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Abstract

Software Defined Networking (SDN) paradigm has the benefits of programmable

network elements by separating the control and the forwarding planes, efficiency

through optimized routing and flexibility in network management. As the energy

costs contribute largely to the overall costs in networks, energy efficiency has be-

come a significant design requirement for modern networking mechanisms. However,

designing energy efficient solutions is non-trivial since they need to tackle the trade-

off between energy efficiency and network performance. In this thesis, traffic aware,

machine learning based, and end system aware SDN controller modules for energy

efficiency are proposed.

As the first module of the controller, we propose a novel energy efficiency metric

named Ratio for Energy Saving in SDN (RESDN) that quantifies energy efficiency

based on link utility intervals. We provide integer programming formulation and

method for maximizing the RESDN of the network. To the best of our knowledge,

RESDN approach is unique as it measures how links are profitably utilized in terms

of the amount of energy they consume with respect to their utility.

As the second module of the controller, we propose HyMER: a novel hybrid ma-

chine learning based framework for traffic aware energy efficient routing in SDN. The

framework combines the advantages of supervised and reinforcement learning models.

The supervised learning component consists of feature extraction, training, and test-

ing. The reinforcement learning component learns from existing data or from scratch

by iteratively interacting with the network environment. HyMER approach is the first



that proposes a hybrid machine learning solution considering both energy efficiency

and network performance in SDN.

As part of the end system aware module of the controller, we jointly address the

energy efficiency of servers and network components. We propose a physical server

utility-based metric named Ratio for Energy Saving of Physical Machines (RESPM)

which measures how energy efficient the physical servers with respect to virtual ma-

chines residing in them.

Experiments are conducted on POX controller and Mininet network emulator

using real topologies and traffic traces. Considering various metrics of interest and

different types of SDN enabled switches, the results show that maximizing the RESDN

value improves energy efficiency while maintaining acceptable network performance.

In comparison to state-of-the-art utility-based heuristics, RESDN method performs

up to 30% better ratio for energy saving, 14.7 watts per switch power saving, 38% link

saving, 2 hops decrease in average path length and 5% improved traffic proportionality.

The supervised component of HyMER achieves more than 65% feature size reduction

and 70% accuracy in parameter prediction. The refine heuristics algorithm increases

the accuracy of the prediction to 100% with 25X speedup as compared to the brute

force method. Results show that HyMER achieves improvements in per switch power

saving, link saving, and decrease in average path length.



ÖZETÇE

Yazılım Tanımlı Ağ (SDN) modeli, denetim ve yönlendirme düzlemlerininin ayrılması

özelliğiyle programlanabilir ağ elemanları, ağ yönetiminde esneklik ve verimlilik av-

antajlarına sahiptir. Enerji maliyetleri, ağlardaki genel maliyetlere büyük oranda

katkıda bulunurken, enerji verimliliği modern ağ mekanizmaları için önemli bir tasarım

gereksinimi haline gelmiştir. Bununla birlikte, enerji verimli çözümler tasarlarken

enerji verimliliği ve ağ performansı arasındaki dengenin dikkate alınması önemlidir.

Bu tez çalışmasında, enerji verimliliği için trafik farkında, makine öğrenmeye dayalı

ve son sistem farkında SDN denetleyici modülleri önerilmektedir.

Kontrol ünitesinin ilk modülü olarak, bağlantı kullanım aralıklarına göre enerji

verimliliğini ölçen SDN Enerji Tasarrufu Oranı (RESDN) adlı yeni bir enerji verimliliği

ölçütü önerilmektedir. Ağın RESDN değerini artırma amacıyla tamsayılı program-

lama formülasyonu ve yöntemi sunulmaktadır. RESDN yaklaşımı, bağlantıların har-

cadıkları enerji miktarı açısından karlı bir şekilde nasıl kullanıldığını ölçmesi yönüyle

özgündür.

Kontrol ünitesinin ikinci modülü olarak, enerjiyi verimli kullanan yönlendirme için

yeni bir hibrit makine öğrenme tabanlı HyMER sistemi önerilmektedir. HyMER den-

etimli ve pekiştirici öğrenme modellerinin avantajlarını birleştirmektedir. Denetimli

öğrenme bileşeni, özellik çıkarma, eğitim ve testlerden oluşur. Pekiştirici öğrenme

bileşeni mevcut verilerden veya sıfırdan ağ ortamıyla yinelemeli olarak etkileşerek

öğrenir. HyMER yaklaşımı, yazılım tanımlı ağlarda enerji verimliliği ve ağ per-

formansı için bir karma makine öğrenme çözümü özelliğiyle yenilikçidir.



Kontrol ünitesinin son sistem farkında modülünün bir parçası olarak, sunucuların

ve ağ bileşenlerinin enerji verimliliği birlikte ele alınmaktadır. Fiziksel sunucuların,

içerdikleri sanal makinelere göre enerjinin ne kadar verimli olduğunu ölçen, Fiziksel

Makinelerin Enerji Tasarrufu Oranı (RESPM) adlı bir fiziksel sunucu fayda tabanlı

ölçüt önerilmektedir.

Deneyler, gerçek topolojiler ve trafik izleri kullanılarak POX kontrol ünitesi ve

Mininet ağ emülatöründe gerçekleştirilmiştir. Çeşitli başarım ölçütleri ve farklı SDN

özellikli anahtar türleri dikkate alınarak elde edilen sonuçlar RESDN değerini en

üst düzeye çıkarmanın kabul edilebilir ağ başarımını sağlarken enerji verimliliğini

artırdığını göstermektedir. En son teknolojiye dayalı fayda tabanlı sezgisel araştırmalara

kıyasla RESDN yöntemi, enerji tasarrufu için %30’a varan oranlarda başarım, anahtar-

lama gücü başına 14,7 watt, %38 bağlantı tasarrufu, ortalama yol uzunluğunda 2

atlama azalması ve trafik orantılılığında %5’lik iyileştirme sağlamıştır. HyMER den-

etimli öğrenme bileşeni, %65 oranında özellik boyutu azalması ve parametre tah-

mininde %70’den fazla doğruluk sağlamaktadır. Arıtma sezgisel algoritması, 25X

hızlanma ile tahminin doğruluğunu %100’e yükseltmiştir. Sonuçlar, HyMER yönteminin

anahtar başına güç tasarrufu, bağlantı tasarrufu ve ortalama yol uzunluğunda azalma

sağladığını göstermektedir.
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me full scholarship to pursue my Ph.D. I also want to thank Emine Büyükdurmuş,
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Chapter 1

Introduction

1.1 Overview

Software Defined Networking (SDN) paradigm has been attracting an increasing re-

search interest, with its key concepts of control plane and data (forwarding) plane sep-

aration and logically centralized control by means of programmable network devices

[1–4]. The idea behind SDN paradigm, depicted in Figure 1.1, is eliminating the tight

coupling between control and forwarding functions in traditional network design, and

hence the drawbacks of cumbersome network configuration and limited flexibility to

changing requirements [5]. The management and control of the network is done in

the control plane. The controller has the functionality of configuring the forwarding

tables (in other words, flow tables) of switches. The set of connected switches con-

stitutes the data plane of the SDN architecture. The sole responsibility of the data

plane is to forward packets based on the forwarding rules installed in the flow tables

of the switches by the controller.

SDN has been deployed in a diverse set of platforms ranging from institutional

networks to data center networks. It promises several advantages such as flexib-

ility without sacrificing forwarding performance, high efficiency through optimized

routing, ease of implementation and administration, and cost reduction. The energy
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Figure 1.1: Software Defined Networking Architecture

consumption constitutes a significant portion of overall information and communica-

tion technology costs [6–8]. Energy constitutes more than 10% of OPEX (operating

expenses) of an ICT service provider. SMARTer 2020 report predicts that the elec-

tricity cost of the cloud data centers will increase by 63% in 2020 [9]. Several survey

studies have been conducted on reducing energy costs in different network settings

such as P2P systems [10], Network Function Virtualization (NFV) [11], cloud data

centers [12], and wireless sensor networks [13].

We address energy optimization that can be applied at various levels of the SDN

architecture, or SDN itself that can be used as a means of energy saving. Energy

saving in SDN can be addressed algorithmically or through hardware-based improve-

ments. Software-based solutions are applied on the controller. The three energy



Chapter 1: Introduction 3

saving capabilities that can be addressed algorithmically are traffic aware, end sys-

tem aware and rule placement. We provide an extensive survey and classification of

recent developments in energy efficiency for SDN along with optimization models for

each group of solutions [5, 8].

1.2 Approach and Scope of the Thesis

Energy efficiency in software defined networking can be addressed either by software-

based methods or hardware improvements. In this thesis, the focus is on software-

based solutions. There exist novel controller modules that we utilize to achieve energy

efficiency, namely, traffic aware, machine learning based, and end system aware.
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Figure 1.2: Overview of the proposed SDN controller modules

A high-level description of the approaches in the thesis is demonstrated in Figure

1.2. Our proposed approaches to energy saving in SDN are traffic aware, machine

learning based, and end system aware solutions. The components of the contributions

can be implemented as a module in any SDN controller. In this thesis, the modules
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are designed and then implemented in a POX controller. The data plane and the

infrastructure planes are emulated using Mininet [14]. The traffic manager, topology

manager, and optimizer are responsible for managing traffic, controlling the network

topology, and run heuristics respectively. The repository is a database that keeps track

of every activity in the network. It stores traffic information, topology information,

network statistics, and results of heuristics. The information stored in the repository

is further used by the machine learning module of the controller.

The traffic aware module proposes traffic aware framework for energy efficient

routing in SDN, an energy efficiency metric named Ratio for Energy Saving in SDN

(RESDN) that quantifies energy efficiency based on link utility intervals. We provide

integer programming formulations and method for maximizing the RESDN of the

network.

As machine learning module of the controller, we propose HyMER: a novel hybrid

machine learning framework for traffic aware energy efficient routing in SDN which

has a supervised and reinforcement learning components. The supervised learning

component consists of feature extraction, training, and testing. The reinforcement

learning component learns from existing data or from scratch by iteratively interacting

with the network environment.

The end system aware module of the controller, we jointly address the energy

efficiency of servers, network components, and the performance of virtual machine

migration. We propose a physical server utility-based metric called Ratio for En-

ergy Saving of Physical Machines (RESPM) which measures how energy efficient the

physical servers with respect to virtual machines residing in them. We also present an

integer programming formulation to jointly maximize network energy efficiency and

RESDN values.
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1.3 Original Contributions

As an effort of understanding the energy efficiency problem in SDN, an investigation

on energy saving capabilities in SDN has been performed [5,8]. The contributions of

our extensive survey work are as follows.

• We address the energy efficiency capabilities that can be utilized in SDN. Energy

efficiency can be addressed algorithmically or by hardware design.

• We propose a taxonomy of software-based energy efficient solutions in SDN

and general optimization models for each subcategory, and for each model we

present the objective function, the parameters to be considered and constraints

that need to be respected.

• We present key characteristics of state-of-the-art solutions for each category,

their advantages, drawbacks, and provide comparisons with the general models.

The contributions of the traffic aware and proportional energy efficient routing

module in software defined networking are as follows [15–18].

• We propose a traffic proportional energy efficient framework for SDN. The com-

ponents in the framework deal with traffic monitoring, topology management,

and optimization.

• We propose a novel energy efficiency metric RESDN: the ratio for energy saving

in SDN that quantifies energy efficiency based on link utility intervals. To the

best of our knowledge, the approach is unique as it measures how links are

profitably utilized in terms of the amount of energy they consume with respect

to their utility.

• We develop Integer Programming (IP) formulation with the objective of max-

imizing RESDN and propose heuristics algorithm MaxRESDN for achieving the

objective.
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• We conduct extensive experiments on Mininet network emulator and POX con-

troller using real network traffic traces and present comparative quantitative

analysis of MaxRESDN method. The performance metrics of interest are switch

power consumption, RESDN value, percentage of links saved, average path

length, throughput, delay, and traffic proportionality.

• We simulate the power consumption of two hardware switches (NEC and Zodiac

FX) and one virtual switch (Open vSwitch-OvS) that are OpenFlow enabled,

and conduct comprehensive experiments to measure the power consumption of

our proposed MaxRESDN heuristic algorithm.

The contributions of the machine learning module of the controller are as follows

[19,20].

• We propose a hybrid three module machine learning framework, namely HyMER,

for traffic proportional energy saving in SDN. The modules are Traffic Manager,

Topology Manager, and Learning Machine. To the best of our knowledge, this is

the first work to consider the learning machine as a module in an SDN controller

for energy saving and network performance.

• Most of the machine learning approaches proposed for SDN are for traffic clas-

sification, routing, intrusion detection, or attack prediction. To the best of our

knowledge, our HyMER framework is the first in applying machine learning to

energy saving and network performance combined using both supervised and

reinforcement learning.

• We propose a full-fledged supervised machine learning method that starts from

feature extraction, applies feature reduction, and performs testing. Our res-

ults indicate more than 65% feature size reduction using Principal Component

Analysis (PCA). The supervised component predicts the link utility interval

parameters with an accuracy of more than 70%. The proposed refine heuristics
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converges the predicted values to the optimal values with a speedup of 15X to

25X as compared to the brute force approach.

• We also propose a reinforcement learning method that minimizes energy con-

sumption while keeping acceptable performance for dynamic routing in SDN.

To the best of our knowledge, HyMER reinforcement component is the first to

model both network performance and energy efficiency simultaneously. The re-

inforcement method converges to the maximum energy saving with a minimum

of 100 to a maximum of 270 episodes. Episodes are the number of iterations

which is the measure or time it takes for the reinforcement learning agent to

reach the terminating state.

• We also demonstrate that combining the supervised and reinforcement methods

not only does capture the dynamic change more efficiently but also increases

the convergence speed. To the best of our knowledge, in the context of SDN,

our approach is the first to combine supervised and reinforcement learning to

jointly achieve energy saving and network performance. Initializing the rein-

forcement learning with the outputs of the supervised component speeds up the

convergence by 2X on average.

• Experiments are conducted with Mininet and POX controller using real word

network topologies and traffic traces from SNDLib. In particular, Abiline,

GEANT, and Nobel-Germany topologies and dynamic traffic traces are util-

ized. Switch power consumption is simulated using the SDN enabled switch

NEC [21].

The contributions of the end system aware module of the SDN controller are as

follows.

• We propose an energy efficiency metric RESPM which is based on physical

machines utility interval. We also extended our network component energy
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efficiency and performance metric RESDN to be used jointly with RESPM.

Unlike other approaches which focus on server energy efficiency or network

component efficiency, our approach consider both simultaneously.

• We presented an IP formulation with objective to jointly maximize the RESPM

and RESDN.

• Experiments are conducted on real world data center virtual machine placement

traces.

1.4 Organization

The remainder of the thesis is organized as follows. Chapter 2 presents an overview of

energy saving capabilities in SDN. Chapter 3 presents traffic-aware solutions, a general

optimization model and methods in the literature. The end system aware solutions,

multiple objective optimization model and techniques are presented in Chapter 4.

Chapter 5 presents the proposed traffic-aware framework, IP formulation, and link

utility-based heuristic algorithms, that are not only general in their applicability but

also balances the trade-off between energy saving and performance.

Chapter 6 introduces a novel energy utility interval-based metric Ratio for En-

ergy Saving in SDN (RESDN), IP formulation to maximize the RESDN value of a

network, and MaxRESDN heuristics. A comprehensive experimental comparison of

MaxRESDN with similar utility-based heuristics and analysis of the utility interval

parameters is presented in Chapter 7.

Chapter 8 describes our proposed hybrid machine learning framework for energy

efficient routing in SDN (HyMER). Chapter 9 presents comprehensive experimental

analysis of HyMER in comparison with similar approaches.

A physical machine utility interval metric called Ratio for Energy Saving for Phys-

ical Machines (RESPM), an IP formulation that jointly minimizes the energy saving

of physical machines and network components along with experiments on real world
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data center traces are presented in Chapter 10. Chapter 11 concludes the thesis and

provides future directions.



Chapter 2

Overview of Energy Saving in

Software Defined Networks

2.1 Energy Saving Capabilities in SDN

In software defined networking, energy optimization that can be applied at various

levels of the network architecture, or SDN itself that can be used as a means of

energy saving. Figure 2.1 shows the categories of energy saving approaches in SDN.

Energy saving in SDN can be addressed algorithmically or through hardware-based

improvements. Software-based solutions are applied on the controller. The three

energy saving capabilities that can be addressed algorithmically are traffic aware, end

system aware and rule placement.

Traffic awareness is the capability to make the energy consumption proportional

to the traffic volume. End system awareness on the other hand uses SDN to save

energy by capitalizing on virtual machine placements and migrations. Most energy

aware routing algorithms do not assume the limited rule space inside switches. Rule

placement techniques address the energy saving from the meaning of the rules, and

compressing them in way they save space.

Traffic aware energy efficiency approaches are inspired by the fact that network

components are often under utilized. The key principle is to turn on or turn off
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Software Based Energy Efficient Approaches for SDN

Traffic Aware End System Aware Rule Placement

Elasticity
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Server consolidation
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Global optimization

Compromised routing

Rule space reduction
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Figure 2.1: Classification: Software-Based Energy Efficiency Ap-
proaches in SDN

network components (i.e., SDN forwarding switches) based on the traffic load. For

instance, when the traffic load is low (e.g., during night times) this approach has the

potential to save up to 50% of the total energy consumption [22]. Typically, an elastic

structure is used to represent the network components that can grow and shrink with

the dynamic traffic load. The key challenge is to determine which components to turn

on and which components to turn off without compromising the required quality of

service (QoS) [22–34].

As presented in Figure 2.1, desirable properties of a traffic aware controller

are elasticity, topology awareness, queue engineering, and smart sleep on and off.

Elasticity is the ability to dynamically enlarge or shrink the number of network

components used in response to traffic. Topology awareness provides an extra

benefit of using formulations and solvers that can be tailored to any specific topology.

The hierarchically organized fat-tree is the widely used topology in data centers.

A prior knowledge to how the components are organized and their capacity allows

us to use alternative routes by avoiding energy critical paths. Queue Engineering

techniques applied to each port for the packet arrivals give additional port level traffic

monitoring capability. Smart sleep and off is the ability to turn on/off ports of

switches, links, or the entire switch to save energy in response to traffic.
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End system aware energy saving solutions use the practice of turning off un-

derutilized physical servers and running their tasks on a fewer number of servers in

SDN based data centers [35–42]. Specifically in data centers, the SDN model is used

to form an overlay connecting virtual machines. The overlay is a list of SDN enabled

switches and links. The actual connection is of course with the physical machines

which host the virtual machines.

Desirable properties of an end system aware solution are depicted in Figure 2.1.

Server consolidation is the technique of minimizing the number of physical ma-

chines that are active by placing as many virtual machines as possible to fewer phys-

ical machines. Network optimization on the other hand minimizes the transport

cost of migrating virtual machines from one physical machine to the other one. Dy-

namicity is the ability to apply both server consolidation and network optimization

online instead of offline. The need for online migration of virtual machines and net-

work optimization in response to traffic and workload is of great value. Reusability

is the characteristic of re-booking resources after they are released from prior works.

This comes from the fact that some resources can be used for longer period of time

as compared to others.

Rule placement techniques focus on how to place the rules in the forwarding

switches. Given the network policies and end-point policies, the controller provides a

mechanism to convert the high level policies into switch understandable rules. Rule

placement is an NP-hard problem and hence requires heuristic based solutions. Al-

though heuristic based approaches do not guarantee optimal solution, they typically

offer close to optimal results. And their efficiency depends on the complexity of the

constraints [43–48]. Some of the constraints considered for this problem are the max-

imum number of rules a switch can hold, the routing policy, and the topology. Under

such constraints, rule placement approaches attempt to optimize routing.

Global view is the ability to use entire network information, routing policy, and

end-point policy to decide which rules to place on which switch. Compromised

routing is the ability to find alternative power efficient routes at the cost of per-
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formance. However, the trade off between compromised routing performance due to

extra longer paths and its impact on QoS should be taken with great care.The set

of all rules that need to be installed on the switches constitute the rule space. Rule

space reduction is the ability to reduce the rule space, hence, minimize the number

of active links and or switches. Proactive / reactive is the ability to do energy effi-

cient rule placement proactively before the packets arrive to the network, and respond

reactively to newly arriving packets.

As far as the software-based solutions are concerned, the controller should be ac-

quainted with the necessary statistical information about the status of the network

devices and end systems attached, in order to devise a way for energy efficient net-

working. A full fledged energy efficient controller needs to consolidate end systems,

network device optimization, and also be able to reduce the rule space.

2.2 Background and Terminology

In traditional networking, the data plane and the control plane reside in the switch.

The control plane populates the rules required for forwarding into the forwarding

table. Whereas, the forwarding plane reads the forwarding table to forward packets.

The control decisions taken at a given switch determines the next hop in the network

that each packet needs to be forwarded. The intelligence in networking which includes

security, forwarding, and load balancing at switch level. Since the control plane

and the data plane are highly coupled in every networking component, adapting any

change in the networks is cumbersome because it demands every component of the

network to be configured.

SDN, on the other hand, is a novel paradigm in networking with the key design

principle of the control plane and the data plane separation. This design principle,

where the data plane resides at the switches and the control plane resides in the

controller, provides flexibility network management. The forwarding table is inside

the networking components, but the rules are created and pushed to each switch by
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the controller. The prominent advantage of SDN is that it provides a global view of

the network to be controlled and monitored centrally. The switches in SDN only do

packet forwarding. The control is done by the logically centralized controller. SDN

makes the network programmable, and enables changes done on the controller to

propagate to the entire network.

Table 2.1: Parameters and descriptions
Symbol Description
Z Set of switches in the network where Zi ∈ Z represents switch i
E Edge or links where eij ∈ E represents the link between switches Zi and Zj
Wij Bandwidth of the link connecting switches Zi and Zj

Si =

{
1, if switch Zi is active,

0, otherwise.

CSi Power consumption of switch Zi
Cij Power consumption of the link connecting switches Zi and Zj
F Set of flows where f ∈ F = (sr, ds, λf )
f = (sr, ds, λf ) A flow f with source , destination and packet rate

Fij =

{
1, if flow f passes through edge eij,

0, otherwise.

P Set of physical machines
V Set of virtual machines
R Vector of resource types
Rp Set of resources available on physical machines represented as a matrix
Rv Set of resource demands of virtual machines represented as a matrix

Xij =

{
1, if virtual machine j is placed on physical machine i,

0, otherwise.

PMi =

{
1, if physical machine i is on,

0, otherwise.

P ri Amount of resource type r available on physical machine i
V r
j Amount of resource type r required by virtual machine j

Q Traffic matrix between virtual machines
qij Amount of traffic between virtual machines i and j
bij Number of switches that the traffic between physical machines i and j traverses
Hin Set of ingress hosts
Heg Set of egress hosts

A Allocation matrix, aif =

{
1, if rule representing flow f is installed on switch Zi,

0, otherwise.

