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ABSTRACT

Copositive optimization is linear optimization over the convex cone of copositive

or completely positive matrices. The term “copositive programming” was first in-

troduced in 2000. In 2009, Burer showed that mixed binary quadratic optimization

problems (MBQP), which comprises a rather large class of nonconvex and combinato-

rial problems, can be equivalently reformulated as a copositive optimization problem.

This seminal work has greatly increased the interest in copositive optimization.

It is not surprising, however, that since many combinatorial and nonconvex opti-

mization problems can be reformulated as a copositive optimization problem, copos-

itive programs are also NP-hard in general. The difficulty in the reformulation is

entirely due to the conic constraint. For this reason, many researchers have proposed

outer approximation hierarchies to the intractable completely positive cone. These

approximation hierarchies are composed of a sequence of tractable cones that yield

increasingly better approximations of the completely positive cone and are exact in

the limit.

By replacing the intractable cone by outer approximations in the copositive for-

mulation of nonconvex and NP-hard minimization (resp. maximization) problems, a

sequence of increasingly tighter lower (upper) bounds can be obtained for the original

problem. This provides opportunities to obtain near-optimal solutions and improve

the effectiveness of the algorithms for solving the original problem.

In this thesis, we study outer approximations of the copositive reformulations of

three classes of nonconvex and NP-hard optimization problems. We first study the

class of mixed binary programs (MBPs). We compare the lower bounds arising from
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outer polyhedral approximations to the lower bound provided by the linear program-

ming (LP) relaxation and establish that the lower bounds due to outer approximations

are at least as good as that of LP relaxation. We establish various necessary or suffi-

cient conditions under which the lower bound arising from the outer approximations

matches that from the LP relaxation. Our results illustrate the weaknesses of poly-

hedral approximations. On the other hand, we show that the non-polyhedral doubly

nonnegative (DNN) approximations, in general, yield tighter lower bounds.

Secondly, we focus on the specific 0-1 knapsack problem (KP) in the class of

MBPs. We study two different copositive formulations of the knapsack and compare

the upper bounds arising from outer polyhedral approximations to the upper bound

provided by the LP relaxation of (KP). We prove that upper bounds obtained from

outer polyhedral approximations actually coincide with the upper bound provided by

the LP relaxation until at least a certain and fairly large level of the hierarchy. On the

other hand, we establish that if the LP relaxation has a non-integer unique solution,

then the DNN relaxation gives a strictly better upper bound than the LP relaxation.

Finally, we consider the standard quadratic programs (StQP) and investigate the

instances of (StQP) for which the DNN relaxation is exact. We establish a com-

plete algebraic characterization of the (StQP) instances that admit an exact DNN

relaxation. We explicitly identify three different subsets of such (StQP) instances.

Furthermore, we propose a recipe for constructing instances of (StQP) with an exact

DNN relaxation.

In summary, our results reveal that outer polyhedral approximations, in general,

yield weak bounds for (MBP) and for the specific 0-1 knapsack problem, whereas

doubly nonnegative relaxations usually give rise to tighter lower bounds.



ÖZETÇE

Kopozitif eniyileme, dışbükey kopozitif veya tamamen pozitif koni üzerinde tanım-

lanan doğrusal eniyileme problemidir. “Kopozitif programlama” terimi ilk defa 2000

yılında ortaya atılmıştır. Daha sonra, Burer 2009 yılında kombinatoryal ve konveks

olmayan problemlerin olduça geniş bir sınıfı olan karma ikili ikinci dereceden eniyi-

leme problemlerinin bir kopozitif eniyileme problemi olarak formule edilebileceğini

göstermiştir. Bu önemli çalışma, kopozitif programlama problemlerine olan ilgiyi

önemli ölçüde arttırmıştır.

Ne var ki, kombinatoryal ve konveks olmayan birçok problemin bir kopozitif eniyi-

leme problemine denk olması sebebiyle kopozitif formulasyonların da genel itibarıyla

NP-zor olması şaşırtıcı değildir. Buradaki zorluk tam olarak konik kısıttan kaynaklan-

maktadır. Bu sebeple birçok araştırmacı zorlu olan tamamen pozitif koniye kolay

konilerden oluşan dıştan yaklaşıklama hiyerarşileri önermiştir. Bu yaklaşıklama hiye-

rarşilerinin temel prensibi, hiyerarşi seviyesi arttıkça tamamen pozitif koniyi daha iyi

yaklaşıklayan ve limitte ona eşit olan bir koni dizisi üretmeye dayanmaktadır.

Konveks olmayan ve NP-zor birçok enküçükleme (enbüyükleme) probleminin kopo-

zitif formulasyonundaki zorlu konik kısıt dıştan yaklaşımlar ile değiştirilerek problem

için gittikçe sıkılaşan alt (üst) sınırlar elde edilebilmektedir. Bu durum, asıl problem

için en iyi çözüme yakın çözümler elde etmek ve problemi çözmeye çalışan algoritmalar

geliştirmek açısından fırsatlar sunmaktadır.

Bu tezde, üç farklı konveks olmayan ve NP-zor problem sınıfının kopozitif for-

mulasyonlarının dış yaklaşıklamaları incelenmiştir. Öncelikle karma ikili tamsayı

problemleri (MBP) ele alınmıştır. Bu problemde dış yaklaşımlardan elde edilen alt
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sınırlar, problemin doğrusal programlama (LP) gevşetmesinden elde edilen alt sınır

ile karşılaştırılmış ve bu alt sınırların en az LP gevşetmeden elde edilen alt sınır

kadar iyi olacağı ortaya konmuştur. Bu sonuç olumlu gözükmekle birlikte, çok yüzlü

dış yaklaşımlardan elde edilen alt sınırların belli bir seviyeye kadar iyileşmeyeceğini

gösteren yeterli ya da gerekli koşullar ortaya konmuştur. Diğer yandan iki kat negatif

olmayan (DNN) gevşetmelerin daha iyi alt sınırlar verdiğine yönelik bulgular elde

edilmiştir.

İkinci olarak (MBP) sınıfındaki özel bir problem olan 0-1 sırt çantası problemi

(KP) incelenmiştir. Sırt çantası probleminin iki farklı kopozitif formulasyonu çalışılmış

ve çok yüzlü dış yaklaşımlardan elde edilen üst sınırlar LP gevşetmeden elde edilen

üst sınırlar ile kıyaslanmıştır. Çok yüzlü dış yaklaşımlardan elde edilen üst sınırların

LP gevşetmeden elde edilen üst sınır ile en azından belirli ve oldukça yüksek bir

seviyeye kadar aynı alt sınırı vereceği kanıtlanmıştır. Diğer yandan, problemin LP

gevşetmesinin tek ve tam sayı olmayan bir en iyi çözümü olması durumunda, DNN

gevşetmenin LP gevşetmeden kesinlikle daha iyi alt sınır verdiği ortaya konmuştur.

Son olarak standart ikinci dereceden eniyileme probleminin (StQP) DNN gevşet-

mesinin tam (exact) olduğu örnekler incelenmiştir. DNN gevşetmenin tam olduğu

örnekler için cebirsel bir karakterizasyon verilmiştir. DNN gevşetmenin tam olduğu

örneklerin kümesi için üç farklı alt küme belirlenmiştir. Bu alt kümelerin her birindeki

üyelik problemi polinom zamanda çözülebilmektedir. Ek olarak, DNN gevşetmenin

tam olduğu (StQP) örneklerini inşa edebilmek için bir reçete sunulmaktadır.

Özetle, sonuçlarımız genel itibariyle çok yüzlü yaklaşımların (MBP) problemi ve

0-1 sırt çantası problemi için zayıf alt sınırlar verdiğine işaret etmekle birlikte, iki kat

negatif olmayan gevşetmenin daha sıkı alt sınırlar verdiğine işaret etmektedir.
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NOMENCLATURE

Rn n-dimensional Euclidean space

Rn
+ Set of n-dimensional nonnegative real vectors (Nonnegative orthant)

Qn Set of n-dimensional rational vectors

Nn Set of n-dimensional nonnegative integer vectors

Sn Set of n-dimensional real symmetric matrices

N Cone of entrywise nonnegative matrices

PSD Cone of positive semidefinite matrices

CP Cone of completely positive matrices

COP Cone of copositive matrices

DN Cone of doubly nonnegative matrices (PSD ∩N )

SPN The dual cone of DN (PSD +N )

〈·, ·〉 Inner product

e Vector of all ones

ei i-th unit vector

E Matrix of all ones

Eij The symmetric matrix 1/2(eie
T
j + eje

T
i )

Diag(·) Diagonal matrix with a specified vector

diag(·) Vector obtained from the diagonal entries of a given matrix
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Nomenclature (continued)

(MBQP) Mixed binary quadratic optimization problem

(MBP) Mixed binary integer optimization problem

(KP) 0-1 Knapsack problem

(StQP) Standard quadratic optimization problem

Rel(MBQP) Continuous relaxation of (MBQP)

Rel(MBP) LP relaxation of (MBP)

Rel(KP) LP relaxation of (KP)

(MBQP-CP) Copositive reformulation of (MBQP)

(MBP-CP) Copositive reformulation of (MBP)

(KP-CP)1 First copositive reformulation of (KP)

(KP-CP)2 Second copositive reformulation of (KP)

(Out)r r-th level outer approximation of the related copositive program

(Out)1
r r-th level outer approximation of (KP-CP)1

(Out)2
r r-th level outer approximation of (KP-CP)2

(DN) Doubly nonnegative relaxation of the related copositive program

Feas(·) Feasible region of a given optimization problem

E(·) Extreme points of a given set

Conv(·) Convex hull of a given set

Cone(·) Conic hull of a given set

cl(·) Closure of a given set

int(·) Interior of a given set

xiii





Chapter 1

INTRODUCTION

Copositive optimization (coined in [11]) is a special case of conic optimization,

which is concerned with the optimization of a linear objective function over the con-

vex cone of copositive or completely positive matrices subject to linear equality con-

straints. Therefore, it is a subfield of convex optimization.

In 2009, Burer [18] established that nonconvex quadratic programs with a mix

of binary and continuous variables and linear constraints, hereinafter referred to as

a mixed binary quadratic program, can be equivalently reformulated as a conic opti-

mization problem over the cone of completely positive matrices. This is a remarkable

result showing that a large class of nonconvex and NP-hard optimization problems

can be reformulated as a convex optimization problem. Nevertheless, Burer’s refor-

mulation [18] of mixed binary quadratic programs does not change the complexity

of the problem since the cone of completely positive matrices is computationally in-

tractable. For this reason, various inner and outer approximation hierarchies, which

approximate the intractable cone of completely positive matrices, have been proposed

in the literature.

These approximation hierarchies are based on obtaining a series of tractable cones

which yield increasingly better approximations of the intractable cone of completely

positive matrices as the level of hierarchy increases. Therefore, for a mixed binary

quadratic program (MBQP) with a minimization objective, one can obtain lower

bounds on its optimal value by utilizing outer approximations of the completely pos-
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itive cone in Burer’s reformulation [18].

We remark that obtaining a lower bound on (MBQP) is, in general, nontrivial since

the continuous relaxation of a given instance of (MBQP) obtained by relaxing the

binary constraints remains a nonconvex and NP-hard problem in general. Therefore,

outer approximations offer a good framework for finding lower bounds on the optimal

value of (MBQP). Given a feasible solution of (MBQP), these lower bounds can be

important in assessing the quality of the feasible solution. Moreover, good lower

bounds can be helpful for quickly identifying near optimal solutions and can thus

considerably improve the effectiveness of the solution methods such as branch-and-

bound algorithms.

Motivated by these observations, we focus on the following optimization problems,

all of which are special cases of (MBQP) and therefore can be equivalently formulated

as copositive optimization problems:

• Mixed binary integer programs (MBP)

• 0-1 Knapsack problem (KP)

• Standard quadratic programs (StQP)

In this dissertation, we focus on the bounds arising from outer approximations

of the copositive formulation of the aforementioned classes of optimization problems.

We refer the reader to [91] for a unified analysis on the inner approximations of the

completely positive formulation of mixed binary quadratic programs. In particular,

we attempt to shed light on the following questions regarding the bounds obtained

from outer approximations:

• Comparison of bounds: What is the quality of bounds arising from outer ap-

proximations compared to the bounds provided by the LP relaxations of (MBP)

and (KP)?
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• Exactness: Under what conditions do the bounds given by the outer approxi-

mations match the optimal value of the original problem, i.e., what are the sets

of instances on which outer approximations are exact?

For (MBP) (resp. (KP)), we study the quality of lower (resp. upper) bounds

arising from outer approximations in comparison with the linear programming (LP)

relaxation of the related problem. We also investigate the extensions of our results to

the more general case of (MBQP) with a quadratic objective function.

As for (StQP), inner and outer polyhedral approximations have already been ex-

tensively studied. Yıldırım [89] establishes tight error bounds on the gap between the

upper and lower bounds arising from polyhedral approximations. In [84], Sağol and

Yıldırım give a complete algebraic description of the instances of (StQP) on which

lower and upper bounds arising from polyhedral approximations become exact at a

finite level of the hierarchy. They also identify the structural properties of the in-

stances of (StQP) for which the upper and lower bounds are exact only in the limit.

Therefore, for (StQP), we will focus on the instances of (StQP) that admits an exact

doubly nonnegative relaxation.

In brief, our main goal in this dissertation is to investigate the quality of bounds

arising from the outer approximations of the completely positive formulation of the

optimization problems given above.

In this chapter, we first provide a background and a brief literature review on

copositive optimization in Section 1.1. We then present the motivation of this study

in Section 1.2. Finally, contributions and the outline of this dissertation are provided

in Section 1.3.

1.1 Background and Literature

In the world of optimization problems, there is a clear trade-off between generality and

algorithmic efficiency, meaning that, the more general a problem becomes, the less
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efficient algorithms exist to solve it and vice versa. In this context, linear programming

constitutes an example of extreme case, as there are very efficient algorithms for

solving LP problems (e.g., the simplex method [21], and interior-point methods [44]).

However, not every optimization problem can be formulated as LP, and in fact, LP

corresponds to a rather specific class of optimization problems.

Convex optimization, on the other hand, is a much broader class of optimiza-

tion problems, but it still enjoys a very rich duality theory similar to that of linear

programming despite some complications as to the strong duality property. By the

seminal work of Nesterov and Nemirovski [70], it has been shown that all convex opti-

mization problems can be solved in polynomial-time as long as they admit efficiently

computable self-concordant barrier functions.

Conic optimization is comprised of linear optimization problems over an affine

subspace of a convex cone. In fact, all convex optimization problems can be refor-

mulated as a conic optimization problem [71]. While still preserving the generality

and all strengths of convex optimization mentioned above, interpretation of the dual

problem in conic optimization is easier than that of a general convex optimization

problem. Moreover, many nonconvex and combinatorial optimization problems can

also be represented within the framework of conic optimization. Therefore, conic op-

timization occupies an important place in the world of mathematical optimization.

Copositive optimization, being a special case of conic optimization, is therefore an

attractive research area for many researchers, although the problems of this class are

NP-hard in general.

The term “copositive” can be traced back to a report in 1952 by Motzkin [67].

Later in 1958, Hall [36] coined the completely positive matrices which originated in

the study of inequality theory and quadratic forms. Since then copositivity and com-

plete positivity have been studied by many researchers (for surveys, see [6] and [41]).

However, introduction of these cones into optimization problems has emerged only in
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the last two decades.

Preisig’s paper [80] in 1996 was one of the early studies that establishes a relation

between the solution of a quadratic optimization problem and copositivity.

Quist et al. [81] proposed in 1998 that one can get a tighter version of the semidef-

inite programming (SDP) relaxations of the quadratic programs by utilizing the com-

pletely positive cone. Using the membership constraints of the copositive and com-

pletely positive cones in conic optimization firstly emerged in their study.

Bomze et al. [11] was the first to show that an NP-hard problem, namely standard

quadratic programs, can be formulated as an equivalent copositive optimization prob-

lem. Their paper [11] is also where the term “copositive optimization” is coined. After

their study, various nonconvex and combinatorial optimization problems have been

shown to admit an equivalent copositive reformulation. In 2009, Burer [18] extended

these results and showed that a rather larger class of optimization problems, namely

mixed binary quadratic programs, can be formulated as an equivalent copositive pro-

gram. The reader is referred to the surveys [9, 29] for further details in copositive

optimization. Copositive reformulations do not change the complexity of the prob-

lem, but these studies have inspired many researchers to construct approximation

frameworks and obtain bounds on the original problem.

Parrilo [73] was the first who constructed a sequence of convex cones satisfying

CP ⊆ . . . ⊆ Q1 ⊆ Q0 = DN and CP =
⋂
r∈N

Qr.

Each of the convex cones Qr, r ∈ N, can be represented by Linear Matrix Inequalites

(LMIs). Therefore a conic optimization problem over Qr is an SDP. There are also

several polyhedral approximation hierarchies satisfying the similar relations to those of

Parrilo’s hieararchy. However, unlike Parrilo’s approximations, problems arising from

polyhedral approximations amounts to solving an LP problem. Detailed information

on approximation hierarchies is provided in Chapter 2 (see also, e.g. [13, 17, 22, 24,

53, 54, 74, 89]).
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Approximations proposed to the intractable cones CP and COP gave rise to an-

other question: What is the quality of bounds arising from the outer approximations

of the completely positive formulations of (MBQP)?

A unified analysis on the behavior of inner approximations of the completely

positive formulation of (MBQP) has been done in [91]. Under the class of (MBQP),

quality of bounds arising from inner and outer polyhedral approximations of (StQP)

have been extensively studied [84, 89] as discussed in the previous section. Therefore,

we study the doubly nonnegative relaxations of (StQP).

Our theoretical results contribute to the literature in the assessment of the quality

of lower bounds arising from the outer approximatons of the copositive formulations

of three different classes of optimization problems: (MBP), (KP) and (StQP).

1.2 Motivation

There is no efficient algorithm to solve general nonconvex optimization problems in

general. Solution methods for this class of problems usually consist of dividing the

problem into smaller subproblems, solving a relaxation of the subproblem in order to

obtain lower bounds and employing some local search methods to obtain a feasible

solution and hence an upper bound. For some classes of nonconvex optimization

problems, straightforward relaxations of this class of problems even turn out to be

NP-hard. The continuous relaxation of an instance of (MBQP) can be given as an

example to this situation. It is easily verified that the continuous relaxation obtained

by relaxing the binary constraints of (MBQP) is still nonconvex and NP-hard in

general.

Therefore, obtaining bounds on the optimal values of these problems and investi-

gating the tightness of these bounds is a valuable effort. Finding near-optimal solu-

tions and good bounds can decrease the solution time by enabling solution methods

to work more efficiently such as decreasing the number of nodes that will be evaluated
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in branch-and-bound type algorithms or shrinking the search area for heuristics.

Prior to Burer’s result [18], various nonconvex and NP-hard optimization problems

were known to admit a copositive reformulation [11, 78, 79]. Burer [18] established

that copositive reformulation can be extended to a rather large class of optimization

problems, namely, mixed binary quadratic programs. This makes it possible to study

these nonconvex problems from the viewpoint of convex optimization. Although Bu-

rer’s copositive reformulation is still NP-hard due to the intractable cone CP , by

employing a hierarchy of tractable approximations, it paves the way for obtaining

bounds on the optimal value of the original problem in a reasonable time.

Motivated by this, we study the tractable cones that provide approximations to

CP . In particular, we focus on two specific outer approximations: a hierarchy of

outer polyhedral approximations and the doubly nonnegative cone. When CP is

approximated by a polyhedral cone, the resulting problem becomes an LP problem.

This helps in our analysis as the structure of the LP problem is well-known and

modern solvers can solve very large-scale LP problems. On the other hand, although

the doubly nonnegative cone is non-polyhedral, when we use it to approximate CP ,

the resulting problem can still be solved in polynomial-time (see, e.g. [31, 48, 90])

In this thesis, we focus on the copositive reformulations of three classes of opti-

mization problems: mixed binary integer programs (MBP), 0-1 knapsack problem,

and standard quadratic programs (StQP). Unless P = NP, there does not exist an

efficient algorithm for solving these problems.

As for the reasons for studying these three problems, for (MBP), it is possible

to make a comparison with its LP relaxation. To be more precise, we can compare

the quality of lower bounds arising from outer approximations with that of the LP

relaxation. This provides a nice edge in our analysis. The LP relaxation of the

0-1 knapsack problem, being a special case of (MBP), has a closed form solution.

Exploiting that solution structure allows us to achieve even stronger results for the
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knapsack. Outer polyhedral approximations of (StQP) are already known to achieve

good lower bounds and have been studied in [84, 89]. Therefore, we focus on the

doubly nonnegative relaxation of (StQP).

In this dissertation, we attempt to shed light on the quality of outer approxima-

tions arising from the completely positive reformulations of certain nonconvex opti-

mization problem classes discussed above. We hope that our results serve as a basis

for studying the bounds for the general class of mixed binary quadratic programs in

the future. Furthermore, our findings may lead to more refined outer approximations

exploiting the strengths and avoiding the weaknesses of the outer approximations

studied in this thesis.

1.3 Contributions and Outline

This dissertation mainly contributes to the following classes of optimization problems:

Mixed Binary Integer Programs

We define the sign preserving outer approximations, which is a more general definition

that covers a large class of outer approximations of the copositive reformulation of

mixed binary integer programs. Under the assumption that the feasible region of the

original problem is nonempty, we show that outer approximations are unbounded if

and only if the original problem is unbounded.

We compare the lower bounds arising from outer approximations with that of the

LP relaxation of (MBP). Given an instance of (MBP), we show that lower bounds

arising from sign preserving outer approximations are at least as good as the lower

bound obtained from its LP relaxation. We also compare the feasible regions of outer

approximations with that of the LP relaxation of (MBP). We give a characterization

of the equality of these feasible regions. Note that this characterization is based on

enumerating the extreme points of the feasible region of the LP relaxation. As such,
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it may not work in polynomial-time with respect to the problem size. Therefore,

for outer approximations, we also give sufficient or necessary conditions that work in

polynomial-time to compare the feasible regions.

We then attempt to extend our results to the mixed binary quadratic programs.

We provide characterizations for the unboundedness of (MBQP), the continuous

relaxation of (MBQP), and characterizations (or sufficient conditions) for the un-

boundedness of outer approximations within our scope. We show that if continuous

relaxation of (MBQP) is unbounded, then the outer polyhedral approximation at

hierarchy level 0 must be unbounded as well. Furthermore, we provide illustrative

examples for different possible cases.

As for the doubly nonnegative relaxations, we show by examples that there is

no relationship with the continuous relaxation in terms of unboundedness. We next

show that, in contrast with (MBP), lower bounds arising from the outer approxima-

tions of the completely positive formulation of (MBQP) are not comparable to the

lower bound provided by the continuous relaxation, in general. However, we give a

sufficient condition in Proposition 7, under which lower bounds arising from outer

approximations are at least as good as the lower bound given by the continuous re-

laxation. We also present a sufficient condition under which outer approximations

provide strictly better lower bounds than the lower bounds given by the continuous

relaxation of (MBQP). We discuss the classes of optimization problems to which our

results apply.

0-1 Knapsack Problem

We study two alternative completely positive formulations of the 0-1 knapsack prob-

lem. We compare the outer approximations arising from the formulations with the

LP relaxation of (KP). We show that the upper bound given by the outer polyhe-

dral approximations of each copositive formulation is equal to the upper bound given
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by the LP relaxation of (KP) until at least a certain level of the hierarchy. We

argue that, at this level, the LP problem arising from these outer approximations

has already exponentially many variables. For that reason, we conclude that outer

polyhedral approximations perform poorly for the 0-1 knapsack problem and thus we

do not recommend using them as an approximation framework for the 0-1 knapsack

problem.

We also establish a sufficient condition that shows that, depending on the instance,

the equality between the upper bounds given by outer polyhedral approximations and

LP relaxation of (KP) can still persist in even at higher hierarchy levels. By that

sufficient condition, we also give a closed formula about how much this level can rise.

As for the doubly nonnegative (DNN) relaxations, we show that they give strictly

better bounds than the LP relaxation of (KP) if the LP relaxation has a non-integer

unique optimal solution. We also provide an example illustrating that the uniqueness

assumption cannot be relaxed in general.

Standard Quadratic Programs

For a given instance of (StQP), recognizing whether it admits an exact doubly non-

negative relaxation is important, because one can then solve the polynomial-time

solvable DNN relaxation instead of solving the NP-hard original problem and still get

the optimal value of the original problem.

In this study, we investigate the instances of (StQP) with an exact DNN relaxation.

We give a complete algebraic characterization for the set of instances with an exact

DNN relaxation (Q). By relying on the characterization of Q, we identified three

subsets ofQ, all of which are convex cones with a polynomial-time membership oracle.

None of the three sets is a subset of the other two sets as we show by examples in

Section 5.5. We also show that there are still elements that belong Q and are not

members of any of the three subsets. Therefore, the complexity of the membership
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problem in Q is still unknown.

The remainder of the dissertation is organized as follows: We discuss copositive

and completely positive optimization in more detail in Chapter 2. We also introduce

various approximation hierarchies constructed for the copositive and completely pos-

itive cones. Chapters 3, 4 and 5 focus on the outer approximations of the copositive

formulations of mixed binary integer programs, 0-1 knapsack problem, and standard

quadratic programs, respectively. Finally, in Chapter 6, we conclude the dissertation

by a summary of our results and present some open questions.

The standard notation given in the nomenclature will be used throughout the

thesis. Also, at the beginning of each chapter, additional notations specific to that

chapter will be given if required.



Chapter 2

COPOSITIVE AND COMPLETELY POSITIVE

OPTIMIZATION

Copositive and completely positive matrices have various applications, including

control theory [42], block designs [37], economic modelling [33], a Markovian model of

DNA evolution, complementarity problems, and maximin efficiency-robust tests (see

[6] and the references therein). Recent applications also include clustering and data

mining [26], and dynamical systems [5, 65].

Recently, copositive and completely positive matrices have received significant

attention in the area of mathematical optimization since it has been proven that

many combinatorial and nonconvex quadratic optimization problems admit a copos-

itive reformulation. As all the other constraints are linear, this formulation transfers

difficulty entirely into the conic constraint. This has created a completely different

perspective on combinatorial and nonconvex quadratic optimization problems and

has greatly increased the interest in copositive and completely positive optimization

(see [9, 29] for surveys on copositive programming).

This chapter is organized as follows: First, basic definitions from convex analysis

are provided. We define a set of convex cones including copositive and completely

positive cones, which will be of high importance throughout this dissertation. We

then introduce conic optimization and two special cases of conic optimization: copos-

itive and completely positive optimization. We present Burer’s completely positive

formulation of mixed binary quadratic programs. We discuss outer approximations

of the completely positive cone and the bounds arising from them. Finally, the scope
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of this thesis is presented.

2.1 Basics from Convex Analysis

In this section, we give some basic definitions from convex analysis. First we pro-

vide the definitions of a convex set and a convex combination, and then we give a

fundamental theorem about convex cones.

Definition 1. A set C ⊆ Rn is called a convex set if for any x ∈ C and y ∈ C,

λx+ (1− λ)y ∈ C for all λ ∈ [0, 1].

Definition 2. Given x1, . . . , xk ∈ Rn and k ∈ N, a vector of the form

x0 = λ1x
1 + . . .+ λkx

k,

where λi ∈ R+, i = 1, . . . , k and
∑k

i=1 λi = 1, is called a convex combination.

Note that a set C ⊆ Rn contains all convex combinations of its elements if and

only if it is convex. We now give the definition of a cone.

Definition 3. A set K ⊆ Rn is called a cone if λx ∈ K for all x ∈ K and for all

λ ≥ 0.

We next provide the following theorem which shows that convex cones are closed

under addition.

Theorem 1 ([82], Theorem 2.6). A cone K ⊆ Rn is convex if and only if the following

condition is satisfied:

x ∈ K and y ∈ K =⇒ x+ y ∈ K. (2.1)

We now present the definitions of polyhedral, pointed and full-dimensional cones.
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Definition 4. A convex cone K ⊆ Rn is a polyhedral cone, if it is the intersection of

a finite number of half-spaces, i.e.,

K = {x ∈ Rn : Ax ≥ 0},

where A ∈ Rm×n.

Definition 5. A cone K ⊆ Rn is pointed if K ∩ (−K) = {0}.

Definition 6. A cone K ⊆ Rn is full-dimensional if it has a nonempty interior. As

a result, the dimension of K is equal to n.

We now introduce the definition of proper cone, which has all the properties given

above.

Definition 7. A cone K ⊆ Rn is a proper cone, if it is convex, closed, pointed and

full-dimensional.

We will give the definition of dual cone, but first we need the following definition.

Definition 8. An inner product space is a vector space V over R together with an

inner product, i.e., with a map

〈·, ·〉 : V× V→ R

that satisfies the following three properties for all vectors u,w, v ∈ V and all scalars

λ ∈ R:

• Conjugate symmetry: 〈u,w〉 = 〈w, u〉.

• Bilinearity: 〈λu,w〉 = λ〈u,w〉 and 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉.

• Positive-definiteness: 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 ⇐⇒ u = 0.



Chapter 2: Copositive and Completely Positive Optimization 15

Throughout this dissertation, the inner product in the n-dimensional Euclidean

space is defined as 〈u, v〉 := uTv =
∑n

i=1 uivi and the inner product in the space of

m× n matrices is defined as 〈U, V 〉 := trace(UTV ) =
∑m

i=1

∑n
j=1 UijVij.

Definition 9. For a set C ⊆ Rn, the dual cone with respect to the inner product 〈·, ·〉

is given by

C∗ := {x ∈ Rn : 〈x, y〉 ≥ 0 for all y ∈ C}

We have the following properties related to dual cones.

Proposition 1. Let K, K1, K2 ⊆ Rn be cones. Then,

(i) K∗ is always closed and convex.

(ii) K1 ⊆ K2 implies K∗2 ⊆ K∗1.

(iii) If K has a nonempty interior, then K∗ is pointed.

(iv) If cl(K) is pointed, then K has a nonempty interior.

(v) K∗∗ = cl(Conv(K)).

Suppose K is a proper cone. Then, by Proposition 1, K∗ is also proper. Further-

more, since K is closed and convex, K∗∗ = K.

Definition 10. A set C ⊆ Rn is called self-dual if C = C∗.

Among the self-dual cones, nonnegative orthant, positive semidefinite cone and

second order cone can be given. However, a cone does not have to be self-dual, e.g.,

copositive and completely positive cones.
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Definition 11. Given a set C ⊆ Rn, the convex hull of C, denoted as Conv(C), is the

set of all convex combinations of the elements in C, i.e.,

Conv(C) =

{
k∑
i=1

λix
i : xi ∈ C, λi ≥ 0,

k∑
i=1

λi = 1, k ∈ N

}
,

which is also the smallest convex set that contains C.

