

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

MANGANEZ I ELEMENTİNİN TEK KONFİGÜRASYONLARINDAKİ İNCE VE AŞIRI İNCE YAPILARININ İNCELENMESİ

Feyza GÜZELÇİMEN Fizik Anabilim Dalı Atom ve Molekül Fiziği Programı

> Danışman Prof. Dr. Gönül BAŞAR

> > Haziran, 2007

İSTANBUL

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

MANGANEZ I ELEMENTİNİN TEK KONFİGÜRASYONLARINDAKİ İNCE VE AŞIRI İNCE YAPILARININ İNCELENMESİ

Feyza GÜZELÇİMEN Fizik Anabilim Dalı Atom ve Molekül Fiziği Programı

> Danışman Prof. Dr. Gönül BAŞAR

> > Haziran, 2007

İSTANBUL

Bu çalışma 20/07/2007 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı Atom ve Molekül Fiziği programında Yüksek Lisans Tezi olarak kabul edilmiştir.

<u>Tez Jürisi</u>

Prof. Dr. Gönül BAŞAR (Danışman) İstanbul Üniversitesi Fen Fakültesi

Prof. Dr. Nurfer GÜNGÖR İstanbul Teknik Üniversitesi Fen Edebiyat Fakültesi

Doç. Dr. Ayşen E. ÖZEL İstanbul Üniversitesi Fen Fakültesi Prof. Dr. Sevim AKYÜZ İstanbul Üniversitesi Fen Fakültesi

Prof. Dr. Çetin ARIKAN İstanbul Üniversitesi Fen Fakültesi

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin T-75/15122006 numaralı projesi ile desteklenmiştir.

ÖNSÖZ

Manganez I elementinin iyonize olmamış halinin ince ve aşırı ince yapı incelemelerinin yer aldığı tez çalışmam süresince, her türlü yardımı alabildiğim ve her konuda destek gördüğüm danışman hocam Prof. Dr. Gönül Başar'a içten teşekkür ederim.

Yüksek lisans tezimde, teorik çalışmalarım sırasında verdiği destekten dolayı Yrd.Doç.Dr. İpek Kanat Öztürk'e, İ.T.Ü Öğretim görevlilerinden Yrd.Doç.Dr Gülay Acar'a, Berlin Teknik Üniversitesi Öğretim üyelerinden Prof.Dr. Sophie Kröger'e ve tez çalışmamı destekleyen İstanbul Üniversitesi'ne teşekkürü bir borç bilirim.

Son olarak, her koşulda yanımda olup, beni hiç yalnız bırakmayan annem ve babama sonsuz teşekkür ederim.

Haziran, 2007

Feyza GÜZELÇİMEN

İÇİNDEKİLER

ÖNSÖZ	i
İÇİNDEKİLER	ii
ŞEKİL LİSTESİ	iii
TABLO LİSTESİ	iv
SEMBOL LİSTESİ	V
ÖZET	vi
SUMMARY	vii
1. GİRİŞ	1
2. GENEL KISIMLAR	4
3. MALZEME VE YÖNTEM	7
3.1. ATOMLARIN KUANTUMLU YAPISI	7
3.1.1. Parite Kavramı	14
3.1.2. Atomların Manyetik Momenti	16
3.2. ÇOK ELEKTRONLU ATOMLAR	
3.2.1. Merkezcil Alan Yaklaşıklığı	22
3.2.2. Hartre-Fock Yöntemi ve Öz Uyumlu Alan	24
3.3. İNCE YAPI (FİNE STRUCTURE : fs)	29
3.3.1. Atom İçindeki Etkileşmeler (Çiftlenim Şekilleri)	
3.3.1.1. L-S ciftlenimi	
3.3.1.2. J-J çiftlenimi	
3.3.2. İnce Yapı Yarılmaları	32
3.3.3. İnce Yapı Parametreleri	34

3.4. AŞIRI İNCE YAPI (HYPERFİNE STRUCTURE : Hfs)37
3.4.1. Aşırı İnce Yapı Yarılmaları43
3.4.2. Aşırı İnce Yapı Parametreleri
3.5. İNCE YAPI PROGRAMI (COWAN)
3.6. AŞIRI İNCE YAPI PROGRAMI (Hfsac ve Hfsfit)54
4. BULGULAR
4.1. MANGANEZ (⁵⁵ Mn) ELEMENTİ
4.2. KULLANILAN DENEYSEL VERİLER
4.3. TEORİK BULGULAR
4.3.1. Manganez (⁵⁵ Mn) I Elementinin İnce ve Aşırı İnce Yapı Analizi
4.3.1.1. Tek Konfigürasyonların İnce ve Aşırı İnce Yapı Analizi
4.3.1.2. Çift Konfigürasyonların İnce ve Aşırı İnce Yapı Analizi
5. TARTIŞMA VE SONUÇ116
5.1. TEK KONFİGÜRASYONLAR İÇİN SONUÇLAR116
5.2. ÇİFT KONFİGÜRASYONLAR İÇİN SONUÇLAR118
KAYNAKLAR120
ÖZGEÇMİŞ124

ŞEKİL LİSTESİ

Şekil 3.1	: Bohr Atom Modeli	9
Şekil 3.2	: LS-çiftleniminin şekli. Dış alan Zeeman bölgesindedir	.30
Şekil 3.3	: İki elektronlu bir atomda, manyetik alanın Paschen-Back bölgesinde jj-çiftlenimi	nin
	şeması	32
Şekil 3.4	: $s = 1/2$ ve $\ell = 1$ kuantum sayılarına sahip olan ² P terimli bir enerji seviyesinin	
	ince yapı yarılmaları	.34
Şekil 3.5	: Elektronların spin ve yörünge hareketi nedeni ile üretilen manyetik alanın yönü	38
Şekil 3.6	: Atoma ait vektör modeli	.39
Şekil 3.7	: İnce yapı hesaplarında kullanılan Cowan programının çalışma sırasının şematik	
	gösterimi	52

TABLO LÍSTESÍ

Tablo 4.1 : ⁵⁵ Mn elementinin temel kimyasal ve fiziksel özellikleri
Tablo 4.2 : ⁵⁵ Mn elementinin çift pariteli konfigürasyonlarının enerji seviyelerine ait
daha önce yapılmış çalışmalardan elde edilen, deneysel olarak hesaplanmış
literatürdeki A aşırı ince yapı sabiti değerleri
Tablo 4.3 : ⁵⁵ Mn elementinin tek pariteli konfigürasyonlarının enerji seviyelerine ait
daha önce yapılmış çalışmalardan elde edilen, deneysel olarak hesaplanmış
literatürdeki A aşırı ince yapı sabiti değerleri
Tablo 4.4 : Mn I elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$
konfigürasyonlarına ait NIST [39]'te verilen deneysel enerji aralıkları67
Tablo 4.5 : Mn I elementinin energi sevivelerinin J degerlerine göre
savısı
Tablo 4.6 : Mn I elementinin tek pariteli $3d^54s4p$. $3d^54s5p$. $3d^54s6p$ ve $3d^64p$
konfigürasvonlarına ait ince yapı parametreleri
Tablo 4.7: Mn I elementinin tek pariteli $3d^{5}4s4p$. $3d^{5}4s5p$. $3d^{5}4s6p$ ve $3d^{6}4p$
konfigürasvonlarına ait konfigürasvonlar arası etkilesme parametreleri68
Tablo 4.8: Mn L elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$
konfigürasvonlarına ait ince yapı parametre değerleri hataları ve yapılan
kuplai durumları
Tablo 4.9: Mn I elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$
konfigürasvonlarına ait konfigürasvonlar arası direkt ve indirekt etkilesme
parametrelerinin hesaplanan değerleri, hataları ve bu parametrelerin kuplai
durumları
Tablo 4.10 · Mn Lelementinin tek pariteli konfigürasvonlarına ait denevsel enerii ve g
değerleri, teorik enerji ve g değerleri aralarındaki farklar ve sevivelerin
konfigürasvonları terimleri ile birlikte verilmiştir. Bütün değerler cm ⁻¹
olarak verilmistir 74
Tablo 4.11 : Mn I elementinin tek pariteve sahip konfigürasyonlarının elde edilen
manyetik dipol asırı ince yapı tek-elektron parametre değerleri referans
[13] ve [22]'deki değerleri ile karşılaştırma yapılmıştır. Parametre
değerleri Mhz cinsinden verilmiştir 8
Table 4.12: Mn L elementinin cift pariteli $3d^54s^2$ $3d^64s$ $3d^54s5s$ $3d^54s4d$ $3d^54s6s$ $3d^7$
ve 3d ⁵ 4s5d konfigürasvonlarına ait NIST [39] 'te verilen denevsel enerii
aralıkları
Tablo 4.13: Mn I elementinin denevsel olarak bilinen enerii sevivelerinin I değerlerine
göre savisi 83
Tablo 4.14: Mn I elementinin cift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$.
$3d^7$ ve $3d^5ds5d$ konfigürasvonlarına ait ince vanı parametreleri 84
Table 4.15: Mn I elementinin cift pariteli $3d^54s^2$ $3d^64s$ $3d^54s5s$ $3d^54s4d$ $3d^54s6s$
$3d^7$ ve $3d^54s5d$ konfigürasvonlarına ait konfigürasvonlar arası etkilesme
parametreleri
L

Tablo 4.16: Mn I elementinin çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$
ve 3d ⁵ 4s5d konfigürasyonlarına ait ince yapı parametre değerleri,hataları
ve yapılan kuplaj durumları
Tablo 4.17 : Mn I elementinin çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$
ve 3d ⁵ 4s5d konfigürasyonlarına ait konfigürasyonlar arası direkt ve indirekt
etkileşme parametrelerinin hesaplanan değerleri, hataları ve bu
parametrelerin kuplaj durumları90
Tablo 4.18 : Mn I elementinin çift pariteli konfigürasyonlarına ait deneysel enerji ve g
değerleri, teorik enerji ve g değerleri aralarındaki farklar ve seviyelerin
konfigürasyonları terimleri ile birlikte birlikte verilmiştir. Bütün değerler
cm ⁻¹ olarak verilmiştir93
Tablo 4.19 : Mn I elementinin çift pariteye sahip konfigürasyonlarının elde edilen
manyetik dipol aşırı ince yapı tek-elektron parametre değerleri, referans [14]
ve referans [16]'daki değerleri ile karşılaştırma yapılmıştır. Parametre
değerleri Mhz cinsinden verilmiştir97
Tablo 4.20 : Mn I elementinin tek pariteli konfigürasyonlarının enerji seviyelerine
karşılık gelen, beklenen konfigürasyonlar ve bu öz vektör bileşenlerinin
konfigürasyonlara göre yüzde olarak dağılımları. Enerji değerleri
cm ⁻¹ , A değerleri MHz olarak verilmiştir100
Tablo 4.21 : Mn I elementinin çift pariteli konfigürasyonlarının enerji seviyelerine
karşılık gelen, beklenen konfigürasyonlar ve bu öz vektör bileşenlerinin
konfigürasyonlara göre yüzde olarak dağılımları. Enerji değerleri
cm ⁻¹ , A değerleri MHz olarak verilmiştir111

SEMBOL LİSTESİ

- ψ : Dalga fonksiyonu
- λ : Dalgaboyu
- v: Frekans
- c: Işık Hızı
- μ : Manyetik Moment
- μ_N : Nükleer Magneton
- g: Landé Çarpanı

ÖZET

MANGANEZ I ELEMENTİNİN TEK KONFİGÜRASYONLARINDAKİ İNCE VE AŞIRI İNCE YAPILARININ İNCELENMESİ

Bu çalışmanın amacı, nötr Manganez elementinin (Mn I) bazı tek ve çift pariteli konfigürasyonlarının ince (FS) ve aşırı ince yapısının (HFS) teorik olarak analizinin yapılmasıdır.

Mn I elementinin ince ve aşırı ince yapısı, teorik olarak incelendi. Mn I elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonlarının ince yapı hesaplamaları, çok-konfigürasyonlu fit metodu kullanılarak, gerçekleştirildi. Ek olarak Mn I elementinin çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarının ince yapısı, aynı fit metodu ile incelendi ve ince yapı parametreleri elde edildi.

Mn I elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$, $3d^64p$ ve çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarının aşırı ince yapısının yarı empirik parametrik analizi yapıldı. Ayrıca analizin yapıldığı konfigürasyonların enerji değerlerinin aşırı ince yapı sabitlerinin değerleri teorik olarak belirlendi. Bu değerler, literatürde bulunan deneysel aşırı ince yapı sabitlerinin değerleri ile karşılaştırıldığında, uyum içinde oldukları görüldü.

SUMMARY

INVESTIGATION OF FINE AND HYPERFINE STRUCTURE IN THE ODD CONFIGURATIONS OF MANGANESE I ELEMENT

The aim of this study is the theoretical analization of fine (FS) and hyperfine structure (HFS) of Manganese I element's some odd and even configurations.

Fine and hyperfine structure of Manganese I element were investigated theoretically. Fine structure calculations of Manganese I element with odd parity 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p, 3d⁶4p configurations have been done by using multi-configuration fit method. Fine structure calculations of Manganese I element with even parity 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷, 3d⁵4s5d configurations have been investigated by same fit method ve fine structure parameters heve been obtained.

Semi-empirical parametric analysis of Manganese I element with odd parity $3d^54s4p$, $3d^54s5p$, $3d^54s6p$, $3d^64p$ configurations and with even parity $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$, $3d^54s5d$ configurations have been done. Hyperfine structure parameters' (A) values of energies of configurations which were done for analysis, have also been determined theoretically. When these values were compared with experimental A values in literature, they were seen in agreement.

1. GİRİŞ

Atom ve moleküller maddenin yapısını oluşturdukları için, fizikte atom fiziğinin önemi öne çıkmaktadır. O halde öncelikle molekül ve atomların yapısının incelenmesi, bu yapıların oluşum mekanizmalarının anlaşılması gerekir. Atom ve molekül yapıları ancak onların saldığı veya soğurduğu ışımaları inceleyerek bilimsel bir şekilde ele alınabilir. Bu aşamada, atom ve molekül spektroskopisi önem kazanır.

Dolayısıyla, atomların yapısı en doğru şekilde ancak spektroskopik yöntemlerle anlaşılabilir. Herhangi bir spektroskopik yöntem (optik, NMR, vb) ile atomun saldığı veya soğurduğu ışınım enerjileri gözlenip incelenerek atomun yapısı hakkında bilgi elde edilir. Işık-madde (atom) etkileşmesi sonucu ortaya çıkan soğurma ve emisyon spektrumları yardımı ile atom ve molekül yapıları anlaşılmaya çalışılır. Bu spektrumların incelenmesi ile, oluşan spektral çizgilerin şiddeti yardımıyla seviyeler arasındaki geçiş olasılıkları elde edilmiş olur. Bu değerler bize, enerji seviyelerinin dalga fonksiyonları, dolayısıyla sistemin enerjisi hakkında bilgi verir [1].

Atomların enerji seviyelerinin dalga fonksiyonlarını ve enerjilerini bulabilmek için ilk teorik yöntem, Hartree-Fock yaklaşıklık metodudur [2]. Yapılan tez çalışmamızda kullanmış olduğumuz programın temelini Hartree-Fock yöntemi oluşturmaktadır. Sonuç olarak, ele aldığımız konfigürasyonlara ait dalga fonksiyonları ve konfigürasyonların enerjileri, bu yaklaşıklık kullanılarak elde edildi.

Hidrojen atomu için merkezi alan yaklaşıklığı altında atomik hamiltonyen kinetik ve potansiyel enerjiyi kapsamaktadır. Bu hamiltonyenin çözümü, Hidrojen atomunun dalga fonksiyonlarını ve enerji ifadelerini verir. Çok elektronlu atomlarda hamiltonyen sadece kinetik ve potansiyel enerji terimlerinden oluşmamaktadır. Hamiltonyende, kinetik ve potansiyel enerji terimlerine ek olarak, spin-yörünge etkileşmesi, elektronların kendi aralarındaki etkileşmeler ve çekirdek-elektron etkileşmesi terimleri de eklendiğinde, Hamiltonyenin çözümlenmesi sonucu enerji ifadesine daha doğru olarak ulaşıldığını görmemiz mümkündür. Burada spin-yörünge etkileşmesi ince yapı yarılmaları ve çekirdek-elektron etkileşmesi de aşırı ince yapı yarılmaları olarak gözlenmektedir [1].

Yüksek ayırmalı spektroskopik aletlerle yapılan deneysel çalışmalar, spektral çizgilerin birbirine çok yakın birkaç çizgiden meydana geldiğini göstermiştir. Bunun nedenleri aşırı ince yapı yarılmaları ve izotop kaymalarıdır. Elektronlar tarafından çekirdekte oluşturulan elektromagnetik alan ile çekirdeğin elektromagnetik multipol momentleri arasındaki etkileşme aşırı ince yapıya neden olur [3]. Aşırı ince yapı etkileşmeleri olarak bilinen bu etkiler, ince yapı etkisinden çok daha küçük olup, ince yapı ile karşılaştırıldığında 10³ ile 10⁴ kat daha küçüktür. İzotop kaymaları ise, atomların farklı kütlelere sahip çekirdekleri sebebi ile ince yapı enerjilerinde meydana gelmesidir. Bu geçişler arasındaki fark, izotop kayması olarak bilinir. Örneğin; Hidrojen atomunda hidrojen ve döteryum çizgileri arasındaki fark gibi [4].

Aşırı ince yapının incelenmesiyle elde edilen sonuçlar, atomun nükleer özellikleri, atomun içinde meydana gelen etkileşmeler ve konfigürasyon etkileşmeleri hakkında bilgi verir. Serbest atomların elektronik durumlarının aşırı ince yapısının incelenmesi ile, elektron kabuklarının yapısı hakkında detaylı bilgi elde edebiliriz [5].

Aşırı ince yapının tek elektron parametrelerinin belirlenmesi sonucu, atomların konfigürasyonları arasındaki etkileşmeler ve relativistik etki ile ilgili sonuçlar elde edilir. Aşırı ince yapının ihmal edilmesi durumunda, spektral çizgilerin sınıflandırılması tam olarak doğru olmayacaktır. Aşırı ince yapı, astrofizikte yıldızların bolluk analizinde ve yıldız atmosferlerinin fiziksel parametrelerinin belirlenmesinde kullanılır [6-7-8].

Bu çalışmadaki amaç, Manganez I (nötr Mangan) elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonları ile, çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ konfigürasyonlarının ince ve aşırı ince yapısının incelenmesidir. Çok sayıda araştırmacı tarafından, 3d-kabuğu elementlerinin aşırı ince yapılarının incelenmesi yaygın hale gelmiştir. Bunun nedeni, aşırı ince yapı etkileşmelerinin astrofizikte giderek artan bir öneminin olmasından kaynaklanmaktadır [6-7]. Çok zengin bir spektruma sahip olan Manganez I (nötr Mn) elementi farklı spektroskopik yöntemlerle incelenmiş olup, bu elemente ait hem deneysel hem de teorik olarak yayınlar yapılmıştır. Ancak literatürde birçok incelenmemiş alanı ve ayrıca gitgide yenilenen kaynakları bulunmaktadır.

Bu çalışmada teorik kısım ele alınmıştır . Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonları ve çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait şu ana kadar bilinen deneysel enerji seviyelerinin Cowan[9] ince yapı programında kullanılarak hesaplanan ince yapı paramtreleri yardımıyla, teorik enerji değerleri ile deneysel enerji değerleri fit edildi. Daha sonra Hfsac ve Hfsfit aşırı ince yapı programları kullanılarak, aşırı ince yapı sabitleri elde edildi.

2. GENEL KISIMLAR

1969 yılında Mn I elementinin tek pariteye sahip $3d^54s4p$ konfigürasyonuna ait $z^6P_{7/2,5/2,3/2}$ seviyelerinin aşırı ince yapısı Handrich ve arkadaşları tarafından incelenmiştir. Bu çalışmada ele alınan seviyelere ait A manyetik dipol aşırı ince yapı sabiti ve B elektrik kuadropol aşırı ince yapı sabitinin deneysel ve teorik değerleri verilmiş ve çekirdek kuadropol momenti hesaplamıştır [10].

1971 yılında Davis ve arkadaşları, spin-değişim optik pompalama metodu ile Mn I elementinin $S_{5/2}$ temel seviyesinin A ve B aşırı ince yapı sabitlerini belirlemişlerdir [11].

1972 yılında Luc ve arkadaşları, Mn I elementinin çift pariteye sahip 3d⁵4s4d konfigürasyonunun e⁶D multipleti ve 3d⁵4s4p konfigürasyonunun y⁶P multipletine ait çizgilerin aşırı ince yapısını Fourier Spektroskopisi ile ölçerek, bu multipletlerinin tüm seviyelerinin manyetik dipol ve elektrik kuadropol aşırı ince yapı sabitlerini belirlemişlerdir [12-13].

1979 yılında Dembcyznski ve arkadaşları, Mn I elementinin çift pariteli $3d^64s$ konfigürasyonunun ${}^6D_{9/2,7/2,5/2,3/2,1/2}$ yarı kararlı seviyelerinin aşırı ince yapısını laser ile uyarılmış rezonans floresansı ile belirlenen atomik hüzme manyetik rezonansı (abmrlirf) metodu ile ölçerek, konfigürasyonun tek-elektron parametrelerini belirlemişlerdir [14].

1980 yılında yine Dembcyznski ve arkadaşları, aralarında Manganez 'in de bulunduğu birkaç atomun ilk spektrumlarındaki ince yapı geçişlerini incelemişlerdir. Mn I elementinin 3d⁵4s², 3d⁶4s ve 3d⁷ konfigürasyonlarının konfigürasyon arası etkileşmeleri de göz önüne alarak ince yapısını analiz etmişlerdir [15].

1981 yılında, Johann, Dembeyznski ve Ertmer, 3d kabuğu atomlarından Mn I 'in yarı kararlı durumlarının aşırı ince yapısını sistematik olarak incelemişlerdir. $3d^54s^2$ konfigürasyonunun ⁴G multipletine ait ölçümler, Laser etkili rezonans floresansıyla belirlenen atomik hüzme manyetik rezonansı (abmr-lirf) metodunu kullanarak yapılmıştır [16].

1985 yılında Kronfeldt ve arkadaşları, Mn I elementinin $3d^54s4p$ konfigürasyonunun $z^4P_{5/2,3/2}$ seviyelerinin ölçümlerini laser atomik hüzme spektroskopisi ile yaparak aşırı ince yapı sabitlerini belirmişlerdir. Buna ek olarak, enerji seviyelerinin yaşam süresi, τ , hesaplarını yapmışlardır. [17].

1987 yılında T. Brondzinski ve diğerleri, klasik girişim spektroskopisi ile ⁵⁵Mn elementinin 3d⁵4s5s ve 3d⁵4s4p uyarılmış konfigürasyonları arasındaki (475-733 nm aralığında) 9 geçişi incelemişlerdir. Bu çizgilerin aşırı ince yapı analizi yapılarak, 3d⁵4s4p konfigürasyonu için, tek-elektron parametreleri elde edilmiştir; ince yapı hesapları o zamanlarda henüz elde edilemeyen 3d⁵4s5s konfigürasyonu için, deneysel aşırı ince yapı incelenerek, bu konfigürasyon için başka tek-elektron parametreleri bulunmuştur [8].

1999 yılında Jorge Melendez, Mn I elementinin aşırı ince yapı etkileşme sabitlerini yakın kırmızı altı J (1-1.34 μ m) ile H (1.49-1.8 μ m) çizgilerinde güneş spektrumunu inceleyerek belirledi [19].

2003 yılında Lefèbvre ve diğerleri, Fourier Transform Emisyon Spektroskopisi yardımıyla nötral Manganez elementinin 40 seviyesinin aşırı ince yapısını incelemişlerdir. Görünür ve kırmızı altı bölgelerde gözlemlenen çizgi profillerinin analizinden, 22 seviye için daha önceki sonuçlarını düzeltmişler ve ek olarak 18 seviye için yeni manyetik dipol katsayıları elde etmişlerdir [20].

2003 yılında Başar ve diğerleri, Optogalvanik Laser Spektroskopisi kullanılarak, 660-645 nm ve 933-911 nm dalgaboyu aralıklarında Mn I elementinin 12 spektral çizgisinin aşırı ince yapısını incelemişlerdir. ⁵⁵Mn izotopunun A ve B aşırı ince yapı sabitleri 7 çift pariteli seviye için ve 7 tek pariteli seviye için deneysel olarak belirlendi. Ek olarak, çift pariteye sahip $3d^54s^2$, $3d^64s$ ve $3d^7$ konfigürasyonları için, ince yapı ve manyetik dipol aşırı ince yapının parametrik bir analizi yapılmıştır. Bu konfigürasyonların bütün seviyelerinin A manyetik dipol aşırı ince yapı sabitleri için, teorik varsayımlar verilmiştir [21].

2005 yılında Acar ve diğerleri, 2003 yılında yapmış oldukları çalışmaya ek olarak, Mn I elementinin tek pariteye sahip $3d^54s4p$, $3d^54s5p$ ve $3d^64p$ konfigürasyonlarının konfigürasyonlar arası etkileşimlerini hesaba katarak, parametrik metot yardımıyla ince yapısını hesaplamışlardır. İnce yapı hesaplarına ve yeni deneysel aşırı ince yapı datalarına dayanarak, manyetik dipol aşırı ince yapı etkin-operatör formalizmi kullanılarak analiz edilmiştir. $3d^54s4p$, $3d^54s5p$ ve $3d^64p$ konfigürasyonları için tekelektron parametreleri belirlenmiş ve bu konfigürasyonların 52000 cm⁻¹ 'e kadar tüm seviyelerinin, A manyetik dipol aşırı ince yapı sabitleri için teorik varsayımlar verilmiştir [22].

2005 yılında Blackwell-Whitehead ve diğerleri, Fourier Transform Spektroskopisi kullanımıyla, oyuk katod deşarjını ölçerek, nötral Manganez atomundaki seviyelerin aşırı ince yapı sabitlerini deneysel olarak rapor etmişlerdir. Mn I elementinin önceden aşırı ince yapı ölçümleri yapılmamış olan 67 seviyesinin de içinde bulunduğu 106 seviyenin aşırı ince yapı sabitlerini elde etmek için, astrofizik için ilginç olan 208 spektral çizgi analiz edildi [23].

Tez çalışmasının özgünlüğü, Blackwell-Whitehead ve arkadaşlarının deneysel olarak elde ettiği Mn I 'in 67 adet enerji seviyelerine ait manyetik dipol aşırı ince yapı sabiti ile bu seviyelerin sahip olduğu tek ve çift pariteye sahip konfigürasyonlarının - ki bunların içinde daha önce aşırı ince yapısı hesaplanmamış olan konfigürasyonlar da vardır- aşırı ince yapılarının parametrik analizinin yeniden yapılarak, dalga fonksiyonlarının yeniden oluşturulması gereği ortaya çıkmıştır. Bu nedenle bu çalışmada bütün bu değerlerin göz önüne alındığı çok kapsamlı bir aşırı ince yapı analizi gerçekleştirilmiş ve şu ana kadar hesapları yapılmamış olan konfigürasyonlarını parametrik analizinin parametrik analizi ilk defa bu çalışmada yapılmıştır.

3. MALZEME VE YÖNTEM

3.1. ATOMLARIN KUANTUMLU YAPISI

Atomların yapısı, bilimsel gelişmeler içinde hep ilgi odağı olmuştur. Bu sebeple bilimsel gelişmeler ışığında, atomlara ait modeller oluşturulmuş ve her model bir süre en geçerli model olarak kabul edilmiştir. Tarihi gelişmeler süresi içinde atom modelleri; Thomson modeli, uydu modeli (Rutherford modeli), Bohr modeli ve Kuantum mekaniksel model (dalga modeli) olarak sıralanabilir. Bunlardan Bohr atom modeli Hidrojen ve benzeri atomların enerji düzeyleri ve spektrum çizgilerinin açıklanmasında başarı sağlamıştır. Bir modelin geçerliliği, bilimsel gelişmeler yeni ve daha doğru bir model ortaya çıkarıncaya kadar sürmüştür.

Thomson modeli, ikiye kesilerek bölünmüş karpuz görünümünde olup, karpuzun çekirdekleri elektronları (-) yükleri, et kalınlığı ise (+) yük dağılımını göstermektedir.

Kısa zamanda Thomson modelinin gerçeği yansıtmadığı anlaşılmış ve yerini uydu modeline (Rutherford modeline) bırakmıştır. Klasik olarak uydu modelinin, merkezde pozitif yüklü, yoğun bir çekirdek ve etrafındaki yörüngelerde dolaşan elektronlardan oluştuğu kabul edilmektedir. Burada etkili kuvvetler (+) ve (-) yüklerin Coulomb çekim kuvveti ve merkezcil kuvvet sırasıyla aşağıdaki gibidir:

$$F_e = k \frac{e^2}{r^2} \tag{3.1}$$

$$F_{mer.} = m_e \frac{v_n^2}{r}$$
(3.2)

Elektronun çekirdek etrafında kararlı bir yörüngede dolanabilmesi için bu iki kuvvetin eşit olması gerekmektedir. Bu iki eşitlikten elektronun çekirdek etrafındaki hızı:

$$v_n = \left(\frac{ke^2}{m_e r}\right)^{1/2} \tag{3.3}$$

şeklinde bulunur.

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 Nm^2 C^{-2}$$
 (SI birim sisteminde) Coulomb sabitidir.

Bu modelde elektronun toplam enerjisi:

$$E = \frac{1}{2}mv^{2} + \left(-\frac{ke^{2}}{r}\right) = -\frac{1}{2}\frac{ke^{2}}{r}$$
(3.4)

olarak gösterilir.

Bu düşünce ve sonuçlardan Uydu Modelinin iki yetersizliği ortaya çıkıyor. Birincisi elektronun frekansı mor ötesi bölgeye düşmesine rağmen, hidrojen atomunun bazı spektrum çizgileri görünür bölgededir. İkincisi elektron merkezcil kuvvet etkisinden dolayı merkezcil ivmeye sahip olmalıdır. Klasik düşünceye göre ivmeli hareket eden bir cisim ışıma yapmalıdır. Işıma yapan elektron ise enerji kaybederek çekirdeğe doğru spiral bir yörünge çizmek suretiyle, çekirdeğin üzerine düşmelidir. Halbuki böyle bir durum gözlenmemektedir. Bu iki yetersizlik, bu atom modelinin bırakılmasına neden olmuştur.

Bohr atom modelinde ise, klasik anlayışla oluşturulmakla birlikte, bu model kararlı yörüngelerde açısal momentumun kuantumlu olacağını kabul etmesi ve dolayısıyla bir kuantum şartını da göz önüne alması bakımından yarı klasik model olarak da adlandırılır. Bohr, atom modelini kurarken Rutherford 'un çekirdek etrafında dolanan elektronlardan oluşan atom modelini kabullendi. Bu kabulden yola çıkarak modelin yetersizliklerini ortadan kaldırdığını düşündüğü üç varsayım ortaya koydu.

- Atomdaki elektronlar, ışıma yapmadan belirli yörüngelerde hareket ederler.
- Elektronun yörünge açısal momentumu (L = m.v.r) kararlı seviyelerde kuantumludur.

$$L = mvr = n\hbar \qquad (n:0,1,2,\ldots,\infty) \tag{3.5}$$

• Elektronlar, yalnız düşük enerji seviyesine geçerken enerji kaybederek foton salarlar. Elektronun başlangıç enerjisi E_i ve son enerjisi E_s ise, enerjinin korunumundan yayınlanan fotonun frekansı:

$$\nu = \frac{E_s - E_i}{h} \tag{3.6}$$

Bu üç varsayımdan, +Ze yüklü çekirdeğe ve bunun etrafında r yarıçaplı yörüngede dolanan bir elektrona sahip atomu göz önüne alırsak Şekil 3.1 'deki durum ortaya çıkar. Çekirdeğin kütlesi elektronun kütlesinden çok büyük olduğundan, bu durumda çekirdek hareketsizmiş gibi düşünülebilir.

Şekil 3.1: Bohr Atom Modeli.

+Ze yüklü çekirdekle -e yüklü elektron, elektrostatik kuvvetle elektronun yörüngede kalmasını sağlar. Çünkü r yarıçaplı yörüngede yaptığı dairesel hareketten dolayı elektrona etkiyen merkezcil kuvvet elektrostatik kuvvete eşit olmaktadır. Bu eşitlik aşağıdaki gibi yazılabilir:

$$k = \frac{Ze^2}{r} = \frac{mv^2}{r}$$
(3.7)

Bu eşitlikten elektronun kinetik enerjisi:

$$K = \frac{1}{2}mv^2 = k\frac{Ze^2}{2r}$$
(3.8)

şeklinde bulunur.

