
A Framework of Privacy Preserving Services for

Distributed Online Social Networks

by

Sanaz Taheri Boshrooyeh

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

October 8, 2019

A Framework of Privacy Preserving Services for

Distributed Online Social Networks

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Sanaz Taheri Boshrooyeh

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assoc. Prof. Alptekin Küpçü (Advisor)

Prof. Öznur Özkasap (Advisor)

Asst. Prof. Didem Unat

Asst. Prof. Selçuk Baktır

Prof. Özgür Barış Akan

Prof. Albert Levi

Date:

I dedicate this thesis to my family who showed me what it means to love, and to be

loved.

iii

ABSTRACT

Online Social Network (OSN) providers like Facebook and Twitter supply storage

and computational resources for the users and enable them to share personal informa-

tion and establish friendships. The collection of users data at a central OSN provider

causes security issues due to which the distributed OSNs with federated server ar-

chitecture is proposed. The central provider is replaced by multiple servers (running

by distinct providers) which run OSN services collaboratively while no server is fully

trusted. We utilize the federated server architecture and the trust distribution among

the servers to propose a framework of efficient and privacy-preserving services for

OSNs that would be otherwise impossible in the centralized versions.

The first module of the framework, Privado, is a privacy-preserving group-based

advertising method through which OSN servers can find the advertiser’s target cus-

tomers using users’ encrypted profiles. We propose the group-based advertising notion

to protect user privacy, which is not possible in the personalized variant. We formally

define and prove user privacy against an active malicious adversary controlling all but

one server, all the advertisers, and a large fraction of the users. Privado also achieves

advertising transparency; the procedure of identifying target customers is operated

solely by the servers without getting users and advertisers involved.

The second module of the framework, Anonyma, copes with the inference attack in

the invitation-only nature of OSNs’ group formation. Anonyma is an invitation-based

system where users prove to the administrator that they are invited by a certain num-

ber of group members without revealing their inviters. We formally define and prove

the inviter anonymity and unforgeability of invitations against a malicious adversary.

Also, Anonyma outperforms the state-of-the-art concerning the computational over-

head. Besides, Anonyma is efficiently scalable in the sense that the administrator

iv

can issue credentials to the newcomers, enabling them to act as an inviter, without

re-keying the existing members. We also design AnonymaX, an anonymous cross-

network invitation-based system where the invitations issued by the members of one

social network can be used for the registration to another social network.

The third module of the framework, Integrita, is a collaborative data-sharing

platform (e.g., Facebook groups) that preserves view consistency against corrupted

servers i.e., servers cannot show divergence view of the shared data (e.g., posts of the

group page) to the users (e.g., group members) without being detected. Unlike the

state-of-the-art, Integrita enables detection of inconsistency neither by using storage

inefficient data replication solution nor by requiring users to exchange their views out

of the band. Every user, without relying on the presence of other users, can verify

any server-side equivocation regarding her performed operation. We introduce and

achieve a new level of view consistency called q-detectable consistency in which any

inconsistency between users view cannot remain undetected for more than q posts.

For each module of this thesis, the running time and performance of our proposed

approaches are examined through extensive simulations, and the results provided

accordingly. Privado enables an advertising system with tweak-able parameters to

adjust the advertising accuracy w.r.t. user privacy. Privado also excels the state-of-

the-art by efficiently and simultaneously achieving advertising transparency and user

privacy with the minimum communication complexity at the server-side. Anonyma

supports provable invitation unforgeability and inviter anonymity by a computation

complexity upper-bounded only by the number of required inviters while the com-

putation complexity of the prior studies grows linearly with the system size. The

data-sharing platform of Integrita advances the centralized and distributed counter-

parts by improving the view-consistency and storage overhead (by the factor of 1
N

where N is the number of the servers), respectively. Nevertheless, concerning per

server storage overhead and cross-server communication, Integrita’s overhead is the

minimum among all its counterparts.

ÖZETÇE

Facebook ve Twitter gibi Çevrimiçi Sosyal Ağların (ÇSA’lar) hizmet sağlayıcıları,

kullanıcılara depolama ve hesaplama kaynakları sunar ve kişisel bilgilerini

paylaşmalarını ve arkadaşlıklar kurmalarını sağlar. Merkezi bir ÇSA’da kullanıcı veri-

lerinin toplanması güvenlik riskleriyle birlikte gelir. Bu sebeple federe sunucu mimari-

sine sahip dağıtık ÇSA’lar önerilmiştir. Merkezi bir sunucu yerine farklı sağlayıcılar

tarafından çalıştırılan birden çok sunucu kullanılması önerilmiştir. Sunucuların hiçbiri

tam olarak güvenilir değildir. Bu tezde, federe sunucu mimarisini ve sunucular

arasındaki güven dağılımını kullanarak ve merkezi yapıda aksi takdirde imkansız ola-

cak verimli ve gizliliği koruyan bir ÇSA hizmetleri çerçevesi öneriyoruz.

Çerçevenin ilk modülü Privado, ÇSA sunucuları tarafından, reklam verenlerin

hedef müşterilerini ÇSA kullanıcılarının şifreli profillerini kullanarak bulabilecekleri,

gizliliği koruyan bir grup tabanlı reklam yöntemidir. Kişiselleştirilmiş sistemlerde

mümkün olmayan kullanıcı gizliliğini korumak için grup temelli reklam kavramını

öneriyoruz. Tek bir sunucuyu, tüm reklam verenleri ve kullanıcıların büyük bir

bölümünü kontrol eden aktif bir saldırgana karşı kullanıcı gizliliğini resmi olarak

tanımlıyor ve kanıtlıyoruz. Tasarımımız aynı zamanda reklam şeffaflığını da sağlar;

Hedef müşterileri belirleme prosedürü, kullanıcıları ve reklam verenleri dahil etmeden,

sadece ÇSA sunucuları tarafından çalıştırılmaktadır.

Çerçevenin ikinci modülünde, Anonyma, ÇSA’larda davetiye ile grup katılımını ele

alıyoruz. Anonyma ile kullanıcılar sistem yöneticisine, kim tarafından davet edildik-

lerini açıklamadan belirli sayıda davet aldıklarını kanıtlayabilmektedir. Kötü niyetli

bir saldırgana karşı davetiyenin anonimliğini ve davetiyelerin orijinalliğini resmi olarak

tanımlıyor ve kanıtlıyoruz. Ek olarak tasarımımız performans olarak en iyi rakip-

lerinden daha iyi sonuçlar göstermektedir. Bir kullanıcı sisteme katıldıktan sonra,

vi

yöneticinin anında ve mevcut üyeleri yeniden anahtarlamadan, yeni gelen kişinin

davetci olarak hareket edebilmesi için gerekli bilgileri vermesi anlamında verimli bir

şekilde ölçeklenebilir. Ayrıca, bir sosyal ağın üyeleri tarafından verilen davetiyelerin

başka bir sosyal ağa kayıt için kullanılabileceği davetiye tabanlı bir sistem olan Anony-

maX çözümümüzü de tasarladık.

Çerçevenin üçüncü modülü Integrita, ele geçirilmiş sunucuların varlığında

görünüm tutarlılığını koruyan ortak bir veri paylaşım platformudur (Facebook gru-

pları gibi). Diğer bir deyişle, paylaşılan verinin (örneğin, grup sayfasının gönderileri)

farklı kullanıcılara (örneğin, grup üyeleri) farklı gösterilemeyeceği garanti edilir. Mev-

cut çözümlerden farklı olarak, Integrita, yinelemeli depolama veya kullanıcıların

bant dışı iletişimini gerektirmeden tutarsızlığın tespitini sağlar. Her kullanıcı,

gerçekleştirdiği işlemle ilgili görünüm tutarlılığını doğrulamak için tek başına (diğer

kullanıcıların varlığına güvenmeden) işlem yapabilir. Bu durum için q-saptanabilir

tutarlılık adı verilen yeni bir görünüm tutarlılığı tanımı ve çözümü ortaya koyuyoruz.

Tezin her modülü için önerilen yaklaşımlarımızın çalışma süresi ve performansı

kapsamlı simülasyonlar ve bunlara göre elde edilen sonuçlar üzerinden incelenmiştir.

Privado, istenen reklamcılık doğruluğunu ve kullanıcı gizlilik seviyesini ayarlamak

için parametrelere sahip bir reklam sistemini sunucu tarafında minimum iletişim

karmaşıklığı ile reklam şeffaflığını ve kullanıcı gizliliğini aynı anda sağlayarak teknolo-

jik üstünlük sunar. Anonyma, davetiye anonimliğini ve orijinalliğini kanıtlanabilir bir

biçimde sağlarken yalnızca gerekli davetiye sayısına bağlı bir hesaplama karmaşıklığı

gerektirir (önceki sistemlerde ise bu durum sistemdeki toplam kullanıcı sayısı ile doğru

orantılıydı). Integrita veri paylaşım platformu, merkezileştirilmiş ve dağıtılmış emsal-

lerine kıyasla görünüm tutarlılığını geliştirir ve ÇSA sunucularının depolama yükünü
1
N

katsayısı ile hafifletir (N sunucu sayısıdır) ve sunucu başına depolama ve sunucular

arası iletişim konularında bütün rakipleri arasında en düşük yükü gerektirir.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors Assoc. Prof. Alptekin

Küpçü and Prof. Öznur Özkasap for the continuous support of my Ph.D. study

and related research, for their patience, motivation, and knowledge. Their guidance

helped me in all the time of research and writing of this thesis.

I would like to express my appreciations to my thesis committee: Asst. Prof.

Selçuk Baktır, Asst. Prof. Didem Unat, Prof. Özgür Barış Akan, and Prof. Albert

Levi for devoting their valuable time and consideration in evaluating my thesis.

My sincere thanks also goes to my colleagues in DISNET and Crypto laboratories

for the stimulating discussions, and for all the memorable times we have had in the

last five years. Also, my appreciation goes out to all the incredible researchers from

the Crypto community which I met from all over the world. Those who expanded my

vision towards my research goals and inspired me both professionally and personally.

I would also like to express my gratitude to all the staff and employees of Koç

University, especially the Graduate School of Sciences and Engineering, for their hard-

working, effort, and dedication to the students’ matters.

I am grateful for being a part of office ENG 142 and to get to know amazing people

with whom I have shared thousands of priceless memories. I appreciate their support

and kindness which made me feel like at home miles away from my own country.

A special thanks to my family, my dear mother who supported me unconditionally

and filled my heart with her care and love. And my sister with whom I had those

little deep, happy, and free moments like nothing else exists on this planet. I am also

grateful to my grandmother and grandfather for all their love and encouragement.

I would like to say a heartfelt thank you to my loving, supportive, encouraging,

and patient husband (and colleague), Yahya, who has been by my side throughout

viii

this PhD, living every single minute of it, who believed in me and supported me in the

worst and the best moments of my Ph.D., who gave me the courage when I needed

the most and strengthened me in the face of challenges.

Finally, I acknowledge the support of the Royal Society of UK Newton Advanced

Fellowship NA140464 and European Union COST Action IC1306.

TABLE OF CONTENTS

List of Tables xvi

List of Figures xvii

Nomenclature xix

Chapter 1: Introduction 1

1.1 Scope of the Thesis . 2

1.2 Original Contributions . 6

1.3 Organization . 10

Notes to Chapter 1 . 11

Chapter 2: Literature Review 12

2.1 Introduction . 12

2.2 OSN Architectures . 14

2.2.1 Centralized Online Social Networks 14

2.2.2 Distributed Online Social Networks (DOSNs) 15

2.3 Data privacy . 17

2.3.1 Information Substitution . 17

2.3.2 Symmetric Key Encryption 17

2.3.3 Public Key Encryption . 18

2.3.4 Attribute Based Encryption (ABE) 18

2.3.5 Identity Based Broadcast Encryption (IBBE) 19

2.3.6 Hybrid Encryption . 20

2.4 Data Integrity . 21

xi

2.4.1 Integrity of the data owner and the data content 22

2.4.2 Historical integrity . 23

2.4.3 Integrity of the data relations 23

2.5 Secure Social Search . 24

2.5.1 Content privacy . 25

2.5.2 Privacy of searcher . 25

2.5.3 Privacy of the searched data owner 26

2.5.4 Trusted search result . 26

2.6 Conclusion and Open problems . 27

Chapter 3: Privado: Privacy-Preserving Group-based Advertising

using Multiple Independent Social Network Providers 30

3.1 Introduction . 30

3.2 Related Works . 34

3.3 System Model . 37

3.3.1 Model . 37

3.3.2 Security Goal . 38

3.3.3 Adversarial Model . 39

3.4 Definitions and Preliminaries . 39

3.4.1 Notations . 39

3.4.2 Definitions . 41

3.4.3 Preliminaries . 42

3.5 Privado . 50

3.5.1 Design Challenges . 50

3.5.2 Construction Overview . 52

3.5.3 Full Construction . 53

Initialization: . 54

User Registration: . 55

xii

Advertisement Registration: 57

Advertising . 59

Notes to Chapter 3 . 66

Chapter 4: Privado: Complexity, Performance and Security 68

4.1 Complexity and Performance . 68

4.1.1 Complexity . 68

4.1.2 Concrete Performance . 69

4.1.3 Advertisement Accuracy Metrics 73

4.1.4 Advertisement Accuracy Results 75

4.2 Security . 76

4.2.1 Security Definition . 77

4.2.2 Formal Security Proof . 79

Notes to Chapter 4 . 88

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in

Malicious Adversarial Model 89

5.1 Introduction . 89

5.2 Related Works . 94

5.2.1 Electronic Voting (e-voting) 94

5.2.2 (t,N) Threshold Ring Signature 96

5.3 System Model . 97

5.3.1 Model . 97

5.3.2 Security Goal and Adversarial Model 98

5.4 Notations, Definitions, and Preliminaries 99

5.4.1 Notations . 99

5.4.2 Definitions . 100

5.4.3 Preliminaries . 103

5.5 Construction . 106

xiii

5.5.1 Construction Overview: . 106

5.5.2 Full Construction: . 109

SetUp: . 109

Token Generation: . 110

Invitation Generation: . 111

Invitation Collection: . 114

5.6 AnonymaX: Anonymous Cross-Network Invitation-Based System . . . 117

Notes to Chapter 5 . 120

Chapter 6: Anonyma: Performance and Security 121

6.1 Performance . 121

6.1.1 Running Time . 121

6.1.2 Communication Complexity 122

6.1.3 Storage . 123

6.2 Security . 123

6.2.1 Proof of Invitation Correctness 123

Soundness: . 123

Special honest verifier zero knowledge: 124

Zero-knowledge POIC (ZKPOIC): 124

6.2.2 Inviter Anonymity . 125

Security Definition: . 125

6.2.3 Invitation Unforgeability . 131

Security Definition: . 131

6.2.4 Security of AnonymaX . 138

Chapter 7: Integrita: Protecting View-Consistency in Online Social

Network with Federated Servers 148

7.1 Introduction . 148

7.2 Related Works . 152

xiv

7.3 System Model . 154

7.3.1 Model . 154

7.3.2 Security Goal . 155

7.3.3 Adversarial Model . 155

7.4 Definitions and Preliminaries . 155

7.4.1 Notations . 155

7.4.2 Definitions . 157

7.4.3 Preliminaries . 157

7.5 Integrita System Design . 158

7.5.1 Shared object representation 158

7.5.2 Distributed storage of the shared object 162

7.5.3 Construction . 168

Notes to Chapter 7 . 182

Chapter 8: Integrita: Complexity, Performance and Security 183

8.1 Complexity and Performance . 183

8.1.1 Storage Overhead . 183

8.1.2 Round Complexity and Communication Complexity 184

8.2 Security . 186

8.2.1 q-Detectable Consistency and Inconsistency Interval 186

Notes to Chapter 8 . 194

Chapter 9: Conclusion 195

9.1 Remarks . 195

9.2 Future Directions . 197

Bibliography 198

xv

LIST OF TABLES

2.1 Classification of security aspects and solutions in OSNs 13

3.1 Notations used in Privado . 41

4.1 Computation Complexity. 69

5.1 Notations used in Anonyma . 100

6.1 Running time of the server and the inviter. 122

7.1 Notations used in Integrita . 157

8.1 Storage overhead of Integrita vs related work. 184

8.2 Communication complexity. 186

xvi

LIST OF FIGURES

1.1 An overview of the thesis modules: Privado, Anonyma, and Integrita. 7

3.1 Privado System Overview. 38

3.2 The ideal functionality FTHRES. 46

3.3 The ideal functionality FRPOPR. 47

3.4 The ideal functionality FR
POCM . 48

3.5 The ideal functionality FR
V S. 50

3.6 An instance of User Registration protocol (UReg). 55

3.7 Advertiser registration protocol (AdReg). 59

3.8 Advertisement protocol (Ad). 60

4.1 Running time of servers in advertising protocol. 71

4.2 Privado vs PPAD in advertising protocol running time. 74

4.3 Target accuracy and Non-Target accuracy. 87

5.1 The sample workflow of an invitation-only registration system. 90

5.2 Anonyma overview. 90

5.3 Parties’ interaction in Anonyma. 107

5.4 Σ protocol of Proof of Invitation Correctness. 113

6.1 The invitee’s running time. 122

7.1 A history tree constructed for the object with 4 posts. 159

7.2 The tree of Figure 7.1 after the insertion of post5. 160

7.3 The membership proof of post3 for version 4th of the shared object. . . 161

7.4 A sample incremental proof. 161

xvii

7.5 Insertion path of post1, post2, post3, and post4. 162

7.6 Insertion path of post1, post2, post3, and post4 under the new addressing.164

7.7 The labeling of nodes using the labeling function L. 165

7.8 Version 7th of the shared object. 169

7.9 Membership proof sample. 169

7.10 Update Status protocol. 174

7.11 Read protocol. 174

7.12 Write protocol. 176

7.13 The Audit Threshold for various number of servers. 179

7.14 The Transition point for various number of servers. 179

xviii

NOMENCLATURE

xix

Chapter 1

INTRODUCTION

One of the most popular systems for sharing information is online social net-

works (OSNs) such as Facebook and Twitter that gained huge public attention in

recent years. In contrast to the World Wide Web which is a content-based system,

OSNs are user based systems where participating users join the network to link with

others and share information. Statistics assert that in an OSN like Facebook there

exist 2 billion monthly active users1. Also, around 80% of users of the Internet visit

one of the OSN sites everyday [1].

Well-known OSNs such as Facebook and Twitter have a centralized architec-

ture where a single service provider manages the whole system [2] i.e., supplies storage

and computational resources for the users and offer various services through which

users are able to share their personal information with one another and make new

friendships. Having a centralized architecture and data aggregation improves usabil-

ity. For example, having one entity for storing the users’ data makes the searching

process easy. Also, by having a central service provider, the system is more flex-

ible in terms of updating and extending the network and changing the underlying

architecture [2].

The centralized architecture also comes with its disadvantages, especially concern-

ing user privacy. The prime observation is that the central service provider has direct

access to the users’ private data, knows the social graph that represents interconnec-

tions among OSN users, and observes user preferences and behavior within the OSN.

Having a single large database containing all the information about users and their

connection information makes OSNs a wealthy source of information for the hackers

2 Chapter 1: Introduction

and hence are frequently targeted by the attackers. Moreover, the collection of users

information is also prone to the service provider misbehavior [2].

The security problems posed by the centralized nature of OSNs have motivated the

research community to develop alternative OSN architecture that is distributed OSN

(DOSN). The prime objective of DOSNs is to remove the central service provider

and distribute its role (e.g., storage of users’ data and serving social networking

functionalities) among multiple distinct entities. This architecture comes into two

major categories i.e., peer-to-peer (p2p) network architecture [1], and federated servers

[3]. In the p2p OSN (e.g., Friendica2 and RetroShare3), every OSN user (referred by

peer) contributes a portion of her storage and computational power to the OSN. The

OSN services shall run by users collaboration relying on their shared resources. Users

act like a server to store and serve other users data, and also act as a client while

requesting data from other peers. The main obstacle of p2p OSN is that individual

peers are responsible for the availability of the data assigned to them which requires

peers to stay online to fulfill this responsibility.

The federated server architecture [4, 5, 6] copes with the data availability issue

in the p2p counterparts. Under this architecture, multiple servers, running by inde-

pendent authorities, are designated for the storage of users data and delivering OSN

services. As such, utilizing federated servers enables full data availability without

requiring users being online all the time. Additionally, this design comes with a sig-

nificant security benefit over the centralized OSNs where none of the servers get to

have a complete global view and control of the private data stored in the system,

which is not the case in centralized OSNs.

1.1 Scope of the Thesis

In the current thesis, the proposed privacy-preserving services are based on the feder-

ated server architecture of OSN. The benefits of using this architecture are two-fold;

due to the storage and computational power of servers, users will enjoy the service

quality and data availability as in a centralized system while the trust distribution

Chapter 1: Introduction 3

among the servers will enable devising privacy-preserving services that would be oth-

erwise impossible in the centralized counterparts. In practice, the federated server

architecture can be realized by having an OSN whose servers are provided by the ISPs

of multiple distinct countries, or by using distinct cloud computing platforms.

As the first contribution of this thesis, we conduct a comprehensive study on the

privacy techniques in secure centralized and distributed OSNs [3] (Chapter 2). In this

study, we also hand researchers with the security holes and vulnerabilities that are not

yet investigated. At a high level, security concerns of OSN users fall into one of the

following categories, preserving data privacy, assuring data integrity and protecting

the confidentiality of social connections. Under the data privacy concern, a user wants

to ensure her data is only accessible to the users of OSN that she authorizes. The

data integrity assures the data owner that her published content is immune against

internal or external tamper, forgery, and censorship. The privacy of user relation

is a new paradigm appears in the social networking services where the system is

user-oriented rather than content-based (like world-wide-web). Users’ relations are a

source of important information as some network inferences can be done by the user’s

friends’ information and interests.

In this thesis, we put three open problems (regarding data privacy, integrity, and

social connection) under the spotlight which we explain next.

Advertising: The very first problem that we underline, regards OSNs commercial

models where OSN providers monetize users’ personal information by selling them

to the untrustworthy advertisers [7, 8]. This clearly is against user privacy desire.

To cope with this issue, existing studies, focusing only on the user privacy, propose

secure designs of OSNs in which users encrypt their data before sharing with OSN

provider [9, 10, 11, 12, 13, 14]. Although data encryption would mitigate the user data

privacy issue, it immediately disables the advertising service and cuts the significant

financial benefit of advertising (the advertising revenue for Facebook in 2018 was

reported as 30.83 billion dollars4). Due to this monetizing inability, providers would

have no convincing commercial model to establish secure OSNs [15]. According to

4 Chapter 1: Introduction

our literature review, no study has been conducted (in centralized and distributed

architectures) to hand OSN provider with a financial model that meets user privacy

as well. To fill this gap, we propose a privacy-preserving advertising module by

which secure OSNs (whose design is based on data encryption) can efficiently perform

advertising and find target customers using the privacy-protected profiles of users.

Invitation-only registration policy: The second module is focused on the secu-

rity concerns raised by the invitation-only nature of group formation in OSNs e.g.,

Facebook page. In such groups, special content or service is to be accessible only

to a trusted or privileged set of users. To comply with the trust assumption, the

group administrator accepts the new member if the newcomer gets invitations from a

certain number of existing group members where each invitation confirms some level

of trust to the invitee. This type of registration is called invitation-only registration

policy. Another closely relevant example is the trustee-based social authentication

deployed by Facebook as a backup authentication method [16, 17]. A backup au-

thentication method is used where the user fails to pass the primary authentication

e.g., forgetting the password [16]. The account holder determines a set of trustees to

the server in advance. When the user loses access to his account, the server sends

recovery codes to the trustees (equivalent to inviters in invitation-only registration

scenario). Upon collection of enough number (recovery threshold) of codes from the

trustees and handing the codes to the server, the user regains access to his account.

In invitation-only registration systems, the group administrator needs to know who

is invited by whom to authenticate and manage new registrations. In some other cases,

like in Telegram [18], not only the administrator but also other members of the group

are informed about the correspondence of a newcomer and his inviters. The group

members who invite a user are mostly among the user’s acquaintances (e.g., colleagues,

home mates, family members, close friends) who have many common preferences

with the user. Due to this reason, information like location, religious beliefs, sexual

orientation, and political views can be inferred about a user by analyzing the common

features among his inviters [19, 20]. Thus, the set of user’s inviters is privacy-sensitive

Chapter 1: Introduction 5

information. Concerning this sensitivity, we dedicate the second module of this thesis

to the proposal of an invitation-only registration method in which a user is able

to authenticate herself to the group administrator needless to disclosing her set of

inviters.

Enforcing view-consistency for shared data: OSNs enable various methods

of data sharing like via users personal walls or social groups. Using the personal

wall, a user may share her personal information (e.g., thoughts, images, and videos),

with the social connections she authorizes on the OSN, i.e., the friends or followers. In

addition to the user being able to continuously update its wall information, her friends

or followers may also update her wall by adding post to it e.g., birthday messages,

and commenting. The similar data-sharing paradigm appears in the context of social

networking groups like Facebook groups where the members of the group can jointly

update the content of the group page by inserting posts.

In the current designs of OSN with a central provider, users’ read and write

requests over the shared data (being a wall or a group page) is sent to the central

OSN server who authorizes the request and acts accordingly. Users interaction with

OSN provider is based on trust that is the server processes the requests honestly and

according to the designated instructions. However, in the current practice of OSNs,

rather than trust, no technique is deployed to enforce such trustworthy behavior of

OSN server. A corrupted server may add arbitrary content to the shared data and

make users accept them as authentic data or hide some posts from some users. As

a historical example, in 2012, several bloggers claimed that Sina Weibo, a Chinese

OSN, aimed to practice censorship by serving different views of the walls to their

followers via hiding some of their posts [9]. Given such historical incidents, it is vital

to tackle view consistency of the object with a practical solution rather than trusting

the service provider. As the third module of this thesis, we spot the view consistency

problem of shared data in OSNs and deliver a solution basing on the federated server

architecture.

6 Chapter 1: Introduction

1.2 Original Contributions

The original contribution of this thesis is A Framework of Privacy Preserving

Services for Distributed Online Social Networks, which embodies the following

list of contributions which are also depicted in Figure 1.1.

Throughout the description, we refer to an honest but curious entity (HbC) (or

passive adversary, interchangeably) as a party who follows all the system protocols

but may try to gather more information from the execution of the protocol. An

HbC adversarial model assumes that the protocol is run by HbC entities. On the

other hand, a malicious entity (or active adversary, interchangeably) represents a

party which has no obligation to follow the protocol specifications and acts as he

wishes. A malicious adversarial model captures a system running by malicious parties.

Throughout this thesis, we assume the static corruption model for the adversary i.e.,

the set of parties controlled by the adversary is fixed. As such, given a party is honest

or corrupted, she always acts accordingly.

Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers Privado [21] is a privacy-preserving

group-based advertising system that works based on the cooperation of N federated

servers each running by an independent authority. Servers receive the advertising

requests of advertisers and personal interests of users in an encrypted format and

are responsible to identify the target customers of the advertisers. In this module,

we introduce the notion of group-based advertising to cope with the security issues

raised by the personalized advertising methods [22, 23]. In group-based advertising,

each advertising request is matched against a group of users’ profiles. If a threshold

number of profiles match with the advertising request, then the entire group mem-

bers are shown the advertisement. We present a formal definition of user privacy

where no adversarial entity must be able to link a particular attribute to a specific

group member. We further supply a formal security proof of Privado in the setting

where N − 1 malicious servers may collude against the user privacy as well as may

additionally employ several fake users and advertisers. Our design enjoys advertis-

Chapter 1: Introduction 7

Secure OSN with Federated Servers

…

Anonymous Invitation-based
System

Anonyma
View Consistency in

Collaborative Data Sharing

Integrita

Privacy Preserving Group-
Based Advertising

Privado

Complexity, Performance
and Security Proof

Complexity, Performance
and Security Proof

Complexity, Performance
and Security Proof

OSN Users

Newcomer

Advertisers

……

Figure 1.1: An overview of the thesis modules: Privado, Anonyma, and Integrita.

8 Chapter 1: Introduction

ing transparency, that is, once the profiles of users and request of the advertiser are

uploaded, the entire matching procedure is run offline by the servers without further

involvement of users or advertisers. The advertising transparency provides benefits

for system performance where the servers’ execution time (to match the advertise-

ments to profiles) would not be constrained by the active time of users (who may not

be online in a regular basis). We define two performance metrics of Target accuracy

and Non-Target accuracy to be used in group-based advertising systems. Using em-

pirical analysis, we capture the effect of group size and threshold value on the system

performance and discuss their security implications. We also carry out experiments

to examine Privado’s advertising running time under a various number of servers and

group sizes. Additionally, we argue about the optimum number of servers concerning

user privacy and advertising running time. Chapter 3 is dedicated to the detailed

design of Privado whereas Chapter 4 covers the performance analysis and security

definition and proof of user privacy.

Anonyma: Anonymous Invitation-Only Registration in Malicious Ad-

versarial Model Anonyma [24] is an authentication method that works based on

the invitation-only policy and protects inviter anonymity. That is, a newcomer is able

to prove to a group administrator that she has invited by a subset of group mem-

bers yet does not require to disclose her exact inviters. At the same time, Anonyma

preserves invitation unforgeability where no user with an insufficient number of in-

viters is able to authenticate herself to the group administrator. We provide formal

security definitions and proofs for inviter anonymity and invitation unforgeability in

the malicious adversarial model. In specific, a malicious adversary, targeting inviter

anonymity, may corrupt the group administrator and some of the newcomer’s inviters

yet would never be able to learn the identity of other inviters. For the invitation

unforgeability, a corrupted newcomer with insufficient inviters who additionally can

eavesdrop communication channels among other users will be unable to successfully

pass the authentication phase. Moreover, Anonyma is efficiently scalable in terms of

the number of inviters. That is, the server can issue credentials to the new members

Chapter 1: Introduction 9

(without re-keying other existing members) to be immediately able to invite others.

In this module, additionally, an anonymous cross-network invitation-based system

AnonymaX is constructed on top of Anonyma which can be of independent interest.

In the cross-network design, a user joins one system e.g., Twitter, by obtaining invita-

tions from members of another network e.g., Facebook. We supply a formal security

definition and proof for AnonymaX against a malicious adversary. The construction

of Anonyma and AnonymaX [24] are explained in Chapter 5. The performance anal-

ysis as well as the security definitions and proofs (of invitation unforgeability and

inviter anonymity) are supplied in Chapter 6.

Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers Integrita [25] provides a data-sharing platform that empowers

view consistency relying on N federated servers. A shared data (or object, inter-

changeably) can be a Facebook group page or individual walls, modeled as a sequence

of posts accessible to a set of authorized users (e.g., members of the Facebook group).

Users can perform read and write operations on the object through interaction with

the N servers. While users shall act honestly and tend to achieve a consistent view

of the object, servers may be malicious/Byzantine entities who may act arbitrarily,

collude, compromise the view consistency by dropping, tampering with, and forging

posts. Integrita guarantees that no coalition of N − 1 corrupted servers is able to

compromise view consistency and display a partial or incorrect content of the shared

data to the users without being detected. In Integrita, we introduce a new level of

view consistency called q-detectable-consistency in which the views of users toward

the object cannot diverge for more than q sequence of posts without detection. Our

proposal outperforms the state of the art (of centralized and distributed architec-

tures) in multiple ways. Integrita is communication-free that is users can catch any

inconsistency in their views relying neither on the users’ collaboration in sharing their

views in each operation nor an out-of-band communication. Every user is able alone

(without relying on the presence of other users) to verify any server-side equivocation

regarding her operation. Integrita provides a replication-free where the shared data

10 Chapter 1: Introduction

is not replicated over all the servers. Instead, only one copy of the shared data is

present in the entire system and each server retains only (an identical) portion of

it. Our numerical analysis asserts that by using Integrita, an OSN with 2 billion

users saves up to 6890 Terabyte storage per year compared to the replication-based

approach. Integrita matches the asymptotic performance parameters of the best cen-

tralized counterparts [9, 26], while enforcing a higher level of consistency. Moreover,

our distributed storage management among multiple servers not only does not degrade

the experience of user’s interaction with the system concerning the performance but

also lowers the computational and storage overhead over each server (compared to

both centralized design and the replication-based proposals). While the storage of

the shared data is distributed among N servers, no communication is required at the

servers side for the coordination of users’ read and write requests. Instead, all the

communication happens solely between the users and the servers. More details on

Integrita is provided in Chapters 7 and 8.

1.3 Organization

The rest of this Ph.D. thesis is organized as follows. In Chapter 2, we provide a

comprehensive study of security issues of the distributed and centralized social net-

works together with the countermeasures. In Chapter 3, we present our proposed

privacy-preserving advertising system, Privado, followed by its performance analysis

and formal security definition and proof of user privacy in Chapter 4. We describe

the design of Anonyma, the second module of our framework, in Chapter 5. Chapter

6 shall provide the the performance analysis of Anonyma, formal security definition

and proof of inviter anonymity and invitation unforgeability. The third module of

our framework, Integrita, is described in chapter 7. We further evaluate the perfor-

mance of Integrita and present formal security definition and proof of view consistency

in Chapter 8. In Chapter 9, we conclude the thesis and shed light on some future

directions.

Chapter 1: Introduction 11

Notes to Chapter 1

1 https://www.statista.com/statistics/346167/facebook-global-dau/

2 friendi.ca

3 RetroShare.net.

4 https://www.statista.com/statistics/544001/facebooks-advertising-revenue-

worldwide-usa/

Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we provide a fine grained classification of common security concerns

and corresponding solutions in centralized and distributed OSNs [3]. We present

state-of-the-art approaches for enabling security in OSNs considering three important

aspects: data privacy alongside access control management, data integrity and secure

social search. In contrast to prior work, we emphasize solutions of data integrity

and secure social search, as well as solutions in DOSNs since this kind of networks

provide more autonomy to their users. We also address architectural design principles

of OSNs in relation to the security aspects.

Our classification of security aspects and solutions in OSNs is summarized in Table

I. Data privacy deals with hiding user’s data from illegitimate curious third parties

while providing access to the legitimate ones. This hiding can be against service

provider (in centralized OSNs) or other users of OSN. While data privacy concern

is addressed, another problem, namely data integrity, should be considered. When

we are sure only trusted friends see our data by the access policies we defined over

our data, what will happen if someone forges a message on behalf of us or temper it.

The former is data owner integrity issue and the latter is the data content integrity.

The solutions regarding these concerns as well as historical integrity and integrity

of data relations are discussed in this chapter. An important functionality in each

OSN is to find and establish new friendships, that can be assumed as social search.

Moreover, social search also addresses finding any content in a social network. The

security and privacy of social search is important since it reveals some information

about the searcher and other entities participating in the search process. For example,

Chapter 2: Literature Review 13

if Alice wants to find her old friend Carol, then the relationship of Alice and Carol will

be disclosed to service provider, or in the case of DOSN, to the intermediate nodes

participating in the search.

Category Security aspects/solutions

Data privacy Information substitution

Symmetric key encryption

Public key encryption

Attribute based encryption

Identity based broadcast encryption

Hybrid encryption

Data integrity Integrity of data owner and data content

Historical integrity

Integrity of data relations

Secure Social Search Content privacy

Privacy of searcher

Privacy of searched data owner

Trusted search result

Table 2.1: Classification of security aspects and solutions in OSNs

There exist prior studies classifying security and privacy issues in OSNs [2, 27,

28, 29]. Some of them review and classify the proposed approaches in the literature

[2, 27, 28], and another restates proposed methods [29]. However, data integrity and

secure social search are important security issues which are not considered extensively

in prior work. Our approach is to provide a fine grained classification for security

issues and solutions in OSNs.

14 Chapter 2: Literature Review

The rest of the chapter is organized as follows. In Section 2.2, we describe the

architectural design principles of OSNs. Section 2.3 focuses on user data privacy pro-

tection and access control management techniques. Aspects of data integrity problem

and the corresponding solutions are described in Section 2.4. Secure social search

aspects and solutions are explained in Section 2.5. Finally, we conclude with a dis-

cussion of other concerns and open problems as future research directions.

2.2 OSN Architectures

2.2.1 Centralized Online Social Networks

All the users’ private and personal data like their relationships, uploaded images, and

posts, etc. are observable for the OSN provider. The amount of information available

to the service provider and the ability to control them makes it an important source of

security problems [28], [30]. The security issues raised by the central service provider

are as follows [28]:

• Data retention: This issue refers to violation of the information lifetime, which

makes the data available longer than intended. Provider takes backups of users’

data and when users delete their data, service provider may pretend to delete,

but nothing may change from the provider’s view.

• OSN employee browsing private information: This issue is raised by full

accessibility of OSN provider to data that can be misused by the employees of

OSN provider.

• Selling of data: Advertisers need to know users’ interests, habits and, prefer-

ences to be able to accurately find the target users who are interested in their

products . For this reason advertisers buy users’ data from OSNs. In this way,

OSNs will be motivated to sell this information to get income.

Two main approaches are used to make the centralized OSN architecture secure:

Chapter 2: Literature Review 15

• Some studies aim to overbear the security problems in existing OSNs, with

the idea that it is better to improve the well-designed present OSNs, instead

of migrating to a distributed architecture. A prototype Facebook application

addressing some security issues of the Facebook platform by proxy cryptography

has been built [31]. A virtual private social network without any collaboration

of service provider is made to mitigate the privacy issues of social networking

sites [32].

• Other studies propose a framework for a centralized OSN providing additional

privacy benefits [33, 9, 34]. Hummingbird [33] tried to improve security and

privacy of OSNs which are similar to Twitter. For this purpose, Hummingbird

designed a prototype for implementation of Twitter by considering the pro-

tection of tweet contents and hashtags from the malicious centralized server.

Frientegrity, a framework for social networking applications which is able to

detect misbehaviour of malicious service provider, is proposed in [9]. Persona,

[34] took the power of OSN providers in the case of determining the accessibility

of users data for applications. Indeed, it gave users this autonomy to decide

who can see their private data, even for the applications, with fine-grained

policies.

2.2.2 Distributed Online Social Networks (DOSNs)

DOSNs can be classified based on system components’ organization. There are two

main system components: control and storage. Control deals with lookup (user and

content) and identity management services, and storage addresses the data storage

and availability. A high level classification extended from [1] is as follows:

• Structured: Users participate in a structured overlay, or use a third party

structured overlay providing service. In such an organization, queries will be

resolved in a limited number of steps. Most of the recent DOSNs use structured

16 Chapter 2: Literature Review

organization and distributed hash tables (DHTs) for the lookup service. Prpl

[35], Peerson [36], Safebook [37] and Cachet [38] all utilize structured control

overlay. Vis-a-vis [5] designed its own structure distributed location trees, which

provides efficient and scalable sharing.

• Semi-structured: Semi-structured DOSN makes use of super peers, which are

a subset of all users who are responsible for storing the index and managing other

users as proposed in Supernova system [39]. Such a structure may include lookup

services and tracking of users up-time to find the best places for replication.

• Unstructured: No user in the system store any index, and operations of system

are simply done by the use of flooding or gossip-based communication between

users [40]. This kind of management has almost zero overhead.

• Hybrid: This kind of systems combine the benefits of the two types of orga-

nizations mentioned above. As the storage overlay, Cachet [38] uses hybrid

structured-unstructured overlay using a DHT-based approach together with

gossip-based caching to achieve high performance. In the hybrid organization

of structured and semi-structured storage overlay of Prpl [35], users are allowed

to store their data in a distributed and unstructured way, and then there is a

process per user that federates the distributed storage of each user and act as

a super peer. These super peers form a structured overlay of storage. The hy-

brid control overlay of Cuckoo [41] uses structured lookup for finding rare items,

whereas, the unstructured lookup helps with the fast discovery of popular items.

• Server Federation: This is another architecture for decentralization of OSN

[2]. The main purpose of this architecture is to distribute users’ data among

several servers which are running on separate storage entity. In this way none of

them will have a complete global view of the private data stored in the system.

Chapter 2: Literature Review 17

2.3 Data privacy

Data privacy protection is defined as the way users can fully control their data and

manage its accessibility (i.e., to determine which part of data being shared with

whom). The latter is known as access control management, and can be done by

defining different groups with various access levels. A group is a set of users having a

common feature (e.g., fans of football). To obtain the aforementioned goals, most of

the proposed frameworks studied in this chapter use data encryption methods (except

[32, 5]). For data privacy protection, the following solutions exist:

2.3.1 Information Substitution

Substitution means replacing real information with fake information. This solution is

mostly used for hiding data from the service provider. For example, some predefined

settings of OSNs force users to share their information in public (e.g., profile picture

and name). In such a case, the user can share some pseudo information with service

provider to be shown on his profile page and send the real information only to trusted

friends. This information, in the form of XML files, are stored and processed locally

on the friends’ systems by the use of a browser extension [32]. A variant of this

method can be applied for hiding users information from targeted ads. Users’ data

will be split into smaller parts called atoms. Users who trust each other can swap

their atoms of the same type, which are associated with a unique index kept in a

dictionary. For swapping an atom, its index will be encrypted, and the content of the

resulting index will be used for swapping. Dictionary is public and only authorized

users will be able to trace swapping results [42].

2.3.2 Symmetric Key Encryption

Symmetric (private) key encryption is a well-known technique for encrypting data.

The term of symmetric comes from this fact that the same key is used for both of en-

cryption and decryption [43]. In fact, the key is the shared secret between all parties

18 Chapter 2: Literature Review

to access the private data. Since symmetric encryption methods use simpler oper-

ations, they have the advantage of running faster in comparison to other schemes.

On the other hand, having the symmetric key for both encryption and decryption

causes some integrity problems. In order to obtain integrity of data alongside utiliz-

ing the speed of this technique, symmetric key encryption is mostly used with the

combination of other data integrity methods (see Section IV).

In terms of access control management in the symmetric key encryption systems,

we should encrypt our data by the use of a symmetric key and then share it with the

users who we want to be able to decrypt our data. For each new group, a distinct

key should be defined. Adding a user to the existing group means sharing the group

key with that user. For the revocation, we need to create a new key and re-encrypt

the whole data. Of course, if someone already decrypted the data and kept a copy,

we cannot revoke that.

2.3.3 Public Key Encryption

In the public-key encryption two different and separate keys are used for encryption

and decryption [43]. Based on this reason it is also known as asymmetric encryption.

These two keys may seem to be separate, but they are mathematically related. The

keys named as public key and private key (secret key). The former used for

encryption and the latter for decryption.

In order to manage users’ data accessibility, data should be encrypted under the

public keys of all group’s members and then sent to them. When a user leaves the

group, his public key will be deleted from the list of group members. For joining,

the condition is reverse. Systems of Flybynight [31] and Peerson [36] use public key

encryption.

2.3.4 Attribute Based Encryption (ABE)

ABE is a kind of public key encryption. In this scheme, some attributes make the

secret key related to the ciphertext. For example, assume that there is a set of

Chapter 2: Literature Review 19

attributes like ‘relative’, ‘doctor’, and ‘painter’. One can decide to assign attributes

of ‘relative’ and ‘doctor’ to one his friends named Alice. To do so, he must create a key

containing ‘relative’ and ‘doctor’ attributes and give it to her [44, 45, 46]. After that

point, Alice will be able to decrypt every message encrypted under the combination

of attributes given in her key. The attributes embedded in the encrypted message are

implicitly managing the accessibility of that message i.e., defining a group of members

who are the exact audiences of that message.

In ABE, each message should be encrypted with an access structure defined over a

set of attributes. This access structure can be any logical expression over the selected

attributes, for instance (‘relative’ OR ‘painter’) or (’relative’ AND ’doctor’). When

the logic operation between attributes is OR, it means that having one of the listed

attributes is enough. However, for the AND, the condition is different and having all

the attributes is necessary. In ABE, it is enough to do a single encryption operation to

construct a new group. Usual revocation methods for ABE use frequent re-keying. To

remove the accessibility of a revoked user, the previous data which were accessible by

him must be encrypted and stored again. This kind of re-encryptions causes an extra

overhead to the access control management of OSN and makes it time-consuming.

