




"So, verily, with every di�culty, there is relief" 94:5

iii



ABSTRACT

Increasing computational resources allow the fast development of numerical methods

to simulate complex physical systems. However, numerical analysis of multiphase

�ows is still a challenging task due to wide disparity in length and time scales.

Direct numerical simulation (DNS) methods, such as front-tracking method, provide

valuable insights into multiphase �ows by resolving all scales. But, in most of the DNS

applications the quality of the grid resolution plays a crucial role in development of

computational models of such �ow systems due to presence of sharp interface between

the phases. However the interface usually occupies a small portion of the overall

domain, hence applying the resolution around the interface in the entire computational

region is not an e�cient way. Block-structured adaptive mesh re�nement (AMR)

method, which was �rst developed by Berger and Oliger [Berger and Oliger, 1984],

o�ers a local and adaptive re�nement of the grid. A properly-nested hierarchy of

re�nement levels increases the resolution around the region where the predetermined

error criterion is exceeded. Almgren et al. [Almgren et al., 1998] combined block-

structured AMR with a second-order projection method for incompressible Navier-

Stokes equations and increased the e�ciency by recursive time re�nement algorithm.

However, time re�nement results in cumbersome synchronization operations to match

coarse and �ne levels after each time step. On the other hand, their projection

method approximately satis�es the divergence-free constraint, hence, maintaining

global conservation requires additional algorithmic complexity. Vanella et al.

[Vanella et al., 2010] applied the structured AMR method to �uid-solid interaction

problem by using a staggered grid arrangement and they ignored time re�nement.

Even though their multilevel multigrid solver simpli�ed the synchronization step

and satis�ed divergence-free constraint exactly, using the same time step size in the
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�nest level in all other levels reduced the computational e�ciency. The present study

combines the subcycled block-structured AMR method with the three-dimensional

�nite-volume/front-tracking method developed by Unverdi and Tryggvason

[Unverdi and Tryggvason, 1992]. The purpose is to accurately resolve multiphase �ow

by satisfying divergence-free constraint exactly and to gain the advantage of e�cient

AMR algorithm with time re�nement at the same time. The algorithm presented

here also avoids the complexity of synchronization step by using a fully-staggered

grid arrangement �rst proposed by Harlow and Welch [Harlow and Welch, 1965].

The validation is performed by solving two benchmark problems: (1) The Hagen-

Poiseuille problem with variable density/viscostiy and (2) mutiphase �ow with a

stationary bubble. Although the results to benchmark problems are very promising,

the algorithm should be extended to simulate moving and deforming bubbles in the

future studies. Moreover, to asses the e�ciency of the algorithm, the performance

analysis should be conducted when the algorithm is completed.



ÖZETÇE

Gün geçtikçe artan bilgisayarl� hesaplama kabiliyetleri, karma³�k �ziksel sistemleri

simule etmeyi sa§layacak numerik metotlar�n geli³mesini sa§lam�³t�r. Ancak küçük

boyut ve k�sa zaman ölçe§i sebebiyle çok fazl� ak�³lar�n numerik modellenmesi halen

zorlu§unu korumaktad�r. Arayüz-izleme gibi direkt numerik simulasyon (DNS) metotlar�

tüm ölçekleri çözümleyerek çok fazl� ak�³lar ile ilgili de§erli öngörüler elde edilmesini

sa§lamaktad�r. Fakat, iki faz aras�ndaki keskin arayüz sebebiyle direkt numerik simulasyon

modellerinin bir ço§unun geli³tirilmesinde hücre çözünürlükleri çok büyük rol oynamaktad�r.

Toplam hesaplama alan� dü³ünüldü§ünde çok küçük bir alan� kaplayan arayüz için

tercih edilen çözünürlü§ün tüm alana uygulanmas� ise verimli bir yöntem de§ildir.

�lk defa Berger ve Oliger [Berger and Oliger, 1984] taraf�ndan hiperbolik sistemlerin

çözümü için geli³tirilen blok yap�l� adaptif örgü art�rma (AMR) yöntemi, bölgesel

olarak a§ yap�s�n�n geli³tirilmesini sa§lamaktad�r. Düzgün yuvalanma prensibine uygun

olarak, önceden belirlenmi³ bir hata kriterini a³an bölgeler art�rma hiyerar³isine ba§l�

kalarak yeniden ayr�kla³t�r�l�r. Almgren et al. [Almgren et al., 1998] bu ayr�kla³t�rma

yöntemini, s�k�³t�r�lamaz Navier-Stokes denklemlerinin çözümü için de uygulanan ikinci-

derece projeksiyon metodu ile birle³tirmi³ ve örgü seviyelerindeki zaman ad�mlar�n� da

adaptif hale getirerek verimlili§i art�rm�³t�r. Ancak her bir zaman ad�m�n�n bitiminde

farkl� çözünürlükteki örgü seviyelerinin senkronizasyonu kaç�n�lmaz hale gelmi³tir. Öte

yandan bu algoritma s�k�³t�r�lamaz ak�³lar�n simulasyonunda çok önemli olan kütle

korunum kriterini yakla³�k olarak hesaplamaktad�r. Bu sebeple, korunumu sa§layabilmek

ad�na algoritma daha da kompleks hale gelmektedir. Vanella et al. [Vanella et al., 2010]

a³amal� örgü düzeni kullanarak AMR metodunu kat�-s�v� etkile³imi problemlerine

uygulam�³t�r. Her ne kadar çok-seviyeli çok-örgülü Poisson çözücüsü örgü seviyeleri

aras�ndaki senkronizasyon ad�m�n� basitle³tirmi³ ve kütle korunum kriterini tam olarak
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sa§lam�³ olsa da, tek bir zaman ad�m�n� tüm seviyelere uygulayarak hesaplama verimini

dü³ürmü³tür. Bu tezde geli³tirilen algoritma, Unverdi ve Tryggvason

[Unverdi and Tryggvason, 1992] taraf�ndan geli³tirilen sonlu-hacim/arayüz-izleme metodu

ile adaptif zaman ad�ml� örgü art�rma yöntemini birle³tirmektedir. Buradaki amaç

çok fazl� ak�³ denklemlerini çözerken korunum ilkelerini tam olarak sa§lamak ve ayn�

zamanda örgü art�r�m uygulamas�nda adaptif zaman ad�m� yönteminin avantajlar�ndan

faydalanmakt�r. Geli³tirilen algoritma ilk kez Harlow ve Welch

[Harlow and Welch, 1965] taraf�ndan uygulanan a³amal� örgü düzenini kullanarak

örgü seviyeleri aras�ndaki senkronizasyon ad�m�n� da basitle³tirmektedir. Geli³tirilen

algoritman�n validasyonu iki problem üzerinde çal�³�larak yap�lm�³t�r: (1) De§i³ken

özkütle/viskozite kullanarak çözülen Hagen-Poiseuille problemi ve (2) sabit baloncuk

kullan�larak çözülen çok fazl� ak�³ problemi. Her ne kadar sonuçlar ba³ar�l� olsa da,

ilerdeki çal�³malarda algoritma hareketli ve deforme olabilen baloncuklar� da simule

edebilecek ³ekilde geli³tirilmelidir.
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Chapter 1

INTRODUCTION

Interactions of liquid-liquid and gas-liquid phases of �uids are encountered in many

scienti�c and industrial applications. A signi�cant number of examples can be given

to demonstrate the importance of multiphase systems. Heat transfer by phase change

in heat pipes is an e�cient technique to remove extensive heat. Since they require

minimum maintenance and o�er signi�cant reliability, they are extensively used to

stabilize the thermal conditions in aerospace applications [Sundén and Fu, 2017]. The

injectors in many internal combustion engines spray the fuel into the combustion

chamber where the fuel interacts with the air. To increase the combustion e�ciency,

the fuel should spread evenly and it can be accomplished by understanding the gas-

liquid interactions [Tryggvason et al., 2011]. Droplet-based studies are conducted to

improve drug-delivery systems and bubble dynamics play a crucial role in these

applications [Tryggvason et al., 2011]. In addition to these examples, multiphase

systems are greatly involved in living organisms and advancements in this �eld can

accelerate diagnosis and treatment operations in the medical �eld.

To make progress in gas-liquid multiphase systems, experimental and theoretical

studies are conducted to understand the physics behind such systems. In both

�elds, there are certain adversities that challenge the studies. The experimental �eld

requires improved equipment to resolve multiphase phenomena which involve wide

range of length and time scales. From a mathematical perspective, together with the

nonlinearity of governing equations, the complex behavior of the interface between

two �uids constitutes signi�cant di�culty during simulations. The computational

results, therefore, cannot be compared with analytical results except for simple �ow
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con�gurations such as Stokes �ow. TheMarker-and-cell (MAC) method is the primitive

approach to resolve interface by using marker particles that identify each phase. The

Volume-of-�uid method, similarly, uses a marker function to di�erentiate the phases

[Scardovelli and Zaleski, 1999]. Even though they are very promising techniques,

the geometric representation of the interface diminishes their accuracy. The level-

set method �rst o�ered by Osher and Sethian [Osher and Sethian, 1988] and then

improved by Sussman et al. [Sussman et al., 1994] to increase the accuracy by introducing

level-set curves to compute the geometry of the interface. As an alternative method,

the boundary-conforming grid is used by appropriate coordinate transformations to

capture the interface. Ryskin and Leal [Ryskin and Leal, 1984] applied this method to

simulate two-dimensional buoyancy driven �ows, however, it is extremely di�cult to

implement this method to three-dimensional problems with complex geometries. The

third method combines Eulerian and Lagrangian grids to separate the �ow domain

and the interface. Here, all phases present in the domain are represented by a single

set of equations and point source functions, such as Dirac-δ function, are used to

locate the interface. The method originates from front capturing and front tracking

methods together. As Glimm et al. [Glimm et al., 2001] described in their landmark

paper, in the front-tracking method a separated marker function can be used to follow

the interface by adjusting the �xed grid in the vicinity of the interface. One-�uid

formulation which uses a single set of equations, on the other hand, originates from

the landmark paper of Peskin on immersed boundary [Peskin, 1977].

As a direct-numerical-simulation (DNS) tool, the one-�uid front tracking method

is used in this study. DNS is a great approach to reveal the physical phenomena

by fully resolving the simulation domain. All time and length scales are resolved to

prevent misleading results caused by introducing excessive numerical approximations.

However, DNS techniques bring their own challenges;

• The length and time scales may vary signi�cantly within the simulation domain.

For instance, a bubble occupies a relatively small region within the domain in

multiphase �ows. Hence the regions near to the bubble use di�erent scales than
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regions away from it.

• Interface in multiphase �ows introduces discontinuity and it is cumbersome to

represent in DNS.

• The deformable interface requires frequent re-meshing.

The challenges described above in�uence discretization methods signi�cantly. When

di�erent scales exist together, the accuracy of the simulation is maintained by arranging

the mesh resolution according to the smallest length scale in �ow. In one-�uid

DNS algorithms for multiphase �ows, re-meshing the region near the interface during

the simulation is extremely ine�cient because it continuously moves and undergoes

large deformations often with topological changes, thus, the length scales change

accordingly. In a nutshell, e�ciency and accuracy introduce a two-sided problem.

When desired resolution cannot be obtained, loss of global conservation contaminates

the simulation and it prevents to capture actual physics accurately. Conversely, when

the resolution increases due to accuracy concerns, the computational performance

decreases signi�cantly. For the sake of reasonable e�ciency and accuracy, optimized

algorithms are needed to take advantage of current computer power.

The main idea of adaptive mesh re�nement (AMR) is to arrange the resolution

of the computational grid according to the local accuracy requirements. With AMR

implementation, di�erent length scales are resolved separately to increase computational

e�ciency. The re�nement regions can be spotted by tagging the cells according to

di�erent error estimation procedures. Extensive research has been done on implementing

the AMR technique to di�erent problems. AMR methods can be investigated roughly

in two distinct categories: (1) Isotropic division of cells in an unstructured grid

within hierarchical order as Bayyuk et al. [Bayyuk et al., 1993] suggested or using

completely unstructured data structures as Ham et al. [Ham et al., 2002] pointed

out. (2) Embedding block-structured re�nement regions in a structured grid within

a hierarchical order. In the former approach, maintaining the quality of the mesh
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can be problematic when complex geometries are involved. Therefore, accuracy and

global conservation may not be sustained.

Block-structured AMR method was �rst proposed by Berger and Oliger

[Berger and Oliger, 1984] to solve hyperbolic partial di�erential equations in the form;

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0 (1.1)

where F,G and H are the �uxes in x,y and z directions respectively.

They used a collocated grid arrangement and Richardson-type error estimation

procedure. In their algorithm, the re�nement regions can be rotated to be aligned with

the sharp gradients or discontinuities. Even though this reduced the number of cells

clustered into re�nement patches, the coordinate transformation brought additional

complications and ine�ciency.

Then Berger and Colella [Berger and Colella, 1989] and Bell et al.[Bell et al., 1994]

modi�ed the algorithm and introduced a properly nested grid arrangement where the

re�nement patches are always aligned with the structured base grid. This increased

the performance and simpli�ed the re�uxing operations which are required to synchronize

�ne and coarse level of re�nements.

The level organization based on the algorithm proposed by Berger and Colella

[Berger and Colella, 1989] can be seen in Figure 1.1. In studies that employ the

block-structured AMR method, the same meshing strategy is also followed. Here

cells painted in grey and green are ghost regions where the interlevel communications,

interpolation and restriction, are performed. The grids in each level are properly

nested and their boundaries are aligned with underlying coarser grids.

Although suggested algorithms provided a solid basis for the solution of hyperbolic

equations, some problems such as incompressible �ow and magnetohydrodynamics

require to satisfy divergence-free constraint and it is not easy to satisfy in AMR

methods. In the literature, the vast majority of incompressible �ow solvers with

AMR routines use second-order projection method �rst developed by Bell et al.

[Bell et al., 1989] and Bell et al. [Bell et al., 1991]. This particular fractional step
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Figure 1.1: Grid organization in the block-structured AMR applications

scheme discretizes the viscous and advective terms by using the Crank-Nicholson

scheme and nonlinear terms are treated by the second-order upwind method. Later,

the projection step is employed according to the Hodge decomposition to generate

a divergence-free velocity �eld. Bell and Marcus applied this algorithm to variable-

density case [Bell and Marcus, 1992] and then Almgren et al. [Almgren et al., 1996]

introduced the �nite element based discretization scheme in the projection step to end

up with a second-order approximate projection method. This formulation was then

used to simulate incompressible Navier-Stokes equations with �nite amplitude density

variations in their landmark paper [Almgren et al., 1998]. This method provided here

used a subcycled time-stepping algorithm for the grid hierarchy proposed by Berger

and Colella [Berger and Colella, 1989]. Subcycling allows each level of re�nement to

advance with its own timestep. Although it increases the e�ciency signi�cantly, levels

should be synchronized after each timestep to maintain global conservation. Due to

the approximateness of the projection, two di�erent obligatory synchronization steps

emerge: (1) The �rst step updates the MAC velocities that are interpolated from

cell centers to faces. This is a single level synchronization where additional Poisson
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equation is solved to spread correction concentrated at the interface to the entire level.

(2) The second one is two-level synchronization where the multigrid-multilevel solver

is used to calculate correction used to eliminate �ux and pressure mismatch. The

multigrid algorithm used in this step was �rst developed by Martin and Cartwright

[Martin and Cartwright, 1996]. Sussman et al. [Sussman et al., 1999] combined the

same adaptive approximate projection algorithm to multiphase �ow analysis by using

the level-set method and Martin et al. [Martin et al., 2008] extended the algorithm to

three-dimensions. Even though Almgren's algorithm is very promising, it requires to

solve additional elliptic and parabolic equations because interlevel operations satisfy

Dirichlet type, φ = φ0, boundary condition at interface of levels and fail to satisfy

Neumann type, ∂φ/∂n = 0.

In addition to complications because of the subcycled time-stepping in Almgren's

algorithm, a semi-staggered grid arrangement introduces an additional source of error

and further corrections should be made for synchronization. In this arrangement,

all variables except pressure are located at cell centers and pressure is located at

nodes. To compute the nonlinear convective terms, the velocities are interpolated

to faces and additional projection should be applied to make sure that face-centered

MAC velocities satisfy the divergence-free constraint. The second projection, which

approximately satis�es the continuity, is applied to update cell-centered velocities

with appropriate pressure values.

In order to simplify the synchronization step, Minion [Minion, 1996] and Vanella et

al. [Vanella et al., 2010] used the multigrid-multilevel solver for the entire re�nement

levels at once. This approach satis�es Dirichlet and Neumann type boundary conditions

simultaneously, however, subcycled time-stepping cannot be performed and the timestep

of the �nest level should be used for all levels. Thus, simpli�cation in algorithm

resulted in a lack of computational e�ciency.

Application of structured adaptive mesh re�nement approach to �uid-solid interaction

problems reinforced the development of AMR algorithms. The e�orts started with

Roma et al. [Roma et al., 1999] where they combined the immersed boundary method
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developed by Peskin [Peskin, 1977] and block-structured AMR algorithm proposed

by Berger and Colella [Berger and Colella, 1989] to tackle with the two-dimensional

incompressible viscous �ow. They employed second-order discretization method developed

by Bell et al. [Bell et al., 1989], but the algorithm couldn't o�er signi�cant improvement

over using uniform mesh with the resolution of the �nest level. Then Gri�th et al.

[Gri�th et al., 2007] improved the algorithm by using the collocated grid arrangement.

As an alternative to block-structured AMR method, Dezeeuw and Powell

[DeZeeuw and Powell, 1993] introduced the quad-tree approach to solve the steady

Euler equations. This type of AMR algorithm is based on the idea of dividing

individual parent cells into four cells in two-dimensions and eight for three-dimensions

by bisecting each direction as seen in Figure 1.2. Popinet, [Popinet, 2003], extended

quad-tree approach to Navier-Stokes equations and then worked on jet disintegration

problem with the Gerris package [Popinet, 2009]. Gerris uses multilevel multigrid

Poisson solver, however, grid management can be problematic due to newly generated

neighboring stencils after re�ning the cells. Agresar et al. [Agresar et al., 1998]

applied the quad-tree AMR approach to the front-tracking method developed by

Unverdi and Tryggvason [Unverdi and Tryggvason, 1992] and worked on deformation

and adhesion of circulating cells. One of the most important aspects of this study

was to use a staggered grid arrangement.

Figure 1.2: Quad-tree hieracrchy of the parent and the leaf blocks [Zuzio, 2011]
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Vanella et al. [Vanella et al., 2010] demonstrated the application of block-structured

AMR to the staggered grid by working on �uid-solid interaction problems. The grid

hierarchy was managed by Paramesh package [MacNeice et al., 2000]. Although they

successfully implemented structured adaptive mesh to the staggered arrangement by

satisfying the divergence-free constraint, their algorithm employed a single time step

and abandoned the subcycling approach. Moreover, their interpolation algorithm is

restricted to the re�nement ratio of two.

As can be seen in this brief literature overview, considerable e�ort has been

spent to implement e�cient AMR techniques to solve various �ow problems. For

incompressible �ow problems, however, development is still required to obtain accurate,

e�cient and stable algorithms. In some of the landmark papers subcycled time-

stepping was implemented on the semi-staggered arrangement with tedious synchronization

e�orts. On the other hand, some studies, such as [Minion, 1996] and [Vanella et al., 2010],

ignored subcycling and simpli�ed synchronization by using a multilevel Poisson solver.

