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ABSTRACT

The antiferromagnetic coupling and entanglement between skyrmion lattices in

magnetic bilayer systems are studied in thesis. We first formulate the problem of large

bilayer skyrmions using CP1⊗CP1 theory. We have considered bilayer skyrmions un-

der the presence of Dzyaloshinskii-Moriya (DMI) and Zeeman interactions confined

in a two-dimensional chiral magnet such as Fe0.5Co0.5Si. We parametrize the bilayer

skyrmions using SU(4) representation, and represent each skyrmion and antiskyrmion

using Schmidt decomposition. Moreover, we computed the reduced density matrices

for skyrmion and antiskyrmion. The conditions for maximal, partial entanglement and

separable bilayer skyrmions are presented. We find intimate connection between bi-

layer skyrmions and SU(4) skyrmions in multicomponent Hall systems and Graphene

from entanglement perspective. Our results can be used for generating entanglement

in systems with large number of spins.
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ÖZETÇE

Bu tezde, çift-katmanlı manyetik sistemlerdeki Skyrmiyon örgülerinde komşu kat-

manlar arasındaki anti-ferromanyetik bağları ve kuantum dolanıklığını çalışmaktayız.

Önce CP1⊗CP1 teorisini kullanarak büyük çift-katmanlı Skyrmiyon problemini tanıml-

amaktayız. Ele aldığımız Fe0.5Co0.5Si gibi kiral miknatıslardaki çift-skyrmiyonlar

arasında, 2-boyuta kısıtlanmış DM ve Zeeman etkileşmeleri bulunmaktadır. Çift-

katmanlı Skyrmiyonların SU(4) temsilini ele alarak her bir Skyrmiyon ve anti- Skyr-

miyonu Schmidt ayrışımına göre temsil etmekteyiz. Bu tür çift-katmanlı Skyrmiyon-

ların maksimal ve kısmen dolanıklığı ile ayrışıklığını belirleyen şartları vermekteyiz.

Kuantum dolanıklığı yönünden ele alınınca çok-bileşenli Hall sistemlerindeki veya

grafendeki SU(4) Skyrmiyonları ile çift-katmanlı Skyrmiyonlar arasında yakın bir

ilişkinin kurulabildiği bu tezde gösterilmektedir. Bulgularımızın çok spinli dolanık

sistemlerin oluşturulmasında yararlı olabileceğini düşünmekteyiz.
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Chapter 1

INTRODUCTION

Since its first experimental observation in 2009 [1], magnetic skyrmions have been

actively investigated in a wide range of materials such as bulk chiral magnets, ferro-

magnetic / heavy metal interfaces, insulating materials, antiferromagnetic materials,

frustrated magnets and compensated ferrimagnets [2] - [13].

Magnetic skyrmions are topologically protected objects in the sense no continuous

deformation can delete a skyrmion. This fact paved the way for considering isolated

nanoscale magnetic skyrmions as information carriers in future spintronic devices

[12, 14].

Skyrmion textures were first identified as mean field ground state configurations for

models of anisotropic noncentrosymmetric magnetic materials with chiral spin-orbit

interactions subjected to an external magnetic field [2, 3].

1.1 The history of skyrmions

Skyrmions were introduced by T.Skyrme [15] as a nonlinear field theory of pions in

three spatial dimensions. Although not involving quarks, it can be regarded as an

approximate, low effective theory of QCD, becoming exact as the number of quark

colours becomes large. Let us denote the Skyrme field by U(t,x), being an SU(2)-

valued scalar field, the Skyrme model has the Lagrangian

L =

∫
d3x

{F 2
π

16
Tr(∂µU∂

µU) +
1

32e2
Tr([∂µUU, ∂νUU ][∂µUU, ∂νUU ])

}
, (1.1)
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Here Fπ and e are fixed parameters. By scaling the Lagrangian in units of Fπ/4e and

length in units of 2/eFπ, the standard Skyrme Lagrangian takes the simple form

L =

∫
d3x

{
− 1

2
Tr(RµR

µ) +
1

16
Tr([Rµ, Rν ][R

µ, Rν ])
}
, (1.2)

where we have introduced the SU(2)-valued current Rµ = (∂µU) U . The Euler-

Lagrange equation which results from the Skyrme Lagrangian is

∂µ(Rµ +
1

4
[Rν , [Rν , R

µ]]) = ∂µR̃
µ = 0 (1.3)

The Skyrme field equation is a nonlinear wave equation for U(t,x) configuration. It

takes the form of continuity equation by defining R̃µ := (Rµ + 1
4
[Rν , [Rν , R

µ]]). We

impose the following boundary conditions for the field configuration U(t,x) → I2 as

x → ∞ for all x. From this constraint, we realize that position space R3 can be

compactified to the surface S3 of a three-dimensional sphere.

The Skyrme Lagrangian has an SU(2)⊗SU(2)
Z2

∼= SO(4) chiral symmetry corresponding

to the transformation U → O1UO2, where O1 and O2 are constant elements of SU(2).

The boundary condition U(∞) → I2 spontaneously breaks this chiral symmetry to

an SO(3) isospin symmetry given by conjugation

U → OUO†, (1.4)

where O ε SU(2). The matrix U(t,x) can be parametrized as

U(t,x) =

 φ1(t,x) + iφ2(t,x) φ3(t,x)− iφ4(t,x)

−φ3(t,x) + iφ4(t,x) φ1(t,x)− iφ2(t,x)

 (1.5)

The real fields φα, α = 1 . . . 4 satisfy the constraint

φ2
1 + φ2

2 + φ2
3 + φ2

4 = 1. (1.6)

Thus for a fixed time t, the field φ ≡ (φ1, φ2, φ3, φ4) defines a mapping from S3 to S3.

In homotopy theory, this situation corresponds to π3(S3) = Z. The field configuration

at any time can be labeled by an integer winding number

W =
1

2π2

∫
d3x εijkl

∂φj
∂x1

∂φk
∂x2

∂φl
∂x3

, (1.7)

where x = (x1, x2, x3) and εijkl is the totally antisymmetric tensor.
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1.2 Thesis Plan

In chapter 2, we present a general introduction to topological solitons.

In chapter 3, we theoretically study magnetic skyrmions in detail.

In chapter 4, we provide some basic definitions related to quantum entanglement.

The novel results in this thesis are presented in chapter 5 where I have studied bilayer

skyrmions in a system of two perpendicular chiral thin films with insulating spacer

between them. In this thesis, We study quantum entanglement in bilayer skyrmions

( skyrmion-antiskyrmion pairs) from a geometrical point of view.

At the end we summarizes the novel results in the conclusion which makes the chapter

6. Thesis is followed by two appendices about topological charge of magnetic skyrmion

and SU(4) representations.

1.3 Author’s papers

During the course of my Ph.D. studies I have produced the following papers

• M.W.AlMasri, “ SU(4) description of bilayer skyrmion-antiskyrmion pairs”, to

appear in Europhysics Letters 2020, https://arxiv.org/abs/1909.10483.

• M.W.AlMasri,“ Axial-anomaly in noncommutative QED and Pauli–Villars reg-

ularization” International Journal of Modern Physics A: Vol.34, No.26, 1950150

(2019).



Chapter 2

TOPOLOGICAL SOLITONS

Some specific stable solutions of classical nonlinear equations support extended

objects known as solitons.

In quantum field theory, solitons are coherent states describing collective excita-

tions of the basic field. Solitons are topological objects if and only if their stability

is assured topologically. Examples are skyrmions, vortices and kinks [17]. In this

chapter, we will give an overview of topological solitons that will help understand

basic features of skyrmions.

2.1 Kinks

Solitons are classical solutions of non-linear equations which are non-singular with

finite energy, and localized in space. Topological Solitons are solitons which can not

deformed continuously to the vacuum.

Consider a pair of real-valued fields n = (n1, n2) that are functions of time t and one

spatial coordinate x. A simple Lagrangian that is symmetric under rotation n→ Rn,

where R being an element of O(2) Lie group is

L =
1

2

∫
dx [ (∂tn)2 − (∂xn)2 −m2 n · n ], (2.1)

The associated Euler-Lagrange equation is a linear differential equation known as

Klein-Gordon equation

(−∂2
t + ∂2

x −m2) n = 0 (2.2)

The above model is an example of a linear field theory. Basically, to make it a

nonlinear field theory, one can either add higher-order terms of n and its derivatives
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or imposing a constraints on the fields n itself. In this chapter, we will follow the

second approach developed by Tony Skyrme in the late 50s. One way to impose a

constraint on the field in Lagrangian 2.1 is by treating n as a point on unit circle S1.

Mathematically, this constraint reads as

n · n = n2
1 + n2

2 = 1. (2.3)

We can parametrize the field n in terms of angle θ in a way that take cares of the

constraint 2.3,

n = (cos θ, sin θ). (2.4)

Under this parametrization, the Lagrangian 2.1 becomes

L =
1

2

∫
dx [ (∂tθ)

2 − (∂xθ)
2 −m2] (2.5)

Remarkably, the mass term becomes a constant due to the imposed constraint. It is

safe to remove the mass term in the above Lagrangian since it will have no effect on

equations of motion. The corresponding conserved currents related to the Lagrangian

2.5 are given by

Jα =
1

2π
εαβ εab na∂βnb. (2.6)

The first of the two antisymmetric tensors, εαβ denotes the spacetime index (t, x),

while the second εab denotes the index of field component n = (n1, n2). The above

topological current has two components (Jt, Jx) defined as

Jt =
1

2π
∂xθ, (2.7)

Jx = − 1

2π
∂tθ.

The above current components obey the continuity equation ∂tJt + ∂xJx = 0. Here

Jt plays the role of “charge” and Jx plays the role of “current density”. The total

charge is given by

Q(t) =

∫ ∞
−∞

ρ(x, t)dx =
1

2π

∫ ∞
−∞

∂xθ(x, t)dx =
1

2π
[θ(∞, t)− θ(−∞, t)]. (2.8)
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-100 -50 50 100
x

-1.0

-0.5

0.5

1.0

tanh(x)

Figure 2.1: Plot of tanh(x) with respect to the variable x in the interval [−100, 100].

Here we chosen λ = 1.

We apply the periodic boundary condition θ(∞, t) = θ(−∞, t) + 2πN . where N is an

integer number. The charge becomes Q(t) = N as expected.

Consider a simple field configuration localized in space and carrying a nonzero

charge Q = 1 defined as

θ(x) = π tanh(
x

λ
) (2.9)

This field varies from −π at −∞ to π at ∞ regardless of the value for λ. However,

the sign of λ can affect the above assumptions. The energy of the soliton with θ

configuration is given by

H =
1

2

∫
(∂xθ)

2dx =
π2

2λ2

∫
[coth(

x

λ
)]2dx =

π2

2λ

∫
(coth y)2dy. (2.10)

Here y = x
λ
. As seen from 2.10, the energy of the solitons decreases when the parame-

ter λ increases, the most energetically stable configuration is when λ =∞. Thus, the

above soliton enjoys topological protection but not energetically stable that would

preserve its locality in space.

To guarantee that a given nontrivial soliton configuration remains energetically

stable as well as topologically protected, we need to add extra terms to the Lagrangian
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2.1. The new term is invariant under reflection n → −n and rotation by π
2
. The

lowest-order term satisfying these conditions is the fourth-power term: n4 = n4
1 + n4

2.

With this new term, the Lagrangian reads

L =
1

2

∫
dx
[
(∂tn)2 − (∂xn)2 − 1

8
m2(n4

1 + n4
2)
]

(2.11)

=
1

2

∫
dx
[
(∂tθ)

2 − (∂xθ)
2 − 1

8
m2(1− cos 4θ)

]
.

With the new interaction term, the Euler-Lagrange equation reads

∂2
t θ − ∂2

xθ +
1

4
m4 sin 4θ = 0. (2.12)

Which is known as sine-Gordon equation. It considers as one of the basic examples

in nonlinear field theory with a known exact solution. In small angle limit, sin θ ≈ θ,

it reduces to Klein-Gordon equation. In the static limit when θ(t, x) = θ(x), the

sine-Gordon equation becomes

−∂2
xθ +

1

4
m2 sin 4θ = 0. (2.13)

So that its solution is given by

θ(x) = tan−1[exp(mx)]. (2.14)

When m > 0, θ evolves from 0 to π
2

as quarter-charged Soliton. When m < 0, θ evolves

from π
2

to 0 as an anti-Soliton with quarter topological charge. The one-dimensional

topological Solitons are usually called Kinks for positive Q and anti-Kinks for negative

Q. We plotted the Kink and anti-Kink in 2.1 and 2.1. The nature of kink solution is

such that it connects one minimum of the potential V (θ) = (1− cos 4θ) to another.

2.2 Non-linear Sigma Models

A non-linear sigma model (NLσM) is a scalar field theory whose scalar fields defines

a map from space-time to a Riemannian target manifold. The O(n) NLσM is defined

by the action

S[n] =
1

2λ2

∫
ddx ∂µn · ∂µn, (2.15)
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-10 -5 5 10
x

0.5

1.0

1.5

θ

Kink

Figure 2.2: Plot of θ(x) = tan−1[exp(mx)] when m = 1 in the interval [-10,10], a

solution of this type is usually referred to as ”Kink”.

-10 -5 5 10
x

0.5

1.0

1.5

θ

Anti -Kink

Figure 2.3: Plot of θ(x) = tan−1[exp(mx)] when m = −1 in the interval [-10,10], a

solution of this type is usually referred to as ”anti-Kink”.
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where the real scalar fields n(xµ) obey the constraint n · n = constant. We adopted

the Einstein summation notation for repeated indices ∂µn · ∂µn ≡ Σµ∂µn · ∂µn, where

µ denotes spacetime coordinates. One interesting case is the O(3) nonlinear σ model

in (1+1)dimensions, where n = (n1, n2, n3) and n · n = 1. In statistical physics, O(3)

nonlinear σ model is realized the continuum limit of an isotropic ferromagnet [18].

Throughout the current thesis, we shall use this model extensively during our study

of baby skyrmions in (2+1) dimensions.

2.3 Baby Skyrmions

Baby skyrmions are topological solitons in 2 + 1- dimensions of a certain class of

non-linear sigma models. The associated topological current density vector is given

by

Jα =
1

8π
εαβγ εabc na∂βnb∂γnc. (2.16)

The conserved charge is given by integrating over the temporal-component of Jα

QS =
1

8π

∫
dxdy εabcna(∂x nb∂ync − ∂ynb ∂xnc) (2.17)

=
1

4π

∫
dxdy n · (∂n

∂x
× ∂n

∂y
).

