystems,

and it is obtained by summing the individual MME of subsystems due to their local

baths and including the interaction Hamiltonian of subsystems to unitary dynamics

part. In this section, we exemplify this approach by writing the local MME for two

and three interacting qubits systems shown in Fig. 4.1. Then, we show a parameter

independent failure of the local approach, which also does not follow the Fourier law

of thermal conduction.

4.1.1 Three Interacting Qubits

We consider a system of three interacting qubits, with transition frequencies ωL and

ωR, as shown in Fig. 4.1 (a), described by a Hamiltonian with an opto-mechanical
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Figure 4.1: Three and Two Interacting Qubits. Left (L) and right (R) qubits

are coupled to their local baths at temperature TL and TR with the rates κL and κR,

and right qubit interacts with left qubit/s with a coupling strength g.

like coupling of strength g between the left (L) and two right (R) qubits,

Ĥ =
ωL

2
σ̂z1 +

ωR

2
(σ̂z2 + σ̂z3)− gσ̂z1(σ̂x2 + σ̂x3 ). (4.1)

We take ~ = 1 and kB = 1. Also, σ̂ji reads as the Pauli j = x,y,z matrix of the ith

qubit, and the tensor products, σ̂j1 ⊗ 1 ⊗ 1, 1 ⊗ σ̂j2 ⊗ 1,and 1 ⊗ 1 ⊗ σ̂j1 are implicit

above and rest of the thesis.

Left qubit is coupled to the left bath with the coupling constant κL. The right

qubits are connected to the right bath with the coupling constant κR. Local GKLS

Master equation [80, 81, 89, 114] then reads as

˙̂ρ = L̂ρ̂ = −i[Ĥ, ρ̂] (4.2)

+κL(1 + n̄L(ωL))D̂[σ̂−1 ] + κL(n̄L(ωL))D̂[σ̂+
1 ]

+κR(1 + n̄R(ωR))D̂[σ̂−1 ] + κR(n̄R(ωR))D̂[σ̂+
1 ]

+κR(1 + n̄R(ωR))D̂[σ̂−1 ] + κR(n̄R(ωR))D̂[σ̂+
1 ]
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The first term on the right hand side of Eq. 4.2 is unitary evolution of the system,

and the local effects of the bath on their corresponding qubits are included to unitary

dynamics by simply adding them. The Lindblad dissipator [80, 81] is given by

D̂[Â] = Âρ̂Â† − 1

2

(
Â†Âρ̂+ ρ̂Â†Â

)
. (4.3)

As discussed in Ref. [118], for the subsystem whose free Hamiltonian commutes with

the total Hamiltonian, steady state is invariant. In our model, left qubit satisfies this

condition, and its invariant state is a thermal equilibrium state at temperature TL.

Therefore, we can check the validity of numerical results by the steady state of left

qubit.

We carry the further calculations of the model by considering the right bath at

zero temperature, i.e. n̄ = 0, and we vary the left bath temperature. In this case, the

master equation becomes

˙̂ρ = −i[Ĥ, ρ̂] + κL(1 + n̄L(ωL))D̂[σ̂−1 ] + κL(n̄L(ωL))D̂[σ̂+
1 ] + κRD̂[σ̂−1 ] + κRD̂[σ̂−1 ]

We present the results obtained by the numerical solutions of the MME in Fig. 4.2. In

the numerical calculations, we use a scaling with ωL = 1. Then, we vary the inter-site

coupling strength g from 0.005 to 0.05, and we fix ωR = 0.05. Environment couplings

are κL = κR = 0.01. In our calculations, variation of the left temperature is carried

as a function of spin polarization 〈σ̂z〉 approach presented in the Sec. 3.1.4.

Analytical heat current expressions are obtained in the Appendix 7.1 by using the

operator expectation value method. A closed set of equations describing the dynamics

governed by this MME and the steady state relations among them are also presented

in the Appendix 7.1. This set of equations is easily solvable to obtain an expression

for the heat current, which completely agrees with the numerical results. Analytic

expressions for the heat currents are given as

J ss
L = κL(1 + 2n̄L(ωL))g 〈σ̂z1, Ŝx〉ss , (4.4)

J ss
R = −κL(1 + 2n̄L(ωL))g 〈σ̂z1, Ŝx〉ss , (4.5)
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Figure 4.2: Three Interacting Qubits. Steady state heat currents from (a) hot

and (b) cold baths sum to zero. Heat current maximizes at an optimized temperature

as the (c) correlations, and (d) first qubit always thermalizes with its local bath.

where the sum of heat currents correctly gives zero, and the correlation is defined as

〈σ̂z1, Ŝx〉 ≡ 〈σ̂z1Ŝx〉 − 〈σ̂z1〉 〈Ŝx〉 . (4.6)

Numerical calculations of the heat currents Eq. 4.4 - 4.5 are respectively shown in

Fig. 4.2 (a) and (b) together with the correlation Eq. 4.6 in Fig. 4.2 (c). In our

parameters, right bath is always colder (C) than the left bath (H), so steady state

heat current from right(JC)/left(JH) bath to system have to be negative/positive.

Fig. 4.2 (a) and (b) show that this is indeed the case, and their sum is zero. Also,

Fig. 4.2 (d) shows that the left qubit always thermalizes to the temperature of its



58 Chapter 4: Local vs Global Markovian Master Equations

Figure 4.3: Fourier Law of Thermal Conduction. Steady state heat current

through a single qubit increases as the temperature bias THot − TCold is increased.

local bath, so the numerics gives the expected results. Therefore, everything seems

thermodynamically consistent expect that the heat currents do not follow Fourier’s

law of thermal conduction. However, as we explain below, local MME for this model

actually completely fails.

Heat currents in Fig. 4.2 (a) and (b) does not always increases as temperature

bias increases, but the bias has an optimum value. Steady state heat current of the

non-equilibrium qubit, obtained in the previous chapter, obeys the Fourier’s law, as

shown in Fig. 4.3. Independent of the qubits initial state (y-axis), steady state heat

current increases as the bias between hot and cold (at 0K) is increases (x-axis). In

single qubit case, we use the same parameters ω = 1, κL = κR = 0.2, and TCold = 0K.



Chapter 4: Local vs Global Markovian Master Equations 59

However, this is not a strong violation compared to first or second law, which is

also violated by the local MME of three interacting qubits case. In Fig. 4.2, right

bath is at zero temperature and colder than left. If we make the right bath hotter of

the two and use MME in Eq. 4.2, heat current direction does not change, independent

of g or any other parameter. We do present it graphically here, and we show this

violation by only numerical means for two interacting qubits, which is the model for

quantum thermal diode, in the next part.

4.1.2 Two Interacting Qubits

We consider the two interacting quibts model shown in Fig. 4.1 (b) with two different

interaction Hamiltonians between the qubits, dipole-dipole and opto-mechanical like

coupling. The Hamiltonians for these two cases are given as

Ĥ1 =
ωL

2
σ̂z1 +

ωR

2
σ̂z2 + g(σ̂z1σ̂

x
2 ), (4.7)

Ĥ2 =
ωL

2
σ̂z1 +

ωR

2
σ̂z2 + g(σ̂+

1 σ̂
−
2 + σ̂−1 σ̂

+
2 ), (4.8)

and the master equations read as

˙̂ρ = −i
[
Ĥi, ρ̂

]
+ L̂Lρ̂+ L̂Rρ̂, (4.9)

with

L̂Lρ̂ = κL(1 + n̄L)
[
D̂[σ̂−1 ] + e−βLωD̂[σ̂+

1 ]
]
, (4.10)

and

L̂Rρ̂ = κR(1 + n̄R)
[
D̂[σ̂−2 ] + e−βRωD̂[σ̂+

2 ]
]
, (4.11)

where σ̂i1 = σ̂i ⊗ Î and σ̂i2 = Î ⊗ σ̂i are the Pauli operators for the first and second

qubit, respectively.

