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Prof. Dr. Attila Aşkar
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ABSTRACT

Global Behavior of Solutions of Nonlinear Dissipative Equations of

Nonclassical Types

Serap Gümüş

Doctor of Philosophy in Computational Sciences and Engineering

January, 2020

In this thesis, we investigate the global behavior of solutions of initial-boundary

value problems (IBVP) for nonlinear dissipative equations. We particularly focus

on two problems in hydrodynamics: IBVP for Burgers’ original model of turbu-

lence (original Burgers’ equations), and IBVP for Burgers’ equation with nonlocal

nonlinearity. Motivated by the studies in finite-dimensional asymptotic behavior of

dissipative equations, we prove the stabilization of these equations by using finitely

many controllers, such as finitely many Fourier modes, finitely many volume ele-

ments and finitely many nodal values. We also prove that the asymptotic behavior

of solutions of original Burgers’ equations can be completely determined by finite

number of determining modes. Additionally, we show the existence, uniqueness and

stability of the solutions of the inverse source problem for both equations. We show

that, under proper assumptions, the solutions of the inverse source problem tends

to a particular stationary state solution of the direct problem, and the unknown

source term tends to zero as time goes to infinity. Finally, we perform numerical

experiments to verify the validity of our theoretical findings on the finite-parameter

feedback control problems for original Burgers’ equations.
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ÖZETÇE

Doğrusal olmayan disipatif denklemlerin çözümlerinin global davranışı

Serap Gümüş

Hesaplamalı Bilimler ve Mühendislik, Doktora

Ocak, 2020

Bu tez çalışmasında, doğrusal olmayan disipatif başlangıç-sınır değer problemlerinin

çözümlerinin global davranışını inceliyoruz. Özellikle, hidrodinamik konuları ile il-

gili olan iki problemi ele alıyoruz. Bu problemler; orijinal Burgers denklemleri ve

lokal ve doğrusal olmayan terimli Burgers denklemi. Disipatif denklemlerin sonlu-

boyutlu asimptotik davranışları ile ilgili çalışmalardan ilham alarak; sonlu sayıda

kontrol terimi kullanarak, her iki problemin kararlılığını gösteriyoruz. Sonlu sayıdaki

kontrol terimlerine; sonlu sayıda Fourier modları, sonlu sayıda hacim elemanları ve

sonlu sayıda düğüm noktaları örnek olarak verilebilir. Ayrıca, orijinal Burgers den-

klemlerinin çözümlerinin asimptotik davranışlarının, sonlu sayıda belirleyen modlar

kullanarak tamamen anlaşılabileceğini kanıtlıyoruz. Bunlara ek olarak, her iki den-

klem için ters kaynak problemlerinin çözümlerinin varlığını, tekliğini ve kararlılığını

gösteriyoruz. Uygun koşullar altında, ters kaynak problemlerinin çözümlerinin, di-

rekt problemin durgun durum çözümlerine yaklaştığını gösteriyoruz. Ayrıca, bilin-

meyen kaynak teriminin de, zaman sonsuza giderken, sıfıra yaklaştığını kanıtlıyoruz.

Son olarak, orijinal Burgers denklemleri için oluşturduğumuz sonlu sayıda parame-

treli geribildirimli denetim problemleri ile ilgili teorik çalışmalarımızın geçerliliğini

doğrulayan sayısal çalışmalar uyguluyoruz.
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Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The turbulence motion of the fluids is studied by many researchers. One of the

significant studies in hydrodynamics was conducted by J. M. Burgers [4] in 1939.

In order to analyze the behavior of the hydrodynamic equations for the turbulent

flow in a channel between parallel walls, Burgers [4] has introduced a nonlinear

ODE-ODE system
dU
dt

= P − νU − v2,

dv
dt

= Uv − νv,
(1.0.1)

where U and v depend on only the time variable t, and denote the velocities of

the mean motion (or primary motion) and turbulent motion (or secondary motion),

respectively. The constant P > 0 denotes the external force or pressure, and ν > 0

denotes the kinematic viscosity. This coupled nonlinear ODE system shows the

occurrence of a laminar and a turbulent solution (or motion). The laminar solution

means that there is no secondary solution v and the turbulent solution means that

the secondary solution v is nonzero. J. M. Burgers [4] shows that the stationary

solution (when both dU
dt

and dv
dt

are zero)

U =
P

ν
, v = 0, (1.0.2)

is stable when the external force P < ν2 ( or U < ν). We observe that this stationary

solution (1.0.2) is a laminar solution since there is no secondary solution, i.e., v = 0

and the primary solution U is proportional to the external force P . When P = ν2,

the stationary solution is unstable. In the case that P > ν2, Burgers showed that
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there are two other stationary solutions

U = ν, v = ±
√
P − ν2, (1.0.3)

which are stable. In this case, the stationary solutions (1.0.3) are turbulent solutions

and the laminar solution (the first stationary solution) (1.0.2) is no longer stable.

These results were important; however, in [4] the author states that the system

(1.0.1) does not give sufficient information about the complexity and the spatial

pattern of the turbulent fluid motion since the secondary solutions in (1.0.3) are

independent of time and the function v does depend on a spatial variable. In 1948,

J. M. Burgers [5] introduced the following coupled ODE-PDE system which we call

original Burgers’ equations∂tv(y, t) = 1
b
U(t)v(y, t) + ν∂2

xv(y, t)− 2v(y, t)∂xv(y, t),

bU ′(t) = P − ν
b
U(t)− 1

b

∫ b
0
v2(y, t)dy.

(1.0.4)

This system describes the motion of a fluid in a straight channel with parallel walls.

The width of this channel is b. As in the system (1.0.1), the constants P > 0 and

ν > 0 are the external force and the kinematic viscosity and U(t) and v(y, t) are

the velocities of mean and turbulent motion, respectively. In (1.0.4) the turbulent

motion v(y, t) now depends on the space variable y (the coordinate in the direction

of the cross dimension of the channel) and extends from 0 to b and becomes zero

at the boundary values 0 and b. In [5], J. M. Burgers analyzed the stability of the

stationary solutions of the system in (1.0.4) and find the spectrum of the stationary

solutions. In later years, systems defined by equations similar to the ones in (1.0.4)

are studied. C. O. Horgan and W. E. Olmstead [31] considered the initial boundary

value problem for the dimensionless form of the system in (1.0.4) under homogeneous

Dirichlet’s boundary conditions and proved asymptotic stability of the stationary

solution u = 0, v = 0 of the system. T. Dlotko devoted the papers [21], [20] and [22]

to the problems of existence and uniqueness of solutions, and the stability of the

stationary solution of the initial boundary value problems for the dimensionless

version of the system in (1.0.4) with the space variable x in the interval [0, π] under
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the homogeneous Dirichlet boundary conditions v(0, t) = 0 = v(π, t). In the paper

[19], T. Dlotko proved the existence and uniqueness of the solution of the initial

boundary value problem for the two-dimensional version of the (1.0.4). In [24], A.

Eden proved the existence of an exponential attractor of the semigroup generated

by the initial boundary value problem for the dimensionless version of the system

(1.0.4). The existence of inertial manifolds for Burgers’ original mathematical model

system of turbulence is investigated in the paper [33].

One of the simplifications of the system in (1.0.4) is the viscous Burgers’ equation

with nonlocal nonlinearities

∂tv − ν∂2
xv + 2v∂xv −Rv + kv

∫ 1

0

v2dx = h, x ∈ (0, 1), t > 0, (1.0.5)

where R > 0 and k > 0 are positive constants and h ∈ L2(R+, L2(0, 1)). This

equation is first introduced in the book [23]. In [18], K. Deng et. al discussed the

asymptotic behavior and the global existence of solutions of the unstable Burgers’

equation with nonlocal term, i.e., equation (1.0.5) with k < 0. The authors showed

that the solutions blow up in a finite time under certain conditions on the initial

data. For the results on stability of stationary state solutions and existence of finite-

dimensional attractors for semigroups generated by initial boundary value problems

for this equation, we refer to [54], [9], [50] and the references therein.

1.1 Finite-Parameter Feedback Stabilization

The feedback stabilization by finite-dimensional controllers of nonlinear dissipative

PDEs has been shown in [2], [10], [1], [40], [38], [39], [45]. The pioneering study of

Azouani and Titi [1] is based on the idea that the finite-dimensional asymptotic be-

havior is sufficient for designing feedback controls for most dissipative systems. They

introduced a finite-parameter feedback control scheme for stabilizing the solutions of

a one-dimensional Chafee-Infante reaction-diffusion system with cubic nonlinearity

in the form

∂tu− ν∂2
xu− αu+ u3 = 0, (1.1.1)
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under the homogeneous Neumann boundary conditions

∂xu(0, t) = ∂xu(L, t) = 0.

The idea in [1] is to choose an interpolant operator as a feedback controller. This

interpolant operator Ih : H1(0, L) → L2(0, 1) is a general linear map with the

property

‖ψ − Ih(ψ)‖ ≤ ch‖ψ‖H1(0,L), ∀ψ ∈ H1(0, L),

where c > 0 is a constant and h = L
N

with N > 1 denoting an integer that changes

depending on the type of the interpolant operator. Below we provide the three

examples of interpolant operators introduced in [1]:

1. The projection onto first N Fourier modes:

For a periodic function ψ ∈ H1(0, L), the interpolant operator based on finitely

many Fourier modes defined as

Ih(ψ) :=
a0

2
+

N∑
k=1

ak cos
kπx

L
+

N∑
k=1

bk sin
kπx

L
, h =

L

N
,

and the Fourier coefficients defined as

ak =
2

L

∫ L

0

ψ(x) cos
kπx

L
dx, bk =

2

L

∫ L

0

ψ(x) sin
kπx

L
dx.

2. Finite volume elements:

For a function ψ ∈ H1(0, L), the interpolant operator based on finitely many

volume elements or local spatial averages, defined as

Ih(ψ) :=
N∑
k=1

ψ̄kχJk(x),

where Jk =
[
(k − 1) L

N
, k L

N

)
for k = 1, ..., N − 1 and JN =

[
(N − 1) L

N
, L
]
,

χJk(x) is the characteristic function for the interval Jk for k = 1, ..., N defined

as follows:

χJk(x) :=

1, x ∈ Jk,

0, otherwise,
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and

ψ̄k =
1

|Jk|

∫
Jk

ψ(x)dx, k = 1, ..., N.

3. Finite nodal values:

For a function ψ ∈ H1(0, L), the interpolant operator based on finitely many

nodal values defined as

Ih(ψ) =
N∑
k=1

ψ(xk)χJk(x),

where xk ∈ Jk =
[
(k − 1) L

N
, k L

N

]
for k = 1, ..., N and χJk(x) is as before.

E. Lunasin and E. S. Titi [45] investigate the global stabilization of solutions of

one-dimensional Kuramoto-Sivashinsky equation

∂tu+ ∂4
xu+ ∂2

xu+ u∂xu = 0, (1.1.2)

based on the finite-parameter feedback control scheme introduced in [1]. Addition-

ally, [45] verify their results by numerical studies for the Chafee-Infante (1.1.1) and

Kuramoto-Sivashinsky (1.1.2) equations.

V. Kalantarov and E. S. Titi, in the papers [38] and [39], use the finite-parameter

feedback control in order to stabilize the solutions of 3D Navier-Stokes-Voight equa-

tions

∂tu− ν∆u− α2∆∂tv + (v · ∇)u+∇p = h, ∇ · u = 0, x ∈ Ω, t > 0, (1.1.3)

and damped nonlinear dispersive equations and some of their modifications, for

example

∂2
t u−∆u+ bg(∂tu)− αu+ f(u) = h(x), x ∈ Ω, t > 0, (1.1.4)

where Ω ⊂ R3.

One of the recent studies in the feedback control by using finite number of deter-

mining parameters is the paper of J. Kalantarova and T. Ozsari [40]. They show

that the solutions of complex Ginzburg-Landau equation

∂tu− (λ+ iα)∆u+ (κ+ iβ)|u|pu− γu = 0, x ∈ Ω, t > 0 (1.1.5)
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can be stabilized globally, where Ω ⊂ Rn.

Motivated by the papers [1,38–40,45], we propose various finite-parameter feedback

control problems and show the exponential stabilization of solutions of the systems

(1.0.4) and (1.0.5).

1.2 Finite Dimensional Asymptotic Behavior

Finite dimensional asymptotic behaviour of dissipative systems has been a significant

research subject for the last four decades. First inspiring and rigorous studies were

performed by Foias and Prodi [27] in 1967 and Ladyzhenskaya [44] in 1975. They

prove that asymptotic behavior of solutions to the initial boundary value problem

for the 2D Navier–Stokes equations is determined by the asymptotic behavior of the

first N Fourier modes for sufficiently large N . Their ideas lead to further studies

about finite number of determining parameters such as determining nodes, local

volume averages, degrees of freedom and functionals (elements).

Related to the determining modes, we refer to the papers [26] and [37]. The authors

in these paper find an upper bound on the number of determining modes for the

determining modes for the 2D Navier-Stokes equations, 3D Navier-Stokes-Voight

equations and structurally damped nonlinear wave equations.

C. Foias and R. Temam [28] prove that the large time behavior of the solution of

the 2D or 3D Navier-Stokes equations can be determined by a set of finite number

of nodal values or nodes. C. Foias and E.S. Titi [29] show the relation between

the concepts of determining nodes, finite difference schemes and finite volumes for

the 1D Kuramoto-Sivashinsky equation. I. Kukavica [42] finds an upper bound

on the number of determining nodes for the Gingzburg-Landau equation. Later,

D.A. Jones and E.S. Titi in [34–36] give an upper bound on the number of the

determining modes, determining nodes and determining volume elements for the 2D

Navier-Stokes equations under the periodic boundary conditions. We refer to the

papers [15,16] for the studies on the degrees of freedom and to the papers [3,11–14]

for the determining functionals.

Motivated by these studies and references therein, we show that asymptotic behavior
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of the solutions of the initial-boundary value problem for (1.0.4) can be determined

by a finite number of determining modes.

1.3 Inverse Source Problems

There are various types of inverse problems which have been intensively studied in

numerous branches of mathematical physics [48]. One type of inverse problems is

the inverse source problem. In this type of problem, there is an unknown source

function in the equation. An inverse source problem can be uniquely solvable if

there is an extra condition (e.g. integral or final overdetermination condition) on the

solution of the direct problem and if this extra condition satisfies some compatibility

conditions on the initial data of the problem. We refer to the books [32,47] and the

papers [52,53] for the existence, uniqueness and stability of the solutions of various

types of inverse source problems.

By motivated these studies, we construct the following inverse source problems for

(1.0.4)

∂tv = Uv + ν∂2
xv − 2v∂xv + f(t)w(x),

U ′(t) = R− νU(t)−
∫ 1

0

v2(x, t)dx,

U(0) = U0, v(x, 0) = v0(x),

v(0, t) = v(1, t) = 0,∫ 1

0

v(x, t)w(x)dx = φ(t),

and for (1.0.5)

∂tv − ν∂2
xv + 2v∂xv −Rv + kv

∫ 1

0

v2dx = h(x, t) + f(t)w(x),

v(0, t) = v(1, t) = 0,

v(x, 0) = v0(x),∫ 1

0

v(x, t)w(x)dx = φ(t).

Here, w(x), φ(t) and h(x, t) are given functions and f(t) is an unknown function

that we seek. Note that we use the same notations for the unknown source function



Chapter 1: Introduction 8

f and overdetermination function φ in both problems. However, we note that these

functions are not necessarily the same. We refer to Chapter 4 for further detail. We

prove the existence and uniqueness of the solutions for both inverse source problems

above. Additionally, we find the necessary conditions on the functions w, φ and

the problem parameters R and ν, and prove the stability of the solutions of those

problems.

This thesis is devoted to understand the global behavior of the solutions of the

various nonlinear dissipative equations. We focus on the stabilization problems for

the original Burgers’ equations (1.0.4) and the viscous Burgers’ equation with non-

local nonlinearity (1.0.5). In the rest of this chapter, in Section 1.4 we present some

inequalities and significant theorem and lemmas that we utilize throughout the the-

sis. In Chapter 2, we consider finite-parameter feedback stabilization problems. We

study feedback control problems for original Burgers’ equations and viscous Burg-

ers’ equation with nonlocal nonlinearity based on finitely many parameters such as

finitely many Fourier modes, finitely many volume elements and finitely many nodal

values. In Chapter 3, we prove the existence of determining modes for original Burg-

ers’ equations. In Chapter 4, we prove the existence and uniqueness of the solution

of the inverse source problems which are constructed for original Burgers’ equations

(1.0.4) and Burgers’ equation with nonlocal nonlinearity (1.0.5). Additionally, we

analyze the stability of the solutions for both problems. In Chapter 5, we present

our numerical experiments for the finite-parameter feedback stabilization problems.

Finally, in Chapter 6 we summarize our results and describe the future work.

1.4 Preliminaries

In this section, we present preliminary inequalities, lemmas and theorems that we

utilized throughout the thesis.

1.4.1 Useful Inequalities

1. Hölder Inequality

Assume that p ∈ [1,∞] and 1
p

+ 1
q

= 1. If u ∈ Lp(Ω) and v ∈ Lq(Ω), then
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uv ∈ L1(Ω) and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (1.4.1)

2. 1D Gagliardo-Nirenberg interpolation inequality( [39])

For all u ∈ H2(0, 1) ∩H1
0 (0, 1), the following inequality holds

‖u(j)‖Lp(0,1) ≤ β‖u‖1−θ‖u(m)‖θ, (1.4.2)

where p ≥ 2, m = 1, 2, j
m
≤ θ ≤ 1, θ = 1

m

(
1
2

+ j − 1
p

)
and β > 0 is a constant.

3. Gronwall’s Inequality (Differential form)

Let b(t) and f(t) be continuous functions for t ≥ α and let u(t) be a differen-

tiable function for t ≥ α. Suppose

u′(t) ≤ b(t)u(t) + f(t), t ≥ α,

u(α) ≤ u0.

Then, for t ≥ α

u(t) ≤ u0 exp

(∫ t

α

b(s)ds

)
+

∫ t

α

f(s) exp

(∫ t

s

b(τ)dτ

)
ds. (1.4.3)

4. Gronwall’s inequality (Integral form)

Let u(t) and v(t) be nonnegative continuous functions for t ≥ 0, and satisfy

the following inequality:

u(t) ≤ C +

∫ t

0

u(r)v(r)dr, ∀t ≥ 0,

where C ≥ 0. Then

u(t) ≤ C exp

(∫ t

0

v(r)dr

)
, ∀t ≥ 0. (1.4.4)

5. Young’s inequality

Let p and q be positive real numbers such that 1
p

+ 1
q

= 1. Then for any

nonnegative real numbers a and b the following inequality holds:

ab ≤ ap

p
+
bq

q
. (1.4.5)
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6. Young’s Inequality with ε:

Let p and q be positive real numbers such that 1
p

+ 1
q

= 1 and a and b be

nonnegative real numbers. Then for all ε > 0, the following inequality holds:

ab ≤ ε

p
ap +

1

qε
q
p

bq. (1.4.6)

7. Poincaré-Friedrichs inequality

For all u ∈ H1
0 , the following inequality holds

‖u‖2 ≤ λ−1
1 ‖u′‖2, (1.4.7)

where λ1 is the first eigenvalue of the operator − d2

dx2
under the homogeneous

Dirichlet boundary conditions.

8. Poincaré-Friedrichs-type inequality

For all u ∈ H1
0 , the following inequality holds

∞∑
k=N+1

|(u,wk)|2 ≤ λ−1
N+1‖u

′‖2, (1.4.8)

where λN+1 is the (N + 1)th eigenvalue of the operator − d2

dx2
under the homo-

geneous Dirichlet boundary conditions.

9. Sobolev inequality

For all u ∈ H1
0 , the following inequality holds

‖u‖2
L∞ ≤ c0‖u′‖2, (1.4.9)

where c0 > 0 is a positive constant.

10. Monotonicity Inequality

If p ≥ 2, then there exists a number d0(p, n) such that for each a, b ∈ Rn the

following inequality holds true

(|a|p−2a− |b|p−2b, a− b) ≥ d0|a− b|p. (1.4.10)
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1.4.2 Useful Lemmas and Theorems

Lemma 1.4.1 ( [51]). Let V,H, V ∗ be three Hilbert spaces such that V ⊂ H ≡ H∗ ⊂

V ∗, where V ∗ and H∗ are dual spaces of V and H, respectively. If u ∈ L2(0, T ;V )

and ut ∈ L2(0, T ;V ∗), then the following equality holds true:

d

dt
‖u(t)‖2 = 2〈ut, u〉H .

Lemma 1.4.2. ( [25]) Assume that α(t) and β(t) are locally integrable real-valued

functions on [0,∞) that satisfy for some T > 0 the following conditions

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ = γ > 0, (1.4.11)

lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ = Γ <∞, (1.4.12)

lim inf
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0, (1.4.13)

where α− = max{−α, 0} and β+ = max{β, 0}. Suppose that φ(t) is an absolutely

continuous nonnegative function on [0,∞) that satisfies the inequality a.e. on [0,∞)

dφ(t)

dt
+ α(t)φ(t) ≤ β(t).

Then φ(t)→ 0 as t→∞.

Lemma 1.4.3 ( [49]). Assume that u ∈ Ḣ1
p (0, L), where Ḣ1

p (0, L) is the completion

of C∞p (0, L) = {u ∈ C∞(0, L)| u is periodic with period L} with
∫ L

0
u(x)dx = 0, then∫ L

0

|u(x)|2dx ≤
(
L2

4π2

)∫ L

0

|u′(x)|2dx.