Lij =

{
1, if edge eij active,

0, otherwise.

Gi The maximum number of rules switch Zi can store

Table 2.1 presents notation used in this study for formulating the energy efficiency

problem. The symbols are listed in the order they are used in the study. The set of
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switches are denoted by Z where each switch (Zi) is a forwarding device with the

role of forwarding packets based on their flow information. Si is a binary variable with

value 1 if the switch Zi is turned on, or 0 otherwise. The total power consumption of

Zi is denoted by CSi.

Switches are connected to one another by links.

A link is active if it is transmitting packets between the two ports of the switches

it connects. Lij is a binary variable with value 1 if the link connecting switches i

and j is active, or 0 otherwise. The power consumption of a link connecting switches

i and j is denoted by Cij. Gi and Wij are the maximum number of rules that can

be installed in switch i and the bandwidth of the link connecting switches i and j,

respectively.

A network in SDN is composed of forwarding switches connected by links, which

is transmission media for data among end systems. An end system is a physical or

a virtual machine where services and applications are running on. The set of physical

machines and virtual machines are denoted by P and V, respectively. Each physical

machine has a limited set of resources Rp. A virtual machine i has set of hardware

or software demand Rv to be able to run on a physical machine. Xij is a binary

variable with value 1 if virtual machine j is placed on physical machine i. PMi is a

binary variable with value 1 if physical machine i is on or 0 otherwise. Rp and Rv

are represented as matrix of resources available on physical machines and resource

demands of virtual machines, respectively. Vector R represents the resource types.

The matrix Rp and Rv have the dimensions of |P| by |R| and |V| by |R|, respectively.

A set of virtual machines is placed on a physical machine if and only if the sum of

the resource demands of virtual machines can be met by the available resources on

the physical machine. The traffic matrix between virtual machines is denoted by Q,

where qij represents the traffic between virtual machines i and j measured in bps. bij

is the number of switches the traffic between physical machines i and j traverses.

A switch contains a flow table or set of flow tables. The fields of a flow table

may vary from vendor to vendor. OpenFlow 1.0 switch specification presents 12
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packet matching fields (header fields), counter, and action. The matching fields have

information that can be compared with packets arriving to the switch. Per-flow, per-

switch, and per-port counters are maintained in the flow table. The action field is an

instruction of what to be done with the corresponding packet matching the header

field. According to OpenFlow 1.4 standard, a switch can have multiple tables and

matching is done through pipeline process among the tables.

Packets flow through the network starting from their source towards destination.

An important issue while managing the network is the level of granularity of the

control. Packet level control makes the controller congested since a new rule should

be created and pushed for every packet, whereas prefix-based matching reduces the

control capability since several packets matching a prefix would be treated the same

way.

As an intermediate level of granularity, flows are introduced [49].

The set of flows is denoted by F where a flow is defined as a set of packets with

the same source and destination addresses where the packets pass through the same

route to reach the destination. Hin and Heg are the set of ingress hosts and egress

hosts, respectively. Ingress hosts are hosts where flows start from and egress hosts

are hosts which are destinations of flows. λf denotes the packet rate of flow f . Gi is

the maximum number of rules that can be installed in switch Zi, respectively.

Rule in SDN is a predicate that describes a flow. An example of a rule predicate is

destination IP=198.127.***.***. If a packet that has the destination IP address that

starts with 198.127, its corresponding action will be taken. The controller populates

the flow tables by pushing the rules to each switch.

The rules are stored with priority which is the matching precedence of the flow

entry. A rule which all entries are wildcards is given the least priority value. For each

packet arriving a switch, its flow information is extracted from the packet header

and then looked up in the flow table. Then, the highest priority entry matching the

packet is selected. A is an allocation matrix between flows and switches where aif is

a binary variable with value 1 if rule representing flow f is installed on switch Zi or
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0 otherwise.

An action defines the task to be performed for the packet that matches a rule. An

action for a packet can be forward to the indicated port, drop the packet, default port

to forward to the controller, modification of the packet header or any other action

depending on the type of protocol used. The action associated with the first rule that

matches the packet will be executed. If a packet does not match any rule in the flow

table, then it is forwarded to the controller.

After a set of rules is installed for a packet, if another packet comes with the same

header description, there is no need to push new rules, rather it uses the existing

rules.
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Traffic Aware Energy Saving

Optimization Model and Methods

in SDN

3.1 Overview

Traffic in networking is defined as the amount of packets transmitted through a net-

work at a given point in time. Traffic management involves dynamically analyzing,

predicting and regulating the behaviour of the network devices to optimize the per-

formance and QoS requirements. Examples based on usage of traffic are load bal-

ancing, performance optimization, security, access control, bandwidth management,

and energy usage [50] [51].

The logically centralized controller in SDN has a global view of the network. The

controller periodically gathers statistical information about the traffic, the status of

the switches, the status of the links, the status of the end systems, and the topology

of the network. Programmability of a network, a powerful property of SDN, enables

the controller adapt to the changing environment. A change in the network envir-

onment can be caused by addition of a new host, failure of a network component,

or modification of network policy. Network components work with full capacity in
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all times regardless of the traffic demand. The power consumption of the network is

not proportional to the volume of traffic [22]. With traffic aware energy efficiency ap-

proaches, energy consumption can be reduced by turning off some forwarding switches

during low traffic load, or putting CPUs or ports at sleep mode. The solutions in this

group have the potential to significantly improve energy efficiency in SDN. For data

centers, traffic aware approach achieves power savings of up to 50% during low load

periods [22].

3.2 Traffic Aware Model

Based on the review of various models used to capture traffic proportional energy con-

sumption, we propose a general optimization model that identifies energy capabilities

in SDN from traffic point of view, where the major energy saving components are

considered as the links and the switches. The model jointly minimizes the number of

switches and the number of links used to accommodate the given traffic. It is tailored

to include additional parameters and constraints. For simplicity, the parameters of

the optimization model refer to snapshot of the network state. Given the flows which

represent the traffic, the problem is defined as allocating links and switches for each

flow while minimizing the total number of active links and switches. Inspired by the

approaches of [22,31,33,52], we use multi-commodity flow problem formulation. Each

flow is treated as a commodity with source, destination, and flow rate. Our model

is inspired by the formulation of [22] and the objective of the model is to minim-

ize the power consumption of the links and switches used to handle the flows. The

other approaches in this category consider additional parameters like time, bandwidth

awareness, and redundant path elimination.

In traffic aware model, the network is represented as an undirected weighted graph

G= (Z,E) where Z is the set of switches and Zi ∈ Z represents switch i and eij ∈ E

represents that there is link between switches Zi and Zj. The weight Wij corresponds

to the bandwidth of the link connecting switches Zi and Zj. Let binary variable Si
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denote the status of switch Zi such that

Si =

1, if switch Zi is active

0, otherwise

CSi and Cij are power consumption of switch Zi and the link eij measured in watt.

Traffic in the network is represented by set of flows F where f ∈ F is defined as

f=(sr, ds, λf ). sr and ds ∈ Z are the source and destination switches and λf is the

rate of flow f measured in bytes per second.

Fij =

1, if flow f passes through edge eij

0, otherwise

The multi-objective function (equation 3.1) minimizes the sum of the energy con-

sumption of the switches and the links. The first item in the objective function, the

sum of Fij ∗ Cij, refers to the total energy consumption incurred by all flows using

edge eij. The second item is the total power consumption of all active switches in the

network. The objective function jointly minimizes the sums subject to the constraints

described next.

minimize (
∑
∀f

∑
∀eij

Fij ∗ Cij +
∑
∀Si

Si ∗ CSi) (3.1)

subject to
∑
∀f

Fij ∗ λf ≤ Wij , ∀eij (3.2)

∑
∀f

Fai =
∑
∀f

Fib , Zi 6= sr,ds ∈ fsr,ds,λf (3.3)

Fmj = Fin , Zm = sr , Zn = ds , ∀emj , ∃ein (3.4)

Fij ≤ Sj , ∀Zj ∈ Z (3.5)

Fij ≤ Si , ∀Zi ∈ Z (3.6)

Si ≤
∑
∀f

[Fij + Fji] , ∀Zi ∈ Z (3.7)
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The constraint given in Equation 3.2 states that the total rate of flows between

two switches should not exceed the link capacity. Constraint specified in equation 3.3

states that the number of flows entering and leaving for switches which are neither

destination nor sources of a flow should be equal. Constraint on equation 3.4 assures a

flow entering from source switch should reach the destination switch. The constraints

on equations 3.5, 3.6, and 3.7 maintain the correlation between switches and links

using the switch state variable and flow-link variables. While constraints 3.5 and 3.6

state that no flow should use a link connected to an inactive switch, constraint 3.7

states that if no flow is passing through the links connected to a given switch, then

the switch is switched off. Given the formulation and the parameters of the model,

the output of the optimizer is list of links and active switches for each flow f ∈ F.

3.3 Methods

Table 3.1 shows the summary of traffic aware solutions for energy efficient SDN. The

experiment column presents how the proposed solution is tested. The testing environ-

ments are testbed, network simulation tools (ns-2), and emulation software (mininet,

OMNeT++). The traffic traces used for the test are real world traces (R), artificially

generated (A), or both (R&A). The topologies used in the evaluations are fat-tree,

BCubic, CERNET, German, SNDLib provided traces. Controller column indicates

the name of the controller used in the experiment (NOX, POX, FL-Floodlight, RY-

RYU, and OD-OpenDaylight). The objective of the optimization is to minimize the

number of active switches, links/ports or both. QueueEng column presents if a given

approach uses switch level queue engineering techniques. The symbol ’-’ means un-

known for Traffic, Topology, and Controller columns, and means does not apply in

case of Switch, Link/port and QueueEng columns.

As shown in Table 3.1, most of the traffic aware energy efficient methods focus on

minimizing the number of active links primarily and switches secondly or both. Test-

ing energy efficient methods in real time on an actual network equipment is not timely
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and economically feasible. That is the main reason why researchers resort to create

small-scale testbeds or use simulation/emulations environments. Queue engineering

is the least used technique and it mostly complements the active link/switch min-

imizing methods. The network topology and traces provided on SNDLib are widely

used data sets in measuring energy efficiency in SDN.

Table 3.1: Traffic Aware Techniques for Energy Efficiency

Approach
Experiment Objective

QueueEng

Environment Traffic Topology Controller Switch
Link/

Port

—

ElasticTree [22] Testbed R Fat-tree NOX - X -

Carrier Grade [23] Testbed R German NOX - X -

REsPoNse [24] NS-2 R - - X - -

CARPO [25] Testbed R Fat-tree - - X -

EnableOpenflow [26] Mininet R& A Fat-tree NOX - X -

RA-TAH [27] Testbed R & A Fat-tree POX - X X

Re-Routing [28] Testbed R & A CERNET - - - X

Dynamic TA [53] Testbed R & A Mesh - X X -

TE based [29] Testbed R & A CERNET - X X -

NetFPGA QE [30] Testbed - - - X - X

GreenRE [31] Testbed R& A SNDLib - X X -

Bandwidth-aware [52] OMNeT++ R Bcubic & Fat-tree - - - X

GreenSDN [32] Mininet R Bcubic & Fat-tree POX - X X

Flow Schedule [54] NS-3 A Fat-tree - X X -

OpenNaas [33] Testbed - - RY, FL, OD X X X

Orchestrate [34] Mininet R& A - POX - X X

Resource-aware [55] Testbed A Fat-tree - - X -

Multiple Contoller [56,57] Testbed R SNDLib - - X -

5G [58] Testbed R SNDLib - - X -

Utility-based [17] Mininet R GEANT POX - X -

FLOWP [59] OPNET A Fat-tree - X - -

TA framework [16] Mininet R SNDLib POX X X -

SDN /Ethernet [60] Testbed R SNDLib - X X -

MTSDPFPR [61] Mininet R GEANT Floodlight - X -

ElasticTree is a power management solution for data center networks which is

implemented on a testbed consisting of OpenFlow switches [22]. The idea is to turn off
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links and switches based on the amount of traffic load. Therefore, energy consumption

of the network is made proportional to the dynamically changing traffic. It consists of

three optimizers: formal model, greedy bin-packing, and a topology-aware heuristic.

Each optimizer takes network topology (a graph), routing constraints, power model

(flat), and traffic matrix as input, and outputs subset of links and flow routes.

The formal model formulates the power saving problem by specifying objective

function and constraints. The objective function minimizes the sum of the total

number of switches turned on and the number of links. The advantage of the formal

model is that it guarantees a solution within some configurable optimum; however,

the model only scales up to 1000 hosts.

The greedy bin-packing optimizer evaluates possible paths and chooses in left

to right order manner, that is, the leftmost path is chosen first then the selection

proceeds till the rightmost path. The optimizer improves the scalability of the formal

model. This approach suffers the same problem as any of the heuristic techniques.

However, solutions can be computed incrementally and can support on-line usage.

The topology-aware heuristic optimizer, on the other hand, splits the flow and finds

the link subset easily. It is computationally efficient, since it takes advantage of a fat

tree structure and takes only port counters to compute link subset. This approach

uses Integer Programming (IP) to formalize the optimization problem. The drawback

is degradation of performance because of turning on and turning off components.

The model used in ElasticTree contains more constraints, including fat tree topology

constraints, than the general model. Experimental results show that ElasticTree

achieves energy savings of up to 50%. One drawback is that it does not consider the

correlation among the flows.

In the technique of Carrier Grade [23], the focus is the energy efficiency and re-

silience characteristics of carrier grade networks. Related to energy efficiency, it is

demonstrated that OpenFlow can reduce network wide network energy consumption

and improve scalability. MLTE is implemented together with energy saving mechan-

isms such as controlled adaptive line rates at the switches [62]. For the resilience, it
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is shown that OpenFlow can handle failures at the switches and the controller, and

perform recovery with flow restoration. Similar to ElasticTree, energy savings of up

to 50% are achieved.

REsPoNse is a framework that allows network operators to automatically identify

energy-critical paths [24]. It investigates the possibility to pre-compute a few energy-

critical paths that, when used in an energy-aware fashion, can continuously produce

close-to-optimal energy savings over long periods of time. REsPoNse identifies energy-

critical paths by analyzing the traffic matrices, installs them into a small number of

routing tables (called always-on, on-demand, and fail-over), and uses a simple, scalable

online traffic engineering mechanism to deactivate and activate network elements on

demand. The network operators can use REsPoNse to overcome power delivery limits

by provisioning power and cooling of their network equipment for the typical, low

to medium level of traffic. An additional formulation added to our general model

is identifying the energy critical paths and modeling the links power consumption

separately and achieves an energy saving of 40%.

CoRrelation-aware Power Optimization (CARPO) algorithm dynamically consol-

idates traffic flows onto a small set of links and switches in a data center network, and

aims at switching off idle network components to reduce energy consumption [25]. It

consolidates traffic flows based on correlation analysis among flows. Another import-

ant feature of CARPO is to integrate correlation-aware traffic consolidation with link

rate adaptation for maximized energy savings. The integration is formulated as an

optimal flow assignment problem. A near-optimal solution is first computed using

integer programming to determine consolidation and the data rate of each link in

the data center network. A heuristic algorithm is used to find a consolidation and

rate configuration solution with acceptable runtime overheads. The heuristic reduces

the computation complexity. In addition to our general model, CARPO introduces

parameters to represent correlation among flows. This effort extends the ElasticTree

work to be flow similarity aware also achieves 50% efficiency.

A test platform for measuring and analyzing the energy consumption of Open-
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Flow based data centers is presented in [26]. The approach used is both traffic aware

and energy aware. The three energy saving capabilities covered are switch, link and

port. Considering traffic information, the number of active links and switches is de-

termined. The Adaptive Link Rate (ALR) technique and a routing algorithm similar

to ElasticTree are used to determine a route for each flow. The power model of

NetFPGA-based OpenFlow switch and used NOX controller are the building blocks

of the test platform. Experimental results show that this approach saves 35% energy.

ALR based techniques aim at reducing the energy consumption of a link by scaling

the rate of the link proportional to the link utility. Rate Adaptive Topology-Aware

Heuristic (RA-TAH) solution utilizes both smart sleeping and power scaling of links

to improve energy efficiency of data center networks [27]. A comprehensive survey on

ALR techniques can be found in [63]. The work is an extension of [22]. This combined

mechanism was deployed in a data center using Fat-Tree topology. The bounds on

energy savings in low and high traffic utilization cases were analyzed. Analytical

results show that the combined algorithm reduces energy consumption remarkably as

compared to the conventional methods in case of high traffic with up to 48% energy

saving. Unlike the general model we proposed, this technique only focuses on link

utilization rather the switches.

A global power management algorithm based on routing traffic via alternative

paths to balance the load of links is presented in [28]. A binary integer programming

model is used for formulating the energy consumption of integrated chassis and line-

cards. The chassis and the line-cards are put to sleep based on link utilization and

delay of packets. Less utility of links and large amount of delay of packets give

information that either the chassis or the line care or both can be put to sleep.

A greedy heuristic algorithm is proposed. Experimental results with scenarios of

synthetic topology and real life topology CERNET demonstrate the reduction of

power consumption by up to 67%.

Motivated by the fact that energy consumption of routers remains constant even

if the traffic volume changes from time to time, a dynamic algorithm is proposed
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in [53]. The power consumption minimization problem is formulated using IP model.

The objective function jointly minimizes the sum of the power consumption of the

links and the switches. Four greedy heuristics algorithms are proposed to solve the

problem, namely, shortest path first, longest path first, smallest demand first, and

highest demand first. The algorithms are tested over two sample topologies, a campus

network and mesh network for low, medium and high traffic. Experimental results

show that the longest path first gives close to optimal energy saving of up to 35% and

is better than the other three algorithms for both topologies.

Traffic aware energy efficiency techniques for cloud computing infrastructure us-

ing OpenFlow are presented in [29], where Data Manager (DM) is introduced to

detect input traffic and control the states of switches. The proposed power manager

dynamically controls and updates the operating modes of switches. Based on the

information from the DM, the Clock Controller (CC) module changes the frequency

of the switch to 0 MHz if the traffic is low. The experimental results show that the

approach guarantees QoS. This approach is immune to packet dropping as compared

to previous works and results show whole switch saving of about 30-35% on average.

The idea in [29] is tested on the NetFPGA platform. Such an approach extends

the OpenFlow protocol to include additional information about the frequency each

switch is operating. Using this, the controller would be able to allow switches to work

at different frequencies. Experimental results show that the proposed switch saves up

to 95% when running at low frequency mode. For a large frequency between 2611mW

and 11576mW, it saves 22.5% energy in total [30].

GreenRE [31] uses redundancy removal (RE) to achieve energy efficiency where the

motivation is stated as follows. Networks exhibit several redundant links while users

access similar contents. Even though redundancy increases reliability, it also degrades

the performance of the network. Instead of sending the same data through many

different paths repeatedly, sending it through a single link increases the throughput

and in effect reduces the load in the links.The links with no loads are subject to turn

off. GreenRE presents a work which capitalizes on RE to reduce energy. Experiments
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conducted on Orange Labs platform demonstrate that RE approach results in 30%

less energy consumption. A very important problem addressed in this work is the

number of RE enabled routers needed to preserve QoS and reduce energy at the same

time. In contrast to the general model we presented, the objective function minimizes

only the number of RE-capable routers while minimizing the links.

A bandwidth aware energy efficient technique for data center is presented on the

work of [52]. The controller schedules traffic flows. Traffics can be divided into three

statuses, active, queued, and suspended. There is no need for clock synchronization

among servers since a centralized controller is responsible for scheduling. A time

aware power consumption model of a switch is also presented. A linear programming

model is used to capture energy formulation of the entire network. The objective

function minimizes the number of active switches and ports which increasing the

occupation ratio of ports per switch. Experimental results show that the bandwidth

aware technique demonstrates 8.85% higher energy efficiency and lower completion

time in Fat-Tree and BCube topologies as relative to the fair share routing.

Energy efficient approaches attempt to minimize the number of power consum-

ing components in the network. The drawback is that QoS may degrade. At the

same time there is a need to keep idle network components for fault tolerance and

restoration. Restoration and energy efficiency aim at achieving opposite objectives.

Restorable Energy Aware Routing with Backup Sharing (REAR-BS) combines both

energy efficiency and restoration into a single problem [64]. A non-linear formula-

tion is used to minimize the number of active links under constraints of maximum

utilization and restoration. However, the non-linear formulation is converted to its

linear form to get a minimum bound to the optimal solution. An algorithm, Green

Restorable Algorithm (GreRA) is proposed to solve the REAR-BS NP-hard problem.

Simulation results show that GreRA reduces the energy usage by 15% to 50%.

The actual experimentation of energy efficient techniques is costly since it demands

operational network. GreenSDN brings an energy efficiency simulation capability on

the well known and widely used network emulator Mininet [14] and POX controller
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[32]. The simulation tool is tested for both traditional techniques like ALR, switch

chip level, switch level, and network-wide scope. The contribution of the study is that

it is the first energy efficiency simulation environment built on POX controller. The

replication of state-of-the-art approaches has achieved up to 37% energy saving.

An in-band traffic aware energy efficient approach through minimizing the number

of active links in multiple controller environment is presented in [56,57]. The approach

presents formal solution for the IP formulated problem and and also heuristics. An

energy saving of up to 60% is achieved on real world network topology and traffic

traces.

The work in [33] integrates energy aware modules in the open source network

management platform OpenNaaS. The modules are designed to enable energy mon-

itoring and energy aware routing for different kinds of OpenFlow controllers. Widely

known routing algorithms and scheduling algorithms implemented as part of the rout-

ing strategies within the framework are evaluated. Simulation results indicate that

the priority-based routing leads energy efficiency improvements of 5% to 35% com-

pared to other routing strategies, with no degradation in network performance. The

contribution of this work lays on adding the scheduler and combining it with known

routing algorithms. The experiment is done on 3 different controllers: OpenDaylight,

RYU, and Floodlight.

Node component scope, node scope, and network scope energy capabilities are

discussed in [34]. The node components are the hardware components that make

up the switch or the host. Examples of node component scope capabilities are the

Adaptive Link Rate and Advanced Configurable and Power Interface. These two

techniques are Layer 1 energy efficiency capabilities and are also used in the traditional

network paradigm. The node scope deals with sleeping the switch in response to

low traffic. The IEEE 802.3 az standard which is the Energy Efficient Ethernet is

an example of node scope capabilities. The network scope energy saving capabilities

introduce a more complicated problem. The major problem of applying energy saving

mechanism at once is that their effect cancels. It is better to apply one technique alone
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instead of combining them. This work addresses the effect of the cancelling problem

by devising a means of consolidating the three capabilities together. Experiments

demonstrate energy savings of up to 54% in particular scenarios.

A traffic and resource aware energy saving method is presented in [55]. Unlike

most of the related work in energy efficient optimization problems which are linear,

the proposed method formulates the problem as non-linear. Instead of considering

snapshot of the state of the network to grasp traffic and resources, the system presen-

ted introduces the concept of a discrete time. An important question to ask then is

how often to pull statistics and solve the optimization problem. The power saving

scheme employed is link level. The heuristic algorithm finds the subset of links to be

turned off, and it is shown to achieve more than 30% energy saving.