Numerical results for the heat currents of the two cases are presented in Fig. 4.4

with correlations 〈σz1, σx2 〉 and 〈σz1, σz2〉, relevant to the interaction Hamiltonians. Our

parameters for the calculation are ωL = ωR = 1 and κH = κC = 0.1. We see that heat

current, unlike the single qubit case, again has an optimal temperature in every case.
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a: 〈σ̂z〉TR = −1 b: 〈σ̂z〉TR = −0.5

Figure 4.4: Local MME Comparison. a: When, left bath is always hotter than

the right bath, which is at temperature 〈σ̂z〉TR = −1 (0 K), everything, deceivingly,

seem consistent. b: When right bath has a finite temperature, that is 〈σ̂z〉TR = −0.5,

heat current direction of (b) dipole-dipole coupling is always from hot to cold, which

is violated in the (a) opto-mechanical like coupling case.

In the first case, shown in Fig. 4.4a, temperature of the right bath is fixed to 〈σ̂z〉 =

−1, and temperature of the left bath is varied. As in the three interacting qubits case

of the previous part, everything seems consistent for both opto-mechanical like and

dipole-dipole coupling of the qubits, respectively shown in Fig. 4.4a (a) and (b).

However, in this case, right bath is always colder than left, and if we make the

temperature of right bath 〈σ̂z〉 = −0.5, we expect a change in the heat current sign

(direction) before and after left bath reaches the temperature 〈σ̂z〉 = −0.5.

As seen from Fig. 4.4b (b), local MME of the dipole-dipole coupling give a negative

steady state heat from left bath to system for the case TL ≤ −0.5, which is zero at

equal temperature point, and it becomes positive for the range TL > −0.5. We do

not present here but the sum of currents give zero. Therefore, it is consistent with

thermodynamical laws. On the other hand, as seen from Fig. 4.4b (a), local MME of

the opto-mechanical like coupling do not change, only the magnitude of heat current
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changes but the direction is from left to right. In the next section, we derive global

MME for the two qubits with opto-mechanical like interaction and show that it fixes

the inconsistencies.

4.2 Global Approach

In the previous section, we show that, independently of coupling strength g between

the qubits, local MME approach to the opto-mechanically like interacting qubits

violate the second law of thermodynamics. Local MME for dipole-dipole coupling of

the qubits, on the other hand, does not violate the second law, yet it is limited to the

weakly interacting qubits. Global MME for dipole-dipole or σ̂zσ̂z interaction between

two qubits are derived and used in many works [119, 120, 121, 122, 123], including

quantum thermal diode proposals [54, 55, 56].

In this section, we consider a system of two interacting qubits, with transition

frequencies ωL and ωR, described by a Hamiltonian with an opto-mechanical like

coupling of strength g between the left (L) and right (R) qubits,

Ĥ =
ωL

2
σ̂zL +

ωR

2
σ̂zR + gσ̂zLσ̂

x
R, (4.12)

which is called as the bare Hamiltonian. We derive the global MME for this system

by dressing it. The first step of obtaining GME is to diagonalize (dress) the system

Hamiltonian, which done by using the unitary transformation

U := exp
(
− iθ

2
σ̂zLσ̂

y
R

)
, (4.13)

where the angle θ is defined as

sin θ :=
2g

Ω
; cos θ :=

ωR

Ω
; tan θ :=

2g

ωR

, (4.14)

such that Ω :=
√
ω2

R + 4g2. The transformed (or dressed) operators then read

ˆ̃σxL = Uσ̂xLU
† = cos θσ̂xL + sin θσ̂yLσ̂

y
R, (4.15)

ˆ̃σyL = Uσ̂yLU
† = cos θσ̂yL − sin θσ̂xLσ̂

y
R, (4.16)

ˆ̃σzL = Uσ̂zLU
† = σzL, (4.17)
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and

ˆ̃σxR = Uσ̂xRU
† = cos θσ̂xR − sin θσ̂zLσ̂

z
R, (4.18)

ˆ̃σyR = Uσ̂yRU
† = σyR, (4.19)

ˆ̃σzR = Uσ̂zRU
† = cos θσ̂zR − sin θσ̂zLσ̂

x
R. (4.20)

The back transformations from dressed operators to bare operators reads from the

Eqs. (4.15)-(4.20) by switching dressed operators to bare operators and vice versa

with θ replaced by −θ. Then, with the transformation Eq. (4.13), the diagonalized

(dressed) Hamiltonian is given as

ˆ̃H =
ωL

2
ˆ̃σzL +

Ω

2
ˆ̃σzR, (4.21)

Exemplary calculations regarding this diagonalization process and operator transfor-

mations are given in the Appendix 7.2. Eigenstates of the dressed Hamiltonian are

given by the individual eigenstates of the qubits as

|1〉 = cos
θ

2
|++〉 − sin

θ

2
|+−〉 , (4.22)

|2〉 = sin
θ

2
|++〉+ cos

θ

2
|+−〉 , (4.23)

|3〉 = cos
θ

2
|−+〉+ sin

θ

2
|−−〉 , (4.24)

|4〉 = cos
θ

2
|−−〉 − sin

θ

2
|−+〉 , (4.25)

with their corresponding eigenvalues ω1 = 1
2
(ωL+Ω), ω2 = 1

2
(ωL−Ω), ω3 = 1

2
(−ωL+Ω),

and ω4 = 1
2
(−ωL − Ω), respectively.

Now, we try to write the global MME by identifying the coupling operators in the

interaction picture. After deriving the MME for a harmonic oscillator Eq. 2.113, we

make a claim on how to directly write the MME from interaction picture couplings

and, in Sec. 3.1, we show that it works. We here use the same argument to write

global MME.

Qubits are coupled to two baths of temperature TR and TL via the the Hamiltonian

Ĥ i
SB = σxi ⊗

∑
k g

i
k(â

i
k+ âi†k ), where gik are the coupling strengths to baths, and âik (âi†k )
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are the creation (annihilation) operator of the k mode of the bath i = L,R, whose

Hamiltonian is Ĥi =
∑

k ωkâ
i†
k â

i
k. To calculate the master equation, we move to the

interaction picture, and the coupling terms to baths evaluate to

σ̂xL(t) = cos θ ˆ̃σ−L e
−iωLt − sin θ ˆ̃σ+

L
ˆ̃σ−Re

−i(Ω−ωL)t (4.26)

+ sin θ ˆ̃σ−L
ˆ̃σ−Re

−i(Ω+ωL)t + H.c.

σ̂xR(t) = cos θ ˆ̃σ−Re
−iΩt +

1

2
sin θ ˆ̃σzL ˆ̃σzR + H.c. (4.27)

Hence, the GME in interaction picture straightforwardly evaluates to

˙̂ρ = L̂L + L̂R + L̂dephR ,

where three Liouville super-operators are explicitly given in terms of Lindblad dissi-

pators [80, 81] as follows: the dissipative one due to left bath,

L̂L = GL(ωL) cos2 θD̂[ˆ̃σ−L ] +GL(−ωL) cos2 θD̂[ˆ̃σ+
L ] (4.28)

+ GL(−ω2,3) sin2 θD̂[ˆ̃σ−L
ˆ̃σ+

R ] +GL(ω2,3) sin2 θD̂[ˆ̃σ+
L

ˆ̃σ−R ]

+ GL(ω1,4) sin2 θD̂[ˆ̃σ−L
ˆ̃σ−R ] +GL(−ω1,4) sin2 θD̂[ˆ̃σ+

L
ˆ̃σ+

R ],

the dissipative one due to right bath,

L̂R = GR(Ω) cos2 θD̂[ˆ̃σ−R ] +GR(−Ω) cos2 θD̂[ˆ̃σ+
R ], (4.29)

and the pure-dephasing due to right bath

L̂dephR =
1

2
GR(0) sin2 θD̂[ˆ̃σzL ˆ̃σzR], (4.30)

where θ = arctan(2g/ωR). In other words, the first two terms in L̂L, respectively,

dissipate and drive the system through dressed-left qubit, while the two terms in L̂R

dissipate and drive the system through dressed-right qubit, respectively. The remain-

ing four terms of L̂L are the global channels of the left bath interacting simultaneously

with the two dressed qubits. The coefficients Gi(ω) are given as

Gi(ω) =


κi(ω)[1 + n̄i(ω)], ω > 0

κi(|ω|)n̄i(|ω|), ω < 0

0, ω = 0

, (4.31)
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Figure 4.5: Global MME for Two Interacting Qubits. Steady state heat currents

have the correct direction, and its non-reciprocal.

where n̄i(ω) := 1
eω/Ti−1

is the average excitation number and i = L,R.