Sonuç olarak elektronun kinetik enerjisinin dairesel yörüngenin yarıçapına bağlı olduğu görülür. Klasik fizikte bütün yarıçapların mümkün olabileceği söylense de kuantum mekaniksel görüşe göre durum böyle değildir. Elektrona eşlik eden dalganın dalga boyu λ ise de Broglie hipotezine göre momentumu *p* olan elektron için dalga boyu $\lambda = h/p$ olmalıdır.

İkinci Bohr varsayımında kuantumlanma olayı, elektronların yörünge yarıçaplarında, hızlarında ve enerjilerinde de ortaya çıkar. Yörüngede dolanan bir elektrona bağlı koordinat sisteminde elektron, Coulomb kuvveti ve merkezcil kuvvetin etkisi altında dengededir. Denklem (3.1) ve (3.2) 'yi birbirine eşitlersek, buradan *r* yarıçapı için:

$$r = \frac{ke^2}{m_e v_n^2} \tag{3.9}$$

yazılabilir.

Bohr kuantumlanma koşulu olan denklem (3.5) 'i, eşitlik (3.9) 'da kullanırsak:

$$v_n = \frac{1}{n} \left(\frac{ke^2}{\hbar} \right) \tag{3.10}$$

hız değerini bulmuş oluruz.

Bu eşitlikte n = 1 için $v_1 = \frac{ke^2}{\hbar}$ değeri bulunur. Diğer hızlar birinci yörüngedeki hız cinsinden yazılırsa; $v_n = \frac{v_1}{n}$ biçiminde kuantumlanmış olmaktadır. Kısaca hidrojen atomunun Bohr modelinde hızlar, yörüngelerde $v_1, \frac{v_1}{2}, \frac{v_1}{3}, \dots, \frac{v_1}{n}$ şeklinde kuantumludur denir.

Denklem (3.5) ile (3.9) düzenlenmesi sonucu yörünge yarıçap değeri:

$$r_n = \frac{n^2 \hbar^2}{m_e k e^2} \tag{3.11}$$

olarak bulunmaktadır.

Birinci yörüngenin yarıçapı $r_1 = \frac{\hbar^2}{m_e k e^2} = a_0 = 0,529 \text{ Å}$ olmakta ve Bohr yarıçapı adını almaktadır. Diğer yarıçapların aşağıdaki şekilde kuantumlandığını görebiliriz.

$$r_n = n^2 a_0 \tag{3.12}$$

Bohr teorisi çok az kuantum koşulu kullanmasından dolayı yarı klasik teori olarak adlandırılabilir. Yani Bohr teorisi, klasik teorilerle, kuantum teorisi arasında bir geçiş oluşturmaktadır.

Atomların yapılarının kuantumlu olduğu (atomun enerji seviyelerinin kuantumlu olduğu), 1914 yılında Franck–Hertz tarafından yapılan deneyde gösterilmiştir.

Kuantum teorisi, diğer bir deyişle dalga mekaniği teorisidir. Bu teoriye göre elektronların hareketi dalga modeli ile açıklanır ve günümüzde en geçerli model dalga modelidir.

1925 'te Schrödinger dalga teorisinin ortaya atılmasıyla atomik yapı da bu yeni teori ile açıklandı. Bu yeni model tüm atomları (Z>1 olanları da) kapsar. Hidrojen atomu en basit atom ve Coulomb potansiyeli küresel simetrik olduğu için dalga modelinin en basit uygulamasını oluşturur. Klasik mekanikteki hareket denkleminin karşılığı Kuantum mekaniğinde Schrödinger dalga denklemidir.

Kuantum mekaniğinde Schrödinger denklemini çözmek demek, verilen potansiyel ile kuantum sisteminin dalga fonksiyonu ve enerjisi için ifadeler bulmak demektir.

Dalga fonksiyonunu bir çözüm olarak;

$$\Psi_{n\ell m}(r,\theta,\varphi) = R_{n\ell}(r)Y_{\ell m}(\theta,\varphi)$$
(3.13)

şeklinde yazabiliriz.

Burada dalga fonksiyonu radyal $R_{n\ell}(r)$ ve açısal $Y_{\ell m}(\theta, \varphi)$ iki kısımdan oluşmaktadır.

Açısal kısım küresel harmoniklerdir. $Y_{\ell m}(\theta, \varphi)$ 'ler, sabit yarıçaplı bir küre üzerinde θ ve φ 'nin harmonik (periyodik) değişimlerini temsil etmektedirler. Küresel harmonikler adını bu fiziksel anlamdan alır. Küresel harmonikler, açısal momentum operatörlerinin özfonksiyonları olup, özdeğer denklemleri de;

$$LY_{\ell m} = \sqrt{\ell(\ell+1)\hbar Y_{\ell m}}$$
(3.14)

$$L_z Y_{\ell m} = m\hbar Y_{\ell m} \tag{3.15}$$

olacak şeklindedir.

 $\Psi_{n\ell m}(r, \theta, \phi)$ dalga fonksiyonunu bulmak için yapılan yöntem, merkezi alan yaklaşıklığı (Bölüm 3.2.1) temeline dayanır.

Atomların kuantumlu yapısı hidrojen atomu örnek alınarak açıklanırken, bazı kuantum sayıları ile karşılaşılmıştır. Karşılaşılan bu kuantum sayılarının değerlerinin neler olabileceği ve birbiri ile olan ilişkileri şöyledir:

Baş kuantum sayısı $n: 1, 2, 3, \ldots, \infty$

Yörünge açısal momentum kuantum sayısı ℓ : 0,1,2,....,(n-1)

Yörünge manyetik momentum kuantum sayısı m_{ℓ} : - ℓ ,....,0,...,+ ℓ

Spin açısal momentum kuantum sayısı S : $\sqrt{s(s+1)}\hbar$

Bütün bu kuantum sayıları, merkezcil alan probleminin (Bölüm 3.2.1) çözümünde dalga fonksiyonunun sağlaması gereken sınır şartlarından kaynaklanır. Örneğin; dalga fonksiyonunun Φ kısmının çözümünde m_l 'nin nasıl ortaya çıktığı çok açık olarak görülebilmektedir [24].

Atomlarla ilgili ilk spektral çalışma 1885 yılında Balmer tarafından hidrojen atomu üzerinde yapılmıştır. Daha sonra atomik spektroskopi genişleyerek, çok elektronlu atomlar üzerinde de gerçekleştirilmiştir. Çok elektronlu atomların elektronlarının sıralanma kurallarını bilerek, bu atomların spektrumlarını anlayabiliriz. Elektronlar özdeş olmasına karşın, kuantum sayılarının da belirlediği dalga fonksiyonları ile birbirlerinden ayırt edilebilirler [1].

Atomlardaki kuantum sayılarının değerleri kabuk modelini verir. Örneğin; baş kuantum sayısı aynı olan elektronlar bir kabuk oluştururlar. Baş kuantum sayısı ile beraber yörünge açısal momentum kuantum sayısı ℓ 'si de aynı olan elektronlar da, bir alt kabuk oluştururlar [2].

Atomların spektrumlarını incelemede karşılaşılan spektral serilerin İngilizce adlarının baş harfleri olan S,P,D,F,... gibi harflerle başlayıp, sonra Latin alfabesi ile devam eden

bir kodlama atomik spektral dil olarak bilinir. Bu kodlama, yörünge açısal momentum kuantum sayısı ℓ 'nin değerlerine göre aşağıdaki şekilde yapılır [24].

 $\ell : 0, 1, 2, 3, 4, \dots$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Elektron kodu: s, p, d, f, g, \dots Seviye Kodu : S, P, D, F, G, \dots

3.1.1. Parite Kavramı

Parite işlemi, uzayın bir noktasından merkeze göre simetriği olan noktaya gidildiğinde fonksiyonun işaret değişimini gösterir. Diğer bir deyişle, merkeze göre yansıtma işlemine parite işlemi denir.

3-boyutlu uzayda parite işlemi (r, θ, φ) noktasının orijine göre simetriği olan noktayı bulmak demektir. Küresel koordinatlarda bu işlem gerçekleştirildiğinde r, θ ve φ bağımsız değişkenleri;

$$\begin{array}{c} r \to r \\ \theta \to \pi - \theta \\ \varphi \to \pi + \varphi \end{array} \right\} \quad \text{Yansıtma İşlemi}$$

değişimine uğrayacaktır. O halde parite işleminde açılar değişmektedir. Küresel harmonikler ise, $\Phi_m(\phi)$ ve $\Theta_{\ell m}(\theta)$ fonksiyonlarının çarpımından oluştuğundan, (3.16) ve (3.17) fonksiyonlarına yansıtma işlemi uygulanarak parite operatörü belirlenebilir.

$$\Phi_m(\pi + \varphi) = (-1)^{|m|} \Phi_m(\varphi)$$
(3.16)

$$\Theta_{\ell m}(\pi - \theta) = (-1)^{\ell + |m|} \Theta_{\ell m}(\theta)$$
(3.17)

Bu fonksiyonlar taraf tarafa çarpıldığında, $(-1)^{2|m|}$ ifadesi daima çift olacağından;

$$\Psi_{n\ell m}(r, \pi - \theta, \pi + \varphi) = (-1)^{\ell} \psi_{n\ell m}(r, \theta, \varphi)$$
(3.18)

ifadesi oluşur.

Denklem (3.18)'de sol taraf parite operatörü $P\psi_{n\ell m}(r, \theta, \varphi)$ 'dir.

$$P\Psi_{n\ell m}(r,\theta,\varphi) = (-1)^{\ell} \psi_{n\ell m}(r,\theta,\varphi)$$
(3.19)

Denklem (3.19) parite operatörünün özdeğer denklemidir [1].

O halde $\ell = 1,3,5,7...$ gibi tek sayı ise $\Psi_{n\ell m}$ tek pariteli, $\ell = 0,2,4,6....$ gibi çift sayı ise $\Psi_{n\ell m}$ çift pariteli bir fonksiyondur. Görüldüğü gibi, Coulomb potansiyeli (küresel simetrik) ile çözülen hidrojen atomu için dalga fonksiyonlarının pariteleri yörünge açısal momentum kuantum sayısı tarafından belirlenmektedir. Parite operatörünün özdeğeri $P = (-1)^{\ell}$ ifadesidir. Merkezcil alan problemi (Bölüm 3.2.1) çözümünde elde edilen dalga fonksiyonları kesin pariteli fonksiyonlardır. ℓ tek ise antisimetrik, ℓ çift ise simetrik fonksiyonlardır. Ancak kuantum sistemi (atom) bu kararlı seviyelerden herhangi birinde değil de tek \leftrightarrow çift pariteli fonksiyonlar arasında (seviyeler arasında) bir geçiş yapma durumunda ise, sistemin o andaki dalga fonksiyonu kesin pariteli olmayıp, karma paritelidir denir [24].

Dolayısıyla bu çalışmada incelenen ⁵⁵Mn izotopunun konfigürasyonlarının paritelerine baktığımızda,

 $3d^5 4s4p$ konfigürasyonu : d elektronları için $\ell_1 = 2$, s elektronları için $\ell_2 = 0$ ve $\ell_3 = 1$ olup, $\sum_{i=1}^n \ell_i = 3 \implies {}^{55}$ Mn elementinin tek pariteli konfigürasyonudur. Benzer şekilde, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonları tek pariteli konfigürasyonlardır.

 $3d^5 4s^2$ konfigürasyonu : d elektronları için $\ell_1 = 2$ ve s elektronları için $\ell_2 = 0$ olup, $\sum_{i=1}^n \ell_i = 2 \implies$ çift pariteli bir konfigürasyondur.

Benzer şekilde, $3d^{6}4s$, $3d^{5}4s5s$, $3d^{5}4s6s$, $3d^{5}4s4d$, $3d^{5}4s5d$ ve $3d^{7}$ konfigürasyonları çift pariteli konfigürasyonlardır.

3.1.2. Atomların Manyetik Momenti

Atom elektronlarının yörünge ve spin açısal momentumları ve bunlara bağlı olan dipol momentleri vardır. Bir atomun her seviyesine bir (veya birkaç) dipol momenti karşılık gelir. En basit atomda (hidrojen atomunda) bile sonsuz sayıda kuantum seviyesi olduğuna göre, bir o kadar da dipol momenti söz konusu olacak demektir.

Her açısal momentuma bir dipol momenti eşlik edeceğinden, atomlarda yörünge momenti, spin dipol momenti, toplam dipol momenti ve çekirdek dipol momentlerinden söz edebiliriz.

Bohr yörüngesinde dolanan elektron, bir i akımı oluşturur. İçinde i akımı taşıyan r yarıçaplı bir halkanın dipol momenti:

$$\mu_{\ell} = iA = i\pi r^2 \tag{3.20}$$

şeklinde olup, akım değeri de,

$$i = \frac{ev}{2\pi r} \tag{3.21}$$

olmaktadır. (3.5), (3.20) ve (3.21) denklemleri birleştirildiğinde, elektronun yörünge dipol momenti,

$$\mu_L = -\frac{e\hbar}{2m}\sqrt{\ell(\ell+1)} \tag{3.22}$$

şeklinde bulunur.

 $\mu_B = \frac{e\hbar}{2m} = 0.927 \times 10^{-23} J/T$ Bohr manyetonu değeri olmak üzere, yörünge dipol

momenti,

$$\mu_L = -\mu_B \sqrt{\ell(\ell+1)} \tag{3.23}$$

olarak yazılır.

Yörünge dipol momenti aynı zamanda vektörel olarak,

$$\mu_L = -\frac{\mu_B}{\hbar}\vec{L} \tag{3.24}$$

şeklinde de yazılabilir. Denklem (3.24)'dan, yörünge Landé çarpanı olarak tanımlanan g_L ,

$$g_L = \frac{\overrightarrow{\mu_\ell}/\mu_B}{\overrightarrow{L}/\hbar} = -1 \tag{3.25}$$

olarak elde edilir.

Bu tanım ile yörünge dipol momenti,

$$\overrightarrow{\mu_L} = \frac{g_L \mu_B}{\hbar} \vec{L}$$
(3.26)

olmaktadır.

Yörünge dipol momenti ifadesi, denklem (3.26)'da vektörel olarak verilmiştir. Skaler olarak yazarsak, aşağıdaki eşitliği elde ederiz.

$$\mu_L = g_L \mu_B \sqrt{\ell(\ell+1)} \tag{3.27}$$

Elektronlar atomun çekirdeği etrafında yörüngelerde dolanırken aynı zamanda kendi eksenleri etrafında da dönmektedirler. Bu spin hareketinden kaynaklanan bir spin dipol momentleri olduğu gözlenmiştir. Elektronların spin dipol momenti kendi içindeki yük dağılımından kaynaklanmaktadır. Ancak elektronların iç yapısında yük dağılımının şekli bilinmediği için spin dipol momentini hesaplamak pek kolay olmaz. Fakat elektronların spin kuantum sayısı s=1/2 alınarak ve yörünge dipol momentine benzetilerek yazılabilir. Spin açısal momentumu,

$$S = \sqrt{s(s+1)}\hbar = -\frac{\sqrt{3}}{2}\hbar$$
 (3.28)

değerini alır. Deneysel gözlemlerden de yararlanılarak, spin Landé çarpanı olarak tanımlanan g_s ,

$$g_{s} = \frac{\overrightarrow{\mu_{s}}/\mu_{B}}{\overrightarrow{L}/\hbar} = -2 \tag{3.29}$$

olduğu belirlenmiştir. Buna göre, elektronun spin dipol momenti vektörel ve skaler olarak sırasıyla aşağıdaki şekilde ifade edilmektedir.

$$\overrightarrow{\mu_{S}} = \frac{g_{S}\mu_{B}}{\hbar}\vec{S}$$
(3.30)

$$\mu_{s} = g_{s} \mu_{B} \sqrt{s(s+1)} = \sqrt{3} \mu_{B}$$
(3.31)

Landé çarpanları olan (3.25) ve (3.29) denklemlerindeki g_L ve g_s değerleri Dirac değerleri olarak bilinir.

Atoma bağlı bir elektronun hem yörünge hem de spin dipol momenti olacağına göre, bu iki küçük mıknatıs etkileşecek ve bir bileşke mıknatısı yani bir toplam dipol momenti oluşturacaktır. Bu oluşumun açısal momentum vektörleri cinsinden ifade edişili,

$$\vec{J} = \vec{L} + \vec{S} \tag{3.32}$$

şeklindedir.

Toplam Landé çarpanı,

$$g_J = \frac{\overrightarrow{\mu_J}/\mu_B}{\overrightarrow{J}/\hbar}$$
(3.33)

şeklinde olup, elektronun toplam dipol momenti vektörel ve skaler olarak sırasıyla aşağıdaki denklemlerde verildiği gibidir.

$$\overrightarrow{\mu_J} = \frac{g_J \mu_B}{\hbar} \vec{J}$$
(3.34)

$$\mu_{J} = g_{J} \mu_{B} \sqrt{j(j+1)}$$
(3.35)

Burada g_j Landé çarpanı,

$$g_{J} = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(3.36)

ifadesi ile belirlenir.

Burada karşılaşılan toplam açısal momentum kuantum sayısı *j*, $(\ell - s) \le j \le (\ell + s)$ aralığında kuantumlu değerler alır [24].

Elektronun toplam dipol momenti içinde spin bileşeninin de olması, atomik spektroskopide yeni spektral çizgilerin ortaya çıkmasına yani spektral yarılmalara sebep olur.

Atom içerisinde elektronun toplam dipol momenti yanında çekirdeğin de kendi dipol momenti vardır [1].

Atom çekirdeğinde bulunan parçacıklara nükleon denir. Nükleonlar nötron ve protonlardan oluşur. Çekirdek içindeki çok sayıda nötron ve protonun, kütle merkezi etrafında bir dönme hareketi yapması çekirdeğin çok yoğun bir ortam olması sebebiyle zordur. Ancak nötron ve protonlar spin hareketlerini kolaylıkla sürdürebilirler. Yani çekirdek içinde çok sayıda, proton ve nötron spin dipol momenti mevcuttur. Ancak bunlar birbirinin etkisi altındadırlar ve nötron dipol momentleri kendi aralarında ikişer ikişer çiftlenirler. Sonuçta çiftlenmemiş protonun, ya da nötronun ya da her ikisinin birden dipol momentleri kalır ve bu dipol momenti o çekirdeğin dipol momentini oluşturur.

Çekirdek spini kuantum sayısı : i = 0, 1/2, 1, 3/2, 2, ... olmak üzere, çekirdek spini açısal momentumu I,

$$I = \sqrt{i(i+1)}\hbar\tag{3.37}$$

ile verilir. $\mu_N = \frac{e\hbar}{2m_p} = \frac{\mu_B}{1836}$ nükleer manyeton olmak üzere, çekirdek spin dipol

momentini yazarsak,

$$\overrightarrow{\mu_{I}} = \frac{g_{I}\mu_{N}}{\hbar}\vec{I}$$
(3.38)

şeklinde bulunmaktadır.

Atomun elektronlarından kaynaklanan $\vec{\mu}_j$, çekirdeğinden kaynaklanan $\vec{\mu}_i$,dipol momentleri de birbiriyle etkileşirler. Bu etkileşim sonunda atom için bir toplam dipol momenti,

$$\vec{\mu}_F = \vec{\mu}_J + \vec{\mu}_I \tag{3.39}$$

şeklinde tanımlanır. Atomun toplam açısal momentumu da vektörel olarak,

$$\vec{F} = \vec{J} + \vec{I} \tag{3.40}$$

şeklindedir ve skaler olarak da (3.41) denklemindeki gibi ifade edilir.

$$F = \sqrt{f(f+1)}\hbar \tag{3.41}$$

Buradaki f, atomun toplam açısal momentum kuantum sayısıdır ve $(j-i) \le f \le (j+i)$ arasında değerler alır ve birer birer artar ve azalır.

Atomun toplam dipol momenti vektörel ve skaler olarak sırasıyla aşağıdaki denklemlerde verilmektedir.

$$\overrightarrow{\mu_F} = \frac{g_F \mu_B}{\hbar} \overrightarrow{F}$$
(3.42)

$$\mu_F = g_F \mu_B \sqrt{f(f+1)}$$
(3.43)

Son olarak g_F Landé çarpanının çiftlenim hesaplarından türetilen ifadesi,

$$g_F = g_I \frac{F(F+1) + J(J+1) - I(I+1)}{2F(F+1)} - \frac{g_J}{1836} \frac{F(F+1) + I(I+1) - J(J+1)}{2F(F+1)} \quad (3.44)$$

olmaktadır [24].

3.2. ÇOK ELEKTRONLU ATOMLAR

3.2.1. Merkezcil Alan Yaklaşıklığı

Schrödinger denkleminin çözümü ile seviyelerin enerji değerleri ve durumları elde edilir.

$$H\Psi = E\Psi \tag{3.45}$$

Bu denklemin tam olarak çözülebildiği fiziksel problemler sınırlı olduğundan yaklaşık çözümler kullanılır. Tek elektronlu sistemlerde çekirdeğin etrafında dönen elektron için yazılan Schrödinger denklemi tam olarak çözülebilmektedir. İki ve daha fazla elektron alındığında, tam çözümden sapılmış olur ve yaklaşıklık metodları kullanılarak yaklaşık değerler bulunmaktadır [25].

Çok elektronlu atomlar üzerindeki tüm hesaplamaların başlangıç noktası, merkezi alan yaklaşımıdır. Bu yaklaşıklıktaki temel düşünce, atomik elektronların, çekirdek ve diğer tüm elektronların oluşturdukları etkin, küresel simetrik bir $U(\vec{r})$ potansiyelinde, diğer elektronlardan bağımsız olarak hareket etmeleridir [2].

N elektron için Hamiltonyen,

$$H = \left[\sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{(4\pi\varepsilon_0)r_i} \right) + \sum_{i>j=1}^{N} \frac{e^2}{(4\pi\varepsilon_0)r_{ij}} \right]$$
(3.46)

şeklinde verilir.

Bu eşitlikteki sırasıyla ilk terim,

$$-\sum_{i=1}^{N} \frac{\hbar^2}{2m} \nabla_i^2$$
 : Elektronun kinetik enerjisini,

ikinci terim,

$$-\sum_{i=1}^{N} \frac{Ze^2}{(4\pi\varepsilon_0)r_i}$$
: Çekirdek-elektron arası Coulomb etkileşmesini,

üçüncü terim,

$$\sum_{i>j=1}^{N} \frac{e^2}{(4\pi\varepsilon_0)r_{ij}}$$
: Elektronlar arası Coulomb etkileşmesini,

gösterir.

Schrödinger denkleminde Ψ tek–elektron fonksiyonlarının çarpımına ayrılabilir veya slater determinantı ile yazılabilir:

$$\Psi = \frac{1}{N!} |\varphi(a_i)| \tag{3.47}$$

Dalga fonksiyonu radyal, açısal ve spine ait üç kısımdan oluşmaktadır. Açıya bağlı kısmın çözümü küresel harmonik adını alır. Böylece toplam enerji, tek-elektron enerjilerinin toplamı olur. Enerji n ve ℓ kuantum sayılarının değerlerine bağlıdır.

Bu yaklaşımda toplam dalga fonksiyonu elektronların bir konfigürasyonunu tanımlar. Bunun anlamı, baş kuantum sayıları n_i ve yörüngesel açısal momentum kuantum sayısı ℓ_i , her elektron için tanımlanabilir.
N elektronlu atom için dalga fonksiyonu $\Psi(q_1, q_2, q_3, ..., q_N)$ ile verilir. N elektronlu sistemler için Schrödinger denklemi aşağıdaki gibidir.

$$H\Psi(q_{1}, q_{2},..., q_{N}) = \left[\sum_{i=1}^{N} \left(-\frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \frac{Ze^{2}}{(4\pi\varepsilon_{0})r_{i}}\right) + \sum_{i>j=1}^{N} \frac{e^{2}}{(4\pi\varepsilon_{0})r_{ij}}\right] \Psi(q_{1}, q_{2},..., q_{N})$$

$$= E\Psi(q_{1}, q_{2}, q_{3},..., q_{N})$$
(3.48)

 q_i : Radyal ve açısal kısmı birlikte ifade eder.

Denklem (3.48), $1/r_{ij}$ terimi nedeniyle değişkenlerine ayrılamaz [2]. Bu terim elektronları bir arada ifade eder. Tersine, $U(\vec{r})$ potansiyeli N tane bir elektron denklemine ayrılabilir. Bu denklemler birbirinden bağımsız değildir. Çünkü i. elektronun $U(\vec{r}_i)$ potansiyel enerjisi, geriye kalan (N-1) elektronun ve çekirdeğin yarattığı ortalama alana bağlıdır. Bu denklemi çözerken, diğer elektronların da durumlarını bilmek gerekir. Bu çözüm Hartree-Fock yöntemiyle yapılır [26].

 $U(\vec{r})$ potansiyel enerjisi küresel simetrik olup, açılardan bağımsızdır. Dolayısıyla, bu merkezi bir alan oluşmasını sağlar ve bu durumda Schrödinger denklemi değişkenlerine ayırma yöntemi ile çözümlenebilir. Bu ayırma, açısal ve radyal olmak üzere, iki kısımda düşünülür [1].

 $U(\vec{r})$ potansiyel enerjisi bulunarak, Schrödinger denklemi çözülüp her elektronun kuantum sayıları ile tanımlanan dalga fonksiyonları ve enerji öz değerleri bulunabilir [25]. Bununla birlikte atomik yapılar hakkında bilgi edinilmiş olur.

3.2.2. Hartree-Fock Yöntemi ve Öz Uyumlu Alan

Bu modele göre her elektron, çekirdeğin çekici alanı ve diğer elektronlardan ötürü itme etkileşmelerinin ortalama etkisini hesaba katan, bir etkin potansiyelde hareket eder. Çok elektronlu sistemdeki her elektron, kendi dalga fonksiyonu ile tanımlanır.

Hartree, elektron dalga fonksiyonlarının denklemlerini yazarak bu denklemleri çözmek için öz uyum gerekliliğini temel alan bir tekrarlama süreci önerdi. Bu yöntem sadece Schrödinger denkleminin tekrarlı olarak çözülmesinden oluşmaktadır.

Hartree metodunun dezavantajı Pauli prensibine uymayan deneme dalga fonksiyonları Ψ 'lerin kullanmasıdır. Bu sorunu çözebilmek için, Pauli prensibine uyan determinant deneme dalga fonksiyonları kullanılmalıdır. Atom için Hartree toplam dalga fonksiyonu, elektron koordinatlarına göre antisimetrik değildir. Pauli'nin dışarlama ilkesi ile getirilen bu anti simetri gereğini dikkate alan Hartree yönteminin genelleştirilmesi 1930 yılında Fock ve Slater tarafından yapıldı. Hartree-Fock yöntemi, Hartree kuramının genellemesidir. Hartree–Fock yöntemi daha karmaşık olmasına karşın, Hartree yönteminden Pauli ilkesini gözönüne alması açısından daha avantajlıdır [3].

Hartree-Fock yönteminde, bağımsız atom yaklaşıklığı ve Pauli dışarlama ilkesine uyan N elektronlu dalga fonksiyonunun bir ϕ Slater determinantı olduğu varsayılır. Bu yöntem, atomsal dalga fonksiyonları ve enerjilerinin bulunmasında bir ilk adım olarak göz önüne alınabilir [2].

Tek elektron için Hamiltonyen,

$$H_{i} = -\frac{\hbar^{2}}{2m_{0}} \nabla_{i}^{2} - \frac{Ze^{2}}{(4\pi\varepsilon_{0})r_{i}}$$
(3.49)

şeklinde verilmektedir.

Elektronlar arası etkileşim olmaması durumunda Hamiltonyen denklem(3.50)'de gösterildiği gibi, tek elektron Hamiltonyenlerinin toplamıdır.

$$H = \sum_{i=1}^{N} H_i \tag{3.50}$$

Elektronlar arası karşılıklı etkileşme gözönüne alındığında, i ve k elektron çifti arasındaki Coulomb etkileşme enerjisi $e^2/(4\pi\varepsilon_0)r_{ik}$ ile verilir. Burada r_{ik} iki elektron arasındaki uzaklıktır.

Bu durumda Hamiltonyen ifadesi;

$$H = \sum_{i=1}^{N} H_{i} + \frac{1}{2} \sum_{i \neq k} \frac{e^{2}}{4\pi\varepsilon_{o} r_{ik}}$$
(3.51)

şeklinde verilir. Bu Hamiltonyen için, Schrödinger eşitliğini çözmek gerekir. Tam bir çözüm bulunmadığından Hartree yaklaşıklığını kullanırız.

$$H\Psi = E_{top.}\Psi \tag{3.52}$$

Bireysel elektronların dalga fonksiyonları $\Psi_Q(R_i)$ 'ler bilinmektedir.

 \vec{R}_i : Konum ve spini birlikte ifade eder.

Q : Kuantum sayılarıdır.

$$Q = (n, \ell, m_{\ell}, m_s) \tag{3.53}$$

Hartree-Fock yönteminin temel noktası çok elektron problemini tek elektron problemine indirgemektir. Gözönüne alınan tek elektron, atom çekirdeği ve diğer elektronların tümünün alanında hareket eder. Bu durumda diğer bütün elektronların elektron yoğunluk dağılımının tek elektron dalga fonksiyonları ile verilebilirliği yaklaşımı yapılır. Bildiğimiz bu dalga fonksiyonlarıyla ilişkili olarak bir $\rho(\vec{r}_i)$ yük dağılımı belirlenir.

$$\rho(\vec{r}_i) = e \left| \Psi_Q(\vec{R}_i) \right|^2 \tag{3.54}$$

r konumundaki bir yük ile bu yük dağılımı arasındaki etkileşme enerjisi, yükle elektrostatik potansiyelin çarpımı olarak verilir. Coulomb etkileşme enerjisi,

$$U(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\text{Bittin} \atop \text{Hacim}} \frac{e\rho(\vec{r}_i)}{\left|\vec{r} - \vec{r}_1\right|} d\tau_i = \frac{1}{4\pi\varepsilon_0} \int_{\text{Bittin} \atop \text{Hacim}} \frac{e^2 \left|\Psi_Q(\vec{R}_i)\right|^2}{\left|\vec{r} - \vec{r}_1\right|} d\tau$$
(3.55)

şeklindedir. Burada $d\tau_i$ hacim elemanıdır.

Seçilen bir elektronun dalga fonksiyonunu hesaplamak için, hem çekirdeğin Coulomb potansiyelinin ve hem de diğer tüm elektronların etkileşme enerjilerinin dikkate alındığı bir Schrödinger eşitliği çözülmelidir.

Seçilen bir elektron k indisine sahipse ve \vec{R}_k koordinatlı ise, ferdi dalga fonksiyonları için Schrödinger eşitliği,

$$H = \left[-\frac{\hbar^2}{2m_0} \nabla_k^2 - \frac{Ze^2}{(4\pi\varepsilon_0)r_k} + U_k^0(\vec{r}_k) \right] \Psi_k^{(1)}(\vec{R}_k) = E \Psi_k^{(1)}(\vec{R}_k)$$
(3.56)

şeklindedir.

 $U_k(\vec{r}_k)$: Diğer tüm elektronları içeren Coulomb etkileşme enerjisidir ve ifadesi,

$$U_{k}(\vec{r}) = \sum_{i \neq k}^{N} \int_{\substack{Bittin \\ Hacim}} \frac{e^{2} \left| \Psi_{Qi}(\vec{R}_{i}) \right|^{2}}{4\pi\varepsilon_{0} \left| \vec{r} - \vec{r}_{i} \right|} d\tau_{i}$$
(3.57)

şeklindedir.

İlk yaklaşıklık Coulomb etkileşme enerjisinde Ψ_{Qi} için, $\Psi_{Qi}^{(0)}$ dalga fonksiyonunun yerine konulması ile elde edilir. (0) üst indisi tüm işlemi başlatmak için verilen tahmini bir dalga fonksiyonu kullanıldığını gösterir. (1) üst indisi de aynı şekilde bu dalga fonksiyonunun k elektronu için bir tekrarlı işlemin ilk basamağında elde edildiğini gösterir. Ψ_{Qi} yerine $\Psi_{Qi}^{(0)}$ deneme fonksiyonu yazıldığında, $U_k^0(\vec{r}_k)$ potansiyeli elde edilmiş olur. Bu potansiyel Schrödinger denkleminde yerine yazıldığında $\Psi_k^{(1)}(\vec{R}_k)$ dalga fonksiyonu bulunur. İşlem $\Psi_k^{(i)}(\vec{R}_k)$ dalga fonksiyonunda önemli bir değişim olmayana kadar, yani metod yakınsayana kadar tekrarlanır.

Bu durumda Schrödinger denklemi,

$$\left[-\frac{\hbar^{2}}{2m_{0}}\nabla_{k}^{2}-\frac{Ze^{2}}{(4\pi\varepsilon_{0})r_{k}}+U_{k}(\vec{r}_{k})\right]\Psi_{Qi}(\vec{R}_{k})=E\Psi_{Qi}(\vec{R}_{k})$$
(3.58)

şeklinde olmaktadır.