Definition 12. Given a set C ⊆ Rn, the conic hull of C, denoted as Cone(C), is the

set of all conic combinations of the elements in C, i.e.,

Cone(C) =

{
k∑
i=1

λix
i : xi ∈ C, λi ≥ 0, k ∈ N

}
,

which is also the smallest convex cone that contains C.

2.2 Convex Cones

We first present the definitions of positive semidefinite, copositive and completely

positive matrices and cones.

Definition 13. A matrix X ∈ Sn is positive semidefinite if

uTXu ≥ 0 for all u ∈ Rn.

The cone of positive semidefinite matrices, henceforth referred to as the positive

semidefinite cone, is denoted by

PSD =
{
X ∈ Sn : uTXu ≥ 0, ∀u ∈ Rn

}
.

Note that we do not include dimension information in our cone notations; however,

the dimension will always be clear from the context.

Definition 14. A matrix X ∈ Sn is copositive if

uTXu ≥ 0 for all u ∈ Rn
+.
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The cone of copositive matrices, henceforth referred to as the copositive cone, is

denoted by

COP =
{
X ∈ Sn : uTXu ≥ 0, ∀u ∈ Rn

+

}
.

Definition 15. A matrix X ∈ Sn is completely positive if it can be decomposed as

X = Y Y T for some Y ∈ Rn×k
+ . (2.2)

Given a completely positive matrix X ∈ Sn, the smallest k ∈ N, for which the

representation (2.2) is possible, is called the cp-rank of X. Finding the cp-rank

of a given completely positive matrix still remains an open problem. To see some

established bounds on the cp-rank, the reader is referred to [14, 15, 86, 87].

The cone of completely positive matrices, henceforth referred to as the completely

positive cone, is denoted by

CP =

{
X ∈ Sn : X =

k∑
i=1

yi(yi)T , for some yi ∈ Rn
+, i = 1, . . . , k

}
,

Note that copositive and completely positive cones are dual to each other, i.e., (CP)∗ =

COP . Both cones are intractable cones, i.e., there are no known polynomial-time

algorithms for checking the membership in CP and COP . It has been proved that

deciding where a given matrix is in COP is co-NP-complete [69]. As for CP , the same

complexity is anticipated, and it was established that checking the membership in CP

is NP-hard [25, 69]. It is still an open question whether checking the membership in

CP is also NP-complete. Interested reader is referred to [4] for the open questions in

the theory of copositive and completely positive matrices.

We denote the cone of symmetric entrywise nonnegative matrices by N and refer

to it as the nonnegative cone. DN denotes the intersection of positive semidefinite and

nonnegative cones, and is called the doubly nonnegative cone, i.e., DN = PSD ∩N .

Lastly, we define the following cone

SPN := PSD +N = (DN )∗.
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Each of the cones PSD, COP , CP , N , DN and SPN is a proper cone and the

following set of inclusion relations is satisfied:

CP ⊆ DN ⊆

 N

PSD

 ⊆ SPN ⊆ COP .
We have CP = DN and SPN = COP if and only if n ≤ 4 [23]. For the case n = 5, a

well-known copositive matrix which does not belong to SPN is the Horn matrix [35],

which can be given as

H =



1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


∈ COP \ SPN .

By utilizing the Horn matrix, the following matrix satisfies 〈A,H〉 < 0

A =



1 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 1 1

1 0 0 1 3


∈ DN \ CP ,

which is taken from [4].

2.3 Conic Optimization

A general formulation of a conic optimization problem can be given as

(P ) p∗ := min 〈c, x〉

s.t. 〈ai, x〉 = bi, i = 1, . . . ,m,

x ∈ K,
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where x ∈ Rn is the decision variable, c ∈ Rn, ai ∈ Rn, bi ∈ R, i = 1, . . . ,m are the

problem parameters, and K ⊆ Rn is a closed convex cone. Note that in (P ), if the

cone K is replaced by the nonnegative orthant (Rn
+) and the Euclidean inner product

is used, this gives rise to an LP problem. Therefore, linear programming is a special

case of conic optimization. The associated dual problem of (P ) is given by

(D) d∗ := max bTy

s.t.
m∑
i=1

yiai + s = c,

s ∈ K∗,

where y ∈ Rm and s ∈ Rn are the decision variables. The following lemma shows that

weak duality always holds between primal and dual problems.

Lemma 1 (Weak Duality). For all x ∈ Feas(P ) and (y, s) ∈ Feas(D), we have

〈c, x〉 ≥ bTy.

Therefore, p∗ ≥ d∗.

Proof. For all x ∈ Feas(P ) and (y, s) ∈ Feas(D)

〈c, x〉 − bTy = 〈c, x〉 −
m∑
i=1

〈ai, x〉yi =

〈
c−

m∑
i=1

yiai, x

〉
= 〈s, x〉 ≥ 0,

since x ∈ K, s ∈ K∗ and by the Definition 9 of the dual cone.

Lemma 1 shows that the objective value of any primal (resp. dual) feasible solution

gives an upper (resp. lower) bound on the optimal value of the dual (resp. primal)

problem. Given x ∈ Feas(P ) and (y, s) ∈ Feas(D), the nonnegative value 〈s, x〉 =

〈c, x〉 − bTy is called the duality gap. Obviously, if the duality gap is zero, then x

and (y, s) are optimal solutions of (P ) and (D), respectively. It is well-known that

the converse is also true in the case of linear programming, i.e., all pairs of primal-

dual optimal solutions for an LP problem provides a zero duality gap (see, e.g. [85]).

However, this is not necessarily true for conic optimization in general.
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If the inequality p∗ ≥ d∗ implied by Lemma 1 is satisfied as equality, then such a

situation is called the strong duality. Under regularity assumptions such as Slater’s

condition, it can be proven that strong duality is also satisfied between problems (P )

and (D) (see, e.g., [88, Theorem 2.7] for a proof). Let relint(·) denote the relative

interior [16]. Problem (P ) satisfies Slater’s condition if and only if it has a strictly

feasible solution, i.e.,

∃x̂ s.t. 〈ai, x̂〉 = bi, i = 1, . . . ,m, and x̂ ∈ relint(K).

Linear programming is a significant subfield of the conic optimization since there

exist efficient solution methods to solve LP problems both computationally and the-

oretically. For instance, the simplex method, developed by Dantzig [21] in 1947, was

the first efficient method to solve LP problems in practice, although it does not work

in polynomial-time in the worst case [50]. Later in 1979, Khachiyan [47] applied the

ellipsoid method to derive the first polynomial-time algorithm for solving LP prob-

lems. Although it works better than the simplex method in theory, it remains slow

in practice and is not competitive with simplex in general. Lastly, Karmarkar’s al-

gorithm [44], introduced in 1984, is another polynomial-time algorithm that falls in

the class of interior-point methods and works very efficient in both theory and prac-

tice [58, 59, 66]. It also has better worst-time complexity than the ellipsoid method.

Hence, linear programming has been an important class of optimization problems for

more than six decades.

Another well-studied conic optimization problem is the semidefinite programming

problem (SDP), which is defined over the positive semidefinite cone. After Kar-

markar’s interior-point method, Nesterov and Nemirovski [70] showed that this ap-

proach can be generalized to convex programming by employing self-concordant bar-

rier functions. Their remarkable result implies that a conic optimization problem,

e.g., SDP, can be solved in polynomial-time if the underlying convex cone admits a

self-concordant barrier function that can be evaluated in polynomial-time. Therefore,
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interior-point methods are regarded as the most robust and efficient way for solving

SDP problems.

LP and SDP are two of the most widely-studied problems in the optimization

community. We are now in a position to introduce two special conic programs that

constitute the theme of this dissertation, namely, copositive and completely positive

programs.

2.4 Copositive Programs

A completely positive optimization problem is given by

(CoP) min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ CP ,

where X ∈ Sn is the decision variable, and C ∈ Sn, Ai ∈ Sn and bi ∈ R, i =

1 . . . ,m, are the problem parameters. The dual problem of (CoP), called a copositive

optimization problem, is given by

(CoD) max bTy

s.t.
m∑
i=1

yiAi + S = C,

S ∈ COP ,

(2.3)

where y ∈ Rm and S ∈ Sn are the decision variables.

Despite involving different cones, both problems are often referred to simply as

“copositive programs”. Througout the remainder of this thesis, we also adopt this

terminology.

Since (CoP) and (CoD) are both conic programs, the weak duality always holds

between them and the strong duality holds under regularity conditions such as Slater’s

condition. Recall that the copositive and completely positive cones are convex, and
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all other constraints and the objective function are linear in both problems. There-

fore (CoP) and (CoD) are convex optimization problems. However, as discussed

before, both cones CP and COP are computationally intractable. Furthermore, sev-

eral well-known NP-hard problems such as graph partitioning, maximum weighted

clique, quadratic assignment, and standard quadratic optimization problems can be

reformulated as an instance of (CoP). Therefore, as a consequence (CoP) and (CoD)

are NP-hard problems in general [11, 79].

Copositive optimization has received considerable interest in the Operations Re-

search community in recent years [9]. The main reason for this interest is due to an

important discovery given in the following section.

2.5 Burer’s Reformulation

In 2009, Burer [18] established that all mixed binary quadratic programs can be

reformulated as a completely positive optimization problem (as an instance of (CoP)).

Burer’s this result also forms the basis of this thesis. By using the lifting procedure

(see, e.g. [57]), he constructed a relaxation of the mixed binary quadratic programs

but showed that it is, in fact, an equivalent reformulation. The problem he considered

was

(MBQP) min xTQx+ cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B,

where x ∈ Rn is the decision variable; Q ∈ Sn, ai ∈ Rn, b ∈ Rm andB ⊆ {1, . . . , n} are

the problem parameters. (MBQP) encompasses a rather large class of NP-hard prob-

lems, e.g., all mixed binary integer programs, all nonconvex (continuous) quadratic

programs, and specific problems such as the quadratic assignment problem. Linear
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portion of Feas(MBQP) is given by

L := {x ∈ Rn : aTi x = bi, i = 1, . . . ,m, x ≥ 0}.

Without loss of generality, Burer [18] makes the following assumption, referred to as

the key assumption:

x ∈ L =⇒ 0 ≤ xj ≤ 1, j ∈ B. (2.4)

Note that if the key assumption does not hold, then it can always be ensured by aug-

menting (MBQP) with the constraints xj + sj = 1 and sj ≥ 0, j ∈ B. Under the key

assumption (2.4), Burer [18] showed that (MBQP) can be equivalently reformulated

as the following instance of (CoP):

(MBQP-CP) min 〈Q,X〉+ cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ CP ,
where x ∈ Rn and X ∈ Sn are the decision variables. Burer’s main result in [18] is

the following:

Theorem 2 ([18], Theorem 2.6). (MBQP) and (MBQP-CP) have the same optimal

value. Furthermore, if (x∗, X∗) is an optimal solution for (MBQP-CP), then x∗ is in

the convex hull of optimal solutions for (MBQP).

By this result, it has been shown that a large class of mixed binary quadratic

optimization problems can be reformulated as a completely positive optimization

problem. Therefore, (CoP) is a computationally intractable problem in general. Since

the objective function and all the other constraints are linear, all the complexity is
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absorbed by the membership constraint of the cone CP . In [12], Bomze and Jarre

interpret Burer’s result from a topological perspective. They also discuss why the

feasibility of the copositive formulation implies the feasibility of the original mixed

binary quadratic program. We refer the reader to [12, 18] for further details. This

conic reformulation of Burer [18] paved the way for the recent studies in the field of

copositive optimization [10, 12, 27, 54, 84, 89].

2.6 Outer Approximations

In this thesis, we focus on the outer approximations of the completely positive cone

since a comprehensive analysis on the inner approximations of copositive formulations

of mixed binary quadratic programs has already been done in [91]. Therefore, inner

approximations will be out of the scope of this dissertation. However, the interested

reader is referred to see [13, 89] for different works on the inner polyhedral approxi-

mations and [24, 53, 54] for those on the inner non-polyhedral approximations of the

cone CP .

Both CP and COP are intractable cones. Therefore, many studies in the literature

have proposed various tractable approximation hierarchies for these cones. Most of

these hierarchies are constructed based on the fact that a matrix M ∈ Sn is copositive

if and only if the polynomial

PM(x) :=
n∑
i=1

n∑
j=1

Mijx
2
ix

2
j (2.5)

is nonnegative for all x ∈ Rn.

We begin with the formal definition of an outer approximation hierarchy.

Definition 16. Given a closed convex cone K ⊆ Sn, a sequence of cones Cr ⊆ Sn,

r ∈ N, is called an outer approximation hierarchy if it satisfies the following relations:

C0 ⊇ C1 ⊇ . . . ⊇ K and
⋂
r∈N

Cr = K.
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By the properties of dual cones given in Proposition 1, this hierarchy can be

converted into a hierarchy of the dual cone as follows:

C∗0 ⊆ C∗1 ⊆ . . . ⊆ K∗ and cl

(⋃
r∈N

C∗r

)
= K∗.

Therefore, approximation hierarchies devised for the copositive cone can also be con-

verted into an approximation hierarchy for the completely positive cone and vice

versa.

We now introduce outer approximation hierarchies that are built to approximate

the completely positive cone from outside. We start with a hierarchy of inner polyhe-

dral approximations to the copositive cone introduced by de Klerk and Pasechnik [22]

by exploiting the sufficient conditions for matrix copositivity. By duality, this results

in a hierarchy of outer polyhedral approximations to the cone CP . This section is

concluded with a review of non-polyhedral approximation hierarchies.

2.6.1 Polyhedral Approximations

By duality, outer approximations of the cone CP can be derived from the inner ap-

proximations of the cone COP . In the same manner, inner approximations of COP

obtained by de Klerk and Pasechnik [22] yield outer approximations to CP .

Let us define the following polynomial of degree 2(r + 2):

P r
M(x) := PM(x)

(
n∑
i=1

x2
i

)r

, r ∈ N, (2.6)

where PM(x) is defined in (2.5). Recall that M ∈ COP if and only if PM(x) ≥ 0 for

all x ∈ Rn. Observe that nonnegativity of PM(x) is already guaranteed if P r
M(x) ≥ 0,

r ∈ N, for all x ∈ Rn. By using the fact that P r
M(x) is nonnegative if all its coefficients

are nonnegative, de Klerk and Pasechnik [22] defined the following sequence of cones

(Or)∗ := {M ∈ Sn : P r
M(x) has nonnegative coefficients} , r ∈ N,
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and established that

N = (O0)∗ ⊆ (O1)∗ ⊆ . . . ⊆ COP and cl

(⋃
r∈N

(Or)∗
)

= COP . (2.7)

Now, let us define

Θ(n, r) :=

{
z ∈ Nn :

n∑
i=1

zi = r + 2

}
, r ∈ N. (2.8)

de Klerk and Pasechnik [22] also showed that (Or)∗ can be rewritten as

(Or)∗ = {X ∈ Sn : 〈zzT −Diag(z), X〉 ≥ 0 for all z ∈ Θ(n, r)}, r ∈ N. (2.9)

Therefore, Or (the dual of (Or)∗) can be given as

Or =

 ∑
z∈Θ(n,r)

λz
(
zzT −Diag(z)

)
: λz ≥ 0 for all z ∈ Θ(n, r)

 , r ∈ N. (2.10)

By duality, this implies

CP ⊆ . . . ⊆ O1 ⊆ O0 = N and CP =
⋂
r∈N

Or. (2.11)

Therefore, this sequence of conesyconstitutes an outer approximation hierarchy to the

completelyypositive cone. As r ∈ N increases, we get increasingly better approxima-

tions of CP , and in the limit they converge to CP .

It is easy to check that

|Θ(n, r)| =
(
n+ r + 1

r + 2

)
= O(nr+2), r ∈ N. (2.12)

By (2.12), Or has a finite number of extreme rays and thus is polyhedral for each

r ∈ N. Since each cone Or is polyhedral, a linear optimization problem over these

cones is equivalent to an LP problem. However, by (2.12), it is important to note that

as r increases the number of variables in the related LP problem grows exponentially

with O(nr+2).
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Bundfuss and Dür [17] also proposed outer approximationyhierarchies for the

copositive cone. Since they are adaptive and refined withyrespect to the objective

function, their behaviour change according to the problem instance. Therefore, they

are more algorithmic implementation-oriented and not appropraite for our analysis.

As a-result, we investigate the outer polyhedral-approximation hierarchy proposed by

de Klerk and Pasechnik [22].

We now discuss several hierarchies of outer non-polyhedral approximations to the

completely positve cone.

2.6.2 Non-Polyhedral Approximations

Parrilo [73] was the first who employed an approximation approach for the copositive

cone by using a hierarchy of tractable convex cones in his thesis. He basically exploited

the fact that any polynomial that can be decomposed as a sum-of-squares (sos) is

necessarily nonnegative.

Consider the polynomial P r
M(x) given in (2.5). Parrilo [73] defined the following

sequence of cones:

(Qr)∗ := {M ∈ Sn : P r
M(x) has an sos decomposition} , r ∈ N.

He then showed that these cones satisfy the following relationship:

SPN = (Q0)∗ ⊆ (Q1)∗ ⊆ . . . ⊆ COP and cl

(⋃
r∈N

(Qr)∗
)

= COP .

By duality, this implies

CP ⊆ . . . ⊆ Q1 ⊆ Q0 = DN and CP =
⋂
r∈N

Qr.

Each of the convex cones Qr can be represented by Linear Matrix Inequalites (LMIs).

Therefore a linear optimization problem over these cones turns out to be a semidefinite

programming (SDP) problem. However, as the level of hierarchy increases, instance

size of the corresponding SDP problem grows exponentially.
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Exploiting a weaker sufficient condition than that of Parrilo, in 2007, Pena et

al. [74] constructed another hierarchy of convex cones satisfying CP ⊆ . . . ⊆ K1 ⊆

K0 = DN . They also showed that Qr ⊆ Kr ⊆ Or, where Or is defined in (2.10),

and Kr = Qr for r = 0, 1. Since each Kr can be represented by LMIs, a linear

optimization problem over these cones is equivalent to an SDP problem. At levels

higher than zero, both Parrilo’s and Pena et al.’s hierarchies become inappropriate

for a theoretical analysis due to their complicated structures. Therefore, among the

non-polyhedral outer approximations we will only evaluate the cone DN = K0 = Q0.

We also point out that in literature there exist some other approximation hierar-

chies to the copositive and completely positive cones. For further details, the reader

is referred to [2, 27, 28].

2.7 Lower Bounds

By employing outer approximation hierarchies, one can approximate an intractable

conic optimization problem by a sequence of tractable optimization problems. Recall

that a completely positive program (CoP) is given by

ν := min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ CP ,

where X ∈ Sn is the decision variable, and C ∈ Sn, Ai ∈ Sn, and bi ∈ R, i = 1 . . . ,m

are the problem parameters. Since this problem is computationally intractable, we use

the outer approximation hierarchies to obtain the lower bounds on the optimal value

ν. Moreyprecisely, we replaceythe intractable cone CP by a sequence of increasingly

better tractable outer approximations. By doing that, one can obtain increasingly

tighter lower bounds on ν as the levelyof hierarchy increases. If we replaceythe conic

constraint X ∈ CP by X ∈ Or, where Or, r ∈ N, is defined as in (2.10), then we get
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the following problems:

`r := min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Or,

(2.13)

where r ∈ N. Recall that problems obtained by outer polyhedral approximations is

equivalent to linear programming problems. However, the number of variables in the

related LP problem grows exponentially. Therefore, as r increases, the corresponding

LP problem quickly reach beyond today’s computational capabilities. Hence, it is

crucial to obtain tight bounds at low levels of hierarchy.

Note that since (CoP) is a minimization problem, `r, r ∈ N, constitutes a lower

bound on the optimal value. By (2.11), we also have

`0 ≤ `1 ≤ . . . ≤ ν.

In [89, Theorem 3.1], Yıldırım states that if both problems (COP) and (CoD)

(defined in (2.3)) have strictly feasible solutions, then bounds arising from his inner

approximation hierarchy and de Klerk and Pasechnik’s [22] outer approximation hi-

erarchy both converge to ν in the limit. However, this assumption can be relaxed

when only outer approximations due to de Klerk and Pasechnik [22] are considered.

Therefore, we establish the following result which can also be derived from the proof

of [89, Theorem 3.1].

Proposition 2. If (CoD) has a strictly feasible solution and its set of optimal solu-

tions is nonempty, then

lim
r→∞

`r = ν.

Proof. Consider the problem (2.13). By linear programming duality, its dual is given

by

`r = max

{
bTy :

m∑
i=1

yiAi + S = C, S ∈ (Or)∗
}
, r ∈ N, (2.14)
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where (Or)∗ is defined in (2.9). Let (ŷ, Ŝ) ∈ Rm × Sn be a strictly feasible solution

of (CoD). By (2.7), there exists r0 ∈ N such that Ŝ ∈ (Or)∗ for all r ≥ r0. This also

implies Ŝ is a feasible solution of (2.14) for all r ≥ r0. Therefore,

bT ŷ ≤ `r ≤ ν

holds for all r ≥ r0. Since the optimal solution of (CoD) is attainable, let (y∗, S∗)

be an optimal solution of it. Let us also define (yλ, Sλ) := λ(y∗, S∗) + (1 − λ)(ŷ, Ŝ).

Observe that (yλ, Sλ) is also a strictly feasible solution of (CoD) for all λ ∈ (0, 1).

Therefore, by (2.7), for any λ ∈ (0, 1), there exists rλ ∈ N such that (yλ, sλ) is a

feasible solution of (2.14) for all r ≥ rλ. This implies that

bTyλ = λbTy∗ + (1− λ)bT ŷ ≤ `r ≤ ν = bTy∗

holds for all r ≥ rλ. Therefore, as λ goes to 1 we have limr→∞ `r = ν.

This proposition states that as long as (CoD) has a strictly feasible solution and

an attainable optimal solution, the seqence of lower bounds obtained from (2.13)

converge to the optimal value of (CoP).

In addition to the hierarchy of the outer polyhedral approximations proposed by

de Klerk and Pasechnik [22], we will also analyze the doubly nonnegative relaxations

arising from the doubly nonnegative cone, which corresponds to the first cone in the

hierarchies of non-polyhedral approximations proposed by Parrilo [73] and Pena et

al. [74].

Replacing the conic constraint X ∈ CP by X ∈ DN , we obtain a doubly nonneg-

ative relaxation of (CoP) as follows:

`DN := min 〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ DN ,
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The resulting problem is not an LP problem, since the doubly nonnegative cone is

non-polyhedral. However, it corresponds to a semidefinite programming problem and

thus is still computationally tractable.

2.8 Our Scope

Optimization consists of finding a minimum or maximum value of an objective func-

tion subject to a set of constraints. There are various necessary or sufficient optimality

conditions that have been proposed for optimization problems in the literature. The

reader is referred to the books by Horst et al. [39, 40] for the related topic. However,

for some optimization problems, obtaining a globally optimal solution in a reasonable

time is not possible. Therefore, by employing various approximation techniques, ob-

taining tight bounds on the optimal value of such problems is a valuable pursuit for

many researchers.

In this dissertation, we consider three specific problem classes related to nonconvex

optimization: mixed binary integer programs, 0-1 knapsack problem and standard

quadratic programs. Note that all these problems are NP-hard in general, and they are

special cases of mixed binary quadratic programs. Nonconvexitiy of first two problems

is due to their discrete structures, whereas that of standard quadratic programs is due

to the quadratic objective function.

Mixed binary integer programs consist of a large class of optimization problems,

including the 0-1 knapsack problem. The 0-1 knapsack problem appears in many real-

world applications such as stock cutting, capital budgeting, portfolio selection, and

asset-backed securitization problems (see [46] and the references therein). Although

it is a special case of mixed binary integer programs, we can get stronger results for

it since the optimal solution of its LP relaxation has a special structure. Therefore,

we devote an entirely separate chapter to the 0-1 knapsack problem.

Standard quadratic programs have also many application areas, e.g., portfolio op-
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timization [61], population genetics [49], evolutionary game theory [8] and maximum

(weighted) clique problem [32, 68]. Therefore, we focus on these problem classes in

this thesis.

We also attempt to extend our results to the mixed binary quadratic programs.

Burer’s copositive reformulation opens up a new field of research for general non-

convex linear or quadratic optimization problems. Therefore, we study copositive

formulations of (MBP), (KP) and (StQP). Since these conic programs are still com-

putationally intractable due to the intractability of the underlying cones, we focus

on the outer approximations of them. We choose the hierarchy of outer polyhedral

approximations proposed by de Klerk and Pasechnik [22] and the doubly nonnegative

cone, which is the first cone in the hierarchies due to Parrilo [73] and Pena et al. [74].

Recall that replacing the conic constraint X ∈ CP by X ∈ Or, r ∈ N, generates an

LP problem, whereas replacing it by X ∈ DN generates an SDP problem. Therefore,

polyhedral approximation hierarchies are relatively easier to analyze due to their

simpler structures. However, we also obtain promising results from our analysis for

doubly nonnegative relaxations.

In this dissertation, for the given problem classes and outer approximations we

seek answers to the following questions:

• What is the quality of bounds arising from outer approximations compared to

the bounds provided by the LP relaxations of (MBP) and (KP)?

• Under what conditions do the bounds given by the outer approximations match

the optimal of the original problem, i.e., when do outer approximations become

exact?

Our research concentrates on the comparison of bounds for (MBP) and (KP) problems

in Chapter 3 and Chapter 4, respectively. For (StQP) problems, we consider the

exactness of their doubly nonnegative relaxations in Chapter 5.



Chapter 3

OUTER APPROXIMATIONS OF MIXED BINARY

INTEGER PROGRAMS

3.1 Introduction

We consider mixed binary integer programs (MBP). (MBP) can be given as

(MBP) ν := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B,

(3.1)

where x ∈ Rn is the decision variable; ai ∈ Rn, b ∈ Rm and B ⊆ {1, . . . , n} are

problem parameters. Throughout this chapter, without loss of generality, we assume

that Burer’s key assumption [18] holds. Under that assumption, (MBP) can be equiv-

alently formulated as

(MBP-CP) ν := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ CP ,
(3.2)

where x ∈ Rn and X ∈ Sn are decision variables. Both (MBP) and (MBP-CP) are

NP-hard problems. Although (MBP-CP) is a convex optimization problem defined

over the completely positive cone, the difficulty here is transferred into the conic
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constraint. In fact, for a given matrix X ∈ Sn, deciding whether X ∈ CP is even

NP-hard [25, 69]. Therefore, CP is intractable. Suppose, we replaced the intractable

CP in (MBP-CP) by a tractable convex cone K ⊇ CP . Then, the new problem

constitutes an outer approximation of (MBP-CP) and gives a lower bound on ν since

(MBP-CP) is a minimization problem.

In this chapter, we aim to evaluate the feasible regions and optimal values of the

various relaxations obtained from replacing CP in (MBP-CP) by certain outer approx-

imations. In comparison with the relaxations of (MBP-CP) arising from outer ap-

proximations, we will also analyze the linear programming (LP) relaxation of (MBP),

which is given by

Rel(MBP) `LP := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

x ≥ 0.

(3.3)

Note that we do not need the constraints xj ≤ 1, j ∈ B, since they are already

implied by Burer’s key assumption [18]. Since (MBP) is a minimization problem,

optimal value of Rel(MBP) constitutes a lower bound on the optimal value of (MBP),

i.e., `LP ≤ ν.

This chapter is organized as follows: We will define our notation in Section 3.1.1.

In Section 3.2, we will give a definition for sign preserving outer approximations

(SPR). Given an instance of (MBP), we will compare the optimal values and feasible

regions of (SPR) and Rel(MBP). In a similar manner, we will compare the relaxations

arising from outer polyhedral approximations and Rel(MBP) in Section 3.3. Section

3.4 is devoted to the comparison of the doubly nonnegative relaxation of (MBP-CP)

and Rel(MBP). We define mixed binary quadratic program (MBQP) in Section 3.5

and investigate the extensions of our results to (MBQP). We conclude the chapter in

Section 3.6 by discussing the implication of our results.
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3.1.1 Notation

e will denote the vector of all ones of appropriate dimension and E = eeT will denote

the matrix of all ones. ei will denote the standard unit vector whose ith element is

equal to 1 and all others are equal to 0. If A is an n×n matrix and α, β ⊆ {1, . . . , n},

then A[α|β] is the submatrix lying in the rows α and columns β. For brevity, the

principal submatrix A[α|α] will be denoted by A[α]. Also for a vector x ∈ Rn, x[α]

will be the subvector of length |α| which consists of the elements of x indexed by

α. Diag(·) returns a square diagonal matrix which consists of the entries of a given

vector on the main diagonal.

Feas(·) will denote the feasible region of a given problem. Set of extreme points

of a given set will be denoted by E(·). Conv(·) will denote the convex hull of a given

set. Given two matrices X, Y ∈ Rm×n, 〈X, Y 〉 will denote the trace inner product,

i.e.,

〈X, Y 〉 =
m∑
i=1

n∑
j=1

XijYij.

3.2 A General Case: Sign Preserving Outer Approximations

In this section, we present a more general definition of outer approximation for (MBP-

CP). We compare this outer approximation with Rel(KP) in terms of their feasible

regions and the lower bounds they provide. Note that the results established here will

also apply to the following sections and will serve as preliminary for our main results.

Suppose K is a closed convex cone such that K ⊇ CP . Recall that K constitutes

an outer approximation for CP . Replacing CP by K in the conic constraint, we get a
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relaxation of (MBP-CP). Now, we define the following convex optimization problem:

(SPR) `sp := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ K,
(3.4)

where K ⊇ CP . (SPR) will be referred to as the sign preserving outer approximation

of (MBP-CP). We make following assumption regarding the cone K ⊇ CP :

1 xT

x X

 ∈ K =⇒ x ≥ 0. (3.5)

Note that if this assumption does not hold, then without loss of generality, nonnega-

tivity of x can always be achieved by adding the constraint x ≥ 0 to (SPR).

Since (SPR) is a relaxation of (MBP-CP), it follows that `sp ≤ ν. We define the

following set:

Fsp := {x ∈ Rn : (x,X) ∈ Feas(SPR)} . (3.6)

Fsp is basically the projection of the feasible region of (SPR) onto Rn. Arising from

the projection of a convex feasible region onto Rn, Fsp is also convex. By (3.6), since

the objective function of (SPR) is only dependent on x ∈ Rn, as an immediate result,

observe that (SPR) is equivalent to the following problem:

`sp = min{cTx : x ∈ Fsp}. (3.7)

This simple observation will help us while establishing our results.
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3.2.1 Comparison of the Feasible Regions and Lower Bounds

In this section, we aim to compare the lower bounds given by (SPR) and Rel(MBP).