In the present study, the one-�uid front tracking method for multiphase �ows is

combined with the block-structured AMR algorithm. The subcyled timestepping

approach is employed to increase the e�ciency and divergence-free constraint of

incompressible �ow is satis�ed with considerable accuracy since the computation is

based on the staggered grid arrangement. The synchronization after each coarse level

time step is expected to be simpler than Almgren et al. [Almgren et al., 1998] and

more complicated than that of Minion [Minion, 1996]. The results are presented for

the incompressible �ows with variable density/viscosity and for multiphase �ows with

a stationary bubble. The grid hierarchy is managed by AMReX [Zhang et al., 2019]

package, which is originated from the block-structured algorithm of Berger and Colella

[Berger and Colella, 1989].



Chapter 2

PHYSICAL MODEL

All computational �uid dynamics (CFD) applications are a combination of various

methods to deal with discretization of the governing equations. Although the set of

equations can vary depending on the �ow problem, there are two basic mathematical

statements expressing the fundamental physical principles of �uid dynamics:

1. Conservation of mass

2. Conservation of momentum

In addition to these two basic conservation rules, additional rules, such as conservation

of energy and conservatin of spicies, can be added to simulate more complex problems.

Since energy and concentration e�ects are not considered in this study, this chapter

focuses on the description of the mass and momentum conservation equations. Additionally,

the incompressible �ow assumption is made and discussed as a special case. In the

upcoming chapters, the concept of multiphase �ow is built on the basic principles

explained in this chapter.

The governing equations can be derived in two di�erent but interchangeable

forms: conservative and nonconservative. The distinction of the form is especially

important in the selection of numerical methods to discretize the terms in Navier-

Stokes equations and it becomes clear as the governing equations are derived.

The conservative form of the governing equations is derived in this chapter. However,

the nonconservative representations are also shown at the end of each section. Figure

2.1 shows the �xed control volume on which the equations are derived.

The di�erential form of the governing equations is going to be derived in this

section. On the other hand, because the Finite Volume Method has been built
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Figure 2.1: The representation of the �xed control volume in a �uid �ow

upon the integral formulation, the importance of the integral equation is also stated

brie�y. The integral form of the governing equations has the �exibility to include

discontinuities within the domain, while, the di�erential form expects continuous and

di�erentiable functions.

2.1 Conservation of Mass

The principle of mass conservation dictates that the mass is neither created nor

destroyed as long as there is no chemical reaction within the domain. This physical

principle is called continuity in the context of continuum mechanics and it is also a

key concept in numerical approximations.

The �uid �ow goes through the �xed control volume in Figure 2.1 across the

control surface S. In words, the continuity equation tells that at any time interval the

accumulation of mass inside the control volume should be equal to the net �ow of

mass into the control volume. This can be expressed mathematically as follows;

d

dt

∫
V
ρdv = −

∮
S

ρu(x, t) · nds (2.1)

Eq. 2.1 is derived on the basis of mass conservation in the in�nitesimal control
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volume dv depicted in Figure 2.1. The left-hand side of Eq.2.1 represents the time

rate of change of mass within the control volume while the right-hand side shows

the net mass �ux crosses the boundary S. Since the control volume is �xed, we can

take the time derivative into the volume integral. In addition, divergence (Gauss-

Ostrogradsky) theorem states that the outward �ux through a closed surface is always

equal to the volume integral of the divergence of the same vector �eld. Hence if we

apply the divergence theorem to the surface integral on the right-hand side we �nally

have a single volume integral as depicted in Eq.2.2.

∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dv = 0 (2.2)

The equality holds for any arbitrary volume only when the expression between

the brackets is zero provided it is continuous. Thus, the �nal form of the continuity

equation in di�erential conservative form can be written as

∂ρ

∂t
+∇ · (ρu) = 0 (2.3)

The nonconservative form can be obtained by simply manipulating Eq.2.3 and it

can be shown as follows;

Dρ

Dt
+ ρ∇ · u = 0 (2.4)

2.2 Conservation of Momentum

The momentum is another physical property of a �uid element that should be conserved.

The equation of motion, eventually the momentum conservation equation, is obtained

by equating the net momentum �ux across the boundaries of the �uid element to

momentum accumulation in the domain. Eq.2.5 represents the momentum balance

in the integral form.
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∂

∂t

∫
V
ρudv = −

∮
S

ρu(u · n)ds+

∫
V
fdv +

∮
S

n ·Tds (2.5)

where the term on the left-hand side expresses the time rate of change of momentum

within the control volume. The �rst and third terms on the right-hand side are the

momentum �ux through the surface and momentum contribution by the surface forces

respectively. The symmetric tensor T encompasses both pressure and shear stress.

Lastly, the second term on the right hand side is the body force, which is equal to

ρg when only gravitational forces are acting on the domain. In addition to these

terms, the external forces, such as magnetic force and surface tension force, can have

a contribution to the momentum balance.

As is the case with the conservation of mass, the divergence theorem can be applied

to Eq.2.5. The resulting equation can be written as;

∂ρu
∂t

= −∇ · (ρuu) + f+∇ ·T (2.6)

For Newtonian �uids, the stress can be assumed to be the linear function of strain

rate. Thus the tensor T can be expressed as;

T = (−p+ λ∇ · u)I+ 2µS (2.7)

where I refers to second-order identity tensor and S = 1
2
(∇u +∇uT ) is the rate

of strain tensor. λ is the second coe�cient of viscosity which has the value of −2
3
µ if

the Stokes' assumption holds.

The Navier-Stokes equations in the conservative form can be obtained by introducing

de�nition of T into Eq.2.6.

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇(λ∇ · u) +∇ ·
[
µ(∇u+∇Tu)

]
+ f (2.8)
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The nonconservative form can be obtained by manipulating the dyadic product

appears on the left hand side of Eq.2.8. The term ∇ · (ρuu) can be rewritten as;

∇ · (ρuu) = u∇ · (ρu) + (ρu) · ∇u (2.9)

Similarly;

∂ρu
∂t

= u
∂ρ

∂t
+ ρ

∂u
∂t

(2.10)

If Eq.2.9 and Eq.2.10 are summed up, the summation of �rst terms on the right

hand sides disappears because it gives directly the conservative continuity equation

derived in Eq.2.3. Moreover, the summation of the second terms in the same equations

gives the material derivative of u when they are taken into a common parenthesis of ρ.

Therefore the remaining expression gives the Navier-Stokes equation in nonconservative

form as it is shown in Eq.2.11

ρ
Du
Dt

= −∇p+∇(λ∇ · u) +∇ ·
[
µ(∇u+∇Tu)

]
+ f (2.11)

2.3 Incompressible Flow

The mass and momentum conservation equations depicted in Eq.2.3 and in Eq.2.8

are applicable in any type of Newtonian �uid �ow. However, when the Mach number

M = V/c, which compares the �ow speed and the speed of sound, is roughly less than

0.3, the �ow is assumed to be incompressible. Hence, the volumetric mass can be

assumed to be constant over spatial dimensions and time. Even though density varies

in multiphase �ows, incompressibility still can be valid when the density of each phase

is assumed to be constant in their respective regions. In this case, a discontinuous

interface between two immiscible �uids should be expected.

Incompressibility assumption greatly simpli�es the Navier-Stokes Equation. When

density is assumed to be constant, the �rst term on the left-hand side in Eq.2.3 is
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going to disappear and the ρ can be taken out of the divergence operator. At the

end, the continuity equation takes the form

∇ · u = 0. (2.12)

Eq.2.12 allows further simpli�cation in Eq.2.8. The term with second coe�cient

of viscosity in Eq.2.8 also disappears when incompressiblity holds. Thus Eq.2.8 takes

its �nal form as

∂ρu
∂t

+∇ · (ρuu) = −∇p+∇ ·
[
µ(∇u+∇Tu)

]
+ f. (2.13)
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MULTIPHASE FLOW

Understanding the mechanics of multiphase �ow is a challenging task in both

experimental and computational point of views. The limitations in experimental

studies mainly result from the fact that the measurement devices are still not capable

of resolving small length and short time scales.

The computational aspect of the multiphase �ows is even more challenging. Highly

nonlinear nature of governing equations and capturing the correct shape and position

of the �uid-�uid interface constitute the most critical adversities. In addition, the

analytical results are available only for simple �ow con�gurations such as steady

bubble �ow in Stokes' regime [Tryggvason et al., 2011].

3.1 Interface Mechanics

Accurate representation of the shape and position of the interface is a major issue

in multiphase �ow analysis. There are several mathematical approaches to represent

the interface and parametrization of the surface is one of the most convenient ways.

Figure 3.1 shows how the parametrization can be performed in 3D. The normal and

tangent vectors, which are necessary for calculating the curvature of the interface, are

also depicted in the same �gure.

The normal vector can be calculated by taking the cross product of tangent vectors,

Eq.3.1, to the surface.

xu =
∂x
∂u

and xv =
∂x
∂v

(3.1)

Thus the normal vector is de�ned as
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Figure 3.1: Parametrization of the surface of the interface with two independent
coordinates u and v. The normal vector,n, and the tangent vector, t, are also depicted.
[Tryggvason et al., 2011]

n =
xu × xv
|xu × xv|

(3.2)

When the normal �eld extends of the interface, the curvature of the interface can

be calculated by taking the divergence as follows

κ = −∇ · n (3.3)

An alternative expression for the mean curvature of the interface can be derived in

an integral form as well. This form is useful especially when the interface is discretized.

κn = lim
δA→0

1

δA

∮
pdl (3.4)

where p = t× n.

It is a cumbersome process to calculate the position of each element on the

interface. Alternatively, the marker functions can be used in the entire domain to label

the di�erent phases. The marker function may vary depending on which interface-

tracking method is used. The level set method employs a special smooth function

to locate the interface. On the other hand discontinuous step function, or Heaviside

function, is used in the front-tracking method as shown in
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H(x, y) =

1, �uid phase 1

0, �uid phase 2
(3.5)

As Eq.3.5 shows, the �rst �uid is marked as "1" and the other one is "0". At the

interface, there is a discontinuous change between the values of the two phases. In

order to represent the interface, that discontinuity should be resolved and it is going

to be discussed especially in the section where front-tracking is explained.

3.2 Interfacial Fluid Mechanics

When the two phases in the domain are identi�ed separately, the interfacial region

forms between those phases. Since the phases are described by separate governing

equations, the continuity at the interface should be somehow established. The interface

is a region of zero thickness and it separates the phases present in the domain. Unless

the one-�uid formulation is used, the interface brings discontinuity either in physical

parameters themselves or in their derivatives. Thus, this jump condition should

be managed to satisfy global conservation. At this point, mass and momentum

conservations should be revisited to incorporate multiphase aspect. After the modi�cations

to the conservation laws due to jumping conditions are presented, one-�uid formulation

is described as an alternative. The front-tracking method employed in this study is

also based on the one-�uid formulation.

3.2.1 Conservation of Mass

The continuity condition for single phase bulk �ow was discussed in previous chapter.

When another phase is introduced to the domain, the interface inherently violates the

continuity. Therefore the jump conditions should be de�ned to maintain the mass

conservation.

In Figure 3.2 u1 shows the �ow velocity for the �uid on the right hand side and

similarly u2 is velocity for �uid on the left hand side. V is the velocity of the interface
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Figure 3.2: Representation of the control volume around the portion of the interface

and it should be taken into account to calculate the relative mass �ow. Since the

thickness of the interface is assumed to be zero, there is no mass accumulated within

the control volume. Therefore the �rst term on Eq.2.1 vanishes and the mass balance

is maintained by equating the incoming and outgoing mass �uxes. The mathematical

representation of this situation can be given as;

ρ1(u1 · n− V ) = ρ2(u2 · n− V ) = 0 (3.6)

This equation shows that the velocity of the interface should be de�ned as

V = u1 · n = u2 · n (3.7)

The relation between the velocities of two phases at the interface, on the other

hand, comes from the fact that the equality of shear stress at the interface. Thus

under the assumption of incompressibility and absence of phase change the velocities

of the phases should be equal at the interface, u1 = u2.

3.2.2 Surface Tension and Consevation of Momentum

As is the case with conservation of mass, the momentum balance is analyzed for the

control volume shown in Fig.3.2.
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Since there is no momentum accumulated within the control volume due to zero

thickness Eq.2.5 reduces to

∮
S

ρu(u · n− V )ds+

∮
S

n ·Tds+

∫
S

fσds = 0 (3.8)

Eq.3.7 derived for conservation of mass requires that the �rst term on the left hand

side is zero. Now the last term which indicates the contribution of surface tension

force should be de�ned.

At the end of a clear derivation performed by Tryggvason and Zaleski [Tryggvason et al., 2011]

the surface tension force is calculated as in Eq.3.9.

fσ = σκn+∇sσ (3.9)

where ∇s = ∇−n(n ·∇) and the last term in Eq.3.9 is obviously zero for constant

surface tension coe�cient.

When Eq.3.8, Eq.3.9 and Eq.3.7 are combined, the interfacial jump condition for

momentum can be obtained as;

−(T2 −T1) · n = σκn+∇sσ (3.10)

3.2.3 One Fluid Formulation

The previous section presented the coupling of two independent governing equations

by using jump conditions at the interface. As an alternative, single set of equations

can be used to model entire �ow �eld occupied by di�erent phases. Thus, cumbersome

procedure of implementing jump conditions is avoided. Di�erent phases are represented

in this one set of equations through variable material properties which have sudden

change at the interface. This alternative approach is called one �uid formulation and

it is the focus of multiphase analyisis in this study.
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Even though one �uid formulation automatically satis�es the jump conditions, the

interface and the forces generated due to the presence of it should be included into

the governing equations. For this purpose, the Dirac-δ functions are used.

Entire derivation procedure is the same with single phase case with an addition

of surface tension as a body force to momentum equation. Unless chemical reactions

are present, the mass conservation equation is going to be the same with the single

phase.

As it is pointed out in the derivation of the momentum equation for the single

phase case, di�erent type of external forces can be included along with the body

force. Therefore, after manipulating Eq.3.9 by Dirac-δ function, fσ is added to

the Eq.2.8. Before proceeding with implementation, it is useful to de�ne Dirac-δ

function concentrated over the interface, δS(x), by performing appropriate coordinate

manipulation [Onural, 2006]. After de�ning δS = δS(x − xs), the sifting property of

Dirac-δ function for interface can be stated as;

∫
V
δS(x)f(x)dv =

∫
S

f(x)ds (3.11)

For a control volume which contains the interface, the surface tension force can

be calculated by taking the integral of fσ over the interface surface that covers the

control volume. Then if the principle shown in Eq.3.11 is applied to that surface

integral, surface tension force can be described over the volume

∫
S

fσds =

∫
V
fσδSdv (3.12)

The last step of derivation of one �uid formulation is to add the term on the right

hand side of Eq.3.12 to Eq.2.5. The resulting integral equation is;

∂

∂t

∫
V
ρudv = −

∮
S

ρu(u · n)ds+

∫
V
fdv +

∫
V
fσδSdv +

∮
S

n ·Tds (3.13)
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Applying the divergence theorem to the integral equation, Eq.3.13, results in the

Navier-stokes equation equations for incompressibe �ows with the interface

∂ρu
∂t

+∇ · (ρuu) = −∇p+ f+ fσδS (3.14)

For the sake of completeness, the surface tension force on the right-hand side of

Eq.3.14 can be rearranged by using the relation in Eq.3.9 for constant surface tension

coe�cient;

fσδS =

∫
fσδ(x− xs)dA where fσ = σκn

hence

fσδS =

∫
σκnδ(x− xs)dA

(3.15)

Therefore incompressible Navier-Stokes equations with surface tension force can

be obtained as;

∂ρu
∂t

+∇ · (ρuu) = −∇p+ f+

∫
σκnδ(x− xs)dA (3.16)

3.3 Front-Tracking Method for Advecting the Interface

As discussed in the previous chapter, according to the one-�uid formulation, all

phases are represented by a single set of equations with variable material properties.

The discontinuity due to the interface between the phases enters the Navier-Stokes

equation via the integral form of Dirac-δ function. Now the next task is computing the

location and orientation of the interface. Front-tracking method is explained brie�y

in this section.

The front-tracking method utilizes the marker points to de�ne the interface between

two phases. It is a very powerful implementation of one-�uid formulation in which
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the phases are updated according to the solution of a single set of equations. The front-

tracking method is essentialy based on the immersed boundary method, [Peskin, 1977].

The history of the front-tracking method goes back to Daly et al. [Daly, 1969] who

used the marker points to calculate the surface tension in MAC simulations. Later,

Richtmayer and Morton [Richtmyer and Morton, 1967] proposed to use marker points

to capture the shock-waves but they didn't provide any formulation. Glimm and

McBryan. [Glimm and McBryan, 1985] proposed the �rst front-tracking algorithm.

For moderate Reynolds number regimes of multiphase �ows, Unverdi and Tryggvason

[Unverdi and Tryggvason, 1992] developed a front-tracking algorithm where marker

points were used to represent the interface.

As Unverdi and Tryggvason described in detail [Unverdi and Tryggvason, 1992], in

order to represent the interface between the phases in the domain, the marker points

are used to form a Lagrangian grid. At each time step, the velocity is interpolated

from the Eulerian grid onto marker points to move them to their new position for

updating the shape of the interface. The Lagrangian grid is also called as front in

this method and each front element is created by linking two (or three in 3D) marker

points with any interpolation scheme.

Figure 3.3: Representation of the �xed Eulerian (�ow domain) and Lagrangian
(interface) grids [Muradoglu and Tryggvason, 2008]
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A one-set of equations is solved for the Eulerian grid in Figure 3.3, however,

as Eq.3.8 demonstrated that the surface tension force is required to achieve complete

solution. In addition, the material properties in each phase must be updated according

to the position of the front. Thus, the Eulerian grid should get this information from

the Lagrangian. Moreover, at the end of each time step, Lagrangian grid points move

to their new positions with the velocity information coming from the Eulerian grid.

The smoothing operation realizes all these necessary transformations from the �xed

grid to the front or from the front to the �xed Eulerian grids.

Discretization and solution procedures of the single set of governing �ow equations

are not described here. Instead they are described in the next chapter where these

procedures are explained for the single grid. In this section, the calculations for

advecting the front to update the material properties are going to be discussed.

In a nutshell, there are four fundamental front operations and each of them is

presented in the given order:

1. Smoothing the front properties onto the �xed grid

2. Calculation of indicator function

3. Advecting the front

4. Restructuring the front

Before proceeding with the process of indicator function generation, Eq. 3.17 tells

that each material property is updated by using corresponding value of that function.

ρ(x) = ρ0 + (ρb − ρ0)I(x) (3.17)

µ(x) = µ0 + (µb − µ0)I(x) (3.18)

In Eq.3.17, I(x) denotes the indicator function for the �xed grid.

As is the case with the volume-of-�uid method, an indicator function is introduced

for the front-tracking method.
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The material properties of di�erent �uids change abruptly across the interface

and Dirac-δ function is implemented in the governing equations to model this sudden

change. Within the context of the front-tracking method, it is reasonable to represent

each phase with the Heaviside function, Eq.3.5. The interface, on the other hand, is

labeled by the non-zero gradient of the Heaviside (step) function. Therefore the

Dirac-δ function and the gradient of the step function should be correlated. To show

the correlation, it is better to start with comparing Dirac-δ function and Heaviside

function in Eq.3.19.

H(x, y) =

1, �uid phase 1

0, �uid phase 2

∫ x

−∞
δ(x− x′)dx′ =

1, x' < x

0, x' > x
(3.19)

Eq.3.19 showed that the Heaviside function is equal to integral of the Dirac-δ

function as is shown in Eq.3.20 for 1D case. The dimension can be increased easily

by adding δ function in other directions.