The energy efficiency problem with multiple controllers in the context of 5G net-

work is presented in [58]. Power consumption is reduced by using traffic engineering

techniques, IP formulation for both static and dynamic energy aware routing, and

also minimizing the number of active links. As compared to the formal solution, the

running time of the two heuristics are better but the energy efficiency is sub optimal.

FLOWP [59] attempts to achieve both power reduction and QoS for fat-tree to-

pology. An IP formulation for power efficient flow scheduling and the corresponding

heuristics is proposed. Unlike the other approaches, the status of network, and the

minimum threshold for the utility of links and switches are used in the formulations.

Experiments demonstrated an energy saving of 30% and better QoS as compared to

ElasticTree and CARPO [22,25].

The main challenge with energy efficiency techniques is that they exhibit reduced

performance. The trade-off between energy saving and performance is simultaneously

addressed and IP formulated based on the link utility intervals in our prior works

[16, 17]. Next Shortest Path and Next Maximum Utility heuristics give priority to

performance and energy saving, respectively. However, the framework we presented

in [16] proposes a single heuristics that achieve both energy saving and performance at

the same time by maximizing parameter named the Energy Profit Threshold (EPT).
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Experiments conducted on real network topology and traces provided by SNDLib

show an energy saving of up to 50%.

IP formulation for energy aware routing in carrier-grade Ethernet networks with

the objective of turning off links and switches is presented in [60]. A greedy bin

packing problem based heuristics named first-fit is presented as a solution. Results

show that the first-fit heuristics is scalable and achieves an energy saving of 37%.

Unlike other approaches, rule space in the switches is considered as a constraint. The

approach is tested using SNDLib real world network topology and traffic traces.

Multiple Topology Switching with Data Plane Forwarding Path Rerouting (MTS-

DPFPR) is an energy saving approach based on sleeping and rate adaptation of

links [61]. MTSDPFPR is a multi-level dynamic topology switching mechanism thor-

ough finding the maximum utilized link. The approach is tested on real world GEANT

network topology and traffic traces. Experimental results show that energy saving of

25% is achieved.

The application scenarios of the traffic aware solutions are generally on campus

networks or data centers. However, the specific techniques have switch, port, link, or

network wide applicability. The methods that use queue engineering ( [27, 28, 30, 34,

65]) for instance are focused on the switch level queues but their general application

is data center or campus networks. The application scenarios in [22, 23, 25, 26, 31, 33]

are data centers. On the other hand, the methods in [53, 56, 57] are applicable to a

general network environments, either specific network topologies or general network

topologies.



Chapter 4

End System Aware Energy Saving

Optimization Model and Methods

in SDN

4.1 Overview

A data center consists of interconnected servers (physical hosts) that are structured

into racks. The end system connected can be a physical machine or a virtual machine.

Server virtualization enables running multiple virtual machines (VM) on a single hard-

ware resource and satisfying the applications’ resource demands. Resources include

CPU, memory, and network bandwidth. VM migration refers to moving a virtual

machine from one host to another for the purpose of achieving energy saving, per-

formance increase, load balancing or system maintenance.

Server consolidation refers to a method used in data centers to minimize the

number of active servers by increasing the utility of each server [66]. Hence, instead

of operating many servers at low utilization, virtualization technique combines the

processing power onto fewer physical servers that operate at a higher total utilization.

The deployment of SDN in cloud data center virtual machines boosts QoS and load

balancing due to the enhanced flexible control of the network.
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Network optimization deals with the energy consumption and communication cost

of network components. Focusing only on server consolidation may lead to low net-

work performance. Besides, the network components incur a substantial amount of

energy. SDN provides global information about the network, such as the topology,

bandwidth utilization, physical machine status, virtual machine status, workload, and

other performance statistics. It also provides a flexible way to install forwarding rules

so that simultaneous migration of virtual machines can be handled.

Unlike traffic aware techniques, where the network components are the focus for

energy saving, end system aware techniques consider both network components and

end systems as sources of energy saving. Devising an efficient solution needs periodic

updates on the status and organization of the end systems and the traffic at the same

time.

4.2 End System Aware Model

The goal of the end system aware solution is to minimize the number of active phys-

ical machines through migrating the virtual machines into fewer number of physical

machines. Reviewing various models used to solve the problem, we propose a general

model for the end system aware energy efficiency. End system aware solutions should

be addressed as server consolidation and network optimization problems simultan-

eously [35, 36, 67]. The general model we propose addresses both problems and is

inspired by [36].

The problem of virtual machine migration is modeled as a quintuple (P, V, Rp, Rv,

R) where P, V, Rp, Rv, and R correspond to the set of physical machines, set of virtual

machines, matrix of resources of physical machines, matrix of resource requirements

of virtual machines, and vector of type of resources, respectively. The resources are

listed as but not limited to CPU, memory and bandwidth capacities. The dimensions

of the matrix Rp and Rv are |P| by |R| and |V| by |R|, respectively.

Let X be a placement matrix where
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Xij =

1, if virtual machinej is placed on physical machine i

0, otherwise

P r
i is the amount of resource type r available on physical machine i, whereas V r

j

is the demand of virtual machine j for resource type r. Let PMi is a binary variable

with value 1 if physical machine i is on, or 0 otherwise.

minimize
∑
i

PMi (4.1)

subject to
∑
j=1

V r
j ∗Xij ≤ P r

i ∀i, r (4.2)

∑
i

Xij = 1 ∀j (4.3)

PMi ≥ Xij ∀i, j (4.4)

where 1 ≤ i ≤ |P| , 1 ≤ j ≤ |V| and r ∈ R.

The first objective function (equation 4.1) minimizes the number of physical ma-

chines turned on. The constraint 4.2 states the sum of resource demands of virtual

machines installed on a given physical machine cannot be more than the capacity of

the physical machine. Constraint 4.3 limits that each virtual machine can be placed

on exactly one physical machine. Equation 4.4 associates the variables PMi and Xij

by asserting that a physical machine will be turned on or off depending on whether

it is used or not.

The second objective that needs to be considered is the network energy consump-

tion. Let Q be a traffic matrix where qij is the amount of traffic between VMi and

VMj, and bij is the number of switches that the traffic between physical machines

hosting virtual machines i and j traverses.
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minimize
∑
i

∑
j

qij ∗ bij (4.5)

subject to
∑
j=1

V r
j ∗Xij ≤ P r

i ∀i, r (4.6)

∑
i

Xij = 1 ∀j (4.7)

The objective function of the general end system aware solution is the combination

of the server consolidation and network optimization. Equation 4.5 minimizes the

communication traffic between virtual machines and the number of switches traversed

between physical machines. Equation 4.6 constrains the model to respect the sum

of the virtual machine resources not to exceed the resources of the physical machine

that they are placed on. Equation 4.7 asserts that a virtual machine can be placed

on exactly one physical machine.

4.3 Methods

Table 4.1 shows the summary of end system aware solutions to energy saving in data

centers. The environment column presents the experimental test environment (Test-

bed, ns-2, or CloudSim) used. The network optimization column shows if an approach

considers optimization of the communication cost among virtual machines. Dynam-

icity is the ability to do server consolidation and network optimization real time.

The topology column describes if the method is explicitly applied to a specific topo-

logy. The ’-’ symbol in the table means unknown for the environment and topology

columns, or does not apply for the network optimization and dynamicity columns. As

shown in Table 4.1, the majority of the end system aware solutions focus on network

optimization in addition to virtual machine placement. Only a few approaches con-

sider online virtual machine migration and traffic consolidation. Unlike traffic aware

energy efficient methods, most solutions are topology specific mainly fat-tree topo-
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logy. Similar to the traffic aware energy efficient techniques in SDN, experiments are

conducted on either special testbeds, or simulation and emulation environments.

Table 4.1: End System Aware Techniques for Energy Efficiency

Approach Environment
Network

Optimization

Dynamicity Topology

Honeyguide [35] Testbed X - Fat-tree

JointVM Placement [36] Testbed X X Fat-tree

Joint Host VM [37] ns-2 X X Fat-tree

Joint Host VMP [39] Testbed X - Fat-tree

EQVMP [38] ns-2 - - -

PowerNets [39] Testbed X - Fat-tree

MTAD [40] CloudSim X X -

Load Balancing [68] Testbed X X -

QRVE [69] Mininet and OpenDaylight X -

naVM [70] Testbed X X -

Int Load Balancing [71] Testbed X X -

CloudDC [72] Testbed X X Fat-tree

SLA-Based [73] Testbed X X -

loadbalncing [74] Testbed X X -

Virtual machine placement plays a major role in energy savings of data centers.

The work in [75] presents a holistic model for data center power consumption minim-

ization. The model is holistic in the sense it considers all energy incurring components

including cooling and virtual machine placement. According to [67], a virtual ma-

chine placement method should take into account resource constraints such as physical

server and network link capacities.

Honeyguide is a virtual machine migration-aware extension of the fat-tree topo-

logy network topology for energy efficiency in data center networks [35]. Reducing

energy consumption is achieved by decreasing the number of active (turned on) net-

working switches. In this approach, the focus is not only turning off inactive switches,
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but also trying to maximize the number of inactive switches. To increase the num-

ber of inactive switches, two techniques are combined: virtual machine and traffic

consolidation. As an extension of existing fat-tree topology, Honeyguide adds bypass

links between the upper-tier switches and physical machines. By doing so, it meets

the fault tolerance requirement of data centers. Experimental results show relative

increase in energy saving of up to 7.8%.

A joint virtual machine placement and routing solution is presented in [36]. Dy-

namic virtual machine placement and routing is modeled as a combinatorial problem.

A Markov approximation is used to solve the joint optimization problem under varying

workloads. The method used shows better performance as compared to the common

heuristic techniques. Unlike other methods ( [35, 38, 39]), this work formulates the

workload distribution among virtual machines separately.

An OpenFlow based joint virtual machine placement and flow routing optimization

is designed [37]. Unlike the work of [36] the problem is formulated as an integer

linear program and applies a series of techniques to remodel and combine the multi-

objective problem into a single objective function. The simulation results show that

this approach performs up to 67% energy saving, and it performs better than the

existing server consolidation only or network optimization only solutions.

EQVMP proposes energy-efficient and QoS-aware virtual machine placement for

SDN based data centers [38]. Unlike ElasticTree, power on and off is applied to the

servers themselves instead of the switches, the focus is server consolidation. EQVMP

combines three techniques: hop reduction, energy saving, and load balancing. Hop

reduction divides the VMs into groups and reduces the traffic load among groups

by graph partitioning. Energy savings mostly are achieved by VM placement. The

motivation behind VM placement is from Best Fit Decreasing and Max-Min Multidi-

mensional Stochastic Bin Packing. Fat-tree is used to represent the VM and servers

in the data center. SDN controller is used to balancing the load in the network. Load

balancing achieves flow transmission in networks without congestion. Experimental

results show an energy saving of 25%.
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PowerNets [39] is a joint optimization technique for both server consolidation and

network optimization. The peak hours of servers in a data center are not the same.

Therefore, the motivation of this work is based on the observation that all the servers

do not use their maximum capacity simultaneously. Correlation on the workloads that

run on the servers gives a way of grouping servers on their time series. Workloads

that use similar servers in a close time interval are grouped to use the same path. By

leveraging from server consolidation, DCN optimization and correlation of workloads,

PowerNets provides up to 51% energy saving. Different than our general model,

PowerNets takes the correlation of workloads among machines into consideration.

A multiobjective virtual machine placement approximation method is presented

in [40]. The motivation is that virtual machine placement algorithms for cloud data

centers find local solutions for each objective and finally combine the results. Such

approaches fail to guarantee a global optimum. The multiobjective approximation

model hence combines placement efficiency, load balancing, resource utility, and en-

ergy efficiency objectives into one. A multi-objective heuristic algorithm for virtual

machine placement named MTAD is proposed. MTAD is based on a greedy algorithm,

minimum cut and best-fit algorithms. Experiments are conducted on simulation envir-

onment and have shown better results than greedy, simulated annealing, and genetic

algorithms in the literature. MTAD considers server consolidation, network optimiz-

ation and also operates online to accommodate dynamic changes.

A load balancing energy-saving approach for geographically distributed data center

networks is proposed in [68]. A multi-objective IP formulation that both balances

request load and minimizes brown energy consumption by putting hosts to sleep.

Experiments conducted using real-world traffic traces exhibit energy savings of up to

42%.

The joint problem of power consumption of data center network, SLA violation,

QoS-aware, and VM placement are simultaneously addressed in [69]. IP formulation

and elephant flow detection based heuristics are presented. Unlike other approaches,

a distributed SDN architecture is considered. The experiments are conducted on Min-
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inet emulation environment and OpenDaylight controller achieve 21% energy saving.

A taxonomy for virtual machine placement solutions is presented in [42]. It also

presents metrics to classify virtual machine placement methods by elasticity, over-

booking and time awareness. Elasticity is the responsiveness of the system to satura-

tion and under-utility of resources. Server or network overbooking is the re-utilization

of resources when they are idle. Since a workload or a service uses a given service for

finite length of time, update on the reusability of resources is important.

A variation of multi-commodity minimum cost flow problem is used to model

virtual machine migration and load balancing. The two constraints are load balancing

and migration time. Whereas the former attempts to achieve virtual machines are

evenly distributed to the physical machines, the latter puts a time constraint to

do the actual migration. Ant colony heuristics algorithm is provided as a solution.

Experimental results show that the migration time is decreased by half as compared

to similar approaches. Although this work is not directly related to energy saving, the

formulation of the ant colony heuristics can further be studied for efficiency purpose

[70].

A joint optimization effort of energy efficiency and virtual machine migration in a

cloud data center is presented in [72], and a similar approach is also proposed in [71].

Viewing the virtual machine placement and migration problem as a Multidimensional

Vector Bin Packing Problem (MVBPP) is one of the common approaches. However,

with the increase in the dimension of the vector, most heuristics fail to find optimal

results. In this approach, a mathematical formulation and a hybrid single-parent

(partheno-genetic) algorithm to solve the virtual migration integration problem is

proposed. Simulation results show that the approach exhibits less migration time

as compared to similar approaches. However, it does not fully solve the problem of

scalability.

A comparison of several meta-heuristics algorithms used in SDN is presented

in [74], where different metrics to evaluate meta-heuristics algorithms used for load

balancing in SDN are suggested. The metrics are throughput, migration time, energy
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efficiency, and online migration. Some examples of meta-heuristics algorithms are

Genetic algorithm, Ant colony optimization, Particle swarm optimization, Greedy,

and Simulated annealing. The major reason to resort to such algorithms is due to the

fact that the formal solution is not time efficient and converges for a small number

of physical and virtual machines. On the other hand, the meta-heuristics algorithms

provide sub-optimal solutions and in some cases, they are far from optimal.

A Service Level Agreement (SLA) aware resource overbooking for energy efficient

workload allocation and virtual machine placement is presented in [73]. The approach

solves the fixed amount of resource allocation using SDN to dynamically consolidate

traffic and control of Quality of Service (QoS) from a logically central point. It jointly

minimizes the power consumption of the host and the network and the number of SLA

violations.

The application scenarios of the end system aware solutions are SDN based data

centers, either centralized or geographically distributed. The energy saving objective

focuses on minimizing the number of active physical machines through migrating vir-

tual machines. Moreover, balancing the workload on virtual machines is also another

focus that needs to be considered. The end system aware methods we presented in

this work are applicable to scenarios where there are virtual machines and workloads

that can be assigned and migrated to different machines.



Chapter 5

Framework for Traffic Proportional

Energy Efficiency in SDN

Traffic proportional energy efficiency is an attempt to make energy cost propor-

tional to the amount of traffic streaming through the network. A practical solution

for such problem is to sleep/turn off under-utilized components for low traffic volume.

Minimizing the components turned on to accommodate a given traffic, however, de-

grades performance [17, 22, 25, 32–34]. Designing energy efficient solutions is non-

trivial since they need to tackle the trade-off between energy efficiency and network

performance.

In a dynamically changing network environment, the practicality of such solutions

in traditional networking is impossible. However, SDN enables the network to adapt

the changing environment by recomputing paths, optimizing routes and increasing

flexibility. The controller periodically gathers statistical information about the traffic,

the status of the switches, the status of the links, the status of the end systems, and

the topology of the network. Related works in energy aware routing are focused

on minimizing the number of active network components [22, 23, 25, 31, 53]. In this

chapter, we propose a three-component framework that makes energy consumption

proportional to the traffic volume in a dynamic environment. The contributions of

this chapter are as follows
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• We propose a traffic proportional energy efficient framework for SDN. The com-

ponents in the framework deal with traffic monitoring, topology management,

and optimization.

• We also propose two energy efficient topology structure independent heuristics

with focus of network performance and utility independently.

The remainder of the chapter is organized as follows. Section 5.1 describes traffic

proportional framework we proposed and two example heuristics to solve the for

minimizing the energy cost of network components. Section 5.3 concludes and gives

background for chapter 6.

5.1 Traffic Proportional Framework

The goal of the traffic proportional framework is to design a controller which makes

the energy consumption of the network proportional to the traffic volume. Figure 5.1

illustrates the traffic aware module of the framework. The information of the traffic

generated from the applications running on the top of the controller are passed to

the Traffic Manager. The Traffic Manager passes this traffic information to the TA

Optimizer. The statistics of the network and the topology information is fed to the

TA Optimizer from the switches. The Optimizer generates an optimal subgraph based

on the traffic volume and the utility of the links. Since the framework is designed to

work in a dynamic environment, a low traffic load should result in a subgraph with

smaller number of active links and switches, whereas high traffic load should increase

the number of active links and switches in the subgraph respectively. In the former,

the sleep/turn-off decision for a subset links and switches would be achieved. In the

latter, however, a subset of links and switches would be turned on or made active.
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Figure 5.1: A three-component framework for traffic propor-
tional energy efficiency in SDN

5.2 Algorithms for Energy Aware Routing

We propose topology independent heuristic algorithms based on the utility of links,

that are Next Shortest Path (NSP) and Next Maximum Utility (NMU) which cor-

respond to the replacing the under-utilized links with next shortest path and with

the next path in the direction of the maximum link utility, respectively. Algorithm 1

Algorithm 1 ShortestPathInitialization(G, F)

1: U← Initialize(0)
2: for all f ∈ F do
3: pathf ← shortestpath(sr, ds, λf )
4: for all eab ∈ pathf do

5: Uab ← Uab +
λf
Wij

6: end for
7: end for
8: return U

initializes utilities of the links using shortest path algorithm for each flow. It takes the

graph G, which represents the network topology and traffic demand F. For a given

link eij, if a traffic flow f = (sr, ds, λf ) passes through it, its corresponding utility Uij
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is incremented by
λf
Wij

. The algorithm returns the set U that includes the utilities of

all links. Algorithm 2 takes the utility set U and threshold Umin, and returns the

list of links with utilities less than or equal to the threshold.

Algorithm 2 ReturnCandidateList(U, Umin)

1: CandidateList← []
2: for all Uij ∈ U do
3: if Uij ≤ Umin then
4: CandidateList.append(eij)
5: end if
6: end for
7: return CandidateList

Algorithm 3 NSP: NextShortestPath(G, F, Umin)

1: U← ShortestPathInitialization(G,F)
2: CandidateList← ReturnCandidateList(U, Umin)
3: for all eij ∈ CandidateList do
4: Pathij ← shortestpathsij
5: SP ← Pathij[0] . Pick one of the shortest paths
6: for all f passing through eij do
7: for all eab ∈ SP do

8: Uab ← Uab +
λf
Wab

. increment Uab

9: end for

10: Uij ← Uij −
λf
Wij

. decrement Uij

11: end for
12: if Uij == 0 then
13: Lij ← 0 . state of link is inactive
14: G← Turn off(eij)
15: end if
16: end for
17: return G . Subgraph

Algorithm 3 (NSM) aims at identifying under-utilized links and re-routes traffic

flows passing through them to the next shortest alternative path. The algorithm

takes topology G, set of flows F and threshold Umin as inputs. It first initializes the

link utilities based on the shortest path algorithm. It then selects the under-utilized
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links (invoking algorithm 2) and sets the CandidateList. The shortestpathsij (line

4) returns the list of paths from Zi to Zj excluding those links in the CandidateList.

The paths stored in shortestpathsij are sorted according to the path length. The

shortestpathsij is set to Pathij (line 5). NSM algorithm then picks one of the shortest

paths SP to replace the direct link. Replacing a direct link with alternative path needs

redirecting the flows passing through it. Basically, we need to increase the utilities of

the hops composing SP and decrement the utility of the direct link (lines 8 and10).

The status of a link is updated if the utility is 0 (all the flows passing are redirected

to alternative path SP ), hence updates the graph G’s status (lines 12-15). Algorithm

3 returns the updated sub graph of G.

Algorithm 4 (NMU) aims at replacing the candidate links with the path that has

the link with maximum utility. After identifying the candidate links (line 2), list of

replacement paths except for links in CandidateLis minutilitypathij is assigned to

Pathij (line 4). Pathij is sorted according to maximum utility link. UP is the first

path in the Pathij. The algorithm then updates the utilities of links and the graph

G in the remaining part with similar procedure of Algorithm 3.
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Figure 5.2: Examples for NSP and NMU utility based heuristics
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Algorithm 4 NMU: NextMaximumUtility(G, F, Umin)

1: U← ShortestPathInitialization(G,F)
2: CandidateList← ReturnCandidateList(U, Umin)
3: for all eij ∈ CandidateList do
4: Pathij ← maxutilitypathsij
5: UP ← Pathij[0]
6: for all f passing through eij do
7: for all eab ∈ UP do

8: Uab ← Uab +
λf
Wab

9: end for

10: Uij ← Uij −
λf
Wij

11: end for
12: if Uij == 0 then
13: Lij ← 0 . state of link is inactive
14: G← Turn off(eij)
15: end if
16: end for
17: return G

Figure 5.2 shows an example of how the algorithms work. As given in Fig5.2.a,

utility of the link connecting nodes i and j is 0.05 and the minimum ratio to make a

link active Umin=0.06. Thus, link eij is a candidate link to be turned off. Pathij =

[i, G, j], [i, A,B, j], [i, C,D,E, j] where number of hops in each path is 2, 3, and 4

respectively. SP = [i, G, j] and the number of hops is 2. According to NSP (Algorithm

3), the replacement path for the direct link, as illustrated in Fig.5.2.a,is to pick the

next shortest path among Pathij which is [i, G, j]. The NMU algorithm on the other

hand, selects the path which contains the link with the maximum utility [i, C,D,E, j]

with a path length of 4 hops. After the updates, the flows passing through the

edge eij would be redirected to the replacement path. Assuming all links have equal

bandwidth in this example, the utility ratio of the link would be added to each link of

the replacing path. The outcomes of NSP and NMU algorithms applied to Fig.5.2.a

are illustrated in Fig.5.2.b and c, respectively.