Note that `LP can be given as follows:

`LP = min{cTx : x ∈ Feas(Rel(MBP))}. (3.8)

First, we give the following proposition which establishes a characterization for the

unboundedness of the problems under consideration.

Proposition 3. Suppose Feas(MBP) is nonempty. Following statements are equiva-

lent:

(i) (MBP) is unbounded, i.e., ν = −∞.

(ii) Rel(MBP) is unbounded, i.e., `LP = −∞.

(iii) (SPR) is unbounded i.e., `sp = −∞.

(iv) There exists d ∈ Rn
+ such that cTd < 0, ai

Td = 0, i = 1, . . . ,m and d[B] = 0.

Proof. It is easy to confirm that (MBP) and Rel(MBP) are bounded if and only if

item (iv) holds. Now we will show (iii) ⇐⇒ (iv). (iv) =⇒ (iii) follows from

(i) =⇒ (iii), since (SPR) is a relaxation of (MBP). Conversely, suppose (SPR)

is unbounded. Since Fsp is a convex set, from (3.7), there exists d ∈ Rn such that

cTd < 0 and due to sign restriction of x, d ≥ 0. Since ai
Tx = bi implies xj ≤ 1 for all

j ∈ B, d[B] = 0 follows. This completes the proof.

Proposition 3 is important in terms of showing that unless (MBP) is unbounded,

(SPR) and Rel(MBP) always give finite lower bounds. Now, we will establish a

relation between `LP and `sp. Next lemma establishes a relation between Fsp and

Feas(Rel(MBP)), which also enables us to compare `sp and `LP .
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Lemma 2. Fsp ⊆ Feas(Rel(MBP)). As a result, `sp ≥ `LP .

Proof. Observe that together with the assumption (3.5) all the constraints of Rel(MBP)

are implied by the constraints of (SPR). Therefore, we conclude the given inclusion.

From (3.7) and (3.8), `sp ≥ `LP directly follows.

This is a promising result, since Lemma 2 clearly establishes that the lower bounds

given by sign preserving outer approximations of (MBP-CP) are at least as good as

the lower bound given by Rel(MBP).

Given x ∈ Feas(Rel(MBP)), in the next lemma, we establish a characterization to

determine if x ∈ Fsp or not. This is a simple characterization, which directly follows

from the formulation of (SPR), but later on we will use this lemma to produce more

useful results.

Lemma 3. Let K ⊇ CP be the cone in the formulation of (SPR). Let x̂ be in the

feasible region of Rel(MBP). x̂ ∈ Fsp if and only if the following problem is feasible:

(Px̂) min 0

s.t. ai
TXai = bi

2, i = 1, . . . ,m,

Xjj = x̂j, j ∈ B,1 x̂T

x̂ X

 ∈ K.
Proof. This result is easily derived by the formulation of (SPR).

By Lemma 3, it follows that Fsp = Feas(Rel(MBP)) holds if and only if (Px) is fea-

sible for all x ∈ Feas(Rel(MBP)). This does not say much to us since Feas(Rel(MBP))

will highly likely have infinitely many points. However, suppose Feas(Rel(MBP)) is

bounded. Observe that Fsp ⊆ Feas(Rel(MBP)), Fsp is a convex set and Feas(Rel(MBP))

is a polyhedron. Therefore, to confirm that Fsp = Feas(Rel(MBP)), it would be suf-

ficient to solve (Px) only for all x ∈ E(Feas(Rel(MBP))). From this observation
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and Lemma 3, we give the next corollary to check the equality between Fsp and

Feas(Rel(MBP)).

Corollary 1. Suppose Feas(Rel(MBP)) is bounded. Consider (Px̂) given in Lemma 3.

Fsp = Feas(Rel(MBP)) if and only if (Px̂) is feasible for all x̂ ∈ E(Feas(Rel(MBP))).

Proof. Suppose Feas(Rel(MBP)) is bounded and Fsp = Feas(Rel(MBP)). Therefore,

assertion follows from Lemma 3. Conversely, suppose (Px̂) is feasible for all x̂ ∈

E(Feas(Rel(MBP))). Then, by Lemma 3, x̂ ∈ Fsp for all x̂ ∈ E(Feas(Rel(MBP))).

Since Feas(Rel(MBP)) is bounded, and Fsp and Feas(Rel(MBP)) are both convex

sets, by Lemma 2,

Fsp = Feas(Rel(MBP)).

Based on Corollary 1, if the feasible region of Rel(MBP) is bounded, one needs to

confirm that (Px) is feasible for all x ∈ E(Feas(Rel(MBP))) for reaching the conclu-

sion Fsp = Feas(Rel(MBP)). Since Feas(Rel(MBP)) is a polyhedron, it will have finite

number of extreme points. However, it still potentially has too many extreme points

and therefore this creates a difficulty. In the next sections, depending on the type of

the considered outer approximation, we try to overcome this difficulty by giving suffi-

cient (or necessary) conditions for Fsp = Feas(Rel(MBP)) or Fsp ⊂ Feas(Rel(MBP)).

We close this section with the following two examples illustrating that the inclusion

between Fsp and Feas(Rel(KP)) can either hold strictly or as equality.

Example 1. Let

Feas(Rel(MBP)) := {x ∈ R2 : 2x1 + x2 = 3, x1 + 2x2 = 3, x ≥ 0}.

and B = {1, 2}. Observe that Feas(Rel(MBP)) = Feas(MBP) = {(1, 1)}. If write
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(Px̂) for x̂ = (1, 1) and K = N

(Px̂) min 0

s.t. 4X11 + 4X12 +X22 = 9,

X11 + 4X12 + 4X22 = 9,

X11 = 1,

X22 = 1,1 x̂T

x̂ X

 ∈ N ,
observe that E ∈ S3 is a feasible solution for (Px̂), where E is the matrix of all

ones. This implies x̂ ∈ Fsp by Lemma 3. Therefore, by Lemma 2, we conclude that

Feas(Rel(MBP)) = Fsp.

In the next example, we show that the inclusion in the Lemma 2 can also hold

strictly.

Example 2. Let

Feas(Rel(MBP)) := {x ∈ R2 : 2x1 + x2 = 1, x1 + 2x2 = 1, x ≥ 0}.

and B = {1, 2}. Observe that Feas(Rel(MBP)) = {(1/3, 1/3)} and Feas(MBP) = ∅.

If write (Px̂) for x̂ = (1/3, 1/3) and K = N

(Px̂) min 0

s.t. 4X11 + 4X12 +X22 = 1,

X11 + 4X12 + 4X22 = 1,

X11 = 1/3,

X22 = 1/3,1 x̂T

x̂ X

 ∈ N ,
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observe that (Px̂) is infeasible since X12 cannot take a negative value. Therefore, by

Lemma 3, x̂ 6∈ Fsp. This implies Fsp = ∅ and thus Fsp ⊂ Feas(Rel(MBP)) by Lemma

2.

3.3 Outer Polyhedral Approximations

In this section, we will establish our results based on the hierarchy of outer poly-

hedral approximations proposed by de Klerk and Pasechnik [22], which are already

described in Chapter 2. More specifically, we will evaluate the relaxations of Burer’s

reformulation [18] arising from these outer approximations of CP , and compare their

feasible regions and optimal values to those of Rel(MBP).

Recall that de Klerk and Pasechnik [22] established

CP ⊆ . . . ⊆ O1 ⊆ O0 = N , and CP =
⋂
r∈N

Or (3.9)

Let us define the following problems:

(Out)r `r := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ Or,
(3.10)

where r ∈ N. Observe that (Out)r is also a sign preserving outer approximation

since, by (3.9), nonnegativity restriction on x ∈ Rn is already implied for all r ∈ N.

Therefore, all results established in Section 3.2 apply to this section as well. Clearly,

for a given instance of (MBP), (3.9) implies that

`0 ≤ `1 ≤ . . . ≤ ν.
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Furthermore, by Proposition 2, if the dual of (MBP-CP) has a strictly feasible solution

and an attainable optimal solution, then

lim
r→∞

`r = ν. (3.11)

3.3.1 Relation Between the Feasible Regions

We define the following set:

Fr := {x ∈ Rn : (x,X) ∈ Feas(Out)r} , r ∈ N. (3.12)

By Lemma 2, we already know that Fr ⊆ Feas(Rel(MBP)) for all r ∈ N. In the

following lemma, we will establish the relations between Fr, Feas(Rel(MBP)) and

Conv(Feas(MBP)).

Lemma 4. Feas(Rel(MBP)) ⊇ F0 ⊇ F1 ⊇ . . . ⊇ Conv(Feas(MBP)). Furthermore,

if the dual problem of (MBP-CP) has a strictly feasible solution and an attainable

optimal solution, then⋂
r∈N

Fr = Conv(Feas(MBP)). (3.13)

Proof. Feas(Rel(MBP)) ⊇ F0 is implied by Lemma 2. Also, F0 ⊇ F1 ⊇ . . . ⊇

Conv(Feas(MBP)) follows from (3.9) and Burer’s result [18, Corollary 2.4].

We now show that (3.13) is also true under the given assumptions. For a contra-

diction, suppose (3.13) is not true, which implies that
⋂
r∈N Fr ⊃ Conv(Feas(MBP)).

Then there exists x ∈
⋂
r∈N Fr such that x 6∈ Conv(Feas(MBP)). It is easy to verify

that Conv(Feas(MBP)) is a closed set. Therefore, by strict separation (see, e.g., [16]),

there also exists a hyperplane that strictly separates x and Conv(Feas(MBP)). Then,

by choosing an objective function such that its improving direction is perpendicular

to that hyperplane, it can be guaranteed that

`r ≤ cTx < ν,
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for all r ∈ N. However, due to Proposition 2, this contradicts with the fact that

limr→∞ `r = ν. Therefore, we conclude that (3.13) is true under the given assumption.

3.3.2 A Sufficient Condition for the Equality at Level 0

In this section, we will analyze the relation between F0 and Feas(Rel(MBP)) in more

detail, and we will establish a sufficient condition for the equality between these sets.

Note that by (3.9), O0 = N . Therefore, as Example 1 and Example 2 il-

lustrate, the inclusion between F0 and Feas(Rel(MBP)) might hold strictly, i.e.,

F0 ⊂ Feas(Rel(MBP)) or equally, i.e., F0 = Feas(Rel(MBP)). If one needs to de-

cide whether F0 = Feas(Rel(MBP)) or not, then due to Lemma 3, feasibility of the

following LP problem should be confirmed for all x̂ ∈ Feas(Rel(MBP)):

min 0

s.t. ai
TXai = bi

2, i = 1, . . . ,m,

Xjj = x̂j, j ∈ B,1 x̂T

x̂ X

 ∈ N ,
which can be simplified to

min 0

s.t. ai
TXai = bi

2, i = 1, . . . ,m,

Xjj = x̂j, j ∈ B,

X ∈ N ,

(3.14)

where X ∈ Sn is the decision variable. However, this cannot be confirmed by solving

for all x̂ ∈ Feas(Rel(MBP)) since Feas(Rel(MBP)) most likely includes infinitely

many points. On the other hand, if Feas(Rel(MBP)) is bounded, then, by Corollary

1, it would be sufficient to solve (3.14) only for extreme points of Feas(Rel(MBP))
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to decide if F0 = Feas(Rel(MBP)). However, this is still hardly practical since there

might be too many extreme points of Feas(Rel(MBP)). Therefore, in this section, we

will establish a useful sufficient condition to confirm the equality of these two sets,

namely F0 and Feas(Rel(MBP)). Moreover, unlike Corollary 1, this result is valid

even though the boundedness assumption on Feas(Rel(MBP)) does not hold.

Before that, we will make a last minor modification on (3.14) for the simplicity.

Without loss of generality, assume B = {1, . . . , k}, where k ≤ n. Then, (3.14) can be

rewritten as

min 0

s.t. ai
TXai = bi

2, i = 1, . . . ,m,

Xjj = x̂j, j = 1, . . . , k,

X ∈ N .

(3.15)

By Lemma 3, F0 = Feas(Rel(MBP)) if and only if (3.15) is feasible for all x̂ ∈

Feas(Rel(MBP)). Therefore, we want to find a condition so that (3.15) will be feasible

for all x̂ ∈ Feas(Rel(MBP)). To do that, we will utilize the dual problem of (3.15).

Now, given an arbitrary x̂ ∈ Rn, the dual problem of (3.15) can be written as

max θ(w, y) (3.16)

where w ∈ Rk, y ∈ Rm and

θ(w, y) = min
X∈N

{
m∑
i=1

yi
(
b2
i − 〈X, aiaiT 〉

)
+

k∑
j=1

wj(x̂j −Xjj)

}
,

=
m∑
i=1

yib
2
i +

k∑
j=1

wjx̂j + min
X∈N

{〈
X,−

m∑
i=1

yiaiai
T

〉
−

k∑
j=1

wjXjj

}
.

Define

W := Diag([w1 . . . wk 0 . . . 0]).

Then, θ(w, y) can be written as follows:

θ(w, y) =
m∑
i=1

yib
2
i +

k∑
j=1

wjx̂j + min
X∈N

{〈
X,−

m∑
i=1

yiaiai
T −W

〉}
, (3.17)
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Note that both (3.15) and (3.16) are LP problems. Therefore, if (3.15) is feasible,

then, by strong duality, 0 will be the optimal value for both of them. Clearly, from

(3.17)

θ(w, y) =


m∑
i=1

yib
2
i +

k∑
j=1

wjx̂j, if
m∑
i=1

yiaiai
T +W ≤ 0

−∞, otherwise

Hence, (3.16) can be rewritten as

max f(w, y) :=
m∑
i=1

yib
2
i +

k∑
j=1

wjx̂j

s.t.
m∑
i=1

yiaiai
T +W ≤ 0,

(3.18)

where w ∈ Rk and y ∈ Rm are decision variables. Since (3.18) is the dual problem

of (3.15) and (w, y) = (0, 0) is always a feasible solution for it, one can easily see

that (3.18) will either be unbounded or bounded with the optimal value 0. Therefore,

(3.15) is feasible if and only if (3.18) is bounded. If we write the constraints of (3.18)

that include w1, . . . , wk, they are

m∑
i=1

yi(ai)j
2 + wj ≤ 0, j = 1, . . . , k.

Since x̂ ∈ Feas(Rel(MBP)) (and thus x̂ ∈ Rn
+), multiplying them with x̂j would give

us
m∑
i=1

yi(ai)j
2x̂j + wjx̂j ≤ 0, j = 1, . . . , k.

If we sum them up, we get the inequality,

m∑
i=1

yi

k∑
j=1

(ai)j
2x̂j +

k∑
j=1

wjx̂j ≤ 0. (3.19)

We will try to specify a condition that ensures the implication

m∑
i=1

yi

k∑
j=1

(ai)j
2x̂j +

k∑
j=1

wjx̂j ≤ 0 =⇒ f(w, y) ≤ 0.
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Now, let

A :=


aT1
...

aTm

 ∈ Rm×n. (3.20)

Let Aj be the jth column vector of A, j = 1, . . . , n. By taking the Hadamard product

of each pair of column vector Aj ◦ Al such that 1 ≤ j < l ≤ n we obtain a matrix

T ∈ R

m×

n
2


, which is given as follows:

T :=
[
A1 ◦ A2 . . . A1 ◦ An A2 ◦ A3 . . . An−1 ◦ An

]
(3.21)

Let, also

I+ := {i ∈ {1, . . . ,m} : ai ∈ Rn
+} and I− := {1, . . . ,m} \ I+. (3.22)

We will use (3.19), and definitions (3.21) and (3.22) in the proof of following the-

orem. Next theorem establishes a sufficient condition for the equality of F0 and

Feas(Rel(MBP)).

Theorem 3. Let T , I+ and I− be defined as in (3.21) and (3.22). By changing the

order of the rows and columns in T , suppose it can be put into the form[ ]
I+

D1
0 G

I− D2
, (3.23)

where D1 ∈ Rm×m is a diagonal matrix with strictly positive diagonals, D2 ∈ R|I−|×|I−|

is a diagonal matrix with strictly negative diagonals and G ∈ R

m×


n

2

−m−|I−|


is

any matrix with no restriction. Then, F0 = Feas(Rel(MBP)). As a result, `0 = `LP .
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Proof. Suppose T can be put into the form (3.23). Observe that due to the special

form of T, we have the following constraints on (3.18):

yi ≤ 0, ∀i ∈ I+ and yi = 0, ∀i ∈ I−.

Recall that (3.19) is also implied by the constraints of (3.18). Observe that (3.19)

can be rewritten as

m∑
i∈I+

yi︸︷︷︸
≤0

k∑
j=1

(ai)j
2x̂j︸ ︷︷ ︸

≤bi2

+
m∑

i∈I−
yi︸︷︷︸
=0

k∑
j=1

(ai)j
2x̂j︸ ︷︷ ︸

=0

+
k∑
j=1

wjx̂j ≤ 0,

which implies that

f(w, y) =
m∑
i=1

yib
2
i +

k∑
j=1

wjx̂j ≤ 0,

for all x̂ ∈ Rn
+. Since (w, y) = (0, 0) is always a feasible solution for (3.18), this implies

that the optimal value of (3.18) is 0 for all x̂ ∈ Rn
+. This also implies (3.15) is feasible

for all x̂ ∈ Rn
+. Therefore, by Lemma 3, we conclude that F0 = Feas(Rel(MBP)).

Remark 1. Observe that T can be put into the form (3.23) if and only if both of the

following conditions hold:

(i) For each i ∈ {1, . . . ,m}, there exists (j, l), j 6= l, such that (ai)j.(ai)l > 0 and

apj.a
p
l = 0, for all p = 1, . . . ,m, p 6= i.

(ii) For each i ∈ I−, there exists (j, l), j 6= l, such that (ai)j.(ai)l < 0 and apj.a
p
l =

0, for all p = 1, . . . ,m, p 6= i.

We next give an example, in which T defined in (3.21) can be put into the form

(3.23).
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Example 3. Consider an instance of (MBP). Let

a1
T =

[
0 2 0 4 0

]
,

a2
T =

[
1 3 0 0 0

]
,

a3
T =

[
4 0 0 −1 2

]
,

a4
T =

[
0 5 −2 0 1

]
.

(3.24)

For brevity, we will not write the other problem parameters, since (3.23) in Theorem

3 depends only on ai, i = 1, . . . ,m. Now, A defined in (3.20) is

A =


0 2 0 4 0

1 3 0 0 0

4 0 0 −1 2

0 5 −2 0 1

 .

Accordingly, T defined in (3.21) is

T =


0 0 0 0 0 8 0 0 0 0

3 0 0 0 0 0 0 0 0 0

0 0 −4 8 0 0 0 0 0 −2

0 0 0 0 −10 0 5 0 −2 0

 .
By changing the order of the columns of T , observe that it can be put into the form

(3.23) as follows:
8 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0

0 0 8 0 −4 0 0 0 0 −2

0 0 0 5 0 −2 0 0 −10 0

 ,
where

D1 =


8 0 0 0

0 3 0 0

0 0 8 0

0 0 0 5

 , D2 =

−4 0

0 −2,

 and G =


0 0 0 0

0 0 0 0

0 0 0 −2

0 0 −10 0.


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Hence, if an (MBP) instance consists of the vectors ai, i = 1, . . . , 4, given in (3.24),

then, by Theorem 3, F0 = Feas(Rel(MBP)) holds regardless of the other problem

parameters and therefore `0 = `LP .

We close this section with the following example showing that the sufficient con-

dition given in Theorem 3 cannot be relaxed, in general.

Example 4. Consider the following instance of (MBP):

cT =
[
4 −6 −2 0 0

]
,

a1
T =

[
9 1 1 0 0

]
a2
T =

[
10 −1 −1 0 0

]
a3
T =

[
1 0 0 1 0

]
a4
T =

[
0 1 0 0 1

]
bT =

[
9.1 9.9 1 1

]
x1, x2 ∈ {0, 1},

x3, x4, x5 ≥ 0.

Observe that (i) in Remark 1 is violated and thus T cannot be put into the form (3.23).

Optimal values and optimal solutions of (MBP), Rel(MBP) and (Out)0 respectively,

are as follows:

ν = 3.8, x∗T =
[
1 0 0.1 0 1

]
`LP = 3.4, x∗bin

T =
[
1 0.1 0 0 0.9

]

`0 = 3.76, x∗0
T =

[
1 0.01 0.09 0 0.99

]
, X∗0 =



1 0 0.1 0 0

0 0.01 0 0 0

0.1 0 0 0 0

0 0 0 0 0

0 0 0 0 0.99


Hence `0 > `LP , which implies that F0 ⊂ Feas(Rel(MBP)).
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3.3.3 Higher Levels

Note that throughout this section we assume that dual problem of (MBP-CP) has

a strictly feasible solution and an attainable optimal solution. Therefore, (3.13) holds.

Given x̂ ∈ Feas(Rel(MBP)), there are two possible cases: either x̂ ∈ Conv(Feas(MBP))

or otherwise. In the first case, by Lemma 4, x̂ ∈ Fr for all r ∈ N. Otherwise, if the

dual problem of (MBP-CP) has an attainable optimal solution and a strictly feasible

solution, then due to Lemma 4, it is certain that there exists r0 ∈ N such that x ∈ Fr
for all r < r0 and x 6∈ Fr for all r ≥ r0. Let us define

F−Rel := Feas(Rel(MBP)) \ Conv(Feas(MBP)). (3.25)

Given x̂ ∈ F−Rel, one can always solve (Px̂) in Lemma 3 to check if x̂ ∈ Fr or not at any

level r ∈ N. Moreover, (Px̂) gives an LP problem when K = Or. However, observe

that its size grows exponentially with respect to r. In this section, we will investigate

until at least what level r ∈ N, x̂ ∈ Fr holds, and after at most what level r ∈ N,

x̂ 6∈ Fr holds.

First, we will give a sufficient condition, under which x̂ ∈ Fr holds until at least

a certain level of r. Next, at any level r ∈ N, we will give a necessary condition for

x̂ ∈ Fr. What makes our conditions useful is that computational effort required to

check them does not change depending on the level r ∈ N at all.

A Sufficient condition

We first present our sufficient condition. Suppose x̂ ∈ F−Rel consists of only rational

elements, i.e., x̂ ∈ Qn. Then, there obviously exists k ∈ N such that kx̂ ∈ Nn. Let

uT :=
[
k + 1 kx̂T

]
∈ Nn+1. Let

M :=
1

k(k + 1)
(uuT −Diag(u)) =

 1 x̂

x̂T 1
k+1

(kx̂x̂T −Diag(x̂))


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Observe that M ∈ Or until at least r = (k− 1) + keT x̂. Let us define another matrix

M̄ := M + Diag(y), (3.26)

where y ∈ Rn+1 is such that y1 = 0, yj+1 =

(
k + 2

k + 1

)
x̂j −

(
k

k + 1

)
x̂2
j for j ∈ B and

yj+1 = 0 for j ∈ {1, . . . , n}\B. Observe that M̄ ∈ Or until at least r = (k−1)+keT x̂

as well. Also, the diagonal entries of M̄ satisfy M̄j+1,j+1 = x̂j for all j ∈ B.

Let H := {2, . . . , n+ 1}. Consider an instance of (MBP). Then,

ai
TM̄ [H]ai = ai

TM [H]ai + ai
T (Diag(y)[H])ai

=

〈
aia

T
i ,

1

k + 1

(
kx̂x̂T −Diag(x̂)

)〉
+
∑
j∈B

(ai)j
2

(
k + 2

k + 1
x̂j −

k

k + 1
x̂2
j

)

=
k

k + 1
b2
i −

n∑
j=1

1

k + 1
(ai)j

2x̂j +
∑
j∈B

(ai)j
2

(
k + 2

k + 1
x̂j −

k

k + 1
x̂2
j

)
=

k

k + 1
b2
i +

∑
j∈B

(ai)j
2x̂j −

∑
j∈{1,...,n}\B

1

k + 1
(ai)j

2x̂j −
∑
j∈B

k

k + 1
(ai)j

2x̂2
j

for i = 1, . . . ,m. Therefore,

b2
i − aiTM̄ [H]ai =

1

k + 1

b2
i +

∑
j∈{1,...,n}\B

(ai)j
2x̂j

−∑
j∈B

(ai)j
2

(
x̂j −

k

k + 1
x̂2
j

)
,

i = 1, . . . ,m. If we define the following,

ζi := b2
i +

∑
j∈{1,...,n}\B

(ai)j
2x̂j, i = 1, . . . ,m, (3.27)

µi :=
∑
j∈B

(ai)j
2

(
x̂j −

k

k + 1
x̂2
j

)
, i = 1, . . . ,m, (3.28)

Observe that

b2
i − aiTM̄ [H]ai =

ζi
k + 1

− µi. (3.29)

In the following theorem, we construct a matrix M̃ that fills the gap (3.29) and

whose x-component is equal to x̂. It also satisfies M̃ ∈ Feas(Out)r until at least

r = (k − 1) + keT x̂. The construction of such a matrix becomes possible by an LP

problem with m constraints and only n− |B| variables given in (3.30).



52 Chapter 3: Outer Approximations of Mixed Binary Integer Programs

Theorem 4. Let x̂ ∈ F−Rel. Suppose x̂ ∈ Qn and let k ∈ N such that kx̂ ∈ Nn. Let ζi

and µi be defined as in (3.27) and (3.28). Suppose there exists a feasible solution to

the following LP problem

min 0

s.t.
∑

j∈{1,...,n}\B

(ai)j
2wj =

ζi
k + 1

− µi, i = 1, . . . ,m,

wj ≥ 0, j ∈ {1, . . . , n} \B,

(3.30)

where wj, j ∈ {1, . . . , n} \ B are decision variables. Then x̂ ∈ Fr, until at least

r = (k − 1) + keT x̂.

Proof. Suppose ŵj, j ∈ {1, . . . , n} \ B, is a feasible solution to problem (3.30). Let

M̄ be defined as in (3.26). Define z ∈ Rn+1 such that z1 = 0, zj+1 = ŵj for j ∈

{1, . . . , n} \ B and zj+1 = 0 for j ∈ B. Let us define M̃ := M̄ + Diag(z). Observe

that M̃ ∈ Or, until at least r = (k − 1) + keT x̂. If we write M̃ in more explicit form

M̃ =

 1 x̂

x̂T 1
k+1

(kx̂x̂T −Diag(x̂))

+ Diag(y) + Diag(z).

Since x-component of M̃ is x̂, M̃ satisfies first set of m constraints in (Out)r. Recall

that H := {2, . . . , n+ 1}. Now, observe that

aTi M̃ [H]ai = aTi M̄ [H]ai + aTi Diag(z)ai

= aTi M̄ [H]ai +
∑

j∈{1,...,n}\B

(ai)j
2ŵj

= aTi M̄ [H]ai +
ζi

k + 1
− µi

for i = 1, . . . ,m. Therefore, by (3.29), aTi M̃ [H]ai = b2
i , which implies that M̃ sat-

isfies second set of m constraints in (Out)r. Also, observe that the diagonal entries

M̃j+1,j+1 = x̂j, for all j ∈ B. Therefore M̃ ∈ Feas(Out)r, which implies that x̂ ∈ Fr,

until at least r = (k − 1) + keT x̂. This completes the proof.
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Remark 2. Observe that problem (3.30) can possibly be infeasible due to following

two reasons: Firstly, it has a linear system of equations (l.s.e) with m equations

and n − |B| variables. It is likely that the l.s.e is overdetermined if m > n − |B|.

Secondly, its variables have nonnegativity restriction and it is not guaranteed that
ζi

k + 1
− µi ≥ 0, i = 1, . . . ,m. Since each wj, j = {1, . . . , n} \ B is multiplied by

(ai)j
2, if there exists i ∈ {1, . . . ,m} such that

ζi
k + 1

− µi < 0, then (3.30) again

becomes infeasible. Therefore, in all these cases Theorem 4 remains inconclusive.

However, an advantage of Theorem 4 is that (3.30) is an LP problem and its size

(3.30) is not dependent on the level r ∈ N.

Following example includes an (MBP) instance, for which we can reach to a con-

clusion by using Theorem 4.

Example 5. Consider the following (MBP) instance.

cT =
[
−1 0 1 0

]
a1
T =

[
1 1 1 4

]
,

a2
T =

[
1 3 4 5

]
,

bT =
[
1 2

]
,

x ≥ 0,

x1 ∈ {0, 1}.

Optimal values and optimal solutions of (MBP) and Rel(MBP) are respectively as

follows:

ν = 0, x∗T ≈
[
0 0.4286 0 0.1429

]
,

`LP = −0.5, x∗bin
T =

[
0.5 0.5 0 0

]
∈ F−Rel.

Note that Rel(MBP) has a unique optimal solution. Let x̂ = x∗bin. Observe that

kx̂ ∈ N for k = 2, 4, 6, . . .. If we solve (3.30) for this instance, it continues to be
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feasible until k = 8, which implies that x̂ ∈ Fr, until at least r = (k− 1) + keT x̂ = 15.

Therefore, we conclude that `r = `LP = −0.5 for all r = 0, 1, . . . , 15. However, if we

solve (Out)r for this problem, it turns out that `r = `LP = −0.5 until r = 112, and

`113 = −0.4674.

This example is important since it shows that for the considered instance, the

lower bound given by (Out)r does not improve until r = 112. However, at r = 112,

the resulting LP problem has 7, 673, 835 variables! Although the number of variables

increased dramatically and more than 7 million variables are added to (Out)r starting

from r = 0 to r = 112, the resulting lower bound does not improve. This is obviously

not a desired result for outer approximations. Moreover, our computational efforts

indicate that this is not uncommon among (MBP) instances.

In Chapter 4, we will also establish important theoretical results for the 0-1 knap-

sack problem which is a special case of (MBP). Those results will also show that lower

bounds resulting from (Out)r do not improve until at least a certain level of r ∈ N

for the 0-1 knapsack problem.

Given x̂ ∈ F−Rel, in Theorem 4, we established a sufficient condition that ensures

x̂ ∈ Fr until at least a certain level r ∈ N. Now, we will establish a necessary condition

that holds true if x̂ ∈ Fr.