H(x) =

∫ x

−∞
δ(x− x′)dx′ (3.20)

If the gradient operator is applied to both sides, the operator can go into the

integral on the right-hand side of Eq.3.20 because the operator is de�ned with respect

to the unprimed variables. Moreover, the operator can relate to primed variables

inside integral because δ function is antisymmetric in this context. Hence the gradient

of the step function is calculated as;

∇H = −
∫
A

∇′ [δ(x− x′)δ(y − y′)] da′ (3.21)

Here the '-' in Eq.3.21 comes from the conversion from ∇ to ∇′. Eventually area

integral in Eq.3.21 can be transformed to line (surface in 3D) integral as;

∇H = −
∮
δ(x− x′)δ(y − y′)n′ds′ (3.22)
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This gradient �eld is zero, except the �nite region in the vicinity of the interface.

The next step is to spread the gradient �eld onto the �xed grids around the interface

by smoothing operation. There are several alternative methods to accomplish the

smoothing the front properties, but every method should maintain the conservation

of transferred quantity. For the method explained here the variables φg and φf are

going to denote the generic variables located on the Eulerian gird and on the front

respectively. The conservation principle states that, after each transformation Eq.3.23

must hold.

∫
∆s

φf (s)ds =

∫
∆v

φg(x)dv (3.23)

The approximation to Eq.3.23 for a three-dimensional case can be performed by

φg,ijk =
∑
l

φf,lω
l
ijk

∆sl
h3

(3.24)

where φg,ijk is the Eulerian grid property φg on the cell with indices i, j, k, which

show the computational location of the cell in each direction. The summation on the

right hand side is performed over front elements, l. Similar to grid properies, the front

property at element l is denoted by φf,l. ωlijk is the weight of grid point i, j, k with

respect to the front element l and it decides what proportion of φf,l is transferred to

φg,ijk. Finally, h is the cell spacing of the grid and ∆sl is the area of the front element

l.

There are many di�erent expressions for weight function in the literature, but

in this study, the method suggested by Peskin [Peskin, 1977] is used. The weight

function must satisfy the property in Eq.3.25.

∑
ijk

ωlijk = 1 (3.25)

Let xP = (xp, yp, zp) be the coordinates of front element point from which smoothing
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is to be done. The weight function for grid point at i, j, k can be expressed as

[Tryggvason et al., 2001]

ωijk(xP ) = d(xp − ih)d(yp − jh)d(zp − kh) (3.26)

where xp, yp and zp denote the location of the Lagrangian point. The Eulerian

grid spacing, h, is assumed to be constant in each direction. To calculate the weight

function accurately, the distance function d(r) should be de�ned properly. In this

study we used Peskin's cosine function de�ned by

d(r) =

(1/4h)(1 + cos(πr/2h)), |r|<h

0, |r|>=2h

(3.27)

To calculate the indicator function on the �xed grid and then update the material

properties, the gradient of the indicator function should be distributed over the �xed

grid by the smoothing procedure described above. When gradient of indicator function

at the interface, Eq.3.21, is smoothed onto the grid, G(x, y) will be obtained as in

Eq.3.28 [Unverdi and Tryggvason, 1992]. Here notice that the generic variable φg is

replaced with Gijk.

Gijk =
∑
l

ωlijkn
l∆sl = (∇I)ijk (3.28)

When Eq.3.28 is applied to all grid points, the gradient �eld of indicator function,

∇I, is established for �xed grid points. The summation in Eq.3.28 is an approximation

to the integral of Dirac-δ function.

However, as Eq.3.17 indicates that, values of indicator function itself, I(x, y) are

required in the �xed grid. To obtain the function itself, the divergence operator is

applied to both sides of Eq.3.29 to obtain Eq.3.30.
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G(x, y) = ∇I (3.29)

∇ ·G = ∇2I (3.30)

Eq.3.30 is the Poisson equation whose solution gives the indicator function, I(x, y),

on the �xed grid points. It can directly be used to update the material property �elds

as given by Eq.3.17. Solution of the Poisson equation, 3.30 will be discussed in next

chapter.

The surface tension force is another property calculated on the front and the same

smoothing operation can be applied to transfer it from the front to the �xed grid.

The generic variable φ used to explain the smoothing procedure above can be replaced

with the surface tension force, fσ.

After the surface tension force is transferred from the front to the �xed grid,

coupled system Eq.3.16 and Eq.2.12 are solved for the velocity and pressure �elds on

the �xed grid. The velocity of the front elements are decided according to the velocity

�eld calculated on the �xed grid. Hence interpolation operation is performed to send

the data from the �xed grids to the front elements as;

φf =
∑
ijk

ωijkφijk (3.31)

The weight function in Eq.3.31 is used to determine what proportion of the grid

information at location i.j.k is sent to the front element, l. The summation is over

the �xed grids in the vicinity of the front element, l. Even though the interpolation

is the reverse operation of smoothing, the same weight function can be used in both

applications.

As is the case with the momentum equation on the �xed grid, the �rst-order Euler

method is employed to advect the marker points as;

xn+1
f = xnf + vnf∆t (3.32)
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where xn+1
f and xnf are the new and old positions of the marker points respectively.

vnf is, on the other hand, is the velocity interpolated from the �xed grid.

In most of the cases the conservation cannot be held for the Lagrangian grid.

Inaccurate advection results in changing the mass of the enclosed multiphase region

as simulation proceeds. The order of accuracy of advection and interpolation are the

main sources of the lack of conservation. Using higher order schemes instead of �rst

order Euler method for front advection is relatively easy to implement. Changing

the interpolation scheme, on the other hand, may result in a complicated pressure

equation [Tryggvason et al., 2001].

Advection of the marker points, Eq.3.32, completes the third step among four

important steps given as a list at the beginning of the section. The last step is the

restructuring of the front. This is a very important operation since the accuracy and

global conservation of numerical setup depends on the quality of the grids. As the

front moves within another phase, it changes its shape and orientation. Therefore

some parts of the front become excessively re�ned and some parts remain critically

coarse. This situation arises due to the advection of the front elements with di�erent

velocities. The regriding procedure checks the Lagrangian grid once in a few time-

steps to maintain the quality of front elements at a reasonable level. To decide if

regridding is required, each front element is compared with the prede�ned values of

the size of the front elements.
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SINGLE GRID SOLVER

In this chapter, the numerical methods are described to discretize and numerically

solve the �ow equations. First the grid arrangements are presented. Then the

projection method, the strategies for elliptic solvers and appropriate boundary conditions

are described. In later chapters the adaptive mesh re�nement technique will be built

upon numerical implementations described in this chapter.

4.1 Grid Arrangements

Before studying the numerical methods used to approximate the governing PDEs in

discrete form, it is required to decide where the �ow variables and material properties

are stored in a computational cell. Di�erent grid arrangements can be used depending

on the issues, such as numerical stability and accuracy. For some numerical methods,

such as second-order projection method [Bell et al., 1989], more than one grid arrangement

can be used. Here the standard Staggered grid arrangement is employed.

Even though there are various possible grid arrangements that suit di�erent numerical

methods, two main arrangements are mostly preferred in CFD studies. These two

techniques can be distinguished by the locations of material properties and �ow

quantities on the computational cell.

• Collocated grid arrangement

• Stagerred grid arrangement
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4.1.1 Collocated Grid Arrangement

In the collocated grid arrangement, all �uid/�ow quantities are stored at the center

or nodes of the computational cell. The cell-centered arrangement is usually preferred

in application. This type of arrangement greatly simpli�es the implementation of the

numerical method and data management becomes straightforward. The collocated

grid allows to use the same interlevel communication operators for each variable in

multigrid solvers. Similarly in adaptive mesh re�nement (AMR) applications, for

all variables, the same interpolation schemes can be used to update the re�nement

levels. In most of the AMR packages including the AMReX [Zhang et al., 2019], there

is a large number of options to perform cell-centered interpolations. The accuracy of

the numerical approximation of the nonlinear terms in the advective term in Eq.2.13

signi�cantly increases when all velocity components are stored at the same location.

In spite of the advantages of collocated grid arrangement, lack of velocity-pressure

coupling constitutes an important disadvantage. In most of the cases, inaccurate

coupling results in nonphysical oscillatory behaviors in pressure �elds. The error-

prone coupling in the collocated grid for the two-dimensional case is shown in Figure

4.1.

Figure 4.1: Pressure values stored in the collocated grid to represent the checker-board
problem
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As seen in Figure 4.1 the checker-board problem occurs when there is a highly

irregular pressure �eld within the domain such that it wiggles, e.g from 5 to 10

from one grid location to another. The indices I and J show the grid in x and

y directions respectively. Referring to Figure 4.1, it can be seen that the pressure

gradient calculated at location I,J by using central di�erences becomes zero, e.g

∂P

∂x
=
PI+1,J

PI−1,J

=
10− 10

δ
= 0, (4.1)

∂P

∂y
=
PI,J+1

PI,J−1

=
10− 10

δ
= 0. (4.2)

Figure 4.1 and Eq.4.1-4.2 clearly show that the collocated grid produces zero

pressure �eld within the domain, even though it is highly oscillatory. This means

that the collocated grid arrangement allows to have nonphysical pressure oscillations

when central di�erences are used. Although Rhie and Chow [Rhie and Chow, 1983]

developed an interpolation scheme to eliminate the checker-board problem from the

collocated grid, oscillatory behavior still persists when nonlinearity increases.

4.1.2 Staggered Grid Arrangement

As Figure 4.1 and Eq.4.1-4.2 suggested, the e�ect of pressure gradient on velocities

can be lost if all variables are located at the same position within the cell. To solve

this problem, Harlow and Welch [Harlow and Welch, 1965] proposed the staggered

grid arrangement within the context of the Marker and Cell (MAC) method. In

this arrangement, regardless of the numerical method pressure is used to enforce

the continuity equation, Eq.2.12, for the incompressible �ows. To compute the

mass �ux through the boundaries of pressure control volume accurately, vectorial

quantities, such as velocity and surface tension force, are located at the face of the

computational cell in the staggered grid. Conversely, the scalar variables, such as

material properties and pressure, are stored at the cell centers. To take the advantage

of simplicity of the collocated grid in programming, in the staggered grid arrangement,

di�erent control volumes are used to represent variables as shown in Figure 4.2. In
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order to put the u and v velocities at the center, the velocity control volumes are

separated from scalar control volume and they shift by half cell spacing to right and

up respectively. However, it should be noted that implementation is not as easy as

that in the collocated grid even with this modi�cation.

Figure 4.2: Di�erent control volumes in the staggered grid arrangement for u- and v-
components of the velocity �eld [Tryggvason et al., 2011]

As is the case with the collocated grid, indices i,j show the center coordinates of

the cell. i+1/2,j and i,j+1/2, on the other hand, show the center of u and v velocity

control volumes. The staggered grid o�ers great advantages over the collocated grid.

It provides direct coupling between the velocity and pressure �elds, and this eliminates

the checker-board problem. In addition, when the rectangular domain is used, the

in�ow boundary condition can be speci�ed at the boundary explicitly. The other

advantage is that it provides a divergence-free velocity �eld with great accuracy

because the velocity components that are used to compute derivatives in ∇ · u are

already available in cell faces. However, the location of velocities can create a problem

when the advective term in the Navier-Stokes equation is discretized because the cross

derivatives require the averaging of the velocity components.
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4.2 Numerical Solution to the Navier-Stokes Equations

The Navier-Stokes equations for single phase �ow were derived in the previous chapter.

The one-�uid formulation for multiphase �ows requires the numerical approximation

to conservation equations as if there is a single phase in the domain. The presence

of another phase is introduced by advecting the material properties according to

the position of the interface. In addition, the surface tension force is included in

the Navier-stokes equation. In this section, numerical methods used to discretize

and solve the governing equations are presented. The important steps of numerical

procedures can be given in the following order:

• Setting the grid arrangement

• Deciding time integration scheme for the momentum equations

• Spatial discretization of the Navier-Stokes equations

• Imposing the boundary conditions

• Solving the pressure equation

• Correcting the unprojected velocity to satisfy mass conservation.

This section focuses on the single grid time advancement, however, the same

approach will be taken in each re�nement level when the AMR is implemented. In

this study, numerical methods are implemented on the staggered grid arrangement as

explained in the previous section.

4.2.1 Time Integration Scheme: Projection Method

Since the pressure �eld is used to satisfy the continuity equation for the incompressible

�ows, the predictor-corrector approach, such as projection method, is preferred as a

time integration scheme.
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The complication of the projection method may vary depending on the grid

arrangements and where the variables are located on the cell. The staggered grid

o�ers simplicity and accuracy although it introduces additional approximations while

discretizing the advective and viscous terms.

The projection method consists of two steps: (1) In the predictor step the temporary

velocity �eld is obtained by excluding the pressure gradient. This velocity �eld does

not satisfy the continuity equation in most of the cases. (2) The corrector step projects

the temporary velocity �eld onto the divergence-free vector space by using the pressure

gradient term. The concept of the projection method was initially proposed by Chorin

[Chorin, 1968] and Yanenko et al. [Yanenko, 1971].

For the simplicity, the projection method is combined with a �rst order Euler

scheme for time integration. However, higher-order time integration schemes can also

be used. Before proceeding, it is better to de�ne some speci�c notations used by

Zaleski et al. [Tryggvason et al., 2011]. Their formulation is followed for explaining

the single grid discretization of the governing equations. The non-conservative Navier-

Stokes equation for incompressible �ow given in Eq.2.13 is expressed in compact form

as;

ρ(
∂u
∂t

+A) = −∇p+D+ f (4.3)

In Eq.4.3 the advective and viscous terms are denoted by A = ∇ · (uu) and

D = ∇ · µ(∇u + ∇uT ). Finally f denotes all forces acting on the �uid element, i.e

both body and the surface tension forces.

An explicit forward Euler method is employed for time integration and we obtain;

un+1 − un

∆t
+An

h =
1

ρn
(−∇hp+Dn

h + fn) (4.4)

where ∆t denotes the time step size and the superscript n denotes the current

time step. The subscript that h, appears in the terms Ah,Dh and ∇hp, indicates the
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spatial discretization of the corresponding terms. It should not be confused with the

cell spacing h.

After discretization of the Navier-Stokes, the incompressible continuity equation

can be approximated using central di�erences as;

∇h · un+1 = 0 (4.5)

The velocity �eld at the new time step obtained from Eq.4.4 should also satisfy

Eq.4.20 by using an appropriate pressure gradient. However, there is no explicit

equation to �nd the pressure gradient. The projection method �nds solutions to all

velocity components and pressure appearing in Eq.4.4 in two steps by using the Hodge

decomposition method. It is useful to explain this method before proceeding with the

projection method.

Hodge Decomposition

According to the Hodge decomposition, a vector �eld ψ can be decomposed for simply

connected domain and smooth boundary [Minion, 1996] as;

ψ = ψD +∇φ (4.6)

where φ is a scalar �eld. ψD is a divergence-free component of ψ and it satis�es

the following conditions given.

∇ · ψD = 0 in Ω, ψD · n = 0 on ∂Ω (4.7)

where Ω and ∂Ω denote the simply connected domain and smooth boundary of

the domain, respectively.

Since the divergence of the vector �eld ψD is zero, Eq.4.8 also must hold when

divergence operator is applied to the both sides of Eq.4.6, e.g
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∇ · (∇φ) = ∇·ψ (4.8)

The information on the boundary can be obtained as in Eq.4.9 whenever Eq.4.8

satis�es the requirements of the divergence theorem.

∂φ

∂n
= ψ · n on ∂Ω (4.9)

Eq.4.8 - 4.9 forms together a Neumann problem. The projection method extracts

the divergence free vector �eld, ψD, from the �eld itself, ψ, by solving a Poisson

problem stated in Eq.4.8 with the Neumann boundary conditions for φ. The projection

on ψ can be de�ned as

P(ψ) = ψD, (4.10)

where P() in Eq.4.10 indicates the projection operation. We then obtain from

Eq.4.10 and Eq.4.6 that

(I−P)ψ = ∇φ. (4.11)

The Hodge decomposition and projection operation are used in the derivation of

the time integration scheme for the Navier-Stokes equations in this chapter. Before

completing the discussion on the Hodge decomposition, it is important to note that

ψD · n does not necessarily be equal to zero. It can take a �nite value such that

∫
∂Ω

g = 0 where ψD · n = g (4.12)

After completing the brief discussion on the Hodge decomposition, the application

of the projection method to the Navier-Stokes equations can start with computing

the temporary velocity �eld by ignoring the pressure gradient
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u? − un

∆t
= −An

h +
1

ρn
(Dn

h + fn). (4.13)

Hence, the temporary velocity �eld can be obtained by rearranging Eq.4.13 as

u? = un + ∆t(−An
h +

1

ρn
(Dn

h + fn)). (4.14)

In the second step, the pressure gradient is used to correct u? as

un+1 − u?

∆t
= − 1

ρn
∇hp. (4.15)

It is useful to establish analogy between predictor-corrector scheme given in Eq.4.13-

4.15 and the Hodge decomposition in Eq.4.6. If u? is decomposed and the projection

operator, P(), is applied on u?

P(u?) = un+1 hence u? = un+1 +
1

ρn
∇hp (4.16)

Here u?, un+1 and ∇hp are analogous to ψ, ψ
D and ∇φ, in Eq.4.6 respectively.

To �nd the pressure �eld, divergence operator is applied to the both sides of

Eq.4.16 to eliminate the divergence-free velocity �eld un+1. The resulting equation is

called the Poisson equation for the pressure �eld.

∇h ·
(

1

ρn
∇hp

)
=

1

∆t
∇h · u? (4.17)

After the pressure �eld is calculated by solving Eq.4.17, the divergence-free velocity

�eld for the new time step can be evaluated by using Eq.4.15.

4.2.2 Discretization of Advection and Viscous Terms

To compute (∇·u?), Eq.4.13 is discretized using a �nite volume method (FVM) where

each term in the governing conservation equations are converted into volume integrals.
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Since each phase within the domain is represented by a single set of equations, the

interface introduces a sharp transition between the phases. The integral form of FVM

eliminates the disadvantage of having discontinuous regions within the domain, hence

it is very compatible with the one-�uid formulation.

FVM starts with applying divergence theorem to volume average of the terms in

Eq.4.13 over control volume V , i.e

Ac =
1

V

∫
V
∇ · (uu) dv =

1

V

∮
S

u(u · n) ds,

Dc =
1

V

∫
V
∇ · (Tv) dv =

1

V

∮
S

Tv · n ds,

(∇p)c =
1

V

∫
V
∇p dv =

1

V

∮
S

p · n ds,

fc =
1

V

∫
V
f(x) dv ,

(4.18)

where the subscript c denotes the integral representation, Tv is stress tensor and

S is the boundary of the control volume V .

Similarly, the continuity equation can be represented by volume average as

1

V

∫
V
∇ · un+1 =

∮
S

un+1 · n ds = 0 (4.19)

A second-order central di�erencing scheme is used to approximate the integral

equations given in Eq.4.18 and 4.19. However, di�erence schemes should be used

carefully depending on the �ow con�guration. For instance, high order upwind

schemes can eliminate the stability problem that may arise for inviscid �ows, but

it may deteriorates the numerical accuracy for the viscous �ows.

For simplicity, the derivations are performed for the two-dimensional case by

employing central di�erencing in this chapter. However, the formulation can easily

be extended to three-dimensions.