The minimum threshold value Umin directly affects the set of candidate links. As

another example, in Fig.5.2.c, the threshold Umin is set to 0.08. The candidate links
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in this case are ei,j, ei,G and eG,j. The results of the NSP and NMU algorithms are

shown in Fig.5.2.d and e, respectively.

5.3 Conclusions

Energy efficiency has become a critical concern for IT equipment designs. The main

problem in networks, however, is energy consumption is constant regardless of the

volume of traffic. The flexible control provided by SDN paved the way to optimize

the efficiency of network environment dynamically. In this chapter, we presented there

module traffic-aware energy efficiency framework for SDN and a heuristics algorithm.

The framework is implemented on top of POX controller.

The NSP and NMU heuristics we have proposed give priority to performance and

utilities respectively. They are topology independent and can be combined with other

heuristics to give better energy-saving or network performance. Besides they work

independently, either we have to choose performance or maximum utility not both

at the same time as we analyzed in [17]. In the next chapter, we present an energy

efficiency metric that is specific to SDN. By maximizing this metric, our objective is

to maintain the trade-off between performance and energy efficiency.



Chapter 6

RESDN: A Novel Metric and

Method for Energy Efficient

Routing in SDN

6.1 Introduction

In data center networks, components are utilized 30% to 40% most of the time [23,76].

The overall power consumption however remains almost the same for varying amount

of traffic volume. A practical solution for a traffic proportional energy consumption

problem is to sleep/turn off under-utilized components for low traffic volume. Minim-

izing the number of network components for low traffic, leads to network performance

degradation [22,25,26,32–34].

Energy saving at the cost of network performance degradation, however, is an

undesirable result. The trade-off between energy saving and performance is quite a

challenging task. Energy efficient solutions mainly focus on minimizing the number

of energy consuming devices whereas network performance optimization solutions

mainly focus on keeping the devices work at full capacity regardless of low traffic.

The two opposing objectives clearly signifies the need for a holistic solution that

maintains the trade-off between efficiency and performance.
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In SDN, a naive way for measuring the efficiency of a network is to take the ratio

of the power used to the maximum power consumption of the network components.

A wide range of energy efficiency metrics like Power Usage Efficiency (PUE) have

been proposed and used to measure the efficiency of data centers [77,78]. The Green

Grid and Standard Performance Evaluation Corporation (SPEC) are the most widely

known efforts among the many. The metrics proposed, however, are either applicable

to data centers only or do not consider the utilities of the network resources, and

cannot directly be applied to dynamically changing and programmable networks.

Therefore, addressing the need for a metric to measure the energy efficiency of

a network with regard to traffic volume and utility of resources, we propose a novel

energy efficiency metric, namely RESDN (Ratio for Energy Saving in SDN), that

quantifies energy efficiency based on utility intervals defined by minimum and max-

imum link utility parameters.

The contributions of this chapter are as follows.

• We propose a novel energy efficiency metric RESDN: the ratio for energy saving

in SDN that quantifies energy efficiency based on link utility intervals. To the

best of our knowledge, the approach is unique as it measures how links are

profitably utilized in terms of the amount of energy they consume with respect

to their utility.

• We develop Integer Programming (IP) formulation with the objective of max-

imizing RESDN and propose heuristics algorithm MaxRESDN for achieving the

objective.

• We conduct extensive experiments on Mininet network emulator and POX con-

troller using real network traffic traces and present comparative quantitative

analysis of MaxRESDN method. The performance metrics of interest are switch

power consumption, RESDN value, percentage of links saved, average path

length, throughput, delay, and traffic proportionality.
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• We simulate the power consumption of two hardware switches (NEC and Zodiac

FX) and one virtual switch (Open vSwitch-OvS) that are OpenFlow enabled,

and conduct comprehensive experiments to measure the power consumption of

our proposed MaxRESDN heuristic algorithm.

• MaxRESDN heuristic algorithm achieves the highest ratio for energy saving

which is up to 30% better than similar state-of-the-art utility-based heurist-

ics algorithms. It also saves up to 38% links and exhibits an average path

length closer to the best energy saving heuristics that focuses on performance.

MaxRESDN has the highest traffic proportional energy consumption which 3 to

5% better than similar utility-based heuristics. To the best of our knowledge,

our approach is the first in maintaining the trade-off between energy efficiency,

network performance, and traffic proportionality by optimizing RESDN metric.

• Switch power consumption results show that MaxRESDN exhibits on average

up to 14.7 watts, 10 watts, and 3.2 watts less power consumption for NEC,

OVS and Zodiac FX switches respectively as compared to other utility-based

heuristics for energy efficient routing.

• As the utility parameters directly impact the performance of the MaxRESDN

heuristics, we conduct a detailed analysis of the parameters with respect to a

range of traffic volumes.

The remainder of the chapter is organized as follows. Section 6.2 presents related

work on energy efficiency in SDN and energy efficiency metrics. Section 6.3 presents

preliminary work on utility based traffic proportional energy saving in SDN. Section

6.4 describes RESDN metric, provides IP formulation for RESDN maximization, and

presents the MaxRESDN heuristics method that maximizes the RESDN of a network.
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6.2 Related Work

The control and forwarding plane separation in SDN has led to flexibility for many

network services ranging from load balancing, dynamic routing, energy efficient and

flexible network control [1]. The primary challenge of energy efficiency in networking

is the fact that energy consumption is not proportional to the volume of traffic. The

problem is even more difficult in the traditional networking since there is a very

limited flexibility. Traffic-aware energy efficient routing techniques in SDN attempt

to make energy consumption proportional to the traffic volume. We discuss related

work in traffic-aware energy efficient routing in subsection 6.2.1. Measuring the energy

efficiency of a network environment including data centers have been investigated and

various metrics were also proposed. In subsection 6.2.2, we discuss related work in

this area and why we needed a new metrics for SDN.

6.2.1 Traffic Aware Energy Efficient Routing Techniques

Traffic aware energy efficient routing techniques in SDN can be classified based on

the energy saving capabilities they focus on and the topology structure they are

designed for. The main energy saving capabilities are the links and the switches.

Some of the works [25,26,32–34] focus on links, where some others focus on forwarding

switches [24, 30]. There also exist works [17, 22, 53] that consider the combination of

links and switches as the energy saving components. Furthermore, queue engineering

based techniques consider the arrival of packets and their waiting times to decide

per-port power requirement [30–34,79,80].

Based on the topology assumption, energy efficient methods can be classified as

general or tailored to a specific network topology. Some methods are general in

the sense that they are applicable to any kind of network topology [17, 53, 64] and

some are only applicable to specific topologies such as Fat-tree, butterfly, and BCube,

where Fat-tree and BCube topologies are among the widely used structures used in

organizing end systems in data centers [22, 23,26,27].
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Table 6.1 presents the summary of traffic aware energy efficient techniques in SDN.

The Topology column shows the kind of topology structure the approach is designed

for and tested on. The Utility-Based column indicates if the approach focuses on the

utility of the links. The Link column shows if the method considers links as energy

saving component. Queue Engineering column shows if the approach applies queue

engineering techniques.

Table 6.1: Classification of Energy Efficient Routing Techniques
in SDN

Approach Topology
Utility
Based

Link
Queue
Engineering

ElasticTree [22] Fat-tree - X -
Carrier Grade [23] General - X -
CARPO [25] Fat-tree - X -
EnableOpenflow [26] Fat-tree - X -
Traffic distribution [81] General X X -
GreenSDN [32] Bcubic & Fat-tree - X X
Fine-grained [82] General X X -
OpenNaas [33] - - X X
Orchestrate [34] - - X X
Utility-based [17] General X X -
Dynamic TA [53] General - X -
REsPoNse [24] - - - -
NetFPGA QE [30] - - - X
GreenRE [31] General - X -
Bandwidth-aware [79] Bcubic & Fat-tree - X - X
RA-TAH [27] Fat-tree - X X
TE based [29] General - X -
Re-Routing [28] General - - X
Resource-aware [55] Fat-tree - X -
SDN /Ethernet [60] General - X -

Energy efficient techniques use a method of sleeping or turning of unused switches

or links when the traffic volume is low and turn them on when traffic volume increases

[26, 26, 79, 83]. The objective of energy efficiency is reducing the number of active

network components. However, this has an adverse effect on the performance of

the network hence degrades the network performance. There is a trade-off between
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the two opposite objectives which are minimizing energy consumption and increasing

performance.

A closely related work considers the remaining bandwidth of links [79]. After

formulating the problem using IP, they propose a scheduling algorithm. The heuristics

proposed schedules paths for the new flows by considering the paths followed by the

preceding flows. Unlike this approach, our focus is not on the remaining bandwidth of

the links but the utilities of the links. We measure how much each link is utilized based

on the utility interval defined by the minimum and maximum utility parameters.

In contrast to the approach of turning off links for energy saving [17, 25, 31, 84],

the work [81] examines if turning off / sleeping switches always result in energy

saving. The network is modeled as a graph with the nodes as the switches and the

edges as the links. Comprehensive experiments show for cases where the routing

power consumption is cubic with respect to traffic volume, distributing the traffic to

underutilized links exhibit a better energy saving as compared to turning them off.

Since the routing power consumption is polynomial in general, distributing traffic

over underutilized links is only applicable to specific cases [81].

The other approach close to our work is [53] which formulates the energy efficiency

problem with mixed integer programming (MIP), then proposes heuristic algorithms.

There are four variations of the heuristics where two of which namely Shortest Path

First (SPF) and Shortest Path Last (SPL) sort the flows in the order of the shortest

path. The other two heuristics namely Smallest Demand First (SDF) and Highest

Demand First (HDF) sorts the flows according to the rate flow.

In contrast, our approach is flow order independent, it focuses not only on energy

efficiency but also in performance, considers the utility of each link, and proposes

a link utility-based energy efficiency metric that simultaneously quantifies efficiency

and performance.
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6.2.2 Energy Efficiency Metrics

Data center energy efficiency metrics have been studied widely with companies and

standardization organizations. Some of these are the Green Grid, Standard Perform-

ance Evaluation Corporation (SPEC), and Transaction Processing Performance Coun-

cil (TPC) [85, 86]. The Green grid consortium proposes several metrics to measure

infrastructure power consumption, carbon dioxide emission, water usage efficiency,and

the rate of useful information processed related to resources used. Power Usage Ef-

fectiveness (PUE), Data Center Infrastructure Efficiency (DCIE), Carbon Usage Ef-

fectiveness (CUE), Water Usage Effectiveness (WUE), and Data Center Productivity

(DCP), all of which measure energy efficiency and sustainability.

Power Usage Effectiveness (PUE), the most prevalent metric, is the ratio of the

total annual amount of energy that comes into a data center to the energy that is

used by IT equipment [87]. IT equipment includes workstations, storage, monitors,

and network devices. Total data center energy consists of IT equipment energy con-

sumption plus energy for cooling system components, UPS, switch gear, and data

center lightening. The ideal value for PUE is 1 which means all the energy in the

data center is used by the IT equipment. The main limitations of PUE metric is that

it is only applicable to a single building that supports a data center [84]. The other

limitation of PUE is that it does not focus on specifically on links and switches which

are the main energy saving capabilities in SDN.

Data Center Infrastructure Efficiency (DCIE), which is the inverse of PUE, is

calculated as the ratio of IT equipment power consumption to total facility power

consumption. Carbon Usage Effectiveness (CUE) is the product of the amount of

carbon dioxide emitted per kilowatt hour (CEF) and the data center’s annual PUE

[88]. Water Usage Effectiveness (WUE) is the ratio of the annual site water usage

in liters to the IT equipment energy usage in kilowatt hours (Kwh) [89]. WUE

measures the water consumption in relation to IT equipment energy consumption.

However, it is only applicable to a single data center site and does not consider network

devices which are the main focus of energy saving in SDN. Data Center Productivity
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(DCP) measures the quantity of useful information processing completed relative to

the amount of some resource consumed in producing the work [77]. DCP treats the

data center as a black box where an power enters in to the data center do some useful

task and leaves. An important concern in this is how to quantify a useful work.

To the best of our knowledge, there is no metric that is fully focused on network

components such as switches and links which are energy saving capabilities in SDN.

Using the existing metrics in an SDN environment falls short of capturing the utilit-

ies of links which is an important energy saving capability of a network environment.

The other drawbacks in the metrics are that they are measured annually and offline.

It makes the necessity for new metrics that can measure dynamically changing net-

work environment an indisputable argument. Failing to do so undermines the flexible

network management capability that could have been exploited from SDN.

6.3 Preliminaries

Next Shortest Path (NSP) and Next Maximum Utility (NMU) heuristics were pro-

posed in our prior work [17] that are generally applicable to any network topology

and are flow order independent. NSP and NMU first select those links with utility

less than Umin as the candidate links, then aim at redirecting flows passing through

the candidate links to the next shortest path or the path in the direction of the link

with maximum utility, respectively. The rationale behind selecting links with utilities

less than Umin as a candidate is to redirect flows that pass through these links to

make them inactive. NSP and NMU attempt to put underutilized links to inactive

state. By doing so not only does the number of active links is reduced, but also overall

utilities of the links increase. Next, we discuss the NSP algorithm in detail as the

preliminary, since it attempts to make every link to be utilized above the minimum

utility Umin or to be made inactive.

NSP (Algorithm 5) identifies under-utilized links and re-routes traffic flows passing

through them to the next shortest alternative path. The algorithm takes topology as
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a graph G, set of flows F, values Umin, and Umax as inputs. It first initializes the

link utilities by taking the current utilities of the links, and then selects the under-

utilized links and sets the CandidateList. Line 6 returns the list of paths from Zi to

Zj excluding those links in the CandidateList. The paths stored in shortestpathsij

are sorted according to the path length. The shortestpathsij is set to Pathij (line 7).

NSP algorithm then picks one of the shortest paths SP to replace the direct link. SP

is replaced with the next Pathij until all the links in ∀eab ∈ SP , Uab + Uij ≤ Umax

(lines 8 to 10). Replacing a direct link with alternative path needs redirecting the flows

passing through it. Basically, the utilities of the hops composing SP are increased

and the utility of the direct link are decreased (lines 13 and15). The status of a link is

updated if the utility is 0 (all the flows passing are redirected to alternative path SP ),

hence updates the graph G’s status (lines 17-21). Algorithm 5 returns the updated

sub graph of G.
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Algorithm 5 NSP: NextShortestPath(G, F, Umin,Umax)

1: Input: Graph G, set of traffic flow F, minimum utility Umin, and maximum
utility Umax

2: Output: Sub graph of G
3: U← NetworkStatus(G,F)
4: CandidateList = ReturnCandidateList(U, Umin)
5: for all eij ∈ CandidateList do
6: Pathij ← shortestpathsij
7: SP = Pathij[0] . Pick one of the shortest paths
8: while ∃ eab ∈ SP where Uab + Uij > Umax do
9: SP = next(Pathij)

10: end while
11: for all f passing through eij do
12: for all eab ∈ SP do

13: Uab = Uab +
λf
Wab

. increment Uab

14: end for

15: Uij = Uij −
λf
Wij

. decrement Uij

16: end for
17: if Uij == 0 then
18: Lij = 0 . state of link is inactive
19: Turn off(eij
20: Update G

21: end if
22: end for

6.4 RESDN Metric: Ratio for Energy Saving in

SDN

In this section, we propose RESDN energy efficiency metric based on link utility

interval defined by the minimum and maximum utility parameters Umin and Umax.

Then, we present IP formulation and heuristics to maximize the RESDN value of a

network in a dynamic environment.
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6.4.1 Motivation and Definition

Traffic aware energy saving approaches attempt to turn off/sleep network components

by observing the traffic volume. Traffic proportional energy consumption is a more

stricter requirement than traffic-awareness. It demands the percentage of power con-

sumption of network components to be proportional to the traffic volume. However,

none of the existing energy efficiency metrics discussed in Section 6.2 take the utilit-

ies of the network components under consideration with regard to the network traffic

volume. Addressing this issue, we propose Ratio for Energy Saving in SDN (RESDN)

metric that indicates the percentage of links with utilities within the interval defined

by Umin and Umax with respect to the total number of active links.

The RESDN value reflects how the network components are profitably utilized.

The current mode of payment for customers in cloud computing is Pay-as-you-go

(PAYG) which charges based on the usage of computing resources. Similarly, RESDN

enables the network provider to implement Pay-as-you-use (PAYU) in SDN for energy

consumption. A simple scenario, in this case, is a network provider aiming to pay

the energy cost of a network component only if it is utilized within a utility interval

expressed in terms of RESDN. This RESDN policy is expressed by Umin and Umax

parameters and are enforced by the controller. The controller decides the links and

their corresponding utilities to match the utility interval specified by the provider.

The technical solution to this is to redirect the flows passing through underutilized

links to other links. Especially in a dynamic environment where the traffic volume

increases and decreases, the RESDN value changes, the controller is responsible for

keeping the RESDN value at maximum. With this, the energy cost of the network

provider would be proportional to the traffic volume being streamed in the network

at any time.

The RESDN metric enables to measure the energy efficiency of the network by

calculating the ratio of the number of links with utilities between the Umin and

Umax to the total number of active links. Thus, it allows the network provider to

proactively set the RESDN value.
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Table 6.2 shows the parameters used in the formulation of the RESDN . The

network is modeled as a weighted graph G= (Z,E) with Z as the set of switches

where Zi ∈ Z represents switch i and eij ∈ E represents that there exists a link

between switches Zi and Zj. The weight Wij corresponds to the bandwidth of the

link eij.

Table 6.2: Table of Symbols

Parameters Description
G A graph that consists of Z and E
Z Set of switches Zi ∈ Z represents switch i
Si Binary variable of switch Zi
E Set of links eij ∈ E is a link between switches Zi and Zj
Lij Binary variable of link eij (active or inactive)
Wij Bandwidth of the link eij
F Set of flows f ∈ F = (sr, ds, λf )
f A flow f=(sr, ds, λf ) with source , destination and flow rate
Fij Binary variable of flow f passing through link eij
U Set of utilities of all links
Uij Utility of link eij
Xij Binary variable of link eij Umin ≤ Uij ≤ Umax

Let binary variable Si denote the status of switch Zi such that

Si =

1, if switch Zi is active

0, otherwise

Traffic in the network is represented by the set of flows F where f ∈ F is defined

as f=(sr, ds, λf ). sr and ds ∈ Z are the source and destination switches of flow f ,

and λf is the rate of f measured in bits per second.

Fij =

1, if flow f passes through edge eij

0, otherwise

U is the set of the utilities of every edge in the graph G where Uij ∈ U
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Uij =

∑
∀f Fijxλf

Wij

(6.1)

is defined as the ratio of the sum of the rates of the flows passing through the edge

eij to the link bandwidth Wij. Utility of a link is between 0 and 1, where 0 means

no flow is passing through the link and 1 means the sum of the flow rates passing

through the link is equal to the link bandwidth. Let Umin be the minimum utility

value to keep a link active and Umax is the maximum utility of a link.

Xij =

1, Umin ≤ Uij ≤ Umax

0, otherwise

The energy efficiency metric is formally defined as

RESDN =

∑
∀eij Xij∑
∀eij Lij

(6.2)

where Lij is binary variable that denotes the status of edge eij

Lij =

1, if edge eij is active

0, otherwise

According to Equation 6.2, RESDN value of 1 means that all links that are

turned on are operating between the interval defined by parameters Umin and Umax.

RESDN value of 0 means that none of the links are operating profitably which means

that the network is underutilized. The motivation behind the RESDN comes from the

idea that network providers want to pay for energy consumption for a given resource

only if it is utilized at least to a minimum value of Umin. If the utility of a resource is

less than Umin, then it is underutilized. Umax needs to be less than 1 since setting
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it to 1 would create network congestion which in turn degrades performance. The

larger the value of RESDN , the more the percentage of the active links that oper-

ate between the Umin and Umax values. Smaller RESDN value shows that a large

number of active links operating unprofitably.

6.4.2 IP formulation for RESDN Optimization

The objective function of our IP model is to maximize the RESDN value of the

network.

maximize RESDN (6.3)

subject to
∑
∀f

Fijxλf ≤ Wij , ∀eij (6.4)

∑
∀f

Fai =
∑
∀f

Fib , Zi 6= f sr, Zi 6= fds (6.5)

Fmj = Fin , ∀f Zm = f sr , Zn = fds , ∀emj , ∃ein (6.6)

Fij ≤ Sj and Fji ≤ Sj , ∀Zj ∈ Z (6.7)

Si ≤
∑
∀f

[Fij + Fji] , ∀Zi ∈ Z (6.8)

Lij ≤ Si and Lij ≤ Sj ∀Zi, Zj ∈ Z (6.9)

The constraint in Equation 6.4 states that the sum of the rates of flows between

two switches should not exceed the link capacity. The constraint in equation 6.5 states

that the number of flows entering and leaving switches which are neither destination

nor sources of flow should be equal. The constraint in equation 6.6 assures a flow

entering from source switch should reach the destination switch. The constraint in

6.7 asserts that a flow should not be assigned to a link that is connected to an inactive

switch. Constraint in equation 6.8 models the relationship between the flows passing

through a link and a switch. It asserts that if no flow is passing through all the links

connected to switch Zi, then change the binary variable Si = 0. The constraint in
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Equation 6.9 asserts that a link should be put in active state if and only if both of

the switches it is connecting are active, otherwise, it is inactive.

6.4.3 MaxRESDN Heuristics Method

The energy efficient routing is an NP-hard problem [22, 25, 60]. Formal solutions

can best fit for a small number of network switches but fail to scale up when the

number is in the order of hundreds. However, in cloud data centers where the number

of physical machines is in the order of thousand, the number of switches is in the

order of hundreds. That triggers the need for heuristics algorithms that can run in

reasonable polynomial time to provide sub-optimal solutions.

Algorithm 6 MaxRESDN (G, F,U,Umin,Umax)

1: Input: Graph G, set of traffic flow F, utility of links U, minimum utility Umin,
and maximum utility Umax

2: Output: Modified utility of links U and graph G
3: for all f = (sr, ds, λf ) ∈ F do
4: pathf ← PathMaxRESDN (sr,ds,λf )
5: for all eij ∈ pathf do

6: Uij ← Uij +
λf
Wij

7: end for
8: end for
9: for all eij ∈ E do

10: if Uij == 0 then
11: Lij ← 0
12: end if
13: end for

We propose the heuristics algorithm named MaxRESDN (Maximize RESDN).

Algorithm 6 aims to maximize the RESDN value of the network as it assigns a path

to each flow. The inputs for the MaxRESDN are the network represented as graph G,

the current utility of links U, set of flows F, the minimum utility Umin and maximum

utility Umax. Each flow f = (sr, ds, λf ) ∈ F is expressed as source sr, destination ds,

and flow rate λf which correspond to source address, destination address, and rate of

f measured in bits per second (line 3). Line 6 increments the utilities of all the links
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on the path assigned to flow f by the
λf
Wij

factor. Line 4 assigns each flow to the

path that maximizes the RESDN among alternatives using the PathMaxRESDN

(sr,ds,λf ) method. Lines 9 to 13 makes link eij inactive if its corresponding utility

Uij is 0.