A Necessary Condition

Given x̂ ∈ F−Rel and level r ∈ N, suppose x̂ ∈ Fr, which implies there exists M ∈

Feas(Out)r such that

M =

1 x̂T

x̂ X

 =
∑

z∈Θ(n+1,r)

λz(zz
T −Diag(z)), (3.31)

where λz ≥ 0 for all z ∈ Θ(n+ 1, r). We can partition z ∈ Θ(n+ 1, r) so that

zT =
[
z0 z1

T

]
(3.32)
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where z0 ∈ N and z1 ∈ Nn. Now, let us define the following two sets:

S1 := {z ∈ Θ(n+ 1, r) : z0 ≥ 1},

S2 := {z ∈ Θ(n+ 1, r) : z0 = 0}.

Obviously S1 ∩ S2 = ∅ and S1 ∪ S2 = Θ(n + 1, r). Now suppose |Θ(n + 1, r)| = p,

|Z1| = h and w.l.o.g. assume first h vectors of Θ(n + 1, r), i.e., zk, k = 1, . . . , h, are

in the set S1 and the remaining vectors of Θ(n + 1, r), i.e., zk, k = h + 1, . . . , p, are

in the set S2. Since M ∈ Feas(Out)r, we can write the following equalities resulting

from (3.31):

h∑
k=1

λk

(
(zk0 )

2 − z0
k
)

= 1 (3.33)

h∑
k=1

λk

(
zk0 (zk1 )j

)
= x̂j , j = 1, . . . , n, (3.34)

h∑
k=1

λk

(
(zk1 )j

2 − (zk1 )j

)
︸ ︷︷ ︸

=Yjj

+

p∑
k=h+1

λk

(
(zk1 )j

2 − (zk1 )j

)
︸ ︷︷ ︸

≥0

= Xjj , j = 1, . . . , n. (3.35)

h∑
k=1

λk

(
(zk1 )j(z

k
1 )l

)
︸ ︷︷ ︸

=Yjl

+

p∑
k=h+1

λk

(
(zk1 )j(z

k
1 )l

)
︸ ︷︷ ︸

≥0

= Xjl, 1 ≤ j < l ≤ n. (3.36)

In the next lemma, we will establish a result that will be useful for the following

theorem.

Lemma 5. For all z ∈ Θ(n+ 1, r), consider (3.32), (3.33) and (3.34).

h∑
k=1

λkz
k
0 =

eT x̂+ 1

r + 1
,

where e ∈ Rn is the vector of all ones.
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Proof. If we sum (3.34) over all j = 1, . . . , n,

eT x̂ =
n∑
j=1

h∑
k=1

λk
(
zk0 (zk1 )j

)
,

=
h∑
k=1

λkz
k
0

n∑
j=1

(zk1 )j︸ ︷︷ ︸
=r+2−z0k

,

= (r + 2)

(
h∑
k=1

λkz
k
0

)
−

h∑
k=1

λk(z
k
0 )2,

= (r + 1)

(
h∑
k=1

λkz
k
0

)
− 1.

Then,
h∑
k=1

λkz
k
0 =

eT x̂+ 1

r + 1
.

Before giving our next result, we will make two more definitions. Let

αx̂ :=
eT x̂+ 1

r + 1
, (3.37)

where e ∈ Rn is the vector of all ones and

Qn =
{
x ∈ Rn : 2x1x2 ≥ x2

3 + · · ·+ x2
n, x1, x2 ≥ 0

}
. (3.38)

Note that Qn is a second-order cone. Given x̂ ∈ F−Rel, next theorem establishes that

if x̂ ∈ Fr, then it is possible to define a problem which includes two different types of

conic constraints and a nonempty feasible region. Note that the size of this problem

also does not change depending on the level r ∈ N.

Theorem 5. Suppose I+ defined in (3.22) is nonempty. Let x̂ ∈ F−Rel, where F−Rel is
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defined as in (3.25). If x̂ ∈ Fr, r ∈ N, then the following problem is feasible:

(DC) min 0

s.t.
n∑
j=1

(ai)j
2wj +

n−1∑
j=1

n∑
l=j+1

2(ai)j(ai)lZjl ≤ bi
2, i ∈ I+, (3.39)

Zjl = 0, l = 1, . . . , n; j : x̂j = 0, (3.40)

Zjj ≤ wj, j = 1 . . . , n, (3.41)

wj = x̂j, j ∈ B, (3.42)

η ≥ 0, (3.43)

(1/2αx̂, (Zjj + ηj), ηj) ∈ Q3, j = 1, . . . , n, (3.44)

1 x̂T

x̂ Z

+ Diag




αx̂

η1

...

ηn



 ∈ DN . (3.45)

where w ∈ Rn, Z ∈ Rn×n, η ∈ Rn are decision variables, and αx̂ is defined in (3.37).

Proof. Suppose x̂ ∈ F−Rel. If x̂ ∈ Fr, then we know that there exists M ∈ Feas(Out)r

such that (3.31) holds. Let us define

z̄k0 :=
√
λkz

k
0 , k = 1, . . . , |Θ(n+ 1, r)|,

¯(zk1 )j :=
√
λk(z

k
1 )j, k = 1, . . . , |Θ(n+ 1, r)|, j = 1, . . . , n.

Due to (3.33), (3.34), (3.35), (3.36) and Lemma 5,

h∑
k=1

¯(zk0 )
2

= 1 + αx̂,

h∑
k=1

z̄k0
¯(zk1 )j = x̂j, j = 1, . . . , n,

h∑
k=1

¯(zk1 )j
2

= Yjj + βj, where βj =
h∑
k=1

λk(z
k
1 )j, j = 1, . . . , n,

h∑
k=1

¯(zk1 )j
¯(zk1 )l = Yjl 1 ≤ j < l ≤ n.
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Define the following vectors:

uT :=
[
z̄1

0 . . . z̄h0

]
,

(vj)
T

:=
[

¯(z1
1)j . . . ¯(zh1 )j

]
, j = 1, . . . , n,

Then,

1 + αx̂ = uTu,

x̂j = uTvj, j = 1, . . . , n,

Yjj + βj = (vj)Tvj, j = 1, . . . , n,

Yjl = (vj)Tvl, 1 ≤ j < l ≤ n.

Accordingly, if G :=
[
u v1 . . . vn

] [
u v1 . . . vn

]T
, then

G =

1 x̂T

x̂ Y

+ Diag




αx̂

β1

...

βn




and it is completely positive by definition. Let Λ :=

[√
λ1 . . .

√
λh

]
. Recall that

βj =
∑h

k=1 λk(z
k
1 )j. Then,

βj = ΛTvj, j = 1, . . . , n

= ‖Λ‖‖vj‖ cos(ang(vj,Λ)), j = 1, . . . , n

where ang(·, ·) denotes the angle between two given vectors. Observe that

‖Λ‖2 =
h∑
k=1

λk ≤
h∑
k=1

λk z0
k︸︷︷︸
≥1

= αx̂ =⇒ ‖Λ‖ ≤
√
αx̂,

Therefore,

βj = ‖Λ‖︸︷︷︸
≤√αx̂

‖vj‖ cos(ang(vj,Λ))︸ ︷︷ ︸
≤1

,

≤
√
αx̂(Yjj + βj), (3.46)
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since ‖vj‖2
= Yjj+βj, j = 1, . . . , n. Now, we will show that (w,Z, η) = (diag(X), Y, β)

is a feasible solution for (DC), where X = M [{2, . . . , n+ 1}]. Since M ∈ Feas(Out)r,

ai
TXai = b2

i , i = 1, . . . ,m. Therefore (3.39) holds since Y ≤ X. If x̂j = 0 for any

j ∈ {1, . . . , n}, then, due to (3.34) and (3.36), Yjl = 0 since zk0 ≥ 1 for all k = 1, . . . , h.

Hence, (3.40) is satisfied as well. Due to (3.35), Yjj ≤ Xjj and thus (3.41) is satisfied.

Since Xjj = x̂j, (3.42) is satisfied. Since βj ≥ 0, j = 1, . . . , n, (3.43) is satisfied. Due

to (3.46), (3.44) is satisfied. Lastly, since G ∈ CP and CP ⊆ DN , (3.45) is satisfied.

Finally, we conclude that (diag(X), Y, βj) is a feasible solution to (DC).

Remark 3. (DC) is a conic optimization problem with two types of conic constraints,

n2 + n variables and less than |I+| + (|B| + 2)n + |B| constraints. By taking the

contraposition of the assertion in Theorem 5, if (DC) is infeasible, then it follows

that x̂ 6∈ Fr.

Example 6. Consider the instance of (MBP) given in Example 5. Starting from

r = 0, if we solve (DC) for x̂ =
[
0.5 0.5 0 0

]
and increase r until it becomes

infeasible, observe that it first becomes infeasible at r = 2151. This implies x̂ 6∈ F2151,

although from Example 5 we know that smallest level r such that x̂ 6∈ Fr is equal to

113.

3.4 Doubly Nonnegative Relaxations

Recall that the doubly nonnegative cone is equal to the intersection of the positive

semidefinite and nonnegative cones, i.e., DN = PSD ∩ N . We define the following
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problem:

(DN) `DN := min cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ DN .
(3.47)

Since DN ⊇ CP and the nonnegativity restriction on x ∈ Rn is implied by the conic

constraint, (DN) is another sign preserving outer approximation of (MBP-CP). Hence,

all the results established in Section 3.2 will apply to this section as well. Unlike CP ,

DN is a tractable cone in the sense that it admits polynomial-time membership

oracles. Therefore, (DN) can theoretically be solved in polynomial-time in general.

In this section, our aim is to compare the feasible regions and optimal values of

the problems (DN) and Rel(MBP). Before beginning our comparison, we shall state

the clear relationship between the feasible regions and optimal values of (DN) and

(Out)0. Observe that the only difference between these two problems is their conic

constraints. (DN) has

1 xT

x X

 ∈ DN , whereas (Out)0 has

1 xT

x X

 ∈ N . Since

DN ⊆ N , obviously Feas(DN) ⊆ Feas(Out)0 and thus `DN ≥ `0.

3.4.1 Comparison of the Feasible Regions

Let us define the following set:

FDN := {x ∈ Rn : (x,X) ∈ Feas(DN)} . (3.48)

By Lemma 2, we already know that FDN ⊆ Feas(Rel(MBP)) and thus `DN ≥ `LP .

Given x̂ ∈ Feas(Rel(MBP)), to determine whether x̂ ∈ FDN or not, one needs to solve



Chapter 3: Outer Approximations of Mixed Binary Integer Programs 61

the following by Lemma 3:

min 0

s.t. ai
TXai = bi

2, i = 1, . . . ,m,

Xjj = x̂j, j ∈ B,1 x̂T

x̂ X

 ∈ DN .
(3.49)

By Lemma 3, we know that x̂ ∈ FDN if and only if (3.49) is feasible.

We will show that, as long as x̂[B] has 0 or 1 in some of its entries, this problem

can be reduced to an equivalent problem of smaller dimension. To make it easier to

understand, w.l.o.g. assume that B = {1, . . . , k}. Also, w.l.o.g. assume x̂1 = . . . =

x̂t = 1 and x̂t+1 = . . . = x̂p = 0, p ≤ k. Obviously 0 < xj < 1 for j = p + 1, . . . , k.

Let N := {1, . . . , n} and P := {1, . . . , p} ⊆ B.

N := {1, . . . , n}, (3.50)

P := {1, . . . , p} ⊆ B, , (3.51)

vi := ai[N \ P ] ∈ R(n−p), i = 1, . . . ,m, (3.52)

w := x̂[N \ P ] ∈ R(n−p). (3.53)

Note that throughout Section 3.4.1, these assumptions will be made. Under these

assumptions, we give the following lemma.

Lemma 6. Given x̂ ∈ Feas(Rel(MBP)), let vi, i = 1, . . . ,m and w be defined as in

(3.52) and (3.53). x̂ ∈ FDN if and only if the following problem is feasible:

(PDN
x̂ ) min 0

s.t. vi
TXvi = 0, i = 1, . . . ,m,

Xjj = wj(1− wj), j = 1, . . . , k − p,

wwT +X ∈ N ,

X ∈ PSD,

where X ∈ S(n−p) is the decision variable.
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Proof. We will show that for every feasible solution to (3.49), there exists a feasible

solution to (PDN
x̂ ) and vice versa. Suppose M :=

1 x̂T

x̂ X̂

 is a feasible solution to

(3.49) . We can always write M as

M =

1 x̂T

x̂ X̂

 =

1 x̂T

x̂ x̂x̂T

+

0 0

0 U

 .
Since M ∈ DN , U =

(
X̂ − x̂x̂T

)
∈ PSD. Now, will show that U [N \ P ] ∈

Feas(PDN
x̂ ). From the second constraint of (3.49), we know that X̂jj = x̂j, j ∈ B.

Since x̂j is either 0 or 1 for j ∈ P , observe that X̂jj = x̂j = x̂2
j , j ∈ P . Since

Ujj = X̂jj − x̂2
j , j ∈ N , this implies Ujj = 0, for j ∈ P . Since U ∈ PSD, this implies

that first p columns and rows of U are equal to all 0. Therefore,

vi
TU [N \ P ]vi = ai

TUai,

= ai
T
(
X̂ − x̂x̂T

)
ai,

= b2 − b2 = 0,

i = 1, . . . ,m. We showed that U [N \P ] satisfies the first constraint of (PDN
x̂ ). Observe

that for j = 1, . . . , k − p

(U [N \ P ])jj = Uj+p,j+p,

= X̂j+p,j+p − x̂2
j+p,

= x̂j+p − x̂2
j+p,

= wj − w2
j ,

and thus second constraint of (PDN
x̂ ) is satisfied. Since wwT+U [N\P ] = X̂[N\P ] ∈ N

third constraint of (PDN
x̂ ) is satisfied. Since U [N \P ] ∈ PSD, last constraint of (PDN

x̂ )

is also satisfied. Therefore, we showed that U [N \ P ] ∈ Feas(PDN
x̂ ).

Proof of the reverse implication is done by using the same arguments. Therefore,

we conclude that for every feasible solution to (3.49) there exists a feasible solution
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to (PDN
x̂ ) and vice versa. By Lemma 3, this implies x̂ ∈ FDN if and only if (PDN

x̂ ) is

feasible.

By exploiting the structure of the problem (PDN
x̂ ), in the following corollary, we

will establish some sufficient conditions that ensure its infeasibility.

Corollary 2. Let x̂ ∈ F−Rel, where F−Rel is defined as in (3.25). Let vi, i = 1, . . . ,m and

w be defined as in (3.52) and (3.53), respectively. (PDN
x̂ ) is infeasible, i.e., x̂ 6∈ FDN ,

if at least one of the following conditions holds:

(i) There exists vi, i ∈ {1, . . . ,m}, h ∈ {1, . . . , k − p} such that (vi)h 6= 0 and

(vi)j(vi)l ≥ 0, if wjwl = 0,

(vi)j(vi)l = 0, otherwise

for all 1 ≤ j < l ≤ n− p.

(ii) Null(V T ) = 0, where V = [v1 v2 . . . vm] and Null(·) denotes the null space.

Proof. Suppose (i) holds. Then, due to third constraint of (PDN
x̂ ) observe that Xjl ≥ 0

if wjwl = 0, 1 ≤ j < l ≤ n − p. If we write first constraint for that specific

i ∈ {1, . . . ,m},

vi
TXvi =

n−p∑
j=1

(vi)j
2Xjj︸ ︷︷ ︸

>0

+
∑
j

∑
l

wjwl>0

(vi)jXjl(vi)l︸ ︷︷ ︸
=0

+
∑
j

∑
l

wjwl=0

(vi)jXjl(vi)l︸ ︷︷ ︸
≥0

> 0

which implies that first constraint is violated. Therefore, (PDN
x̂ ) is feasible.

Suppose (ii) holds. For a contradiction, suppose there exists X ∈ Feas(PDN
x̂ ).

Since x̂ ∈ Feas(Rel(MBP)) \ Conv(Feas(MBP)), observe that X 6= 0. Since X ∈

PSD(n−p), then X = LLT . Then

vi
TXvi = 0 =⇒ (vi

TL)2 = 0

=⇒ vi
TL = 0

=⇒ All columns of L are orthogonal to vi
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for all i = 1, . . . ,m. Since X 6= 0, L 6= 0 as well. This contradicts with the fact that

Null(V T ) = 0.

Note that Corollary 2 is a technical result, but later on, it will be useful for us

in the proof of an important result (see Proposition 10) for the doubly nonnegative

relaxation of the 0-1 knapsack problem in Chapter 4.

3.5 Extensions to Mixed Binary Quadratic Programs

In this section, we consider the mixed binary quadratic program (MBQP), which is

given by

(MBQP) νQ := min xTQx+ cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B,

(3.54)

where x ∈ Rn is the decision variable; Q ∈ Sn, ai ∈ Rn, b ∈ Rm and B ⊆ {1, . . . , n}

are the problem parameters. Note that (MBP) is a special case of (MBQP) with

Q = 0. Under Burer’s key assumption [18], (MBQP) can be equivalently formulated

as the following completely positive optimization problem:

(MBQP-CP) νQ := min 〈Q,X〉+ cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

ai
TXai = bi

2, i = 1, . . . ,m,

xj = Xjj, j ∈ B,1 xT

x X

 ∈ CP ,
(3.55)

Note that the only difference of (MBQP-CP) from (MBP-CP) is its objective function.

Although its objective function is still linear, now we have an additional term 〈Q,X〉.

Both (MBQP) and (MBQP-CP) are NP-hard optimization problems. Similar to LP
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relaxation of (MBP), if we relax the binary variables of (MBQP) so that 0 ≤ xj ≤ 1,

j ∈ B, we get

Rel(MBQP) `QP := min xTQx+ cTx

s.t. ai
Tx = bi, i = 1, . . . ,m,

x ≥ 0.

(3.56)

Recall that we do not need xj ≤ 1, since it is already implied by aTi x = bi, i = 1, . . . ,m,

due to the key assumption. However, unlike Rel(MBP), Rel(MBQP) is not an LP and

it is still an NP-hard problem in general (unless Q is positive or negative semidefinite).

If we write the lower bounds for (MBQP-CP) (or (MBQP)) arising from the previously

discussed outer approximations,

`Qsp := min{〈Q,X〉+ cTx : (x,X) ∈ Feas(SPR)},

`Qr := min{〈Q,X〉+ cTx : (x,X) ∈ Feas(Out)r}, r ∈ N,

`QDN := min{〈Q,X〉+ cTx : (x,X) ∈ Feas(DN)}.

Recall that (Out)r and (DN) are special cases of (SPR). Fsp, Fr and FDN remain the

same as defined in (3.6), (3.12) and (3.48), respectively. Now, consider Lemma 2.

Note that Fsp ⊆ Feas(Rel(MBQP)) still holds. However, unlike the previous result

in Lemma 2, this does not imply `Qsp ≤ `QP in general. This is because objective

functions of Rel(MBQP) and (SPR) are now different: Rel(MBQP) has xTQx+ cTx,

whereas (SPR) has 〈Q,X〉+ cTx as its objective function.

In this section, we investigate the lower bounds arising from the outer approxi-

mations of (MBQP-CP). We will give characterizations for their unboundednes. We

show that unlike our results on (MBP), those lower bounds are incomparable to that

of Rel(MBQP), in general. However, we achieve to establish a sufficient condition,

under which any (SPR) gives a lower bound which is at least as tight as the lower

bound provided by Rel(MBQP).
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3.5.1 Characterizations for the Unboundedness

In this section, we present characterizations for the unboundedness of outer approx-

imations. We also give examples that indicate different possible cases for when the

unbondedness of outer approximations and that of Rel(MBQP) is considered together.

First, let us characterize the unboundedness of (MBQP).

Proposition 4. Suppose Feas(MBQP) is nonempty. (MBQP) is unbounded if and

only if at least one of the conditions given below is satisfied:

(i) There exists d ∈ Rn
+ such that dTQd < 0, aTi d = 0, i = 1, . . . ,m and d[B] = 0.

(ii) There exists x ∈ Feas(MBQP) and d ∈ Rn
+ such that dTQd = 0, (2Qx+c)Td < 0,

ai
Td = 0, i = 1, . . . ,m and d[B] = 0.

Proof. Suppose Feas(MBQP) is nonempty. If (MBQP) is unbounded, then there

exists x ∈ Feas(MBQP) and a direction d ∈ Rn such that

(x+ λd) ∈ Feas(MBQP) (3.57)

for all λ ≥ 0. Now, let us define the following function:

f(λ) := (x+ λd)TQ(x+ λd) + cT (x+ λd), λ ≥ 0

Then, due to unboundedness of (MBQP), as λ → +∞, f(λ) → −∞. Then, since

f(λ) is a polynomial function whose degree is at most 2, then either

f ′′(λ) < 0 (3.58)

or

f ′′(λ) = 0 and f ′(λ) < 0. (3.59)

for all λ ∈ R. (3.58) implies dTQd < 0, whereas (3.59) implies dTQd = 0 and

(2Qx + c)Td < 0. Together, (3.57) and (3.58) imply (i), whereas (3.57) and (3.59)

imply (ii).
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Converse argument is trivial. Therefore, we conclude that (MBQP) is unbounded

if and only if (i) or (ii) holds.

Now, we give the characterization for the unboundedness of Rel(MBQP), which

is very similar to that of (MBQP) with a minor difference: item (ii) in Proposition

4 requires the existence of an x ∈ Feas(MBQP), whereas item (ii) in the following

proposition requires the existence of an x ∈ Feas(Rel(MBQP)).

Proposition 5. Suppose Feas(Rel(MBQP)) is nonempty. Rel(MBQP) is unbounded

if and only if at least one of the conditions given below is satisfied:

(i) There exists d ∈ Rn
+ such that dTQd < 0, aTi d = 0, i = 1, . . . ,m and d[B] = 0.

(ii) There exists x ∈ Feas(Rel(MBQP)) and d ∈ Rn
+ such that dTQd = 0, (2Qx +

c)Td < 0, ai
Td = 0, i = 1, . . . ,m and d[B] = 0.

Proof. Proof is done with the same arguments used in Proposition 4.

Note that items (i) in Propositions 4 and 5 are the same, whereas there is a

minor difference in items (ii) as discussed. By exploiting that difference, we later on

show in Example 7 that there are some instances for which (MBQP) is bounded, but

Rel(MBQP) is unbounded.

We now give two sufficient conditions for the unboundedness of a general (SPR)

in the following proposition.

Proposition 6. Suppose (SPR) is defined over the cone K ⊇ CP and Feas(SPR)

is nonempty. (SPR) is unbounded if at least one of the conditions given below is

satisfied:

(a) The recession cone of Feas(SPR), i.e.,

L∞ :=


0 dT

d D

 ∈ K :

aTi d = 0, i = 1, . . . ,m

aTi Dai = 0, i = 1, . . . ,m

dj = Djj = 0, j ∈ B


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contains a pair (d,D) such that 〈Q,D〉+ cTd < 0,

(b) There exists x ∈ Fsp and d ∈ Rn
+ such that dTQd = 0, (2Qx + c)Td < 0,

ai
Td = 0, i = 1, . . . ,m and d[B] = 0.

Proof. Suppose item (a) holds. Let (d̂, D̂) ∈ L∞ be such 〈Q,D〉 + cTd < 0. Let

(x̂, X̂) ∈ Feas(SPR). Let (xλ, Xλ) := (x̂, X̂) + λ(d̂, D̂), where λ ∈ R. Observe that

(xλ, Xλ) ∈ Feas(SPR) and 〈Q,Xλ〉+ cTxλ → −∞ as λ→∞. Suppose (b) holds. Let

x̂ ∈ Fsp and d ∈ Rn
+ satisfying the necessities given (b). Then, unboundedness under

(b) is shown by a similar argument that we used for (a).

Note that Proposition 6 will be useful for us while establishing our results regarding

especially the unboundedness of doubly nonnegative relaxations.

Outer Polyhedral Approximations

We investigate the unboundedness of outer polyhedral approximations due to de Klerk

and Pasechnik [22]. Recall that these approximations are sign preserving approxima-

tions. Therefore, Proposition 6 applies to them as well. However, since O0 = N , we

can give the following simple characterization for the unboundedness of (Out)0.

Corollary 3. Suppose Feas(Out)0 is nonempty. (Out)0 is unbounded if and only if

at least one of the conditions given below is satisfied:

(i) There exists d ∈ Rn
+ such that cTd < 0, ai

Td = 0, i = 1, . . . ,m, and d[B] = 0.

(ii) There exists D ∈ N such that 〈D,Q〉 < 0, ai
TDai = 0, i = 1, . . . ,m, Djj = 0,

j ∈ B.

Proof. Suppose (Out)0 is unbounded. Then either (i) or (ii) must hold trivially, since

(Out)0 is an LP problem. Reverse implication is also trivial.
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We now establish a relationship between the unboundedness of Rel(MBQP) and

(Out)0 in the following theorem.

Theorem 6. Suppose Feas(MBQP) is nonempty. If Rel(MBQP) is unbounded, then

(Out)0 is also unbounded.

Proof. Suppose Rel(MBQP) is unbounded. Then, either (i) or (ii) in Proposition 5

holds. Suppose (i) holds. Then, setting D = ddT observe that item (ii) in Corollary

3 holds. Otherwise suppose item (ii) in Proposition 5 holds. Then, there exists

x ∈ Feas(Rel(MBQP)) and d ∈ Rn
+ such that dTQd = 0, (2Qx + c)Td < 0, ai

Td = 0,

i = 1, . . . ,m and d[B] = 0. (2Qx + c)Td < 0 implies either cTd < 0 or xTQd =

〈Q, xdT 〉 < 0 holds. If cTd < 0, then item (i) in Corollary 3 holds. Otherwise, setting

D = xdT + dxT , observe that item (ii) in Corollary 3 holds. This completes the

proof.

Now, we will device an example, where (MBQP) is bounded, but Rel(MBQP) and

(Out)r are unbounded. However, since item (i) is common in Propositions 4 and 5,

we first have to make sure that it does not hold. Let C := {1, . . . , n} \ B. Observe

that positive semidefiniteness of Q[C] suffices to ensure dTQd ≥ 0 since d[B] = 0.

Consider the following example.
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Example 7.

Q =


1 −1 −1 0

−1 1.4 −1 0

−1 −1 1.4 0

0 0 0 0


c = 0,

x1 + x4 = 0.7,

x2, x3, x4 ≥ 0,

x1 ∈ {0, 1}.

If we consider (MBQP), observe that x1 must be equal to 0. Then, objective turns

into “min (x2−x3)2 + 0.4x2
2 + 0.4x2

3” with νQ = 0 obviously. However, if we consider

Rel(MBQP), setting initial point xT =
[
0.5 1 1 0.2

]
∈ Feas(Rel(MBQP)) and

direction dT =
[
0 1 1 0

]
, we can decrease objective function as much as we want

while staying in the feasible region, i.e., `QP = −∞. Lastly, for (Out)0, setting

D12 = D21 = 1 and all other values of D equal to 0, observe that (ii) in Corollary 3

is realized. Therefore, (Out)0 is also unbounded, i.e., `Q0 = −∞.

Now, we will device another example, where (MBQP) and Rel(MBQP) are bounded,

but (Out)r is unbounded. To do that, we first have to make sure both (i) and (ii) in

Proposition 5 do not hold. Observe that positive definiteness of Q suffices to ensure

it. Consider the following example.
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Example 8.

Q =


6 −1.7 −2.5 2.8

−1.7 7.2 0.3 2

−2.5 0.3 1.3 −0.8

2.8 2 −0.8 3.9


c = 0,

x1 + x4 = 0.7,

x2, x3, x4 ≥ 0,

x1 ∈ {0, 1}.

Observe that Q is positive definite and thus both (MBQP) and Rel(MBQP) are

bounded. Optimal value and optimal solution of (MBQP) are νQ ≈ 1.67, x∗T ≈[
0 0 0.43 0.7

]
, respectively. Optimal value and optimal solution of Rel(MBQP)

are `QP ≈ 0.498, x∗T ≈
[
0.7 0.11 1.32 0

]
, respectively. Lastly, as in Example

7, setting D12 = D21 = 1 and all other values of D equal to 0, observe that (ii) in

Corollary 3 is realized. Therefore, (Out)0 is unbounded, i.e., `Q0 = −∞.

So far we simplified the characterization for the unboundedness of (Out)0. By

Theorem 6, we showed that if Rel(MBQP) is unbounded, then (Out)0 must be un-

bounded. We also exploited the conditions given in Proposition 5 and Corollary 3 to

devise Examples 7 and 8.

Note that Proposition 6 also applies to higher levels of outer approximations. If

the instance given in Example 7 is solved for higher levels of r ∈ N, then it turns out

that `Qr = −∞ for r = 0, 1, . . . , 15, whereas (Out)16 is bounded with `Q16 ≈ −9.32.

Similarly, if the instance given in Example 8 is solved for higher levels, then `Qr = −∞

for r = 0, 1, . . . , 4; whereas (Out)5 is bounded with `5 ≈ −6.83, though it is still much

worse lower bound than `QP ≈ 0.498.
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Doubly Nonnegative Relaxations

Recession cone of Feas(DN) can be given as
0 0T

0 D

 ∈ DN :
aTi Dai = 0, i = 1, . . . ,m

Djj = 0, j ∈ B

 .

Therefore, the following corollary directly follows from Proposition 6.

Corollary 4. Suppose Feas(DN) is nonempty. (DN) is unbounded if at least one of

the conditions given below is satisfied:

(i) There exists D ∈ DN such that 〈D,Q〉 < 0, ai
TDai = 0, i = 1, . . . ,m, Djj = 0,

j ∈ B.

(ii) There exists x ∈ FDN and d ∈ Rn
+ such that dTQd = 0, (2Qx + c)Td < 0,

ai
Td = 0, i = 1, . . . ,m and d[B] = 0.

Following will constitute an example to the case where (MBQP) and (DN) are

bounded, but Rel(MBQP) is unbounded.

Example 9. Consider the instance given in Example 7. We already know that

Rel(MBQP) is unbounded for that instance. Since n ≤ 4, by Diananda’s result [23]

DN = CP, which implies that νQ = `QDN = 0.

Now, we will give an example, for which (MBQP) is bounded, but both (DN) and

Rel(MBQP) are unbounded. To do that, we exploit the item (ii) in Proposition 5

and item (i) in Corollary 4. Building such an example is not as easy as the previous

example. Due to (i) in Corollary 4, we need a D ∈ DN and Q ∈ Sn such that

〈Q,D〉 < 0, which implies Q 6∈ SPN . Also, item (i) in Proposition 4 needs to be

violated, because otherwise (MBQP) becomes unbounded. To ensure that, we will

pick a matrix Q ∈ COP . Therefore, we need Q ∈ COP \SPN . As given in Example

10, Q is not positive definite or negative semidefinite. Therefore, solving (MBQP)
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and Rel(MBQP) for such an instance is a task where solvers are having difficulties.