There exist two kinds of ABE based on the association of access structure with the

users’ secret keys or with the encrypted messages. In the ciphertext policy ABE

(CP-ABE), access structure is determined in the encrypted message and key contains

a set of attributes while the condition in the key policy ABE (KP-ABE) is reverse.

Ciphertext policy has a wide range of usage for supporting data privacy in OSNs such

as Cachet [38] and Persona [34] making use of ABE.

2.3.5 Identity Based Broadcast Encryption (IBBE)

In a Broadcast Encryption (BE) scheme, there exist a broadcast channel among

the list of the recipients [47]. Each user has a private key. The broadcaster selects a

group of identities in order to encrypt the messages for them. The broadcaster then

transmits the messages to the recipients listed in the channel. The recipients use their

20 Chapter 2: Literature Review

private keys for the decryption.

In an Identity Based Encryption (IBE) scheme, public keys can be any arbi-

trary string [48] like email addresses. In such schemes, there is a trusted third party

named Private Key Generator (PKG) that produces corresponding private keys.

In Identity Based Broadcast Encryption (IBBE) schemes, audiences of a

broadcast group can use any identifier string as their public keys [49]. Considering

the OSNs, the username or e-mail addresses of the members can be used as their

public key for sending encrypted messages. From this point of view, IBBE is more

flexible than ABE, since it addresses individual recipients instead of the whole group.

Removing a recipient from the list would then have no extra cost. Systems such as

[50, 34] also use this encryption approach.

2.3.6 Hybrid Encryption

A hybrid encryption is one which combines the convenience of a public-key encryption

with the high speed of a symmetric-key encryption. In such systems, access control

management is performed in two phases:

• Symmetric encryption of data by the use of a symmetric key.

• Applying public key encryption under the public keys of all group’s members

to encrypt that symmetric key.

While many implementations share this hybrid encryption framework [51, 33],

there are differences in the choices of the symmetric and asymmetric-key encryption

used. In Hummingbird [33], the symmetric key is derived by applying a combination

of a pseudo random function (PRF) and a hash function on a particular part

of message (hashtag). For the key dissemination an oblivious pseudo random

function protocol must be followed between user and his friends.

Informally, a PRF [43] family is a set of polynomial time functions such that no

one can distinguish between a function randomly chosen from this set and a function

that its output is completely random. A PRF f takes two inputs: a secret s and a

Chapter 2: Literature Review 21

variable x, and outputs fs(x).

An Oblivious PRF (OPRF) [52] is a protocol running between two parties, sender

and receiver. The goal of the protocol is to compute fs(x) in a secure way. Receiver is

the person who wants to know the value of function f in x and of course he determines

x. The sender is the person who knows and determines the secret value of s, so he is

able to compute fs for any input. At the end of the execution of the protocol, receiver

will learn fs(x) from the interactions while sender nothing.

The hybrid structure of the access control lists (ACLs) in Frientegrity [51] is

organized in a persistent authenticated dictionary (PAD). Thus, ACLs are PADs,

making it possible to access in logarithmic time. Persona [34] uses CP-ABE for

data encryption and PKI to share the keys between friends. Cachet [38] uses a hybrid

scheme of symmetric key encryption and CP-ABE: the symmetric key which is chosen

randomly for data encryption, must be encrypted with ABE for the set of audiences

to make them able to decrypt the data. Another hybrid scheme with combination of

public key encryption and CP-ABE is applied to grant friends the ability of adding a

comment to a post.

2.4 Data Integrity

A common security issue of centralized and distributed OSNs is data integrity [53,

54, 1]. The data integrity is defined as the protection of data from unauthorized or

improper modifications and deletions [43, 55]. For the sake of simplicity, we explain

and classify different aspects of data integrity in OSNs by the use of a short and simple

scenario. Assume that Bob is organizing a party and wants to invite his friends to

the party. Alice receives an invitation letter in a packet from Bob, containing this

message: “Come to my party held at my home on Friday”. Considering this scenario,

the different aspects of data integrity are listed as follows:

• Integrity of the data owner: How Alice can be sure that the sender of the

message is Bob?

22 Chapter 2: Literature Review

• Integrity of the data content: Is the content of the message valid? For

example, did Bob really say that there will be a party on Friday at his house?

• Integrity of data history: Assume that Bob holds several parties per month,

all on Fridays. Alice had been invited to some of them (by receiving invitation

letters). Is this invitation letter valid for an upcoming event or has it already

expired? Also, was this message delivered to Alice at the proper time or in an

even weaker assumption, was this message delivered to Alice at any time?

• Integrity of the data relations: Is this message issued for Alice or is it Bob’s

invitation to someone else but sent to her?

Commonly used methods to protect data integrity are based on digital signatures

[56, 37, 36, 40, 38, 35]. A digital signature is a mathematical scheme used by the

issuer of a digital message in order to convince the recipient about the integrity of

the message. Digital signatures are based on public key cryptography [43]. In most

of the cases, the message is signed indirectly. In the other word, first the hash of the

message obtained by employing a hash function. After that, the hash of the message

is signed by a the digital signature scheme. Hash functions can map inputs with

different sizes into a fixed length values [43]. For the sake of saving time and space,

signing a hashed message is preferred. Moreover, for security, it is needed that the

hash function is collision-resistant; so it is very hard to find different messages with

the same hash output.

2.4.1 Integrity of the data owner and the data content

The integrity of the data owner and content can simply be guaranteed by the use of

digital signature [56], assuming the public key distribution problem is solved. For the

signature verification, it is important to know the valid verification key of each signer.

One solution is distributing proper keys out-of-band like physical meeting [36, 51] or

transferring the keys via e-mail [5].

Chapter 2: Literature Review 23

2.4.2 Historical integrity

For the data history integrity, one solution is to use hash chaining alongside digi-

tal signature. In this method, the digital signature must be applied on each entry

published by a user, and includes the hash of at least one of his prior posts. This

causes a provable partial ordering for his posts [40]. Another solution is to estab-

lish a dependency between the timelines of different publishers [40]. In this solution,

the publisher adds the hashes of prior events from other participants alongside using

the digital signature. In this way, a provable order between their messages will be

established.

Fork-consistent systems can be used for ensuring historical integrity. In [51],

authors proposed object history tree accompanied by a fork-consistency approach.

The object history tree data structure addresses historical integrity problem where a

malicious service provider or any data storage utility cannot present different clients

with divergent views of the system’s state. As an example of this scenario, assume

the situation where the service provider hides some parts of our friends’ updates by

providing just a partial view to us. Clients share information about their individual

views of the history by embedding it in every operation they perform. As a result, if

the clients who have been equivocated by the service provider communicate to each

other, they will discover the provider’s misbehaviour. In this method, the service

provider also digitally signs the root of object history tree in order to prevent the

client from later falsely accusing the server of cheating.

2.4.3 Integrity of the data relations

To guarantee the links between two entities in the system, for example a post and

corresponding comments, one solution is to embed a proper signing key for signing the

comments of that post. The signing key is encrypted in a way that only authorized

users can decrypt and use it for posting a comment to that particular post. Corre-

sponding verification key is also located in the content of the post. This verification

key can be used to verify whether the comments belongs to the post or not, and

24 Chapter 2: Literature Review

also to verify the privileges of the commenter [38]. Each post will contain a different

signature key, which enables a different sub-groups of the users to write a comment

for different posts.

2.5 Secure Social Search

Searching in digital social space is a crucial component of OSNs [57] as the social

network users mostly do not prefer to be restricted to the existing friends and they

intend to find new friends with common interests. Hence, for supporting social search,

disclosing some information about users’ profiles is required. The more information

that is available, the more accurate the social search results would be. Thus, a

trade-off between search capabilities and privacy is raised. While finding friends

is one application of social search, advertising is another kind of searching where

an advertiser searches for target users with a related interest to advertise products.

Security concerns related to social search can be classified as follows:

• Content privacy: Privacy of content addresses information leakage by search-

ing a content. Since the content of searched subject can reveal the interest of

the searcher, its privacy must be guaranteed.

• Privacy of searcher: Hiding the identity of searcher is an important issue as

it is also supported in the existing OSNs like Facebook. For instance, if Alice is

searching for one of her old friends, Facebook will list a series of friends close to

the criteria Alice is searching for, while none of the listed result persons would

be informed about this search. Hiding the identity of searcher from the service

provider and other OSN’s users who may participate in the searching process

(in the DOSNs) is also a concern.

• Privacy of the searched data owner: It is important for other users to be

able to determine to which extent their data would be available for the system’s

searches.

Chapter 2: Literature Review 25

• Trusted search result: How much trust-able is the result of the search? In

the case of finding friends with common interests, one user in the search output

may be a better choice among all the results when level of trust and popularity

is considered.

Based on the system’s objective, different levels of privacy can be applied consider-

ing the security concerns. For example, privacy of searcher in an advertising scenario

might not be important. Since the advertiser wants to introduce itself to the users,

there is no concern about its identity. On the other hand, in the case of finding a

friend, the privacy must be guaranteed for most of the security concerns.

2.5.1 Content privacy

Blind Signatures can help to provide the privacy of content. Blind signature means

signing the document without knowing what the document contains [58]. Humming-

bird [33] follows an interesting approach where a signature of a massage’s keyword is

used as a key to encrypt the message. By considering this idea, anyone who gets the

signature on that keyword can also decrypt the message. This method can be used

in Twitter for publishing and subscribing. Each subscriber will get the signature on

the main keyword (hashtag) of each tweet, by the use of the blind signature, while

his interest will not be revealed to the publisher.

2.5.2 Privacy of searcher

A solution to support privacy of searcher is to use proxy. In this method, the real

identity of users will be replaced by aliases via the proxy server. Since the proxy server

knows all the aliases of their users, it can forward messages correctly. Servers cannot

see the real names of other servers’ users. However, the security of this approach can

be under the risk by collusion of proxy servers [2].

Trusted friends network is another approach that can be used to support

privacy of searcher. In this solution, each user connects directly to trusted friends to

forward messages. It will cause a concentric circle of friends around each user, which

26 Chapter 2: Literature Review

makes it possible to communicate with the user without revealing identity or even IP

address [37]. In the above solution, some relaxation considered that friends of a user

are trusted parties. That is, the user is sure that his trusted friends would not cause

any security problems by knowing that he is the source of a request.

Zero Knowledge Proof (ZKP) alongside using pseudonyms is another solution.

By employing the ZKP, one can prove that a given statement is true without revealing

any extra information about that statement. In the other word, during a ZKP, the

only information that is revealed about the statement is that it is true or not [59]. A

user can use a pseudonym while searching in the network, and when (s)he wants to

reach a content belonging to another person, (s)he uses ZKP to prove having privileges

to access [60].

2.5.3 Privacy of the searched data owner

Regarding the security concern about the privacy of the searched data owner, one

solution is to define resource handler for data. In this way, every data item has

a handler as a reference to that data. For example “Alice’s birthday” instead of “26

October 1990”. When one is interested in knowing the content of that handler, he

must prove himself to the data owner and then get access to the real content [60].

2.5.4 Trusted search result

For finding the best choice among the social search results, one solution works based

on the real life assumption that the trust between friends are the means for delivery.

It means that if Alice trusts Bob and Bob trusts Sara, then Alice can trust Sara too.

The amount of trust assigned to Sara by Alice, based on the search chain from Alice

to Sara, is a function of trust levels of every intermediate friend of that chain to the

successor friend of that chain [61]. In this way, the target users can be ranked and

then chosen.

Chapter 2: Literature Review 27

2.6 Conclusion and Open problems

Popular OSNs have hundreds of millions of active users, and these networks serve

new forms of communication, organization, and information sharing. Most of OSNs

present the followings functionalities: profile creation, access control management,

commenting and social search (finding friend and friendship establishment). These

functionalities must be served in a secure manner and they should not affect the

privacy of users. Security issues raised in OSNs can be classified into three general

categories: Data privacy, data integrity and secure social search. Most of the existing

attacks in OSNs threat these categories. In this chapter, we reviewed recent solu-

tions of the aforementioned security challenges. However, there exist several security

problems which have been discovered but have not been fully solved yet.

• Implicit information leakage: Being sure that your data has been shared

with authorized users is a different problem when compared to the problem of

recognizing which part of data is sensitive. Certain kind of information can

implicitly be derived from published data. For example, a phone number by

itself does not contain any important information but it can be shown that the

name of phone’s owner alongside with the name of his parents can be extracted

by having the phone number [62]. It is important to identify what kind of

information can be inferred from a published and seemingly simple data. This

problem, related to such information which are not explicitly noticeable but

implicitly extractable, is called implicit information leakage. To the best of our

knowledge, no solution for the implicit information leakage has been proposed

so far.

• Data resharing: As long as the friends of a user are trust-able and do not

reshare the data which the user shared with them, no problem will be faced.

However, there is no control if they want to reshare the user’s data with others.

In fact, security and privacy is a collective phenomenon [63]. The main problem

is how it would be possible to prevent a user’s friends from re-sharing the user’s

28 Chapter 2: Literature Review

data. This problem is similar to showing a hard-copy of an image to a person

while he can see the image under the owner’s consent, and he cannot make a

copy of it and he has to turn it back to the owner.

• Privacy preserving advertising: Another problem is to provide privacy pre-

serving advertising for a service provider storing encrypted data of users in order

to get income. It is trivial that the service providers commonly reject a business

model that prevents them from users’ plaintext data mining for marketing pur-

pose. However, such business model has not been well studied yet. Although

there has been some work on privacy preserving advertising systems [64, 65],

the development of business models that can support privacy preserving services

hosted with third-party providers needs to be investigated further.

There are also other concerns out of the scope of this chapter, however there exist

other studies that covered these concerns:

• Protection of data from API : Online social networks usually employ appli-

cation systems. In most of them, there is no fine grained policy that can control

the access of the application to the personal content. In other words, after the

user employs an application, he implicitly gives the application all the accesses

to the personal content it wants. A recent study [29] reviews proposed works

related to this concern.

• Network inference: The network inferences show that it is possible to gain

access to the users’ information that do not consider explicitly in their OSN’s

shared data. In some cases, this access possibility proved to obtain even very

easily. The concepts of identifying hubs, making link predictions [66] and infer-

ring user attributes have been discussed in [29].

• Sybil attacks: Sybil attacks are considered very dangerous for preserving the

proper operation of an OSN. In a sybil attack, the reputation system of a net-

work will be subverted by attacker who makes (usually multiple) pseudonymous

Chapter 2: Literature Review 29

entities. There are multiple ways in which the attacker can subvert the reputa-

tion system. For example, by sending spam, trying to de-anonymize the social

network by use of sybil friendship, and simply impersonating other users to

accuse them [29].

• Hiding the social graph: A social graph represents the users connections

among each other, their preferences and behaviour in the social network. Users’

relations are source of important information. Some network inferences can

be done by user’s friends information and interests. Work of [2] has reviewed

potential approaches to protect the social graph.

• OSN anonymization and de-anonymization: OSN providers publish their

data for the research activities in the industry and academia. However, very

sensitive information could be revealed explicitly and implicitly from the social

graph. There should be an ”anonymized” way that let the OSN providers to

publish these data sets in a way that minimizes the possible risks for their users.

Obtaining the anonymized data, one can reverse the anonymization process

and identifies the corresponding nodes to the data set (which is known as de-

anonymization). Prior studies of [66, 29] cover this concern.

Chapter 3

PRIVADO: PRIVACY-PRESERVING GROUP-BASED

ADVERTISING USING MULTIPLE INDEPENDENT

SOCIAL NETWORK PROVIDERS

3.1 Introduction

Motivation: OSNs offer advertising service where the advertisers pay OSNs to

find their targeted customers out of social network members. In particular, in an

advertising scenario, every user fills and uploads a profile (like the Facebook profile)

that contains a set of attributes varying from demographic information to personal

interests and hobbies (e.g., age, education, music interests, sports activities. etc.).

Likewise, advertisers submit their requests indicating a set of attributes for the in-

tended customers. OSN provider examines the profiles to find target customers and

serves them with proper advertisements. Advertiser will be charged accordingly.

The collection of user’s personal data at the OSN side raises privacy issues [3] (as

we discussed in Chapter 2) for which existing studies propose utilizing data encryp-

tion. However, that immediately disables advertising service, and hence leaves secure

OSNs with no convincing commercial model. To fill this gap, we propose Privado

[21] as a privacy-preserving advertising system by which secure OSNs can efficiently

perform advertising and find target customers using the privacy-protected profiles of

users. Privado follows group-based advertising notion and also satisfies advertising

transparency (we elaborate on these two terms in the followings). The former helps

user privacy and the latter is essential for the system performance.

Personalized vs Group-based Advertising: Group based advertising is a notion

that originated from PPAD [67] as a solution for the security issues that arise in

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 31

personalized advertising. Any secure personalized advertising ultimately compromises

user privacy. That is, when an encrypted profile is matched against an advertising

request (that contains a set of attributes), the success or failure of the matching

indicates the presence or absence of those attributes inside that encrypted profile.

As a concrete example, let F represent the personalized advertising function that is

run by a trusted third party (TTP). The OSN provider, who has received advertising

requests from the advertisers, would like to query F and find the target customers

for each advertising request. F receives two inputs: a set of attributes from a user U

which indicates her interests like AttSet=(”art”, ”football”, ”music”, ”programming”)

and another set of target attributes like TAud=(”football”, ”music”). F outputs 1

or 0 to the OSN provider indicating whether AttSet matches TAud (more formally,

TAud ⊆ AttSet) or not. In the example above, F (AttSet, TAud) would return 1

as AttSet contains the attributes indicated in TAud. As such, the OSN provider

would immediately learn that U is interested in ”football” and ”music” (even though

the OSN provider never gets to see the plain set of user attributes since everything

went through a TTP). Thus, after enough trials, the OSN provider can learn all

the attributes inside an encrypted profile. Note that this leakage is inherent to any

personalized advertising approach regardless of how the secure matching is carried

out. In essence, this leakage is through the output of the matching but not the

way the matching result is computed. To mitigate this privacy issue, Taheri et al.

[67] introduce the notion of group-based advertising and provide a cryptographic

solution for it. In group-based advertising, users are split into equal size groups

during their registration and the group formation is static. Once the groups are set,

every advertising request is matched against the encrypted profiles of each group. If

the number of the matched profiles inside the group exceeds a threshold, the group is

marked as targeted and all of its members are shown the advertisement. As such, and

assuming users are divided into groups of size k, we redefine the advertising function

as F (AttSet1, ..., AttSetk, TAud). F receives k sets of attributes AttSet1, ..., AttSetk
from k members of a group as well as another set of target attributes TAud and

32
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

outputs the number of matches in the group i.e., |{i|1 ≤ i ≤ k and TAud ⊆ AttSeti}|

where |.| indicates the size of the set. We remark that while the functionality is defined

such that the users submit their attributes to the TTP directly, in practice, this is

done via the OSN provider who collects the privacy protected attributes of users (we

consider the idealized privacy protection where the OSN provider does not receive

users attributes and only gets to see the output of F). Note that the group matching

outcome does not (and must not) indicate attributes of which user exactly matched

the request; instead, it only asserts the total number of matches. When that number

exceeds a threshold, the OSN provider serves the advertisement to all group members.

Hence, unlike the personalized advertising, the group matching result would not be

linkable to the individual members. In other words, the OSN provider only learns the

aggregate of attributes rather than the exact targeted individuals.

Advertising Transparency: In addition to user privacy, Advertising Transparency

[67] is another requirement to be fulfilled in OSN advertising systems. That is, once

the profiles of users and request of the advertiser are uploaded, the entire matching

procedure is run offline by the servers without further involvement of users or adver-

tisers. Users are served by proper advertisements (which are found via the matching

procedure) in their next log-in. The advertising transparency provides benefits for

system performance where the server’s execution time (to match the advertisements

to profiles) would not be constrained by the active time of users (who may not be

online in a regular basis). As another requirement of advertising transparency, users

and advertisers should not need to know or communicate with each other. This prop-

erty is essential considering the fact that in an OSN like Facebook there are 2 billion

monthly active users1 and 6 million monthly active advertisers2, and making them

communicate is impractical.

Related Works: Advertising problem in secure OSNs with the aforementioned re-

quirements results in a unique setting that has never been addressed in prior studies

except for [67]. In the context of secure online behavioral advertising [68, 69, 65, 64],

provable user privacy and advertising transparency are lacking features. Proposals in

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 33

server-aided private set intersection [70, 23, 71, 72], as well as server-aided two-party

computations, cannot achieve user privacy under the coalition of server and advertiser

[23, 22, 73] or they lack advertising transparency [70, 23, 71, 72]. The similar problem

applies to the context of public-key encryption with key search [74, 75, 76, 77, 78].

Secure Multi-party Computation (SMPC) protocols [79] come with an issue where

the communication complexity of parties (i.e., servers in our case) is linear with the

depth of computed circuit (i.e., matching procedure). In Privado, while we utilize

some SMPC techniques [80, 79], we propose a very carefully designed matching func-

tion which avoids multiplication gates and the subsequent communication overhead

(which can be of independent interest).

Privado vs PPAD: Taheri et al. proposed PPAD [67] as the first privacy-preserving

advertising proposal for secure OSNs. PPAD achieves both user privacy and advertis-

ing transparency but under two constraints. First, PPAD relies on two non-colluding

servers whose cooperation compromises user privacy. Second, user privacy is guar-

anteed under honest but curious (HbC) adversarial model where all the parties must

follow the protocols precisely.

In Privado, we mitigate the constraining conditions of PPAD. Firstly, we relax

the assumption of PPAD about having two non-colluding servers by proposing a

distributed design consisting of N servers each being operated by an independent

authority. User privacy is protected even if N − 1 servers collude. As the second

enhancement on top of PPAD, Privado offers a stronger security guarantee by with-

standing the malicious adversarial model where entities are allowed to deviate from

the protocol specifications. In Privado, we assume that up to N − 1 servers may

maliciously collude. Also, the adversary can register fake advertising requests and

user profiles.

PPAD to Privado non-triviality: A naive attempt to extend PPAD to the N

server and malicious setting can be applying SMPC techniques. However, simply

running SMPC between N servers would be inefficient compared to Privado. In par-

ticular, SMPC assumes the servers know the inputs, whereas, in the current setting,

34
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

the inputs of the servers are encrypted user profiles.

Another non-triviality lies in the fact that PPAD makes use of a privacy service

provider as a trustworthy entity through which group members receive some secret

information (this secret data shall be integrated into users profiles and would help in

computing the group matching results). However, in Privado, none of the servers are

trusted. Thus, another challenge is to perform the same confidential data dissemi-

nation using N servers which are additionally malicious. Notice that any solution to

this problem should also comply with user privacy and advertising transparency.

N Server Motivation: In Privado, we utilize N servers each run by an independent

provider. As long as at least one server would not collude with the rest, we protect

the privacy of the users. Such setting has been similarly utilized in outsourced multi-

party computations [81, 79, 82, 83]. In practice, this can be realized by having an

OSN whose servers are provided by the ISPs of multiple distinct countries. As such,

collusion is less likely since colluding countries would have to mutually compromise

the privacy of users of their own country to their opponents. Another motivation

for such a realization is that all the contributing authorities would financially benefit

from such a design where they share the advertising revenue. Deploying multiple

conflicting parties for the sake of privacy is similarly sought in the electronic voting

(e-voting) systems [84, 85]. There, the conspiracy of tallying authorities is restrained

by deploying multiple conflicting entities such as political parties of a country.

3.2 Related Works

In this section, we describe the related works and compare them with Privado. We

first discuss PPAD [67] as our main counterpart. Then, we additionally investigate

four other different areas that are the most similar to the present context and identify

their shortcomings when applied to the OSN advertising scenario.

PPAD: Privacy-Preserving Group-Based Advertising in Online Social Net-

work: PPAD is a secure advertising system which deploys group-based matching

notion and makes use of two servers called the OSN server and the Privacy Service

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 35

Provider (PSP). PPAD satisfies advertising transparency as well as provable user pri-

vacy. However, it has two main shortcomings. Firstly, in PPAD, the data decryption

power is given to the PSP, and hence user privacy is tied to the fact that the OSN

provider would not be able to corrupt that single PSP. This is a huge trust assumption

to be placed on a single party and might be very hard to achieve in real life. Secondly,

the adversary is an honest but curious entity which is supposed to precisely follow

the protocol descriptions.

Secure Online Behavioral Advertising Systems (SOBA): In SOBA, a server

named broker is connected to a set of web page owners. As users visit different web

pages, the web page owners communicate this data with the broker. The broker

then is able to create a behavioral profile for each user according to the visited web

pages. The advertising companies pay to the broker to gain users profiles and be able

to advertise for their target users on the web pages. The proposals in the context

of SOBA are not applicable to the OSN advertising due to the lack of advertising

transparency [68, 69, 65] and provable security [64].

Server Aided Private Set Intersection (S-PSI): In an S-PSI protocol, two par-

ties, holding their own private sets of elements, are willing to compute their sets’

intersection with the help of a third server. In this context, solutions either violate

the advertising transparency [70, 23, 71, 72] or when transplanted in the OSN adver-

tising they fall short in providing user privacy (as we define in advertising context)

[23, 22]. In fact, PSI protocols usually make two assumptions that conflict with our

required features: 1- they assume that the data holders can directly communicate

some secret information unbeknown to the server which is against advertising trans-

parency 2- they assume that set holders and the server are mutually untrusted and

non-colluding [86, 73] whereas in our setting advertiser (one of the set holders) is coop-

erating with the server. Moreover, none of the prior PSI protocols offer a group-based

method (matching multiple sets with one) and such an extension is not trivial.

Public Key Encryption with Keyword search (PEKS): PEKS is an attempt to

outsource searching over data that is encrypted using a public key system. Encrypted

36
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

data is usually outsourced to an external server who is responsible to respond to the

data owner’s search queries. The first issue with PEKS solutions is that they achieve

privacy by assuming that the querier and the server are not colluding. This is in

contradiction to our assumption (advertiser and server collude). Server and querier

collusion enables keyword guess attack [74, 75, 76, 77, 78] which is against user privacy

in the advertising scenario.

Server Aided Two/Multi-Party Computation (S-2PC/MPC): In S-

2PC/MPC protocols two/multiple parties holding their private data wish to compute

a function of their inputs by the help of server(s). Parties only learn the output of

the function and nothing else.

The major incompatibility of MPC/S-2PC protocols for secure OSN advertising is

that they cannot support advertising transparency. Advertising transparency forbids

any direct communication among users (group members), between users and the

advertisers, and user/advertiser with the OSN servers except the registration phase.

The inability of MPC protocols [87, 88, 89, 90, 91, 92, 93, 94] to support advertising

transparency roots in the fact that at some pint in the offline or online phase of

the protocol players need to communicate some secret information with each other.

This communication has to be repeated per function evaluation. When we apply

this scenario to group-based OSN advertising, this would cause the users and the

advertisers to stay in contact (either to each other or with the OSN provider) for

every execution of the function. This violates advertising transparency.

In S-2PC proposals, the collusion between one of the data holders and the server

[95, 96] will compromise the privacy of the other data holder. Adoption of such solu-

tions for our advertising problem in which we allow servers collude with the advertisers

result in the violation of user privacy.

MPC protocols [79] also come with an issue where the communication complexity

of parties (i.e., servers in our case) is linear with the depth of computed circuit (i.e.,

group-based advertising/matching procedure). As such, most of MPC designs aim at

proposing an efficient protocol to evaluate the multiplication gates. However, none of

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 37

the MPC proposals deal with how to design a function whose circuit representation

ends up with the minimum number of multiplication gates (to lower the communica-

tion rounds among the parties who are geographically distant and require to run the

protocol many times). As such, designing applications out of MPC protocols is not a

trivial or straightforward task and counts as an orthogonal research problem.

3.3 System Model

3.3.1 Model

Privado is comprised of users, advertisers, and N servers denoted by S1,...,SN . The

system overview is illustrated in Figure 3.1. N servers jointly create an encryption

key pk and distribute the corresponding decryption key shares dk1, ...dkN among

themselves. Hence, performing decryption requires all the servers to contribute using

their decryption key shares. Servers also decide on the group size and threshold value

to be used in the group matching procedure.

Users fill in a profile (similar to Facebook profile) in which they provide their

preferences as a list of attributes varying from demographic information to personal

interests and hobbies (e.g., age, education, music interests, sports activities, etc.).

Then, the user encrypts his profile under pk and hands it over to all the servers.

On the other side, advertisers create their advertising requests, which include the

attributes they seek in their target customers, e.g., {painting ∧ football ∧ computer

engineer}. Requests are then submitted to each server in the plaintext form. Each

server has a local database in which it stores all the advertising requests and encrypted

user profiles registered in the system.

Privado applies the group-based advertising notion. For that, users are randomly

divided into groups of identical size at their arrival time. As discussed earlier, the

grouping of users is essential for user privacy and should not be done based on simi-

lar interests. For every advertising request, N servers jointly examine all the groups

and identify the target ones: i.e., groups whose number of matched profiles exceeds

a system-wise threshold. All the members of a target group are served by the adver-

38
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

Advertiser uploads his advertising
request to all the servers

N servers jointly find the matching between group profiles
and advertising requests

Joining Users are divided into
groups of size k

i i+1 i+k Advertiser

Each user uploads an encrypted
profile to all the servers

!"!#
$%# $%"

Figure 3.1: Privado System Overview. Users encrypt their profiles using an encryption
key whose corresponding decryption key is split among the N servers as dk1, ..., dkN .

tisement (since advertising to a subset would violate user privacy). The non-target

groups are skipped. Subsequently, the advertiser is charged based on the number of

target groups (hence users) to which the advertisement is shown. We remark that

group-based advertising degrades advertising accuracy (losing some target customers)

where we do not advertise to the groups with insufficient target members. Also, there

would be some non-target users who receive irrelevant advertisements since they be-

long to a target group. Hence, this is the cost of achieving user privacy. We refer the

interested readers to PPAD [67] for an extensive analysis of the advertising accuracy

in group-based advertising over various group sizes and threshold values.

3.3.2 Security Goal

The security goal of Privado is to protect user privacy. User privacy indicates the

inability of any adversarial entity to bind the group matching result to a particular

group member, as defined in PPAD [67]. This means that for a target group, none

of the servers would be able to conclude whether a particular group member has the

attributes of the advertising request or not. However, it is important to realize that

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 39

any advertising system is inherently prone to some implicit privacy leakage regardless

of how secure it is designed. That is, once a group is qualified/disqualified as a

target for an advertising request, this reveals the inclusion or exclusion of the queried

attributes among the group members. This leakage is inevitable even though the

matching occurs entirely on the encrypted profiles. In personalized advertising, this

leakage immediately breaks user privacy [23, 22, 70, 23, 71, 72] whereas in the group-

based counterpart the inclusion or exclusion is not attributable to a particular group

member. PPAD supplies a formal security definition for user privacy that we present

in Section 4.2.1. We utilize this definition to formally prove the security of Privado.

3.3.3 Adversarial Model

Privado considers the adversarial model where an adversary may corrupt any subset

of N − 1 servers, create arbitrarily many advertising requests and fake k − 2 profiles

per group (k is the group size). Notice that, having more than k − 1 fake profiles in

a group converts the group-based advertising to the personalized variant (adversary

knows the content of k − 1 profiles hence can immediately link the group-matching

results to the unknown profile), which, as discussed earlier, violates user privacy. We

consider static corruption, i.e., the adversary selects which party to corrupt before

the protocol starts. Corrupted parties are active/malicious adversaries who may

refuse to follow the protocols’ specifications. We assume parties communicate through

insecure but authenticated channels.

3.4 Definitions and Preliminaries

3.4.1 Notations

We write x ← X to denote picking an element x uniformly at random from set X.

a||b represents concatenation of a with b. |A| stands for the number of elements in

set A. a represents a ciphertext embodying the value a. Likewise, B where B is

a vector, means the element-wise encryption of B. For shorthand, we use PPT for a

40
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

probabilistic polynomial time entity. We write Encpk(m, r) to denote encryption of

a message m using an encryption key pk and a randomness r. Table 3.1 summarizes

the notations used in Privado.

1λ: The security parameter

k: The group size

N : Number of servers

Si: The ith server

Thr: The group-based advertising threshold

p: The size of Bloom filter

TEnc: (N,N)-threshold homomorphic encryption scheme

Enc: The encryption algorithm

DDec: Distributed decryption protocol

ek, dk: Encryption and decryption key

r: Randomness used for the encryption

GID: The group number

π(i): The pseudo random permutation of i

π−1(i): The inverse of π at i

∆: The membership identifier set

δi: The ith element of the membership identifier set

∆ : The element-wise encryption of δ

δi : Encryption of δi
∆π: The shuffled version of set ∆ according to the pseudo random permutation π

σPOPRj : Non-interactive zero knowledge proof of plaintext range generated by the jth

user

σPOCMj : Non-interactive zero knowledge proof of correct multiplication generated by

the jth user

AttSetj: The attribute set of jth user

UNamei: The username of ith user

BF : Bloom filter

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 41

BFj: The jth user’s Bloom filter generated over AttSetj
BFj : Element-wise encryption of BFj
Pfj : The encrypted profile of jth user

TAud: The set of attributes selected by the advertiser for the target audience

Req = {r1, ..., rp}: The Bloom filter of the advertising request

R: The index of the set bits of the Req

|R|: The size of R

RID: The ID of the advertising request

Φ: The aggregate of group profiles

Φ :The Encryption of Φ

αj: The sum of bits of Bloom filter of jth user according to R

φj : The encryption of the product of δπ(j) and αj i.e., δπ(j) · αj

Table 3.1: Notations used in Privado

3.4.2 Definitions

Negligible: A function f is called negligible if for all positive polynomials p, there

exists a constant C such that for every value c > C it holds that f(c) < 1
p(c) .

Computational indistinguishability: A probability ensemble X =

{(a, λ)}a∈{0,1}∗,λ∈N is a series of random variables which are indexed with a

and λ where a is the input and λ is the security parameter. Two distribution ensem-

bles X and Y = {(a, λ)}a∈{0,1}∗,λ∈N are said to be computationally indistinguishable

(written as X ≡c Y) if for every non-uniform polynomial-time distinguisher D, there

exists a negligible function negl(.) such that ∀a ∈ {0, 1}∗ and ∀λ ∈ N [97]:

|Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]| ≤ negl(λ) (3.1)

Secure Multi-Party Computation: Consider the ideal functionality

F (in1, ..., inN) = (f1(in1, ..., inN), ..., fN(in1, ..., inN)) running by a trusted third

42
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

party that receives inputs (ini) from ith party and delivers fi(in1, ..., inN). We refer

to such execution as the IDEAL world. Let γF be a multi-party protocol to compute

F . The execution of γF by the interaction of parties constitutes the REAL world.

γF is said to securely realize F if for every PPT adversary A with auxiliary input

aux ∈ {0, 1}∗ attacking protocol γF , there exists a PPT simulator Sim for the ideal

functionality F , that ∀ security parameter λ:

{IDEALF,Sim(aux),Pc(in1, ..., inN , λ)}} ≡c {REALγF ,A(aux),Pc(in1, ..., inN , λ)}

(3.2)

The left and right side of this equality represent the output of parties in interac-

tion with F and γF , respectively. Pc is the set of corrupted parties controlled by the

adversary/simulator. ≡c stands for computational indistinguishability.

Hybrid Model: Let γF be a multi-party protocol that securely realizes ideal func-

tionality F and assume θ is another protocol that makes use of γF as a sub-protocol.

In the hybrid model, the security of θ can be proven by replacing γF with its ideal

functionality F (as if there is a trusted third party running F). This would be called

F -hybrid model [97].

3.4.3 Preliminaries

Bloom Filter [98] is a data structure for the set representation which also supports

insertion and membership check queries. A Bloom filter is formed as a bit array of

size p, and d hash functions denoted by H1(.), ..., Hd(.). To insert an element x to

the Bloom filter, all the hash functions are evaluated on x; i.e. H1(x)..., Hd(x). The

output of the hash functions indicate the indices of the bit array that shall be set

to 1. To check the membership of an element y, similarly, the hash functions are

evaluated on y which results in d indices. If all the corresponding bit values are 1,

then y counts as an element of the set with the probability of 1− (1− ((1− 1
p
)d)

e
)
d
.

e is the total number of elements inserted into the Bloom filter. Otherwise (if at least

one of the checked indices is 0), y is not a member. Throughout the paper, we refer

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 43

to the creation of a Bloom filter with BFCreate(Att) where Att is the set of elements

to be inserted.

Super-Increasing Set: A super-increasing set A = {a1, ...ak} of size k is a set of k

positive real numbers such that each element of the set is greater than the aggregate

of its preceding elements in the set [99]. That is,

∀i, ai >
∑

j=1:i−1
aj (3.3)

IND-CPA Encryption Scheme: For a public key encryption scheme E =

(Gen,Enc,Dec) we define the IND-CPA game PubKCPA
A,E (λ) as [100]

(pk, dk)← Gen(1λ); (M0 = {m0,i}i=1:L,M1 = {m1,i}i=1:L, history)← A(pk)

s.t. |m0,i|i=1:L = |m1,i|i=1:L; b← {0, 1};C = {ci ← Enc(Pk,mb,i)}i=1:L;

b′ ← A(history, C) : output is 1 if b == b′ (3.4)

Encryption E is IND-CPA if for every probabilistic polynomial time adversary A,

there exists a negligible function negl(λ) s.t.

Pr[PubKCPA
A,E (λ) = 1] < 1

2 + negl(λ) (3.5)

or equivalently [100],

|Pr[output(PubKCPA
A,E (λ, 0)) = 0]− Pr[output(PubKCPA

A,E (λ, 1)) = 0]|< negl(λ)

(3.6)

where PubKCPA
A,E (λ, b) indicates the output of IND-CPA experiment when the chal-

lenge bit is b.

(N,N)-Threshold Additive Homomorphic Encryption Scheme with a Dis-

tributed Key Generation: An additive homomorphic encryption scheme is a pub-

lic key encryption scheme with key generation Gen, encryption Enc, and decryption

Dec algorithms which additionally enables computation over plaintexts using cipher-

texts. That is, for any two messages m0,m1 (from the message space) encrypted as

c0 = Encpk(m0), c1 = Encpk(m1), one can compute the summation of messages in the

44
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

encrypted format as Encpk(m0 +m1) = c0� c1 where pk is the encryption key and �

is the homomorphic operation over the ciphertext.

An example is Paillier encryption in which multiplication of the ciphertexts results

in the summation of the underlying plaintexts i.e., c0 · c1 = Encpk(m0 + m1). In the

(N, N)-threshold homomorphic encryption, the decryption key is distributed among

N parties such that the presence of all of them (N out of N) is required to make

correct decryption. Generation of the key in the threshold settings usually relies on a

trusted party who creates and distributes the decryption key shares and then leaves

the system. However, in the present work, we leverage a distributed key generation

protocol proposed by [101] for the Paillier setting. We refer to that encryption scheme

by TEnc = (DKeyGen,Dsk,Enc,DDec) whose details come next.

1. pk ← DKeyGen(1λ) is a distributed protocol run by N parties S1, ..., SN to

compute the public key pk as a composite modulus N with an unknown prime

factorization q1.q2.

2. dk1,dkN ← Dsk(pk) is a distributed protocol run by S1, ...SN to generate

decryption key shares of the given public key pk. Each party Si receives one

share i.e., dki.

3. C ← Encpk(m, r) is the encryption algorithm to convert the plaintext m to

a ciphertext C. r is a random number from Z∗N . The ciphertext is set to

C = gm ·rN mod N2 where g = 1+N . When we write C ← Encpk(m) we mean

the randomness r is generated inside the encryption algorithm.

Additionally, Paillier encryption comes with re-encryption algorithm to re-

randomize a given ciphertext C i.e., C ′ ← ReEnc(C, r′) = C · r′N mod N2

where r′ ∈ Z∗N . We may eliminate r′ and write ReEnc(C) for shorthand.

4. m = DDec(dk1,, dkN , C) is a distributed protocol in which all the par-

ties S1, ..., SN contribute their respective shares of the decryption key i.e.,

dk1, ..., dkN to decrypt a ciphertext C to the plaintext m.

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 45

We instantiate an (N,N)-threshold encryption scheme TEnc using the proposal

of [101, 102]. We present the security guarantees of TEnc as an ideal functionality

FTHRESH as shown in Figure 3.2 (generalizing two-party definitions of [102]).

Zero-Knowledge Proof (ZKP) of Knowledge: is a proof system < P, V > for a

language L defined over relation R i.e., L = {x| ∃ ω : (x, ω) ∈ R} by which a prover

P knowing witness ω can prove the validity of a statement i.e., x ∈ L to a verifier

V . Let (P (ω), V (z, r))(x) be the output of V (namely, 1 if V accepts the proof, 0

otherwise) in interaction with P upon the common public statement x. The verifier

holds the auxiliary input z and the random tape r whereas P owns the private witness

ω. A zero-knowledge proof system satisfies three properties which are abstracted as

follows [103]:

• Perfect Completeness: an honest prover can always convince the honest verifier

on a valid statement x ∈ L. In principle, for every (x, ω) ∈ R

Pr[(P (ω), V)(x) = 1] = 1 (3.7)

• Computational Soundness: A dishonest prover is unable to make a valid proof

for an invalid statement x /∈ L unless with a low probability. That is, ∀(x, ω) /∈

R and for all dishonest PPT prover P ∗,

Pr[(P ∗(ω), V)(x) = 1] = 2−t (3.8)

2−t is called soundness error and can get arbitrarily small for the large values

of t.

• Computational Zero-knowledge: The proof system does not reveal anything

beyond the correctness of the statement x ∈ L. More formally, a proof system

(P, V) is computational Zero-knowledge if there exists a PPT simulator Sim

s.t. for every PPT verifier V ∗ we have

{(P (w), V ∗(z, r))(x)} c≡ {(SimV ∗(x,z,r,.))} (3.9)

46
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

FTHRES

Key Generation: Upon receiving request (Generate, 1λ) from party Pi (i ∈ [1, N]),

FTHRES records (Pi, Generate, 1λ) in the database and sends it to the adversary.

Upon the receipt of request (Pi, Generate, 1λ) from all the N parties (∀i ∈ [1, N]),

FTHRES sends (RandInput) to the adversary and receives (GenInput, r). Then,

FTHRES uses its randomness together with r to generate an encryption key pk and

its corresponding decryption key dk. FTHRES records dk and outputs pk to the

adversary. If the adversary responds with continue then FTHRES delivers pk to all

the other parties and ignores any message of this form, otherwise, sends abort to all

the other parties.

Decryption: Once (Decrypt, c) message is received from some party Pi (i ∈ [1, N]),

FTHRES operates as below:

1. If no key was created, FTHRES ignores the request.

2. If a key was already created, then FTHRES records (Pi, Decrypt, c) and sends

it to the adversary. Once requests for the decryption of c are received from

all parties Pi=1:N then FTHRES sends (Decrypt, c) to the adversary. Adversary

responds with the receiver set RC ⊆ {1, ..., N}. If RC is empty, FTHRES sends

abort to all the parties. Otherwise, FTHRES decrypts the ciphertext c asDecdk(c)

and sends the result to the parties specified in RC.

Figure 3.2: The ideal functionality FTHRES for the distributed (N,N)-threshold en-
cryption scheme TEnc = (DKeyGen,Dsk,Enc,DDec). FTHRES captures the secu-
rity properties of Key Generation (i.e., DKeyGen and Dsk) and Decryption (DDec)
which are multi-party protocols. However, Enc is a single party algorithm (not a
multi-party protocol) and thus is not presented as a functionality.

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 47

FR
POPR with a relation R

• FPOPR−R receives (Prove, P, V, (pk, m , Range), ω) from prover P and hands

over (Prove, P, V, (pk, m , Range)) to the adversary.

• If the adversary responds with abort, then FRPOPR sends abort to the verifier V .