The topological charge Q counts how many times n(r) = n(x, y) wraps the unit

sphere. Baby skyrmion profile n is of the form

n = (sin[f(r)] cos[Nφ], sin[f(r)] cos[Nφ], cos[f(r)]), (2.18)

where f is a radial function that depends on r and N is an integer. The relation 2.18

reduces to the spherical unit vector by sending f(r)→ r and setting N = 1. Feeding

2.18 in 2.17 gives the skyrmion charge,

QS =
N

2

∫ ∞
0

drf(r)′ sin[f(r)] =
N

2

∫ ∞
0

dr
dnz

dr
= N ·n

z(0)− nz(∞)

2
= ±N. (2.19)

The charge density ρS is

ρS(x, y) =
1

4π
n · (∂xn× ∂yn) =

N

4πr
f ′(r) sin[f(r)]. (2.20)
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Figure 2.4: The spin configuration of baby skyrmion.

The baby Skyrmion Hamiltonian is

H =
1

2

∫
dxdy [(∂xn)2 + (∂yn)2]. (2.21)

Its associated energy is found by plugging 2.18 in 2.21,

ES = π

∫ ∞
0

rdr[(f ′)2 +
N2

r2
(sin f)2]. (2.22)

The saddle-point equation following from the baby skyrmion energy functional is

2(rf ′)′ +
N2

r2
sin2 f = 0. (2.23)

In chiral magnets, the Hamiltonian 2.21 can not stabilize skyrmion by itself, it requires

extra terms such as Dzyaloshinskii-Moriya (DM) and Zeeman interactions. In this

thesis, our main interest is baby skyrmions only. Magnetic skyrmion throughout the

present thesis is the same as baby skyrmion described in this section plus some extra

interaction terms.
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2.4 Skyrmions

Skyrmions are topological solitons in 3+1-dimensions with certain field configurations.

The topological current for skyrmion is given by

Jα =
1

12π2
εαβγδ εabcd na∂βnb∂γnc∂δnd. (2.24)

Where n = (n1, n2, n3, n4) is a four-component field with constraint n · n = 1. The

skyrmion profile is

n =
(

sin[f(r)]
x

r
, sin[f(r)]

y

r
, sin[f(r)]

z

r
, cos[f(r)]

)
. (2.25)

The temporal component of the topological current Jα gives the charge density, that

is

ρS(r) =
1

2π2

(sin[f ])2f ′

r2
, (2.26)

Its integral over the whole space gives the associated topological charge,

QS = 4π

∫ ∞
0

ρS(r)r2dr =
2

π

∫ f(0)

f(∞)

(sin[f ])2df =
1

π

∫ f(0)

f(∞)

(1− cos[2f ])df (2.27)

=
f(0)− f(∞)

π
− sin[2f(0)]− sin[2f(∞)]

2π
=
f(0)− f(∞)

π
.

Where the boundary conditions for the radial function f(r) are f(0) = π + 2nπ and

f(∞) = 2nπ, n = 0, 1, 2, . . . . This explains why sin[2f(0)] − sin[2f(∞)] = 0. Thus,

the quantity f(0)−f(∞)
π

is an integer number as expected.



Chapter 3

THEORETICAL ASPECTS OF MAGNETIC SKYRMIONS

Magnetic Skyrmions are microscopic topological defects in spin textures charac-

terized by the topological winding or skyrmion number QS

QS =
1

4π

∫
d2r n · (

∂n

∂x
× ∂n

∂y
). (3.1)

In mathematics, QS is called the Pontryagin number. It counts how many times

n(r) = n(x, y) wraps the unit sphere [16, 17].

Skyrmions were first introduced by Tony Skyrme [15] to explain hadrons in nuclei.

Interestingly it has also turned out to be relevant in condensed matter systems such

as chiral magnets [1], Bose-Einstein condensates [19], liquid crystals [20], quantum

Hall effects [21, 22] and many others...

There are two distinct types of magnetic skyrmions : the Néel-type and Bloch-

type. These correspond to different directions of the rotation as shown in the figure

3.

Figure 3.1: (a) Bloch (Vortex) skyrmion . (b) Néel (Hedgehog) skyrmion

In most cases, the chiral interactions between atomic spins in non-centrosymmetric
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magnetic compounds (B20 crystal structure) induce skyrmions in magnetic materials

[4, 5].

3.1 Quantum Spin Dynamics and the Landau Lifshitz (LL)-Equation

Since our interest is in magnetic moments of localized electrons whose spins are free

to rotate, we consider the simplest model which exhibits the spin dynamics is the

Zeeman Hamiltonian which describes the electron with mass me and charge e under

presence of an external magnetic field B

HZ =
e~

2me

σ · B = µB σ · B, (3.2)

where µB is the Bohr magneton and σ = (σx, σy, σz) is the Pauli vector.

We derive the equation of motion for electron’s spin operator using the Heisenberg

representation. The time evolution of any operator O(t) = ei
Ht
~ O e−i

Ht
~ follows

directly from its commutator with the Hamiltonian Ȯ(t) = i
~ [H,O(t)]. Applying

this rule in the Zeeman Hamiltonian alongside with the commutation algebra of spin

operators [Sα, Sβ] = i~ εαβγ Sγ gives the simplest first-order differential equation for

the spin precession

Ṡ = S× (−δHz

δS
)· (3.3)

Since in an experiment one measures the magnetic moment , not the spin itself, it is

more convenient to write the equation 3.3 in terms of the magnetic moment ~µ.

The relation between ~µ and spin S is linear as

~µ = − ge

2m
= −γS, (3.4)

where g denotes Lande g-factor which is approximately equal to 2 for electrons, γ is

the gyromagnetic ratio and defined as a positive quantity. One can consider µ as a

classical vector of length M and write µ = Mn where n is an arbitrary unit vector.

Replacing S by −Mn
γ

in 3.3 gives

ṅ =
γ

M
n× δHZ

δn
. (3.5)
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Interestingly, the previous equation 3.5 can be generalized easily to any spin Hamil-

tonian by replacing δHZ
δS

with the variational derivative δH
δS

.

The semi-classical equation above for spin dynamics is known as the Landau-

Lifshitz (LL) equation. This formula was proposed in 1935 by Lev Landau and Evgeny

Lifshitz [23]. Since most of our studies will be for negatively charged particles, namely

the electrons, the substitution n with−n in the equation 3.5 is legitimate . This means

that spin of electron will be in the opposite direction to the magnetization. Therefore,

LL equation takes the form

ṅ = − γ

M
n× δH

δn
. (3.6)

We can define the force vector as heff = − δH
δn

and express the LL equation in the

form

ṅ =
γ

M
n× heff . (3.7)

3.2 The Spin Path Integral and Geometric Phase

Consider a spin-S degree of freedom coupled to an external field through a Zeeman-

like interaction term. From standard quantum mechanics we know that Zeeman

term breaks down the (2S + 1)-fold degeneracy . This will result in (2S + 1) non-

degenerate energy levels. The path integral formalism will allow us to study the

evolution operator between arbitrary initial and final states.

Let us begin by describing the Hilbert space in a simple manner. We have 2S + 1

states that transform like a spin-S representation of SU(2). Let |0〉 denote the highest-

weight state in this representation [24]

|0〉 = |S, S〉. (3.8)
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Figure 3.2: The unit sphere S2 and the unit vectors n0 and n.

This state is an eigenstate both of Sz, the only diagonal generator of SU(2), and the

quadratic Casimir invariant S2 :

Sz | 0〉 = S | 0〉, (3.9)

S2 | 0〉 = S(S + 1) | 0〉.

Now consider the state | n〉 labeled by the unit vector n which is obtained by the

rotation

| n〉 = eiθ(n0×n).S | S, S〉. (3.10)

Where n0 is a unit vector along the quantization axis, θ is the co-latitude such that

n0.n = cos θ ( see figure 3.2 ) and Si (i = x, y, z) are the three generators of SU(2)

in the spin-S representation.

The state |n〉 could be expanded in a complete basis of the spin-S irreducible

representation {| S,m〉}, where m labels the eigenvalues of diagonal element Sz,

Sz|S,m〉 = m|S,m〉, (3.11)

S2|S,m〉 = S(S + 1)|S,m〉.
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and −S 6 m 6 S, in integer steps. The coefficients of expansion are the representa-

tion matrices D(S)(n)mS such that

|n〉 = ΣS
m=−SD

(S)(n)mS|S,m〉. (3.12)

The matrices DS
Sm do not form a group but rather obey the algebra

D(S)(n1)mS D
(S)(n2)mS = D(S)(n3)mS e

iΦ(n1,n2,n3) (3.13)

n1, n2, and n3 are three arbitrary unit vectors on the unit sphere S2 and Φ(n1,n2,n3)

is the area of the spherical triangle with vertices at n1, n2, and n3.

The inner product of the spin coherent states |n1〉 and |n2〉 is given by

〈n1|n2〉 = 〈0|D(S)†(n1)D(S)(n2)|0〉 = eiΦ(n1,n2,n0)
(1 + n1.n2

2

)S
. (3.14)

The diagonal matrix elements of the SU(2) generators of S

〈n|S|n〉 = S n. (3.15)

and the identity operator in terms of spin coherent state |n〉 is

Î =
2S + 1

4π

∫
d3n δ(n2 − 1) | n〉〈n | . (3.16)

Let H = B · S be the Zeeman-like Hamiltonian with one spin-S degree of freedom.

We shall write the evolution operator in imaginary time as

Z = Tr eiHT = Tr e−βH (3.17)

Here we assume the initial and final states being identified precisely. Let us divide

the imaginary-time interval into Nt steps each of length δt and consider the limit

Nt →∞ and δt→ 0 while keeping their product constant equal to β. It is customary

to make use of the Trotter formula

Z = Tr e−βH = lim
δt→0
Nt→∞

(e−δtH)Nt (3.18)

and insert the identity operator 3.16 in the relation 3.17 at every step ti. We obtain

Z = lim
δt→0
Nt→∞

( Nt∏
i=1

∫
dµ(ni)

)( Nt∏
i=1

〈n(ti)|e−δtH |n(ti+1)〉
)

(3.19)
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with periodic boundary conditions. Here the integral measure is given by the invariant

measure dµ(ni) = (2S+1
4π

) d3ni δ(n
2
i − 1) and {ti} is a set of intermediate times in the

imaginary-time interval [0, β]. Since δt is extremely small in the equation 3.19, it is

legitimate to expand the exponent, and approximate equation 3.19 as

Z = lim
δt→0
Nt→∞

( Nt∏
i=1

∫
dµ(ni)

)( Nt∏
i=1

[
〈n(ti)|n(ti+1)〉 − δt〈n(ti)|H|n(ti+1)〉

])
. (3.20)

Within the same approximation we can write

〈n(ti)|H|n(ti+1)〉
〈n(ti) | n(ti+1)〉

' 〈n(ti) | H | n(ti)〉+O(δt). (3.21)

Using the inner product formula 3.14, we get

〈n(ti)|n(ti+1)〉 = eiΦ(n(ti),n(ti+1),n0)
(1 + n(ti).n(ti+1)

2

)S
(3.22)

We now insert the equations 3.21 and 3.22 into 3.20 to find the expression for the

path integral

Z = lim
δt→0
Nt→∞

∫
Dn e−SE [n], (3.23)

where the measure Dn is given by

Dn =
Nt∏
i=1

dµ(n(ti)) (3.24)

and the Euclidean action SE[n] is given by

SE[n] = ΣNt
i=1〈n(ti)|H|n(ti)〉 − iS ΣNt

i=1

(
Φ(n(ti),n(ti+1),n0)

)
(3.25)

−S ΣNt
i=1ln

(1 + n(ti).n(ti+1)

2

)
.

Throughout this derivation, we have assumed that the unit vectors n(ti) follow closed

trajectories (i.e n0 = n(tNt+1) ) on the sphere S2 which are sufficiently smooth that

all the approximations of 3.20 make sense. The continuum limit (Nt → ∞, δt → 0)

of 3.25 gives

SE[n] = −iS SWZ [n] +
Sδt

4

∫ β

0

dt
(
∂tn(t)

)2
+ S

∫ β

0

dt B · n(t), (3.26)
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Where B is an external magnetic field. The first term in 3.26 is called the Wess-

Zumino action

SWZ [n] =

∫ 1

0

dτ

∫ β

0

dt n(t, τ).
(
∂tn(t, τ)× ∂τn(t, τ)

)
(3.27)

where n(t, τ) is an arbitrary smooth parametrization of the some specific cap con-

figuration bounded by a curve Γ. As a technical note, the sum of areas of spherical

triangles defined by the term Φ(n(ti),n(ti+1),n0) in the Euclidean action could not

be determined uniquely. This is because we can always define two types of spherical

triangles formed out of the vertices n(ti),n(ti+1) and n0. Since the unit sphere S2

has no boundary, we end up with two areas Λ+ and Λ− separated by the boundary

Γ. The oriented area of Λ+ and Λ− differ by 4π , that is ,

A(Λ+) +A(Λ−) = 4π. (3.28)

The unit vectors n(t, τ) satisfy the boundary conditions

n(t, 0) ≡ n(t), n(t, 1) ≡ n0, n(o, τ) ≡ n(β, τ) (3.29)

Where t ε[0, β] and τ ε[0, 1]. We can get back to real time x0, with t = ix0 and β = iT

where T is the imaginary time span by writing

Z =

∫
Dn eiSM [n]. (3.30)

The Minkowskian action SM [n] is given by

SM [n] = S SWZ [n] +
Sδt

4

∫ T

0

dx0 (∂0n(x0))2 − S
∫ T

0

dx0 B.n(x0). (3.31)

The usual electromagnetic coupling gives a contribution to the action of the form

Sem =

∮
dx0 A · ∂n

∂x0

, (3.32)

Where A is the vector potential at position n(x0). The circulation of vector field

A(x0) is the accumulated change in the phase of spin state under an adiabatic time

evolution∮
dn ·A[n] =

∫ T

0

〈n(t) | ∂tn(t)〉. (3.33)

with |n(0)〉 = |n(T )〉. The vector potential A[n] defined in such a manner is usually

called the Berry connection [25].