Nevertheless, we will luckily be able to derive the optimal values theoretically. While

generating the matrix Q, we will utilize the following Horn matrix

H :=



1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


. (3.60)

This matrix was first established by Horn [35] and he showed that H ∈ COP \SPN .

Now, consider the following matrix

Z :=



7 4 0 0 4

4 7 4 0 0

0 4 7 4 0

0 0 4 7 4

4 0 0 4 7


(3.61)

Note that Z ∈ DN 5, but Z 6∈ CP5, since 〈Z,H〉 = −5 < 0. Therefore Z ∈ DN \ CP .

Now by utilizing the matricesH and Z, we construct an example in which (MBQP)

is bounded, but both (DN) and Rel(MBQP) are unbounded.
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Example 10. Consider the following (MBQP) instance.

Q =



1 −1 −1 0 0 0 0

−1 1 −1 1 1 −1 0

−1 −1 1 −1 1 1 0

0 1 −1 1 −1 1 0

0 1 1 −1 1 −1 0

0 −1 1 1 −1 1 0

0 0 0 0 0 0 0


, c = 0,

A =
[
1 0 0 0 0 0 1

]
,

b = 0.7,

x ≥ 0,

x1 ∈ {0, 1}.

Define α := {2, . . . , 7}, β := {2, . . . , 6}. Observe that Q[β] = H, where H is defined

in (3.60). Observe that x1 = 0 for all x ∈ Feas(MBQP). Then, if we consider the

objective function of (MBQP),

xTQx = x[α]TQ[α]x[α]

for all x ∈ Feas(MBQP). Also, since 7th column and row of Q is all 0

x[α]TQ[α]x[α] = x[β]TQ[β]x[β] = x[β]THx[β],

for all x ∈ Feas(MBQP). Since x[β] ≥ 0 and H ∈ COP, we have xTQx =

x[β]TQ[β]x[β] ≥ 0 for all x ∈ Feas(MBQP). Therefore νQ ≥ 0. Observe that

x̂ :=
[
0 0 0 0 0 0 0.7

]
∈ Feas(MBQP) and x̂TQx̂ = 0. Therefore, we con-

clude that νQ = 0.

Consider Rel(MBQP). Let x̄ :=
[
0.5 1 1 0 0 0 0.2

]
∈ Feas(Rel(MBQP))

and d :=
[
0 0.5 0.5 0 0 0 0

]
. Observe that d ≥ 0, d1 = 0, dTQd = 0 and
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(Qx+ c)Td = −0.5 < 0. Therefore, by Proposition 5, starting from point x̄ and going

through direction d, we can decrease the objective function as much as we want while

staying in the feasible region. Hence, `QP = −∞.

When we consider (DN), let

D =



0 0 0 0 0 0 0

0 7 4 0 0 4 0

0 4 7 4 0 0 0

0 4 7 4 0 0 0

0 0 0 4 7 4 0

0 4 0 0 4 7 0

0 0 0 0 0 0 0



Observe that D[β] = Z, which is defined in (3.61). Therefore 〈Q,D〉 = 〈Q[β], D[β]〉 =

〈H,Z〉 = −5 < 0. Also, D ∈ DN and a1
TDa1 = 0. Therefore, by Proposition 4, we

conclude that `QDN = −∞.

By modifying Example 10 slightly, we will be able to create an example in which

(MBQP) and Rel(MBQP) is bounded, but (DN) is unbounded.
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Example 11. Consider the following (MBQP) instance.

Q =



1 −1 −1 0 0 0 0

−1 1 −1 1 1 −1 0

−1 −1 1 −1 1 1 0

0 1 −1 1 −1 1 0

0 1 1 −1 1 −1 0

0 −1 1 1 −1 1 0

0 0 0 0 0 0 0


, c = 0,

A =

1 0 0 0 0 0 1

1 0 0 0 0 0 0

 ,
bT =

[
0.7 0

]
,

x ≥ 0,

x1 ∈ {0, 1}.

Observe that feasible region of this example is the same as that of Example 10. There-

fore νQ = 0. Also, note that for this instance Feas(Rel(MBQP)) = Feas(MBQP),

which implies that `QP = 0. Now consider D given in Example 10. Observe that

a2
TDa2 = 0 also holds. Therefore, `QDN = −∞.

3.5.2 Incomparability of Lower Bounds

In this section, we show that, unlike (MBP), lower bounds arising from the outer

approximations of (MBQP-CP) is incomparable with the lower bound provided by

Rel(MBQP). As illustrated in Example 8, there exists an (MBQP) instance such that

`QP > `Q0 . Following example illustrates that there also exists an (MBQP) instance

such that `Q0 > `QP .
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Example 12. Consider the following instance of (MBQP).

Q =


3 2 2

2 3 2

2 2 2


cT = [−1 − 1 0],

A =
[

1 1 1
]
,

b = 1,

x1, x2 ∈ {0, 1},

x3 ≥ 0.

Optimal values and optimal solutions of (MBQP), Rel(MBQP) and (Out)0 are re-

spectively as follows:

νQ = 2, x∗T = [0 0 1]

`QP = 1.5, x∗bin
T = [0.5 0.5 0]

`Q0 = 2, x∗0
T = [0 0 1], X∗0 =


0 0 0

0 0 0

0 0 1


Therefore, for this instance we have `Q0 > `QP .

Recall that `0 ≥ `LP always holds for (MBP) instances. However, by Examples 8

and 12, the similar result does not necessarily apply to (MBQP) problem. Therefore,

when the considered problem is (MBQP), we conclude that lower bounds arising from

Rel(MBQP) and (Out)0 are incomparable in general. As discussed in the previous

section, by Examples 7 and 8, incomparability between the optimal values of (Out)r

and Rel(MBQP) still continues to the higher levels of r ∈ N in general. By Examples

9 and 11, it turns out that the optimal values of (DN) and Rel(MBQP) are also in-

comparable in general, whereas `DN ≥ `LP always holds when the considered problem



78 Chapter 3: Outer Approximations of Mixed Binary Integer Programs

is (MBP). Therefore, previously established relationships between the lower bounds

of (MBP) clearly do not extend to (MBQP) in general.

3.5.3 Sufficient Conditions for Comparability

After showing that our results on (MBP) do not extend to (MBQP), in this section, we

give sufficient conditions that ensure lower bounds arising from outer approximations

are comparable to the lower bound provided by Rel(MBQP). In the next proposition,

we show that, based on the optimal solutions of (SPR), we can give a sufficient

condition that ensures `Qsp ≥ `QP .

Proposition 7. Consider an instance of (MBQP). Suppose there exists an optimal

solution (x∗, X∗) for (SPR) such that〈
Q,X∗ − x∗(x∗)T

〉
≥ 0. (3.62)

Then `Qsp ≥ `QP .

Proof. We know that `Qsp = 〈Q,X∗〉 + cTx∗. Since x∗ ∈ Fsp, by Lemma 2, x∗ ∈

Feas(Rel(MBQP)). This implies the following relationship:

`Qsp ≥ x∗TQx∗ + cTx∗ ≥ `QP .

Remark 4. Consider Example 12. Observe that Q satisfies the condition (3.62)

given in Proposition 7. Therefore, in Example 12, `Qsp ≥ `QP is already implied by

Proposition 7.

In Proposition 7, we gave a sufficient condition that ensures `Qsp ≥ `QP . Recall

that (MBP) encompasses all instances of (MBQP) with Q = 0. Hence, when the

considered instance belongs to (MBP), (3.62) is already satisfied. Therefore, observe

that the result `sp ≥ `LP given by Lemma 2 is also implied by Proposition 7.
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Following corollary directly follows from Proposition 7 to ensure that (SPR) gives

a strictly better lower bound than Rel(MBQP), i.e., `Qsp > `QP .

Corollary 5. Given an instance of (MBQP), suppose there exists an optimal solution

(x∗, X∗) for (SPR) such that〈
Q,X∗ − x∗(x∗)T

〉
> 0. (3.63)

Then `Qsp > `QP .

Remark 5. Unfortunately, Corollary 5 does not admit an equivalence, i.e., it is

possible that `Qsp > `QP can still hold, although (3.63) does not hold. Observe that in

Example 12, (3.63) is violated. However, `Q0 > `QP still holds for Example 12.

Proposition 7 and Corollary 5 assume that optimal solutions of (SPR) are already

achieved. This is a reasonable assumption, since, if (SPR) has a unique optimal

solution and a tractable cone in its conic constraint, then the unique optimal solution

can be obtained in polynomial-time with respect to problem size. On the other hand,

if (SPR) has infinitely many optimal solutions, then identifying a solution that satisfies

these conditions can be a difficult task.

Hypothesis of Proposition 7 is dependent on identifying the optimal solutions

of (SPR). However, in the next corollary, by exploiting (3.62) in Proposition 7, we

achieve to establish a result that is free of that dependency for the case of (DN).

Corollary 6. Consider an instance of (MBQP). Suppose Q is of the form

Q =
m∑
i=1

λiaia
T
i +D +R, (3.64)

such that:

(i) λi ∈ R, i = 1, . . . ,m.

(ii) D ∈ N is a diagonal matrix with Djj ≥ 0 for j ∈ B and Djj = 0 for j ∈

{1, . . . , n} \B.
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(iii) R ∈ PSD.

Then `QDN ≥ `QP .

Proof. Let (x∗, X∗) be an optimal solution of (DN). Observe that X∗ − x∗(x∗)T ∈

PSD. We will show that (3.62) holds. It can be shown as follows:

〈
Q,X∗ − x∗(x∗)T

〉
=

〈
m∑
i=1

λiaia
T
i +D +R, X∗ − x∗(x∗)T

〉
=

〈
D,X∗ − x∗(x∗)T

〉
+
〈
R,X∗ − x∗(x∗)T

〉
=

∑
j∈B

Djj︸︷︷︸
≥0

(
X∗jj − (x∗j)

2)︸ ︷︷ ︸
≥0

+
〈
R,X∗ − x∗(x∗)T

〉
︸ ︷︷ ︸

≥0

≥ 0.

Therefore, by Proposition 7, we conclude that `QDN ≥ `QP .

Although `QDN and `QP are incomparable in general for (MBQP), there are some

special cases of (MBQP), to which Corollary 6 apply. We already discussed that

(MBP) is one of those special cases. Another special case is the maximum cut (MAX-

CUT) problem. The objective of (MAX-CUT) is to partition the set of vertices

of a graph into two subsets, such that the total weight of the edges having one

endpoint in each of the subsets is maximum. This problem is known to be NP-

complete [30, 45] and it can be formulated as an instance of (MBQP) with Q ∈ PSD

and B = {1, . . . , n}. Since Q ∈ PSD, it can be written of the form (3.64) with

(λ,D,R) = (0, 0, Q). Therefore, `QDN ≥ `QP holds for (MAX-CUT) problem. For a

detailed survey of (MAX-CUT), reader is referred to [77].

3.6 Conclusion

We defined the sign preserving outer approximation which is a more general defi-

nition that covers other outer approximations of (MBP-CP). We showed that outer
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approximations are unbounded if and only if the original problem is unbounded. We

compared the lower bounds arising from outer approximations with the lower bound

provided by the LP relaxation of (MBP). We established that `sp ≥ `LP always holds

for an outer approximation of (MBP-CP) in the class of (SPR). We also gave a char-

acterization to check the equality of the sets Fsp and Feas(Rel(MBP)). Note that

this characterization is based on enumerating the extreme points of Feas(Rel(MBP)).

Therefore, it may not work in polynomial-time with respect to problem size.

For outer polyhedral approximations, we gave a sufficient condition that works in

polynomial-time to check the equality between F0 and Feas(Rel(MBP)). For higher

levels of r ∈ N, given x ∈ F−Rel, we gave a sufficient condition which ensures that

x ∈ Fr holds until at least a certain level r ∈ N. We also gave a necessary condition

for x ∈ Fr, r ∈ N.

As for the doubly nonnegative relaxations, we have shown that the problem Px̂

defined in Lemma 3 can be reduced to a smaller problem. Given x ∈ FDN , by

exploiting the structure of our reduced problem, we gave sufficient conditions, under

which x 6∈ FDN .

We then investigated the extensions of our results to the mixed binary quadratic

programs. We gave the characterizations for the unboundedness of continuous re-

laxation of (MBQP) and for the unboundedness of outer approximations within our

scope. We showed that if Rel(MBQP) is unbounded, then (Out)0 must be unbounded

as well. Other than that, we gave an example for the case, in which Rel(MBQP) is

bounded, but (Out)0 is unbounded.

As for the doubly nonnegative relaxations, we showed by examples that there is no

relationship between the unboundedness of Rel(MBQP) and (DN). We next showed

that, unlike (MBP), lower bounds arising from the completely positive formulation

of (MBQP) are not comparable to the lower bound given by Rel(MBQP) in general.

However, we gave a sufficient condition in Proposition 7, under which `Qsp ≥ `QP is



82 Chapter 3: Outer Approximations of Mixed Binary Integer Programs

assured. It turns out that Proposition 7 actually serves as an extension to (MBP)

case. We also gave a sufficient condition in Corollary 5 for outer approximations to

provide strictly better lower bounds than that of Rel(MBQP).

Finally, for the doubly nonnegative relaxations, to ensure that `QDN ≥ `QP , we

showed in Corollary 6 that we can get rid of the necessity of enumerating over optimal

solutions by strengthening the sufficient condition of Proposition 7. We also discussed

the fact that Corollary 6 applies to the doubly nonnegative relaxations of (MAX-CUT)

problem and therefore `QDN ≥ `QP always holds for it.



Chapter 4

OUTER APPROXIMATIONS OF THE 0-1 KNAPSACK

PROBLEM

4.1 Introduction

In this chapter, we will investigate the outer approximations of the completely positive

formulation of the 0-1 knapsack problem. The 0-1 knapsack problem is a well-known

and extensively studied problem in the literature (see, e.g., [64, 51, 83, 55, 72]). Given

a set of items N := {1, . . . , n}, in which each item has a weight ai ∈ R+ and value

ci ∈ R+, i = 1, . . . , n, along with a knapsack capacity b ∈ R+; the objective of this

problem is to find N ′ ⊆ N such that the total weight of the items in N ′ does not

exceed the capacity b, whereas the total value of them is as large as possible. Formally,

it can be given as

(KP) ν := max cTx

s.t aTx ≤ b,

xi ∈ {0, 1} i = 1, . . . , n,

where x ∈ Rn is the decision variable, c, a ∈ Rn
+ and b ∈ R+ are the problem

parameters. If there exists a ai, i ∈ {1, . . . , n}, such that ai > b, then clearly xi will

be equal to 0. Therefore, throughout this chapter, without loss of generality we will

assume that ai ≤ b, for all i = 1, . . . , n.

Despite its simple representation, it is well-known that (KP) is NP-hard [52, 30].

There are many solution approaches proposed to solve (KP) in the literature. Among

them, dynamic programming [3], branch-and-bound [64] and hybridization of both
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approaches [76, 62, 75, 63] are the most notable ones. Aside from these specific

solution efforts, it can also be solved by brute force via enumeration of all 2n possible

subsets of N .

Note that with a little modification (KP) can be put into the form of (MBP). First

write the inequality constraint as equality. Secondly, since (KP) does not necessarily

satisfy Burer’s key assumption [18], add the constraints xi + si = 1, i = 1, . . . , n.

After these modifications, we get

(KP)aug ν := max cTx

s.t aTx+ θ = b,

xi + si = 1, i = 1, . . . , n,

θ ≥ 0,

xi ∈ {0, 1} i = 1, . . . , n,

where s ∈ Rn and θ are slack variables. Note that (KP)aug is a special case of (MBP)

with m = n + 1, and B = {1, . . . , n}. Therefore, the reader should take a note that

all the given results that apply to (MBP) in Chapter 3 also apply to the 0-1 knapsack

problem. (KP) can therefore be equivalently formulated as the following instance of

completely positive optimization problem [18]:

(KP-CP)1 ν = max cTx

s.t aTx+ θ = b,

aTx+ 2aTv + ω = b2,

xi + si = 1, i = 1, . . . , n

Xii + 2Rii + Sii = 1, i = 1, . . . , n

xi = Xii, i = 1, . . . , n
1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ CP ,
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where X, S ∈ Sn, R ∈ Rn×n, x, s, v, y ∈ Rn and θ, ω ∈ R are decision variables,

c, a ∈ Rn
+ and b ∈ R+ are the problem parameters.

We will also present another copositive reformulation of (KP). In (KP)aug, ob-

serve that although s ∈ Rn is continuous, it will have binary entries due to the binary

restriction on the entries of x and second constraint. Therefore, adding binary con-

straints si ∈ {0, 1} to (KP)aug will be redundant, but it gives rise to another copositive

reformulation that yields tighter outer approximations than (KP-CP)1:

(KP-CP)2 ν = max cTx

s.t aTx+ θ = b,

aTx+ 2aTv + ω = b2,

xi + si = 1, i = 1, . . . , n

Rii = 0, i = 1, . . . , n

Xii = xi, i = 1, . . . , n

Sii = si, i = 1, . . . , n
1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ CP ,

Note that (KP-CP)1 and (KP-CP)2 are exact reformulations of (KP). We will inves-

tigate both of these copositive formulations in this chapter.

This chapter is organized as follows: We define our notation and go over the well-

known linear programming (LP) relaxation of (KP) in Section 4.2. In comparison

with the LP relaxation of (KP), we investigate the feasible regions and optimal values

of outer approximations in Section 4.3. We first make our analysis for level 0 and

then for higher levels of r ∈ N. Section 4.4 is devoted to the doubly nonnegative

relaxations of (KP-CP). Similar to Section 4.3, we will compare feasible regions and

lower bounds arising from these relaxations with those provided by the LP relaxation
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of (KP). We conclude the chapter by discussing our results in Section 4.5.

4.2 Preliminaries

4.2.1 Notation

en ∈ Rn will denote the vector of all ones and 0n ∈ Rn will denote the vector of all

zeros. ei will denote the standard unit vector whose ith element is equal to 1 and all

others are equal to 0. Dimension of ei will always be clear from the context. We adopt

a Matlab-like notation to denote subvectors and submatrices. For instance, given a

vector u ∈ Rn, u1:p ∈ Rp denotes the subvector of u indexed by 1, . . . , p. Similarly,

given M ∈ Sn, MI,J ∈ R|I|×|J | denotes the submatrix of M whose rows and columns

are indexed by I and J , respectively. Diag(·) returns a square diagonal matrix which

consists of the entries of a given vector on the main diagonal.

Feas(·) will denote the feasible region of a given problem. Set of extreme points

of a given set will be denoted by E(·). Conv(·) will denote the convex hull of a given

set. Given two matrices X, Y ∈ Rm×n, 〈X, Y 〉 will denote the trace inner product,

i.e.,

〈X, Y 〉 =
m∑
i=1

n∑
j=1

XijYij.

4.2.2 Linear Programming Relaxation of the 0-1 Knapsack

By relaxing the binary restrictions of the variables to xi ∈ [0, 1], i = 1, . . . , n, linear

programming (LP) relaxation of the knapsack problem can be given as

Rel(KP) uLP := max cTx

s.t aTx ≤ b,

0 ≤ xi ≤ 1, i = 1, . . . , n,

First, we want to point out the special structure of the extreme points of Rel(KP) in

the following lemma.
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Lemma 7. An arbitrary extreme point of Feas(Rel(KP)) has at most 1 fractional

value.

Proof. For an LP problem, extreme point and basic feasible solution (BFS) are equiv-

alent terms. Hence, if we look at Rel(KP), there are 2n+1 inequality constraints and

n variables. Any non-degenerate BFS should satisfy exactly n constraints as equality.

There are two possible cases: Either first constraint (aTx ≤ b) is satisfied as

equality or not. If the first constraint is satisfied as equality, then n − 1 constraints

out of 2n constraints must be satisfied as equality, which in turn implies that n − 1

elements of a BFS must be equal to either 0 or 1 and exactly one element must be

fractional between 0 and 1.

Now, suppose first constraint is satisfied strictly. Then, obviously, all n elements

of a BFS must be equal to either 0 or 1, which implies that BFS does not have a

fractional element.

Lastly, if we consider a degenerate BFS, then it satisfy more than n constraints

as equality. Based on this fact, observe that all n elements of a degenerate BFS must

be equal to either 0 or 1, which again implies that a degenerate BFS does not have a

fractional element.

Finally, for all possible cases we showed that an arbitrary x ∈ E(Feas(Rel(KP)))

has at most 1 fractional value.

After establishing this fact about the extreme points, note that there is a simple

and well-known algorithm to solve Rel(KP): First, items can be renumbered without

loss of generality, so that

c1

a1

≥ c2

a2

≥ . . . ≥ cn
an
. (4.1)

Then, items are placed in the knapsack one by one in this order. This process con-

tinues until (a) all of the items are placed in the knapsack or (b) until the items
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completely fill the knapsack’s capacity without disruption, or (c) the remaining ca-

pacity of the knapsack is filled in such a way that the next item is to be loaded in

a fractional manner [55]. In all three cases, an optimal solution for Rel(KP) is ob-

tained. Note that there may be multiple optimal solutions if some inequalities in (4.1)

are achieved as equality. For the cases (a) and (b), an optimal solution of Rel(KP)

becomes an optimal solution of (KP) as well. If case (c) occurs, an optimal solution

for Rel(KP) can be given as follows:

x∗i =


1 i = 1, . . . , k,

b−
∑k

j=1 aj

ak+1

for i = k + 1,

0 otherwise,

, (4.2)

where ak+1 > 0 and k < n is such that

k∑
i=1

ai < b and
k+1∑
i=1

ai > b, (4.3)

and thus x∗k+1 becomes the only fractional element of the optimal solution x∗. Given

x is an extreme point of Feas(Rel(KP)) with one fractional, without loss of generality

(w.l.o.g.), we will always assume that first k elements of x is equal to 1, (k + 1)th

element is fractional, and the remaining elements are equal to 0.

Following is proven in [55], but for the sake of completeness we will include its

proof here.

Lemma 8. Given a (KP) instance, ν ≤ uLP < 2ν holds.

Proof. If ν = uLP , then assertion follows. Otherwise, if ν < uLP , observe that all

optimal solutions of Rel(KP) are of the form (4.2). In this case,

uLP =
k∑
i=1

ci + ck+1

(
b−

∑k
j=1 aj

ak+1

)
.
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Observe that x =
∑k

i=1 ei is a feasible solution for (KP), which implies that
∑k

i=1 ci ≤

ν. Since ak+1 ≤ b, x = ek+1 is also a feasible solution for (KP), which implies that

ck+1 ≤ ν. Therefore,

uLP =
k∑
i=1

ci︸ ︷︷ ︸
≤ν

+ ck+1︸︷︷︸
≤ν

(
b−

∑k
j=1 aj

ak+1

)
︸ ︷︷ ︸

<1

< 2ν.

Remark 6. Although the second inequality in Lemma 8 is strict, note that there

may be instances of (KP) for which uLP is infinitesimally close to 2ν. For example

consider the following instance

max x1 + x2

s.t. x1 + x2 ≤ 2− ε,

xi ∈ {0, 1}, i = 1, 2,

where ε > 0. For this problem ν = 1, whereas uLP = 2 − ε. Therefore, as ε → 0,

uLP → 2ν.

4.3 Outer Polyhedral Approximations

In this section, our results will be established based on the hierarchy of outer poly-

hedral approximations defined in (2.10) in Chapter 2. If (Out)r defined in (3.10) is

restated for the first copositive formulation of 0-1 knapsack problem, it can be given
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as

(Out)1
r u1

r := max cTx

s.t. aTx+ θ = b, (4.4)

aTXa+ 2aT v + ω = b2, (4.5)

xi + si = 1, i = 1, . . . , n (4.6)

Xii + 2Rii + Sii = 1, i = 1, . . . , n, (4.7)

Xii = xi, i = 1, . . . , n (4.8)

M =


1 x s θ

x X R v

s RT S y

θ vT yT ω

 , (4.9)

M ∈ Or, (4.10)

where r ∈ N. Similarly, outer polyhedral approximations arising from (KP-CP)2 is

given by

(Out)2
r u2

r := max cTx

s.t. aTx+ θ = b, (4.11)

aTXa+ 2aT v + ω = b2, (4.12)

xi + si = 1, i = 1, . . . , n (4.13)

Rii = 0, i = 1, . . . , n, (4.14)

Xii = xi, i = 1, . . . , n (4.15)

Sii = si, i = 1, . . . , n (4.16)

M =


1 x s θ

x X R v

s RT S y

θ vT yT ω

 , (4.17)

M ∈ Or, (4.18)
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where r ∈ N. It is easy to verify that (Out)2
r constitutes a tighter outer approximation

than (Out)1
r, i.e.,

Feas(Out)2
r ⊆ Feas(Out)1

r, r ∈ N. (4.19)

Since (KP) is a maximization problem, for a given instance of (KP), (3.9) implies

that

u1
0 ≥ u1

1 ≥ . . . ≥ ν and u2
0 ≥ u2

1 ≥ . . . ≥ ν.

Also, (4.19) implies that

u1
r ≥ u2

r, for all r ∈ N.

Furthermore, by Proposition 2, if the dual of (KP-CP)1 (resp. (KP-CP)2) has a

strictly feasible solution and an attainable optimal solution, then

lim
r→∞

u1
r = ν (resp. lim

r→∞
u2
r = ν).

Fr defined in (3.12) can also be restated for knapsack as follows:

F i
r :=


(x, s, θ) ∈ Rn × Rn × R :


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ Feas(Out)ir


,

where i = 1, 2 and r ∈ N. Since the values of s and θ are determined by x, i.e.,

s = en − x and θ = b − aTx, dimension of F i
r can even be reduced more for the 0-1

knapsack problem. Therefore, we will redefine F i
r as follows:

F i
r :=


x ∈ Rn :


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ Feas(Out)r


,
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where i = 1, 2 and r ∈ N. By (4.19),

F 2
r ⊆ F 1

r , r ∈ N (4.20)

holds trivially. Now, observe that the following problem is equivalent to (Out)ir:

uir = max{cTx : x ∈ F i
r}, (4.21)

where i = 1, 2 and r ∈ N. By Lemma 4, we already know that Fr ⊆ Feas(Rel(KP)),

which implies that u2
r ≤ u1

r ≤ uLP , r ∈ N.

4.3.1 Level 0

In this section, our aim is to compare the feasible regions F 1
0 , F 2

0 and Feas(Rel(KP)).

Next proposition establishes the equality of these three sets by using Theorem 3.

Proposition 8. Given an instance of (KP), F 1
0 = F 2

0 = Feas(Rel(KP)). As a result,

u1
0 = u2

0 = uLP .

Proof. We will show that F 2
0 = Feas(Rel(KP)) and then all assertions follow trivially.

Let us put (KP) in the form of (MBP), or equivalently, consider (KP)aug with slacks

si, i = 1, . . . , n treated as binary. Let also A, T , I+ and I− be defined as in (3.20),

(3.21) and (3.22), respectively. Observe that I− = ∅ and T can always be put into

the form (3.23) for all (KP) instances. Therefore, by Theorem 3, we conclude that

F 2
0 = Feas(Rel(KP)), which implies that F 1

0 = F 2
0 = Feas(Rel(KP)) together with

(4.20) and Lemma 4. u1
0 = u2

0 = uLP follows trivially from (4.21).

Proposition 8 shows that at level r = 0, upper bounds given by the outer poly-

hedral approximations of (KP-CP)1 and (KP-CP)2 are exactly equal to upper bound

given by the LP relaxation of (KP). We will embody the proof of Proposition 8 with

the following example.
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Example 13. Consider an instance of (KP). Let

a =
[
3 2

]
.

For brevity, we will not write the other problem parameters, since they are not nec-

essary to justify our claim. If we put (KP) of the form (MBP) (or, equivalently,

consider (KP)aug) and A is defined as in (3.20), then

A =


3 2 0 0 1

1 0 1 0 0

0 1 0 1 0

 .
Accordingly, T defined in (3.21) is

T =


6 0 0 3 0 0 0 2 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

 .
By changing the order of the columns of T , observe that it can be put in the form

(3.23) as follows:
6 0 0 3 0 0 0 2 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

 ,
where

D1 =


6 0 0

0 1 0

0 0 1

 , G =


3 0 0 0 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


Observe that D2 does not exist, since I− = ∅. Also, observe that the argument in

Proposition 8 can be extended to all instances of (KP) in a similar manner.
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4.3.2 Higher Levels

In this section, we will establish that the equality between F i
r , i = 1, 2 and Feas(Rel(KP))

exists not only at level 0, but until at least a certain level of r ∈ N.

It is already known by Lemma 4 that F i
r ⊆ Feas(Rel(KP)) for all i = 1, 2 and

r ∈ N. Note that Feas(Rel(KP)) is a bounded polyhedron due to the constraints

0 ≤ xi ≤ 1, i = 1, . . . , n, and each F i
r , i = 1, 2, r ∈ N, is a convex set. Therefore,

by Corollary 1, a sufficient and necessary condition for the equality between F 2
r and

Feas(Rel(KP)) is to show that for an arbitrary x̂ ∈ E(Feas(Rel(KP))), x̂ ∈ F 2
r holds

for a certain r ∈ N. After showing F 2
r = Feas(Rel(KP)) for a certain r ∈ N, F 1

r =

Feas(Rel(KP)) follows trivially from Lemma 4 and (4.20).

We will use a constructive proof method to show the related assertion. If x̂ ∈

Conv(Feas(KP)) (or, equivalently x̂ has no fractional value), then the assertion follows

trivially by Lemma 4. Otherwise, observe that x̂ will have exactly one fractional value

by Lemma 7. For this case, we will construct a matrix M ∈ Feas(Out)2
r, x-component

of which is equal to x̂ at a certain level r ∈ N. However, this is not an easy task since,

as r increases, Or will have many extreme rays with different structures. Hopefully,

we can pick a subset of these rays and by using them, we show that we can construct

such a matrix.

In the following section, we attempt to give the reader an insight into our con-

struction technique.