Algorithm 7 PathMaxRESDN(sr,ds,λf )

1: Input: Graph G,utility of links U, minimum utility Umin, maximum utility
Umax, source node sr, destination node ds, and flow rate λf

2: Output: pathf for flow f(sr, ds, λf ) that maximizes RESDN
3: AllPath← all paths between sr and ds
4: for all Path P ∈ AllPath do
5: for all links eab ∈ P do
6: if Uab + λf > UMax then
7: AllPath.remove(P)
8: end if
9: end for

10: end for
11: Pathf ←MaxRESDN(Allpath)

Algorithm 7 (PathMaxRESDN) returns the path that maximizes RESDN for a

given flow f with source sr, destination ds, and flow rate λf . Line 3 initializes the

Allpath list with all paths from sr to ds of flow f. Lines from 5 to 9, ensure the stability

of the network by making the utilities of all links in each path plus the rate of flow

of f not to exceed the Umax value. While line 11 selects the path with maximum

RESDN value and assign it to Pathf .

The complexity of the MaxRESDN algorithm depends on the total number of

flows |F| and the PathMaxRESDN algorithm (7). Since the controller has a global

view of the network, for each source destination switch pair in the network, all the

paths from source to destination are stored in descending order with their RESDN

value. The path with the maximum RESDN value then can be extracted in constant

time. Therefore, the complexity of the MaxRESDN algorithm is O(|F|).
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RESDN: Experimental Analysis

and Results

7.1 Experimental Platform

This section presents the experimental platform used to conduct our experiments.

First, the network setup and the performance metrics are discussed, then utility based

heuristics algorithms used for comparison are presented. Finally, the characteristics

of the three OpenFlow protocol enabled switches we used in the experiments for

measuring power consumption are presented.

7.1.1 Network Setup

The network setup is constructed using POX controller [90] and Mininet [14] network

emulator installed on Ubuntu 16.04 64-bit. Mininet is used to create the topologies

which comprise of hosts, switches, and links. Moreover, traffic is generated from

each host by using the iperf command. The heuristics are implemented in the POX

controller.

In POX, a switch is called datapath, where each datapath has a unique datapath

ID (DPID). The first event of a switch is initiated when the switch establishes a

connection channel, and this event is called ConnectionUP event. When the switch is
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turned off or is disconnected from the network, it fires ConnectionDown event. Table

7.1 presents details of OpenFlow protocol event handling and the corresponding POX

implementation.

Table 7.1: List of OpenFlow protocol events and the correspond-
ing POX commands

Event POX command Meaning

ConnectionUp -
Establishment of a new control
channel with a switch

ConnectionDown ofp switch features Connection to switch is terminated
PortStatus ofp port status Controller receives port status message
FlowRemoved ofp flow removed Controller receives flow removed message
Statistics Events ofp stats reply Controller receives OpenFlow statistics reply
PacketIn ofp packet in packet at the port does not match
ErrorIn ofp error msg Controller receives OpenFlow error messages
BarrierIn opft barrier reply Switch finished processing sent by controller

Table 7.2 shows the list of messages that are sent between the controller and the

switches, and their description. Whereas ofp flow mod and ofp stats request messages

are generated by the controller, the ofp packet out messages are sent by the switches.

Table 7.2: Types of messages in POX controller

Message Sender Command Meaning
Switch ofp packet out Sending packets from the switch
Controller ofp flow mod Flow table modification
Controller ofp stats request Requesting statistics from switches

The types of statistics sent from the switch to the controller are listed in Table 7.3.

These statistics range from the description of the switch, flow tables, to the status of

queue in the switch.

7.1.2 Topologies, Traffic Traces, and Performance Metrics

Our experiments are conducted using real traces from SNDlib [91], in particular the

GEANT dynamic traffic trace of the European research network.
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Table 7.3: OpenFlow statistic types and the corresponding POX
commands

Event OpenFlow Stats Type
SwitchDescReceived ofp desc stats
FlowStatsReceived ofp flow stats
AggregateFlowStatsReceived ofp aggregate stats reply
TableStatsReceived ofp table stats
PortStatsReceived ofp port stats
QueueStatsReceived ofp queue stats

Figure 7.1: GEANT network topology a) Map view, b) Graph
view

Figure 7.1 shows the GEANT topology used in our experiments [91]. The number

of nodes and bidirectional links are 22 and 36, respectively. Traffic demand matrices

are aggregated for 15 minutes from a 4-month duration trace. There exists total

11460 traffic demand matrices. The number of flows in each traffic demand matrix

ranges from 82 to 462. To show traffic awareness in our experiments, different traffic

volumes ranging from 20% to 90% with respect to the network capacity are used.

Table 7.4 presents the performance metrics of interest measured in our experi-

ments, namely average power consumption of switches, RESDN value, percentage of
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Table 7.4: Table of Metrics and Measurement Units

Metric Unit / Description
Average Power Consumption of Switches Watt
RESDN metric as percentage
Links saved percentage of links saved
Average path length #hops
Throughput Mbits/sec
Delay milliseconds
Traffic Proportionality [0,1]

links saved, average path length, throughput, delay, and traffic proportionality. The

network performance is analyzed in terms of average path length, throughput and

delay.

Pswitch = Pbase + Pconfig + Pcontrol (7.1)

Equation 7.1 shows the total power consumption of a switch (Pswitch) as the sum

of Pbase, Pconfig and Pcontrol [92]. Pbase is the power consumption for keeping the

switch on without any active ports. The configuration power consumption Pconfig is

calculated as

Pconfig =

NactivePorts∑
i

ci.Pport (7.2)

where ci is the percentage of the maximum line speed of the port and Pport is the

power consumption of a port at full capacity measured in watt.

Equation 7.3 shows the power consumption of control Pcontrol where rPacketIn and

EPacketIn are the rate and energy consumption of PacketIn. rFlowMod and EFlowMod

are the rate and energy consumption of the FlowMod operations.
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Pcontrol = rPacketInxEPacketIn + rFlowModxEFlowMod (7.3)

The ratio of energy saving metric for SDN is calculated as

RESDN =

∑
∀eij Xij∑
∀eij Lij

where Lij is binary variable that denotes the status of edge eij and Xij is a binary

variable that tells if the utility of the link is between Umin and Umax. Although,

our primary goal is energy saving, RESDN also captures performance by the Umax

value.

The percentage of links saved is calculated as

Links saved = 100(1−
∑

∀eij Lij

|E|
) (7.4)

The average path length in terms of average number of hops is calculated as

Average path length =

∑
∀f

∑
∀eij(Fij)

|F|
(7.5)

Throughput is calculated as the amount of data transferred per unit of time. In

Mininet, we use Iperf command to measure the throughput of source and destination

pairs. In the experiments, we measure the average throughput of all source and

destination pairs.

Delay is calculated as the amount of time needed for data packets to be transferred

from their source to destination. In our experiments, network delay is measured as the

time it takes for the packets of a flow to start at the source and reach at the destination

node. The delay is measured both on the Mininet side and POX controller.

Traffic proportionality is defined as the ratio of the traffic volume percentage to

the network power consumption and is computed as
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(
%Traffic Volume

M

∑
∀Zi

SPi

|Z|
+N

∑
∀eij Lij

|E|

)(M +N) (7.6)

where M:N is the ratio of the power consumption of the switches to the links. In these

experiments, the ratio M:N is used as 3:1 [17].

7.1.3 Algorithms Used for Comparison

The heuristics algorithms we used to compare with MaxRESDN heuristics are lis-

ted in Table 7.5. The methodology in [53] formulates the problem with MIP and

proposes four heuristic algorithms, namely Shortest Path First (SPF), Shortest Path

Last (SPL), Smallest Demand First (SDF), and Highest Demand First (HDF). The

first flow is assigned its corresponding shortest path, the succeeding flows are as-

signed paths where the change in energy consumption is minimized. Each heuristics

algorithm uses a different criteria to sort the flows and processes them in the corres-

ponding order. The four variations of the algorithms first sort the flows according to

the shortest path first, shortest path last, smallest demand first, and highest demand

first.

As explained in Section 6.3, the objective of NSP algorithm is to re-route flows

passing through the under-utilized links to the next shortest path. NMU, on the

other hand, chooses the path that has the link with maximum utility. While NSP

gives priority to performance, NMU focuses on maximizing the utility of active links.

Both NSP and NMU are not only ordering independent but can also be applied on top

of other algorithm outputs to improve efficiency. The B heuristics is the application of

NSP or NMU algorithms on top of the results of SPF, SPL, SDF, or HDF algorithms.

It refers to the best outcome (B) in terms of energy efficiency.

Table 7.6 shows the values of Umin and Umax parameters used in the experiments

for different percentage of traffic volumes. The values that maximize the number of
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Table 7.5: Table of heuristics

Abbreviation Description
SPF [53] Shortest Path First
SPL [53] Shortest Path Last
SDF [53] Smallest Demand First
HDF [53] Highest Demand First
NSP [17] Next Shortest Path
NMU [17] Next Maximum Utility
B [17] Best Combination of NSP (NMU) with others
MaxRESDN Maximize RESDN

links saved are determined by a greedy-based approach. A detailed analysis of these

parameters is presented in Section 7.2.4.

Table 7.6: Parameters of Umin and Umax Used

Traffic volume percentage 20 30 40 50 60 70 80 90
Umin 31 28 30 25 20 19 15 12
Umax 82 85 90 90 92 95 95 95

7.1.4 Types of Switches

Table 7.7 shows the parameters used in the power calculation of two hardware switches

(NEC PF 5240 and Zodiac FX) and one virtual switch Open vSwitch (OvS) which are

OpenFlow enabled. NEC PF 5240 is a hybrid switch technology that adds OpenFlow

protocol to the traditional network functionality [21, 92]. Open vSwitch (OvS) is a

multilayer virtual switch designed for enabling network automation by supporting

various protocols including but not limited to OpenFlow [92, 93]. Zodiac FX is an

OpenFlow switch designed for small scale uses [94].
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Table 7.7: Switch Power Consumption parameters

Parameters NEC PF 5240 [21,92] OvS [92] Zodiac FX [94]
Base[W] 118.33 48.7397 15
Pport[W] 0.52 Na 0.15
EPacketIn [µ W/packet] 711.30 775.53 775.53
EFlowMod [µ W/packet] 29.25 356.743 1455.13

7.2 Experimental Results

This section presents our extensive experimental results in terms of switch power

consumption, RESDN and energy efficiency, network performance, and analysis of

the link utility interval parameters.

7.2.1 Switch Power Consumption Results

Figure 7.2 shows the average power consumption of the switches for the NEC PF 5240

OpenFlow-based switch versus traffic volume. As compared to the best combination

(B) of NSP or NMU with other algorithms (Table 7.5), MaxRESDN power consump-

tion is on average 6 to 9 watts less than the B algorithm. As compared to NSP and

NMU [17], MaxRESDN has shown up to 14.7 and 10.7 watts less in power consump-

tion, respectively. This indicates that through maximizing the RESDN parameter,

improvements in energy savings are achieved for all traffic volumes.

Figure 7.3 shows the power consumption of Zodiac FX switch for NSP, NMU,

B, and MaxRESDN algorithms versus traffic volume. Similar to the previous ex-

periments, the average power consumption of switches is proportional to the traffic

volume. However, power consumption of MaxRESDN is on average 3.2, 2.3, and 2

watts less than NSP, NMU and B algorithms, respectively.

Figure 7.4 shows the power consumption of OvS switches versus traffic volume.

Results show that as the traffic volume increases, the average power consumption of

switches also increases. The MaxRESDN algorithm exhibits 5.8, 10, and 8.9 watts

less energy consuming as compared to B, NSP, and NMU respectively.
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Figure 7.2: Power Profile for NEC PF 5240 switch in watt vs a
range of traffic volume from 20% to 90%

Overall, Figures 7.2, 7.3, and 7.4 show that MaxRESDN is the most energy ef-

ficient as compared to the other algorithms (Table 7.5). Our findings indicate that

maximizing the RESDN value helps minimizing the energy consumption. This is

mainly because enforcing links to operate within the minimum and maximum utility

parameters minimizes the number of active ports.

7.2.2 RESDN and Energy Efficiency Results

Figure 7.5 shows the RESDN values of all heuristic algorithms as the traffic volume

increases. The MaxRESDN algorithm achieves the highest RESDN value which is

22% better for low traffic and 10% better than others for high traffic volume. This

is because unlike the other algorithms whose objective is to minimize the number of

links used in the network, MaxRESDN algorithm aims at maximizing the RESDN

value, which increases the utility. In particular, for low traffic, it is more likely for

flows that pass through overutilized links to be redirected to underutilized links.
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Figure 7.3: Power Profile for Zodiac FX switch in watt vs a
range of traffic volume from 20% to 90%

Figure 7.6 shows the energy saving in terms of the percentage of links put to

sleep. The B heuristics which is the best combination of the NSP or NMU algorithm

exhibits the highest energy saving, while NSP and NMU have the lowest energy

saving. MaxRESDN heuristics saves 38% for 20% traffic volume and 6.5% for 90%

traffic volume.

Figure 7.7 presents the power consumption of all algorithms for the Zodiac switch.

The results show that MaxRESDN switch power consumption is 16 to 22 watts which

is on average 4 watts less than the SDF algorithm. MaxRESDN also demonstrated a

power consumption on average 2 watts less than the B algorithm. These results show

that by maximizing the RESDN value which is based on link utilities, by doing it frees

ports on switches, hence it manages to reduce the power consumption of switches.
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Figure 7.4: Power Profile for OvS switch in watt vs a range of
traffic volume from 20% to 90%

7.2.3 Network Performance Results

Figure 7.8 shows the average path length (in terms of the number of hops) versus the

traffic volume, and is calculated as given in equation 7.5. The NSP heuristics achieves

the best path length since its objective is redirecting flows to the next alternative

shortest path. The decisions are made periodically by selecting the underutilized

links as candidates then redirecting the flows. B heuristics which is the combination

of NSP and the best of SPF, SPL, SDF, and HDF in terms of energy saving shows

improvement in the average path length. This indicates that our previous heuristics

still can be applied on top of other algorithms and improve both performance and

energy saving. The MaxRESDN heuristics performance is closer to NMU that has

the objective of maximizing the utilities of the links, by directing the flows passing

through underutilized links to more utilized links.

The experimental results show that NSP and NMU have the lowest average path

length but least energy saving, since they first consider performance rather than
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Figure 7.5: RESDN Values NSP,NMU, SPF, SPL, SDF, HDF,
B and MaxRESDN heuristic algorithms versus a traffic volume

ranging from 20% to 90%

energy efficiency. The other algorithms in [53] exhibit better energy saving than

NSP and NMU but worst average path length. This is because their objective is

energy saving primarily. However, applying NSP and NMU on top of them increases

energy saving. NSP and NMU balance the trade-off between performance and energy

saving. The MaxRESDN heuristics, as compared to the other heuristics, has the

maximum RESDN value. By maximizing a single RESDN value, the MaxRESDN

has shown closer results to the best combination algorithm in terms of both energy

saving and average path length. Assuming that the optimal value for Umin and

Umax parameters is found for a given traffic, the MaxRESDN heuristics gives the

maximum RESDN that achieves traffic proportional energy consumption and keeps

the trade-off between energy efficiency and performance.

Figure 7.9 shows the throughput of the algorithms in Mbps with respect to the

volume of traffic that ranges from 20% to 90%. The throughput measurement is

done on Mininet using the iperf command. The average bandwidth of links is set
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Figure 7.6: The percentage of links saved versus traffic volume
ranging from 20% to 90%

to 100 Mbps and the average flow rate is 7.79 Mbps. Results show that the NSP

algorithm exhibits the highest throughput for all the traffic range and is followed by

NMU and MaxRESDN. This is because, for the three heuristics, the algorithms are

initialized with the shortest paths. The maximum RESDN value by MaxRESDN as

shown in figure 7.5 for all the traffic volume exhibits the least power consumption

and also throughput close to that of NSP and NMU. For all the algorithms, the

throughput decreases slightly as the traffic size increases after 30%. Under normal

conditions where energy saving is not applied, throughput is meant to increase until

the traffic volume is near 100% then decreases because of congestion. However, in

energy saving routing algorithms, the attempt is to minimize the number of active

links and switches. Therefore, the average throughput would decrease even when the

traffic volume is near 50%. The trend of throughput in energy saving algorithms is

different from non-energy saving performance focused heuristics.

Figure 7.10 shows the delay of the heuristics algorithms measured in milliseconds
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Figure 7.7: The average power consumption of the Zodiac switch
measured in watts versus traffic volume ranging from 20% to 90%

with respect to traffic volume ranging from 20% to 90%. The NSP algorithm exhibits

the least delay followed by NMU. The reason for this is because both NSP and NMU

are initialized by the shortest paths. The SDF algorithm is 3 to 5 milliseconds worse

in delay than the NSP algorithm. The MaxRESDN algorithm has a 1 millisecond

to 3 milliseconds close to the NSP algorithm. It can be observed that for all of the

energy saving heuristics, the delay tends to slightly increase with the increasing traffic

volume. This is because all the energy saving algorithms attempt to minimize the

number of links and switches used.

Figure 7.11 shows the traffic proportionality of heuristics for the range of traffic

volume from 20% to 90%. The MaxRESDN heuristics have demonstrated the max-

imum traffic proportionality value. The B heuristics, which is an attempt of keeping

the trade-off between performance and energy saving, has a closer traffic proportion-

ality to our approach.

Figure 7.12 shows average traffic proportionality of all traffic volumes from 20%
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Figure 7.8: Average path length in terms of number of hops
versus traffic volume ranging from 20% to 90%

to 90% for MaxRESDN algorithm compared with the other algorithms (in Table

7.5). The MaxRESDN heuristics exhibits the largest traffic proportionality in terms

of link energy consumption. NSP algorithm has the lowest traffic proportionality.

As compared to those heuristics which give priority to network performance such as

NSP and SPF, our approach is 4 to 5% better in traffic proportionality, and 3 to 4%

better in traffic proportionality than heuristics that give priority to energy saving and

maximizing utility such as NSP and HDF.

7.2.4 Analysis of Utility Parameters

A challenge with the MaxRESDN algorithm is its dependence on the link utility

interval parameters. The trends of link utility interval parameters Umin and Umax

versus traffic volume and percentage of links saved are analyzed in this subsection.

For the fixed Umax value to 95%, we study the effect of the Umin parameter on

the percentage of links saved for traffic volume ranging from 20% to 90% Umin.
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Figure 7.9: Throughput of heuristic algorithms in Mbps versus
a range of traffic volume from 20% to 90%

Likewise, for the fixed Umin value to 30%, we study the effect of Umax value on

the percentage of links saved. Understanding the relations and the trend for values

of Umin and Umax versus the traffic volume would be significant in predicting the

utility parameters for future use.

Figure 7.13 shows the effect of the Umin parameter on the percentage of links

saved for traffic volumes 20% to 90%. Each line represents a traffic volume. Fixing

Umax to 95%, and ranging Umin value from 10% to 90%, the trend shows that the

value of the Umin that maximizes the links saved increases till it reaches a peak then

drops. As the traffic volume increases the peak Umin value increases. The analysis

exhibits similar trend for different traffic volumes.

Figure 7.14 shows the effect of the Umax value on the percentage of links saved for

traffic volumes from 20% to 90%. Each line shows the traffic volume the experiment

is conducted. The Umin parameter is set to 30% and the Umax value ranges from

40% to 100%. For every flow size, the Umax value that maximizes the number of
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Figure 7.10: Delay of heuristic algorithms in milliseconds versus
a range of traffic volume from 20% to 90%

links saved increases till it reaches its peak then it mainly remains constant except

for the 20% traffic volume where there is a slight decrease.

Figure 7.15 shows the relationship between the traffic volume and the Umin value

that maximizes the energy saving. It shows that as the traffic volume increases the

Umin that maximizes energy saving increases. The reason for this is because the

utilities of the links increase with traffic volume. For example when the percentage

of traffic is 90%, the link with minimum utility is above 40%. Which means that if

we pick Umin value less than 40%, the candidate list would be empty. Similarly as

the traffic volume decrease to 20%, the link utilities starts from 12% and we will have

more links in the candidate list. According to results on figures 7.13 and 7.15, the

problem that need to be solved hence is to find or estimate the peak Umin value for

a given traffic volume.

Figure 7.16 illustrates the trend of Umax value in relation to traffic volume by

fixing the value of Umin the at 30%. It demonstrates that as the volume of traffic
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Figure 7.11: Traffic proportionality for the range of traffic
volume from 20% to 90%

increases, the Umax maximizing the energy saving exhibits an increasing trend. It

also shows that for a traffic volume which is more than 72%, the Umax value keep

a constant value near 95%. According to the results depicted on Figure 7.16 and

reffig:tanalysisofumin, picking the right value of Umin and Umax has a direct impact

on the performance of the RESDN algorithm.
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Chapter 8

HyMER: A Hybrid Machine

Learning Framework for Energy

Efficient Routing in SDN

8.1 Introduction

Several computing disciplines use machine learning as a tool to discover patterns in

structured, semi-structured and unstructured data. Recently, there exists an increas-

ing use of machine learning techniques in software defined networks (SDN) for traffic

prediction, routing optimization, QoS prediction, resource management, and secur-

ity [95–100]. Major ICT companies (e.g. Facebook, Yahoo, Microsoft, Huawei, Cisco,

and Google) has adopted SDN paradigm in their data centers and network equipment

designs [1, 2].

In SDN with the logically centralized controller, a massive amount of information

is generated due to switch-controller communication. Events such as link up, link

down, switch down, switch up, new packet arrival, trigger information to be sent to

the controller. Likewise, flow modify, flow drop, and statistics related information are

generated and can be stored within the controller. With the ever increasing amount

of network information, machine learning techniques are formidable and play vital
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role in discovering knowledge from the stored network information [97–99].

One of the most prominent challenges of the present world is energy since it has

both economic and ecological issues. 10% of the global energy consumption is due to

ICT sector out of which 2% is from network components. By 2020 the total electricity

cost of cloud data centers is expected to increase by 63% [9, 101]. SDN enables to

achieve traffic proportional energy consumption through dynamic re-routing of flows.

The practical solution is to sleep/turn off underutilized components during low traffic

load. However, there is a trade-off between network performance and energy efficiency

since turning off network components for the sake of efficiency would have an adverse

effect on network performance.

In this work, we propose a novel hybrid machine learning based framework named

HyMER that combines the capabilities of SDN and machine learning for energy effi-

cient routing. The three modules of HyMER framework are traffic manager, topology

manager, and the learning machine. The framework combines the advantages of

supervised and reinforcement learning models. Unlike other machine learning ap-

proaches that use a single algorithm and mainly focus on a single objective, HyMER,

not only does exploit the advantages of supervised and reinforcement learning al-

gorithms but also maintains the trade-off between network performance and energy

efficiency. To the best of our knowledge, our approach is the first that proposes a

hybrid machine learning solution for energy efficiency and network performance in

SDN.