Lemma 1.4.4 ( [1]). Assume that u ∈ H1(0, 1). Then the following inequality holds∥∥∥∥∥u−
N∑
k=1

ūkχJk

∥∥∥∥∥ ≤ h‖u′‖, (1.4.14)

where h = 1
N

, Jk = [(k − 1) 1
N
, k 1

N
), for k = 1, 2, ..., N − 1, JN = [N−1

N
, 1], χJk is the

characteristic function of the interval Jk and

ūk =
1

|Jk|

∫
Jk

u(x)dx.
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Proof. Since
∑N

k=1 χJk(x) = 1 we can write that u(x) =
∑N

k=1 u(x)χJk(x). Thus, we

obtain that∥∥∥∥∥u−
N∑
k=1

ūkχJk

∥∥∥∥∥
2

=

∫ 1

0

(
N∑
k=1

(u(x)− ūk)χJk(x)

)2

dx

=

∫ 1

0

N∑
k,l=1

(u(x)− ūk)(u(x)− ūl)χJk(x)χJl(x)dx.

Since χJk(x)χJl(x) = χJk(x)δkl, we have from the previous equation that∥∥∥∥∥u−
N∑
k=1

ūkχJk

∥∥∥∥∥
2

=
N∑
k=1

∫
Jk

(u(x)− ūk)2dx (1.4.15)

Since
∫
Jk

(u(x)− ūk)dx = 0 and u(x) ∈ H1(0, L), we can apply Lemma 1.4.3 in

equality 1.4.15. We obtain:∫
Jk

(u(x)− ūk)2dx ≤
(
h

2π

)2 ∫
Jk

(u′(x))2dx. (1.4.16)

By summing inequality (1.4.16) from k = 1 to k = N, we get:∥∥∥∥∥u−
N∑
k=1

ūkχJk

∥∥∥∥∥
2

≤
(
h

2π

)2 N∑
k=1

∫
Jk

(u′(x))2dx

=

(
h

2π

)2 ∫ L

0

(u′(x))2dx ≤ h2‖u′‖2.

Hence, this proves the lemma.

Lemma 1.4.5 ( [1]). Assume that u ∈ H1(0, 1). Then we have the following in-

equality∥∥∥∥∥u−
N∑
k=1

u(xk)χJk

∥∥∥∥∥ ≤ h‖u′‖, (1.4.17)

where h = 1
N

, xk ∈ Jk, Jk and χJk as defined in Lemma 1.4.4.
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Proof. By using similar procedures in the proof of Lemma 1.4.4, we can write that∥∥∥∥∥u−
N∑
k=1

u(xk)χJk

∥∥∥∥∥
2

=

∫ L

0

N∑
k=1

(u(x)− u(xk))
2χJk(x)dx

=
N∑
k=1

∫
Jk

(u(x)− u(xk))
2dx =

N∑
k=1

∫
Jk

(∫ x

xk

u′(y)dy

)2

dxr

≤
N∑
k=1

∫
Jk

(∫
Jk

|u′(y)|dy
)2

dx ≤ h
N∑
k=1

(∫
Jk

|u′(y)|dy
)2

. (1.4.18)

By applying Cauchy-Schwarz Inequality on the right-hand side of inequality (1.4.18),

we obtain:∥∥∥∥∥u−
N∑
k=1

u(xk)χJk

∥∥∥∥∥
2

≤ h
N∑
k=1

∫
Jk

1dy

∫
Jk

|u′(y)|2dy

= h2

N∑
k=1

∫
Jk

|u′(y)|2dy ≤ h2‖u′‖2.

Hence, this proves the lemma.
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Chapter 2

FEEDBACK STABILIZATION PROBLEMS

This chapter is devoted to investigation of the long time behavior of the solutions

of the feedback control problem for the original Burgers’ equations (1.0.4) and Burg-

ers’ equation with nonlocal nonlinearity (1.0.5). We propose various finite-parameter

feedback control problems and show the exponential stabilization of solutions of the

systems (1.0.4) and (1.0.5). More precisely, in Section 2.1, we show

1. L2 and H1-stabilization of any solution to system (1.0.4), under homogeneous

Dirichlet boundary conditions, with the feedback controllers based on finitely

many Fourier modes, general interpolant operator and finitely many volume

elements.

In Section 2.2, we extend

1. the L2 and H1-stabilization result of Section 2.1 also to system (1.0.5) when

the feedback control based on finitely many Fourier modes,

2. L2-stabilization result to system (1.0.5) when the feedback control involves

finitely many volume elements and finitely many nodal values.

The results in Sections 2.1.1, 2.2.1 and 2.2.2 are submitted as S. Gumus and V. K.

Kalantarov, ”Finite-parameter feedback stabilization of original Burgers’ equations

and Burgers’ equation with nonlocal nonlinearities” in [30].
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2.1 Original Burgers’ Equations

In this section, we consider the following initial-boundary value problem for original

Burgers’ equations
∂tv = Uv + ν∂2

xv − 2v∂xv, (2.1.1)

U ′(t) = R− νU(t)−
∫ 1

0

v2dx, (2.1.2)

v(0, t) = v(1, t) = 0, U(0) = U0, v(x, 0) = v0(x), (2.1.3)

where (x, t) ∈ [0, 1]× [0,∞).

Definition 2.1.1 ( [21]). A pair of functions [v, U ] is called a weak solution of the

problem (2.1.1)-(2.1.3) if

1. U is absolutely continuous on the interval [0, T ] for all T > 0 and satisfies

U(t) = U0 +

∫ t

0

(R− νU(τ)− ‖v(τ)‖2)dτ, a.e. in [0, T ],

2. v ∈ L2(0, T ;H1
0 (0, 1)) ∩ L∞(0, T ;L2(0, 1)) and ∂tv ∈ L2(0, T ;L2(0, 1)) satisfy

(∂tv, η) + ν(∂xv, η
′) + 2(v∂xv, η) = (Uv, η), ∀η ∈ H1

0 (0, 1),

3. v(0, x) = v0(x) ∈ L2(0, 1).

Before analyzing the behavior of the solution of the feedback control system, first

let us find the uniform estimates on the solutions of the problem (2.1.1)-(2.1.3). We

present the uniform estimates in the following lemma.

Lemma 2.1.2. There exist positive numbers T1 and T2 depending on initial data

and R only such that the following inequalities hold:

‖v(t)‖2 + |U(t)|2 ≤M1, ∀t > T1, ‖∂xv(t)‖2 ≤M2, ∀t > T2,

where M1 and M2 are positive constants, depending on the initial data |U0|, ‖v0‖

and the constants R, ν and λ1 which is the first eigenvalue of the Sturm-Liouville

operator under the homogeneous Dirichlet boundary conditions.
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Proof. We multiply (2.1.1) by v in L2(0, 1) and (2.1.2) by U . By adding the resulting

equations, we obtain

1

2

d

dt

[
‖v(t)‖2 + |U(t)|2

]
+ν‖∂xv(t)‖2+ν|U(t)|2 = RU(t) ≤ 1

2ν
R2+

ν

2
|U(t)|2. (2.1.4)

Thanks to the Poincaré-Friedrichs inequality (1.4.7), we have

d

dt
[‖v(t)‖2 + |U(t)|2] + d0[‖v(t)‖2 + |U(t)|2] ≤ R2

ν
,

where d0 = ν min{1, 2λ1}. This inequality implies that

‖v(t)‖2 + |U(t)|2 ≤ [‖v0‖2 + |U0|2]e−d0t +
R2

νd0

(1− e−d0t).

Hence, there exists a number T1 > 0 such that

‖v(t)‖2 + |U(t)|2 ≤M1 :=
2R2

νd0

, ∀t ≥ T1. (2.1.5)

In order to get the estimate for ‖∂xv(t)‖2 first we multiply (2.1.2) by −∂2
xv in L2(0, 1)

leading us to

1

2

d

dt
‖∂xv(t)‖2 − U(t)‖∂xv(t)‖2 + ν‖∂2

xv(t)‖2 +

∫ 1

0

(∂xv(t))3dx = 0. (2.1.6)

Employing the Gagliardo-Nirenberg inequality (1.4.2) ‖(∂xv)‖L3 ≤ β‖v‖ 5
12‖∂2

xv‖
7
12

and the Young’s inequality (1.4.6) with ε = 2
7
, p = 8

7
we get∣∣∣ ∫ 1

0

(∂xv(t))3dx
∣∣∣ ≤ ν

4
‖∂2

xv(t)‖2 + β24ν−7772−10‖v(t)‖10. (2.1.7)

On the other hand,

|U(t)|‖∂xv(t)‖2 ≤ |U(t)|‖∂xv(t)‖‖∂2
xv(t)‖ ≤ ν

4
‖∂2

xv‖2 +
1

ν
|U(t)|2‖v(t)‖2. (2.1.8)

By using the estimates (2.1.7) and (2.1.8) and Poincaré-Friedrichs inequality (1.4.7)

from (2.1.6) we obtain that

d

dt
‖∂xv(t)‖2 + λ1ν‖∂xv(t)‖2 ≤ 1

ν
|U(t)|2‖v(t)‖2 + β24ν−7772−9‖v(t)‖10. (2.1.9)

Due to the estimate (2.1.5), there exists T2 > 0 such that

‖∂xv(t)‖2 ≤M2, ∀t ≥ T2. (2.1.10)
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2.1.1 Finitely Many Fourier Modes

We propose the feedback control system for the problem (2.1.1)-(2.1.3).
∂tṽ = Ũ ṽ + ν∂2

xṽ − 2ṽ∂xṽ − µ
N∑
k=1

(ṽ − v, wk)wk, (2.1.11)

Ũ ′(t) = R− νŨ(t)−
∫ 1

0

ṽ2(x, t)dx, (2.1.12)

ṽ(0, t) = ṽ(1, t) = 0, Ũ(0) = Ũ0, ṽ(x, 0) = ṽ0(x), (2.1.13)

where (x, t) ∈ [0, 1] × [0,∞), µ > 0 is control parameter and N ∈ Z
+ is the

number of Fourier modes. The Fourier modes are w1, ..., wN ’s which are orthonor-

mal (in L2(0, 1)-sense) eigenfunctions of the operator −∂2
x under the homogeneous

Dirichlet boundary conditions. They are explicitly given by wk(x) =
√

2 sin (kπx),

k = 1, 2, ..., N .

We find uniform estimates also for the solution of this feedback control problem

(2.1.11)-(2.1.13). Let us show these uniform estimates in the following lemma.

Lemma 2.1.3. There exist positive numbers T3 and T4 such that the following in-

equalities hold:

|Ũ(t)|2 + ‖ṽ(t)‖2 ≤M3, ∀t > T3, ‖∂xṽ(t)‖2 ≤M4, ∀t > T4, (2.1.14)

where M3 and M4 are positive constants, depending on |Ũ0| and ‖ṽ0‖, R, ν, µ, λ1,

and the uniform bounds M1, M2 in Lemma 2.1.2.

Proof. In order to obtain bounds for ‖ṽ(t)‖ and |Ũ(t)|, we multiply equation (2.1.11)

by ṽ in L2(0, 1) and (2.1.12) by Ũ . By adding the resulting equations we get that

1

2

d

dt

[
‖ṽ(t)‖2 + |Ũ(t)|2

]
+ ν|Ũ(t)|2 + ν‖∂xṽ(t)‖2 = RŨ(t)

− µ
N∑
k=1

|(ṽ, wk)|2 + µ

N∑
k=1

(ṽ, wk)(v, wk). (2.1.15)

Thanks to Young’s inequality (1.4.6) and Poincaré-Friedrichs inequality (1.4.7) and

the estimate (2.1.5) in Lemma 2.1.2, we obtain the inequality

1

2

d

dt

[
‖ṽ(t)‖2 + |Ũ(t)|2

]
+
ν

2
|Ũ(t)|2 + λ1ν‖ṽ(t)‖2 ≤ R2

2ν
+
µ

4

N∑
k=1

(v, wk)
2

≤ R2

2ν
+
µ

4
M1, ∀t ≥ T1. (2.1.16)
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Integrating (2.1.16) over the interval (t, T1), we get the following estimate

‖ṽ(t)‖2 + |Ũ(t)|2 ≤ (‖ṽ(T1)‖2 + |Ũ(T1)|2)e−d1(t−T1)

+
1

d1

(
R2

ν
+
µ

2
M1

)(
1− e−d1(t−T1)

)
,

where d1 = ν min{1, 2λ1}. Hence, there exists T3 > T1 such that

‖ṽ(t)‖2 + |Ũ(t)|2 ≤M3 :=
2R2

νd1

+
µ

d1

M1, ∀t ≥ T3. (2.1.17)

Next, we multiply the equation (2.1.12) by −∂2
xṽ in L2(0, 1) and after simple ma-

nipulations we obtain

1

2

d

dt
‖∂xṽ(t)‖2 − Ũ(t)‖∂xṽ(t)‖2 + ν‖∂2

xṽ(t)‖2 +

∫ 1

0

(∂xṽ(t))3dx

= −µ
N∑
k=1

λk(ṽ, wk)
2 + µ

N∑
k=1

λk(ṽ, wk)(v, wk) ≤
µ

4

N∑
k=1

λk(v, wk)
2.

Employing the inequalities (2.1.7), (2.1.8), we deduce the analog of the inequality

in (2.1.9) for ṽ, that is

d

dt
‖∂xṽ(t)‖2 + λ1ν‖∂xṽ(t)‖2 ≤ 1

ν
|U(t)|2‖ṽ(t)‖2 + β24ν−7772−9‖ṽ(t)‖10 +

µ

2
‖∂xv(t)‖2.

Thanks to the estimates (2.1.5), (2.1.10) and (2.1.17) we conclude from the last

inequality that

‖∂xṽ(t)‖2 ≤M4, ∀t ≥ T4 ≥ T3. (2.1.18)

Hence, this proves the lemma.

Global Stabilization in L2-norm

In this part, we prove our main result on the stabilization of the feedback control

system (2.1.11)-(2.1.13).

Theorem 2.1.4. Assume that µ and N are large enough such that

M5 ≤ µ, and λ−1
N+1M5 ≤

ν

4
, (2.1.19)
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where

M5 :=
√
M3 +

1

2ν
M2

3 +
3

4
ν−

1
3β8/3(

√
M4 + 2

√
M2)4/3, (2.1.20)

M2, M3 and M4 are the constants in the uniform estimates in (2.1.10), (2.1.17) and

(2.1.18), respectively, and β > 0 is the constant from Gagliardo-Nirenberg inequality

(1.4.2). Then there exists t0 > 0 such that for all t ≥ t0 the following inequality

holds true

‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤ (‖v(t0)− ṽ(t0)‖2 + |U(t0)− Ũ(t0)|2)e−d2(t−t0), (2.1.21)

where d2 = ν min{1, λ1}.

Proof. By letting z := ṽ − v and W := Ũ − U , we see that [z,W ] is a solution of

the system
∂tz = Ũz +Wv + ν∂2

xz − 2(ṽ∂xz + z∂xv)− µ
N∑
k=1

(z, wk)wk, (2.1.22)

W ′(t) = −νW (t)−
∫ 1

0

(ṽ2(x, t)− v2(x, t))dx, (2.1.23)

z(0, t) = z(1, t) = 0, W (0) = Ũ0 − U0, z(x, 0) = ṽ0 − v0. (2.1.24)

In order to find a priori estimates, we multiply equation (2.1.22) by z in L2(0, 1)

and (2.1.23) with W . Then we obtain

1

2

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2 = W (t)(v(t), z(t)) + Ũ(t)‖z(t)‖2

− µ
N∑
k=1

(z, wk)
2 + (z2(t), ∂xṽ(t)− 2∂xv(t)), (2.1.25)

and

1

2

d

dt
|W (t)|2 + ν|W (t)|2 = −W (t)(z, ṽ + v). (2.1.26)

Adding these equations (2.1.25) and (2.1.26), we get

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2 = Ũ(t)‖z(t)‖2

−W (t)(z, ṽ)− µ
N∑
k=1

(z, wk)
2 + (z2(t), ∂xṽ(t)− 2∂xv(t)). (2.1.27)
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Thanks to Young’s inequality (1.4.6), we can bound the second term on the right-

hand side of equation (2.1.27) as follows:

|W (t)(z, ṽ)| ≤ ν

2
|W (t)|2 +

1

2ν
‖ṽ(t)‖2‖z(t)‖2. (2.1.28)

By using the Gagliardo-Nirenberg inequality (1.4.2) and Young’s inequality (1.4.6),

we have the following estimate for the last term on the right hand side of (2.1.27):

|(z2(t), ∂xṽ(t)− 2∂xv(t))| ≤ ‖z(t)‖2
L4 (‖∂xṽ(t)‖+ 2‖∂xv(t)‖)

≤ ν

4
‖∂xz(t)‖2 +

3

4
ν−

1
3β8/3 (‖∂xṽ(t)‖+ 2‖∂xv(t)‖)

4
3 ‖z(t)‖2. (2.1.29)

Employing the estimates (2.1.28) and (2.1.29) in (2.1.27), we obtain

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+
ν

2
|W (t)|2 +

3ν

4
‖∂xz(t)‖2 ≤ −µ

N∑
k=1

|(z, wk)|2(
|Ũ(t)|+ 1

2ν
‖ṽ(t)‖2 +

3

4
ν−

1
3β8/3 (‖∂xṽ(t)‖+ 2‖∂xv(t)‖)

4
3

)
‖z(t)‖2. (2.1.30)

Thanks to the uniform estimates (2.1.10), (2.1.16) and (2.1.18), we infer from

(2.1.30) the inequality

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+
ν

2
|W (t)|2 +

3ν

4
‖∂xz(t)‖2

≤M5‖z(t)‖2 − µ
N∑
k=1

|(z, wk)|2, ∀t ≥ T5,

where

M5 :=
√
M3 + 1

2ν
M2

3 + 3
4
ν−

1
3β8/3(

√
M4 + 2

√
M2)4/3,

and T5 := max{T1, T2, T3, T4}. Assume now that µ and N are large enough, in

particular they satisfy

M5 ≤ µ, λ−1
N+1M5 ≤

ν

4
.

By using these assumptions, inequality (1.4.8) and the Poincaré-Friedrichs inequality

(1.4.7), we get

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ νλ1‖z(t)‖2 + ν|W (t)|2 ≤ 0, ∀t ≥ t0 ≥ T5. (2.1.31)
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Finally, by integrating the last inequality we deduce

‖z(t)‖2 + |W (t)|2 ≤ (‖z(t0)‖2 + |W (t0)|2)e−d2(t−t0), ∀t ≥ t0 ≥ T5, (2.1.32)

where d2 = ν min{1, λ1}. Hence, we proved the theorem.

Global Stabilization in H1-norm

In this part, we prove the H1-stabilization of the solution of (2.1.11)-(2.1.13).

Theorem 2.1.5. Assume that µ and N are large enough such that

µ ≥M6, and λ−1
N+1M6 ≤

ν

4
, (2.1.33)

where

M6 :=
4c2

0

ν
M4 +

1

ν

(
4c2

0 +
1

2

)
M2 +

√
M3. (2.1.34)

The constants M2,M3 and M4 are bounds in the uniform estimates (2.1.10), (2.1.17)

and (2.1.18), respectively and c0 > 0 is a constant from the Sobolev inequality (1.4.9).

Then there exists a positive number t1 such that for all t ≥ t1 the following inequality

holds true

1

2
‖∂xṽ(t)− ∂xv(t)‖2 + ‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤
[

1

2
‖∂xṽ(t1)− ∂xv(t1)‖2 + ‖ṽ(t1)− v(t1)‖2 + |Ũ(t1)− U(t1)|2

]
e−d3(t−t1),

where d3 = ν
2

min
{

1, λ1
2

}
.

Proof. We multiply (2.1.22) by −∂2
xz in L2(0, 1) to obtain

1

2

d

dt
‖∂xz(t)‖2 + ν‖∂2

xz(t)‖2 = Ũ(t)‖∂xz(t)‖2 +W (t)(v,−∂2
xz)

+ 2(ṽ∂xz + z∂xv, ∂
2
xz)− µ

N∑
k=1

(z, wk)(wk,−∂2
xz). (2.1.35)
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Employing Young’s inequality (1.4.6), the second term on the right-hand side of

(2.1.35) can be estimated as

|W (t)(v,−∂2
xz)| ≤ |W (t)||(∂xv, ∂xz)|

≤ ν

2
|W (t)|2 +

1

2ν
‖∂xv(t)‖2‖∂xz(t)‖2. (2.1.36)

Thanks to the Sobolev inequality (1.4.9), we obtain the following estimate for the

third term on the right-hand side of the equation (2.1.35):

2|(ṽ∂xz + z∂xv, ∂
2
xz)| ≤ 2c0‖ṽ(t)‖L∞(0,1)‖∂xz(t)‖‖∂2

xz(t)‖

+ 2c0‖z(t)‖L∞(0,1)‖∂xv(t)‖‖∂2
xz(t)‖

≤ ν

2
‖∂2

xz(t)‖2 +
4c2

0

ν

(
‖∂xṽ(t)‖2 + ‖v(t)‖2

)
‖∂xz(t)‖2. (2.1.37)

We rewrite the last term of (2.1.35) as follows:

−µ
N∑
k=1

(z, wk)(wk,−∂2
xz) = −µ

N∑
k=1

λk(z, wk)
2. (2.1.38)

Now, by employing the estimates in (2.1.36), (2.1.37) and (2.1.38) in (2.1.35), we

obtain

1

2

d

dt
‖∂xz(t)‖2 +

ν

2
‖∂2

xz(t)‖2 ≤ ν

2
|W (t)|2

+

(
4c2

0

ν

(
‖∂xṽ(t)‖2 + ‖v(t)‖2

)
+

1

2ν
‖∂xv(t)‖2 + |Ũ(t)|

)
‖∂xz(t)‖2

− µ
N∑
k=1

λk(z, wk)
2, (2.1.39)

where c0 > 0 is the constant in the Sobolev inequality (1.4.9). By employing

the uniform estimates (2.1.10), (2.1.17) and (2.1.18), there must exists a T5 :=

max{T1, T2, T3, T4} such that

1

2

d

dt
‖∂xz(t)‖2 +

ν

2
‖∂2

xz(t)‖2 ≤ ν

2
|W (t)|2

+ M6‖∂xz(t)‖2 − µ
N∑
k=1

λk(z, wk)
2, ∀t ≥ T5, (2.1.40)
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where M6 :=
4c20
ν
M4 + 1

ν

(
4c2

0 + 1
2

)
M2 +

√
M3.