Chapter 3: Theoretical Aspects of Magnetic Skyrmions 19

3.3 Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz (LL)-equation fails to include dissipation effects. The experi-

mental hysteresis curves of ferromagnetic samples show that after a certain critical

value of applied magnetic field, the magnetization saturates and becomes uniform with

totally parallel alignment to the direction of the applied magnetic field. Therefore,

Gilbert in 1955 modified the LL equation by adding a torque -like term to incorporate

this experimental fact [26]. The LLG equation takes the form

ṅ = γ n× heff − α n× ṅ. (3.34)

where α called the Gilbert or damping constant, its value varying from 0.001 to 0.1

, depending on the properties of magnetic materials. The equation 3.34 could be

written alternatively by applying the LLG equation once again on the right-hand side

ṅ = γ n× heff − αn×
[
γ n× heff − α n× ṅ

]
= γ n× heff − αγ n× (n× heff )− α2 ṅ, (3.35)

where we have used the vector identity n× (n× ṅ) = n (n · ṅ)− ṅ (n2) to move from

the first line to the second line in the previous equation using the fact that n · ṅ = 0

and n2 = 1. After few straightforward algebraic steps we arrive at the desired result

ṅ =
γ

1 + α2

[
n× heff − αn× (n× heff )

]
. (3.36)

with no time derivative terms appear on the right-hand side. LLG equation in this

form is widely used in describing the spin dynamics of magnetic materials. For prac-

tical reasons, researchers tend to use the LLG equation written in terms of magneti-

zation vector not the spin vector. the Magnetization form could be from the previous

equations by sending n→ −n everywhere in 3.34 and 3.36.

one can prove that the Gilbert term α n × ṅ is responsible for damping by working

out its energy rate of change.

The total energy for arbitrary dimension d is given by

E[n] =
~Sγ
ad

∫
ddr H[n, ∂µn, r], (3.37)
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and its rate of change in time reads

Ė[n] =
~Sγ
ad

∫
ddr

δH

δn
.ṅ = −~Sγ

ad

∫
ddr heff · ṅ (3.38)

= −~Sγ
ad

∫
ddr heff ·

[
γ(n× f)︸ ︷︷ ︸
=0

−α n× ṅ
]

=
~Sγα
ad

∫
ddr heff · (n× ṅ) = −~Sγα

ad

∫
ddr (n× heff ) · ṅ

= −~Sγα
ad

∫
ddr

1

γ

[
ṅ + α(n× ṅ)

]
· ṅ︸ ︷︷ ︸

0

= −~Sα
ad

∫
ddr ṅ2 < 0.

We have employed the relation (n × heff ) = 1
γ

[ṅ + α n × ṅ] between the third and

fourth steps. As a result we notice that energy is a strictly decreasing function of

time under the LLG dynamics.

3.4 Skyrmions in Chiral Magnets

3.4.1 Dzyaloshinskii-Moriya (DM) Interaction

Dzyaloshinskii-Moriya interaction or anisotropy exchange interaction is an interac-

tion between the excited state of one magnetic ion with the ground state of another

magnetic ion. When acting between two spins S1 and S2 (see figure 3.4.1), it appears

in the Hamiltonian as

HDM = D · (S1 × S2), (3.39)

where D called the Dzyaloshinskii-Moriya vector. It vanishes when the crystal has

inversion symmetry with respect to the center between two magnetic moments. How-

ever, in general D may not vanish and then will lie parallel or perpendicular to the line

connecting the two spins depending on the symmetry. In 1958 I. E. Dzyaloshinskii

published his work on the anisotropic exchange interaction in which he considered

emergence of a uniform ferromagnetic moments in a pure antiferromagnets like α-

Fe2O3, MnCO3 and CoCO3 [28]. It is useful to emphasize the fact that Dzyaloshinskii-

Moriya vector is invariant under a special class of rotation, namely the SO(3), so that



Chapter 3: Theoretical Aspects of Magnetic Skyrmions 21

Figure 3.3: The DMI between spins S1 and S2 with DM constant D perpendicular to

the line joining the two spins.

the following relation holds

D · (RS1 ×RS2) = RD · (RS1 ×RS2) = D · (S1 × S2). (3.40)

where R is a SO(3) rotation matrix.

Following shortly Dzyaloshinskii ’s work, T.Moriya published his papers dealing

with the anisotropic exchange term out of symmetry considerations [29]. Note that

both Dzyaloshinskii and Moriya dealt with antiferromagnets in their papers. However,

it was found later that ferromagnets with lacking inversion symmetry have non-zero

DMI terms.

In cubic crystals noncentrosymmetric inversion symmetry such as MnSi, the DM

interaction takes the form

HDM = D S.(∇× S). (3.41)

The sign of D depends solely on magnetic material characteristics. We will study this

term in detail in the following section when we consider the Ginzburg-Landau theory

of chiral magnets.
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3.4.2 Landau Theory

The idea of treating magnetization vector M as an expansion parameter is a fun-

damental feature of Landau theory for second-order phase transitions. It associates

phase-transitions with broken symmetries. In other words, the new ground state of

the system does not possess the total symmetry of the Hamiltonian. For example,

in ferromagnetic materials, the rotational invariance breaks down because of spon-

taneous magnetization vector M. Landau identified this magnetization vector which

becomes nonzero below a critical temperature Tc as an order parameter. This param-

eter M is to grow from 0 above the critical temperature Tc to a finite value below Tc.

Thus near Tc, the free energy has the form

F = a(T − Tc)M2 +BM4, (3.42)

where a and B are constants. Minimizing this energy with respect to the magnetiza-

tion vector M gives M ∼ (Tc − T )
1
2 . The order-parameter represents an additional

variable that must be taken into account to specify the state of system. For Heisen-

berg model, the order parameter is a vector with dimensionality n = 3, whereas for

Ising model is equal to n = 1 since it involves only the z-component of the spin.

3.4.3 The Ginzburg-Landau (GL)- Theory

The Ginzburg-Landau theory is a continuum description of phase transitions. The

main concept of this theory is based on existence of a non-zero order-parameter below

a critical temperature Tc. For T > Tc, the order parameter vanishes. Near phase

transition, the order-parameter becomes small so that one can expand the energy

functional in power series of the order-parameter. Minimizing this energy functional

with respect to the order-parameter gives equilibrium thermodynamic potentials of

the system. In case of ferromagnetic materials or smoothly varying spin textures, the

order-parameter is simply the magnetization vector M(r). In thermal equilibrium,

the dimensionless free energy G(T,B) written as function of both temperature T and
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magnetic field B goes into the partition function as

Z = e−G =

∫
DM e−F [M], (3.43)

where F is the energy functional depending on the order parameter M. In order to

calculate the free energy G we take its average value by minimizing the free energy

functional with respect to the magnetization order parameter M

G = minM(r)F [M] = F [M0]. (3.44)

Here M0 is the minimum of free energy functional F . The leading-order corrections

to the mean field are thermal Gaussian fluctuations around mean field minimum of

the free energy functional

G w F [M0] +
1

2
ln det

( δ2F

δMδM

)
(3.45)

Near the critical temperature Tc, contributions from the order parameter fluctuations

is comparable to its mean-field value, and this expansion becomes invalid. Near

Tc, the Ginzburg-Landau energy functional for chiral magnet in term of the varying

magnetization vector M is

F [M] =

∫
d3r (r0M + J(∇M)2 + 2D M.(∇×M) + U M4 −B ·M). (3.46)

where B is the external magnetic field, r0, J , D and U are parameters with the

conditions that both J and U are positive, (i.e. J , U > 0) and D is positive or

negative depending on chirality of spiral spin texture. For example, the case D > 0

selects a left-handed spiral with wavevector κ = D
J

. Bak and Jensen proposed a

Landau-Ginzburg theory for describing emergence of large helical structures in chiral

ferromagnetic materials such as MnSi and FeGe. The Landau-Ginzburg functional in

the Bak-Jensen model is [30]

FχFM =
J

2
(∂µS)2 +

u

4
(S2 − s2) +D S.(∇× S) + FA, (3.47)

where

FA =
A1

2

[
(
∂Sx
∂x

)2 + (
∂Sy
∂y

)2 + (
∂Sz
∂z

)2

]
+ A2(S4

x + S4
y + S4

z ). (3.48)
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FA is some typical spin interaction which respects the cubic crystal structure of MnSi

and FeGe crystals. The relation 3.47 is a general expression up to fourth order in

spins and second order in its gradients. The free energy functional part in 3.47 is

identical to the classical σ-model for infinitely strong u and s = 1.

We can develop a theory of the spin structure that minimizes the free energy functional

FχFM by considering the following Fourier transformation of the spin density near the

critical temperature Tc as

S(r) =
1√
2

(Ske
ik·r + S−ke

−ik·r), (3.49)

Sk is some complex Fourier coefficient vector and satisfies the condition Sk = [S−k]?

. Plugging 3.49 into the Bak-Jensen 3.47 and integrating over the three-dimensional

space gives the free energy functional written in the momentum space

< FχFM − FA >=
J

2
k2S−k · Sk + iD S−k · (k× Sk) + (3.50)

u

4
(S−k · Sk − s2)2 +

u

8
(Sk · Sk)(S−k · S−k).

The third term on the right-hand side of the expression 3.50 determines the magnitude

of the Fourier coefficient S−k.Sk = |Sk|2 = s2, the condition Sk.Sk = 0 justifies to

drop the fourth term . It is convenient to decompose the spin density vector Sk into

a pair of real numbers as follows

Sk = ak + ibk. (3.51)

The DMI term of the free energy functional then becomes

iD S−k · (k× Sk) = 2D k · (ak × bk). (3.52)

Since the size of spin [Sk]2 = [ak]2 + [bk]2 fixed at s2, one can only adjust the relative

size and orientation of ak and bk vectors in hope of maximizing the gain from DM

energy. Taking |ak| = |bk| and k · (ak × bk) < 0 , the first two terms of the free

energy 3.50 becomes

J(|k|2 − 2κ|k|)|ak|2 (3.53)
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Figure 3.4: (a) MnSi structure as an example of B20 noncentrosymmetric crystal

structures. (b) The Bloch- skyrmion configuration in MnSi.

where κ = |k| = D
J

is the spiral wave-vector which is fixed by the ratio of DM and

exchange energies.

Substituting the spin structure 3.49 into FA gives

A1

2
(k2
x|Skx|2 + k2

y|Sky|2 + k2
z |Skz|2). (3.54)

For materials such as MnSi ( see figure 3.4.3 for crystal structure), the zero-field

orientation of the spiral turns is k|| [111] , which corresponds in the GL description

to A1 < 0. As concluding remark, we found that the spin structure minimizing the

free energy functional 3.50 of the chiral ferromagnet is the right-handed spiral for

positive values of DM energy(i.e D > 0). The period of spiral λ fixed by the DM

energy through the equation

2π

λ
= κ =

D

J
. (3.55)

3.4.4 Derrick-Hobart Theorem

Derrick-Hobart theorem provides a necessary condition for dynamical stability of a

skyrmion or any general soliton by examining the scaling property [31, 32]. In this

section, we shall apply this theorem in the case of magnetic skyrmion under the
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presence of DM and Zeeman interactions. Suppose there exists a soliton solution n0

to the system. We compute each contribution in the energy functional as E0
H , E0

DM

and E0
Z , where H,DM and Z denote the Heisenberg exchange, Dyzaloshinskii-Moriya

and Zeeman terms. Now we consider the scaling n = n0(λx). Substituting this scaled

solution into each term in the energy functional gives,

E(λ) = E0
H − λ−1|E0

DM |+ λ−2E0
Z . (3.56)

This has a unique minimum point which could be found by the relation λ =
2E0

Z

|E0
DM |

.

We choose λ = 1 for consistency. It is clear that skyrmion stabilize by DMI term.

When λ→∞, the equation 3.56 implies that a skyrmion shrinks to zero without the

DMI term.

3.4.5 CP1-Theory of a Skyrmion Crystal

Any collection of 2n real numbers, from x1 to x2n,could be paired up to form collection

of n complex numbers as follows z1 = x1 + ix2 . . . zn = x2n−1 + ix2n. If the initial set

of real numbers were subject to the unit modular constraint ,Σ2n
i=1 x

2
i = 1, The space

of such numbers defines the hypersphere S2n−1.The case n = 1 is the most trivial case

and corresponds to a point on S1 which can be identified as a complex number z of

unit modulus. For n = 2, the four numbers pair up to give

z =

z1

z2

 =

x1 + ix2

x3 + ix4

 . (3.57)

The normalization condition z†z = 1 suggests the possibility of considering z as a

wavefunction of spin-1
2

particle, since the physical states are invariant under phase

transformation i.e. z
′ → eifz. It is convenient to work in the coset space S3/S1, as

the space of allowed wavefunctions of the two-component spinor, rather than S3 itself,

where S1 ' U(1) is the space of phase transformations. Another given name for this

space is Complex Projective Space or CP1 for short.
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The explicit coordinate representation of a CP1-field is

z =

 cos θ
2

eiφ sin θ
2

 (3.58)

Besides normalization condition , z satisfies this important relation n = z†σz. It

allows us to express the geometric spin phase in a very elegant way

eiS
∫
dt(cos θ−1)=e(2iS

∫
dt[z†∂tz])

(3.59)

The main advantage of using CP1 representation comes from the fact that one can

use z to define a gauge potential

aµ = −iz†∂µz =
1

2
(1− cos θ)∂µφ, (3.60)

for any spacetime index µ. Using this gauge field, one can define the two-form field

tensor ( it is also called skyrmion or topological density)

fµν =
1

2
n · (∂µn× ∂νn) =

1

2
sin θ

[
(∂µθ)(∂νφ)− (∂νθ)(∂µφ)

]
(3.61)

= ∂µaν − ∂νaµ.

In order to make analogy with classical electrodynamics, one can re-write the above

relation as

1

2
n · (∂µn× ∂νn) = εµνλ bλ, (3.62)

where bλ denotes the emergent magnetic field, and on the other hand, the quantity

1

2
n · (∂tn× ∂νn) = ∂taµ − ∂µat = eµ, (3.63)

gives the emergent electric field [33].

The effective Hamiltonian for skyrmion crystal under the presence of DM and Zeeman

interactions is

H =
J

2
(∂µn) · (∂µn) +D n · (∇× n)−B · n. (3.64)



28 Chapter 3: Theoretical Aspects of Magnetic Skyrmions

By virtue of Hopf map n = z†σz, we can write the former effective Hamiltonian with

respect to the spinor z. The spinor z can be seen as the coherent-state of spin 1/2

particles. In angle representation, the DMI term takes the form

n · (∇× n) = sin θ cos θ(cosφ∂xφ+ sinφ∂yφ) + (sinφ∂xθ − cosφ∂yθ − sin2 θ∂zφ).