A Discussion on Our Construction Method

In this section, we provide the technical details about the construction technique we

devised. This construction technique will heavily exploit the special structure of the

extreme points of the feasible region of Rel(KP). A nice aspect of our technique is

that it works for (Out)2
r and therefore for (Out)1

r as well.
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Let

E− = E(Feas(Rel(KP))) \ Conv(Feas(KP)). (4.22)

Given x̂ ∈ E−, let us recall that our aim is to construct a matrix M ∈ Feas(Out)2
r,

x-component of which is equal to x̂ at a certain level r ∈ N. While constructing

such an M , elements of the X-component must be picked carefully. Inspired by x̂x̂T ,

we will propose a special structure for the X-component. Since x̂ has exactly one

fractional element,

1

x̂

1

x̂

T =


1 ek x̂k+1 01×(n−k−1)

(ek)
T

ek(ek)
T

x̂k+1e
k 0k×(n−k−1)

x̂k+1 x̂k+1(ek)
T

(x̂k+1)2 01×(n−k−1)

0(n−k−1)×1 0(n−k−1)×k 0(n−k−1) 0(n−k−1)×(n−k−1)

 , (4.23)

where ek ∈ Rk and x̂k+1 corresponds to the fractional element of x̂. A property of

x̂x̂T is that aT
(
x̂x̂T

)
a = b2.

Now, due to constraint (4.5), we want X-component of M to satisfy aTXa ≤ b2,

because, this way we can always satisfy (4.5) by freely increasing the ω-component of

M without violating other constraints. Therefore, while aT
(
x̂x̂T

)
a = b2, aTXa ≤ b2

must be satisfied. However, considering the X-component of M , due to constraint

(4.8), Xk+1,k+1 = x̂k+1 must also be satisfied. Note that (k + 1)th diagonal of X is

x̂k+1, whereas that of x̂x̂T is (x̂k+1)2. This gives X, from the start, a disadvantage

equal to the amount a2
k+1x̂k+1(1 − x̂k+1) > 0. To compensate this, some parts of X

should be entrywise less than x̂x̂T , since a ∈ Rn
+. At this very point, by focusing

on the (k + 1)th column of x̂x̂T , we achieved to find a threshold matrix that, if not

exceeded by X, ensures that aTXa ≤ b.

Let us define the following:

X̄ :=


ek(ek)

T
(1/2)x̂k+1e

k 0k×(n−k−1)

(1/2)x̂k+1(ek)
T

xk+1 01×(n−k−1)

0(n−k−1)×k 0(n−k−1) 0(n−k−1)×(n−k−1)

 ∈ Sn, (4.24)
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Now, we will give the following lemma that will be very helpful for us in establishing

the main results of this chapter regarding the outer polyhedral approximations.

Lemma 9. Consider an instance of (KP). Given x̂ ∈ E−, let X̄ ∈ Rn be defined as

in (4.24). Then, aT X̄a ≤ b2 holds.

Proof. Since aT x̂ = b, aT
(
x̂x̂T

)
a = b2. Therefore, it suffices to show that

aT
(
x̂x̂T

)
a−aT X̄a = aT

(
x̂x̂T − X̄

)
a = x̂k+1ak+1

(
k∑
i=1

ai

)
+a2

k+1(x̂2
k+1−x̂k+1) ≥ 0.

First, we will evaluate the first term:

x̂k+1ak+1

(
k∑
i=1

ai

)
=


b−

k∑
i=1

ai

ak+1


︸ ︷︷ ︸

=x̂k+1

ak+1

(
k∑
i=1

ai

)
,

=

(
b−

k∑
i=1

ai

)(
k∑
i=1

ai

)
,

and the second term is equal to

a2
k+1(x̂2

k+1 − x̂k+1) = ak+1
2


b−

k∑
i=1

ai

ak+1


︸ ︷︷ ︸

=x̂k+1


b−

k∑
i=1

ai − ak+1

ak+1


︸ ︷︷ ︸

=x̂k+1−1

,

=

(
b−

k∑
i=1

ai

)(
b−

k∑
i=1

ai − ak+1

)
.

Therefore,

x̂k+1ak+1

(
k∑
i=1

ai

)
+ a2

k+1(x̂2
k+1 − x̂k+1) =

(
b−

k∑
i=1

ai

)
︸ ︷︷ ︸

≥0

(b− ak+1)︸ ︷︷ ︸
≥0

≥ 0.

Hence, we conclude that aT X̄a ≤ b2.
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According to this lemma, as long as the X-component of M is entrywise less than

or equal to X̄, we know that aTXa ≤ b is always satisfied.

Having established such a threshold matrix, we also want to discuss which vectors

seem reasonable to be used in the construction of M ∈ Feas(Out)2
r, x-component of

which is equal to x̂ at a certain level r ∈ N. Let us illustrate this with an example

for a better understanding. Suppose n = 4. Consider the vectors that belong to

Θ(n + 1, 19), where Θ(n, r) is defined as in (2.8). Let f(z) := zzT − Diag(z), where

z ∈ Nn. For instance, consider the vector

(z1)
T

=
[
1 5 5 5 5

]
∈ Θ(n+ 1, 19).

The extreme ray of O19 defined by z1 is given by

ext(z1) := λf(z1) = λ



0 5 5 5 5

5 20 25 25 25

5 25 20 25 25

5 25 25 20 25

5 25 25 25 20


, λ ≥ 0.

Consider ext(z1)1,2:5 as the x-component and ext(z1)2:5,2:5 as the X-component of M .

Note that using such extreme rays will disrupt the balance against the constraint

Xi = xii, i = 1, . . . , n, as ext(z1) overcharges Xii compared to xi and bulks out all

entries of X relatively.

Next, consider the vector

(z2)
T

=
[
9 3 3 3 3

]
∈ Θ(n+ 1, 19).
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The extreme ray of O19 defined by z2 is given by

ext(z2) := λf(z2) = λ



72 27 27 27 27

27 6 9 9 9

27 9 6 9 9

27 9 9 6 9

27 9 9 9 6


, λ ≥ 0.

Using such extreme rays overcharges the first row and first column, and disrupts the

balance against the constraint M11 = 1; although they seem to work in favor of the

constraint (4.5) by keeping the entries of X-component relatively small.

Observe that, except the first element, all other entries of z1 and z2 are equal.

Fluctuating them also does not seem reasonable, as x-component of M ∈ Feas(Out)2
r

will be mostly composed of ones (see, e.g. first row of (4.23)).

Finally, we consider the following vector:

(z3)
T

=
[
5 4 4 4 4

]
∈ Θ(n+ 1, 19).

The extreme ray of O19 defined by z3 is given by

ext(z3) := λf(z3) = λ



20 20 20 20 20

20 12 16 16 16

20 16 12 16 16

20 16 16 12 16

20 16 16 16 12


, λ ≥ 0.

ext(z3) constitutes a quite good balance between the constraints M11 = 1 and (4.5);

while still keeping the X-component relatively small and thus working in favor of the

constraint (4.8).

After such an observation, we state that our construction method will employ the

vectors of the following form in general:

zT =
[

(p+ 1) p(ek+1)T (0n−k−1)T (0k+1)T p(en−k−1)T 0
]
∈ Θ(2n+2, p(n+1)−1)
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for some p ∈ N. For such vectors, we will always ensure that zizi+n = 0, i =

2, . . . , n+1, which also ensures that constraint (4.14) (Rii = 0, i = 1, . . . , n) is always

satisfied.

Main Results on Outer Polyhedral Approximations

By employing our construction method discussed in the previous section, we present

one of the most important results of this chapter in the following theorem.

Theorem 7. Given an instance of (KP), F 1
r = F 2

r = Feas(Rel(KP)) for all r =

0, 1, . . . , 3n+ 2. As a result u1
r = u2

r = uLP , for all r = 0, 1, . . . , 3n+ 2.

Proof. Let us pick an arbitrary x̂ ∈ E(Feas(Rel(KP))). We will show that x̂ ∈ F 2
r

at r = 3n + 2. To do that we will construct a matrix M ∈ Feas(Out)2
(3n+2), whose

x-component is equal to x̂. If x̂ ∈ Conv(Feas(KP)), then x̂ ∈ F 2
3n+2 follows trivially.

Therefore, suppose x̂ ∈ E−, where E− is defined in (4.22). Then x̂ is of the form (4.2)

with exactly one fractional value.

Let z ∈ R2n+2 be partitioned as

zT =
[
v0 vT1 vT2 v3

]
, (4.25)

where v0, v3 ∈ R and v1, v2 ∈ Rn. Let n̄ := 2n+2. To construct M ∈ Feas(Out)2
(3n+2),
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we will use the following vectors, which all belong to Θ(n̄, 3n+ 2):

(z1)T =
[

4 3(ek+1)T (0n−k−1)T (0k+1)T 3(en−k−1)T 0
]
,

(z2)T =
[

4 3(ek)T (0n−k)T (0k)T 3(en−k)T 0
]
,

(z3)T =
[

4 6(ek)T (0n−k)T (0k+1)T 6(en−k−1)T 0
]
,

(z4)T =
[

(n+ 2) (0k)T (2n+ 2) (0n−k−1)T (0n)T 0
]
,

(z5
i )
T =

[
0 (r + 2)(ei)

T (0n)T 0
]
, i = 1, . . . , n,

(z6
i )
T =

[
0 (0n)T (r + 2)(ei)

T 0
]
, i = 1, . . . , n,

(z7)T =
[

0 (0n)T (0n)T r + 2
]
,

where k is defined as in (4.3) depending on x̂, ek ∈ Rk is the vector of all ones and

ei ∈ Rn is the ith unit vector. Notice that summation of the entries of z3 is equal to

6n − 2. Therefore, z3 ∈ Θ(n̄, 6n − 4). However, since 6n − 4 ≥ 3n + 2 holds when

n ≥ 2, then Θ(n̄, 6n − 4) ⊆ Θ(n̄, 3n + 2). This implies z3 ∈ Θ(n̄, 3n + 2) for n ≥ 2.

Note that summation of the entries of other vectors is equal to 3n+ 4, thus they are

all in the set Θ(n̄, 3n+ 2).

Let f(z) := zzT −Diag(z). Let us define

M̂ :=
x̂k+1

18
f(z1) +

1− x̂k+1

12
f(z2) +

x̂k+1

72
f(z3) +

x̂k+1

6(n+ 1)(n+ 2)
f(z4).

Observe that M̂11 = 1 and the (x, s)-component of M̂ is exactly equal to (x̂, e − x̂).

If we look at R-component of M̂ , Rii = 0, i = 1, . . . , n and thus (4.14) is already

satisfied. Due to constraint (4.15) and (4.16), it requires that Xii = x̂i, Sii = 1 − x̂i
i = 1, . . . , n. Therefore, by setting Xii = x̂i and Sii = 1− x̂i, i = 1, . . . , n, constraints

(4.15) and (4.16) will also be satisfied. For this purpose, vectors z5
i and z6

i , images of

which in f affect only diagonal elements, will be used, i = 1, . . . , n.
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Let

M∗ := M̂+
2− x̂k+1

4(r + 2)(r + 1)

(
k∑
i=1

f(z5
i ) +

n∑
i=k+2

f(z6
i )

)
+

x̂k+1

(n+ 2)(r + 2)(r + 1)
f(z5

k+1) +
1− x̂k+1

2(r + 2)(r + 1)
f(z6

k+1)

Note that only the diagonal elements of M∗ differ from M̂ . Since M∗ is constructed

by the nonnegative combinations of the images of vectors z ∈ Θ(n̄, 3n + 2) in f ,

M∗ ∈ O3n+2. Observe that M∗ satisfies all constraints except (4.12). Observe that

for X-component of M∗, X ≤ X̄ holds, where X̄ is defined as in (4.24). Therefore,

considering (X, v, ω)-component of M∗, let us define

η := aTXa+ 2aTv + ω = aTXa ≤ aT X̄a ≤ b2.

If η = b2, then M∗ satisfies all constraints and we are done. Otherwise, we will create

matrix M , only different entry of which from M∗ will be its last diagonal element,

which will be equal to b2 − η. M can be defined as follows:

M := M∗ +
b2 − η

(r + 1)(r + 2)
f(z7).

Observe M satisfies all the constraints of (Out)3n+2 and therefore M ∈ Feas(Out)2
3n+2.

Since, x-component ofM is exactly equal to x̂, x̂ ∈ F 2
3n+2, which implies by Corollary 1

that F 2
3n+2 = Feas(Rel(KP)). By Lemma 4 and (4.20), F 1

r = F 2
r = Feas(Rel(KP)) for

all r = 0, 1, . . . , 3n+ 2 and as a result, u1
r = u2

r = uLP , for all r = 0, 1, . . . , 3n+ 2.

Remark 7. We will give an insight into the matrices constructed in the proof of

Theorem 7. For instance, in case k = 2 and n = 5,

M̂ =



1 1 1 x̂k+1 0 0 0 0 (1−x̂k+1) 1 1 0

1
2+x̂k+1

4

3+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

3+x̂k+1
4

0

1
3+x̂k+1

4

2+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

3+x̂k+1
4

0
2x̂k+1

3

x̂k+1
2

x̂k+1
2 (n+1

n+2)x̂k+1 0 0 0 0 0
x̂k+1

2

x̂k+1
2

0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(1−x̂k+1)
3−3x̂k+1

4

3−3x̂k+1
4

0 0 0 0 0
1−x̂k+1

2

3−3x̂k+1
4

3−3x̂k+1
4

0

1
3+x̂k+1

4

3+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

2+x̂k+1
4

3+x̂k+1
4

0

1
3+x̂k+1

4

3+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

2+x̂k+1
4

0
0 0 0 0 0 0 0 0 0 0 0 0


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and

M∗ =



1 1 1 x̂k+1 0 0 0 0 (1−x̂k+1) 1 1 0

1 1
3+x̂k+1

4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

3+x̂k+1
4

0

1
3+x̂k+1

4
1

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

3+x̂k+1
4

0
2x̂k+1

3

x̂k+1
2

x̂k+1
2

x̂k+1 0 0 0 0 0
x̂k+1

2

x̂k+1
2

0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(1−x̂k+1)
3−3x̂k+1

4

3−3x̂k+1
4

0 0 0 0 0 (1−x̂k+1)
3−3x̂k+1

4

3−3x̂k+1
4

0

1
3+x̂k+1

4

3+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4
1

3+x̂k+1
4

0

1
3+x̂k+1

4

3+x̂k+1
4

x̂k+1
2

0 0 0 0
3−3x̂k+1

4

3+x̂k+1
4

1 0
0 0 0 0 0 0 0 0 0 0 0 0


Observe that M∗ satisfies all constraints except (4.12). However, X-component of M∗

is entrywise less than or equal to X̄ defined in (4.24). Therefore, by increasing the

ω-component of M∗ freely, (4.12) can also be satisfied. This leads us to matrix M ,

only different entry of which from M∗ is its ω-component.

Theorem 7 clearly shows how weak outer approximations perform for the 0-1

knapsack problem. At level r = 3n + 2, corresponding LP problem arising from the

outer approximations will have O((2n + 2)3n+4) variables, but it still gives the same

upper bound as that of the LP relaxation of (KP). Therefore, we do not recommend

using outer approximations for the 0-1 knapsack problem.

Unfortunately, we cannot extend the results established for outer polyhedral ap-

proximations in Theorem 7 and the following theorems to (MBP) problem in Chap-

ter 3. The main reason for that is that the construction procedure that we ex-

plained in the previous section exploits the special structure of the extreme points of

Feas(Rel(KP)) described in Lemma 7. Recall that those extreme points can have at

most one fractional points. Moreover, when one constructs a matrix M ∈ Feas(Out)2
r

(or M ∈ Feas(Out)1
r) whose x-component is equal to x̂, observe that θ-component of

M will always be equal to 0. Not having to deal with θ makes our job easier.

As for (MBP), extreme points of Feas(MBP) can have more one than fractional

values and slack variables θ can also have positive and fractional values. Therefore,

our construction method does not work for (MBP) and we cannot extend our results
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given in this chapter to this more general problem class in Chapter 3.

In the following theorem, we show that the result in Theorem 7 can be strength-

ened for the special case of n = 2.

Theorem 8. Consider an instance of (KP). Suppose n = 2. F 1
r = F 2

r = Feas(Rel(KP))

for all r = 0, 1, . . . , 14. As a result u1
r = u2

r = uLP , for all r = 0, 1, . . . , 14.

Proof. Pick an arbitrary x̂ ∈ E(Feas(Rel(KP))). If x̂ ∈ Conv(Feas(KP)), then x̂ ∈ F 2
14

follows trivially. Therefore, suppose x̂ ∈ E−, where E− is defined in (4.22). Then x̂ is

of the form (4.2). Let z ∈ R2n+2 be partitioned as in (4.25). Let n̄ := 2n+ 2 = 6. To

construct M ∈ Feas(Out)2
r such that x-component of M is equal to x̂, we will use the

following vectors, which all belong to Θ(n̄, 14):

(z1)T =
[

6 5(ek+1)T (0n−k−1)T (0k+1)T 5(en−k−1)T 0
]
,

(z2)T =
[

6 5(ek)T (0n−k)T (0k)T 5(en−k)T 0
]
,

(z3)T =
[

6 10(ek)T (0n−k)T (0k+1)T 10(en−k−1)T 0
]
,

(z4)T =
[

6 (0k)T 10 (0n−k−1)T (0n)T 0
]
,

(z5
i )
T =

[
0 (r + 2)(ei)

T (0n)T 0
]
, i = 1, . . . , n,

(z6
i )
T =

[
0 (0n)T (r + 2)(ei)

T 0
]
, i = 1, . . . , n,

(z7)T =
[

0 (0n)T (0n)T r + 2
]
,

where k is defined as in (4.3) depending on x̂, ek ∈ Rk is the vector of all ones and

ei ∈ Rn is the ith unit vector. Note that since n = 2 and k is defined as in (4.3), the

only value k can take is equal to 1.

Similar to the proof of Theorem 7, let f(z) := zzT −Diag(z). Let

M̂ :=
x̂k+1

50
f(z1) +

1− x̂k+1

30
f(z2) +

x̂k+1

150

(
f(z3) + f(z4)

)
Note that M̂11 = 1 and the (x, s)-component of M̂ is exactly equal to (x̂, e− x̂). Due

to constraints (4.15) and (4.16), it requires that Xii = x̂i Sii = 1 − x̂i, i = 1, . . . , n.
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Note that if we look at R-component of M̂ , Rii = 0, i = 1, . . . , n. Therefore, by

setting Xii = x̂i and Sii = 1 − x̂i, i = 1, . . . , n, constraints (4.15) and (4.16) will

be satisfied. For this purpose, vectors z5
i and z6

i , images of which in f affect only

diagonal elements, will be used, i = 1, . . . , n.

Let

M∗ = M̂ +
1− x̂k+1

3(r + 2)(r + 1)

(
k∑
i=1

f(z5
i ) +

n∑
i=k+1

f(z6
i )

)

Note that only different elements of M∗ from M̂ are its diagonals. Since M∗ is

constructed by the nonnegative combinations of the images of vectors z ∈ Θ(n̄, 14) in

f , M∗ ∈ O14. Observe that M∗ satisfies all constraints except (4.12). Observe that

for X-component of M∗, X ≤ X̄ holds, where X̄ is defined as in (4.24). Therefore,

considering (X, v, ω)-component of M∗, let us define

η := aTXa+ 2aTv + ω = aTXa ≤ aT X̄a ≤ b2.

If η = b2, then M∗ already satisfies all constraints and we are done. Otherwise, we

will create matrix M , only different entry of which from M∗ will be its last diagonal

element, which will be equal to b2 − η. M can be defined as follows:

M := M∗ +
b2 − η

(r + 1)(r + 2)
f(z7).

Observe that M satisfies all the constraints of (Out)2
14 and therefore M ∈ Feas(Out)2

14.

Since, x-component of M is exactly equal to x̂, x̂ ∈ F 2
14, which implies that F 2

14 =

Feas(Rel(KP)), when n = 2. By Lemma 4 and (4.20), F 1
r = F 2

r = Feas(Rel(KP)) for

all r = 0, 1, . . . , 14 and as a result, u1
r = u2

r = uLP , for all r = 0, 1, . . . , 14.

Remark 8. We want to give an insight into the matrices constructed in the proof of
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Theorem 8. Since k = 1 and n = 2,

M̂ =



1 1 x̂k+1 0 (1− x̂k+1) 0

1 2+x̂k+1

3

x̂k+1

2
0 5−5x̂k+1

6
0

x̂k+1
x̂k+1

2
x̂k+1 0 0 0

0 0 0 0 0 0

(1− x̂k+1) 5−5x̂k+1

6
0 0 2−2x̂k+1

3
0

0 0 0 0 0 0


.

and

M∗ =



1 1 x̂k+1 0 1− x̂k+1 0

1 1 x̂k+1

2
0 5−5x̂k+1

6
0

x̂k+1
x̂k+1

2
x̂k+1 0 0 0

0 0 0 0 0 0

1− x̂k+1
5−5x̂k+1

6
0 0 1− x̂k+1 0

0 0 0 0 0 0


.

Observe that M∗ satisfies all constraints except (4.12). However, X-component of M∗

is entrywise less than or equal to X̄ defined in (4.24). Therefore, by increasing the

ω-component of M∗ freely, (4.12) can also be satisfied. This leads us to matrix M ,

only different entry of which from M∗ is its ω-component.

Note that in Theorem 7 and 8, X-component of the constructed feasible matrix

was entrywise less than the threshold matrix X̄. If we relax that restriction, we can be

no more sure that (4.12) is satisfied. However, depending on the problem parameters

we can achieve to get a sufficient condition, under which (4.12) is still satisfied. This

sufficient condition, if satisfied, helps us improve our results even further. Note that

we will still use the same classic construction technique with only one difference. This

time X-component of the constructed matrix is not necessarily entrywise less than

X̄.



106 Chapter 4: Outer Approximations of the 0-1 Knapsack Problem

Given an instance of (KP), let x̂ ∈ E−, where E− is defined in (4.22). Then, x̂ has

exactly one fractional element, and w.l.o.g., we can put it into the form (4.2). Below,

depending on x̂, we define τ(x̂) that lies in the center of our sufficient condition:

τ(x̂) :=

2

((
k∑
i=1

ai

)(
b−

k∑
i=1

ai

)
+

k−1∑
i=1

k∑
j=i+1

aiaj

)
(
b−

k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

) − 1, (4.26)

where k is defined as in (4.3) depending on x̂ of the form (4.2). First, we give the

following lemma regarding τ(x̂).

Lemma 10. Given an instance of (KP), let x̂ ∈ E−. Let τ(x̂) be defined as in (4.26).

Then, τ(x̂) ≥ 1.

Proof. τ(x̂) in (4.26) can be rewritten as

2

(
k∑
i=1

ai

)(
b−

k∑
i=1

ai

)
︸ ︷︷ ︸

>0(
b−

k∑
i=1

ai

) k∑
i=1

ai + ak+1 − b︸ ︷︷ ︸
≤0


︸ ︷︷ ︸

>0

+

2
k−1∑
i=1

k∑
j=i+1

aiaj(
b−

k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

) − 1

Observe that first term of the summation is greater than or equal to 2, and second

term is nonnegative. Therefore, we conclude that τ(x̂) ≥ 1.

For an instance of (KP), let Ω be the set of all optimal solutions of Rel(KP).

Suppose x is of the form (4.2) for all x ∈ Ω as Rel(KP) and all outer approximations

would be exact otherwise. Since all optimal solutions are of the form (4.2) with

exactly one fractional value, observe that Ω ⊆ E−, where E− is defined in (4.22). Let

φmin := (n+ 1) min{bτ(x)c : x ∈ E−} − 1 (4.27)
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and

φmax := (n+ 1) max{bτ(x)c : x ∈ Ω} − 1, (4.28)

where τ(x) is defined as in (4.26). Observe that φmin ≤ φmax, since Ω ⊆ E−.

In the next theorem, we show that depending on the problem parameters a ∈ Rn

and b ∈ R, the results in Theorems 7 and 8 can even be extended further for specific

instances of (KP). Combining the results in Theorems 7 and 8, following will be the

last theorem of this section.

Theorem 9. Given an instance of (KP), let Ω be the set of all optimal solutions of

Rel(KP). Suppose x has one fractional value for all x ∈ Ω. Let φmin and φmax be

defined as in (4.27) and (4.28), respectively. Let

∇1 :=

max{φmin, 14}, if n = 2

max{φmin, 3n+ 2}, otherwise

and

∇2 :=

max{φmax, 14}, if n = 2

max{φmax, 3n+ 2}, otherwise

Then, F 1
r = F 2

r = Feas(Rel(KP)) for all r = 0, 1, . . . ,∇1. Furthermore, u1
r = u2

r =

uLP , for all r = 0, 1, . . . ,∇2.

Proof. Let us pick an arbitrary x̂ ∈ E−, where E− is defined in (4.22). Then, x̂ is of

the form (4.2) with one fractional value. Let p := bτ(x̂)c, where τ(x̂) is defined in

(4.26). Let r̄ := (n + 1)p − 1. We will show that x̂ ∈ F 2
r̄ . To achieve that, we will

construct a matrix M ∈ Feas(Out)2
r̄, whose x-component is equal to x̂. Let z ∈ R2n+2

be partitioned as in (4.25). Let n̄ := 2n + 2. To construct M ∈ Feas(Out)2
r̄, we will
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use the following vectors, which all belong to Θ(n̄, r̄):

(z1)T =
[

(p+ 1) p(ek+1)T (0n−k−1)T (0k+1)T p(en−k−1)T 0
]
,

(z2)T =
[

(p+ 1) p(ek)T (0n−k)T (0k)T p(en−k)T 0
]
,

(z3
i )
T =

[
0 (r + 2)(ei)

T (0n)T 0
]
, i = 1, . . . , n,

(z4
i )
T =

[
0 (0n)T (r + 2)(ei)

T 0
]
, i = 1, . . . , n,

(z5)T =
[

0 (0n)T (0n)T r + 2
]
,

where k is defined as in (4.3) depending on x̂, ek ∈ Rk is the vector of all ones and

ei ∈ Rn is the ith unit vector.

Let f(z) := zzT −Diag(z). Let

M̂ :=
x̂k+1

p2 + p
f(z1) +

1− x̂k+1

p2 + p
f(z2)

Note that M̂11 = 1 and the (x, s)-component of M̂ is exactly equal to (x̂, e − x̂).

Due to constraints (4.15) and (4.16), Xii = x̂i, Sii = 1 − x̂i, i = 1, . . . , n should be

satisfied. Note that if we look at the R-component of M̂ , Rii = 0, i = 1, . . . , n. Hence,

by setting Xii = x̂i and Sii = 1− x̂i, i = 1, . . . , n, constraints (4.15) and (4.16) will be

satisfied. To achieve that, vectors z3
i and z4

i , images of which in f affect only diagonal

elements, will be used, i = 1, . . . , n.

Let

M∗ := M̂+
2

(p+ 1)(r + 2)(r + 1)

(
n∑
i=1

x̂if(z3
i ) +

n∑
i=1

(1− x̂i)f(z4
i )

)
,

Only different elements of M∗ from M̂ are its diagonals. Since M∗ is constructed

by the nonnegative combinations of the images of vectors z ∈ Θ(n̄, r̄) in f , M∗ ∈

Or̄. Observe that M∗ satisfies all constraints except (4.5). Considering (X, v, ω)-

component of M∗, let us define

η := aTXa+ 2aTv + ω = aTXa.
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Observe that if η ≤ b2, then we can increase ω-component of M∗ as much as we want

while still satisfying all other constraints. Therefore, if η ≤ b2 holds, then (4.5) can be

satisfied by setting ω-component of M∗ equal to b2 − η. By the following equivalent

inequalities, we show that η ≤ b2 indeed holds:

2

( k∑
i=1

ai

)(
b−

k∑
i=1

ai

)
+
k−1∑
i=1

k∑
j=i+1

aiaj


(
b−

k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

) − 1 = τ(x̂) ≥ bτ(x̂)c = p,

2

p+ 1

k−1∑
i=1

k∑
j=i+1

aiaj + ak+1x̂k+1

(
k∑
i=1

ai

) ≥ (b− k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

)
,

2

p+ 1

k−1∑
i=1

k∑
j=i+1

aiaj + ak+1x̂k+1

(
k∑
i=1

ai

)−(b− k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

)
≥ 0,

2

p+ 1

k−1∑
i=1

k∑
j=i+1

aiaj + ak+1x̂k+1

(
k∑
i=1

ai

)− ak+1
2


b−

k∑
i=1

ai

ak+1


1−

b−
k∑
i=1

ai

ak+1

 ≥ 0,

2

p+ 1

k−1∑
i=1

k∑
j=i+1

aiaj +
2

p+ 1
ak+1x̂k+1

(
k∑
i=1

ai

)
− (ak+1)2x̂k+1(1− x̂k+1) ≥ 0,

aT
(
x̂x̂T −X

)
a ≥ 0,

aT
(
x̂x̂T

)
a︸ ︷︷ ︸

=b2

− aTXa︸ ︷︷ ︸
=η

≥ 0.

We showed that η ≤ b2 holds. If η = b2, then M∗ already satisfies all constraints and we

are done. Otherwise, we will create matrix M , only different entry of which from M∗ will

be its last diagonal element, which will be equal to b2 − η. M can be defined as follows:

M := M∗ +
b2 − η

(r + 1)(r + 2)
f(z5).

Observe that M satisfies all the constraints of (Out)2
r̄ and therefore M ∈ Feas(Out)2

r̄ . Since

x-component of M is exactly equal to x̂, x̂ ∈ F 2
r̄ . Assertions in Theorem 9 follow from the

definition of φmin and φmax, and by combining the results in Theorem 7 and Theorem 8.
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Remark 9. We will give an insight into the matrices constructed in the proof of

Theorem 9. For instance, in case k = 2 and n = 5,

M̂ =



1 1 1 x̂k+1 0 0 0 0 (1−x̂k+1) 1 1 0

1 p−1
p+1

p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
p

p+1
0

1 p
p+1

p−1
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
p

p+1
0

x̂k+1
p

p+1
x̂k+1

p
p+1

x̂k+1
p−1
p+1

x̂k+1 0 0 0 0 0 p
p+1

x̂k+1
p

p+1
x̂k+1 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(1−x̂k+1)
p(1−x̂k+1)

p+1

p(1−x̂k+1)

p+1
0 0 0 0 0

(p−1)(1−x̂k+1)

p+1

p(1−x̂k+1)

p+1

p(1−x̂k+1)

p+1
0

1 p
p+1

p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p−1
p+1

p
p+1

0

1 p
p+1

p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
p−1
p+1

0

0 0 0 0 0 0 0 0 0 0 0 0



and

M∗ =



1 1 1 x̂k+1 0 0 0 0 (1−x̂k+1) 1 1 0

1 1 p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
p

p+1
0

1 p
p+1

1 p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
p

p+1
0

x̂k+1
p

p+1
x̂k+1

p
p+1

x̂k+1 x̂k+1 0 0 0 0 0 p
p+1

x̂k+1
p

p+1
x̂k+1 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

(1−x̂k+1)
p(1−x̂k+1)

p+1

p(1−x̂k+1)

p+1
0 0 0 0 0 ŝk+1

p(1−x̂k+1)

p+1

p(1−x̂k+1)

p+1
0

1 p
p+1

p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
1 p

p+1
0

1 p
p+1

p
p+1

p
p+1

x̂k+1 0 0 0 0
p(1−x̂k+1)

p+1
p

p+1
1 0

0 0 0 0 0 0 0 0 0 0 0 0


.