We add the inequalities (2.1.40) and (2.1.31) and get

d

dt

[
1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

]
+
ν

2
‖∂2

xz(t)‖2 + λ1ν‖z(t)‖2 +
ν

2
|W (t)|2

≤ M6‖∂xz(t)‖2 − µ
N∑
k=1

λk(z, wk)
2, ∀t ≥ T5, (2.1.41)

It follows from the Poincaré-Friedrichs type inequality (1.4.8) that

‖∂xz(t)‖2 =
N∑
k=1

λk(z, wk)
2 +

∞∑
k=N+1

λk(z, wk)
2

≤
N∑
k=1

λk(z, wk)
2 + λ−1

N+1‖∂
2
xz(t)‖2. (2.1.42)

Thus (2.1.41) implies

d

dt

[
1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

]
+
(ν

2
−M6λ

−1
N+1

)
‖∂2

xz(t)‖2 + λ1ν‖z(t)‖2 +
ν

2
|W (t)|2

≤ −(µ −M6)
N∑
k=1

λk(z, wk)
2, ∀t ≥ T5. (2.1.43)

We assume that µ and N are large enough, in particular they satisfy

µ ≥M6, λ−1
N+1M6 ≤

ν

4
.

Then from (2.1.43), we have that

d

dt

[
1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

]
+
ν

4
‖∂2

xz(t)‖2 + λ1ν‖z(t)‖2 +
ν

2
|W (t)|2 ≤ 0, ∀t ≥ T5.

Employing the Poincaré-Friedrichs inequality (1.4.7) in the last inequality, we deduce

d

dt

[
1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

]
+ d3

[
1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

]
≤ 0, ∀t ≥ t1 ≥ T5,
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where d3 = ν
2

min
{

1, λ1
2

}
. This in turn gives rise to

1

2
‖∂xz(t)‖2 + ‖z(t)‖2 + |W (t)|2

≤
[

1

2
‖∂xz(t1)‖2 + ‖z(t1)‖2 + |W (t1)|2

]
e−d3(t−t1), ∀t ≥ t1 ≥ T5,

hence proves the theorem.

2.1.2 General Interpolant Operator

In this part, we will show that our stabilization results for the feedback control

problem is valid also with the general interpolant operator. We propose the following

feedback control problem for original Burgers’ equation.
∂tṽ = Ũ ṽ + ν∂2

xṽ − 2ṽ∂xṽ − µ(Ih(ṽ)− Ih(v)), (2.1.44)

Ũ ′(t) = R− νŨ(t)− ‖ṽ(t)‖2, (2.1.45)

ṽ(0, t) = ṽ(1, t) = 0, Ũ(0) = Ũ0, ṽ(x, 0) = ṽ0(x), (2.1.46)

where h = 1
N

and Ih : H1(0, 1)→ L2(0, 1) is a general linear map which approximates

the inclusion map I : H1(0, 1) → L2(0, 1) with error on the order of h. Here, I

satisfies the inequality

‖u− Ih(u)‖ ≤ ch‖∂xu‖ ≤ ch‖u‖H1(0,1), ∀u ∈ H1(0, 1), (2.1.47)

for some positive constant c > 0. We refer to the paper of Azouani and Titi [1] for

the proof of this inequality (2.1.47).

Theorem 2.1.6. Assume that µ and N satisfy the following inequalities

µ > M7, N >

√
2µc2

ν
, (2.1.48)

where

M7 := 2
√
M1 +

1

ν
M1 +

3

2
β

4
3ν−

1
3M2

2
3 , (2.1.49)

M1, M2 are constants satisfying (2.1.5), (2.1.10) and c > 0 is the constant from

the inequality (2.1.47). Suppose also that Ih : H1(0, 1) → L2(0, 1) is a linear map
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satisfying (2.1.47). Then there exists t0 > 0 such that

‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤ e−d4(t−t0)[‖ṽ(t0)− v(t0)‖2 + |Ũ(t0)− U(t0)|2], ∀t ≥ t0,

where d4 := ν min{1, λ1}.

Proof. As in the previous sections, we let z := ṽ− v and W := Ũ −U , and see that

[z,W ] is a solution of the following problem
∂tz = (W + U)z +Wv + ν∂2

xz − 2(z∂xz + v∂xz + z∂xv)− µIh(z) (2.1.50)

W ′(t) = −νW (t)− ‖z(t)‖2 − 2(z, v), (2.1.51)

z(0, t) = z(1, t) = 0, W (0) = Ũ0 − U0, z(x, 0) = ṽ0 − v0. (2.1.52)

Here, we remark that we have expressed some terms in (2.1.50) and (2.1.51) as

follows:

Ũ ṽ − Uv = Ũz +Wv = (W + U)z +Wv,

2 (ṽ∂xṽ − v∂xv) = 2(ṽ∂xz + z∂xv) = 2 [(z + v)∂xz + z∂xv] ,

and

‖ṽ(t)‖2 − ‖v(t)‖2 =

∫ 1

0

ṽ2(x, t)− v2(x, t)dx =

∫ 1

0

z(x, t)(ṽ(x, t) + v(x, t))dx

=

∫ 1

0

z(x, t) [z(x, t) + 2v(x, t)] dx = ‖z(t)‖2 + 2(z, v).

We multiply (2.1.50) by z in L2(0, 1) and (2.1.51) by W and obtain

1

2
‖z(t)‖2 + ν‖∂xz(t)‖2 = W (t)‖z(t)‖2 + U(t)‖z(t)‖2 +W (t)(v, z)

− 2(z∂xz, z) − 2 [(v∂xz + z∂xv, z)] − µ(Ih(z), z), (2.1.53)

as well as

1

2
|W (t)|2 + ν|W (t)|2 = −W (t)‖z(t)‖2 − 2W (t)(z, v). (2.1.54)

Here, we note that 2(z∂xz, z) = 0. Furthermore, we get the following equality by

using integration by parts −2 [(v∂xz + z∂xv, z)] = −(∂xv, z
2).
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We add equations (2.1.53) and (2.1.54) and obtain that

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

= U(t)‖z(t)‖2 −W (t)(z, v)− (∂xv, z
2)− µ(Ih(z), z). (2.1.55)

By employing Young’s inequality (1.4.6), we estimate the second term on the right-

hand side as

|W (t)(z, v)| ≤ |W (t)|‖v(t)‖‖z(t)‖ ≤ ν

2
|W (t)|2 +

1

2ν
‖v(t)‖2‖z(t)‖2. (2.1.56)

Thanks to Gagliardo-Nirenberg inequality (1.4.2) and Young’s inequality (1.4.6), we

estimate the third term on the right-hand side as

|(∂xv, z2)| ≤ ‖∂xv(t)‖‖z(t)‖2
L4(0,1) ≤ β‖∂xv(t)‖‖z(t)‖

3
2‖∂xz(t)‖

1
2

≤ ν

4
‖∂xz(t)‖2 +

3

4
β

4
3ν−

1
3‖∂xv(t)‖

4
3‖z(t)‖2. (2.1.57)

Employing the property of interpolant operator I (2.1.47) and Young’s inequality

(1.4.6), we can rewrite the last term on the right-hand side of (2.1.55) as

− µ(Ih(z), z) = −µ(Ih(z)− z, z)− µ‖z(t)‖2 ≤ µ‖z − Ih(z)‖‖z(t)‖ − µ‖z(t)‖2

≤ µch‖∂xz(t)‖‖z(t)‖ − µ‖z(t)‖2

≤ ν

4
‖∂xz(t)‖2 +

µ2c2h2

ν
‖z(t)‖2 − µ‖z(t)‖2. (2.1.58)

By plugging (2.1.56), (2.1.57) and (2.1.58) in (2.1.55), we obtain

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

≤
[
2|U(t)|+ 1

ν
‖v(t)‖2 +

3

2
β

4
3ν−

1
3‖∂xv(t)‖

4
3 − 2µ

]
‖z(t)‖2 +

2µ2c2h2

ν
‖z(t)‖2.

Due to the uniform estimates in (2.1.5) and (2.1.10), we deduce that there exists

t0 ≥ T2 ≥ T1 such that the following inequality holds:

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

≤ −(2µ−M7)‖z(t)‖2 +
2µ2c2h2

ν
‖z(t)‖2, ∀t0 ≥ T2, (2.1.59)
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where M7 := 2
√
M1 + 1

ν
M1 + 3

2
β

4
3ν−

1
3M

2
3

2 . Now, we assume that µ and N are large

enough, in particular

2µ2c2h2

ν
< µ, i.e. N >

√
2µc2

ν
, (2.1.60)

since h = 1
N

. Then we have from the previous inequality that

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ν‖∂xz(t)‖2 +ν|W (t)|2 +(µ−M7)‖z(t)‖2 ≤ 0, ∀t0 ≥ T2.

We assume also that µ > M7 and use the Poincaré-Friedrichs inequality (1.4.7) to

obtain that

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ d4

[
‖∂xz(t)‖2 + |W (t)|2

]
≤ 0, ∀t0 ≥ T2,

where d4 := ν min{1, λ1}. Hence,

‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤ e−d4(t−t0)[‖ṽ(t0)− v(t0)‖2 + |Ũ(t0)− U(t0)|2], ∀t ≥ t0 ≥ T2.

2.1.3 Finitely Many Volume Elements

Here, we consider another type of feedback stabilization problem for the original

Burgers’ equations (2.1.1)-(2.1.3). In this feedback control system, the control op-

erator is based on the finite volume elements
∂tṽ = Ũ ṽ + ν∂2

xṽ − 2ṽ∂xṽ − µ
N∑
k=1

(¯̃vk − v̄k)χJk(x), (2.1.61)

Ũ ′(t) = R− νŨ(t)− ‖ṽ(t)‖2, (2.1.62)

ṽ(0, t) = ṽ(1, t) = 0, Ũ(0) = Ũ0, ṽ(x, 0) = ṽ0(x), (2.1.63)

where Jk = [(k − 1) 1
N
, k 1

N
), for k = 1, 2, ..., N − 1, JN = [N−1

N
, 1], χJk is the charac-

teristic function of the interval Jk and

¯̃vk :=
1

|Jk|

∫
Jk

ṽ(x, t)dx, v̄k :=
1

|Jk|

∫
Jk

v(x, t)dx.

We state our main result in the following theorem
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Theorem 2.1.7. Assume that the parameters µ > 0 and integer N > 0 satisfy

µ > M7, N >

√
2µc2

ν
,

where M7 is as defined in (2.1.49) and c > 0 is constant in (1.4.14). There there

exists t0 > 0 such that

‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤ e−d4(t−t0)
[
‖ṽ(t0)− v(t0)‖2 + |Ũ(t0)− U(t0)|2

]
, ∀t ≥ t0,

holds, where d4 := ν min{1, λ1}.

Proof. We apply the similar procedures as in Section 2.1.2. Let z = ṽ − v and

W = Ũ −U and see that (z,W ) is a solution of the following initial-boundary value

problem
∂tz = Ũz +Wv + ν∂2

xz − 2(ṽ∂xz + z∂xv)− µ
N∑
k=1

z̄kχJk(x), (2.1.64)

W ′ = −νW − ‖ṽ(t)‖2 + ‖v(t)‖2, (2.1.65)

z(0, t) = z(1, t) = 0, W (0) = Ũ0 − U0, z(x, 0) = ṽ0(x)− v0(x). (2.1.66)

We multiply (2.1.64) by z in L2(0, 1) and (2.1.65) by W and obtain

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

= U(t)‖z(t)‖2 −W (t)(z, v)− (∂xv, z
2)− µ

∫ 1

0

N∑
k=1

z̄kχJk(x)zdx. (2.1.67)

An upper bound for the last term on the right-hand side of (2.1.67) by using (1.4.14)

and Young’s inequality (1.4.6) is given by

− µ
∫ 1

0

N∑
k=1

z̄kχJk(x)zdx = −µ
∫ 1

0

(
N∑
k=1

z̄kχJk(x)− z

)
zdx− µ‖z(t)‖2

≤ µ

∥∥∥∥∥z −
N∑
k=1

z̄kχJk(x)

∥∥∥∥∥ ‖z(t)‖ − µ‖z(t)‖2 ≤ µch‖∂xz(t)‖‖z(t)‖ − µ‖z(t)‖2

≤ ν

4
‖∂xz(t)‖2µ

2c2h2

ν
− µ‖z(t)‖2. (2.1.68)
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Due to (2.1.56), (2.1.57) and (2.1.68), we obtain the following inequality from

(2.1.67):

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

≤
[
2|U(t)|+ 1

ν
‖v(t)‖2 +

3

2
β

4
3ν−

1
3‖∂xv(t)‖

4
3 − 2µ

]
‖z(t)‖2 +

2µ2c2h2

ν
‖z(t)‖2.

The rest of the proof is exactly the same as the proof of Theorem 2.1.7. Utilizing

the uniform estimates (2.1.5) and (2.1.10), and assumption (2.1.60) and µ > M7, we

obtain that

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ d4

[
‖∂xz(t)‖2 + |W (t)|2

]
≤ 0, ∀t0 ≥ T2,

where d4 := ν min{1, λ1}. This in turn leads us to

‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2

≤ e−d4(t−t0)[‖ṽ(t0)− v(t0)‖2 + |Ũ(t0)− U(t0)|2], ∀t ≥ t0 ≥ T2.

2.2 Burgers’ Equation with Nonlocal Nonlinearity

In this section we study the feedback stabilization problem of Burgers’ equation

with nonlocal nonlinearity (1.0.5). We consider the following initial-boundary value

problem ∂tv − ν∂2
xv + 2v∂xv −Rv + kv

∫ 1

0

v2dx = h, (2.2.1)

v(0, t) = v(1, t) = 0, v(x, 0) = v0(x), (2.2.2)

where (x, t) ∈ [0, 1] × [0,∞), h ∈ L2(R+;L2(0, 1)) is a given source term, ν > 0,

k > 0 and R > 0 are given numbers. We analyze the feedback stabilization problem

for (2.2.1)-(2.2.2) with the feedback control operator based on finitely many Fourier

modes, finite volume elements and finitely many nodal values. First, we state the

definition of a weak solution of this problem.
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Definition 2.2.1. A function v is called a weak solution of the problem (2.2.1)-

(2.2.2) if v ∈ L2(0, T ;H1
0 (0, 1)) ∩ L∞(0, T ;L2(0, 1)) and ∂tv ∈ L2(0, T ;L2(0, 1))

satisfy the following equality ∀η ∈ H1
0 (0, 1)

(∂tv, η) + ν(∂xv, η
′) + 2(v∂xv, η)−R(v, η) + k‖v(t)‖2(v, η) = (h, η).

2.2.1 Finitely Many Fourier Modes

We propose the following feedback stabilization problem∂tu− ν∂2
xu+ 2u∂xu−Ru+ k‖u‖2u = h− µ

N∑
k=1

(u− v, wk)wk, (2.2.3)

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), (2.2.4)

where (x, t) ∈ [0, 1] × [0,∞). Before we show the L2 stabilization, we prove the

following lemma:

Lemma 2.2.2. There exist a positive number T ∗ > 0 such that the following in-

equalities hold:

‖v(t)‖2 ≤ H1, ‖∂xv(t)‖2 ≤ H2, ‖u(t)‖2 ≤ H3, ‖∂xu(t)‖2 ≤ H4, ∀t ≥ T ∗,

where H1, H2, H3, H4 > 0 are constants.

Proof. We multiply (2.2.1) by v in L2(0, 1) to get first energy equation

1

2

d

dt
‖v(t)‖2 + ν‖∂xv(t)‖2 −R‖v(t)‖2 + k‖v(t)‖4 = (h, v). (2.2.5)

Utilizing the inequalities

|(h, v)| ≤ ν

2
‖∂xv‖2 +

1

2λ1ν
‖h‖2, R‖v‖2 ≤ k‖v‖4 +

1

4k
R2,

we obtain from (2.2.5) the following inequality

d

dt
‖v(t)‖2 + νλ1‖v(t)‖2 ≤ 1

2k
R2 +

1

λ1ν
‖h(t)‖2.

From this inequality we get the estimate

‖v(t)‖2 ≤ ‖v0‖2e−νλ1t +
R2

2λ1νk
+

1

λ1ν

∫ t

0

‖h(τ)‖2dτ
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which implies that

‖v(t)‖2 ≤ H1, ∀t ≥ T1, H0 :=

∫ ∞
0

‖h(t)‖2dt, (2.2.6)

where H1 depends only on R, k, ν, λ1 and H0. Next, we multiply (2.2.1) by −∂2
xv in

L2(0, 1) and obtain

1

2

d

dt
‖∂xv‖2 +ν‖∂2

xv‖2 +

∫ 1

0

(∂xv)3dx−R‖∂xv‖2 +k‖v‖2‖∂xv‖2 = −(h, ∂2
xv). (2.2.7)

Here, we again use Young’s inequality (1.4.6) to obtain that

R‖∂xv‖2 ≤ R‖v‖‖∂2
xv‖ ≤

ν

8
‖∂2

xv‖2 +
2R2

ν
‖v‖2,

|(h, ∂2
xv)| ≤ ν

8
‖∂2

xv‖2 +
2

ν
‖h‖2.

(2.2.8)

Employing the Gagliardo-Nirenberg inequality (1.4.2) and the Young’s inequality

(1.4.6) with ε = 2ν
7
, p = 8

7
we get∣∣∣ ∫ 1

0

(∂xv(t))3dx
∣∣∣ ≤ ν

4
‖∂2

xv(t)‖2 + β24772−10ν−7‖v(t)‖10. (2.2.9)

Utilizing (2.2.9), two inequalities in (2.2.8) and the Poincaré-Friedrichs inequality

(1.4.7), we get from (2.2.7)

d

dt
‖∂xv(t)‖2 + νλ1‖∂xv(t)‖2 ≤ 4

ν
‖h(t)‖2 +

4R2

ν
‖v(t)‖2 + β24772−9ν−7‖v(t)‖10,

where β > 0 is a constant of Gagliardo-Nirenberg inequality (1.4.2). Due to (2.2.6)

by integrating this inequality, we get the estimate

‖∂xv(t)‖2 ≤ H2, ∀t ≥ T2 ≥ T1, (2.2.10)

where H2 depends on R, ν, β, H0 and H1.

Let us obtain estimates for solutions of the controlled system (2.2.3)-(2.2.4). Multi-

plication of (2.2.3) by u in L2(0, 1) gives:

1

2

d

dt
‖u(t)‖2 + ν‖∂xu(t)‖2 −R‖u(t)‖2 + k‖u(t)‖4

= −µ
N∑
k=1

(u,wk)
2 + µ

N∑
k=1

(v, wk)(u,wk) + (h, u). (2.2.11)
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By using the Young’s inequality (1.4.6) we obtain the following inequalities

|(h, u)| ≤ ‖u‖2 +
1

4
‖h‖2 ≤ k

2
‖u‖4 +

1

2k
+

1

4
‖h‖2, (2.2.12)

R‖u‖2 ≤ k

2
‖u‖4 +

1

2k
R2, (2.2.13)

µ
N∑
k=1

(v, wk)(u,wk) ≤ µ
N∑
k=1

(u,wk)
2 +

µ

4

N∑
k=1

(v, wk)
2

≤ µ

N∑
k=1

(u,wk)
2 +

µ

4
‖v(t)‖2. (2.2.14)

Employing (2.2.12)-(2.2.14) in (2.2.11)

1

2

d

dt
‖u(t)‖2 + ν‖∂xu(t)‖2 ≤ µ

4
‖v(t)‖2 +

1

4
‖h(t)‖2 +

1

2k
(1 +R2). (2.2.15)

By integrating (2.2.15) we deduce from that

‖u(t)‖2 ≤ H3, ∀t ≥ T3 > T2, (2.2.16)

where H3 depends on R, k, ν, µ,H0 and H1.

Next, we multiply (2.2.3) by −∂2
xu in L2(0, 1)

1

2

d

dt
‖∂xu(t)‖2 + ν‖∂2

xu(t)‖2 +

∫ 1

0

(∂xu)3dx−R‖∂xu(t)‖2 + k‖u(t)‖2‖∂xu(t)‖2

= −µ
N∑
k=1

λk(u,wk)
2 + µ

N∑
k=1

λk(v, wk)(u,wk)− (h, ∂2
xu). (2.2.17)

Thanks to the inequalities (2.2.9) and (2.2.8) employed for the term ∂2
xu and the

inequality

µ
∣∣ N∑
k=1

λk(v, wk)(u,wk)
∣∣ ≤ µ

N∑
k=1

λk(u,wk)
2 +

µ

4

N∑
k=1

λk(v, wk)
2,

(2.2.17) implies

1

2

d

dt
‖∂xu‖2 +

ν

2
‖∂2

xu‖2 ≤ β24772−10ν−7‖u‖10 + 4R2‖u‖2 + 4‖h‖2 +
µ

4
‖∂xv‖2.

Integrating the last inequality we obtain the next bound for solutions of the problem

‖∂xu(t)‖2 ≤ H4, ∀t ≥ T4 > T3. (2.2.18)

Hence, there exists a positive number T ∗ such that T ∗ = max{T1, T2, T3, T4} which

satisfies the assertion of the lemma.
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Stabilization in L2-norm

We state our main result about the L2-stabilization of the problem (2.2.1)-(2.2.2) in

the following theorem.