Öncelikle bağımsız elektron dalga fonksiyonu için bir tahmin yapılır, yaklaşık bir dalga fonksiyonu seçilir ve bu her bir elektronu tanımlar. Bu dalga fonksiyonları yük dağılımlarında kullanılarak, atomlardaki ortalama yük dağılımı bu fonksiyonlar için hesaplanır ve ortalama merkezi alan potansiyelini bulmak için kullanılır. Bu potansiyel enerji Schrödinger denklemi çözüldüğünde elektronun daha gerçeğe yakın dalga fonksiyonları bulunmuş olur [26].

Yeni dalga fonksiyonları ile $U(\vec{r})$ potansiyeli yeniden hesaplanır. Potansiyel ile dalga fonksiyonları uyumlu olana kadar işlem devam eder. Bu metod, öz uyumlu alan teorisi olarak da bilinmektedir [27]. Bu iterasyon tekniğine Hartree-Fock yöntemi denir. Çözümler sonunda atomik yapı oldukça doğru bir şekilde açıklanabilmektedir [25].

3.3. İNCE YAPI (FİNE STRUCTURE : fs)

3.3.1. Atom İçindeki Etkileşmeler (Çiftlenim Şekilleri)

Atomlarda elektronların, çekirdek içinde nükleonların açısal momentumlarının (ya da manyetik dipol momentlerinin) çiftlenim şekillerini, çiftlenimin oluştuğu yerdeki manyetik alan şiddetleri belirler. Burada söz konusu olan manyetik alan sistemin iç yapısından kaynaklanan yerel alan veya dışardan uygulanan bir manyetik alan da olabilir. Örneğin hidrojen atomunda elektronun yörünge hareketinden kaynaklanan ve atomun merkezinde oluşan yerel alan 10⁴ Gauss mertebesindedir. Çok elektronlu bir atom içinde spin-spin, spin-yörünge, spin-diğer yörünge, dipol-dipol ve çekirdek içinde de benzer şekilde nükleonlar arasında spin-spin etkileşmeleri söz konusudur. Bir atom içinde oluşabilecek tüm etkileşmeler, çiftlenim şekilleri (kipleri) açısından iki türde olabilir. Bunlar LS-çiftlenimi ve JJ-çiftlenimi olarak adlandırılır.

Hidrojen atomunun merkezinde oluşan yerel alan değeri referans alınarak dış alan şiddetinin $0 \le B_0 \le 10^4$ değerleri arasında olan Gauss bölgesi, zayıf alan ya da Zeeman bölgesi olarak bilinir. Dış manyetik alanın $10^4 \le B_0 \le \infty$ Gauss bölgesi de şiddetli alan ya da Paschen–Back bölgesi olarak bilinir.

Özellikle hafif atomlarda LS-çiftlenimi gözlenirken, ağır atomlara doğru gidildikçe JJçiftlenimine az da olsa rastlanır. Öte yandan atomun çekirdeğindeki proton ve nötronlarda ise JJ-çiftlenimi olduğu görülür. Nükleer kabuk modelinde manyetik kabuklar JJ-çiftlenimi sonucu oluşur.

3.3.1.1. LS-çiftlenimi

Bu çiftlenime Russel-Saunders çiftlenimi de denir ve daha çok hafif atomlarda bu çiftlenim türüne rastlanır. Atom üzerine uygulanan dış alan şiddeti Zeeman bölgesinde kaldığı sürece bu çiftlenim şekli kırılamaz (bozulmaz), bundan dolayı LS-çiftlenimine zayıf alan çiftlenimi de denir.

Bu çiftlenim türünde, atomun elektronlarının yörünge açısal momentumları kendi aralarında, spin açısal momentumları da kendi aralarında, ayrı ayrı birleşerek;

$$\vec{L} = \sum_{i} \vec{\ell}_{i} \tag{3.59}$$

$$\vec{S} = \sum_{i} \vec{s}_{i} \tag{3.60}$$

atomun toplam yörünge ve toplam spin açısal momentumlarını oluştururlar.

Atomun elektronlarına ait toplam açısal momentum ise;

$$\vec{J} = \vec{L} + \vec{S} \tag{3.61}$$

ile belirlidir. Bu oluşum LS-çiftlenimi olarak adlandırılır. Oluşum Şekil 3.2'de şematik olarak gösterilmiştir.

Şekil 3.2: LS-çiftleniminin şekli. Dış alan Zeeman bölgesindedir.

Bu çiftlenim türünde \vec{L} ve \vec{S} vektörleri, \vec{J} etrafında bir ortak ω_{LS} açısal frekansı ile presesyon hareketi yaparken, eğer bir dış alan (Zeeman bölgesinde) uygulanmış ise, \vec{J} de dış alan etrafında ω_J frekansı ile presesyon hareketi yapar. Dış manyetik alan LSçiftlenimini kıramadığına göre, $\omega_{LS} > \omega_J$ olmaktadır. Bu çiftlenim türünü atomun içinde bulunduğu manyetik koşullar belli etmektedir. LS- çiftleniminde elektrik dipol geçişleri için:

- a) Parite değişir,
- b) $\Delta \ell = \pm 1$,
- c) $\Delta m_{\ell} = 0, \pm 1$,
- d) $\Delta s = 0$ (kesin değil),
- e) $\Delta j = 0, \pm 1$ (Fakat, $0 \leftrightarrow 0$ geçişi yasak),
- f) $\Delta m_i = 0, \pm 1$ ($\Delta j = 0$ 'da, $\Delta m_i \neq 0$),

kuralları geçerlidir [1].

3.3.1.2. jj-çiftlenimi

Genellikle çekirdeklerde nükleonların açısal momentumunun (spin) bağlanmalarında karşılaşılan bu çiftlenim türü özel olarak da ağır atomlarda oluşabilir. Bu çiftlenim türü dış manyetik alanın şiddetli olduğu Paschen-Back bölgesinde de oluşur. Ister yerel alan etkisi, ister dış alan etkisi ile LS-çiftleninmi kırılır ve atomun her bir elektronu kendi spin ve yörünge etkileşmesi sonucu; $\vec{j_1} = \vec{\ell_1} + \vec{s_1}$, $\vec{j_2} = \vec{\ell_2} + \vec{s_2}$, $\vec{j_3} = \vec{\ell_3} + \vec{s_3}$ şeklinde bağlanırlar ve toplam açısal momentum,

$$\vec{J} = \sum_{i} \vec{j}_{i} \tag{3.62}$$

olur. Bu etkileşim şekli jj-çiftlenimi olarak bilinir. Bu etkileşim dış alanın olmadığı ağır atomlarda, dış alanın Paschen-Back bölgesinde ve bir de çekirdek içinde nükleonlar arası bağlanmada görülür. Oluşum, Şekil 3.3'de şematik olarak gösterilmiştir.

Şekil 3.3: İki elektronlu bir atomda, manyetik alanın Paschen-Back bölgesinde jj-çiftleniminin şeması.

jj-çiftleniminde elektrik dipol geçişler için:

- a) Parite değişir,
- b) $\Delta \ell = \pm 1$ (aynı elektron için $\Delta j = \pm 1$; fakat diğer elektronlar için $\Delta j = 0$),
- c) $\Delta s = 0$ (kesin değil),
- d) $\Delta j = 0, \pm 1$ (Fakat, $0 \leftrightarrow 0$ geçişi yasak),
- e) $\Delta m_j = 0, \pm 1$ ($\Delta j = 0$ 'da, $\Delta m_j \neq 0$),

kuralları geçerlidir [1].

3.3.2. İnce Yapı Yarılmaları

Birçok atomda yüklerin yörünge hareketinden kaynaklanan bir iç manyetik alan oluşur. Dış manyetik alan olmadığında, bu iç manyetik alandan dolayı enerji düzeylerinde ve spektrumlarında küçük bir yarılma olur. Bu yarılmaya ince yapı yarılması denir [27].

İnce yapı yarılmaları, yörünge manyetik momentiyle, spin manyetik momenti arasındaki manyetik etkileşimden kaynaklanır.

$$\vec{\mu}_J = \vec{\mu}_L + \vec{\mu}_S \tag{3.63}$$

Elektronun L yörünge açısal momentumuyla birlikte ortaya çıkan bir μ_L yörünge manyetik momenti ve S spin açısal momentumuyla birlikte ortaya çıkan bir μ_S spin manyetik momenti vardır. Bir elektronun etkileşmesinde manyetik momentler hesaba katıldığında hamiltonyen yeni terimler kazanır. Bu ek enerji spin-yörünge etkileşmesi olup, iki manyetik momentin etkileşmesini (3.63) denklemindeki gibi yazabiliriz [28].

$$V_{L-S} = \xi(r)\vec{\mu}_L\vec{\mu}_S = \xi(r)\left(-\frac{\mu_B}{\hbar}\right)\vec{L}\cdot\vec{S}$$
(3.64)

 $\xi(r)$: Sadece radyal koordinata bağlı spin-dipol ve yörüngesel-dipol momentlerinin etkileşme sabitidir.

İnce yapının hesaplanmasında kullanılan Hamilton operatörü denklem (3.65)'deki şekilde verilmiştir.

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} - \sum_{i=1}^{N} \frac{Ze^2}{r_i} + \sum_{i>j=1}^{N} \frac{e^2}{r_{ij}} + \sum_{i=1}^{N} \xi(r_i) \vec{s}_i \cdot \vec{\ell}_i$$
(3.65)

$$\sum_{i=1}^{N} \xi(r_i) \vec{s}_i \cdot \vec{\ell}_i$$
: Spin-yörünge etkileşmesini gösterir.

Farklı konfigürasyonların her biri $(n_1\ell_1, n_2\ell_2,....)$ kuantum sayıları ile ifade edilen farklı enerji seviyelerine sahiptir. Manyetik kuantum sayıları olan m_ℓ ve m_s için dejenerelik vardır. Bunun anlamı, $(n_1\ell_1m_{\ell_1}m_{s_1}, n_2\ell_2m_{\ell_2}m_{s_2},....)$ ile belirtilen birçok durumun, aynı $(E_{n_1\ell_1,n_2\ell_2})$ enerjisine karşılık gelmesidir. Enerjideki bu yarılmalar ince yapı yarılmaları olarak ifade edilir.

Şekil 3.4'de kuantum sayıları s = 1/2 ve $\ell = 1$ olan ²P terimli bir enerji seviyesinin ince yapı yarılmaları verilmiştir.

Toplam açısal momentum J,

$$|L-S| \le J \le L+S \tag{3.66}$$

aralığında değerler alır. Denklem (3.66) kullanılarak, elektronun toplam açısal momentumunun alacağı değerlerin J = 3/2, 1/2 olduğu görülmektedir [29].

Şekil 3.4. s = 1/2 ve $\ell = 1$ kuantum sayılarına sahip olan ²P terimli bir enerji seviyesinin ince yapı yarılmaları.

3.3.3. İnce Yapı Parametreleri

Bu çalışmada ince yapı hesaplarında Fortran77 dilinde yazılmış Cowan [9] programı kullanıldı. Burada, dalga fonksiyonu radyal ve açısal kısım olmak üzere ikiye ayrılarak enerji seviyeleri yarı-ampirik parametrik yöntemle hesaplanır. Enerji seviyelerinin hesaplanmasında, ince yapı parametreleri kullanılır. Bunlar; konfigürasyonun ortalama enerjisi E_{av} , radyal "direkt" Coulomb etkileşme parametresi F^k ve radyal "indirekt" Coulomb etkileşme parametresi G^k ve spin-yörünge etkileşme parametresi ζ 'dır. Efektif Coulomb etkileşme parametresi α ve konfigürasyon etkileşme parametreleri R^k 'dır. Her bir enerji seviyesi için aşağıdaki denklem kullanılarak enerji matrisi oluşturulur.

$$E = 1E_{av} + gG^{k} + fF^{k} + z\zeta + a\alpha + rR^{k}$$
(3.67)

Burada; g, f, z, a ve r katsayıları dalga fonksiyonunun açısal kısımları olup teorik olarak hesaplanır. Yukarıda tanımlanan radyal ince yapı etkileşme parametreleri, deneysel enerji değerleri ile fit yapılarak elde edilir. Hesaplarda daha doğru sonuçlara ulaşabilmek için ince yapı parametrelerinin yanında ikinci derece Coulomb etkileşme parametreleri olan β , T, T¹ ve T² kullanılır.

Her enerji seviyesi (2J+1)-katlı çokluğa sahip olduğundan ortalama enerji değeri aşağıdaki şekilde verilir:

$$E_{av} = \frac{\sum_{seviye} (2J+1)E_{J}}{\sum_{seviye} (2J+1)}$$
(3.68)

Tek parçacık etkileşmesini veren spin-yörünge parametresi, ℓ yörünge açısal momentumunun sıfırdan farklı durumlarında aşağıdaki şekilde verilir:

$$\zeta_{nl} = \int_{0}^{\infty} \xi(r) |P_{nl}(r)|^{2} dr$$
(3.69)

 $P_{nl}(r)$: Tek elektron radyal fonksiyonudur.

$$\xi(\mathbf{r}) = \frac{\alpha^2}{2} \left[\frac{1}{\mathbf{r}} \frac{\mathrm{d}\mathbf{U}(\mathbf{r})}{\mathrm{d}\mathbf{r}} \right]$$
(3.70)

U(r) : Elektronun merkezi-alan potansiyel enerji fonksiyonudur.

 α : İnce yapı sabitidir.

İki parçacık etkileşmesi direkt ve indirekt radyal Coulomb integralleri ile belirlenir. Radyal "direkt" Coulomb etkileşme parametresi $F^{k}(nl_{1},nl_{2})$ ve radyal "indirekt" Coulomb etkileşme parametresi $G^{k}(nl_{1},nl_{2})$ sırasıyla,

$$F^{k}(n|_{1},n|_{2}) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{>}^{k+1}} \left| P_{n|_{1}}(r_{1}) \right|^{2} \left| P_{n|_{2}}(r_{2}) \right|^{2} dr_{1} dr_{2}$$
(3.71)

$$G^{k}(n|_{1},n|_{2}) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2r_{<}^{k}}{r_{>}^{k+1}} P_{n|_{1}}(r_{1}) P_{n|_{2}}(r_{2}) P_{n|_{2}}(r_{1}) P_{n|_{2}}(r_{2}) dr_{1}dr_{2}$$
(3.72)

ifadeleri ile belirlenir. F^k ve G^k radyal integralleri genellikle Slater integralleri olarak bilinir ve bu integraller alındığında daima pozitif sonuç elde edilmelidir. Bunun yanı sıra konfigürasyonlar arası etkileşme parametresi R^k pozitif olmak zorunda değildir. Radyal "direkt" Coulomb etkileşme parametresi F^k ve radyal "indirekt" Coulomb etkileşme parametresi G^k sonuçları için,

$$F^0 > F^1 > F^2 > \dots > 0$$
 (3.73)

$$\frac{G^{k}}{[k]} > \frac{G^{k+1}}{[k+1]} > 0 \tag{3.74}$$

olmalıdır ve F^k ve G^k radyal parametreleri ve R^k konfigürasyonlararası etkileşme parametreleri belirlenirken,

$$F^{k}(|\mathbf{1}_{1},\mathbf{1}_{2}) \neq 0: \text{ k çift ve } 0 \leq k \leq \min(2|\mathbf{1}_{1},2|\mathbf{1}_{2})$$

$$G^{k}(|\mathbf{1}_{1},\mathbf{1}_{2}) \neq 0: (\mathbf{k}+1_{1}+1_{2}) \text{ çift ve } ||\mathbf{1}_{1}-\mathbf{1}_{2}| \leq \mathbf{k} \leq |\mathbf{1}_{1}+\mathbf{1}_{2}$$

$$\mathbf{i} = 1, 2 \text{ için }:$$

$$R^{k}(|\mathbf{I}_{1}|_{2},|\mathbf{I}_{1}|_{2}')$$
 : $(k+1_{i}+1_{i}')$ çift ve $|\mathbf{I}_{i}-\mathbf{I}_{i}'| \le k \le |\mathbf{I}_{i}+|\mathbf{I}_{i}'|$

şartları sağlanmalıdır [30].

3.4. AŞIRI İNCE YAPI (HYPERFINE STRUCTURE : Hfs)

Aşırı ince yapı incelemeleri spektrumlarda ilk olarak A. Michelson, C. Fabry ve A. Perot tarafından yapılmıştır. Aşırı ince yapı etkisi, nükleer manyetik etki ile elektrik momentlerinin elektronik kabukla etkileşmesi olarak tanımlanır.

Elektronun spin ve yörünge hareketinden dolayı çekirdek üzerinde meydana getirdiği manyetik alan ile çekirdeğin manyetik dipol momenti, elektrik alan ile de çekirdeğin elektrik kuadropol momenti etkileşir. Bunun sonucunda, çekirdek spini enerjide yeni yarılmalara sebep olur. Bu yarılmalar aşırı ince yapı yarılmaları olarak bilinir.

Elektron dönme hareketi hesaba katıldığında, elektronun spini ile yörüngesi arasındaki etkileşim sonucu ince yapı ortaya çıkar. Eğer atomik çekirdek (I) çekirdek spinine sahip ise, aşırı ince yapı seviyelerine (hfs) bölünürler.

Çekirdeği, bir nokta manyeti (mıknatıs) olarak kabul ettiğimizde etkileşimin enerjisi:

$$V_{\text{mag}} = -\vec{\mu}_I . \vec{H}(o) = -\mu_I . H(o) \cos(\vec{\mu}_I, \vec{H}(0))$$
(3.75)

şeklinde oluşur.

Çekirdeğin manyetik momenti μ_I , çekirdeğin orbital hareketi ile proton ve nötronların spin hareketlerinin toplam açısal momentumu olarak düşünülmelidir.

Pertürbasyon teorisine göre, ($V_{magn.}$) etkileşim enerjisinden (ΔW_{magn}) enerjisine geçmek için pertürbasyon olmayan enerji seviyeleri üzerinden zamana göre ortalama alınır; böylece, ek manyetik enerji için denklem (3.76) ifadesi elde edilir.

$$\Delta W_{\text{magn}} = -\mu_I \ \overline{H(o)} \cos \left(\mu_I, H(o)\right) \tag{3.76}$$

H(0) : H(0) 'ın ortalamasıdır.

Şekil 3.5 : Elektronların spin ve yörünge hareketi nedeni ile üretilen manyetik alanın yönü.

Değişik vektörlerin yönünü göz önünde tutarsak, H(0) ve J'nin tek bir elektron için (veya, kapalı kabukların dışındaki bir adet elektron), antiparalel olduklarına dikkat etmemiz gerekir. Elektronun orbital hareketi, bir orbital açısal momentum ℓ 'yi doğurur. Bu ise, elektronik yükünün negatif işareti nedeniyle, çekirdekte üretilen H(0) manyetik alanınınkine zıt bir doğrultudadır. Elektronun gerçek manyetik momenti μ_s , S spin hareketi nedeniyle, S ve orbital açısal momentumu ℓ 'nin paralel mi yoksa antiparalel mi olduklarına bağlı olarak çekirdekteki manyetik alanı azaltan veya arttıran, yörünge üzerinde lokalize olmuş bir manyetik moment olarak düşünülebilir.

L ve S sonucunda, J oluşur. Hesaplamalar çekirdekteki manyetik alana, bir tek elektronun orbital hareketinin, spin manyetik momentinden daha büyük bir katkıda bulunduğunu göstermiştir. Bu nedenle, H(0) ve J, gerçekte, bu durumda antiparaleldirler. (Bu yalnızca, elektronun dönüş hareketi mevcut ise doğrudur). Burada kullanılan modelde, elektronun bu durumda, çekirdekte olduğu varsayımı yapılmalıdır; böylece, H(0), μ_s ile aynı doğrultudadır. Bu, bazı elektronlar için her zaman geçerli olmaz ancak durumların büyük çoğunluğunda doğrudur. Bu sebeple, H(0) ve J'nin normal olarak antiparalel oldukları var sayımı doğrulanmıştır.

Diğer yandan, μ_I ve I, eğer nükleer moment, bir pozitif yük (protonlardan kaynaklanan) tarafından üretiliyorsa, paraleldirler (pozitif nükleer moment ve pozitif (g) faktörü).

Çekirdekte hiçbir negatif yük bulunmamaktadır, yine de bir grup çekirdek içerisinde μ_I ve I'nin antiparalel oldukları bulunmuştur. Daha sonra gösterileceği üzere, bu negatif nötron momentinin etkisinden kaynaklanmaktadır. Bu durumda, μ_I ve I'ye negatif işaret verilir.

H(o), J'nin antiparalel ve nükleer manyetik momentin pozitif olduğu normal durumda, μ_I , en kararlı konumuna, H(o)'a paralel doğrultuda sahip olur; böylece, cos (I,J) ifadesi (-1) değerine sahiptir ve (3.76) denklemi,

$$\Delta W_{\text{magn}} = -\mu_I \ \overline{H(o)} \cos \left(\mu_I, H(o)\right) = \Delta W_{I,J} = A \ I \ J \cos \left(I,J\right)$$
(3.77)

şeklini alır.

A : Manyetik dipol aşırı ince yapı sabitidir.

I ve J açısal momentum vektörleri, manyetik etkileşim yoluyla çiftleştirilmişlerdir; böylece, sonuç olarak, atoma ait toplam açısal momentum vektörünü (\vec{F}) meydana getirmişlerdir. (3.77) denkleminden de yararlanarak, $\cos(\vec{I}, \vec{J})$ ifadesi, Şekil 3.6 'daki vektör diyagramından denklem (3.78) elde edilir.

Şekil 3.6 : Atoma ait vektör modeli.

$$\cos(I,J) = \frac{F^2 - I^2 - J^2}{2IJ}$$
(3.78)

Çekirdek ve yörünge elektronları arasındaki manyetik etkileşim, kuantum mekaniksel olarak açıklanmıştır. Bu görüşe göre,

$$F^{2} \rightarrow F (F+1)$$
$$I^{2} \rightarrow I (I+1)$$
$$J^{2} \rightarrow J (J+1)$$

olarak yer değiştirir. Bu durumda $\cos(I,J)$ ifadesi,

$$\cos(I,J) = \frac{F(F+1) - I(I+1) - J(J+1)}{2IJ}$$
(3.79)

şeklinde oluşur.

F'in alabileceği mümkün değerler,

$$\vec{F} = (\vec{I} + \vec{J}), \dots, |\vec{I} - \vec{J}|$$
 (3.80)

şeklindedir.

$$C = [F(F+1) - I(I+1) - J(J+1)]$$
(3.81)

olmak üzere, denklem (3.77) son olarak denklem (3.82) verildiği gibi olmaktadır:

$$\Delta W_{I,J} = A \frac{C}{2} \tag{3.82}$$

A aşırı ince yapı sabitinin değeri de,

$$A = \frac{\mu_I \overline{H(o)}}{IJ} = \frac{\mu_n g_I \overline{H(o)}}{J}$$
(3.83)

olmaktadır.

Denklem (3.83), *A* değerinin bir çoklu seviyeden diğer bir çoklu seviyeye göre değiştiğini ifade eder. Elektronların çekirdekte oluşturdukları manyetik alan arttıkça, *A* değeri de artar. Kapalı bir elektronik kabuk, sıfır akım yoğunluğuna sahiptir ve bu nedenle, çekirdekte hiçbir manyetik alan üretmez. Aynı şey, kapalı alt kabuklar (örneğin s^2) için geçerlidir.

En büyük nükleer manyetik alan, ve aynı şekilde en büyük hfs bölünmesi, çekirdeğe en fazla yaklaşan çifti olmayan elektronlar tarafından üretilmektedir. Bu nedenle, en büyük A faktörünün, çift olmayan bir s elektronu içeren elektron konfigürasyonuna sahip multiplet seviyeler için olması beklenir.

Aynı şekilde elektrik kuadropol etkileşimleri de yarılmalara katkıda bulunur. Fakat magnetik dipol etkileşmesine göre katkısı daha azdır. Bu nedenle yapılan ince yapı hesaplamalarında öncelikle *A* manyetik dipol aşırı ince yapı sabitinin bulunması amaçlanmaktadır.

Elektrik kuadrupol etkileşim enerjisi denklem (3.84)'te verildiği gibidir.

$$\Delta W_{el} = \frac{eQ'\overline{\varphi_{zz}(0)}}{4} \tag{3.84}$$

Q': Q tensörünün z bileşenidir.

Q: Kuadropol moment tensörüdür.

eQ: Kuadropol momentidir.

 $\overline{\varphi_{JJ}(o)}$: J ekseni etrafında silindirik simetriye sahip yörünge elektronların oluşturduğu elektrik alanın vektör gradyantedir.

Çekirdeğin yük dağılımının küresel simetrik olabilmesi için,

$$Q' = Q\left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right) \tag{3.85}$$

olmalıdır.

Serbest atomdaki kuadropol etkileşimini incelediğimiz için, \vec{I} çekirdek spin açısal momentum vektörü ile \vec{j} elektronun toplam açısal momentum vektörü arasındaki açı sabittir ve bu açı θ olarak verilir. Bu durumda elektrik kuadropol etkileşim enerjisi,

$$\Delta W_{Q} = \frac{B}{4} \left[\frac{3}{2} \cos^{2}(I, J) - \frac{1}{2} \right]$$
(3.86)

ile belirtilir.

B: Elektrik kuadropol aşırı ince yapı sabitidir. Burada elektrik kuadrupol etkileşim sabiti B,

$$B = eQ\varphi_{II}(0) \tag{3.87}$$

şeklinde verilir.

I, J, F'lerin küçük değerleri için, Casimir tarafından verilen ek enerji ifadesi,

$$\Delta W_{Q} = \frac{B}{4} \frac{\frac{3}{2} \left[C(C+1) - 2I(I+1)J(J+1) \right]}{I(2I-1)J(2J-1)}$$
(3.88)

olarak belirtilir.

Elektrik kuadropol etkileşmesi, elektronik açısal momentumla ilişkili olan çekirdek spininin yönelimine bağlıdır. Dolayısıyla her aşırı ince yapı seviyesi için kuadropol etkileşmesi farklı değerler alır. Bu yaklaşıma göre, çok elektronlu atomlarda küresel simetrik yük dağılımı, denklem (3.88)'de belirtilen ifadeye katkıda bulunmaz. Tüm kapalı ve tüm alt kabuklar dikkate alınır.

Çekirdek spininin I = 0, 1/2 olduğu durumlarda yük dağılımı küresel simetriktir. ΔW_Q elektrostatik etkileşme ek enerjisinin sıfırdan farklı olabilmesi için, çekirdek spininin 1/2 'den büyük olması gerekmektedir.

3.4.1. Aşırı İnce Yapı Yarılmaları

Verilen bir izotop için, F kuantum sayısına sahip bir aşırı ine yapı (hfs) seviyesinin toplam enerjisini saptamak için, yarılma seviyenin W_J enerjisine, iki ek enerjiyi, eklemek gerekir.

$$W_F = W_J + A\frac{C}{2} + B\frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$
(3.89)

Denkleme göre, çekirdek ile çekirdeğin yörünge elektronları arasındaki manyetik ve elektrik etkileşimi, J kuantum sayısına sahip bir ince yapı (fs) yarılması seviyesini, aşırı ince yapı (hfs) seviyelerine böler. Seviyelerin sayısı, açısal momentum vektörleri I ve

J'nin mümkün olan durumlarının sayısına eşittir. Eğer $J \ge I$ ise, F kuantum sayısı (2I+1) tane ve eğer $I \ge J$ ise F kuantum sayısı (2J+1) tane değer alır.

F kuantum sayısının J ve I kuantum sayılarına bağlılığı;

$$J \ge I \quad \to F \ , \quad 2I+1 \tag{3.90}$$

$$I \ge J \longrightarrow F$$
, $2J + 1$ (3.91)

şeklindedir.

Elektrik kuadrupol etkileşim sabiti *B*'nin genelde, manyetik dipol terimi *A* ile karşılaştırıldığında küçük olduğu belirlenmiştir. Bunun nedeni, çekirdek elektrik kuadropol momentinin çok küçük olmasıdır. Böylelikle ilk tahmin olarak, manyetik terimi yalnız olarak dikkate almak çoğunlukla yeterlidir. Bu taktirde denklem (3.89)'u,

$$W_F \approx W_J + \frac{A}{2} \left[F(F+1) - I(I+1) + J(J+1) \right]$$
(3.92)

şeklinde yazabiliriz.

Manyetik dipol aşırı ince yapı sabiti olarak tanımladığımız *A*, aynı zamanda aralık faktörü olarak da adlandırılır. Bunu nedeni, manyetik etkileşme sebebiyle enerjide meydana gelen yarılmalarla oluşan seviyeler arasındaki enerji aralığının bu değere bağlı olmasıdır.

Denklem, $J = \frac{1}{2} ve I \ge \frac{1}{2}$ olan herhangi bir multiplet seviyesi için tam olarak geçerlidir. Bu durumda, $F = I + \frac{1}{2}$ ve $F = I - \frac{1}{2}$ kuantum sayılarına sahip bir hfs dubleti elde edilir.

Deneylerde, hfs seviyeleri arasındaki geçişler ölçülmektedir.

Bir dış manyetik alanın yokluğunda, ΔF seçim kuralı, tüm hfs geçişleri için geçerlidir. Elektrik dipol radyasyonuyla mı yoksa manyetik dipol radyasyonuyla mı gerçekleştikleri fark etmemektedir.

 ΔF seçim kuralı:

 $\Delta F = \pm 1, 0$ (F = 0 \rightarrow F = 0 geçişi yasaktır.)

şeklindedir.

İki durum için farklı olan bir ek durum mevcuttur; elektrik dipol radyasyonu için, sadece farklı pariteye sahip seviyeler arasında geçişler mümkündür; ancak manyetik radyasyonu için, sadece aynı pariteye sahip seviyeler arasında geçişler mümkündür.

Her bir aşırı ince yapı geçişinin şiddeti denklem (3.93) ile hesaplanır.

$$H_{(F_o \to F_u)} \cong (2F_o + 1)(2F_u + 1) \begin{cases} I & F_o & J_o \\ 1 & J_u & F_u \end{cases}^2$$
(3.93)

 $H_{(F_a \rightarrow F_u)}$: Herhangi bir geçişin şiddeti,

 F_o : Üst seviyenin F kuantum sayısı,

 F_u : Alt seviyenin F kuantum sayısı,

I : Çekirdek spini,

- J_{o} : Üst seviyenin J kuantum sayısı,
- J_u : Alt seviyenin J kuantum sayısıdır.

Denklem (3.93)'teki $\begin{cases} I & F_o & J_o \\ 1 & J_u & F_u \end{cases}$ ifadesi $\Delta J = 0, \pm 1$ ve $\Delta F = 0, \pm 1$ durumlarına

karşılık gelen (3.94), (3.95), (3.96), (3.97) denklemleriyle hesaplanır.

$$\begin{cases} a & b & c \\ 1 & c-1 & b-1 \end{cases} = (-1)^{s} \left[\frac{s(s+1)(s-2a-1)(s-2a)}{(2b-1)2b(2b+1)(2c-1)2c(2c+1)} \right]^{1/2}$$
(3.94)

$$\begin{cases} a & b & c \\ 1 & c-1 & b \end{cases} = (-1)^{s} \left[\frac{s(s+1)(s-2a)(s-2b)(s-2c+1)}{2b(2b+1)(2b+2)(2c-1)2c(2c+1)} \right]^{1/2}$$
(3.95)

$$\begin{cases} a & b & c \\ 1 & c-1 & b+1 \end{cases} = (-1)^{s} \left[\frac{(s-2b-1)(s-2b)(s-2c-1)(s-2c+2)}{(2b+1)(2b+2)(2b+3)(2c-1)2c(2c+1)} \right]^{1/2}$$
(3.96)

$$\begin{cases} a & b & c \\ 1 & c & b \end{cases} = (-1)^{s+1} \left[\frac{2[b(b+1) + c(c+1) - a(a+1)]}{[2b(2b+1)(2b+2)2c(2c+1)(2c+2)]^{1/2}} \right]$$
(3.97)

Denklem (3.94), (3.95), (3.96) ve (3.97)'de,

$$s = a + b + c,$$

- a : Çekirdek spini I,
- b: Üst seviyenin F kuantum sayısı F_{o} ,
- c: Üst seviyenin J kuantum sayısı J_o 'dır [31].