(3.65)

The equivalent CP1 expression is

n · (∇× n) = −2n · a− iz†(σ · ∇)z + i(∇z†) · σz, (3.66)

where a is the emergent gauge potential and has the covariant form aµ = −iz†∂µz.

Putting all together, the full Hamiltonian (or Hamiltonian density for accuracy ) takes

the form

H = 2J
(
∂µz

† + iaµz
† − iκz†σµ

)(
∂µz− iaµz + iκzσµ

)
−B · z†σz (3.67)

= 2J(Dµz)†(Dµz)−B · z†σz.

In CP1 formulation, κ is defined as D
2J

. The covariant derivative is given by

Dµ = ∂µ − iaµ + iκσµ (3.68)

The inclusion of DM interaction term was done by simply including the non-dynamic

term proportional to κ in the covariant derivative. Although the term κσµ is non-

dynamic, it has an associated non-Abelian flux with it. This fact can be seen easily

by computing the two-form field strength

Fµν = i[Dµ, Dν ] = fµν + 2κ2εµνλ σλ. (3.69)

Where the Ableian part of the flux fµν = ∂µaν − ∂νaµ. The simplest spin struc-

ture is for ferromagnetic phase no = (0, 0, 1) whose equivalent CP1 representation is

zo = (1, 0) ( north-pole gauge) such that n0 = z†oσzo is satisfied. The most general

spin structure is the spin spiral state with wavevector k = k k̂ which has the CP1

representation

z = ei
(σ·k̂)(k·r)

2 z0, (3.70)

n = n0 cos(k · r) + (n0 × k) sin(k · r).
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For a single skyrmion, θ(r) is chosen to be a smooth function of the radial coordi-

nate r with boundary conditions θ(0) = π and θ(∞) = 0, and the angle φ to coincide

with the azimuthal angle ϕ = arctan( y
x
). The vector potential for a single skyrmion

is

a = −iz†∇z =
Φ̂

2r
(1− cos θ(r)) =

φ̂

r
sin2 θ

2
. (3.71)

Where ϕ̂ = (− sinϕ, cosϕ, 0). The corresponding two-dimensional Abelian flux orig-

inating from this vector potential will be

∇2 × a =
1

2r
sin θ(r) θ′(r). (3.72)

This quantity is none other than the emergent magnetic field b, since we are restricted

to two dimensional case , ∇2 = (∂x, ∂y, 0). In order to solve the energy functional 2.21

explicitly, we consider the skyrmion lattice as the close-packing of single skyrmions

of radius rSk forming a triangular lattice. The local spin orientation (θ, φ) of a single

skyrmion depends on the local coordinates (r, ϕ) as φ = ϕ − π
2

and θ = θ(r). The

total energy functional of a single skyrmion becomes [34]

ESk = 2J

∫
2π r dr

[
(
1

2

dθ

dr
+κ)2−κ2+

κ

r
sin θ cos θ+

1

4r2
sin2 θ−γ (cos θ−1)

]
, (3.73)

where γ = B
2J

. Numerically, in order to solve the energy functional, one can introduce

a hard cutoff such that θ(r) = 0 for r ≥ rSk, here rSk can be regarded as half the inter

skyrmion distance on the skyrmion lattice. then the total energy functional will be

ESkX =
L2

2
√

3 r2
Sk

ESk, (3.74)

where L is the sample size.

We give the phase diagrams of magnetic structure and spin textures in a thin film of

Fe0.5Co0.5Si in 3.4.5.
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Figure 3.5: Phase diagrams of magnetic structure and spin textures in a thin film

of Fe0.5Co0.5Si in the B-T plane. H, SkX and FM denote the helical, skyrmion

lattice and ferromagnetic phases respectively. BC is the critical magnetic field for

each phase, above this value the corresponding phase undergoes phase transition to

the next phase in the chain H→ SkX → FM. Retrieved from [35]
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3.5 Skyrmion Equation of Motion Using LL Equation

The effective action for the skyrmion in terms of its center of mass coordinates R =

(X, Y ) can be expressed as [36]

S = −~S
a2

∫
d2r dt (1− cos θ)∂tφ−

∫
dt E[n], (3.75)

where a is the lattice spacing and E[n] is the energy functional given by

E[n] =
~Sγ
a2

∫
d2r H[n, ∂µn, r]. (3.76)

The variation of action 3.75 gives

δS =
~S
a2

∫
d2r dt (n× ṅ− γ δH

∂n
) · δn, (3.77)

The Euler-Lagrange equation of motion can be obtained from the previous equation

through the condition δS
δn

= 0 which implies the continuum Landau-Lifshitz (LL)-

equation

n× ṅ− γ δH
∂n

= 0. (3.78)

We can define the force vector heff = − δH
δn

and rewrite the LL equation in the

familiar form

ṅ = γ n× heff . (3.79)

Specializing to the situation in which the only cause of motion is that of skyrmion

coordinates R allows us to write the following trial function of spin configuration

n(r, t) = n(r−R(t)). (3.80)

This approximation was introduced by Stone when he studied skyrmions in ferromag-

nets and quantum Hall systems two decades ago [37]. The variation in spin configura-

tion δn can only be a consequence of skyrmion’s displacement R(t)→ R(t) + δR(t).

Thus, we have the following expressions

δn = −(δX∂xn + δY ∂yn), δṅ = −(δX∂xṅ + δY ∂yṅ). (3.81)
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Plugging these terms back into the geometric part of the variation 3.77 gives

δSB =
~S
a2

( ∫
d2r n · (∂xn× ∂yn)

) ∫
dt (ẊδY − Ẏ δX) (3.82)

=
2hSQs

a2

∫
dt (ẊδY − Ẏ δX).

Applying the skyrmion ansatz n(r, t) = n
(
r −R(t)

)
back in 3.76 gives the effective

potential energy

V (R) =
~Sγ
a2

∫
d2r H[n(r−R), ∂µn(r−R), r] (3.83)

=
~Sγ
a2

∫
d2r H[n(r), ∂µn(r), r + R].

Collecting all terms together, the effective skyrmion Lagrangian is obtained as

Ls =
1

2
Ms Ṙ2 − 1

2
G ẑ · (R× Ṙ)− V (R). (3.84)

The quantity G = 2hSQs
a2

is known as the gyromagnetic constant and it is widely used

in skyrmion dynamics. The equation of motion becomes,

Ms R̈ = −∂V
∂R

+G ẑ × Ṙ. (3.85)

This is none other than Lorentz equation of motion in classical electrodynamics

where the terms on right-hand side refer to electric and magnetic forces respectively.

Skyrmion equation of motion was obtained from the action using Euler-Lagrange for-

mula for the dynamical variable R and its time derivative.

We shall see in the following section how to generalize the previous equation of motion

to include the dissipation effects in virtue of LLG equation.

3.6 Skyrmion Equation of Motion using LLG Equation

Our previous analysis of skyrmion dynamics was based on LL equation which doesn’t

include a dissipation. In this section, we will derive the skyrmion equation of motion

that accommodates dissipation effects.
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We shall adopt a rigid skyrmion ansatz n(r, t) = n(r−R(t)). Plugging ṅ = −(Ẋ∂xn+

Ẏ ∂yn) on both sides of LLG equation 3.34 gives

−Ẋ∂xn− Ẏ ∂yn = γ n× heff + αn× [Ẋ∂xn + Ẏ ∂yn], (3.86)

Taking the cross product with n gives,

−Ẋ(n× ∂xn)− Ẏ (n× ∂yn) = γ n× heff + α n× [Ẋ∂xn + Ẏ ∂yn]. (3.87)

using the identity A× (B×C) = (A ·C)B− (A ·B)C besides the fact that n2 = 1

and n ·heff = 0. We impose the condition that heff has components in the transverse

direction only. This assumption is legitimate since the force vector heff enters LLG

equation as a cross product term. After some algebraic manipulations and under

these assumptions, the equation 3.87 becomes

Ẋ(n× ∂xn) + Ẏ (n× ∂yn) = γ heff + α (Ẋ∂xn + Ẏ ∂yn). (3.88)

Taking the inner product of both sides with ∂xn and ∂xn , respectively and integrating

over the whole two-dimensional space gives the following pair of equations

4πQs Ẋ = γ

∫
d2r (∂yn · heff ) + 4πα η Ẏ ,

4πQs Ẏ = −γ
∫
d2r (∂yn · heff )− 4πα η Ẋ. (3.89)

We have used the relation
∫
d2 r(∂xn) · (∂yn) = 0 and defined the shape factor η as

η =
1

4π

∫
d2r (∂xn)2 =

1

4π

∫
d2r (∂yn)2. (3.90)

We assumed a circularly symmetric skyrmion profile. This explains why the shape

factor is the same in both x and y directions. The term
∫
d2r (∂xn · heff ) is related

to potential energy V (R) . This fact can be seen easily after some calculations∫
d2r(∂xn · heff ) = −

∫
d2r∂xn ·

δH

δn
(3.91)

= −
∫
d2r ∂xH +

∫
d2r ∇xH,
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where the first partial derivative acts on the implicit x dependence through n and

∂µn. The second partial derivative ∇x deals with the explicit dependence of the

Hamiltonian H. The first integral vanishes since it is a total derivative, and the

second integral, after shifting the position, gives∫
d2r ∇xH[n(r−R), ∂µn(r−R), r] (3.92)

=

∫
d2r ∇xH[n(r), ∂µn(r), r + R]

=

∫
d2r ∂XH[n(r), ∂µn(r), r + R]

=
a2

~Sγ
∂XV (R),

where ∂X represents the partial derivative with respect to the center coordinate X and

V (R) defines the potential energy. Putting everything together with the skyrmion

mass term gives the Newtonian equation of motion

MsR̈ = −∂V
∂R

+G (ẑ × Ṙ− αη

Qs

Ṙ). (3.93)

It differs from 3.85 by the damping term. The quantity αη
Qs

= tan(θ) defines the

skyrmion Hall angle where the sign of angle depends on the topological charge Qs.

3.7 Stress-Energy Tensor For Magnetic Skyrmions

We consider the variational principle

δS = 0 = δ

∫
dD x L(φ, π), (3.94)

where Lagrangian density L is a function of the two classical fields φ(x) and πα(x) =

∂αφ(x). Given that L does not depend directly on the space-time coordinate xα,

but only indirectly through the fields φ(x) and π(x), the conserved Noether current

associated with infinitesimal space-time translations xα → xα + εα gives the stress-

energy tensor Tαβ.

The variation of the Lagrangian density L(φ, π) is given by

δL =
∂L

∂φ
δφ+

∂L

∂(∂αφ)
δ∂αφ (3.95)
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Under spacetime translations , the variations of the fields are δφ → εα∂αφ and

δ∂αφ→ εβ∂α(∂βφ). Then the previous equation becomes

δL =
∂L

∂φ
εα∂αφ+

∂L

∂(∂αφ)
εβ∂α(∂βφ). (3.96)

Using integration by part for the second term in (3.96), we finally obtain

δL = εν
[∂L
∂φ
− ∂α

∂L

∂(∂α)
]︸ ︷︷ ︸

Euler-Lagrange equation=0

∂βφ+ εβ ∂α
L

∂(∂αφ)
∂βφ, (3.97)

so that

δL = εβ ∂α
L

∂(∂αφ)
∂βφ. (3.98)

Since Lagrangian transforms like a scalar, δL = εα∂αL ,

ενηαβ ∂αL = εβ ∂α
L

∂(∂αφ)
∂βφ (3.99)

we set the conservation law

∂α
[ L

∂(∂αφ)
∂βφ− gαβL︸ ︷︷ ︸

Stress-energy tensor

] = 0 (3.100)

Where

Tαβ =
L

∂(∂αφ)
∂βφ− gαβL (3.101)

here gαβ is the metric tensor and α, β run over space-time coordinates while µ, ν are

for space coordinates only.

As a practical example, let us apply this machinery for calculating the stress-energy

tensor for Klein-Gordon scalar field in four-dimensions. The Klein-Gordon action is

given by

S =

∫
d4 x

[1
2
∂αφ ∂

αφ− 1

2
m2 φ2]. (3.102)

We compute the stress-energy tensor from 3.101, and find

Tαβ = ∂α φ∂βφ− 1

2
(∂γφ ∂

γφ−m2φ2) gαβ. (3.103)
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To prove that this is indeed a conserved quantity we compute its divergence

∂αT
αβ = ∂α

[
∂α φ∂βφ− 1

2
(∂γφ ∂

γφ−m2φ2) gµν ] (3.104)

= �φ ∂βφ+ ∂α∂α∂
βφ− ∂β

2
(∂γ ∂

γφ−m2φ2)

= (�φ+m2)︸ ︷︷ ︸
Klein-Gordon equation=0

∂βφ+ ∂α ∂α∂
βφ− ∂β∂γφ∂γφ︸ ︷︷ ︸

has the same structure=0

= 0

Thus the stress tensor is symmetric and it is conserved.

We wish now to find the stress-energy tensor for magnetic skyrmions. This quantity

is going to be extremely useful for the symmetry analysis of magnetic skyrmions. The

Heisenberg-Dyzaloshinskii-Moriya -Zeeman (HDMZ) Lagrangian is defined by

L = LB −H = −SA · ṅ− J

2
(∂µn)2 +D n · (∇× n)−B · n, (3.105)

where the term LB = −S(1 − cos θ)∂tφ = −SA · ṅ determines the Berry phase

contribution. The HDMZ action remains invariant with respect to the translation of

space coordinates r→ r + δr, given that the Zeeman field is uniform B(r) = B. We

assume the Hamiltonian to be not explicitly dependent on time. This assumption

implies the invariance of action with respect to time translation t→ t + δt too. The

variation of n is [38]

δn = (δr · ∇+ δt ∂t)n = δxα∂αn. (3.106)

Using this information we can compute the variation of action S as

δS = δxβ

∫
d2rdt ∂α

(
δαβL− ∂L

∂(∂αn)
· ∂βn

)
= 0 (3.107)

The conservation law arising from this spacetime translational symmetry is ∂αT
αβ = 0

where the stress-energy tensor is defined as

Tαβ =
∂L

∂(∂αn)
· ∂βn− δαβL. (3.108)

From the definition of Tαβ we find

Tµ0 = − ∂H

∂(∂µn)
· ṅ. (3.109)
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and the temporal component of the stress-energy tensor as

T00 = − ∂H

∂(ṅ)
· ṅ = −SA · n = H. (3.110)

The temporal component of stress-energy tensor is the Hamiltonian density as ex-

pected. Next let us discuss the situation when we have two spatial coordinates µ and

ν. This could be done as follows:

Tµν = − ∂H

∂(∂µn)
+ δµνH − δµνLB = −T sµν − δµνLB, (3.111)

where T sµν represents the static stress-energy tensor which is defined in terms of the

Hamiltonian density only with divergence equals to

∂µT
s
µν = S[∂ν(A · ∂tn)− ∂t(A · ∂νn)]. (3.112)

Invariance of Lagrangian density with respect to time translation implies conservation

of energy while invariance with respect to space translations implies conservation of

momentum.