Theorem 2.2.3. Suppose that ξ > λ1ν
2

is an arbitrary number, N and µ are so large

that

ν

2
> λ−1

N+1(ξ − λ1ν

2
+ 2A0 + 2R), µ >

1

2
ξ − λ1ν

4
+R + A0,

where A0 is defined in (2.2.25). Then each solution of the problem (2.2.1)-(2.2.2)

under the homogeneous Dirichlet’s boundary conditions is approaching the solution

of the problem (2.2.3)-(2.2.4) with an exponential rate e−ξt in L2(0, 1) sense.

Proof. We denote z = v − u and see that z is a solution of the following problem

∂tz − ν∂2
xz + 2z∂xu+ 2v∂xz −Rz + k‖u‖2u− k‖v‖2v

= −µ
N∑
k=1

(z, wk)wk, (2.2.19)

z(0, t) = z(1, t) = 0, (2.2.20)

z(x, 0) = u0(x)− v0(x), (2.2.21)

where (x, t) ∈ [0, 1]× [0,∞).

Multiplying the equation (2.2.19) by z in L2(0, 1) and using the monotonicity in-

equality (1.4.10) we get

1

2

d

dt
‖z‖2 + ν‖∂xz‖2 + 2(z2, ∂xu)− (z2, ∂xv)−R‖z‖2

= −µ
N∑
k=1

(z, wk)
2. (2.2.22)

Then we estimate the third and fourth terms on the left hand side of (2.2.22) by

using Gagliardo-Nirenberg inequality (1.4.2) and Young’s inequality (1.4.6):

2|(z2, ∂xu)| ≤ 2β‖z(t)‖2
L4(0,1)‖∂xu(t)‖

≤ ν

4
‖∂xz‖2 +

3

4
(2β)

4
3ν−

1
3‖z‖2‖∂xu‖

4
3 . (2.2.23)
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and

|(z2, ∂xv)| ≤ ‖z‖2
L4‖∂xv‖ ≤ β2‖z‖

3
2‖∂xz‖

1
2‖∂xv‖

≤ ν

4
‖∂xz‖2 +

3

4
β

4
3ν−

1
3‖z‖2‖∂xv‖

4
3 , (2.2.24)

Thus due to (2.2.10) and (2.2.18) there exists T5 ≥ T4 such that

|(z2, ∂xv)|+ 2|(z2, ∂xu)| ≤ ν

2
‖∂xz‖2 + A0‖z‖2, ∀t ≥ T5,

where

A0 =
3

4
(2β)

4
3ν−

1
3H

2/3
4 +

3

4
(β)

4
3ν−

1
3H

2/3
2 . (2.2.25)

Employing the last inequality we get from (2.2.22) that

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2 − 2(A0 +R)‖z(t)‖2 = −2µ

N∑
k=1

(z, wk)
2. (2.2.26)

Next, we multiply (2.2.26) by eσt with σ = ξ− λ1ν
2

and rewrite the obtained relation

in the form

d

dt

(
eσt‖z(t)‖2

)
+ eσtν‖∂xz(t)‖2 − (σ + 2A0 + 2R)eσt‖z(t)‖2

= −2µeσt
N∑
k=1

(z, wk)
2.

The last equality we write in the following form

d

dt

(
eσt‖z(t)‖2

)
+ eσtν‖∂xz(t)‖2 + [2µ− (σ + 2A0 + 2R)]eσt

N∑
k=1

(z, wk)
2

− (σ + 2A0 + 2R)eσt
∞∑

k=N+1

(z, wk)
2 = 0. (2.2.27)

Since
∞∑

k=N+1

(z, wk)
2 ≤ λ−1

N+1‖∂xz(t)‖2, we can choose N so large that

ν

2
> (σ + 2A0 + 2R)λ−1

N+1 and µ ≥ σ

2
+R + A0,

and deduce from (2.2.27) the inequality

d

dt

(
eσt‖z(t)‖2

)
+
ν

2
eσt‖∂xz(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T5, (2.2.28)

which implies that ‖z(t)‖2 ≤ e−ξ(t−t0)‖z(t0)‖2.
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Stabilization in H1-norm

In this subsection, we state our result on the H1-stabilization of the problem (2.2.1)-

(2.2.2).

Theorem 2.2.4. Assume that ξ > λ1ν
2

is an arbitrary number and µ and N are so

large that

µ >
1

2
σ +Q,

ν

2
≥ λ−1

N+1(σ + 2Q),

where

Q :=
4c2

0

ν
(H4 +H3) + kλ

− 1
2

1 (
√
H1 +

√
H3)

√
H2 +R. (2.2.29)

Then there exists t0 > 0 such that the solution of the problem (2.2.3)-(2.2.4) ap-

proaches the solution of (2.2.1)-(2.2.2) with an exponential rate e−ξt in H1(0, 1)

sense. In other words, the following inequality holds true

‖∂xṽ(t)− ∂xv(t)‖2 ≤ e−ξ(t−t0)‖∂xṽ(t0)− ∂xv(t0)‖2, ∀t ≥ t0.

Here, the constants H1, H2, H3 and H4 are bounds for uniform estimates in Lemma

2.2.2 and c0 > 0 is the constant of the Sobolev inequality (1.4.9).

Proof. We multiply the equation (2.2.19) by −∂2
xz and we obtain that

1

2

d

dt
‖∂xz(t)‖2 + ν‖∂2

xz(t)‖2 = 2(z∂xu+ v∂xz, ∂
2
xz) +R‖∂xz(t)‖2

+ k(‖u(t)‖2u− ‖v(t)‖2v, ∂2
xz)− µ

N∑
k=1

λk(z, wk)
2. (2.2.30)

The third term on the right-hand side of the last equality can be rewritten and

estimated by using Poincaré-Friedrichs inequality (1.4.7) as follows:

k(‖u(t)‖2u− ‖v(t)‖2v, ∂2
xz) = k‖u(t)‖2(z, ∂2

xz) + k(‖u‖2 − ‖v(t)‖2)(v, ∂2
xz)

= −k‖u(t)‖2‖∂xz(t)‖2 − k(u+ v, z)(∂xv, ∂xz),

≤ k|(u+ v, z)||(∂xv, ∂xz)|,

≤ kλ
− 1

2
1 (‖u(t)‖+ ‖v(t)‖) ‖∂xv(t)‖‖∂xz(t)‖2. (2.2.31)
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Similar to (2.1.37), we have the estimate

2|(z∂xu+ v∂xz, ∂
2
xz)| (2.2.32)

≤ ν

2
‖∂2

xz(t)‖2 +
4c2

0

ν
(‖∂xu(t)‖2 + ‖∂xv(t)‖2)‖∂xz(t)‖2, (2.2.33)

where c0 > 0 is a constant of the Sobolev inequality. Employing the estimates

(2.2.31) and (2.2.32) in (2.2.30) obtain that

1

2

d

dt
‖∂xz(t)‖2 +

ν

2
‖∂2

xz(t)‖2 ≤
(

4c2
0

ν
(‖∂xu(t)‖2 + ‖∂xv(t)‖2)

)
‖∂xz(t)‖2

+
(
kλ
− 1

2
1 (‖u(t)‖+ ‖v(t)‖) ‖∂xv(t)‖+R

)
‖∂xz(t)‖2

− µ
N∑
k=1

λk(z, wk)
2. (2.2.34)

Employing the uniform estimates (2.2.6), (2.2.10), (2.2.16) and (2.2.18) in (2.2.34),

we deduce that there exists T5 ≥ T4 such that the following inequality holds for all

t ≥ T5

1

2

d

dt
‖∂xz(t)‖2 +

ν

2
‖∂2

xz(t)‖2 ≤ Q‖∂xz(t)‖2 − µ
N∑
k=1

λk(z, wk)
2, (2.2.35)

where Q :=
4c20
ν

(H4 + H3) + kλ
− 1

2
1 (
√
H1 +

√
H3)
√
H2 + R. We multiply the last

inequality by 2eσt with σ := ξ − νλ1
2
> 0 and get that

d

dt

(
eσt‖∂xz(t)‖2

)
− (σ + 2Q)eσt‖∂xz(t)‖2 + νeσt‖∂2

xz(t)‖2

≤ −2µ
N∑
k=1

λk(z, wk)
2, ∀t ≥ T5.

Thanks to (2.1.42) from the last inequality we obtain that

d

dt

(
eσt‖∂xz(t)‖2

)
+ (ν − λ−1

N+1(σ + 2Q))eσt‖∂2
xz(t)‖2

≤ −(2µ− σ − 2Q)
N∑
k=1

λk(z, wk)
2, ∀t ≥ T5.

We assume that µ and N are so large that

µ >
1

2
σ +Q,

ν

2
≥ λ−1

N+1(σ + 2Q),
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Thus, we obtain that

d

dt

(
eσt‖∂xz(t)‖2

)
+
λ1ν

2
eσt‖∂xz(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T5. (2.2.36)

Hence, (2.2.36) implies that

‖∂xz(t)‖2 ≤ e−(σ+
λ1ν
2

)(t−t0)‖∂xz(t0)‖2, ∀t ≥ t0 ≥ T5.

2.2.2 Finitely Many Volume Elements

In this section, we take a control operator based on finitely many volume elements

and propose the following feedback control problem for (2.2.1)-(2.2.2):
∂tu− ν∂2

xu+ 2u∂xu−Ru+ ku‖u‖2 = h(x, t)

−µ
N∑
k=1

(ūk − v̄k)χJk(x), (2.2.37)

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), (2.2.38)

where Jk = [(k − 1) 1
N
, k 1

N
), for k = 1, 2, ..., N − 1, JN = [N−1

N
, 1], χJk is the charac-

teristic function of the interval Jk and

ūk =
1

|Jk|

∫
Jk

ṽ(x, t)dx, v̄k =
1

|Jk|

∫
Jk

v(x, t)dx.

Theorem 2.2.5. Let σ > 0 be an arbitrary number. Assume that N and µ are so

large enough that

µ >
1

2
(σ + A1), N2 ≥ 4µ2

ν2λ1

.

where A1 is defined in (2.2.45). Then each solution of the problem (2.2.37)-(2.2.38)

is approaching the solution of (2.2.1)-(2.2.2) with an exponential rate in L2(0, 1)

sense.

Proof. By letting z = u− v, we see that z is a solution of the following problem
∂tz − ν∂2

xz + 2z∂xz + 2v∂xz + 2z∂xv −Rz + ku‖u‖2 − k‖v‖2v

= −µ
N∑
k=1

(z̄k)χJk(x), (2.2.39)

z(0, t) = z(1, t) = 0, z(x, 0) = u0(x)− v0(x), (2.2.40)
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where z̄k = 1
|Jk|

∫
Jk
z(x, t)dx. Multiplying (2.2.39) by z in L2(0, 1) and using the fact

that 2(z∂xz, z) = 0 and (1.4.10), we obtain that

1

2

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2 + 2(v∂xz + z∂xv, z)−R‖z(t)‖2

≤ −µ

(
N∑
k=1

z̄kχJk(x), z

)
. (2.2.41)

By using integration by parts, Gagliardo-Nirenberg inequality (1.4.2) and Young’s

inequality (1.4.6), we estimate the third term on the left-hand side of (2.2.41)

2(v∂xz + z∂xv, z) = (∂xv, z
2) ≤ ‖∂xv(t)‖‖z(t)‖2

L4(0,1)

≤ β‖∂xv(t)‖‖z(t)‖
3
2‖∂xz(t)‖

1
2

≤ ν

4
‖∂xz(t)‖2 +

3

4
β

4
3ν−

1
3‖∂xv(t)‖

4
3‖z(t)‖2. (2.2.42)

We rewrite and estimate the term on the right-hand side of (2.2.41) by using (1.4.14)

and Young’s inequality (1.4.6) as follows:

−µ

(
N∑
k=1

z̄kχJk(x), z

)
= −µ

(
N∑
k=1

z̄kχJk(x)− z, z

)
− µ‖z(t)‖2

≤ µ

∥∥∥∥∥z −
N∑
k=1

z̄kχJk(x)

∥∥∥∥∥ ‖z(t)‖ − µ‖z(t)‖2

≤ µh‖∂xz(t)‖‖z(t)‖ − µ‖z(t)‖2

≤ ν

4
‖∂xz(t)‖2 +

µ2h2

ν
‖z(t)‖2. (2.2.43)

Here, the constant h = 1
N

comes from (1.4.14). Thanks to (2.2.42) and (2.2.43) from

(2.2.41) we get that

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2

≤
(

2R +
3

2
β

4
3ν−

1
3‖∂xv(t)‖

4
3 − 2µ

)
‖z(t)‖2 +

2µ2h2

ν
‖z(t)‖2. (2.2.44)

By utilizing the uniform estimate (2.2.10) for ‖∂xv(t)‖ and multiplying (2.2.44) by

eσt with an arbitrary σ > 0, we obtain that

d

dt

(
eσt‖z(t)‖2

)
+ νeσt‖∂xz(t)‖2 + (2µ− σ − A1) eσt‖z(t)‖2

≤ 2µ2h2

ν
eσt‖z(t)‖2, ∀t ≥ t0 ≥ T2,
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where

A1 := 2R +
3

2
β

4
3ν−

1
3H

2
3
2 . (2.2.45)

Utilizing Poincaré-Friedrichs inequality (1.4.7), we have from the last inequality that

d

dt

(
eσt‖z(t)‖2

)
+

(
νλ1 −

2µ2h2

ν

)
eσt‖∂xz(t)‖2

+ (2µ− σ − A1) eσt‖z(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T2, (2.2.46)

We assume that

µ ≥ σ

2
+
A1

2
, νλ1 ≥

4µ2h2

ν
, (2.2.47)

i.e. by substituting h = 1
N

we assume that

N2 ≥ 4µ2

ν2λ1

.

Thus, we obtain from (2.2.46) that

d

dt

(
eσt‖z(t)‖2

)
+
νλ1

2
eσt‖z(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T2.

Hence, this implies that

‖z(t)‖2 ≤ ‖z(t0)‖2e−(σ+
νλ1
2

)(t−t0), ∀t ≥ t0 ≥ T2.

2.2.3 Finitely Many Nodal Values

In this section, we take a control operator based on finitely many nodal values and

propose the following feedback control problem for (2.2.1)-(2.2.2):
∂tu− ν∂2

xu+ 2u∂xu−Ru+ ku‖u‖2 = h(x, t)

−µ
N∑
k=1

(u(xk)− v(xk))χJk(x), (2.2.48)

u(0, t) = u(1, t) = 0, u(x, 0) = u0(x), (2.2.49)

where Jk and χJk are as defined in the previous section and xk ∈ Jk are arbitrary

points in the intervals Jk for k = 1, 2, ..., N .
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Theorem 2.2.6. Assume that N and µ are so large enough that

µ >
1

2
(σ + A1), N2 ≥ 4µ2

ν2λ1

,

where A1 is defined in (2.2.45). Then each solution of the problem (2.2.48)-(2.2.49)

is approaching the solution of (2.2.1)-(2.2.2) with an exponential rate in L2(0, 1)

sense.

Proof. We see that z := u− v is a solution of the following problem:
∂tz − ν∂2

xz + 2z∂xz + 2v∂xz + 2z∂xv −Rz + ku‖u‖2 − k‖v‖2v

== −µ
N∑
k=1

z(xk)χJk(x), (2.2.50)

z(0, t) = z(1, t) = 0, z(x, 0) = u0(x)− v0(x), (2.2.51)

Multiplying (2.2.50) by z in L2(0, 1) and using the fact that 2(z∂xz, z) = 0 and

(1.4.10) k(u‖u‖2 − ‖v‖2v, u− v) ≥ 0, we obtain that

1

2

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2 + 2(v∂xz + z∂xv, z)−R‖z(t)‖2

≤ −µ

(
N∑
k=1

z(xk)χjk(x), z

)
. (2.2.52)

We estimate the third term on the left-hand side and last term on the right-hand

side of (2.2.52) similarly as in (2.2.42) and (2.2.43). Thus, we obtain from (2.2.52)

the following inequality

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2

≤
(

2R +
3

2
β

4
3ν−

1
3‖∂xv(t)‖

4
3 − 2µ

)
‖z(t)‖2 +

2µ2h2

ν
‖z(t)‖2. (2.2.53)

By utilizing the uniform estimate (2.2.10) for ‖∂xv(t)‖ and multiplying (2.2.53) by

eσt with an arbitrary σ > 0, we obtain that

d

dt

(
eσt‖z(t)‖2

)
+ νeσt‖∂xz(t)‖2 + (2µ− σ − A1) eσt‖z(t)‖2

≤ 2µ2h2

ν
eσt‖z(t)‖2, ∀t ≥ t0 ≥ T2,
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where A1 is the same constant as defined in (2.2.45). Thanks to Poincaré-Friedrichs

inequality (1.4.7), from the previous inequality we get that

d

dt

(
eσt‖z(t)‖2

)
+

(
νλ1 −

2µ2h2

ν

)
eσt‖z(t)‖2

+ (2µ− σ − A1) eσt‖z(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T2, (2.2.54)

We assume that µ and N are sufficiently large such that

µ >
1

2
(σ + A1), νλ1 ≥

4µ2h2

ν
.

i.e. the second assumption can be written as follows:

N2 ≥ 4µ2

ν2λ1

.

Thus, we obtain from (2.2.54) that

d

dt

(
eσt‖z(t)‖2

)
+
νλ1

2
eσt‖z(t)‖2 ≤ 0, ∀t ≥ t0 ≥ T2. (2.2.55)

Hence, this implies that

‖z(t)‖2 ≤ ‖z(t0)‖2e−(σ+
νλ1
2

)(t−t0), ∀t ≥ t0 ≥ T2.
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Chapter 3

DETERMINING MODES

In this chapter, we give an estimate for the number of determining modes for

problem (2.1.1)-(2.1.3). We consider original Burgers’ equations (2.1.1)-(2.1.2) with

a forcing term h(x, t) ∈ L∞(0,∞;L2(0, 1)).∂tv = Uv + ν∂2
xv − 2v∂xv + h(x, t),

U ′(t) = R− U(t)− ‖v(t)‖2.

We define the following Hilbert spaces:

H = L2(0, 1)× R+, V = H1
0 (0, 1)× R+. (3.0.1)

Let ui = [vi, Ui], i = 1, 2 be in the spaces H and V . We define the inner products

on H and V as follows:

(u1, u2)H = (v1, v2) + U1U2, (u1, u2)V = (∂xv1, ∂xv2) + U1U2. (3.0.2)

The norms on these spaces are given by

‖u(t)‖2
H = ‖v(t)‖2 + U2(t), ‖u(t)‖2

V = ‖∂xv(t)‖2 + U2(t). (3.0.3)

Thanks to the Poincaré-Friedrichs inequality (1.4.7), we obtain that

‖u(t)‖2
H ≤

(
π−2‖v(t)‖2 + U2(t)

)
≤ ‖u(t)‖2

V . (3.0.4)

We formulate our problem as the following evolution equation
du
dt

+ νAu+B(u, u) = f,

u(0) = u0,

(3.0.5)
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where u0 = [v0, U0] and f = [h(x, t), R] in H. The linear operator A is defined as

follows:

A =

−∂2
x 0

0 1

 . (3.0.6)

Observe that A is a positive, self-adjoint operator with the domain D(A) = V ∩

H2(0, 1)× R and it has a compact inverse. By using the definitions (3.0.2), (3.0.3),

we get

(Au, u)H = (−∂2
xv, v) + U2(t) = ‖∂xv(t)‖2 + U2(t) = ‖u(t)‖2

V . (3.0.7)

For u1, u2 ∈ V , the nonlinear term B : V × V → H is defined as follows:

B(u1, u2) =

−U2v1 + 4
3
v1∂xv2 + 2

3
v2∂xv1

(v1, v2)

 . (3.0.8)

We see that B is a bilinear and continuous map. For u1, u2, u3 ∈ V , we have

(B(u1, u2), u2)H = 0, (3.0.9)

|(B(u1, u2), u3)H | ≤ c1‖u1‖
1
2
H‖u1‖

1
2
V ‖u2‖V ‖u3‖

1
2
H‖u3‖

1
2
V , (3.0.10)

‖B(u1, u2)‖H ≤ c2‖u1‖V ‖u2‖V , (3.0.11)

where c1 > 0 and c2 > 0 are positive constants.

Now, we find energy estimates for the equation (3.0.5). Let us multiply (3.0.5)

with u = [v, U ] in H. Thanks to the equations (3.0.7) and (3.0.9), we obtain

1

2

d

dt
‖u(t)‖2

H + ν‖u(t)‖2
V = (f, u)H . (3.0.12)

By using (3.0.4) and Young’s inequality (1.4.6), we estimate the term on the right-

hand side of the last equation as follows:

|(f(t), u)H | ≤ ‖f(t)‖H‖u(t)‖H ≤ ‖f(t)‖H‖u(t)‖V

≤ 1

2ν
‖f(t)‖2

H +
ν

2
‖u(t)‖2

V .

Utilizing this estimate from (3.0.12) we obtain the following inequality

d

dt
‖u(t)‖2

H + ν‖u(t)‖2
V ≤

1

ν
‖f(t)‖2

H . (3.0.13)
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Using the inequality (3.0.4) and Gronwall’s inequality (1.4.3), from (3.0.13) we de-

duce

‖u(t)‖2
H ≤ ‖u0‖2

H exp (−νt) +
1

ν

∫ t

0

‖f(τ)‖2
H exp(−ν(t− τ))dτ. (3.0.14)

Assume that

lim sup
t→∞

‖f(t)‖H ≤ F, (3.0.15)

where F > 0 is a constant. From the inequality (3.0.14), we have that

‖u(t)‖2
H ≤ ‖u0‖2

H exp(−νt) +
F 2

ν2
(1− exp(−νt)) . (3.0.16)

Thus, for all u0 there exists a t0 which depends on u0 such that

‖u(t)‖2
H ≤

2F 2

ν2
=: D1, ∀t ≥ t0. (3.0.17)

Now, let us multiply (3.0.5) with Au in H.