3.4.2. Aşırı İnce Yapı Parametreleri

Hfs etkileşmelerinin, özellikle ağır atomlarda, tam doğru olarak tanımlanabilmesi relativistik etkinin gözönüne alınması ile mümkündür. Bu tanımlamada aşırı ine yapı

(hfs) operatörlerinin matris elemanları relativistik dalga fonksiyonu ile oluşturulur. Bu operatörler relativistik olmayan LS seviyelerinde, relativistik seviyelerde olduğu gibi aynı beklenen değeri sağlayacak şekilde oluşturuldu. Bu efektif operatörler aşağıdaki formadadır.

$$H_{hfs}^{eff}(MI) = 2\mu_B \frac{\mu_I}{I} I \sum_{n\ell} \left[\left\langle r^{-3} \right\rangle^{01} \ell - \sqrt{10} \left\langle r^{-3} \right\rangle^{12} \left[s \times C^{(2)} \right]^{(1)} + \frac{2}{3} \left\langle r^{-3} \right\rangle^{10} s \right]$$
(3.98)

$$H_{hfs}^{eff}(E2) = e \sum_{n\ell} \left[-C^{(2)} \langle r^{-3} \rangle_{n\ell}^{02} + (s \times \ell)^{(2)} \langle r^{-3} \rangle_{n\ell}^{11} + \left[s \times (C^{(4)} \times \ell)^{(3)} \right]^{(2)} \langle r^{-3} \rangle_{n\ell}^{13} \right] (3.99)$$

 $\langle r^{-3} \rangle_{n1}^{k_s k_l}$; relativistik tek elektron-radyal integrallerinin lineer kombinasyonudur.

 ℓ : yörüngesel dönme momenti,

s: spin operatörü,

 $C^{(k)}$: k. mertebenin modife olmuş küresel harmoniğidir.

Denklemlerdeki tek elektron radyal integrallerinin, $\langle r^{-3} \rangle_{n1}^{k_s k_l}$ if a delerinin fiziksel anlamları,

 $\left\langle r^{^{-3}}\right\rangle ^{10}$: Fermi kontak etkileşmesi,

 $\langle r^{-3} \rangle^{01}$: Elektronun yörüngesel dönme momentinin çekirdek üzerinde meydana getirdiği manyetik alanla çekirdeğin manyetik dipol etkileşmesi,

 $\left< r^{-3} \right>^{12}$: Çekirdeğin, elektronun spininin manyetik momenti ile manyetik dipol etkileşmesi,

 $\left\langle r^{^{-3}}\right\rangle ^{02}$ $\ \ :$ Elektik quadrupol etkileşim radyal integralidir.

 $\left\langle r^{^{-3}}\right\rangle ^{11}$: Relativistik bir terimdir ve klasik karşılığı yoktur.

 $\left\langle r^{-3}\right\rangle ^{13}~$: Relativistik bir terimdir ve klasik karşılığı yoktur.

Radyal integraller, çekirdek momenti etkileşimlerini içine alan $a_{n\ell}^{k_s k_\ell}$ ve $b_{n\ell}^{k_s k_\ell}$ tek elektron ayrışma parametreleri ile tanımlanır ve denklem (3.100), (3.101) ifadeleri ile verilen lineer denklem sistemleri gibidir.

$$a_{n\ell}^{10} = \frac{4}{3} \mu_B \frac{\mu_I}{I} \langle r^{-3} \rangle^{10}$$
(3.100)

$$a_{n\ell}^{k_{s}k_{\ell}} = 2\mu_{B} \frac{\mu_{I}}{I} \langle r^{-3} \rangle^{k_{s}k_{\ell}} \qquad k_{s}k_{\ell} : 01,12$$
(3.101)

$$b_{n\ell}^{k_{s}k_{\ell}} = e^{2}Q\langle r^{-3}\rangle^{k_{s}k_{\ell}} \qquad k_{s}k_{\ell} : 02,13,11$$
(3.102)

 $a_{n\ell}^{k_s k_\ell}$ ve $b_{n\ell}^{k_s k_\ell}$: Tek elektron ayrışma parametreleridir.

Relativistik olmayan yaklaşımda her bir açık yörünge için tek bir $a_{n\ell}^{k_s k_\ell}$ ve $b_{n\ell}^{k_s k_\ell}$ parametresi olmasına karşılık, relativistik durumda her bir açık yörünge için üç ayrışma parametresi söz konusudur.

Radyal integralin teorik olarak hesaplanması son derece zor olmakla birlikte, deneysel olarak elde edilen aşırı ince yapı sabitleri A ve B yardımı ile yarı-ampirik elde edilebilirler.

Hfs faktörleri *A* ve *B*, tek elektron radyal elektron parametreleri $a_{n\ell}^{k_s k_\ell}$ ve $b_{n\ell}^{k_s k_\ell}$ ile $\alpha_{n\ell}^{k_s k_\ell}$ ve $\beta_{n\ell}^{k_s k_\ell}$ açısal katsayılarının lineer kombinasyonu olarak verilir. Deneysel olarak elde edilen aşırı ince yapı sabitleri *A* ve *B*,

$$A = \sum_{n\ell} \left[\alpha_{n\ell}^{10} a_{n\ell}^{10} + \alpha_{n\ell}^{12} a_{n\ell}^{12} + \alpha_{n\ell}^{01} a_{n\ell}^{01} \right]$$
(3.103)

$$B = \sum_{n\ell} \left[\beta_{n\ell}^{02} b_{n\ell}^{02} + \beta_{n\ell}^{13} b_{n\ell}^{13} + \beta_{n\ell}^{11} b_{n\ell}^{11} \right]$$
(3.104)

lineer denklem sistemleri şeklinde verilir. Toplama işlemi tüm açık elektron kabukları üzerinden yapılmıştır. α , β katsayıları da, Cowan [9] programından elde edilen sonuçlardan Hfsac programı ile hesaplanır. Bu denklem sisteminin çözümü ile, *a* ve *b* aşırı ince yapı parametreleri yarı-ampirik olarak elde edilir[32].

3.5. İNCE YAPI PROGRAMI (COWAN)

İnce yapı hesaplarında Fortran77 dilinde yazılmış Cowan [9] yazılımı kullanıldı. Cowan yazılımında 4 program yer alır. Bu programların çalıştırılma sırası ve işlevleri şöyledir;

RCN; belirli elektron konfigürasyonları için tek elektron radyal dalga fonksiyonlarını (bağlı veya serbest) Hartree-Fock yaklaşıklık metodunu kullanarak hesaplar. Konfigürasyonun enerji seviyelerinin hesaplanmasında, herbir konfigürasyon için konfigürasyonun merkezi gravitasyon enerjisi (E_{av}), radyal Coulomb integralleri (F^k ve G^k), spin-orbit integralleri (ζ) gereklidir.

RCN2; RCN'de hesaplanan dalga fonksiyonlarını kullanarak, etkileşen konfigürasyon çiftleri arasındaki konfigürasyon etkileşme Coulomb integralleri (R_k) ile elektrik dipol (E1) ve / veya elektrik kuadrapol (E2) radyal integrallerini hesaplar. Böylece bir sonraki adımda kullanılacak RCG'nin input bilgileri hazırlanmış olur.

RCG; bu programın temel amacı, atomik yapı ve spektrum teorisindeki çeşitli matris elemanlarının açısal katsayılarının hesaplanmasıdır. Bu açısal katsayılar deneysel enerji seviyelerinin en küçük kareler yöntemi ile fit edilmesinde RCE programının giriş datası olarak kullanılır. Mümkün olan her toplam açısal momentum J değeri için enerji matrislerini oluşturur. Özdeğer ve özvektörleri elde edebilmek için her matrisi köşegenleştirir ve M1 (magnetik dipol), E1 ve / veya E2 ışıma spektrumunu hesaplar.

RCE; RCE'nin temel amacı, teorik parametre değerlerinin düzeltilmesidir. Bilinen deneysel seviye değerleri ile mümkün olan en iyi hesaplanmış atomik enerji seviyelerinin iyi bir uyum içinde olduğu gösterilir. Enerjileri deneysel olarak bilinmeyen seviyeler gözönüne alınmayabilir. Parametrelerden herhangi biri belirlenmiş değerde sabit tutulabilir veya parametre grupları değişmeye zorlanabilir (grup içindeki değerlerin oranları değişmeden kalır). Fit işlemi, parametre değerleri bir sonraki adımda değişmeyene kadar yapılır.

Bu dört adım sonunda incelenen konfigürasyona ait ince yapı enerji seviyeleri hesaplanır ve enerjileri tanımlayan ince yapı parametre değerleri bulunur.

Son olarak çalıştırılan RCE programının çıkış dosyalarının içerikleri, tüm yapılan hesapların sonuçlarını vermeleri açısından önemlidir. Bu dosyaların içerikleri şöyledir:

Oute: Herbir döngüye ait standart sapma, ortalama sapma ve her parametrenin hataları ile birlikte değerlerini verir.

Levels 1,2,3: Her seviye için üç özvektör bileşenin yüzdelerini, teorik g değerlerini, deneysel ve teorik enerjileri ve farklarını verir.

Parvals: Her döngüye ait parametre değerlerini verir. Bunlardan son döngüye ait olanlar bir sonraki hesapta kullanılması açısından önemlidir.

RCG11k programının çalıştırılması ile elde edilen ve aşırı ince yapı hesaplarının temeli olan outg11 çıkış dosyası ise; ihtiyaca göre mümkün J değerleri için enerji matrisini, özdeğerleri, g değerlerini, LS ve JJ gösteriminde özvektörleri ve özvektör saflığını verir.

Burada sözü edilen teorik g değerleri;

$$g_{LSJ} = \frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)} + g_{S} \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

ifadesi ile elde edilir [30].

Şekil 3.7: İnce yapı hesaplarında kullanılan Cowan programının çalışma sırasının şematik gösterimi.

İnce yapı programında son olarak, her döngüye ait parametre değerlerini veren Parvals'ta en son döngüye ait olan dosyadan yararlanılmaktadır. Parvals'taki Rcg için en son parametre değerlerinin altında bulunan kısım ing11 dosyasına kopyalanarak, ing11 dosyası en son elde ettiğimiz parametrelerden çalışır hale getirilir. Bu dosyada mümkün her J değeri için Rcg11k uygulama dosyası çalıştırıldıktan sonra, çıkış dosyası olan outg11 dosyasında, parametre değerlerine ek olarak, özvektörler ve özdeğerler bulunmaktadır. Bu değerler aşırı ince yapı hesaplamalarında kullanılmaktadır.

3.6. AŞIRI İNCE YAPI PROGRAMI (Hfsac ve Hfsfit)

Aşırı ince programı Hfsac ve Hfsfit adı altında iki programdan oluşmaktadır.

Hfsac : Literatürde deneysel olarak bulunan aşırı ince yapı sabitleri, A ve B'nin değerleri ile Outg11 dosyasında bulunan özvektör ve özdeğerler kullanılarak, α ve β açısal katsayı değerleri bulunmaktadır. Hfsac programı çalıştırıldığında, Fs-percent, alpha.out ve beta.out dosyaları oluşmaktadır. Fs-percent dosyası, kullanıcının yaptığı çalışmayı kontrol etmesi için kullandığı dosyadır. Konfigürasyon isimleri, her bir konfigürasyondaki açık kabuk sayıları, her konfigürasyon ve her j değeri için enerji seviyelerinin sayısı, her bir seviyedeki konfigürasyonların yüzde oranları, bu dosyanın içeriğidir. Oluşan alpha.out dosyası tüm $\alpha_{n\ell}^{k_k k_\ell}$ ve beta.out dosyası da tüm $\beta_{n\ell}^{k_k k_\ell}$ değerlerini içermektedir. Program lineer denklem sistemini kurar ve çözer. Bu programa ek olarak Hfsfit çalıştırılır.

Hfsfit : Aşırı ince yapı parametrelerini bulabilmek için kullandığımız program Hfsfit'tir. Hfsac programında bulunan α ve β açısal katsayı değerleri ve deneysel aşırı ince yapı sabitleri A ve B değerleri kullanılarak, tek-elektron radyal parametreleri $a_{n\ell}^{k_s k_\ell}$ ve $b_{n\ell}^{k_s k_\ell}$ hesaplanır. Bulunan tek-elektron parametreleri kullanılarak, tüm enerji seviyeleri için Hfs sabitleri A ve B teorik olarak hesaplanmış olur. Bu sonuç, deneysel olarak henüz incelenmemiş seviyelerin aşırı ince yapı sabitleri hakkında tahmin yürütebilmemize olanak sağlar.

4. BULGULAR

4.1. MANGANEZ (⁵⁵ Mn) I ELEMENTİ

Manganez elementinin atom numarası 25 'tir. Kimyasal simgesi Mn'dir. 1774 yılında Johann Gahn tarafından keşfedilmiştir. Adını latince magnet 'ten (mıknatıs) alır. Periyodik tablonun 7-B grubunda yer alır. Grimsi metal renklidir [33].

Manganez 3d-kabuk geçiş elementlerinin 5.'sidir[34]. Kütle numarası 55, çekirdek spini 5/2 olan tek bir izotopa sahip olup, aşırı ince yapı ayrışması göstermektedir. ⁵⁵Mn (Manganez) elementinin temel kimyasal ve fiziksel özellikleri Tablo 4.1'de verilmektedir.

	-
Özellikler	⁵⁵ Mn
Atom Numarası	25
Atom Ağırlığı	54.938049 amu.
Erime Sıcaklığı	1245 °C
Kaynama Sıcaklığı	2061 ° <i>C</i>
İyonlaşma Enerjisi	7.4340 eV
Çekirdek Spini	5/2
Çekirdek Dipol Momenti	3.468716 $\mu_{_N}$
Çekirdek Kuadropol Momenti	0.33(1) <i>barn</i>
Atomik Yarıçapı	140 pm
Isı iletkenliği	$0.0782 \ W.cm^{-1}.K^{-1}$

Tablo 4.1: ⁵⁵Mn elementinin temel kimyasal ve fiziksel özellikleri.

Manganez bütün canlılar için mutlak gerekli bir elementtir. Yer kabuğunun ortalama Manganez içeriği yaklaşık 800 mg/kg 'dır. Toprakların Manganez içeriği 20-800 mg/kg arasında değişmektedir. Manganez topraklarda, manganoksitler, silikatlar ve karbonatlar şeklinde bulunur. Bunların dışında demiroksitler tarafından absorbe edilmiş, organik kompleksler olarak bağlanmış, değişebilir ve çözünmüş şekilde bulunabilir [35].

Manganez elementinin izotopları sırasıyla yarı ömrü 5.591 gün olan ${}^{52}Mn$, 3.7×10^{6} yıl olan 53 Mn, 312.2 gün olan 54 Mn, 2.579 saat olan 56 Mn, 1.45 saat olan 57 Mn ve kararlı olan 55 Mn 'dir.

Bilinen kullanım alanları seramik yapımı, kuru piller, çelik üretimi, permanganat olarak tıpta bazı analizlerde ve KMnO₄ bileşiği olarak bakteri öldürmekte kullanılır [36].

Manganez, alüminyum elde edilmesinde kullanılan bir elementtir. Alüminyum da değişik amaçlarla ya doğrudan ya da alaşım olarak yaygın kullanılan bir metaldir [37].

Her geçiş elementi gibi Manganez de, birden fazla farklı değerlikle bulunabilir. Bileşikleri genelde renklidir. İyonları renkli olduğu için, analizlerde kolay ayırt edilebilirler. Bileşiklerinin çoğu paramanyetiktir. Değişik molekül veya iyonlarla kompleks bileşikler veya iyonlar oluşturabilir.

Geçiş elementleri periyodik cetvelde, lantanidler ve aktanidlere ek olarak tüm B grubu elementleri kapsar. Bu metaller esas olarak sertlikleri, yüksek yoğunlukları, iyi ısı iletkenlikleri ve yüksek erime ve kaynama noktaları ile tanınırlar. Özellikle sertlikleri nedeniyle, saf halde ya da alaşım halinde yapı malzemesi olarak kullanılırlar.

Geçiş elementlerinin hepsi, elektron dizilimlerinde, en dış yörüngelerinde her zaman *d* orbitalinde elektron taşırlar [38].

4.2. KULLANILAN DENEYSEL VERİLER

Bu çalışmada, yarı- ampirik olarak hesaplanan aşırı ince yapı sabitleri bulunurken; ⁵⁵Mn elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonları ile çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarına sahip enerji seviyelerine ait daha önce yapılmış çalışmalarda deneysel olarak elde edilen, literatürde yeralan *A* manyetik dipol aşırı ince yapı sabitlerinden faydalanılmıştır. Sonuç olarak, henüz deneysel olarak elde edilmemiş olan *A* değerleri için bir tahmin yürütülebilir.

Tablo 4.2 ve Tablo 4.3 'te Manganez 'in tek ve çift pariteye sahip konfigürasyonlarının enerji seviyelerinin şu ana kadar literatürde bilinen manyetik dipol aşırı ince yapı sabiti A değerleri MHz cinsinden verilmiştir. Tablodaki ilk üç kolonda seviyenin konfigürasyonu, terimi ve enerji değeri verildi. Tablodaki 5. kolonda hfs sabiti olan A değerlerini elde etmek için kullanılan deneysel metod verildi.

Konfigürasyon	Terim	Enerji(cm ⁻¹)	A(MHz)	Metod	Ref. no.
$3d^54s^2$	$a^{6}S_{5/2}$	0.00	-72.55	seop	[11]
$3d^64s$	a ⁶ D _{9/2}	17052.29	503(8)	abmr-lirf	[14]
$3d^64s$	a ⁶ D _{7/2}	17282.00	457(3)	abmr-lirf	[14]
$3d^64s$	a ⁶ D _{5/2}	17451.52	434(4)	abmr-lirf	[14]
$3d^64s$	a ⁶ D _{3/2}	17568.48	467(6)	abmr-lirf	[14]
$3d^64s$	$a^{6}D_{1/2}$	17637.71	892(16)	abmr-lirf	[14]
$3d^64s$	$a^4D_{7/2}$	23296.67	171	SS	[19]
			-164.9	fts	[20]
			-161.9	fts	[23]
$3d^64s$	a ⁴ D _{5/2}	23549.20	138	SS	[19]
			-141	fts	[20]
			-138	fts	[23]
$3d^64s$	$a^4D_{3/2}$	23719.52	27	fts	[20]
			51	fts	[23]
$3d^64s$	$a^4D_{1/2}$	23818.87	1511	fts	[20]
			1516.9	fts	[23]
$3d^54s^2$	$a^4G_{11/2}$	25265.74	405.265(5)	abmr-lirf	[16]
$3d^54s^2$	a ⁴ G _{5/2}	25281.04	596.183(30)	abmr-lirf	[16]
$3d^54s^2$	a ⁴ G _{9/2}	25285.43	395.201(3)	abmr-lirf	[16]
$3d^54s^2$	a ⁴ G _{7/2}	25287.74	437.074(15)	abmr-lirf	[16]
$3d^54s^2$	$a^4 P_{5/2}$	27201.54	89.9	fts	[23]
$3d^54s^2$	$a^4 P_{3/2}$	27248.00	236.8	fts	[23]
$3d^54s^2$	$a^4P_{1/2}$	27281.85	-584.6	fts	[23]
$3d^54s^2$	$b^4 D_{7/2}$	30354.21	233.8	fts	[23]
$3d^54s^2$	$b^4D_{1/2}$	30411.74	1289.1	fts	[23]
$3d^54s^2$	$b^4 D_{5/2}$	30419.61	288.1	ogs	[21]
			287.8	fts	[23]
$3d^54s^2$	$b^4 D_{3/2}$	30425.71	456	ogs	[21]
			446.7	fts	[23]
$3d^64s$	$a^4H_{13/2}$	34138.88	620.6	fts	[23]
$3d^64s$	$a^4H_{11/2}$	34250.52	515.6	fts	[23]
$3d^64s$	$a^4 H_{9/2}$	34343.90	398.7	fts	[23]
$3d^64s$	a ⁴ H _{7/2}	34423.27	158.9	fts	[23]

Tablo 4.2: ⁵⁵Mn elementinin çift pariteli konfigürasyonlarının enerji seviyelerine ait daha önce yapılmış çalışmalardan elde edilen, deneysel olarak hesaplanmış literatürdeki A aşırı ince yapı sabiti değerleri.

Tablo 4.2 'nin devamı :

$a^4F_{9/2}$	34938.70	643(4)	ogs	[21]
		649(7)	ogs	[21]
		644.5	fts	[23]
$a^4F_{7/2}$	35041.37	576(12)	ogs	[21]
		589(5)	ogs	[21]
		560.6	fts	[23]
$a^4F_{5/2}$	35114.98	437(3)	ogs	[21]
		440(5)	ogs	[21]
		446.7	fts	[23]
$a^4F_{3/2}$	35165.05	239.83	fts	[23]
e ⁸ S _{7/2}	39431.31	737(3)	is	[8]
e ⁶ S _{5/2}	41403.93	808.5(30)	is	[8]
		805.1	ogs	[41]
e ⁸ D _{3/2}	46706.09	1169	fts	[20]
		1151.2	fts	[23]
e ⁸ D _{5/2}	46707.03	659.5	fts	[20]
		722.5	fts	[23]
e ⁸ D _{7/2}	46708.33	569.6	fts	[20]
		527.6	fts	[23]
e ⁸ D _{9/2}	46710.15	449.7	fts	[20]
		470.7	fts	[23]
$e^8D_{11/2}$	46712.58	419.7	fts	[20]
		434.7	fts	[23]
e ⁶ D _{9/2}	47207.28	465(15)	fts	[12]
e ⁶ D _{7/2}	47212.06	474(20)	fts	[12]
e ⁶ D _{5/2}	47215.61	528(20)	fts	[12]
e ⁶ D _{3/2}	47218.15	684(30)	fts	[12]
e ⁶ D _{1/2}	47219.64	1847(60)	fts	[12]
$f^6S_{5/2}$	49415.35	-642(3)	is	[8]
e ⁴ S _{3/2}	49591.51	-1510(3)	is	[8]
$f^8S_{7/2}$	50157.63	696	fts	[23]
g ⁶ S _{5/2}	50904.68	700(4)	ogs	[21]
e ⁴ P _{5/2}	51638.17	-15	fts	[23]
e ⁴ P _{3/2}	51718.22	56.96	fts	[23]
$e^4P_{1/2}$	51787.92	-410.7	fts	[23]
$f^{8}D_{3/2}$	52702.23	1640	fts	[23]
$f^8D_{5/2}$	52702.41	551.6	fts	[23]
$f^{8}D_{7/2}$	52702.79	512.6	fts	[23]
	$a^{4}F_{9/2}$ $a^{4}F_{7/2}$ $a^{4}F_{5/2}$ $a^{4}F_{5/2}$ $e^{8}S_{7/2}$ $e^{8}S_{7/2}$ $e^{8}S_{5/2}$ $e^{8}D_{3/2}$ $e^{8}D_{5/2}$ $e^{8}D_{9/2}$ $e^{8}D_{9/2}$ $e^{6}D_{9/2}$ $e^{6}D_{9/2}$ $e^{6}D_{3/2}$ $e^{6}D_{3/2}$ $e^{6}D_{3/2}$ $e^{6}D_{3/2}$ $e^{6}S_{5/2}$ $e^{4}P_{3/2}$	$a^4F_{9/2}$ 34938.70 $a^4F_{7/2}$ 35041.37 $a^4F_{7/2}$ 35141.98 $a^4F_{5/2}$ 35114.98 $a^4F_{3/2}$ 35165.05 $e^8S_{7/2}$ 39431.31 $e^6S_{5/2}$ 41403.93 $e^8D_{3/2}$ 46706.09 $e^8D_{5/2}$ 46707.03 $e^8D_{7/2}$ 46708.33 $e^8D_{9/2}$ 46710.15 $e^8D_{11/2}$ 46712.58 $e^6D_{9/2}$ 47207.28 $e^6D_{7/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47215.61 $e^6D_{3/2}$ 47218.15 $e^6D_{3/2}$ 49591.51 $f^6S_{5/2}$ 9904.68 $e^4P_{5/2}$ 51638.17 $e^4P_{3/2}$ 51718.22 $e^4P_{1/2}$ 51787.92 $f^8D_{3/2}$ 52702.23 $f^8D_{5/2}$ 52702.41 $f^8D_{5/2}$ 52702.79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tablo 4.2 'nin devamı :

3d ⁵ 4s5d	f ⁸ D _{9/2}	52703.10	485.7	fts	[23]
$3d^54s5d$	$f^{8}D_{11/2}$	52705.23	434.7	fts	[23]
3d ⁵ 4s6s	$e^4D_{7/2}$	56462.08	-200(3)	ogs	[21]

Konfigürasyon	Terim	Enerji(cm ⁻¹)	A(MHz)	Metod	Ref. no.
3d ⁵ 4s4p	z ⁸ P _{5/2}	18402.46	572	is	[8]
			571.7	fts	[13]
			572(1.5)	is	[42]
$3d^54s4p$	z ⁸ P _{7/2}	18531.64	547	is	[8]
			545.9	fts	[13]
			546.5(9)	is	[40]
3d ⁵ 4s4p	$z^{8}P_{9/2}$	18705.37	456(4)	is	[8]
			419.7	fts	[13]
3d ⁵ 4s4p	$z^6 P_{3/2}$	24779.32	571.85(80)	lc	[10]
			517.4	fts	[13]
			570(2)	is	[40]
3d ⁵ 4s4p	$z^{6}P_{5/2}$	24788.05	467.41(1)	lc	[10]
			467.1	fts	[13]
			465(1.5)	is	[40]
3d ⁵ 4s4p	$z^6 P_{7/2}$	24802.25	429.06(4)	lc	[10]
			428.7	fts	[13]
			428(1.5)	is	[40]
$3d^54s4p$	$z^4 P_{5/2}$	31001.15	-608	is	[8]
			-607.8(1.5)	labs	[17]
3d ⁵ 4s4p	$z^4 P_{3/2}$	31076.42	-812	is	[8]
			-821(3)	labs	[17]
3d ⁵ 4s4p	$z^4P_{1/2}$	31124.95	-2131(5)	is	[8]
			-2194(15)	fts	[20]
$3d^54s4p$	$y^6 P_{3/2}$	35689.98	-971(20)	fts	[13]
			-963(6)	abmr	[14]
3d ⁵ 4s4p	y ⁶ P _{5/2}	35725.85	-567(21)	lc	[10]
			-540(20)	fts	[13]
			-549(3)	abmr	[14]
3d ⁵ 4s4p	y ⁶ P _{7/2}	35769.97	-390(15)	fts	[13]
			-403(5)	abmr	[14]
			-406(5)	ogs	[22]
3d ⁶ 4p	$z^{6}D_{9/2}$	41789.48	93	fts	[20]
			87	fts	[23]
3d ⁶ 4p	z ⁶ D _{7/2}	41932.64	42(6)	fts	[20]
			39	fts	[23]

Tablo 4.3 : ⁵⁵Mn elementinin tek pariteli konfigürasyonlarının enerji seviyelerine ait daha önce yapılmış çalışmalardan elde edilen, deneysel olarak hesaplanmış literatürdeki A aşırı ince yapı sabiti değerleri.

Tablo 4.3 un devami :

Konfigürasyon	Terim	Enerji(cm ⁻¹)	A(MHz.)	Metod	Ref. no.
3d ⁶ 4p	z ⁶ D _{5/2}	42053.73	-249(15)	fts	[20]
			-27	fts	[23]
3d ⁶ 4p	$z^{6}D_{3/2}$	42143.57	-141(6)	fts	[20]
			-150	fts	[23]
$3d^64p$	$z^{6}D_{1/2}$	42198.56	-788	fts	[20]
			-821	fts	[23]
			-856	SS	[43]
3d ⁶ 4p	$z^{6}F_{11/2}$	43314.23	180(5)	fts	[20]
3d ⁶ 4p	$z^{6}F_{9/2}$	43428.58	156(12)	fts	[20]
3d ⁶ 4p	$z^{6}F_{7/2}$	43524.08	138(9)	fts	[20]
3d ⁶ 4p	$z^{6}F_{5/2}$	43595.50	174(9)	fts	[20]
3d ⁶ 4p	$z^{6}F_{3/2}$	43644.45	273(15)	fts	[20]
$3d^64p$	$z^4F_{9/2}$	44288.76	135(15)	fts	[20]
			132	fts	[23]
3d ⁶ 4p	$z^4F_{7/2}$	44523.45	180(12)	fts	[20]
			171	fts	[23]
3d ⁶ 4p	$z^4F_{5/2}$	44696.29	297(12)	fts	[20]
			285	fts	[23]
$3d^64p$	$z^4F_{3/2}$	44814.73	670(30)	fts	[20]
			669	fts	[23]
$3d^64p$	x ⁶ P _{7/2}	44993.92	273(9)	fts	[20]
			282	fts	[23]
3d ⁶ 4p	x ⁶ P _{5/2}	45156.11	260(30)	fts	[20]
			291	fts	[23]
$3d^64p$	x ⁶ P _{3/2}	45259.17	360(30)	fts	[20]
			375	fts	[23]
$3d^64p$	$z^4D_{7/2}$	45754.27	46(10)	ogs	[21]
			31(10)	ogs	[21]
			45	fts	[23]
3d ⁶ 4p	$z^4D_{5/2}$	45940.93	57(9)	fts	[20]
			82(15)	ogs	[22]
			102(11)	ogs	[22]
			93	fts	[23]
3d ⁵ 4s5p	y ⁸ P _{5/2}	45981.44	825(45)	SS	[19]
			824	fts	[23]
3d ⁵ 4s5p	y ⁸ P _{7/2}	46000.77	600(45)	SS	[19]

Tablo 4.3'ün devamı :

Konfigürasyon	Terim	Enerji(cm ⁻¹)	A(MHz.)	Metod	Ref. no.
3d ⁵ 4s5p	y ⁸ P _{7/2}	46000.77	621	fts	[23]
3d ⁵ 4s5p	$y^{8}P_{9/2}$	43026.75	495(45)	SS	[19]
			519	fts	[23]
3d ⁶ 4p	$z^4D_{3/2}$	46083.89	183(9)	fts	[20]
			192(5)	ogs	[22]
			192	fts	[23]
3d ⁶ 4p	$z^4D_{1/2}$	46169.93	1049(15)	fts	[20]
			1067	fts	[23]
3d ⁶ 4p	$y^4 P_{5/2}$	46901.13	-54(12)	fts	[20]
			-27	fts	[23]
3d ⁶ 4p	$y^4 P_{3/2}$	47154.51	-294	fts	[23]
3d ⁶ 4p	$y^4P_{1/2}$	47299.29	-1020(60)	fts	[20]
			-974	fts	[23]
3d⁵4s5p	$w^6 P_{7/2}$	47387.62	579	fts	[23]
3d ⁵ 4s4p	$y^{6}D_{1/2}$	47452.16	1079	fts	[23]
3d ⁵ 4s4p	$y^{6}D_{3/2}$	47466.66	824	fts	[23]
3d ⁵ 4s5p	$w^6 P_{5/2}$	47659.52	761	fts	[23]
3d ⁵ 4s4p	$y^{6}D_{5/2}$	47753.99	672	fts	[23]
3d ⁵ 4s4p	$y^{6}D_{7/2}$	47774.52	636	fts	[23]
3d ⁵ 4s5p	$w^6 P_{3/2}$	47782.43	648	fts	[23]
3d ⁵ 4s4p	$y^{6}D_{9/2}$	47903.80	603	fts	[23]
3d ⁵ 4s4p	$y^{6}F_{11/2}$	48021.43	600	fts	[23]
3d ⁵ 4s4p	$y^{6}F_{9/2}$	48168.01	570	fts	[23]
3d ⁵ 4s4p	$y^{6}F_{7/2}$	48225.99	522	fts	[23]
3d ⁵ 4s4p	$y^{6}F_{5/2}$	48270.91	480	fts	[23]
3d ⁵ 4s4p	y ⁶ F _{3/2}	48300.98	429	fts	[23]
3d ⁵ 4s4p	$y^{6}F_{1/2}$	48318.12	87	fts	[23]
3d ⁵ 4s4p	$v^6 P_{7/2}$	49888.01	561	fts	[23]
3d ⁵ 4s4p	$v^6 P_{5/2}$	50012.50	582	fts	[23]
3d ⁵ 4s4p	$z^{4}H_{7/2}$	50065.46	231	fts	[23]
3d ⁵ 4s4p	$z^4H_{9/2}$	50072.59	396	fts	[23]
3d ⁵ 4s4p	$z^4H_{11/2}$	50081.31	519	fts	[23]
3d ⁵ 4s4p	$z^4H_{13/2}$	50094.60	606	fts	[23]
3d ⁵ 4s4p	$v^6 P_{3/2}$	50099.03	809	fts	[23]
3d ⁵ 4s4p	$y^4 F_{9/2}$	50341.30	763(3)	ogs	[22]
			761	fts	[23]
3d ⁵ 4s4p	$y^4 F_{7/2}$	50359.28	686(20)	ogs	[22]

Tablo 4.3'ün devamı :	
-----------------------	--

Konfigürasyon	Terim	Enerji(cm ⁻¹)	A(MHz.)	Metod	Ref. no.
3d ⁵ 4s4p	y ⁴ F _{7/2}	50359.28	669	fts	[23]
3d ⁵ 4s4p	$y^4 F_{5/2}$	50373.23	530(10)	ogs	[22]
3d ⁵ 4s4p	$y^4 F_{3/2}$	50383.27	525	fts	[23]
3d ⁵ 4s4p	x ⁴ P _{5/2}	51305.31	129	fts	[23]
3d ⁵ 4s4p	$x^4 P_{3/2}$	51445.55	1097	fts	[23]
3d ⁵ 4s4p	$z^4G_{5/2}$	51515.63	627	fts	[23]
3d ⁵ 4s4p	$z^4G_{7/2}$	51530.61	255	fts	[23]
3d ⁵ 4s4p	$z^4G_{9/2}$	51546.27	432	fts	[23]
3d ⁵ 4s4p	$x^4P_{1/2}$	51552.78	549	fts	[23]
3d ⁵ 4s4p	$z^4G_{11/2}$	51560.93	725	fts	[23]
3d ⁵ 4s5p	$w^4P_{3/2}$	55368.66	645	fts	[23]
3d ⁵ 4s5p	$w^4 P_{5/2}$	55406.00	555	fts	[23]
3d ⁶ 4p	$y^4S_{3/2}$	57512.08	474	fts	[23]
3d ⁵ 4s4p	$y^4G_{11/2}$	58075.06	697	fts	[23]
3d ⁵ 4s4p	$y^4G_{9/2}$	58110.24	210	fts	[23]
3d ⁵ 4s4p	$y^4G_{7/2}$	58136.69	261	fts	[23]
3d ⁵ 4s4p	$y^4G_{5/2}$	58159.73	486	fts	[23]
3d ⁶ 4p	$y^{4}H_{13/2}$	58338.67	878	fts	[23]
3d ⁶ 4p	$y^{4}H_{11/2}$	58851.49	390	fts	[23]
3d ⁶ 4p	$y^4 H_{15/2}$	58852.60	420	fts	[23]
3d ⁶ 4p	y4H9/2	58866.66	516	fts	[23]
3d ⁵ 4s4p	$y^4 I_{15/2}$	61204.54	357	fts	[23]
3d ⁵ 4s4p	$y^{4}I_{9/2}$	61211.43	522	fts	[23]
3d ⁵ 4s4p	$y^4 I_{13/2}$	61225.55	354	fts	[23]
3d ⁵ 4s4p	$y^4 I_{11/2}$	61225.77	405	fts	[23]
			435	fts	[23]

Deneylerde kullanılan metodlar;

abmr-lirf : rezonans floresansı içeren lazerle dedekte edilmiş atomik ışın manyetik rezonansı,

is : girişim spektroskopisi,

ss : güneş spektrumu,

ogs : optogalvanik spektroskopi,

fts : Fourier transform spektroskopisidir.