This model is the main diode model of the next chapter 5, and we further explain

and analyze it in there. For the moment, we just present the heat current from

right bath to system and show that it now satisfy thermodynamical laws, including

Fourier’s law, as shown in Fig. 4.5. Yet, it is non-reciprocal and we explain its basis

in the next chapter 5. Fig. 4.5 is plotted using the off-resonant parameters, which are

given in the next chapter, with the coupling strength between qubits g = 0.02.



Chapter 5

QUANTUM THERMAL DIODES

In the previous chapters, we present the MME tool from the theory of open quan-

tum systems and apply it to different cases with its two approaches, local and global.

We show that the local approach gives thermodynamically inconsistent results, and

they are fixed by adopting the global approach. Additionally, we find an asymme-

try in the heat currents under switching of bath temperatures, a diode behavior. In

other words, when two thermal baths are connected via a lead, heat flows from hot to

cold bath. However, switching the bath temperatures changes just not the direction

of steady state heat current but also the amount, if the lead behaves as a diode, a

non-reciprocal device.

In this chapter, we explain the mechanism leading to quantum thermal diodes [54,

55, 56] by considering three different models, a single qubit, a three level atom, and

two qubits interacting with an opto-mechanical like qubits. First two models are

presented to gain intuition about the involved mechanism, which is the interplay

between coupling of energy levels to baths and qubit-bath coupling strengths. In

other words, as in the case of heat valve in Ref. [59], the tunable diode behavior

depends on the interplay between with qubit-bath and qubit-qubit couplings. We

analyze such an interplay to demonstrate working mechanism of the quantum thermal

diodes, and the absence of rectification at resonance in Ref. [56] is understood from

the mechanism. We show that there are three separate places in which an asymmetry

can be introduced to enable diode behavior namely, free Hamiltonians of subsystems,

interaction among subsystems, and bath couplings. Therefore, in our analysis, we

consider an asymmetric coupling between the two qubits and two other toy models,

a single qubit and a three-level atom.
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5.1 A Single Qubit as the Smallest Diode

We start by demonstrating the effects of qubit-bath coupling strengths. We already

give the MME and calculate the heat current for a single qubit coupled to two baths in

Sec. 3.2.1. Analytical expressions for the steady state heat currents are given Eq. 3.43

as

J ss
L/R = =

ωκLκR(n̄L/R − n̄L/R)

κR(1 + 2n̄R) + κL(1 + 2n̄L)
. (5.1)

Sign of this heat current depends on the average excitation numbers, and it give a

Figure 5.1: Asymmetric coupling of a single qubit. (a) Magnitude of the heat

currents for low temperature, TL = 2TR = ω is asymmetric if environmental couplings

are not symmetric. (b) Asymmetry in heat current gets stronger in high temperatures

TL = 20TR = 10ω, as also seen in their respective rectification factors (c) and (d).
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direction from hot to cold, as expected. However, we can already be seen that it is an

asymmetric function of environmental coupling strengths, κR and κL. Fig. 5.1 shows

that the heat current amount is asymmetric under the exchange of temperatures,

unless κL ≈ κR. We plot the amplitude of heat currents, and Figs. 5.1 (a) and (c)

show the asymmetry at TL = 2TR = ω. Figs. 5.1 (b) and (d) present the asymmetry

at TL = 20TR = 10ω, and exhibit that better rectification values are obtained at high

temperatures.

This sort of an asymmetric environmental coupling is obtained for the two in-

teracting qubits by different number of local environments with the same couplings

strengths in Ref. [55], and they have a diode behavior with the resonant qubits, even

though at resonance their system Hamiltonian become completely symmetric. This

observation on the asymmetric bath-qubits coupling strengths explains one side of

the interplay. The other side, namely asymmetric coupling of energy levels to baths

is demonstrated in the next section with the artificial three level atom scenario shown

in Fig. 5.2.

Figure 5.2: Elements of the models. For a symmetrically coupled system κL = κR,

asymmetric coupling of energy levels to baths enables the diode behavior.
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5.2 Diode Behavior form a Three Level Atom

In order to clearly demonstrate that the asymmetric coupling of energy levels to baths

leads to the rectification even when the bath coupling strengths are symmetric, we

consider the simplest, yet artificial, case of a three-level atom depicted in Fig. 5.2.

Hamiltonian and master equation of such configuration are given [124, 125] re-

spectively as

Ĥ = ω1 |1〉 〈1|+ ω2 |2〉 〈2|+ ω3 |3〉 〈3| (5.2)

and,

˙̂ρ = −i
[
Ĥ, ρ̂

]
+ L̂L[ρ̂] + L̂R[ρ̂]. (5.3)

The second and third terms on the left hand side of the master equation are super-

operators describing the effects of left and right baths, respectively. They are given

as

L̂L[ρ̂] = κ−21

(
ρ11 |2〉 〈2| −

1

2
{|1〉 〈1| , ρ}

)
+ κ+

21

(
ρ22 |1〉 〈1| −

1

2
{|2〉 〈2| , ρ}

)
+ κ−31

(
ρ11 |3〉 〈3| −

1

2
{|1〉 〈1| , ρ}

)
+ κ+

31

(
ρ33 |1〉 〈1| −

1

2
{|3〉 〈3| , ρ}

)
,

and,

L̂R[ρ̂] = κ−32

(
ρ22 |3〉 〈3| −

1

2
{|2〉 〈2| , ρ}

)
+ κ+

32

(
ρ33 |2〉 〈2| −

1

2
{|3〉 〈3| , ρ}

)
,(5.4)

where κ−ji = κB(1 + n̄(ωj,i)) and κ+
ji = κBn̄(ωij) with ωji = ωi − ωj and B = R, L.

Then, by explicitly writing the matrix representations, the heat current expressions

in terms of the populations calculate to

JL = κ−21ρ11ω12 + κ+
21ρ22ω21 + κ−31ρ11ω13 + κ+

31ρ33ω31

JR = κ−32ρ22ω23 + κ+
32ρ33ω32. (5.5)

By calculating the steady state solution for the populations with symmetric environ-

mental couplings, that is κL = κR = κ, we write the heat current Eq. 5.5 as,

JR =
κω32K

−K− f(TL,3, TR,3)(1 + 2f(TL,−1, TL,2)) + 2f(TL,1, TR,2) + 2f(TL,1, TR,3)
, (5.6)
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where K = f(TL,2, TR,3)− f(TL,3, TR,2) and f(TB,±j, TB
′
,±j) = exp

(
±ωj

B
+ ±ωi

B
′

)
.

Figure 5.3: Asymmetric heat current of a three-level atom. Rectification is

stronger, if the asymmetry in energy levels is strong (a) ω2 = 1.5ω3. Asymmetry in

heat current and the rectification value weakens as the asymmetry in energy levels

decreases (b) ω2 = 1.5ω3. This comparison is also seen in the respective rectification

factors (c) and (d).