We have proposed integer programming (IP) formulations and heuristics to main-

tain the trade-off between network performance and energy efficiency in SDN [15–17].

However, the efficiency of the heuristics proposed, namely Next Shortest Path, Next

Maximum Utility, and MaxRESDN, depends on the values of the link utility interval

parameters that were previously determined by brute force. In this work, we use the

supervised component of HyMER framework to predict the optimal values of the util-

ity interval parameters to achieve the highest energy saving and acceptable network

performance. The reinforcement component is used to achieve energy saving and
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network performance by interacting with the network environment, hence, is able to

handle the dynamic traffic and network status changes. The reinforcement component

can learn from scratch or can be applied on the top of the supervised component.

The novelty of HyMER lies in the fact that it has the benefits of energy efficiency,

network performance, dynamicity, and computational feasibility. Our approach not

only maintains the trade-off between network performance and energy efficiency but

also is able to capture the network dynamic nature in computationally feasible time.

Switches, links and ports are energy saving capabilities in SDN. Energy efficiency is

achieved by minimizing the power consumption of switches and the number of active

links. Better network performance refers to the minimum average path length of

flows, maximum throughput, and minimum delay. Dynamicity of an energy saving

approach in SDN environment is the ease of adapting to the changing topology and

traffic. Computational feasibility is the measure of how practical the proposed solution

is in terms of time and space requirements.

The contributions of this work are as follows.

• We propose a hybrid three module machine learning framework, namely HyMER,

for traffic proportional energy saving in SDN. The modules are Traffic Manager,

Topology Manager, and Learning Machine. To the best of our knowledge, this is

the first work to consider the learning machine as a module in an SDN controller

for energy saving and network performance.

• Most of the machine learning approaches proposed for SDN are for traffic clas-

sification, routing, intrusion detection, or attack prediction. To the best of our

knowledge, our HyMER framework is the first in applying machine learning to

energy saving and network performance combined using both supervised and

reinforcement learning.

• We propose a full-fledged supervised machine learning method that starts from

feature extraction, applies feature reduction, and performs testing. Our res-

ults indicate more than 65% feature size reduction using Principal Component
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Analysis (PCA). The supervised component predicts the link utility interval

parameters with an accuracy of more than 70%. The proposed refine heuristics

converges the predicted values to the optimal values with a speedup of 15X to

25X as compared to the brute force approach.

• We also propose a reinforcement learning method that minimizes energy con-

sumption while keeping acceptable performance for dynamic routing in SDN.

To the best of our knowledge, HyMER reinforcement component is the first to

model both network performance and energy efficiency simultaneously. The re-

inforcement method converges to the maximum energy saving with a minimum

of 100 to a maximum of 275 episodes. Episodes are the number of iterations

which is the measure or time it takes for the reinforcement learning agent to

reach the terminating state.

• We also demonstrate that combining the supervised and reinforcement methods

not only does capture the dynamic change more efficiently but also increases

the convergence speed. To the best of our knowledge, in the context of SDN,

our approach is the first to combine supervised and reinforcement learning to

jointly achieve energy saving and network performance. Initializing the rein-

forcement learning with the outputs of the supervised component speeds up the

convergence by 2X on average.

• Experiments are conducted with Mininet and POX controller using real word

network topologies and traffic traces from SNDLib [91]. In particular, Abiline,

GEANT, and Nobel-Germany topologies and dynamic traffic traces are utilized.

Switch power consumption is simulated using the SDN enabled switch NEC [21].

• HyMER heuristics has shown up to 50% link saving, and also exhibits up to

8.7 watts, 14.7 watts, and 10 watts less power consumption on average as com-

pared to state-of-the-art utility based energy saving approaches for the Abiline,

GEANT, and Nobel-Germany topology and real world traffic traces respectively.
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• Our approach exhibits average path length, throughput, and delay closer to

approaches which give priority to performance. However, it is on average 2

hops less in average path length, 15 Mbps more in throughput, and 5 ms less

in delay as compared to approaches that give priority to energy saving. The

comprehensive experiments demonstrate that HyMER maintains the trade-off

between performance and energy efficiency.

The remainder of the chapter is organized as follows. Section 8.2 presents prelim-

inaries about machine learning and related work. The HyMER framework is described

in Section 8.3. The supervised and reinforcement learning components of the HyMER

framework are presented in Sections 8.4 and 8.5 respectively.

8.2 Preliminaries and Related Work

8.2.1 Machine Learning Preliminaries

Table 8.1 shows the three categories of machine learning techniques namely, super-

vised, unsupervised, and reinforcement. In supervised learning, an example input

data and its label (output) are provided. The goal of supervised learning is to infer

the unknown function which maps the example training inputs into the output. The

tasks in supervised learning are classification and prediction (regression) if the ex-

ample output data type is categorical or numeric value respectively. In this approach,

both example data and its corresponding output is provided. However, labeling the

example data should be done by experts; hence, it is a time taking and labor-intensive

task. In addition, such approaches have training scalability issues as the size of the

training data gets larger.

Unsupervised learning, on the other hand, is only given the example unlabeled

inputs but not their corresponding output. The task, therefore, is to uncover a hidden

pattern in the unlabeled input data. Although such an approach avoids the labor-

intensive and time taking labeling task, it may end up uncovering a pattern that
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Table 8.1: Types of Machine Learning Techniques

Categories Task Examples Algorithms

Supervised
Function from
labeled data

Classification
Prediction

Regression, SVM,
Neural Net

Unsupervised
Pattern from
unlabeled data

Clustering A
ssociation

K-means,
association rules

Reinforcement Learn by interaction
Exploitation
Exploration

Q-Learning,
TD, DQN

may be of no interest. Reinforcement learning, on the other hand, does not have an

example of input data. It learns by interacting with the environment through taking

actions and collecting rewards. Such approaches are more suitable if the input data

is delayed. However, reinforcement learning has a drawback of taking more time to

converge [96].

In machine learning, feature extraction is a technique used to select a subset of

data more relevant to finding interesting patterns. Feature extraction involves feature

representation and feature reduction. The performance of machine learning method

depends on the choice of features. Complex features require memory, computational

power, and longer training time.

Feature reduction is a method of reducing the dimension of the feature set. Dimen-

sion reduction is the process of reducing the number of random variables under con-

sideration by obtaining a set of principal variables [102–104]. Major techniques used

in machine learning are Principal Component Analysis (PCA) [105], Factor Analysis

(FA), Projection Pursuit (PP), and Independent Component Analysis (ICA) [106]

8.2.2 Machine Learning in Networking

The use of machine learning techniques for energy efficiency in traditional networks

has been studied [107], where the techniques are applied in assisting resource manage-

ment, power distribution, demand forecasting, workload prediction, virtual machine

placement prediction, memory assignment, CPU frequency, and traffic classification.

The techniques range from supervised learning, unsupervised learning, reinforcement



90
Chapter 8: HyMER: A Hybrid Machine Learning Framework for Energy Efficient Routing

in SDN

learning, to hybrid methods.

There also exist several attempts in integrating machine learning to SDN. Ap-

proaches for enabling machine learning on SDN are discussed in [95, 108]. Table 8.2

shows the list of machine learning techniques and algorithms used in SDN, and their

objectives. The objectives of using machine learning range from optimizing QoS [97]

in terms of delay [99, 109, 110], congestion [111], and reliability [98] to ensure se-

curity in terms of attack prediction and classification. Supervised machine learning

algorithms such as Neural Networks (NN), Hidden Markov Model (HMM), Bayesian

networks are used. Reinforcement learning (RL) methods are also used to capture

the dynamic nature of the network.

Table 8.2: Machine Learning Methods used in Software Defined
Networking

Example Algorithm ML Type Objective Domain
[97] NN Supervised QoS General
[98] HMM Supervised Reliability Wi-Fi
[99] NN Supervised Delay General
[100] RL based NN RL Loss rate and Security Data center
[111] QAR RL Congestion and fast delivery Data center
[112] NN and Bayesian Supervised DDoS Attack General
[109] RL RL Delay General
[110] DRL RL Delay General

A meta-layered machine learning approach composed of multiple modules is pro-

posed in [97], where the goal is to mimic the results of heuristics used in traffic

engineering to maximize the quality of service (QoS). However, each neural network

per module is trained separately and each trained model operates separately for each

demand pair. The drawback of this approach is that it does not represent the rela-

tionships between the demands.

Seer is a configurable platform for network intelligence based on SDN, knowledge

centric networking, and big data principles, where the goal is to accommodate the

development of future algorithms and application that target network analytics [98].

It is also flexible in a sense that it allows high-level users to decide what network
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information to use for their goals. By focusing on reliability, the platform aspires to

provide a scalable, fault-tolerant and real-time platform, of production quality.

Another machine learning based approach NeuRoute is a dynamic framework

which learns a routing algorithm and imitates its results using neural networks in

real-time. NeuRoute is implemented on top of Google’s TensorFlow machine learning

framework and tested on POX controller. Experimental findings on GEANT topology

show that the NeuRoute is faster than dynamic routing algorithms [99].

The work in [100] proposed a neural network based reinforcement learning method

to design an SDN based secured overlay network for geographically distributed data

centers communications over the public Internet. Experiment results show that the

proposed Cognitive Routing Engine (CRE) finds sup-optimal QoS paths as compared

to the optimal IP paths.

A reinforcement based QoS-aware Adaptive Routing (QAR) method for multi-

tenancy controller environment is proposed in [111]. Considering a multi-layer hier-

archical SDN, the approach leverages the scalability of the reinforcement learning

approach in adapting to the changing environment. The objective of the approach is

to maximize QoS in terms of congestion avoidance and fast packet forwarding. The

reward function for the reinforcement learning is based on QoS.

Machine learning in SDN is also used in predicting the host to be attacked [112]

using C4.5 decision tree classifier, Bayesian Network, Decision Table, and Naive-Bayes

algorithms. Prediction of DDoS attack using neural network is implemented in NOX

controller [113].

In SDN, the controller is logically centralized. Practically, centralized control

is achieved through multiple controllers working in a distributed but coordinated

manner. Reinforcement learning is used to aid the dynamic routing in SDN via

distributed controllers. Emulation results show that the proposed algorithm not only

captures a dynamic traffic demand but also exhibits improved QoS in terms of loss

rate and delay as compared to OSPF (Open Shortest Path First) routing protocol

implemented on SDN controller [109].
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The work in [110] uses Deep Reinforcement Learning (DRL) algorithm to optimize

routing by minimizing network delay. Given the traffic matrix, the approach uses deep

learning as a black-box to find all optimal paths from all sources to all destinations.

The DRL attempts to learn the paths that minimize network delay iteratively. Ex-

perimental results show that the approach performs better than traditional dynamic

routing algorithms with respect to computation time.

In contrast to the existing machine learning based solutions proposed for SDN

which are mainly on security, traffic classification [95], and QoS in terms of delay,

congestion, and throughput, our framework models performance and energy efficiency

at the same time using both supervised and reinforcement learning. We present a

method of representing network traffic as features, perform feature size reduction

using mathematically proven techniques, provide heuristics to increase the accuracy

of the prediction to 100%. Moreover, we have also modeled a dynamic energy efficient

routing algorithm for SDN using reinforcement learning. In our approach, the link

utility interval parameters are predicted for the MaxRESDN heuristics algorithm [16].

8.3 HyMER Framework Description

We propose HyMER framework that utilizes machine learning techniques to achieve

traffic proportional energy efficiency in SDN. Our approach is hybrid in a sense that it

combines the best features of supervised and reinforcement learning. The objectives

of the HyMER hybrid framework are to jointly formulate energy efficiency and net-

work performance, to propose generalized heuristics algorithms, and to apply machine

learning approaches on SDN controller that learn from traffic, topology and solution

history.

Figure 8.1 illustrates the HyMER framework consisting of three modules: traffic

manager, learning machine and topology manager. The information of the traffic gen-

erated by the applications is passed to the traffic manager that stores details of traffic

information in terms of source-destination pairs, rate, starting time of each traffic
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flow, and the total amount of flows in the repository. The status of the network and

the topology information are stored in the repository. The learning machine should

give an optimal sub-graph based on the traffic volume by learning from historical

data in case of the supervised, or learns by interacting with the network environment

in case of the reinforcement learning. Low traffic load would result in a sub-graph

with a smaller number of active links and switches as compared to a sub-graph in the

case of high traffic load. The topology manager module is responsible for retrieving

information about the organization and status of the network components and store

it in the repository. It also keeps track of cost information of links and forwarding

switches. If a network component fails or is out of service, the topology manager

updates the global topology information.

Repository

Traffic Manager

Supervised
Topology 
Manager

Traffic info

Subgraph

Topology 
info

ControllerController

Reinforcement

Learning Machine

H1 H2 H3 H4

H5

H1 H2 H3 H4
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Figure 8.1: HyMER: A Hybrid Machine Learning Framework
for Energy Efficient Routing in Software Defined Networking

There exist two machine learning components inside the learning machine module,

namely supervised learning component and reinforcement learning component. The

supervised learning component learns from historical labeled training data. This com-
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ponent is appropriate when there exist large amount of input and their corresponding

output data. Deciding on the amount of training data is not a straightforward task

but collecting as much data as possible is of practical significance. The more data we

have the better the learning is. If there is small amount of training data, the model

may have highest training accuracy but would perform less when tested with unseen

new data. This is called overfitting. The reinforcement learning module works even if

there is no sample training input and output data. It learns by iteratively interacting

with the network environment by taking actions and accumulating rewards.

8.4 The Supervised Learning Component of the

HyMER Framework

Figure 8.2 illustrates the supervised learning component of the HyMER framework.

This component consists of three stages: feature extraction, training, and testing.

The feature extraction stage extracts features from the traffic, topology, switch, and

link data, and represents them using a matrix to perform size reduction. In this work,

we represent the traffic matrix (X) where each row i is a traffic snapshot (Sni) and

the columns are source destination switch pairs. Each value in the matrix repres-

ents the traffic flow rate between the source and destination for the corresponding

traffic snapshot. The training stage sets the hyperparameters of the training model

using cross-validation, and then builds a training model. The testing stage makes a

prediction on the next sub-optimal graph that is proportional to the traffic volume.

The refining prediction part of the testing stage improves the predicted state using a

heuristics algorithm.

8.4.1 Feature Extraction

The first stage of the supervised learning component has two parts; feature repres-

entation and feature reduction. The type of data that we use and how we model it

for the training stage is called feature representation. Network modeling and traffic
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Figure 8.2: The supervised component of the HyMER framework

representations need to reflect the network environment. Feature representation has

a direct effect on the performance of the machine learning model. Feature reduction

deals with minimizing the size of the data without losing valuable information.

Feature Representation

The network is represented as a graph where the nodes and the edges correspond to

the switches and the links, respectively. A traffic flow is represented by the source

node, destination node, and the flow rate. If the number of switches in the network

is m, then the column size of the traffic matrix X is represented as

d = mx(m− 1)

If we extract n number of snapshots for training data, then the dimension of the

traffic matrix X

|X| = nxd
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where n is the total number of traffic demand snapshots taken periodically.
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Figure 8.3: Example of network topology and traffic snapshot a)
The network is represented as a graph where the switches are the

nodes and the edges are the links b) A traffic snapshot

Figure 8.3.a shows an example graph representation of a network topology with 4

switches and 4 links. Figure 8.3.b represents both the network topology as a graph

and traffic demand from each node and their corresponding flow rates. Switch S1

has flow demands f1,2, f1,3, and f1,4 with flow rates 0.3, 0.1, and 0.2 units. Likewise,

there exist three distinct traffic flows from S2, S3, and S4.

Table 8.3: Traffic feature extraction and representation of snap-
shots of a network

Snapshot f1,2 f1,3 f1,4 f2,1 f2,3 f2,4 f3,1 f3,2 f3,4 f4,1 f4,2 f4,3
Sn1 0.3 0.1 0.2 1.2 0.4 0.1 1.5 1.3 1.1 1.2 2.2 1.3
Sn2 1.5 1.9 1.1 0.9 1 2.5 2.9 2.3 1.1 2.9 1.2 1.8
Sn3 1 1.2 2.7 1.4 3 2 2.5 1.4 1.9 3 1.3 1.2
Sn4 1 1.3 2.8 1.8 2.1 2.2 2.1 1.3 2.2 1.6 2.8 0.8

Table 8.3 shows how the traffic feature is extracted and represented in our approach

for the example topology in Figure 8.3.a. Each row in the table shows a snapshot

of the traffic. Each column represents the source destination pairs and the value

represents traffic flow rates between the source and destination. A snapshot of the

traffic and network status is taken periodically. For example, f1,2 column represents

the traffic flow with switch S1 as the source switch and S2 as the destination switch.
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The first row, snapshot Sn1 is the representation of the network snapshot of Figure

8.3.b. The flow rate f1,2 between switches S1 and S2 is 0.3. Similarly, the flow rates

of f1,3, f1,4, f2,1, and f2,3 are 0.1, 0.2, 1.2, and 0.4 units. Likewise, Sn2, Sn3, and Sn4

are example traffic snapshots of the network topology presented in Figure 8.3.

Feature Size Reduction

We utilize PCA (Principal Component Analysis) for feature size reduction in the

supervised learning component of HyMER. PCA is a linear combination of optimally-

weighted observed variables. The outputs of PCA are these principal components

whose numbers are less than or equal to the size of the original feature space. The

principal components are orthogonal to each other. PCA is commonly used in face

recognition, image classification, and unsupervised predictions.

Algorithm 8 shows the steps used in PCA for feature size reduction [114]. The

inputs to the algorithm are the traffic matrix Xnxd as stipulated in Figure 8.3 and

Table 8.3, and the number of principal components k. Line 1 computes the mean

vector X̄ of X. The dimension of X̄ is equal to the feature dimension d. Line 2 mean

normalizes the traffic matrix. Mean normalization is necessary because it makes

each feature component have the same standard deviation which helps all principal

components to have equal weight. The next step of PCA is to compute the covariance

matrix of the mean normalized data and compute the eigenvectors V and eigenvalues

E as stipulated on lines 3 and 4. Line 5 orders the V based on eigenvalues E in

descending order. The eigenvector corresponding to the maximum eigenvalue is at

the first position while the eigenvector corresponding to the minimum eigenvalue is

at the end of the list.

The next step in the PCA algorithm is to prepare the projection matrix W with

the top k principal components. However, selecting the value of k is a significant step

in PCA and a challenging task. Small k value reduces the feature size significantly

but preserves fewer information of the original data. The variance of the principal

components shows the direction of the eigenvector corresponding the to maximum
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Algorithm 8 PCA: Reduce the traffic matrix Xnxd to Xnxk and produce the projec-
tion matrix Wdxk

Input: Traffic matrix Xnxd and k the number of principal components
Output: Feature data Xnxk and projection matrix Wdxk where k is the number of
principal components and d is

1: X̄ ←
d∑
i=1

Xi . mean of X

2: T ←X - X̄ . mean normalize T
3: C ← 1

n
(X − X̄)T (X − X̄) . C is the covariance matrix

4: V,E ← eig(C) . computer eigen value and vector
5: V ← sortdesc(V,E) . sort V based on E
6: W ← eigenvecsk . Projection matrix W dxk

7: Xnxk ← XW . Project X on W space

eigenvalue that carries most of the information in the original unreduced data. The

larger the variance the more information the principal components carry. If we use

the whole principal components the variance would be closer to 100%, and if the

number of principal components chosen does not carry any information about the

whole matrix, the value becomes 0. The variance decreases while moving from the

first (largest) component to the last one. Line 6 computes the projection matrix

Wdxk. Line 7 reduces the dxn dimensional matrix X to dxk by projecting it over

the eigenspace W. The outputs of the algorithm are the projected matrix Xnxk and

the projection matrix Wdxk. The projection matrix Wdxk would also be used in the

testing stage of the supervised learning component to transform the unseen new traffic

matrix Xtxd
new to Xtxk

new.

8.4.2 Training

The training stage of HyMER has two parts: hyperparameter tuning and model

training. We use Principal Component Analysis (PCA) to reduce feature dimension

and train a regression model. The hyperparameter needed for the PCA algorithm

is the number of principal components k and the hyperparameters for the regression

model are the learning rate α ∈ (0, 1] and number of iterations. A learning rate

close to 0 takes longer training time. Since regression is an iterative approach, the
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number of iterations is the maximum number of repetitions the algorithm performs

before it converges or terminates. We use n fold cross-validation technique to pick

the right parameter k. In n-fold cross-validation [115], where our case is 10-fold cross-

validation, the original sample is randomly partitioned into ten equal size sub samples

where nine of the ten sub-samples are used for training and the remaining one is used

as validation. This process is repeated by making each sub-sample as a validation

set only once and as a training set nine times. The ten results from the ten-folds are

then averaged to produce a single estimation. The 10-fold cross validation is done for

various k values until the optimal k value that gives the maximum accuracy is found.

After tuning the parameters, the next step is to build a regression model by using all

the training dataset. The regression model is then ready to be used for predicting the

out puts of unseen data.

8.4.3 Testing

Testing refers to applying the trained model to predict the values for unknown new

traffic matrix. There exist two steps in this stage; prediction and refining. For a new

traffic matrix Ytxd with t number of snapshots, we use the projection matrix Wdxk to

reduce its size to Ytxk that is computed as follows.

Y txk = Y txdW dxk

Then, we use the regression model we built (as described in Subsection 8.4.2) for

prediction. In order to increase the accuracy of the model, Algorithm 9 is utilized.

The rationale behind the Refine algorithm is to increase the predicted Umin by step

size parameter α until the energy saving decreases and to decrease the value of the

predicted Umax by α until the energy saving remains constant. The steps taken by

increasing Umin and decreasing Umax by α until we get the optimal value is based

on the analysis of Umin and Umax parameters of the MaxRESDN heuristics in [15].



100
Chapter 8: HyMER: A Hybrid Machine Learning Framework for Energy Efficient Routing

in SDN

The inputs to the algorithm 9 are predicted Umin0, predicted Umax0, step size α,

and threshold β. The threshold parameter β is the terminating condition for the

algorithm that measures the energy saving difference between previous and current

Umin and Umax values.

Lines 2, 3, and 4 calculate the efficiency of the energy saving algorithm MaxRESDN

for the Umin parameter value of Umin0, Umin0−α, and Umin0+α respectively. The

MaxRESDN heuristics maximizes the Ratio for Energy Saving (RESDN) value of the

network environment. The larger the RESDN value the larger the energy saving and

the better the network performance is [15]. Lines from 5 to 9 if the change in Umin

changes the energy saving. Line 11 sets the terminating condition for refining the

value of the predicted Umin by checking if the difference between the energy saving

using the current Umin and the previous Umin is not greater than the threshold β.