1

2

d

dt
‖u(t)‖2

V + ν‖Au(t)‖2
H + (B(u, u), Au)H = (f, Au)H . (3.0.18)

Let us estimate the last term on the left-hand side of the previous equation.

(B(u, u), Au)H =

−Uv + 2v∂xv

‖v(t)‖2

 ,
−∂2

xv

U


H

= U(t)(v, ∂2
xv)− 2

∫ 1

0

v∂xv∂
2
xvdx+ U(t)‖v(t)‖2

≤ |U(t)|‖v(t)‖‖∂2
xv(t)‖ + ‖∂xv(t)‖3

L3(0,1) + |U(t)|‖v(t)‖2. (3.0.19)

Thanks to Young’s inequality (1.4.6), we estimate the first term on the right-hand

side of the last inequality as follows:

|U(t)|‖v(t)‖‖∂2
xv(t)‖ ≤ ν

4
‖∂2

xv(t)‖2 +
1

ν
|U(t)|2‖v(t)‖2. (3.0.20)

Employing Gagliardo-Nirenberg inequality (1.4.2) and Young’s inequality (1.4.6)

with ε = 2ν
7
, p = 8

7
, we have

‖∂xv(t)‖3
L3(0,1) ≤ β3‖v(t)‖

5
4‖∂2

xv(t)‖
7
4

≤ ν

4
‖∂2

xv(t)‖2 + β24772−10ν−7‖v(t)‖10. (3.0.21)
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Plugging the estimates (3.0.20) and (3.0.21) into (3.0.19) and utilizing the estimate

(3.0.17), we obtain that

(B(u, u), Au)H ≤
ν

2
‖∂2

xv(t)‖2 +
1

ν
|U(t)|2‖v(t)‖2 + β24772−10ν−7‖v(t)‖10

≤ ν

2
‖∂2

xv(t)‖2 +
1

ν
M2

1 + β24772−10ν−7M5
1 , ∀t ≥ t0. (3.0.22)

Also, we estimate the term on the right-hand side of the equation (3.0.18)

|(f, Au)H | ≤ ‖f(t)‖H‖Au(t)‖H ≤
ν

4
‖Au(t)‖2

H +
1

ν
‖f(t)‖2

H . (3.0.23)

Thanks to the estimates (3.0.22) and (3.0.23) from (3.0.18), we have

d

dt
‖u(t)‖2

V +
ν

2
‖Au(t)‖2

H

≤ 2

ν
‖f(t)‖2

H +
1

ν
D2

1 + β24772−10ν−7D5
1, ∀t ≥ t0. (3.0.24)

Observe that

‖Au(t)‖2
H = ‖∂2

xv(t)‖2 + U2(t) ≥ π‖∂xv(t)‖2 + U2(t)

≥ b−4
(
π‖∂xv(t)‖2 + U2(t)

)
≥ π

(
‖∂xv(t)‖2 + U2(t)

)
= π‖u(t)‖2

V . (3.0.25)

Using (3.0.15) and (3.0.25), (3.0.24) implies ∀t ≥ t0 that

d

dt
‖u(t)‖2

V +
νπ

2
‖u(t)‖2

V ≤
2F 2

ν
+

1

ν
D2

1 + β24772−10ν−7D5
1. (3.0.26)

Thanks to Gronwall’s inequality (1.4.3), we deduce that

‖u(t)‖2
V ≤ ‖u(t0)‖2

V exp
(
−νπ

2
t
)

+
2D2

νπ
exp

(
−νπ

2
(t− t0)

)
, ∀t ≥ t0,

where

D2 =
2F 2

ν
+

1

ν
D2

1 + β24772−10ν−7D5
1. (3.0.27)

Hence,

‖u(t)‖2
V ≤

4D2

νπ
, ∀t ≥ t0. (3.0.28)
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Now, we integrate the inequality (3.0.13) over the interval (t, t+ T ).

ν

∫ t+T

t

‖u(τ)‖2
V dτ ≤ ‖u(t)‖2

H +
1

ν

∫ t+T

t

‖f(τ)‖2dτ. (3.0.29)

Employing (3.0.15) and (3.0.17), we obtain from (3.0.29)

ν

∫ t+T

t

‖u(τ)‖2
V dτ ≤

2F 2

ν2
+
b2F 2

ν
T, ∀t ≥ t0.

This inequality can be rewritten as follows:

1

T

∫ t+T

t

‖u(τ)‖2
V dτ ≤

2F 2

ν3T
+
b2F 2

ν2
.

For T large enough, we have that

1

T

∫ t+T

t

‖u(τ)‖2
V dτ ≤

2F 2

ν2
.

Hence,

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ ≤

2F 2

ν2
. (3.0.30)

We will utilize the estimate (3.0.30) in the following section.

3.1 Asymptotically Determining Modes

In the this section, we give the estimates for the number of determining modes for

the Original Burgers’ equations. Let Pm denote the L2(0, b) orthogonal projection

from H onto the m-dimensional subspace Hm = span{w1, w2, ..., wm}. We set Qm =

I −Pm. Assume that u and y are two solutions of the following evolution equations

which represent the original Burgers’ equations with different forcing terms f and g

and different initial data, respectively

du

dt
+ νAu+B(u, u) = f, u(0) = u0, (3.1.1)

dy

dt
+ νAy +B(y, y) = g, y(0) = y0. (3.1.2)

Definition 3.1.1 (See [25, 37]). A set of first m modes, {w1, w2, ..., wm} associ-

ated with the projection Pm is called asymptotically determining modes in H if the

following asymptotic behavior of the forcing terms and the projections

lim
t→∞
‖f(t)− g(t)‖H = 0 and lim

t→∞
‖Pm(u(t))− Pm(y(t))‖H = 0 (3.1.3)
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imply the asymptotic behavior of the solutions

lim
t→∞
‖u(t)− y(t)‖H = 0.

In the following theorem, we give our main result about the estimation of the

number of the asymptotic determining modes.

Theorem 3.1.2. Assume that the following conditions are satisfied

‖f(t)‖H ≤ F <∞, ∀t > 0, lim
t→∞
‖f(t)− g(t)‖H = 0,

lim
t→∞
‖Pm(u(t))− Pm(y(t))‖H = 0.

Then the first m eigenfunctions, {w1, w2, ..., wm}, of the Sturm-Liouville operator

under the homogeneous Dirichlet boundary conditions are asymptotically determin-

ing modes for the original Burgers’ equations represented by the abstract evolution

equation (3.1.1), provided that m is large enough such that

λm+1 >
2C2F 2

ν4
,

where C > 0 is a constant comes from the properties (3.0.10) and (3.0.11) of the

map B.

Proof. Let w = u− y. From the equations (3.1.1) and (3.1.2) we see that w satisfies

the following equation

∂tw + νAw +B(w, u) +B(y, w) = f(t)− g(t). (3.1.4)

Let p(t) = Pmw(t) and q(t) = Qmw(t) denote the L2(0, 1) orthogonal projection

of w from H onto Hm and from H onto H⊥m, the complement of Hm, respectively.

Then we have

1

2

d

dt
‖q(t)‖2

H +ν‖q(t)‖2
V +(B(w, u), q)+(B(y, w), q) = (f(t)−g(t), q(t))H . (3.1.5)

Note that since B is a bilinear map and w = p + q, we can rewrite last two terms

on the left-hand side of the equation (3.1.5) as follows.

(B(w, u), q) = (B(p, u), q) + (B(q, u), q),

(B(y, w), q) = (B(y, p), q) + (B(y, q), q).
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Utilizing the properties of B (3.0.9), (3.0.10) and (3.0.11), we estimate these terms

|(B(p, u), q)| ≤ C1‖p(t)‖
1
2
H‖p(t)‖

1
2
V ‖u(t)‖

1
2
H‖u(t)‖

1
2
V ‖q(t)‖V , (3.1.6)

|(B(q, u), q)| ≤ C2‖u(t)‖V ‖q(t)‖H‖q(t)‖V

≤ C2
2

2ν
‖u(t)‖2

V ‖q(t)‖2
H +

ν

2
‖q‖2

V , (3.1.7)

|(B(y, p), q)| ≤ C3‖y(t)‖
1
2
H‖y(t)‖

1
2
V ‖p(t)‖

1
2
H‖p(t)‖

1
2
V ‖q(t)‖V , (3.1.8)

|(B(y, q), q)| = 0, (3.1.9)

where C1, C2 and C3 are positive constants. By using the equation (3.0.7) and

estimates (3.1.6)-(3.1.9) from (3.1.4) we obtain

d

dt
‖q(t)‖2

H + ν‖q(t)‖2
V −

C2
2

ν
‖u(t)‖2

V ‖q(t)‖2
H ≤ β(t), (3.1.10)

where

β(t) := 2‖p(t)‖
1
2
H‖p(t)‖

1
2
V ‖q(t)‖V

(
C1‖u(t)‖

1
2
H‖u(t)‖

1
2
V + C3‖y(t)‖

1
2
H‖y(t)‖

1
2
V

)
.

Applying Poincaré-Friedrichs type inequality ‖q(t)‖2
V ≥ λm+1‖q(t)‖2

H , we have from

(3.1.10)

d

dt
‖q(t)‖2

H + α(t)‖q(t)‖2
H ≤ β(t), (3.1.11)

where α(t) = νλm+1 − C2
2

ν
‖u(t)‖2

V .

Now, let us check the conditions of Lemma 1.4.2. From the estimate (3.0.30) we

have

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ ≤

2F 2

ν2
.

Thus, α(t) = νλm+1 − C2
2

ν
‖u(t)‖2

V satisfy the condition (1.4.11)

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ ≥ νλm+1 −
C2

2

ν
lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ

≥ νλm+1 −
2C2

2F
2

ν3
> 0,

provided that there exists a T > 0 large enough such that

λm+1 >
2C2

2b
2F 2

ν4
. (3.1.12)
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We have shown the uniform estimates for ‖u(t)‖H and ‖u(t)‖V in (3.0.17) and

(3.0.28). One can derive uniform estimates for ‖y(t)‖H and ‖y(t)‖V similarly. Thus,

using these uniform estimates and the fact that ‖Pm(u(t)) − Pm(y(t))‖ → 0 as

t→∞, we see that

lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ <∞, lim inf
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0.

Thus, Lemma 1.4.2 implies thats ‖q(t)‖H → 0 as t → ∞. Hence, we obtain that

limt→∞ ‖u(t)− y(t)‖H = 0.
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Chapter 4

INVERSE SOURCE PROBLEMS

This chapter is devoted to the study existence, uniqueness and stability of so-

lutions of the inverse source problems for original Burgers’ equations and Burgers’

equation with nonlocal nonlinearity.

4.1 Inverse Problem for Original Burgers’ Equations

In this section, we analyze the existence, uniqueness and stability of the solutions

of an inverse source problem for original Burgers’ equations (2.1.1)-(2.1.3). We

formulate the inverse source problem as follows:

∂tv = Uv + ν∂2
xv − 2v∂xv + f(t)w(x), (4.1.1)

U ′(t) = R− νU(t)−
∫ 1

0

v2(x, t)dx, (4.1.2)

U(0) = U0, v(x, 0) = v0(x), v(0, t) = v(1, t) = 0, (4.1.3)∫ 1

0

v(x, t)w(x)dx = φ(t), (4.1.4)

where (x, t) ∈ [0, 1] × [0,∞), the functions w and φ are given and f is unknown

source function.

Definition 4.1.1. A set of functions {v, U, f} is called a weak solution of the

problem (4.1.1)-(4.1.4) if v ∈ L2(0, T ;H1
0 (0, 1)) ∩ L∞(0, T ;L2(0, 1)), U ∈ L∞(0, T ),

f ∈ L2(0, T ) and satisfy the following equations for each T > 0:

d

dt

∫ 1

0

v(x, t)η(x)dx− U(t)

∫ 1

0

v(x, t)η(x)dx+ ν

∫ 1

0

∂xv(x, t)η′(x)dx

+ 2

∫ 1

0

v(x, t)∂xv(x, t)η(x)dx = f(t)

∫ 1

0

w(x)η(x)dx, ∀η ∈ H1
0 (0, 1), (4.1.5)

U(t) = U0 +

∫ t

0

(R− νU(τ)− ‖v(τ)‖2)dτ. (4.1.6)
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In order to show well-posedness of (4.1.1)-(4.1.4) we need the following condi-

tions:

w ∈ H2(0, 1) ∩H1
0 (0, 1), ‖w‖ = K1, ‖w′‖ ≤ K2, (4.1.7)

v0(x) ∈ L2(0, 1), φ(t) ∈ H1(0, T ), ∀T > 0, (4.1.8)∫ 1

0

v0(x)w(x)dx = φ(0), (4.1.9)

where K1 and K2 are positive constants.

4.1.1 Existence and Uniqueness

In this section, we show that the existence and uniqueness of the solution of the

inverse source problem (4.1.1)-(4.1.4). We use similar procedures to prove the exis-

tence and uniqueness of the solution as in [47] and [52].

We define an operator A : L2(0, T )→ L2(0, T ) such that

(Af)(t) =
1

K2
1

[φ′(t)− U(t)(v, w) + ν(∂xv, w
′) + 2(v∂xv, w)] . (4.1.10)

We claim that under some conditions, the solvability of the following operator equa-

tion

Af = f, (4.1.11)

related with the solvability of the problem (4.1.1)-(4.1.4). In the following theorem

we state this assertion.

Theorem 4.1.2. Assume that the conditions (4.1.7)-(4.1.8) hold. Then the follow-

ing statements are true:

(i) If the problem (4.1.1)-(4.1.4) has a solution, then so does (4.1.11).

(ii) If (4.1.11) has a solution and the compatibility condition (4.1.9) holds, then

there exists a solution of (4.1.1)-(4.1.4).

Proof. (i) Assume that (4.1.1)-(4.1.4) has a solution denoted by {v, U, f}. By the

definition of solution, v satisfies (4.1.5). We choose η(x) = w(x) and substitute
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into (4.1.5) and employ the integral overdetermination condition (4.1.4) and (4.1.7).

Then we get that

φ′(t)− U(t)(v, w) + ν(∂xv, w
′) + 2(v∂x, w) = f(t)K2

1 . (4.1.12)

The left-hand side of (4.1.12) is equal to K2
1(Af)(t). Since K1 > 0, we obtain that

(Af)(t) = f(t). Hence, f is a solution of (4.1.11).

(ii) Assume that (4.1.11) has a solution, denoted by f , which belongs to L2(0, T ).

Let us substitute this f into (4.1.1). Then by (4.1.1)-(4.1.3) we obtain a direct initial-

boundary value problem. We know that this problem has a unique solution {v, U}.

We refer to the paper of T. Dlotko [21] for the proof of the existence and uniqueness

of the solution of original Burgers’ equations. Now, we need only to show that v

satisfies the integral overdetermination condition (4.1.4). We substitute η(x) = w(x)

into (4.1.5) and use (4.1.7). Then we obtain that

d

dt

∫ 1

0

v(x, t)w(x)dx− U(t)

∫ 1

0

v(x, t)w(x)dx+ ν

∫ 1

0

∂xv(x, t)w′(x)dx

− 2

∫ 1

0

v(x, t)∂xv(x, t)w(x)dx = f(t)K2
1 . (4.1.13)

Since f is a solution of (4.1.11), we can write that

φ′(t)− U(t)(v, w) + ν(∂xv, w
′)− 2(v∂xv, w) = f(t)K2

1 . (4.1.14)

By subtracting (4.1.14) from (4.1.13) and using (4.1.9), we obtain that

E ′(t) = 0, E(0) = 0, (4.1.15)

where E(t) :=
∫ 1

0
v(x, t)w(x)dx− φ(t).

Since the solution of the Cauchy problem (4.1.15) is E(t) ≡ 0 for all t ≥ 0, we get

that
∫ 1

0
v(x, t)w(x)dx = φ(t).

Now, we define a ball

D :=

{
f ∈ L2(0, T ) :

∥∥∥∥f − φ′(t)

K2
1

∥∥∥∥ ≤ r

}
. (4.1.16)

We prove the unique solvability of the operator equation (4.1.10) in the following

theorem.
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Theorem 4.1.3. Let w ∈ H2∩H1
0 (0, 1), ‖w‖ = K1 and φ ∈ H1(0, T ) for all T > 0.

Assume that the operator A maps D into itself. Then there exists a positive integer

k such that Ak is a contraction mapping in the ball D.

Proof. The proof of this theorem requires some preliminary calculations. We prove

the theorem in three steps as follows:

1. A priori estimates for the terms v and U corresponding to a source term f .

2. An upper bound for the terms ‖v1(t)− v2(t)‖ and |U1(t)− U2(t)|.

3. Ak is a conraction.

Step 1: A Priori Estimates

In this part, we find a priori estimates for the functions v and U . We multiply

(4.1.1) by v in L2(0, 1) and (4.1.2) by U , add the resultant equations and get

1

2

d

dt
[‖v(t)‖2 + |U(t)|2] + ν‖∂xv(t)‖2 + ν|U(t)|2 = f(t)(w, v) +RU(t). (4.1.17)

We estimate the terms on the right-hand side of (4.1.17) by utilizing Young’s (1.4.5)

and Poincaré-Friedrichs inequality (1.4.7)

RU(t) ≤ R2

2ν
+
ν

2
|U(t)|2, (4.1.18)

|f(t)(w, v)| ≤ |f(t)|K1‖v(t)‖ ≤ K2
1 |f(t)|2

2νλ1

+
ν

2
‖∂xv(t)‖2. (4.1.19)

Thus, we obtain from (4.1.17)

d

dt
[‖v(t)‖2 + |U(t)|2] + ν‖∂xv(t)‖2 + ν|U(t)|2 ≤ R2

ν
+
K2

1 |f(t)|2

νλ1

. (4.1.20)

We cancel the last two terms on the left-hand side of (4.1.17) and integrate the

obtained inequality over the interval (0, t). Thus, we get that

‖v(t)‖2 + |U(t)|2 ≤
(
‖v0‖2 + |U0|2

)
+
R2t

ν
+
K2

1

νλ1

∫ t

0

|f(τ)|2dτ.

Hence,

sup
t∈[0,T ]

‖v(t)‖2 + sup
t∈[0,T ]

|U(t)|2

≤ 2
(
‖v0‖2 + |U0|2

)
+

2R2T

ν
+

2K2
1

νλ1

‖f‖2
L2(0,T ). (4.1.21)
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By integrating (4.1.20) over the interval (0, T ) we obtain that

ν

∫ T

0

‖∂xv(t)‖2dt+ ν

∫ T

0

|U(t)|2dt ≤ R2T

ν
+
K2

1

νλ1

‖f‖2
L2(0,T ). (4.1.22)

Step 2: An upper bound for differences of two solutions

Let f1 and f2 be in D associated with {v1, U1} and {v2, U2}, respectively. Then we

have

∂tv1 = U1v1 + ν∂2
xv1 − 2v1∂xv1 + f1(t)w(x), (4.1.23)

U ′1(t) = R− νU1(t)− ‖v1(t)‖2, (4.1.24)

and

∂tv2 = U2v2 + ν∂2
xv2 − 2v2∂xv2 + f2(t)w(x), (4.1.25)

U ′2(t) = R− νU2(t)− ‖v2(t)‖2, (4.1.26)

under the same initial and boundary conditions

U1(0) = U0 = U2(0), (4.1.27)

v1(x, 0) = v0(x) = v2(x, 0), (4.1.28)

v1(0, t) = v1(1, t) = 0 = v2(0, t) = v2(1, t). (4.1.29)

We aim to find an upper bound for ‖v1(t)−v2(t)‖ and |U1(t)−U2(t)| which is related

to ‖f1 − f2‖L2(0,T ). In order to make calculations easier, we let z := v1 − v2 and

W := U1 − U2. By subtracting (4.1.25) from (4.1.23) and (4.1.26) from (4.1.24), we

obtain that

∂tz = Wz + U1z +Wv1 + ν∂2
xz − 2(z∂xz + v1∂xz + z∂xv1)

+ (f1 − f2)w(x), (4.1.30)

W ′(t) = −νW (t)− ‖z(t)‖2 − 2(z, v1). (4.1.31)

We multiply (4.1.30) by z in L2(0, 1) and (4.1.31) by W and add the obtain relations

to get that

1

2

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

= U1(t)‖z(t)‖2 −W (t)(z, v1) + 2(v1∂xz, z) + (f1(t)− f2(t))(w, z). (4.1.32)
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We estimate the terms on the right-hand side of (4.1.32) by employing the Young’s

(1.4.6), Sobolev (1.4.9) and Poincaré-Friedrichs inequality (1.4.7) as

|W (t)(z, v1)| ≤ ν

2
|W (t)|2 +

1

2ν
‖v1‖2‖z(t)‖2, (4.1.33)

2|(v1∂xz, z)| ≤ 2‖v1(t)‖L∞(0,1)‖∂xz(t)‖‖z(t)‖ ≤ 2c0‖∂xv1(t)‖‖∂xz(t)‖‖z(t)‖

≤ ν

4
‖∂xz(t)‖2 +

4c0

ν
‖∂xv1(t)‖2‖z(t)‖2, (4.1.34)

and

|(f1(t)− f2(t))(w, z)| ≤ K1|f1(t)− f2(t)|‖z(t)‖

≤ K1λ
− 1

2
1 |f1(t)− f2(t)|‖∂xz(t)‖ ≤ ν

4
‖∂xz(t)‖2 +

K2
1

νλ1

|f1(t)− f2(t)|2. (4.1.35)

Thanks to these estimates we get from (4.1.32) that

d

dt

[
‖z(t)‖2 + |W (t)|2

]
+ ν‖∂xz(t)‖2 + ν|W (t)|2

≤
[
2|U1(t)|+ 8c0

ν
‖∂xv1(t)‖2

]
‖z(t)‖2 +

2K2
1

νλ1

|f1(t)− f2(t)|2

≤ θ(t)
[
‖z(t)‖2 + |W (t)|2

]
+

2K2
1

νλ1

|f1(t)− f2(t)|2, (4.1.36)

where

θ(t) := 2|U1(t)|+ 8c0

ν
‖∂xv1(t)‖2. (4.1.37)

We employ Gronwall’s inequality (1.4.3) for (4.1.36) and obtain that

‖z(t)‖2 + |W (t)|2 ≤ 2K2
1

νλ1

∫ t

0

|f1(s)− f2(s)|2
(

exp

∫ t

s

θ(τ)dτ

)
ds

≤ 2K2
1

νλ1

(
exp

∫ t

0

θ(τ)dτ

)∫ t

0

|f1(s)− f2(s)|2ds.