Observe that M∗ satisfies all constraints except (4.12). Also, this time X-component

of M∗ is not necessarily less than or equal to X̄ defined in (4.24).

Considering (X, v, ω)-component of M∗, we want aTXa+2aT v︸︷︷︸
=0

+ ω︸︷︷︸
=0

= aTXa
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to be less than or equal to b2. Hence,

b2 − aTXa = aT (x̂x̂)a− aTXa

= aT
(
x̂x̂T −X

)
a

=
1

p


2

((
k∑
i=1

ai

)(
b−

k∑
i=1

ai

)
+

k−1∑
i=1

k∑
j=i+1

aiaj

)
(
b−

k∑
i=1

ai

)(
k∑
i=1

ai + ak+1 − b

) − 1


︸ ︷︷ ︸

=τ(x̂)

−1

=
τ(x̂)

p
− 1.

This is exactly where τ(x̂) comes out. In Lemma 10, we already proved τ(x̂) ≥ 1.

Therefore, by setting p = bτ(x̂)c, b2 − aTXa = τ(x̂)/p− 1 ≥ 0 is satisfied.

Finally, by increasing the ω-component of M∗ freely, (4.12) can be satisfied. This

leads us to matrix M , only different entry of which from M∗ is its ω-component.

We already know φmin ≤ φmax holds. For n = 2, there are (KP) instances, for

which one of the following cases holds:

(i) φmin ≤ φmax ≤ 14

(ii) φmin ≤ 14 < φmax

(iii) 14 < φmin ≤ φmax

Clearly, given a (KP) instance, where n = 2, Theorem 9 does not extend the results

of Theorem 8 if (i) holds. On the other hand if (ii) or (iii) holds, then it will extend

the results of Theorem 8. Note that for each of these three cases, it is possible to

construct a (KP) instance that satisfies them. Similarly, for n > 2 there are (KP)

instances, for which one of the following cases holds:

(i) φmin ≤ φmax ≤ 3n+ 2
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(ii) φmin ≤ 3n+ 2 < φmax

(iii) 3n+ 2 < φmin ≤ φmax

Given a (KP) instance, where n > 2, Theorem 9 does not extend the results of

Theorem 7 if (i) holds. On the other hand if (ii) or (iii) holds, then it will extend the

results of Theorem 7. In the following examples, for n > 2, we give three different

instances of (KP) that satisfy each case one by one. We will not give examples for

the case n = 2, since they are easier to construct once the instances for n > 2 are

constructed.

Example 14. Consider the following instance of (KP):

c =
[
1 3 2

]
,

a =
[
6 2 1

]
and b = 7.

Accordingly, E− = {(1, 1/2, 0), (2/3, 1, 1)}, where E− defined as in (4.22) and Ω =

{(2/3, 1, 1)}. If we calculate φmin and φmax, both will be equal to 7. Therefore (i)

holds, since

φmin = φmax = 7 ≤ 3n+ 2 = 11.

Theorem 7 states that F 1
r = F 2

r = Feas(Rel(KP)) and u1
r = u2

r = uLP for r =

1, . . . , 11. In this case, Theorem 9 does not extend these results.

Example 15. Consider the following instance of (KP):

c =
[
15 3 2

]
,

a =
[
6 2 1

]
and b = 7.

Accordingly, E− = {(1, 1/2, 0), (2/3, 1, 1)}, where E− defined as in (4.22) and Ω =

{(1, 1, 1/2)}. If we calculate φmin and φmax, they will be equal to 7 and 19, respectively.

Therefore (ii) holds, since

φmin = 7 ≤ 3n+ 2 = 11 < φmax = 19.
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Theorem 7 states that F 1
r = F 2

r = Feas(Rel(KP)) and u1
r = u2

r = uLP for r =

1, . . . , 11. In this case, Theorem 9 does not strengthen the result on F i
r , i = 1, 2, but

it strengthens the result on uir, i = 1, 2 and states that u1
r = u2

r = uLP for r = 1, . . . , 19.

Example 16. Consider the following instance of (KP):

c =
[
1 1 1

]
,

a =
[
1 3 4

]
and b = 7.

Accordingly, E− = {(1, 1, 3/4), (1, 2/3, 1)}, where E− defined as in (4.22) and Ω =

{(1, 1, 3/4)}. If we calculate φmin and φmax, both will be equal to 35. Therefore (iii)

holds, since

3n+ 2 = 11 ≤ φmin = φmax = 35.

Theorem 7 states that F 1
r = F 2

r = Feas(Rel(KP)) and u1
r = u2

r = uLP for r =

1, . . . , 11. In this case, Theorem 9 strengthens the results on both F i
r and uir, i = 1, 2

and states that F 1
r = F 2

r Feas(Rel(KP)) and u1
r = u2

r = uLP for r = 1, . . . , 35.

After obtaining these results and realizing that outer polyhedral approximations

perform poorly for the 0-1 knapsack problem, from a different perspective, we ask the

following question: At each level r, does there exist an instance such that ν < uLP

and u1
r = u2

r = uLP ? In the following proposition, by exploiting the definition of τ(x)

in (4.26), we show that no matter how high the level r is, at each level r ∈ N, there

exists an instance such that ν < uLP and uir, i = 1, 2, still remain equal to uLP until

at least that level r.

Proposition 9. At each level r∗, there exists an instance such that for that instance

ν < uLP holds and u1
r = u2

r = uLP for all r = 1 . . . , r∗.
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Proof. At level r∗, consider the following:

b = r∗ + 2 (4.29)
k∑
i=1

ai = r∗ + 1 and ak+1 = 2 (4.30)

ci > ai, i = 1, . . . , k, ck+1 = 2 and ci = 0, i = k + 1, . . . , n. (4.31)

Construct a (KP) instance such that (4.29), (4.30) and (4.31) are satisfied. Observe

that such an instance can always be constructed. Then,

ν =
k∑
i=1

ci < uLP = 1 +
k∑
i=1

ci.

Let x∗ be an optimal solution of Rel(KP). Observe that τ(x∗) ≥ 2r∗ + 1 and thus

φmax = 2nr∗ ≥ r∗, where τ(x∗) and φmax is defined as in (4.26) and (4.28), respec-

tively. By Theorem 9, this implies u1
r = u2

r = `LP for all r = 1, . . . , r∗.

We can interpret this result as follows: No matter how much we increase the level

r ∈ N, there are still some (KP) instances such that upper bounds given by the outer

polyhedral approximations do not improve and remains equal to uLP . Therefore,

this result is also important in terms of showing the weakness of outer polyhedral

approximations from a different viewpoint.

In the following section we will continue with the doubly nonnegative relaxation

of the 0-1 knapsack problem. Results that we established in the next section indi-

cate that upper bounds given by the doubly nonnegative relaxation are much more

promising than those given by outer polyhedral approximations.

4.4 Doubly Nonnegative Relaxations

In this section, we establish our results based on the doubly nonnegative relaxations

of the both completely positive formulations of the 0-1 knapsack problem. If (DN)

defined in (3.47) is restated for the first copositive formulation of the 0-1 knapsack
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problem, then

(DN)1 u1
DN := max cTx

s.t. aTx+ θ = b,

aTXa+ 2aT v + ω = b2,

xi + si = 1, i = 1, . . . , n

Xii + 2Rii + Sii = 1, i = 1, . . . , n,

xi = Xii, i = 1, . . . , n

M =


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ,

M ∈ DN ,

Similarly, doubly nonnegative relaxation of (KP-CP)2 is given by

(DN)2 u2
DN := max cTx

s.t. aTx+ θ = b,

aTXa+ 2aT v + ω = b2,

xi + si = 1, i = 1, . . . , n

Rii = 0, i = 1, . . . , n,

Xii = xi, i = 1, . . . , n

Sii = si, i = 1, . . . , n

M =


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ,

M ∈ DN ,
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Note that (DN)2 constitutes a tighter outer approximation than (DN)1, i.e.,

Feas(DN)2 ⊆ Feas(DN)1, r ∈ N. (4.32)

We rewrite FDN given in (3.48) for the above doubly nonnegative relaxations of knap-

sack as follows:

F i
DN :=


(x, s, θ) ∈ Rn × Rn × R :


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ Feas(DN)


, i = 1, 2,

which again can be reduced to

F i
DN :=


x ∈ Rn :


1 x s θ

x X R v

s RT S y

θ vT yT ω

 ∈ Feas(DN)


, i = 1, 2

since once x ∈ Rn is known, the values of s and θ will be determined by it. Note that

the objective function of (DN)i, i = 1, 2 is only dependent on x. Therefore, (DN)i is

equivalent to the following problem:

uiDN = max{cTx : x ∈ FDN}, i = 1, 2. (4.33)

It follows trivially by (4.32) that

F 2
DN ⊆ F 1

DN and u2
DN ≤ u1

DN . (4.34)

By Lemma 2, we know that FDN ⊆ Feas(Rel(KP)). From this and (4.34), u2
DN ≤

u1
DN ≤ uLP follows directly. By using Corollary 2 in Chapter 3, in the next proposition

we show that F i
DN , i = 1, 2, does not contain any of the elements in E−.

Proposition 10. Given an instance of (KP), F i
DN ∩ E− = ∅ for i = 1, 2, where E−

is defined as in (4.22).



Chapter 4: Outer Approximations of the 0-1 Knapsack Problem 117

Proof. We will show that F 1
DN ∩ E− = ∅. Then, F 2

DN ∩ E− = ∅ will follow since

F 2
DN ⊆ F 1

DN . Let us pick an arbitrary x̂ ∈ E−. Then x̂ is of the form (4.2) with

exactly one fractional value. We will show that case (i) in Corollary 2 holds for

(DN)1. Put (KP) in the form of (MBP), or equivalently, consider (KPaug). Note

that B = {1, . . . , n} and w.l.o.g. we can think of (x̂, ŝ, θ̂) as x̂1 = . . . = x̂t = 1,

x̂t+1 = . . . = x̂n−1 = 0, 0 < x̂n < 1, ŝ = e− x̂ and θ̂ = 0. Since (KPaug) will have n+1

equality constraints, let vi, i = 1, . . . , n+ 1 and w be defined as in (3.52) and (3.53),

respectively. Observe that w = (x̂n, ŝ, θ̂) ∈ Rn+2 and v1 = (an, 0
n, 1) ∈ Rn+2. We

will show that v1 satisfies case (i) in Corollary 2. First, observe that (v1)1 = an > 0,

since x̂n =
(
b−

∑t
i=1 ai

)
/an. Since (vi)j(vi)l ≥ 0 for all 1 ≤ j < l ≤ n + 2, we

only need to show that (vi)j(vi)l = 0 if wjwl > 0. Observe that since θ̂ = 0 and

(v1)2 = . . . = (v1)n+1 = 0, this requirement is satisfied. Therefore, by Corollary 2

x̂ 6∈ F 1
DN , which implies F 1

DN ∩ E− = ∅. Therefore, we conclude that F i
DN ∩ E− = ∅

for i = 1, 2.

Proposition 10 implies that if E− is nonempty, the inclusion relationship between

Feas(Rel(KP)) and F i
DN not only holds strictly, i.e., F i

DN ⊂ Feas(Rel(KP)), but also

no extreme point of Feas(Rel(KP)) that are not in Conv(Feas(KP)) is contained in

F i
DN , i = 1, 2. This leads to the following corollary.

Corollary 7. If Rel(KP) has a non-integer unique optimal solution, then u2
DN ≤

u1
DN < uLP .

Proof. Let x∗ be the non-integer unique optimal solution of Rel(KP). Then, x∗ ∈ E−,

where E− is defined as in (4.22). Clearly, by Proposition 10, for all x ∈ F i
DN , cTx <

cTx∗ = uLP , which implies together with (4.34) that u2
DN ≤ u1

DN < uLP .

Corollary 7 clearly shows that if Rel(KP) has a unique optimal solution and it is

in E−, then both doubly nonnegative relaxations of knapsack give a strictly tighter

bound than Rel(KP). On the other hand, if E− includes multiple optimal solutions



118 Chapter 4: Outer Approximations of the 0-1 Knapsack Problem

of Rel(KP), say x1, x2, . . . , xK , where K is finite, then this may not be the case.

Proposition 10 implies none of the points x1, . . . , xK are included in FDN . However,

it does not tell anything about convex hull of those solutions and F i
DN , i = 1, 2, might

still include a convex combination of them. The following example illustrates that we

indeed need the uniqueness assumption in Corollary 7.

Example 17. Consider the following instance of (KP).

c =
[
12 4 6 6

]
,

a =
[
8 4 6 6

]
and b = 17,

where ν = 18 with the optimal solution (x∗)T =
[
1 0 1 0

]
and uLP = 21. Following

optimal solutions of Rel(KP) are included by E−:

(x1)
T

=
[
1 1 5/6 0

]
,

(x2)
T

=
[
1 1 0 5/6

]
,

(x3)
T

=
[
1 3/4 1 0

]
,

(x4)
T

=
[
1 0 1 1/2

]
,

(x5)
T

=
[
1 0 1/2 1

]
,

(x6)
T

=
[
1 3/4 0 1

]
.

If we solve (DN)2 for this instance, u2
DN = 21 with the optimal solution

M∗ ≈



1 1 0.6362 0.538 0.5379 0 0.3638 0.462 0.4621 0

1 1 0.6362 0.538 0.5379 0 0.3638 0.462 0.4621 0

0.6362 0.6362 0.6362 0.2651 0.2651 0 0 0.3711 0.3711 0

0.538 0.538 0.2651 0.538 0.0922 0 0.2728 0.0000 0.4457 0

0.5379 0.5379 0.2651 0.0922 0.5379 0 0.2728 0.4457 0 0

0 0 0 0 0 0 0 0 0 0

0.3638 0.3638 0 0.2728 0.2728 0 0.3638 0.0909 0.091 0

0.462 0.462 0.3711 0 0.4457 0 0.0909 0.462 0.0164 0

0.4621 0.4621 0.3711 0.4457 0 0 0.091 0.0164 0.4621 0

0 0 0 0 0 0 0 0 0 0


.
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Let x be the x-component of M∗, i.e., xT =
[
1 0.6362 0.538 0.5379

]
. Observe

that although ν < uLP , u2
DN = uLP still holds. By Proposition 10, xi, i = 1, . . . , 6 are

not included by FDN . However, observe that x can be written as convex combination

of xi, i = 1, . . . , 6, such that x =
∑6

i=1 λix
i, where

λT ≈
[
0 0 0.4621 0 0.1517 0.3862

]
.

This also explains the reason why u2
DN = uLP . Needless to say that M∗ is also an

optimal solution for (DN)1 and u1
DN = u2

DN = uLP .

This example shows that the uniqueness assumption in Corollary 7 cannot be

relaxed in general.

4.5 Conclusion

We investigated the outer polyhedral approximations defined in Chapter 2 and doubly

nonnegative relaxation of the 0-1 knapsack problem. We compared the upper bounds

given by these approximations to the upper bound given by the LP relaxation of the

knapsack. We showed that upper bounds given by outer polyhedral approximations

of the completely positive formulation of the 0-1 knapsack problem is equal to the

optimal value of its LP relaxation until at least a certain level of r, that is r =

3n+2. At this level, LP problem arising from these outer approximations has already

exponentially many variables. For that reason, we conclude that outer polyhedral

approximations perform poorly for the 0-1 knapsack problem and thus we do not

recommend using them as an approximation framework for the knapsack problem.

By establishing a sufficient condition, we also showed that depending on the in-

stance, the equality between the upper bounds given by outer approximations and

LP relaxation of the knapsack can persist in even at higher levels than 3n + 2. In

case of that sufficient condition, we also gave a closed formula about how much this

level, which is higher than 3n + 2, can rise. For the doubly nonnegative relaxations,
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we showed that they give strictly better bounds than the LP relaxation of knapsack

if it has a non-integer unique optimal solution. We also gave an example illustrating

that the uniqueness assumption cannot be relaxed in general.



Chapter 5

DOUBLY NONNEGATIVE RELAXATIONS OF

STANDARD QUADRATIC PROGRAMS

5.1 Introduction

A standard quadratic optimization problem (StQP) involves minimizing a (noncon-

vex) quadratic form (i.e., a homogeneous quadratic function) over the unit simplex.

It can be formulated as follows:

(StQP) ν(Q) = min
{
xTQx : x ∈ ∆n

}
,

where Q ∈ Sn and Sn denotes the space of n× n real symmetric matrices. Here, ∆n

is the unit simplex in n-dimensional Euclidian space Rn,

∆n = {x ∈ Rn : eTx = 1, x ≥ 0}. (5.1)

and e ∈ Rn is the vector of all ones. We denote the set of optimal solutions of (StQP)

by

Ω(Q) = {x ∈ ∆n : xTQx = ν(Q)}, (5.2)

and for x ∈ ∆n, support set is given by,

P(x) := {j ∈ {1, . . . , n} : xj > 0}. (5.3)

The standart quadratic optimization problem was introduced by Bomze [7], who also

described several properties of the problem. It has many application areas such as

portfolio optimization [61], population genetics [49], evolutionary game theory [8] and
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maximum (weighted) clique problem [32, 68]. (StQP) can be polynomially solvable,

when the instance matrix Q ∈ Sn is positive or negative semidefinite. However, since

(StQP) contains maximum (weighted) clique problem as its special case, the problem

is NP-hard, in general.

In this paper, we are interested in the doubly nonnegative relaxation of (StQP),

which can be solvable in polynomial-time and will be referred to as (DN). We say

that a matrix Q ∈ Sn is (DN) exact if it admits an exact (DN). Due to the NP-

hardness of (StQP), characterization of (DN) exact matrices plays an important role

in extending the polynomial-time solvable cases. Note that by Diananda’s result

[23], for all Q ∈ Sn, where n ≤ 4, exactness of (DN) is already a well-known fact.

Therefore, our main purpose is to shed light on the instances of (StQP) that admit

exact (DN) for n ≥ 5.

This paper is organized as follows: in Section 5.2, we first define a set of convex

cones and establish their common. We then present the copositive formulation and the

doubly nonnegative (DNN) relaxation of (StQP). Next we establish local and global

optimality conditions of (StQP). In section 5.3, we give a complete characterizations

for the set of (StQP) instances with an exact DNN relaxation. Section 5.4 is devoted

to identification of several families of instances with an exact DNN relaxation, all of

which admit a polynomial time membership oracle. We investigate the relationship

between the set of (DN) exact matrices and its subsets in Section 5.5. Finally, we

conclude the chapter by summarizing our results in Section 5.6
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5.2 Preliminaries

5.2.1 Convex Cones

We define the following cones in Sn:

N = {M ∈ Sn : Mij ≥ 0, i = 1, . . . , n; j = 1, . . . , n} , (5.4)

PSD =
{
M ∈ Sn : uTMu ≥ 0, ∀u ∈ Rn

}
, (5.5)

COP =
{
M ∈ Sn : uTMu ≥ 0, ∀u ∈ Rn

+

}
, (5.6)

CP =

{
M ∈ Sn : M =

r∑
k=1

bk(bk)T , for some bk ∈ Rn
+, k = 1, . . . , r

}
, (5.7)

DN = PSD ∩N , (5.8)

SPN = {M ∈ Sn : M = M1 +M2, for some M1 ∈ PSD, M2 ∈ N} . (5.9)

Each of these cones is closed, convex, full-dimensional, and pointed and the fol-

lowing set of inclusion relations is satisfied:

CP ⊆ DN ⊆

 N

PSD

 ⊆ SPN ⊆ COP . (5.10)

We have CP = DN and SPN = COP if and only if n ≤ 4 [23]. For n ≥ 5, check-

ing membership is NP-hard for both CP [25] and COP [69]. Each of the remaining

four cones is tractable in the sense that they admit polynomial-time membership

oracles.

Lemma 11. Let Kn ∈ {CP ,DN ,N ,PSD,SPN , COP}. Then, the following rela-

tions are satisfied:

(i) If A ∈ Kn, then Akk ≥ 0, k = 1, . . . , n.

(ii) A ∈ Kn if and only if P TAP ∈ Kn, where P ∈ Rn×n is a permutation matrix.

(iii) A ∈ Kn if and only if DAD ∈ Kn, where D ∈ Sn is a diagonal matrix with

positive diagonal entries.
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(iv) If A ∈ Kn, then every principal r × r submatrix of A is in Kr, r = 1, . . . , n.

(v) If A ∈ Kn and B ∈ Km, then

A⊕B =

A 0

0 B

 ∈ Kn+m. (5.11)

In particular, B = 0 can be chosen.

5.2.2 Copositive Formulation and DNN Relaxation

For any U ∈ Rm×n and V ∈ Rm×n, we define the inner product as the trace inner

product given by

〈U, V 〉 :=
m∑
i=1

n∑
j=1

UijVij.

(StQP) can be formulated as a copositive program [11], i.e., a linear optimization

problem over an affine subset of the convex cone of completely positive matrices:

(CP) ν(Q) = min{〈Q,X〉 : 〈E,X〉 = 1, X ∈ CP},

where X ∈ Sn and E = eeT ∈ Sn is the matrix of all ones.

By (5.10), we can replace the difficult conic constraint X ∈ CP by X ∈ DN and

obtain a relaxation of (CP), or, equivalently, a relaxation of (StQP):

(DN) `(Q) = min {〈Q,X〉 : 〈E,X〉 = 1, X ∈ DN} ,

(DN) is referred to as the doubly nonnegative relaxation of (StQP). It is well-known

that (DN) satisfies the Slater’s condition, which implies that strong duality is satisfied,

where the dual formulation is given by

(DN-D) `(Q) = max {y : yE + S = Q, S ∈ SPN} ,

where y ∈ R and S ∈ Sn. Furthermore, optimal solutions are attained in both (DN)

and (DN-D).
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For all Q ∈ Sn, we have

`(Q) ≤ ν(Q), (5.12)

since CP ⊆ DN . For n ≤ 4, we have `(Q) = ν(Q) by Diananda’s result. For n ≥ 5, we

are interested in the characterization of instances of (StQP) for which `(Q) = ν(Q).

The following lemma presents a simple shift invariance property that will be useful

throughout the remainder of the paper.

Lemma 12. For any Q ∈ Sn and any λ ∈ R,

ν(Q+ λE) = ν(Q) + λ, (5.13)

`(Q+ λE) = `(Q) + λ. (5.14)

Furthermore, Ω(Q) = Ω(Q+ λE).

Proof. The relations (5.13) and (5.14) immediately follow from the formulations (CP)

and (DN) since 〈Q+ λE,X〉 = 〈Q,X〉+ λ〈E,X〉 = 〈Q,X〉+ λ for any X ∈ Sn such

that 〈E,X〉 = 1. The last assertion directly follows from the observation that

xT (Q+ λE)x = xTQx+ λxTEx = xTQx+ λ

for any λ ∈ R and x ∈ ∆n.

5.2.3 Local Optimality Conditions

In this section, we review the local optimality conditions of (StQP). First, given

x ∈ ∆n, let us define the following index sets:

P (x) = {j ∈ {1, . . . , n} : xj > 0} , (5.15)

Z(x) = {j ∈ {1, . . . , n} : xj = 0} . (5.16)
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Given an instance of (StQP), x ∈ Rn is a local minimizer if and only if there exists

s ∈ Rn such that the following conditions are satisfied (see, e.g., [60, 43]):

Qx−
(
xTQx

)
e− s = 0, (5.17)

eTx = 1, (5.18)

x ∈ Rn
+, (5.19)

s ∈ Rn
+, (5.20)

xjsj = 0, j = 1, . . . , n, (5.21)

dTQd ≥ 0, for all d ∈ D, (5.22)

where

D =
{
d ∈ Rn : eTd = 0, dTQx = 0, dj ≥ 0, for each j ∈ Z(x)

}
, (5.23)

and Z(x) is given by (5.16). We remark that the Lagrange multiplier µ ∈ R corre-

sponding to the constraint eTx = 1 is scaled and replaced by xTQx in (5.17) by using

(5.18) and (5.20).

Note that D consists of all feasible directions at x that are orthogonal to the

gradient of the objective function at x. Furthermore,

D∗ =
{
d ∈ Rn : eTd = 0, dj = 0, for each j ∈ Z(x)

}
⊆ D ⊆ D∗ =

{
d ∈ Rn : eTd = 0

}
.

(5.24)

Note that (5.17) – (5.21) are the KKT conditions whereas (5.22) captures the second

order optimality conditions. For an instance of (StQP), we say that x ∈ ∆n is a KKT

point if there exist s ∈ Rn such that the conditions (5.17) – (5.21) are satisfied.

5.2.4 Global Optimality Conditions

First, we note that the membership problem in COP can be cast in the form of

(StQP) since Q ∈ COP if and only if ν(Q) ≥ 0. The following theorem establishes
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that checking the global optimality condition in (StQP) reduces to a membership

problem in COP . We include a short proof for the sake of completeness.

Theorem 10 (Bomze, 1992). Let Q ∈ Sn and let x∗ ∈ ∆n. Then,

x∗ ∈ Ω(Q) if and only if Q−
(
(x∗)TQx∗

)
E ∈ COP . (5.25)

Proof. Let x∗ ∈ Ω(Q). Consider Q′ = Q−
(
(x∗)TQx∗

)
E ∈ Sn. Then, by Lemma 12,

ν(Q′) = ν
(
Q−

(
(x∗)TQx∗

)
E
)

= ν(Q)− ν(Q) = 0, which implies that Q′ ∈ COP .

Conversely, suppose that Q −
(
(x∗)TQx∗

)
E ∈ COP . Then, for any x ∈ ∆n, we

have xT
(
Q−

(
(x∗)TQx∗

)
E
)
x = xTQx − (x∗)TQx∗ ≥ 0, which implies that ν(Q) =

(x∗)TQx∗, i.e., x∗ ∈ Ω(Q).

5.3 StQP Instances with Exact DNN Relaxations

In this section, we focus on the set of instances of (StQP) which admit an exact DNN

relaxation. To that end, let us define

Q := {Q ∈ Sn : `(Q) = ν(Q)} . (5.26)

We will present several alternative characterizations of Q. These characterizations

will be subsequently used for identifying several sufficient conditions for membership

in Q.

First, given x ∈ ∆n, we define the following set of matrices:

Sx = {Q ∈ Sn : x ∈ Ω(Q)} =
{
Q ∈ Sn : Q−

(
xTQx

)
E ∈ COP

}
, (5.27)

i.e., Sx consists of all matrices Q ∈ Sn for which x is an optimal solution of the

corresponding (StQP) instance. Note that the second equality in (5.27) immediately

follows from Theorem 10.

For each x ∈ ∆n, it is easy to verify that Sx is a closed and convex cone in Sn and

{λE : λ ∈ R} ⊆ Sx, for each x ∈ ∆n. (5.28)
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Furthermore,⋃
x∈∆n

Sx = Sn. (5.29)

Next, we focus on the characterization of the set of matrices in Sx that admit an

exact DNN relaxation, i.e.,

Qx = Sx ∩Q = {Q ∈ Sn : x ∈ Ω(Q), `(Q) = ν(Q)} . (5.30)

The following lemma presents a complete characterization of Qx.

Lemma 13. For any x ∈ ∆n,

Qx =
{
Q ∈ Sn : Q−

(
xTQx

)
E ∈ SPN

}
. (5.31)

Proof. We prove the relation (13) by showing that each set is a subset of the other one.

Let x ∈ ∆n and let Q ∈ Qx. By (5.30), Q ∈ Sx and Q ∈ Q, i.e., `(Q) = ν(Q) = xTQx.

Then, since optimal solutions are attained in (DN-D), there exists S∗ ∈ SPN such

that ν(Q)E + S∗ = Q, which implies that Q−
(
xTQx

)
E ∈ SPN .

Conversely, for a given x ∈ ∆n, if Q−
(
xTQx

)
E ∈ SPN , then Q ∈ Sx by (5.10)

and ν(Q) = xTQx. Furthermore, let y = xTQx and S = Q − yE. Then, (y, S) is

a feasible solution of (DN-D), which implies that `(Q) ≥ xTQx = ν(Q) since (DN-

D) is a maximization problem. Combining this inequality with (5.12), we obtain

`(Q) = ν(Q), i.e., Q ∈ Q. We therefore obtain Q ∈ Qx.

By Lemma 13, for any x ∈ ∆n and Q ∈ Sn, one can check if Q ∈ Qx in polynomial-

time. In contrast, checking if Q ∈ Sx is, in general, NP-hard. Furthermore, a complete

characterization of the matrices in Sx\Qx requires a full understanding of the set

COP\SPN . While there are some studies in lower dimensions (see, e.g., [1, 19, 38]),

the problem still remains open in higher dimensions.

Similar to Sx, it is easy to verify that Qx is a closed convex cone and

{λE : λ ∈ R} ⊆ Qx, for each x ∈ ∆n. (5.32)
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Next, for a given x ∈ ∆n, we aim to present an algebraic characterization of Qx.

To that end, we identify the following subsets which will be building blocks for the

set Qx:

Px =
{
P ∈ PSD : xTPx = 0

}
= {P ∈ PSD : Px = 0} (5.33)

Nx =
{
N ∈ N : xTNx = 0

}
= {N ∈ N : Nij = 0, i ∈ P (x), j ∈ P (x)} ,(5.34)

where P (x) is defined as in (5.15).

For each x ∈ ∆n, note that Px is a face of PSD and Nx is a polyhedral cone in N .

Furthermore, for any w ∈ ∆n, we have wTPw ≥ 0 for each P ∈ Px and wTNw ≥ 0

for each N ∈ Nx, which implies that

Nx ⊆ Qx ⊆ Sx, Px ⊆ Qx ⊆ Sx, for each x ∈ ∆n. (5.35)

The next proposition presents a complete algebraic characterization of Qx by

establishing a useful relation between Qx and the sets Nx and Px.

Proposition 11. For each x ∈ ∆n,

Qx = Px +Nx + {λE : λ ∈ R} , (5.36)

where Px and Nx are defined as in (5.33) and (5.34), respectively. Furthermore, for

any decomposition of Q ∈ Qx given by Q = P +N +λE, where P ∈ Px and N ∈ Nx,

we have λ = xTQx = `(Q) = ν(Q).