We plot magnitude of the heat current Eq. 5.6 together with the rectification values

in Fig. 5.3 for high temperature limit using ω3 = 1 as the scaling parameter, and we

use two different values for ω2 while fixing ω1 = 3κ = 3ω3. In this configuration,

baths are energetic enough to properly support all the transitions, so being coupled

to a big transition determines the rectification. Since the left bath is coupled to the

transition |1〉� |3〉, which is the biggest one, rectification is always from left to right,
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as seen in Figs. 5.3 (a) and (b). We first consider ω2 = 1.5ω3 in Fig. 5.3 (a), and show

that, when |ω23|, the transition supported by right bath, is small compared to both

the other transitions and Tmax, right bath is not able to give its energy away due to

the transitions supported by it being small. This lead to high rectification values for

a bigger range of temperatures compared to the second case in which ω2 = 2.5ω3, as

seen in Figs. 5.3 (c) and (d). In the second case, |ω23| ≈ |ω13| � |ω12|, both baths

have big enough transitions coupled to them, and the one with bigger transition (left

bath), also with small but the additional |ω12| is still able give more heat than the

other bath. As a result, rectification direction does not change, but diode quality

decreases, as shown in Fig. 5.3 (d).

Asymmetric coupling of the energy levels is the main cause of the rectification in

Ref. [56], and such asymmetry vanishes for resonant qubits in their model. Therefore,

their model do not show diode behavior when qubits are resonant to each other.

In our model of two interacting qubits, the energy levels are coupled to baths as

shown in Fig. 5.4, and the asymmetric coupling does not vanish with resonant qubits

because its mainly due to the asymmetric qubit-qubit interaction term in the bare

Hamiltonian 4.12. Reason for the choosing above three level configuration is that it

resembles dressed transitions of our two qubit model, shown in Fig. 5.4.

5.3 Two-Qubit Quantum Thermal Diode

We derive the global MME for two qubits interacting with each other by an opto-

mechanical like coupling in Sec. 4.2, and we give an example of the asymmetry in

steady state heat currents of this model in Fig. 4.5. In this chapter, we start by

explaining the dressed system with its global MME, and then we demonstrate that

behavior of our model agrees with the above explained interplay mechanism.
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5.3.1 Dressed System Description

The dressed system Hamiltonian and the global MME are respectively given as

ˆ̃H =
ωL

2
ˆ̃σzL +

Ω

2
ˆ̃σzR, (5.7)

and

˙̂ρ = L̂L + L̂R + L̂dephR ,

where three Liouville super-operators are explicitly given in terms of Lindblad dissi-

pators [80, 81] as follows: the dissipative one due to left bath,

L̂L = GL(ωL) cos2 θD̂[ˆ̃σ−L ] +GL(−ωL) cos2 θD̂[ˆ̃σ+
L ] (5.8)

+ GL(−ω2,3) sin2 θD̂[ˆ̃σ−L
ˆ̃σ+

R ] +GL(ω2,3) sin2 θD̂[ˆ̃σ+
L

ˆ̃σ−R ]

+ GL(ω1,4) sin2 θD̂[ˆ̃σ−L
ˆ̃σ−R ] +GL(−ω1,4) sin2 θD̂[ˆ̃σ+

L
ˆ̃σ+

R ],

the dissipative one due to right bath,

L̂R = GR(Ω) cos2 θD̂[ˆ̃σ−R ] +GL(−Ω) cos2 θD̂[ˆ̃σ+
R ], (5.9)

and the pure-dephasing due to right bath

L̂dephR =
1

2
GR(0) sin2 θD̂[ˆ̃σzR ˆ̃σzR], (5.10)

where θ = arctan(2g/ωR).

Dressed system can be though in two way: (i) an effective four level system and (ii)

two uncoupled qubits communicating through global channels derived by the baths.

Fig. 5.4 illustrates the four level system case and shows the couplings between

baths and the allowed transitions. Colored lines with two arrowheads show the allowed

transitions, colored wavy lines indicate the baths that they are coupled to. Eigenkets

of the dressed-system, |1〉, |2〉, |3〉, and |4〉, and the corresponding eigenvalues are

given in the Sec. 4.2. The transitions, |1〉 � |4〉, |1〉 � |3〉, |2〉 � |4〉, and |3〉 � |4〉

are coupled to left bath, and the corresponding transition frequencies are ω1 − ω4 ≡

ω14 = ωL + Ω, ω13 = ω24 = ωL, and ω23 = ωL − Ω. The remaining two transitions
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are coupled to right bath, and their transition frequencies are ω12 = ω34 = Ω. This

asymmetric coupling of energy levels to the baths play a key role in the diode behavior,

and it is due to the asymmetry in the system Hamiltonian, specifically in our case in

the interaction part.

TL TR

Figure 5.4: Dressed Levels. Allowed transitions between the dressed states |i〉 with

i = 1, 2, 3, 4, coupled to the baths with the dissipation rates κL, κR.

Uncoupled qubits case and the global dissipation, derive, and dephasing channels

are depicted in Fig. 5.5. The first two terms in L̂L, respectively, dissipate and drive

the system through dressed-left qubit, while the two terms in L̂R dissipate and drive

the system through dressed-right qubit, respectively. The term in Eq. 5.10 is pure

dephasing by the right bath. The remaining four terms of L̂L are the global channels

of the left bath interacting simultaneously with the two dressed qubits.
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TL TR

Figure 5.5: Dressed Qubits. Dressed qubits, with frequencies ωL and Ω, are uncou-

pled but heat transfer occurs via global dissipation channels with spectral response

functions G(±(ωL − Ω)) and G(±(ωL + Ω)). The channels with G(±ωL and G(±Ω

are local dissipation channels.

5.3.2 Model Realizations, Comparisons, and Explanations

The quantum thermal diode of two qubits interacting with an opto-mechanical like

coupling is similar to single bosonic excitation limit of an opto-mechanical system [126],

off-resonant Raman transition [127], and quantum walk on a cycle [128, 129], which

suggest that the diode behavior will we apparent in opto-mechanical system close to

its ground state and can be realized in these platforms. Therefore, we consider a

parameter set, named off-resonant qubits (ORQ) with one qubit frequency (Right)

much smaller than the other (Left), similar to opto-mechanical systems.
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In the Ref. [56], rectification optimization is considered for a system of two qubits

interacting with each other by the symmetric coupling σ̂zLσ̂
z
R. In the proposed model of

Ref. [56], diode behavior is absent when qubits have the same transition frequencies.

Thus, by using a parameter set named resonant qubtis (RQ), we show that almost

unit rectification is realizable with an asymmetric coupling (opto-mechanical like) at

resonant case.

This difference is related to THE involved mechanism. Environmental couplings

determine the baths ability to support any transition induced by them, meaning that

higher the environmental coupling strength for a bath the more heat will flow away

from it. First toy model, a single qubit, constitute the smallest possible diode, if the

environmental coupling strengths are asymmetric. When the environmental coupling

strengths are symmetric, asymmetric coupling of the energy levels to baths enables

the diode. In order to exhibit this case, we use the artificial scenario of a three-level

atom as in Fig. 5.2, which has a similarity to the dressed-system couplings shown in

Fig. 5.4. Even though these two constitute the smallest quantum diode examples, they

offer very little control over the rectification direction and the heat current amount.

On the other hand, system of two interacting qubits offer various control schemes, so

it might be considered as the smallest useful diode.

Above explanations mean that, in the case of two interacting qubits, an asymme-

try in the Hamiltonian and/or environmental coupling strengths enables the diode.

For example, our coupling, which does not include σ̂xLσ̂
z
R, is asymmetric, and the cou-

pling part of the Hamiltonian in Ref. [56] is symmetric, as well as the environmental

couplings. Therefore, only remaining asymmetry source, which is the free Hamiltoni-

ans of subsystems, is lost, unless the transition frequencies of qubits are non-resonant.