Here, we note that ‖z(0)‖ = ‖v1(0) − v2(0)‖ = 0 and W0 = U1(0) − U2(0) = 0 by

(4.1.27) and(4.1.28).

Hence, the last inequality implies that

‖v1(t)− v2(t)‖2 + |U1(t)− U2(t)|2

≤ 2K2
1

νλ1

∫ t

0

|f1(s)− f2(s)|2
(

exp

∫ t

s

θ(τ)dτ

)
ds

≤ 2K2
1

νλ1

(
exp

∫ t

0

θ(τ)dτ

)∫ t

0

|f1(s)− f2(s)|2ds. (4.1.38)
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As a final calculation in this step, we estimate the integral of θ(t) over the interval

(0, T ). By definition (4.1.37) and adapting a priori estimates (4.1.21) and (4.1.22)

for the terms U1 and v1, we obtain that∫ T

0

θ(s)ds = 2

∫ T

0

|U1(s)|ds+
8c0

ν

∫ T

0

‖∂xv1(s)‖2ds

≤ 2T sup
t∈[0,T ]

|U1(t)|+ 8c0

ν

(
R2T

ν2
+

K2
1

ν2λ1

‖f1‖2
L2(0,T )

)
≤ 2T

(
2
(
‖v0‖2 + |U0|2

)
+

2R2T

ν
+

2K2
1

νλ1

‖f1‖2
L2(0,T )

)
+

8c0

ν

(
R2T

ν2
+

K2
1

ν2λ1

‖f1‖2
L2(0,T )

)
≤ θ1 := 4T (‖v0‖2 + |U0|2) +

4R2T

ν

(
T +

2c0

ν2

)
+

4K2
1

νλ1

(
T +

2c0

ν2

)
‖f1‖2

L2(0,T ), (4.1.39)

where θ1 > 0 is a constant.

Step 3: Ak is a contraction

We find an upper bound for ‖Af1 − Af2‖L2(0,t). Note that the notations z : v1 − v2

and W := U1 − U2 are used in this part, as well. By using the definition (4.1.10) of

A, we have that

|Af1(t)− Af2(t)|

=
1

K2
1

∣∣− U1(v1, w) + U2(v2, w) + ν(∂xz, w
′) + 2(v1∂xv1 − v2∂xv2, w)

∣∣
≤ 1

K2
1

[
K1|U1(t)|‖z(t)‖+K1|W (t)|‖v2(t)‖+ ν‖z(t)‖‖w′′‖

]
+

1

K2
1

‖w‖L∞(0,1)‖z(t)‖(‖v1(t)‖+ ‖v2(t)‖)

≤ 1

K2
1

[ψ(t)‖z(t)‖+K1‖v2(t)‖‖W (t)‖]

≤ 1

K2
1

[
ψ(t)‖z(t)‖+

(
K2

1

2
+

1

2
‖v2(t)‖2

)
‖W (t)‖

]
(4.1.40)

where

ψ(t) := K1|U1(t)|+ ν‖w′′‖+ ‖w‖L∞(0,1)(‖v1(t)‖+ ‖v2(t)‖). (4.1.41)
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Utilizing Young’s inequality (1.4.5), Sobolev inequality (1.4.9) and the estimate

(4.1.21) for U1, v1 and v2, we find an estimate for ψ(t)

ψ(t) ≤ 1

2
K2

1 +
1

2
|U1(t)|2 + ν‖w′′‖+

c2
0

2
‖w′′‖2 + 2‖v1(t)‖2 + 2‖v2(t)‖2

≤ 1

2
K2

1 +
1

2
sup
t∈[0,T ]

|U1(t)|2 +

(
ν +

c2
0

2

)
‖w′′‖

+ 2 sup
t∈[0,T ]

‖v1(t)‖2 + 2 sup
t∈[0,T ]

‖v2(t)‖2

≤ 1

2
K2

1 +

(
ν +

c2
0

2

)
‖w′′‖

+ 9

(
‖v0‖2 + |U0|2 +

R2T

ν

)
+
K2

1

νλ1

(
5‖f1‖2

L2(0,T ) + 4‖f2‖2
L2(0,T )

)
≤ 9

(
‖v0‖2 + |U0|2 +

R2T

ν
+
K2

1

νλ1

r̃2

)
=: δ1, (4.1.42)

where δ1 > 0 is a constant and since f1 and f2 are in D, we have

‖f1‖L2(0,T ) ≤ r +
1

K2
1

‖φ′‖L2(0,T ) =: r̃, ‖f2‖L2(0,T ) ≤ r̃.

Similarly, we estimate the last term on the right-hand side of (4.1.40) as follows:

K2
1

2
+

1

2
‖v2(t)‖2 ≤ δ2 :=

K2
1

2
+ ‖v0‖2 + |U0|2 +

R2T

ν
+
K2

1

νλ1

‖f2‖2
L2(0,T ) (4.1.43)

where δ2 > 0 is a constant. Therefore, we have from (4.1.40) that

|Af1(t)− Af2(t)| ≤ 1

K2
1

[δ1‖v1(t)− v2(t)‖+ δ2‖U1(t)− U2(t)‖]

≤ δ3 [‖v1(t)− v2(t)‖+ |U1(t)− U2(t)‖] , (4.1.44)

where δ3 := 1
K2

1
max{δ1, δ2}. Thanks to the estimates (4.1.38) and (4.1.39) we get

that

‖Af1 − Af2‖2
L2(0,t) =

∫ t

0

|Af1(s)− Af2(s)|2ds

≤ δ2
3

∫ t

0

[‖v1(s)− v2(s)‖+ |U1(s)− U2(s)‖]2 ds

≤ 2δ2
3

∫ t

0

‖v1(s)− v2(s)‖2 + |U1(s)− U2(s)‖2ds

≤ 4δ2
3K

2
1

νλ1

exp

(∫ s

0

θ(τ)dτ

)∫ t

0

∫ s

0

|f1(τ)− f2(τ)|2dτds

≤ δ4

∫ t

0

‖f1 − f2‖2
L2(0,s)ds, ∀t ∈ [0, T ]. (4.1.45)
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where δ4 :=
4δ23K

2
1

νλ1
eθ1 does not depend on t. We know that A maps D to itself by the

assumption in the theorem. Observe that

‖A2f1 − A2f2‖2
L2(0,T ) ≤ δ4

∫ T

0

‖Af1 − Af2‖2
L2(0,t)dt

≤ δ4

∫ T

0

δ

∫ t

0

‖f1 − f2‖L2(0,s)dsdt ≤ δ2
4‖f1 − f2‖L2(0,T )

∫ T

0

∫ t

0

dsdt

≤ δ2
4‖f1 − f2‖L2(0,T )

∫ T

0

tdt ≤ δ2
4T

2

2
‖f1 − f2‖L2(0,T ). (4.1.46)

Thus, we can define the k-th degree of the operator A for any k ∈ N+. From the

inequality (4.1.46), we have the following estimate for Ak:

‖Akf1 − Akf2‖2
L2(0,T ) ≤ δ4

∫ T

0

‖Ak−1f1 − Ak−1f2‖2
L2(0,t1)dt1

≤ δ2
4

∫ T

0

∫ t1

0

‖Ak−2f1A
k−2f2‖2

L2(0,t2)dt2dt1

≤ δk4‖f1 − f2‖2
L2(0,T )

∫ T

0

∫ t1

0

...

∫ tk−1

0

dtk...dt2dt1

≤ δk4T
k

k!
‖f1 − f2‖2

L2(0,T ). (4.1.47)

Since the term
(
δk4T

k

k!

) 1
2

tends to 0 as k → ∞, we can find an integer k0 > 0 such

that (
δk04 T

k0

k0!

) 1
2

≤ 1.

Hence, by choosing k = k0, we prove that Ak : D → D is a contraction operator.

In order to complete the unique solvability of (4.1.11) we need to show that the

operator A maps the closed ball D into itself.

Theorem 4.1.4. Assume that δ0 < r where

δ0 =

√
T

K2
1

[(
2(‖v0‖2 + |U0|2) +

2R2T

ν
+

2K2
1

νλ1

r̃2

)(
K2

1

2
+ (1 + ‖w′‖L∞(0,1))

)]
+

√
T

K2
1

ν2

2
‖w′′‖2, (4.1.48)

and r is the radius of the ball D which is defined in (4.1.16) and r̃ = r+ 1
K2

1
‖φ′‖L2(0,T ).

Then the operator A which is defined in (4.1.10) maps the closed ball D into itself.
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Proof. Let f be an arbitrary function in D, i.e. ‖f‖L2(0,T ) ≤ r̃. Then∥∥∥∥Af − φ′

K2
1

∥∥∥∥2

L2(0,T )

=

∫ T

0

∣∣∣∣Af(t)− φ′(t)

K2
1

∣∣∣∣2 dt
=

1

K4
1

∫ T

0

|−U(t)(v, w) + ν(∂xv, w
′) + 2(v∂xv, w

′)|2 dt. (4.1.49)

By using Young’s inequality (1.4.5) and a priori estimate (4.1.21)

|−U(t)(v, w) + ν(∂xv, w
′) + 2(v∂xv, w

′)|

≤ |U(t)|‖v(t)‖K1 + ν‖v(t)‖‖w′′‖+ ‖w′‖L∞(0,1)‖v(t)‖2

≤ K2
1

2
|U(t)|2 + (1 + ‖w′‖L∞(0,1))‖v(t)‖2 +

ν2

2
‖w′′‖2

≤
(
K2

1

2
+ (1 + ‖w′‖L∞(0,1))

)(
2(‖v0‖2 + |U0|2) +

2R2T

ν
+

2K2
1

νλ1

r̃2

)
+
ν2

2
‖w′′‖2 =: D,

Thus, we have∥∥∥∥Af − φ′

K2
1

∥∥∥∥
L2(0,T )

≤
√
T

K2
1

D = δ0. (4.1.50)

Since δ0 ≤ r by the assumption of the theorem, we see from (4.1.50) that A maps

D into itself.

Theorem 4.1.5. Let w ∈ H2 ∩ H1
0 (0, 1), ‖w‖ = K1 and φ ∈ H1(0, T ) for all

T > 0. We assume that the compatibility condition (4.1.9) and the bound condition

(4.1.48) for the radius of the closed ball D defined in (4.1.16) hold. Then there

exists a solution {v, U, f} for the inverse problem (4.1.1)-(4.1.4) with f ∈ D, and

this solution is unique.

Proof. Let us prove the first statement. By Theorem 4.1.4, we know that the opera-

tor A maps D into itself and by Theorem 4.1.3 Ak is a contraction map on D. Then

from the contraction mapping principle, the nonlinear operator A has unique fixed

point in D. This means that the nonlinear operator equation (4.1.11) has a unique

solution. By Theorem (4.1.2) we know that the inverse problem (4.1.1)-(4.1.4) has
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also a solution.

Let us prove that this solution is unique. Assume that {v1, U1, f1} and {v2, U2, f2}

be two distinct solutions of (4.1.1)-(4.1.4) with both f1 and f2 are in D. If f1 and f2

are equal a.e. in [0, T ], then by the uniqueness of the solution of the direct problem,

we have that {v1, U1} and {v2, U2} are equal a.e. in [0, 1]× [0, T ] and [0, T ]. If f1 and

f2 are distinct a.e. in [0, T ], then by Theorem 4.1.2, we know that f1 and f2 are both

solutions of the operator equation (4.1.11). However, we have already proven that

Af = f has unique solution in D. Hence, there are no distinct solutions {v1, U1, f1}

and {v2, U2, f2} of (4.1.1)-(4.1.4).

4.1.2 Stability

In this section, we aim to analyze the asymptotic behavior of the solution of (4.1.1)-

(4.1.4). Particularly, we show that the solution (v, U) of (4.1.1)-(4.1.4) tends to

the stationary state solution of (2.1.1)-(2.1.3) and f tends to zero as time goes to

infinity. We present our result in the following theorem:

Theorem 4.1.6. Assume that the conditions (4.1.7)-(4.1.9) hold and the following

limit relations are satisfied

α := νλ−1
1 −

2R

ν
> 0, lim

t→∞
|φ(t)| = 0, lim

t→∞
|φ′(t)| = 0.

Then the solution {v, U, f} of (4.1.1)-(4.1.4) satisfy the following relations:

lim
t→∞

[
‖v(t)‖2 +

∣∣∣∣U(t)− R

ν

∣∣∣∣2
]

= 0,

lim
t→∞

∫ t+1

t

‖∂xv(τ)‖2dτ = 0, lim
t→∞
|f(t)| = 0.

Proof. Let Y (t) = U(t)− R
ν

and rewrite (4.1.1)-(4.1.4) as follows:

∂tv =

(
Y (t) +

R

ν

)
v + ν∂2

xv − 2v∂xv + f(t)w(x), (4.1.51)

Y ′(t) = −νY (t)− ‖v(t)‖2, (4.1.52)

Y (0) = U0 −
R

ν
, v(x, 0) = v0(x), v(0, t) = v(1, t) = 0, (4.1.53)∫ 1

0

v(x, t)w(x)dx = φ(t), (4.1.54)
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Multiplying (4.1.51) by w in L2(0, 1) we obtain

f(t) =
1

K2
1

[
φ′(t)−

(
Y (t) +

R

ν

)
φ(t)− ν(∂2

xv, w)− 2(v∂xv, w)

]
. (4.1.55)

We plug f into (4.1.51) and multiply the equation by v in L2(0, 1).

1

2

d

dt
‖v(t)‖2 + ν‖∂xv(t)‖2 =

(
Y (t) +

R

ν

)
‖v(t)‖2 +K−2

1 φ′(t)φ(t)

−
(
Y (t) +

R

ν

)
K−2

1 φ2(t)− νK−2
1 (∂2

xv, w)φ(t)− 2K−2
1 (v∂xv, w)φ(t). (4.1.56)

Multiplying (4.1.52) by Y we obtain the following equation

1

2

d

dt
|Y (t)|2 + ν|Y (t)|2 = −Y (t)‖v(t)‖2. (4.1.57)

We add (4.1.56) and (4.1.57) and get

1

2

d

dt

[
‖v(t)‖2 + |Y (t)|2

]
+ ν‖∂xv(t)‖2 + ν|Y (t)|2 =

R

ν
‖v(t)‖2 +K−2

1 φ′(t)φ(t)

−
(
Y (t) +

R

ν

)
K−2

1 φ2(t)− νK−2
1 (∂2

xv, w)φ(t)− 2K−2
1 (v∂xv, w)φ(t). (4.1.58)

Employing Young’s inequality (1.4.6) and Poincaré-Friedrichs inequality (1.4.7), we

estimate the terms on the right-hand side of the last inequality as follows:

K−2
1 φ′(t)φ(t) ≤ K−2

1

|φ′(t)|2

2
+K−2

1

|φ(t)|2

2
, (4.1.59)

K−2
1 |Y (t)|φ2(t) ≤ ν

2
|Y (t)|2 + ν−1K−4

1 |φ(t)|4, (4.1.60)

νK−2
1 |(∂xv, w′)||φ(t)| ≤ ν

4
‖∂xv(t)‖2 + νK−4

1 K2
2 |φ(t)|2, (4.1.61)

and

2K−2
1 |(v∂xv, w)φ(t)| ≤ K−2

1 |(v2, w′)||φ(t)| ≤ K−2
1 ‖v(t)‖2

L4‖w′‖|φ(t)|

≤ βK−2
1 K2‖v(t)‖

3
2‖∂xv(t)‖

1
2 |φ(t)| ≤ βK−2

1 K2λ
− 3

4
1 ‖v(t)‖‖∂xv(t)‖|φ(t)|

≤ ν

4
‖∂xv(t)‖2 + ν−1β2λ

− 3
2

1 K−4
1 K2

2 |φ(t)|2‖v(t)‖2, (4.1.62)

where β > 0 is a constant in Gagliardo-Nirenberg inequality (1.4.2). Thanks to

the estimates (4.1.59)-(4.1.62) and Poincaré-Friedrichs inequality (1.4.7), we obtain
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from (4.1.58) the following inequality

d

dt

[
‖v(t)‖2 + |Y (t)|2

]
+ ν‖∂xv(t)‖2 + ν|Y (t)|2

≤ 2R

ν
λ−1

1 ‖∂xv(t)‖2 + 2ν−1β2λ
− 5

2
1 K−4

1 K2
2 |φ(t)|2‖∂xv(t)‖2

+K−2
1 |φ′(t)|2 +K−2

1 |φ(t)|2
(
1 + 2ν−1K−2

1 |φ(t)|2 + 2νK−4
1 K2

2

)
. (4.1.63)

We assume that

α := ν − 2R

ν
λ−1

1 > 0. (4.1.64)

Since limt→∞ |φ(t)|2 = 0, we can find time t0 > 0 such that

γ := α− 2ν−1β2λ
− 5

2
1 K−4

1 K2
2 |φ(t0)|2 > 0. (4.1.65)

Thus, we obtain the following inequality

d

dt

[
‖v(t)‖2 + |Y (t)|2

]
+ γ‖∂xv(t)‖2 + ν|Y (t)|2 ≤M1(t), ∀t > 0, (4.1.66)

where

M1(t) := K−2
1 |φ′(t)|2 +K−2

1 |φ(t)|2
(
1 + 2νK−4

1 K2
2

)
+ 2ν−1K−4

1 |φ(t)|4. (4.1.67)

Hence, we obtain

‖v(t)‖2 + |Y (t)|2 ≤ exp(−d0(t− t0))
[
‖v(t0)‖2 + |Y (t0)|2

]
+

∫ t

t0

exp(−d0(t − s))M1(s)ds, ∀t ≥ t0, (4.1.68)

where d0 = min{γ, ν}. This implies that

lim
t→∞

(
‖v(t)‖2 + |Y (t)|2

)
= lim

t→∞

(
‖v(t)‖2 +

∣∣∣∣U(t)− R

ν

∣∣∣∣2
)

= 0. (4.1.69)

By integrating (4.1.66) over (t, t+ 1), we obtain

γ

∫ t+1

t

‖∂xv(τ)‖2dτ ≤
[
‖v(t)‖2 + |Y (t)|2

]
+

∫ t+1

t

M1(τ)dτ. (4.1.70)

We note that the condition limt→∞ |φ(t)| = 0 (similarly φ′, h and v) implies that

lim
t→∞

∫ t+1

t

|φ(s)|ds = 0.
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Thus we get that limt→∞
∫ t+1

t
M1(s)ds = 0.

Hence, we obtain from (4.1.70) that

lim
t→∞

∫ t+1

t

‖∂xv(τ)‖2dτ = 0. (4.1.71)

Let us show the last limit relation in the theorem. From (4.1.55) we obtain

|f(t)| ≤ 1

K2
1

[
|φ′(t)|+

∣∣∣∣Y (t) +
R

ν

∣∣∣∣ |φ(t)|
]

+
1

K2
1

[
νK2‖∂xv(t)‖+K2‖v(t)‖

3
4‖∂xv(t)‖

1
4

]
.

Thanks to the limit relations (4.1.69) and (4.1.71), we obtain that limt→∞ |f(t)| = 0.

4.2 Inverse Source Problem for Burgers’ Equation with Nonlocal Non-

linearity

In this section, we analyze the existence, uniqueness and stability of the solutions

of the inverse source problem for (1.0.5). We propose the following inverse source

problem 
∂tv − ν∂2

xv + 2v∂xv −Rv + kv

∫ 1

0

v2dx = h(x, t) + f(t)w(x), (4.2.1)

v(0, t) = v(1, t) = 0, v(x, 0) = v0(x), (4.2.2)∫ 1

0

v(x, t)w(x)dx = φ(t), (4.2.3)

where w and φ are given and f is unknown. We assume that the conditions (4.1.7)-

(4.1.9) hold.

We define a solution of this problem as follows:

Definition 4.2.1. A pair of functions {v, f} is called a weak solution of (4.2.1)-

(4.2.3) such that f ∈ L2(0, T ) and v ∈ L2(0, T ;H1
0 (0, 1))∩L∞(0, T ;L2(0, 1)) satisfy



Chapter 4: Inverse Source Problems 64

the following equality for all η ∈ H1
0 (0, 1):

d

dt

∫ 1

0

v(x, t)η(x)dx+ ν

∫ 1

0

∂xv(x, t)η′(x)dx+ 2

∫ 1

0

v(x, t)∂xv(x, t)η(x)dx

−R
∫ 1

0

v(x, t)η(x)dx+ k‖v(t)‖2

∫ 1

0

v(x, t)η(x)dx

=

∫ 1

0

h(x, t)η(x)dx + f(t)

∫ 1

0

w(x)η(x)dx, ∀t ∈ [0, T ]. (4.2.4)

4.2.1 Existence and Uniqueness

In this section, we show the existence and uniqueness of solution of the problem

(4.2.1)-(4.2.3).

First, we define a nonlinear operator A : L2(0, T )→ L2(0, T ) such that

(Af)(t) =
1

K2
1

[φ′(t)−Rφ(t)]

+
1

K2
1

[
ν(∂xv, w

′) + 2(v∂xv, w) + k‖v(t)‖2(v, w)− (h,w)
]
, (4.2.5)

where K1 = ‖w‖ as in (4.1.7). In order to prove the solvability of the inverse source

problem (4.2.1)-(4.2.3), we need to prove the solvability of the following operator

equation:

Af = f. (4.2.6)

In the following theorem, we show that the solvability of (4.2.1)-(4.2.3) is related to

the solvability of (4.2.6) and vice versa.