• If the adversary responds with continue, If ((pk, m , Range), ω)∈ R, FRPOPR
sends (proof, P, V, (pk, m , Range)) to the verifier V . Otherwise, outputs

(disproof, P, V, (pk, m , Range)) to V .

Figure 3.3: The ideal functionality FRPOPR for proof of plaintext range.

SimV ∗(x,z,r,.) indicates the output of simulator with oracle access to V ∗(x, z, r, .).

We refer to an interactive proof system as the proof that is an interactive two-party

protocol run between the polynomial-time prover and the verifier. On the other

hand, in a non-Interactive proof, the proof generated by the prover can be verified

without further interaction with the prover.

Non-Interactive Zero-Knowledge Proof of Plaintext Range (NI-POPR):

This is a proof system to prove that a ciphertext m encrypts a value of a particular

range Range i.e., m ∈ Range. We illustrate a non-interactive version of such POPR

with NI-POPR(m ,R).

We present functionality FRPOPR, as shown in Figure 3.3, to capture the security

requirements of an ideal POPR protocol.

In section 3.5, we will make use of POPR for ciphertexts embodying 0 or 1 values.

Hence, we deploy the proof system proposed by [104] over the following relation R

(Equation 3.10). µ belongs to Z∗N and is the randomness used for the encryption of

48
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

FR
POCM with a relation R

• FR
POCM receives (Prove, P, V, (pk, a , b , c), ω) from prover P and hands over

(Prove, P, V, (pk, a , b , c)) to the adversary.

• If the adversary responds with abort, then FR
POCM sends abort to the verifier V .

• If the adversary responds with continue, if ((pk, a , b , c), ω)∈ R, FR
POCM

sends (proof, P, V, (pk, a , b , c)) to the verifier V . Otherwise, outputs

(disproof, P, V, (pk, a , b , c)) to V .

Figure 3.4: The ideal functionality FR
POCM for the proof of correct multiplication.

m:

R = {((pk, m ,Range), ω =< m,µ >)|m ∈ Range ∧ m = Encpk(m,µ)}

(3.10)

Non-Interactive Zero-Knowledge Proof of Correct Multiplication (NI-

POCM): The purpose of POCM is to prove that a ciphertext is the correct mul-

tiplication of two given ciphertexts under a given public key pk. Namely, c = a ∗ b

where a b and c are given. We illustrate a non-interactive version of such POCM

with NI-POCM(a , b , c). The ideal function FR
POCM , presented in Figure 3.4, cap-

tures soundness, completeness and zero-knowledge properties of a secure POCM

protocol.

We base our POCM on the technique presented in [79] for Paillier encryption

setting. The corresponding relation R is formulated in equation 3.11. µ and γ are

elements of Z∗N .

R = {(pk, a , b , c), ω =< a, µ, γ >)| a = Encpk(a, µ) ∧ c = ReEnc(b
a
, γ)}

(3.11)

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 49

We further leverage Fiat-Shamir method [105] to achieve perfect zero-knowledge and

a non-interactive POCM in random oracle model.

Mix Network: Mix network (mix-net) is a multiparty system which converts a set

of input data to an untraceable output [106]. The input is usually a set of ciphertexts

i.e., ←−C in = {C1, ..., Ck} and the output is the re-encrypted and permuted version of

the input i.e.,←−C out = {C ′π(1), ..., C
′
π(k)} where π is a permutation and C ′π(i) denotes the

re-encryption of π(i)th element of Cin. A mix-net comprises multiple servers (mixers)

{S1, ..., SN} where each Si in turn computes a randomly permuted and re-encrypted

output Couti from Couti−1 .

Verifiable Shuffles are used to implement mixers. A verifiable shuffle V S is a tuple

V S = (E, SH, (P, V)) where E = (Gen,Enc,Dec,ReEnc) is an encryption scheme

with key generation Gen, encryption Enc, decryption Dec and re-encryption ReEnc

algorithms. SH denotes shuffle algorithm whose input is a set of ciphertexts i.e.,
←−
C in = { m1 , ..., mk } and the output is the re-encrypted and permuted version of

the input i.e., ←−C out = { mπ(1) , ..., mπ(k) }. (P, V) is a proof system used to prove

that there exists a permutation π and some randomnesses which can covert the input

ciphers to the output ciphers.

A verifiable shuffle should satisfy the following properties: 1) shuffle privacy that

is the permutation must remain secret to any outsider (this features usually relies

on the IND-CPA security of the underlying encryption E) and 2) shuffle verifiability

which means the correct construction of the output should be verifiable (that relies on

the soundness of the proof system). The shuffle verifiability guarantees the robustness

of a mix-net even when some number of mixers are corrupted. We define the ideal

functionality FR
V S (Figure 3.5) to capture the security properties of a verifiable shuffle

proof system. ←−C out is the correct permutation of←−C in if the prover P knows a witness

ω for which (←−C in, ←−C out, w)∈ R.

We employ the Pallier-based mix-net protocol proposed by [107]. Their under-

lying shuffle scheme has an interactive proof system which is transformable to a

non-interactive version using Fiat-Shamir method [105] in random oracle model. R

50
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

FR
V S with a relation R

• FR
V S receives (Prove, P, V, (pk, ←−C in, ←−C out), ω) from prover P and hands over

(Prove, P, V, (pk, ←−C in, ←−C out)) to the adversary.

• If the adversary responds with abort, then FR
V S sends abort to the verifier V .

• If the adversary responds with continue, if ((pk, ←−C in, ←−C out), ω)∈ R, FR
V S sends

(proof, P, V, (pk, ←−C in, ←−C out)) to verifier V . Otherwise, outputs (disproof, P,

V, (pk, ←−C in, ←−C out)) to V .

Figure 3.5: The ideal functionality FR
V S for the proof system of a verifiable shuffle

scheme.

is defined as in Equation 3.12. π is the permutation, ←−C in = { m1 , ..., mk } and
←−
C out = {C1, ..., Ck}.

R = {(pk,←−C in,
←−
C out), ω =< π, {µi}ki=1 >)| ∀Ci ∈

←−
C out, Ci = ReEnc(mπ(i) , µi)}

(3.12)

3.5 Privado

3.5.1 Design Challenges

In this section, we list some possible threats and attacks that can be attempted by a

malicious adversary in our system model. We also sketch our proposed solution next

to each item. The attacks are not limited to this list; our goal is to highlight some of

our design difficulties as well as provide an intuition of our design choices.

In Section 4.2, we present a formal security definition capturing user privacy fol-

lowed by a concrete security proof of Privado. Our formal proof does not impose

any strategy on the adversary and considers a black box adversary. This implies that

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 51

our advertising system defeats any misbehavior of adversary including the ones listed

below.

Profile Replay Attack: Profile replay attack refers to the situation where a

malicious server attempts registering a (corrupted) user inside a group employing the

profile of an honest member of that group. That is, the corrupted server re-encrypts

the honest user’s profile and submits it as a new one. Note that due to the IND-CPA

security of the encryption scheme, the honest servers would not notice such profile

duplication. This duplication influences the pattern in the group matching result (i.e.,

the total number of matched users in each group). For clarification, assume a group

of size k with 2 honest members and k − 2 dishonest ones. Let P1 and P2 denote the

profiles of honest members. One of the corrupted group members submits a duplicate

of P1 and the rest of k−3 corrupted members leave their profiles empty (without any

attributes). Therefore, the matching result of P1 is always counted twice in the group

matching result. Thus, if P1 matches an advertising request then the total number

of target users would be a value larger than 2, otherwise not. This indeed enables a

corrupted server to link the result of matching to a particular member (the genuine

holder of P1 in the above example).

Privado defeats this attack by requiring each user to prove in zero-knowledge that

he knows the content of the submitted encrypted profile. Consequently, the adversary

cannot make valid proof of an encrypted profile with unknown content. The proof

includes proof of plaintext range as well as proof of correct multiplication. We supply

the details in Section 3.5.3.

Compound Group Matching: Compound group matching attack occurs when

a corrupted server does not commit to the initial grouping of users, i.e., for each

advertising request, it groups profiles in an arbitrary way. This enables an adversary

to deliberately group a victim profile with multiple different groups and according to

the changes in the matching results (before and after inclusion of the victim profile)

learns which advertising requests match the profile.

Privado stands this attack by employing an (N,N)-threshold encryption scheme

52
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

whose decryption key is divided among N servers each run by an independent

provider. Servers are all aware of the initial grouping of the users. Also, at least

one of the servers is non-colluding by assumption, i.e., would not contribute its de-

cryption power with other servers for fake groups. Thus, compound group matching,

which relies on the decryption operation, would be impossible.

Servers Equivocation: This attack refers to any deviation of the servers from

the execution of instructed protocols. Our approach stands against the attack using

replicated computations. That is, multiple servers run an identical set of computations

and they shall end up with the same local results. In the case of inconsistency, an

equivocation is detected. We make use of additive homomorphic encryption (which

is secure against malicious entities) to devise the servers computations.

Privado vs PPAD: Technically, because we have a harder problem compared

to PPAD [67], our solution employs many other tools, including threshold additive

homomorphic encryption, zero knowledge proofs of knowledge, verifiable shuffles, and

mix networks.

3.5.2 Construction Overview

In this part, we provide an overview of Privado’s protocols and their objectives. Pro-

tocols are Initialization, User Registration, Advertiser Registration, and Ad-

vertising. The detailed construction is provided in section 3.5.3.

Initialization: The system life-cycle starts by servers running the initialization

protocol to set up the necessary protocol parameters. This includes a threshold homo-

morphic encryption scheme whose decryption key is shared among the servers. The

key generation is a distributed protocol without making use of any trusted third party.

Each server also utilizes a database to keep a copy of every profile and advertising

request.

User Registration: A user joins the system by executing the user registration

protocol. Each user is assigned to a particular group at his arrival time and obtains

a group membership identifier (MID) that uniquely identifies him among his group-

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 53

mates. The membership ID assignment should be at random and private; otherwise

user privacy can be violated (see Section 4.2). Servers distribute MIDs among the

group members privately and randomly by the help of a mix-net protocol. MIDs shall

help in the calculation of the group matching results. Upon the receipt of MID, the

user creates his encrypted profile. Each profile is comprised of a set of attributes which

are modeled by a Bloom filter. The final encrypted profile comprises element-wise

encryption of the Bloom filter (in which the MID is also integrated). Additionally,

the user proves in zero knowledge that the profile was constructed properly.

Advertiser Registration: Similar to the profile, advertising request consists of

a set of attributes that shall be converted to a Bloom filter format. The advertiser

submits his request to all the servers. The servers insert the request into their local

databases.

Advertising: Servers run advertising protocol to determine the target groups for

a given advertising request. Recall that a target group is the one in which the total

number of matched profiles (i.e., target users) exceeds a system-wide threshold. In

a nutshell, the advertising protocol consists of two parts: Aggregation and Matching.

During the aggregation phase, each server locally computes the matching results of

individual members in the encrypted format and then aggregates them into a single

ciphertext. Aggregation helps break any linkability between the matching results and

individual group members. Next, the servers collaborate to decrypt the aggregate

by running a threshold decryption protocol. Each server de-aggregates the aggregate

value (that is now in plaintext) to identify the total number of profiles that match to

the advertising request.

3.5.3 Full Construction

This section presents the detailed construction of Privado. We assume that the servers

have synchronized states. However, the synchronization of servers does not serve any

privacy purpose, that is, the lack of synchronization would not cause any privacy

issue.

54
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

Initialization:

Initialization protocol is run by N servers to set the system parameters as follows.

• Servers initially agree on protocol parameters and publish them publicly. This

includes the group size k, the threshold value Thr which is used for the group

matching, the Bloom filter size p and its hash functions. Also, servers construct

a super-increasing set ∆ = {δ1, ..., δk} of size k called Membership Identifier Set

whose elements satisfy Equation 3.13.

∀m ∈ {1, ..., k}, δm >
m−1∑
i=1

δi ∗ p (3.13)

where p is the size of the Bloom filter. Elements of ∆ are used in the user

registration protocol.

The maximum number of membership identifiers δk is a function of the largest

data that gets encrypted in our design. This data is the aggregate of users

profiles in each group i.e., φ that is bounded by ∑k
j=1 δj · p (see Equation 3.18).

Thus, we can increase the value of k till φ does not exceed the Paillier encryption

message space i.e., ZN . In Privado, N is 2048 bits length and the Bloom filter

size p is 6848 bits (to accommodate 437 many attributes [67]). Using the above

formulation and numbers, we examine different values of k and find out that

the largest value is 161.

• Servers jointly establish a distributed (N,N)-threshold additive homomorphic

encryption scheme TEnc = (DKeyGen,Dsk,Enc,DDec). As such, servers

run DKeyGen to generate an encryption key pk which shall be publicized to

the whole system. Servers engage in the execution of Dsk protocol to create

the shares of the corresponding decryption key. As a result, every (ith) server

obtains an additive share of the decryption key (dki=1:N) which keeps it private.

Correct decryption requires all servers contributing their decryption key shares.

Henceforth, for shorthand, we write Enc to denote encryption under pk.

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 55

• One of the servers, namely Sj, encrypts ∆ as ∆ = (δ1 = Enc(δ1, r1), ..., δk =

Enc(δk, rk)) using the randomnesses ri=1:k. Sj communicates ∆ together with

the randomnesses ri=1:k to all the other severs Si=1:N,i6=j. Each server Si=1:N

recomputes the encryptions, namely, for i ∈ [1, k] computes Enc(δi, ri) and

compares against δi ∈ ∆. Servers abort in the case of mismatch, otherwise,

store ∆ in their local databases. As we will present in the user registration

part, ∆ shall be used as the input to the mix-net.

User Registration:

Figure 3.6 depicts user registration protocol by which the user registers his profile

to N servers. User and servers interact through an authenticated channel as given

below.

Si=1:N

Initialize GID=1
1. If group is completed:

1.1 GID=GID+1

1.2 Run mix-net and obtain Δπ

2. δπ(j) = jth element of Δπ

9. If σj
POPR, σj

POCM are verified

DB. insert(GID, UNamej, δ𝜋 j ,

BFj , σj
POPR, Pfj , σj

POCM)

4. If GID, δ𝜋(j) received from Si∈ 1,…,𝑁 are

not consistent: abort

5. UNamej: A username

6. AttSet= Set of attributes

7. BFj , σj
POPR, Pfj , σj

POCM =

PCreate(AttSet, δj)

3. GID, δ𝜋(j)

8. UNamej,

BFj , σj
POPR

Pfj , σj
POCM

Memberj

Figure 3.6: An instance of User Registration protocol (UReg) between jth group mem-
ber (j ∈ [1, k]) and ith server (i = 1 : N). When a group of profiles is registered (step
1), servers increment the GID as well as jointly run mix-net to make a new shuffle of
the membership identifier set (step 1.2). The user obtains the group information (at
step 3) from all the servers and delivers the profile (at step 8) to all of them.

Servers:

• Group assignment: Servers decide on the user’s group identifier i.e., GID which

determines the group the user belongs to (step 1.1 of Figure 3.6). The group

56
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

assignment must be at random and can rely on users arrival order. Servers

assign GIDs to the users incrementally. Namely, servers assign GID = 1 to the

first set of k registered users, and GID = 2 for the second set of k registered

users and so on. For this sake, each server keeps track of the number of joining

users.

• Membership ID assignment: Next, servers assign a private integer called mem-

bership identifier (for shorthand, membership ID denoted by δ) to each user

that uniquely identifies him inside his group (step 2 of Figure 3.6). Since the

uniqueness of δs must be preserved within each group, servers only create one

set of identifiers i.e., ∆ in the initialization phase, and keep assigning the same

identifiers for every group but under different permutations.

For every group of k users, servers shuffle the encrypted membership identifier

set i.e., ∆ (∆ is generated in the initialization phase) through a mix-net

execution (step 1.2 of Figure 3.6). We remark that mix-net is only run

once for each group. Let ∆π = (δπ(1) , ..., δπ(k)) be the output of mix-net

where π indicates the permutation. Each server Si=1:N stores ∆π in its local

database. For the jth member of the group, each server Si=1:N delivers the jth

element of ∆π (i.e., δπ(j)) to that user (step 2 of Figure 3.6). Note that since

mix-net preserves shuffle privacy, none of the servers knows the permutation π

and hence does not know which δ is given to which group member. Thus, the

private assignment of membership identifier is satisfied. Additionally, shuffle

verifiability of mix-net guarantees that ∆π is the correct permutation of ∆

(even in the presence of N − 1 corrupted servers).

• Each server Si=1:N sends GID and the membership identifier δπ(j) to the user
3 (step 3 of Figure 3.6).

User:

• The user obtains GID as well as δπ(j) from each server Si=1:N (step 3 of Figure

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 57

3.6). If the GID and the ciphertext δπ(j) sent by all the servers are identical

(step 4 of Figure 3.6), user continues to the next step. Otherwise, an equivoca-

tion from the server side is detected and user aborts.

• Profile creation and submission: The procedure of profile creation is shown in

Algorithm.1. The user inserts his set of attributes AttSet into a Bloom filter

data structure (line 1 of Algorithm.1). Then, the user multiplies each element of

BF with δπ(j) and re-encrypts the result (line 2 of Algorithm.1). The resultant

vector Pfj constitutes the profile of user. Additionally, the user must create

a proof asserting that the profile is well-formed. Namely, the element of Pfj

are either encryption of zero or the assigned δπ(j) . As such, user performs the

following.

1. The user encrypts his Bloom filter (line 3 of Algorithm.1). Then, for every

element of BFj , he creates a proof of plaintext range [0, 1] (line 4 of

Algorithm.1).

2. Using proof of correct multiplication, the user proves that every element

of Pfj is the correct multiplication of the corresponding element in BFj

with δπ(j) i.e., Pfj,i = bj,i · δπ(j) (line 5 of Algorithm.1).

• Finally, the user submits BFj , Pfj together with the proofs σPOPRj , σPOCMj

to all servers (steps 7-8 of Figure 3.6).

Servers:

• Each server Si=1:N verifies the proofs σPOPRj , σPOCMj and accepts or rejects ac-

cordingly (step 9 of Figure 3.6). If the verification is successful, servers insert

the profile together with its GID, and δπ(j) into their local databases.

Advertisement Registration:

This protocol, given in Figure 3.7, is run between the advertiser and all the servers

to register an advertising request to the system. They interact as follows.

58
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

Algorithm 1 PCreate(AttSet, δπ(j))
1: BFj = {bj,i}i=1:p = BFCreate(AttSet)

2: Pfj = { Pfj,i } = {ReEnc(bj,i ∗ δπ(j))}i=1:p

3: BFj = { bj,i }i=1:p = {Enc(bj,i)}i=1:p

4: σPOPRj = {NI-POPR(bj,i , {0, 1})}i=1:p

5: σPOCMj = {NI-POCM(bj,i , δπ(j) , Pfj,i)}i=1:p

6: return BFj , σ
POPR
j , Pfj , σ

POCM
j

Advertiser:

• Advertiser creates a Bloom filter from the set of attributes (denoted by TAud)

he seeks in his target users (steps 1-3). The target audience of the advertising

request are the profiles which contain the conjunction of attributes in TAud.

Thus, if an advertiser wants to find users with attributes X OR Y, he must split

the request and submit it as two separate requests: one for X and the other for

Y.

• Let Req = {r1, r2, ..., rp} be the created Bloom filter (p is the size of Bloom

filter). The advertiser hands over Req as well as the product advertisement

(denoted by Product) to each server Si=1:N (step 4).

Servers:

• Servers assign a request number RID to the advertising request (step 5) and

return it to the advertiser (step 7). RIDs are assigned incrementally, thus,

servers keep track of the registered requests. RID shall be used to follow up

the advertising result.

• Each server Si=1:N inserts the advertising request, the product advertisement,

and the request number RID in its local database (step 6).

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 59

Si=1:N
5. RID=RID+1
6. DB. insert(RID, Req, Product)

1. Product= Select a product
2. TAud=Target attributes
3. Req=BFCreate(TAud)

4. Req, Product

7. RID

Advertiser

Figure 3.7: Advertiser registration protocol (AdReg). The advertiser submits the
request to all the servers and gets an identical RID from all of them (we assume
servers have synchronized states).

Advertising

Servers run this protocol for every unmatched pair of advertising request and a group

of profiles, and store the matching result in their databases. Let GID and Req

denote the group and the request that are to be matched, respectively. Figure 3.8

exhibits the overall interaction of servers for the advertising protocol. First, each

server retrieves the profiles of the intended group, i.e., Pf1, ..., Pfk and the request

from its database (steps 1-2 of Figure 3.8). Next, servers proceed with three main

phases 1) Aggregation, 2) Distributed Decryption, and 3) De-aggregation/Matching.

While phases 1 and 3 are non-interactive, phase 2 requires servers interaction to run

distributed decryption protocol. We stress that both users and advertisers are

offline during the matching procedure, which is one of our main contributions.

1. Aggregation: Aggregation (step 4 of Figure 3.8) is run by each server locally.

Algorithm 2 summarizes the entire procedure. Let R be the indices of the set

bits in the advertising request as given in Equation 3.14.

R = {i|ri ∈ Req and ri == 1} (3.14)

For each profile Pfj=1:k in the group, each server extracts the profile’s elements

in accordance to the index set R and then homomorphically sums them up (step

60
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

1. {RID, Req, Product}=Retrieve Req from DB

2. Retrieve Pf1 , … , Pfk for group GID

3. R={i|Reqi == 1}

4. ϕ = Aggregate Pf1 , … , Pfk , Req

5. ϕ =DDec(dk1, … , dkN, ϕ)

6. Result=Match(ϕ, R , Thr, Δ = {δ1, … , δk})
7. If Result==yes

Advertise the product for the group

Si

𝑆𝑗≠𝑖

DDec

ϕ , 𝑑𝑘𝑖 ϕ , 𝑑𝑘𝑗

ϕ ϕ

Figure 3.8: Advertisement protocol (Ad) to match an advertising request (Req) to
a group (GID). Si communicates with all the other servers at step 5 to execute dis-
tributed decryption DDec protocol. All the servers run an identical set of instructions
as indicated for Si.

3 of Algorithm 2). This is indicated in Equation 3.15.

φj =
∏
i=1:p
i∈R

Pfji =
∑
i=1:p
i∈R

bji · δπ(j) = δπ(j) ·
∑
i=1:p
i∈R

bji (3.15)

Pfji represents the ith element of the jth profile where i ∈ [1, p] and j ∈ [1, k].

Observe that the final summation i.e., φj embodies the multiplication of the

user’s membership ID i.e., δπ(j) with ∑
i∈R bji that is the sum of bit values of the

profile in accordance to the set R. Let αj denote ∑
i∈R bji (Equation 3.16).

αj =
∑
i=1:p
i∈R

bji (3.16)

Thus, φj would be

φj = δπ(j) · αj (3.17)

After the computation of < φ1 , ..., φk >, each server aggregates them as given

in Equation 3.18 (line 5 of Algorithm 2). Let φ be the final aggregate. Since

all the servers hold a database with the same set of encrypted profiles, their

local computation should all result in the same ciphertext φ . Otherwise, an

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 61

equivocation is detected4.

φ =
k∏
j=1

φj =
k∑
j=1

δπ(j) · αj (3.18)

Algorithm 2 Aggregate(Pf1 , ..., Pfk , Req)
1:

2: for j = 1 : k do

3: φj = ∏
i=1:p
i∈R

Pfji

4: end for

5: φ = ∏k
j=1 φj

6: return φ

2. Distributed Decryption : All the servers use their decryption key shares to

jointly decrypt φ through DDec protocol (step 5 of Figure 3.8). We use φ to

be the decrypted result as shown in Equation 3.19.

DDec(φ) = φ =
k∑
j=1

δπ(j) · αj (3.19)

Recall that we employ a DDec algorithm which stands malicious parties. As

such, each server accompanies its computation result with a zero-knowledge

proof of correct decryption [101]. Thus, if a corrupted server attempts decrypt-

ing a ciphertext different from φ , or using a fake decryption key share then its

proof will not be validated by honest servers and the cheating server is caught.

3. De-aggregation/Matching: Matching procedure is a non-interactive protocol

that each server runs individually (step 6 of Figure 3.8). Algorithm 3 illus-

trates this procedure where the aim is to identify the total number of targeted

profiles from Φ. It starts by dividing φ with the first largest membership ID

namely, δk (line 3). The quotient of this division is equal to απ−1(k) where π−1(k)

indicates the index of a group member with the membership ID δk. To realize

62
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

why this is the case, let reformulate φ by extracting out the term of δk (to be

the largest δ) as in Equation 3.20.

φ

δk
=
δk · απ−1(k) + ∑k−1

m=1 δm · απ−1(m)

δk
(3.20)

Having known that αj=1:k values are bounded by p together with Equation 3.13,

we derive the following inequalities:

k−1∑
m=1

δm · απ−1(m) <
k−1∑
m=1

δm · p < δk (3.21)

Relying on Equation 3.21, the quotient of division in Equation 3.20 would be

απ−1(k) and the remainder is ∑k−1
m=1 δm · απ−1(m).

If the quotient of division, i.e., απ−1(k) equals to |R| (line 3) then one match is

found in the group (line 4). This is true as explained next. First note that απ−1(k)

contains the sum of bit values of the Bloom filter of the π−1(k)th group member

in accordance to the index set R (also see Equation 3.16). Hence, equality of

|R| and απ−1(k) indicates that the number of the set bits in the request (i.e.,

|R|) and the sum of the corresponding bits in a profile i.e., απ−1(k) are equal.

This happens only when a profile contains all the attributes in the advertising

request (i.e., every element of the profile corresponding to the non-zero elements

of the request is also non-zero).

The procedure continues by setting the value of φ to the remainder of the

division (line 6) and using the next largest δ as the divisor (line 2). At each

step, the matching of one group member is identified and augmented to the

total matches (line 4). If the number of matched users hits the threshold (line

8), then the advertisement is served for the entire group, otherwise, the group

is skipped (lines 9-11).

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 63

Algorithm 3 Match(φ, |R|, Thr,∆ = {δ1, ..., δk})
1: count = 0

2: for δj ∈ ∆, j = k : 1 do

3: if Φ
δj

== |R| then

4: count = count+ 1

5: end if

6: φ = φ mod δj

7: end for

8: if Thr ≤ count then return Yes

9: else

10: return No

11: end if

Profile update: The profile update corresponds to replacing the existing profile

with a new one. The procedure is identical to the profile registration except that

servers do not redistribute membership identifiers and the updater uses his prior

identifier and remains in the same group. In fact, the user interacts with servers by

following only the steps 5-9 of Figure 3.6.

Performing profile update in a group-based advertising approach comes with the

security concern [67], where servers can analyze the group matching results before

and after the update operation and hence identify which attributes are modified in

the updated profile. This leakage is independent of Privado’s design. To demonstrate

this independency, we refer back to the ideal group-based advertising functionality

F (AttSet1, ..., AttSetk, TAud) (as we discussed in Section 3.1). In that definition, F

receives users profiles (set of attributes) directly from the users and not through the

OSN servers. The OSN servers only query F using arbitrary advertising requests.

F shall return the number of matches to all the servers. Now, assume that the

OSN servers have queried F over TAud = (”music”) for a particular group of users

UName1, ..., UNamek holding (AttSet1, ..., AttSetk). Assume that F returns 2 as

64
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

the output to the servers; namely, there are two members of the group interested in

”music”. Later on, a member of that group, holding user-name UNamek, updates

his attributes to AttSet′k. Note that while the action of update operation under the

user-name UNamek is known to the servers, the content of the update (and hence

the new attribute set) is not. When the update takes place, the servers again query

F over the same group and the same advertising request i.e., TAud = (”music”).

This time, the number of matched users, let’s say, increases to 3. This implies that

UNamek’s update on his set of attributes AttSetk includes the insertion of ”music”.

As such, in group-based advertising, such linkability happens as soon as individual

updates become effective in a real-time fashion, regardless of the underlying solution.

To address this issue, what we propose is to perform group-based update which

follows the group-based advertising semantics. In group-based update, profile updates

are applied when all the group members (of a single group) hand over at least one

update. Assume the jth member of the group wants to update his profile. He runs

PCreate algorithm (algorithm 1) over a new set of attributes. Let Opj be the output

tuple. User submits Opj to all the servers. Servers copy this update in their databases

but would not replace the old profile with this new one (thus will not consider it for any

advertising). Instead, servers wait until there would be an update for every member

of that group. Till then, the user may attempt multiple updates and servers would

only consider the latest one. Once Op1, ..., Opk are received from all the k members

of the group, servers replace the all old profiles in that group with the updated ones.

Henceforth, advertising is run over the new set of profiles. Notice that from now on

any changes that happen to the group matching result (after the group-based update)

cannot be linked to a particular group member since all of the group members updated

their profiles (and by the minimal assumption, at least two updates were performed

by the honest members).

Any solution for the profile update in group-based advertising system should follow

the nature of ”batch update” or ”group update” where profile updates are applied

when all the group members (of a single group) hand over at least one update. This

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 65

complies with the group-based advertising semantics when we treat all the group

members as a unit and wait for a group to get completed to start the advertising.

Though this approach may be not efficient in the sense that updates are not applied

instantly, it breaks the tie between an update and the user who has performed the

update (and stay consistent with the unlinkability definition). In the case that waiting

for other group-members’ updates is not feasible, an alternative solution (which is

more costly) would be that all the group members may resign from the current group,

create new accounts and join the system as new users into new groups. To preserve

user privacy (unlinkability), such regrouping should happen in such a way that the

users’ new accounts would not be linkable to their past accounts. Namely, if one

user holding UName1 re-registers to the system using UName2, none of the servers

should know that these two user-names belong to the same user. Such information

about the connection of two different usernames may leak, e.g., by performing timing

attacks, which is out of the scope of the current work.

66
Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple

Independent Social Network Providers

Notes to Chapter 3

1 https://www.statista.com/statistics/346167/facebook-global-dau/

2 https://www.statista.com/statistics/778191/active-facebook-advertisers/

3 In Privado, for the ease of explanation, we assume servers are synchronized. That

is, all the requests coming to the system arrive at all the servers simultaneously,

and servers’ processing speed are identical hence servers attempt execution of a

protocol (e.g., mix-net, and distributed decryption protocol) in a synchronized

manner. As such, we eliminate the coordination requirement among servers

for the mix-net and distributed decryption protocol execution. However, one

may consider servers run a Byzantine agreement protocol to agree on a specific

protocol over a particular set of inputs to be executed. Or one may designate

one of the servers to be the coordinator (similar to Byzantine agreements based

on election). Every registration request is organized by the coordinator. For

each new group, the coordinator triggers the mix-net execution by sending a

message to all the servers. Servers jointly run mix-net and compute ∆ . For

the registration of each group member, the coordinator asks other servers to

hand over the membership identifier directly to the user. Similar to the mix-

net execution, the coordinator can lead the execution of distributed decryption

protocol as follows. As soon as each server computes the encrypted aggregate

result and performs partial decryptions (using its decryption key share), it com-

municates the result to the coordinator (with some extra information about the

group and the advertising request for which the result is computed). Servers

can communicate such data with the coordinator asynchronously. Once N par-

tial decryptions for the same group and advertising request are received by the

coordinator, it can obtain the plaintext aggregate. The coordinator then can

put all the N partial decryption results in one massage and transmit to the rest

of the servers. Please note that as we discuss about network overhead in section

Chapter 3: Privado: Privacy-Preserving Group-based Advertising using Multiple
Independent Social Network Providers 67

4.1.2, servers can exchange their partial decryption results of all the distributed

decryption protocols at once and in a batch format. Thus, any timing overhead

that the synchronization among the servers may cause will be amortized over

all the executions of advertising protocol. Thus such synchronization overhead

would not affect the performance of our advertising protocol.

4 By detecting equivocation, we aim to protect user privacy against malicious servers

who may attempt performing decryption of arbitrary data (like the individual

profiles). Thus, the equivocation detection will enforce the correct execution of

protocol at the server-side. Due to the presence of at least one non-colluding

server, the equivocating server will gain no information (cannot perform de-

cryption on arbitrary data) to compromise user privacy (as the attack will fail).

However, the equivocating server may disable finding the matching result by not

contributing its decryption key for decryption of the correct encrypted aggre-

gate value. While we can detect the equivocating server, enforcing the server to

makeup its behavior is a different scenario. Any of the servers may step out of

the protocol execution and stop the system. This is analogous to the denial of

service which we treat as an orthogonal problem to be addressed in the future.

However, one may adopt an existing fair exchange protocol like [108] to address

such service disability.

Chapter 4

PRIVADO: COMPLEXITY, PERFORMANCE AND

SECURITY

4.1 Complexity and Performance

4.1.1 Complexity

We demonstrate the computational complexity based on the number of group multi-

plications. The complexity analysis are illustrated in Table 4.1.a.

User: User performs O(p) encryption operations to create BF and Pf as part of

his profile. Each encryption requires O(λ) group multiplications. Further, for each

element of BF and Pf , the user generates proof of plaintext range and proof of

correct multiplication. Each proof is of O(λ). Thus, the overall running time com-

plexity of user is O(p · λ).

Advertiser: An advertiser only creates a plaintext Bloom filter, hence carries no

cryptographic operations.

Servers: We analyze the running time complexity of servers for each protocol

separately as follows.

• User registration: During this protocol and for each group of profiles, servers

run mix-net to create a fresh permutation of the membership identifier set. We

use the verifiable shuffle scheme proposed by [107]. As such, in each instance of

mix-net, each server carries O(k · λ) operations (or equivalently O(k·λ
k

) = O(λ)

operations per group member).

Additionally, servers receive the encrypted profiles whose correctness must be

checked. That is, servers verify σPOPR and σPOCM that are generated for p

Chapter 4: Privado: Complexity, Performance and Security 69

Overhead\Entity User Advertiser S1, ...SN

User Registration O(p · λ) - O(p · λ)

Advertisement - - O(k · |R|+N · λ)

(a) Privado Asymptotic Performance

Overhead\Entity User Advertiser Provider PSP

User Registration O(p) - - -

Advertisement - - O(k · |R|) O(k · |R|)

(b) PPAD [67] Asymptotic Performance

Table 4.1: Computation Complexity based on the group multiplications. k: number
of users per group. |R|: number of set bits in the advertising request. p: size of the
Bloom filter. N : the total number of servers. Advertiser registration does not involve
any cryptographic operation hence is not included in the tables.

distinct elements of each profile. Verification of each proof incurs constant

overhead in λ. Thus, in total, profile verification costs O(p · λ) at each server.

In total, O(p · λ) is the overhead of profile registration on each server.

• Advertising: In this protocol, servers locally compute the φ value then de-

crypt it. The computation of φ requires (k · |R|) + k − 1 operations. Then,

each server uses its own share of the decryption key to decrypt φ which is done

in O(λ). Additionally, each server must verify the computation (decryption) of

N − 1 other servers which results in O((N − 1) · λ) more operations. In total,

O(k · |R|+N · λ) is a load of advertising on each server. We emphasize that N

adds only an additive overhead to the advertising run-time.

4.1.2 Concrete Performance

We investigate the performance of Privado by simulating the advertising protocol on

a single computer with an Intel Xeon 2.93 GHz CPU, 80GB RAM, and Ubuntu 16.4

operating system. We deploy Paillier encryption scheme with 2048 bit modulus. Our

70 Chapter 4: Privado: Complexity, Performance and Security

performance results are taken using Fiat-Shamir heuristic implementation.

We generate 1000 random profiles with 400 attributes (based on our personal

experience from Facebook advertising as well as due to [67], 400 attributes are ap-

proximately the maximum number) as well as 100 advertising requests with 30 ran-

dom attributes (for randomly generated profiles, almost no match is found for an

advertisement with more than 30 attributes [67]). A Bloom filter accommodating 400

attributes has a size of p = 6848. An advertising request with 30 attributes contains

294 set bits in its Bloom filter representation (i.e., |R| = 294). We group the profiles

using group sizes 2-20, create their encrypted format and attempt to run advertising

protocol over the resultant groups. The results are shown in Figure 4.1.

The results assert that the server’s overhead linearly scales with the group size

and the number of servers. In particular, the group size impacts the server’s running

time to aggregate a group of profiles, i.e., the computation of φ , whereas the number

of servers influences the running time of decryption of φ (during which each server

should verify the decryption integrity of N − 1 other servers). Adding a new server

to the system will increase the run time of each server by 30ms which is the time

required to verify the decryption of one server.

Recommended Number of Servers: In Privado, we utilize multiple servers in

order to provide better privacy for the users, i.e., the privacy holds unless an adversary

obtains control of all the servers. Thus, increasing the number of servers would make

the job of the adversary harder (hence results in a stronger privacy guarantee). In

contrast, the number of servers negatively influences the advertising running time and

degrades the performance. Thus, the selection of N is a trade-off between privacy

and performance. Note that, due to the privacy concern, N cannot be less than

2. For any value of N greater than 2, the best candidate can be set according to

the computational power of servers and the desired performance. For instance, in

a system with group size 11, if the desired running time of advertising protocol is

less than 400 milliseconds, then the maximum value of N (which is the best for user

privacy) would be 8 (in Figure 4.1, the running time line of N = 8 is the closest line

Chapter 4: Privado: Complexity, Performance and Security 71

Figure 4.1: Running time of servers in advertising protocol over the different number
of servers and group sizes. N indicates the number of servers.

to the intersection of group size 11 with the running time 400 milliseconds).

Privado vs PPAD: We compare the advertising running time of Privado with

PPAD [67]. For the results to be comparable, we deploy 2 servers for Privado similar

to PPAD. The computation complexity of PPAD is given in Table 1.b.

With respect to the computation complexity, both servers in Privado and PPAD

run an identical set of instructions to perform aggregation (computation of φ) and

decryption. However, in Privado, servers have to verify each others’ decryption results

in order to provide security against malicious servers. In fact, the additional term

N · λ in Table 1.a under the advertising row asserts this fact. That is, each server

of Privado has to carry O(λ) group multiplications to verify the decryption result of

another server.

The simulation results (shown in Figure 4.2) comply with the asymptotic analysis.

In order to clarify this observation, in Figure 4.2, we plot the run time of Privado

under both honest-but-curious (HbC) and malicious adversarial models. In the HbC

curve of Privado, we exclude the verification run time (i.e., servers do not verify the

72 Chapter 4: Privado: Complexity, Performance and Security

ZKP of correct decryption of one another) assuming that they all trustfully follow

the protocol. As it is apparent from the graphs, PPAD and Privado run identically

in the HbC model. The malicious setting of Privado imposes 30 ms to the total run

time (that is the verification run time), which is the time that each server spends

to verify other server’s output. This difference causes PPAD to be 1.2 times faster

than Privado in the two-server setting. For instance, under the group size 7, PPAD

performs advertising in 140 ms whereas Privado runs in 168 ms (168
140 = 1.2). But,

we emphasize that this computational cost has enabled Privado to stand a stronger

adversarial model and deliver more robust security guarantee for its users.

Privado performance under Facebook Settings: In this part, we analyze the

time required for a real OSN like Facebook to run our proposed advertising protocol

over 2 billion users. First, we present the the computational power of Facebook and

then measure the running time of our advertising protocol under that setting. Next,

we also investigate the impact of network delay on the advertising performance.

Facebook’s computational power for serving 2 billion users come from deploying

830,000 servers1. Under such configuration, each Facebook server gets to serve 2410

(= 2∗109/830, 000) users. Each Facebook server typically has two or more high-speed

64-bit Intel Nehalem processors of 3.2 GHz speed with 4 or 8 cores2. Given that in our

simulation setting we used a 2.9 GHz processor, and the fact that the matching for

each group and advertising request can be done independently in parallel, the running

time of advertising protocol on Facebook servers would be almost (3.2∗ 8/2.93 = 8.8)

times faster than our simulation environment. Therefore, in a 2 server setting and

under the group size of 5, the advertising protocol running time would drop from 149

ms (under our simulation setting) to 17 ms (under Facebook servers), i.e., 149ms
8.8 = 17

ms. Hence, in practice, an OSN like Facebook can find the target groups of an

advertising request within (2410/5) * 17 ms= 8194 ms= 8.2 seconds (note that each

server of Facebook serves 2410 users which corresponds to 482 = 2410/5 groups of

size 5).

The running time of advertising protocol is also influenced by the network delay

Chapter 4: Privado: Complexity, Performance and Security 73

(or the Round Trip Time (RTT) between every pair of servers), where the servers need

to run distributed decryption protocol, hence, send their partial decryption results to

N − 1 other servers. This imposes one RTT to the running time of each advertising

protocol (this overhead is independent of the number of servers since each server can

communicate with other servers simultaneously). Furthermore, since the result of the

advertising protocol for each group is independent of the other groups, all servers

can transmit all their partial decryption results of all the groups in one message with

the N − 1 other servers. To measure the RTT value, we carried out experimental

analysis on Google cloud servers each with 1Tbit/s bandwidth. In our experiment,

we set up multiple Google cloud servers distributed all around the globe and measure

their pairwise RTT3. The average pairwise RTT is calculated as 20 ms. Thus, the

overall impact of network delay on advertising protocol running time (to find all the

target groups of an advertising request) would be 20 ms. As such, in the OSN with

2 billion users with group size 5 (which results in 2∗109

5 = 4 ∗ 108 groups of size 5),

the overall impact of network delay on each instance of advertising protocol would be
20ms
4∗108 = 5 ∗ 10−8ms = 0.05 nanoseconds.

4.1.3 Advertisement Accuracy Metrics

In order to analyze the effect of different group sizes and threshold values on the ad-

vertising performance, we define two performance metrics, namely Target accuracy

and Non-Target accuracy.

Target accuracy indicates the fraction of target users who are served by the

advertisement, as formulated in Equation 4.1

Target accuracy =

Number of target users served by

the advertisement
Total number of target users (4.1)

This metric is in compliance with the advertiser desire who wants to reach as many

target users as possible. Due to the nature of group-based advertising, the Target

accuracy is not always 100% since the target users in groups with fewer than threshold-

many target users are not shown the advertisement.

74 Chapter 4: Privado: Complexity, Performance and Security

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ti
m

e
in

 m
ili

se
co

n
d

s

Group Size

PPAD (HbC)

Privado (HbC)

Privado (Malicious)

Figure 4.2: The comparison of running time of advertising protocol in Privado and
PPAD over different group sizes. Both systems deploy two servers. In the HbC
model of Privado, servers do not verify each other’s computations (assuming servers
trustfully follow the protocol).

Non-Target accuracy as shown in Equation 4.2 is the fraction of non-target

users that are not served an (irrelevant) advertisement.

Non-Target accuracy =

Number of non-target users not

served by the advertisement
Total number of non-target users (4.2)

The higher value of this metric indicates that users are less likely to be shown irrelevant

advertisement (hence more accurate is the advertising and less disturbing).

Note that the Target accuracy and Non-Target accuracy are meaningful only in

the group-based advertising paradigm and not in personalized counterparts (where

both measures are perfectly satisfied with the cost of privacy loss).

We additionally define the notion of target coverage, which is the fraction of

target users, as follows:

Target Coverage = Number of target users
Total number of users

(4.3)

Chapter 4: Privado: Complexity, Performance and Security 75

The coverage value depends on the attribute distribution in profiles as well as the

content of the advertisement. In our experiments, we target various levels of coverage

and analyze the effect of our system parameters.

4.1.4 Advertisement Accuracy Results

We explore the effect of group size and threshold value on the Target accuracy and

Non-Target accuracy. The results are taken over 100,000 profiles with three different

target coverage values (10%, 50% and 90%) as demonstrated in Figure 4.3. The re-

sults present that under a specific group size, increasing the threshold value improves

the Non-Target accuracy. This behavior is expected since having a higher threshold

guarantees that more target customers are in the target groups (compared to the lower

thresholds). Hence in such settings, the higher percentage of target group members

are real target customers i.e., the Non-Target accuracy is higher. On the contrary,

the Target accuracy has the inverse relation with the threshold value. Indeed, higher

threshold imposes more constraint on the group for being selected as a target. Con-

sequently, the advertiser loses some of his target customers in the groups which do

not have enough target users.