3.8 Skyrmion Equation of Motion from Field-Theory Approach

Being a topological Soliton, skyrmion dynamics can be described gently using the

field theory methods developed many years ago[39]. We shall use the emergent elec-

trodynamics notion during the following treatment. In this approach, the emergent

magnetic field is given by

bµ =
1

4
εµνλ n · (∂µn× ∂λn) = εµνλ ∂νaλ. (3.113)

Our strategy is to explore the time evolution of the emergent magnetic field. The

time variation of bµ will help us figure out the dynamics of skyrmion. Using Landau-

Lifshtiz equation ṅ = γ n×heff ( no damping term), we find the temporal dynamics

of bµ to be governed by the equation

∂tbµ =
γ

2
εµνλ ∂λn · ∂νheff = −γ

2
εµνλ ∂ν(∂λn · heff ) = −∂νJµν . (3.114)
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The previous result (i.e. ∂tbµ+∂νJµν = 0 ) has the appearance of continuity equation

reflecting conservation of the flux
∫
d3r bµ regardless of the details of spin Hamiltonian.

Our task now is to use the topological continuity equation during the derivation of

skyrmion equation of motion.

The topological current Jµν in 3.114 is given by

Jµν =
γ

2
εµνλ ∂λn · heff . (3.115)

The vector heff is defined as the variational derivative of Hamiltonian with respect

to magnetic moment vector, heff = − δH
δn

. Whenever the energy density functional H

does not have any explicit coordinate dependence, H = H[n, ∂µn], one can calculate

heff using the standard variational calculus techniques:

heff = −δH
δn

= ∂µ
[ ∂H

∂(∂µn)

]
− ∂H

∂n
. (3.116)

Plugging heff in 3.115 gives the expression

Jµν =
γ

2
εµνλ ∂λn · heff =

γ

2
εµνρ ∂ρ

[ ∂H

∂(∂ρn)
· ∂λn− δλρH

]
. (3.117)

We see that Jµν appears as a total derivative of stress-energy Tρλ

Tρλ =
∂H

∂(∂ρn)
· ∂λn− δρλH. (3.118)

Since Jµν = γ
2
εµνλ ∂ρTρλ, the space integral

∫
d3r Jµν vanishes for suitable boundary

conditions imposed on Jµν at spatial infinity. As a result, the skyrmion center coor-

dinate remains stationary for the given form of the energy density functional which

explicitly depends on both n and ∂µn. In order to have a mobile guiding center, one

should promotes the energy density functional to become position dependent.

H[n, ∂µn]→ H[n, ∂µn, r]. (3.119)

The Stress-energy tensor will changes due to this inhomogeneity in the following

manner

Jµν =
γ

2
εµνλ∂ρTρλ +

γ

2
εµνλ∇λH, (3.120)
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where ∇λ is a partial derivative operator that acts on the explicit position dependent

terms in H only.

Plugging the Landau-Lifshitz equation ṅ = γ n × heff into 3.115, the topological

current becomes

Jµν =
γ

2
εµνλ∂λn · heff =

1

2
εµνλn · (∂λn× ∂tn) = ∂taλ − ∂λat = −εµνλeλ. (3.121)

where eλ denotes the emergent electric field. Thus, the topological current is equiva-

lent to the emergent electric case in the non-damping case. The topological continuity

equation 3.114 becomes

∂tb = ∇× e, (3.122)

The last result is none other than the famous Faraday law for the emergent electro-

magnetic fields (e,b). We conclude that topological continuity equation is equivalent

to the Faraday law of emergent electrodynamics.

In two-dimensional space, the skyrmion center coordinate is defined as

R = (X, Y ) =

∫
d2r rb(r)∫
d2r b(r)

. (3.123)

The denominator in previous equation is simply a topological number that equals

2πQs, where Qs is known as skyrmion number. Then the topological continuity

equation 3.115 simplifies and takes the form

∂tb+∇ · J = 0, (3.124)

Where the two-dimensional topological current J is defined as J = (J31, J32). Taking

the time derivative of R gives

2πṘ =

∫
d2r rḃ = −

∫
d2r r(∇ · J) =

∫
d2r J. (3.125)

It can be seen easily from this equation that the skyrmion dynamics depends on the

spatial integral of the topological current J. Since the homogeneous part of the stress-

energy tensor fails to give the required dynamics of R, we focus on the inhomogeneous
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term in 3.120 which gives rise to the dynamics of skyrmion. In particular, the two-

dimensional topological current (J31, J32) represents the inhomogeneous term

Jinh. =
γ

2
(∇yH,−∇xH) = −γ

2
ẑ ×∇rH. (3.126)

Where ∇xH and ∇yH are the partial derivatives of H act only on the explicit coordi-

nate dependence. Inserting the previous inhomogeneous contribution of J into 3.125

leads to

4πQs Ṙ = −γ ẑ ×
∫
d2r∇rH (3.127)

= −γẑ × ∂

∂R

∫
d2r H[r, ∂µn, r + R]

= − a
2

~S
ẑ × ∂V

∂R
,

The previous result is nothing other than the massless limit of skyrmion dynamics

3.85 derived from the field theory perspective.

As a final note in this section, in the case of damping (i.e. Gilbert constant α 6= 0

), the topological conservation law 3.114 is still valid but with γ heff replaced by

γ heff −α n×heff . As a result, the skyrmion number Qs remains conserved even in

the presence of Gilbert damping.

3.9 LLG Equation and Spin-Transfer Torque (STT)

In non-ferromagnetic materials, spins take a random orientation in space. Electrons

carry charge only in electric circuits. However, for ferromagnetic materials, the story is

quite different. The outer-shell spins are oriented in the same direction. Thus, electric

currents in these materials are partially polarized. Due to the interaction between

ferromagnets and moving electrons, the orientation of magnetization will determine

the amount of current flow. Also, the electron spins can influence the orientations of

magnetizations and this is what we call a spin-transfer torque effect. In this case, we

need to generalize the LLG equation such that it contains contributions from STT.

The most general LLG equation can be written as

ṅ = n× heff + (j · ∇) n + α n× ṅ− β n× (j · ∇) n. (3.128)



Chapter 3: Theoretical Aspects of Magnetic Skyrmions 41

Where the second and last terms in 3.128 describe the adiabatic and non-adiabatic

spin-transfer torque, respectively. The non-adiabatic term was introduced to account

for small dissipative forces that break the conservation of spin in a spin-transfer

process. As final note, we have scaled the constants such as γ in 3.128 to unity for

simplicity.

3.10 Thiele Equation

LLG equation with STT term, 3.128 can be simplified if we assume a rigid drift of

the spin texture as a whole. In this case, let us consider the following ansatz

n(r, t) = n(r−R(t)), (3.129)

Where R(t) describes the center of mass motion. The time derivative of 3.129 is given

by

ṅ = −(Ṙ · ∇) n. (3.130)

Plugging 3.129 and 3.130 into 3.128 gives,

−(Ṙ · ∇) n = (j · ∇) n− n× δH

δn
+ α [−(Ṙ · ∇) n× ṅ]− β n×−(Ṙ · ∇) n.

(3.131)

In order to simplify the equation 3.131, let us multiply both sides by n× and use

the cross product identities, beside using j = −vs to be the velocity of spin polarized

conduction electrons. It is more convenient to project the result onto translational

modes, which are spontaneously broken during the formation of skyrmion lattice.

After doing the mentioned steps, we get

(vsi − Ṙi) n× ∂in = −(ni
δH

δni
) n +

δH

δn
− (β vsi − α Ṙi)∂in. (3.132)

We multiply this equation by ∂jn to get

δH

δn
∂jn = (vsi − Ṙi) (n, ∂in, ∂jn) + (β vsi − α Ṙi)∂in ∂jn. (3.133)
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Then by integrating the result over a unit cell, we obtain the final Thiele equation

[40]

F = G× (vs − Ṙ) + Γij (β vs − α Ṙ), (3.134)

where G and Γij are the gyromagnetic vector and dissipative tensor, respectively.

They are explicitly given by

Gi = εijk

∫
d2r (n, ∂in, ∂jn), (3.135)

Γij =

∫
d2r ∂in ∂jn.

The term in Thiele equation which contains the gyromagnetic vector is called the

Magnus force. We will see later that this term is related directly with the topological

charge when we study bilayer skyrmions.

If we consider an external magnetic field parallel to the z-direction and an in-

plane spin polarized current, by symmetry considerations, dissipation tensor has the

following simple form

Γ = Γ


1 0 0

0 1 0

0 0 0

 , (3.136)

and the gyromagnetic vector takes the form

G = 4πQS


0 −1 0

1 0 0

0 0 0

 . (3.137)

Note that F in equation 3.134 vanishes since HDMZ action is translationally in-

variant r→ r + δr given that Zeeman field is uniform. Thus, we obtain the following

coupled equations

 αΓ −4πQS

4πQS αΓ

Ẋ
Ẏ

 =

 βΓ −4πQS

4πQS βΓ

 (3.138)
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This system is non-singular and always admits a unique solution of the form

vSk = Ṙ = (Ẋ, Ẏ ) (3.139)

=
β

α
vs +

α− β
α3( Γ

4πQ2
S

) + α

(
vs +

αΓ

4πQS

ẑ × vs
)
.

From the last result, we observe that skyrmion’s velocity vSk is a combination of drag

velocity vs and Magnus term proportional to the topological charge Q−1
S .

3.11 Poisson Bracket Method in Magnetic Skyrmions

Magnetism is genuinely a quantum phenomena [41]. The magnetic response of many-

body solids is a manifestation of the angular momentum of their constituents, namely

the spin of electrons. At very low temperatures compared with TC , the short-ranged

fluctuations can be ignored. In micromagnetic literature [42], the magnetization dy-

namics is said to be governed by a classical hydrodynamical modes that vary smoothly

on the scale of microscopic lattice.

.

3.11.1 Quantization Setups

The geometric quantization program starts by considering the hydrodynamical modes

built from semi-classically coarse-grained spin density operator [43]

ŝ(r) = ~
∑
i

Si δ(r−Ri), (3.140)

where Si represents the vector of spin operators defined in case of electrical insulating

case as Si = (Ŝxi , Ŝ
y
i , Ŝ

z
i ) at lattice position Ri. The spin operators obey the standard

commutation relations [Ŝαi ,
ˆ
Sβj ] = i~εαβγ Ŝγi δij, where δij and εαβγ are the Kronecker

delta and Levi-Civita antisymmetric tensor, respectively. We shall define the satu-

rated spin -field density as the expectation value of the spin operators in the spin

coherent -state representation of the macroscopic state of the magnet [44]

s ≈< ψSC |ŝ(r)|ψSC > . (3.141)
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With this construction, we adopt the following regularization of the Dirac delta func-

tion

δ(r−Ri)→
δij
Ac
, (3.142)

where Ac does not necessarily correspond to the size of microscopic cell but to the

short-wavelength cutoff for the continuum limit in the sample plane. Therefore, it is

safe to interpret the spin operator Ŝi as a quantum macroscopic spin rather than the

microscopic spin operator. In order to assure the uniformity of magnetization vector

along the z-axis, the thickness of sample film in the XY - plane should be taken

infinitesimally small so that the spin-density field is purely a 2-dimensional vector

acting within the sample plane. We will apply the Poisson method for obtaining the

skyrmion dynamics at low-frequency limit.

3.11.2 Poisson Brackets in Planar Magnets

In a planar magnet at very low temperatures (i.e lower than the critical temperature

TC), the magnetization density saturates at some fixed value. Macroscopic variations

in this magnitude are strongly effective and the short-ranged fluctuations could be

safely omitted so that the continuum limit is valid. At this limit, the LL-equation

[23] governs the dynamics of the spin-density field s(r) = s n(r)

ṡ(r) = s× heff (r), (3.143)

heff is the thermodynamic conjugate force to s and defined as the variational deriva-

tive of the energy functional H with respect to s, heff = − δH
δs

. The coupling with

microscopic degrees of freedom introduces dissipation, described by Gilbert damping

[26].

Since the spin-field density is the average of the spin operator, the classical magne-

tization dynamics should be expressed in a Liouville-like equation of motion where

operators are represented in the Heisenberg picture. The Landau-Lifshitz equation of

motion can be expressed in terms of Poisson brackets [45]

˙s(r) = {s(r), H} =

∫
d2r′{s(r), sα(r′)} δH

δsα(r′)
, (3.144)
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The Poisson bracket between the spin densities is

{sα(r), sβ(r′)} = εαβγsγ(r)δ(r− r′). (3.145)

The quantized version of the former Poisson brackets can be obtained using the usual

identification

{, } → − i
~

[, ].

Since the spin-density field s = |s| has the same value everywhere in the space, one

can define the Casimir invariant C = |s|2
2

= s2

2
which is a constant of motion regardless

of symmetries of the spin Hamiltonian. Landua-Lifshitz equation can be extracted

from the following noncanonical Hamiltonian

L[n] =

∫
d2r a[n] · ṡ(r)−H[n], (3.146)

where a[n̂] corresponds to the gauge field created by a monopole at the center of the

sphere defined as

a[n] =
n0 × n

1− n0 · n
, (3.147)

Here n0 gives the direction of the Dirac string connecting the center of sphere with

infinitely distant monopole with opposite charge. a[n] should obey the equation

∇n × a = −n. (3.148)

The previous Lagrangian is defined everywhere in space except for the point n0.

The resulting Landau-Lifshitz Hamiltonian becomes singular at this point which cor-

responds to the north pole if we consider the stereographic projection of spheres

defined by the constraint s2= (constant) onto the plane of generalized coordinates.