Lines from 13 to 15 alliteratively reduce the Umax0 value until the energy saving does

not change according to line 17. The optimal values of Umin and Umax are found

on lines 16, and 17.
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Algorithm 9 Refine: Improves the predicted parameters Umin0 and Umax0 values
for better efficiency

Input: Predicted parameters Umin0 and Umax0, change α, threshold β.
Output: Improved parameters Umin,Umax

1: repeat
2: EEcurr ← EE(Umin0, Umax0)
3: EEprev ← EE(Umin0 − α, Umax0)
4: EEnext ← EE(Umin0 + α, Umax0)
5: if EEprev < EEnext then
6: Umin0 ← Umin0 + α
7: else
8: Umin0 ← Umin0 − α
9: end if

10: EEnew ← EE(Umin0, Umax0)
11: until ABS(EEcurr − EEnew) ≤ β
12: while EEcurr ≥ EE(Umin0, Umax0 − α) do
13: Umax0 ← Umax0 − α
14: EEcurr ← EE(Umin0, Umax0)
15: end while
16: Umin← Umin0

17: Umax← Umax0

8.5 The Reinforcement Learning Component of HyMER

Framework

8.5.1 Reinforcement Learning Preliminaries

Reinforcement learning is a machine learning technique where an agent learns about

the states of an environment through iterative interaction by taking a set of actions.

Each action the agent takes transforms the environment from one state to another.

The environment gives a reward value to each action taken by the agent. The agent

learns the actions that maximize the cumulative reward values [96].

Figure 8.4 shows how the reinforcement learning algorithm works. The agent

interacts with the environment by taking actions. The action taken changes the

environment from one state to the other. The agent then observes the state change

in the environment, and a reward value is given to the action. The goal of the
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Environment Agent

State

Action

Figure 8.4: Reinforcement learning

agent is to maximize the cumulative reward value through taking actions attractively,

observation of the environmental changes, and updating the reward for each action.

Despite a longer convergence time in comparison to supervised approach, rein-

forcement learning is the most appropriate machine learning method to model dy-

namic routing as compared to supervised and unsupervised learning. Unlike the

supervised learning technique (described in Section 8.3) which depends on historical

labeled training data, reinforcement-learning does not need labeled training data but

it rather learns from scratch by interacting with the environment.

A prominent and difficult step in modeling any problem with reinforcement learn-

ing is the definition of action, states, and a reward function. The size of the set of

actions and the number of states has a direct impact on the performance of the al-

gorithm. The reward function not only defines the objective to be achieved but also

plays a major role in the convergence of the algorithm.

8.5.2 Reinforcement Learning Model for SDN

Figure 8.5 shows the way we modeled the reinforcement learning for energy efficient

dynamic routing in SDN. The controller is an agent that learns by interacting with

the environment by taking actions and getting rewards. The environment comprises

the switches, links, and the traffic. Traffic is defined as a set of flows each with source

address, destination address, and flow rate in bits/sec. The state of the environment

at a given time is defined as the status of the links (active/inactive), the utility of

links, the status of the switches, and the traffic demand. The action is the list of links

(i.e. route) that the agent takes to deliver traffic flow from the source to destination.
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Figure 8.5: SDN controller reinforcement model implementation
for energy efficient routing

The controller interacts with the environment to learn the most energy efficient

path for a flow with source and destination. Each action At at time t changes state

St to St+1, where t is an episode in the learning. Rewards are calculated for each

action based on how energy efficient and how close the links to be chosen are to the

destination node. We model the reward at episode t as a matrix Rt where each row

represents traffic in terms of source-destination pair and each column represents the

set of actions which are the set of links. The reward matrix R0 is initialized as follows.

r0fx ∈ R0 ←



MaxR, fdst directly connected

link x

−MaxR, x is not active

1, Umin ≤ U(x) ≤ Umax

U(x)− Umin, U(x) < Umin

Umax− U(x), U(x) > Umax

(8.1)

where f represents a source-destination pair of traffic demand, fdst represents the

destination of flow f, x represents a link, and U(x) represents the utility of link x.

Equation 8.1 stipulates that the maximum reward value MaxR is given for the link

x which is directly linked to the destination of flow f . If the utility of the link x is
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less than the Umin or greater than Umax, it would be penalized with U(x)-Umin

and Umax-U(x) respectively. A maximum punishment of MaxR is given if x is not

active. For links with utilities between Umin and Umax, a reward value of 1 is given.

The goal of the reinforcement learning is to maximize the expected value of the

cumulative rewards and is calculated as

E(
∞∑
e=0

γeRe) (8.2)

where Re is a reward given in episode e, γe ∈ [0, 1] is discount rate at the episode,

and E is the expected cumulative reward value. An important trade-off that needs

to be balanced in reinforcement learning is the issue of exploration and exploitation.

Exploration mainly focuses on discovering new solutions to the problem at the cost

of taking the risk of getting less rewards. In our case, the agent can choose an

alternative link with minimum reward value aiming to find or explore a better reward

in the future.

Exploitation on the other hand takes a risk averse decision which tends to keep

the already acquired rewards and only takes alternative solution if it is better than

the previous one. In our routing case, the agent would choose another link only if it

can increase the cumulative reward value. Exploitation is more of a greedy approach.

The discount parameter γe is the way we maintain the trade-off between explor-

ation and exploitation at episode e. The discount parameter decreases the reward at

episode e by some factor between 0 and 1. The larger the discount parameter, the

lesser the reward is discounted, the closer the discount parameter is to 0, the more

the discount on the reward is. Hence, by setting the discount parameter to values less

than one, the agent can pick a link with lower reward value over higher ones. There

exist two approaches to set the value of the discount rate. One approach is to set

∀γe ← Γ, the other one is to have different value for each episode. In the latter, it

is first set at high value and then reduced at later steps like simulated annealing. In



Chapter 8: HyMER: A Hybrid Machine Learning Framework for Energy Efficient Routing
in SDN 105

this work, we set the value of γe ← Γ.

8.5.3 Formulation of Energy Efficient Dynamic Routing with

Q-learning Algorithm

Q-learning is a model-free value based reinforcement learning algorithm [116]. Q

learning defines a Q-value for each state-action pair, and iteratively maximizes the

Q-values by interacting with the environment.The state in our case is the status the

network components, and utility of links. State-action pair is the state of the network

and the next link to be chosen or the flow among the alternatives by considering one

state-action ahead. The Q-value of the next state-action is a measure of how valuable

the next action would be given the current state.

Algorithm 10 Q-Routing: Uses Q-learning algorithm to solve dynamic energy effi-
cient routing algorithm

Input: Q-table ← R0,Discount rate γ, Learning rate α,and State S
Output: Updated Q, Episode E

1: repeat(e∈ E) . For each episode
2: Choose Action A
3: Observe re, S

′
for taking action A

4: Q(S,A) ← Q(S,A)+ α [re+ γ maxA′ Q(S
′
,A

′
)-Q(S,A)]

5: S ← S
′

6: Update R .
7: until S is terminal

Algorithm 10, Q-Routing, shows a modification of the Q-learning algorithm for

dynamic routing in [117, 118] and [119] which were designed for finding the shortest

path and minimizing packet delivery time respectively. Our Q-routing algorithm is

different from them in two ways. First, the reward function is used to give the highest

value for the shortest path, but in our case, it gives the highest value if the path keeps

the utility of the links between the minimum and maximum utility values. This keeps

the trade-off between energy efficiency and performance. Second, the actions in our

case are the links, but in the [118,119], the nodes/switches are the actions.
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The inputs to the Q-Routing algorithm are the initial Q-table which is equivalent

to the reward matrix R0. Line 2 chooses an action randomly to start, then observes

the reward for the randomly picked action A, and also observe the next state S
′
. This

step is repeated until the flow reaches it destination. Through the iterative process,

paths of a flow my change depending on the cumulative reward.

The complexity of the Q-routing algorithm 10, given the agent knows the topology

and all actions, is O(|A||S|2) [120]. In this context, the actions are the number of

links and the states are the traffic demand pairs multiplied by the state of each link.

If u and v are the number of links and the number of traffic demand pairs in the

network respectively, the number of states equals uv, hence, the complexity of the

Q-routing algorithm is O(u3v2).

8.6 Usage of HyMER Framework Algorithms

There exist three algorithms in the HyMER framework. PCA and Refine algorithms

are parts of the supervised component of the framework. Q-routing algorithm is part

of the reinforcement learning component of HyMER. Except for PCA, the Refine and

Q-routing algorithms are heuristics. Figure 8.6 shows the usage of these algorithms

and we refer them as HyMER heuristics or HyMER in short.

As illustrated in Figure 8.6, the choice to start with the supervised component or

the reinforcement component depends on the availability of historical data. If there

exist historical data, the supervised component applies feature representation, feature

dimension reduction with PCA, model training, testing, and the refine heuristics is

used to predict the optimal Umin and Umax parameters. The parameters are then

used by the MaxRESDN algorithm. If there is a change in the environment due to new

flow arrival or update in the network status, instead of doing predictions and running

the MaxRESDN algorithm again, the reinforcement component acts relatively and

responds easily to the changing environment. In the case where there is no historical

data, the reinforcement component, using the Q-routing heuristics can learn energy
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Figure 8.6: The usage of HyMER framework algorithms

efficient paths for traffic flows.



Chapter 9

HyMER: Experimental Analysis

and Results

This section presents the comprehensive experiments we conducted to evaluate

the HyMER framework. First, we present our experimental platform, the perform-

ance metrics of interest, and the real world topology and traffic traces used in the

experiments. Then, we discuss briefly the energy efficiency approaches used for com-

parison. The next three subsections present results of the supervised component, re-

inforcement component, and network energy efficiency and performance, respectively.

In total there exist ten metrics out of which four of them (i.e., accuracy, variance,

feature size reduction, and speed up) are for the supervised component, one (i.e.,

Maximum Q value) is for the reinforcement component, two (i.e., links saving, and

switch power consumption) for energy and power saving, and three (i.e., average path

length, throughput, and delay) for network performance.

9.1 Experimental Platform, Metrics, and Datasets

The experimental platform is based on POX controller and Mininet [14] network

emulator installed on Ubuntu 16.04 64-bit. The topologies are created on Mininet, and

the heuristics are implemented on POX controller. Our experiments are conducted
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using real world traces from SNDlib [91], in particular, the Abilene, GEANT, and

Nobel-Germany network topologies and dynamic traffic traces.

(a)

(b)

(c)

Figure 9.1: Images of the network topologies used in the exper-
iments a) Abilene, b) GEANT, and c) Nobel-Germany
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Figure 9.1 shows the images of the network topologies used in the experiments.

Abilene is a network that connects cities in the United States of America. GEANT

is a European network that connects countries in the EU including England. Nobel-

Germany is a network among the cities in Germany.

Table 9.1: Topologies and Traces

Topology Nodes Edges
Avg
Deg.

Feature
Size

Snapshot
Minutes

Abilene 12 15 2.5 132 5
GEANT 22 36 4.35 462 15

Nobel-Germany 17 26 3.06 272 5

Table 9.1 presents the topologies, traffic characteristics and the size of the datasets

used in our experiments. The features are extracted from snapshots of the network

aggregated in 5, 15 and 5 minutes for the Abiline, GEANT, and Nobel-Germany

dynamic traffic traces. The features are represented as a matrix where each row is

an m x (m-1) vector representing the rates between a source and destination pairs.

For the Abilene topology with 12 nodes, the dimension of the feature is 12 x 11 =

132. Accordingly, the feature sizes for GEANT and Nobel-Germany are 462 and

272 respectively. We train the models for traffic volumes ranging from 10% to 90%.

The percentage of traffic volume is calculated with respect to the total bandwidth

capacity of the links. For these experiments, the average bandwidth of links is set

to 100 Mbps and the average flow rate is 11.36 Mbps, 7.79 Mbps, and 9.56 Mbps for

Abiline, GEANT, and Nobel-Germany topologies and traffic traces, respectively.

Table 9.2 presents the performance metrics of interest that are evaluated in the

experiments. They consist of the accuracy of the predictor, feature size reduction due

to PCA, cross-fold validation to pick the optimal number of principal components,

speedup of the predictor and the refine algorithm as compared to the brute force

method, energy efficiency, and average path length. Accuracy is calculated as
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Table 9.2: The Performance Metrics

Metric Meaning In terms of
Accuracy The accuracy of the predictor %
Feature Size Reduction Percentage of feature size reduced by using PCA %
Variance The percentage of information retained in the reduced feature size %
Speedup How fast the Refine algorithm works as compared to brute-force X
Max-Q Value The maximum Q-value achieved per each iteration scalar
Power Average power consumption of switches Watt
Average path length Average length of a path for source destination demand pair #hops
Links saved Percentage of links saved %
Throughput Average throughput of flows Mbits/sec
Delay Average Delay milliseconds

100 ∗ (1− |TV − PV |
TV

)± ε (9.1)

where TV is the true value of the parameter, PV the predicted value of the

parameter, and ε is the error tolerated. In the experiments, we set the value of ε

to 3%. Speedup is calculated as 100/N where N is the number of times the energy

saving algorithm (MaxRESDN) is run before the Refine algorithm gets the optimal

value. The power consumption of a switch is calculated as the sum of the power for

the base, configuration and control [92].

Pswitch = Pbase + Pconfig + Pcontrol (9.2)

Equation 9.2 shows the total power consumption of a switch (Pswitch) as the sum

of Pbase, Pconfig and Pcontrol [92]. Pbase is the power consumption for keeping the

switch on without any active ports. The configuration power consumption Pconfig is

calculated as

Pconfig =

NactivePorts∑
i

ci.Pport (9.3)
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where ci is the percentage of the maximum line speed of the port and Pport is the

power consumption of a port at full capacity measured in watt.

Equation 9.4 shows the power consumption of control Pcontrol where rPacketIn and

EPacketIn are the rate and energy consumption of PacketIn. rFlowMod and EFlowMod

are the rate and energy consumption of the FlowMod operations.

Pcontrol = rPacketInxEPacketIn + rFlowModxEFlowMod (9.4)

Table 9.3 shows the power consumption parameters of the NEC PF250 switches

that are used in the experiments.

Table 9.3: Switch power consumption parameters

Parameters Values
Base[W] 118.33
Pport[W] 0.52
EPacketIn [µ W/packet] 711.30
EFlowMod [µ W/packet] 29.25

The percentage of links saved is calculated as

Links saved = 100(1−
∑

∀eij Lij

|E|
) (9.5)

The average path length in terms of average number of hops is calculated as

Average path length =

∑
∀f

∑
∀eij(Fij)

|F|
(9.6)

Throughput is calculated as the amount of data transferred per unit of time. In

Mininet, we use Iperf command to measure the throughput of source and destination

pairs. In the experiments, we measure the average throughput of all source and

destination pairs.

Delay is calculated as the amount of time needed for data packets to be transferred
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from their source to destination. In our experiments, network delay is measured as the

time it takes for the packets of a flow to start at the source and reach at the destination

node. The delay is measured both on the Mininet side and POX controller.

9.2 Algorithms Used for Comparison

The heuristics algorithms used to compare MaxRESDN heuristics are listed in Table

9.4. The methodology in [53] starts by formulating the problem with MIP, then

proposes four heuristic algorithms. The first flow is assigned its corresponding shortest

path, the succeeding flows are assigned paths where the change in energy consumption

is minimized. Each heuristics algorithm uses a different criteria to sort the flows and

processes them in the corresponding order. The four variations of the algorithms first

sort the flows according to the Shortest Path First (SPF), Shortest Path Last (SPL),

Smallest Demand First (SDF), and Highest Demand First (HDF).

Table 9.4: Table of Heuristics

Abbreviation Description
SPF [53] Shortest Path First
SPL [53] Shortest Path Last
SDF [53] Smallest Demand First
HDF [53] Highest Demand First
NSP [17] Next Shortest Path
NMU [17] Next Maximum Utility
B [17] Best Combination of NSP (NMU) with others
HyMER ML assisted MaxRESDN [15]

The objective of NSP algorithm is to re-route flows passing through the under-

utilized links to the next shortest path. NMU, on the other hand, chooses the path

that has the link with maximum utility. Whereas NSP gives priority to performance,

NMU focuses on maximizing the utility of active links. Both NSP and NMU are not

only ordering independent but can also be applied on top of other algorithm outputs
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to improve efficiency. The B heuristics is the application of NSP or NMU algorithms

on top of the results of SPF, SPL, SDF, or HDF algorithms. It is the best in terms

of energy efficiency.

HyMER is the machine learning assisted version of MaxRESDN heuristics which

achieves energy saving, network performance, and traffic proportionality by maximiz-

ing the link utility interval metric named Ratio for Energy Saving in SDN (RESDN).

Both the supervised and the reinforcement components of the HyMER achieve results

consistent with MaxRESDN.

9.3 Results of the Supervised Learning Compon-

ent of HyMER

Figure 9.2 show size reduction, cross-validation accuracy and variance of the model

for the Abilene, GEANT, and Nobel-Germany topology and traces. Size reduction

is inversely proportional to accuracy and variance. The percentage of principal com-

ponents we picked from the 10-fold cross validation are 30%, 32% and 35% which

correspond to accuracy values 78%, 79%, 80% and feature size reduction of 70%, 68%,

65% for the Abilene, GEANT and Nobel-Germany topologies and traces, respectively.

The value of k chosen for the PCA is 40, 148, and 96 for the three topologies and

traces. The number of principal components is up to 5% larger than where the accur-

acy and the size reduction plots intersect. The choice is carefully made so that the

model would not over-fit the data and at the same time contain at least 80% of the

information in the original data.

Figure 9.3 shows the accuracy of predicting Umin, Umax, Umin/Umax (Umax

given Umin is known), Umax/Umin (Umin given Umax is known) versus for the

GEANT data set. The accuracy of predicting Umin ranges between 68% to 75%.

For the Abilene trace, Umax prediction accuracy is 3 to 5% better than Umin’s

prediction. An interesting observation from this experiment is that the accuracy of

Umin and Umax increases if Umax and Umin are known apriori. In case of the
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GEANT topology trace, a prior knowledge of Umin increases the prediction accuracy

of Umax by at least 15%. The accuracy of the predictor is independent of the traffic

volume.

Table 9.5: Refine algorithm speedup for convergence of the
Umin and Umax parameters of MaxRESDN heuristics algorithm

as compared to the brute force method

Traffic
(%)

Abilene GEANT Nobel-Germany
Umin Umax Umin Umax Umin Umax

10 17.86 21.43 18.37 15.43 14.29 18.37
20 16.07 22.69 16.77 16.77 18.37 16.77
30 14.84 20.3 18.37 16.77 16.77 16.07
40 16.77 19.29 20.3 19.29 21.43 19.29
50 17.53 19.29 16.07 20.3 19.29 19.29
60 16.07 19.29 16.77 16.77 18.37 21.43
70 15.43 25.71 18.37 24.11 14.84 18.37
80 16.07 20.3 20.3 22.69 14.29 16.07
90 14.29 20.3 21.43 24.11 16.77 25.71

Table 9.5 shows how fast the Refine algorithm converges to the optimal values

of Umin and Umax parameters relative to the brute force method. The brute force

method checks all values from 0% to 100% and selects the optimal Umin and Umax

that leads to the highest energy saving. Since the accuracy of the prediction is not

100%, the Refine heuristic improves the predicted values to reach the optimal value

with few numbers of steps. The speedup for traffic ranging from 10% to 90% traffic

volume is 14.85X to 25.71X of the brute force method. Similar to the accuracy of the

predictor, the speedup of the Refine heuristics is independent of the traffic volume.
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Figure 9.2: Cross validation results of the percentage of PCs
versus feature size reduction, accuracy, and variance for Abilene,
GEANT, and Nobel-Germany topology and traces. It also shows
the optimal percentage of PCs selected for each topology and trace.
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Figure 9.3: Accuracy for predicting Umin, Umax, Umin/Umax
(Umin given Umax is known, and Umin/Umax (Umax given
Umin is known a) Abilene b) GEANT and c) Nobel-Germany

topology traces
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9.4 Results for Reinforcement Learning Compon-

ent of HyMER

Figure 9.4 demonstrates the convergence of our proposed Q-Routing algorithm with

regard to MaxR value. For MaxR value of 20, results show that the maximum Q-

value of the algorithm is attained at the 215th, 101th, and 250th iteration (episode)

with maximum Q-value of 41.04, 34.67 and 50.01 for the Abilene, GEANT, and Nobel-

Germany datasets, respectively. For MaxR=50, the maximum Q-value of 71.02, 64.66

and 80.01 is achieved at the 210th, 120th, and 275th episodes similar topologies and

traffic traces. For MaxR value of 70, the graph shows a fluctuation until it reaches the

maximum Q-value. In all the three network topologies used and different MaxR values

set in these experiments, the algorithm converges prior to reaching the maximum

number of episodes (1000). Perhaps an interesting observation we see from these

results is that the algorithm tends to exploit the maximum reward it has acquired

after it reaches to some point. It is evident that exploration of better possibilities

is done in prior episodes, then exploitation continues. The figure also shows that

increasing the maximum reward MaxR value has a direct effect on the maximum

Q-value, but the convergence of the algorithms remains similar in both cases.
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Figure 9.4: Q-Routing maximum Q-value versus episodes for
the Abilene, GEANT, and Nobel-Germany network topology and
traffic traces by setting the learning rate α= 0.08, reward dis-
count parameter γ= 0.1 and the number of episodes to 1000 a)

MaxR=20, b) MaxR=50 c) MaxR=70
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9.5 Energy Efficiency and Network Performance

Results

This subsection presents energy efficiency and network performance experimental res-

ults. Percentage of links saved and the average power consumption of switches are the

metrics used to measure network energy efficiency. The metrics presented to measure

the network performance are average path length, throughput, and delay.

Figure 9.5 shows the percentage of links saved for Abilene, GEANT, and Nobel-

Germany network topology and traffic traces. In the case of Abilene and Nobel-

Germany topology, our approach HyMER achieves the maximum percentage of links

saved. For traffic volume more than 70%, the B heuristics exhibits a closer saving

to our approach for both network topologies. Especially, for the GEANT topology,

the B heuristics demonstrated a slight improvement over our approach. There is a

similar trend between NSP and NMU, because they are both first initialized with the

shortest path and then flows are redirected in the direction of the next shortest path

and next maximum utility, respectively. The figure demonstrates that our approach

achieves the highest energy saving for lower traffic volumes. This clearly shows that

the energy consumption of our approach is proportional to traffic volume streaming

through the network. Hence, it achieves traffic proportionality as a feature in energy

saving.

Figure 9.6 shows the average power consumption of the NEC PF5240 switches.

Our approach HyMER demonstrates the least power consumption which saves a min-

imum of 10 watts to a maximum of 15 watts for the GEANT topology, 3 watts

to 8 watts for the Abilene topology, and 2 watts to 5 watts for the Nobel-Germany

topology. SPL and SDF heuristics show the least power saving. Our approach demon-

strated similar results in Figure 9.5 where the power consumption increases with traffic

volume. Hence, traffic proportional energy saving is achieved with HyMER similar to

the MaxRESDN [15] heuristics.