As a grid arrangement, the staggered grid is used to take advantage of accurate

representations of derivatives. As depicted in Figure 4.2 the u velocity control volume
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is shifted by half grid spacing from the scalar control volume i, j to i+ 1/2, j. Similarly

the v velocity control volume is shifted to i, j + 1/2. In this arrangement the continuity

equation is discretized using central di�erences as

1

∆x∆y

[
(un+1

i+1/2,j − u
n+1
i−1/2,j)∆y + (vn+1

i,j+1/2 − v
n+1
i,j−1/2)∆x

]
= 0 (4.20)

which can be rearranged as

un+1
i+1/2,j − u

n+1
i−1/2,j

∆x
+
vn+1
i,j+1/2 − v

n+1
i,j−1/2

∆y
= 0. (4.21)

The momentum equation is also approximated in the same manner. The temporary

velocity in the x and y directions are obtained from Eq.4.22 and Eq.4.23, respectively.

u?i+1/2,j = uni+1/2,j + ∆t{(−Ax)ni+1/2,j + (fx)
n
i+1/2,j

+
1

1/2(ρni+1,j + ρni,j)

[
(Dx)

n
i+1/2,j + (fx)

n
i+1/2,j

]
}, (4.22)

v?i,j+1/2 = vni,j+1/2 + ∆t{(−Ay)ni,j+1/2 + (fy)
n
i,j+1/2

+
1

1/2(ρni,j+1 + ρni,j)

[
(Dy)

n
i,j+1/2 + (fy)

n
i,j+1/2

]
}. (4.23)

Similarly, the projection P(u?) in Eq.4.16 is approximated as

un+1
i+1/2,j = u?i+1/2,j −

∆t
1/2(ρni+1,j + ρni,j)

pi+1,j − pi,j
∆x

, (4.24)

vn+1
i,j+1/2 = v?i,j+1/2 −

∆t
1/2(ρni,j+1 + ρni,j)

pi,j+1 − pi,j
∆y

. (4.25)

To complete the discretization the advective terms (Ax)i+1/2,j, (Ay)i,j+1/2 and

viscous terms (Dx)i+1/2,j,(Dy)i,j+1/2 should also be approximated.
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Advective Terms

The volume integral of the advective terms is

Ac =

∮
S

u(u · n) ds where u = uı̂+ v̂ (4.26)

The x componment of the advective term is approximated by using the central

di�erences;

(Ax)i+1/2,j =
1

∆x∆y
{[(uu)i+1,j − (uu)i,j] ∆y+[

(uv)i+1/2,j+1/2 − (uu)i+1/2,j−1/2

]
∆x} (4.27)

Similar approximation is also applied to the y-component to get

(Ay)i,j+1/2 =
1

∆x∆y
{
[
(uv)i+1,j+1/2 − (uv)i−1/2,j+1/2

]
∆y+

[(vv)i,j − (vv)i,j] ∆x} (4.28)

In Eq.4.27 and 4.28 velocity �uxes are located at the faces of the velocity control

volumes which coincide with the center of the scalar control volumes. Since u and

v velocities are not explicitly de�ned at cell centers, they are approximated by using

the alternative schemes. The decision on the scheme should be made by taking the

physics into account. For demonstration purposes, the linear interpolation scheme

is used in this section, but alternative schemes are also discussed. When �uxes are

approximated x and y components of the advection term become

(Ax)
n
i+1/2,j =

1

∆x

[(
uni+3/2,j + uni+1/2,j

2

)2

−
(
uni+1/2,j + uni−1/2,j

2

)2
]

+
1

∆y

[(
uni+1/2,j+1 + uni+1/2,j

2

)(
vni+1,j+1/2 + vni,j+1/2

2

)]
− 1

∆y

[(
uni+1/2,j + uni+1/2,j−1

2
)

(
vni+1,j−1/2 + vni,j−1/2

2

)] (4.29)
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(Ay)
n
i,j+1/2 =

1

∆x

[(
uni+1/2,j + uni+1/2,j+1

2

)(
vni,j+1/2 + vni+1,j+1/2

2

)]
− 1

∆x

[(
uni−1/2,j+1 + uni−1/2,j

2
)

(
vni,j+1/2 + vni−1,j+1/2

2

)]
+

1

∆y

[(
vni,j+3/2 + vni,j+1/2

2

)2

−
(
vni,j+1/2 + uni,j−1/2

2

)2
] (4.30)

The central di�erencing scheme is second-order accurate, hence it is advantageous

over other non-centered schemes. However, it is sensitive in some cases. It can give

non-physical oscillatory results when discontinuities are not fully resolved. On the

other hand, forward-in-time centered-in-space (FTCS) schemes are unconditionally

unstable for inviscid �ows. Therefore arti�cial viscosity should be added to provide

stability, however, in that case, non-optimized viscosities can smear out the problem.

There are alternative and more stable schemes to be used especially for inviscid

�ows. The upwinding scheme approximates the values at the edge of velocity control

volumes and for ui,j;

ui,j =

ui−1/2,j, if 1/2
(
ui−1/2,j + ui+1/2,j

)
>0

ui+1/2,j, if 1/2
(
ui−1/2,j + ui+1/2,j

)
<0

(4.31)

The same relation is valid for the v velocity as well. Even though Eq.4.31 is stable,

the accuracy is its biggest disadvantage. Since it is �rst-order accurate, numerical

di�usion can produce non-physical results. The remedy to the accuracy problem is

to use higher-order upwind schemes. One option is to use the QUICK (quadratic

upstream interpolation for convective kinematics) scheme;

ui,j =


1/8(3ui+1/2,j + 6ui−1/2,j − ui−3/2,j), if 1/2

(
ui−1/2,j + ui+1/2,j

)
>0

1/8(3ui−1/2,j + 6ui+1/2,j − ui+3/2,j), if 1/2
(
ui−1/2,j + ui+1/2,j

)
<0

(4.32)

Since the problem is viscous, both centered di�erencing and QUICK schemes are

implemented.
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Viscous Terms

Viscous terms can be approximated using central di�erences

(Dx)
n
i+1/2,j =

T v,xxi+1,j − T
v,xx
i,j

∆x
+
T v,xyi+1/2,j+1/2 − T

v,xy
i+1/2,j−1/2

∆y
(4.33)

and

(Dy)
n
i,j+1/2 =

T v,xyi+1/2,j+1/2 − T
v,xy
i−1/2,j+1/2

∆x
+
T v,yyi,j+1 − T

v,yy
i,j

∆y
(4.34)

In Eq.4.33 and 4.34 Tv denotes the viscous �uxes located at the faces of the

velocity control volumes. Fluxes in the normal direction is approximated as

T v,xxi,j =

[
2µ(

∂u

∂x
)

]
h

= 2µi,j
uni+1/2,j − uni−1/2,j

∆x
(4.35)

T v,yyi,j =

[
2µ(

∂v

∂y
)

]
h

= 2µi,j
vni,j+1/2 − vni,j−1/2

∆y
(4.36)

and in tangential direction

T v,xyi+1/2,j+1/2 =

[
µ

(
∂u

∂y
+
∂v

∂x

)]
h

=

µni+1/2,j+1/2

(
uni+1/2,j+1 − uni+1/2,j

∆y
+
vni+1,j+1/2 − vni,j+1/2

∆x

) (4.37)

It is assumed that the viscosity is constant within each phase, but can change

across the interface. Therefore the indicator function calculated by solving the Poisson

equation in Eq.3.29 is used to update the viscosity as;

µ(x) = µ1H(x) + µ2[1−H(x)] (4.38)

In the staggered grid arrangement, viscosity is kept at the center of the cell.

However, in Eq.4.37 viscosity is required at the node of the scalar control volume.
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Therefore it is approximated by taking an average of four viscosities surrounding that

particular node as

µi+1/2,j+1/2 =
1

4
(µi,j + µi+1,j + µi.j+1 + µi+1,j+1) (4.39)

Eq.4.35 and 4.37 complete the required discretizations for the temporary velocity

�eld calculation in Eq.4.14

4.2.3 Time Step Restrictions

For explicit time integration methods, such as the forward-Euler method, obtaining

stable solutions depends on the relation between temporal and spatial resolutions.

Both advective and di�usive terms bring restriction on the time step. The CFL

condition for the advective term requires

umax∆t

h
≤1 (4.40)

where umax is the maximum velocity in the �ow domain and it is calculated as

umax =
√
u2 + v2 + w2. The CFL condition requires that the time step is su�ciently

small so that the information travels not more than single cell size in a single time-

step. The viscous term also brings a constraint on the time step size. Since it is

discretized by central di�erencing the restriction can be given by

µ∆t

ρh2
≤1

6
(4.41)

where h is the smallest cell spacing in each direction. For two-dimensional case

the right hand side becomes 1
4
.

4.2.4 Pressure Equation

After u? is computed, the pressure �eld is evaluated by Eq.4.17 in order to calculate

the divergence-free velocity �eld at the new time step. The velocity components at

the new time step is given by;
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un+1
i+1/2,j = u?i+1/2,j −

∆t
1/2(ρi+1,j + ρi,j)

pi+1,j − pi,j
∆x

(4.42)

and

vn+1
i,j+1/2 = v?i,j+1/2 −

∆t
1/2(ρi,j+1 + ρi,j)

pi,j+1 − pi,j
∆y

(4.43)

To obtain the discretized form of Eq.4.15, Eq.4.42 and 4.43 are put into Eq.2.12

to get

1

∆x2

(
pi+1,j − pi,j
ρni+1,j − ρni,j

− pi,j − pi−1,j

ρni,j − ρni−1,j

)
+

1

∆y2

(
pi,j+1 − pi,j
ρni,j+1 − ρni,j

− pi,j − pi,j−1

ρni,j − ρni,j−1

)

=
1

2∆t

(
u?i+1/2,j − u?i−1/2,j

∆x
+
v?i,j+1/2 − v?i,j−1/2

∆y

)
.

(4.44)

Eq.4.44 is called the pressure equation which is discretized version of the Poisson

equation, Eq.4.17. There are many advanced and well-developed elliptic solvers to

tackle with Eq.4.44 such as relaxation and multigrid solvers. As the solver gets

complicated, the e�ciency generally increases but implementation also gets harder.

Multigrid methods have been used in many multiphase �ow studies because they

provide computational e�ciency without loss of accuracy.

The accuracy is increased as the resolution of the mesh gets �ner. However, the

time step size is also restricted by stability conditions given in Eq.4.40 and 4.41. Thus,

computational e�ciency decreases dramatically as the cell size gets smaller, because

the low-frequency errors are eliminated much later than the high-frequency errors.

Multigrid methods o�er a solution procedure where low and high-frequency errors

are treated in di�erent levels. The iteration starts with the �nest grid and continues

until the high-frequency wavenumbers are removed. Then the approximate solution

is passed to the coarser grid where the lower wavenumber errors can be eliminated.

After several iterations in the coarser grid, the correction is added to the �ne grid

solution. The transfer between the grids is realized by special operations. To send
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the data from the �ne to the coarse grid, the restriction algorithm is used where the

approximate solution in the �ne grid is averaged down. The operation from the coarse

grid to the �ne grid, on the other hand, is called interpolation and di�erent schemes

are used according to where the data is stored in the computational cell. After coarse

grid data is supplied to the �ne grid, it is iterated a few more times to eliminate

errors due to intergrid operations. HYPRE package, which is used in this study, also

uses multigrid method as main solver and the details of that package is provided in

the next section. In the adaptive mesh re�nement applications the same operations,

restriction and interpolation, are used to set communication between the re�nement

levels.

Even though the multigrid method provides high e�ciency, it has convergence

issues for high-density ratio applications and implementation is not straightforward.

The relaxation methods, alternatively, are very easy to implement, although they are

far less e�cient than the multigrid method. Relaxation methods can be preferred

to gain insight about the problem quickly and then high-e�ciency solvers can be

implemented. In this study, successive over-relaxation (SOR) is used to obtain

preliminary results. The SOR method computes the value of pressure at new timestep

after the relative error between two successive iterations becomes less than a tolerance

value. For a new iteration of pα+1
i,j at location i,j the SOR method takes the weighted

average of pαi,j and the current updates for neighbouring grids. Hence pα+1
i,j can be

computed as;

Cρ =

[
1

∆x2

(
1

ρni+1,j + ρni,j
+

1

ρni,j + ρni−1,j

)
+

1

∆y2

(
1

ρni,j+1 + ρni,j
+

1

ρni,j + ρni,j−1

)]−1

Cp =

[
1

∆x2

(
pαi+1,j

ρni+1,j + ρni,j
+

pα+1
i−1,j

ρni,j + ρni−1,j

)
+

1

∆y2

(
pαi,j+1

ρni,j+1 + ρni,j
+

pα+1
i,j−1

ρni,j + ρni,j−1

)]

Cu? =
1

2∆t

(
u?i+1/2,j − u?i−1/2,j

∆x
+
v?i,j+1/2 − v?i,j−1/2

∆y

)

pα+1
i,j = β [Cρ]

−1 × [Cp + Cu? ] + (1− β)pαi,j
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(4.45)

where β is the relaxation factor. For over relaxation schemes it should be greater

than 1 and due to consistency concerns it cannot exceed 2. There is an expression

for the optimum value of β, but around β = 1.5 usually gives good results. As stated

before, implementation simplicity is the biggest advantage of the SOR method.

4.3 Boundary Conditions

The boundary conditions are needed to complete the di�erential equation system,

hence they are critical to simulate actual physical solutions. In this section, several

boundary conditions implemented in our benchmark problems are discussed.

4.3.1 Periodic Boundary Conditions

The periodicity condition represents the in�nite domain con�guration in the direction

it is implemented. The domain is treated as a unit cell and the solution is copied

from one side of the domain to the other. Even though it is easy to implement, in

multiphase simulations the interface should be located carefully. For �ow simulations

in two-dimensional con�guration, the implementation of periodicity can be seen as;

unx,j = u1,j

unx+1,j = ui+1,j

vnx,j = u1,j

vnx+1,j = vi+1,j

and pnx,j = p1,j (4.46)

The periodic boundary condition is preferred for preliminary runs of the simulation

because the solution is easy to converge when preiodicity is applied.

4.3.2 No-Slip Boundary Condition

In many cases, implementing normal velocity boundary conditions in the staggered

grid arrangement is very straightforward, because the boundary of the velocity control

volume coincides with the physical domain boundary. However, the tangential velocity
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requires a little more attention. The no-slip or wall boundary condition requires that

the velocity should be zero. Figure 4.3 shows a typical case in two-dimensions

Figure 4.3: Noslip boundary condition in x direction can be implmented by using the
ghost cells [Tryggvason et al., 2011]

The no-slip boundary condition is applied to v velocity for grid in Figure 4.3.

Since v velocity is not available on the wall in x direction, the ghost cells are used

to impose the boundary condition. These ghost cells lie outside of the computational

domain and their values can be obtained by interpolation. The linear interpolation

suggests that

vbdry,j+1/2 =
vi,j+1/2 + vi−1,j+1/2

2
(4.47)

In Eq.4.47, vbdry,j+1/2 is the tangential velocity located on the wall. No-slip

condition requires that it should be equal to zero, therefore the ghost cell, vi−1,j+1/2,

can be obtained as;

vi−1,j+1/2 = −vi,j+1/2 (4.48)

Eq.4.48 can also be applied to the slip boundary conditions. In that case, vbdry,j+1/2

is going to take a �nite value, therefore the ghost cell should be updated as;



48 Chapter 4: Single Grid Solver

ui−1/2,j = ubdry,j

vi−1,j+1/2 = 2vbdry,j+1/2 − vi,j+1/2

(4.49)

4.3.3 In�ow Boundary Condition

In�ow boundary condition sets the mass �ow rate with prescribed velocity pro�le

at the inlet of the domain. For the two-dimensional domain where the mass �ow is

introduced at the location x = 0, the velocity and the pressure conditions can be

stated as;

n · u?|x=0 = uin(y),

n · un+1|x=0 = uin(y),

n · ∇pn+1|x=0 = 0.

(4.50)

In�ow condition is very easy to implement in the staggered grid arrangement

because the velocity control volume coincides with the physical domain. Therefore

the inlet velocity, which is normal to the boundary, can be directly set to the initial

node. Depending on the numerical method, the ghost cells may still be used. In that

case, the ghost cells should be arranged to give the velocity value on the boundary.

4.3.4 Out�ow Boundary Condition

In most of the cases it is desired to simulate a part of the physical domain where the

physical phenomenon takes place. It is very e�cient in terms of computation since

it is not required to discretize the entire domain. The out�ow boundary condition

implies that the �uid continues to �ow physically, although the computational grid is

ended.

For two-dimensional setting, implementation of out�ow condition in x direction

starts with considering constant pressure and satisfying continuity at the last computational

cell;
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∇ · un+1|x=L = 0,

pn+1|x=L = const.

(4.51)

If it is assumed that the streamlines are perpendicular to the boundary in the x

direction, thus the tangential velocity becomes exactly zero, v|x=L = 0.

Therefore Eq.4.51 takes the form;

∂u

∂x
|x=L = 0 (4.52)

To impose out�ow conditions, ghost cells are required to be �lled like no-slip

condition. Implementation of Eq.4.52 in discrete form is;

unx+1/2,j = unx−1/2,j (4.53)

where nx denotes the total number of computational cells in x direction.

Even though implementation is straightforward, out�ow condition is very restrictive.

Physically it is important to state that the downstream �ow should have no e�ect

on the upstream. Implementing out�ow condition can create unphysical solutions

and convergence problems when it is applied to cells where the �ow pattern changes

signi�cantly.

4.4 Hypre Solver

Discretization of the pressure Poisson equation with appropriate boundary conditions

results in a linear system of equations, in the form Ax = b. The technique used to

solve this equation has a big impact on the e�ciency and convergence of the overall

simulation. In this study Hypre is used as a main solver and this section is devoted

to introducing the working principles of the package.

Hypre is a package of the high-performance solver for a large, sparse linear system

of equations. It encompasses the multigrid solvers for both structured and unstructured
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grid. Since the adaptive mesh re�nement algorithm inAMReX is based on a structured

grid system, this section focuses on the fundamental steps to solve the linear systems

in structured grids. Constructing the grid and solving the equation system, Ax = b

involve four basic steps:

1. Setting up the grid.

2. Specifying the stencil.

3. Constructing the matrix and vectors.

4. Solving the linear system of equations iteratively.

These four steps are accomplished by using built-in functions coded in the Hypre

package. Initially, the computational grid where the governing equations are discretized

should be introduced to the Hypre by setting the index space. The most basic tool

of grid generation operations is the Box and it includes cell-centered computational

cells by default. The idea of a Box is the same as the one used in AMReX package

as will be discussed later. Boxes divide the computational domain according to their

lower and upper indices and they are distributed over the parallel processes. Figure

4.4 shows a sample domain the domain divided into two boxes and each box is sent to

a di�erent process. The integers inside brackets indicate the lower and upper indices

of the boxes.

The grid creation in Hypre uses the following functions in the given order.

1. HYPRE_StructGridCreate(MPI_COMM_WORLD,ndim, &grid) : It creates the grid

object &grid

2. HYPRE_StructGridSetExtents(grid,ilower[0],iupper[0]) : The lower and

upper coordinates of the �rst box is introduced and the box is reshaped accordingly.

3. HYPRE_StructGridSetExtents(grid,ilower[1],iupper[1]) : The second box

is respahed in the same way with the �rst one.
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Figure 4.4: Example computational domain consists of two boxes whose indices can
be both positive and negative integers

4. HYPRE_StructGridAssemble(grid) : The computational grid is assembled.

After the grid is created, the stencil system that identi�es the cells used to

discretize the equations is introduced to the grid object. For instance, the central

di�erencing approximation uses 5 cells in its stencil system for a two-dimensional

Poisson equation and 7 points for a three-dimensional one. The stencil system is

represented by array of indices whose components show the o�sets from the gridpoint

at the center.

Entries of the stencil array usually start with the cell for which the equations

are discretized. To represent the neighboring cells, o�set values are used. Thus, the

zeroth entry of the array is (0,0) and it indicates the central cell. The �rst neighboring

cell has o�set in negative x direction, therefore its stencil entry is (-1,0). The next

entry belongs to the cell in positive x direction, hence its value is (1,0). The stencil

array is completed in this manner until all neighboring cells are represented. Figure

4.5 shows the order of entries. The stencil array should be the same for all boxes in

all processes.