On the other hand, with a fixed threshold, as the group size increases, Target

accuracy increases but Non-Target accuracy decreases. This happens for all target

coverages, since in a larger group with the same threshold, it is easier to find match-

ing groups, but it also means that potentially more non-target users are shown an

irrelevant advertisement.

By inspecting the behavior of Target accuracy and Non-Target accuracy, we find

out that a perfect balance between these two metrics is met when the ratio of the

threshold to the group size i.e., Thr
Group Size is close to the target coverage. We refer

to this threshold value as ”balanced threshold”. For instance, under the target

coverage 50% and group size 19, the balanced threshold is 10 with 10
19 = 0.52 ≈ 0.5.

At this balance threshold, Target accuracy and Non-Target accuracy are 58% and

60%, respectively. We refer to the accuracy achieved at the balance threshold by

76 Chapter 4: Privado: Complexity, Performance and Security

balanced accuracy. In Figure 4.3, the x coordinate of the point where two curves

of the same color (i.e., same group size) collide indicates the balanced threshold and

the accuracy at that point (y coordinate) is the balanced accuracy. After the balanced

threshold, the Target accuracy drops while the Non-Target accuracy increases. The

inverse occurs for values less than the balanced threshold.

The simulation results demonstrate that as the group size increases, the balanced

accuracy degrades. For example, under the target coverage of 50%, the balanced

accuracy of group size 7 (at balanced threshold 4) is 65% whereas in group size 19 (at

balanced threshold 10) it drops to 58%. The correctness of this fact can be verified

by coverage 10 and 90 as well. This implies that smaller group sizes are better for

accuracy at their respective balanced thresholds.

In general, threshold being equal to group size k would mean that all users in a

matched group have the same attributes in the advertisement in common. Similarly,

threshold of 1 where the advertisement is not matched would reveal that no user

in that group contains all the attributes in the advertisement. Such leakages are

independent of the underlying methodology, and hence are not analyzed, but should

be considered when selecting the parameters.

4.2 Security

We analyze the security of Privado against an active adversary who controls at most

N − 1 servers, k − 2 users per group, and an arbitrary number of advertisers (as

discussed earlier, more than k − 2 colluding users per group cannot be made secure

by any technique, and clearly, if all servers are adversarial then privacy is not appli-

cable). We consider a malicious adversary which may refuse to follow the protocols’

instructions and act in an arbitrary way. We present the security definition of user

privacy in Section 4.2.1 (originally proposed by [67]) and provide a full security proof

against this most powerful adversary in Section 4.2.2.

Chapter 4: Privado: Complexity, Performance and Security 77

4.2.1 Security Definition

We utilize the following game to illustrate the formal definition of user privacy. The

game is played between an adversary and a challenger. The adversary directs all the

colluding malicious entities in the system i.e. N − 1 servers, k − 2 users per group,

and any number of advertisers. On the other hand, the challenger controls the rest

of parties which are honest, i.e., 2 of the group members, 1 server and some of the

advertisers. In this game, the adversary selects two sets of attributes for the honest

users of a group and asks the challenger to register the honest users using those

sets. The challenger assigns the sets randomly to the honest users and registers them

accordingly. The adversary’s task is to guess which attribute set is registered under

which username. In secure group-based advertising, the adversary would not be able

to guess the correct assignment with better than a negligible advantage. Thus, even

though the adversary has the power to know and even set the attributes of the two

honest users, he cannot decide which user has which attribute set.

Note that, this security definition perfectly copes with the security challenges

we discussed in Section 3.5.1. In particular, if the adversary manages to mount

any of those attacks, then it would be able to break this game. For example, if the

adversary manages to reuse one of the honest members profile for a corrupted member

(mount replay attack), then (as we explained in Section 3.5.1) this would result in a

specific pattern in the total number of target users of the group. As such, adversary

can precisely learn the assignment of attributes to honest users and win the game.

Therefore, the failure of the adversary in this game means the resilient of the design

against all those attacks.

We consider UPrivacyA(λ) a probabilistic experiment defined in terms of a game

played between adversary A and a challenger, as given below [67].

78 Chapter 4: Privado: Complexity, Performance and Security

User privacy experiment UPrivacyA(λ):

1. Adversary and challenger are given the security parameter λ. They exe-

cute the Initialization protocol.

2. Adversary registers k − 2 users to the group with the GID∗ to be at-

tacked. Subsequently, the challenger takes the role of the other two users

whose usernames are denoted by Uname0 and Uname1. This step can be

executed after step 4 as well.

3. Adversary outputs two attribute sets Att0 and Att1 to be assigned to the

two honest users in the group to be attacked.

4. Challenger selects a bit value b randomly. He assigns Attb and Attb̂ to

Uname0 and Uname1, respectively. Finally, the challenger creates two

profiles accordingly and runs the UReg (User Registration) protocol on

behalf of these two users together with the adversary.

5. challenger registers advertisers upon adversary’s request with the at-

tributes the adversary provides. This step can be run polynomially-many

times.

6. The advertising protocol is executed jointly by the challenger and the

adversary for polynomially many advertising requests.

7. The adversary outputs a bit b′ . If b == b
′ then the output of the experi-

ment is 1 indicating that the adversary succeeds, otherwise it is 0.

Definition 1 Privado protects user privacy against an active adversary if for every

PPT adversary A, there exists a negligible function negl(λ) where λ is the security

parameter such that:

Chapter 4: Privado: Complexity, Performance and Security 79

Pr[UPrivacyA(λ) = 1] ≤ 1
2 + negl(λ) (4.4)

4.2.2 Formal Security Proof

Proof Overview: Our proof consists of two parts. In the first part, illustrated

in Theorem 1, we show that breaking user privacy of Privado would compromise

the IND-CPA security of the underlying encryption scheme TEnc. This is done

through the construction of a simulator B which ties user privacy game to the IND-

CPA game. As the second part, we supply Theorem 2 in which we prove that B

runs indistinguishable from the real challenger due to the IND-CPA security of the

deployed encryption TEnc.

Note that in Privado, for efficiency, we deploy Fiat-Shamir heuristic to enable

non-interactive ZKPs for POPR, POCM and the proof system of the verifiable shuffle

scheme. Thus, the security of FRPOPR, FRPOCM , and FR
V S are in the random oracle

model (and subsequently, the proof of Theorem 1). However, we emphasize that our

security proof also works intact in the standard model by utilizing interactive ZKPs.

Theorem 1 Privado preserves user privacy as given in Definition 1, in FRPOPR,

FRPOCM , FR
V S, FTHRES hybrid model, assuming that the TEnc encryption scheme is

IND-CPA secure.

Proof: If there exists a PPT adversary A who breaks user privacy with ε(λ) advan-

tage, then we can construct a PPT adversary B who breaks the IND-CPA security of

TEnc with the same advantage. Let h ∈ [1, N] be the index of the honest server that

is run by B whereas h̄ be the set of N − 1 servers controlled by A. B also simulates

the ideal functionalities FRPOPR, FRPOCM , FR
V S, and FTHRES. B works as follows.

1. Simulator B engages with A to execute the initialization phase. B, receives the

encryption key pk and the security parameter 1λ from IND-CPA challenger. B,

simulating FTHRES, waits to obtain (Si, Generate, 1λ) message from each server

Si ∈ h̄ and then asks A for a randomness. Upon the receipt of randomness,

80 Chapter 4: Privado: Complexity, Performance and Security

B hands over pk (obtained from IND-CPA challenger) to A. If A responds

with continue, B proceeds with the rest of executions, otherwise sends abort to

Pi∈h∪h̄ and terminates.

Next, one of the servers namely Sj creates the membership identifiers and their

encryption. If Sj ∈ h̄ (controlled by A) then two situations may happen.

A either outputs the membership identifier set ∆ = {δi}i=1:k, its encryption

∆ = { δi = Enc(δi, ri)}i=1:k, together with the randomnesses {ri}i=1:k or A

outputs an empty set. In the former case, B verifies whether ∆ satisfies Equa-

tion 3.13 and also whether ∆ is the correct encryption of ∆ using the given

randomnesses. If A outputs an empty set then B generates ∆ and ∆ by itself

and communicates ∆ and ∆ and the encryption randomnesses to Si∈h̄ to be

verified by A.

2. (a) B and A run the mix-net. We assume shuffling starts from S1 and ends

with SN . The initial input to the mix-net is ∆π0 = ∆ . For every Si∈h̄,

A creates ∆πi by shuffling and re-encrypting ∆πi−1 (πi−1 and πi are

the permutations of Si−1 and Si, respectively). A calls FR
V S to prove the

correctness of its shuffle to every other servers including Sh. As such, A

sends (Prove, Si, Sj, (pk, ∆πi−1 , ∆πi)) for j 6= i, and the witness ωi
as the proof of correct shuffle to FV S−R. B acting as FV S−R hands over

(Prove, Si, Sj, (pk, ∆πi−1 , ∆πi)) to the adversary A. If A responds

with continue, B sends (proof, Si, Sj, (pk, ∆πi−1 , ∆πi)) to each Sj∈h̄,i 6=j,

otherwise sends abort to Sj∈h̄,i 6=j and terminates. A part of ωi includes the

permutation πi (to indicate that ∆πi is the correct shuffle of ∆πi−1). This

means that B while simulating FR
V S will learn this permutation. However,

we remark that B will not use this information. B simulates FR
V S and

verifies the proof correctness. When the honest server Sh takes the turn, B

simulates on behalf of it as follows. B populates ∆πh with k encryptions

of a junk value δ′ i.e., ∆πh = { δ′ , ..., δ′ }. B delivers ∆πh to Sh+1

Chapter 4: Privado: Complexity, Performance and Security 81

(that is controlled by A). B acting as FV S−R hands over (Prove, Sh, Si,

(pk, ∆πh−1 , ∆πh)) for Si ∈ h̄ to the adversary A. If A responds with

continue, B sends (proof, Sh, Si, (pk, ∆πh−1 , ∆πh)) to each Si∈h̄ playing

as FR
V S. Otherwise, sends abort to Si∈h̄ and terminates. If h = N then

the honest server’s (B’s) output ∆πh constitutes the final output of the

mix-net.

(b) A creates k − 2 profiles on behalf of corrupted members. As such, A

communicates BFj , and Pfj with Sh (j indicates the index of corrupted

member). Also, A proves the correctness of profiles to Sh by invoking

FR
POPR and FR

POCM for every element of BFj and Pfj , respectively. B

shall act as FR
POPR and FR

POCM and verify the correctness of profiles. Note

that according to Equation 3.10, B while simulating FR
POPR, learns the

profiles of corrupted members. That is, for each encrypted element bj,i=1:p

of BFj (for each corrupted member j controlled by A), A submits a

witness ω to B which contains the corresponding plaintext bj,i (together

with the encryption randomness). This enables B to learn all the bit value

of the Bloom filter BFj.

3. A outputs two attribute sets Att0, Att1 to be used for the honest users.

4. B generates two Bloom filters out of Att0 and Att1 namely BF0 and

BF1. B sends M0 = {BF0, BF1} = {b0,1, ..., b0,p, b1,1, ..., b1,p} and M1 =

{BF1, BF0} = {b1,1, ..., b1,p, b0,1, ..., b0,p} to the IND-CPA challenger and obtains

C = { bb,1 , ..., bb,p , bb̂,1 , ..., bb̂,p } = { BFb , BFb̂ }. B homomorphically mul-

tiplies δ′ into each encrypted Bloom filter BFb and BFb̂ and constructs Pfb

and Pfb̂ , respectively. B registers BFb , Pfb under UName0 and BFb̂ , Pfb̂

for UName1. B acts as FRPOPR and FRPOCM to prove the correctness of profiles

to each server Si∈h̄. That is, for the jth element of BFb i.e., b0,j where j ∈ [1, p],

B sends (proof, UName0, Si, (pk, BFb,j , [0, 1])) to each Si∈h̄. Also, for the jth

element of Pfb B sends (proof, UName0, Si, (pk, BFb,j , Cb, Pfb,j)) to each

82 Chapter 4: Privado: Complexity, Performance and Security

Si∈h̄. B acts similarly for UName1, BFb̂ and Pfb̂

5. A and B start registering arbitrary advertising requests to the system.

6. A invokes the advertising protocol for an arbitrary advertising request Req. This

step can be repeated polynomially many times. B computes the aggregation as

φ based on the registered profile. Next, B, simulating FTHRES, waits for all

the other servers Si∈h̄ to request decryption of φ to compute the decryption

result. Observe that B does not own the decryption power so cannot execute

decryption. However, in step 2.b, B acting as FR
POPR could learn the content of

corrupted users’ profiles. Also, B knows the content of honest users profiles due

to step 3. Thus, B can craft the decryption result i.e., φ on its own. As such,

B first computes the matching results of corrupted members i.e., α3,...αk using

the Bloom filters extracted in step 2 (αis is defined in Equation 3.16). Then,

B calculates the individual matching results of the honest members i.e., α1 and

α2 based on BF0 and BF1, respectively. B needs to associate each matching

result with a membership identifier (as given in Equation 3.18). Therefore, B

shuffles ∆ under a random permutation π and associates jth element of ∆π i.e.,

δπ(j) with the jth group member. B performs shuffling only once and then keeps

using the same assignment for the rest of advertising requests. B outputs the

aggregate value φ as ∑
j=1:k δπ(j) · αj.

Note that B acting as FTHRES is supposed to perform decryption of a ciphertext

(i.e., encrypted aggregation) upon the request of all the N servers. Thus, B

would only attempt decryption of ciphertexts that are agree with its own (i.e.,

the honest server’s) local computations for which B knows the corresponding

plaintext. Thus, B is always able to make a correct decryption indistinguishable

from FTHRES. If A sends a decryption request for an arbitrary ciphertext which

does not correspond to any aggregation computed by B, then B would never

decrypt it.

Chapter 4: Privado: Complexity, Performance and Security 83

7. A outputs a bit value b′. B delivers the same value to the IND-CPA challenger.

B carries polynomial operations at each step hence runs in polynomial time. Also, B

simulates user privacy game toA indistinguishable from the original game as discussed

next. Steps 1 is done as instructed in the real protocol. In step 2, B replaces all the

membership IDs i.e., δ1, ..., δk with δ′ which remains unnoticed to A due to the IND-

CPA security of the encryption scheme (this is formally proven in in Theorem 2).

Step 3 is run as expected. In step 4, B creates the content of the two honest users

flawlessly. Though, B does not know the real content of BFb and BFb̂ to generate

the profile correctness proof, B itself simulates FR
POPR and FR

POCM which enable him

to approve to the adversary A that the profiles of honest members are constructed

appropriately. Step 5 is executed as expected. In step 6, the decrypted aggregate

value φ constructed by B is certainly admissible to A since the decryption is modeled

by the ideal functionality FTHRES.

Notice that the execution of the protocol at steps 1-3 and 5 convey no useful

information regarding the attribute assignment of the honest members. This is the

case since the simulator B uses identical membership identifiers δ′ for all the group

members including the honest ones. Thus, the only way to learn which attribute is

assigned to which honest member is through the content of registered profiles. This

should not be possible as the utilized encryption scheme is IND-CPA secure i.e., the

profiles reveal no information about the underlying attributes. Hence, if A guesses bit

b′ with non-negligible advantage, the IND-CPA security of the underlying encryption

is broken. In particular, the output bit b′ asserts that Attb′ is assigned to UName0

i.e., BFb′ is used in UName0 registration. Recall that the profile of UName0 is

constructed based on the first part of IND-CPA challenger’s output. Therefore, the

IND-CPA challenger’s output must be the encryption of Mb′ i.e., { BFb′ , BFb̂′ }.

Assuming that A has non-negligible advantage ε(λ) in winning the user privacy game,

then B by outputting the same b′ also breaks the IND-CPA game with non-negligible

advantage ε(λ). This is a contradiction with the initial assumption stated in Theorem

1. Thus, ε(λ) is negligible. �

84 Chapter 4: Privado: Complexity, Performance and Security

As for the indistinguishability of {δ′, ..., δ′} from real membership IDs i.e.,

{δ1, ..., δk} in the mix-net execution, we construct a modified simulator B′ which

runs identical to B except that at step 3.a, during the mix-net execution, it uses the

real membership identifiers. In particular, B′ executes step 2.(a) honestly (not with

the junk identifiers).

Next we prove that A cannot distinguish its interaction with B and B′ unless the

underlying encryption scheme is not IND-CPA secure. Let UPrivacyA,B′(λ) indicate

the user privacy experiment run between A and B′.

Theorem 2 In FRPOPR, FRPOCM , FR
V S, FTHRES hybrid model and assuming that the

TEnc encryption scheme is IND-CPA secure then

|Pr[UPrivacyA,B(λ) = 1]− Pr[UPrivacyA,B′(λ) = 1]| < negl(λ) (4.5)

Proof: If A can distinguish between its interaction with B and B′ with non-negligible

advantage ε′, i.e.,

|Pr[UPrivacyA,B′(λ) = 1]− Pr[UPrivacyA,B(λ) = 1]| = ε′ (4.6)

then we can construct an adversary D who can break the IND-CPA security of the

encryption scheme with ε′ advantage. D interacts with A as below.

1. D runs identical to B.

2. (a) D and A run the mix-net. Shuffling starts from S1 and ends with SN . For

every Si∈h̄, A sends (Prove, Si, Sj, (pk, ∆πi−1 , ∆πi), ωi) for j 6= i to

FV S−R. πi−1 and πi are the permutations of Si−1 and Si, respectively. ωi is

the witness of correct shuffle. D acting as FV S−R hands over (Prove, Si, Sj,

(pk, ∆πi−1 , ∆πi)) to the adversary A. If A responds with continue, D

verifies the correctness of the proof and sends (Proof, Si, Sj, (pk, ∆πi−1 ,

∆πi)) to Sj∈h̄,i 6=j, otherwise sends abort to Si∈h̄,i 6=j and terminates. When

Sh takes the turn, D simulates on behalf of it as follows. D selects a random

permutation πh and permutes the plaintext ∆ as ∆πh = {δπ(1), ..., δπ(k)}.

Chapter 4: Privado: Complexity, Performance and Security 85

D constructs M0 = {δπ(1), ..., δπ(k)} and M1 = {δ′, ..., δ′} and hands over to

the IND-CPA challenger. δ′ is a junk identifier. As the result, D receives

ciphertext C = {C1, ..., Ck}. He sends ∆πh = {C1, ..., Ck} to Sh+1 (that

is controlled by A). D acting as FV S−R hands over (Prove, Sh, Si, (pk,

∆πh−1 , ∆πh)) for Si ∈ h̄ to the adversaryA. IfA responds with continue,

D sends (proof, Sh, Si, (pk, ∆πh−1 , ∆πh)) to each Si∈h̄ playing as FR
V S.

Otherwise, sends abort to Si∈h̄ and terminates.

(b) A registers k− 2 users into the system. D acts identical to B. Recall that

in this step, B will learn the content of registered profiles i.e., BF3, ..., BFk.

3. A outputs two attribute sets Att0 and Att1.

4. D generates two Bloom filters out of Att0 and Att1 namely BF0 = {b0,1, ..., b0,p}

and BF1 = {b1,1, ..., b1,p}. He constructs Pf0 using BF0 and the membership

ID C1, and Pf1 using BF1 and the membership ID C2. Next, D flips a coin b←

{0, 1} and registers BFb , Pfb under UName0 and BFb̂ , Pfb̂ for UName1.

Then, D acts as FRPOPR and FRPOCM to prove the correctness of profiles to each

server Si∈h̄. That is, for the jth element of BFb i.e., b0,j where j ∈ [1, p], D

sends (proof, UName0, Si, (pk, BFb,j , [0, 1])) to each Si∈h̄. Also, for the jth

element of Pf0 D sends (proof, UName0, Si, (pk, BFb,j , Cb, Pfb,j)) to each

Si∈h̄. D acts similarily for UName1, BFb̂ and Pfb̂ .

Observe that in the view of adversary A, D runs this step the same as B (since

similar to B, D also ends up with a random assignment of profiles to the honest

users).

5. D and A register their own advertising requests.

6. A invokes the advertising protocol for an arbitrary advertising request Req. D

acts the same as B.

7. A outputs a bit value b′. If b == b′ then D outputs 0, otherwise 1.

86 Chapter 4: Privado: Complexity, Performance and Security

Clearly, D operates in polynomial time. D simulates indistinguishable from the

real challenger (as well as indistinguishable from B) in user privacy game. All the

steps are run identical except the shuffle operation. If the bit choice of IND-CPA

challenger is 0 then D receives C = { δ1 , ..., δk }. In such case, the view of A

is identical to its interaction with B′. If C = { δ′ , ..., δ′ } then A experiences an

interaction with B. According to Equation 4.6 we have:

ε′(λ) =|Pr[UPrivacyA,B′(λ) = 1]− Pr[UPrivacyA,B(λ) = 1]|

|Pr[b == b′|C = { δπ(1) , ..., δπ(k) }]− Pr[b == b′|C = { δ′ , ..., δ′ }]| =

|Pr[D outputs 0|M = M0]− Pr[D outputs 0|M = M1]| =

|Pr[output(PubKCPA
D,TEnc(λ, 0)) = 0]− Pr[output(PubKCPA

D,TEnc(λ, 1)) = 0]|

The last equality holds due to IND-CPA security of TEnc (Equation 3.6). If ε′(λ)

is non-negligible, then D can break the IND-CPA security of TEnc with the non-

negligible advantage. This yields to a contradiction with Theorem 2. Thus, ε′(λ) is

negligible which implies that A cannot distinguish its interaction with B and B′. �

Chapter 4: Privado: Complexity, Performance and Security 87

Figure 4.3: Target accuracy and Non-Target accuracy vs threshold for group sizes 2-
20. Dashed curves represent Non-Target accuracy and solid ones the Target accuracy.
X axis: threshold. Y axis: accuracy

88 Chapter 4: Privado: Complexity, Performance and Security

Notes to Chapter 4

1 https://blog.sqlizer.io/posts/facebook-on-aws/

2 https://arstechnica.com/information-technology/2013/02/who-needs-hp-and-dell-

facebook-now-designs-all-its-own-servers/

3 We deployed the code provided by ”https://github.com/yhassanzadeh13/GC-

Delay-Study”

Chapter 5

ANONYMA: ANONYMOUS INVITATION-ONLY

REGISTRATION IN MALICIOUS ADVERSARIAL

MODEL

5.1 Introduction

Motivation: Invitation-based systems (or invitation-only registration systems, in-

terchangeably) are services in which registration is possible only through getting invi-

tations from the current members of the system. Many reasons encourage invitation-

only registration policy e.g., the lack of sufficient resources to cover arbitrary many

users, improving the quality of service by constraining the number of members, and

to protect the system against spammers or undesirable users [109].

In a nutshell, an invitation-only system is comprised of an administrator/server, a

set of members, who will act as inviters, and a new user, called invitee, who wants to

join the system. Figure 5.1 illustrates the parties and their interaction. The new user

(i.e., invitee) can register to the system by being invited from the existing members.

Successful registration relies on having a certain number (i.e., t) of invitations from

t distinct members. The invitee collects the invitations and hands over them to the

administrator who checks whether the invitations are issued by legitimate members.

If so, it accepts the registration request and allows the invitee in. Additionally, the

administrator may issue credentials for the invitee to be able to start inviting others.

Google initiated this invitation-only policy when deploying services such as Google

Inbox, Orkut, and Google Wave1. Another successful system with an invitation-only

registration is Spotify2. Facebook also has secret groups in which new users can par-

ticipate upon getting invitations from other group members3. Similarly, messengers

90
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Figure 5.1: The sample workflow of an invitation-only registration system. The server
issues credentials for the members to generate invitations. The invitee collects t
invitations and sends them to the server. Then, the server accepts or rejects the
invitee’s request for registration by checking whether each invitation is issued by a
valid current member (resulting in knowing who is invited by whom).

Figure 5.2: Anonyma overview. The invitee receives the individual invitations and
aggregates them into a unified letter to be sent to the server. The server authenticates
the letter without knowing the identity of the inviters.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 91

such as WhatsApp4 and Telegram5 offer private groups running on the invite-only ba-

sis. The similar approach is sought in PIE Register6 where it enables users to set up

exclusive websites whose contents are only visible to the visitors invited by the web-

site administrator or authorized members. Another closely relevant example is the

trustee-based social authentication deployed by Facebook as a backup authentication

method [16, 17, 110]. A backup authentication method is used when the user fails

to pass the primary authentication, e.g., forgetting the password [16]. The account

holder determines a set of trustees and informs the server in advance. When the user

loses access to his account, the server sends recovery codes to the trustees (equivalent

to inviters in the invitation-only registration scenario). Upon collection of enough

number (recovery threshold) of codes from the trustees and handing the codes to the

server, the user regains access to his account.

As we discussed in chapter 1, the invitee-inviter relation in invitation-only systems

are prone to inference attacks where information like location, religious beliefs, sexual

orientation, and political views can be extracted about an individual by analyzing the

common features among his inviters. Due to this issue, inviter-invitee relation counts

as privacy-sensitive information.

Related Work: Hiding the inviter-invitee relationship has similarly been addressed

by researchers in the context of electronic voting systems and threshold ring-based

signature schemes. However, those proposals suit their unique settings and become

inefficient when utilized for invitation-only registration scenario. The issue in thresh-

old ring-based signature schemes is that the computation complexity for invitation

creation (at the user side) as well as invitation verification (at the server-side) is O(N)

where N is the total number of members in the system [111, 112, 113, 114]. The simi-

lar issue applies to the e-voting systems [115, 116] where all the existing members are

required to get involved in every single registration. Added to this is the size of the

invitation which grows with the number of registered members (more precisely, each

invitation contains N group elements, where N is the total number of members).

Anonyma: In our prior work, Inonymous [117], we address the problem of inference

92
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

attack in invitation-based systems by proposing a protocol by which an invitee is able

to authenticate herself to the group administrator needless to disclosing the identity

of her inviters thus protecting the inviter-invitee relationship (or inviter anonymity).

Additionally, Inonymous ensures that an invitee with an insufficient number of inviters

would not be able to convince the administrator and register into the system. This

feature is called invitation unforgeability. Inonymous guarantees the above features

under an honest but curious adversarial model, namely, all the parties shall follow the

protocol descriptions honestly. However, a corrupted administrator, by disregarding

the protocol description, can damage inviter anonymity and learn who is invited by

whom. To cope with this attack, we propose Anonyma [24] which extends Inonymous

to withstand malicious adversarial model where parties may deviate from protocols’

descriptions.

An overview of Anonyma is depicted in Figure 5.2. Anonyma consists of three

entities: A server (administrator), existing members (inviters) and a newcomer (in-

vitee). At the beginning of the system lifetime, the server registers an initial set

of members who shall start inviting outsiders. For instance, In the Google Inbox

example, the employees of Google can be the initial members. The invitee receives

invitations from a subset of existing members i.e., inviters. The invitee knows the

inviters beforehand via some other means outside the network to be joined to (e.g.,

Google employees invite their families/friends). The invitee combines the invitations

into a single invitation letter and submits to the server. If the invitation is verified

by the server, the invitee’s registration request is accepted. The verification does not

rely on any interaction between the inviters and the server. Upon successful regis-

tration, the server can decide to issue credentials for the new user to enable him to

invite others. In particular, the ability to make invitations is up to the administra-

tor who can either reserve this right to himself or share it with the members of his

choice. In Anonyma, the confidentiality of inviter-invitee relationship (i.e., inviter-

anonymity) is protected against both the server and the other members including

inviters of the same invitee. Together with this confidentiality, Anonyma guarantees

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 93

invitation unforgeability where a malicious invitee cannot convince the server unless

with holding threshold many legitimate invitations. We provide formal definition for

inviter anonymity and invitation unforgeability in Section 6.2. Our definitions are

slightly different from Inonymous in the sense that we allow the adversary to spoof

the communication channels between inviters and invitee hence gain more informa-

tion. A formal game-based proof of security against an active/malicious adversary

(who disregards the protocol instructions and acts arbitrarily) follows in the same

section 6.2.

Anonyma preserves the inviter anonymity i.e., hides the invitee-inviter relationship

only for the registration. However, it does not cover the case that the inviter and

invitee may reveal their relation through their interaction inside the service. For

instance, in the Google Inbox example, Bob can get invited to the service by Alice

using an anonymous invitation-only registration (i.e., no one knows Alice has invited

Bob). However, later on, Bob may exchange an email with Alice which would imply a

relationship between Alice and Bob. We emphasize that any interaction of this type

which occurs after the registration phase must be considered out of the scope of this

paper.

Anonyma imposes only O(t) overhead on the invitee, and constant number of

group exponentiations on the inviters (for the invitation creation) and the system ad-

ministrator (for the authentication of new registration). As such, Anonyma provides

better efficiency compared to prior studies whose computation overheads for the invi-

tee and the server are linear in the total number of existing members. Furthermore,

in Anonyma, the server is able to efficiently, and without re-keying the existing mem-

bers, generate credentials for a newcomer to empower him for inviting others. This is

significantly better than the prior proposals where the server has to carry out O(N)

communication overhead to submit some information about the newly registered user

to each one of the current members.

Additionally, we propose AnonymaX, an anonymous cross-network invitation-

based system on top of Anonyma which can be of independent interest. In the cross-

94
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

network design, a user joins one system e.g., Twitter, by obtaining invitations from

members of another network e.g., Facebook. The cross-network design is beneficial

especially to bootstrap a system, for example in the case where a research group

wants to hire qualified researchers from another group, where a qualified researcher is

the one with enough recommendations i.e., invitations from his group. We also prove

that AnonymaX preserves inviter anonymity and invitation unforgeability against a

malicious adversary.

5.2 Related Works

In this section, we investigate related studies under two main categories: Electronic

Voting (e-voting) systems and Ring-based signature schemes. These two topics show

the most similarity to the invitation-only registration systems and address the con-

fidentiality of the inviter-invitee relationship. However, the research done in both

categories suit their unique settings and suffer from the efficiency issues when de-

ployed for the invitation-only registration scenario. More details are provided below.

5.2.1 Electronic Voting (e-voting)

Electronic voting systems consist of a set of voters, some candidates to be voted, and

one/multiple authorities which handle tallying. An e-voting system must ensure that

only the authorized users participate in the voting, and each voter casts only one

vote. More importantly, the content of the individual votes must be kept private, i.e.,

no vote can be traced back to its voter. In the literature, this property is known as

vote privacy, anonymity, and untraceability. E-voting techniques are similar to the

anonymous invitation-only systems in many aspects. The role of voters is analogous

to the inviters. Each round of the election with the Yes/No votes for a candidate

can be treated as inviters casting their invitations for the registration of a newcomer.

A Yes vote indicates inviting the candidate/newcomer and a No vote implies not

inviting. Preserving the privacy of the vote is equivalent to the inviter anonymity.

Likewise, the prevention of double-voting resembles the invitation unforgeability.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 95

Despite the aforementioned similarities, e-voting proposals fall short in satisfy-

ing inviter anonymity, invitation unforgeability, and scalability simultaneously. To

illustrate this incompatibility, we first classify the e-voting techniques into two main

categories: 1- explicit vote casting, 2-anonymous vote casting. Under each category,

we identify the subtleties to transplant the e-voting solution into the invitation-only

systems.

1. Explicit vote casting: The voter authenticates himself to the authorities explic-

itly and immediately casts his private ballot. The ballot is shielded using either

a threshold encryption scheme whose decryption key is divided between multi-

ple authorities [118, 119], or secret sharing schemes where multiple authorities

obtain one share of the ballot [120]. Before tallying the votes, the identifiable

information shall be removed from the individual votes either by shuffling them

through mix-net [121] or by homomorphically aggregating them [120]. In the

context of the invitation-only system, this type of proposal has performance

problems. That is, to preserve the inviter’s anonymity (namely, hiding the

identity of voters with the Yes vote), all the members should participate in the

voting (including those who will cast a No vote). Otherwise, the real inviters

will be revealed to the voting authorities. This imposes an unnecessary load to

the non-inviters (voters with the No votes). In contrast, in Anonyma, the entire

invitation procedure is carried out only by the invitee and his inviters.

2. Anonymous vote casting: This technique relies on one-time pseudonyms to-

gether with an anonymous communication channel. A voter hands over its

credential (e.g., social security number – SSN) to the voting authority. Then,

through a blind signature scheme, the voting authority issues a signature on

the voter’s pseudonym (that is also bond to the voter’s SSN). The pseudonym

is a one-time value and untraceable to the real identity, i.e., SSN. Later on, a

voter casts a vote under his pseudonym and via an anonymous communication

channel to the voting authority. Voters attempting voting twice will have to

96
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

risk the disclosure of their real identities (i.e., SSN) [115, 116]. When we inte-

grate this solution to the invitation-only system, the main problem is that the

pseudonyms are one-time hence a user cannot use the same pseudonym for mul-

tiple elections (i.e., to invite different users). Otherwise, his identity and will

be disclosed. To cope with this issue, upon the arrival of each newcomer, the

authority has to issue new pseudonyms for all the existing members to enable

them to act as the inviter for the newcomer (regardless of being the inviters of

the newcomer or not). This is certainly not an efficient solution as the load of

the authority scales linearly with the number of joining members. Moreover, all

the existing members also have to work linearly in the number of joining users.

Alternatively, the authority should issue multiple pseudonyms (instead of one)

for each member. However, this is not clear how to ensure that an inviter will

only be able to use one pseudonym for each newcomer. In other words, the

inviter should not be able to use all of his pseudonyms to make t valid invi-

tations for just a single invitee since otherwise it would violate the invitation

unforgeability (in which the invitations must be issued by t distinct inviters).

5.2.2 (t,N) Threshold Ring Signature

A ring signature specifies a group ofN signers together with a proof that shall convince

any verifier that a message is signed by t members of the group [122]. A ring signature

scheme must satisfy three properties: 1-correctness which denotes that every group

of t signers must be able to create a valid signature and proof, 2-unforgeability that

means making valid signature is not feasible for non-signers, and 3-anonymity which

indicates that given a signature and its proof, the identity of the signers should not

be predictable with probability negligibly better than 1
N

.

An invitation-based system can be instantiated from a threshold ring signature, as-

suming that the signers are the inviters and a valid signature constitutes a valid invita-

tion for a newcomer. The important shortcoming of such schemes is that their running

time complexity for the generation of an invitation is at least linearly dependent on

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 97

the size of the system, i.e., the total number of existing members [111, 112, 113, 114].

In some other cases, the dependency is exponential [122]. The same issue applies

to the length of the signature (invitation letter) as it is comprised of O(N) group

elements where N is the total number of existing members. This considerably de-

grades the system’s performance. In contrast, the performance of Anonyma is only

influenced by the threshold of t and is independent of the size of the system. That is,

the invitation generation complexity is O(t), and the invitation verification is done in

O(1). Also, the invitation length is O(1).

5.3 System Model

5.3.1 Model

Anonyma is composed of three types of entities: a server, a set of existing members

(inviters), and a new user (invitee) who is willing to join. The server sets up the

system parameters, generates and distributes some secret values among users, and

administers user registrations. For successful registration, each newcomer needs to

obtain a threshold many (denoted by t) invitations from the existing members. The

inviters exchange the invitations with the invitee out of band, e.g., via a messaging

application. After the collection of t invitations, the invitee removes the identifiable

information from the individual invitations (through aggregation) and submits a final

invitation letter to the server. The server authenticates the letter. Upon successful

authentication, the server lets the new user register and can issue credentials to em-

power him to act like an inviter and make invitations. Note that the system shall

start by having at least t initial members who begin inviting outsiders. These initial

members are given credentials directly from the server. In the Google Inbox example,

the initial members (account holders) can be the employees of Google. In our system,

we assume all the entities communicate through a secure and authenticated channel.

98
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

5.3.2 Security Goal and Adversarial Model

Our security objective is two-fold: Inviter Anonymity and Invitation Unforgeability,

which are explained below. In Anonyma, we aim to satisfy both objectives in the ma-

licious adversarial model, where the entities may deviate from protocol specifications.

1. Inviter anonymity: As we discussed in Section 5.1, due to the inference attack

possibility, the inviter-invitee relationship must be treated as privacy-sensitive

information. Thus, by inviter anonymity, we aim to hide who is invited by

whom. This relation should be protected against both the server and other

inviters of the same invitee (as they might be also curious to learn the identity

of other inviters). Putting these together, we assume that the adversary against

the inviter anonymity may get to control the server and t−1 inviters of an invitee

and aims at determining the identity of the remaining non-colluding inviter.

Please note that the invitee is concerned about his privacy, and hence has no

incentive to expose the identity of his inviters to others. We formally propose

a security definition for inviter anonymity in Section 6.2.2. Our definition also

implies between-inviter anonymity, which refers to the fact that the anonymity

of the invitee-inviter relationship holds even against the inviters of the same

invitee.

2. Invitation unforgeability: The invitation unforgeability indicates that an

invitee whose number of inviters (t′) is less than the threshold t (i.e. t
′
< t)

should not be able to register to the system. Trivially, if the invitee already

has t inviters, i.e. t
′ = t, then he is an eligible person and can make a valid

registration. We propose a security definition for invitation unforgeability in

Section 6.2.3. That definition embodies the following security properties:

• Non-exchangability: This means that invitations issued for a particular

invitee are not reusable for another user. Otherwise, the current registered

users can exchange their past invitations (by which they got invited to the

system) with others and cause ineligible outsiders to join the system.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 99

• Preventing double invitation: This feature indicates that an inviter

cannot issue more than one valid invitation for a single invitee. This is

essential since otherwise an invitee with insufficient inviters (i.e., t′ < t)

can obtain multiple invitations (e.g., t − t′) from one of her inviters and

successfully register.

5.4 Notations, Definitions, and Preliminaries

5.4.1 Notations

We refer to a Probabilistic Polynomial Time entity as PPT. x ∈R X and x← X both

mean x is randomly selected from set X. ⊥ indicates an empty string. ≡c stands for

computational indistinguishability. We use DLg(y) to indicate the discrete logarithm

of y in base g. TTP stands for Trusted Third Party. The description of the notations

used in Anonyma is provided in Table 5.1.

1λ: The security parameter

⊥: Empty string

≡c: Computational indistinguishability

t: The threshold for the number of inviters

N : The total number of existing members

ek, dk: Encryption key and decryption key

h: The public key of El Gamal Encryption

sk, vk: Signature key and verification key

S: Master value

si: A share of the master value for the ith member

Bi: Lagrange coefficient computed for the ith user w.r.t. a given set of points

G: A cyclic group

p, q: Prime numbers of length λ

g: The generator of a subgroup of G of order q

PRG: A pseudo random number generator

100
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

f : Polynomial of degree t− 1

a0, · · · , at−1: The coefficients of polynomial f

F0, ..., Ft−1: The commitments over the coefficients of f where Fi = gai

γi: The commitment of the master share of the ith user i.e., gsi

ω: The randomness inside the Token

η: Server generated signature

Token: The token issued by the server

δi: The randomness used by ith user during Igen

τi: The first half of the invitation issued by the ith user (τi = ωsi+δi)

eδi: The encryption of δi
Invi: The invitation letter issued by the ith user i.e., (τi, eδi)

∆: The aggregate of randomnesses in invitations of t inviters i.e., ∑t
i=1 δi

e∆: The encryption of ∆

T : ωS+∆

InvLet: The final invitation letter (T, e∆) given to the server

Sj: The jth host server

skSj , vkSj : Signature and verification key of the jth host server

ekSj , dkSj : Encryption and decryption key of the jth host server

ParamSj : The public parameters generated by Sj
e(., .): Bi-linear map

Table 5.1: Notations used in Anonyma

5.4.2 Definitions

Negligible Function Function f is negligible if for ∀p(.) where p(.) is polynomial,

there exists integer N s.t. for every n > N , f(n) < 1
p(n) .

Computational Indistinguishability: Let X = {(in, λ)}in∈{0,1}∗,λ∈N and Y =

{(a, λ)}in∈{0,1}∗,λ∈N be two series of random variables which are indexed with in and λ

where in is the input and λ is the security parameter. The two distributions are com-

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 101

putationally indistinguishable i.e., X ≡c Y if the following holds: ∀ D (a non-uniform

polynomial-time distinguisher), ∃ a negligible function negl(.) s.t. ∀in ∈ {0, 1}∗ and

∀λ ∈ N [97]:

|Pr[D(X(in, λ)) = 1]− Pr[D(Y (in, λ)) = 1]| ≤ negl(λ) (5.1)

Secure Multi-Party Computation: Consider function F (in1, ..., inN)

= (f1(in1, ..., inN),· · · ,fN(in1, ..., inN)) that receives inputs ini from ith party to whom

delivers fi(in1, ..., inN). F shall be run by a trusted third party. We refer to such

execution as the IDEAL world. Assume γF is a multi-party protocol that computes

F . The execution of γF by the interaction of parties constitutes the REAL world. γF

is said to securely realize F if the following holds. That is, for every PPT adversary

A in protocol γF with auxiliary input aux ∈ {0, 1}∗ and controlling parties specified

in Pc, there exists a PPT simulator Sim for the ideal functionality F , that ∀ security

parameter λ:

{IDEALF,Sim(aux),Pc(in1, ..., inN , λ)}} ≡c {REALγF ,A(aux),Pc(in1, ..., inN , λ)}

(5.2)

IDEALF,Sim(aux),Pc(in1, ..., inN , λ) represents the output of parties in interaction

with ideal functionality F while Sim is controlling parties specified in set Pc. Simi-

larly, REALγF ,A(aux),Pc(in1, ..., inN , λ) asserts the output of the parties interacting in

protocol γF .

Hybrid Model: Assume θ is a multiparty protocol that makes use of a sub-protocol

γF . γF in turn securely realizes the ideal functionality F . The hybrid model allows

proving the security of θ by replacing γF with F . As such, for any execution of γF

in the proof, parties contact a rusted third party running the ideal functionality F .

This would be called F -hybrid model [97].

Sigma protocol: A Σ protocol is a three rounds proof system (P, V) for a relation

R which satisfies the following properties [97]:

102
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

• Completeness: An honest prover P holding a private input w, where (x,w) ∈

R, can always convince an honest verifier V .

• Special soundness: There exists a polynomial time machine A that for every

pair of accepting transcripts (a, e, z) and (a, e′, z′) (where e 6= e′) of an statement

x, A extracts witness w s.t. (x,w) ∈ R

• Special honest verifier zero knowledge: There exists a PPT machine S

which given statement x and e can generate an accepting transcript (a, e, z)

whose distribution is the same as the transcript of the real interaction of P and

V . More formally, ∀(x,w) ∈ R and e ∈ {0, 1}t

{S(x, e)} ≡c {(P (x,w), V (x, e))} (5.3)

The output of simulator S is denoted by {S(x, e)}. {(P (x,w), V (x, e))} indi-

cates the output transcript of an execution between P (holding inputs x and

w) and V (with inputs x and random tape e).

Zero-knowledge proof of knowledge from Σ protocols: Following the method

given in [97], it is proven that one can efficiently construct a zero-knowledge proof

of knowledge (ZKPOK) system from any sigma protocol. We refer to [97] for more

details of such construction. Applying this method on a Σ protocol e.g., Π (defined for

the relation R) will result to construction that securely realizes the ideal functionality

FR
Π (defined in Equation 5.4) in the presence of malicious prover and verifier. Namely,

dislike Σ protocols, the prover and the verifier are not obliged to act honestly hence

may deviate from protocol descriptions.