4.3. TEORİK BULGULAR

4.3.1. Manganez (⁵⁵ Mn) I Elementinin İnce ve Aşırı İnce Yapı Analizi

Manganez elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonları ile, çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarının ince yapı analizi yapıldı. Cowan programında SL kuplajı altında, çok konfigürasyon fit işlemi yapılarak, enerji seviyelerine ait dalga fonksiyonları elde edildi. Deneysel enerji değerleri kullanılarak belirtilen konfigürasyonlara ait teorik enerji değerleri, teorik g değerleri ve ince yapı parametreleri fit işlemi ile hesaplandı.

4.3.1.1. Tek Konfigürasyonların İnce ve Aşırı İnce Yapı Analizi

Manganez elementinin tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonları için Cowan programı toplam 861 teorik ince yapı enerji seviyesi vermiştir. Bu teorik enerji seviyelerinin 213 tanesi $3d^54s4p$, 227 tanesi $3d^54s5p$, 231 tanesi $3d^54s6p$ ve 190 tanesi $3d^64p$ konfigürasyonuna aittir. Toplam 160 deneysel enerji seviyesi bilinmektedir. NIST [39] atomik veri tablosunda yer alan bu deneysel değerler, amaçlanan ince yapı parametrik analizinin temelini oluşturmaktadır. Deneysel değerlerden 158 enerji seviyesinin değerleri fit işleminde kullanılmıştır. Bunun nedeni, $3d^54s5p$ konfigürasyonuna ait J = 1/2'de E = 55368.66 cm⁻¹ ile J = 3/2'de E = 55406.0 cm⁻¹ enerji seviyelerinin, $3d^54s4p$ konfigürasyonu ile bir terim karışıklığı yaratmasıdır.

İnce yapı analizi yapılan tek pariteli konfigürasyonlar ve bu konfigürasyonların NIST [39] 'te verilen ve incelediğimiz deneysel enerji aralıkları Tablo 4.4 'de verilmektedir.

Konfigürasyon	Enerji Aralığı (cm ⁻¹)
3d ⁵ 4s4p	18402.46 - 61225.77
3d ⁵ 4s5p	45981.44 - 56012.61
3d ⁵ 4s6p	52490.00 - 53311.12
3d ⁶ 4p	41789.48 - 60739.42

Tablo 4.4: Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait NIST [39]'te verilen deneysel enerji aralıkları.

Ayrıca bu konfigürasyonların Tablo 4.4'de ele alınan enerji aralıklarındaki enerji seviyelerinin sayısı, J değerlerine göre Tablo 4.5'de ayrıntılı olarak gösterilmiştir.

Konfigürasyon		Enerji Seviyelerinin Sayısı							
	J=1/2	J=3/2	J=5/2	J=7/2	J=9/2	J=11/2	J=13/2	J=15/2	J=17/2
3d ⁵ 4s4p	8	16	18	17	12	7	3	1	-
3d ⁵ 4s5p	1	4	5	3	1	-	-	-	-
3d⁵4s6p	-	1	2	2	-	-	-	-	-
3d ⁶ 4p	7	12	12	. 11	8	5	3	1	-

Tablo 4.5: Mn I elementinin enerji seviyelerinin J değerlerine göre sayısı.

Cowan [9] ince yapı programında, incelenen tek pariteli konfigürasyonların deneysel enerji değerleri kullanılarak, teorik ve deneysel enerji seviyelerinin birbiriyle fit edilmesi amaçlandı.

Öncelikle, Cowan [9] programında kullanılan deneysel enerji değerlerinin, NIST [39] tablosunda tanımlandığı gibi, aynı konfigürasyonun doğru teriminde olması dikkat edilmesi gereken en önemli husustur.

Bua ek olarak, Cowan [9] programında, program tarafından oluşturulan ince yapı parametreleri önem taşımaktadır. Bu parametrelerin başlangıç değerleri program tarafından hesaplanmaktadır. Ele alınan Mn I elementinin tek pariteli konfigürasyonlarına ait ince yapı parametreleri Tablo 4.6 'da, konfigürasyonlar arası etkileşme parametreleri de Tablo 4.7'de verilmektedir.

3d ⁵ 4s4p	3d⁵4s5p	3d⁵4s6p	3d ⁶ 4p
E_{AV}	E_{AV}	E_{AV}	E_{AV}
$F^{2}(3d, 3d)$	F ² (3d,3d)	$F^{2}(3d, 3d)$	F ² (3d,3d)
F ⁴ (3d,3d)	F ⁴ (3d,3d)	F ⁴ (3d,3d)	F ⁴ (3d,3d)
α	α	α	α
eta	eta	eta	eta
$T(d^5)$	$T(d^5)$	$T(d^5)$	$T(d^6)$
$T^1(d^5)$	$T^1(d^5)$	$T^1(d^5)$	$T^1(d^6)$
$T^{2}(d^{5})$	$T^{2}(d^{5})$	$T^2(d^5)$	$T^2(d^6)$
ζ_{3d}	ζ_{3d}	ζ_{3d}	ζ_{3d}
ζ_{4p}	ζ_{5p}	ζ_{6p}	ζ_{4p}
$F^{2}(3d,4p)$	F ² (3d,5p)	F ² (3d,6p)	$F^{2}(3d,4p)$
G ² (3d,4s)	G ² (3d,4s)	G ² (3d,4s)	G ¹ (3d,4p)
$G^{1}(3d,4p)$	G ¹ (3d,5p)	G ¹ (3d,6p)	G ³ (3d,4p)
G ³ (3d,4p)	G ³ (3d,5p)	G ³ (3d,6p)	
$G^1(4s,4p)$	$G^{1}(4s,5p)$	G ¹ (4s,6p)	

Tablo 4.6: Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait ince yapı parametreleri.

Tablo 4.7: Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait konfigürasyonlar arası etkileşme parametreleri.

K	onfigürasyonlar Arası Etkileşme	Parametreleri
3d ⁵ 4s4p - 3d ⁵ 4s5p	3d ⁵ 4s4p - 3d ⁶ 4p	3d ⁵ 4s4p - 3d ⁵ 4s6p
R ⁰ (3d4p,3d5p)	$R^2(3d4s,3d3d)$	R ⁰ (3d4p,3d6p)
R ² (3d4p,3d5p)	$R^2(4s4p,3d4p)$	R ² (3d4p,3d6p)
R ¹ (3d4p,3d5p)	$R^{1}(4s4p, 3d4p)$	R ¹ (3d4p,3d6p)
R ³ (3d4p,3d5p)		R ³ (3d4p,3d6p)
$R^{0}(4s4p, 4s5p)$		R ⁰ (4s4p,4s6p)
$R^{1}(4s4p, 4s5p)$	3d⁵4s5p - 3d⁵4s6p	R ¹ (4s4p,4s6p)
	$R^{0}(3d5p,3d6p)$	
3d ⁵ 4s5p - 3d ⁶ 4p	R ² (3d5p,3d6p)	3d ⁵ 4s6p - 3d ⁶ 4p
R ² (3d4s,3d3d)	R ¹ (3d5p,3d6p)	$R^{2}(3d4s, 3d3d)$
R ² (4s5p,3d4p)	R ³ (3d5p,3d6p)	$R^{2}(4s6p,3d4p)$
R ¹ (4s5p,3d4p)	R ⁰ (4s5p,4s6p)	R ¹ (4s6p,3d4p)
	R ¹ (4s5p,4s6p)	

Ince yapı parametreleri serbest bırakılabilir, belli bir değerde sabit tutulabilir ya da kuplaj yapılabilir. Parametreler kuplaj yapılırken belli kurallar göz önünde tutulmalıdır. ζ spin-yörünge etkileşme parametreleri aynı konfigürasyon içinde farklı alt indisli ya da farklı konfigürasyonlarda aynı alt indisli ζ 'lar arasında yapılabilir. F^k radyal direkt Coulomb etkileşme parametreleri ile G^k radyal indirekt Coulomb etkileşme parametreleri parantez içleri ya da k indisi aynı olacak şekilde diğer F^k'larla veya G^k'larla kuplaj yapılabilir. R^k konfigürasyonlar arası etkileşme parametreleri ortak konfigürasyonlar dikkate alınarak kuplaj yapılır. Tablo 4.8'de fit işlemi ile hesaplanan Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait ince yapı parametre değerleri hatalarıyla ve her parametreleri sağ üst köşesinde ⁽¹⁾, ⁽²⁾, ⁽³⁾, ⁽⁴⁾, ⁽⁵⁾, ⁽⁶⁾, ⁽⁷⁾, ⁽⁸⁾, ⁽⁹⁾, ⁽¹⁰⁾ indisleri ile gösterilen hesaplanan kuplajlarla birlikte verildi. Konfigürasyonlar arası direkt ve indirekt etkileşme parametreleri R⁰, R¹, R² ve R⁽³⁾'ün hesaplanan değerleri hatalarıyla ve kuplaj durumları da her parametrenin sağ üst köşesinde ⁽¹¹⁾, ⁽¹²⁾ indisleri ile Tablo 4.9 'da belirtildi.

⁽¹⁾, ⁽²⁾, ⁽³⁾, ⁽⁶⁾ indisleri ile gösterilen parametre değerleri, tüm tek konfigürasyonlardaki aynı parametre değerleri ile Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutuldu.

⁽⁴⁾, ⁽⁵⁾, ⁽⁷⁾, ⁽⁸⁾, ⁽⁹⁾, ⁽¹⁰⁾ indisleri ile gösterilen parametre değerleri, 3d⁵4s4p, 3d⁵4s5p ve 3d⁵4s6p tek konfigürasyonlarındaki aynı parametre değerleri ile Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutuldu.

⁽¹¹⁾ indisi ile gösterilen parametre değerleri, $3d^64p$ konfigürasyonuna ait ζ_{3d} ve ζ_{4p} değerleri arasında yapılan konfigürasyon içi bir kuplaj olup, Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutuldu.

Konfigürasyonlar ve Parametreleri	Hesaplanan Değerler (cm ⁻¹)
3d ⁵ 4s4p	
E_{AV}	69020(110)
$F^{2}(3d, 3d)$	63280(440) ⁽¹⁾
$F^{4}(3d, 3d)$	39080(280) ⁽²⁾
α	75.5(3) ⁽³⁾
ζ_{3d}	380(130) ⁽⁴⁾
${\zeta}_{4p}$	220(160) ⁽⁵⁾
F ² (3d,4p)	9210(460) ⁽⁶⁾
$G^{2}(3d,4s)$	8170(160) ⁽⁷⁾
G ¹ (3d,4p)	3090(180) ⁽⁸⁾
G ³ (3d,4p)	100(370) ⁽⁹⁾
$G^{1}(4s,4p)$	17000(500) ⁽¹⁰⁾
3d⁵4s5p	
E_{AV}	92540(190)
F ² (3d,3d)	63650(440) ⁽¹⁾
F ⁴ (3d,3d)	39300(300) ⁽²⁾
lpha	75.5(3) ⁽³⁾
ζ_{3d}	380(130) ⁽⁴⁾
ζ_{5p}	40(30) ⁽⁵⁾
F ² (3d,5p)	$1040(50)^{(6)}$
G ² (3d,4s)	7700(150) ⁽⁷⁾
G ¹ (3d,5p)	785(50) ⁽⁸⁾
G ³ (3d,5p)	$20(60)^{(9)}$
G ¹ (4s,5p)	$1900(55)^{(10)}$
3d⁵4s6p	
E_{AV}	98100(240)
$F^{2}(3d, 3d)$	62900(440) ⁽¹⁾
F ⁴ (3d,3d)	$38800(280)^{(2)}$
α	92(4) ⁽³⁾
ζ _{3d}	380(135) ⁽⁴⁾
$\zeta_{_{6p}}$	157(12) ⁽⁵⁾
F ² (3d,6p)	$450(20)^{(6)}$
G ² (3d,4s)	7180(140) ⁽⁷⁾

Tablo 4.8: Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait ince yapı parametre değerleri,hataları ve yapılan kuplaj durumları.

Konfigürasyonlar	r ve Parametreleri	Hesaplanan Değerler (cm ⁻¹)
3d ⁵ 4s6p	G ¹ (3d,6p)	$168(10)^{(8)}$
	G ³ (3d,6p)	6(22) ⁽⁹⁾
	G ¹ (4s,6p)	596(17) ⁽¹⁰⁾
3d ⁶ 4p	E_{AV}	66600(100)
	$F^{2}(3d, 3d)$	53300(370) ⁽¹⁾
	F ⁴ (3d,3d)	34400(250) ⁽²⁾
	α	92(4) ⁽³⁾
	ζ_{3d}	190(80) ⁽¹¹⁾
	ζ_{4p}	70(30) ⁽¹¹⁾
	F ² (3d,4p)	6900(340) ⁽⁶⁾
	$G^{1}(3d,4p)$	3470(230)
	G ³ (3d,4p)	1260(320)

Tablo 4.8'in devamı:

 $^{(1)}$: İncelenen tüm tek pariteli konfigürasyonların F²(3d,3d) radyal direkt Coulomb etkileşme parametrelerinin kuplajı. $^{(2)}$: İncelenen tüm tek pariteli konfigürasyonların F⁴(3d,3d) radyal direkt Coulomb etkileşme

 $^{(2)}$: İncelenen tüm tek pariteli konfigürasyonların F⁴(3d,3d) radyal direkt Coulomb etkileşme parametrelerinin kuplajı.

⁽³⁾ : İncelenen tüm tek pariteli konfigürasyonlarının α efektif Coulomb etkileşme parametrelerinin kuplajı.

⁽⁴⁾ : $3d^54s4p$, $3d^54s5p$ ve $3d^54s6p$ konfigürasyonlarının, ζ_{nd} spin-yörünge etkileşme parametrelerinin kuplajı.

⁽⁵⁾ : $3d^54s4p$, $3d^54s5p$ ve $3d^54s6p$ konfigürasyonlarının, ζ_{np} spin-yörünge etkileşme parametrelerinin kuplajı.

 $^{(7)}$: 3d⁵4s4p, 3d⁵4s5p ve 3d⁵4s6p konfigürasyonlarının G²(3d,4s) radyal indirekt Coulomb etkileşme parametrelerinin kuplajı.

 $^{(8)}$: 3d⁵4s4p, 3d⁵4s5p ve 3d⁵4s6p konfigürasyonlarının G²(3d,np) radyal indirekt Coulomb etkileşme parametrelerinin kuplajı. $^{(9)}$: 3d⁵4s4p, 3d⁵4s5p ve 3d⁵4s6p konfigürasyonlarının G³(3d,np) radyal indirekt Coulomb etkileşme

⁽⁹⁾ : 3d³4s4p, 3d³4s5p ve 3d³4s6p konfigürasyonlarının G³(3d,np) radyal indirekt Coulomb etkileşme parametrelerinin kuplajı.

 $^{(10)}$: 3d⁵4s4p, 3d⁵4s5p ve 3d⁵4s6p konfigürasyonlarının G¹(4s,np) radyal indirekt Coulomb etkileşme parametrelerinin kuplajı.

 $\zeta^{(11)}$: 3d⁶4p konfigürasyonunun ζ spin-yörünge etkileşme parametrelerinin kuplajı.

Etkileşme Parametreleri	Hesaplanan Değerler (cm ⁻¹)
3d⁵4s4p - 3d⁵4s5p	
R ² (3d4p,3d5p)	2670(140) ⁽¹²⁾
$R^{1}(3d4p, 3d5p)$	$1550(80)^{(12)}$
R ³ (3d4p,3d5p)	880(50) ⁽¹²⁾
$R^{1}(4s4p, 4s5p)$	6500(350) ⁽¹²⁾
3d⁵4s4p - 3d⁵4s6p	
R ² (3d4p,3d6p)	1600(80) ⁽¹²⁾
R ¹ (3d4p,3d6p)	620(30) ⁽¹²⁾
R ³ (3d4p,3d6p)	520(25) ⁽¹²⁾
R ¹ (4s4p,4s6p)	3850(200) ⁽¹²⁾
3d⁵4s4p - 3d ⁶ 4p	
$R^{2}(3d4s, 3d3d)$	-3860(200) ⁽¹²⁾
R ² (4s4p,3d4p)	-6030(315) ⁽¹²⁾
R ¹ (4s4p,3d4p)	-6450(350) ⁽¹²⁾
3d⁵4s5p - 3d⁵4s6p	
R ² (3d5p,3d6p)	900(350) ⁽¹³⁾
R ¹ (3d5p,3d6p)	370(145) ⁽¹³⁾
R ³ (3d5p,3d6p)	300(100) ⁽¹³⁾
R ¹ (4s5p,4s6p)	1200(470) ⁽¹³⁾
3d⁵4s5p - 3d ⁶ 4p	
R ² (4s5p,3d4p)	-1070(420) ⁽¹²⁾
R ¹ (4s5p,3d4p)	-1400(500) ⁽¹²⁾
3d⁵4s6p - 3d ⁶ 4p	
R ² (4s6p,3d4p)	-840(40) ⁽¹²⁾
R ¹ (4s6p,3d4p)	-1180(60) ⁽¹²⁾

Tablo 4.9: Mn I elementinin tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarına ait konfigürasyonlar arası direkt ve indirekt etkileşme parametrelerinin hesaplanan değerleri, hataları ve bu parametrelerin kuplaj durumları.

Serbest parametre sayısı	19
Fit edilen seviye sayısı	158
Standart Sapma	264 cm^{-1}

 $^{(12)}$: 3d⁵4s4p-3d⁵4s5p, 3d⁵4s4p-3d⁵4s6p, 3d⁵4s4p-3d⁶4p, 3d⁵4s5p-3d⁶4p ve 3d⁵4s6p-3d⁶4p konfigürasyonlarının konfigürasyonlar arası etkileşme parametrelerinin kuplajı. $^{(13)}$: 3d⁵4s5p - 3d⁵4s6p konfigürasyonlarının konfigürasyonlar arası etkileşme parametrelerinin kuplajı.

⁽¹²⁾ indisi ile gösterilen konfigürasyonlar arası direkt ve indirekt etkileşme parametre değerleri, 3d⁵4s5p ile 3d⁵4s6p konfigürasyonlarının direkt ve indirekt etkileşme parametreleri hariç aynı parametre değerleri ile Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutuldu.

⁽¹³⁾ indisi ile gösterilen konfigürasyonlar arası direkt ve indirekt etkileşme parametre değerleri ise, 3d⁵4s5p ve 3d⁵4s6p konfigürasyonlarının direkt ve indirekt etkileşme parametre değerlerinin kendi aralarında, Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutulduğu değerlerdir.

160 deneysel enerji seviyesinin 158'i kullanılarak, 19 serbest parametre ile en küçük karelerle fit metodu yapılarak 264 cm⁻¹ lik ortalama sapmaya ulaşıldı.

Beklenen konfigürasyonların deneysel ve teorik enerjileri, deneysel g ve hesaplanan g değerleri, bu değerler arasındaki farklar ve seviyelerin öz vektör bileşenleri ile birlikte Tablo 4.10'da verildi.

J	E _{deneysel}	E_{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bile	şenler
							Konfig.	Terim
1/2								
	31125.00	31309	-184	2.668	2.670	-0.002	3d54s4p	⁶ S ⁵ S ⁴ P
	42198.56	42107	91	3.317	3.336	-0.019	3d64p	⁵ D ⁶ D
	43672.96	43744	-71	-0.602	-0.668	-0.066	3d64p	⁵ D ⁶ F
	46169.93	45882	288	0.00	0.002	-0.002	3d64p	⁵ D ⁴ D
	47299.29	47046	253	2.666	2.666	0.00	3d64p	⁵ D ⁴ P
	47452.16	47769	-317	3.174	3.294	-0.12	3d54s4p	${}^{4}P {}^{5}P {}^{6}D$
	48318.12	48121	197	-0.496	-0.638	-0.142	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$
	50818.64	50782	37	-0.62	-0.644	-0.024	3d54s4p	${}^{4}D {}^{5}D {}^{6}F$
	51552.78	51723	-171	2.664	2.718	-0.054	3d54s4p	${}^{4}P {}^{5}P {}^{4}P$
	52883.10	52739	144		3.168		3d54s4p	⁴ D ⁵ D ⁶ D
	53101.32	53030	71		0.094		3d54s4p	⁴ P ⁵ P ⁴ D
	55457.20	55750	-293	2.28	2.647	-0.367	3d54s5p	⁶ S ⁵ S ⁴ P
	57228.30	57281	-53	2.671	2.643	0.028	3d54s4p	⁴ D ⁵ D ⁴ P
	59527.36	59099	428		0.197		3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{D}$
	59568.29	59305	263	1.94	2.424	-0.484	3d64p	${}^{3}P {}^{4}P$
	60141.98	60464	-323	0.17	0.013	0.157	3d64p	${}^{3}P {}^{4}D$
3/2								
	24779.32	24597	182	2.364	2.403	-0.039	3d54s4p	⁶ S ⁷ S ⁶ P
	31076.42	31254	-178	1.732	1.735	-0.003	3d54s4p	⁶ S ⁵ S ⁴ P
	35689.98	35297	0.393	2.4	2.402	-0.002	3d54s4p	⁶ S ⁶ P
	42143.57	42061	83	1.867	1.867	0.00	3d64p	⁵ D ⁶ D
	43644.45	43716	-71	1.068	1.067	0.001	3d64p	⁵ D ⁶ F
	44814.73	45049	-235	0.4	0.403	-0.003	3d64p	⁵ D ⁴ F
	45259.17	45224	35	2.399	2.402	-0.003	3d64p	⁵ D ⁶ P
	46083.89	45818	266	1.200	1.200	0.00	3d64p	⁵ D ⁴ D
	47154.51	46922	232	1.732	1.733	0.001	3d64p	⁵ D ⁴ P
	47466.66	47468	-1		2.367		3d54s5p	⁶ S ⁷ S ⁶ P
	47782.43	47824	-42	2.666	1.861	0.805	3d54s4p	⁴ P ⁵ P ⁶ D
	48300.98	48109	192	1.068	1.101	-0.033	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$
	50099.03	50014	85	2.398	2.395	0.003	3d54s4p	⁴ P ⁵ P ⁶ P
	50383.27	50718	-335		0.399		3d54s4p	${}^{4}G {}^{5}G {}^{4}F$

Tablo 4.10 : Mn I elementinin tek pariteli konfigürasyonlarına ait deneysel enerji ve g değerleri, teorik enerji ve g değerleri aralarındaki farklar ve seviyelerin konfigürasyonları terimleri ile birlikte verilmiştir. Bütün değerler cm⁻¹ olarak verilmiştir.

Tablo 4.10'un devamı:

J	E_{deneysel}	E_{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bileş	senler
							Konfig.	Terim
3/2								
	50863.50	50838	25	1.07	1.079	-0.009	3d54s4p	${}^{4}D^{5}D^{6}F$
	51445.55	51577	-132	1.728	1.739	-0.011	3d54s4p	*P ⁵ P *P
	52014.98	52139	-124		2.367		3d54s4p	⁴ D ⁵ D ⁶ P
	52883.79	52691	193		1.846		3d54s4p	${}^{4}D {}^{5}D^{6}D$
	53103.09	53039	64		1.239		3d54s4p	⁴ P ⁵ P ⁴ D
	53311.12	53321	-10		2.398		3d54s6p	⁶ S ⁷ S ⁶ P
	54218.62	54147	71	1.77	1.949	0.179	3d54s4p	${}^{4}P {}^{5}P {}^{4}S$
	55279.91	55216	64	0.826	1.208	-0.382	3d54s4p	⁴ D ⁵ D ⁴ D
	55939.27	55735	204		1.738		3d54s5p	⁶ S ⁵ S ⁴ P
	55996.90	56057	-60		2.397		3d54s5p	⁶ S ⁵ S ⁶ P
	57512.08	56836	676	2.00	1.995	0.005	3d64p	${}^{3}P$ ${}^{4}S$
	57360.73	57503	-143	1.736	1.736	0.00	3d54s4p	⁴ D ⁵ D ⁴ P
	59527.89	59018	510		1.349		3d64p	${}^{3}F {}^{4}D$
	59384.24	59234	150	1.608	1.574	0.034	3d64p	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$
	59416.15	59765	-349	0.39	0.406	-0.016	3d64p	${}^{3}F {}^{4}F$
	60395.64	60149	246	0.91	0.868	0.042	3d64p	${}^{3}P {}^{2}D$
	59989.77	60444	-454	1.194	1.137	0.057	3d64p	${}^{3}P {}^{4}D$
	60760.87	61581	-820		0.400		3d54s4p	${}^{4}G {}^{3}G {}^{4}F$
5/2								
	18402.46	18862	-459	2.284	2.288	-0.004	3d54s4p	⁶ S ⁷ S ⁸ P
	24788.05	24582	206	1.875	1.888	-0.013	3d54s4p	⁶ S ⁷ S ⁶ P
	31001.15	31171	-170	1.6	1.602	-0.002	3d54s4p	⁶ S ⁵ S ⁴ P
	35725.85	35355	371	1.886	1.887	-0.001	3d54s4p	⁶ S ⁵ S ⁶ P
	42053.73	41984	69	1.653	1.658	-0.005	3d64p	⁵ D ⁶ D
	43595.50	43668	-72	1.31	1.315	-0.005	3d64p	⁵ D ⁶ F
	44696.29	44952	-256	1.03	1.033	-0.003	3d64p	⁵ D ⁴ F
	45156.11	45104	52	1.885	1.887	-0.002	3d64p	⁵ D ⁶ P
	45940.93	45712	229	1.372	1.372	0.00	3d64p	⁵ D ⁴ D
	45981.44	46046	-64		2.288		3d54s5p	⁶ S ⁷ S ⁸ P
	46901.13	46713	188	1.595	1.600	-0.005	3d64p	⁵ D ⁴ P

Tablo 4.10'un devamı:

J	E _{deneysel}	E _{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bileş	enler
							Konfig.	Terim
5/2								676
	47659.52	47380	280	1.952	1.874	0.078	3d54s5p	⁶ S ⁷ S ⁶ P
	47753.99	47893	-139	1.82	1.606	0.214	3d54s4p	⁻ P ⁻ P ^o D
	48270.91	48095	176	1.319	1.374	-0.055	3d54s4p	⁴ G ⁵ G ⁶ F
	50012.50	49929	83	1.888	1.882	0.006	3d54s4p	⁴ P ⁵ P ⁶ P
	50373.23	50702	-329	1.03	1.029	0.001	3d54s4p	${}^{4}G {}^{5}G {}^{4}F$
	50931.29	50923	8	1.316	1.324	-0.008	3d54s4p	⁴ D ⁵ D ⁶ F
	51305.31	51363	-58	1.591	1.602	-0.011	3d54s4p	${}^{4}P {}^{5}P {}^{4}P$
	51515.63	51520	-4		0.572		3d54s4p	${}^{4}G$ ${}^{5}G$ ${}^{4}G$
	52128.58	52240	-112		1.826		3d54s4p	${}^{4}D {}^{5}D {}^{6}P$
	52490.00	52474	16		2.287		3d54s6p	⁶ S ⁵ D ⁸ P
	52883.79	52672	212		1.690		3d54s4p	⁴ D ⁵ D ⁶ D
	53109.14	53044	65		1.398		3d54s4p	${}^{4}P {}^{5}P {}^{4}D$
	53291.30	53315	-23		1.885		3d54s6p	⁶ S ⁷ S ⁶ P
	55186.10	55006	180	1.365	1.371	-0.006	3d54s4p	${}^{4}D {}^{5}D {}^{4}D$
	55923.98	55718	206		1.604		3d54s5p	⁶ S ⁵ S ⁴ P
	56008.18	56073	-65		1.884		3d54s5p	⁶ S ⁵ S ⁶ P
	57487.05	57717	-230	1.59	1.598	-0.008	3d54s4p	${}^{4}D {}^{5}D {}^{4}P$
	58159.73	57956	203	0.578	0.572	0.006	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$
	59480.80	59066	415	1.281	1.308	-0.027	3d64p	^{4}D ^{2}F
	59116.64	59176	-59	1.558	1.001	0.557	3d54s4p	${}^{4}D {}^{3}D {}^{2}F$
	59817.70	59369	448	0.584	0.583	0.001	3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{G}$
	59360.67	59737	-376	1.11	1.048	0.062	3d64p	${}^{3}F {}^{4}F$
	59600.35	59841	-241	1.277	1.185	0.092	3d64p	${}^{3}\mathbf{P} {}^{2}\mathbf{D}$
	60101.65	60309	-208	1.31	1.358	-0.048	3d64p	${}^{3}P {}^{4}D$
	60820.35	61542	-722		0.995		3d54s4p	${}^{4}G {}^{3}G {}^{4}F$
7/2								
	18531.64	18968	-437	1.938	1.938	0.00	3d54s4p	⁶ S ⁷ S ⁸ P
	24802.25	24560	242	1.714	1.716	-0.002	3d54s4p	°S ′S °P
	35769.97	35426	344	1.712	1.716	-0.004	3d54s4p	⁶ S ⁵ S ⁶ P
	41932.64	41881	51	1.587	1.588	-0.001	3d64p	⁵ D ⁶ D

Tablo 4.10'un devamı:

J	E _{deneysel}	E _{teorik}	ΔE	g _{deneysel}	g _{teorik}	Δg	Bile	eşenler
							Konfig.	Terim
7/2								
	43524.08	43600	-76	1.395	1.397	-0.002	3d64p	⁵ D ⁶ F
	44523.45	44816	-293	1.24	1.242	-0.002	3d64p	⁵ D ⁴ F
	44993.92	44927	67	1.717	1.714	0.003	3d64p	⁵ D ⁶ P
	45754.27	45571	183	1.427	1.428	-0.001	3d64p	⁵ D ⁴ D
	46000.77	46065	-65		1.938		3d54s5p	⁶ S ⁷ S ⁸ P
	47387.62	47270	118	1.713	1.712	0.001	3d54s5p	⁶ S ⁷ S ⁶ P
	47774.52	47946	-172	1.594	1.463	0.131	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$
	48225.99	48129	97	1.043	1.522	-0.479	3d54s4p	⁴ P ⁵ P ⁶ D
	49888.01	49783	105	1.711	1.713	0.002	3d54s4p	⁴ P ⁵ P ⁶ P
	50065.46	50024	41		0.666		3d54s4p	${}^{4}\mathrm{G}{}^{5}\mathrm{G}{}^{4}\mathrm{H}$
	50359.28	50681	-322	1.242	1.238	0.004	3d54s4p	${}^{4}\text{G}{}^{5}\text{G}{}^{4}\text{F}$
	51014.94	51020	-5		1.404		3d54s4p	⁴ D ⁵ D ⁶ F
	51530.61	51526	4		0.985		3d54s4p	${}^{4}G {}^{5}G {}^{4}G$
	52869.99	52254	616		1.639		3d54s4p	⁴ D ⁵ D ⁶ D
	52497.21	52482	15		1.938		3d54s6p	⁶ S ⁷ S ⁸ P
	52253.17	52691	-437	1.71	1.639	0.002	3d54s4p	⁴ D ⁵ D ⁶ P
	53124.00	53050	74	1.423	1.455	-0.032	3d54s4p	⁴ P ⁵ P ⁴ D
	53261.05	53292	-31		1.712		3d54s6p	⁶ S ⁷ S ⁶ P
	55107.52	54914	194	1.407	1.426	-0.019	3d54s4p	⁴ D ⁵ D ⁴ D
	56012.61	56091	-78		1.716		3d54s5p	⁶ S ⁵ S ⁶ P
	58136.69	57949	188	0.98	0.985	-0.005	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$
	58519.90	58521	-1	0.665	0.668	-0.003	3d64p	${}^{3}\mathrm{H}$ ${}^{4}\mathrm{H}$
	59339.49	59032	307	1.362	1.155	0.207	3d54s4p	^{4}D ^{2}F
	59784.31	59335	450	0.990	0.990	0.00	- 3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{G}$
	59290.11	59714	-424	1.325	1.233	0.092	- 3d64p	${}^{3}F {}^{4}F$
	59470.14	60096	-626	1.386	1.424	-0.038	3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{D}$
	60739.42	60805	-66		0.866		3d64p	${}^{3}\mathrm{H}{}^{2}\mathrm{G}$
	60902.80	61490	-587		1.178		3d54s4n	${}^{4}G {}^{3}G {}^{4}F$
	60957 21	61501	-63/		0.747		3d64n	³ G ⁴ н
	00937.21	01371	-034		0.747		5404p	υп

Tablo 4.10'un devamı:

J	E _{deneysel}	E _{teorik}	ΔE	g _{deneysel}	g _{teorik}	Δg	Bile	şenler
							Konfig.	Terim
9/2								
	18705.37	19113	-408	1.779	1.779	0.00	3d54s4p	⁶ S ⁷ S ⁸ P
	41789.48	41756	33	1.556	1.556	0.00	3d64p	⁵ D ⁶ D
	43428.58	43512	-84	1.431	1.435	-0.004	3d64p	⁵ D ⁶ F
	44288.76	44643	-354	1.317	1.335	-0.018	3d64p	⁵ D ⁴ F
	46026.75	46091	-65		1.779		3d54s5p	⁶ S ⁵ G ⁸ P
	4816801	47924	244	1.432	1.440	-0.008	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$
	47903.80	48304	-400	1.54	1.548	-0.008	3d54s4p	⁴ P ⁵ P ⁶ D
	50072.59	50019	54		0.970		3d54s4p	${}^{4}\mathrm{G}~{}^{5}\mathrm{G}~{}^{4}\mathrm{H}$
	50341.30	50656	-315	1.318	1.334	-0.016	3d54s4p	${}^4G \; {}^5G \; {}^4F$
	51100.49	51103	-3		1.438		3d54s4p	${}^{4}D {}^{5}D {}^{6}F$
	51546.27	51535	12		1.173		3d54s4p	${}^{4}G {}^{5}G {}^{4}G$
	52758.11	52299	459	1.552	1.556	-0.004	3d54s4p	⁴ D ⁵ D ⁶ D
	58110.24	57942	168	1.168	1.172	-0.004	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$
	58485.52	58502	-17	0.968	0.968	0.00	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$
	58866.66	59043	-176	0.73	0.732	-0.002	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$
	59731.94	59296	436	1.169	1.174	-0.005	3d64p	${}^{3}F {}^{4}G$
	59257.44	59666	-409	1.327	1.327	0.00	3d64p	${}^{3}F {}^{4}F$
	60668.49	60697	-29	1.112	1.096	0.016	3d64p	$^{3}\mathrm{H}^{2}\mathrm{G}$
	61211.43	60779	433	0.75	0.74	0.01	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$
	60955.88	60991	-35		0.977		3d54s4p	${}^{2}I {}^{3}I {}^{4}H$
	60938.97	61483	-544		1.299		3d54s4p	${}^{4}G {}^{3}G {}^{4}F$
11/2								
	43314.23	43405	-91	1.464	1.455	0.009	3d64p	⁵ D ⁶ F
	48021.43	47860	162	1.46	1.455	0.005	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$
	50081.31	50014	68		1.133		3d54s4p	${}^{4}\mathrm{G}{}^{5}\mathrm{G}{}^{4}\mathrm{H}$
	51169.18	51128	41		1.455		3d54s4p	${}^{4}D {}^{5}D {}^{6}F$
	51560.93	51544	17	1.273	1.274	-0.001	3d54s4p	${}^{4}G {}^{5}G {}^{4}G$
	58075.06	57938	137	1.269	1.273	-0.004	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$
	58427.30	58481	-54	1.133	1.131	0.002	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$
	58851.49	59022	-171		0.964		3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$

J	E _{deneysel}	E _{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bileş	enler
							Konfig.	Terim
11/2								
	59652.90	59.265	387	1.239	1.270	-0.031	3d64p	${}^{3}F {}^{4}G$
	59827.88	59.808	20	0.93	0.924	0.006	3d64p	${}^{3}\mathrm{H}{}^{2}\mathrm{I}$
	61225.77	60.798	427		0.966		3d54s4p	${}^{2}I {}^{3}I {}^{4}I$
	60933.73	60.948	-14	1.134	1.133	0.001	3d54s4p	${}^{2}I {}^{3}I {}^{4}H$
13/2								
	50094.60	50.009	85	1.22	1.231	-0.011	3d54s4p	${}^{4}G {}^{5}G {}^{4}H$
	58338.67	58.458	-120	1.228	1.229	-0.001	3d64p	$^{3}\mathrm{H}$ $^{4}\mathrm{H}$
	58843.39	59.010	-166	1.09	1.106	-0.007	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$
	59617.12	59.669	-52	1.074	1.077	-0.003	3d64p	${}^{3}\mathrm{H}{}^{2}\mathrm{I}$
	60891.48	60.821	70	1.228	1.108	0.12	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$
	61225.55	60.918	307		1.229		3d54s4p	2 I 3 I 4 H
15/2								
	58852.60	59.006	-154		1.199		3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$
	61204.54	60.845	359	1.2	1.199	0.001	3d54s4p	${}^{2}\mathbf{I} {}^{3}\mathbf{I} {}^{4}\mathbf{I}$

Tablo 4.10'un devamı:

Aşırı ince yapı incelemesinde; Sandars ve Beck'e [40] göre manyetik dipol etkileşmelerinin hfs sabitleri A'nın deneysel değerleri kullanılarak yarı-ampirik olarak tek-elektron parametrelerini elde etmek mümkündür. Elde edilen bu parametrelerle incelenen sistemdeki hfs ayrışmaları teorik olarak belirlemek ve bu teorik değerleri deneysel değerlerle karşılaştırmak mümkündür. Mn I elementinin tek pariteye sahip $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonlarının deneysel manyetik dipol aşırı ince yapı sabitleri A_{deneysel}, 27 tek elektron parametresi $a_{nl}^{k_sk_l}$ ve ince yapı hesaplarından elde edilen açısal katsayıların $\alpha_{nl}^{k_sk_l}$ lineer kombinasyonu olarak gösterilebilir. Her bir konfigürasyonun 3d, 4p, 5p, 6p kabukları için üçer; 4s kabukları için birer tek elektron radyal parametresi bulunmaktadır.

$$A_{deneysel} = \begin{cases} \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{4p}^{01} a_{4p}^{01} + \alpha_{4p}^{10} a_{4p}^{10} + \alpha_{4p}^{12} a_{4p}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{5p}^{01} a_{5p}^{01} + \alpha_{5p}^{10} a_{5p}^{10} + \alpha_{5p}^{12} a_{5p}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{6p}^{01} a_{6p}^{01} + \alpha_{5p}^{01} a_{6p}^{10} + \alpha_{6p}^{12} a_{6p}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4d}^{01} a_{4d}^{01} + \alpha_{4d}^{01} a_{4d}^{01} + \alpha_{4d}^{12} a_{4d}^{12} \end{cases}$$
(4.1)

Denklem (4.1)'deki $a_{nl}^{k_{s}k_{l}}$ parametrelerinin önündeki $\alpha_{nl}^{k_{s}k_{l}}$ açısal katsayıları, Hfsac programı kullanılarak bu çalışmada elde edilen ince yapı hesaplarından dalga fonksiyonları temel alınarak hesaplandı. Bu konfigürasyonların parametrik analizi için, 54 deneysel manyetik aşırı ince yapı sabiti *A* değeri kullanıldı.

Bu çalışmada, tek pariteli $3d^54s4p$, $3d^54s5p$, $3d^54s6p$ ve $3d^64p$ konfigürasyonlarının aşırı ince yapılarının parametrik analizi aynı anda gerçekleştirildi. Radyal manyetik dipol aşırı ince yapı parametrelerinin değerleri Tablo 4.11'da verildi.

		[13]	[22]
a_{3d}^{10} (3d ⁵ 4s4p)	-230(10)	-208(14)	-210(7)
a_{3d}^{01} (3d ⁵ 4s4p)	520(10)		554(18)
a_{3d}^{12} (3d ⁵ 4s4p)	510(60)		460(160)
a_{4s}^{10} (3d ⁵ 4s4p)	4350(50)	4650(70)	4780(50)
a_{4p}^{10} (3d ⁵ 4s4p)	-80(50)	-10(100)	-140(60)
a_{4p}^{01} (3d ⁵ 4s4p)	240(25)	255(35)	235(20)
a_{4p}^{12} (3d ⁵ 4s4p)	-350(90)	220(140)	180(80)
a_{3d}^{10} (3d ⁵ 4s5p)	-230(10)		211
a_{3d}^{01} (3d ⁵ 4s5p)	520(10)		557
a_{3d}^{12} (3d ⁵ 4s5p)	510(60)		460
a_{4s}^{10} (3d ⁵ 4s5p)	4680(200)		5620
a_{5p}^{10} (3d ⁵ 4s5p)	-440(25)		-27
a_{5p}^{01} (3d ⁵ 4s5p)	380(35)		44
a_{5p}^{12} (3d ⁵ 4s5p)	1140(210)		34
a_{3d}^{10} (3d ⁵ 4s6p)	-230(10)		
a_{3d}^{01} (3d ⁵ 4s6p)	520(10)		
a_{3d}^{12} (3d ⁵ 4s6p)	510(60)		
a_{4s}^{10} (3d ⁵ 4s6p)	8000(1200)		
a_{6p}^{10} (3d ⁵ 4s6p)	85(10)		
a_{6p}^{01} (3d ⁵ 4s6p)	60(10)		
a_{6p}^{12} (3d ⁵ 4s6p)	75(20)		
a_{3d}^{10} (3d ⁶ 4p)	-330(10)		-355(11)
a_{3d}^{01} (3d ⁶ 4p)	450(15)		391(15)
a_{3d}^{12} (3d ⁶ 4p)	830(100)		520(120)

Tablo 4. 11 : Mn I elementinin tek pariteye sahip konfigürasyonlarının elde edilen manyetikdipol aşırı ince yapı tek-elektron parametre değerleri, referans [13] ve [22] 'deki değerleri ilekarşılaştırma yapılmıştır. Parametre değerleri Mhz cinsinden verilmiştir.

Tablo 4.11'in devamı:

		[13]	[22]
a_{4p}^{10} (3d ⁶ 4p)	370(50)		170(50)
a_{4p}^{01} (3d ⁶ 4p)	250(40)		150(40)
a_{4p}^{12} (3d ⁶ 4p)	320(100)		140(70)

4.3.1.2. Çift Konfigürasyonların İnce ve Aşırı İnce Yapı Analizi

Manganez elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonları için Cowan programı toplam 1701 teorik ince yapı enerji seviyesi vermiştir. Toplam 82 deneysel enerji seviyesi bilinmektedir. NIST [39] atomik veri tablosunda yer alan bu deneysel değerler, amaçlanan ince yapı parametrik analizinin temelini oluşturmaktadır. Deneysel enerji değerlerinin tümü fit işleminde kullanılmıştır.

İnce yapı analizi yapılan tek pariteli konfigürasyonlar ve bu konfigürasyonların NIST [39] 'te verilen ve incelediğimiz deneysel enerji aralıkları Tablo 4.12 'de verilmektedir.

Konfigürasyon	Enerji Aralığı (cm ⁻¹)	
$3d^54s^2$	0.00 - 37164.25	
$3d^64s$	17052.29 – 43139.27	
3d ⁵ 4s5s	39431.31 - 49591.51	
3d ⁵ 4s4d	46706.09 - 51953.21	
3d ⁵ 4s6s	50157.63 - 50904.68	
3d ⁷	51638.17 - 51787.92	
3d ⁵ 4s5d	52702.48 - 52735.83	

Tablo 4.12: Mn I elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait NIST [39] 'te verilen deneysel enerji aralıkları.

Ayrıca bu konfigürasyonların Tablo 4.12'de ele alınan enerji aralıklarındaki enerji seviyelerinin sayısı, J değerlerine göre Tablo 4.13'de ayrıntılı olarak gösterilmiştir.

Konfigürasyon	Enerji Seviyelerinin Sayısı								
	J=1/2	J=3/2	J=5/2	J=7/2	J=9/2	J=11/2	J=13/2	J=15/2 J	J=17/2
3d ⁵ 4s ²	2	2	4	2	1	2	1	-	-
3d ⁶ 4s	4	5	6	7	6	4	2	-	
3d ⁵ 4s5s	-	1	2	1			-	-	
3d ⁵ 4s4d	2	3	3	3	3	8 1	-	-	
3d ⁵ 4s6s	-	-	1	1	-	-	-	-	
3d ⁷	1	1	1	-	-	-	-	-	
3d ⁵ 4s5d	1	2	2	2 2	2	1	-	-	

 Tablo 4.13: Mn I elementinin deneysel olarak bilinen enerji seviyelerinin J değerlerine göre sayısı.

Cowan [9] ince yapı programında, incelenen tek pariteli konfigürasyonların deneysel enerji değerleri kullanılarak, teorik ve deneysel enerji seviyelerinin birbiriyle fit edilmesi amaçlandı.

Ele alınan Mn I elementinin çift pariteli konfigürasyonlarına ait ince yapı parametreleri Tablo 4.14'te, konfigürasyonlar arası etkileşme parametreleri de Tablo 4.15'te verilmektedir.

$3d^54s^2$	3d ⁶ 4s	3d ⁵ 4s5s	3d ⁵ 4s4d	3d ⁵ 4s6s	3d ⁷	3d ⁵ 4s5d
E _{AV}	E _{AV}					
F ² (3d,3d)	F ² (3d,3d)					
F ⁴ (3d,3d)	F ⁴ (3d,3d)					
α	α	α	α	α	α	α
eta	β	eta	eta	β	eta	eta
$T(d^5)$	$T(d^6)$	$T(d^5)$	$T(d^5)$	$T(d^5)$	$T(d^7)$	$T(d^5)$
$T^{1}(d^{5})$	$T^1(d^6)$	$T^1(d^5)$	$T^1(d^5)$	$T^{1}(d^{5})$	$T^1(d^7)$	$T^1(d^5)$
$T^{2}(d^{5})$	$T^{2}(d^{6})$	$T^{2}(d^{5})$	$T^{2}(d^{5})$	$T^{2}(d^{5})$	$T^{2}(d^{7})$	$T^{2}(d^{5})$
$\zeta_{_{3d}}$	$\zeta_{_{3d}}$	$\zeta_{_{3d}}$	$\zeta_{_{3d}}$	$\zeta_{_{3d}}$	$\zeta_{_{3d}}$	$\zeta_{_{3d}}$
	G ² (3d,4s)	G ² (3d,4s)	$\zeta_{_{4d}}$	G ² (3d,4s)		ζ_{5d}
		G ² (3d,5s)	F ² (3d,4d)	G ² (3d,6s)		$F^{2}(3d,5d)$
		G ⁰ (4s,5s)	F ⁴ (3d,4d)	G ⁰ (4s,6s)		F ⁴ (3d,5d)
			G ² (3d,4s)			G ² (3d,4s)
			G ⁰ (3d,4d)			G ⁰ (3d,5d)
			G ² (3d,4d)			G ² (3d,5d)
			G ⁴ (3d,4d)			G ⁴ (3d,5d)
			G ² (4s,4d)			G ² (4s,5d)

Tablo 4.14: Mn I elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait ince yapı parametreleri.

Kont	figürasyonlar Arası Etkileşme Paran	netreleri
$3d^{5}4s^{2} - 3d^{6}4s$	3d ⁶ 4s - 3d ⁵ 4s6s	$3d^{5}4s4d - 3d^{7}$
$R^{2}(3d4s,3d3d)$	R ² (3d3d,3d6s)	$R^{2}(4s4d,3d3d)$
$3d^{5}4s^{2} - 3d^{5}4s5s$	$3d^{6}4s - 3d^{7}$	3d ⁵ 4s4d - 3d ⁵ 4s5d
$R^{0}(3d4s,3d5s)$	$R^{2}(3d4s, 3d3d)$	$R^0(3d4d,3d5d)^{direkt}$
$R^{2}(3d4s, 3d5s)$	3d ⁶ 4s - 3d ⁵ 4s5d	$R^2(3d4d,3d5d)^{direkt}$
$R^{0}(4s4s,4s5s)$	$R^{0}(3d3d, 3d5d)$	$R^4(3d4d,3d5d)^{direkt}$
$3d^{5}4s^{2} - 3d^{5}4s4d$	$R^{2}(3d3d, 3d5d)$	$R^{0}(3d4d,3d5d)^{indirekt}$
$R^2(3d4s,3d4d)^{direkt}$	R^4 (3d3d,3d5d)	$R^2(3d4d,3d5d)^{indirekt}$
$R^2(3d4s,3d4d)^{indirekt}$	R ² (3d4s,4s5d)	$R^4(3d4d,3d5d)^{indirekt}$
$3d^54s^2 - 3d^54s6s$	$R^{0}(3d4s, 4s5d)$	$R^{0}(4s4d, 4s5d)$
R ⁰ (3d4s,3d6s)	3d ⁵ 4s5s - 3d ⁵ 4s4d	$R^{2}(4s4d, 4s5d)$
R ² (3d4s,3d6s)	$R^2(3d5s,3d4d)^{direkt}$	3d ⁵ 4s6s - 3d ⁷
$R^{0}(4s4s,4s6s)$	R ² (3d5s,3d4d) ^{indirekt}	R ² (4s6s,3d3d)
$3d^{5}4s^{2} - 3d^{7}$	3d ⁵ 4s5s - 3d ⁵ 4s6s	3d ⁵ 4s6s - 3d ⁵ 4s5d
$R^{2}(4s4s,3d3d)$	$R^{0}(3d5s, 3d6s)$	R^2 (4s6s,3d5d) ^{direkt}
$3d^{5}4s^{2} - 3d^{5}4s5d$	$R^{2}(3d5s, 3d6s)$	$R^2(4s6s,3d5d)^{indirekt}$
$R^2(3d4s,3d5d)^{direkt}$	$R^0(4s5s,4s6s)^{direkt}$	$3d^7 - 3d^5 4s5d$
R ² (3d4s,3d5d) ^{indirekt}	$R^0(4s5s,4s6s)^{indirekt}$	$R^2(3d3d,4s5d)$
3d ⁶ 4s - 3d ⁵ 4s5s	3d ⁵ 4s5s - 3d ⁷	_
$R^{2}(3d3d,3d5s)$	$R^{2}(4s5s,3d3d)$	_
$3d^{6}4s - 3d^{5}4s4d$	3d ⁵ 4s5s - 3d ⁵ 4s5d	_
$R^{0}(3d3d,3d4d)$	$R^2(3d5s,3d5d)^{direkt}$	_
$R^{2}(3d3d,3d4d)$	R ² (3d5s,3d5d) ^{indirekt}	
R ⁴ (3d3d,3d4d)	3d ⁵ 4s4d - 3d ⁵ 4s6s	_
$R^{2}(3d4s, 4s4d)$	$R^2(3d4d, 3d6s)^{direkt}$	_
$R^{2}(3d4s, 4s4d)$	$R^2(3d4d, 3d6s)^{indirekt}$	

Tablo 4.15: Mn I elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait konfigürasyonlar arası etkileşme parametreleri.

Tablo 4.16'da fit işlemi ile hesaplanan Mn I elementinin çift pariteli $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarına ait ince yapı parametre değerleri hatalarıyla ve her parametrenin sağ üst köşesinde ⁽¹⁾, ⁽²⁾, ⁽³⁾, ⁽⁴⁾, ⁽⁵⁾, ⁽⁶⁾, ⁽⁷⁾, ⁽⁸⁾ indisleri ile gösterilen hesaplanan kuplajlarla birlikte verildi. Konfigürasyonlar arası direkt ve indirekt etkileşme parametreleri R⁰, R¹, R² ve R⁽³⁾'ün hesaplanan değerleri hatalarıyla ve kuplaj durumları da her parametrenin sağ üst köşesinde ⁽⁹⁾, ⁽¹⁰⁾ indisleri ile Tablo 4.17'de belirtildi.

Farklı kuplaj oranları ve fit durumları denendi. Fakat β , T, T¹ efektif parametreleri için uygun değerler bulunamadı. Bu nedenle bu parametreler fit <u>işleminde</u> kullanılmadı. Diğer taraftan T² efektif parametresi tüm çift konfigürasyonlar için anlamlı değerlere sahip oldu.

⁽¹⁾, ⁽²⁾ indisleri ile gösterilen parametre değerleri, 3d⁵4s² ve 3d⁷ konfigürasyonlarındaki aynı parametre değerleri ile Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit oranda tutuldu.

⁽³⁾, ⁽⁴⁾, ⁽⁵⁾, ⁽⁶⁾ indisleri ile gösterilen parametre değerleri tüm çift konfigürasyonlardaki aynı parametre değerleri ile sabit oranda tutuldu.

⁽⁷⁾, ⁽⁸⁾ indisleri ile gösterilen parametre değerleri 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s ve 3d⁵4s5d konfigürasyonlarındaki aynı parametre değerleri ile sabit oranda tutuldu.

⁽⁹⁾ indisi ile konfigürasyonlar arası direkt ve indirekt etkileşme parametre değerleri kendi aralarında, ⁽¹⁰⁾ indisi ile gösterilen 3d⁷ konfigürasyonunun diğer konfigürasyonlarla konfigürasyonlar arası direkt ve indirekt etkileşme parametre değerleri, Cowan programı [9] tarafından hesaplandığı gibi Hartree-Fock değerlerinde sabit tutuldu.

Konfigürasyonla	r ve Parametreleri	Hesaplanan Değerler (cm ⁻¹)
$3d^54s^2$		
	E_{AV}	41900(80)
	$F^{2}(3d, 3d)$	63800(300) ⁽¹⁾
	$F^{4}(3d, 3d)$	38450(270) ⁽²⁾
	α	78.5(3) ⁽³⁾
	$T^{2}(d^{5})$	$14(4)^{(4)}$
	ζ_{3d}	270(20) ⁽⁵⁾
3d ⁶ 4s	- 54	
JU 15	Eav	42800(230)
	E_{AV}^{2}	57120(770)
	$F^{4}(3d, 3d)$	35700(190)
	α	63 8(2) ⁽³⁾
	$T^2(d^6)$	$17(5)^{(4)}$
	- (-) 4	240(20) ⁽⁵⁾
	S 3 <i>d</i>	
£	$G^{2}(3d,4s)$	6240(50) ⁽⁶⁾
3d°4s5s		
	E_{AV}	49940(70)
	$F^{2}(3d, 3d)$	10070(240)(')
	F ⁴ (3d,3d)	910(280) ⁽⁶⁾
	α	78.5(3) ⁽³⁾
	$T^2(d^3)$	14(4) ⁽⁴⁾
	ζ_{3d}	260(20) ⁽³⁾
	G ² (3d,4s)	7720(60) ⁽⁶⁾
	G ² (3d,5s)	588
	$G^{0}(4s,5s)$	1149
3d ⁵ 4s4d		
	E_{AV}	56320(70)
	F ² (3d,3d)	10060(240) ⁽⁷⁾
	F ⁴ (3d,3d)	910(280) ⁽⁸⁾
	lpha	78.5(3) ⁽³⁾
	$T^2(d^5)$	$14(4)^{(4)}$
	ζ_{3d}	270(20) ⁽⁵⁾
	U C	2.5

Tablo 4.16: Mn I elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait ince yapı parametre değerleri,hataları ve yapılan kuplaj durumları.

Tablo 4.16'nın devamı:

Konfigürasyonla	r ve Parametreleri	Hesaplanan Değerler (cm ⁻¹)
$3d^54s4d$	$F^{2}(3d,4d)$	1068
	F ⁴ (3d,4d)	333
	G ² (3d,4s)	7100(50) ⁽⁶⁾
	G ⁰ (3d,4d)	515
	G ² (3d,4d)	353
	G ⁴ (3d,4d)	237
	G ² (4s,4d)	1289
3d ⁵ 4s6s		
	E_{AV}	59790(130)
	F ² (3d,3d)	10100(240) ⁽⁷⁾
	F ⁴ (3d,3d)	900(270) ⁽⁸⁾
	lpha	78.5(3) ⁽³⁾
	$T^{2}(d^{5})$	$14(4)^{(4)}$
	$\zeta_{_{3d}}$	280(20) ⁽⁵⁾
	$G^{2}(3d,4s)$	7260(50) ⁽⁶⁾
	$G^{2}(3d, 6s)$	186
	$G^{0}(4s, 6s)$	325
$3d^7$		
	E _{AV}	54720(200)
	$F^{2}(3d, 3d)$	60000(300) ⁽¹⁾
	$F^{4}(3d, 3d)$	31850(230) ⁽²⁾
	lpha	52(2) ⁽³⁾
	$T^{2}(d^{7})$	$20(6)^{(4)}$
	$\zeta_{_{3d}}$	210(20) ⁽⁵⁾
3d ⁵ 4s5d		
	E_{AV}	62230(90)
	$F^{2}(3d, 3d)$	10090(240) ⁽⁷⁾
	F ⁴ (3d,3d)	900(270) ⁽⁸⁾
	α	78.5(3) ⁽³⁾
	$T^2(d^5)$	$14(4)^{(4)}$
	ζ_{3d}	280(20) ⁽⁵⁾
	ζ_{5d}	1.6
	$F^{2}(3d,5d)$	385
	F ⁴ (3d,5d)	133
	G ² (3d,4s)	7160(50) ⁽⁶⁾

Konfigürasyonla	r ve Parametreleri	Hesaplanan Değerler (cm ⁻¹)
3d ⁵ 4s5d	$G^{0}(3d,5d)$	207
	G ² (3d,5d)	144
	G ⁴ (3d,5d)	97
	G ² (4s,5d)	486

Tablo 4.16'nın devamı:

Etkileşme Parametreleri	Hesaplanan Değerler (cm ⁻¹)
$3d^{5}4s^{2} - 3d^{6}4s$	
R ² (3d4s,3d3d)	-2850(370) ⁽⁹⁾
3d ⁵ 4s ² - 3d ⁵ 4s5s	
$R^{0}(3d4s, 3d5s)$	120(10) ⁽⁹⁾
R ² (3d4s,3d5s)	1140(150) ⁽⁹⁾
$R^{0}(4s4s,4s5s)$	890(120) ⁽⁹⁾
$3d^{5}4s^{2} - 3d^{5}4s4d$	
$R^2(3d4s,3d4d)^{direkt}$	970(130) ⁽⁹⁾
$R^2(3d4s,3d4d)^{indirekt}$	220(30) ⁽⁹⁾
$3d^{5}4s^{2} - 3d^{5}4s6s$	
$R^{0}(3d4s, 3d6s)$	60(10) ⁽⁹⁾
R ² (3d4s,3d6s)	640(80) ⁽⁹⁾
$R^{0}(4s4s,4s6s)$	450(60) ⁽⁹⁾
$3d^{5}4s^{2} - 3d^{7}$	
$R^{2}(4s4s,3d3d)$	4900(1700) ⁽¹⁰⁾
$3d^{5}4s^{2} - 3d^{5}4s5d$	
$R^2(3d4s,3d5d)^{direkt}$	630(80) ⁽⁹⁾
$R^2(3d4s,3d5d)^{indirekt}$	150(20) ⁽⁹⁾
3d ⁶ 4s - 3d ⁵ 4s5s	
$R^{2}(3d3d,3d5s)$	-796 ⁽⁹⁾
3d ⁶ 4s - 3d ⁵ 4s4d	
R ⁰ (3d3d,3d4d)	340(40) ⁽⁹⁾
R ² (3d3d,3d4d)	2230(290) ⁽⁹⁾
R ⁴ (3d3d,3d4d)	1470(190) ⁽⁹⁾
R ² (3d4s,4s4d)	$-1270(170)^{(9)}$
$R^{2}(3d4s, 4s4d)$	-110(10) ⁽⁹⁾
3d ⁶ 4s - 3d ⁵ 4s6s	
$R^2(3d3d,3d6s)$	-440(60) ⁽⁹⁾
$3d^64s - 3d^7$	
R ² (3d4s,3d3d)	$-3040(1050)^{(10)}$
3d ⁶ 4s - 3d ⁵ 4s5d	
$R^{0}(3d3d,3d5d)$	210(30) ⁽⁹⁾
R ² (3d3d,3d5d)	1410(180) ⁽⁹⁾
R ⁴ (3d3d,3d5d)	930(120) ⁽⁹⁾

Tablo 4.17 : Mn I elementinin çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarına ait konfigürasyonlar arası direkt ve indirekt etkileşme parametrelerinin hesaplanan değerleri, hataları ve bu parametrelerin kuplaj durumları.

Tablo 4.17'nin devamı:

Etkileşme Parametreleri	Hesaplanan Değerler (cm ⁻¹)
R ² (3d4s,4s5d)	-810(110) ⁽⁹⁾
$R^{0}(3d4s, 4s5d)$	-70(10) ⁽⁹⁾
3d ⁵ 4s5s - 3d ⁵ 4s4d	
$R^2(3d5s,3d4d)^{direkt}$	-190(30) ⁽⁹⁾
$R^2(3d5s,3d4d)^{indirekt}$	50(10) ⁽⁹⁾
3d ⁵ 4s5s - 3d ⁵ 4s6s	
$R^{2}(3d5s, 3d6s)$	210(30) ⁽⁹⁾
$R^0(4s5s,4s6s)^{indirekt}$	380(50) ⁽⁹⁾
3 d ⁵ 4s5s - 3 d ⁷	
R ² (4s5s,3d3d)	1330(460) ⁽¹⁰⁾
3d ⁵ 4s5s - 3d ⁵ 4s5d	
$R^2(3d5s,3d5d)^{direkt}$	-50(10) ⁽⁹⁾
$R^2(3d5s,3d5d)^{indirekt}$	40(5) ⁽⁹⁾
3d⁵4s4d - 3d⁵4s6s	
$R^2(3d4d,3d6s)^{direkt}$	-70(10) ⁽⁹⁾
$R^2(3d4d,3d6s)^{indirekt}$	40(5) ⁽⁹⁾
$3d^54s4d - 3d^7$	
$R^{2}(4s4d,3d3d)$	510 ⁽¹⁰⁾
3d⁵4s4d - 3d⁵4s5d	
$R^0(3d4d,3d5d)^{direkt}$	490(60) ⁽⁹⁾
$R^2(3d4d,3d5d)^{direkt}$	$180(20)^{(9)}$
R^4 (3d4d,3d5d) ^{direkt}	$280(40)^{(9)}$
$R^2(3d4d,3d5d)^{indirekt}$	$190(20)^{(9)}$
R^4 (3d4d,3d5d) ^{indirekt}	$130(20)^{(9)}$
$R^{2}(4s4d, 4s5d)$	670(90) ⁽⁹⁾
$3d^{5}4s6s - 3d^{7}$	
$R^{2}(4s6s,3d3d)$	$730(250)^{(10)}$
3d ⁵ 4s6s - 3d ⁵ 4s5d	
$R^2(4s6s,3d5d)^{direkt}$	-50(10) ⁽⁹⁾
R ² (4s6s,3d5d) ^{indirekt}	20(3) ⁽⁹⁾
3d ⁷ - 3d ⁵ 4s5d	
R ² (3d3d,4s5d)	320(110) ⁽¹⁰⁾
Serbest parametre sayısı	18
Fit edilen seviye sayısı	82
Standart Sapma	84 cm ⁻¹

82 deneysel enerji seviyesinin tamamı kullanılarak 18 serbest parametre ile en küçük karelerle fit metodu ile 84 cm⁻¹ lik ortalama sapmaya ulaşıldı.

Beklenen konfigürasyonların deneysel ve teorik enerjileri, deneysel g ve hesaplanan g değerleri, bu değerler arasındaki farklar ve seviyelerin öz vektör bileşenleri ile birlikte Tablo 4.18'da verildi.