We used the term noncanonical Hamiltonian because the Poisson algebra contains

more elements than the dynamical variables [46]. This unique feature of Landau-

Lifshitz equation stems from the existence of Casimir invariance element. In spherical

coordinates, we can write n = (sin θ cosφ, sin θ sinφ, cos θ). We notice that both φ and
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s cos θ form a canonical pair. i.e {φ(r), s cos θ(r′)}. This can seen easily by applying

the general formula of Poisson brackets between generalized coordinates parametrized

by generic field variables ξ = (ξ1, ξ2):

{ξi(x), ξj(y)} =

∫
dr

∫
dr′{sα(r), sβ(r′)} δξi(x)

δsα(r)

δξj(y)

δsβ(r′)
, (3.149)

that holds alongside with 3.145.

The kinetic part in the Lagrangian 3.146 reduces to the well-known Wess-Zumino

action [47]

LWZ = s

∫
d2r φ̇ (cos θ ± 1), (3.150)

where ± corresponds to the Dirac string intersecting the north/south pole, n0 =

±z. Wess-Zumino term is an alternative way to write the spin Lagrangian in a

very abstract form since it utilizes from the homotopy theory. More precisely, let

us introduce a new coordinate τ and a fictitious vector potential aτ along this new

coordinate direction. The spin vector n(t, u) depends on u and t. We can choose τ

such that at τ = 0 the unit vector n points along the north pole direction n(t, 0) =

n0 = (0, 0, 1), and at τ = 1 it points along the physical spin direction n(t, τ =

1) = n(t). The interpretation here is for every spin vector n(t) at time t, we have a

trajectory of vectors that start from n0 at τ = 0 and move along the great circle of

the unit sphere to approach n(t) at τ = 1. This fact gives us a legitimate reason to

generalize the definition of variable θ to be θ(t, τ) = t θ(t) so that one has

θ(t, 0) = 0, (3.151)

θ(t, 1) = θ(t). (3.152)

Where the first case,3.151,corresponds to the north pole direction and the second

case, 3.152, corresponds to the physical spin direction. The definition of φ(t) is the

same and there is no need for any generalization i.e. φ(t, τ) = φ(t). this fact implies

immediately the vanishing of the vector field aτ , since (1 − cos θ)∂τφ
2

= 0. In this

setup, the emergent electric field 3.63 becomes

1

2
n.(∂tn× ∂τn) = ∂taτ − ∂τat = −∂τat. (3.153)
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Which is a first-order differential equation for at. It can be readily integrated to give

the physical gauge field :

at(t, τ = 1) ≡ at(t) = −1

2

∫ 1

o

dτ n · (∂tn× ∂τn). (3.154)

Moreover, its value at τ=0 is zero since θ(t, 0) = 0 and thus at(t, 0) = (1−cos 0)∂tφ =

0. As a result, the geometric phase becomes a double integral (one for time t and one

for the fictitious variable u):

e−2is(
∫
dt at(t)) = e−2is

( ∫
dt

∫ 1
0 dτ n·(∂tn×∂τn)

)
= eiSWZ . (3.155)

At low-frequency limit, skyrmion texture is assumed to move in a rigid-body fashion

where its dynamics is given by

ṡ ≈ Ṙi ∂is. (3.156)

The equation of motion for the center of skyrmion coordinate R is Ṙ = {R, V (R)}

which is identical to Thiele equation

4πsQS Ṙ× z = F, (3.157)

where F = − ∂V
∂R

gives the generalized force vector and the potential V (R) = H(nSk(r−

R)) should be taken as the free energy functional evaluated with skyrmion solution.

The canonical conjugate variable to R is Π = 4πsQS R × z defined such that

{Ri,Πj} = δij. This is indeed the generator of translations of the rigid texture,

{Πi, s} = 4πsQs εij {Rj, s} = εij εjk
∂s

∂Rk

≈ ∂isi. (3.158)

Note that the algebra of translations is not closed since {Πi,Πj} = 4πsQs εij. This

fact is intimately related to the emergence of Magnus force [48].

3.12 The Interfacial DMI and Skyrmions in Thin Films

The DMI was also predicted to be present at the interface between ferromagnetic thin

films (such as Co) and metals with large spin-orbit coupling (such as Pt). In this case,
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the DMI can be written as

HDMI = Σ<i,j>Dij.(Si × Sj) (3.159)

where Dij is the DM interaction vector for the atomic bond ij, Si is the atomic

moment vector, and the summation is performed on neighbor pairs < i, j >. In the

case of magnetic thin film adjacent to high spin-orbit heavy metal, it was shown that

the DM vector takes the simple formula D uij×ẑ, where uij is the unit vector between

the sites i and j. ẑ gives the direction normal to the film oriented from the high spin-

orbit heavy metal layer to the magnetic ultrathin film. We assume the atomic spin

direction to evolve slowly at atomic scales. This allows us to build up a continuous

form for the DMI. As we deal with films that are thinner than any micromagnetic

length scale, variations along the surface normal are ignored even if DMI originate

from the interfaces. In this case, DMI energy is [49]

EDM = t

∫ ∫
D
[(
nx
∂nz
∂x
− nz

∂nx
∂x

)
+
(
ny
∂nz
∂y
− nz

∂ny
∂y

)]
d2r. (3.160)

The global effect of the DMI on magnetization m can be computed by the micro-

magnetic energy per volume as

E = D · (nz∂xnx − nx∂xnz + nz∂yny − ny∂ynz). (3.161)

where the Dzyaloshinskii-Moriya constant D is inversely proportional to the thick-

ness of film and takes a positive value for anticlockwise rotation. The existence of

interfacial DMI is verified using different experimental methods such as Brillouin light

scattering and propagation or nucleation of chiral magnetic domains. Large DMI is

required for skyrmions to be stabilized in magnetic thin films / metals with large

spin-orbit coupling. In ultrathin magnetic films with out-of-plane magnetization, the

stabilization of an individual skyrmion is governed by the interplay between differ-

ent interactions beside the DMI such as the exchange interaction and out-of-plane

anisotropy. The exchange interaction characterized by the stiffness constant J tends

to align all the spins in one direction. This is unlike out-of-plane anisotropy charac-

terized by the anisotropy coefficient K, which tends to align the spins perpendicular
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to the surface. In addition, we can also have additional contributions from magneto-

static interaction and from geometrical confinement of the structure [7]. Taking these

considerations into account, we write the quantum counterpart of an effective Hamil-

tonian for two dimensional chiral magnet as

H = −J ΣiSi · Sj +D Σieµ · (Si × Si+eµ)−B ΣiS
z
i −K Σi(S

z
i )2. (3.162)

The first term represents the Heisenberg interaction between nearest adjacent spins

taken on a square lattice for simplicity where i and eµ represent the position and unit

vector on that lattice, respectively. The second term is the interfacial DM interaction

term , B and K are the perpendicular magnetic field and uniaxial anisotropy constant

at lattice site i, respectively.



Chapter 4

QUANTUM ENTANGLEMENT

We present basic definitions of some important concepts in the quantum theory

of composite systems which in turn will help us in the subsequent chapter.

4.1 Qubits and Bloch Sphere

The state of a two-level system is known as a spin-1
2

state. It can be written in the

|j,m〉 basis

|ψ〉 = cos
θ

2
|1
2
,
1

2
〉+ eiφ sin

θ

2
|1
2
,−1

2
〉. (4.1)

Where j = 1
2

and m = ±1
2
. Unlike classical bits which might take the values 0

or 1, two-level states or Qubits can take any value on a unit sphere. It is cus-

tomary to represent each qubit on Bloch sphere parametrized by the unit vector

n = (sin θ cosφ, sin θ sinφ, cos θ)T where θ and φ can be determined from 4.1. We

give a schematic diagram for Bloch sphere in 4.1

4.2 Density Operators

Quantum mechanics can be formulated using density operators rather than state

vectors. For closed quantum systems, both formulations are identical and give the

same results. Density operator ( sometimes called density matrix) for an ensemble of

pure states {pi, |ψi〉} is defined by the equation

ρ = Σipi|ψi〉〈ψi|. (4.2)
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Figure 4.1: Qubit representation on Bloch sphere.

The unitary evolution of density operator if a closed quantum system is given by the

action of a unitary operator U

ρ = Σipi|ψi〉〈ψi| → ΣipiU |ψi〉〈ψi|U † = UρU †. (4.3)

Density operators have non-negative eigenvalues and trace equal to one i.e. Tr(ρ) = 1.

However Tr(ρ2) ≤ 1 with equality if and only if ρ is pure state.

Suppose we have two physical systems A and B, whose global state is determined by

a density operator ρAB. The reduced density matrix for system A is defined by

ρA = TrB(ρAB), (4.4)

where TrB denotes the partial trace over system B. The partial trace is given by

TrB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| Tr(|b1)〉〈b2|). (4.5)

where |a1〉, |a2〉 are any two state vectors in the Hilbert space HA and |b1〉, |b2〉 are

any two state vectors in the Hilbert space HB. Note that Tr|b1〉〈b2| = 〈b2|b1〉.
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4.3 Schmidt Decomposition

Schmidt decomposition provides us with a strong tool for the study of quantum com-

posite systems. Let |ψ〉 denote a pure state of a composite system , AB. According

to Schmidt decomposition we can write the state as [50]

|ψ〉 = Σiλi|iA〉 ⊗ |iB〉, (4.6)

where |iA〉 and |iB〉 are orthonormal bases for systems A and B, respectively and λi

are non-negative numbers satisfying Σλ2
i = 1 , known as Schmidt coefficients. The

state |ψ〉 of a composite system is a product state if and only if it has Schmidt number

equals to 1.

As a practical example, suppose |ψ〉 of a composite system with subsystems A and

B. We can prove that the Schmidt number of |ψ〉 is equal to the rank of the reduced

matrix ρA or ρB. From 4.6 we can calculate the outer product |ψ〉〈ψ| and find the

reduced density matrix ρA as

ρA = TrB(|ψ〉〈ψ|) = TrB(ΣiΣj λiλj|iA〉 ⊗ |iB〉〈jB| ⊗ 〈jA|) (4.7)

= ΣiΣj λiλj|iA〉〈jA| Tr(|iB〉〈jB) = ΣiΣj λiλj|iA〉〈jA|〈jB|iB〉

= ΣiΣj λiλj|iA〉〈jA|δij = Σi λ
2
i |iA〉〈iA|.

Similarly we can prove ρB = Σiλ
2
i |iB〉〈iB|.

4.4 Quantum Entanglement

Quantum entanglement implies the existence of global states for composite systems

which can not be written as tensor product of the states corresponding to its subsys-

tems [51]. According to quantum mechanics, the total Hilbert space H is the tensor

product of the subsystem Hilbert spaces H = ⊗n`=1H`. Then the global state of the

whole system reads

|ψ〉 = Σi1...inci1...in|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉. (4.8)
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This global state cannot be written in general as a product state i.e. |ψ〉 6= |ψ1〉 ⊗

|ψ2〉⊗· · ·⊗|ψn〉. For bipartite systems the Hilbert space H = H1⊗H2 with dimH1 =

dimH2 = 2 is spanned by the well-known EPR states [52]

|φ±〉 =
1√
2

(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉), (4.9)

|χ±〉 =
1√
2

(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉).

Remarkably if one measures the subsystem state one finds it to be |0〉 and |1〉 with

equal probabilities (i.e 50:50). Although the global state is perfectly determined, we

cannot determine the state of its subsystems.

4.5 Entanglement Entropy

Entanglement entropy is a defined as an entanglement measure for pure states. Its

value determines whether the state is separable or entangled [53]. For bipartite sys-

tems, we can Von Neumann or Renyi entropies as an take entanglement measures for

pure states.

Consider a quantum system consisting of two subsystems A and B. Each subsystem

is characterized by a reduced density matrix ρA and ρB. The density matrix for the

whole system is ρAB = |ψ〉〈ψ|. Von Neumann entropy S is

S(ρA) = −Tr(ρA logρA) = −Tr(ρB logρB) = S(ρB). (4.10)

Where ρA = TrB(ρAB) and ρB = TrA(ρAB). When either S(A) or S(B) equals to

zero, we have a separable state. As side note, many entanglement measures reduce to

entanglement entropy such as entanglement of formation, relative entropy of entan-

glement. However, some entanglement measures can not be reduced to entanglement

entropy such as negativity and logarithmic negativity [53].

The Renyi entanglement entropies Sα are computed using the reduced density matri-

ces beside non-negative index called Renyi index α. It takes the form

Sα(ρA) =
1

1− α
logTr(ραA) = Sα(ρB). (4.11)
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It is not difficult to show that Renyi entropy approaches Von Neumann entropy when

α→ 1.



Chapter 5

SU(4) DESCRIPTION OF BILAYER

SKYRMION-ANTISKYRMION PAIRS

We study the antiferromagnetic coupling and entanglement between skyrmion

lattices in magnetic bilayer systems. We first formulate the problem of large bilayer

skyrmions using CP1 ⊗CP1 theory. We have considered bilayer skyrmions under the

presence of Dzyaloshinskii-Moriya (DMI) and Zeeman interactions confined in a two-

dimensional chiral magnet such as Fe0.5Co0.5Si. We parametrize bilayer skyrmions

using SU(4) representation, and represent each skyrmion and antiskyrmion using

Schmidt decomposition. The reduced density matrices for the skyrmion and the

antiskyrmion are calculated. The conditions for maximal, partial entanglement and

separable bilayer skyrmions are presented [54].

5.1 Motivation

Skyrmions can be driven by charge or spin currents in confined geometries [55]. In

general, skyrmions are subject to skyrmion Hall effect (SkHE) caused by the Magnus

force. The SkHE was predicted theoretically in [56] and has been observed experimen-

tally [57]. The SkHE is caused by Magnus force acting on the moving skyrmion with

non-vanishing topological charge [48]. Magnus force is the force acting transverse to

the skyrmion’s velocity in the medium and can be interpreted as a manifestation of

the real-space Berry phase [59].

SkHE is a detrimental effect since the skyrmions that experience it will deviate

from going along a straight path. As a result, skyrmions in motion can be damaged or

even destroyed at the edges of the thin film sample. One way of suppressing SkHE is

to consider two perpendicular chiral thin films strongly coupled via antiferromagnetic
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(AFM) exchange coupling. It is expected that when skyrmion lattice is formed at

the bottom thin film , simultaneously another skyrmion lattice is created at the top

thin film with opposite topological charge. In this case, total SkHE vanishes since

the Magnus force acting on the top skyrmion is equal to the Magnus force that acts

on the bottom skyrmion with opposite sign leaving us with zero net force. Analogous

scheme was proposed to suppress SkHE in nanoscale Néel skyrmion by considering

two perpendicular ferromagnetic films separated by an insulator with heavy metal

underneath the second ferromagnetic film [60, 61].