FR
Π ((x,w), x) = (⊥, R(x,w)) (5.4)

x refers to the statement whose correctness is to be proven and w indicates the

witness. The ideal functionality FR
Π receives a common input x from the prover and

the verifier as well as the private input w from the prover. FR
Π outputs to the verifier

whether x and w fit into the relation R.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 103

5.4.3 Preliminaries

Pseudo Random Generator A deterministic polynomial time function P :

{0, 1}m → {0, 1}l(m) (where l(.) is a polynomial) is called Pseudo Random Gener-

ator (PRG) if m < l(m) and for any probabilistic polynomial-time distinguisher D

there exists a negligible function negl(.) such that:

|Pr[x← {0, 1}m : D(P (x)) = 1]−Pr[y ← {0, 1}l(m) : D(y) = 1]| = negl(m) (5.5)

(t,n)-Shamir Secret Sharing Scheme The (t,n)-Shamir secret sharing scheme

[123, 124] is a tool by which one can split a secret value into n pieces such that any

subset of t shares can reconstruct the secret. The scheme works based on polynomial

evaluations. Let Fq be a finite field of order q. The secret holder/dealer picks a

reandom polynomial f of degree t− 1 with coefficients from Zq:

f(x) =
t−1∑
i=0

ai · xi (5.6)

The dealer sets the secret data S as the evaluation of that function at point 0 i.e.,

f(0) = a0 = S. The share of each participant shall be one point on f e.g., f(j) is

the share of jth shareholder. As such, a dealer can generate arbitrary many shares

from its secret (i.e., by evaluating function f on a new point). Since each polynomial

of degree t − 1 can be uniquely reconstructed by having t distinct points of that

function, t Shamir shareholders are able to reconstruct the secret. Given any t shares

{(i, si)}ti=1, the secret reconstruction algorithm works as below.

S = f(0) =
t∑
i=1

si ·Bi (5.7)

where Bis are Lagrange coefficients defined as

Bi =
t∑
i=1

si

j=1:t∏
j 6=i

j

j − i
(mod q) (5.8)

Shamir secret sharing scheme satisfies the following properties: 1) Given t or more

than t shares, it can reconstruct the secret S easily; and 2) with knowledge of fewer

104
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

than t shares, it cannot reconstruct the secret S. Shamir’s scheme is information

theoretically secure relying on no computational assumption.

Shamir shares are homomorphic under addition operation i.e., let [s1] and [s2]

be shares of S1 and S2 (using (t, n)-Shamir secret sharing scheme), then [s1] + [s2]

constitutes a share of S1 + S2.

Multiplicative Homomorphic Encryption Scheme A public key encryption

scheme π consists of three algorithms key generation, encryption, and decryption,

denoted by π = (KeyGen,Enc,Dec). Using KeyGen, q pair of keys is generated

called encryption key ek and decryption key dk. π is called multiplicative homomor-

phic encryption if for every a and b, Encek(a)⊗Encek(b) = Encek(a · b) where a and

b belong to the encryption message space and ⊗ is an operation over ciphertexts. As

an example, in El Gamal encryption [125], ⊗ corresponds to group multiplication.

Additionally, we have Encek(a)c = Encek(ac) where a is a plain message and c is

any integer. Throughout the paper, we consider El Gamal scheme as our underlying

encryption scheme.

Signature Scheme A signature scheme [126] Sig consists of three algorithms key

generation, sign and verify denoted by Sig = (SGen, Sign, SV rfy). A pair of keys

(sk, vk) is generated via SGen where sk is the signature key and vk is the verification

key. The signer signs a message m using sk by computing η = Signsk(m). Given the

verification key vk, a receiver of signature runs SV rfyvk(η,m) to verify.

A signature scheme Sig = (SGen, Sign, SV rfy) is said to be existentially un-

forgeable under adaptive chosen message attack if ∀ probabilistic polynomial time

adversary A, there exists a negligible function nelg(.) s.t. the following holds [100]:

Pr[(sk, vk)← SGen(1λ); (m,σ)← ASignsk(.)(vk)

s.t. m /∈ Q and SV rfyvk(m,σ) = accept] = negl(λ) (5.9)

ASignsk(.) indicates that adversary has oracle access to the signature algorithm. Q

indicates the set of adversary’s queries to the signature oracle.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 105

Computational Diffie-Hellman Assumption Given a cyclic group G of prime

order q with a generator g, and two randomly selected group elements h1 = gr1 , h2 =

gr2 , the Computational Diffie-Hellman (CDH) assumption [100] is hard relative to G

if for every PPT adversary A there exists a negligible function negl(λ) where λ is the

security parameter, such that:

Pr[A(G, q, g, h1, h2) = gr1·r2]=negl(λ)

Zero-knowledge Proof of Knowledge of Discrete Logarithm (PODL) This

proof system was initially introduced by Schnorr [100] for proving the knowledge of

a discrete logarithm in the group G of prime order q with generator g. That is, for a

given ω, g ∈ G, one can prove the knowledge of x ∈ Zq s.t. x = DLg(ω) (DL stands

for discrete logarithm). We apply the method given in [97] to the Schnorr protocol

to convert it to a zero-knowledge proof system. We refer to the resultant protocol

by ZKPODL((G, q, g, ω), r). Let FR
PODL (given in Equation 5.10) demonstrate the

security guarantees of the ZKPODL protocol over the relation R that is given in

Equation 5.11. FR
PODL shall be run by a trusted third party. X refers to the statement

whose correctness is to be proven i.e., X = (G, q, g, ω) and the witness W = x, which

is only known to the prover. The ideal functionality FR
PODL, that is run by a TTP,

receives a common input X from the prover and the verifier as well as the private

input W from the prover. FR
PODL outputs to the verifier whether X and W fit into

the relation R.

FR
POIC((X,W), X) = (⊥, R(X,W)) (5.10)

R = {((G, q, g, ω), x)| gx = ω (mod p)} (5.11)

Zero-Knowledge Proof of Plaintext Knowledge This proof system is used to

prove the plaintext knowledge of a given ciphertext. That is, given ciphertext C

that is encrypted under public key pk, a prover proves the knowledge of x and r s.t.

106
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

C = Encpk(x, r). r is the randomness used while encryption. We instantiate such

proof system using the proposal of [127] for El Gamal encryption scheme.

Zero-Knowledge Proof of Discrete Logarithm Equality For a group G of prime

order q and generators g1, g2, h1, h2 ∈ G, the ZKP of discrete logarithm equality is a

protocol to prove that h1 = gα1 and h2 = gα2 where α ∈ Zq [128].

Bilinear Map Consider G1 and G2 as multiplicative groups of prime order q. Let

g1 be the generator of G1. We employ an efficiently computable bilinear map e :

G1 ×G1 → G2 with the following properties [129]

• Bilinearity: ∀u, v ∈ G1 and ∀a, b ∈ Zq : e(ua, vb) = e(u, v)a·b.

• Non-degeneracy: e(g1, g1) 6= 1.

5.5 Construction

Anonyma is comprised of three main entities, namely a server, a set of existing mem-

bers who shall act as inviters, and newcomers/invitees wishing to become a member

of the system. The general interaction between the parties is illustrated in Figure

5.3. Anonyma consists of six algorithms: SetUp, Token generation (Tgen), Invita-

tion generation (Igen), Invitation collection (Icoll), Invitation Verification (Ivrfy) and

Registration (Reg). The summary of each algorithm is explained in Section 5.5.1 fol-

lowed by the full construction in Section 5.5.2. Throughout the paper, we assume

that all the parties communicate via secure and authenticated channels.

5.5.1 Construction Overview:

• SetUp: The server invokes the SetUp algorithm with the input of the security

parameter 1λ to initialize the system parameters: a cyclic group G, a master

value S ∈R G, as well as key pairs for a signature scheme (denoted by sk, vk)

and ElGamal encryption (denoted by ek, dk). At the beginning of the system

lifetime, the server needs to register at least t initial users so that they can start

inviting others. These initial members are given credentials by the server to be

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 107

Invitee(j)Server S: master value Member(i)

!"#$%$& = ()*+, 1.
#/012324) ,$%$&

567)8 = 59)8 !7, ; 567)8
567)8

<8=" = <9)8(567)8, !", #$%$&)

<8=@)* = <3611(<8=" AB"BC, #$%$&)

2D(E%DF(<8=@)*, 567)8, #$%$&, G7))
!H = I)9(;)

<8=@)*, 567)8

!H

I)J/)!*
D6% 567)8

<8="
KL#M<N

=)%2DF !ℎ$%) !H /!289 #$%$&

Figure 5.3: Parties’ interaction in Anonyma.

able to make invitations. Each credential is indeed a share si of the server’s

master value S that is generated using (t, n)-Shamir secret sharing scheme. For

the shares to be verifiable (the member can verify whether or not his piece is

valid), the server publicizes the commitment to the selected polynomial function.

• Tgen: Each newcomer (i.e., invitee) contacts the server to get a token. The

server runs the Tgen algorithm to generate a Token and hands it to the invitee.

The Token is a server signed certificate that embodies the index of the newcomer

(each user is associated with a unique index) as well as a random element

from the group G. Tokens shall be used by the inviters to issue an invitation

for their intended invitee. Invitations issued for a particular token cannot be

used for another token. This way, we guarantee the non-exchangeability of the

invitations.

• Igen: The Invitee contacts each of his t inviters (this communication cannot

be observed by the server/administrator) and communicates his Token with

them. Provided a valid token, each inviter generates an invitation by executing

Igen. The invitation consists of two parts: a masked version of the inviter’s

108
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

share si, and the masking value encrypted using the server’s ek. The token

is integrated into both parts of the invitation. As a part of Igen, the inviter

has to prove in zero-knowledge that his invitation is well structured. For this

sake, we devise a zero-knowledge proof protocol (i.e., Zero-Knowledge Proof

of Invitation Correctness (ZKPOIC)). This proof helps in protecting between-

inviter anonymity, i.e., inviters who collude with the server do not learn the

identity of other inviters. Next, the inviter hands his invitation Invi to the

invitee.

• Icoll: Upon the receipt of t invitations {Invi}ti=1, the invitee invokes the Icoll

algorithm through which he aggregates and blinds the invitations into a uni-

fied invitation letter InvLet. Aggregation and blinding remove any identifiable

information about the identity of the inviters and helps in providing inviter

anonymity (especially against a corrupted server). Additionally, through ag-

gregation, the masking version of the master value S homomorphically gets

reconstructed. We utilize the homomorphic property of both Shamir shares

and the ElGamal encryption scheme to enable aggregation. At last, the invitee

submits the final invitation letter InvLet together with his Token to the server.

• Ivrfy: The server authenticates the invitation letter by running Ivrfy and accepts

or rejects accordingly. In a nutshell, the InvLet is valid if and only if it contains

the master value S.

• Reg: If the verification passes successfully (i.e., Ivrfy outputs accept), the

server runs the Reg algorithm to issue credentials for the newcomer to enable

him to act as an inviter. This credential is a Shamir share of the server’s master

value S. The newcomer verifies the validity of his share using the parameters

output by the server in the SetUp phase, and then stores his share for inviting

others.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 109

5.5.2 Full Construction:

Full construction of algorithms is explained in the followings.

SetUp:

This algorithm is run by the server who inputs the security parameter 1λ and generates

system parameters Param as follows.

• Two primes p and q of length λ such that q|p− 1.

• g is a generator of a cyclic subgroup G of order q in Z∗p .

• ElGamal encryption scheme π = (EGen,Enc,Dec) with the key pair (ek =

h = ga, dk = a) denoting encryption key and decryption key, respectively. dk

remains at the server while ek is publicized.

• A signature scheme Sig = (SGen, Sign, SV rfy). The signature and verification

keys (sk, vk) are generated according to SGen. vk is publicized.

• A pseudo random generator PRG:{0, 1}λ → Zq

• A master value S ← Zq

• A randomly chosen polynomial function f(y) = at−1y
t−1 + ...+a1y+a0 of degree

t− 1 whose coefficients a1, ..., at−1 belong to Zq and a0 = S.

• The server initially registers t users into the system so that they can start

inviting outsiders. Each user is associated with a unique index i and shall

receive the evaluation of function f on that index, i.e. si = f(i). We refer to si
as the master share of the ith user.

• The server publicizes F0 = ga0 , F1 = ga1 , · · · , Ft−1 = gat−1 as the commitment

to the selected function f . Given F0, · · · , Ft−1, the computation of commitment

110
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Algorithm 4 Tgen [Server]
Input: sk, j

Output: Token

1: r ← Zq

2: ω = gr

3: η = Signsk(j||ω)

4: Token = (η, j, ω)

on f(i) for any i is immediate as given in Equation 5.12. We will use γi to

indicate gsi .

γi =
t−1∏
j=0

F ij

j = ga0 ·ga1·i · · · gat−1·it−1 = ga0+a1·i+···+at−1·it−1 = gf(i) = gsi (5.12)

• The server publicizes Param = (G, p, q, g, ek, vk, (F0, · · · , Ft−1)).

Token Generation:

Users wishing to register to the system first need to contact the server and obtain a

token. The server generates a token through the token generation algorithm shown in

Algorithm 4. In this procedure, the server initially assigns the user a unique index j.

Indices can simply be assigned based on the arrival order of users, as long as no two

users are assigned the same index. Hence, the jth coming user receives the index value

of j. Next, the server generates a random group element ω (lines 1-2) and certifies

j||ω using his signing key sk (line 3). Let η be the signature outcome. The tuple

(η, j, ω) constitutes the Token (line 4). We remark that the server is not required to

record any information regarding the issued tokens. Thus, the generated tokens can

simply be discarded and only the last value of j (the number of token requests) needs

to be remembered. Therefore, we do not incur any storage load on the server per

token.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 111

Invitation Generation:

Invitation generation is run by the inviter to generate an invitation for a token given

by the invitee. The procedure is shown in Algorithm 5. We assume that invitee and

inviter communicate out of band (cannot be observed by the server/administrator),

e.g., using a messaging application. Firstly, the inviter checks the authenticity of the

token against the server verification key vk (line 1). Then, he samples a random value

δi from Zq by applying PRG on the random seed v (lines 2-3). Then, he blinds his

master share using δi, i.e., si + δi, and then ties this value to the provided token as

τi = ωsi+δi (line 4). He also encrypts the masking value ωδi as eδi using the server’s

encryption ek (line 5). To ensure that the inviter is acting honestly (i.e., generating

the invitation as instructed in the algorithm), the inviter must prove the correctness

of the invitation in zero-knowledge. To enable this, we propose a zero-knowledge

proof system for the Proof Of Invitation Correctness, or for short ZKPOIC. The

inviter and invitee engage in ZKPOIC (line 7) through which the inviter proves the

correctness of his invitation Invi = (τi, eδi) to the invitee in zero-knowledge. In the

followings, we explain our proposed proof system. We first draw a Σ protocol for

POIC and prove its security. Then, the zero-knowledge variant is immediate using

the method proposed in [97, 130].

Σ Protocol for Proof Of Invitation Correctness (POIC): The invitation is

constructed correctly if the inviter proves the following statements:

1. The inviter possesses a valid share of the master value S. That is, the inviter

holding index i must prove the knowledge of the discrete log of γi, i.e., si. Note

that γi = gsi can be computed from F0, ..., Ft−1 as explained in Equation 5.12.

2. The inviter knows the plaintext of eδi, i.e., the knowledge of ωδi and r such that

eδi = (eδi,1 = ωδi · hr, eδi,2 = gr).

3. The randomness δi used in the creation of τi is correctly encrypted in eδi. This

can be captured by proving that τi · eδ−1
i,1 ·hr (= ωsi) and γi = gsi have the same

112
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Algorithm 5 Igen [Inviter]
Input: Token = (η, j, ω), si, Param

Output: Invi/ ⊥

1: if Svrfyvk(η, j||ω)=accept then

2: v ← {0, 1}λ

3: δi = PRG(v)

4: τi = ωsi+δi

5: eδi = Encek(ωδi)

6: Invi = (τi, eδi)

7: return invi //Inviter authenticates Invi through ZKPOIC

8: end if

9: return ⊥

discrete logarithm si. The former is true due to Equation 5.13.

τi · eδ−1
i,1 · hr = ωδi+si · ω−δi · h−r · hr = ωsi (5.13)

To enable zero-knowledge proof of the aforementioned statements, we devise a Σ-

protocol (P, V) as depicted in Figure 5.4. We refer to this proof system by Proof of

Invitation Correctness, or POIC. POIC captures the relation R indicated in Equation

5.14. In our protocol, we incorporate the Shnorr protocol [100] for the proof of

discrete logarithm knowledge (first anf third statement), proof of plaintext knowledge

as proposed in [127] (for the second statement), and the proof of discrete logarithm

equality [128] (for the fourth statement).

R = {((τi, eδi = (eδi,1, eδi,2), γi, ω), (si, r, δi))|

DLg(γi) = si ∧

eδi,1 = ωδi · hr ∧

DLg(eδi,2) = r ∧

DLω(τi · eδ−1
i,1 · hr) = DLg(γi) = si} (5.14)

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 113

Prover (si, r, δi) Verifier

s′, r′, δ′ ← Zq

A = gs
′

B1 = ωδ
′ · hr′

B2 = gr
′

C = ωs
′+δ′ A,B=(B1,B2),C−−−−−−−−−→

e←−−−−−−−−

Z1 = s′ + e · si
Z2 = δ′ + e · δi
Z3 = r′ + e · r

Z1,Z2,Z3−−−−−−−−→

if (A · γei == gZ1

∧B1 · eδei,1 == ωZ2 · hZ3

∧B2 · eδei,2 == gZ3

∧C · τ ei ·B−1 · eδ−ei,1 · hZ3 == ωZ1)

Accept

Figure 5.4: Σ protocol of Proof of Invitation Correctness for the common input
τi, eδi = (eδi,1, eδi,2), γi, ω. The prover has the private input (si, r, δi).

114
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Completeness: To prove that completeness holds, observe that if the prover P

follows the protocol honestly, then due to the Equations 5.15, 5.16, 5.17, and 5.18,

the verifier V accepts.

A · γei = gs
′ · (gsi)e = gs

′+e·si = gZ1 (5.15)

B1 · eδei,1 = (ωδ′ · hr′) · (ωδ · hr)e = ωδ
′+e·δi · hr′+e·r = ωZ2 · hZ3 (5.16)

B2 · eδei,2 = (gr′) · (gr)e = gr
′+e·r = gZ3 (5.17)

C · τ ei ·B−1 · eδ−ei,1 · hZ3 =

(ωs′+δ′) · (ωe·si+e·δi) · (ω−δ′ · h−r′) · (ω−e·δi · h−e·r) · hr′+e·r =

ω(s′+e·si) = ωZ1 (5.18)

We prove the special soundness and special honest verifier zero knowledge prop-

erties in Section 6.2.1. We additionally present the security properties of a zero-

knowledge proof system for POIC that is achieved using the method given in [97, 130].

Invitation Collection:

Upon receipt of t invitations, the invitee runs the Invitation Collection (Icoll) proce-

dure as indicated in Algorithm 6. The invitee aggregates τi values as ∏t
i=1 τ

Bi
i (line 3).

He operates similarly for eδi values as ∏t
i=1 eδ

Bi
i (line 4). Bi values are the Lagrange

coefficients (as defined in Equation 5.8) used for the reconstruction of the master

value S from the Shamir shares. Next, the invitee randomizes both aggregates T and

e∆ by adding a random value of his own choice, i.e., δ∗. The randomization cancels

out the effect of the Lagrange coefficients and makes the final aggregates, i.e., T and

e∆, independent of the Bi values. Recall that the Lagrange coefficients are dependent

on the inviters’ indices and by hiding them we aim at protecting inviter anonymity.

The final invitation letter InvLet shall be the pair (T, e∆). The invitee submits the

invitation letter and the token to the server.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 115

Algorithm 6 Icoll [Invitee]
Input: {Invi = (τi, eδi)|1 ≤ i ≤ t}, Param

Output: InvLet

1: r ← {0, 1}λ

2: δ∗ = PRG(r)

3: T = ωδ
∗ ·∏t

i=1 τ
Bi
i

4: e∆ = Encek(ωδ
∗) ·∏t

i=1 eδ
Bi
i

5: InvLet = (T, e∆)

In Equations 5.19 and 5.20, we expand the result of T and e∆, which leads to the

following observations.

T = ωδ
∗ ·

t∏
i=1

τBii = ωδ
∗ ·

t∏
i=1

ωBi·si+Bi·δi =ωδ∗+
∑t

i=1 Bi·si+
∑t

i=1 Bi·δi

= ωS+δ∗+
∑t

i=1 Bi·δi = ωS+∆

(5.19)

e∆ = Encek(ωδ
∗).

t∏
i=1

eδBii = Encek(ωδ
∗).

t∏
i=1

Encek(ωBi·δi)

= Encek(ωδ
∗+

∑t

i=1 Bi·δi) = Encek(ω∆)
(5.20)

The first observation is that T has the master value S embedded in its exponent.

Intuitively, the presence of S in the exponent is a proof that the invitee has t dis-

tinct invitations. Since otherwise, the reconstruction of S would be impossible (we

elaborate on this in Section 6.2 and formally prove the unforgability of invitations).

Another observation is that the computation of both T and e∆ depends on the to-

ken ω. Hence, as desired, the resultant InvLet is now bound to the given token.

This would help for the non-exchangeability of the invitations. At last, T contains a

masked version of master value, i.e., S + ∆, in the exponent whereas e∆ embodies

the corresponding masking value ∆. The encryption e∆ of the masking value shall

be used at the server for the verification purpose (see invitation verification below).

Invitation Verification: Once the invitee hands his invitation letter InvLet to-

gether with the corresponding token Token to the server, the server executes the

116
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Algorithm 7 Ivrfy [Server]
Input: InvLet = (T, e∆), T oken = (η, j, ω), Param, dk

Output: reject/accept

1: if Svrfyvk(η, j||ω)=accept then

2: ω∆ = Decdk(e∆)

3: if ωS · ω∆ = T then

4: return accept

5: end if

6: end if

Algorithm 8 Reg [Server]
Input: j

Output: sj
1: sj = f(j)

invitation verification procedure shown in Algorithm 7. As the first step, the server

authenticates the Token, i.e., whether it is signed under server’s signature key sk

(line 1). Next, the validity of the invitation letter InvLet must be checked. For that,

the server decrypts e∆ using its decryption key dk and obtains ω∆ (line 2). Recall

that ∆ was used to mask the master value S in T = ωS+∆. Thus, if T and e∆ are

constructed correctly, we expect that ωS ·ω∆ = T (line 3). If all the verification steps

are passed successfully, then the server accepts the user’s membership request.

Registration: The server invokes the registration procedure (Algorithm 8) for users

who pass the verification phase (Algorithm 7). The input to Algorithm 8 is the index

j of the newcomer, and the output is a Shamir share sj of the master value S, where

sj is the evaluation of polynomial f at point j (line 1). Note that the index j is the

index included in the user’s Token = (η, j, ω). The server delivers sj to the user who

can then start making invitations as an inviter. The user authenticates his share by

comparing the commitment γj (as given in Equation 5.12) against its own share, i.e.,

gsj . If they are equal, the user accepts and stores the share.

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 117

5.6 AnonymaX: Anonymous Cross-Network Invitation-Based System

Consider the situation where one system, e.g. Twitter, offers a special service for

the users of another system, e.g. Facebook. We name Twitter as the registration

network, i.e. the network serving a special service, whereas Facebook is called the

inviter network whose users will benefit from the services offered by the registration

network. A user of the inviter network is served by the registration network upon

convincing the registration server on being invited by an adequate number of inviters

from the inviter network.

Failed Approaches: One simple but cumbersome solution to empower a cross-

network invitation-based system is to follow the regular invitation-based system, i.e.

each time a inviter user wants to join the registration network, the inviter server

authenticates that particular user and communicates the authentication result to the

registration server. However, this solution requires the two servers to keep in contact

with each other and imposes unnecessary overhead on the inviter server.

An alternative approach proposed by Inonymous [117] (our prior work), is that

the inviter server would publicize the commitment over the master value S as gS to

the registration servers. Subsequently, registration servers would follow a different

verification method (relying on bilinear maps) to authenticate invitations on their

own. While this solution works for the honest but curious adversarial model, it

fails in providing invitation unforgeability against a malicious adversary, which is

explained next. Consider registration1 and registration2 as two registration servers.

The corrupted registration1 wants to join registration2 as an invitee without enough

inviters. registration1 receives a token with the random value ω from registration2

and then issues the same token to the users who want to join its own service. As

such, registration1 can reuse the invitation letters of his own users to craft a valid

invitation letter to join registration2. We address this issue in AnonymaX by making

the registration servers prove in zero-knowledge (using an interactive proof) that they

know the discrete logarithm DL(w) of their issued tokens during the Tgen protocol.

As such, no registration server can issue tokens that are not generated by itself.

118
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Algorithm 9 XTgen [registration Server Sj]
Input: Paramguest = (G, q, g, ekguest, vkguest, (F0, · · · , Ft−1)), skSj , i

Output: Token

1: r ← Zq

2: ω = gr

3: η = SignskSj (i||ω)

4: Token = (η, i, ω)

5: Run ZKPODL((G, q, g, ω), r)

AnonymaX Overview: The inviter network with the master value S publicizes

gS as a part of its set of parameters Paramguest. Note that the description of group

G is only generated by the inviter server and is used by other registration servers. On

the other side, the registration networks denoted by Sj, 1 ≤ j ≤ N , announce their

ParamSj to be the pair of encryption keys ekSj and signature verification keys vkSj ,

i.e. ParamSj = (ekSj , vkSj). The corresponding decryption key dkSj as well as the

signature signing key skSj remain private at the server side. Each invitee willing to join

Sj shall obtain a token from Sj. During the token generation, the registration server

follows Algorithm 4 and additionally must prove in zero-knowledge that it knows the

discrete logarithm of the ω embodied in the token. As such, after the issuance of a

token, the registration server runs an instance of ZKPODL protocol (given in section

5.4.3) with the invitee. The modified procedure is provided in Algorithm 9.

Upon a successful proof, the invitee accepts the token. The invitee needs to collect

invitations from the members of the inviter network to be used in the registration of

a particular registration network. Inviters issue invitation as in the regular invitation

procedure given in Algorithm 5. However, the inviters should verify the tokens against

the registration server verification key who has issued it. Also, the inviters shall use the

encryption key of the registration network to encrypt their masking values. Indeed, in

Algorithms 5 and 6, the inviter uses ekj and vkSj , i.e. ParamSj as input. Therefore,

the invitation letters received by the Sj are of the form InvLet = (T, e∆) where e∆

Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial
Model 119

Algorithm 10 XIVerify [Host Server Sj]
Input: InvLet = (T, e∆), T oken = (η, j, ω), Paraminviter, ParamSj , dkSj

Output: reject/accept

1: if SvrfyvkSj (η, j||ω)=accept then

2: ω∆ = DecdkSj (e∆)

3: if e(ω, gS) · e(ω∆, g) = e(T, g) then

4: return accept

5: end if

6: end if

is an encrypted masking value under ekj. The registration server runs a different

verification routine, which is given in Algorithm 10. We assume the existence of a

bilinear map e: G × G → G2 where G and G2 are multiplicative groups of prime

order q. The only difference between Algorithm 10 and Algorithm 7 is at the second

verification step i.e., line 3. The correctness holds by the bilinearity of the bilinear

map e, as in Equation 5.21.

e(ω, gS) · e(ω∆, g) = e(ω, g)S · e(ω, g)∆ = e(w, g)S+∆ = e(wS+∆, g)

= e(T, g)
(5.21)

120
Chapter 5: Anonyma: Anonymous Invitation-Only Registration in Malicious Adversarial

Model

Notes to Chapter 5

1 http://www.macworld.com/article/1055383/gmail.html

2 https://community.spotify.com/t5/Accounts/Spotify-Family-Q-amp-A/td-

p/988520

3 https://blog.hootsuite.com/facebook-secret-groups/

4 ttps://faq.whatsapp.com/en/android/26000123/?category=5245251

5 https://telegram.org/tour/groups

6 https://pieregister.com/features/invitation-based-registrations.

Chapter 6

ANONYMA: PERFORMANCE AND SECURITY

6.1 Performance

6.1.1 Running Time

In this section, we analyze the running time of each algorithm of Anonyma.

Simulation setting: The running time is measured on a standard laptop with 8

GB 1600 MHz DDR3 memory and 1.6 GHz Intel Core i5 CPU. The simulation setup

consists of 100 registered members and 100 invitees. Each invitee collects threshold

many invitations from randomly chosen inviters, i.e., the 100 initially registered mem-

bers. The running time of all the algorithms is recorded over threshold values 1-10.

The DSA signature scheme [131] is instantiated with the key length of 1024 bits.

Under the aforementioned setting, the running time of the parties are as follows,

and the results are summarized in Table 6.1.

Server: The server spends 1.6 seconds in order to run the SetUp phase. This phase

should be executed only once for the entire system lifetime. The Token Generation

algorithm requires 4.24 milliseconds. The Invitation Verification procedure incurs 6.5

milliseconds. The Registration of each newcomer requires 0.08 milliseconds.

Invitee: The invitee performs Invitation Collection (Icoll) procedure, whose run-

ning time is linearly dependent on the number of required invitations, i.e., t. As such,

the invitee’s running time for Icoll is shown in Figure 6.1 for the threshold values

of 1-10. In this diagram, we included the time for the verification of invitations’

correctness proof as part of the Icoll procedure as well. In particular, the running

time of Icoll is dominated by t · tPOICverify + (t − 1) · tagg, where t is the threshold,

tPOICverify the time to authenticate each invitation, and tagg is the time required for

122 Chapter 6: Anonyma: Performance and Security

SetUp Tgen Igen Ivrfy Reg

Server 1.6 s 4.24 ms - 6.5 ms 0.08 ms

Inviter - - 27.5 ms - -

Table 6.1: Running time of the server and the inviter. (s: seconds, ms: milliseconds)

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
ill

ise
co

nd
s

Threshold

Token Generation
Invitation Generation
Invitation Collection
Invitation Verification

Figure 6.1: The invitee’s running time.

homomorphic aggregation of two individual invitations.

Inviter: The inviter is only involved in the execution of the Invitation Generation

algorithm for which he spends 27.5 milliseconds.

6.1.2 Communication Complexity

The asymptotic communication complexity among the parties is constant in the se-

curity parameter. However, we additionally measure the concrete communication

complexity as the number of bits exchanged between parties. The communication

complexity for the Tgen protocol to transfer a Token with two group elements of size

2048 bits is 4096 bits (= 0.512 KB). For the invitation generation protocol, the inviter

exchanges the invitation (consisting of 3 group elements) together with the ZKPOIC

(with 8 group elements). Hence the total communication complexity of Igen is 22528

bits (= 2.81 KB). The invitee submits the invitation letter (with 3 group elements)

Chapter 6: Anonyma: Performance and Security 123

together with the token (of size 4096 bits) to the server for the sake of registration

which results in 10240 bits (= 1.28 KB) communication complexity.

6.1.3 Storage

The storage requirement of each entity is measured based on the number of bits that

the party needs to retain locally. The server holds a signature and encryption key

pairs, hence requires 20896 bits (2.612 KB) of storage. Moreover, the server saves the

description of the polynomial of degree t−1 with t coefficients and their corresponding

commitments which approximately results in 2t · 2048 bits of storage requirement at

the server. The invitee only needs to keep its share of the master value which is of

size 2046 bits (0.25 KB). For the invitee, no local storage is required.

6.2 Security

In this section, we first prove the special soundness and honest verifier zero-knowledge

property of our proposed Σ protocol for proof of invitation correctness (POIC), fol-

lowed by the ideal functionality FR
POIC corresponding to the zero-knowledge version

of POIC (Section 6.2.1). Next, we provide security definitions for inviter anonymity

and invitation unforgeability, and then prove the security of Anonyma (Sections 6.2.2

and 6.2.3). In Section 6.2.4, we prove the security of AnonymaX for which we sup-

ply a new security definition capturing invitation unforgeability in the cross-network

invitation based systems.

6.2.1 Proof of Invitation Correctness

Soundness:

Consider two valid transcripts (A,B = (B1, B2),C,e,Z1,Z2,Z3) and (A,B =

(B1, B2),C, e∗,Z∗1 ,Z∗2 ,Z∗3), where e 6= e∗, Z1 6= Z∗1 , Z2 6= Z∗2 , and Z3 6= Z∗3 , then

we extract δi, r and si as explained below. Since both transcripts are accepting we

124 Chapter 6: Anonyma: Performance and Security

have A · γei = gZ1 and A · γe∗i = gZ
∗
1 . We divide both sides of equalities and obtain

gZ1−Z∗1 = γe−e
∗

i = gsi·(e−e
∗)(mod p) (6.1)

Thus, Z1−Z∗1 ≡ si · (e−e∗) mod q. It follows that si = Z1−Z∗1
e−e∗ . To extract δi and r we

proceed as follows. We know that B1 · eδei,1 = ωZ2 ·hZ3 as well as B1 · eδe
∗
i,1 = ωZ

∗
2 ·hZ∗3 .

Dividing both sides of equalities results in

eδe−e
∗

i,1 = ωZ2−Z∗2 · hZ3−Z∗3 (mod p)

ωδi(e−e
∗) · hr(e−e∗) = ωZ2−Z∗2 · hZ3−Z∗3 (mod p) (6.2)

As such, it follows that δi = Z2−Z∗2
e−e∗ mod q and r = Z3−Z∗3

e−e∗ mod q.

Special honest verifier zero knowledge:

We construct a PPT simulator Sim which is given τi, eδi = (eδi,1, eδi,2), γi, ω and e

and generates an accepting transcript. It selects Z1, Z2, Z3 at random and constructs

A = gZ1
γei

mod p and B1 = ωZ2 ·hZ3
eδei,1

mod p and B2 = gZ3
eδei,2

mod p and C = τ−ei ·B · eδei,1 ·

h−Z3 ·ωZ1 mod p. Sim outputs (A,B = (B1, B2), C, e, Z1, Z2, Z3). It is immediate that

the probability distribution of (A,B,C, e, Z1, Z2, Z3) and a real conversation between

honest prover and honest verifier are identical.

Zero-knowledge POIC (ZKPOIC):

We apply the method given in [97] to our Σ protocol to convert it to a zero-knowledge

proof system. Let FR
POIC (given in Equation 6.3) demonstrate the security guarantees

of the resultant ZKPOIC over the relation R that we defined in Equation 5.14.

FR
POIC((X,W), X) = (⊥, R(X,W)) (6.3)

FR
POIC shall be run by a trusted third party. X refers to the statement whose cor-

rectness is to be proven, i.e., X = (τi, eδi, γi, ω) contains the content of an individual

invitation letter (τi, eδi) as well as the commitment to the inviter’s master share, i.e.,

γi, and the token ω. The witness W , which is only known to the prover, is (si, r, δi).

Chapter 6: Anonyma: Performance and Security 125

The ideal functionality FR
POIC receives a common input X from the prover and the

verifier as well as the private input W from the prover. FR
POIC outputs to the verifier

whether X and W fit into the relation R.

6.2.2 Inviter Anonymity

An invitation-based system protects inviter anonymity if an invitee with t inviters

can authenticate himself to the server without disclosing the identity of his inviters to

the server. In the extreme situation where a corrupted server also manages to control

t− 1 inviters of an invitee, the inviter anonymity should guarantee that the identity

of the remaining non-colluding inviter remains protected against the server and other

inviters. The coalition of the server and t− 1 inviters is the most powerful adversary

against inviter anonymity. In the following, we present the formal definition of inviter

anonymity as well as a formal security proof of inviter anonymity of Anonyma.

Security Definition:

We model inviter anonymity as a game denoted by InvAnonymA(λ) played between

a challenger and an adversary. The challenger acts as the invitee as well as the

uncorrupted members of the system. On the other hand, the adversary plays as the

server as well as arbitrary many corrupted members. The challenger is to register

the invitee into the system while t − 1 inviters of the invitee are controlled by the

adversary and the remaining inviter is under the control of the challenger. As such,

the adversary issues t − 1 invitations on behalf of the corrupted inviters. Then, the

adversary selects two indexes u0, u1 corresponding to two uncorrupted members. The

challenger selects one of them randomly as ub, where b ∈ {0, 1}, to be the other inviter.

The challenger issues an invitation from ub for the invitee and combines it with the

t−1 invitations issued by the adversary. The final invitation letter is submitted to the

adversary (who also plays the role of the server). The challenge of the adversary is to

guess a bit b indicating the index of the uncorrupted inviter. If the adversary cannot

guess that index with more than a negligible advantage, then the system provides

126 Chapter 6: Anonyma: Performance and Security

inviter anonymity. The formal definition follows.

Inviter Anonymity Experiment InvAnonymA(λ)

1. The adversary is given the security parameter 1λ. It acts as the server

and hands over Param to the challenger.

2. The adversary registers arbitrary many users to the system. The ad-

versary instructs the challenger to register honest users through the Reg

protocol. Uh and Uc contain the indices of the honest and corrupted

members, respectively.

3. (a) The adversary outputs the index of two honest inviters u0, u1 ∈ Uh.

(b) The adversary, acting as the server, generates a token Token for the

invitee with index j∗ ∈ Uh.

(c) The adversary specifies a set of t − 1 indices Ic ⊂ Uc to be the

corrupted inviters. For every i ∈ Ic, the adversary engages with the

challenger in the execution of the Igen protocol using Token as the

input. As the result, the invitee (i.e., the challenger) obtains a set

of t− 1 invitations denoted by {Invi}i∈Ic .

4. (a) The challenger selects a bit value b ← {0, 1}. The challenger runs

the Igen protocol over Token to issue an invitation from ub for the

invitee. Let Invb be the result.

(b) The challenger runs Icoll using {Invi}i∈Ic ∪ Invb and Param and

generates an invitation letter InvLet. The challenger attempts to

register to the system by sending InvLet to the adversary.

5. The adversary guesses a bit b′ .

6. The output of the game is 1 if b == b
′ , 0 otherwise.

Chapter 6: Anonyma: Performance and Security 127

Definition 2 An invitation-based system has inviter anonymity if for every proba-

bilistic polynomial time adversary A there exists a negligible function negl(.) such that:

Pr[InvAnonymA(λ) = 1] = 1
2 + negl(λ)

At a high level, in Anonyma, the anonymity of the inviter holds due to the

soundness of the proposed ZKPOIC (zero-knowledge proof of invitation correctness)

and the security of the pseudo-random number generator (i.e., PRG). Below, to give

an insight into how ZKPOIC can protect inviter anonymity, we draw a situation where

the lack of ZKPOIC would immediately break inviter anonymity. Then, by relying on

the FR
POIC hybrid model for our proof, we relate the inviter anonymity of Anonyma

to the security of the deployed PRG.

Recall that, as defined in the game, the adversary controls the server and t − 1

inviters of the invitee. Due to the employed ZKPOIC, the invitee is assured that

the inviters are not able to deviate from the protocol descriptions and hence would

have to use their real master shares for the invitation generation. This implies that

the master value S shall be reconstructed correctly as the output of Icoll. There-

fore, as the result of the registration of the invitee (step 4.b from InvAnonymA(λ)

experiment), the server obtains InvLet = (T = ωS+∆, e∆) out of which the adversary

can learn S and ∆. According to the Shamir secret sharing scheme, although the

adversary knows t− 1 shares that are used for the reconstruction of S, the remaining

contributing shareholder can be any of the existing members, and hence the inviter

anonymity is guaranteed. Now, consider that the inviters are not required to prove

the correctness of their invitations. The t− 1 corrupted inviters use zeros instead of

their real master shares for invitation generation, i.e., si = 0 for i ∈ Ic. Then, the

server obtains wS
′

with the following value: S ′ = ∑
i∈Ic si.Bi+sub .Bub = sub .Bub . The

adversary can simply try the combinations of master shares su0 and su1 with B0 and

B1, respectively and figure out the remaining inviter’s index (in practice, the possible

number of values is linear in the number of non-colluding inviters, which is the num-

ber of registered users). This trivially breaks inviter anonymity, which follows from

128 Chapter 6: Anonyma: Performance and Security

the lack of ZKPOIC.

As we discussed before, due to ZKPOIC all the invitations issued for the invitee

are guaranteed to be well-structured (and their correctness are proven during Igen).

Thus, the execution of Icoll by the invitee would lead to a valid invitation letter of the

form InvLet = (ωS+∆, e∆) where S is the server’s master value, e∆ is the encryption

of ω∆ and ∆ = δ∗ + ∑
i∈Ic Bi · δi + Bub · δ′ (δ∗ is the masking value added by the

invitee, δ′ is the non-colluding inviter’s masking value resulted from a PRG and Bub

is the Lagrange coefficient computed based on the index of the non-colluding inviter).

The adversary may get some idea about the identity of the non-colluding inviter by

extracting the Lagrange coefficients from the ∆ value (Lagrange coefficients are the

function of inviters’ indices). Two cases may occur. If the random values δ′ and δ∗ are

selected truly at random, then we know that ∆ is also a random value and conveys

nothing about the Lagrange coefficient Bub . Though, if δ′ and δ∗ are the output of a

PRG then the adversary may have advantages to extract the Lagrange coefficients.

We denote the adversary’s advantage by ε. If ε is non-negligible, it implies that we

can distinguish between a PRG and a random number generator hence we break the

security of the PRG. In the following, we provide a formal proof.

Theorem 3 Anonyma provides inviter anonymity in FR
POIC hybrid model (as defined

in Equation 6.3), assuming that PRG is a secure pseudo-random number generator.

Proof: We reduce the inviter anonymity of Anonyma to the security of the em-

ployed PRG. If there exists a PPT adversary A who breaks the inviter anonymity of

Anonyma with non-negligible advantage, then we can construct a PPT adversary B

who distinguishes between a random number generator and a pseudo-random number

generator with the same advantage of A. Assume A’s success probability is

Pr[InvAnonymA(λ) = 1] = 1
2 + ε(λ) (6.4)

B runs A as its subroutine to distinguish the pseudo-random number generator from

the truly random number generator. B is given a vector of values in Zq denoted by
→
δ = (δ′ , δ′′) and aims at specifying whether

→
δ is selected truly at random or is the

Chapter 6: Anonyma: Performance and Security 129

output of a PRG. B invokes A as its subroutine and emulates the game of inviter

anonymity for A as follows. If A succeeds then B realizes that
→
δ is pseudo-random,

otherwise random.

1. B is given the security parameter 1λ and a vector of two values denoted by
→
δ = {δ′ , δ′′} s.t. δ′, δ′′ ∈ Zq. Adversary A outputs Param including ek, vk, and

(F0, · · · , Ft−1).

2. A registers its own users. Uc contains the indices of corrupted members. Also, A

instructs B to register users into the system. Let Uh indicate the set of indices

registered by B. For each user i ∈ Uh, B obtains a share si and verifies its

correctness by checking whether gsi is equal to ∏t−1
j=0 F

ij

j .

3. (a) A outputs two indices u0, u1 ∈ Uh.

(b) A outputs a token Token = (η, j∗, ω). j∗ is the index of the invitee in Uh.

(c) A specifies a set of t − 1 incides Ic ⊂ Uc to be the corrupted in-

viters. For every i ∈ Ic, and Token, A engages in Igen with the cal-

lenger. A outputs Invi = (τi, eδi) and contacts FR
POIC with the input of

(τi, eδi, γi, ω)(si, ri, δi). B acting as FR
POIC , accepts or rejects A’s proof by

verifying whether (τi, eδi, γi, ω) and (si, ri, δi) fit into the relation R as de-

fined in Equation 5.14. Note that at this step B can learn all the t − 1

master shares of corrupted inviters, i.e., {si} for i ∈ Ic.

4. (a) B selects a random bit b. B uses the Token and runs Igen to create an

invitation letter from ub as Invub = (τub , eδub) = (ωsub+δ′ , Encek(ωδ
′
)) (δ′

is given from the distinguish-ability game of PRG)).

(b) B runs Icoll over {Invi}i∈Ic ∪ Invb, sets δ∗ = δ
′′ and computes

T = ωδ
∗ · τBubub ·

∏
i∈Ic τ

Bi
i

and

e∆ = Encek(ωδ
∗) · Encek(ωδ

′
)Bub ·∏i∈Ic eδ

Bi
i .