Following Hypre functions are used to create the stencil system.
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Figure 4.5: 5-pt stencil system for the two-dimensional problem

1. HYPRE_StructStencilCreate(ndim,size,&stencil) : This function takes the

dimension of the problem and size of the stencil system (5-pt, 7-pt etc.) to create

the stencil object.

2. HYPRE_StructStencilSetElement(stencil,entry,offsets[entry]) : Each

entry represents a gridpoint in Figure 4.5 and offsets[entry] sets the o�set

of that gridpoint from central grid.

This completes the second step in the overall procedure and now the matrix A

in equation Ax = b is ready to be �lled according to the stencil system introduced

above. The temporary vector with a length of nstencil × N is used to �ll the matrix

object. nstencil is the number of stencils that each cell is associated with, and N is

the total number of computational cells in the box. The values of the vector, i.e.,

the values of entries for matrix A, are determined by the numerical method and the

boundary conditions. The data is stored in this temporary vector starting from the

bottom left corner and by sweeping the cells to the right. There should be exactly

nstencil entries for each cell in the vector. Following functions are used to update the

matrix A;



Chapter 4: Single Grid Solver 53

1. HYPRE_StructMatrixCreate(MPI_COMM_WORLD,grid,stencil,&A) : The matrix

object A is created

2. HYPRE_StructMatrixInitialize(A) : The matrix is initialized

3. HYPRE_StructMatrixSetBoxValues(A,ilower[0],iupper[0],n_stencil,

stencil_indices,values) : values is the vector that will feed the matrix A

and stencil_indices is the o�set values associated with each stencil

4. HYPRE_StructMatrixSetBoxValues(A,ilower[1],iupper[1],n_stencil,

stencil_indices,values) : Same procedure is repeated for the second box.

5. HYPRE_StructMatrixAssemble(A) : Assembles the matrix

After the matrix is created, the values can be manipulated to account for the

boundary conditions. For instance, the value of the left stencil for cells adjacent to

the physical boundary at x = 0 should be exactly zero.

Finally, the vector components, x and b, are �lled. Vector b consists of known

values of the linear system and vector x is composed of initial values of the unknowns.

As is the case with the matrix A, the vector objects are �lled by using temporary

vectors which store the data in the same orderly fashion. The Hypre functions used

to generate vectors x and b are very similar to the functions used for matrix A. The

sequence will be given only for vector b since it is the same for vector x.

1. HYPRE_StructVectorCreate(MPI_COMM_WORLD,grid,stencil,&b) : The vector

object b is created

2. HYPRE_StructVectorInitialize(b) : The vector is initialized

3. HYPRE_StructVectorSetBoxValues(b,ilower[0],iupper[0]�values) : values

is the vector that will feed b for the �rst box.
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4. HYPRE_StructVectorSetBoxValues(b,ilower[0],iupper[0]�values) : The

same procedure in previous step is repeated for the second box.

5. HYPRE_StructVectorAssemble(A) : Assembles the vector.

After matrix A and vectors b and x are assigned, the solver is initiated. There are

several alternative solvers contained in Hypre and they should be picked according to

requirements of the problem. SMG solver is a parallel multigrid solver and uses semi-

coarsening principle to handle any anisotropy of the problem. It is a robust solver,

however, per V-cycle it is less e�cient than another solver PFMG. The main di�erence

between these two solvers is the smoothing technique. SMG uses a plane-smoothing

method and it increases the robustness. PFMG, on the other hand, uses pointwise

smoothing which makes the solver more e�cient but less robust [Falgout and Jones, 2000].

There are also built-in functions designed to set up the solver with appropriate

iteration and tolerance limits. In this study, the PFMG solver is preferred and the

sequence of built-in functions to activate this solver can be given as;

1. HYPRE_StructPFMGCreate(MPI_COMM_WORLD,&solver) : Creates the solver object.

2. HYPRE_StructPFMGSetMaxIter(solver,maxiter) : Sets the maximum number

of iterations.

3. HYPRE_StructPFMGSetTol(solver,tol) : Sets the tolerance for relaxation method.

4. HYPRE_StructPFMGSetRelaxType(solver,method # ) : Determines the relaxation

method (SOR, RBGS etc.).

5. HYPRE_StructPFMGSetup(solver,A,b,x) : Setup the solver by bringing matrix

and vector objects.

6. HYPRE_StructPFMGSolve(solver,A,b,x) : Solves Ax = b.

The implementation of Hypre to AMR applications is going to be discussed in

details in following chapters.
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ADAPTIVE MESH REFINEMENT (AMR)

5.1 Introduction

Numerical simulations require signi�cant computational resources as the physics of the

problem gets complicated. In many contemporary computational studies, researchers

try to formulate robust numerical tools to attack the physical phenomena. To capture

the critical physical features in a reliable computational setup, the discretization

should satisfy some quality criteria. In multiphase �ows, the interface between

two immiscible �uids is the most critical part of the problem and, therefore, the

discretization around it must ensure that the physics of the problem is represented

accurately. In further analysis, some surface agents can also be added to the interface.

The concentration di�erence creates signi�cant discontinuity. Hence, the accuracy

around the interface becomes much more critical.

There is a computational trade-o� between accuracy and computational resources

in terms of both computational time and memory storage requirements. The �rst

option for improving the accuracy of the problem is obviously to reduce the cell

size. Even though it remedies the problem to some extent, additional problems arise

simultaneously. Re�ning the entire domain increases both the computational time

and the memory requirement signi�cantly. However, as mentioned before, usually

only some speci�c parts of the domain need higher resolution. On the other hand,

the cell size has a negative e�ect on the time-step size. To maintain the numerical

stability, the time-step size must be reduced to satisfy the stability requirements.

Since the simulations must be performed to resolve the �ow time scale, many time

steps are required to obtain reasonable solutions.

Adaptive Mesh Re�nement (AMR) emerges as a valuable technique that focuses on
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a speci�c region of interest without reducing the computational e�ciency dramatically.

In a nutshell, AMR is a well-developed tool to create a mesh in an adaptive manner

so that it can be re�ned and coarsened both in space and time depending on the

requirements of the physics of the problem.

The idea of using adaptive mesh can be implemented in various ways depending

on the physics of the problem as well as available computational resources. The

AMR strategies can be investigated in two main categories. The widespread strategy

is so-called h-re�nement where the resolution of the mesh is increased by dividing

the cells recursively. In h-re�nement, computational resources determine the ratio

of the re�nement between two consecutive cells and the number of re�nement levels

used throughout the simulation. Implementation of this strategy for unstructured

grids o�er signi�cant improvement for CFD simulations in which complex geometries

are involved. However, di�culties in maintaining the grid quality, load balancing

for parallel architectures and managing the mesh connectivity create unignorable

drawbacks. The second strategy is the r-re�nement where the total number of cells

and nodes remain constant, however, the positions of these cells rearranged according

to resolution requirements. In addition to h and r re�nements, where the focus

is on the spatial resolution, the p-re�nement can also be implemented to change

the resolution by adjusting the order of numerical method for the same mesh. A

simulation setup can involve both h-re�nement and r-re�nement simultaneously to

form so-called complete AMR. Even though this coupling creates complexity during

implementation, especially moving boundary problems need it to maintain su�cient

grid quality [Vanella et al., 2010].

In this study, we selectedAMReX package to manage grid generation and organizations

in AMR applications. It has been developed upon a hierarchical block-structured

method �rst proposed by Berger and Oliger [Berger and Oliger, 1984] as brie�y discussed

in the introduction of the thesis. This method uses successive re�ned levels to

increase the spatial accuracy in speci�c region of interests. Re�ned levels are created

by putting patches on coarser level. The resolution of the level is increased by a
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factor of re�nement ratio which can be limited by some interlevel operations such as

prolongation. Unless it is destroyed during the simulation, each level is in communication

with the consecutive coarser and �ner levels if they exist. We denote a single AMR

level with the lower case l in the present thesis.

The communication between levels resembles the operations performed in multigrid

simulations. The prolongation and restriction operations in multigrid methods are

adopted in AMR algorithms. However, multigrid methods are not included among

AMR techniques, because the multigrid methods do not create re�ned levels on top

of the existing base level. Prolongation and restriction operations are performed in

multigrid methods between base level and coarser levels which are used to eliminate

persistent low-frequency error components. Moreover, in the majority of AMR algorithms

multigrid solvers are used as a base solver to deal with PDEs. The levels used in

multigrid solvers are not the same levels created in AMR grid generation routines.

The multigrid levels are temporarily available during the solution process, conversely,

AMR levels retain until the resolution is required.

In the following sections, we directly focus on introducing block-structured AMR

routines to set a theoretical basis.

5.2 Block-structured Adaptive Mesh Re�nement

5.2.1 Overall Algorithm

AMReX package has been built upon hierarchical block-structured AMR method,

therefore it is necessary to investigate the development of the algorithm.

The block-structured algorithm has been developed at two distinctive steps. In the

�rst step, Berger and Oliger [Berger and Oliger, 1984] applied the primitive form of

the hierarchical algorithm on two-dimensional hyperbolic partial di�erential equations

by using the �nite di�erence technique. The hyperbolic PDEs are advantageous in

the sense that they can easily be represented by a wide range of numerical methods.

However, they may encompass certain critical physical phenomena such as shock

waves and very steep gradients [Berger and Oliger, 1984]. Those features require
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special attention and they proved that AMR o�ers signi�cant improvement. In this

�rst algorithm, they created rectangular-shaped patches with arbitrary orientations

due to computational e�ciency concerns. In the coarse level, the cells are tagged

according to the Richardson-type error estimation procedure and the rectangular

patches are created around those cells. The arbitrary orientation of the patches in

the �ne levels allows the algorithm to align the coordinate system with the feature

we are interested in. Thus, the patches can be created with a minimum amount

of cells that surrounds the discontinuity. Although arbitrary orientation decreased

the cost of clustering operations, mapping the �nite di�erence equations into the new

coordinate system brought additional computational burden. In addition, maintaining

the overall conservation became problematic when the patches were not aligned with

the coordinate system of the base level.

The major claim of the algorithm is that the grids are independent so that

di�erent numerical methods can be applied in each of them depending on stability

concerns. For instance, higher-order schemes can be preferred in the grids away

from the discontinuity, while, lower-order schemes are bene�cial in the vicinity of the

discontinuity. This independency also makes the parallelization easier.

In the second important step of the development of the block-structured method,

Berger and Colella [Berger and Colella, 1989] improved the algorithm in the �rst step.

The modi�cations implemented in this step has formed the basis for the algorithms

in the upcoming studies. Di�erent than Berger and Oliger [Berger and Oliger, 1984],

here they used the nested re�nement levels whose boundaries coincide with the grid

lines of the coarser levels to maintain the global conservation.

Starting from these very �rst algorithms, the �ner levels are created by employing

a re�nement ratio that sets the proportionality relation between cell sizes of two

consecutive levels. The same spatial ratio can also be applied to time-step size as well.

Thus, the small time-step sizes due to the CFL condition in �ner levels are not dictated

on coarser levels. Even though this adaptation is implemented in the following

algorithms and it seems very advantageous in terms of computational e�ciency,
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the drawback emerges during the selection of base solver. Even though multilevel

multigrid base solvers are very advantageous during �ux correction operations, they

cannot be employed while time-step adaptation is used. Berger and Colella

[Berger and Colella, 1989], Almgren et al. [Almgren et al., 1998] and Sussman et al.

[Sussman et al., 1999] have followed the time step adaptation especially in incompressible

Navier-Stokes algorithms due to e�ciency concerns, but they had to implement

complicated level synchronization and re�uxing procedures. Conversely, Minion

[Minion, 1996] and Vanella et al. [Vanella et al., 2010] have selected to use a �xed

time-step to take advantage of multilevel solvers. In the present study, we will try to

combine time-step adaptation with relatively easier synchronization operations.

As can be seen in the overall solution algorithm in Algorithm 1, each level is

created in a properly nested manner and time-step adaptation is applied by using the

spatial re�nement ratio.

In the next sections the grid generation, time advancement, ghost cell organization,

and synchronization procedures are discussed in detail in the framework of the AMReX

package.

5.2.2 Grid Generation

In block-structured AMR method, the grid generation procedure follows some certain

rules and restrictions in order to increase the computational e�ciency and to make

implementation easier. Tagging the cells which need re�nement and clustering to form

rectangular patches determines the e�ciency of in-level integration and communication

between re�nement levels. We can list the attributes of the grid generation procedure

as follows;

• Whenever a level is created, it takes its position in the hierarchical tree. The

grids in that level can have multiple interactions with grids in other levels

depending on its position in the tree. In the usual notation the grids in the

coarse level, l, are called parent, �ner level grids, l+1, are called children and
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Algorithm 1: Pseudo-code for the AMR algorithm

1 Initialization : Initialize and de�ne the base level

2 if Max Level > 0 then
do

Create and initialize �ner grids

while Level < Max Level

3 end

4 Evolve

do

Compute time step size based on CFL number
Advance the solution for base level

if Level < Finest Level then

do

Advance the solution for �ner levels

while r < Ref. Ratio

Store the �uxes for later correction

end

Correct the �uxes and update coarse level

while time < solution time

�nally the grids located at the highest level of re�nement are called leaf. The

grids in the same level of re�nement are named as siblings.

• The cells in a level l can be tagged by either using a truncation error estimator

function or using a speci�c user-de�ned function that tracks the evolution of the

physical parameters. For each level, di�erent criteria can be set for the tracked

variables.
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• The same re�nement ratio is applied in all grids in a level, however, di�erent

re�nement ratios can be selected for di�erent levels. In the case of time

synchronization, the same ratio is used for time-step size.

• The grids are properly nested so that each �ne grid, l+1, starts and ends within

the borders of the coarser level, l. Unless the �ner level abuts the physical

domain, there is at least one coarser level cell in each direction to surround the

level l+1. This additional region called bu�er region and it can be extended to

make sure that the high error regions are contained within a re�nement level.

As the bu�er region gets larger the re-gridding requirement decreases, but the

computational cost increases at the same time.

• There should always be a level l between level l+1 and l-1. This statement

ensures that each re�ned level can be contained in only a single coarser level.

For instance, a grid in level l+1 cannot be included in both level l and l-1 at

the same time.

• A grid in a level l+1 can be contained in two di�erent grids in a coarser level l.

• AMReX takes two parameters called max_ grid_ size and blocking_ factor to

regulate the generated grids. max_ grid_ size is used to chop the grids if any of

them in a level has the number of cells higher than this speci�c parameter. For

instance, if there are 32 cells in each direction in a level and the max_ grid_

size is 16, then the grid generation algorithm chops up the single grid into

two. Additionally, the number of cells in each direction should be proportional

to the blocking_ factor. For example, we cannot use 25 cells in a direction if

the blocking_ factor is 2. AMReX has the �exibility to set di�erent blocking_

factors in di�erent directions.

• The re-gridding frequency is set by the user. At the end of the re-gridding

operations, a level can be created, destroyed or remains still. After level l is
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re-gridded, levels from l+1 to lmax are re-gridded to sustain the proper nesting.

The base level, l=0 remains the same throughout the simulation.

The grids are created and re-gridded according to these basic rules and restrictions.

Figure 5.1 shows every possible situation that may arise during grid generation.

5.2.3 Time Advancement

Time-step adaptation is one of the most important features of the hierarchical block-

structured AMR method. It is also implemented in the AMReX package. Due to the

CFL constraint, the time step size is inversely proportional to the cell size. As the

simulation creates �ner levels, the cell size decreases according to the re�nement ratio.

Thus, time-step size decreases dramatically in �ner levels and, inevitably, simulation

becomes ine�cient. The ine�ciency results from the necessity to use the same time-

step size determined at the �nest level in all other coarser levels.

A time-step adaptation algorithm, or subcycling-in-time, integrates each level

independently with its own time step size. Figure.5.2 represents the advancement of

the base level for a single time step. The numbers on arrows indicate the operation.

The subcycled time-stepping procedure for a single time step can be described as

follows:

1. Advance Level-0 over ∆t

Then �ll the ghost cells of Level-1

2. Advance Level-1 over ∆t/2

Then �ll the ghost cells of Level-2

3. Advance Level-2 over ∆t/4

Then update the ghost cells of Level-2

4. Advance Level-2 over ∆t/4

Level-2 is advanced over ∆t/2, now synchronize it with Level-1

Then update the ghost cells of Level-1
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Figure 5.1: Representation of the properly nested grid hierarchy [Zuzio, 2011]

5. Advance Level-1 over ∆t/2

Then �ll the ghost cells of Level-2
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6. Advance Level-2 over ∆t/4

Then update the ghost cells of Level-2

7. Advance Level-2 over ∆t/4

Level-2 is advanced over ∆t, now synchronize it with Level-1

Level-1 is advanced over ∆t, now synchronize it with Level-0

Figure 5.2: Schematic representation of the time-step adaptation: (a) Advancement
in the �ne level (b) Advancement in the base level

Since the �ow equations are solved in each level independently, after the advancement

of each level the mismatch between two consecutive levels may arise. The synchronization

algorithm is devised to correct this mismatch to maintain global conservation. Even

though the synchronization is easier in multilevel solvers, it is di�cult to implement

the time-step adaptation in these solvers easily.
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5.2.4 Ghost Cell Organization

The ghost cells are additional computational cells used to impose the physical boundary

conditions and/or maintain communication between the boundary cells in the same

level or from next coarser level. Therefore managing the ghost cells appropriately is a

vital task for the simulation. As depicted in Figure.5.3, there are three fundamental

types of ghost cells located in three di�erent boundaries:

• Boundary between siblings : The ghost cells in this boundary maintain communication

between two siblings. In AMReX package, these boundaries are generated

especially when the grids are chopped up. Therefore they are immediately

�lled by the information from the neighboring sibling.

• Physical boundary : The physical boundary conditions are applied using the

ghost cells in these boundaries

• Boundary between levels : The ghost cells in these boundaries are used to exchange

the information between coarse level and the next �ner level. Depending on

the type of the variable, di�erent interpolation schemes are used to transfer the

data. For instance, scalar variables are stored in the cell centers in the staggered

grid arrangement, hence, the interpolation scheme which is compatible with the

cell-centered data type should be selected.

The data in the ghost cells have a direct impact on global accuracy, on the

convergence of the problem and also on the simulation results. Each type of the

boundary condition has a di�erent type of implementation and they should be treated

carefully through the ghost cells.

5.2.5 Flux Correction (Re�uxing)

Maintaining global conservation is of crucial importance in many physical problems

such as magnetohydrodynamics (MHD) and multiphase �ows. In the subcycled time-

stepping algorithm the coarse level is advanced �rst as if there is no �ne level, then
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Figure 5.3: Schematic representation of the three di�erent boundary: (a) Boundary
between the siblings (b) Physical boundary (c) Boundary between the levels

the �ne level is advanced by using the interpolated coarse level data in the ghost cells.

However, when the simulation is completed and all levels reach the same simulation

time, the �ux comes into or goes out of the �ne cell in the coarse/�ne interface doesn't

necessarily be equal to the �ux goes out of or comes into the coarse cell. A typical

�ux matching condition is depicted in Figure.5.4.

Figure 5.4: Fluxes at the coarse/�ne interface. They should match in order to preserve
global conservation of physical quantities.
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The �ux correction algorithm �rst calculates the di�erence between coarse and �ne

level �uxes at the interface and then synchronizes the levels by updating the coarse

level. We can consider the hyperbolic advection equation, Eq.5.1, as an example

problem.