This explains why there is no rectification at resonance in Ref. [56]. Since we consider

an asymmetric coupling, it allows us to have symmetry in both the free Hamiltonians

and environmental couplings yet still have rectification. Finally, if we have a totally

symmetric Hamiltonian, asymmetric environmental coupling strengths are required,

which can also be achieved by introducing a third thermal bath as in Ref. [55].
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5.3.3 Heat Currents and Thermal Diode Quality Measure

In this part, we first present the analytical expression of the heat current [40], which

is given by

JR(L) = Tr[L̂R(L)
ˆ̃H], (5.11)

from right (left) bath to system. We calculate the heat current expression by the

observable dynamics technique introduced in Sec. 3.2.2. Heat current from the right

bath to two interacting qubits is given in terms of bare picture operators as,

JR = −1

2
κRΩ cos2 θ[1 + (2n̄R + 1)(cos θ〈σ̂zR〉+ sin θ〈σ̂zLσ̂xR〉)], (5.12)

Relation for JL and closed set of equation for the relevant expectation values are

given in Appendix 7.3. The Eq.(5.12) also shows that g and transition frequencies

play roles on the diode behavior, and we examine those roles.

To characterize diode behavior, we use a measure, namely the rectification factor

[43], defined by,

R =
|JR(TR, TL) + JR(TL, TR)|

Max(|JR(TR, TL)| , |JR(TL, TR))|
, (5.13)

where the JR(TR, TL) is the heat current from right bath to the system when TR > TL,

and Max function picks the biggest of its arguments. Thus, its value is between 0 and

1 describing from a symmetric heat current to a perfect diode, respectively.

5.3.4 Asymmetry in the Heat Current

In this part, we illustrate the quantum thermal diode behavior by showing that switch-

ing the bath temperatures changes the magnitude of steady state heat current.

In order to demonstrate and explain how the interplay explained above leads

to the diode behavior, we vary bath temperatures and calculate the magnitude of

heat current Eq.(5.12) along with the rectification factors Eq.(5.13). The analytical

solution to heat current Eq.(5.12) is easy to obtain, but the solution is complicated to

make any deduction. Thus, we analyze the model numerically to show the asymmetry
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in heat current and to explain the control schemes of the rectification direction. We

report the results of extensive numerical calculations for both flat and Ohmic spectral

densities and present only some key results graphically. We plot magnitudes (absolute

values) of the heat currents from right to the system for consistent comparison of the

heat current amounts with the color scales. We also present all the heat current

calculation with the correct signs in Appendix 7.4.

We run our simulations by using scientific python packages and some key libraries

of QuTiP python [113]. We chose ωL = 1 as the scaling in both off-resonant (ORQ)

and resonant-qubit (RQ) parameters. Unless the otherwise is stated in the text or

on the plots, ORQ parameters are ωR = 0.05, g = 0.005. We define κi(ω) as rates,

which are independent of frequency for the flat spectrum, and κR/L(ω) = κR/Lω for

the Ohmic spectral density, and we fix the rates κR = 0.005 and κL = 0.2. RQ

parameters are ωR = 1, κR = κL = 0.01, and g = 0.005. In the text, we describe

behavior of the diode with these parameter, but the Appendix 7.4 present the results

for κR = κL = 0.01 even in the ORQ case. Reason for this is to prevent an objection

to consider a high rate, κL = 0.2, in ORQ parameters. Plots in the Appendix 7.4

show the same behavior described in the text but at different g values.

Flat Spectral Density

We divide the analysis into two temperature ranges, high and low. Former means that

Tmax is one order of magnitude bigger than Max(ωL, ωR, g), and the latter is when

Tmax is in the order of Max(ωL, ωR, g). Fig. 5.6 shows the asymmetry in heat current

for ORQ parameters in both temperature ranges for two different values of g.

In the low temperature range, diode behavior is dominant when g is weak for

ORQ parameters, and rectification direction is left to right, as shown in Fig. 5.6 (a).

Rectification direction is reversed when g is increased, as seen in Fig. 5.6 (b).
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Figure 5.6: ORQ parameters with flat spectral density. Magnitude of the

steady state heat current from right bath to the system JR is asymmetric under the

switching of bath temperatures. Magnitude plot is suited for the ease it brings into

the visualization of asymmetry by use of color scales. In the low temperature range

(a) and (b), rectification direction is reversed by changing g from 0.4ωR to 4ωR. High

temperature ranges for the same parameters are shown in (c) and (d).

This change in the rectification direction is understood from its cause, which

is the asymmetric coupling of energy levels to thermal baths (originating from the

asymmetry of third term in the Eq.(4.12)) and abilities of baths to support the tran-

sitions. ORQ parameters (ωR = 0.05ωL) with an even smaller g = 0.4ωR cause the

transitions induced by right bath, which are ω12 = ω34 = Ω, to become too small

(almost negligible) compared to other transitions. Also, the transition frequencies,
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ω14 ≈ ω23 ≈ ω13 = ω24 = ωL, supported by the left bath are in the order of Tmax.

These mean that the transitions supported by right bath are too small to adequately

receive and transfer the available energy at any temperature, resulting in almost zero

heat current. On the other hand, left bath supports its transitions as the temperature

is increased. By increasing g, Ω increases, and the two transitions due to left bath,

ω14, ω23, become respectively bigger and smaller than the Tmax. As a result, right

bath starts to properly transmit its energy, while ability of left bath to support ω14

and capability of the transition ω23 to transmit the available energy are decreased.

Thus, the asymmetry first weakens, and the further increase in g brings back the

asymmetry with a change in rectification direction.

Since bath-spin coupling strengths of ORQ parameters are not symmetric, clear

connection of rectification direction change to transition energies and baths abilities

to support them is not obvious here. Therefore, we present an artificial scenario

of a three level system with symmetric coupling strength to baths and asymmetric

coupling of energy levels to baths, and we make the clear connection in the previous

section.

Finally, asymmetry becomes negligible at very strong g, because the transitions

become so big (|ωL − Ω| ≈ ωL +Ω ≈ Ω� ωL) compared to temperatures, so both the

amount of heat current and rectification are decreased. The reduction of asymmetry

at very strong g is common in both parameters (ORQ and RQ), spectral densities,

and temperatures.

Rectification values corresponding to Figs. 5.6 (a) and (b) are given in Figs. 5.7 (a)

and (b) and are closer to unity over a bigger range of temperatures in the weak

coupling.

Results for the RQ parameters in the low temperature are presented graphically

in the Appendix 7.4, and they are listed as follows. Rectification is left to right at any

g and do not reverses direction when g is increased. The fixed rectification direction

of RQ parameters is due to Ω > ωL for any g. Rectification of ORQ parameters is

from higher dressed frequency side to lower. However, even though the right dressed
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Figure 5.7: Rectification values for flat spectral density. Parameters are the

same as in Fig. 5.6.

frequency of RQ parameters is bigger than the left to begin with, rectification is left to

right. As discussed above, this is because the rectification direction is not only related

to the transition frequencies but also how good are the baths to support them. ORQ

parameters includes a transition (Ω) much smaller than Tmax for the right bath and

one other transition (ωL) comparable to Tmax for the left bath. Thus, both transitions

are supported easily by the baths. However, when both frequencies are comparable

to Tmax, the smaller transition is better supported. Another way to understand this

effect is to change the rates κi(ω). For example, the small g regime rectification of

RQ parameters (left to right) is reversed by increasing κR, which enables right bath

to better support its transitions Ω > ωL.
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Figs. 5.6 (c) and (d) show the high temperature range for the ORQ parameters.

In this case, there is little asymmetry at low g, because, as discussed above, baths

become energetic enough to make the asymmetry induced by eigenvalues negligible.