130 Chapter 6: Anonyma: Performance and Security

The value of e∆ will be equal to Encek(ωδ
∗+δ′ ·Bub+

∑
i∈Ic

δi·Bi). Bi and Bub

denote the Lagrange coefficients as defined in Equation 5.8. B submits

InvLet = (T, e∆) to the adversary A.

5. A outputs a bit b′ .

6. If b = b
′ then B outputs 0, otherwise 1.

Note that B follows all the steps as indicated in the InvAnonymA(λ) game

and hence is indistinguishable from a real challenger. This means that B also runs

in polynomial time (as there is no rewind). B ties the InvAnonymA(λ) game to

the security of PRG by embedding δ′ and δ
′′ (the challenge of PRG game) as the

randomness δub (used by the non-colluding inviter for the invitation generation), and

the value of δ∗ (used by the invitee in Icoll execution), respectively. Below is the

success probability analysis of the reduction.

Let
→
δ be a truly random vector. Once the adversary decrypts e∆ he obtains

ωδ
′′+Γ

where

Γ = δ
′ ·Bub + ∑t−1

i=1 δi ·Bi

Γ is a function of inviters indices due to the presence of Lagrange coefficients whereas

δ
′′ is a random value completely independent of inviters’ indices. If

→
δ is a random

vector then δ′′ is also a random value from Zq. Therefore, in ωδ
′′+Γ, Γ is indeed masked

with δ
′′ (δ′′ + Γ mod q is a completely random element of Zq). By this masking, ∆

(i.e., δ′′ + Γ) becomes completely independent of the Lagrange coefficients and A has

no advantage to infer the identity of the uncorrupted inviter. Thus, A’s advantage is

exactly 1
2 i.e.,

Pr[B(
→
δ ← Zq) = 1] = Pr[b = b

′] = 1
2 (6.5)

Chapter 6: Anonyma: Performance and Security 131

but if
→
δ is the output of a PRG then

Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1] = Pr[b = b

′] = 1
2 + ε(λ) (6.6)

where 1
2 + ε(λ) is the success probability of A (as assumed in our proof in Equation

6.4). By combining Equations 6.5 and 6.6 we have

|Pr[r ← {0, 1}λ : B(
→
δ = PRG(r)) = 1]− Pr[B(

→
δ ← Zq) = 1]| = ε(λ) (6.7)

Equation 6.7 corresponds to the security definition of PRG (see Equation 5.5). Thus,

if ε(λ) is non-negligible, then the distinguisher B can distinguish a PRG from a

random generator. This contradicts with the security definition of PRG. Therefore,

ε(λ) must be negligible according to the PRG definition. This concludes the security

proof of inviter anonymity of Anonyma. �

6.2.3 Invitation Unforgeability

In an invitation-based system, the invitation unforgeability indicates that people who

do not have enough inviters (less than t) should not be able to join the system. Hence,

no adversary can forge invitations on his own. Next, we present a formal definition

for invitation unforgeability together with a formal security proof of Anonyma.

Security Definition:

We define the following game denoted by InvUnforgeA(λ) running between a chal-

lenger and an adversary. The adversary controls a set of t−1 members. The rest of the

users denoted by Ih are controlled by the challenger. Also, the adversary has oracle

access to the token generation Tgen(sk, j), invitation generation Igen(., si, Param)

for i ∈ Ih, and invitation verification Ivrfy(., ., Param, dk) algorithms. Finally, the

adversary wins the game if it manages to register to the system successfully, using a

token that was not queried from the invitation generation oracle. The success of the

adversary asserts that the invitations are forgeable. Otherwise, the system provides

132 Chapter 6: Anonyma: Performance and Security

invitation unforgeability. We remark that by giving the adversary oracle access to

the invitation generation algorithm we aim to capture the non-exchangability of invi-

tations. This oracle access is equivalent to having an adversary who eavesdrops the

communication of other invitees and inviters and wishes to forge an invitation over

its token.

Invitation Unforgeability experiment InvUnforgeA(λ) :

1. The adversary specifies a set Ic consisting of the index of t − 1 users to

be controlled by the adversary.

2. The challenger runs the setup algorithm and outputs Param to the ad-

versary.

The next steps (3-6) are the learning phase of the adversary and can be

run in an arbitrary order.

3. (a) The adversary registers a corrupted user i ∈ Ic to the system. The

adversary can repeat this part for every user i ∈ Ic.

(b) The adversary instructs the challenger to register an honest user to

the system. Ih shall contain the index of honest members.

4. The adversary asks the challenger to issue a token. The challenger gen-

erates a token for the next available index j. This step may be repeated

polynomially many times upon the adversary’s request. QToken holds the

set of tokens queried by the adversary.

5. The adversary queries invitation verification function on the invitations

of his own choice. The challenger runs the Ivrfy algorithm and responds

accordingly.

6. The adversary has oracle access to the Igen algorithm. That is, the

adversary asks the challenger to use a particular token and generate

Chapter 6: Anonyma: Performance and Security 133

an invitation from an honest member. As such, the adversary spec-

ifies the index i ∈ Ih of an honest member together with a valid

Tokenj ∈ QToken. Then, the challenger issues an individual invitation

by running Invi,j = Igen(Tokenj, si, Param) and gives the output to the

adversary. Let QInv = {(Tokenj, Invi,j)} be the set of tokens together

with the individual invitations queried by the adversary.

7. The adversary outputs an invitation letter InvLet for a valid token

Token
′ ∈ QToken for which no query exists in QInv.

8. If the output of Ivrfy(InvLet, Token′ , Param, dk) is accepted then the

game’s output is 1 indicating the adversary’s success, 0 otherwise.

Definition 3 An invitation-based system has invitation unforgeability if for every

probabilistic polynomial time adversary A there exists a negligible function negl(.)

such that:

Pr[InvUnforgeA(λ) = 1] = negl(λ)

At a high level, in order for the adversary to be able to win the game, it has to

compute ω∗S for some token Token′ = (τ, j, ω∗) where Token′ does not belong to

QInv. Through the oracle accesses, the adversary learns a set of individual invitations

QInv = {(Tokenj, Invi,j)} where Invi,j = (τi,j = ω
si+δi,j
j , eδi,j = Encek(ωδi,jj)). The

Invi,j carries no useful information regarding the master value S to the adversary as

the master share si is masked through a random value δi,j. There is no way for the

adversary to get to learn δi,j unless with decryption of eδi,j which is not possible as

the adversary lacks the decryption key dk. Alternatively, the adversary may attempt

to combine invitations issued under different tokens to obtain a valid invitation under

a new token Token′. This is impossible due to the CDH problem. That is, given

τi,j (= ω
si+δi,j
j) and ω∗(= gx), the adversary must compute τxi,j which corresponds to

a solution to the CDH problem. Similarly, the knowledge of ω∗ and F0 = gS (from

134 Chapter 6: Anonyma: Performance and Security

Param) does not help in making a valid invitation letter since computing ω∗S is

equivalent to solving the CDH problem. That is, given ω∗ = gx and F0 = gS, the

adversary shall compute gx·S = ωS. In the theorem and proof given below, we reduce

InvUnforgeA(λ) game to the CDH problem.

Theorem 4 Anonyma satisfies invitation unforgeability as defined in Definition 3,

in FR
POIC hybrid model, given that the signature scheme Sig is existentially unforge-

able under chosen message attack, and Computational Diffie-Hellman problem is hard

relative to group G.

Proof: If there exists a PPT adversary A who breaks the invitation unforgeability

with the non-negligible advantage then we can construct a PPT adversary B who

solves the CDH problem with non-negligible advantage.

Let ε denote the probability of success of A. B interacts with the CDH challenger

and also runs A as its subroutine. B is given G, q, g,X = gx, Y = gy ∈ G for which

B is supposed to compute Z = gx·y.

1. A outputs a set of t − 1 indices as Ic to be the index of members under its

control.

2. B runs the setup algorithm and generates the encryption and signature key

pairs (ek, dk) (sk, vk) as normal. To set up Shamir secret sharing scheme, B

performs as follows. B sets F0 = Y (recall that F0 is the commitment to master

value S thus F0 = gf(0) = gS; this implies that B does not know the master

value S since it is the discrete logarithm of Y (i.e., y), which is selected by the

CDH challenger). B selects t − 1 random values si∈Ic ← Zq to be the master

shares of the corrupted members. Also, B computes γi = gsi for i ∈ Ic. Recall

that the share of the master value for the ith user is f(i), thus by setting the

master shares of corrupted parties, B fixes t − 1 points of polynomial f as

f(i) = si for i ∈ Ic. These t− 1 points together with F0, which is indeed gf(0),

will fix polynomial f since the degree of f is t− 1. Next, B interpolates Y i.e.,

(gf(0)) and {(i, γi)}i∈Ic , and computes the commitments F1, · · · , Ft−1 (where

Chapter 6: Anonyma: Performance and Security 135

F1 = ga1 , · · · , Ft−1 = gat−1) over the coefficients of polynomial f [132] (where

f = S + a1 · x+ ...+ at−1 · xt−1).

Note that B does not obtain the exact coefficients of the polynomial f (i.e., ai
values) but only computes the commitments Fi = gai . This is sufficient for B to

simulate the role of the server since it only needs to publicize the commitments

of the polynomial and not the exact coefficients.

B outputs param = (G, q, g, ek, vk, (F0, ..., Ft−1)), as well as the security pa-

rameter 1λ. Note that B also records the master shares of corrupted members

i.e., {(i, f(i))}i∈Ic to use in the registration phase.

3. (a) A registers a corrupted user to the system (a user with the index i ∈ Ic).

As such, B sends f(i) (which was computed during the setup protocol) to

A.

(b) A instructs B to register an honest user to the system. Note that B

cannot generate the master shares of honest users since it does not know

the coefficients of the function f . However, since it is a local calculation

for B, this shortage remains unnoticed to A. B records the index of honest

user inside Ih.

4. A has oracle access to the token generation Tgen. Initially, B draws a random

value j∗ ∈ [1, P (λ)] where P (λ) is the upper-bound on the number of adversary’s

queries to Tgen. B answers the queries of A for Tgen as follows. For the j∗th

query, B sets Tokenj∗ = (Signsk(j∗||X), j∗, X) (X was given to B from the

CDH game) and inserts (j,X,⊥) into QToken. Otherwise, B selects a random

rj ∈R Zq, sets ωj = grj and outputs Tokenj = (Signsk(j||ωj), j, ωj). B records

(j, ωj, rj) inside QToken.

5. The adversary queries the invitation verification function on the invitation let-

ters and tokens of his own choice i.e., InvLet = (T, e∆) and Token = (η, j, ωj).

136 Chapter 6: Anonyma: Performance and Security

B first authenticates the token against the signature verification key. If not

verified, B outputs reject to A. Also, if ωj = X, then B aborts. Otherwise,

• If Token == Token∗, then B aborts the expriment.

• If Token 6= Token∗, B proceeds as follows. Due to the lack of master

value S, B has to run different than the normal Ivrfy algorithm. B

decrypts e∆ as ω∆
j = Decdk(e∆). Next, B retrieves the record of (j, ωj, rj)

corresponding to ωj from QToken and checks whether F rj
0 · ω∆

j
?= T and

responds to A accordingly. The right side of this equality check is the

same as line 3 of Ivrfy Algorithm (Algorithm 7) since

F
rj
0 · ω∆

j = gS·rj · ω∆
j = grj ·S · ω∆

j = ωSj · ω∆
j (6.8)

6. A has oracle access to Igen algorithm. A outputs an index i of an honest

member together with a Tokenj = (η, j, ωj). B first authenticates the token

against the signature verification key. If successful, then, it attempts issuing an

invitation. Notice that B cannot generate the invitation by following Igen since

it does not have the master share of honest users i.e., si for i ∈ Ih. B performs

differently to compute a valid invitation as explained next. B retrieves the

record (j, ωj, rj) from QToken (if the token is valid and has a correct signature

from the server then it must be already queried by the adversary and hence

should exist in QToken, otherwise, the signature forgery happens which is not

possible due to the security of the underlying signature scheme). B computes

γi = ∏t
j=0 F

ij

j as well as selects a random value δi ∈R Zq. Then, B constructs

τi,j = γ
rj
i ·gδi·rj where rj is the discrete logarithm of ωj in base g. It is immediate

that τi,j is well-structured since

τi,j = γ
rj
i · gδi·rj = (gsi)rj · (gδi)·rj = (grj)si · (grj)δi = ωsij · ωδij = ωsi+δij (6.9)

B constructs eδi,j as Encek(ωδij) and outputs Invi,j = (τi,j, eδi,j) to A.

Finally, B acts as FR
POIC and waits for A’s message asking verification of

Chapter 6: Anonyma: Performance and Security 137

(τi,j, eδi,j, γi, ωj) for which B responds accept to A. B keeps the set of indi-

vidual invitations and their tokens queried by A in QInv = {(Tokenj, Invi,j)}.

7. The adversary outputs an invitation letter InvLet = (T, e∆) for a token Token′

for which no query has been made from Igen i.e., Token′ /∈ QInv.

8. B verifies whether the Token′ is correctly signed under sk. If not, B outputs

⊥ to CDH challenger. Otherwise:

• If Token′ 6= Token∗, B outputs ⊥ to the CDH game.

• If Token′ == Token∗, B outputs T ·Decdk(e∆)−1 to the CDH challenger.

In fact, if A constructs InvLet correctly, we expect that T = ω∗S+∆ and

e∆ = Enc(ω∗∆). Given that X = gx = ω∗ and Y = gy = gS, we have

T ·Decdk(e∆)−1 = (ω∗)S+∆ · (ω∗)∆−1 = (ω∗)S = (gx)y = gxy (6.10)

gx.y is the solution to the given CDH problem.

This is immediate that B runs in polynomial time. The index j∗ chosen by B at step

4 represents a guess as to which Tgen oracle query of A will correspond to the token

of eventual invitation letter forgery output by A. If this guess is correct, then A’s

view while running with B is identical to InvUnforgeA(λ) game.

When B guesses correctly and A outputs a forgery, then B can solve the given

instance of CDH. Assume that A’s advantage in InvUnforgeA(λ) game is ε. The

probability that B wins is

Pr[B wins] = Pr[B(G, q, g,X = gx, Y = gy) = gx·y] (6.11)

= Pr[A wins ∧ (Token′ = Token∗)]

= Pr[A wins |Token′ = Token∗] · Pr[Token′ = Token∗]

≥ ε · 1
Poly(λ)

The last equality holds since the number of queries made by A is at most P (λ) (P

is polynomial in 1λ), hence, the probability Token∗ = Token
′ is 1

Poly(λ) . Note that

138 Chapter 6: Anonyma: Performance and Security

due to the signature unforgeability, A cannot create a valid token outside of the set

of queried tokens i.e., /∈ QToken.

Assuming that ε is non-negligible, B also wins with non-negligible probability.

This contradicts with the hardness of the CDH problem. Hence A’s success probability

in InvUnforgeA(λ) must be negligible. This concludes the proof. �

6.2.4 Security of AnonymaX

Inviter Anonymity: The inviter anonymity of AnonymaX can be defined identi-

cally to the experiment of InvAnonymA(λ) . The challenger shall control the honest

members, i.e. Uh and invitee whereas the adversary will have the control of Sinviter

and all the registration servers Sj together with the corrupted members Ic which shall

constitute t − 1 inviters of the invitee. AnonymaX meets inviter anonymity due to

the similar proof supplied for Anonyma. Without loss of generality and for the sake

of simplicity, we consider only one registration server to exist, though the extension of

proof for multiple registration servers is straightforward. In particular, the following

theorem holds for AnonymaX with one inviter server and one registration server.

Theorem 5 AnonymaX provides inviter anonymity in FR
POIC hybrid model (as de-

fined in Equation 6.3), assuming that PRG is a secure pseudo-random number gen-

erator.

Proof Sketch: Given that a PPT adversary A′ can break the inviter anonymity game

for AnonymaX with non-negligible advantage, we can construct an adversary B′ to

distinguish between a PRG and a truly random number generator. The internal code

of adversary B′ shall be identical to the simulator B in proof of Theorem 3. The only

difference is in the SetUp phase where the challenger outputs two pair of encryption

keys (ekreg, ekinviter) among which only ekreg will be used throughout the experiment.

Invitation Unforgeability: Recall that invitation unforgeability guarantees that a

corrupted invitee with an insufficient number of inviters would not be able to join

the system. In a cross-network invitation-based system, the invitation unforgeability

should additionally hold for the registration service. That is, if Alice does not have

Chapter 6: Anonyma: Performance and Security 139

enough inviters from the inviter system, she should not be able to successfully register

to the registration service.

Note that in a cross-network invitation-based system, invitation unforgeability

cannot be defined for the case that Sinviter acts against Sreg, i.e. Sinviter wants to

generate valid invitations for the invitee of its choice to join the registration service.

This is trivial since Sinviter is able to register arbitrary many users into its own system

(i.e., inviter system). Then, every subset of t registered users of inviter service will

consequently be able to issue invitations and register arbitrary many users into the

registration service. Note that this is not a limitation imposed by our design and

rather is implicit in any cross-network invitation-based system.

In the invitation unforgeability game as defined in XInvUnforgeA(λ) , we con-

sider N registration servers which all accept invitations from the members of one

inviter server. The adversary plays on behalf of t − 1 corrupted users of the guest

service and a subset of registration servers. The challenger controls the honest users,

i.e. Ih of the inviter service together with Sinviter and some of the uncorrupted reg-

istration servers. At the end of the game, the mission of adversary as a corrupted

invitee with an insufficient number of inviters is to successfully register to one of the

honest registration servers Sj∗ controlled by the challenger.

In XInvUnforgeA(λ) , we index registration servers as Sj, where 1 ≤ j ≤ N , and

the inviter server as S0. The set of servers controlled by the adversary are denoted as

set C. We assume H indicates the set of un-corrupted registration servers. The set of

members of inviter service is denoted by Uinviter. Ic represents the set of t−1 corrupted

members in the inviter service whereas Ih contains the indices of the honest members.

We have Uinviter = Ih ∪ Ic. We prefix the algorithms with its executing entity, e.g. we

write Sj.T gen to show the invocation of the token generation algorithm at the server

j.

Invitation Unforgeability experiment XInvUnforgeA(λ) for cross-

network invitation based system:

140 Chapter 6: Anonyma: Performance and Security

1. The adversary specifies a set Ic ⊂ Uinviter consisting of the index of t− 1

users to be under his control.

2. The challenger runs Setup for all Sj ∈ H and outputs Paramj to the

adversary. The adversary outputs Paramj for j ∈ C. The next steps (3-

6) are the learning phase of the adversary and can be run in an arbitrary

order.

3. (a) The adversary registers a corrupted user i ∈ Ic to the inviter system.

The adversary repeats this part for every user i ∈ Ic.

(b) The adversary instructs the challenger to register an honest user i

to the inviter system where i ∈ Ih.

4. The adversary has Oracle access to the Sj.T gen for j ∈ H. Also, the

adversary generates a Token for a user i ∈ Ih from Sj where j ∈ C and

hands over to the challenger.

5. The adversary has oracle access to Sj.XIvrfy for j ∈ H.

6. The adversary has oracle access to the Igen algorithm. That is, the

adversary specifies the index l of an honest member i.e., l ∈ Ih and a

server index j ∈ H ∪ C together with a Token issued by Sj.

The challenger generates an individual invitation by running Invl =

Igen(Token, sl, Paramj) and gives the output Invl to the adversary. Let

QInv
j = {(Token, Invl)} be the set of tokens together with the individual

invitations queried by the adversary to be generated by the lth user for

the jth service.

7. The adversary outputs an invitation letter InvLet together with token

Token
′ for the registration in the j∗th server where j∗ ∈ H. There should

not be any issued invitation using Token′ in QInv
j∗ .

Chapter 6: Anonyma: Performance and Security 141

8. If the output of XIvrfy(InvLet, Token′ , Paraminviter, ParamSj∗ , dkSj∗)

is accepted, then the game’s output is 1 indicating the adversary’s success,

0 otherwise.

Definition 4 An cross-netwrok invitation-based system has invitation unforgeability

if for every probabilistic polynomial time adversary A there exists a negligible function

negl(.) such that:

Pr[XInvUnforgeA(λ) = 1] = negl(λ)

Theorem 6 AnonymaX satisfies invitation unforgeability as defined in Definition 4,

in FR
POIC and FR

PODL hybrid model, given that the signature scheme Sig is existentially

unforgeable under chosen message attack, and Computational Diffie-Hellman problem

is hard relative to group G.

At a high level, The reduction idea between CDH problem and XInvUnforgeA(λ)

of AnonymaX is similar to InvUnforgeA(λ) . However, in AnonymaX, the simulator

B additionally is able to extract the CDH solution during the Tgen and XIvrfy

which we explain below. B is given X = gx and Y = gy from the CDH challenger

and sets Y as the commitment to the master value S. B also guesses at which query

of Tgen A will succeed to forge a valid InvLet. B sets the value ω of that token to

X. B can solve the CDH challenge if

• A creates a token with the value of X for which A must prove the knowledge of

the discrete logarithm x. Then B outputs Y x as the CDH solution.

• The adversary A queries XIvrfy with a valid invitation letter InvLet over the

token with ω = X, then B extracts the CDH solution. The InvLet is of the

form ωS = gxy which is the solution to the CDH problem.

• A submits a valid invitation letter using the token X. That is of the form

ωS = gxy which is the solution to the CDH problem.

142 Chapter 6: Anonyma: Performance and Security

A may also win by forging a token (i.e., a signature) on behalf of an honest registration

server ∈ H. However, since the signature scheme is secure, the probability of signature

forgery is negligible.

Proof: If there exists a PPT adversary A who breaks the invitation unforgeability

of AnonymaX with non-negligible advantage, then we can construct a PPT adversary

B who solves the CDH problem with non-negligible advantage.

Let ε denote the probability of success of A. B interacts with the CDH challenger

and also runs A as its subroutine. B is given the security parameter 1λ, G, q, g,X =

gx, Y = gy ∈ G for which B is supposed to compute Z s.t. Z = gx·y.

1. A outputs a set of t − 1 indices as Ic to be the index of members under its

control.

2. For every Sj j ∈ H, B runs the setup algorithm and generates the encryption

and signature key pairs (ekSj , dkSj) (skSj , vkSj) as normal. ParamSj will be

(ekskj , vkSj).

Similarly, B sets up an encryption and signature key pairs for Sinviter as

(ekinviter, dkinviter) and

(skinviter, vkinviter), respectively. As for the initialization of Shamir secret sharing

scheme, B performs as follows. B sets F0 = Y (recall that F0 is the commitment

to master value S thus F0 = gf(0) = gS; this implies that B does not know the

master value S since it is the discrete logarithm of Y (i.e., y), which is selected

by the CDH challenger). B selects t − 1 random values si∈Ic ← Zq to be the

master shares of the corrupted members. Also, B computes γi = gsi for i ∈ Ic.

Recall that the share of the master value for the ith user is f(i), thus by setting

the master shares of corrupted parties, B fixes t− 1 points of polynomial f as

f(i) = si for i ∈ Ic. These t− 1 points together with F0, which is indeed gf(0),

will fix polynomial f since the degree of f is t− 1. Next, B interpolates Y i.e.,

(gf(0)) and {(i, γi)}i∈Ic , and computes the commitments F1, · · · , Ft−1 (where

F1 = ga1 , · · · , Ft−1 = gat−1) over the coefficients of polynomial f [132] (where

Chapter 6: Anonyma: Performance and Security 143

f = S + a1 · x+ ...+ at−1 · xt−1). Note that B does not obtain the exact coeffi-

cients of the polynomial f (i.e., ai values) but only computes the commitments

Fi = gai . This is sufficient for B to simulate the role of the inviter server since

it only needs to publicize the commitments of the polynomial and not the exact

coefficients.

B outputs param = (G, q, g, ekinviter, vkinviter, (F0, ..., Ft−1)), as well as the secu-

rity parameter 1λ to the adversary. Note that B also records the master shares

of corrupted members i.e., {(i, f(i))}i∈Ic to use in the registration phase.

3. (a) A registers a corrupted user to the system (a user with the index i ∈ Ic).

As such, B sends f(i) (which was computed during the SetUp protocol) to

A.

(b) A instructs B to register an honest user to the system. Note that B

cannot generate the master shares of honest users since it does not know

the coefficients of the function f . However, since it is a local calculation

for B, this shortage remains unnoticed to A. B records the index of the

honest user inside Ih.

4. A has oracle access to token generation i.e., Sinviter.T gen and Sj.T gen for all

j ∈ H. B keeps the set of tokens queried by A for each server Sj inside QToken
j .

Initially, B draws two random values j∗ ∈ [1, N] (to be the guess over the index

of the honest registration server for which the adversary comes up with the

invitation letter forgery) and l∗ ∈ [1, P (λ)] where P (λ) is the upper-bound on

the number of adversary’s queries to Tgen for each of the servers.

• If j is equal to j∗, and if this is the l∗ query to Sj∗ .T gen then B returns

Token∗ = (SignskSj∗ (l
∗||X), l∗, X)

X was given to B from the CDH game. B plays the role of FR
PODL, re-

ceives the verification request of (G, q, g,X) from the adversary and out-

puts accept to the adversary. B inserts (X,⊥) into QToken
j∗ .

144 Chapter 6: Anonyma: Performance and Security

• If j 6= j∗, and assuming this is the lth query of adversary to Sj.T gen,

B selects a random r ∈R Zq, sets ω = gr and outputs Token =

(SignskSj (l||ω), l, ω). B plays the role of FR
PODL, receives the verification

request of (G, q, g, ω) from the adversary and outputs accept to the adver-

sary. B inserts (ω, r) to QToken
j .

The adversary may generate a token Token = (η, l, ω) for a user l ∈ Ih from Sj

where j ∈ C and hands over to the challenger. The adversary contacts FR
PODL

i.e., the challenger B and hands over ((G, q, g, ω), r). B checks whether gr = ω

and accepts or rejects the token accordingly. Also, B verifies the signature η

against the verification key of Sj and accepts or rejects the token accordingly.

If the verification passed successfully, B stores (ω, r) in QToken
j . If ω == X (the

CDH challenge), and the token is accepted, then B outputs Y r to the CDH

challenger.

5. The adversary queries Sj.XIvrfy(InvLet, Token, Paraminviter, dkSj) for j ∈ H

on the invitation letters and tokens of his own choice i.e., InvLet = (T, e∆)

and Token = (η, l, ω). B runs XIvrfy algorithm and responds accordingly. If

the output of XIvrfy is not reject and if j = j∗ and Token = Token∗ (i.e.,

ω = X), then B outputs T ·DecdkSj∗ (e∆)−1 to the CDH game.

T ·DecdkSj∗ (e∆)−1 = XS+∆ ·X−∆ = XS = gxS = gxy (6.12)

6. A has oracle access to Igen algorithm. A asks the challenger to generate an

invitation from the honest member i for the registration server j ∈ H ∪ C

using a Token = (η, l, ω). B first authenticates the token against the signature

verification key of Sj. If not verified, B outputs reject to A. Also, if ω = X, then

B aborts. Otherwise, B attempts issuing an invitation. Notice that B cannot

generate the invitation by following Igen since it does not have the master

share of honest users i.e., si for i ∈ Ih. B performs differently to compute a

valid invitation as explained next. B computes γi = ∏t
v=0 F

iv

v = gsi (the second

Chapter 6: Anonyma: Performance and Security 145

equality holds due to Equation 5.12) as well as selects a random value δi ∈R Zq.

Then, B constructs τi = γri · gδi·r where r is the discrete logarithm of ω in base

g. It is immediate that τi (to be the first component of the invitation letter) is

well-structured since

τi = γri · gδi·r = (gsi)r · (gδi)·r = (gr)si · (gr)δi = ωsi · ωδi = ωsi+δi (6.13)

B constructs eδi as Encek(ωδi) and outputs Invi = (τi, eδi) to A.

Finally, B acts as FR
POIC and waits for A’s message asking verification of

(τi, eδi, γi, ω) for which B responds accept to A. B keeps the set of individ-

ual invitations and their tokens queried by A for each server Sj in QInv
j =

{(Invi, T oken)}.

7. The adversary outputs an invitation letter InvLet = (T, e∆) for a valid token

Token
′ issued by Sj′∈H i.e., Token′ ∈ QToken

j′
for which no query has been made

from Sj′ .Igen i.e., Token′ /∈ QInv
j′

.

8. B verifies whether the Token′ is correctly signed under skj′ . If not, B outputs

⊥ to CDH challenger. Otherwise:

• If j′ 6= j∗ or Token′ 6= Token∗ B outputs ⊥ to the CDH game.

• If j′ = j∗ and Token′ = Token∗, B outputs T ·DecdkSj∗ (e∆)−1 to the CDH

challenger. In fact, if A constructs InvLet correctly, we expect that T =

XS+∆ and e∆ = Encek)Sj∗ (X∆). Given that X = gx and Y = gy = gS, we

have

T ·DecdkSj∗ (e∆)−1 = (X)S+∆ · (X)∆−1 = (X)S = (gx)y = gxy (6.14)

gx.y is the solution to the given CDH problem.

This is immediate that B runs in polynomial time. The index j∗ and l∗ chosen by

B at step 4 represents a guess as for which server Sj∗ and to which Sj∗ .T gen oracle

146 Chapter 6: Anonyma: Performance and Security

query of A will correspond to the token of eventual invitation letter forgery output

by A. If this guess is correct, then A’s view while running with B is identical to

XInvUnforgeA(λ) game.

When B guesses correctly and A outputs a forgery, then B can solve the given

instance of CDH. Assume that A’s advantage in XInvUnforgeA(λ) game is ε. The

probability that B wins is

Pr[B wins] = Pr[B(G, q, g,X = gx, Y = gy) = gx·y] (6.15)

= Pr[A wins ∧ (Token′ = Token∗ AND j′ = j∗)]

= Pr[A wins |Token′ = Token∗ AND j′ = j∗]

· Pr[Token′ = Token∗ AND j′ = j∗]

≥ ε · 1
Poly(λ) ·

1
N

The last equality holds since the number of queries made by A is at most Poly(λ)

(i.e., polynomial in λ), and there are N registration servers (honest and corrupted),

hence, the probability Token∗ = Token
′ and j′ = j∗ is at least 1

Poly(λ) ·
1
N

.

A may attempt to forge a token on behalf of Sj′ for which it has obtained an

individual invitation from an honest user for the registration in one of the corrupted

registration servers. However, due to the signature unforgeability, A cannot create a

valid token outside of the set of queried tokens i.e., /∈ QToken
j for all j ∈ H. Also, all the

queries to Igen(Token = (η, i, ω), sl, ParamSj) where l ∈ Ih and j ∈ C are answered if

the given Token is generated by the corrupted server Sj correctly i.e., Token ∈ QTgen
j

which means that the adversary has passed ZKPODL successfully (knows the DL of

the ω). The presence of zero-knowledge proof will prevent the adversary from using

a token of an honest server since the adversary does not know the DL of ω due to

the hardness of discrete logarithm assumption. Without ZKPODL, the adversary can

win the XInvUnforgeA(λ) (A takes ω from one of the tokens Token = (η, l, ω) in

QTgen
j∗ and then generates a valid token Token′′ = (Signskj(ω), i, ω) at step 4 from

a corrupted server Sj∈C . Next, A queries Igen(Token′′, sl, ParamSj) for l ∈ Ih and

obtains a valid invitation Invl = (τl, eδl). Given Invl and dkskj , the adversary would

Chapter 6: Anonyma: Performance and Security 147

be able to open eδl to ωδl hence can construct its tth valid individual invitation as

Invt = (τl, EncekSj∗ (ω
δl)) for a Token = (η, l, ω) ∈ QTgen

j∗ . The adversary combines

Invt with t− 1 invitations issued by the t− 1 corrupted inviters under its control and

hands over an intact InvLet to B).

Assuming that ε is non-negligible, B also wins with non-negligible probability.

This contradicts with the hardness of the CDH problem. Hence A’s success probability

in InvUnforgeA(λ) must be negligible. This concludes the proof. �

Chapter 7

INTEGRITA: PROTECTING VIEW-CONSISTENCY IN

ONLINE SOCIAL NETWORK WITH FEDERATED

SERVERS

7.1 Introduction

In the centralized architecture of OSNs, the collaborative data sharing environments

(e.g., Facebook group pages or users walls) are prone to the view inconsistency prob-

lem. The content of the shard data gets updated by multiple users independently.

Since users are not aware of each other’s updates, a central corrupted server may hide

user updates from each other and serve users with divergence views of the data. To for-

malize the problem of view consistency, we will use the term shared object to indicate a

collaborative data-sharing environment (such as a Facebook-like wall or a group-page)

on which a set of users are authorized to perform read and write operation. We denote

the shared object by D. Each object is comprised of smaller units called post which

have content and an author. Similar to Frientegrity [51], we assume posts are up-

loaded to the object one after another hence no concurrency will happen in users write

operations. We denote the kth version of D by Dk = {post1, · · · , postk} namely, an

ordered sequence of k posts. Likewise, the view of a user u toward the ith version of D

is comprised of a sequence of i posts seen by that user i.e., V iewui = {post′1. · · · post′i}.

The view consistency concerns two aspects of users’ views. First, to ensure that the

corrupted storage provider cannot forge any post i.e., all the post′j ∈ V iewui are issued

by authorized users. This can be immediately addressed by deploying digital signa-

tures. The second aspect regards the history integrity of an object D which is less

recognized and studied in the literature. This second property assures that the view

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 149

of all the users (obtained through their interaction with the corrupted provider) con-

tains an identical and intact sequence of posts i.e., no post is dropped or misplaced.

More formally, for the ith version of object, for every authorized user u and for all

j ∈ [1, i], post′j is equal to postj where post′j ∈ V iewui , and postj ∈ Di.

Related Work: The view consistency problem is addressed in the literature

by two types of solutions: communication-based solutions which are sought by the

centralized architectures, and replication-based solutions deployed by the distributed

designs. We elaborate on each solution type next.

In a centralized architecture with non-communicating users, the best achievable

level of view consistency is fork consistency [133], first defined by [134]. The fork-

consistency is a weaker form of view-consistency in which a corrupted provider is able

to split users into disjoint sets (to fork them) and serve each set with a distinct view

though the provider is forced to serve each set with a consistent view of the operations

performed by the users of the same set. Identification of the forked views can only

happen through users’ communication. That is users must regularly communicate

their views of the object (e.g., a wall) with all the other authorized users (e.g., friends)

to catch any view inconsistency. This approach would not be practical considering

that a user of an OSN like Facebook has 338 friends on the average1. Hence, each

user needs to communicate with almost 338*338= 114244 other users to monitor the

view consistency of her wall and her friends’ walls. Addressing view consistency using

communication-based solution is sought in the context of secure OSNs [51, 26], and

cloud computing [135, 136, 137, 138].

The replication-based solutions are deployed in peer-to-peer OSNs [139] (as a

distributed OSN), Authenticated data structures (ADS) [140, 141, 142, 143, 144, 145]

as well as Byzantine fault-tolerant protocols [146, 147]. The idea is to designate

multiple entities for the storage of the object and let all the read and write operations

happen through all of them. In specific, the shared object (or some authenticated-

metadata associated with it) must be replicated on f+1 entities considering f of them

may act maliciously. Having only one honest repository suffices to always retrieve the

150
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

intact content of the object. Replication based solutions are not efficient concerning

the storage overhead since f extra copies of the object must be stored in the OSN.

Integrita: In Integrita [25], we aim to achieve the best of both aforementioned

solutions: a method to achieve view consistency which is replication-free as well as

communication-free, and an approach where users do not have to communicate their

views out-of-band. In particular, N federated servers run by multiple authorities are

utilized, and the storage of shared object is split among them (rather than replicated).

Each server gets to serve only a part of the shared object which has no overlap with

the parts stored by other servers. This way, we cope with the storage overhead

imposed by replication-based proposals as only one instance of the shared object

(and its associated meta-data) is maintained in the entire design. We let servers

be malicious/Byzantine entities who may act arbitrarily, collude, compromise the

view consistency by dropping, tampering with, and forging posts. Nonetheless, our

approach guarantees that as long as one server does not collude with the other servers,

the view consistency is preserved. We assume that users shall act honestly and tend

to achieve a consistent view. A similar assumption is sought in prior studies [148] as

well. Note that in Integrita, we are not concerned about the privacy of the posts; one

can address it using the well-practiced techniques like encryption [45, 149].

Integrita provides the following features.

• q-Detectable-Consistency: In Integrita, we introduce a new level of view

consistency called q-Detectable-Consistency in which the views of users toward

the object (i.e., wall) cannot diverge for more than q sequence of posts without

detection. That is, if a user uploads a post, either her post correctly becomes

a part of the shared object and being seen consistently by all the other users,

or she can catch any inconsistency within the next q posts. The value of q

depends on the total number of servers and the number of posts on the shared

object at the time of write operation. A thorough analysis of this relation

is provided in Section 7.5.3. Moreover, we provide a formal definition of q-

detectable consistency together with a security proof in Section 8.1.1.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 151

• Communication-free: In contrast to the fork-based systems, our fork detec-

tion mechanism relies neither on the users’ collaboration in sharing their views

in each operation nor an out-of-band communication. Every user is able to

verify any server-side equivocation regarding her performed operation, alone

(without relying on the presence of other users).

• Replication-free: Our solution for view consistency is storage efficient as we

do not replicate the shared object over all the servers. That is, one copy of the

object is present in the entire system and each server retains only (an identi-

cal) portion of it. Our numerical analysis asserts that by using Integrita, an

OSN like Facebook with 2.3 billion monthly active users 2 saves up to 2344 Ter-

abyte storage per year (deploying 20 servers) compared to the replication-based

approach.

Note that each of the N storage providers is modeled as a data-center that

would take care of a portion of the data assigned to it. While Integrita does not

depend on data replication to achieve view consistency, this does not contradict

with the replication of data for the sake of availability. Namely, each data-

center shall deploy its replication mechanism to maintain the availability of the

data assigned to it. However, due to Integrita, the amount of data assigned to

each data-center is 1
N

of the data that would be otherwise assigned by using a

replication-based solution.

• Efficient verification: In Integrita, each read and write operation is associ-

ated with a proof of correctness which must be verified by the user. While

the creation and transmission of proof in Integrita are handled in a distributed

fashion, resultant overhead for users and the servers concerning the amount of

data transmission, the communication and computation complexity is identical

to the centralized fork-consistent counterparts [9, 26] (while Integrita enforces a

higher level of consistency). In Section 8.1, we further discuss that distributing

the storage among multiple servers not only does not degrade the experience

152
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

of user’s interaction with the system concerning the performance but also low-

ers the computational and storage overhead on each server (compared to both

centralized design and the replication-based proposals).

• Cross-server Communication-free: While the storage of the shared ob-

ject is distributed among N servers, servers do not need to communicate or

to coordinate to resolve the users’ read and write operations. Instead, all the

communication happens solely between the users and the servers.

7.2 Related Works

The concern of view consistency similarly is investigated in the context of centralized

OSN, peer-to-peer (p2p) OSN, cloud storage, Byzantine fault-tolerant protocols, and

authenticated data structures. In the following, we elaborate on these proposals and

compare them with Integrita.

Centralized OSN: In centralized architecture of OSNs, frientegrity [9] and

SPORC [26] address the view consistency by achieving fork-consistency on a shared

data. In the fork*-consistent system, while a corrupted provider is able to fork the

users into disjoint sets, he is forced to serve each set with a consistent view of op-

erations performed by the users of the same set. This is enabled since users embed

their views of the object history in each post they insert. Thus, as soon as the server

forks view of two users, he cannot show their operations to each other without risk-

ing detection. Users can also detect the inconsistency of their views by exchanging

them out of the band. The main shortcoming of fork*-consistent systems is that the

server’s equivocation remains undetected till users happen to contact out of the band.

Thus, to ensure view consistency, users must regularly communicate their views of

the shared object. This approach would not be practical. For example, on Facebook,

each user has on the average 338 friends 3 which would all have access to her wall as a

shared object. Hence, each user needs to communicate with almost 338*338= 114244

other users to monitor the view consistency of her wall and her friends’ walls.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 153

Peer-to-Peer OSN: In a p2p OSN, there is no central server running the system

and instead, the individual users called peers contribute a part of their computation

and storage power to the system. The social networking services are enabled in a

distributed manner relying on shared resources. As such, the storage of users’ data

is also distributed among the existing peers. The view consistency in p2p OSNs is

usually addressed through replication or by leveraging users’ trust. In the latter case,

the object owner (e.g., owner of a wall) stores and serves her wall by herself or repli-

cates on some trusted peers like her friends. Subsequently, the view consistency is

guaranteed due to the trustworthiness of storage peers [150, 151, 152, 15, 6, 153].

However, if the storage responsibility is spread over the p2p network and the storing

peers are untrusted, then view consistency is met through replication [139]. In par-

ticular, suppose f as the fraction of potential dishonest peers, the object (or some

units of the object like a post) should be replicated on f + 1 peers to ensure that

at least one honest peer is among the replicas. Each requester reads each post from

all the f + 1 replicas and identifies the latest content (e.g., using a version number).

However, such a solution results in storage overhead and communication complexity

which grow linearly by f . Other studies in the context of p2p OSNs also utilize repli-

cation but for the sake of data availability [5, 154, 153]. Namely, the storing nodes

are supposed to be trusted and always serve the intact contents when available.

Byzantine Fault-Tolerant Protocols and Cloud Storages: In BFT proto-

cols, a service is to be given to a set of clients while the execution of the service

concerning the sequence of requests appears identical to all clients (and this sequence

preserves the temporal order of non-concurrent operations). Enabling consistency,

BFT protocols also seek the replication-based solution [146, 147] where they deploy

several servers each keeping a replica of the state of the intended service. Byzantine

fault-tolerant systems behave correctly when no more than f out of 3f + 1 replicas

fail [146].

Similar to the centralized OSNs, the best level of view consistency in the context of

cloud storage is fork-consistency [135, 136, 137, 138, 133] which is due to the presence

154
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

of a corrupted service provider and non-communicating users. Addressing the fork

issue, cloud storage platforms utilize replication over multiple servers [155, 146].

Authenticated Data Structure: In the Authenticated data structures, a data

owner outsources her data to multiple untrusted repositories. The outsourced data is

modeled by a data structure that enables performing queries on the data in a verifiable

and authenticated manner. Repositories, on behalf of the data owner, are responsible

to answer queries of users on the data structure and hand them with a proof of the

validity of the answer. The same data structure is replicated over all the repositories

and repositories need to keep themselves updated with the data owner in the case of

update [140, 141, 142, 143, 145]. As such, one can assume view consistency of ADSs

is guaranteed through replication which is not storage efficient.

7.3 System Model

7.3.1 Model

Integrita is comprised of N OSN servers denoted by S1,...,SN (each operated by a

distinct authority), a set of users U1, ..., UT with read/write access to a shared object

that is stored at the servers side. We assume all the users have an identical read/write

access, though one can enforce more fine-grained access control using the technique

proposed by [9]. The N servers are responsible to store the objects, serve the users’

read and write requests.

The shared object is comprised of an ordered sequence of posts as well as is as-

sociated with an authenticated data structure that is to be kept at the servers’ side.

The storage of ADS and the object are divided among the servers where each server

only holds a portion. This way, we avoid the space inefficiency of the replication by

trading the strong consistency with the q-detectable consistency (in which the incon-

sistency may happen but would not last for more than q posts i.e., the inconsistency

is detectable). Hence only one copy of the object and the associated ADS exist in the

entire system.

To monitor the trustworthiness of servers in serving all the object posts con-

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 155

sistently to every authorized user, namely, preserving view consistency, each user

maintains a local data structure that mirrors the state of that object at the time of

reading/writing. Each time that the user reads the object, she has to check whether

her local state is consistent with the current state of the object. To ensure q-detectable

consistency, users also need to audit their updates on the profile at a certain point

after their write operation to ensure that the update has become accessible to all the

other users.