Proof. Let x ∈ ∆n and Q ∈ Qx. Then, by Lemma 13,

Q−
(
xTQx

)
E = P +N,

where P ∈ PSD and N ∈ N . Therefore,

0 = xTQx−
(
xTQx

) (
xTEx

)
= xTPx+ xTNx,
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where we used xTEx = 1, which implies that xTPx = xTNx = 0 since both terms

are nonnegative. Therefore, we obtain

Q = P +N +
(
xTQx

)
E,

where P ∈ Px and N ∈ Nx. It follows that Q ∈ Px +Nx + {λE : λ ∈ R}.

Conversely, since Px ⊆ Qx, and Nx ⊆ Qx by (5.35), {λE : λ ∈ R} ⊆ Qx by

(5.32), and Qx is a convex cone, it follows that Px +Nx + {λE : λ ∈ R} ⊆ Qx, which

establishes (5.36).

For the last assertion, let Q ∈ Qx be decomposed as Q = P + N + λE, where

P ∈ Px and N ∈ Nx. Then, xTQx = xTPx+xTNx+λ, which implies that xTQx = λ.

Since Q ∈ Q and Qx ⊆ Sx, we obtain λ = xTQx = `(Q) = ν(Q).

We remark that Proposition 11 gives a complete algebraic characterization of Qx
for each x ∈ ∆n. In addition, it gives a recipe to construct a matrix in Qx. Indeed,

for given x ∈ ∆n, one simply needs to generate two matrices P ∈ Px, N ∈ Nx, a real

number λ, and define Q = P + N + λE. By Proposition 11, this is necessary and

sufficient to ensure that Q ∈ Qx with ν(Q) = `(Q) = λ.

Note that a matrix P ∈ Px can easily be generated by picking a matrix M ∈

Rn×(n−1) whose columns form a basis for x⊥. Then, one can define P = MRMT ,

where R ∈ PSDn−1. Alternatively, we next discuss that there is an even simpler

procedure to generate such a matrix P ∈ Px which eliminates the computation of a

basis for x⊥. To that end, we present a technical result first.

Lemma 14. For any two vectors u ∈ Rn and v ∈ Rn such that uTv = 1, we have

R(I − uvT ) = v⊥, (5.37)

(I − uvT )(I − uvT ) = I − uvT , (5.38)

where R(·) denotes the range space and v⊥ denotes the orthogonal complement of v.
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Proof. Let w ∈ R(I − uvT ). Then, there exists z ∈ Rn such that w = (I − uvT )z =

z − (vT z)u. Therefore, vTw = vT z − (vT z)(vTu) = 0, which implies that w ∈ v⊥.

Conversely, if w ∈ v⊥, then (I − uvT )w = w − (vTw)u = w, which implies that

w ∈ R(I − uvT ) and establishes (5.37).

The relation (5.38) can easily be verified.

Using Lemma 14, we can present a simpler characterization of Px.

Lemma 15. The following identity holds:

Px =
{
P ∈ Sn : P =

(
I − exT

)
R
(
I − xeT

)
for some R ∈ PSDn

}
, (5.39)

where Px is given by (5.33).

Proof. Suppose that P ∈ Px. Then, P ∈ PSD and xTPx = 0. Since P ∈ PSD, there

exists a matrix L ∈ Rn×n such that P = LLT . It follows that LTx = 0, which implies

that each column of L belongs to x⊥. Since eTx = 1, it follows from Lemma 14 that

there exists a matrix W ∈ Rn such that L =
(
I − exT

)
W . Therefore, P = LLT =(

I − exT
)
WW T

(
I − xeT

)
=
(
I − exT

)
R
(
I − xeT

)
, where R = WW T ∈ PSDn.

Conversely, if P =
(
I − exT

)
R
(
I − xeT

)
for some R ∈ PSDn, then we clearly

have P ∈ PSD and xTPx = 0.

It follows from Lemma 15 that it is necessary and sufficient to generate a matrix

R ∈ PSDn and define P =
(
I − exT

)
R
(
I − xeT

)
to ensure that P ∈ Px.

The following corollary is an immediate consequence of Proposition 11, (5.30), and

(5.29).

Corollary 8. The following relation is satisfied:

Q =
⋃
x∈∆n

Qx, (5.40)

where Qx is given by (5.30).
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We close this section by recalling that, for each x ∈ ∆n, the membership problem

in Qx is polynomial-time solvable. On the other hand, for a given Q ∈ Sn, checking

if Q ∈ Q is equivalent to checking if there exists x ∈ ∆n such that Q ∈ Qx. Since the

latter problem may not necessarily be polynomial-time solvable, we instead focus on

explicitly identifying several classes of matrices that belong to Q in the next section.

5.4 Subsets of Q

In this section, we identify several classes of matrices that belong to the set Q by

relying on the characterizations presented in Section 5.3.

5.4.1 Minimum Entry on the Diagonal

In this section, we show that any matrix Q ∈ Sn whose minimum entry lies on the

diagonal belongs to Q. Let us denote the set of such matrices by Q1, i.e.,

Q1 =

{
Q ∈ Sn : min

i=1,...,n;j=1,...,n
Qij = min

k=1,...,n
Qkk

}
. (5.41)

Proposition 12. The following relation holds:

Q1 ⊆ Q, (5.42)

where Q1 and Q are given by (5.41) and (5.26), respectively.

Proof. Let Q ∈ Q1. Let us define λ = min
i=1,...,n;j=1,...,n

Qij = min
k=1,...,n

Qkk = Q`` and

N = Q − λE. Therefore, Q = 0 + N + λE. Then, it easy to verify that N ∈ Nx,

where x = e` ∈ Rn. By Proposition 11, Q ∈ Qx, where Qx is given by (5.30). The

inclusion (5.42) follows.

5.4.2 Positive Semidefinite Matrices on e⊥

A matrix Q ∈ Sn is said to be positive semidefinite on e⊥ if

dTQd ≥ 0, ∀d ∈ Rn such that eTd = 0. (5.43)



Chapter 5: Doubly Nonnegative Relaxations of Standard Quadratic Programs 133

Let us accordingly define the following set:

Q2 =
{
Q ∈ Sn : dTQd ≥ 0, ∀d ∈ Rn such that eTd = 0

}
(5.44)

Clearly, we have

PSD + {λE : λ ∈ R} ⊆ Q2. (5.45)

For any Q ∈ Q2, consider the corresponding (StQP) instance. It follows from (5.24)

and (5.17)–(5.22) that any KKT point is a local minimizer. Furthermore, for any it

is easy to verify that the objective function is convex over the feasible region, which

implies that any KKT point is, in fact, a global minimizer.

In this section, we aim to establish that Q2 ⊆ Q. First, we present a technical

result, which would be useful to prove this inclusion.

Lemma 16. For any Q ∈ Q2,

(
I − exT

)
Q
(
I − xeT

)
∈ PSD, for each x ∈ ∆n. (5.46)

Proof. The assertion follows directly from Lemma 14 since eTx = 1 for each x ∈

∆n.

Proposition 13. The following relation holds:

Q2 ⊆ Q, (5.47)

where Q2 and Q are given by (5.44) and (5.26), respectively.

Proof. Let Q ∈ Q2 and x ∈ Ω(Q). It suffices to show that Q ∈ Qx, where Qx is given

by (5.30). By Proposition 11, we need to construct a decomposition

Q = P +N +
(
xTQx

)
E,

where P ∈ Px, N ∈ Nx and Px and Nx are given by (5.33) and (5.34), respectively.
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Let us define

P =
(
I − exT

)
Q
(
I − xeT

)
.

By Lemma 16, P ∈ PSD. Therefore,

P = Q−QxeT − exTQ+
(
xTQx

)
E,

or equivalently,

Q−
(
xTQx

)
E = P +

(
QxeT +QxeT − 2

(
xTQx

)
E
)
.

Let us accordingly define

N = QxeT +QxeT − 2
(
xTQx

)
E.

We will show that N ∈ Nx. Since x ∈ Ω(Q), x is a KKT point, i.e., there exist s ∈ Rn

such that the conditions (5.17) – (5.21) are satisfied. By (5.17),

Qx−
(
xTQx

)
e− s = 0,

which implies that

QxeT −
(
xTQx

)
E − seT = 0,

exTQ−
(
xTQx

)
E − esT = 0.

It follows from these two equations that

N = QxeT + exTQ− 2
(
xTQx

)
E

= seT +
(
xTQx

)
E + esT +

(
xTQx

)
E − 2

(
xTQx

)
E

= seT + esT .

Finally, note that N ∈ Nx since N ∈ N and xTNx = 0 by (5.18), (5.20), and (5.21).

It follows from Proposition 11 that Q ∈ Qx.

Note that the proof of Proposition 13 is based on an explicit construction of the

decomposition of a matrix Q ∈ Q2 given by Proposition 11.
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5.4.3 Motzkin-Strauss Family on Perfect Graphs

First, we briefly discuss the maximum weighted clique problem in undirected graphs.

Let G = (V,E) be a simple, undirected graph with V = {1, . . . , n} and let w ∈ Rn
+ be

strictly positive, where wk denotes the weight of vertex k, k = 1, . . . , n. A set C ⊆ V

is a clique if all pairs of vertices in C are connected by an edge. The weight of a

clique C ⊆ V , denoted by w(C), is given by w(C) =
∑
j∈S

wj. The maximum weighted

clique problem is concerned with finding a clique with the maximum weight, and this

weight is denoted by ω(G,w). Note that the maximum weighted clique problem is

equivalent to the maximum clique problem if all the weights are identical.

We next present a connection between the maximum weighted clique problem and

(StQP). Consider the graph G defined above. Let us define the following class of

matrices:

M(G,w) =

B ∈ S
n :

Bkk = 1/wk, k = 1, . . . , n,

Bij = 0, (i, j) ∈ E,

2Bij ≥ Bii +Bjj, otherwise

 . (5.48)

The following theorem establishes the aforementioned connection.

Theorem 11 ([32], Theorem 5). Let G = (V,E) be a simple, undirected graph with

V = {1, . . . , n} and let w ∈ Rn
+ be strictly positive, where wk denotes the weight of

vertex k, k = 1, . . . , n. Then, for any Q ∈M(G,w),

ν(Q) = min{xTQx : x ∈ ∆n} =
1

ω(G,w)
. (5.49)

Theorem 11 is a generalization of the well-known Motzkin-Strauss Theorem that

establishes the first connection between the maximum clique problem and a particular

instance of (StQP).

We next discuss the weighted Lovász theta number. Let G be a graph with

V (G) = {1, . . . , n} and let w ∈ Rn
+ be strictly positive, where wk denotes the weight
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of vertex k, k = 1, . . . , n. Let G denote the graph complement of G. The weighted

Lovász theta number is given by

ϑ(G,w) = max {〈W,X〉 : 〈I,X〉 = 1, Xij = 0, (i, j) ∈ E, X ∈ PSD} , (5.50)

where W ∈ Sn is given by

Wij =
√
wiwj, 1 ≤ i ≤ j ≤ n. (5.51)

The weighted Lovász theta number satisfies ω(G,w) ≤ ϑ(G,w) [34, 56]. It turns

out that

ω(G,w) = ϑ(G,w) if G is a perfect graph. (5.52)

Note that a graph is called perfect graph if neither G nor its complement contains an

induced subgraph which is an odd cycle of length at least five. In [20], it has been

proven that there exists a polynomial-time algorithm to recognize perfect graphs.

The weighted Lovász theta number can be strengthened by replacing the constraint

X ∈ PSD by X ∈ DN [85]:

ϑ′(G,w) = max {〈W,X〉 : 〈I,X〉 = 1, Xij = 0, (i, j) ∈ E, X ∈ DN} , (5.53)

The strengthened version of the weighted Lovász theta number satisfies the following

relations:

ω(G,w) ≤ ϑ′(G,w) ≤ ϑ(G,w). (5.54)

By (5.52) and (5.54), it follows that

ω(G,w) = ϑ′(G,w) if G is a perfect graph. (5.55)

We next establish a useful connection between the strengthened version of the

weighted Lovász theta number and the doubly nonnegative relaxation via the matrices

that belong to M(G,w). Before that we will need the following definition and the

lemma.
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Definition 17. For a given Q ∈ Sn a simple undirected graph G(Q) = (V (Q), E(Q))

is called as the convexity graph of Q if the set of vertices is given by V (Q) = {1, . . . , n}

and the set of edges is defined as

E(Q) = {(i, j) : 2Qij < Qii +Qjj, 1 ≤ i < j ≤ n}. (5.56)

Following lemma establishes the existence of an optimal solution with a special

structure in (DN) and this observation will be used in the proof of Theorem 12.

Lemma 17. There exists an optimal solution X∗ of (DN) such that

X∗ij = 0, if (i, j) 6∈ G(Q).

Proof. Let X∗ be an optimal solution of (DN). If X∗ satisfies the claim, then we are

done. Otherwise, suppose X∗ij > 0 for some (i, j) 6∈ G(Q). If we define,

X(α) := X∗ + α(ei − ej)(ei − ej)T .

Observe that X(α) ∈ DN if 0 ≤ α ≤ X∗ij. Set α = X∗ij. Observe that

〈Q,X(α)〉 = 〈Q,X∗〉+ α (Qii +Qjj − 2Qij)︸ ︷︷ ︸
≤0

≤ 〈Q,X∗〉

which implies that X(α) is an optimal solution satisfying the claim. This completes

the proof.

Theorem 12. For any Q ∈M(G,w),

`(Q) =
1

ϑ′(G,w)
. (5.57)

Proof. First we will show that `(Q) ≤ 1

ϑ′(G,w)
. Let XL+S be an optimal solution

of (5.53). Since XL+S ∈ PSD, XL+S = Y TY for some Y ∈ Rn×n, which implies

XL+S
ij = (yi)

T
yj ≥ 0, ∀i, j ∈ V , where yi is the ith column vector of Y . Now, let

X̂ = Ŷ Ŷ T ,
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where Ŷ = [α1y
1, . . . , αny

n] and

αi =

√
wi√

ϑ′(G,w)
≥ 0.

We will show that X̂ is a feasible solution for (DN).

〈J, X̂〉 =
∑

i,j∈V (G)

X̂ij

=
∑

i,j∈V (G)

αiαj(y
i)
T
yj

=
∑

i∈V (G)

α2
i (y

i)
T
yi +

∑
i,j∈V (G)
i 6=j

αiαj(y
i)
T
yj

=
1

ϑ′(G,w)

 ∑
i∈V (G)

wi (y
i)
T
yi︸ ︷︷ ︸

=XL+S
ii

+
∑

i,j∈V (G)
i 6=j

√
wi
√
wj (yi)

T
yj︸ ︷︷ ︸

=XL+S
ij


=

1

ϑ′(G,w)
ϑ′(G,w) = 1.

Also, observe that X̂ ∈ DN . We showed that X̂ is a feasible solution for (DN). Let

us calculate

〈Q, X̂〉 =
∑

i,j∈V (G)

QijX̂ij

=
∑

i∈V (G)

Qiiα
2
i (y

i)
T
yi +

∑
i,j∈V (G)
i 6=j

Qijαiαj(y
i)
T
yj

=
∑

i∈V (G)

(1/wi)α
2
i (y

i)
T
yi +

∑
(i,j)∈E(G)

Qijαiαj (yi)
T
yj︸ ︷︷ ︸

=0

+
∑

(i,j)6∈E(G)

Qij︸︷︷︸
=0

αiαj(y
i)
T
yj

=
∑

i∈V (G)

(1/wi)α
2
i (y

i)
T
yi

=
1

ϑ′(G,w)

∑
i∈V (G)

(yi)
T
yi︸ ︷︷ ︸

=XL+S
ii︸ ︷︷ ︸

=1

Therefore, we conclude that `(Q) ≤ 〈Q, X̂〉 =
1

ϑ′(G,w)
.
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Now, we will show that
1

ϑ′(G,w)
≤ `(Q). Due to Lemma 17, we know that there

exists an optimal solution X∗ of (DN) such that X∗ij = 0 for all (i, j) 6∈ E(G(Q)).

Since X∗ ∈ PSD, X∗ = F TF for some F ∈ Rn×n, which implies X∗ij = (f i)
T
f j ≥ 0,

∀i, j ∈ V , where f i is the ith column vector of F . Now, let

X̃ = F̃ F̃ T ,

where F̃ = [β1f
1, . . . , βnf

n] and

βi =
1√

`(Q)wi
≥ 0.

We will show that X̃ is a feasible solution for (5.53). Note that X̃ij = βiβjX
∗
ij = 0,

for all (i, j) ∈ E(G), thus second constraint is already satisfied. Observe the following

equalities:

∑
i∈V (G)

X̃ii =
∑

i∈V (G)

β2
iX
∗
ii

=
1

`(Q)

∑
i∈V (G)

1

wi
X∗ii︸ ︷︷ ︸

=`(Q)

= 1

Finally, observe that X̃ ∈ DN and thus X̃ is a feasible solution for (5.53). If we

calculate

∑
i,j∈V (G)

√
wiX̃ij

√
wj =

∑
i,j∈V (G)

√
wiβiβjX

∗√wj

=
1

`(Q)

∑
i,j∈V (G)

X∗

︸ ︷︷ ︸
=1

Hence, we have ϑ(G,w) ≥
∑
i,j∈V

√
wiX̃ij

√
wj =

1

`(Q)
. Combining this inequality with

the previous one we conclude that for Q ∈M(G,w), `(Q) =
1

ϑ(G,w)
.
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We are now in a position to establish the relation between the doubly nonnega-

tive relaxations of standard quadratic programs and the maximum weighted clique

problem. Consider the following set of matrices:

M =

Q ∈ Sn :
Q ∈M(G,w) for some w > 0

and a perfect graph G = (V,E)

 (5.58)

Q3 = M+ {λE : λ ∈ R} (5.59)

Proposition 14. The following relation holds:

Q3 ⊆ Q, (5.60)

where Q3 and Q are given by (5.59) and (5.26), respectively.

Proof. First we will show that M ⊆ Q. Let us pick an arbitrary Q ∈ M. Since

Q ∈ M(G,w), by Theorem 11 and 12, ν(Q) = 1/ω(G,w) and `(Q) = 1/ϑ′(G,w),

respectively. Since G is perfect graph, it follows from (5.55) that ν(Q) = `(Q), which

implies that Q ∈ Q. Therefore, we conclude that M⊆ Q.

After establishing M ⊆ Q, (5.60) follows from the shift invariance property pro-

vided in Lemma 12.

We next present an example illustrating that the perfectness assumption on G in

M cannot be relaxed in general.

Example 18. Let

Q =



1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1


.

Observe that Q ∈M(G,w) with the following graph G
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2 5

3

1

4

and w = e ∈ R5. However, G is an imperfect graph since it is an odd cycle of length

five. Observe that `(Q) = 1/
√

5 < ν(Q) = 1/2, which implies that Q 6∈ Q.

Finally we established three different subsets of Q. We want to stress the fact that

checking membership in all the sets Qi, i = 1, 2, 3, can be done in polynomial-time.

5.5 Relations Between Q and Its Subsets

This section is devoted entirely to constructing examples that show the relations

between Q and its subsets established in Section 5.4.

Our first example shows that Q1 \ (Q2 ∪Q3) is nonempty.

Example 19. Let

Q =



0 1 3 2 0

1 3 1 3 2

3 1 2 1 3

2 3 1 1 0

0 2 3 0 1


. (5.61)

Q ∈ Q1 since min
i=1,...,n;j=1,...,n

Qij = Q11. By using Lemma 16, it can be easily verified

that Q 6∈ Q2. Observe that 2Q12 = 2 < Q11 + Q22 which implies Q 6∈ M(G,w) and

thus Q 6∈ Q3.

We now show that Q2 \ (Q1 ∪Q3) is nonempty in the following example.
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Example 20. Let

Q =



4 1 0 0 0 0

1 5 0 0 0 0

0 0 3 0 0 0

0 0 0 6 0 0

0 0 0 0 2 2

0 0 0 0 2 2


.

Verify that Q ∈ Q2 by Lemma 16. Q 6∈ Q1 since minimum entry of Q is not on the

diagonal. Q 6∈ Q3 since 2Q12 = 2 < Q11 +Q22, which implies Q 6∈ M(G,w).

Next example shows that Q3 \ (Q2 ∪Q1) is nonempty.

Example 21. Let G be given by the following graph:

4 3

2

1

57

6

It can be verified by a polynomial-time algorithm that G is a perfect graph [20]. Let

also

Q =



1 0 0 0 0 1 1

0 1 0 0 0 1 1

0 0 1 0 0 1 1

0 0 0 1 0 0 1

0 0 0 0 1 1 0

1 1 1 0 1 1 0

1 1 1 1 0 0 1


.

Observe that Q ∈ M ⊆ Q3 with G and w = e ∈ R7. Finally it is easily verified that

Q 6∈ (Q2 ∪Q1).
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Finally, we also show in the next example that Q \ (Q1 ∪Q2 ∪Q3) is nonempty.

Example 22. Let

Q =



1 1 0 0 0

1 2 0 0 0

0 0 3 0 0

0 0 0 3 4

0 0 0 4 1


.

By solving (StQP) and (DN) for Q, and checking membership in Qi, i = 1, 2, 3, it

can be verified that Q ∈ Q \ (Q1 ∪Q2 ∪Q3).

Since PSD ⊆ Q2, both Q2 and Q have a nonempty interior. We now establish in

the following proposition that Q1 also has a nonempty interior.

Proposition 15. int(Q1) ⊆ Sn is nonempty.

Proof. Let Q ∈ Sn such that Q11 = 0 all other elements of Q is equal to 1. Let

N ∈ Sn be any matrix with ‖N‖F := 〈N,N〉 = 1. Observe that −1 ≤ Nij ≤ 1, for

all i = 1, . . . , n and j = 1, . . . , n. We will show that QN = Q − εN is contained in

Q1 for every N and ε ≤ 1/3. Observe that −1/3 ≤ QN
11 ≤ 1/3 and 2/3 ≤ QN

ij ≤ 4/3

for all (i, j) 6= (1, 1). Therefore, the minimum entry of QN remains its first diagonal,

which implies that QN ∈ Q1 for every N and ε ≤ 1/3. It follows that Q lies in the

interior of Q1. Therefore, we conclude that Q1 has a nonempty interior.

Showing that interior of Q3 is nonempty can be done by a similar argument to

that in Proposition 15.

Proposition 16. int(Q3) ⊆ Sn is nonempty.

Proof. Let Q ∈ Sn such that Qii = 1, i = 1 . . . , n, and all off-diagonal entries of Q is

equal to 2. Observe that Q ∈ M ⊆ Q3 with an edgeless graph G and w = e ∈ Rn,
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since an edgeless graph is always perfect. Let N ∈ Sn be any matrix with ‖N‖F :=

〈N,N〉 = 1. Observe that −1 ≤ Nij ≤ 1, for all i = 1, . . . , n and j = 1, . . . , n. We

will show that QN = Q − εN is contained in Q1 for every N and ε ≤ 1/3. Observe

that 2/3 ≤ QN
ii ≤ 4/3 and 5/3 ≤ QN

ij ≤ 7/3 for all i = 1 . . . , n, j = 1 . . . , n, i 6= j.

Accordingly, 2QN
ij ≥ QN

ii + QN
jj for all i = 1 . . . , n, j = 1 . . . , n, i 6= j. Therefore,

QN ∈ M ⊆ Q3 with the same edgeless graph G and wi = Qii > 0. It follows that Q

lies in the interior of Q3. Therefore, we conclude that Q3 has a nonempty interior.

5.6 Conclusion

For a given matrix Q ∈ Sn, recognizing if Q is (DN) exact is important, because one

can then solve the polynomial-time solvable DNN relaxation instead of solving the

NP-hard original problem and still gets the optimal value of the original problem.

In this study, we investigated the instances of (StQP) with an exact DNN re-

laxation. We gave a complete algebraic characterization for the set of (DN) exact

matrices (Q). By relying on the characterization of Q, we identified three subsets of

Q, all of which are convex cones with a nonempty interior and whose membership

can be checked in polynomial-time. None of the three sets is a subset of the other

two sets as we showed by examples in Section 5.5. Note that there are still elements

that are in Q and not in those subsets. Therefore, the complexity of the membership

problem in Q is still unknown.



Chapter 6

CONCLUSION AND FUTURE RESEARCH

In this chapter, we briefly summarize our results, contributions and discuss pos-

sible directions of the future research. We also present two conjectures as our open

questions.

6.1 Conclusion

In this dissertation, we investigated the quality of bounds arising from certain outer

approximations of the copositive formulations of various nonconvex optimization

problems. We provided Burer’s copositive formulation [18] which forms the basis

for this thesis. Thanks to that and the copositive formulation of Bomze et al. [11],

we studied three different nonconvex optimization problems: mixed binary integer

programs, 0-1 knapsack problem and standard quadratic programs. Note that in this

dissertation, we do not to propose an algorithmic framework for solving copositive

programs. The main aim of this thesis was to analyze the behaviour of the bounds

arising from outer approximations and our theoretical results contribute in that re-

gard.

In the introduction part, we gave a brief literature review and presented our mo-

tivation for this study. We also presented our contributions and outline of the thesis.

Chapter 2 is devoted to the copositive and completely positive optimization. We

discussed the approximation hierarchies that have been proposed in the literature for

the copositive and completely positive cones. The scope of this dissertation is also

provided in this chapter.
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In Chapter 3, we studied the outer approximations of the copositive formulations

of mixed binary integer programs (MBP). We established that the lower bounds due

to outer approximations are at least as good as that of LP relaxation. Although this

result seems promising, we achieve to establish sufficient (or necessary) conditions

indicating the weakness of outer polyhedral approximations. On the other hand, our

results on doubly nonnegative (DNN) relaxations indicate that they give better lower

bounds. We also discussed possible extensions of our results to the mixed binary

quadratic programs.

We focused on the 0-1 knapsack problem, a special case of (MBP), in Chapter

4. We study two different copositive formulations of the 0-1 knapsack problem (KP).

Since (KP) is a special case of (MBP), the results established in Chapter 3 are also

valid for (KP). Additionally, it has been proven that upper bounds obtained from

outer polyhedral approximations are exactly equal to the upper bound provided by the

LP relaxation until at least a certain level of the hierarchy. This result clearly shows

how weak outer approximations perform for the 0-1 knapsack problem. Therefore, we

do not recommend using them as an approximation framework for the 0-1 knapsack

problem. On the other hand, we established that if the LP relaxation of (KP) has

a non-integer unique solution, then the DNN relaxations give strictly better upper

bound than the LP relaxation.

Lastly, we investigated the instances of (StQP) whose DNN relaxation is exact.

We gave a complete algebraic characterization for the set of (StQP) instances with

an exact DNN relaxation (we call this set Q). Furthermore, we proposed a recipe for

constructing such instances of (StQP). We identified three different subsets of Q. It

turns out that the membership problem in each subset is polynomial-time solvable.

We also showed that each of those three subsets have a nonempty interior. However,

Q still has elements that are not in any of those subsets. The complexity of the

membership problem in Q is still unknown to us at the moment of writing.
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6.2 Future Work and Open Questions

Approximation hierarchies proposed for the copositive and completely positive cones

do not take problem structure into account. There is an approximation algorithm

proposed by Bundfuss and Dür [17] which adaptively updates itself according to

the objective function of the problem. It gives very promising results for (StQP),

however does not perform well for all problems under the general case of mixed binary

quadratic programs.

We believe more efficient approximation approaches that also exploit the problem

structure will be developed for the coposotive programs in future. We also hope this

study to contribute to the refinement of the current approximations by shedding light

into their strengths and weaknesses.

Finally, we would like to end this dissertation by sharing two conjectures that we

have yet to prove or disprove.

Both our computational and theoretical results point to the weakness of outer

polyhedral approximations and indicate that doubly nonnegative relaxations perform

better. Therefore, we have the following conjecture between outer polyhedral approx-

imations and the doubly nonnegative cone.

Conjecture 1. DN ⊆ Or for all r ≤ n− 2, where n ≥ 2.

If Conjecture 1 is proven, its implication will set a clear distinction between the

performance of outer polyhedral approximations (due to de Klerk and Pasechnik [22])

and the doubly nonnegative relaxations. It also clearly favors doubly nonnegative re-

laxations over outer approximations, since the resulting LP from outer approximations

grows with O(nn) at r = n− 2.

Based on the results we obtained for the 0-1 knapsack problem, we have the

following conjecture for (MBP) which claims that lower bounds arising from outer

polyhedral approximations do not improve until at least a certain hierarchy level for
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(MBP) as well. We denote these lower bounds as `r, r ∈ N and B ⊆ {1, . . . , n} is the

index set of variables with binary restrictions. We refer the reader to Chapter 3 for

the details.

Conjecture 2. Given an (MBP) instance, `0 = `1 = . . . = `|B|.

If Conjecture 2 is proven, it will also be a clear indication of why outer polyhedral

approximations perform poorly for (MBP).

Copositive formulations enable us to treat many nonconvex, combinatorial and

NP-hard optimization problems from the perspective of convex optimization. A better

understanding of the intractable cones CP , COP , and their tractable approximations

provides us with opportunities to deal with these problems more efficiently.
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ogy, İstanbul, Turkey, 2000.



Bibliography 157

[74] J. Peña, J. Vera, and L. F. Zuluaga. Computing the stability number of a

graph via linear and semidefinite programming. SIAM Journal on Optimization,

18(1):87–105, 2007.

[75] G. Plateau and M. Elkihel. A hybrid algorithm for the 0-1 knapsack problem.

Methods of Operations Research, 49:277–293, 1985.

[76] V. Poirriez, N. Yanev, and R. Andonov. A hybrid algorithm for the unbounded

knapsack problem. Discrete Optimization, 6(1):110 – 124, 2009.

[77] S. Poljak and Z. Tuza. The max-cut problem: A survey. In W. Cook, L. Lovász,

and P. Seymour, editors, Special Year in Combinatorial Optimization. DIMACS

Series in Discrete Mathematics and Computer Science. American Mathematical

Society, 1995.

[78] J. Povh and F. Rendl. A copositive programming approach to graph partitioning.

SIAM Journal on Optimization, 18(1):223–241, 2007.

[79] J. Povh and F. Rendl. Copositive and semidefinite relaxations of the quadratic

assignment problem. Discrete Optimization, 6(3):231 – 241, 2009.

[80] J. C. Preisig. Copositivity and the minimization of quadratic functions with

nonnegativity and quadratic equality constraints. SIAM Journal on Control and

Optimization, 34(4):1135–1150, 1996.

[81] A. J. Quist, E. de Klerk, C. Roos, and T. Terlaky. Copositive realxation for

genera quadratic programming. Optimization methods and software, 9(1-3):185–

208, 1998.

[82] R. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and

Physics. Princeton University Press, 1970.



Bibliography 158

[83] S. Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM,

22(1):115–124, Jan. 1975.
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