J	E _{deneysel}	E _{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bileş	senler
							Konfig.	Terim
1/2								
	17637.15	17642	-5	3.327	3.338	-0.001	3d64s	⁵ D ⁶ D
	23818.87	23802	2	0.000	-0.001	0.001	3d64s	⁵ D ⁴ D
	27281.85	27289	-7	2.666	2.658	0.008	3d54s2	${}^{4}P$
	30.41174	30382	29	0.111	0.010	0.101	3d54s2	${}^{4}D$
	34845.26	34748	97	2.655	2.665	-0.01	3d64s	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$
	38351.78	38351	0.2	0.675	0.672	0.003	3d64s	${}^{3}\mathbf{P} {}^{2}\mathbf{P}$
	47219.64	47410	-18	3.934	3.308	0.626	3d54s4d	6 S 7 S 6 D
	51787.92	51755	32	2.650	2.368	0.282	3d7	${}^{4}\mathbf{P}$
	52735.83	52787	-50		2.292		3d54s5d	⁶ S ⁷ S ⁶ D
	54949.60	55082	-132		2.540		3d54s4d	⁶ S ⁷ S ⁶ D
3/2								
	17568.48	17573	-5	1.866	1.868	-0.002	3d64s	⁵ D ⁶ D
	23719.52	23700	19	1.198	1.201	-0.003	3d64s	⁵ D ⁴ D
	27248.00	27257	-9	1.730	1.727	0.003	3d54s2	${}^{4}\mathbf{P}$
	30425.71	30401	24		1.207		3d54s2	^{4}D
	34463.37	34401	62	1.730	1.732	-0.002	3d64s	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$
	35165.06	35155	10	0.430	0.399	0.001	3d64s	${}^{3}F {}^{4}F$
	37586.03	37664	-78		1.335		3d64s	${}^{3}\mathbf{P} {}^{2}\mathbf{P}$
	46706.09	46519	187		2.788		3d54s4d	⁶ S ⁷ S ⁸ D
	47218.15	47411	-193	1.759	1.855	-0.006	3d54s4d	6S 7S 6D
	49591.51	49641	-49	1.998	1.981	0.007	3d54s5s	${}^{2}S$ ${}^{3}S$ ${}^{4}S$
	51718.22	51672	46	1.733	1.678	0.055	3d7	${}^{4}\mathbf{P}$
	52702.23	52697	5		2.662		3d54s5d	⁶ S ⁷ S ⁸ D
	52735.01	52806	-71		1.299		3d54s5d	6S 7S 6D
	54953.21	54973	-20		1.484		3d54s4d	⁶ S ⁵ S ⁶ D
5/2								
	0.00	-0.074	74	2.002	2.002	0.0	3d54s2	⁶ S
	17451.52	17457	-6	1.657	1.659	-0.002	3d64s	⁵ D ⁶ D
	23549.20	23527	22	1.368	1.372	-0.004	3d64s	⁵ D ⁴ D

Tablo 4.18 : Mn I elementinin çift pariteli konfigürasyonlarına ait deneysel enerji ve g değerleri, teorik enerji ve g değerleri aralarındaki farklar ve seviyelerin konfigürasyonları terimleri ile birlikte birlikte verilmiştir. Bütün değerler cm⁻¹ olarak verilmiştir.

Tablo 4.18'in devamı :

J	$E_{deneysel}$	E_{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bile	şenler
							Konfig.	Terim
5/2								
	25281.04	25333	-52		0.571		3d54s2	⁴ G
	27201.54	27221	-19	1.597	1.596	0.001	3d54s2	"P
	30419.61	30403	17	1.38	1.376	0.004	3d54s2	⁴ D
	33825.49	33825	0.5	1.602	1.601	0.001	3d64s	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$
	35114.98	35109	6	1.024	1.026	-0.002	3d64s	${}^{3}P {}^{4}F$
	37789.93	37735	55	0.580	0.580	0.0	3d64s	${}^{3}G {}^{4}G$
	38934.94	38901	35		0.856		3d64s	${}^{3}F {}^{2}F$
	41403.93	41380	24	1.997	1.987	0.01	3d54s5s	⁶ S ⁷ S ⁶ S
	46707.03	46520	187		2.050		3d54s4d	⁶ S ⁷ S ⁸ D
	47215.61	47416	-200	1.634	1.650	-0.016	3d54s4d	⁶ S ⁷ S ⁶ D
	49415.35	49314	102	2.00	1.598	0.402	3d54s5s	⁶ S ⁵ S ⁶ S
	50904.68	50989	-84		1.658		3d54s6s	⁶ S ⁷ S ⁶ S
	51638.17	51678	-40	1.601	1.444	0.157	3d7	^{4}P
	52702.48	52698	5		2.049		3d54s5d	⁶ S ⁷ S ⁸ D
	52733.22	52741	-8		1.536		3d54s5d	⁶ S ⁷ S ⁶ D
	54950.81	54892	59		1.420		3d54s4d	⁶ S ⁷ S ⁶ D
7/2								
	17282.00	17292	-10	1.584	1.589	-0.005	3d64s	⁵ D ⁶ D
	23296.67	23274	23	1.427	1.429	-0.002	3d64s	${}^{5}\mathrm{D}{}^{4}\mathrm{D}$
	25287.74	25347	-59		0.984		3d54s2	${}^{4}G$
	30354.21	30346	9	1.425	1.429	-0.004	3d54s2	^{4}D
	34423.27	34441	-18	0.665	0.669	-0.004	3d64s	${}^{3}\mathrm{H}$ ${}^{4}\mathrm{H}$
	35041.37	35043	-2	1.238	1.235	0.003	3d64s	${}^{3}F {}^{4}F$
	37737.22	37687	50	0.989	0.988	0.001	3d64s	${}^{3}G {}^{4}G$
	38669.60	38722	-53	1.128	1.137	-0.009	3d64s	${}^{3}F {}^{2}F$
	39431.31	39445	-14	2.000	1.995	0.005	3d54s5s	⁶ S ⁷ S ⁸ S
	41230.30	41281	-51	0.880	0.892	-0.012	3d64s	${}^{3}\mathrm{G} {}^{2}\mathrm{G}$
	46708.33	46521	187		1.804		3d54s4d	⁶ S ⁷ S ⁸ D
	47212.06	47422	-210	1.581	1.581	0.00	3d54s4d	⁶ S ⁷ S ⁶ D
	50157.63	50133	24	1.995	1.993	0.002	3d54s6s	⁶ S ⁷ S ⁸ S

J	E_{deneysel}	E_{teorik}	ΔΕ	g _{deneysel}	g _{teorik}	Δg	Bileş	senler
							Konfig.	Terim
7/2								
	52702.79	52698	4		1.804		3d54s5d	⁶ S ⁷ S ⁸ D
	52730.41	52750	-20		1.568		3d54s5d	⁶ S ⁷ S ⁶ D
	54946.55	54853	94		1.484		3d54s4d	⁶ S ⁵ S ⁶ D
9/2								
	17052.29	17072	-20	1.559	1.557	0.002	3d64s	⁵ D ⁶ D
	25285.43	25355	-70	1.173	1.172	0.001	3d54s2	${}^{4}G$
	34343.90	34375	-31	0.971	0.972	-0.001	3d64s	$^{3}\mathrm{H}\ ^{4}\mathrm{H}$
	34938.70	34954	-15	1.328	1.331	-0.003	3d64s	${}^{3}F {}^{4}F$
	37630.62	37591	39	1.163	1.167	-0.004	3d64s	${}^{3}G {}^{4}G$
	38120.18	38135	-15	0.914	0.917	-0.003	3d64s	${}^{3}\mathrm{H}{}^{2}\mathrm{H}$
	41031.48	41070	-38	1.118	1.111	0.007	3d64s	${}^{3}G {}^{2}G$
	46710.15	46523	19		1.692		3d54s4d	⁶ S ⁷ S ⁸ D
	47207.28	47443	-24	1.554	1.550	0.004	3d54s4d	⁶ S ⁷ S ⁶ D
	52703.10	52699	4		1.692		3d54s5d	⁶ S ⁷ S ⁸ D
	52726.39	52727	-0.6		1.394		3d54s5d	⁶ S ⁷ S ⁶ D
	54938.94	54764	175		1.525		3d54s4d	${}^{4}F {}^{5}F {}^{6}D$
11/2								
	25265.74	25351	-86	1.270	1.273	-0.003	3d54s2	${}^{4}G$
	34250.52	34298	-47	1.135	1.134	0.001	3d64s	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$
	37148.66	37062	86	0.940	0.924	0.016	3d54s2	^{2}I
	37420.24	37409	11	1.263	1.260	0.003	3d64s	${}^{3}G {}^{4}G$
	38008.70	38026	-17	1.098	1.103	-0.005	3d64s	${}^{3}\mathrm{H}{}^{2}\mathrm{H}$
	43139.27	43082	57	0.924	0.923	0.001	3d64s	${}^{1}\mathbf{I} {}^{2}\mathbf{I}$
	46712.58	46523	189		1.632		3d54s4d	⁶ S ⁷ S ⁸ D
	52705.23	52701	4		1.632		3d54s5d	⁶ S ⁷ S ⁸ D
13/2								
	34138.88	34207	-68	1.230	1.231	-0.001	3d64s	³ H ⁴ H
	37164.25	37099	65		1.077		3d54s2	2 I
	43053.30	43076	-23	1.070	1.077	-0.007	3d64s	${}^{1}I {}^{2}I$

Tablo 4.18'in devamı :
Aşırı ince yapı incelemesinde; Sandars ve Beck'e [40] göre manyetik dipol etkileşmelerinin hfs sabitleri A'nın deneysel değerleri kullanılarak yarı-ampirik olarak tek-elektron parametrelerini elde etmek mümkündür. Elde edilen bu parametrelerle incelenen sistemdeki hfs ayrışmaları teorik olarak belirlemek ve bu teorik değerleri deneysel değerlerle karşılaştırmak mümkündür. Mn I elementinin çift pariteye sahip $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarının deneysel manyetik dipol aşırı ince yapı sabitleri A_{deneysel}, 34 tek elektron parametresi $a_{nl}^{k_sk_l}$ ve ince yapı hesaplarından elde edilen açısal katsayıların $\alpha_{nl}^{k_sk_l}$ lineer kombinasyonu olarak gösterilebilir. Her bir konfigürasyonun 3d, 4d ve 5d kabukları için üçer; 4s, 5s ve 6s kabukları için birer tek elektron radyal parametresi bulunmaktadır.

$$A_{deneysel} = \begin{cases} \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{5s}^{10} a_{5s}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{4d}^{01} a_{4d}^{01} + \alpha_{4d}^{12} a_{4d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} + \alpha_{4s}^{10} a_{4s}^{10} + \alpha_{6s}^{10} a_{6s}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{10} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{12} a_{3d}^{12} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{01} a_{3d}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{01} a_{3d}^{10} + \alpha_{3d}^{01} a_{3d}^{10} \\ + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{01} + \alpha_{3d}^{01} a_{3d}^{01} \\ + \alpha_{3d}^{0$$

Denklem (4.2)'deki a_{nl}^{k,k_l} parametrelerinin önündeki α_{nl}^{k,k_l} açısal katsayıları, Hfsac programı kullanılarak bu çalışmada elde edilen ince yapı hesaplarından dalga fonksiyonları temel alınarak hesaplandı. Bu konfigürasyonların parametrik analizi için, 45 deneysel manyetik aşırı ince yapı sabiti *A* değeri kullanıldı.

Lineer denklem sistemi çözüm için yeterli olmasına rağmen, tüm parametrelerin serbest olması halinde fit yapılması mümkün değildir. Özellikle $3d^7$, $3d^54s5s$ ve $3d^54s6s$ konfigürasyonları için çok az deneysel A sabiti bilinmektedir. Bu nedenle bu konfigürasyonlara ait parametre değerleri, ince yapı spin-yörünge parametreleri (ζ_{3d}) oranına bakılarak $3d^54s^2$ konfigürasyonuna ait aynı cins parametrelerle sabit oranda tutuldu.

$$\frac{\zeta_{3d}(3d^54s^2)}{\zeta_{3d}(3d^7)} = \frac{a_{nl}^{k_s k_l}(3d^54s^2)}{a_{nl}^{k_s k_l}(3d^7)} \cong 1.00$$
(4.3)

Bu çalışmada $3d^54s^2$, $3d^64s$, $3d^54s5s$, $3d^54s4d$, $3d^54s6s$, $3d^7$ ve $3d^54s5d$ konfigürasyonlarının aşırı ince yapılarının parametrik analizi aynı anda gerçekleştirildi.. Radyal manyetik dipol aşırı ince yapı parametrelerinin değerleri Tablo 4.19'da verildi.

		[14]	[16]	[21]
$a_{3d}^{10} (3d^54s^2)$	-72.44	-77.92		-78(12)
$a_{3d}^{01} (3d^54s^2)$	528	511.47		513(6)
$a_{3d}^{12}(3d^54s^2)$	485	517.54		520(40)
a_{3d}^{10} (3d ⁶ 4s)	-63		-701(55)	-325(70)
a_{3d}^{01} (3d ⁶ 4s)	463		382.27(52)	409(11)
a_{3d}^{12} (3d ⁶ 4s)	425		374.4(4.2)	580(60)
a_{4s}^{10} (3d ⁶ 4s)	3310		5664(224)	3995(260)
a_{3d}^{10} (3d ⁵ 4s5s)	-68			
a_{3d}^{01} (3d ⁵ 4s5s)	495			
a_{3d}^{12} (3d ⁵ 4s5s)	455			
a_{4s}^{10} (3d ⁵ 4s5s)	1560			
a_{5s}^{10} (3d ⁵ 4s5s)	-4397			
a_{3d}^{10} (3d ⁵ 4s4d)	-2677			
a_{3d}^{01} (3d ⁵ 4s4d)	943			
a_{3d}^{12} (3d ⁵ 4s4d)	456			
a_{4s}^{10} (3d ⁵ 4s4d)	-8818			
a_{4d}^{10} (3d ⁵ 4s4d)	-257			
a_{4d}^{01} (3d ⁵ 4s4d)	-69			

 Tablo 4.19 : Mn I elementinin çift pariteye sahip konfigürasyonlarının elde edilen manyetik
dipol aşırı ince yapı tek-elektron parametre değerleri, referans [14] ve referans [16]'daki değerleri ile karşılaştırma yapılmıştır. Parametre değerleri Mhz cinsinden verilmiştir.

Tablo 4.19' un devamı :

		[14]	[16]	[21]
a_{4d}^{12} (3d ⁵ 4s4d)	-554			
a_{3d}^{10} (3d ⁵ 4s6s)	-72			
a_{3d}^{01} (3d ⁵ 4s6s)	529			
a_{3d}^{12} (3d ⁵ 4s6s)	485			
a_{4s}^{10} (3d ⁵ 4s6s)	2770			
a_{6s}^{10} (3d ⁵ 4s6s)	2439			
a_{3d}^{10} (3d ⁷)	-55			-31
a_{3d}^{01} (3d ⁷)	400			207
$a_{3d}^{12}(3d^7)$	367			210
a_{3d}^{10} (3d ⁵ 4s5d)	-2677			
a_{3d}^{01} (3d ⁵ 4s5d)	943			
a_{3d}^{12} (3d ⁵ 4s5d)	-456			
a_{4s}^{10} (3d ⁵ 4s5d)	-7819			
a_{5d}^{10} (3d ⁵ 4s5d)	-171			
a_{5d}^{01} (3d ⁵ 4s5d)	46			
a_{5d}^{12} (3d ⁵ 4s5d)	369			

Tek pariteli 3d⁵4s4p, 3d⁵4s5p, 3d⁵4s6p ve 3d⁶4p konfigürasyonlarının enerji seviyelerine karşılık gelen beklenen konfigürasyonlar, öz vektör bileşenlerinin konfigürasyonlara göre yüzde olarak dağılımları Tablo 4.20'de verilmiştir.

J	E_{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımlar			dağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
1/2											
	31125.00	3d54s4p	⁶ S ⁵ S ⁴ P	98.77	99.36	0.03	0.01	0.59	-2163	-2156	7
	42198.56	3d64p	⁵ D ⁶ D	96.12	3.73	0.03	0.01	96.23	-788	-786	2
	43672.96	3d64p	⁵ D ⁶ F	88.5	11.26	0.06	0.02	88.65		973	
	46169.93	3d64p	⁵ D ⁴ D	94.76	2.24	0.01	0.01	97.74	1067	1157	90
	47299.29	3d64p	⁵ D ⁴ P	92.15	6.45	0.07	0.04	93.45	-998	-1015	-17
	47452.16	3d54s4p	⁴ P ⁵ P ⁶ D	83.3	98.85	0.46	0.09	0.6	1079	1101	22
	48318.12	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	86.34	89.39	0.16	0.04	10.41	87	86	1
	50818.64	3d54s4p	⁴ D ⁵ D ⁶ F	92.24	98.74	0.39	0.08	0.79		-71	
	51552.78	3d54s4p	⁴ P ⁵ P ⁴ P	44.27	91.54	0.61	0.07	7.77	725	961	236
	52883.10	3d54s4p	⁴ D ⁵ D ⁶ D	71.08	95.86	0.26	0.05	3.83		904	
	53101.32	3d54s4p	⁴ P ⁵ P ⁴ D	54.57	95.44	0.28	0.06	4.23		101	
	55457.20	3d54s5p	⁶ S ⁵ S ⁴ P	96.14	3.07	96.28	0.01	0.64		-2004	
	57228.30	3d54s4p	⁴ D ⁵ D ⁴ P	45.6	91.9	0.97	0.08	7.04		1032	
	59527.36	3d64p	${}^{3}F {}^{4}D$	28.6	30.47	0.42	0.08	69.03		1062	
	59568.29	3d64p	${}^{3}P {}^{4}P$	37.86	25.31	0.93	0.59	73.18		-370	

Tablo 4.20: Mn I elementinin tek pariteli konfigürasyonlarının enerji seviyelerine karşılık gelen, beklenen konfigürasyonlar, bu öz vektör bileşenlerinin konfigürasyonlara göre yüzde olarak dağılımları ve deneysel olarak kullanılan A değerleri, teorik olarak hesaplanan A değerleri aralarındaki farklar ile birlikte verilmiştir. Enerji değerleri cm⁻¹, A değerleri MHz olarak verilmiştir.

J	E_{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımları			lağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
1/2	60141.98	3d64p	${}^{3}P {}^{4}D$	40.1	14.68	0.07	0.02	85.23		985	
3/2											
	24779.32	3d54s4p	⁶ S ⁷ S ⁶ P	75.01	98.42	0.47	0.09	1.03	571	568	-3
	31076.42	3d54s4p	⁶ S ⁵ S ⁴ P	98.69	99.35	0.04	0.01	0.6	-812	-692	120
	35689.98	3d54s4p	⁶ S ⁶ P	71.94	90.17	3.91	0.54	5.38	-967	-984	-17
	42143.57	3d64p	⁵ D ⁶ D	95.96	3.74	0.03	0.01	96.22	-146	-174	-28
	43644.45	3d64p	⁵ D ⁶ F	88.12	11.2	0.06	0.02	88.72	273	247	-26
	44814.73	3d64p	⁵ D ⁴ F	92.86	5.54	0.01	0.01	94.44	669.5	687	17.5
	45259.17	3d64p	⁵ D ⁶ P	76.08	4.31	19.04	0.44	76.21	360	-136	496
	46083.89	3d64p	⁵ D ⁴ D	94.02	2.28	0.02	0.01	97.69		189	
	47154.51	3d64p	⁵ D ⁴ P	91.54	6.58	0.17	0.04	93.21	-294	-270	24
	47466.66	3d54s5p	⁶ S ⁷ S ⁶ P	50.54	41.52	51.5	1.35	5.63	825	828	3
	47782.43	3d54s4p	⁴ P ⁵ P ⁶ D	75.15	93.4	4.6	0.26	1.75	648	661	13
	48300.98	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	84.05	89.91	0.22	0.04	9.83	429	423	-6
	50099.03	3d54s4p	⁴ P ⁵ P ⁶ P	57.71	65.33	17.33	9.09	8.25	810	772	-38
	50383.27	3d54s4p	${}^{4}G {}^{5}G {}^{4}F$	63.63	96.13	0.25	0.06	3.56	129	178	49
	50863.50	3d54s4p	⁴ D ⁵ D ⁶ F	91.68	98.72	0.4	0.09	0.79		422	
	51445.55	3d54s4p	⁴ P ⁵ P ⁴ P	45.47	91.03	0.6	0.11	8.26	627	642	15

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımla			dağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
3/2	52014.98	3d54s4p	⁴ D ⁵ D ⁶ P	73.72	89.93	0.71	8.72	0.74		864	
	52883.79	3d54s4p	⁴ D ⁵ D ⁶ D	66.64	95.9	0.25	0.36	3.49		639	
	53103.09	3d54s4p	⁴ P ⁵ P ⁴ D	53.16	95.36	0.29	0.21	4.14		557	
	53311.12	3d54s6p	⁶ S ⁷ S ⁶ P	75.56	13.76	8.6	75.81	1.83		1470	
	54218.62	3d54s4p	⁴ P ⁵ P ⁴ S	54.46	89.09	0.53	0.33	10.05		815	
	55279.91	3d54s4p	⁴ D ⁵ D ⁴ D	42.28	93.16	0.72	0.06	6.06		377	
	55939.27	3d54s5p	⁶ S ⁵ S ⁴ P	95.46	2.68	96.43	0.04	0.85		967	
	55996.90	3d54s5p	⁶ S ⁵ S ⁶ P	92.11	1.48	94.42	3.52	0.58		-1426	
	57512.08	3d64p	${}^{3}P$ ${}^{4}S$	44.98	33.54	0.41	0.01	66.04	697	-380	-1077
	57360.73	3d54s4p	⁴ D ⁵ D ⁴ P	44.96	90.47	0.72	0.08	8.73		816	
	59527.89	3d64p	${}^{3}F {}^{4}D$	19.46	25.54	0.53	0.15	73.78		212	
	59384.24	3d64p	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$	30.07	25.49	0.91	0.47	73.12		21	
	59416.15	3d64p	${}^{3}F {}^{4}F$	58.16	18.17	0.23	0.03	81.57		784	
	60395.64	3d64p	${}^{3}P {}^{2}D$	37.87	16.8	0.03	0.01	83.17		379	
	59989.77	3d64p	${}^{3}P {}^{4}D$	32.48	14.3	0.05	0.03	85.63		399	
	60760.87	3d54s4p	${}^{4}G {}^{3}G {}^{4}F$	26.7	63.02	2.01	0.29	34.67		1081	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigüras	syonlar üzerii	nde % olarak d	lağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
5/2											
	18402.46	3d54s4p	⁶ S ⁷ S ⁸ P	99.48	99.48	0.44	0.08	0.0	572	530	-42
	24788.05	3d54s4p	⁶ S ⁷ S ⁶ P	75.54	98.37	0.47	0.09	1.07	466	489	23
	31001.15	3d54s4p	⁶ S ⁵ S ⁴ P	98.75	99.33	0.04	0.01	0.62	-608	-604	4
	35725.85	3d54s4p	⁶ S ⁵ S ⁶ P	72.42	90.06	3.9	0.53	5.5	-552	-589	-37
	42053.73	3d64p	⁵ D ⁶ D	95.78	3.74	0.03	0.01	96.22	-27	-39	12
	43595.50	3d64p	⁵ D ⁶ F	88.08	11.09	0.06	0.02	88.83	174	157	-17
	44696.29	3d64p	⁵ D ⁴ F	92.27	5.48	0.01	0.01	94.5	291	279	-12
	45156.11	3d64p	⁵ D ⁶ P	76.93	4.41	17.94	0.46	77.19	260	-17	-277
	45940.93	3d64p	⁵ D ⁴ D	93.23	2.31	0.04	0.01	97.64		80	
	45981.44	3d54s5p	⁶ S ⁷ S ⁸ P	99.18	0.47	99.27	0.24	0.02	102	378	276
	46901.13	3d64p	⁵ D ⁴ P	91.13	6.7	0.16	0.04	93.11	-54	-31	23
	47659.52	3d54s5p	⁶ S ⁷ S ⁶ P	49.36	43.71	50.28	1.17	4.83	761	553	-208
	47753.99	3d54s4p	⁴ P ⁵ P ⁶ D	64.65	92.27	4.13	0.25	3.35	672	590	-82
	48270.91	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	73.99	91.24	0.59	0.07	8.1		505	
	50012.50	3d54s4p	⁴ P ⁵ P ⁶ P	52.43	63.55	19.34	9.19	7.92	582	593	11
	50373.23	3d54s4p	${}^{4}G {}^{5}G {}^{4}F$	63.33	96.16	0.24	0.06	3.54	527	509	-18
	50931.29	3d54s4p	⁴ D ⁵ D ⁶ F	91.11	98.71	0.41	0.1	0.78		502	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımlar				A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
5/2	51305.31	3d54s4p	${}^{4}P {}^{5}P {}^{4}P$	46.28	90.84	0.57	0.12	8.47	1098	723	-375
	51515.63	3d54s4p	${}^{4}G$ ${}^{5}G$ ${}^{4}G$	59.25	96.12	0.38	0.06	3.43	255	250	-5
	52128.58	3d54s4p	${}^{4}D {}^{5}D {}^{6}P$	55.15	90.72	0.54	7.43	1.31		760	
	52490.00	3d54s6p	⁶ S ⁵ D ⁸ P	99.43	0.21	0.26	99.52	0.0		1263	
	52883.79	3d54s4p	⁴ D ⁵ D ⁶ D	50.97	94.79	0.32	2.03	2.86		588	
	53109.14	3d54s4p	${}^{4}P {}^{5}P {}^{4}D$	52.63	94.73	0.34	0.92	4.01		626	
	53291.30	3d54s6p	⁶ S ⁷ S ⁶ P	74.94	14.89	8.3	75.21	1.6		992	
	55186.10	3d54s4p	${}^{4}D {}^{5}D {}^{4}D$	57.9	94.22	0.57	0.07	5.14		601	
	55923.98	3d54s5p	⁶ S ⁵ S ⁴ P	95.75	2.24	96.94	0.05	0.76		-437	
	56008.18	3d54s5p	⁶ S ⁵ S ⁶ P	92.08	1.44	94.6	3.41	0.55		-580	
	57487.05	3d54s4p	${}^{4}D {}^{5}D {}^{4}P$	42.78	89.07	0.57	0.07	10.29		729	
	58159.73	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$	46.15	61.66	0.99	0.14	37.21	878	838	-40
	59480.80	3d64p	^{4}D ^{2}F	19.06	39.11	0.55	0.19	60.15		199	
	59116.64	3d54s4p	${}^{4}D {}^{3}D {}^{2}F$	60.69	70.43	0.19	0.07	29.31		587	
	59817.70	3d64p	${}^{3}F {}^{4}G$	52.53	3.64	0.03	0.01	96.33		611	
	59360.67	3d64p	${}^{3}F {}^{4}F$	49.92	20.28	0.22	0.03	79.47		338	
	59600.35	3d64p	${}^{3}P {}^{2}D$	32.27	24.7	0.06	0.02	75.22		171	
	60101.65	3d64p	${}^{3}P$ ${}^{4}D$	31.59	16.07	0.07	0.03	83.83		169	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımla			lağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
5/2	60820.35	3d54s4p	${}^{4}G$ ${}^{3}G$ ${}^{4}F$	23.41	54.76	1.74	0.26	43.24		428	
7/2											
	18531.64	3d54s4p	⁶ S ⁷ S ⁸ P	99.29	99.47	0.44	0.09	0.0	547	390	-157
	24802.25	3d54s4p	⁶ S ⁷ S ⁶ P	76.38	98.29	0.49	0.09	1.13	428.5	435	6.5
	35769.97	3d54s4p	⁶ S ⁵ S ⁶ P	73.2	89.91	3.88	0.53	5.69	-400	-375	25
	41932.64	3d64p	⁵ D ⁶ D	95.72	3.7	0.03	0.01	96.26	40.5	55	14.5
	43524.08	3d64p	⁵ D ⁶ F	87.94	10.94	0.06	0.02	88.98	138	146	8
	44523.45	3d64p	⁵ D ⁴ F	91.96	5.4	0.02	0.01	94.57	175.5	180	4.5
	44993.92	3d64p	⁵ D ⁶ P	77.97	4.61	16.39	0.49	78.51	273	154	-119
	45754.27	3d64p	⁵ D ⁴ D	93.91	2.26	0.09	0.01	97.64		52	
	46000.77	3d54s5p	⁶ S ⁷ S ⁸ P	99.16	0.47	99.26	0.25	0.02	600	577	-23
	47387.62	3d54s5p	⁶ S ⁷ S ⁶ P	49.74	44.58	50.6	1.01	3.81	579	608	29
	47774.52	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	54.72	90.52	1.4	0.12	7.96	636	549	-87
	48225.99	3d54s4p	⁴ P ⁵ P ⁶ D	54.45	95.08	1.71	0.15	3.05	522	572	50
	49888.01	3d54s4p	⁴ P ⁵ P ⁶ P	45.05	59.92	23.13	9.29	7.67	561	619	58
	50065.46	3d54s4p	${}^{4}G {}^{5}G {}^{4}H$	62.71	97.62	0.27	0.06	2.05	231	234	3
	50359.28	3d54s4p	${}^{4}G {}^{5}G {}^{4}F$	62.97	96.2	0.24	0.06	3.5	677.5	647	-30.5
	51014.94	3d54s4p	⁴ D ⁵ D ⁶ F	91.15	98.75	0.41	0.1	0.74		534	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımlar				A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
7/2	51530.61	3d54s4p	${}^{4}G {}^{5}G {}^{4}G$	59.38	96.08	0.39	0.06	3.47	432	448	16
	52869.99	3d54s4p	${}^{4}D {}^{5}D {}^{6}D$	48.51	93.62	0.36	3.86	2.16		681	
	52497.21	3d54s6p	⁶ S ⁷ S ⁸ P	99.36	0.25	0.27	99.47	0.01		950	
	52253.17	3d54s4p	⁴ D ⁵ D ⁶ P	33.53	92.7	0.45	4.69	2.16		589	
	53124.00	3d54s4p	⁴ P ⁵ P ⁴ D	52.5	92.72	0.5	3.01	3.77		633	
	53261.05	3d54s6p	⁶ S ⁷ S ⁶ P	74.13	16.53	7.7	74.39	1.38		837	
	55107.52	3d54s4p	⁴ D ⁵ D ⁴ D	59.03	93.93	0.26	0.08	5.73		669	
	56012.61	3d54s5p	⁶ S ⁵ S ⁶ P	93.42	1.37	94.8	3.32	0.51		-573	
	58136.69	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$	46.01	61.24	0.97	0.14	37.64	486	443	-43
	58519.90	3d64p	${}^{3}\mathrm{H}$ ${}^{4}\mathrm{H}$	57.97	39.71	0.67	0.1	59.51	558	565	7
	59339.49	3d54s4p	^{4}D ^{2}F	79.58	81.71	0.06	0.02	18.21		150	
	59784.31	3d64p	${}^{3}F {}^{4}G$	51.19	3.03	0.03	0.01	96.93		421	
	59290.11	3d64p	${}^{3}F {}^{4}F$	55.73	18.83	0.26	0.03	80.88		251	
	59470.14	3d64p	${}^{3}F {}^{4}D$	26.78	19.84	0.09	0.01	80.06		127	
	60739.42	3d64p	$^{3}\text{H} ^{2}\text{G}$	50.1	22.29	0.34	0.07	77.3		468	
	60902.80	3d54s4p	${}^{4}G {}^{3}G {}^{4}F$	20.18	49.25	1.56	0.23	48.96		235	
	60957.21	3d64p	${}^{3}\mathrm{G}$ ${}^{4}\mathrm{H}$	40.33	37.48	1.24	0.22	61.06		469	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımları				A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
9/2											
	18705.37	3d54s4p	⁶ S ⁷ S ⁸ P	99.39	99.47	0.45	0.09	0.0	456	417	-39
	41789.48	3d64p	⁵ D ⁶ D	96.04	3.6	0.03	0.01	96.37	90	143	53
	43428.58	3d64p	⁵ D ⁶ F	88.15	10.75	0.06	0.02	89.16	156	166	10
	44288.76	3d64p	⁵ D ⁴ F	93.16	5.31	0.01	0.01	94.68	133.5	172	38.5
	46026.75	3d54s5p	⁶ S ⁵ G ⁸ P	80.05	0.47	99.29	0.25	0.0	495	381	-114
	4816801	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	82.15	89.74	0.18	0.04	10.04	603	577	-26
	47903.80	3d54s4p	⁴ P ⁵ P ⁶ D	82.15	99.16	0.44	0.09	0.31	570	564	-6
	50072.59	3d54s4p	${}^{4}\mathrm{G}{}^{5}\mathrm{G}{}^{4}\mathrm{H}$	63.04	97.59	0.27	0.06	2.08	396	403	7
	50341.30	3d54s4p	${}^{4}G$ ${}^{5}G$ ${}^{4}F$	62.55	96.26	0.23	0.06	3.45	762.5	739	-23.5
	51100.49	3d54s4p	${}^{4}D {}^{5}D {}^{6}F$	92.23	98.81	0.4	0.08	0.7		551	
	51546.27	3d54s4p	${}^{4}G {}^{5}G {}^{4}G$	59.54	96.02	0.39	0.07	3.53	549	560	11
	52758.11	3d54s4p	⁴ D ⁵ D ⁶ D	83.03	96.37	0.2	0.12	3.3		568	
	58110.24	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$	45.92	60.8	0.96	0.14	38.1	261	289	28
	58485.52	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	58.13	38.91	0.64	0.1	60.35	450	405	-45
	58866.66	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$	62.51	36.09	0.15	0.04	63.73	357	398	41
	59731.94	3d64p	${}^{3}F {}^{4}G$	49.78	3.05	0.04	0.01	96.9		347	
	59257.44	3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{F}$	55.46	19.65	0.28	0.04	80.04		230	