In other words, all the transitions, not just Ω, are now order of magnitude smaller

than Tmax. Diode behavior is realized back by increasing g, because it increases

the required energy for the transitions. Rectification gets better as g increases, but

asymmetry again starts to weaken after a threshold is reached and eventually fades

away at strong couplings. Rectification values for Figs. 5.6 (c) and (d) are presented

in Figs. 5.7 (c) and (d).

Again we present the results for RQ parameters graphically in Appendix 7.4, and

list them as follows. For the resonant case, asymmetry is apparent even at weak g in

high temperature range, and the rectification direction is left to right at low g, i.e.

from lower frequency to higher. Since we relate the low temperature behavior of RQ

parameters to energetic requirements of the transitions and baths abilities to support

them, this might seem contradicting. Because, baths are energetic enough to easily

support the transition at small g. However, left bath also has another transition, that

is ω14 = Ω + ωL, which is not supported properly at low temperatures, and left bath

is now energetic enough. If we increase g, Ω increases, making left bath insufficient

to support ω14, while Ω > ωL is still in the order of Tmax, and rectification switches

direction. In other words, transitions induced by right bath were bigger than Tmax

in low temperature regime, so the bath was unable to properly support it. However,

high temperatures made the right bath more energetic, and it is now able to give

the more energies to already available big transition. Again, further increase in g

results fading away of asymmetry in heat current, because it increases Ω excessively

to the levels where both bath again becomes insufficient to support the transitions

depending on it.

These results suggest that ORQ parameters provide a better control of the diode

at low temperature range, and RQ or near resonant parameters are better at high

range. This is simply because ORQ parameters has a really small transition which
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is the only transition supported by right bath and is modified by changing either the

qubit-qubit coupling strength or transition frequency of bare right qubit.

Ohmic Spectral Density

In this part, we follow the same division of temperature ranges, and Figs. (5.8) and (5.9)

show the asymmetries and rectification values for both ORQ and RQ parameters. The

numerical investigations give the following results.

Figure 5.8: Asymmetry in heat current for Ohmic spectral density. In the

low temperature range (a) and (b), magnitudes of the steady state heat currents from

right bath to the system show asymmetries in both ORQ (titled ωL > ωR) and RQ

(titled ωL = ωR) parameters, for g = 0.02ωL. High temperature ranges for the same

parameters are shown in (c) and (d).
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In the Ohmic spectrum case, behavior of the rectification direction is the same

as above for ORQ parameters, but the parametric regimes of g are different. For

example, at low temperatures, asymmetry is not strong at the same value of g for

which there is strong asymmetry in the flat spectrum case, shown in Fig. 5.8 (a). This

difference is due to the frequency dependence of κi(ω), because now it is not just the

transitions that are changing with g but also the rates κi(ω). In other words, abilities

of baths to support the transitions has dependence not only to their temperature but

also to the transitions. Numerical investigations show that rectification direction is

left to right at smaller coupling constants such that g < 0.02ωL, and it is reversed

when g > 0.02ωL.

Figure 5.9: Rectification values for Ohmic spectral density. Parameters are

the same as in Fig. 5.8
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For the resonant case, behavior at low temperatures is the same with flat case in

the way that rectification direction is always from left to right for any value of g. In

other words, it shows a rectification from left to right as shown in Fig. 5.8 (b), and

it does not change direction with changing g. Comparison of the low temperature

results shown in Figs. 5.8 (a) and (b) suggest that the diode can be controlled by

changing the transition frequencies.

Above behaviors of ORQ parameters for low the temperature range become more

dominant at high temperature range as shown in Fig. 5.8 (c). Rectification values for

high and low temperature ranges of the ORQ parameters are shown in Figs. 5.9 (a) and (c).

In the case of resonant transitions, rectification direction is unidirectional for the low

temperature range. However, numerical analysis shows that it becomes controllable

at the high temperatures. This is explained by the same argument above on de-

pendence of the rates to transition frequencies and the bath temperatures. In the

low temperature case, numerical analysis shows that bath temperatures have a minor

effect on supporting the transitions compared to the rates κi(ω). This is because

both transition frequencies are in the order of Tmax. However, high temperatures are

effective, and the rectification direction is now controllable by changing g. Also, even

though Figs. 5.9 (c) and (d) (or (a) and (b)) have different rates κi(ω), their com-

parison suggests that by changing the transition frequencies rectification direction is

controllable.

All these numerical observations for both spectral densities suggests that the con-

trol scheme for the diode to switch rectification direction or turn on/off the heat

current is quite versatile and depends on the considered spectral density, and any op-

timization of rectification need to the interplay between transition energies and bath

coupling strengths.

5.3.5 Asymmetry due to Transition Frequencies

In the previous part, we show that the heat current is not symmetric by varying

temperatures, and the qubit-environment couplings play role in the diode behavior.
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In this section, we focus on the effects of transition frequencies on the rectification.

We first present the analysis of our main model to demonstrate that it does not have

the previously reported drawback [56], then we used an artificial case for a three-level

system in Sec. 5.2 to clarify the physical mechanism.

Figure 5.10: Variations of transition frequencies. Rectification values for flat

(a) and (c) and Ohmic spectral densities (b) and (d) at low (Thot = 1) (a) and (b)

and high (Thot = 10) (c) and (d) temperatures (with a cold bath at Tcold = 0.5.)

In the previous part, we show that the rectification of two interacting qubits system

is controllable by changing g and/or transition frequencies. In this part, we explicitly

examine the effect of these parameters on diode behavior by fixing the temperatures.

We again consider two temperature regimes. In the cases here, temperature of the

colder bath is fixed to the value 0.5ωL, and temperature of the hotter bath is ωL for
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low and 10ωL for high temperature ranges. Unless ωL is varied, we consider its default

value given in Sec. 5.3.4, and the scaling of the parameters is again in terms of the

ωL in Sec. 5.3.4.
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Figure 5.11: Variations of g at low temperature regime. Heat currents for flat

(dash) and Ohmic (dash-dot) spectrum for both cases of TR = 1 > TL = 0.5 (red

and green) and TL = 1 > TR = 0.5 (black and blue) are given in (a) and (b) for

off-resonant and resonant parameters, respectively. The corresponding rectifications

are given in (c) and (d).

The low temperature heat currents and the corresponding rectifications are pre-

sented in Fig. 5.11 for both ORQ and RQ parameters. In Fig. 5.11 (a), we see that

there exist optimal values for g in flat and a range of g for the Ohmic spectrum

with ORQ parameters that maximize the heat current. In the flat spectrum, the
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optimal value for maximum current is close to the point where asymmetry switches

(also vanishes). Thus, the rectification and heat current seems to have a trade-off in

the flat spectrum. However, this observation is misleading since it is calculated for a

particular temperature configuration.
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Figure 5.12: Variations of g at high temperature regime. Plot styles, colors

and parameters are the same as in 5.11. Only difference is in the temperatures, here

TR = 10 > TL = 0.5 (red and green) and TL = 10 > TR = 0.5

In the high temperature range, almost unit rectifications are obtainable at the

optimum values of g for the flat spectrum, as shown in Fig. 5.12 (a). Also, the depen-

dence on transition frequencies affects the rectification values drastically. Fig. 5.11 (b)

and Fig. 5.12 (b), suggests that RQ parameters with flat spectrum has higher heat

currents, yet they give very weak rectifications in both temperature ranges. Again,
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this is an inaccurate deduction because it is obtained for particular values of tran-

sition frequencies. In Figs. 5.10 (a) and (c), it is shown that better rectification

values are realizable with different resonant transition frequencies at both low and

high temperatures, respectively. Yet, this time, g is fixed to 0.4ωL, and even higher

rectification values are obtainable by changing it. In short, comprehensive numerical

analysis shows that almost unit rectification factors can be obtained around the opti-

mal g at which the current is maximized, and rectification direction can be reversed

by changing the transition frequencies.