7.3.2 Security Goal

The security goal of Integrita is to achieve q-detectable consistency in which users are

able to verify any server-side equivocation regarding their performed operation alone

and without relying on the presence of other users. In other words, in a q-detectable

consistent system, any inconsistency between users’ views cannot remain undetected

for more than q posts.

7.3.3 Adversarial Model

The servers are untrusted hence may act maliciously to compromise the integrity of

profile history. This includes dropping a post, reordering posts, and showing users a

different subset of posts. We assume that out of N servers, at least one server does

not conspire with the rest of the servers. We treat confidentiality as an orthogonal

issue to be addressed by encrypting the content of posts. Thus, our sole objective is

protecting the users’ view consistency.

7.4 Definitions and Preliminaries

7.4.1 Notations

We write x ← X to denote picking an element x uniformly at random from set X.

a||b represents concatenation of a with b. |A| stands for the number of elements in

set A. The notations used in Integrita are provided in Table 7.1.

156
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

1λ: The security parameter

⊥: Empty string

D: The shared object consisting of a sequence of posts

Di: The shared object with i many posts

posti: The ith post of D

V iewui : The view of user from the ith version of D

N : The total number of servers

f : The number of malicious servers

Si: The ith server

Ui: The ith user

vkUi : The signature verification key of the ith user

T : The total number of users

TDi: Tree digest, the root of the history tree constructed over Di

H: The hash function

hi: the hash of ith post

L: The labeling function

l: The level of a node in the history tree

Ni,l: The node of history tree located at the lth level of the insertion path of ith post

F (i, l): The storage assignment function for Ni,l

v: The history tree version

R: A set of post indices

SF (p,l): The storage provider of Np,l

ek: The encryption key

FList: The list of authorized users

SList: The list of servers

Si.vk: The signature verification key of the ith server

Si.index: The index of the ith server

Si.Status: The Status of the ith server

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 157

SignUi , V erifyUi : The execution of Sign and V erify algorithms using the signature

key and verification key of the ith user

σUi : The signature generated by the ith user

SignSi , V erifySi : The execution of Sign and V erify algorithms using the signature

key and verification key of ith server

σSi : The signature generated by the ith server

p: The index of a post

σ: Signature

last: The index of the last post inserted to the object D

q: Audit threshold

TP (.): The object transition point

DB: Server’s database

Table 7.1: Notations used in Integrita

7.4.2 Definitions

Negligible: A function f is called negligible if for all positive polynomials p, there

exists a constant C such that for every value c > C it holds that f(c) < 1
p(c) .

7.4.3 Preliminaries

Signature Scheme A signature scheme [126] Sig consists of three algorithms; key

generation, sign and verify denoted by Sig = (Gen, Sign, V rfy). A pair of keys

(sk, vk) is generated via SGen where sk is the signature key and vk is the verification

key. The signer signs a message m using sk by computing η = Signsk(m). Given the

verification key vk, a receiver of signature runs V rfyvk(η,m) to verify.

A signature scheme Sig = (Gen, Sign, V rfy) is said to be existentially unforgeable

under adaptive chosen message attack if ∀ probabilistic polynomial time adversary A,

158
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

there exists a negligible function nelg(.) s.t. the following holds [100]:

Pr[(sk, vk)← Gen(1λ); (m,σ)← ASignsk(.)(vk)

s.t. m /∈ Q and V rfyvk(m,σ) = accept] = negl(λ) (7.1)

ASignsk(.) indicates that adversary has oracle access to the signature algorithm. Q

indicates the set of adversary’s queries to the signature oracle.

7.5 Integrita System Design

In Integrita, we make use of an authenticated data structure called history tree to

represent the shared object and to enable verifiable write and read operation for the

users. That is, each read and write operation is associated with a proof through

which the user can verify the authenticity of the operation result. The details of

object representation is provided in Section 7.5.1. Representing a shared object using

a history tree does not suffice to provide view consistency. We further discuss in

Section 7.5.2 how to distribute the storage of shared object among N servers.

7.5.1 Shared object representation

The shared object D is treated as an ordered sequence of posts D = {post1, ..., postM}.

Each post shall be signed by its issuing user and can contain any type of data e.g.,

text or image. Concerning privacy, one can assume the content is encrypted and the

decryption key is provided to all the other users.

The shared object is additionally attached to an authenticated data structure

called history tree which is initially introduced by [148]. A history tree is an append-

only data structure modeled by a variant of the Merkle hash tree. In Integrita, the

leaves of the tree hold the hash of each post posti. The intermediate nodes and root

node store the hash of their children. In such a structure, the root essentially covers

the entire content of the tree. The new posts can freely be added as the leaf nodes

to the right side of the tree. For each newly added post, the value of intermediate

nodes and the root shall be recalculated. A sample of history tree for a shared object

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 159

ℎ"
= H(p:LM")

ℎ-
= K(;:LM-)

K(ℎ"||ℎ-)

ℎ.
= K(;:LM.)

K(ℎ.||ℎ8)

K(K(ℎ"| ℎ- ||K(ℎ.||ℎ8))

ℎ8
= K(;:LM8)

Figure 7.1: A history tree constructed for the object with 4 posts.

D with 4 posts is provided in Figure 7.1. Figure 7.2 represents the same tree after

the insertion of post5. We use the term of Tree digest or TD for short to refer to the

history tree root and we write TDi to indicate the content of the root after insertion

of ith post. We refer to the shared object with i posts as the ith version of the shared

object.

The history tree exhibits the following properties that are fundamental inefficiently

preserving view consistency.

• Every tree digest TDj uniquely defines a distinct ordered sequence of j posts.

That is, for two identical sets of posts each with a different order e.g., D3 =

{post1, post2, post3} and D′3 = {post2, post1, post3}, their associated tree digests

TD3 and TD′3 end up completely different. This is due to collision resistant

property of the underlying hash function.

• Proof of membership: The occurrence of a particular post posti at position i

in a tree digest TDj where i <= j is efficiently verifiable in O(log(j)). The

proof of membership includes the sequence of values stored at the siblings of

160
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

h"
= H(post")

h-
= H(post-)

H(h"||h-)

h.
= H(post.)

H(h.||h8)

H(H(h"| h- ||H(h.||h8))

h8
= H(post8)

hX
= H(postX) ⊥

TDX = H(H(H(h"| h- ||H(h.||h8)) ||H(H hX))

H(hX) ⊥

H(H hX)

Figure 7.2: The tree of Figure 7.1 after the insertion of post5.

the nodes (indicating whether it is a left or right sibling) on the path from the

leaf node storing posti to the root TDj. Given the proof, one can recompute

the root as TD′j and compare against TDj. For example, as shown in Figure

7.3, to prove that TD4 contains post3 as its 3rd post, the proof includes h3, h4,

H(h1||h2) and H(H(h5)). The tree digest TD′5 can be reconstructed recursively

from the values included in the proof. If the computed value TD′5 and the given

tree digest TD5 match, then post3 is the 3rd post of the object.

• Incremental Proof: Given two different tree digests TDi and TDj of the same

shared object, where i < j, one can check whether the two tree digests make

consistent claim about the past posts namely, whether TDi and TDj share

the same history regarding post1, · · · , posti. The incremental proof between

version 2nd and version 5th of a shared object is shown in Figure 7.4. Let TD′2
indicate the tree digests computed using the given proof. If TD′2 = TD2 then

the incremental proof asserts the consistency of TD2 and TD5.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 161

H(h"||h-)

h.

= H(post.)

H(h.||h8)

TD8 = H(H(h"| h- ||H(h.||h8))

h8

= H(post8)

Figure 7.3: The membership proof of post3 for version 4th of the shared object.

h"
= H(post")

h-
= H(post-)

H(h"||h-) H(h.||h8)

H(H(h"| h- ||H(h.||h8))

hX
= H(postX) ⊥

TDX = H(H(H(h"| h- ||H(h.||h8)) ||H(H hX))

H(hX) ⊥

H(H hX)

Figure 7.4: The incremental proof of the 2nd version of the shared object to the 5th
version. The solid rectangles represent the proof. The gray parts are computable
given the proof parts.

162
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

1

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

5"," 5",+ 5",2 5",4

5+," 5+,+

52,"

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Figure 7.5: Insertion path of post1, post2, post3, and post4. Each insertion path
indicated by a distinct color.

7.5.2 Distributed storage of the shared object

For the distributed storage of the shared object and its associated history tree, we

proceed as follows. First, we define an insertion path of post i to be nodes of history

tree whose hash values get altered while inserting post i to the tree. Figure 7.5

illustrates the insertion path of posts 1 − 4 each with a different color. Ii,j refers to

the jth node at level i. Since Merkle trees support logarithmic path lengths from the

root to the leaves, the insertion path of ith post will consist of dlog(i)e + 1 nodes.

For example, the insertion path post1 is comprised of only one node I1,1 whereas the

insertion path post2 consists of two nodes I1,2 and I2,1.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 163

Note that insertion paths of post3 and post4 have two nodes in common namely, I2,2

and I3,1. However, the value of each of these nodes at the time of insertion of post3 and

post4 are different e.g., I2,2, on the insertion path of post3 contains H(h3|| ⊥) whereas

its value changes to H(h3||h4) after insertion of post4. Following this intuition, in

Integrita, we treat each of these nodes separately and address them based on their

location on the insertion path of each post. That is, each node is addressed with a

pair of integers (i, l) as Ni,l where i indicates post number and l stands for the level of

node on the insertion path. The history tree of Figure 7.5 under the new addressing

is demonstrated in Figure 7.6. Under the new addressing, node I2,2 corresponds to

N3,2 and N4,2 indicating its distinct values at the insertion of post3 and post4.

We further define a labeling function L to convert these pairs to a distinct nu-

merical value. L : {1, ...,M} × {1, ..., log(M)} → {0, 1}∗ is a deterministic labeling

function which receives the pair of (i, l) as defined above and returns back an integer

label as given in Equation 7.2. We labeled nodes of Figure 7.6 and showed the result

in Figure 7.7. We write Ni,l and NL(i,l), interchangeably, e.g., N4,2 and N8 refer to the

same node i.e., N4,2 = N8 = H(h3||h4).

L(i, l) = l +
i−1∑
j=1

(dlog(j)e+ 1) (7.2)

Given the above labeling mechanism, the storage of each labeled node shall be

assigned to a distinct server circularly. For this, we define a function F that receives

the label of the node as label and returns the index of the server which is responsible

for that node. N is the total number of servers.

F (i, l) = [L(i, l) mod N] + 1 (7.3)

For example, in a system with 3 servers, the storage of N3, N6, N9, · · · are given

to the first server S1. Nodes N1, N4, N7, · · · are given to S2 whereas S3 gets to serve

N2, N5, N8, · · · . Say it differently, the assignment of nodes to the servers follow a

circular pattern where {N1 → S1, N2 → S2, N3 → S3, N4 → S1, N5 → S2, N6 →

164
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

2

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

="," =+,"

=+,+

=4,"

=4,+

=4,2

=2,"

=2,+

=2,2

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Figure 7.6: Insertion path of post1, post2, post3, and post4. Each insertion path
indicated by a distinct color. Each node is addressed with a pair of integers (i, l) as
Ni,l where i indicates post number and l stands for the level of node on the insertion
path.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 165

ℎ"
= H(post")

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

> 1,1 = 1 > 2,1 = 2

> 2,2 = 3

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2|| ⊥)

,(,(ℎ"| ℎ+ ||,(ℎ2|| ⊥))

ℎ"
= H(post")

ℎ+
= ,(-./0+)

,(ℎ"||ℎ+)

ℎ2
= ,(-./02)

,(ℎ2||ℎ4)

,(,(ℎ"| ℎ+ ||,(ℎ2||ℎ4))

ℎ4
= ,(-./04)

> 3,1 = 4

> 3,2 = 5

> 3,3 = 6

> 4,1 = 7

> 4,2 = 8

> 4,3 = 9

Insertion of post" Insertion of post+

Insertion of post2 Insertion of post4

Figure 7.7: The labeling of insertion path of post1, post2, post3, and post4 using the
labeling function L. Each insertion path indicated by a distinct color. The label of
each node is indicated above it.

166
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

S3, · · · }, → indicates the assignment. In section 8.2, we discuss how we enforce q-

detectable-consistency using the circular distribution of storage of history tree among

the servers.

Following our labeling method, we define and distinguish three types of nodes of

the history tree.

• Tree digest: The root of tree after insertion of each post is called tree digest.

In figure 7.6, nodes N1,1, N2,2, N3,3, N4,3 all represent the tree digests which are

roots of the tree at the insertion time of post1, post2, post3, and post4, respec-

tively. Given a post number i and the level of node on the insertion path as l,

one can identify whether the node is tree digest if Equation 7.4 holds:

l = dlog(i)e+ 1 (7.4)

• Full node: A full node is a node whose left and right sub-trees are full i.e.,

insertion of further posts will not alter the value of a full node. A node on the

lth level of insertion path of ith post is full if the following relation (Equation

7.5) is met:

i mod 2l−1 = 0 (7.5)

In Figure 7.6, nodes N1,1, N2,1, N3,1, N4,1, N4,2 and N4,3 are all full.

• Temporary node: Nodes whose left or right sub-trees are not full are called

temporary node. We call them temporary since the insertion of further posts

will change their hash values. For example, nodes N3,3 and N3,2 in Figure 7.6

are temporary as there is an empty node in their right sub-trees corresponding

to post4. In general, Ni,l is a temporary node if Equation 7.6 holds:

i mod 2l−1 6= 0 (7.6)

The content of a temporary node can be reconstructed given the value of the

highest full node in its left and its right sub-trees. For example, as shown in

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 167

Figure 7.7, the node N5 as a temporary node can be reconstructed using the

highest full node of its left sub-tree which is N4 and the highest full node in

its right sub-tree which is ⊥. Likewise, the content of N6 can be correctly

recreated using N3 and its highest full node at its right sub-tree which is N4 i.e.,

N6 = H(N3||N5) = H(N3||H(N4|| ⊥)). Due to this property, the storage servers

of temporary nodes will not save their hash values. Instead, the responsible

servers just maintain some state information about the inserted post (see section

7.5.3).

Fetching proofs in a distributed manner: In Integrita, there is no central

entity holding a global view of the shared object and its history tree. As such, dislike

the centralized system where the server would create the membership and incremental

proofs on its own, in Integrita, the user herself is responsible to determine the nodes

on the proof path (using the labeling algorithm given in Equation 7.2) and their

associated storage providers (using Equation 7.3) and fetch the hash values. Once

hashes are fetched, the user can check the correctness of the proof as normal.

For the ease of explanation, we define the following function

{(SF (p,l), (p, l))} = ProofPath(v,R = {i, · · · , j}) (7.7)

that receives a version number v of the shared object, and a set R = {i, · · · , j}

of a range of post indices. The function returns a set of pairs (SF (p,l), (p, l)) where

Np,l is a node holding a value of the membership proof of {posti, · · · , postj} and

SF (p,l) is the index of the corresponding storage provider. For example, one may call

ProofPath(7, {5, 6}) to find out the nodes located on the membership proof of post5
and post6 with respect to the version 7th of the shared object. The proof, as illustrated

in Figure 7.9, includes the values of N9, N10, N14, and N18 and their corresponding

storage servers S1, S2, S3, and S4. Note that since the temporary nodes are not saved

in the system, the proof includes N18 instead of N19 which is a temporary node; given

N18 the calculation of N19 is immediate. As we stated before, for a temporary node,

its highest full node in its right and left sub-trees shall be fetched instead.

168
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

Note that an incremental proof between ith and jth version of the history tree

involves the membership proof of posti and postj. Thus, the function ProofPath can

be also used to find the nodes and the servers holding values of incremental proof.

For example, finding the nodes on the incremental proof between 2nd and 5th version

of the object requires a call to ProofPath(5, {2, 5}).

We additionally consider the existence of the following two functions that shall be

run by the users:

• True, False← INCR.V F (TDi, TDj, proof): Given two tree digests TDj and

TDk where i < j it verifies whether proof is a correct incremental proof between

TDi and TDj. We write TDi → TDj to indicate that there exists an incremental

proof for which INCR.V F (TDi, TDj, proof)) returns True.

• True, Fale ← MEMBERSHIP.V F (TDj, i, post
′
i, proof)): Given proof ,

the function checks whether the object with tree digest TDj has

post′i as the ith post. This function can further accept multiple

posts MEMBERSHIP.V F (TDj, {i, · · · , k}, {post
′
i, · · · , post

′
k}, proof)) and

checks their memberships with respect to TDj. We write posti ∈

TDj to indicate that there exists a membership proof for which

MEMBERSHIP.V F (TDj, i, posti, proof)) returns True.

7.5.3 Construction

Authorized users (with read and write access to the shared object) are associated

with a signature key pair. FList = {(Uj, vkUj)}j∈[1,T] shall contain the username Uj
and the verification key vkUj of each user. T is the total number of authorized users.

FList is publicly available to the servers and the authorized users. Also, posts on the

object are all encrypted using an encryption key ek. The corresponding decryption

key is given to the authorized users. Note that for the sake of simplicity, we assume

that the exchange of FList and the encryption key pair among the users happens out

of band, however, one may use the method proposed by [9] to further outsource the

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 169

J" J-

J.

J8

JV

JW

JX J"2 J"8

J"T

J"V

J"W

J-2

J-"

Figure 7.8: Version 7th of the shared object. The full nodes as well as the nodes on
the insertion path of the last post i.e., N18, N19, N20, N21 are shown.

JW

!"

J"2 J"8

J"T J"W

J-2

J-"

J"V

!- !. !"

Figure 7.9: Nodes located on the membership proof of 5th post concerning the 7th
version of the shared object. The solid rectangles represent the nodes included in the
proof.

170
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

storage of FList and management of users access to the servers side. Also, for the

ease of explanation, we assume that the set of authorized users is static which can be

extended to a dynamic version by deploying the proposal of [9].

Each server has a signature key pair and a unique index in the range of [1, N].

Servers publicize the ordered list SList = {Si}i=1:N where each server Si’s index and

verification key is accessible through Si.index and Si.vk, respectively. For simplicity,

we assume that the index of each server corresponds to its position in the list i.e.,

Si.index = i. Besides, the definition of the hash function H to be used in the history

tree is publicly available. Each server also sets up a database DB to store the parts

of shared object and the history tree which is responsible for. Also, each server keeps

track of the label of the last seen node as a tuple of (p, l), where p indicates the post

number and l is the level of the node, in a local variable Status which gets updated

once a write operation takes place at that server.

Servers are accessible to the users through three different function calls Write,

Read, and GetStatus. Users communicate with servers utilizing these function calls

to handle their read and write requests. Namely, users interact with the servers

through four protocols Create object, Update Status, Read, and Write. We consider

an authenticated channel between users and servers. We elaborate on the function

calls and protocols below.

Throughout our description, we distinguish between the data generated or opera-

tion performed by a server and a user using S and U subscript. That is, we write σUi
to indicate a signature generated by the ith user. Likewise, SignUi(.), and V erifyUi(.)

mean the execution of Sign and V erify algorithms using the signature key and ver-

ification key of ith user, respectively. Following the same pattern, we will have σSi ,

SignSi(.), and V erifySi(.) for the ith server.

Server-side function calls: Each server is available to the users through three

function calls Write, Read, and GetStatus that are explained below.

1. Sj.Write(Ui, (p, l), in = (Np,l, post, σUi)): User Ui calls this method to upload

the tuple in = (Np,l, post, σUi) to be recorded for the node at the lth level of the

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 171

insertion path of pth post. Np,l refers to the hash value of the node in the history

tree. post carries the content of a post and σUi is a user-generated signature.

Depending on the type of node i.e., tree digest, full or temporary, one or all

of these fields might be empty. If the inserted node is a leaf node, then it is

associated with the content of a post i.e., post and a user-side signature σUi
over Np,l||p. Likewise, the tree digests should be associated with the user-side

signature. However, for the temporary nodes, all the fields of in are empty.

The details of Write procedure is shown in Algorithm 11. Firstly, the server

needs to check whether the write operation is coming from an authorized user

(Ui ∈ FList), the server is the corresponding storage provider of the intended

node (F (p, l) = Sj.index), and if the node is the next node that the server is

expected to receive (i.e., F (p, l) − F (Sj.Status.p, Sj.Status.l)=N); Note that

servers hold Status variable to keep track of their last seen post in the system.

The last equality check is correct since the storage assignment of nodes to the

servers is circular hence the labels of two consecutive nodes received by a server

are N distant. If all the checks passed correctly, the server proceeds as below. If

the node is a leaf node or a tree digest (line 2 and line 4), then the server must

authenticate the user-side signature (lines 2-7). Upon successful verification,

the server inserts the tuple in into the DB (line 8). Also, the server can remove

all the user side signatures for the tree digests TDi which refer to prior posts

except the first post (line 9-11). This removal has a significant impact on the

storage complexity where at any point in time there will be N signed tree digests

saved in the system (rather than all of the signatures of the tree digests). Note

that if the node is a temporary node then no data will be recorded for it (as

in is empty)). The server updates its Status variable (line 12). If the inserted

node is a tree digest, the server must sign the node (lines 13-15) and responds

to the user accordingly. Otherwise, the server only acknowledges the success of

the write operation (lines 16-18).

172
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

2. Sj.Read(p, l): Algorithm 12 demonstrates the read procedure. This function

receives the index of the node in the history tree i.e., p as the post number and

l as the level of the node in the insertion path of pth post. The server checks

whether it is responsible for the storage of the requested node i.e., Np,l (line 1).

If not, it returns ⊥ (line 2). Otherwise, the server retrieves the corresponding

record from DB (lines 4-5). Note that as we discussed in the Sj.Write algorithm,

depending on the type of requested node some or all of the entries (Np,l, post, σ)

might be empty. If the requested node is a tree digest, then the server generates

a signature over Np,l (lines 6-10). Finally, the server sends the record and the

signature (if any) to the user (line 11).

3. Sj.GetStatus(): The server sends its Status to the user (Algorithm 13).

User-side Protocols:

Create object: This protocol aims to initialize the share object by the insertion

of its first post and then to communicate the first tree digest TD1 with the autho-

rized users. The content of the first post must be uniquely representative for the

object e.g., the name of the group page together with its creation date. As such,

given the first tree digest of the shared object, users can distinguish between different

shared object s (e.g., different group pages). We assume one of the authorized users

Ui e.g., the owner of a wall or the admin of a Facebook-like group page will run this

protocol. The input of the user to this protocol is a post. The user contacts the

server SF (1,1) who is responsible for the first post and calls its Write function for

(Ui, (1, 1), (H(post||1), post, SignUi(H(post||1)). As the result, user receives a signa-

ture σSF (1,1) over the inserted value TD1 = H(post||1) from the server. Note that, the

hash value H(post||1) corresponds to the N1,1 = TD1.

The admin then communicates TD1 with all the authorized users in FList. Each

user initializes a local variable Status for the shared object which is the tuple of the

following format Status = (v, TDv, σ) where v reflects the last version of shred object

seen by the user, TDv is the corresponding tree digest and σ is a server-side signature

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 173

of the TDv. Each user sets the Status variable to (1, TD1, σSF (1,1)).

Update Status: This protocol, as demonstrated in Figure 7.10, is run between a

user and the N servers through which the user aims to find the index of the latest

post uploaded on the object, to fetch the corresponding tree digest, and check its

consistency against her local Status variable. As such, the user collects the Status

value of all the servers via their GetStatus function call (line 1). The largest Status

value indicates the latest post index i.e., last. If the label of last nodes seen by the

servers differ in more than N (N is the total number of servers), then inconsistency is

detected (lines 2-3). This is because servers get to serve nodes in a circular manner,

hence, the difference between the labels of the nodes seen by the servers can be at

most N .

Next, the user must check whether her last seen tree digest TDv (stored in her

Status variable) (line 4) is consistent with the given tree digest TDlast. To do so,

the user identifies the nodes holding the path of an incremental proof between tree

digest TDv and TDlast (line 5) and contacts the corresponding storage servers (lines

6-7). Next, she authenticates the retrieved signatures of leaf nodes and tree digests

(lines 6-12). If the authentication succeeds, then the user checks whether the fetched

proof is a valid incremental proof between TDv and TDlast (line 13). If verified, the

user updates her Status value to (last, TDlast, σSF (last,dlog(last)e+1)) (line 14). Note that

σSF (last,dlog(last)e+1) is fetched as a part of proof .

Read: During the Read protocol as shown in Figure 7.11, the user reads a certain

range R = [x, y] of posts i.e., postx, · · · , posty of the shared object (line 1). For

this, the user first runs the UpdateStatus protocol and updates her Status variable

(line 2). Next, she specifies the storage servers holding the nodes on the membership

proof path of posti∈R (line 3). She contacts the servers and fetches the required data

(lines 4-11). The fetched tree digest and leaf nodes should be appropriately signed

by the issuing users (lines 6-9). Once the signatures are verified, the user verifies the

correctness of membership proofs of the posts against TDlast (line 12). If the result

of membership proof is false then a view inconsistency is detected (line 13).

174
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

1. (p5678, l5678) = max{ SB. GetStatus()|i ∈ [1, N]}
2. (pòBô, lòBô) = min{ SB. GetStatus()|i ∈ [1, N]}
3. If (F(p5678, l5678)-F(pòBô, lòBô)>N)

Inconsistency is detected

4. Retrieve TDO from UB. State
5. path = {(SV D,5 , (p, l))} = ProofPath(last, {v, last})

6. For (SV(D,5), (p, l)) ∈ path

7. UP, p, l , ND,5, post, σj[, σö{(õ,|) = SV D,5 . Read(UB, p, l)

8. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ND,5||p, σj[== False)

9. Inconsistency is detected

10. If ND,5 is a tree digest AND (Verifyj[ND,5, σj[== False)

11. Inconsistency is detected

12. proof. insert ND,5
13. If (INCR.VF(TDO, TD5678, proof)==False) An inconsistency is detected

14. UB. state = (last, TD5678, σö{(|}~�, |ÉÑ |}~� ÄÅ)
)

UB

Sû∈[%,ü]

Figure 7.10: Update Status protocol. The arrows indicate users interaction with
servers.

1. Select a range R = [x, y]
2. Run Update Status and fetch TD5678
3. path = {(SV(D,5), (p, l))} = ProofPath(last, R)

4. For (SV(D,5), (p, l)) ∈ path

5. UP, p, l , ND,5, post, σj[,∗ = SV D,5 . Read(UB, p, l)

6. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ND,5||p, σj[== False)

7. Inconsistency is detected

8. If ND,5 is a tree digest AND (Verifyj[ND,5, σj[== False)

9. Inconsistency is detected

10. proof. insert p, l , ND,5

11. Posts. insert(post)

12. If(MEMBERSHIP. VF TD5678, R, Posts, proof ≠True)

13. Inconsistency is detected

UB

Sû∈[%,ü]

Figure 7.11: Read protocol. The arrows indicate the user’s interaction with servers.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 175

Write: In this protocol, illustrated in Figure 7.12, a user interacts with N servers

to insert her post to the object. User initially runs Update Status protocol to fetch

TDlast corresponding to the latest version of the object (line 1).

The user Ui crafts the content of her post (line 2) and signs it (line 3). She

identifies the nodes on the insertion path of her post (line 5) and then fetches the

values from the corresponding storage servers (lines 6-10). Next, she recomputes the

hash values of intermediate nodes on the insertion path of her post (line 11). She

submits the hash values to the corresponding servers by invoking their Write function

(lines 12-16). For the leaf node, the user submits the hash value Nlast+1,1 together

with the content of the post post and a signature σ (line 13). For the full node, the

value of the node is sent to the corresponding server (line 14) whereas the storage

server of the temporary node just gets informed about the insertion of the new post

(line 15). If any of the servers respond by reject, then inconsistency is detected (line

17). The storage provider of the tree digest i.e., Npc,lC returns a signature (line 18).

The user authenticates the given signature and updates her Status accordingly (lines

16-17).

Audit: As we discussed before, each user is responsible to ensure that her post is

correctly inserted to the object and is visible to all the other users. As such, every

write operation of ith post must be followed by a call to the UpdateStatus at i+ qth

version of the object. That is, once the user uploads a post to the shared object, she

must check the status of the shared object when q more posts are uploaded on top

of her post. If the execution of UpdateStatus at i + qth version of object concludes

successfully, then the user ensures that her post is consistently visible to all the other

users. Otherwise, an inconsistency is detected.

Audit Threshold: The value of q is a function of object version i (the index of

inserted post) and the number of servers N as shown in Equation 7.8. We refer to q

as audit threshold i.e., a threshold for the number of posts that a user needs to wait

to be inserted on top of her post to ensure that her post is consistently visible to all

the users.

176
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

1. Run Update Status and fetch TD5678
2. post: Enc°P(Content)
3. σ = SignjR H post ||last + 1

4. p¢=last+1	l¢= log last +1
5. path = {(SV D,5 , (p, l))} = ProofPath(p¢, p¢)

6. For (SV(D,5), (p, l)) ∈ path

7. UP, p, l , ND,5, post, σj[,∗ = SV D,5 . Read UB, p, l

8. If ND,5 is a leaf node AND (ND,5 ≠ H post OR Verifyj[ND,5||p, σj[== False)

9. Inconsistency is detected

10. proof. insert((p, l), ND,5, post, σj[)

11. Using proof, recalculate the insertion path ND§,5∈[%,5§]
12. For ND,5 ∈ ND§,% ⋯ND§,5§•%
13. If ND,5 is a leaf node, v= ND,5, post, σ

14. If ND,5 is a tree digest, v = (ND,5, ⊥, SignjR ND,5)

15. If ND,5 is a full node, v = (ND,5, ⊥, ⊥)

16. If ND,5 is a temporary node, v = (⊥, ⊥, ⊥)

17. Res = SV D,5 .Write UB, p, l, v

18. If Res==Reject then Inconsistency is detected

19. σ7{ õ§,|§
= SV D§,5§ .Write UB, p¢, l¢, ND§,5§

20. If Verify7{ õ§,|§
ND§,5§, σ7{ õ§,|§

== True

21. UB. state = (ND§,5§, σ7{ õ§,|§
)

UB

Sû∈[%,ü]

Figure 7.12: Write protocol. The arrows indicate the user’s interaction with servers.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 177

Q(i, N) = min(q) s.t.
∑
j=0:q
dlog(i+ j)e+ 1 ≥ N (7.8)

As a concrete example, assume a system with 8 servers i.e., N = 8. A user who

inserts the second post i.e., i = 2 shall execute UpdateStatus after the insertion of

Q(2, 8) = 2 more posts on the object i.e., at the 4th version of the object. If the

Update Status protocol does not end successfully, then there is a view inconsistency

e.g., servers attempted to drop her post or replace with another post.

We give some intuitions into why auditing the object after Q(i, N) posts will result

in achieving q-detectable consistency. In section 8.2, we will provide a formal security

definition for a q-detectable consistent system together with solid proof as to how

Integrita satisfies q-detectable consistency relying on our proposed auditing strategy.

For the insertion of each post i, servers that are located on the insertion path will

be informed about the insertion of that new post regardless of the type of nodes they

are responsible for (see Figure 7.12). Recall that we assume at least one of the servers

is honest. We use the term of frozen post for a post whose part of the insertion path

gets to be served by the honest server by frozen post. It is named frozen since due

to the presence of the honest server, no other post with the same index as the frozen

post will exist; the honest server will not accept the insertion of two posts with the

same index (as indicated in line 2 of Algorithm 11). This implies that for the frozen

post with the index of f , there would be only one tree digest TDf in the system which

represents a unique history (sequence of posts) of the object. We call a tree digest

corresponding to a frozen post as frozen tree digest. All the other tree digest TDj

created as the result of further write operations j > f will comply with the history

that TDf represents (this is due to the incremental proof check in the Step 11 of the

Update Status protocol). Thus, if a post i where i < f belongs to the sequence of

posts that a frozen tree digest TDf represents then it will certainly belong to all the

future versions of the object (again due to the incremental proof check in the Step 11

of the Update Status protocol). Thus, to ensure view consistency, the user needs to

perform a consistency check between the tree digest at the time of insertion of her

178
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

post and the very next frozen tree digest. To determine the index of the next frozen

tree digest, we need to know the index of the honest server. However, there is no

presumption about which server will act honestly. As such, after insertion of each

post i the user shall wait for q many posts to be inserted as the result of which all

the servers get contacted at least once. As the storage of nodes is assigned to the

servers under a circular pattern, if the sum of the length of the insertion path of the

next q posts exceeds N , it means that all the N servers, including the honest server

whose index is unknown, are contacted at least once. Equation 7.8 calculates q i.e.,

the total number of posts (inserted after ith post) whose insertion paths lengths on

aggregate exceeds N . Recall that the number of nodes located on the insertion path

of jth post is dlog(j)e+ 1 which means dlog(j)e+ 1 distinct servers get contacted as

the result of insertion of the jth post.

Analysis of Audit Threshold Figure 7.13 shows the audit threshold computed

based on function Q(i, N) under different number of servers N and post number i.

The audit threshold for a particular post number will increase with the number of

servers e.g., the threshold audit for post number 65 for N = 8, 16, 24, and 32 are

0, 1, 2 and 3 respectively.

After a certain version of object, every inserted post is a frozen one since all the

servers get contacted as the insertion of each post. Indeed, the object enters into

its strong consistent version where no fork can happen in users’ views. We call that

version of the object as transition point. For a givenN , its transition point is computed

as given in Equation 7.9.

TP (N) = 2N−2 + 1 (7.9)

For example, with N = 8, strong consistency starts at version 65 whereas with

N = 16 the transition point is 16385. Thus the higher the number of servers the later

the object enters its strong consistency version. The transition points of the different

numbers of servers (1-20) are illustrated in Figure 7.14.

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 179

0 20 40 60 80 100 1200

2

4

6

8

10

i:Post Number

Q
(i,

N
)

N=8
N=12
N=16
N=24
N=32

Figure 7.13: The Audit Threshold for various number of servers each demonstrated
by a different diagram. The x axis represents the index of post whereas the y axis
shows the audit threshold computed based on function Q(i, N) given in Equation 7.8.

0 5 10 15 200

5

10

15

20

N:Number of Servers

L
og

2(
T
P

(N
))

Figure 7.14: The Transition point for various number of servers as defined in Equation
7.9. The x axis represents the number of servers whereas the y axis shows the the
logarithm of the transition point.

180
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

Algorithm 11 Sj.Write(Ui, (p, l) , in = (Np,l, post, σUi))
1: if Ui ∈ FList AND F (p, l) = Sj.index AND F (p, l) −

F (Sj.Status.p, Sj.Status.l)=N then

2: if Np,l is a leaf node AND (H(post) 6= Np,l OR V erifyUi(Np,l||p, σUi) 6=

accept) then

3: Return Not Verified

4: end if

5: if Np,l is a tree digest AND V erifyUi(Np,l, σUi) 6= accept then

6: Return Not Verified

7: end if

8: Insert (Ui, (p, l), in) into DB

9: if Sj.Status.p 6= p then

10: Remove the user signature σUi ∀ TDi ∈ Sj.DB \ TD1

11: end if

12: Sj.Status=(p, l);

13: if Np,l is a tree digest then

14: Return Signsj(Np,l)

15: else

16: Return accept

17: end if

18: Return Res

19: end if

Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with
Federated Servers 181

Algorithm 12 Sj.Read(Ui, p, l)
Output: (record = (Ui, (p, l), (Np,l, post, σUk), σSj)

1: if Ui /∈ FList OR F (p, l) 6= Sj.index then

2: Return ⊥

3: end if

4: record = DB.get(p, l)

5: Parse record as (∗, (p, l), Np,l, ∗, ∗)

6: if Np,l is tree digest then

7: σSj = SignSj(Np,l)

8: else

9: σSj =⊥

10: end if

11: Return (record, σSj)

Algorithm 13 Sj.GetStatus ()
1: Return Sj.Status

182
Chapter 7: Integrita: Protecting View-Consistency in Online Social Network with

Federated Servers

Notes to Chapter 7

1 https://www.brandwatch.com/blog/facebook-statistics/

2 https://www.statista.com/statistics/264810/number-of-monthly-active-Facebook-

users-worldwide/

3 https://www.brandwatch.com/blog/facebook-statistics/

Chapter 8

INTEGRITA: COMPLEXITY, PERFORMANCE AND

SECURITY

8.1 Complexity and Performance

In this section, we analyze the asymptotic performance of Integrita with respect to

the storage overhead (section 8.1.1), communication round and communication com-

plexity (section 8.1.2) for both servers and users.

8.1.1 Storage Overhead

User: Users have to store constant amount of data as for their Status variable.

Server: Servers are responsible to store the object’s posts and its associated history

tree i.e., the full nodes, the tree digests, and the leaves.

hSize · |L|+ hSize · |F |+ hSize · |T − F |+ SSize · |L|+ SSize · |T | (8.1)

An object with M posts consists of M leaves, and M full nodes and M tree digests.

However, out of M tree digests, some of them overlap with the full nodes hence are

already saved in the system. Indeed, out of M tree digests (for M posts), log(M)

many of them associated with post indices 20, 21, 22,..., 2log(M)) are full nodes, hence,

servers the number of tree digests to be stored by the servers will be M − log(M)

(rather than M). Additionally, every leaf node is attached to a user-side signature,

thus, M signatures shall be maintained by the servers. Also, for an object with M

posts, O(N) many signed tree digests are stored by the servers which result in O(N)

signatures.

As such, the total amount of storage spent by the N servers is given in Equation

184 Chapter 8: Integrita: Complexity, Performance and Security

Design Asymptotic Overhead Concrete total overhead Concrete overhead per server Consistency level

Centralized hSize · (2 ·M) + SSize ·M 124TB 124TB Fork-consistency

Replication-based N · [hSize · (2 ·M) + SSize ·M] 2488TB 2488TB Strong consistency

Integrita hSize · (3M − Log(M)) + SSize · (M +N) 143TB 7.1TB q-detectable consistency

Table 8.1: Storage overhead of Integrita vs related work. N : number of servers. M :
number of posts on the object. SSize: The size of each signature in bit length. hSize:
the bit-length of hash output.

8.2 which is of O(M).

hSize · (M +M︸ ︷︷ ︸
leaves and full nodes

+
tree digests that are not full nodes︷ ︸︸ ︷

M − log(M)) + SSize · (M +N) (8.2)

Related Work: In a replication-based solution, one needs to copy the history

tree (of 2M nodes) as well as the signed leaves of the history tree (i.e., M signatures)

over N servers. Thus, the storage overhead for such design would be N · [hSize · (2 ·

M) +SSize ·M]. In the centralized systems, the server stores the history tree (With

2·M nodes) together with its user-side authenticated leaves (i.e., M signatures) which

results in hSize · (2 ·M) + SSize ·M overhead.

Table 8.1 summarizes the comparison of the storage overhead of Integrita with the

centralized and the replication-based solutions. The concrete overhead is measured

for annual storage consumption of a social network like Facebook, for walls of its 2.41

billion monthly active users1 each wall containing 1241 posts (per year) 2. We deploy

SHA-3 as the hash function with a 512-bit output length and RSA signature scheme

with a 2048-bit signature length. The number of servers N is set to 20.

8.1.2 Round Complexity and Communication Complexity

In this section, we analyze the round complexity as well as the communication com-

plexity i.e., the number of bits communicated between parties during the protocol.

We consider each communication round to be a sent and a receive operation. If mul-

tiple rounds can be done concurrently (they are independent), then we count them

as one round. The results are summarized in Table 8.2.

Chapter 8: Integrita: Complexity, Performance and Security 185

• Update Status: In the first round, the user contacts all the N servers to get

their latest Status. Then she performs a consistency proof check between her

local state variable and the latest state of the object. To fetch values of the

incremental proof path, the user contacts with N servers (at most) and down-

loads the necessary values concurrently. Thus, the overall round complexity of

Update Status is 2. Likewise, as the result of Update Status, each server may

get contacted twice, once to share its latest status and the second time when

the server may be located on the proof path.

The communication complexity of Update Status is to download the signed

state of servers Si for i ∈ [1, N] as well as fetching the incremental proof.

The former requires SSzie · N data transfer whereas the latter involves the

transmission of at most 2 · log(M) hash values (M is the number of object’s

posts). The user additionally downloads the user authenticated version of the

last post’s tree digest and leaf node as well as the server-signed version of the

tree digest which adds 3 more SSize to the amount of transferred data. As

such, the communication complexity at the user side is at most SSize · (N +

3) + hSize · 2.log(M). The average communication complexity for each server

is SSize·(N+3)+hSize·2.log(M)
N

≈ SSize+ hSize·(2·log(M))
N

• Read: Let the object contains M posts, and a user wants to read a consecu-

tive range R = [i, j] of posts. She has to fetch the membership proof paths of

all the posts from the corresponding servers. The user can connect to all the

servers simultaneously, hence she can perform read in 1 round of communica-

tion. As a result, each server at most gets contacted also once which results in

communication complexity of 1 for each server.

The user downloads R many leaf nodes with their user-side signatures which

requires R ·(hSize+SSize) data transmission. The proof path includes at most

2 · log(M) hash values. On aggregate, user communicates hSize · (2.log(M) +

R) +SSize ·R bit data. Consequently, the average data transfer on each server

186 Chapter 8: Integrita: Complexity, Performance and Security

Entity\Overhead Update Status Read Write

User 2 1 2

Servers 2 1 2

(a) Integrita Communication Complexity

Entity\Overhead Update Status Read Write

User SSize · (N + 3) + hSize · 2 · log(M) hSize · (2.log(M) +R) + SSize ·R hSize · 2 · log(M)

Servers SSize+ hSzie · 2·log(M)
N

hSize·(2.log(M)+R)+SSize·R
N

hSize·2·log(M)
N

(b) Integrita Communication Complexity.

Table 8.2: Communication complexity. N : number of servers. M : number of posts
on the object. SSize: The size of each signature in bit length. hSize: the bit-length
of hash output. R: number of consequitive operations to be read from the object.

is hSize·(2.log(M)+R)+SSize·R)
N

.

• Write: To insert a post to the object, the user needs to fetch the nodes on the

insertion path of her post. This can be handled in a 1 round of communication

with concurrent connections to the servers. Next, the user recomputes the values

for the nodes on the insertion path of her post and upload the new values to

the servers. This also counts as a 1 round of communication. Thus, in total

user performs the write operation in 2 rounds of communications. Subsequently,

servers may get contacted for at most 2 rounds.

From the communication complexity perspective, downloading the insertion

path of the current post requires to download at most 2 ·log(M) hash values. As

such, the user-side communication complexity would lead to hSize · 2 · log(M)

bits. The data transfer at the server-side shall be hSize·2·log(M)
N

.

8.2 Security

8.2.1 q-Detectable Consistency and Inconsistency Interval

In a q-detectable consistent system, views of users toward the ith version of a shared

object is guaranteed to be consistent expect for the last δ posts i.e., posti−δ, ..., posti.

Chapter 8: Integrita: Complexity, Performance and Security 187

We use the term inconsistency interval to refer to the range of the posts i.e., [i− δ, i]

where the inconsistency is allowed. The views of users for any history of object

preceding i − δ version of the object is guaranteed to be the same. In Integrita, δ is

a function of object version i and the number of servers N and its value is computed

using function ∆(i, N) given in Equation 8.3.

∆(i, N) = max(q ∈ [0, i]) s.t.
∑
j=0:q
dlog(i− j)e+ 1 ≥ N (8.3)

As a concrete example, assume a system with 8 servers i.e., N = 8 and two users

looking at the 5th version of the

object, the inconsistency interval is 2 (∆(5, 8) = 2) that is the view con-

sistency holds for all the posts except the 4th and the 5th post. As such,

the following two views V iew5 = {post1, post2, post3, post4, post5} and V iew′5 =

{post1, post2, post3, post′4, post′5} are q-consistent since the consistency holds for all

the posts out of the inconsistency interval. However, the following two views V iew5 =

{post1, post′2, post3, post4, post5} and V iew′5 = {post1, post′2, post3, post′4, post′5} do not

satisfy q-consistency because there is an inconsistency at the second post which is out

of the inconsistency interval.