Quantum signatures for large skyrmions can emerge at the phase boundary be-

tween skyrmion crystal phase (SkX) and ferromagnetic phase at zero temperature

like skyrmions in Fe0.5Co0.5Si. During this phase transition, quantum liquid phase

will emerge [58]. In this case, the classical LLG [26] and Thiele equation [40] break

down due to quantum fluctuations. The full quantum theory of bilayer skyrmions is

out of the scope of this work and it can be recovered under some circumstances. As

an example, for sufficiently weak antiferromagnetic exchange coupling between thin

films, bilayer skyrmion (antiferromagnetically coupled skyrmion-antiskyrmion pair)

can be seen as two separate skyrmions and the quantum dynamics is already known

for a single large skyrmion [58]. In this work, we give a detailed theory of large bi-

layer skyrmions ( with sizes at order of 100 nm ) using HDMZ (Heisenberg exchange,

Dzyaloshinskii-Moriya and Zeeman interactions) model. We study the problem of

entanglement in large bilayer skyrmions from general perspective using our developed

continuum theory of bilayer skyrmions and the SU(4) representation. In the final

section, we study the geometry of quantum states in bilayer skyrmions.

5.2 The CP1 ⊗ CP1-Theory of Large Bilayer Skyrmion

We consider two thin films fabricated from chiral magnets separated by an insulating

spacer with antiferromagnetic coupling between the films. We assumed each chiral

film to host Bloch skyrmions under certain ranges of temperature and external mag-

netic field determined by the film’s parameters. Skyrmions in the first thin-film are
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equal in size with skyrmions in the second thin-film but with opposite topological

charge. For our model to hold, we assume temperatures lower than the magnon gap

and a skyrmion with large radius. Luckily, skyrmions in Fe0.5Co0.5Si support these

assumptions [35]. We present a detailed theory of bilayer skyrmions written with

respect to CP1⊗CP1-theory. The HDMZ Hamiltonian density for each chiral magnet

layer is

Hζ =
J

2
(∂µnζ) · (∂µnζ) +Dnζ · (∇× nζ)−B · nζ , (5.1)

We adopted Einstein summation notation for repeated indices ∂µn·∂µn ≡ Σµ∂µn·∂µn.

Since we are interested in two-dimensional thin films fabricated from chiral magnets,

µ = (x, y) and ζ = (S,A) label the skyrmion and anti-Skyrmion, respectively.

nζ = (sin θζ cosφζ , sin θζ sinφζ , cos θζ)
T is the transpose magnetic moment unit writ-

ten in the O(3) representation and has unit modulus |nζ |2 = 1. The first term in the

Hamiltonian is the exchange interaction with exchange constant J , the second term

is the DMI term with D being the Dzyaloshinskii-Moriya (DM) vector constant [7].

The DMI term is responsible for chirality in the system since it has a vanishing value

for centrosymmetric structures. The last term is the Zeeman interaction which plays

an important role in stabilization of large skyrmions. The magnetic anisotropy term

is ignored since such a term does not play an important role in Fe0.5Co0.5Si [35]. The

total energy is the spatial integral of Hζ : Hζ =
∫
d2r Hζ . The bilayer skyrmion can

be described by the following Hamiltonian Htot = HS +HA +Hint. The term Hint is

assumed to contain the AFM exchange coupling between the two thin films

Hinter = −Jint
∫
d2x nζ=S · nζ=A. (5.2)

The AFM interaction Hamiltonian term is responsible for the coupling between

spin degrees of freedom in skyrmion and spin degrees of freedom in antiskyrmion,

with AFM-coupled spins that are in opposite alignment with each other.

We will use a purely geometric approach in our investigation of quantum entan-

glement, thus it is more convenient to work in the equivalent CP1 formulation of

the nonlinear sigma model NLσM [18, 34]. This can be done in virtue of the Hopf
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map nζ = z†ζσzζ . This mapping connects the classical object nζ with spinor zζ = cos
θζ
2

sin
θζ
2
eiφζ

. The spinor zζ can be interpreted as the coherent-state wavefunction

of spin-1
2

particles. The equation 5.1 can be re-expressed in term of the spinor zζ as

(see 3.4.5 for derivation)

Hζ = 2J(Dµzζ)
†Dµzζ −B . z†ζσzζ , (5.3)

where Dζ
µ = ∂µ− iaζµ + iκσζµ is the covariant derivative, κ = D

2J
, and aζµ = −i(z†)ζ∂µzζ

is the emergent gauge potential. The inclusion of DMI in the effective Hamiltonian

5.1 was done simply by adding a non-abelian gauge potential proportional to the

Pauli matrices σµ. The emergent gauge field aζµ is usually called the real-space Berry

connection. It is synthesized by adiabatically varying the magnetic texture sufficiently

slow in time. The real-space Berry phase connection can give rise to the skyrmion Hall

effect, unlike the momentum-space Berry connection which gives rise to the anomalous

Hall effect [59]. Although the nonabelian gauge field is nondynamic (constant), it has

an associated flux with it. The field tensor obtained from the gauge potential aµ is

F ζ
µν = i[Dζ

µ, D
ζ
ν ] = f ζµν + 2κ2εµνλσ

ζ
λ. (5.4)

where the Abelian part of the flux f ζµν = ∂µa
ζ
ν − ∂νaζµ.

The two-dimensional emergent vector potential for the single magnetic skyrmion

will be

aζ = −iz†ζ∇2zζ =
φ̂ζ
2r

(1− cos θζ(r)) =
φ̂ζ
r

sin2 θζ
2
, (5.5)

where φ̂ζ = (sinφζ , cosφζ , 0) and ∇2 ≡ (∂x, ∂y, 0). The magnetic flux originating from

this vector potential will be

∇2 × aζ =
1

2r
sin θζ(r)θ

′
ζ(r). (5.6)

The local spin orientation (θζ , φζ) is related to the local coordinate system of a

single skyrmion (r, ϕ) such that θζ = θζ(r) and φζ = ϕζ− π
2
. For the sake of simplicity,

we assume B = Bẑ > 0. The geometric considerations of skyrmions impose the
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Figure 5.1: The setup used in our study consists of two identical thin films fabricated

from chiral magnets (CM1,CM2) separated by an insulating material (I). The insu-

lating material is responsible for the antiferromagnetic coupling between spins in each

ferromagnetic layer. Each chiral magnet supports the emergence of large Skyrmion

phase under some specific conditions of magnetic field B and temperature T .

following boundary conditions on θζ : (a) θζ(∞) = 0 and (b) θζ(0) = π. The total

energy of a single skyrmion (anti-skyrmion) in the CP1 formulation reads [34]

ESK = 4πJ

∫ ∞
0

rdr

[
(
1

2

dθζ
dr

+ κ)2 − κ2 (5.7)

+
κ

r
sin θζ cos θζ +

1

4r2
sin2 θζ − γ(cos θζ − 1)

]
,

where γ = B
2J

. Then the total energy of large bilayer skyrmion reads

Etot = ESk(θS) + ESk(θA) + Eint(θS, θA), (5.8)

In CP1 formulation, the AFM interaction term has the form

Eint = −2πJint

∫ ∞
o

rdr cos θS. cos θA. (5.9)

Using calculus of variations, we find by minimizing the energy functional Etot with

respect to θS and θA the following equations

Jr(
dθS
dr

)2 +
J

r

dθS
dr

+ κ− 2Jκ cos 2θS

− J
2r

sin 2θS + 2Jγ sin θS − Jintr sin θS cos θA = 0,
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and

Jr(
dθA
dr

)2 +
J

r

dθA
dr

+ κ− 2Jκ cos 2θA

− J
2r

sin 2θA + 2Jγ sin θA − Jintr sin θA cos θS = 0.

that relate θA and θS. For a sufficiently large AFM interaction, we have the case

where each spin in the first film is coupled with another opposite spin in the second

film. This allows us to write θA = π − θS and write the total energy functional 5.8

in term of a single angle θ. Then the total energy functional 5.11 simplifies for fixed

values of DM interaction constants D, exchange couplings J and magnetic fields B

in both skyrmion and its AFM coupled antiskyrmion. It takes the simple form

Etot = 4πJ

∫ ∞
0

rdr

[
(
1

2

dθS

dr
)2 + 2γ +

1

2r2
sin2 θS

]
(5.10)

+2πJint

∫ ∞
0

rdr cos2 θS.

Realistically, in order for 5.7 to make sense one has to introduce a hard cutoff rSk

such that θS,A(r) = 0 for r ≥ rSk. Physically, rSk is a half-Skyrmion distance in the

skyrmion phase crystal or the size of a skyrmion:

Etot = 4πJ

∫ rSk

0

rdr

[
(
1

2

dθS

dr
)2 + 2γ +

1

2r2
sin2 θS

]
+ 2πJint

∫ rSk

0

rdr cos2 θS. (5.11)

Throughout our study, we have considered two Fe0.5Co0.5Si thin films separated by

an insulating spacer. For Fe0.5Co0.5Si , D = 0.48mJ
m2 , the unit cell size ≈ 0.45nm

and spiral wave length λ = 90nm. Thus, the ratio D
J

= 2πa
λ
∼ 1

30
[34, 62]. As

shown in [34], the relation between θ(r) and rSk is almost a linear dependence. This

allows us to expand θ(r) as a linear function of r in solving the energy functional

5.11. The coefficients of the linear function can be determined explicitly using the

boundary conditions θ(0) = π and θ(rSK) = 0. We found that two dimensional

emergent potential 5.5 for skyrmion and its AFM-coupled antiskyrmion has the same

vector field shape as shown in 5.2. This means, both skyrmion and its AFM coupled

antiskyrmion experience the same fluxes.
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Figure 5.2: The vector field plot of emergent gauge field a. We found this figure to

be the same for both skyrmion and its AFM-coupled antiskyrmion. In other words,

large skyrmions and its AFM coupled antskyrmions feel the same amount of fluxes.

5.3 SU(4) Parametrization of Bilayer Skyrmion

We will give a specific representation for spin degrees of freedom in bilayer skyrmions

using SU(4) symmetry. The SU(4) skyrmions were studied before in multicompo-

nent quantum Hall system [63] and graphene [64]. It was found that skyrmions in

these systems are stabilized mainly by the competition between Zeeman and Coulomb

interactions , unlike skyrmions in chiral magnets . However, both skyrmions share

the same topological properties in common regardless of the systems’ details. Since

we have AFM coupled skyrmion-antiskyrmion pairs, our system resembles the spin-

pseudospin skyrmions in term of parametrization despite the fact that one now has

two skyrmions instead of one. For large bilayer skyrmions, we consider the properties

of SU(2)⊗SU(2) skyrmion-antiskyrmion pairs under the presence of DM and Zeeman

interactions (HDMZ model). We do this from a perspective of entanglement between

the spin degrees of freedom in skyrmion and its AFM coupled anti-skyrmion. Because

of Zeeman interaction term, the full SU(4) symmetry breaks down to U(1)⊗U(1) sym-

metry where each symmetry group corresponds to a rotation of spin in the skyrmion or
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antiskyrmion along the applied magnetic field direction ( in our case, the z-direction).

Interestingly, the DMI term written in term of spinors zζ preserves the full SU(4) sym-

metry. This is due to the embedding of DMI term in the covariant derivative that

acts on the spinor zζ as a nondynamic term.

We parametrize SU(4) bilayer skyrmion using a Schmidt decomposition [65]. Ac-

cording to Schmidt decomposition, every pure state in the Hilbert space H12 =

H1 ⊗H2 can be written in the form

| ψ〉 = ΣN−1
i=0 λi | ei〉⊗ | fi〉, (5.12)

where {|ei〉}N1−1
i=0 is an orthonormal basis forH1, {|fi〉}N2−1

i=0 is an orthonormal basis for

H2, N ≤ min{N1, N2}, and λi are non-negative real numbers such that ΣN−1
i=0 λ

2
i = 1.

Thus, we can express the wave-function as

| Ψ(r)〉 = cos
α

2
| Φ+

S 〉⊗ | Φ
+
A〉+ sin

α

2
eiβ | Φ−S 〉⊗ | Φ

−
A〉 (5.13)

=


cos α

2
cos θA

2
cos θS

2
+ sin θA

2
sin θS

2
ei(β−φA−φS)

cos α
2

sin θA
2

cos θS
2
eiφA − sin α

2
sin θS

2
cos θA

2
ei(β−φS)

cos α
2

cos θA
2

sin θS
2
eiφS − sin α

2
sin θA

2
cos θS

2
ei(β−φA)

cos α
2

sin θA
2

sin θS
2
ei(φA+φS) + sin α

2
cos θA

2
cos θS

2
eiβ


where α ε [0, π] and β ε [0, 2π] are functions of r, and the local two-component

spinors | Φ+
S 〉, | Φ

−
S 〉, | Φ

+
A〉 and | Φ−A〉 are constructed as follows:

| Φ+
ζ 〉 =

 cos
θζ
2

sin
θζ
2
eiφζ

 , (5.14)

| Φ−ζ 〉 =

− sin
θζ
2
e−iφζ

cos
θζ
2

 ,

where θζ ε [0, π] and φζ ε [0, 2π] are the usual polar angles defining the vector n. We

can read off directly the reduced density matrices using the Schmidt decomposition.

The reduced density matrices for spins in skyrmion and antiskyrmion are
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ρS = TrA(| Ψ(r)〉〈Ψ(r |) = (5.15)

cos2 α

2
| Φ+

S 〉〈Φ
+
S | + sin2 α

2
| Φ−S 〉〈Φ

−
S |,

and

ρA = TrS(| Ψ(r)〉〈Ψ(r |) = (5.16)

cos2 α

2
| Φ+

A〉〈Φ
+
A | + sin2 α

2
| Φ−A〉〈Φ

−
A | .

It is convenient to express the wavefunction 5.13 as |Ψ(r)〉 =


z1

z2

z3

z4

 such that entan-

glement measure can be written gently as

E = 4|z1z4 − z2z3|2. (5.17)

For maximally entangled states we have z1 = z2 = 1√
2

and z2 = z3 = 0 while for

separable (factorisable) states we have z1z4 = z2z3.