∂φ

∂t
= −∇ · (φU). (5.1)

After the coarse level is advanced the �ux is computed and stored by multiplying

with a minus sign as

δF = −F l (5.2)

where F = φU is the �ux. Then the �ne level is integrated and the computed �ux

at the interface is added to the stored coarse level �ux as

δF = δF +
1

r

r∑
k=1

∑
faces

F l+1,k (5.3)

Here we compute �ne level �ux by two summation operations. The left summation

is for the time re�nement and the right one is for taking the contribution of all �ne

faces corresponding to the coarse face. The δF on the right hand side is equal to the

coarse level �ux and the one on the left hand side is the calculated �ux mismatch when

the �ne level contribution is added. After the mismatch is computed, the coarse level,

l, is updated depending on the type of the governing PDE. For hyperbolic PDEs, the

information is seen only by neighbors of the active computational cell. Therefore it

is su�cient to update the coarse cells in the vicinity of the interface and we can use

the �ux di�erence to update the coarse level data as

∂φ

∂t
= −∇ · δF, (5.4)
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where the entries of δF are all zero everywhere except for the region around the

interface. Therefore only the scalar variable φ around the interface is updated.

Conversely, for elliptic problems, the entire coarse domain should be updated

to spread the e�ect of mismatch, because the information at a point in the domain

travels at an in�nite speed. For instance, if the Poisson equation governs the problem,

additional Poisson equation with −∇·δF on the right-hand side is required to update

the coarse level. This is discussed in detail in upcoming chapters.

5.3 The AMReX Package

TheAMReX [Zhang et al., 2019] is an open-source software developed for constructing

block-structured AMR applications. It is a successor of BoxLib [Bell et al., 2012]

software and constitutes a basis for a large number of applications (for hyperbolic

conservation laws [Bell et al., 1994], for combustion applications [Pember et al., 1998],

for astrophysical applications [Zingale et al., 2018] etc.). AMReX is a very �exible

framework in terms of solution strategies. Depending on the problem and the numerical

method, a user can select a level-by-level strategy with a time-step adaptation, multilevel

approach with a �xed time step and any combination of these two. Interoperability

with other packages such as Hypre extends the alternatives for base solvers. Kernels

for integration, error estimation, interpolation and other problem-dependent operations

can be written either in C++ or in Fortran. The binding routine between these two

languages increases the �exibility of the solver. Although AMReX is very advantages

for multiphase �ow applications, the structure of the framework is suitable for collocated

or semi-staggered grid arrangements. Hence, important features should be modi�ed to

use AMReX with a staggered grid arrangement. The main features of the framework

can be listed as follows:

• It o�ers both C++ and Fortran interfaces.

• 1-, 2- and 3-dimensional problems can be simulated.
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• There are available solution strategies for parabolic, elliptic and hyperbolic

PDEs.

• Time re�nement approach is implemented.

• It supports particle tracing algorithms

In this chapter, we go through the basic features of the AMReX framework and the

key operations that are vital for the AMR applications.

5.3.1 Building Blocks of AMReX

Box and BoxArray

Including the base level, each level of re�nement is divided into grids that have a

speci�c number of computational cells. Within the context of AMReX, each grid is

represented by a class named Box. The collection of the Boxes in a re�nement level

is represented by BoxArray class. Attributes of these two classes re�ect the basic

features of the grids in a level. Figure 5.5 shows the boxes located in two re�nement

levels on top of a base level.

To create a Box the index type and computational indices for lower and upper

corners of the box should be de�ned. A Box can be extended in each direction to

cover the ghost cells.

The index type re�ects where the variables are stored in a computational cell

and a Box can be created by using only one index type. AMReX supports three

di�erent index types. A Box can be cell-centered, face-centered or node-based. If it

is not stated, the default setting is the cell-centered con�guration. Boxes can survive

in positive and negative indexing spaces. Each Box with a speci�c index type can

be converted to other index types easily. The grids in the re�ned levels are created

depending on the index type because di�erent interpolation operations should be

picked for di�erent index types. For instance, cell-centered bilinear interpolation does

not give accurate results for the face-centered setting. Since the interpolation scheme
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Figure 5.5: Representation of the boxes in 2 di�erent re�nement levels. The white
cells belong to the base level. The Red and the blue boxes are in the �rst and the
second re�nement levels respectively. [Zhang et al., 2019]

is very critical in ghost cell �lling, the whole simulation is a�ected when a wrong type

is selected for a Box. The index type of a BoxArray should be the same as the Boxes

contained in it.

FArrayBox, FabArray and MultiFab

An organized data structure is an important advantage of block-structured AMR

algorithms. AMReX uses FArrayBox, called as FAB, to store the data. It is a derived

class from a base class template called BaseFab. FArrayBox is a multidimensional

data storage unit and it is de�ned on a single Box in a level. Therefore it has the

same index type as the Box. Several components of variables can be described on a

single FArrayBox. For instance, in the staggered grid arrangement every scalar data

such as density, pressure, and viscosity are stored in the cell center. Therefore all

scalar variables can be attached to the same FArrayBox since they share the same

index type. This reduces the complexity of the algorithm signi�cantly.

In AMReX, there is a binding routine that allows sharing the data in an FArrayBox

with Fortran and other C++ kernels. The user-de�ned Fortran functions can only take
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FArrayBox as an input to manipulate the data. The member functions of FArrayBox

class give freedom to copy, manipulate or combine the data in them.

FabArray is a class template which combines every FAB in a single level. While

FABs are de�ned on the Box objects, FabArrays are de�ned on the BoxArrays.

Therefore it is required to provide a valid BoxArray to create a FabArray.

FabArrays are parallel data structures and their load is distributed among the

processors. The DistributionMapping class deals with management of the FabArray

parallelization. Thus, the DistributionMapping object should also be de�ned before

creating a FabArray.

Referring to Figure 5.5, the red boxes are located in the second re�nement level,

while the blue boxes are in the �rst level. For each box, di�erent FAB is created, but

for each level, there is a single FabArray and the corresponding DistributionMapping.

MultiFab is a special class derived from FabArray class to manage the data in a

BoxArray in a level. Throughout this study, we employ MultiFabs as data storage

units. Even though MultiFabs are collections of FABs in a level, the concept of ghost

cell is only applicable to MultiFabs. Hence, a Box used to de�ne a FAB may not

be the same as the Box contained in the BoxArray that de�nes the corresponding

MultiFab. That discrepancy occurs during the initialization of MultiFab. If ghost

cells are introduced, BoxArray and each Box contained in it is modi�ed to cover

these additional cells.

Except for the Boxes with nodal index type, the Boxes in a BoxArray do not

overlap. However, when ghost cells are introduced to theMultiFab, overlapping occurs

and the FillBoundary function �lls the ghost cells with valid data in the context of

parallel communication.

As long as the MultiFabs are de�ned on the same BoxArray with the same

DistributionMapping, they can do the arithmetic operations such as adding, subtracting

and copying.
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MFIter

MFIter is a widely used MultiFab functionality which allows the user to operate on

it. It is a speci�c iterator like the basic loops in common languages such as C++ and

Fortran. MFIter divides the MultiFab into FABs and loops over them. This iteration

can be performed only over the Boxes owned by the corresponding processor. For

instance if a processor owns two FABs from total of �ve FABs in a MultiFab, then

MFIter iteration is realized over those 2 FABs only. In a single loop, more than one

MultiFab with di�erent BoxArrays can be iterated, as long as they have the same

DistributionMapping objects.

Ghost Cells

As we discussed before, there are three di�erent type of boundaries de�ned in the

context of AMReX. Depending on its location each boundary is used to provide the

information from the physical boundary, previous level of re�nement or from the

sibling grid. These data are stored in the ghost cells of the grids.

Figure 5.6: Ghost cell region at the coarse/�ne interface.

Figure 5.6 shows the ghost region at the coarse/�ne interface. Here red dots show

the center of the ghost cells for the �ne region and they provide the information from

the underlying coarse level whose cell centers are shown by green dots. When the �ne
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level is created, the ghost cells are added around the �ne level grids to establish the

communication with the underlying coarse grid.

In general, the ghost cells can be located in three di�erent regions as depicted in

Figure 5.3, however, the con�guration in Figure 5.6 is applicable to all three scenarios.

The information is coming from di�erent sources for ghost cells in di�erent locations.

Therefore the AMReX routines used to �ll these cells may di�er. The following list

brie�y describes the location of the ghost cells and the source of information.

1. Ghost cells between the siblings - Figure 5.3 -(a): The information is provided

by the neighboring grids. This is the easiest ghost cell �lling operation. Since

it is interior boundary, FillBoundary() can handle this operation.

2. Ghost cells at the physical boundaries - Figure 5.3 - (b): The source of information

is the physical boundary conditions set by the user. If a �ne level abuts the

physical domain, the ghost cells are �lled directly by the physical boundary

conditions. If the boundary condition in the corresponding edge is periodic,

then the FillBoundary() routine in the AMReX can �ll those cells.

3. Ghost cells at the coarse/�ne interface - Figure 5.3 - (c): The information for

these ghost cells comes from the underlying coarse level grids. The interpolation

schemes are used to perform this operation. The FillPatch() operations are

used within the AMReX package.

Here we mentioned FillBoundary() and FillPatch() routines. As their names

imply, these are the principle algorithms to �ll the ghost cells and we will explain

them in the upcoming sections.

The ghost cell operations for the vectorial quantities depicted in Figure 5.6 require

more attention due to the global conservation concerns. In many CFD applications the

staggered grid arrangement is preferred because it results in higher accuracy than the

collocated and other grid arrangements. However, it brings complexity especially to
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the interpolation operations because the data itself lives at the interface. The special

treatment for the staggered grid is going to be discussed in the further sections.

Fortran Kernels

Many critical operations in the AMR algorithms, such as error estimation, time-step

calculation and integration of a level, can be accomplished by the Fortran kernels

which are binded to the main C++ routine through special protocols. Because the

Fortran language gives support to work on multi-dimensional arrays, these kernels are

more convenient than the C/C++ functions. In Fortran 2003 the function names in

the Fortran kernels can be accessed within C++ by bind(c) function. The important

step here is to create a C++ header �le with the extension *_F.H. Figure 5.7 shows

how a Fortran kernel is introduced to the C++ in the header �le.

Figure 5.7: The C++ header �le which introduces the Fortran kernels.

To be able to work on a data stored within the context of AMReX, the MultiFab

should be iterated under MFIter to reach the FABs in it. The Fortran kernels can

take a FAB as an input regardless of how many components included in that FAB.

To send the FAB from the C++ to the Fortran, BL_TO_FORTRAN_ANYD macro

function is used. It takes the FAB as an input and it returns 3 pointers. The �rst one

is the data pointer in the type of amrex::Real* and the other two are integer type

pointers which indicate the lower and the upper bounds of the Box in which the FAB

is stored.
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5.3.2 Error Estimation

Error estimation routine is the starting point of level creation and re-gridding. The

cells which need to be re�ned are tagged depending on the result of the speci�c error

function.

Error estimation can be performed mainly in two ways. The �rst one is keeping

track of the truncation error. Berger and Oliger [Berger and Oliger, 1984] studied

the hyperbolic type of PDEs where the propagation speed of information was very

important to decide on the cell size. They picked the Richardson extrapolation to

calculate the truncation error and they claimed that it gave satisfactory results even

for nonsmooth solutions. The second method is the user-de�ned function in which

the evolution of a speci�c parameter is tracked. Vanella et al. [Vanella et al., 2010]

studied a �uid-solid interaction problem, hence the interface between the two phases

should always be included in the re�ned region. Therefore they picked interfacial

parameters as error estimators to re�ne and de-re�ne the domain. Even though

tracking the values of some physical parameters allows the algorithm to create the

re�nement levels accurately, there can be overhead during the clustering operation by

including unnecessary cells in the patch. Thus, the user-de�ned function should be

arranged carefully to avoid unnecessary re�nements.

We studied the implementation of adaptive mesh re�nement algorithms to multiphase

�ow simulations. As is the case with Sussman et al. [Sussman et al., 1999] and Vanella

et al. [Vanella et al., 2010], it is signi�cant to capture the interface accurately. Hence

we also pick the interfacial properties to decide the position of the re�nement level.

In theAMReX package tagging the cells through user-de�ned functions is performed

in the ErrorEst() member function of the AmrCore class. The object of the TagBox

class is used to store the tagged cells for re�nement and �nally the Cluster class

creates the rectangular �ne grid.
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5.3.3 FillPatch Operations

As we stated before, MultiFabs have the concept of the ghost cell. In the AMReX

package the FillPatch operations have the duty to �ll both the ghost and the

computational cells. In a nutshell, the FillPatch functions accomplish the interpolation

and the ghost cell operations.

Since there are three di�erent types of boundaries, FillPatch operations are

capable of �lling all three di�erent type of ghost cells and the computational cells

during the level creation. For the base level, the computational cells are updated

by integration, however, the ghost cells on the boundaries between siblings (interior

boundary) and on the physical boundary should be �lled using boundary conditions.

When a re�nement level is created, the computational cells are �lled either from the

readily available valid data calculated at the previous time-step at the same re�nement

level or from the interpolated coarser level data. The FillPatch operations can

interpolate the data both in space and time in the case of the time-step adaptation.

The data for the ghost cells in the re�ned levels can come from the physical boundary

conditions, the neighboring sibling cells or directly from the coarser level.

There are two specialized routines within the context of FillPatch:

1. FillPatchSingleLevel() : This function operates on the single level of re�nement.

It has the capability of interpolating in time. The physical boundary conditions

are also managed in this function through the FillBoundary routines.

2. FillPatchTwoLevels() : If there is any underlying coarser level, this function

�lls the ghost and the computational cells. The Interpolation operations in

space and time are performed in this function. As is the case with the single

level operations, the FillPatchSingleLevel() function interpolates in time

and interpolation in space can be performed by any scheme suitable for the

index type of the MultiFab.

Since the FillPatch operations are very critical for the rest of the simulation, the

sequence of the member functions used to �ll the ghost and computational cells are
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discussed in the following algorithms. Algorithm 2, 3 and 4 show the three consecutive

steps of a single time step advancement. It is assumed that there is a single level of

re�nement and the re�nement ratio is 2. The algorithm starts with the initialization.

Algorithm 2: FillPatch operations for the base level

1 initData()

Update new_data

2 advance() - Level = 0

Switch new_data0 and old_data0

Increment new_time0 by dt

old_time0 = 0,time = 0

FillPatch()

FillFromLevel0()

getData()

Call one time and store only old_data0 in state0 object

FillPatchSingleLevel(state0)

3 Finalize time step for Level = 0

The Algorithm 2 describes the ghost/computational cell �lling operations for the

base level. The new_data and old_data are the objects responsible to store the

new time-step and the previous time-step data related with a variable. The subscript

0 refers to the base level and time is the simulation time. The state0 object stores

the data which will be used to �ll the ghost/valid cells. Since the old_time0 and

the time is equal, only available data is the old_data0. FillPatchSingleLevel()

directly copies the old_data0 without any time interpolation.

The Algorithm 3 shows the �rst cycle of the �ne time step. Here the FillPatch

routines change because there is an underlying coarse level. At the beginning of this

time step, the new_time1 incremented from 0 to dt/2 due to the time-re�nement.

Di�erent than the base level advancement, the FillFromTwoLevels() function is
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Algorithm 3: FillPatch operation for the re�ned level (�rst cycle)

1 advance() - Level = 1, Cycle = 1

Switch new_data1 and old_data1

Increment new_time1 by dt/2

old_time1 = 0,time = 0 FillPatch()

FillFromTwoLevels()

getData()

Call for Level-0

Store only old_data0 in state0

getData()

Call for Level-1

Store only old_data1 in state1

FillPatchTwoLevels(state0,state1)

2 Finalize time step for Level = 1. Cycle = 1

called to be able to use the coarse level data as well. In this step we have the

coarse level data. The �rst getData() function stores the old_data0 of the coarse

level because the time is still equal to the old_time1. In the second call of the

getData(), the �ne level data is going to be stored in the state1. In this �rst cycle

of the �ne level time-step, the time is equal to the old_time1. Therefore only the

old_data1 is stored in the state1.

After the getData() operations, state0 and state1 are sent to the FillPatchTwoLevels()

function. Together with the valid data, the ghost cells of the rectangular �ne patch are

�lled in this function. According to the index type of the target MultiFab, a speci�c

interpolator is used to �ll the ghost cells by the data coming from the underlying coarse

level. The state0 that was �lled by the getData() function is used here to provide

the data from the coarse level. The interpolation operations, which are mainly run

by member functions of the AMReX_Interpolator.cpp/H class, are hidden from the
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users. The available interpolators in the AMReX package are mainly for cell-centered

and node-based MultiFabs. The Interpolator for the face-centered MultiFabs is going

to be discussed in the following chapter.

At the end of the FillPatchTwoLevels() function, the FillPatchSingleLevel()

is called to �ll the valid cell region. During the interpolation step above, the data

from the coarse level are interpolated not only to the ghost region but also to the

computational region of the �ne level. However, it is not desired to lose the �ne

level data. Thus, the FillPatchSingleLevel() copies the simulation data to the

computational cells of the �ne level.

Algorithm 4: FillPatch operation for the re�ned level (second cycle)

1 advance() - Level = 1, Cycle = 2

Switch new_data1 and old_data1

Increment new_time1 by dt/2

old_time1 = 0,time = dt/2 FillPatch()

FillFromTwoLevels()

getData()

Call for Level-0

Store old_data0 and new_data0

getData()

Call for Level-1

Store only old_data1

FillPatchTwoLevels(state0,state1)

2 Finalize time step for Level = 1. Cycle = 2

The Algorithm 4 explains the �nal part of the single coarse time step advancement.

Since the re�nement ratio is 2, there should be 2 �ne level iterations per single coarse

level iteration. The second cycle starts exactly the same as the �rst cycle. The only

di�erence is the simulation time is not 0 anymore. After the half coarse time step
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advancement of �ne level, the simulation time has increased by dt/2. We already

advanced the coarse level by a coarse level time step. Therefore the new_data0 was

occupied for time = dt. But the actual simulation time is dt/2, hence we need the

coarse level data for that simulation time. Unfortunately, we only have the coarse

level data for time = dt, but we need the data at dt/2. The time interpolation comes

into play at this stage. When the getData() function is called for the coarse level,

we store both the old_data0 and the new_data0 in state0. On the other hand, we

store only the old_data1 for the �ne level because time is equal to old_time1. It

should be noted that the old_time0 and the old_time1 are two di�erent objects

and their values do not necessarily be the same.

As is the case with the �rst cycle, the FillPatchSingleLevel() is called just

before the interpolation and the coarse level data are interpolated in time to have

the data at time=dt/2. These interpolated data are used to �ll the ghost cells of

the re�ned level. When interpolation is completed, the FillPatchSingleLevel() is

called once more to �ll the computational region of the �ne level with the simulation

data of the �rst cycle.

5.3.4 Synchronization Operations

As we brie�y described in the Flux Correction (Re�uxing) section, the synchronization

of the coarse and the �ne levels is crucial for preserving global conservation. Re�uxing

and averaging are the two basic operations to maintain synchronization between the

levels. The �rst one remedies the problem that occurs as shown in Figure 5.4, but the

implementation details can change according to the index type of the MultiFabs. The

second one is to update the coarse level region overlaid by the �ne region. Without

averaging, the coarse level cannot have the accurate �ne level solution, thus the

adaptive mesh re�nement becomes completely redundant.

The �uxes coming from the coarse and the �ne region at the interface and the

di�erence between them are accumulated by the FluxRegister.cpp/Hmember functions,

CrseInit() and FineAdd(). The �rst function performs the operation in Eq.5.2,
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while the second function performs the operation in Eq.5.3.

The �ux calculated at an intermediate level, l, has two meanings. It is a "�ner

level �ux" for the level, l-1 and it is going to be a "coarse level �ux" when we advance

the level, l+1. Therefore after we advance the level l, we should save the same �ux to

two di�erent FluxRegister.cpp/H objects. Following two statements show how the

di�erence between �uxes is calculated.

flux_reg[l ]->FineAdd(flux,...)

flux_reg[l+1 ]->CrseInit(flux,...)