As presented by all the discussions so far and especially in Fig. 5.10, results of the

flat spectrum are different from the Ohmic case. Without any further discussions on

results, we emphasize the difference of our model from previously proposed diode [56].

Figs. 5.11 (a) and (b) and Figs. 5.12 (a) and (b) show that heat current for the Ohmic

spectral density is larger for RQ parameters than ORQ for both temperature ranges,

and the rectification factors can be for high heat currents. In other words, there is

no trade-off between heat current and rectification value when higher heat current

values are obtained by changing the ratio between transition frequencies. Also, the

resonant transition frequencies show almost unit rectification factors especially at high

temperature range, as also shown in Figs. 5.10 (b) and (d). The reason behind these

differences is that the asymmetry introduced to the Hamiltonian is in the interaction

term, which lead to asymmetric coupling of energy levels to baths, so rectification

is obtained even when qubits are resonant, and their coupling to environments is

symmetric.
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CONCLUSION AND OUTLOOK

We analyzed a quantum thermal diode composed of two interacting qubits together

with two other toy models. We analyzed the interacting qubits model by deriving

the global master equation. We have calculated an analytical expression for the

heat current and carried numerical examinations of it for various cases of variable

variations. We have used the rectification factor to quantify the diode quality and

carried our calculations for both flat and Ohmic spectral densities.

We found that the rectification direction is controllable by changing the coupling

strength between qubits and/or their transition frequencies, and we described the

ways to control the diode for different parameters and ranges of temperatures. We

identified the mechanism behind our results as the interplay between transition fre-

quencies and bath coupling strengths, and we demonstrate it by using two toy models.

We connect the mechanism to an asymmetry either in system Hamiltonian or bath

couplings. The main result of our paper is the establishment of the mechanism, which

suggests that the same results will be apparent in corresponding bosonic models, which

include harmonic oscillators instead of qubits. It is trivial to calculate and see that

a single harmonic oscillator has rectified heat, if it has asymmetric environmental

coupling.

To sum up, we conclude that the physical mechanism enabling the diode behavior

is the transitions between dressed eigenstates and abilities of the baths to support

these transitions. Thus, an asymmetric coupling, either to bath or among the subsys-

tems, empower the two interacting resonant qubits to behave as a diode, and allow

more control on the parameters to optimize the diode quality without any trade-off.
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6.1 Outlook

The interplay leading to rectification is analyzed by using Markovian master equa-

tions, which relies on weak environmental couplings, but environmental couplings

comprise an important part of the involved mechanism. Thus, non-Markovian ap-

proach is required to properly analyze the mechanism, and we plan to carry these

analyses using two interacting qubits. Also, we are going to analyze the smallest

possible diode, which is a single qubit.

For the two interacting qubits with the Hamiltonian,

H =
ω1

2
σz1 +

ω2

2
σz2 + g(σ+

1 σ
−
2 + σ−1 σ

+
2 ), (6.1)

the non-Markovian master equation is present in the literature for zero temperature

baths [103] and for single-excitation limit [104]. Thus, we will modify these derivations

for finite temperature baths. The reason for choosing this symmetric Hamiltonian

(Eq. 6.1) is to better understand the effect of bath asymmetry on diode behavior in

non-Markovian case. Also, the non-Markovian master equation for a single qubit is

present in Ref. [105].

Finally, quantum thermal diode models lead to design of quantum thermal tran-

sistors [51, 52, 53], and advantages of our opto-mechanically interacting qubits diode

model motivates an analysis on diode models with such coupling.
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APPENDIX

7.1 Quantum Dynamics of Three Interacting Qubits

Total heat current to the system is sum of the heat currents from the left and right

baths, and they are calculated and given respectively as

JTotal = Tr
[
L̂[ρ̂]Ĥ

]
=

JL︷ ︸︸ ︷
Tr
[
L̂L[ρ̂]Ĥ

]
+

JR︷ ︸︸ ︷
Tr
[
L̂R[ρ̂]Ĥ

]
, (7.1)

JL = Tr
[
L̂L[ρ̂]Ĥ

]
= −A

2
ωL −

B

2
ωL 〈σ̂z1〉+

AD

2
〈Ŝx〉+

BD

2
〈σ̂z1Ŝx〉 , (7.2)

JR = Tr
[
L̂R[ρ̂]Ĥ

]
= −CωR −

C

2
ωR 〈Ŝz〉+

CD

4
〈σ̂z1Ŝx〉 , (7.3)

where A = κL, B = κL(1 + 2n̄L(ωL)), C = κR, and D = 2g. Also, equations of

motions for the operators needed to calculate these heat currents form a closed set of

equations and they are given as

d

dt
〈σ̂z1〉 = −A−B 〈σ̂z1〉 , (7.4)

d

dt
〈Ŝz〉 = −C

(
2 + 〈Ŝz〉

)
−D

(
〈σ̂z1, Ŝy〉+ 〈σ̂z1〉 〈Ŝy〉

)
, (7.5)

d

dt
〈Ŝy〉 = D

(
〈σ̂z1Ŝz〉+ 〈σ̂z1〉 〈Ŝz〉

)
− C

2
〈Ŝy〉+ ωR 〈Ŝx〉 , (7.6)

d

dt
〈Ŝx〉 = −C

2
〈Ŝx〉 − ωR 〈Ŝy〉 , (7.7)

d

dt
〈σ̂z1, Ŝz〉 = −(B + C) 〈σ̂z1, Ŝz〉+D 〈σ̂z1〉 〈σ̂z1, Ŝy〉 −D(1− 〈σ̂z1〉

2) 〈Ŝy〉 , (7.8)

d

dt
〈σ̂z1, Ŝy〉 = −(B +

C

2
) 〈σ̂z1, Ŝy〉+ ωR 〈σ̂z1, Ŝx〉+D(1− 〈σ̂z1〉

2) 〈Ŝz〉 (7.9)

−D 〈σ̂z1〉 〈σ̂z1, Ŝz〉 ,
d

dt
〈σ̂z1, Ŝx〉 = −(B +

C

2
) 〈σ̂z1, Ŝx〉 − ωR 〈σ̂z1, Ŝy〉 , (7.10)

where we have used the collective operators Ŝi = σ̂i2+σ̂i3 and the correlations 〈σ̂z1, Ŝi〉 =

〈σ̂z1Ŝi〉 − 〈σ̂z1〉 〈σ̂z1〉.



Chapter 7: Appendix 91

Steady state relations among the operators and correlations are

〈σ̂z1〉ss = − 1

1 + 2n̄H
≡ A0 (7.11)

〈Ŝz〉ss = −2− A1(〈σ̂z1, Ŝy〉ss + A0 〈Ŝy〉ss), (7.12)

〈Ŝy〉ss = 2A2 〈Ŝx〉ss + 2A1 〈σ̂z1, Ŝz〉ss + 4A1A0 〈Ŝz〉ss ,

〈Ŝx〉ss = −2A2 〈Ŝy〉ss , (7.13)

〈σ̂z1, Ŝz〉ss = A3((1− A2
0) 〈Ŝy〉ss − A0 〈σ̂z1, Ŝy〉ss), (7.14)

〈σ̂z1, Ŝy〉ss = A4 〈σ̂z1, Ŝx〉ss + A5(1− A2
0) 〈Ŝz〉ss − A5A0 〈σ̂z1, Ŝz〉ss ,

〈σ̂z1, Ŝx〉ss = −A4 〈σ̂z1, Ŝy〉ss + A5(1− A2
0) 〈Ŝz〉ss − A5A0 〈σ̂z1, Ŝz〉ss , (7.15)

where we have defined A1 = D
C

, A2 = ωR

C
, A3 = D

C+B
, A4 = 2ωR

C+2B
and, A5 = 2D

C+2B
.