Consider for simplicity the case when spins in skyrmion and antiskyrmion are max-

imally entangled. As an example, let |Φ+
S 〉 =

1

0

, |Φ+
A〉 =

0

1

, |Φ−S 〉 = 1√
2

1

1


and |Φ−A〉 = 1√

2

−1

1

. Clearly when α = π
2
, the off-diagonal terms vanish and the

diagonal terms become 1. This verifies the maximal entanglement condition ρAik = 1
2
I2.

In this case, it is convenient for us to use the following entanglement measure: [65]

Ξ := 1− Σµ < σ2
µ >= sin2 α. (5.18)

For the aforementioned example maximal entanglement corresponds to states with

α = π
2
. The disentangled states correspond to the cases α = 0, π. Between these two

values, the reduced density matrix takes some intermediate value and can be also

entangled. As shown in figure 5.3, our proposed entanglement measure is robust
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Figure 5.3: plot of entanglement measure Ξ versus angle α and small angle variation

δ = 0 → 0.35 radians . Maximal entanglement happens around π
2

+ nπ. We observe

that maximally entanglement measure is robust against small angle variations.

against perturbations with small angles. This gives us a justification for using CP1⊗

CP1-theory. The bright regions in figure 5.3 shows the maximally entangled states.

The spin states | ΦS〉, | ΦA〉 and | Ψ〉 can be represented on Bloch spheres as shown

in figure 5.3 for some specific spin states.

The local transformation operators U of the density matrices form a six-dimensional

subgroup SU(2) ⊗ SU(2) of the full unitary group U(4) = U(1) ⊗ SU(4). The local

transformation operators U are parametrized by an arbitrary six real variables such

that U(θS, φS, θA, φA, α, β)†U(θS, φS, θA, φA, α, β) = I4 (4×4 identity matrix) . With-

out loss of generality, we can use I2 ⊗ σµ and σµ ⊗ I2 as hermitian su(2)⊗ su(2) Lie

algebra basis of the full SU(4)-bilayer skyrmion theory. Here, σµ and I2 denote the

Pauli matrices and the two-dimensional identity matrix , respectively ( see appendix

B for details on SU(4) basis) .
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Figure 5.4: Bloch sphere representation of spin states | ΦS〉 =| 0〉 = (1 0)T , | ΦA〉 =|

1〉 = (0 1)T and | Ψ〉 = (0 1√
2

1√
2

0)T .

5.4 Geometry of Bilayer Skyrmion

Magnetic skyrmions are whirling spin configuration augmented with topological pro-

tection against small perturbations in medium. Because magnetic skyrmions can be

viewed as tensor product of large number of spin-coherent states [58]. The com-

plete wave function of a single skyrmion can be constructed as the tensor product of

spin states defined in the basis of spin-coherent representation. The skyrmion wave

function corresponding to a single skyrmion will be

| ψSC〉 = ΣN−1
i=0 ⊗ | ni〉 ≡| n0〉⊗ | n1〉 ⊗ ...⊗ | nN−1〉. (5.19)

The subscript SC stands for semi-classical and N is the total number of spins. Here,

the projection is defined as ni · Ŝi | ni〉 = S | ni〉 and i labels the spins that form the

skyrmion. Considering the z-axis as a quantization axis, the state ni can be defined

as [66]

| ni〉 = e−iφiŜ
z
i e−iθiŜ

y
i e−iχiŜ

z
i | S〉 (5.20)

= (cos
αi
2

)2SΣ2S
n=0e

βi(n−2S) (tan
αi
2

)2 (Ŝ−i )n

n!
| S〉,
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where Ŝ±i = Ŝxi ± iŜyi . The operators Ŝµi obey the commutator algebra [Ŝµi , Ŝ
ν
i ] =

i~ Ŝρi , with the associated uncertainty relation given by

〈(Ŝµi )2〉〈(Ŝνi )2〉 ≥ 1

4
~2〈(Ŝρi )2〉. (5.21)

The equality holds for spin coherent state. Like the classical Glauber state in quan-

tum optics, spin coherent states are minimum-uncertainty states. The entanglement

spectrum for spin coherent states was investigated previously in ref. [67]. We can

study the problem of entangled two skyrmions using many-body entanglement of

spin chains [68]. In other words, the problem of entanglement in bilayer skyrmions is

identical to entanglement problem for XXZ spin chains. In this case, we will have

XXZ spin chain for skyrmion and another chain for antiskyrmion. Each spin chain

is constructed from the same spinor. This gives us a justification for using contin-

uum theory instead of the usual many-body quantum entanglement approaches for

systems with large spin S. In this section, we will give a geometric description of the

problem [69]. This approach will give us a better understanding to the problem of

entangled spins in bilayer skyrmion. CPN is the space of rays in CN+1, or equivalently

the space of equivalence classes of N + 1 complex numbers, with at least one of them

non-zero, under (Z0, Z1, . . . , ZN ) ∼ λ(Z0, Z1, . . . , ZN ), where λε C and λ 6= 0. In

quantum field theory, the CPN−1 field corresponds to N -component normalized spinor

z = (z1, z2, z3, . . . zN )T such that two vectors z and eiϕz are equivalent for arbitrary

ϕ ε R. The normalization of CPN−1 spinor takes away two real parameters (or one

complex) which explains why the space CPN−1 correspond to CN . Any CP3- mani-

fold is isomorphic to U(4)
[U(3)⊗U(1)]

∼= SU(4)
[SU(3)⊗U(1)]

, therefore the second homotopy group

is π2(CP3) = π2{ SU(4)
[SU(3)⊗U(1)]

} = π1[SU(3)⊗ U(1)]. Using the fact that the homotopy

group for the product manifold factorizes as πk(g ⊗ H) = πk(g) ⊗ πk(H) alongside

with the fact that any simple Lie group g has a vanishing fundamental homotopy

group(i.e π1(g) = 0). We obtain π2(CP3) = π1[SU(3)]⊗ π1[U(1)] = Z [16].

The pure state for each spin-1
2

can be described by a vector in a 2-dimensional complex

vector space. In Dirac notation, this vector can be expressed as | Ψ〉 = ΣN−1
i=0 Zi | i〉,

Where | i〉 is a given orthonormal basis. The distance DFS between two states | Ψ1〉



Chapter 5: SU(4) description of bilayer skyrmion-antiskyrmion pairs 67

and | Ψ2〉 is determined by the Fubini-Study distance [70]

cos2DFS =
| 〈Ψ1 | Ψ2〉 |2

〈Ψ1 | Ψ1〉〈Ψ2 | Ψ2〉
=

| Z1.Z2 |2

(Z1.Z1)(Z2.Z2)
. (5.22)

where Zi is the row vector whose entries are the complex conjugates of the entries

of the column vector Z
i
. The Fubini-Study metric measures the distinguishability of

pure quantum states. In quantum communication theory, Fubini-Study distance is

known as fidelity [69]. Since we have considered a continuum theory for describing

large bilayer skyrmions in section 5.2, the distinguishability of any two arbitrary states

of large skyrmion or antiskyrmion is difficult to observe. The infinitesimal form of

the Fubini-Study distance approaches the metric tensor

ds2 =
Z.ZdZ.dZ − Z.dZdZ.Z

(Z.Z)(Z.Z)
, (5.23)

Here Z.Z = ZiZi. From Fubini-Study metric, the time-energy uncertainty relation

can be derived directly for each single spin [69]. As a spin-coherent state goes through

a closed loop, it will gain the phase γ =
∮
〈ψ(s) | d

ds
| ψ(s)〉. It was found that this

phase is equal to the Riemannian curvatureK = 1
2S

of the phase space of spin-coherent

state up to a constant. When S = 1/2 ( like large 2D skyrmions), the curvature is

equal to its maximum value K = 1 [70].

Any arbitrary state vector of a bipartite composite system can be expressed as

| Ψ〉 =
1√
N

ΣN−1
i=0 ΣN−1

j=0 Cij | i〉⊗ | j〉, (5.24)

where Cij is an N ×N matrix with complex entries. For the 2× 2 case, we have

(Z0, Z1, Z2, Z3) = (C00, C01, C10, C11). Then the density matrix for the composite

system can be written as ρij,kl = 1
N
CijC

?
kl. Since the system is in pure state, its

density matrix has rank one. Now suppose we perform an experiment in one of the

two thin films, the reduced density matrix for this subsystem is the partially traced

density matrix ρA = TrBρ := TrHBρ which equals ρAik = ΣN−1
j=0 ρij,kj. The rank of

this subsystem density matrix may be greater than one. The global state of the

bilayer skyrmion may be written as a product state spanned in the total Hilbert



68 Chapter 5: SU(4) description of bilayer skyrmion-antiskyrmion pairs

space H = HA ⊗HB

| Ψ〉 =| A〉⊗ | B〉 = ΣN−1
i=0 ΣN−1

j=0 (ai | i〉)⊗ (bj | j〉). (5.25)

So the matrix Cij = aibj is the dyadic product of two vectors a and b. It is not

difficult to notice that such global state of this kind is disentangled or separable since

the partially traced matrix and the matrix Cij have rank one and the subsystems are

in pure states of their own. On other hand, the maximally entangled state can be

identified using the condition ρAik = 1
N
IN which corresponds to ΣN−1

j=0 CijC
?
kj = δik. It

means that we know nothing at all about the state of the subsystems even though the

global state is precisely determined. The maximally entangled states form an orbit of

the group of local unitary transformations. In our case, this group is SU(2)
Z = SO(3).

This happens to be the real projective space RP3. In general, the group U(N )
U(1)

= SU(N )
ZN

is a Lagrangian sub-manifold of CPN 2−1. Between these two cases, the separable and

maximally entangled cases, the Von Neumann entropy S = −Tr(ρA lnρA) takes some

intermediate value and they can be entangled.
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CONCLUSION

In this thesis, the problem of antiferromagnetically coupled skyrmions (bilayer

skyrmion) has been studied using continuum theory approach. This was done by con-

sidering two thin films formed from the same chiral magnet separated by an insulating

spacer with antiferromagnetic coupling between chiral films. Each chiral film was as-

sumed to host Bloch skyrmions under certain range of temperatures and external

magnetic fields determined by the film parameters. Skyrmions in the first thin-film

are equal in size with skyrmions in the second thin-film but with opposite topologi-

cal charge. For our model to hold, we assume temperatures lower than the magnon

gap and skyrmion with large radii. Fortunately, skyrmions in Fe0.5Co0.5Si support

these assumptions. We give a representation for the spin degrees of freedom based

on SU(4) Lie group. Moreover, we have computed the density matrices for the spin

degrees of freedom in skyrmion and its AFM-coupled antiskyrmion using Schmidt de-

composition. Utilizing from the computed density matrices, we found the conditions

for maximal or partial entanglement and separability within bilayer skyrmions [54].

The geometry of quantum states in bilayer skyrmions can be described using complex

projective space CP3 endowed with the unitary-invariant Fubini-Study metric. Geo-

metrically, the entangled states can be described naturally using CP3. We have two

extreme cases corresponding to maximally entangled and separable states. The space

for maximally entangled states happens to be the real projective space RP3 while for

separable states is simply the space CP1 ⊗ CP1.

In comparison with graphene and multicomponent Hall systems, intimate relation be-

tween the entanglement conditions in large bilayer skyrmions and SU(4)-skyrmions

has been found. However, the system which has been investigated in this thesis is
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different from those studied in Graphene and multicomponent quantum Hall systems.

For example, they dealt in graphene case with spin-valley pseudospin degrees of free-

dom in a single skyrmion [71, 72]. In contrast, we have considered two skyrmions

with AFM coupling between its internal spins. This is the reason why we used

CP1 ⊗ CP1-theory instead of CP3-theory. However, the space of entangled states

is CP3 as expected [69, 73].

As a last comment, we propose the use of entanglement in skyrmion-antiskyrmion

lattices for probing the geometric nature of quantum entanglement. This will help in

turn to further understand and possibly manipulate magnetic skyrmions in performing

quantum mechanical computations.
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Appendix

A The Topological Charge QS

The topological charge of a magnetic skyrmion is given by

QS =
1

4π

∫
d2r n · (

∂n

∂x
× ∂n

∂y
). (A1)

This quantity counts how many times n(r) = n(x, y) wraps the unit sphere.

The radial symmetry of magnetic skyrmions allows us to write

θ = θ(r), (A2)

φ(ϕ) = Nϕ+ γ. (A3)

N and γ denote the vorticity and helicity, respectively. The magnetic unit vector is

parametrized as

n = (sin θ cosφ, sin θ sinφ, cos θ)T , (A4)

where T represents the transpose matrix operation. By plugging A4 into A1 we find

QS =
1

4π

∫ ∞
0

dr

∫ 2π

0

dθ(r)

dr

dφ(ϕ)

dϕ
sin θ(r) (A5)

= [cos θ(r)]r=∞r=0 [φ(ϕ)]ϕ=2π
ϕ=0 = ±N.

The final result is obtained by considering the following boundary conditions imposed

on θ: θ(∞) = 0 and θ(0) = π.

For stabilized skyrmion at ground state, the lowest energy configuration has N = +1

and γ = ±π
2

depending on the sign of Dzyaloshinskii-Moriya D vector.

B SU(4) Representation

The special unitary group SU(N) has (N2−1) generators, where −1 is because of the

condition det(M) = 1 where M is any element from SU(N). We denote the generators
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as λA, A = 1, 2, . . . , N2−1. We choose the following normalization condition between

generators Tr(λAλB) = 2δAB. Their commutator and anti-commutator are [74]

[λA, λB] = 2i fABCλC , (B1)

{λA, λB} =
4

N
+ 2 dABCλC , (B2)

where fABC and dABC are the structure constants of SU(N). For N = 2, λA = σA

(Pauli matrix) we have fABC = εABC and dABC = 0 in the case of SU(2).

Since our developed model of bilayer skrmions in chiral magnets is based on SU(4)

we will give a specific attention to this group. SU(4) has 15 generators while SU(2)⊗

SU(2) has 6 generators in total. Embedding SU(2)⊗ SU(2) into SU(4) we find the

following representations for the skyrmion S and its AFM-coupled antiskyrmion A:

τSx =

σx 0

0 σx

 , τSy =

σy 0

0 σy

 , τSz =

σz 0

0 σz

 , (B3)

τAx =

 0 I2

I2 0

 , τAy =

 0 −iI2

iI2 0

 , τAz =

I2 0

0 −I2

 . (B4)
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