The �rst statement is used to calculate �ux mismatch between levels l and l-1.

The second statement, on the other hand, is used to calculate the mismatch between

level l and l+1. After the di�erence is calculated, The Reflux() function updates

the coarse level data.

Even though the averaging, or also called restriction, operation varies with di�erent

index types, it is a much simpler operation as compared with the re�uxing. The

restriction for cell centered data simply takes the average of four �ne level cells

and replaces the data in the underlying coarse level cell with that average. This

operation does not violate the symmetry and it is very easy to implement. In the

AMReX the average_down() member function contained in the MultiFab.cpp/H

class is responsible for the cell-centered restriction.

After explaining the re�uxing and the averaging brie�y, the Algorithm 5 shows

how the synchronization operations are performed in the AMReX package. For this

algorithm, it is assumed that there are two levels of re�nements and the re�nement

ratio is 2. These values are picked to demonstrate the sequence clearly.
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Algorithm 5: Re�ux algorithm

advance() - Level = L

Store the �uxes in flux_reg[L+1]->CrseInit()

advance() - Level = L+1,Cycle = 1

Store the �ux in flux_reg[L]->FineAdd() and

flux_reg[L+2]->CrseInit()

advance() - Level = L+2,Cycle = 1

Store the �ux in flux_reg[L+1]->FineAdd()

advance() - Level = L+2,Cycle = 2

Store the �ux in flux_reg[L+1]->FineAdd()

Re�ux between Level 1 and Level 2

advance() - Level = L+1,Cycle = 2

Store the �ux in flux_reg[L]->FineAdd() and

flux_reg[L+2]->CrseInit()

advance() - Level = L+2,Cycle = 1

Store the �ux in flux_reg[L+1]->FineAdd()

advance() - Level = L+2,Cycle = 2

Store the �ux in flux_reg[L+1]->FineAdd()

Re�ux between Level 1 and Level 2

Re�ux between Level 0 and Level 1

Average down the values from coarse to �ne level



Chapter 6

AMREX WITH THE FRONT-TRACKING METHOD

In the numerical multiphase �ow studies, the accurate representation of the physical

phenomena requires the discretization of some part of the computational domain with

a higher resolution than the rest of the domain. However, there is no sharp transition

between the high and the regular-resolution regions in many cases. More importantly,

the high-resolution region can vary in the course of a simulation. For instance, the

interface of two immiscible �uids travels in space as time marches, therefore the high-

resolution region which encloses the interface changes accordingly. A direct solution

to this problem is to discretize the entire domain with the highest resolution. But,

obviously, this is not applicable in terms of computational resources. Alternatively,

curvilinear grids, which are obtained by distorting the rectangular grids, can o�er a

signi�cant improvement in terms of both the e�ciency and accuracy as Muradoglu

and Kayaalp [Muradoglu and Kayaalp, 2006] suggested. But using a �xed number of

grid points does not allow the mesh to be fully adaptable.

To overcome this di�culty, the adaptive mesh re�nement o�ers a great advantage

by re�ning and coarsening the regions as the simulation proceeds. Application of

the AMR to the multiphase �ows has been practiced in many studies. Popinet

([Popinet, 2003] and [Popinet, 2009]) have combined the octree method with the

volume-of-�uid scheme in the Gerris package to simulate some important multiphase

problems such as the �uid-jet breakup and the rising bubble.

Hua and Lou [Hua and Lou, 2007] applied the adaptive mesh method to the interface

elements in the front-tracking method. Similarly, Sussman and Almgren

[Sussman et al., 1999] have established the block-structured AMR algorithm for two-

phase �ows by using the level-set method.
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In this study, theAMReX package is selected to manage the adaptive grid hierarchy

and the front-tracking method developed by Unverdi and Tryggvason et al.

[Unverdi and Tryggvason, 1992] is used to solve the multiphase �ow part. The combination

of these two algorithms is advantageous in the following aspects:

• Block-structured method used in the AMReX maintains global conservation

with su�cient accuracy.

• Time-step adaptation allows us to integrate the re�nement levels independently

with their own timestep size. Therefore the overall e�ciency increases.

• The connection between the Eulerian and the Lagrangian grids in the front-

tracking method is relatively easy.

Besides the advantageous, there are some challenges in the combination of these

algorithms. The major adversity is that the front-tracking algorithm has been developed

on the staggered grid arrangement where the vectorial properties are kept at the cell

faces, however, theAMReX supports the cell-centered and the node-based approximations

especially for the restriction and the prolongation operations. As a result of the grid

arrangement mismatch, interpolation and re�uxing operations should be reconsidered

in order to make the algorithms run coherently. The following sections discuss the

time-stepping procedures with important modi�cations, the divergence-free Balsara

interpolation for staggered grid and details of the Poisson solver to incorporate the

boundary conditions in Hypre.

6.1 Time-Stepping for the Staggered Grid

There are two common ways to solve the governing equations in the AMR applications.

The �rst approach is to solve all levels simultaneously with the same time-step

size as Minion [Minion, 1996] and Vanella et al. [Vanella et al., 2010] have done.

The second one is to advance each level independently with its own timestep, as

Almgren et al.[Almgren et al., 1998], Sussman et al. [Sussman et al., 1999] and Roma
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et al.[Roma et al., 1999] suggested. In this approach, the interlevel communication is

established by passing the Dirichlet condition to �ner levels if they exist. This study

focuses on the latter approach.

The subcycled time-stepping is a recursive algorithm where the advancement of

each level is completed by following the steps:

• The level, l is advanced with its own time-step. If l > 0 then the boundary

conditions can be provided either from the level l-1 or from the physical boundaries.

• The level l+1 is advanced multiple times depending on the re�nement ratio,

r. For instance, if r is two, then the level l+1 is advanced two times to be

syncronized in time with the level l. Therefore the relation between time-steps

of each level l and l+1 can be stated as

∆tl+1 = (1/r)∆tl. (6.1)

The boundary conditions for the level l+1 is again provided either by the level

l or the physical boundaries.

• The mismatch at the interface of the level l and l+1 is calculated and is

eliminated by the synchronization operations.

Since each level is advanced as if it is the only level, the synchronization is the

most critical part of the sequence given above. There are di�erent sources of the

mismatch at the interface of levels and they need to be eliminated to maintain overall

conservation. When the level l and l+1 are advanced to the same simulation time,

the synchronization operations should deal with three major sources of mismatch:

1. Interior mismatch: The level l and l+1 data are not synchronized.
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2. Velocity mismatch: The normal velocity �ux from the level l and area weighted

average over the level l face of the level l+1 velocity �uxes do not agree at the

l/l+1 interface. For the two-dimensional setting in Figure 6.1 , this mismatch

can be shown mathematically by [Vanella et al., 2010];

uli+1/2,j∆y
l = ul+1

i+1/2,j−1/4∆yl+1 + ul+1
i+1/2,j+1/4∆yl+1. (6.2)

Figure 6.1: Velocity mismatch between the velocities at the level l and l+1

3. Pressure mismatch: In the projection method, the pressure �eld is calculated by

the elliptic Poisson equation, Eq.4.17, to enforce the continuity equation in the

domain. Since the pressure is cell-centered in the staggered grid arrangement,

discretization of the elliptic operator ∇ · 1
ρ
∇p requires to take the di�erence of

pressure gradient, 1
ρ
∇p, located at the faces of the cells. This pressure gradient

term is called pressure �ux and, similar to the velocity mismatch, there is a

disagreement at the l/l+1 interface between the pressure �uxes coming from

the coarse and �ne levels.

The purpose of the synchronization operations is to eliminate the mismatches

listed above. Before introducing the operations, it is important to note that the
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re�uxing strategies proposed by Berger and Colella [Berger and Colella, 1989] for the

hyperbolic problems cannot be used in this study. Since the information propagates

with in�nite speed in elliptic problems, an additional Poisson equation should be

solved to update all grids in the level even though the mismatch is localized at the

interface.

The velocity for the new timestep at the level l and l+1 can be written as:

un+1,l = u?,l − 1/ρl∇pl, (6.3)

un+1,l+1 = u?,l+1 − 1/ρl+1∇pl+1. (6.4)

Therefore the velocity mismatch between u?,l and u?,l+1 and the pressure mismatch

between 1/ρl∇pl and 1/ρl+1∇pl+1 results in the total mismatch between un+1,l and

un+1,l+1. The solutions to these mismatches can be listed as follows:

1. Interior synchronization: The solution data at the level l+1 are assumed to be

more accurate than the underlying coarse level data. Hence the interior cells

of level l should be updated. The regular restriction operation performs this

synchronization by averaging the solution from �ne to coarse level.

2. Velocity and Pressure synchronization: At the end of each time-step important

quantities are stored in the registers described in section 5.3.4. These quantities

are the mismatches calculated at the l/l+1 interface. As Almgren et al.

[Almgren et al., 1998] suggested the velocity register accumulates the area-weighted

di�erence between u?,l and u?,l+1, i.e,

δu?,l = −u?,l +
1

r

r∑
k=1

∑
faces

(
Al+1u?,k,l+1

)
, (6.5)

where Al and Al+1 denote the areas of the faces of the coarse and �ne level cells

respectively, at the l/l+1 interface. The outer summation in Eq.6.5 is up to



88 Chapter 6: AMReX with the Front-Tracking Method

the re�nement ratio due to the subcycling and the inner summation is over the

faces of �ne level cells which abut the coarse level cell at the interface. Pressure

�ux mismatch can be accumulated in the pressure registers in the same way

δ(1/ρl∇p)l = −Al(1/ρl∇p)l +
1

r

r∑
k=1

∑
faces

(
Al+1(1/ρl+1∇p)l+1

)
, (6.6)

where δu?,l and δ(1/ρl∇p)l de�ne the right-hand side of the additional Poisson

equation, which determines the correction velocity �eld to synchronize the level

l and l+1 as

∇ ·
(
Al

ρl
∇(δel)

)
= ∇ ·

[
(δu?,l) + (δ(1/ρl∇p)l)

]
. (6.7)

The Neumann boundary condition, ∂(δe)l/∂n = 0 can be set when the out�ow is

de�ned on the physical boundaries. If it is in�ow, then the Dirichlet condition,

(δe)l = 0, works �ne. When l > 0, then prolongation from the coarser level can

supply the interior boundary conditions.

After the solution is obtained for (δe)l, the velocity in the level l can be updated

as

un+1,l = un+1,l − 1

ρl
∇(δe)l. (6.8)

Equations Eq.6.3 - 6.8 use density as average of two adjacent cells since it is stored

at the center of the cells.

6.2 Interpolation Scheme for the Staggered Grid

As brie�y discussed before, the ghost cells are used at the coarse/�ne interface to

supply the information from coarser to the �ner grid by prolongation operation.
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Similarly, the �ne level solution is used to update the underlying coarse level data by

the restriction operation.

Depending on the problem and the numerical grid arrangements, the nature of

these two important operations changes signi�cantly. Berger and Oliger

[Berger and Oliger, 1984] developed the adaptive mesh method on hyperbolic conservation

equations, Eq.6.9.

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0 (6.9)

where U denotes the conserved quantity and F,G and H are the �ux vectors in

x, y and z directions respectively. The integral form of the formulation in Eq.6.9

allows the physical discontinuity present within the �ow domain. To account for

the discontinuities, Colella et al.[Colella, 1990] have developed a conservative, higher-

order Godunov method. However, when global conservation is not satis�ed during

AMR operations, the solution may contain unphysical features. Hence, Berger and

Oliger [Berger and Colella, 1989] incorporated bilinear interpolation scheme to interpolate

the coarse level data to the �ner level and similarly at the end of each timestep �ne

level data are restricted onto the coarse level. But, they noticed that restriction

violates conservation at the coarse-�ne interface, hence, to remedy this de�ciency

they computed the �ux mismatch at the interface and update the coarse level data

accordingly.

As a part of the Navier-Stokes equations, formulations for the incompressible �ows

require to satisfy the divergence-free velocity, ∇·u, condition to properly represent the

�ow domain. Almgren et al.[Almgren et al., 1998], Sussman et al.[Sussman et al., 1999]

and Minion [Minion, 1996] applied the approximate projection method on the semi-

staggered grid arrangement and they used bilinear interpolation scheme for the prolongation.

Because they approximately satis�ed the continuity, they solved an additional Poisson

equation to preserve global conservation. Martin et al.[Martin et al., 2008], on the

other hand, developed the divergence cleaning algorithm by solving an additional

Poisson equation. For �uid-structure interaction problems in the adaptive structured-
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grid hierarchy, Vanella et al. [Vanella et al., 2010] preferred to use a divergence-

free prolongation operator utilizing high order polynomials. Although it satis�ed

conservation constraints successfully, the method is valid only when the re�nement

ratio between levels is two.

Magnetohydrodynamics (MHD) equations are very similar to incompressible �ow

equations in terms of the updating solution to preserve continuity. As the divergence

of velocity should be kept zero throughout the incompressible �ow simulations, the

magnetic �eld needs to satisfy the same condition, ∇ · B = 0, for MHD problems.

Balsara [Balsara, 2001] has developed a divergence-free second-order accurate interpolation

scheme for the MHD in three-dimensions. He used the staggered grid arrangement

to store the magnetic �eld. In this study, his reconstruction approach is used to

interpolate the data from the coarse to the �ne grid. The main feature of Balsara

prolongation is that it is built upon the TVD principle to maintain stability.

First the reconstruction sequence is introduced for two-dimensional case for the

sake of simplicity, Then the three-dimensional version is given. It is useful to de�ne

the notation before proceeding with the sequence. As shown in Figure 6.2 let ul,− =

uli−1/2,j and u
l,+ = uli+1/2,j denote the u-velocity at lower and upper faces in x direction

respectively in coarse level, l. Similary vl,− = vli,j−1/2 and v
l,+ = vli,j+1/2 are v velocity

components at lower and upper faces in y direction, in coarse level, l. Throughout

this analysis the origin is located at the center of the control volume i, j, hence, at

i, j x = 0 and y = 0. ∆x and ∆y are the edge sizes in x and y directions as shown

in Figure 6.2. Since the origin is at i, j, the interval of the domain can be stated as

[−∆x/2,∆x/2]× [−∆y/2,∆y/2]. Balsara's prolongation scheme can be summarized

as follows:

1. The reconstruction starts with �tting piecewise linear pro�les for velocities at

lower and upper faces in both x and y directions in level l. There are several

ways to obtain these slopes. If there is any discontinuity present in the domain,

slope limiters, such as minmod(), can be prefered. Since there is no physical

discontinuity, the slopes can be computed using central di�erences as
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Figure 6.2: Representation of the grid used to explain the Balsara reconstruction.

∆yu
l,± =

ul,i±1/2,j+1 − ul,i±1/2,j−1

2
, (6.10)

∆xv
l,± =

vl,i+1,j±1/2 − ul,i−1,j±1/2

2
. (6.11)

Therefore u and v velocities vary at lower and upper faces in x and y directions

as

ul(x = ±∆x/2, y) = ul,± +
∆yu

l,±

∆y
y, (6.12)

vl(x, y = ±∆y/2) = vl,± +
∆xv

l,±

∆x
x. (6.13)
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2. After linear pro�les are determined for faces where the velocities are located,

polynomial functions are �tted inside the control volume in x and y directions

seperately. The coe�cients of the polynomials are computed so that they

satisfy the continuity in every point inside the control volume. Then these

polynomials can be used to calculate velocities in re�ned levels by prolongation

and divergence-free property always holds because the coe�cients in coarse level

are picked to satisfy the continuity. The polynomials can be constructed as

u(x, y) = a0 + axx+ ayy + axxx
2 + axyxy + ayyy

2, (6.14)

v(x, y) = b0 + bxx+ byy + bxxx
2 + bxyxy + byyy

2. (6.15)

3. In this last step, the coe�cients are determined to satisfy the continuity. Since

linear pro�les are �tted at faces, the coe�cient of second order terms should be

zero, i.e,

ayy = bxx = 0. (6.16)

When∇·u is computed by the polynomials in Eq.6.14, three additional constraints

appear as;

ax + by = 0; 2axx + bxy = 0; axy + 2byy = 0. (6.17)

Eq.6.16 and 6.17 guarantee that polynomials in Eq.6.14 construct divergence-

free velocity �eld within the control volume.

Now there are seven independent coe�cients to determine in Eq.6.14. Two

additional constraints provide relations for those coe�cients. The �rst constraint

is that the discrete version of continuity, Eq.6.18 , should be satis�ed, i.e,
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(ul,+ − ul,−)∆y + (vl,+ − vl,−)∆x = 0 (6.18)

The second condition comes from the fact that polynomials in Eq.6.14 should

match the linear pro�les given in Eq.6.10 at the lower and upper faces of the

control volume in each direction. Equating linear pro�les and polynomials at

faces gives seven equations to determine seven independent coe�cients. Even

though eight coe�cients are used to represent the variation of polynomials at

faces, Eq.6.18 reduces this number to seven.

After some algebraic manipulations, those seven independent coe�cients are

obtained as

ax = −by = (ul,+−ul,−)
∆x

= − (vl,+−vl,−)
∆y

, (6.19)

ay = 1
2

(
∆yul,+

∆y
+ ∆yul,−

∆y

)
, (6.20)

bx = 1
2

(
∆xvl,+

∆x
+ ∆xvl,−

∆x

)
, (6.21)

axy = −2byy = 1
∆x

(
∆yul,+

∆y
− ∆yul,−

∆y

)
, (6.22)

bxy = −2axx = 1
∆y

(
∆xvl,+

∆x
− ∆xvl,−

∆x

)
, (6.23)

a0 = ul,++ul,−

2
− axx∆x2

4
, (6.24)

b0 =
vl,++vl,−

2
− byy ∆y2

4
. (6.25)

These coe�cients fully determine reconstruction polynomials which satisfy the

continuity at every point within the domain.

4. The �nal step in prolongation is to calculate the velocities at �ne level as shown

in Figure 6.2. It is very straightforward since the polynomials are fully known.
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The locations of �ne level velocities can be determined by taking center of the

coarse cell as the origin. Then polynomials in Eq.6.14 can be used to calculate

the velocities.

The same principles can be applied to the three-dimensional case. The sequence

is entirely analogous to the two-dimensional reconstruction with an addition of third

direction. The slopes of u, v and w velocities at each face are given by

∆yu
l,± =

ul,i±1/2,j+1,k − ul,i±1/2,j−1,k

2
, (6.26)

∆zu
l,± =

ul,i±1/2,j,k+1 − ul,i±1/2,j,k−1

2
, (6.27)

∆xv
l,± =

vl,i+1,j±1/2,k − ul,i−1,j±1/2,k

2
, (6.28)

∆zv
l,± =

vl,i,j±1/2,k+1 − ul,i,j±1/2,k−1

2
, (6.29)

∆xw
l,± =

wl,i+1,j,k±1/2 − wl,i−1,j,k±1/2

2
, (6.30)

∆yw
l,± =

wl,i,j+1,k±1/2 − wl,i,j−1,k±1/2

2
. (6.31)

The piecewise linear pro�le in three-dimensions then becomes

ul(x = ±∆x/2, y, z) = ul,± +
∆yu

l,±

∆y
y +

∆zu
l,±

∆z
z, (6.32)

vl(x, y = ±∆y/2, z) = vl,± +
∆xv

l,±

∆x
x+

∆zv
l,±

∆z
z, (6.33)

wl(x, y, z = ±∆z/2) = wl,± +
∆xw

l,±

∆x
x+

∆yw
l,±

∆y
y. (6.34)

Like in the two-dimensions, the reconstruction polynomials in the three-dimensions

are given as
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u(x, y, z) = a0 + axx+ ayy + azz + axxx
2 + axyxy + axzxz, (6.35)

v(x, y, z) = b0 + bxx+ byy + bzz + bxyxy + byyy
2 + byzyz, (6.36)

w(x, y, z) = c0 + cxx+ cyy + czz + cxzxz + cyzyz + czzz
2. (6.37)

Divergence-free condition requires

ax+by+cz = 0; 2axx+bxy+cxz = 0; axy+2byy+cyz = 0; axz+byz+2czz = 0. (6.38)

The discrete form of the continuity in the three-dimensions reduces 18 independent

coe�cients to 17, i.e,

(ul,+ − ul,−)∆y∆z + (vl,+ − vl,−)∆x∆z + (wl,+ − wl,−)∆x∆y = 0 (6.39)

Algebraic computation results in the coe�cients for u veloctiy as

ax = (ul,+−ul,−)
∆x

, (6.40)

ay = 1
2

(
∆yul,+

∆y
+ ∆yul,−

∆y

)
, (6.41)

az = 1
2

(
∆zul,+

∆z
+ ∆zul,−

∆z

)
, (6.42)

axy = 1
∆x

(
∆yul,+

∆y
− ∆yul,−

∆y
,
)

(6.43)

axz = 1
∆x

(
∆zul,+

∆z
− ∆zul,−

∆z
,
)

(6.44)

axx = −1
2
(bxy + cxz), (6.45)

a0 = ul,++ul,−

2
− axx∆x2

4
. (6.46)

Coe�cients of polynomials for v and w velocities can be obtained by applying

the transformation to coe�cients in Eq.6.40-6.46. To calculate v(x, y, z), we make
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replacement of a → b, b → c, c → a, x → y, y → z, x → z. Similarly for w(x, y, z)

we make replacements of a→ c, b→ a, c→ b, a→ b, x→ z, y → x, z → y.