Then, using these relations, steady state heat currents from hot and cold baths to the

system is obtained respectively as

J ss
L = κL(1 + 2n̄L(ωL))g 〈σ̂z1, Ŝx〉ss , (7.16)

J ss
R = −κL(1 + 2n̄L(ωL))g 〈σ̂z1, Ŝx〉ss , (7.17)

which checks that the total heat current is zero.

7.2 Dressing Two Interacting Qubits

We dress the Hamiltonian in Eq. 4.12 using the unitary transformation given in

Eq. 4.13. We write this transformation in terms of rotation operations around the

related axis by θ
2

degrees, so let us first give the definition rotation operator [65] by

an angle φ around the α = x, y, z axis as

Dα(φ) = e−iφσ̂α . (7.18)

We put this into another form, which is more useful for our purpose here, as

Dα(
θ

2
) = e−i

θ
2
σ̂α =

∞∑
k=0

(
−iθ

2

)k
σ̂α =

(
1− 1

2!

(
θ

2

)2

(σ̂α)2 + · · ·

)

−i

(
θ

2
σ̂α −

1

3!

(
θ

2

)3

(σ̂α)3 + · · ·

)
,
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which is rewritten, by using the fact that σ̂nα =

1, for even n

σ̂α, for odd n

for the Pauli x,y,z,

operators, as

Dα(
θ

2
) =

cos θ
2︷ ︸︸ ︷(

1− 1

2!

(
θ

2

)2

+ · · ·

)
1− i

sin θ
2︷ ︸︸ ︷(

θ

2
− 1

3!

(
θ

2

)3

+ · · ·

)
σ̂α

= (cos
θ

2
)1− i(sin θ

2
)σ̂α. (7.19)

Other two useful identities that we use below are given as

cos(φσ̂α) = 1− 1

2!
(φ)2 (σ̂α)2 + · · · =

(
1− 1

2!
(φ)2 + · · ·

)
1 = (cosφ)1 (7.20)

sin(φσ̂α) = φσ̂α −
1

3!
(φ)3 (σ̂α)3 + · · · =

(
φ− 1

3!
(φ)3 + · · ·

)
1 = (sinφ)σ̂α (7.21)

Then, using these identities together with the expression for rotation operator in

Eqn 7.19, we transform any Pauli spin operator σ̂αL/R of left (L) or right (R) qubits

as the below σ̂xL transformation.

ˆ̃σxL = Uσ̂xLU
† = DL

z (
θ

2
σ̂yR)σ̂xL((DL

z )†(
θ

2
σ̂yR))

= ((cos
θ

2
)1− i(sin θ

2
)σ̂yR)σ̂xL((cos

θ

2
)1 + i(sin

θ

2
)σ̂yR)

=

cos θ︷ ︸︸ ︷
(cos2 θ

2
− sin2 θ

2
) σ̂xL + i

1
2

sin θ︷ ︸︸ ︷
sin

θ

2
cos

θ

2
(σ̂xLσ̂

z
L − σ̂zLσ̂xL)︸ ︷︷ ︸

[σ̂xL,σ̂zL]=−2iσ̂yL

σ̂yR

= (cos θ)σ̂xL + (sin θ)σ̂yRσ̂
y
L, (7.22)

where we also use the fact that the operators of left and right qubits commute. Rest

of the operators are transformed similarly. Then, we write the dressed Hamiltonian

with the same transformation as

ˆ̃H = UĤU † =
ωL

2
σ̂zL + (

ωR

2
cos θ − g sin θ)σ̂zR + (

ωR

2
sin +g cos θ)σ̂zLσ̂

x
R, (7.23)

which is given in terms of the dressed operator as

ˆ̃H =
ωL

2
ˆ̃σzL + (

ωR

2
cos θ + g sin θ)ˆ̃σzR + (−ωR

2
sin +g sin θ)ˆ̃σzL ˆ̃σxR. (7.24)
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We want this Hamiltonian to be diagonal, which means that the last term should

has a zero coefficient. Therefore, we choose a θ such that g cos θ = ωR

2
sin θ, which

gives the angle given in Eq.4.14, and we obtain the diagonalized Hamiltonian given

in Eq. 4.21.

7.3 Dynamics of the Dressed Two Qubits

Equations of motions for the relevant dynamical observables of our system are deter-

mined from the master equation, Eq. (4.28), and given by

d

dt
〈ˆ̃σzL〉 = cos2 θ[GL(−ωL)〈A〉 −GL(ωL)〈B〉] +

1

2
sin2 θ[GL(ω1)〈AD〉 −GL(−ω1)〈BC〉

+GL(−ω2)〈AC〉 −GL(ω2)〈BD〉]
d

dt
〈ˆ̃σzR〉 = cos2 θ[GR(−Ω)〈C〉 −GR(Ω)〈D〉] +

1

2
sin2 θ[−GL(ω1)〈AD〉+GL(−ω1)〈BC〉

+GL(−ω2)〈AC〉 −GL(ω2)〈BD〉]
d

dt
〈ˆ̃σzL ˆ̃σzR〉 = cos2 θ[GL(−ω)〈Aˆ̃σzR〉 −GL(ω)〈Bˆ̃σzR〉+GR(−Ω)〈Dˆ̃σzL〉 −GR(Ω)〈Cˆ̃σzL〉],

where we use the operators A = (1 − ˆ̃σzL), B = (1 + ˆ̃σzL), C = (1 − ˆ̃σzR), and

D = (1+ ˆ̃σzR).

The heat currents evaluate to

JL =
1

2
ωL cos2 θ[GL(−ωL)〈A〉 −GL(ωL)〈B〉] +

1

4
sin2 θ[ω1GL(−ω1)〈BC〉 − ω1GL(ω1)〈AD〉

− ω2GL(ω2)〈BD〉+ ω2GL(−ω2)〈AC〉], (7.25)

JR =
1

2
Ω cos2 θ[GR(−Ω)〈C〉 −GR(Ω)〈D〉]. (7.26)

Substation of transformed operator relation Eq. (4.20) to Eq. (7.26) gives the heat

current relation in terms of bare operators, Eq. (5.12). Even though, the Eqs. (7.25)-

(7.26) are easy to solve, the analytical expressions are too bulky to present. We do

not provide them here, but we just state that JL + JR = 0 at the steady state.
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7.4 Heat Currents of the Dressed Two Qubits

Here, we present numerical results for the steady heat current from right bath to

system JR for both ORQ and RQ parameter. Only difference is that we consider

the rates κR = κL = 0.001 for both parameters, and we state qubit-qubit coupling

strengths g at the title of each plot. We present the flat and ohmic spectrum sep-

arately, and we divide each of them into two parts, which give the ORQ and RQ

results.

7.4.1 Flat Spectrum

off-Resonant Qubits

The low temperature regime heat currents for the ORQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.1: ORQ Flat Spectrum Low temperature.

The high temperature regime heat currents for the ORQ parameters are given as
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a: Heat Current JR b: Rectification R

Figure 7.2: ORQ Flat Spectrum High temperature.

Resonant Qubits

The low temperature regime heat currents for the RQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.3: RQ Flat Spectrum Low temperature.

The high temperature regime heat currents for the RQ parameters are given as
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a: Heat Current JR b: Rectification R

Figure 7.4: RQ Flat Spectrum High temperature.

7.4.2 Ohmic Spectrum

off-Resonant Qubits

The low temperature regime heat currents for the ORQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.5: ORQ Ohmic Spectrum Low temperature.
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The high temperature regime heat currents for the ORQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.6: ORQ Ohmic Spectrum High temperature.

Resonant Qubits

The low temperature regime heat currents for the RQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.7: RQ Ohmic Spectrum Low temperature.
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The high temperature regime heat currents for the RQ parameters are given as

a: Heat Current JR b: Rectification R

Figure 7.8: RQ Ohmic Spectrum High temperature.
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