To capture the notion of q-consistency, we define the following game to be played

between an adversary A and a challenger Chal. The adversary shall control N − 1

servers whereas the Chal gets to play for authorized users Ui i ∈ FList and the

honest server. We write F to indicate the indices of corrupted servers and Sh to be

the honest server. The adversary can dictate the read and write operations to be

done by particular users. However, it does not have control over the Audit protocol

execution. The challenge for the adversary is to make two users U and U ′ accept two

q-inconsistent views of the ith version of the object i.e., there is at least one index

j /∈ [i−∆(i, N), i] for which U and U ′ read postj and post′j as the jth post such that

postj 6= post′j.

188 Chapter 8: Integrita: Complexity, Performance and Security

q-Detectable Consistency Experiment q-Det-Consistency(1λ)

1. The challenger gives the security parameter 1λ to the adversary. The ad-

versary communicates a set of signature verification keys {vkSi}i∈F for the

servers under its control to the challenger. The challenger runs the signa-

ture key generation algorithm for the honest server and hands the vkSh
to the adversary. Also, the challenger generates the signature key pairs

for the users U1, ..., UT and outputs FList = {(U1, vkU1), · · · , (UT , vkUT)}

to the adversary.

2. The adversary specifies a user Uj to create the shared object D through

the invocation of Create object protocol.

Steps 3 and 4 can be repeated polynomial times by the adversary.

3. The adversary specifies a user Uj to Write a post on the object D. Chal

runs the Write protocol accordingly. Note that after each write operation,

the challenger shall act upon the Audit protocol.

4. The adversary specifies a range R = [l, r] to be read by a particular user

Ui. Chal runs the Read protocol accordingly.

5. The adversary specifies two users U and U ′, a version number j and a post

index i∗ where i∗ < j −∆(j,N). The challenger runs Read protocol for

jth post on behalf of U and U ′. A wins if Read protocol ends successfully

for U and U ′ such that the tree digest in the Status variable of U and U ′

both have index j and posti∗ and post′i∗ be the posts the U and U ′ read,

respectively s.t. posti∗ 6= post′i∗ .

Definition 5 A storage system provides q-detectable consistency for a shared object if

the success probability of adversary in q-Det-Consistency(1λ) experiment is negligible

in the security parameter λ.

Chapter 8: Integrita: Complexity, Performance and Security 189

Theorem 7 If the deployed signature scheme is existentially unforgeable under adap-

tive chosen message attack and the hash function is secure then Integrita satisfies

q-detectable consistency.

Proof Overview: If A wins i.e., U and U ′ read two different post posti∗ 6= post′i∗

where i∗ < j −∆(j,N) this implies that there is a fork in the system where users are

split into two groups depending on whether they are shown posti∗ or post′i∗ . For both

forks to successfully continue till the jth version of the object, each fork should have

a successful chain of write operations from i∗th to jth version of the object. However,

for the frozen postk where i∗ < k < i∗ +Q(i∗, N) < j, the honest server accepts only

one write operation which results in one valid tree digest hence only one fork will get

to grow. For the other fork (namely the second fork) to grow, the corrupted servers

need to bypass the honest server. As such, the corrupted servers need to convince the

users of the second fork that the last post on the object has an index higher than k so

that they won’t attempt insertion of the kth post. However, this would only happen

if the corrupted servers can generate an authenticated post and tree digest on behalf

of an authorized user from the second fork. Thus, if B can guess for which authorized

user this forgery takes place, B will exploit this forgery and breaks the unforgeability

of the underlying signature scheme.

Proof: We base our proof over the following lemma that is due to [148].

Lemma 1 If there is a valid incremental proof between two tree digests TDi and

TDj, then for every operation postk where k < i for which there is a valid mem-

bership proof , s.t. True ← MEMBERSHIP.V F (k, TDi, postk, proof)), and post′k

s.t. there is a proof ′ for which True←MEMBERSHIP.V F (k, TDj, post
′
k, proof))

then postk must be equal to post′k. Namely, if two tree digests are consistent then they

both represent the same sequence of operations for their shared past [148].

Proof: If there exists an adversary A who wins q-Det-Consistency(1λ) with non-

negligible probability ε then we construct a simulator B who breaks the underlying

signature scheme. The internal code of B is given below. B is given the security

190 Chapter 8: Integrita: Complexity, Performance and Security

parameter 1λ as well as a signature verification key vk′ from the signature scheme

challenger.

1. The challenger gives the security parameter 1λ to the adversary. The adver-

sary communicates a set of signature verification keys for the corrupted servers

{vkSi}i∈F to the challenger. The challenger runs the signature key generation

algorithm for the honest server and hands the vkSh to the adversary. B selects

a random value β ← [1, T]. B sets the signature verification key of Uβ to vk′

and for the rest of users generates the signature key pairs as normal. B sends

FList = {(U1, vk1), · · · , (Uβ, vk′), · · · , (UT , vkT)} to the adversary.

2. The adversary specifies a user Uj to create the shared object D through the

invocation of Create object protocol. If j = β, then to generate required signa-

tures, B queries the signing oracle of the outside challenger and stores the set of

queried messages and signatures in set QSign. Otherwise, B acts as in Create

object protocol.

3. The adversary specifies a user Uj to write a post on the object D. B runs the

Write protocol accordingly.

First, B runs the Update Status and fetch the latest tree digest TDlast. As the

result of running Update Status, B obtains proof = {(Np,l, post, σUk)} for some

p and l. If there exists a tree digest Nx,y ∈ proof (or a leaf node) signed by Uβ
as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs (Nx,y, σUβ) (or

(Nx,y||x,σUβ)) to the outside challenger.

B fetches required nodes for the insertion of the new post as proof =

{(Np,l, post, σUk)}. If there exists a tree digest Nx,y ∈ proof (or a leaf node)

signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs

(Nx,y, σUβ) (or (Nx,y||x,σUβ)) to the outside challenger.

B recalculates the nodes on the insertion path of her post as well as the tree

digest. B signs the leaf node i.e., H(post)||last+ 1 and the tree digest TDlast+1

Chapter 8: Integrita: Complexity, Performance and Security 191

using the Uj signature key. If Uj == Uβ then B queries the signing oracle of the

outside challenger and inserts the queried message and the obtained signature

to QSign.

If an inconsistency is detected as the result of Write protocol, B immediately

aborts.

Note that after each write operation, B shall act upon the audit protocol i.e.,

B runs the Update Status protocol at the last+Q(last,N) version of the

object. As the result of running Update Status B obtains proof =

{(Np,l, post, σUk)}. If there exists a tree digest Nx,y ∈ proof (or a leaf node)

signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or Nx,y||x /∈ QSign) then B outputs

(Nx,y, σUβ) (or (Nx,y||x,σUβ)) to the outside challenger. If any inconsistency is

detected as the result of Update Status, then B aborts.

4. The adversary specifies a range R = [l, r] to be read by a particular user Ui.

B runs the Read protocol accordingly. If an inconsistency is detected as the

result of Read protocol, then B aborts. Otherwise, during the execution of

Read protocol, B obtains proof = {(Np,l, post, σUk)}. If there exists a tree

digest Nx,y ∈ proof (or a leaf node) signed by Uβ as σUβ s.t. Nx,y /∈ QSign (or

Nx,y||x /∈ QSign) then B outputs (Nx,y, σUβ) (or (Nx,y||x,σUβ)) to the outside

challenger.

5. The adversary specifies two users U and U ′, a version number j and a post

index i∗ where i∗ < j−∆(j,N). B runs Read protocol for U and U ′ separately.

B acts identically to the step 4 to run the Read protocol. Let TDj and TD′j

indicate the Status variable of U and U ′ after the Read protocol execution .

Also let posti∗ and post′i∗ indicate the read posts for U and U ′. If posti∗ 6= post′i∗

and Read protocol ends without detecting any inconsistency for both U and U ′

then B will find a signature forgery as we discuss below.

Note that the inconsistency between posti∗ and post′i∗ means that there will be

192 Chapter 8: Integrita: Complexity, Performance and Security

two different tree digests TDi∗ (with posti∗ as its i∗th post) and TD′i∗ (with post′i∗ as

its i∗th post). As such, from version i∗ onward, users will be divided into two groups

G and G′ depending on whether they are shown posti∗ (TDi∗) or post′i∗ (TD′i∗). More

precisely, a group G of users whose further Status variables i.e., TDf where f ≥ i∗

are consistent with TDi∗ i.e., TDi∗ → TDf and the other group G′ whose further

Status variables i.e., TD′f where f ≥ i∗ are consistent with TD′i∗ i.e., TD′i∗ → TD′f .

Recall that every read and write operation requires the user to run the Update

Status protocol, and to perform an incremental proof check between local Status

variable and the latest state of the system i.e., TDlast. Since users are divided in two

groups G and G′, there will be two separate chains of posts (after i∗th post) generated

by group G and G′ i.e., posti i ∈ [i∗, j] uploaded by group G and post′i i ∈ [i∗, j]

performed by users of group G′. Let assume k ∈ [i∗, i∗ +Q(i, N)] be the index of the

next frozen node (the honest server is the storage server of one of the nodes on the

insertion path of post k). Assume that a user from a group G attempts the insertion

of postk earlier than a user from a group G′. Since the honest server appears on the

insertion path of postk, it gets informed about the inclusion of kth post and update

its Status accordingly. When a user from the group G′ holding a state variable TD′i
wants to insert post′k, it first runs the Update Status to fetch the latest version of the

object and perform consistency check between TD′i and the current version of the

object. During the status update protocol, the adversary may try to act dishonestly

which we discuss next.

1. The adversary may attempt to send an incorrect Status value to the user and

make her accept a lower version < k of the

object. However, due to the presence of the honest server (who has witnessed

the insertion of postk), the adversary does not succeed as the honest server will

communicate its intact state value i.e., k with the user.

2. The adversary may attempt sending a Status value x where x ≥ k for which the

adversary also needs to come up with a valid tree digest TD′x where TD′x =⇒

Chapter 8: Integrita: Complexity, Performance and Security 193

TD′i (TD′i is the status of user while inserting post′k) in order to pass the Update

Status protocol successfully. To come up with a valid TD′x, the adversary has

the following choices:

(a) The adversary may use the tree digest TDx that is signed and generated

by one of the members of the group G. However, any tree digest TDx

generated by a member of group G will be consistent with TDi∗ but not

with TD′i∗ i.e., TDi∗ 6=⇒ TDx. This means that there will be no valid

incremental proof between TD′i∗ and TDx. Thus this choice is absolute.

(b) The other choice for the adversary is to generate a post′x and forge a sig-

nature on H(post′x||x) (the leaf node) on behalf of an authorized user.

(c) The adversary uses postx generated by one of the members of G and com-

putes the tree digest TD′x accordingly. A also needs to generate a valid

signature over TD′x from one of the authorized users.

This means that for a member of group G′ to accept that the latest version of

object is x ≥ k and successfully pass the Update Status protocol, the adversary

needs to forge a signature on behalf of an authorized user U ′′ either on the leaf

node H(post′x||x) or the tree digest TD′x. Thus, B shall figure out this forgery

while fetching the incremental proof on behalf of a member of the group G′.

B can win the signature game if the forgery of the adversary is from Uβ. Recall

that the probability of A winning the q-Det-Consistency(1λ) is ε(λ) and the total

number of users i.e., T is a polynomial poly(λ). Thus, we have

Pr[B breaks the signature] = Pr[q-Det-Consistency(1λ) = 1 AND U
′′ = Uβ]

= Pr[q-Det-Consistency(1λ) = 1|U ′′ = Uβ] · Pr[U ′′ = Uβ]

= ε(λ) · 1
T

= ε(λ) · 1
poly(λ) (8.4)

if ε(λ) is non-negligible, then B also breaks the signature scheme with non-negligible

probability. This concludes the proof. �

194 Chapter 8: Integrita: Complexity, Performance and Security

Notes to Chapter 8

1 https://www.businessinsider.com/facebook-grew-monthly-average-users-in-q1-

2019-4

2 https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-

and-stats

Chapter 9

CONCLUSION

9.1 Remarks

In this thesis, a framework of privacy-preserving services for distributed OSNs oper-

ated on the federated server architecture is proposed. The thesis is comprised of three

modules, namely Privado, Anonyma, and Integrita.

In the first module of the framework, Privado, we address the lack of advertising

service in the secure OSNs. Privado is a privacy-preserving group-based advertising

system by which servers can match advertising requests to the encrypted profiles of

users. We introduce and utilize the group-based advertising notion to enable user

privacy, i.e., to hide the identity of the exact target customers. As such, users are

divided into groups of size k at the registration time and then submit their profiles

in an encrypted format. Advertisers submit their requests as plaintext. Servers find

the target groups for the advertising requests. User privacy (i.e., the unlinkability

of group matching result to the individual group members) is preserved against a

malicious adversary who corrupts N − 1 out of N servers, k − 2 out of k members of

each group and any number of advertisers. We formally define and prove user privacy

relying on the CPA security of the deployed encryption scheme. Our advertising

scheme enjoys advertising transparency where the entire process of matching groups to

the advertising requests are done independent of users’ and advertisers’ collaboration.

We perform experimental simulations and measure the advertising running time over

a various number of servers and group sizes. We additionally discuss the optimum

number of servers, concerning user privacy and advertising running time. We also

present advertisement accuracy metrics under various system parameters providing a

range of security-accuracy trade-offs.

196 Chapter 9: Conclusion

In the second module of the framework, Anonyma, we propose an anonymous

invitation-only system satisfying inviter anonymity and invitation unforgeability si-

multaneously. The inviter anonymity guarantees that the knowledge of who is in-

vited by whom remains confidential against the system administrator as well as the

inviters of the same invitee. By the invitation unforgeability, the system administra-

tor is guaranteed that invitees without a sufficient number of inviters would not be

able to successfully authenticate themselves to the system. Both security objectives

are formally defined and proved in a malicious adversarial model. The anonymity

of inviter relies on the security of the employed pseudo-random generator and the

invitation unforgeability relies on the hardness of computational Diffie-Hellman as-

sumption. Anonyma is efficiently scalable in terms of the number of inviters. That is,

the administrator can issue credentials to the new members (without re-keying other

existing members) to be immediately able to invite others. Unlike the prior studies

whose running time depends on the total number of system members, in Anonyma,

the running time complexity of invitation generation is o(t) (t is the required number

of inviters) and the verification of invitation requires constant many operations at the

administrator. Additionally, we devise an anonymous cross-network invitation-based

system, AnonymaX which is a slightly modified variant of Anonyma. AnonymaX em-

powers users of one social network to act as inviters for another network. AnonymaX

achieves provable inviter anonymity the same way as Anonyma does. The proof of

invitation unforgeability of AnonymaX is provided basing on the hardness of compu-

tational Diffie-Hellman assumption.

In the third module of the framework, Integrita, we address the view consistency

issue in a collaborative data-sharing environment like Facebook group pages. The

shared data called a shared object is comprised of a sequence of posts which can

be generated by any of the authorized users. The view consistency concerns that

all the authorized users are shown the same set of posts and with the intact order.

In Integrita, we introduce a new level of consistency called q-detectable consistency

where any inconsistency between users view cannot remain undetected for more than

Chapter 9: Conclusion 197

q posts. Integrita preserves q-detectable consistency as long as one server does not

collude with the rest of the servers. In Integrita, q is a function of the number of posts

uploaded on the shared object as well as the number of servers. Integrita outperforms

the state of the art in two major directions. First, unlike the replication-based solu-

tions, Integrita operates only on one instance of the shared object that is maintained

collaboratively by all the servers. As such, Integrita saves 2344 Terabyte of storage

annually for an OSN with 2.3 billion users and running on the federation of 20 servers

(i.e., service providers). We enable this by trading the strong consistency with the

q-detectable consistency. Second, in contrast to the centralized counterparts in which

the inconsistency detection relies on the users’ direct communication, Integrita detects

any fork in the users’ views regardless of users direct communication. Nevertheless,

distributing the storage of shared data among multiple servers not only does not de-

grade the performance of our design compared to the centralized architecture, but also

our complexity analysis shows that Integrita performs identically to the centralized

architecture concerning the communication and computation both at the user and

the server-side. Also, Integrita reduces the storage overhead per server by a factor of

N (N is the number of servers). Additionally, Integrita does not rely on cross-server

communication in resolving users’ read and write requests.

9.2 Future Directions

As future work, Privado can be extended to efficiently support any Boolean function

of the attributes in a single advertising request. Another extension would be an exten-

sive analysis of the advertising accuracy using real OSN profiles like Facebook. This

will provide an insight into the practical optimum group size and group-based adver-

tising threshold. In invitation-based systems, revocation of a current user imposes an

overhead that is linear in the size of the system i.e., the total number of users. An

efficient revocation mechanism for invitation-based system is an open research direc-

tion. Additionally, one can extend the design of Integrita to support view-consistency

in the adversarial model where users may also be corrupted.

BIBLIOGRAPHY

[1] S. R. Chowdhury, A. R. Roy, M. Shaikh, and K. Daudjee, “A taxonomy of de-

centralized online social networks,” Peer-to-Peer Networking and Applications,

pp. 1–17, 2014.

[2] L. Schwittmann, M. Wander, C. Boelmann, and T. Weis, “Privacy preservation

in decentralized online social networks,” IEEE Internet Computing, p. 1, 2013.

[3] S. Taheri-Boshrooyeh, A. Küpçü, and Ö. Özkasap, “Security and privacy of

distributed online social networks,” in IEEE 35th International Conference on

Distributed Computing Systems Workshops. IEEE, 2015, pp. 112–119.

[4] A. Bielenberg, L. Helm, A. Gentilucci, D. Stefanescu, and H. Zhang, “The

growth of diaspora-a decentralized online social network in the wild,” in Com-

puter Communications Workshops (INFOCOM WKSHPS), IEEE Conference

on. IEEE, 2012, pp. 13–18.

[5] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A. Varshavsky,

“Vis-a-vis: Privacy-preserving online social networking via virtual individual

servers,” in Third International Conference on Communication Systems and

Networks. IEEE, 2011, pp. 1–10.

[6] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ramasubramanian,

D. Terry, and T. Wobber, “Contrail: Enabling decentralized social networks on

smartphones,” in ACM/IFIP/USENIX International Conference on Distributed

Systems Platforms and Open Distributed Processing. Springer, 2011, pp. 41–60.

[7] B. Krishnamurthy and C. E. Wills, “Characterizing privacy in online social

networks,” in WOSN. ACM, 2008.

Bibliography 199

[8] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in Security

and Privacy. IEEE, 2009.

[9] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten, “Social net-

working with frientegrity: Privacy and integrity with an untrusted provider.” in

USENIX, 2012.

[10] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams, “Hummingbird:

Privacy at the time of twitter,” in Security and Privacy (SP). IEEE, 2012.

[11] J. Sun, X. Zhu, and Y. Fang, “A privacy-preserving scheme for online social

networks with efficient revocation,” in INFOCOM. IEEE, 2010.

[12] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better privacy

for social networks,” in CoNEXT. ACM, 2009.

[13] A. Barenghi, M. Beretta, A. Di Federico, and G. Pelosi, “Snake: An end-to-end

encrypted online social network,” in ICESS. IEEE, 2014.

[14] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona: an

online social network with user-defined privacy,” in ACM SIGCOMM, 2009.

[15] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p social

networking: early experiences and insights,” in Proceedings of the Second ACM

EuroSys Workshop on Social Network Systems. ACM, 2009, pp. 46–52.

[16] N. Z. Gong and D. Wang, “On the security of trustee-based social authentica-

tions,” IEEE transactions on information forensics and security, vol. 9, no. 8,

pp. 1251–1263, 2014.

[17] G. P. Malar and C. E. Shyni, “Facebookfs trustee based social authentication,”

in Int. J. Emerg. Technol. Comput. Sci. Electron, vol. 12, no. 4, 2015, pp. 224–

230.

Bibliography 200

[18] “https://telegram.org/tour/groups.”

[19] S. Mahmood, “Online social networks: Privacy threats and defenses,” in Secu-

rity and Privacy Preserving in Social Networks. Springer, 2013, pp. 47–71.

[20] A. Chaabane, G. Acs, M. A. Kaafar et al., “You are what you like! information

leakage through users’ interests,” in Proceedings of the 19th Annual Network &

Distributed System Security Symposium (NDSS), 2012.

[21] S. T. Boshrooyeh, A. Küpçü, and Ö. Özkasap, “Privado: Privacy-preserving

group-based advertising using multiple independent social network providers.”

IACR Cryptology ePrint Archive, vol. 2019, p. 372.

[22] Q. Zheng and S. Xu, “Verifiable delegated set intersection operations on out-

sourced encrypted data,” in IC2E. IEEE, 2015.

[23] F. Kerschbaum, “Collusion-resistant outsourcing of private set intersection,” in

Applied Computing. ACM, 2012.

[24] S. T. Boshrooyeh, A. Küpçü, and Ö. Özkasap, “Anonyma: Anonymous

invitation-only registration in malicious adversarial model.” IACR Cryptology

ePrint Archive, vol. 2019, p. 1215.

[25] ——, “Integrita: Protecting view-consistency in online social network with fed-

erated servers.” IACR Cryptology ePrint Archive, vol. 2019, p. 1223.

[26] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “Sporc: Group

collaboration using untrusted cloud resources.” in OSDI, vol. 10, 2010, pp. 337–

350.

[27] A. Sattikar and D. R. Kulkarni, “A review of security and privacy issues in

social networking,” International Journal of Computer Science and Information

Technologies, vol. 2, no. 6, pp. 2784–2787, 2011.

Bibliography 201

[28] M. Beye, A. Jeckmans, Z. Erkin, P. Hartel, R. Lagendijk, and Q. Tang, “Lit-

erature overview-privacy in online social networks,” Centre for Telematics and

Information Technology, University of Twente, 2010.

[29] E. Novak and Q. Li, “A survey of security and privacy in online social networks,”

College of William and Mary Computer Science Technical Report, 2012.

[30] A. Verma, D. Kshirsagar, and S. Khan, “Privacy and security: Online social net-

working,” International Journal of Advanced Computer Research, vol. 3, no. 8,

pp. 310–315, 2013.

[31] M. M. Lucas and N. Borisov, “Flybynight: mitigating the privacy risks of so-

cial networking,” in Proceedings of the 7th ACM workshop on Privacy in the

electronic society. ACM, 2008, pp. 1–8.

[32] M. Conti, A. Hasani, and B. Crispo, “Virtual private social networks,” in Pro-

ceedings of the first ACM conference on Data and application security and pri-

vacy. ACM, 2011, pp. 39–50.

[33] E. De Cristofaro, C. Soriente, G. Tsudik, and A. Williams, “Hummingbird:

Privacy at the time of twitter,” in Security and Privacy (SP), IEEE Symposium

on. IEEE, 2012, pp. 285–299.

[34] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona: an

online social network with user-defined privacy,” in ACM SIGCOMM Computer

Communication Review, vol. 39, no. 4. ACM, 2009, pp. 135–146.

[35] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal, S. K. Teh, R. Chu,

B. Dodson, and M. S. Lam, “Prpl: a decentralized social networking infrastruc-

ture,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &

Services: Social Networks and Beyond. ACM, 2010, p. 8.

Bibliography 202

[36] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peerson: P2p social

networking: early experiences and insights,” in Proceedings of the Second ACM

EuroSys Workshop on Social Network Systems. ACM, 2009, pp. 46–52.

[37] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving online

social network leveraging on real-life trust,” Communications Magazine, IEEE,

vol. 47, no. 12, pp. 94–101, 2009.

[38] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet: a de-

centralized architecture for privacy preserving social networking with caching,”

in Proceedings of the 8th international conference on Emerging networking ex-

periments and technologies. ACM, 2012, pp. 337–348.

[39] R. Sharma and A. Datta, “Supernova: Super-peers based architecture for de-

centralized online social networks,” in Communication Systems and Networks

(COMSNETS), Fourth International Conference on. IEEE, 2012, pp. 1–10.

[40] D. Sandler and D. S. Wallach, “Birds of a fethr: open, decentralized micropub-

lishing.” in IPTPS, 2009, p. 1.

[41] T. Xu, Y. Chen, J. Zhao, and X. Fu, “Cuckoo: towards decentralized, socio-

aware online microblogging services and data measurements,” in Proceedings of

the 2nd ACM International Workshop on Hot Topics in Planet-scale Measure-

ment. ACM, 2010, p. 4.

[42] S. Guha, K. Tang, and P. Francis, “Noyb: Privacy in online social networks,”

in Proceedings of the first workshop on Online social networks. ACM, 2008,

pp. 49–54.

[43] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC Press, 2014.

[44] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in

Cryptology–EUROCRYPT. Springer, 2005, pp. 457–473.

Bibliography 203

[45] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based

encryption,” in Security and Privacy, SP’07. IEEE Symposium on. IEEE,

2007, pp. 321–334.

[46] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for

fine-grained access control of encrypted data,” in Proceedings of the 13th ACM

conference on Computer and communications security. Acm, 2006, pp. 89–98.

[47] A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryptol-

ogy—CRYPTO’93. Springer, 1994, pp. 480–491.

[48] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Advances

in cryptology. Springer, 1985, pp. 47–53.

[49] C. Delerablée, “Identity-based broadcast encryption with constant size cipher-

texts and private keys,” in Advances in Cryptology–ASIACRYPT. Springer,

2007, pp. 200–215.

[50] F. Raji, A. Miri, M. D. Jazi, and B. Malek, “Online social network with flexible

and dynamic privacy policies,” in Computer Science and Software Engineering

(CSSE), CSI International Symposium on. IEEE, 2011, pp. 135–142.

[51] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W. Felten, “Privacy and

integrity are possible in the untrusted cloud.” IEEE Data Eng. Bull., vol. 35,

no. 4, pp. 73–82, 2012.

[52] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with appli-

cations to adaptive ot and secure computation of set intersection,” in Theory of

Cryptography. Springer, 2009, pp. 577–594.

[53] T. Paul, A. Famulari, and T. Strufe, “A survey on decentralized online social

networks,” Computer Networks, vol. 75, pp. 437–452, 2014.

Bibliography 204

[54] A. Datta, S. Buchegger, L.-H. Vu, T. Strufe, and K. Rzadca, “Decentralized

online social networks,” in Handbook of Social Network Technologies and Appli-

cations. Springer, 2010, pp. 349–378.

[55] B. Carminati, E. Ferrari, and M. Viviani, “Security and trust in online social

networks,” Synthesis Lectures on Information Security, Privacy, & Trust, vol. 4,

no. 3, pp. 1–120, 2013.

[56] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ramasubramanian,

D. Terry, and T. Wobber, “Contrail: Enabling decentralized social networks on

smartphones,” in Middleware. Springer, 2011, pp. 41–60.

[57] C. Zhang, J. Sun, X. Zhu, and Y. Fang, “Privacy and security for online social

networks: challenges and opportunities,” Network, IEEE, vol. 24, no. 4, pp.

13–18, 2010.

[58] A. Juels, M. Luby, and R. Ostrovsky, “Security of blind digital signatures,” in

Advances in Cryptology—CRYPTO’97. Springer, 1997, pp. 150–164.

[59] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge proof

systems,” Journal of Cryptology, vol. 7, no. 1, pp. 1–32, 1994.

[60] M. Backes, M. Maffei, and K. Pecina, “A security api for distributed social

networks.” in NDSS, vol. 11, 2011, pp. 35–51.

[61] C. Huang, Y. Chen, W. Wang, Y. Cui, H. Wang, and N. Du, “A novel social

search model based on trust and popularity,” in Broadband Network and Multi-

media Technology (IC-BNMT), 3rd IEEE International Conference on. IEEE,

2010, pp. 1030–1034.

[62] P. Jain, P. Jain, and P. Kumaraguru, “Call me maybe: Understanding nature

and risks of sharing mobile numbers on online social networks,” in Proceedings of

the first ACM conference on Online social networks. ACM, 2013, pp. 101–106.

Bibliography 205

[63] E. Sarigol, D. Garcia, and F. Schweitzer, “Online privacy as a collective phe-

nomenon,” in Proceedings of the second edition of the ACM conference on Online

social networks. ACM, 2014, pp. 95–106.

[64] S. Guha, B. Cheng, and P. Francis, “Privad: Practical privacy in online adver-

tising.” in NSDI, 2011.

[65] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas, “Ad-

nostic: Privacy preserving targeted advertising.” in NDSS, 2010.

[66] P. Joshi and C.-C. Kuo, “Security and privacy in online social networks: A

survey,” in Multimedia and Expo (ICME), IEEE International Conference on.

IEEE, 2011, pp. 1–6.

[67] S. T. Boshrooyeh, A. Küpçü, and Ö. Özkasap, “Ppad: Privacy preserving group-

based advertising in online social networks,” IFIP Networking Conference, 2018.

[68] D. Biswas, S. Haller, and F. Kerschbaum, “Privacy-preserving outsourced pro-

filing,” in CEC. IEEE, 2010.

[69] A. Juels, “Targeted advertising... and privacy too,” in CT-RSA, 2001.

[70] F. Kerschbaum, “Outsourced private set intersection using homomorphic en-

cryption,” in CCS. ACM, 2012.

[71] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian, “Scaling private set

intersection to billion-element sets,” in FC, 2014.

[72] C. Patsakis, A. Zigomitros, and A. Solanas, “Privacy-aware genome mining:

Server-assisted protocols for private set intersection and pattern matching,” in

CBMS. IEEE, 2015.

Bibliography 206

[73] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection based

on ot extension,” ACM Transactions on Privacy and Security (TOPS), vol. 21,

no. 2, p. 7, 2018.

[74] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless public key

authenticated encryption with keyword search for industrial internet of things,”

IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3618–3627,

2018.

[75] Q. Huang and H. Li, “An efficient public-key searchable encryption scheme

secure against inside keyword guessing attacks,” Information Sciences, vol. 403,

pp. 1–14, 2017.

[76] B. Zhu, J. Sun, J. Qin, and J. Ma, “The public verifiability of public key en-

cryption with keyword search,” in International Conference on Mobile Networks

and Management. Springer, 2017, pp. 299–312.

[77] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key en-

cryption with keyword search,” in International conference on the theory and

applications of cryptographic techniques. Springer, 2004, pp. 506–522.

[78] J. Li, X. Lin, Y. Zhang, and J. Han, “Ksf-oabe: outsourced attribute-based

encryption with keyword search function for cloud storage,” IEEE Transactions

on Services Computing, vol. 10, no. 5, pp. 715–725, 2017.

[79] R. Cramer, I. Damg̊ard, and J. B. Nielsen, “Multiparty computation from

threshold homomorphic encryption,” in International Conference on the Theory

and Applications of Cryptographic Techniques. Springer, 2001, pp. 280–300.

[80] I. Damg̊ard and J. B. Nielsen, “Universally composable efficient multiparty

computation from threshold homomorphic encryption,” in Annual International

Cryptology Conference. Springer, 2003, pp. 247–264.

Bibliography 207

[81] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi, “A framework for outsourcing of

secure computation,” in Proceedings of the 6th edition of the ACM Workshop

on Cloud Computing Security. ACM, 2014, pp. 81–92.

[82] P. Ananth, N. Chandran, V. Goyal, B. Kanukurthi, and R. Ostrovsky, “Achiev-

ing privacy in verifiable computation with multiple servers–without fhe and

without pre-processing,” in International Workshop on Public Key Cryptogra-

phy. Springer, 2014, pp. 149–166.

[83] B. Schoenmakers and M. Veeningen, “Universally verifiable multiparty com-

putation from threshold homomorphic cryptosystems,” in International Con-

ference on Applied Cryptography and Network Security. Springer, 2015, pp.

3–22.

[84] T. Moran and M. Naor, “Split-ballot voting: everlasting privacy with dis-

tributed trust,” ACM Transactions on Information and System Security (TIS-

SEC), vol. 13, no. 2, p. 16, 2010.

[85] X. Zou, H. Li, Y. Sui, W. Peng, and F. Li, “Assurable, transparent, and mu-

tual restraining e-voting involving multiple conflicting parties,” in INFOCOM,

Proceedings IEEE, 2014, pp. 136–144.

[86] O. Oksuz, I. Leontiadis, S. Chen, A. Russell, Q. Tang, and B. Wang, “Sevdsi:

Secure, efficient and verifiable data set intersection,” Cryptology ePrint Archive,

Report 2017/215.(2017). http://ia. cr/2017/215, Tech. Rep.

[87] S. Kamara, P. Mohassel, and B. Riva, “Salus: a system for server-aided secure

function evaluation,” in CCS. ACM, 2012.

[88] F. Kerschbaum, “Adapting privacy-preserving computation to the service

provider model,” in CSE. IEEE, 2009.

Bibliography 208

[89] A. Herzberg and H. Shulman, “Oblivious and fair server-aided two-party com-

putation,” Information Security Technical Report, 2013.

[90] P. Mohassel, O. Orobets, and B. Riva, “Efficient server-aided 2pc for mobile

phones,” Proceedings on Privacy Enhancing Technologies, no. 2, pp. 82–99,

2016.

[91] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party computa-

tion.” IACR Cryptology ePrint Archive, 2011.

[92] H. Carter, B. Mood, P. Traynor, and K. Butler, “Outsourcing secure two-party

computation as a black box,” in Cryptology and Network Security, 2015.

[93] M. Blanton and F. Bayatbabolghani, “Efficient server-aided secure two-party

function evaluation with applications to genomic computation,” Proceedings on

Privacy Enhancing Technologies, 2016.

[94] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation

from somewhat homomorphic encryption,” in Annual Cryptology Conference.

Springer, 2012, pp. 643–662.

[95] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and

A. Bestavros, “Conclave: secure multi-party computation on big data,” in Eu-

ropean Conference on Computer Systems, 2019.

[96] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced garbled

circuit evaluation for mobile devices,” Journal of Computer Security, vol. 24,

no. 2, pp. 137–180, 2016.

[97] C. Hazay and Y. Lindell, Efficient secure two-party protocols: Techniques and

constructions. Springer Science & Business Media, 2010.

Bibliography 209

[98] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[99] B. Schneier and P. Sutherland, “Applied cryptography: Protocols, algorithms,

and source code in c.” John Wiley & Sons, Inc., 1995.

[100] J. Katz and Y. Lindell, Introduction to Modern Cryptography. CRC press,

2014.

[101] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft, “Efficient rsa key generation

and threshold paillier in the two-party setting,” in Cryptographers’ Track at the

RSA Conference. Springer, 2012, pp. 313–331.

[102] ——, “Efficient rsa key generation and threshold paillier in the two-party set-

ting,” IACR Cryptology ePrint Archive, p. 494, 2011.

[103] Y. Lindell, “Tutorials on the foundations of cryptography.” Springer, 2017.

[104] N. Pettersen, “Applications of paillier s cryptosystem.” Master’s thesis, NTNU,

2016.

[105] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-

tification and signature problems,” in Advances in Cryptology—CRYPTO’86.

Springer, 1986, pp. 186–194.

[106] K. Sampigethaya and R. Poovendran, “A survey on mix networks and their

secure applications,” Proceedings of the IEEE, vol. 94, no. 12, pp. 2142–2181,

2006.

[107] K. Peng and F. Bao, “A shuffling scheme with strict and strong security,”

in Emerging Security Information Systems and Technologies (SECURWARE),

Fourth International Conference on. IEEE, 2010, pp. 201–206.

Bibliography 210

[108] H. Kılınç and A. Küpçü, “Optimally efficient multi-party fair exchange and fair

secure multi-party computation,” in Cryptographers’ Track at the RSA Confer-

ence. Springer, 2015, pp. 330–349.

[109] “https://pieregister.com/features/invitation-based-registrations/.”

[110] J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung, “Fourth-factor au-

thentication: somebody you know,” in Proceedings of the 13th ACM conference

on Computer and communications security. ACM, 2006, pp. 168–178.

[111] E. Bresson, J. Stern, and M. Szydlo, “Threshold ring signatures and applications

to ad-hoc groups,” in Annual International Cryptology Conference. Springer,

2002, pp. 465–480.

[112] C. A. Melchor, P.-L. Cayrel, P. Gaborit, and F. Laguillaumie, “A new efficient

threshold ring signature scheme based on coding theory,” in IEEE Transactions

on Information Theory, vol. 57, no. 7. IEEE, 2011, pp. 4833–4842.

[113] J. K. Liu, V. K. Wei, and D. S. Wong, “A separable threshold ring signature

scheme,” in International Conference on Information Security and Cryptology.

Springer, 2003, pp. 12–26.

[114] X. Boyen, “Mesh signatures,” in Annual International Conference on the Theory

and Applications of Cryptographic Techniques. Springer, 2007, pp. 210–227.

[115] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections,” in Proceedings

of the twenty-sixth annual ACM symposium on Theory of computing. ACM,

1994, pp. 544–553.

[116] M. J. Radwin and P. Klein, “An untraceable, universally verifiable voting

scheme,” in Seminar in Cryptology, 1995, pp. 829–834.

Bibliography 211

[117] S. T. Boshrooyeh and A. Küpçü, “Inonymous: Anonymous invitation-based

system,” in Data Privacy Management, Cryptocurrencies and Blockchain Tech-

nology. Springer, 2017, pp. 219–235.

[118] A. Kiayias and M. Yung, “The vector-ballot e-voting approach,” in International

Conference on Financial Cryptography. Springer, 2004, pp. 72–89.

[119] A. Schneider, C. Meter, and P. Hagemeister, “Survey on remote electronic vot-

ing,” in arXiv preprint arXiv:1702.02798, 2017.

[120] D. G. Nair, V. Binu, and G. S. Kumar, “An improved e-voting scheme us-

ing secret sharing based secure multi-party computation,” in arXiv preprint

arXiv:1502.07469, 2015.

[121] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” in Communications of the ACM, vol. 24, no. 2. ACM, 1981,

pp. 84–90.

[122] T. Isshiki and K. Tanaka, “An (n–t)-out-of-n threshold ring signature scheme,”

in Australasian Conference on Information Security and Privacy. Springer,

2005, pp. 406–416.

[123] D. Bogdanov, “Foundations and properties of shamir’s secret sharing scheme

research seminar in cryptography,” University of Tartu, Institute of Computer

Science May 1st, 2007.

[124] L. Harn and C. Lin, “Authenticated group key transfer protocol based on secret

sharing,” IEEE transactions on computers, vol. 59, no. 6, pp. 842–846, 2010.

[125] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,

pp. 469–472, 1985.

Bibliography 212

[126] A. Roy and S. Karforma, “A survey on digital signatures and its applications,”

Journal of Computer and Information Technology, vol. 3, no. 1, pp. 45–69, 2012.

[127] J. Groth, “Non-interactive zero-knowledge arguments for voting,” in Interna-

tional Conference on Applied Cryptography and Network Security. Springer,

2005, pp. 467–482.

[128] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in Annual

International Cryptology Conference. Springer, 1992, pp. 89–105.

[129] J. Yu, F. Kong, X. Cheng, R. Hao, and G. Li, “One forward-secure signature

scheme using bilinear maps and its applications,” Information Sciences, vol.

279, pp. 60–76, 2014.

[130] A. Rosen, “A note on constant-round zero-knowledge proofs for np,” in Theory

of Cryptography Conference. Springer, 2004, pp. 191–202.

[131] D. W. Kravitz, “Digital signature algorithm,” Jul. 27 1993, uS Patent 5,231,668.

[132] B. Schoenmakers, “A simple publicly verifiable secret sharing scheme and its ap-

plication to electronic voting,” in Annual International Cryptology Conference.

Springer, 1999, pp. 148–164.

[133] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet: Outsourcing

durability,” in 16th annual network and distributed system security symposium,

2009.

[134] D. Mazieres and D. Shasha, “Building secure file systems out of byzantine stor-

age,” in Proceedings of the twenty-first annual symposium on Principles of dis-

tributed computing. ACM, 2002, pp. 108–117.

Bibliography 213

[135] C. Cachin and O. Ohrimenko, “Verifying the consistency of remote untrusted

services with conflict-free operations,” Information and Computation, vol. 260,

pp. 72–88, 2018.

[136] C. Cachin, I. Keidar, and A. Shraer, “Fork sequential consistency is blocking,”

Information Processing Letters, vol. 109, no. 7, pp. 360–364, 2009.

[137] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish,

“Depot: Cloud storage with minimal trust,” ACM Transactions on Computer

Systems (TOCS), vol. 29, no. 4, p. 12, 2011.

[138] M. Brandenburger, C. Cachin, and N. Knežević, “Don’t trust the cloud, verify:

Integrity and consistency for cloud object stores,” ACM Transactions on Privacy

and Security (TOPS), vol. 20, no. 3, p. 8, 2017.

[139] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia, “Cachet: a de-

centralized architecture for privacy preserving social networking with caching,”

in Proceedings of the 8th international conference on Emerging networking ex-

periments and technologies. ACM, 2012, pp. 337–348.

[140] M. T. Goodrich, J. Lentini, M. Shin, R. Tamassia, and R. Cohen, “Design and

implementation of a distributed authenticated dictionary and its applications,”

Technical report, Center for Geometric Computing, Brown University, Tech.

Rep., 2002.

[141] M. T. Goodrich and R. Tamassia, “Efficient authenticated dictionaries with skip

lists and commutative hashing,” Aug. 14 2007, uS Patent 7,257,711.

[142] D. J. Polivy and R. Tamassia, “Authenticating distributed data using web ser-

vices and xml signatures.” in XML Security, 2002, pp. 80–89.

[143] R. Tamassia, “Authenticated data structures,” in European symposium on al-

gorithms. Springer, 2003, pp. 2–5.

Bibliography 214

[144] M. T. Goodrich, R. Tamassia, and J. Hasić, “An efficient dynamic and dis-

tributed cryptographic accumulator,” in International Conference on Informa-

tion Security. Springer, 2002, pp. 372–388.

[145] B. Palazzi, “Outsourced storage services: Authentication and security visual-

ization,” Ph.D. dissertation, Ph. D. thesis, Roma Tre University, 2009.

[146] J. Li and D. Maziéres, “Beyond one-third faulty replicas in byzantine fault

tolerant systems.” in NSDI, 2007.

[147] P. Civit, S. Gilbert, and V. Gramoli, “Polygraph: Accountable byzantine agree-

ment,” IACR Cryptology ePrint Archive, p. 587, 2009.

[148] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-evident

logging,” in USENIX Security Symposium, 2009, pp. 317–334.

[149] K. Kurosawa and Y. Desmedt, “A new paradigm of hybrid encryption scheme,”

in Annual International Cryptology Conference. Springer, 2004, pp. 426–442.

[150] T. Strufe, “Safebook: A privacy-preserving online social network leveraging on

real-life trust,” IEEE Communications Magazine, vol. 95, 2009.

[151] K. Graffi, C. Gross, D. Stingl, D. Hartung, A. Kovacevic, and R. Steinmetz,

“Lifesocial. kom: A secure and p2p-based solution for online social networks,”

in Consumer Communications and Networking Conference (CCNC), IEEE.

IEEE, 2011, pp. 554–558.

[152] A. Loupasakis, N. Ntarmos, P. Triantafillou, and D. Makreshanski, “exo: De-

centralized autonomous scalable social networking.” in CIDR, 2011, pp. 85–95.

[153] F. Tegeler, D. Koll, and X. Fu, “Gemstone: empowering decentralized social

networking with high data availability,” in IEEE Global Telecommunications

Conference-GLOBECOM. IEEE, 2011, pp. 1–6.

Bibliography 215

[154] R. Narendula, T. G. Papaioannou, and K. Aberer, “Privacy-aware and highly-

available osn profiles,” in 19th IEEE International Workshops on Enabling Tech-

nologies: Infrastructures for Collaborative Enterprises. IEEE, 2010, pp. 211–

216.

[155] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson, and D. Wetherall,

“Metasync: File synchronization across multiple untrusted storage services,”

in 2015 {USENIX} Annual Technical Conference ({USENIX} {ATC} 15), pp.

83–95.