Theorem 4.2.2. Assume that the conditions (4.1.7)-(4.1.8) hold. Then the follow-

ing assertions are true:

(i) If (4.2.1)-(4.2.3) is solvable, then so is (4.2.6).

(ii) If (4.2.6) is solvable and the compatibility condition (4.1.9) holds, then there

exists a solution of (4.2.1)-(4.2.3).

Proof. (i) Assume that the problem (4.2.1)-(4.2.3) has a solution, let say {v, f}.
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Then (4.2.4) holds. We substitute η(x) = w(x) into (4.2.4), and obtain

d

dt

∫ 1

0

v(x, t)w(x)dx+ ν

∫ 1

0

∂xv(x, t)w′(x)dx+ 2

∫ 1

0

v(x, t)∂xv(x, t)w(x)dx

−R
∫ 1

0

v(x, t)w(x)dx+ k‖v(t)‖2

∫ 1

0

v(x, t)w(x)dx

=

∫ 1

0

h(x, t)wdx+ f(t)‖w‖2. (4.2.7)

By using the integral overdetermination condition (4.2.3) and ‖w‖ = K1 in (4.1.7),

we have

φ′(t) + ν(∂xv, w
′) + 2(∂xv, w)−Rφ(t) + k‖v(t)‖2(v, w)− (h,w)

= f(t)K2
1 . (4.2.8)

From the definition of the operator A in (4.2.5), we see that the left-hand side of

(4.2.8) is equal to (Af)K2
1 . Since K1 > 0, from (4.2.8) we have that Af = f . Hence,

f is a solution of (4.2.6).

(ii) We assume that (4.2.6) has a solution in L2(0, T ). We denote this solution

by f and substitute into the equation (4.2.1). Since f is known, we obtain a direct

problem (4.2.1)-(4.2.2). The existence of a solution of this problem can be proven

by Galerkin method. Let us denote this solution by v. Now, we need only to show

that v satisfy also the integral overdetermination condition (4.2.3). We substitute

again η = w in (4.2.4) and obtain (4.2.7). Since f is a solution of (4.2.6) by using

(4.2.5), we can write the equation (4.2.8). We subtract the equation (4.2.8) from

(4.2.7) and obtain

d

dt
E(t)−RE(t) = 0, (4.2.9)

where E(t) :=
∫ 1

0
v(x, t)w(x)dx− φ(t).

Since the compatibility condition (4.1.9) holds, we have initial data E(0) = 0 for

(4.2.9). Hence, the solution of this Cauchy problem is

E(t) = E(0) exp(−Rt) = 0, ∀t > 0.

This implies that
∫ 1

0
v(x, t)w(x)dx = φ(t).
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Now, we proceed with the unique solvability of the operator equation (4.2.6).

We define a ball D as follows:

D =

{
f ∈ L2(0, T ) :

∥∥∥∥f − 1

K2
1

(φ′(t)−Rφ(t))

∥∥∥∥
L2(0,T )

≤ r1

}
. (4.2.10)

Next, we prove that A : D → D is a contraction mapping in the following theorem.

Theorem 4.2.3. Let w ∈ H2∩H1
0 (0, 1), ‖w‖ = K1 and φ ∈ H1(0, T ) for all T > 0.

Assume that A maps the ball D defined in (4.2.10) into itself. Then there exists an

integer s > 0 such that As is a contraction mapping in the ball D.

Proof. We prove this theorem in three steps as in the proof of Theorem 4.1.3

1. A priori estimates for the term v corresponding to a source term f .

2. An upper bound for the term ‖v1(t)− v2(t)‖.

3. As is contraction.

Step 1: A Priori Estimates

In this part, we find a priori estimates for the solution of (4.2.1)-(4.2.3). We multiply

(4.2.1) by v in L2(0, 1) and get that

1

2

d

dt
‖v(t)‖2 + ν‖∂xv(t)‖2 −R‖v(t)‖2 + k‖v(t)‖4

= (h, v) + f(t)(w, v). (4.2.11)

Thanks to Young’s inequality (1.4.6) and Poincaré-Friedrichs inequality (1.4.7), we

obtain

d

dt
‖v(t)‖2 + ν‖∂xv(t)‖2 ≤ R2

2k
+

2

νλ1

‖h(t)‖2 +
2K2

1

νλ1

|f(t)|2.

We integrate the last inequality over (0, t) and we get

‖v(t)‖2 + ν

∫ t

0

‖∂xv(τ)‖2dτ ≤ ‖v0‖2 +
R2t

2k

+
2

νλ1

∫ t

0

‖h(τ)‖2dτ +
2K2

1

νλ1

∫ t

0

|f(τ)|2dτ.
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From this inequality, we can deduce the following estimates:

sup
t∈[0,T ]

‖v(t)‖2 ≤ ‖v0‖2 +
R2T

2k

+
2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

‖f‖2
L2(0,T ), (4.2.12)

and

ν

∫ T

0

‖∂xv(τ)‖2dτ ≤ ‖v0‖2 +
R2T

2k

+
2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

‖f‖2
L2(0,T ). (4.2.13)

Step 2: An upper bound for differences of two solutions

Let f1 and f2 be in the ball D. Then there are v1 and v2 corresponding to f1 and

f2, respectively, such that

∂tv1 − ν∂2
xv1 + 2v1∂xv1 −Rv1 + kv1

∫ 1

0

v2
1dx = h(x, t) + f1(t)w(x), (4.2.14)

∂tv2 − ν∂2
xv2 + 2v2∂xv2 −Rv2 + kv2

∫ 1

0

v2
2dx = h(x, t) + f2(t)w(x). (4.2.15)

We subtract (4.2.15) from (4.2.14) and let z := v1 − v2. Then we obtain

∂tz − ν∂2
xz + 2v1∂xz + 2z∂xv2 −Rz + k(v1‖v1‖2 − v2‖v2‖2)

= (f1(t)− f2(t))w(x). (4.2.16)

We multiply (4.2.16) by z in L2(0, 1) and estimate some terms to get the following

equality

1

2

d

dt
‖z(t)‖2 + ν‖∂xz(t)‖2 + 2(v1∂xz, z) + 2(z∂xv2, z)−R‖z(t)‖2

+ k(v1‖v1‖2 − v2‖v2‖2, z) = (f1(t)− f2(t))(w, z). (4.2.17)

Thanks to monotonicity inequality (1.4.10) we have that

k(v1‖v1‖2 − v2‖v2‖2, z) ≥ 0, (4.2.18)

where d0 > 0 is a constant. By using Gagliardo-Nirenberg inequality (1.4.2),

Poincaré-Friedrichs inequality (1.4.7) and Young’s inequality (1.4.6), we get the
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following estimates:

2|(v1∂xz, z)| = | − (∂xv1, z
2)| ≤ β‖z(t)‖

3
2‖∂xz(t)‖

1
2‖∂xv1(t)‖

≤ βλ
− 1

4
1 ‖z(t)‖

1
2‖∂xz(t)‖

3
2‖∂xv1(t)‖

≤ ν

4
‖∂xz(t)‖2 + β4λ−1

1 2−233ν−3‖∂xv1(t)‖4‖z(t)‖2, (4.2.19)

2|(∂xv2, z
2)| ≤ 2‖∂xv2(t)‖‖z(t)‖2

L4(0,1) ≤ 2β‖z(t)‖
3
2‖∂xz(t)‖

1
2‖∂xv2(t)‖

≤ 2βλ
− 1

4
1 ‖z(t)‖

1
2‖∂xz(t)‖

3
2‖∂xv2(t)‖

≤ ν

4
‖∂xz(t)‖2 + β4λ−1

1 33ν−3‖∂xv2(t)‖4‖z(t)‖2, (4.2.20)

and

|(f1(t)− f2(t))(w, z)| ≤ K1|f1(t)− f2(t)|‖z(t)‖

≤ ν

4
‖∂xz(t)‖2 +

K2
1

νλ1

|f1(t)− f2(t)|2. (4.2.21)

Thanks to these estimates (4.2.18)-(4.2.21), from (4.2.17) we obtain that

d

dt
‖z(t)‖2 +

ν

2
‖∂xz(t)‖2 ≤ α(t)‖z(t)‖2 +

2K2
1

νλ1

|f1(t)− f2(t)|2, (4.2.22)

where

α(t) := 2R + a1‖∂xv1(t)‖4 + a2‖∂xv2(t)‖4 > 0, ∀t > 0, (4.2.23)

a1 := β4λ−1
1 2−233ν−3, a2 := β4λ−1

1 33ν−3. (4.2.24)

We cancel the positive term ν
2
‖∂xz(t)‖2 on the left-hand side of (4.2.22) and employ

Gronwall’s inequality (1.4.3) to obtain

‖z(t)‖2 ≤ ‖z(0)‖2 exp

(∫ t

0

α(s)ds

)
+

2K2
1

νλ1

∫ t

0

exp

(∫ t

s

α(τ)dτ

)
|f1(s) − f2(s)|2ds.

Since v1(x, 0) = v0(x) = v2(x, 0), we know that z(x, 0) = 0. Thus, the last inequality

implies that

‖v1(t)− v2(t)‖2 ≤ exp

(∫ t

0

α(s)ds

)[
2K2

1

νλ1

∫ t

0

|f1(s)− f2(s)|2ds
]
. (4.2.25)
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Here, by utilizing the calculations in [43] (in Lemma 1 at p.147), we deduce from

(4.2.25) that

‖v1(t)− v2(t)‖ ≤ exp

(
R +
√
a1

∫ t

0

‖∂xv1(τ)‖2dτ +
√
a2

∫ t

0

‖∂xv2(τ)‖2dτ

)
×
[√

2K1ν
− 1

2λ
− 1

2
1

∫ t

0

|f1(s)− f2(s)|ds
]
.

Thanks to the estimate (4.2.13) we obtain from the last inequality that

‖v1(t)− v2(t)‖ ≤ exp

(
R +

√
a1

ν
γ1 +

√
a2

ν
γ2

)
×
[√

2K1ν
− 1

2λ
− 1

2
1

∫ t

0

|f1(s)− f2(s)|ds
]
, (4.2.26)

where

γ1 := ‖v0‖2 +
R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

‖f1‖2
L2(0,T ), (4.2.27)

γ2 := ‖v0‖2 +
R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

‖f2‖2
L2(0,T ). (4.2.28)

Step 3: As is a contraction

We have obtained all the estimates which are necessary to prove As is a contraction

map. Now, we find a bound for ‖Af1−Af2‖. By the definition of A (4.2.5), we have

|Af1(t)− Af2(t)| ≤ 1

K2
1

|ν(∂xz, w
′) + 2(v1∂xv1, w)− 2(v2∂xv2, w)|

+
1

K2
1

∣∣k(v1‖v1(t)‖2 − v2‖v2(t)‖2, w)
∣∣ (4.2.29)

Let us bound the terms on the right-hand side of the (4.2.29). We have

ν|(∂xz, w′)| = ν|(z, w′′)| ≤ ν‖z(t)‖‖w′′‖, (4.2.30)

2|(v1∂xv1, w)− (v2∂xv2, w)| = | − (v2
1 − v2

2, w
′)|

≤ sup
x∈[0,1]

|w′(x)|‖z(t)‖(‖v1(t)‖ + ‖v2(t)‖), (4.2.31)

and

k|(v1‖v1(t)‖2 − v2‖v2(t)‖2, w)|

= k|‖v1(t)‖2(z, w) + (‖v1(t)‖2 − ‖v2(t)‖2)(v2, w)|

≤ kK1‖z(t)‖
(
‖v1(t)‖2 + ‖v2(t)‖(‖v1(t)‖+ ‖v2(t)‖)

)
≤ 3kK1

2
‖z(t)‖

(
‖v1(t)‖2 + ‖v2(t)‖2

)
. (4.2.32)
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Thus we obtain from (4.2.29) that

|Af1(t)− Af2(t)| ≤ b(t)‖v1(t)− v2(t)‖, (4.2.33)

where

b(t) =
1

K2
1

[
ν‖w′′‖+ sup

x∈[0,1]

|w′(x)|(‖v1(t)‖+ ‖v2(t)‖)

]

+
1

K2
1

[
3kK1

2

(
‖v1(t)‖2 + ‖v2(t)‖2

)]
.

Thanks to Young’s inequality (1.4.5) and (4.2.12), we estimate

b(t) ≤ 1

K2
1

(
ν‖w′′‖+

1

2
sup
x∈[0,1]

|w′(x)|2 +
3(1 + kK1)

2
b1

)
,

where

b1 := 2‖v0‖2 +
R2T

2k
+

4

νλ1

‖h‖2
L2(0,T ;L2(0,1))

+
2K2

1

νλ1

(
‖f1‖2

L2(0,T ) + ‖f2‖2
L2(0,T )

)
. (4.2.34)

Thus, we have

b(t) ≤ b2 :=
1

K2
1

(
ν‖w′′‖+

1

2
sup
x∈[0,1]

|w′(x)|2 +
3(1 + kK1)

2
b1

)
. (4.2.35)

Now, we can estimate the following term by using (4.2.26) and (4.2.33)

‖Af1 − Af2‖2
L2(0,t) =

∫ t

0

|Af1(η)− Af2(η)|2dη

≤ b2
2

∫ t

0

‖v1(η)− v2(η)‖2dη

≤ b2
2 exp

(
2R +

2
√
a1

ν
γ1 +

2
√
a2

ν
γ2

)
×
∫ t

0

(∫ η

0

|f1(τ)− f2(τ)|dτ
)2

dη. (4.2.36)

The last term on the right-hand side of (4.2.36) can be estimated by using Hölder

inequality as∫ t

0

(∫ η

0

|f1(τ)− f2(τ)|dτ
)2

dη ≤
∫ t

0

(
η‖f1 − f2‖2

L2(0,η)

)
dη

≤ T

∫ t

0

‖f1 − f2‖2
L2(0,η)dη. (4.2.37)
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Since f1 and f2 in D, we have that

‖f1‖L2(0,T ) ≤ r1 +
1

K2
1

‖φ′(t)−Rφ(t)‖L2(0,T ) =: r2, ‖f2‖L2(0,T ) ≤ r2,

We estimate (4.2.27) and (4.2.28) by using r2 as

γ̃1 ≤ ‖v0‖2 +
R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2, (4.2.38)

γ̃2 ≤ ‖v0‖2 +
R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2. (4.2.39)

Thus, from (4.2.36) we have

‖Af1 − Af2‖L2(0,t) ≤
√
b3

(∫ t

0

‖f1 − f2‖2
L2(0,s)ds

) 1
2

, ∀t ∈ [0, T ], (4.2.40)

where

b3 := Tb2
2 exp

(
2R +

2
√
a1

ν
γ̃1 +

2
√
a2

ν
γ̃2

)
. (4.2.41)

We see that b3 does not depend on t. We know that A maps D to itself by the

assumption in the theorem. Thus, we can define the s-th degree of the operator

A for any s ∈ N
+. Using similar procedures in (4.1.46) and (4.1.47), from the

inequality (4.2.40), we have the following estimate for As:

‖Asf1 − Asf2‖L2(0,T ) ≤
(
bs3T

s

s!

) 1
2

‖f1 − f2‖L2(0,T ). (4.2.42)

Since the term
(
bs3T

s

s!

) 1
2

tends to 0 as s → ∞, we can find an integer s0 > 0 such

that (
bs03 T

s0

s0!

) 1
2

≤ 1.

Hence, by choosing s = s0, we prove that As : D → D is a contraction operator

.

In order to complete the unique solvability of (4.1.11) we need to show that the

operator A maps the closed ball D into itself.
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Theorem 4.2.4. Assume that b0 < r1 where

b0 =

√
T

K2
1

[
ν2‖w′′‖2

2
+K1‖h‖L2(0,T ;L2(0,1))

]
+

√
T

K2
1

(
‖v0‖2 +

R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2

)(
2 + ‖w′‖L∞(0,1)

)
+

√
T

K2
1

k2K2
1

4

(
‖v0‖2 +

R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2

)2

, (4.2.43)

and r1 is the radius of the ball D which is defined in (4.2.10) and r2 = r1+ 1
K2

1
‖φ′(t)−

Rφ(t)‖L2(0,T ). Then the operator A defined in (4.1.10) maps the closed ball D (4.2.10)

into itself.

Proof. Let f be an arbitrary function in D, i.e., ‖f‖L2(0,T ) ≤ r1 + 1
K2

1
‖φ′(t) −

Rφ(t)‖L2(0,T ) = r2. We estimate the norm of
(
Af − 1

K2
1

(φ′(t)−Rφ(t))
)

as∥∥∥∥Af − 1

K2
1

(φ′(t)−Rφ(t))

∥∥∥∥2

L2(0,T )

=

∫ T

0

∣∣∣∣Af(t)− 1

K2
1

(φ′(t)−Rφ(t))

∣∣∣∣2 dt
=

1

K4
1

∫ T

0

∣∣ν(∂xv, w
′) + 2(v∂xv, w) + k‖v(t)‖2(v, w)− (h,w)

∣∣2 dt. (4.2.44)

We estimate the term in the integral by using Young’s inequality (1.4.5) and a priori

estimate (4.2.12)

|ν(∂xv, w
′) + 2(v∂xv, w) + k‖v(t)‖2(v, w)− (h,w)|

≤ ν‖v(t)‖‖w′′‖+ ‖w′‖L∞(0,1)‖v(t)‖2 + kK1‖v(t)‖3 +K1‖h(t)‖

≤ ν2‖w′′‖2

2
+ ‖v(t)‖2

(
2 + ‖w′‖L∞(0,1) +

k2K2
1

4
‖v(t)‖2

)
+K1‖h‖L2(0,T ;L2(0,1))

≤ ν2‖w′′‖2

2
+K1‖h‖L2(0,T ;L2(0,1))

+

(
‖v0‖2 +

R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2

)(
2 + ‖w′‖L∞(0,1)

)
+
k2K2

1

4

(
‖v0‖2 +

R2T

2k
+

2

νλ1

‖h‖2
L2(0,T ;L2(0,1)) +

2K2
1

νλ1

r2
2

)2

.

Hence, from (4.2.44) we obtain that∥∥∥∥Af − 1

K2
1

(φ′(t)−Rφ(t))

∥∥∥∥
L2(0,T )

≤ b0. (4.2.45)

Since b0 ≥ r1, (4.2.45) implies that the operator A defined in (4.2.5) maps D (4.2.10)

into itself.
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Finally, we state the main theorem in this section. We prove that under some

conditions, the solution of the inverse source problem (4.2.1)-(4.2.3) exits and it is

unique.

Theorem 4.2.5. Let w ∈ H2∩H1
0 (0, 1), ‖w‖ = K1 and φ ∈ H1(0, T ) for all T > 0.

We assume that the compatibility condition (4.1.9) and the bound condition (4.2.43)

for the radius of the closed ball D defined in (4.2.10) hold. Then there exists a

solution {v, f} for the inverse problem (4.2.1)-(4.2.3) with f ∈ D, and this solution

is unique.

Proof. Let us prove the first statement. By Theorem 4.2.4, we know that the opera-

tor A defined in (4.2.5), maps D into itself and by Theorem 4.2.3 Ak is a contraction

map on D. Then from the contraction mapping principle, the nonlinear operator

A has unique fixed point in D. This means that the nonlinear operator equation

(4.2.6) has a unique solution. By Theorem (4.2.2) we know that the inverse problem

(4.2.1)-(4.2.3) has also a solution.

Let us prove that this solution is unique. Assume that {v1, f1} and {v2, f2} be two

distinct solutions of (4.2.1)-(4.2.3) with both f1 and f2 are in D (4.2.10). If f1 and f2

are equal a.e. in [0, T ], then by the uniqueness of the solution of the direct problem,

we have that v1 and v2 are equal a.e. in [0, 1] × [0, T ]. If f1 and f2 are distinct

a.e. in [0, T ], then by Theorem 4.2.2, we know that f1 and f2 are both solutions of

the operator equation (4.2.6). However, we have already proven that Af = f has

unique solution in D. Hence, there are no distinct solutions {v1, f1} and {v2, f2} of

(4.2.1)-(4.2.3).

4.2.2 Stability

In this section, we present the stabilization result of the problem (4.2.1)-(4.2.3) in

the following theorem.

Theorem 4.2.6. Assume that the conditions (4.1.7)-(4.1.9) hold and

d :=
ν

2
− 2Rλ−1

1 > 0, lim
t→∞
|φ(t)| = 0, lim

t→∞
|φ′(t)| = 0, lim

t→∞
‖h(t)‖ = 0.
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Then the solution {v, f} of (4.2.1)-(4.2.3) satisfy the following relations:

lim
t→∞
‖v(t)‖2 = 0, lim

t→∞

∫ t+1

t

‖∂xv(τ)‖2dτ = 0, lim
t→∞
|f(t)| = 0.