Figure 9.7 shows the average path length of our approach in comparison to other
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heuristics for traffic volumes ranging from 20% to 90%. The NSP algorithm shows

the lowest average path length. This is due to the fact that NSP gives priority to

performance as it saves energy. SPL has demonstrated the worst average path length

for Abilene and GEANT topology. HDF also has a similar trend with SPL. The

reason for HDF and SPL to behave in this way is because their objective is energy

saving but not performance. However, our approach, HyMER exhibits a very close

average path length to NSP. By looking at Figures 9.5, 9.6, and 9.7, our approach

has the highest energy saving and a performance closer to the best algorithm, NSP in

terms of average path length. Hence, our approach maintains the trade-off between

network performance and energy efficiency.

Figure 9.8 shows the throughput of our approach in comparison with other heur-

istics for traffic volumes ranging from 20% to 90%. NSP, NMU, and SPF have demon-

strated the maximum throughput for all the topologies. This is mainly because the

three heuristics give priority to performance as they try to save energy. Our approach

HyMER has shown an acceptable throughput which is on average less than 3 to 5

Mbps from the best performing heuristics. The average path length measurements

show that increase in traffic increases the average path length. This is because as

the volume of traffic increases, the shortest paths become overloaded, and some flows

have to be re-routed to longer paths. Our approach not only does have the maximum

energy saving in terms of the average number of links saved and the average switch

power consumption but also have a performance closer to performance-oriented en-

ergy saving heuristics. Hence, it maintains the trade-off between performance and

energy efficiency.

Figure 9.9 shows the delay of our approach in comparison to other heuristics

for traffic volumes ranging from 20% to 90% for the Abilene, GEANT and Nobel-

Germany network topology and traffic traces. Similar to the results of throughput in

Figure 9.8, heuristics such as NSP, SPF, and NMU that give priority to performance

while saving energy achieve a delay of 9 ms for traffic volume of 20% and 11 ms for

traffic volume of 90%. HDF and SDF heuristics on the other hand are better in energy
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saving but exhibit 3 ms to 10 ms worse delay than NSP, NMU, and SPF algorithms.

However, HyMER demonstrates a delay between the two types of heuristics. Results

show that our approach is the best in terms of energy saving at the same time with

acceptable delay. Hence, the trade-off between performance and energy efficiency is

maintained.
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Figure 9.5: Percentage of links saved for traffic volume ranging
from 20% to 90% for a) Abilene b) GEANT and c) Nobel-Germany

network topology and traffic traces
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Figure 9.6: Average power consumption of the NEC PF5240
measured in watts for traffic volumes ranging from 20% to 90% for
a) Abilene b) GEANT and c) Nobel-Germany network topology

and traffic traces
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Figure 9.7: Average path length in terms of number of hops for
traffic volumes ranging from 20% to 90% for a) Abilene b) GEANT

and c) Nobel-Germany network topology and traffic traces
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Figure 9.8: Throughput in Mbps for traffic volumes ranging from
20% to 90% for a) Abilene b) GEANT and c) Nobel-Germany

network topology and traffic traces
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Figure 9.9: Delay in ms for traffic volumes ranging from 20% to
90% for a) Abilene b) GEANT network topology and traffic traces



128 Chapter 9: HyMER: Experimental Analysis and Results

9.6 Discussion and Applicable Scenarios

The major objectives in the design of HyMER are fourfold; energy efficiency, network

performance, dynamicity, and computational feasibility. Figure 9.5 and 9.6 illustrate

the energy efficiency and average path length of the supervised component of HyMER.

According to the predicted Umin and Umax parameters and after applying the Refine

heuristics, results show that HyMER heuristics achieves energy saving of 48% for low

traffic in terms of percentage of links saved. Switch power consumption has shown

on average 10 watts less than heuristics that give priority to performance.

Figures 9.7, 9.8, and 9.9 show the average path length, throughput, and delay of

HyMER in comparison with similar approaches. It is demonstrated that energy sav-

ing approaches with the objective of increasing performance in terms of number hops,

such as NSP, NMU, and SPF, have shown the least average path length, the highest

throughput, and the least delay. Approaches that give more attention to energy sav-

ing, such as HDF and SPL, have demonstrated the opposite. Our approach, however,

shows a performance closer to approaches that give higher priority to performance

over energy efficiency.

The significance of the supervised component of the HyMER lies in the fact that

it predicts Umin and Umax for new traffic. Getting the optimal values of the para-

meters increases the RESDN value. Maximum RESDN value increases utilities of

links, energy saving, and also maintains an acceptable network performance. How-

ever, there are two disadvantages of the supervised approach. First, there needs to

be a sufficient amount of data for model training, otherwise the model overfits and

would not generalize well for new data. Second, the supervised component is applied

by taking the snapshots of the network state periodically, but not in response to

the dynamic changes in the network environment. The supervised component fails

to capture the network state if major changes happen between two consecutive time

intervals that snapshots are taken. Setting small time intervals between snapshots,

on the other hand, incurs extra prediction costs especially if there is no major change

in the network.
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The reinforcement component addresses the drawbacks of the supervised approach.

First, the reinforcement model can be trained by interacting with the network envir-

onment and traffic which makes it applicable despite insufficient amount of training

data. Second, it can automatically learn the changes in the network and traffic.

Hence, it finds energy efficient paths for newly arriving flows and at the same time

considers the changes in the topology. On the other hand, applying reinforcement

learning from scratch, comes with extra cost of time. However, the reinforcement

component can be applied on the top of the results from the supervised compon-

ent, in which case the convergence time of the reinforcement algorithm drastically

decreases.

Table 9.6: HyMER supervised and reinforcement components:
Application scenarios

Component
Sufficient

Historical Data
From

Scratch
Dynamicity

Requirement
Supervised (S) X
Reinforcement (R) X X
Combined (S+R) X X X

Table 9.6 shows the application scenarios for the supervised and reinforcement

components of the HyMER framework. It is our finding that applying both the su-

pervised and reinforcement components not only would help to learn from historical

data but also adapt quickly to the changing traffic and topology. It is demonstrated

that when applied on the top of the results of the supervised solutions, the reinforce-

ment component converges two times faster than running from scratch.
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End System Aware Energy

Efficiency Using SDN

In data centers, multiple virtual machines are placed in physical servers, multiple

physical servers in tern are placed in a rack. The physical machines are connected

to each other using high speed switches, routers and links. It is common practice to

aggregate hundreds to thousands of physical machines into a cluster for performance.

Bcube, Fat tree, Dcell, and VL2 are popular architectures of organizing network

components, physical servers, and racks. In Software Defined Data Centers (SDDCs),

SDN controller is responsible managing the network components and the traffic flow.

OpenStack, Apache CloudStack, and Google Compute Engine are among the few

software tools that are used to manage computing, networking, and storage resources

[121,122].

The utility of physical servers is less than 35% in data centers [123]. The power

consumption of an idle and 20% utilized server is 70% and 80% of their peak util-

ity [124,125]. Virtual machine placement and migration play a major role in minim-

izing the power consumption of servers. Energy saving virtual machine placement or

migration methods focus on reducing the number of physical servers by moving virtual

severs from underutilized physical machines. Virtual migration, sends the memories

and storage contents of virtual machines from source to destination physical server.
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This comes up with network overhead cost. Energy saving approaches fail to minimize

the energy consumption due to networking components.

The work in [33, 36, 39] jointly minimizes the power consumption of physical ma-

chines and the traffic between virtual machines in SDN. To the best of our know-

ledge, we are the first to address the problem of minimizing the power consumption

of physical machines and minimizing the power consumption of network components.

Motivated by Ratio for Energy Saving in SDN (RESDN) [15], We propose a new

energy efficiency metrics for software defined data centers called Ratio for Energy

Saving of Physical Machines (RESPM) based on the utility of physical machines by

virtual machines.

The contributions of this module are as follows.

• We propose an energy efficiency metric RESPM which is based on physical

machines utility interval. We also extended our network component energy

efficiency and performance metric RESDN [18] to be used jointly with RESPM.

Unlike other approaches which focus on server energy efficiency or network

component efficiency, our approach considers both simultaneously.

• We present an IP formulation with objective to jointly maximize the RESPM

and RESDN.

• Experiments are conducted on real world data center virtual machine placement

traces. Results show that our approach achieves up to to 9% better RESPM

value, up to 35% better RESDN value, and more than 50% links saving as

compared to state-of-the-art energy saving virtual machine migration algorithm.
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10.1 Preliminaries of End System Aware Energy

Efficiency in SDN

The goal of the end system aware solution is to minimize the number of active phys-

ical machines through migrating the virtual machines into fewer number of physical

machines. Reviewing various models used to solve the problem, we propose a general

model for the end system aware energy efficiency. End system aware solutions should

be addressed as server consolidation and network optimization problems simultan-

eously [35, 36, 67]. The general model we propose addresses both problems and is

inspired by [36].

Server consolidation and network optimization are the two components of virtual

machine migration. The server consolidation problem is modeled as a quintuple (P,

V, Rp, Rv, R) where P, V, Rp, Rv, and R correspond to the set of physical machines,

set of virtual machines, matrix of resources of physical machines, matrix of resource

requirements of virtual machines, and vector of type of resources, respectively. The

resources are listed as but not limited to CPU, memory and bandwidth capacities.

The dimensions of the matrix Rp and Rv are |P| by |R| and |V| by |R|, respectively.

The network optimization component of the virtual migration problem models the

network as a graph as an undirected weighted graph G= (Z,E) where Z is the set

of switches and Zi ∈ Z represents switch i and eij ∈ E represents that there is link

between switches Zi and Zj. The weight Wij corresponds to the bandwidth of the

link connecting switches Zi and Zj.

Let X be a placement matrix where

Xij =

1, if virtual machinej is placed on physical machine i

0, otherwise

P r
i is the amount of resource type r available on physical machine i, whereas V r

j

is the demand of virtual machine j for resource type r. Let PMi is a binary variable
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with value 1 if physical machine i is on, or 0 otherwise. The objective function of the

general end system aware solution is the combination of the server consolidation and

network optimization.

10.2 Motivation

Infrastructure as Service (IaS) provides the users with infrastructure services and the

providers needs to meet certain Service Level Agreements (SLAs). SLA violations is

a major cause for users to migrate from on provider to the other which makes the

provider loose money. The providers hence keep servers and network components

to operate with maximum capacity even if the demand by users is less. This incurs

additional cost of electricity, computational, and networking resources. The problem

that need to be tackled is to minimize the costs with out having to violate SLAs.

Let PMU be the energy utility of a physical machine P defined as

PMUp =



1, if PUmin ≤ Up ≤ PUmax

σ if PUmin > Up & PUmin − Up > σ

σ if PUmax < Up & Up − PUmax > σ

0, otherwise

(10.1)

where PUmin, PUmax, and σ are the minimum utility of a physical server, max-

imum utility of a physical server, and tolerance parameter respectively.

Ratio of Energy Saving for Physical Machines (RESPM) is calculated as follows.

RESPM =

∑
∀p∈PEUpCp∑
∀p∈P YpCp

(10.2)

where Cp, EUp, and Yp are the total capacity, the energy utility value, and binary

status of physical machine p respectively.
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Yp =

1, if P ∈ P is active

0, otherwise
(10.3)

Similarly, we introduce a metric for the efficiency of the network components in

terms of energy saving and performance [15].

Let binary variable Si denote the status of switch Zi such that

Si =

1, if switch Zi is active

0, otherwise

Let the traffic generated due to migrating memory in the network is represented

by the set of flows F where f ∈ F is defined as f=(sr, ds, λf ). sr and ds ∈ Z are the

source and destination switches of flow f , and λf is the rate of f measured in bits

per second.

Fij =

1, if flow f passes through edge eij

0, otherwise

U is the set of the utilities of every edge in the graph G where Uij ∈ U

Uij =

∑
∀f Fijxλf

Wij

(10.4)

is defined as the ratio of the sum of the rates of the flows passing through the edge

eij to the link bandwidth Wij. Utility of a link is between 0 and 1, where 0 means

no flow is passing through the link and 1 means the sum of the flow rates passing

through the link is equal to the link bandwidth. Let Umin be the minimum utility

value to keep a link active and Umax is the maximum utility of a link.
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Xij =

1, Umin ≤ Uij ≤ Umax

0, otherwise

The network component energy efficiency metric is formally defined as follows.

RESDN =

∑
∀eij XijWij∑
∀eij LijWij

(10.5)

where Wij is the band width of edge eij, Lij is binary variable that denotes the status

of edge eij

Lij =

1, if edge eij is active

0, otherwise
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10.3 IP Formulation for jointly maximizing RESPM

and RESDN

maximize γRESPM + βRESDN (10.6)

subject to
∑
j=1

V r
j ∗Xij ≤ P r

i ∀i, r (10.7)

∑
i

Xij = 1 ∀j (10.8)

PMi ≥ Xij ∀i, j (10.9)∑
∀f

Fijxλf ≤ Wij , ∀eij (10.10)

∑
∀f

Fai =
∑
∀f

Fib , Zi 6= f sr, Zi 6= fds (10.11)

Fmj = Fin , ∀f Zm = f sr , Zn = fds , ∀emj , ∃ein (10.12)

Fij ≤ Sj and Fji ≤ Sj , ∀Zj ∈ Z (10.13)

Si ≤
∑
∀f

[Fij + Fji] , ∀Zi ∈ Z (10.14)

Lij ≤ Si and Lij ≤ Sj ∀Zi, Zj ∈ Z (10.15)

(10.16)

The objective function (equation 10.6) jointly maximizes the RESPM and RESDN

values of a software defined data center. The constraint 10.7 states the sum of resource

demands of virtual machines installed on a given physical machine cannot be more

than the capacity of the physical machine. Constraint 10.8 limits that each virtual

machine can be placed on exactly one physical machine. Equation 10.9 associates the

variables PMi and Xij by asserting that a physical machine will be turned on or off

depending on whether it is used or not.

The constraint in Equation 10.10 states that the sum of the rates of flows between

two switches should not exceed the link capacity. The constraint in Equation 10.11

states that the number of flows entering and leaving switches which are neither destin-
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ation nor sources of flow should be equal. The constraint in Equation 10.12 assures a

flow entering from source switch should reach the destination switch. The constraint

in Equation 10.13 asserts that a flow should not be assigned to a link that is connected

to an inactive switch. Constraint in Equation 10.14 models the relationship between

the flows passing through a link and a switch. It asserts that if no flow is passing

through all the links connected to switch Zi, then change the binary variable Si = 0.

The constraint in Equation 10.15 asserts that a link should be put in active state if

and only if both of the switches it is connecting are active, otherwise, it is inactive.

10.4 Framework for End System Aware Energy

Efficiency in SDN

The objective of the end system aware framework is to jointly minimize the energy

consumption of end systems and network components. Figure 10.1 demonstrates the

framework with its components designed for end system aware energy efficiency using

SDN. Traffic manager, topology manager, EA optimizer, and end system manager

are the four components of the framework.

The traffic generated due to virtual machine migration is passed to the traffic

manager. The traffic manager transfers the traffic information to the EA optimizer.

The optimizer generates an optimal subgraph based on the traffic volume, the utility

of the links according to the migrating virtual machines. Low traffic load should

result in a subgraph with smaller number of active links and switches, whereas high

traffic load should increase the number of active links and switches in the subgraph

respectively. In the former, the sleep/turn-off decision for a subset links and switches

would be achieved. In the latter, however, a subset of links and switches would be

turned on or made active. The end system manager is responsible for deciding the

virtual machines that have to be migrated and also managing the actual migration.
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Traffic Manager Topology Manager

EA  Optimizer

Infrastructure plane(VM, PMs, Racks)

RESPM

End System Manager

Manage VM Migrations
Collect end system status

Data plane

Figure 10.1: Framework for end system aware energy efficiency
using SDN

10.5 Experimental Results

The experiments are conducted on real-world data center data pulled for 25 days. The

total number of physical machines is 128 and the total number of virtual machines

is 3482. The average number of virtual machines that are running per day is on

average 1112. The physical machines are powered on all the time. Figure 10.2 shows

the histogram of the average utility of physical machines for 25 days. It shows that

the average utility of the physical machines is less than 35% and more than 40% of

physical machines are utilized less than 10%.

The topology structure that is used to connect the physical servers is fat-tree.

Table 10.1 shows the characteristics of the network topology.

Table 10.1: The characteristics of the data center topology

Fat-tree Property Values
K 10
#Core switches 25
#Aggregate switches 55
#Edge switches 55
Maximum # of servers 250
#Links (Core - Aggregate switch) 125
#Links(Aggregate - Edge switches) 275
#Links (Edge switches - Servers) 275



Chapter 10: End System Aware Energy Efficiency Using SDN 139

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

Physical Machine Utility(%)

N
u

m
b

er
of

P
h
y
si

ca
l

M
ac

h
in

es

Figure 10.2: Histogram of average utilities of physical machines
for 25 days

Table 10.2 shows the metrics we used in the experiments, that are are RESPM,

RESDN, and number of physical machines turned off.

Table 10.2: Metrics Used in this experiment

Metrics Meaning Unit
RESPM Ratio for Energy Saving of Physical Machines %
RESDN Ratio for Energy Saving in SDN %
Physical Machines Percentage of physical machines powered off %

We compare our approach with state-of-the art Power-aware and Performance-

guaranteed Virtual Machine Placement (PPVMP) algorithm [126]. The PPVMP

algorithm attempts to save the power consumption of physical machines and guaran-

tee acceptable migration performance. Figure 10.3 shows the percentage of physical

machines powered off after the virtual machines are migrated. It is depicted that our

approach saves 2 to 4 physical machines better than PPVMP.

Figure 10.4 shows the RESPM value of the data center for MaxRESPM. Our

approach has up to 9% better in RESPM value as compared to a PPVMP.

Our approach exhibits more than 50% links saving and 35% better RESDN value

as compared to PPVMP. These initial results show that our approach has the potential
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to minimize the power consumption of physical machines and network components

simultaneously. As future direction, the end system aware module of the controller is

aimed to be further developed to incorporate migration time, down time, CPU utility,

and other relevant metrics.
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Conclusion

11.1 Remarks

The flexibility of network control by SDN can be used for energy efficient routing.

However, minimizing energy consuming devices without compromising performance

is a challenging task. We proposed energy efficiency metric named RESDN (Ratio for

Energy Saving in SDN) that puts the utility of links under consideration. Unlike other

energy efficiency metrics, RESDN is based on the link utility interval parameters, and

captures the dynamic network changes in SDN. We also provided an IP formulation

with the objective of increasing the RESDN of a network environment and a heuristics

named MaxRESDN that maximizes energy saving. The experiments are conducted on

Mininet network emulator and POX controller using the GEANT network topology

and dynamic traffic traces. We also simulated the power consumption of OvSwitch,

NEC PF5240, and Zodiac FX OpenFlow switches.

Experimental results show that maximizing the RESDN value improves energy

efficiency while maintaining acceptable network performance. MaxRESDN is up to

30% better in the number of links and achieves up to 14.7 watts, 10 watts, and 3.2

watts less power consumption for NEC, OVS and Zodiac FX switches respectively as

compared to other utility-based heuristics for energy efficient routing. The maximum

RESDN value is achieved by our proposed MaxRESDN method, which also performs
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close to the solutions that give priority to network performance in terms of average

path length, throughput, and delay. Our approach not only does have 3 to 5% higher

traffic proportionality but also maintains the trade-off between network performance

and energy efficiency. Since the performance of the MaxRESDN heuristics greatly

depends on the value of utility interval parameters, we performed a detailed analysis

of the parameters with regard to traffic volume. It is demonstrated that the values

of utility interval parameters directly affect the efficiency of the algorithm.

In this thesis, we proposed HyMER, supervised and reinforcement machine learn-

ing based framework for traffic aware energy efficient routing in SDN. We used topo-

logy and traffic as features to train our model. For the supervised component of the

framework, we employed PCA and achieved a feature size reduction of more than 65%

on real-world network topology and dynamic traffic traces. Particularly, we tested

supervised component to predict Umin and Umax parameters for the energy efficient

MaxRESDN heuristics algorithm. In addition to the prediction, we also proposed a

heuristics to increase the accuracy of the supervised model prediction to 100%. Ex-

periment results show that the accuracy of predicting Umin and Umax is more than

70%. The refining heuristics algorithm converges to the optimal Umin and Umax

values 15 to 25 times faster than the brute force method.

The supervised component is applicable when there is sufficient historical data to

learn from. The reinforcement component addresses the two problems of the super-

vised component. First, there must be sufficient amount of historical data. Second,

they cannot capture the dynamic nature of the network. The reinforcement learning

component of the framework incrementally learns by interacting with the network

environment in picking the path that maximizes energy saving. It can work in both

cases where historical data is available or not. Experiments conducted on real network

topology and traffic traces show that, it converges to the MaxRESDN energy saving

with an average 110 to 270 number of episodes for different values of MaxR. It also

converges even faster when it is initialized by outputs of the supervised component.

As initial results of the end system aware module of the controller, we proposed an
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physical server utility interval based metric with an objective of minimizing number

of physical machines and keep the performance of the physical machine at acceptable

range. According to initial results, compared with state-of-the-art energy efficient VM

migration algorithm, our approach demonstrated up to 9% better physical machine

saving and more than 50% links saving.

11.2 Future Directions

As future work, we aim to to apply the idea behind RESDN metric to incorporate

switches and improve the scalability through parallelizing the MaxRESDN algorithm

to handle multiple flow arrivals concurrently. The HyMER framework can be ex-

tended to incorporate end systems by using SDN as a tool for energy efficient and

performance oriented virtual machine placement and migration planning in data cen-

ters. Application of the machine learning framework in edge computing [127], wireless

networks [128], and software defined vehicular networks [129] can be promising future

directions.

In this thesis, we have shown how reinforcement learning is applied on top of the

supervised component outcome. An interesting future work could be enabling the

controller to automatically decide when to switch from the supervised component

usage to the reinforcement component. Another research direction is analyzing the

fault tolerance of HyMER in the case of link and switch failures.

The rule placement mechanisms affect the network performance and also determ-

ines the routing. Forwarding rules are determined and pushed to the switches by

the controller. Thus, rule space optimization in SDN can be formulated as a global

network-level problem. Placing the rules to respective switches distributed across the

network and optimizing an objective function under the constraints is NP-hard prob-

lem. Given a routing policy and end-point policy of the network, solutions for space

efficient rule representation that would lead to energy savings are necessary. Energy

efficient solutions in this group need to formalize the energy cost model and the con-
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straints associated, then apply heuristic algorithms to find optimum energy saving

strategy. As another future direction, the general optimization model we presen-

ted for rule placement solutions would provide guidelines for the objective functions,

parameters and constraints to be considered [5].
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[19] B. G. Assefa and Ö. Özkasap, “Mer-sdn: Machine learning framework for traffic

aware energy efficient routing in sdn,” IEEE Intl Conf on Big Data Intelligence

and Computing (DataCom), pp. 974–980, 2018.
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