6.3 Details of the Poisson Solver

Time advancement of �ow domain for single grid is described in Section 4 and it

can be roughly divided into two main steps: (1) Temporary velocity calculation. (2)

Projection step to calculate divergence-free velocity �eld at new time level. Advancing

the front in multiphase simulations also involves two distinct steps; (1) Calculating

gradient of marker function on Lagrangian grid, (2) Solving Poisson equation in

Eulerian grid to compute indicator function. Advancing both �ow and front domains

requires to solve Poisson equation which can be written in generic form as;

∇ · β∇φ = RHS, (6.47)

where β is a scalar �eld and RHS is the known source term. In the AMR

applications levels can be composed of more than one grid depending on the maximum

number of cells a single grid is allowed to contain. The �rst of two steps for advancing

the �ow and the front domains can be performed one grid at a time. However, the

elliptic Poisson equation, Eq.6.47 should be solved for all grids at the same time for

a single level.

Boundary condition implementation also changes when there are multiple grids

at a level. During the �rst step of advancing �ow and front domains, the boundary

conditions are supplied either from the underlying coarse level, from the other �ne

grids at the same level or from the physical boundaries. In the second step, all grids

are combined and the boundary conditions are implemented as if there is a single grid

at the level.

The Poisson equation is solved using the Hypre package. To incorporate the

boundary conditions in Hypre for the second steps of time advancement, the following

linear algebra manipulation is performed:
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• After discretization of the Poisson equation, Hypre solves the equation in the

form Ax = b. In general case, the matrix A and the vectors b and x are composed

of discretization stencil values of cells in white region in Figure 6.3.

Figure 6.3: The computational grid is extended to include the boundary region for
the Hypre solver

The grey regions with thick black borders are the ghost cells used to impose the

boundary conditions.

• ForHypre solver, the computational domain is extended from [Lx, Ly] to [Lx,+, Ly,+]

in order to include the boundary region. Then the matrix A is splitted as

A =

Aii Aib

Abi Abb

 (6.48)

Here [Aii] refers to the interior cells, [Aib] and [Abi] are submatrices for cells

adjacent to the boundary and �nally [Abb] is for the boundary cells. Since the

values at the boundaries are known, the equation Ax = b can be rearranged as

Ai 0

0 I

 xi

xb

 =

 bi − Aibu0

u0

 (6.49)
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When Eq.6.49 is solved, [xi] gives the solution values for interior cells and xb

remains unchanged since it is already determined by the boundary conditions. An

important remark is that the manipulation above works �ne when Dirichlet and

Neumann boundary conditions are applied on the physical domain. It is also useful

when the re�nement level is contained entirely in underlying coarse level. If periodicity

is applied in the domain, then the manipulation may results in wrong results.

6.4 Benchmark Results: Variable Density/Viscosity Incompressible Flow

The one-�uid front tracking algorithm with the block-structured AMR implementation

is validated using two basic benchmark problems. The �rst problem is incompressible

viscous �ow in a square duct with variable density/viscosity. The schematic representation

of the problem is shown in Figure 6.4. Here ρ0 and µ0 denote the density and viscosity

of primary �ow domain while ρ1 and µ1 stand for the small region within the domain.

The horizontal and vertical lengths of the domain are equal to 1. The boundary

conditions can be given as

• x = 0 : In�ow condition where u(y, z) = U0 = 0.01 and ∂p/∂n = 0.

• x = Lx : Out�ow condition where p = 0 and ∂u/∂n = 0.

• y = 0 and y = Ly : No-slip condition where u · n = 0.

• z = 0 and z = Ly : Periodicity.

Since the domain is periodic in z direction, the number of dimensions reduces by

one and this is why the problem is illustrated in two-dimensions in Figure 6.4.

The computational grid for problem in Figure 6.4 is shown in Figure 6.5. The

length of the domain in each direction is Lx = Ly = Lz = 1 and there are 32 elements

in the base grid. The re�nement ratio between the coarse and single �ne grid is two,

therefore there are 64 grids per direction in the re�ned region.
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Figure 6.4: Schematic representation of the �ow in a square duct with the variable
density/viscosity.

Figure 6.5: Computational domain for the problem depicted in Figure 6.4. There are
32 elements in each direction for the base grid.
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The purpose of the simulation is to show the accuracy of the AMR method for

single phase Hagen-Poiseuille �ow. This can be accomplished by establishing the

communication between levels correctly and performing the synchronization after each

time step to satisfy the divergence-free constraint.

The �rst part of this benchmark problem involves variable density in the domain.

The density in each region is constant therefore the incompressibility is not violated.

The level is created by tagging the cells where density is di�erent than the primary

domain. Instead of error estimation procedures which calculates truncation error in

each cell as Almgren et al.[Almgren et al., 1998] used, here the user-de�ned function

is used to tag the cells. The region enclosed by the dashed lines in Figure 6.4 shows

the possible re�nement region. To determine the �ow regime the Reynolds number

can be calculated for the given domain parameters as

Re =
ρULc
µ

(6.50)

where U is the characteristic velocity selected as the average in�ow velocity in this

case and Lc is the characteristic length, Lc = 1. If density and viscosity in primary

domain are ρ0 = 1.0 and µ0 = 0.1, then Reynolds number becomes Re = 1, i.e, the

�ow is Laminar.

The analytical solution of the Hagen-Poiseuille type laminar �ow for symmetric

rectangular domain can be given for two-dimensions as;

u(y) = umax

[
1−

(
y2

L2
y

)]
where umax = − 1

8µ

dp

dx
L2
y (6.51)

Before proceeding with the solution, a few remarks on �ow con�guration should

be stated:

1. No-slip boundary condition in upper and lower faces in vertical direction dictates

that the maximum velocity is obtained at the center of the domain.

2. Shear stress varies from 0 at the center line to maximum at the wall.
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3. In the steady state the wall shear is related to the maximum velocity which is

independent of density.

4. The body force term in the Navier-Stokes equation, ρg, is ignored in this case.

Therefore the density is used just to create the re�ned region.

Figure 6.6: Results for the variable density Hagen-Poiseuille �ow. Green line indicates
the AMReX solution

Figure 6.6 compares the analytical solution with the AMReX solution. Here both

x and y axes are nondimensionalized by υ = u/U0 and χ = y/Ly respectively. The ratio

of density between ρ0 and ρ1 is ρ̄ = ρ1/ρ0 = 0.75. The solution is obtained from the

dashed line located vertically at [Lx, Lz/2] and depicted in Figure 6.5. The analytical

and the AMReX results perfectly match. The numerical error with respect to the

analytical solution is quanti�ed as

‖erro‖ =

√∑
i,j

h2e2
i,j (6.52)

where h is the cell spacing and ei,j is the velocity di�erence between the analytical

solution and the AMReX result for the cell located at i, j. v and w velocities are
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‖err0‖

n = 16 n = 32

5.16e-5 7.85e-5

Table 6.1: ‖err0‖ for the variable density Hagen-Poiseuille �ow

zero in the analytical solution. For the AMReX result it is calculated as V =
√
u2 + v2 + w2

Table 6.4 shows two calculations for two di�erent resolutions. The error is calculated

in the region of coarse grid where re�nement level is placed. Even 16 elements

provides considerable accuracy and it indicates that interlevel communications are

work properly.

Figure 6.7: Comparison of the velocity pro�les calculated in the single grid and the
AMReX solvers
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The second test case deals with the incompressible �ow with variable viscosity.

Change in the viscosity has direct e�ect on the simulation results as shown in Figure

6.7 which shows the results of the variable viscosity simulation where 32 elements

are used in each direction. Since the viscosity ratio is µ̄ = µ1/µ0 = 0.1, the velocity

increases signi�cantly along the center line. There is a small discrepancy between

the single grid and the AMReX solutions as shown in Figure 6.7. The data are

taken along the vertical dashed line at x = Lx/2, z = Lz/2, hence, it goes through

the re�ned region. The di�erence between the solutions results from the errors in

the synchronization step because the divergence-free constraint cannot be satis�ed

perfectly along the coarse/�ne interface and thus the global conservation is violated.

Figure 6.8 shows the situation of divergence-free constraint, ∇ · u, calculated on

cross-sectional plane at z = Lz/2. Since it is an incompressible �ow, the continuity

should be satis�ed in the entire domain. As Figure 6.8 indicates, only the cells

in the vicinity of the interface produce non-zero value for ∇ · u. Even though the

non-zero divergence results in loss of conservation, the error does not exceed 1e − 5

even around the interface. This error tends to decrease when more e�ort is put in

the sychronization step. In the current algorithm, temporary velocity and pressure

gradient mismatch at the interface are tried to be eliminated by single synchronization

interation. If more iterations are done, the error values are expected to decrease as

much as desired. However, there is always a trade-o� between the computational

e�ciency and the accuracy when the synchronization is implemented. While the

accuracy increases with the higher number of re�uxing iterations, the simulation cost

also increases.

Interlevel communications bring another source of error around the re�ned region.

Although Balsara interpolation is designed to satsify the divergence-free constraint

across the levels, the data on the coarse grid cannot be conveyed to the ghost cells of

the �ner grid perfectly because the piecewise linear pro�les are implemented on each

faces. Using more stencils to increase the accuracy of the interpolation requires more

computational e�ort. In addtion to the interpolation, the restriction operation causes
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Figure 6.8: Constant contours of ∇ · u. The divergence condition is satis�ed except
for the coarse/�ne interface.
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loss of conservation due to the simple averaging of the �ne level data.

The results of these benchmark problems indicates that the synchronization and

the interlevel communication operations work with acceptable error margins and the

overall behavior of the solution is not e�ected by this de�ciency.

6.5 Benchmark Results: Incompressible Multiphase Flow with the Stationary

Bubble

In the previous section, the variabe density/viscosity problem demonstrated that the

algorithm provides proper grid generation as well as the accurate implementation of

interpolation and scynchronization schemes. In this section the results for multiphase

part is presented for a stationary bubble. Essentially the same analysis are performed

to validate the algorithm.

Figure 6.9 shows the properly-nested two-level adaptive grid with re�nement ratio

of two. The light green and the red lines indicate the base (or coarse) and the

�ne levels, respectively. The red sphere in the middle of the domain represents the

stationary bubble. The two colors, red and white, inside and outside of the bubble

show the constant density contours in both phases. As in the case with the previous

problem, ρ0 and ρ1 denote the densities in the primary �ow domain and in the bubble

region, respectively. The density ratio is: ρ̄ = ρ1/ρ0 = 0.8.

Since the maximum number of cells allowed in a single grid is less then the total

number of cells in each level, multiple grids are created in both the coarse and the �ne

levels as shown in Figure 6.9. This is an important feature in terms of the solution

strategies, therefore a few remark should be stated:

• Using the multiple grids allows the algorithm to take advantage of the parallelization

capabilities of the AMReX.

• The boundary conditions between the subgrids are directly applied by the

AMReX, therefore no additional user-de�ned boundary condition routine is

required.
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• Interpolation operation �lls the ghost cells of the outer grids at the �ne level.

• Calculation of the temporary velocity �eld, which requires discretization of the

advective and the viscous terms, can be done in each subgrid independently.

However the elliptic Poisson equation should be solved in all grids at once. As

it is explained in the previous sections, this is a direct result of the nature of

the elliptic equation where the information travels with an in�nite speed.

• Smoothing the surface tension and the gradient of indicator function from the

front to the �ow grid may require the communication among multiple grids.

When more than one processor is used, the specialized MPI routines can handle

the communication.

• There are two ways to solve all grids at once with Hypre package. In the �rst

way, the matrix and the vector objects are inititated for the �rst grid by using the

appropriate computational domain indices for that �rst grid. Then for the next

grids the extent of those objects are enlarged by updating the indices and the

values are stored in the same objects. At the end of this operation, each object

contains the information from all grids. The second way is to convert multiple

grids into a single grid temporarily. The latter approach is easier in terms of

the implementation, however, it is highly susceptible to be case dependent.

Instead of the truncation error, the gradient of indicator function, which is smoothed

from the front to the grid, is used to tag the cells that constitute the re�nement level.

Even though there are many other alternatives, smoothed variables are the most

appropriate candidates to locate the exact position of the front, because the values

of these variables are non-zero only in the near region around the interface. The

value of indicator function can also be used, but after solving the Poisson equation,

∇ · (∇I) = ∇ · G, the values of the indicator function are updated in almost every

cell in the domain especially when small number of cells are used. Therefore tagging

the cells which should enclose the bubble becomes a di�cult task. When appropriate
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Figure 6.9: Properly-nested grid generation for the multiphase �ow problem

error function is not used, the excessive number of cells are clustered in the re�nement

level, which reduces the computational e�ciency dramatically.

Figure 6.10 shows the borders of the re�nement level and the gradient of density

in both phases simultaneously. As it demonstrates clearly, the re�nement level is

created just around the bubble to avoid loss of e�ciency.

The results of multiphase �ow simulation with the stationary bubble are presented

in Figure 6.11.

Figure 6.11 -(a) shows the distribution of the velocity magnitude, V =
√
u2 + v2 + w2,

at constant z = Lz/2 plane. The same boundary conditions with the previous section

are applied here. The the �ow is developed due to the no-slip condition at both

the upper and the lower faces. The domain is again periodic in z direction and

the simulation run up to t = 1, which is su�cient to obtain a fully-developed �ow.

The velocity takes its maximum value in the re�ned region due to presence of the

bubble. The black dashed-rectangle indicates the location of re�nement region. The

distribution of the surface tension force, that Figure 6.11 -(b) shows for x direction,

in�uences the �ow regime. As Figure 6.11 -(c) clearly shows that the results obtained
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Figure 6.10: Gradient of density in both phases

using the single grid and using the AMReX solvers compare very well.
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Figure 6.11: The results of multiphase �ow simulation. (a) The distribution of the u
velocity �eld at constant z = Lz/2 plane. (b) The surface tension force in x direction
in the re�ned level at constant z = Lz/2 plane. (c) Single grid and the AMReX
results for the u velocity at the end of the domain.
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CONCLUSION

The present study combines the �nite-volume/front-tracking algorithm on the

staggered grid arrangement with the block-structured and subcycled adaptive mesh

re�nement method. The algorithm developed here aims two main objectives: (1)

Applying the structured AMR method on the staggered grid to satisfy the divergence-

free constraint in an exact manner, (2) utilizing the subcycled timestepping algorithm

in order to make the algorithm as e�cient as possible. Simpli�ed synchronization

operations after each time step is the natural outcome of the succesful combination

of these two steps. The grid management is handled by the AMReX package, since

the recursive algorithm for subcycled timestepping is inherently implemented in this

package.

The thesis consists of three main parts. The �rst part concantrates on the

mathematical derivation of the governing equations and the front-tracking method

used to simulate the multiphase �ow. In this part, solution methods for the Poisson

equation are also discussed. Finally the Hypre package used to solve the resulting

linear system of equation Ax = b is described by providing the necessary built-in

functions.

The second part presents the main idea of the adaptive mesh re�nement by

explaining the key operations such as �ux correction. After the fundamentals of

the AMR are established, following sections are devoted to investigate how the key

operations and the data management are handeled in the AMReX package.

A certain numer of adversities have occured during combination of the front-

tracking method and the AMR procedures described in the �rst and the second parts.

The third and last part of the thesis has been devoted to attack those problems:
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• The interlevel communication operations, i.e, restriction and interpolation, are

mainly developed for cell-centered or node-based schemes in theAMReX package.

Since the fully-staggered arrangement keeps the vectorial quantities at the cell

faces, the special interpolation routines should have been implemented. For

this purpose the Balsara interpolation has been selected and implemented to �ll

the �ne level ghost cells. Balsara has formulated this routine originally for the

magnetohydrodynamics (MHD). Since both MHD and the incompressible �ow

equations require to satisfy similar divergence-free constraint, his interpolation

scheme appears as a good choice.

• AMReX is highly compatible with a second-order approximate projection method

described by Almgren et al.[Almgren et al., 1996]. In this scheme the primary

variables other than pressure are stored at the cell centers. Therefore following

cumbersome synchronization operations are required: (1) Interpolated normal

velocities from cell centers to faces should be corrected at coarse/�ne interface.

(2) Re�uxing should be performed to eliminate mismatch due to viscous and

advective �uxes at the interface. (3) Node-based pressure residuals due to

approximate projection method should be calculated and included in the

synchronization.

Since the staggered grid arrangement is preferred, only the normal velocity and

the pressure gradient �uxes are the sources of mismatch at the interface. An

additional elliptic Poisson equation is solved to calculate the correction �eld.

This is a much simpler synchronization operation than the one presented in

Almgren et al. [Almgren et al., 1998].

Two benchmark problems are used to validate the present algorithm. The �rst

one is a basic Hagen-Poiseuille �ow problem with the variable density/viscosity. In

the case of variable density, the body force term is neglected for the sake of simplicity

and the density variation is used only for creating the re�nement levels. Since the

resulting velocity pro�le perfectly matches the analytical solution, it is deduced that
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the divergence-free interpolation works properly. Variable viscosity, on the other

hand, directly in�uences the solution. After validating the interpolation scheme, the

variable viscosity case was used to monitor the e�ectiveness of the synchronization

step. As Figure 6.8 demonstrated, ∇ · u constraint has been violated around the

interface by the order of 10−6 which is deemed to be acceptable in this case.

The mutiphase �ow problem with the stationary bubble showed that the Hypre

works perfectly when there are multiple grids at each level. The gradient of indicator

function is used as error estimator and the location of the re�nement level proved

that it is a good candidate to tag the cells. The results showed that the interpolation

and the synchronization operations work properly for the multiphase regime as well.

Even though the results of benchmark problems are very promising, further developments

on the algorithm are required. Important points for the future studies can be brie�y

listed as follows:

• For multiphase �ows, the algorithm has been validated only for stationary

bubble case. It should be extended to simulate both moving and deforming

bubbles. When bubble changes its position and/or its orientation the regridding

should be performed properly.

• The algorithm should be designed to bene�t parallelization capabilities of the

AMReX package.

• Synchronization operations can be improved by implementing two-level multigrid

solvers.

• When the algorithm is completed, the performance analysis should be conducted

to compare its e�ciency with the single grid solvers.
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