Proof. We multiply (4.2.1) by w in L2(0, 1) and obtain f as

f(t) =
1

K2
1

[
φ′(t)− ν(∂2

x, w) + 2(v∂xv, w)
]

− 1

K2
1

[
Rφ(t) + k‖v(t)‖2φ(t)− (h,w)

]
. (4.2.46)

Substituting (4.2.46) into (4.2.1) we get the following equality

∂tv − ν∂2
xv + 2v∂xv −Rv + kv

∫ 1

0

v2dx = h(x, t) +
w(x)φ′(t)

K2
1

− w(x)

K2
1

[
ν(∂2

x, w) + 2(v∂xv, w)−Rφ(t) + k‖v(t)‖2φ(t)− (h,w)
]
. (4.2.47)

Multiplying (4.2.47) by v in L2(0, 1), we obtain

1

2

d

dt
‖v(t)‖2 + ν‖∂xv(t)‖2 −R‖v(t)‖2 + k‖v(t)‖4 = (h, v) +

φ′(t)φ(t)

K2
1

− φ(t)

K2
1

[
ν(∂2

xv, w) + 2(v∂xv, w)−Rφ(t) + k‖v(t)‖2φ(t)− (h,w)
]
. (4.2.48)

We estimate the terms on the right-hand side of (4.2.48):

|(h, v)| ≤ ν

4
‖∂xv(t)‖2 +

1

νλ1

‖h(t)‖2, (4.2.49)

k‖v(t)‖2|φ(t)|2

K2
1

≤ k‖v(t)‖4 +
|φ(t)|4

4kK4
1

, (4.2.50)

|(h,w)φ(t)|
K2

1

≤ ‖h(t)‖|φ(t)|
K1

≤ ‖h(t)‖2

4R
+
R|φ(t)|2

K2
1

. (4.2.51)

Employing the estimates (4.1.59), (4.1.61) and (4.1.62) in the previous part and

(4.2.49)-(4.2.51) in (4.2.48), we obtain

d

dt
‖v(t)‖2 +

ν

2
‖∂xv(t)‖2 ≤ 2R‖v(t)‖2 + ‖h(t)‖2

(
2

νλ1

+
1

2R

)
+
|φ′(t)|2

K2
1

+
|φ(t)|2

K2
1

+
|φ(t)|4

2kK2
1

. (4.2.52)

We employ Poincaré-Friedrichs inequality (1.4.7) and assume that

d :=
ν

2
− 2Rλ−1

1 > 0. (4.2.53)
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Thus, we obtain that

d

dt
‖v(t)‖2 + d‖∂xv(t)‖2 ≤M2(t), (4.2.54)

where

M2(t) := ‖h(t)‖2

(
2

νλ1

+
1

2R

)
+
|φ′(t)|2

K2
1

+
|φ(t)|2

K2
1

+
|φ(t)|4

2kK2
1

. (4.2.55)

Thanks to Poincaré-Friedrichs inequality (1.4.7) and Gronwall’s inequality (1.4.3),

we obtain

‖v(t)‖2 ≤ ‖v0‖2 exp(−dλ1t) +

∫ t

0

exp(−dλ1(t− s))M2(s)ds.

Hence, limt→∞ ‖v(t)‖2 = 0. By integrating (4.2.54) over (t, t+ 1), we have

d

∫ t+1

t

‖∂xv(s)‖2ds ≤
∫ t+1

t

M2(s)ds.

This implies that

lim
t→∞

∫ t+1

t

‖∂xv(s)‖2ds = 0.

Now, let us show the last limit relation. From (4.2.46) we obtain

|f(t)| ≤ 1

K2
1

[
|φ′(t)|+ νK2‖v(t)‖+K2‖v(t)‖

3
4‖∂xv(t)‖

1
4 +R|φ(t)|

]
+

1

K2
1

[
k‖v(t)‖2|φ(t)|+K1‖h(t)‖

]
.

Hence, we have that limt→∞ |f(t)| = 0.
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Chapter 5

NUMERICAL SIMULATIONS

In this chapter, we present our numerical results for the finite-parameter feedback

control problem for the original Burgers’ equations. The organization of this chapter

is as follows:

1. In Section 5.1, we solve numerically the initial-boundary value problem for the

original Burgers’ equations given by
∂tv(x, t) =

1

b
U(t)v(x, t) + ν∂2

xv(x, t)− 2v(x, t)∂xv(x, t), (5.0.1)

U ′(t) =
P

b
− ν

b2
U(t)− 1

b2

∫ b

0

v2(x, t)dx, (5.0.2)

U(0) = U0, v(x, 0) = v0(x), v(0, t) = v(b, t) = 0, (5.0.3)

and the feedback control problem based on finitely many Fourier modes for

(5.0.1)-(5.0.3)

∂tṽ(x, t) =
1

b
Ũ(t)ṽ(x, t) + ν∂2

xṽ(x, t)− 2ṽ∂xṽ

−µ
M∑
k=1

(ṽ − v, wk)wk, (5.0.4)

Ũ ′(t) =
P

b
− ν

b2
Ũ(t)− 1

b2

∫ b

0

ṽ2(x, t)dx, (5.0.5)

Ũ(0) = U0, ṽ(x, 0) = ṽ0(x), ṽ(0, t) = ṽ(b, t) = 0, (5.0.6)

where (x, t) ∈ [0, b] × [0,∞), the constants ν > 0 and P are given and repre-

sent the viscosity parameter and pressure, respectively and µ > 0 is control

parameter and M ∈ Z+ is the number of Fourier modes that we aim to find.

The Fourier modes are w1, ..., wM , which are orthonormal (in L2(0, b)-sense)

eigenfunctions of the operator −∂2
x under the homogeneous Dirichlet boundary

conditions. They are explicitly given by

wk(x) =

√
2

b
sin

(
kπ

b
x

)
.
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We denote the standard inner product on L2(0, b) by (·, ·). Thus, we can

rewrite the control operator as follows

µ

M∑
k=1

(ṽ − v, wk)wk

= µ
M∑
k=1

(∫ b

0

(ṽ(x, t)− v(x, t))

√
2

b
sin

(
kπ

b
x

)
dx

)√
2

b
sin

(
kπ

b
x

)

=
2

b
µ

M∑
k=1

(∫ b

0

(ṽ(x, t)− v(x, t)) sin

(
kπ

b
x

)
dx

)
sin

(
kπ

b
x

)
.

2. In Section 5.2, we test our numerical approach on an example. We consider the

dimensionless form of the original Burgers’ equations on which we have carried

out our theoretical study in the previous chapters. The initial-boundary value

problem for the dimensionless form of the original Burgers’ equations are given

by 
∂tv(x, t) = U(t)v(x, t) + ∂2

xv(x, t)− 2v(x, t)∂xv(x, t), (5.0.7)

U ′(t) = R− U(t)−
∫ 1

0

v2(x, t)dx, (5.0.8)

U(0) = U0, v(x, 0) = v0(x), v(0, t) = v(b, t) = 0, (5.0.9)

where R = Pb2

ν2
is Reynold’s number. In our numerical experiment, we set the

initial conditions as

U(0) = 1, v(x, 0) = sin(πx). (5.0.10)

3. In Section 5.3, we verify the validity of our theoretical result in Section 2.1 on

a numerical example. We find smallest values of the control parameters µ and

M that provide the solution of the controlled problem tends to the prescribed

solution of the uncontrolled problem as time goes to infinity.

We present the MATLAB routines and output figures in the publicly open website

https://github.com/serapgumus/FeedbackControlForOriginalBurgers.

https://github.com/serapgumus/FeedbackControlForOriginalBurgers
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5.1 Numerical Solutions of Original Burgers’ Equations and the Feed-

back Control Problem

In this part, we describe the numerical methods employed. In order to solve the

original Burgers’ equations numerically, first we rewrite this coupled ODE-PDE

system as a single equation. We represent the original Burgers’ equations in the

form:

du

dt
= Lu+N (u), (5.1.1)

with the initial condition

u0 =

v0(x)

U0

 ,
where u =

v
U

 and v, U are the solution of the original Burgers’ equations (5.0.1)-

(5.0.3). Here, L is the linear part of the problem given by

L =

ν∂2
x 0

0 − ν
b2

 , (5.1.2)

while the nonlinear part N (u) in (5.1.1) is

N (u) =

 1
b
Uv − 2v∂xv

P
b
− 1

b2
‖v(t)‖2

 .
To solve the problem in (5.1.1), we use finite difference methods for the discretization

in the space. More specifically, we use central difference for the second derivative

and forward difference for the first derivative in order to construct the differentia-

tion matrices. For the time discretization as in the paper by Lunasin and Titi [45],

we use the Exponential time-differencing fourth-order Runge-Kutta method known

as ETDRK4. This method is improved by Kassam and Trefethen [41] so that it

is more stable against the rounding error by exploiting the ideas in [17]. Kassam

and Trefethen [41] also provide the MATLAB codes based on the ETDRK4 method

that solve the initial-boundary value problems involving Kuramoto-Sivashinsky and
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Allen-Cahn equations. We modify the codes given in [41] to solve the original Burg-

ers’ equations and the feedback control problem associated with original Burgers’

equations.

In order to solve the feedback control problem (5.0.4)-(5.0.6), we employ a similar

approach. In particular, we represent the feedback control problem as

dũ

dt
= Lũ+ N̂ (ũ), ũ0 =

ṽ0(x)

Ũ0

 , (5.1.3)

where ũ =

 ṽ
Ũ

 , and ṽ, Ũ denote the solutions of the feedback control problem in

(5.0.4)-(5.0.6). The linear part L is the same as in (5.1.2). In the nonlinear part,

we include the feedback control operator giving rise to

N̂ (ũ) =

1
b
Ũ ṽ − 2ṽ∂xṽ − µI(ṽ − v)

P
b
− 1

b2
‖ṽ(t)‖2

 ,
where

I(ṽ − v) =
M∑
k=1

(ṽ − v, wk)wk.

We use Composite Simpson Rule in order to calculate the integrals in the L2(0, b)-

norms of v and ṽ and in the L2(0, b)-inner product in the control operator. The

MATLAB function named as feedOrBurETDRK4.m finds the solution of the

feedback control problem.

Next, we present the numerical simulation results. As mentioned in the previous

chapter, our main purpose is to find “best values” for the parameters µ and M ,

representing the control parameter and the number of Fourier modes, respectively.

Here, by as “best values” we mean that the parameter values as small as possible yet

that allow the solution of the feedback control problem to approach the prescribed

solution as time goes to infinity, i.e., that allow the satisfaction of the condition

lim
t→∞
‖ṽ(t)− v(t)‖2 + |Ũ(t)− U(t)|2 = 0. (5.1.4)

We use the parameters N , h, ν, R, b and tmax which denote the number of grid

points in the space discretization, time step, viscosity constant, Reynolds number,
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the width of the channel i.e. the end point of the space interval domain [0, b] and

the right end of the time interval, respectively. The parameter values used in our

experiments are indicated in Table 5.1.

N h ν R b tmax

64 10 0.250 20 1 100

Table 5.1: The values of the parameters which are used in the numerical experiment

in Section 5.1.

Remark 5.1.1. Let us note that instead of taking the pressure term P as an input

parameter, we consider Reynold’s number R as an input parameter since it gives

information about the dynamics of the flow. We know that the pressure can be

expressed in terms of Reynold’s number as P = Rν2

b2
.

We take the following initial data

U0 = 0.2, v0(x) = 0.4 sin(πx), (5.1.5)

for the initial-boundary problem associated with the original Burgers’s equations as

in (5.0.1)-(5.0.3), and

Ũ0 = 0.3, ṽ0(x) = 0.5 sin(πx), (5.1.6)

for the feedback control problem in (5.0.4)-(5.0.6). In addition to these initial con-

ditions and the fixed parameter values mentioned above, we set

µ = 5 and M = 15.

It turns out that, with these choices for µ andM , it is possible to make the solution of

the feedback control problem to be very close to the prescribed solution at sufficiently

large time, e.g., for t ≈ 100.

In Figures 5.1 and 5.2, we present the solution of the initial-boundary value

problem associated with the original Burgers’ equation in (5.0.1)-(5.0.3), in other
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words the uncontrolled problem. Figure 5.1 plots v as a function of time and space,

whereas Figure 5.2 plots U as a function of time.

In Figure 5.3, we observe that the solution ṽ of the feedback control problem

approaches the solution v of the uncontrolled problem in the L2(0, b) sense as time

increases. Similarly, Figure 5.4 illustrates that the solution Ũ of the feedback control

problem approaches U , the solution associated with the uncontrolled problem as time

increases.

Figure 5.1: The plot of the solution v(x, t) as a function of space (x) and time (t)

for the uncontrolled problem (5.0.1)-(5.0.3).

5.2 Test for the Numerical Solution of the Original Burgers’ Equations

In this part, we test our numerical approach on the dimensionless form of initial-

boundary value problem associated with original Burgers’ equations as in (5.0.7)-

(5.0.9) and with the initial conditions in (5.0.10). The MATLAB codes for this part

is available in the file testForSolutionOfOriginalBurger.m.

We adopt the numerical methods presented in Section 5.1, but we use different

values for the parameters. We provide these in a table such as Table 5.2.
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Figure 5.2: The plot of the solution U(t) as a function of time for the uncontrolled

problem (5.0.1)-(5.0.3).

N h ν R b tmax

400 0.01 1 50 1 10

Table 5.2: The values of the parameters which are used in the numerical experiment

in Section 5.2.

We add forcing terms f(x, t) and g(t) to equations (5.0.7) and (5.0.8), respec-

tively, leading us to
∂tv = U(t)v(x, t) + ∂2

xv(x, t)− 2v(x, t)∂xv(x, t) + f(x, t), (5.2.1)

U ′(t) = R− U(t)−
∫ 1

0

v2(x, t)dx+ g(t), (5.2.2)

v(0, t) = v(1, t) = 0, U(0) = 1, v(x, 0) = sin(πx). (5.2.3)

Let v(x, t) = e−t sin(πx) and U(t) = e−t be an analytic solution for (5.2.1)-(5.2.3).

Note that v satisfies the boundary and initial conditions, whereas U satisfies the

initial condition. By plugging v and U into the equations (5.2.1) and (5.2.2), we
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Figure 5.3: The L2-norm of the difference between the solution ṽ of the feedback

control problem and the solution v of the uncontrolled problem.

find

f(x, t) = e−t sin(πx)
(
2πcos(πx)− e−t − 1 + π2

)
, (5.2.4)

g(t) =
1

2
e−2t −R. (5.2.5)

Thus, v(x, t) = e−t sin(πx) and U(t) = e−t are solutions of the (5.2.1) and (5.2.3)

with f(x, t), g(t) as in (5.2.4)-(5.2.5).

Figure 5.5 illustrates the numerical approximation for the exact solution v(x, t)

by our numerical method, while in Figure 5.6, we plot the exact solution v(x, t) =

e−t sin(πx). We also plot the exact solution U(t) and its numerical approximation

in Figure 5.7. Here, we see that there is a slight difference between the numerical

and exact solution.

Figure 5.8 provides us the plot of the absolute error between U(t) and its numer-

ically computed counterpart. Since solutions start with the same initial condition,

initially there is no error. We observe that the absolute error increases up to the

3.6× 10−3 at time t = 1. For t > 1, we see that the error decreases.
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Figure 5.4: The plot of |Ũ(t) − U(t)| as a function of time (t) where Ũ , U are the

solutions associated with the feedback control problem and uncontrolled problem,

respectively.

5.3 Test Results for Problem Parameters

In this section, we aim to demonstrate numerically on an example that our theo-

retical results in Section 2.1.1 are valid. In particular, our purpose is to find the

smallest values of the control parameters µ and M that satisfy (5.1.4) up to a

prescribed tolerance. We consider problems (5.0.1)-(5.0.3) and (5.0.4)-(5.0.6) un-

der the initial data in (5.1.5) and (5.1.6), respectively. We focus on the change in

the L2-norm of the difference between the solutions, ṽ and v, as one of the problem

parameters changes. The MATLAB codes for this section are in the files testForPa-

rameter.m, testForControlParameters.m and testResults.m. The MATLAB

function testForParameter.m takes one parameter out of 8 problem parameters

as an input and calculates the relative error between the solutions ṽ and v in the

L2-norm sense, i.e. we calculate

verror =
‖ṽ(t)− v(t)‖L2(0,b)

‖ṽ(t)‖L2(0,b)

. (5.3.1)
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Figure 5.5: Plot of the numerical approximation for the exact solution v(x, t) of

(5.2.1)-(5.2.3).

The routine testResults.m plots the graph of the relative error as the chosen

parameter varies and other parameters take the values in Table 5.3.

µ M ν R N b h tmax

3.5 15 0.25 50 200 1 0.01 10

Table 5.3: The values of the parameters that we use in Section 5.3.

We present the results in Figures 5.9 and 5.10, in particular plot the graph of the

relative error between ṽ and v with respect to the problem parameters. We let one of

the parameters vary, for instance the control coefficient µ, fix the other 7 parameters

in Table 5.3 and calculate the relative error (5.3.1) for various µ values. The plots

of the relative error are depicted as a function of the control operator coefficient µ,

the Fourier modes in the control operator M , the viscosity parameter ν, and the

Reynold’s number R in Figure 5.9, and the number of space discretization points
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Figure 5.6: Plot of the exact solution v(x, t) of (5.2.1)-(5.2.3).

N , the width of the channel b, the time step h, and the maximum time value tmax

in Figure 5.10.

Observe that there are some parameter values that the relative error takes the

minimum value. In Table 5.4, the minimum value of the relative error is stated

together with the corresponding the parameter value. Since some parameters are

correlated and affect each other, for example the viscosity term ν and Reynold’s

number R, choosing all the minimal parameter values as in Table 5.4 do not give

us the smallest relative error. In fact, in such a case equations are not well posed.

To overcome this issue, we set the parameters except the control parameters µ and

M as in Table 5.5. Here, we set the maximal time value to tmax = 37 since the

relative error, attains its minimal value already at tmax = 37 in Figure 5.10. In

our numerical experiment, the admissible values for the control parameters µ are in

the interval (0, 10] and for M in the set {1, 2, ..., 30}. We present the result of this

numerical experiment in Table 5.6.
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Figure 5.7: Plots of the exact solution U(t) for (5.2.1)-(5.2.3), as well as its numer-

ically computed counterpart.
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Figure 5.8: The plot of the absolute error Uerror = |Uexact − Unum| where U(t)

is the exact solution of (5.2.1)-(5.2.3), while Unum(t) is its numerically computed

counterpart.
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Figure 5.9: The figure depicts how the relative error (5.3.1) varies with respect to

the problem parameter; in particular with respect to the control operator coefficient

µ, the Fourier modes in the control operator M , the viscosity parameter ν, and the

Reynold’s number R.
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Figure 5.10: The figure depicts how the relative error (5.3.1) varies with respect

to the problem parameters; in particular with respect to the number of space dis-

cretization points N , the width of the channel b, the time step h, and the maximum

time value tmax.
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Parameter value min verror

µ = 1 1.1451e− 07

M = 2 1.5319e− 05

ν = 1.2 1.5479e− 16

R = 260 3.5177e− 12

N = 40 1.3577e− 05

b = 0.5 3.2359e− 16

h = 0.1 8.0230e− 06

tmax = 37 3.2584e− 15

Table 5.4: The minimum values of the relative error (5.3.1) with the corresponding

parameter values based on the results in Figures 5.9 and 5.10.

ν R N b h tmax

0.25 50 200 1 0.01 37

Table 5.5: The fixed parameter values that we use in the search of the control

parameters µ and M which satisfy (5.1.4).

µ M min verror

1 2 1.6763e− 15

Table 5.6: The control parameter values µ and M which satisfy (5.1.4) for the

solutions of the problems (5.0.1)-(5.0.3) and (5.0.4)-(5.0.6) under the initial data

(5.1.5) and (5.1.6) with the predetermined parameter values in Table 5.5.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, we have analyzed the stabilization of various initial-boundary

value problems for original Burgers’ equations and Burgers’ equation with nonlocal

nonlinearity.

In Chapter 2, we have focused on the feedback control stabilization problems.

First, we have considered the feedback control problem for original Burgers’ equa-

tions (1.0.4) by using finitely many determining parameters such as finitely many

Fourier modes, general interpolant operator and finitely many volume elements. We

have shown that under appropriate choices of the control parameters, the solution

of the control problem tends to the prescribed solution of the uncontrolled problem

with an exponential decay rate as time goes to infinity. For the second equation in

(1.0.5), we have shown the global feedback stabilization by employing finitely many

Fourier modes, finitely many volume elements and finitely many nodal values. We

have also obtained that the stabilization of the solutions of (1.0.5) has an arbitrary

exponential decay rate, e−σt.

In Chapter 3, we have proved that the asymptotic behavior of the solutions

of original Burgers’ equations with an additional forcing term (dependent on both

space and time variables), can be determined completely by determining modes.

In Chapter 4, we have shown the existence and uniqueness of the solutions and

analyzed the stabilization of the inverse source problems constructed for original

Burgers’ equations (1.0.4) and Burgers’ equation with nonlocal nonlinearity (1.0.5).

We have found the necessary and sufficient conditions on the given terms, which

satisfy the stabilization of the solutions. In addition to the stability analysis, we

have also shown the existence and uniqueness of the solutions for both inverse source

problems.
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Finally, in Chapter 5 we have presented some numerical experiments related to

the feedback control stabilization of the original Burgers’ equation (1.0.4). We have

considered the feedback control problem based on the finitely many Fourier modes.

First, we have found the numerical approximate solutions for both uncontrolled and

controlled problems and tested our numerical approach on an example. We have

compared these solutions and determined the relative error. Moreover, we have

analyzed the behavior of the relative error as the problem parameters change.

Future Research

One of the significant subjects of the control theory for PDEs is boundary con-

trol. Byrnes et al. [6–9] studied a boundary control problem for the classical viscous

Burgers’ equation with Neumann boundary conditions. They proved that if the ini-

tial data is small enough, then the solution tends to zero with an exponential decay

rate. Ly et a. [46] studied the same boundary control problem and showed that the

results of Byrnes et al. [6–9] are valid for a larger set of initial data. Motivated by

these studies, we plan to analyze the global behavior of solutions of non-controlled

OBEs (1.0.4) under Neumann boundary conditions and the solutions of the con-

trolled problem with the following boundary control:∂xv(0, t)− k0v(0, t) = 0,

∂xv(b, t) + k1v(b, t) = 0,

(6.0.1)

where k0, k1 > 0. In addition to theoretical studies, we also plan to perform compu-

tational studies and support our theoretical results by numerical experiments.
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