Tablo 4.20'nin devamı:

J	Edeneysel	Konfig.	Terim	%	Konfigürasyonlar üzerinde % olarak dağılımları			lağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
9/2	60668.49	3d64p	$^{3}\text{H}^{2}\text{G}$	49.6	13.19	0.1	0.02	86.68	354	354	0
	61211.43	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$	59.72	62.86	0.17	0.03	36.64		458	
	60955.88	3d54s4p	${}^{2}\mathrm{I} {}^{3}\mathrm{I} {}^{4}\mathrm{H}$	42.46	83.66	1.31	0.28	14.75		336	
	60938.97	3d54s4p	${}^{4}G {}^{3}G {}^{4}F$	23.11	53.74	1.74	0.26	44.26		279	
11/2											
	43314.23	3d64p	⁵ D ⁶ F	89.29	10.58	0.06	0.02	89.34	180	208	28
	48021.43	3d54s4p	${}^{4}G {}^{5}G {}^{6}F$	87.4	89.88	0.15	0.04	9.93		575	
	50081.31	3d54s4p	${}^{4}G {}^{5}G {}^{4}H$	63.51	97.55	0.28	0.06	2.12	519	519	0
	51169.18	3d54s4p	${}^{4}D {}^{5}D {}^{6}F$	95.24	98.84	0.4	0.08	0.68		561	
	51560.93	3d54s4p	${}^{4}G {}^{5}G {}^{4}G$	59.72	95.95	0.39	0.07	3.59	645	642	-3
	58075.06	3d54s4p	${}^{4}G {}^{3}G {}^{4}G$	45.92	60.37	0.94	0.13	38.56	210	234	24
	58427.30	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	58.89	38.07	0.61	0.09	61.23	396	351	-45
	58851.49	3d64p	${}^{3}\mathrm{H}$ ${}^{4}\mathrm{I}$	60.9	36.93	0.15	0.04	62.88	420	407	-13
	59652.90	3d64p	${}^{3}\mathrm{F}{}^{4}\mathrm{G}$	50.9	3.16	0.06	0.01	96.78		308	
	59827.88	3d64p	${}^{3}\mathrm{H}{}^{2}\mathrm{I}$	93.16	5.51	0.01	0.0	94.48		442	
	61225.77	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$	62.93	65.92	0.17	0.03	33.88	435	452	17
	60933.73	3d54s4p	${}^{2}\mathrm{I}{}^{3}\mathrm{I}{}^{4}\mathrm{H}$	45.48	87.97	1.31	0.28	10.44		464	

Tablo 4.20'nin devamı:

J	E _{deneysel}	Konfig.	Terim	%	Konfigüras	yonlar üzerii	nde % olarak o	dağılımları	A _{deneysel}	A _{teorik}	ΔΑ
					3d ⁵ 4s4p	3d ⁵ 4s5p	3d ⁵ 4s6p	3d ⁶ 4p			
13/2											
	50094.60	3d54s4p	${}^{4}G {}^{5}G {}^{4}H$	85.82	97.49	0.28	0.06	2.17	606	615	9
	58338.67	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	60.48	37.18	0.58	0.09	62.16	390	351	-39
	58843.39	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$	62.93	34.98	0.15	0.03	64.84	471	429	-42
	59617.12	3d64p	${}^{3}\mathrm{H}{}^{2}\mathrm{I}$	93.3	5.75	0.01	0.0	94.24		397	
	60891.48	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$	65.13	68.37	0.17	0.03	31.42		526	
	61225.55	3d54s4p	${}^{2}\text{I} {}^{3}\text{I} {}^{4}\text{H}$	46.77	89.59	1.27	0.27	8.87	405	498	93
15/2											
	58852.60	3d64p	${}^{3}\mathrm{H}{}^{4}\mathrm{I}$	68.18	31.61	0.12	0.03	68.24	516	456	-60
	61204.54	3d54s4p	${}^{2}I {}^{3}I {}^{4}I$	68.91	70.84	0.17	0.03	28.96	522	587	65

Tablo 4.20'nin devamı:

Çift pariteli 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷ ve 3d⁵4s5d konfigürasyonlarının enerji seviyelerine karşılık gelen beklenen konfigürasyonlar, öz vektör bileşenlerinin konfigürasyonlara göre yüzde olarak dağılımları Tablo 4.21'de verilmiştir.

J	E _{deneysel}	Konfig.	Terim	%		Konfigü	irasyonlar	üzerinde %	6 olarak da	ğılımları		A _{deneysel}	A _{teorik}	ΔΑ
					$3d^54s^2$	3d ⁶ 4s	3d ⁵ 4s5s	3d ⁵ 4s4d	3d ⁵ 4s6s	$3d^7$	$3d^54s5d$			
1/2														
	17637.15	3d64s	⁵ D ⁶ D ⁵ D ⁴ D	99.23	0.0	99.33	0.0	0.52	0.0	0.0	0.15	892	895 1405	3
	23818.87	30048	U U	97.94	1.51	98.07	0.01	0.48	0.0	0.0	0.14	1510.95	1405	-112
	27281.85	3d54s2	${}^{4}\mathbf{P}$	97.62	98.07	0.92	0.55	0.03	0.06	0.36	0.01	-585	-542	43
	30.41174	3d54s2	^{4}D	97.15	97.59	1.63	0.64	0.06	0.07	0.0	0.01	1289	1247	-42
	34845.26	3d64s	${}^{3}P {}^{4}P$	58.86	0.9	96.72	0.12	1.61	0.01	0.26	0.38		1227	
	38351.78	3d64s	${}^{3}\mathbf{P} {}^{2}\mathbf{P}$	59.14	0.02	97.71	0.04	1.55	0.0	0.32	0.37		1020	
	47219.64	3d54s4d	⁶ S ⁷ S ⁶ D	91.93	0.0	0.22	0.01	99.43	0.0	0.0	0.33	1847	1837	-10
	51787.92	3d7	${}^{4}\mathbf{P}$	34.46	0.2	7.8	3.06	52.49	1.09	34.78	0.58		855	
	52735.83	3d54s5d	⁶ S ⁷ S ⁶ D	33.44	0.02	1.43	0.24	60.14	0.12	3.13	34.92		1439	
	54949.60	3d54s4d	⁶ S ⁷ S ⁶ D	43.47	0.06	1.79	3.91	91.41	0.01	0.08	2.74		1979	
3/2														
	17568.48	3d64s	⁵ D ⁶ D	99.25	0.0	99.33	0.0	0.51	0.0	0.0	0.15	469.5	521	52
	23719.52	3d64s	⁵ D ⁴ D	97.97	1.3	98.08	0.01	0.48	0.0	0.0	0.14	35.96	149	113
	27248.00	3d54s2	${}^{4}\mathbf{P}$	96.58	97.96	1.04	0.55	0.03	0.06	0.36	0.01	236.83	249	12
	30425.71	3d54s2	^{4}D	96.2	97.62	1.59	0.64	0.05	0.07	0.01	0.01	451	458	7
	34463.37	3d64s	${}^{3}\mathbf{P} {}^{4}\mathbf{P}$	58.49	0.99	96.66	0.12	1.6	0.01	0.25	0.38		725	
	35165.06	3d64s	${}^{3}F {}^{4}F$	76.94	0.97	94.75	0.02	1.75	0.0	2.09	0.41	239.83	127	-113

Tablo 4.21: Mn I elementinin çift pariteli konfigürasyonlarının enerji seviyelerine karşılık gelen, beklenen konfigürasyonlar, bu öz vektör bileşenlerinin konfigürasyonlara göre yüzde olarak dağılımları ve deneysel olarak kullanılan A değerleri, teorik olarak hesaplanan A değerleri aralarındaki farklar ile birlikte verilmiştir. Enerji değerleri cm⁻¹, A değerleri MHz olarak verilmiştir.

Konfigürasyonlar üzerinde % olarak dağılımları Terim J Edeneysel Konfig. % 3d⁶4s 3d⁵4s5s 3d⁵4s4d 3d⁵4s6s $3d^54s^2$ 37586.03 3/2 3d64s $^{3}P^{2}P$ 58.66 0.16 97.61 0.03 ⁶S ⁷S ⁸D 46706.09 3d54s4d 96 76 0.0 0.0 0.0

Tablo 4.21'in devamı:

	46706.09	3d54s4d	⁶ S ⁷ S ⁸ D	96.76	0.0	0.0	0.0	99.84	0.0	0.0	0.16	1160.2	1235	75
	47218.15	3d54s4d	6S 7S 6D	91.65	0.0	0.41	0.03	99.22	0.0	0.0	0.34	684	728	44
	49591.51	3d54s5s	2 S 3 S 4 S	93.46	0.0	0.0	99.71	0.04	0.08	0.17	0.0	-1510	-976	534
	51718.22	3d7	${}^{4}P$	49.44	0.29	9.25	5.46	32.42	1.57	50.65	0.37	56.96	37	-20
	52702.23	3d54s5d	⁶ S ⁷ S ⁸ D	95.45	0.0	0.01	0.0	1.17	0.0	0.01	98.81	1640	1463	-177
	52735.01	3d54s5d	⁶ S ⁷ S ⁶ D	17.06	0.0	3.59	0.2	75.97	0.1	2.02	18.12		281	
	54953.21	3d54s4d	⁶ S ⁵ S ⁶ D	32.19	0.0	0.99	2.12	95.44	0.01	0.12	1.32		1135	
5/2														
	0.00	3d54s2	⁶ S	99.78	99.83	0.0	0.14	0.0	0.03	0.0	0.0	-72	-71	1
	17451.52	3d64s	⁵ D ⁶ D	99.27	0.0	99.33	0.0	0.51	0.0	0.0	0.15	434	494	60
	23549.20	3d64s	⁵ D ⁴ D	98.04	1.26	98.12	0.01	0.47	0.0	0.0	0.14	-141	4	145
	25281.04	3d54s2	${}^{4}G$	99.11	99.32	0.2	0.4	0.02	0.05	0.0	0.01	596.16	626	30
	27201.54	3d54s2	${}^{4}P$	95.72	97.78	1.2	0.55	0.03	0.06	0.36	0.01	89.93	143	53
	30419.61	3d54s2	^{4}D	95.78	97.65	1.55	0.65	0.05	0.07	0.01	0.01	288.1	324	36
	33825.49	3d64s	${}^{3}P {}^{4}P$	58.45	1.18	96.5	0.11	1.59	0.01	0.23	0.38		788	
	35114.98	3d64s	${}^{3}P {}^{4}F$	76.15	0.96	94.71	0.2	1.74	0.0	2.16	0.41	446.7	454	7

1.52

0.0

112

 $A_{deneysel}$

 $3d^7$

0.31

 $3d^54s5d$

0.36

A_{teorik}

63

 ΔA

Tablo 4.21'in devamı:

J	$E_{deneysel}$	Konfig.	Terim	%		Konfigü	irasyonlar	üzerinde %	6 olarak da	ğılımları		$A_{deneysel}$	A_{teorik}	ΔΑ
					$3d^54s^2$	$3d^64s$	3d ⁵ 4s5s	3d ⁵ 4s4d	3d ⁵ 4s6s	$3d^7$	$3d^54s5d$			
5/2	37789.93	3d64s	${}^{3}G {}^{4}G$	94.11	0.29	96.91	0.1	2.13	0.01	0.09	0.48		238	
	38934.94	3d64s	${}^{3}F {}^{2}F$	74.55	3.29	94.21	0.05	1.7	0.0	0.35	0.4		643	
	41403.93	3d54s5s	⁶ S ⁷ S ⁶ S	94.21	0.15	0.63	98.99	0.03	0.19	0.0	0.01	808.5	851	43
	46707.03	3d54s4d	⁶ S ⁷ S ⁸ D	96.69	0.0	0.0	0.0	99.83	0.0	0.0	0.16	722.5	613	-109
	47215.61	3d54s4d	⁶ S ⁷ S ⁶ D	91.65	0.01	0.38	0.04	99.22	0.0	0.0	0.34	528	556	28
	49415.35	3d54s5s	⁶ S ⁵ S ⁶ S	36.59	0.11	0.13	95.33	0.02	3.64	0.78	0.0	-642	-677	-35
	50904.68	3d54s6s	⁶ S ⁷ S ⁶ S	31.54	0.48	0.84	59.6	0.85	33.72	4.5	0.02		-389	
	51638.17	3d7	${}^{4}\mathbf{P}$	63.4	0.39	6.17	12.44	15.08	2.18	63.52	0.22	-15	44	59
	52702.48	3d54s5d	⁶ S ⁷ S ⁸ D	96.59	0.0	0.0	0.0	0.35	0.0	0.0	99.65	551.6	774	222
	52733.22	3d54s5d	⁶ S ⁷ S ⁶ D	38.87	0.08	0.16	17.14	42.4	0.03	0.06	40.12		542	
	54950.81	3d54s4d	⁶ S ⁷ S ⁶ D	32.44	0.17	0.21	0.35	95.89	0.03	1.07	2.28		1698	
7/2														
	17282.00	3d64s	⁵ D ⁶ D	99.29	0.0	99.34	0.0	0.51	0.0	0.0	0.15	457	518	61
	23296.67	3d64s	⁵ D ⁴ D	98.14	1.14	98.25	0.0	0.47	0.0	0.0	0.14	-162	-2	160
	25287.74	3d54s2	^{4}G	99.21	99.32	0.21	0.4	0.02	0.05	0.0	0.01	437.07	459	22
	30354.21	3d54s2	4 D	97.56	97.76	1.46	0.65	0.05	0.07	0.0	0.01	233.8	256	22
	34423.27	3d64s	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	97.27	0.0	98.18	0.0	1.46	0.0	0.0	0.35	158.9	212	53

Tablo 4.21'in devamı:

J	$E_{deneysel}$	Konfig.	Terim	%		Konfigü	rasyonlar i	üzerinde %	olarak da	ğılımları		A _{deneysel}	A _{teorik}	ΔΑ
					$3d^54s^2$	$3d^64s$	3d ⁵ 4s5s	3d ⁵ 4s4d	3d ⁵ 4s6s	$3d^7$	3d ⁵ 4s5d			
7/2	35041.37	3d64s	${}^{3}F {}^{4}F$	75.1	0.94	94.6	0.02	1.73	0.0	2.29	0.4	561	570	9
	37737.22	3d64s	${}^{3}G {}^{4}G$	94.2	0.29	96.81	0.09	2.13	0.01	0.19	0.48		436	
	38669.60	3d64s	${}^{3}F {}^{2}F$	72.89	4.07	93.54	0.05	1.67	0.0	0.27	0.39		280	
	39431.31	3d54s5s	⁶ S ⁷ S ⁸ S	97.51	0.0	0.0	99.92	0.0	0.08	0.0	0.0	737	-437	-1100
	41230.30	3d64s	${}^{3}G {}^{2}G$	91.53	3.84	93.11	0.07	1.95	0.0	0.58	0.44		633	
	46708.33	3d54s4d	⁶ S ⁷ S ⁸ D	96.62	0.0	0.0	0.0	99.83	0.0	0.0	0.16	527.6	431	-97
	47212.06	3d54s4d	⁶ S ⁷ S ⁶ D	91.79	0.0	0.2	0.05	99.4	0.0	0.0	0.35	474	474	0
	50157.63	3d54s6s	⁶ S ⁷ S ⁸ S	96.75	0.0	0.0	0.22	0.01	99.77	0.0	0.0	696	696	0
	52702.79	3d54s5d	⁶ S ⁷ S ⁸ D	96.58	0.0	0.0	0.0	0.34	0.0	0.0	99.66	512.6	569	57
	52730.41	3d54s5d	⁶ S ⁷ S ⁶ D	59.72	0.0	0.01	0.02	38.39	0.0	0.0	61.58		508	
	54946.55	3d54s4d	⁶ S ⁵ S ⁶ D	27.78	0.0	0.08	0.01	93.41	0.02	0.0	6.48		1240	
9/2														
	17052.29	3d64s	⁵ D ⁶ D	99.28	0.0	99.34	0.0	0.51	0.0	0.0	0.15	503	570	67
	25285.43	3d54s2	${}^{4}G$	99.27	99.31	0.21	0.4	0.02	0.05	0.0	0.01	395.2	412	17
	34343.90	3d64s	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	97.06	0.01	98.18	0.0	1.45	0.0	0.01	0.35	398.7	409	10
	34938.70	3d64s	${}^{3}F {}^{4}F$	74.18	0.95	94.4	0.02	1.73	0.0	2.49	0.4	643	638	-5
	37630.62	3d64s	${}^{3}G {}^{4}G$	93.42	0.27	96.84	0.09	2.11	0.01	0.22	0.47		551	
	38120.18	3d64s	${}^{3}\mathrm{H}{}^{2}\mathrm{H}$	94.58	0.41	97.74	0.0	1.41	0.0	0.1	0.34		569	

Tablo 4.21'in devamı:

J	E_{deneysel}	Konfig.	Terim	%	% Konfigürasyonlar üzerinde % olarak dağılımları							$A_{deneysel}$	A _{teorik}	ΔΑ
					$3d^54s^2$	3d ⁶ 4s	3d ⁵ 4s5s	3d ⁵ 4s4d	3d ⁵ 4s6s	$3d^7$	3d ⁵ 4s5d			
9/2	41031.48	3d64s	${}^{3}\mathrm{G}{}^{2}\mathrm{G}$	91.75	3.74	93.13	0.07	1.94	0.01	0.68	0.44		334	
	46710.15	3d54s4d	⁶ S ⁷ S ⁸ D	96.61	0.0	0.0	0.0	99.83	0.0	0.0	0.16	449.7	378	-72
	47207.28	3d54s4d	^{6}S ^{7}S ^{6}D	92.61	0.0	0.19	0.0	99.43	0.0	0.0	0.37	465	422	-43
	52703.10	3d54s5d	⁶ S ⁷ S ⁸ D	96.14	0.0	0.0	0.0	0.7	0.0	0.0	99.29	485.7	495	9
	52726.39	3d54s5d	⁶ S ⁷ S ⁶ D	35.35	0.0	0.26	0.5	62.51	0.0	0.01	36.72		473	
	54938.94	3d54s4d	${}^{4}F {}^{5}F {}^{6}D$	53.86	0.0	0.07	0.01	87.35	0.04	0.0	12.54		588	
11/2														
	25265.74	3d54s2	${}^{4}G$	99.25	99.31	0.21	0.4	0.02	0.05	0.0	0.01	405.3	416	11
	34250.52	3d64s	$^{3}\mathrm{H}$ $^{4}\mathrm{H}$	97.57	0.0	98.2	0.0	1.44	0.0	0.0	0.35	515.6	530	14
	37148.66	3d54s2	^{2}I	98.4	98.94	0.13	0.81	0.03	0.07	0.0	0.01		539	
	37420.24	3d64s	${}^{3}G {}^{4}G$	89.85	0.24	97.14	0.08	2.06	0.01	0.01	0.46		595	
	38008.70	3d64s	${}^{3}\mathrm{H}{}^{2}\mathrm{H}$	90.77	0.36	97.77	0.01	1.42	0.0	0.09	0.34		386	
	43139.27	3d64s	${}^{1}\mathrm{I} {}^{2}\mathrm{I}$	96.16	0.08	96.42	0.02	2.89	0.0	0.0	0.59		291	
	46712.58	3d54s4d	⁶ S ⁷ S ⁸ D	96.78	0.0	0.0	0.0	99.83	0.0	0.0	0.16	426.7	386	-40
	52705.23	3d54s5d	⁶ S ⁷ S ⁸ D	96.69	0.0	0.0	0.0	0.23	0.0	0.0	99.77	434.7	482	47
13/2														
	34138.88	3d64s	${}^{3}\mathrm{H}{}^{4}\mathrm{H}$	98.11	0.0	98.21	0.0	1.43	0.0	0.0	0.35	620.6	622	1
	37164.25	3d54s2	^{2}I	99.0	99	0.08	0.81	0.03	0.07	0.0	0.01		505	
	43053.30	3d64s	${}^{1}I {}^{2}I$	96.3	0.07	96.41	0.02	2.9	0.0	0.0	0.59		661	

5. TARTIŞMA VE SONUÇ

5.1. TEK KONFİGÜRASYONLAR İÇİN SONUÇLAR

Manganez elementinin, manyetik dipol aşırı ince yapı sabiti *A* değerleri, 158 enerji seviyesi için teorik olarak belirlendi.

3d⁵4s6p tek pariteli konfigürasyonu ile ilgili teorik değerler bu çalışmada diğer tek pariteli konfigürasyonlarla birlikte ilk defa ele alınmıştır.

Înce yapı hesabı sonunda, tek pariteli konfigürasyonlar için bulunan teorik g değerleri ile deneysel g değerleri arasında iyi uyum gözlenmiştir. 111 deneysel g değerine karşılık bulduğumuz teorik g değerleri arasındaki farklar (Δ g), sadece adet 14 adet enerji seviyesinde sapma göstermiştir. En yüksek Bu yüksek Δ g değeri, J=3/2'de 3d⁵4s4p konfigürasyonuna ait E_{deneysel}=47782.43 cm⁻¹ enerji seviyesinde 0.805 olarak bulunmuştur. Bu yüksek değerli Δ g faktörleri için belirgin bir teorik açıklama yoktur.

Konfigürasyonlar ve terim yüzde oranlarına bakıldığında, tek pariteli konfigürasyonlar için yapılan ince yapı hesabı sonucunda, enerji düzeylerinden sadece 20 tanesi güçlü konfigürasyon karışımı gösterirken konfigürasyonların çoğu %85'den daha saf olduğu belirlenmiştir.

Tek pariteli konfigürasyonlar için yapılan aşırı ince yapı (hfs) hesabında toplam literatürde bulunan 88 adet deneysel manyetik dipol aşırı ince yapı sabiti kullanılarak, denklem (4.1)'deki lineer denklem sistemi oluşturulmuştur. Bu denklem sisteminin çözümü ile aşırı ince yapı tek-elektron parametreleri elde edildi. Lineer denklem sisteminin çözümünden elde edilen aşırı ince yapı tek-elektron parametrelerinin ortalama sapması 25 MHz olarak bulundu.

Mayetik dipol aşırı ince yapı sabiti *A* değerleri deneysel olarak henüz belli olmayan enerji seviyeleri için, teorik manyetik dipol aşırı ince yapı *A* değerleri verildi. Daha sonra, bulunan aşırı ince yapı tek-elektron parametreleri kullanılarak ince yapı hesapları yapılan bütün tek konfigürasyonlara ait enerji seviyelerinin teorik manyetik dipol aşırı ince yapı sabitleri *A*'lar bulundu ve deneysel olarak bilinen *A* değerleri ile karşılaştırıldı. Sonuçların uyum içinde olduğu gözlendi.

5.2. ÇİFT KONFİGÜRASYONLAR İÇİN SONUÇLAR

Manganez elementinin, manyetik dipol aşırı ince yapı sabiti *A* değerleri, 82 enerji seviyesi için teorik olarak belirlendi.

 $3d^{5}4s5s$, $3d^{5}4s4d$, $3d^{5}4s6s$ ve $3d^{5}4s5d$ seviyeleri ile ilgili teorik değerler bu çalışmada $3d^{5}4s^{2}$, $3d^{6}4s$ ve $3d^{7}$ konfigürasyonlarıyla birlikte ilk defa ele alınmıştır.

Înce yapı hesabı sonunda, tek pariteli konfigürasyonlar için bulunan teorik g değerleri ile deneysel g değerleri arasında iyi uyum gözlenmiştir. 55 deneysel g değerine karşılık bulduğumuz teorik g değerleri arasındaki farklar (Δ g), sadece adet 5 adet enerji seviyesinde sapma göstermiştir. En yüksek Bu yüksek Δ g değeri, J=5/2'de 3d⁵4s5s konfigürasyonuna ait E_{deneysel}=49415.35 cm⁻¹ enerji seviyesinde 0.402 olarak bulunmuştur. Bu yüksek değerli Δ g faktörleri için belirgin bir teorik açıklama yoktur. Bu 5 adet enerji seviyesi dışında deneysel ve teorik g değerleri uyum içindedir.

Konfigürasyonlar ve terim yüzde oranlarına bakıldığında, çit pariteli konfigürasyonlar için yapılan ince yapı hesabı sonucunda, enerji düzeylerinden 6 tanesi güçlü konfigürasyon karışımı gösterirken, konfigürasyonların çoğu %85'den daha saf olduğu belirlenmiştir.

Çift pariteli konfigürasyonlar için yapılan aşırı ince yapı (hfs) hesabında toplam literatürde bulunan 54 adet deneysel manyetik dipol aşırı ince yapı sabiti kullanılarak, denklem (4.2)'deki lineer denklem sistemi oluşturulmuştur. Bu denklem sisteminin çözümü ile 3d⁵4s², 3d⁶4s, 3d⁵4s5s, 3d⁵4s4d, 3d⁵4s6s, 3d⁷, 3d⁵4s5d konfigürasyonlarına ait aşırı ince yapı tek-elektron parametreleri elde edildi. Lineer denklem sisteminin çözümünden elde edilen aşırı ince yapı tek-elektron parametrelerinin ortalama sapması 160 MHz olarak bulundu.

Mayetik dipol aşırı ince yapı sabiti *A* değerleri deneysel olarak henüz belli olmayan enerji seviyeleri için, teorik manyetik dipol aşırı ince yapı *A* değerleri verildi. Daha sonra, bulunan aşırı ince yapı tek-elektron parametreleri kullanılarak ince yapı hesapları yapılan bütün tek konfigürasyonlara ait enerji seviyelerinin teorik manyetik dipol aşırı ince yapı sabitleri *A*'lar bulundu ve deneysel olarak bilinen *A* değerleri ile karşılaştırıldı.

Ortalama sapma değerinin yüksek olmasının sebepleri şunlardır:

Yapılan çalışmada konfigürasyon sayısının çok olması nedeni ile konfigürasyonlar arası etkileşmeler fazla olmaktadır. Bu da açısal katsayıların doğru olarak hesaplanmasını etklemektedir. Diğer bir sebep de, hesaplanan konfigürasyonlara ait teorik olarak mümkün olan 1701 adet enerji seviyesi bulunmaktadır. Bunlardan sadece 82 adet enerji seviyesinin deneysel enerji değerleri bellidir. Ayrıca, bu 82 deneysel enerji seviyesinin sadece 54 enerji seviyesine ait manyetik dipol aşırı ince yapı sabiti değerleri bilinmektedir. Bu nedenle, deneysel ince yapı enerji değerlerinin belirlenmesine ve bu enerji seviyelerine ait deneysel olarak, manyetik dipol aşırı ince yapı sabitlerinin bulunması gerekmektedir.

KAYNAKLAR

- [1]. AYGÜN, E.,ZENGİN, D.M., 1988, Atom ve Molekül Fiziği, Bilim Yayınları, Ankara, 975-556-017-3.
- [2]. BRANSDEN, B.H., JOACHAIN C.J. 1999, Atom ve Molekül Fiziği, Bilim Yayıncılık, Ankara, 975-7636-03-7.
- [3]. WOODGATE, G. K., 1970, *Elemantary Atomic Structure*, McGraw-Hill Publishing Company Limited, England, 07 094137 8.
- [4]. BÜTTGENBACH, S, 1982, *Hyperfine Structure in 4d-and5d-Shell Atoms*, Springer Verlag Berlin, 3-540-11740-7.
- [5]. ERTMER, W., HOFER, B., 1976, Zero-Field Hyperfine Structure Measurements of the Metastable States 3d²4s ⁴F_{3/2,9/2} of ⁴⁵Sc Using Laser-Fluorescence Atomic-Beam-Magnetic-Resonance Technique, Z. Phys. A 276, 9.
- [6]. BOOTH, A.J., BLACKWELL, D.E., 1983, The effect of Hyperfine Structure on Stellar Abundance Analysis, Mon. Not. Roy. Astron. Soc. 204, 777.
- [7]. LIVINGSTON, W., WALLACE, L., 1991, An Atlas of the Solar Spectrum in the Infrared (1.1to 5.4 μm), National Solar Obs. Tech. Rep. 91-001, Tucson, AZ.
- [8]. BRODZINSKI, T., KRONFELDT, H., -D., KROPP, J.-R. and WINKLER, R., 1987, *Hyperfine Structure-investigations in the Mangan I 3d⁵4s4p ND 4s5s*^{*}, Z. Phys. D 7, 161.
- [9]. COWAN, R. D., 1981, The Theory of Atomic Structure and Spectra, Berkeley, Los Angeles, London: University of California Press, 0-520-03821-5. ftp://plasma-gate.weizmann.ac.il/pub/software/dos/cowan
- [10]. HANDRICH, E., STEDUELL, A., WALTHER, H., 1969, The Hyperfine Splitting of the 3d⁵4s4p Levels of Mn I and the Quadrapole Moment of ⁵⁵Mn, Phys. Lett. 29 A, 486.

- [11]. DAVIS, S. J., WRIGTH, J.J. and BALLING, L.C., 1971, *Hyperfine Structure of the Ground State of* ⁵⁵*Mn*, Physical Review A 3, 1220.
- [12]. LUC, P., GERSTENKORN, 1972, Hyperfine Structure of Multiplet Lines e⁶D-y⁶P of Manganese I, Astronomy and Astrophysics 18, 209.
- [13]. LUC, P., 1972, Interpretation Theorique de la Structure Hyperfine Dipolaire Magnetique des Termes z⁸P, z⁶P, y⁶P de la Configuration 3d⁵4s4p du Manganese I, Physica 62, 239.
- [14]. DEMBCZYNSKI, J., ERTMER, W., JOHANN, U., PENSELIN, S., and STINNER, P., 1979, Laser-Rf Double-Resonance Studies of the Hperfine Structure of Metastable Atomik States of ⁵⁵Mn, Z. Phys. A 291, 207.
- [15]. DEMBCZYNSKI, J., 1980, Fine Structure Interactions in the First Spectrum of the Ti, V, Mn and Fe Atoms, Physica 100 C, 105-123.
- [16]. JOHANN, U., DEMBCZYNSKI, J., and ERTMER, W., 1981, Experimental Evidence for Far Configuration Mixing Effects on Off-Diagonal Hfs Interaction Between the (3d+4s)^{N+2} Configurations of Free Atoms, Z. Phys. A 303, 7-12.
- [17]. KRONFELDT, H., -D., KROPP, J., -D., SUBARIC, A., WINKLER, R., 1985, *Hyperfine Structure and Lifetime of the Mn I Levels 3d⁵4s4p z⁴P_{5/2,3/2} with Laser-Atomic-Beam-Spectroscopy*, Z. Phys. 332, 349-350.
- [19]. MELENDEZ, J., 1999, *Mn I Hyperfine Structure in the Near Infrared*, Mon. Not. R. Astron. Soc. 307, 197.
- [20]. LEFÈBVRE, P., -H., GARNIR, H., -P. ve BIEMONT, E., 2003, Hyperfine Structure for Neutral Manganese Lines of Astrophysical Interest, A&A 404, 1153-1158.

- [21]. BAŞAR, G., BAŞAR, F. G., ACAR, G., ÖZTÜRK, K., İ. ve KRÖGER, S., 2003, Hyperfine Structure Investigations of Mn I Part I: Experimental and Theoretical Studies of the Hyperfine Structure in the Even Configurations, Physica Scripta. Vol. 67, 476-484.
- [22]. ACAR, F. G., BAŞAR, G., BAŞAR, G., ÖZTÜRK, K., İ. VE KRÖGER, S., 2005, Hyperfine Structure Investigation of Mn I Part II: Theoretical Studies of the Odd Configurations, Physica Scripta Vol. 71, 245-250.
- [23]. BLACKWELL-WHİTEHEAD, R. J., PICKERING, J. C. and PEARSE, O., 2005, Hyperfine Structure Measurements of Neutral Manganese With Fourier Transform Spectroscopy, The Astrophysical Journal Supplement Series, 157:402-409.
- [24]. AYGÜN, E., ZENGÎN, D.M., *Kuantum Fiziği*, 2000, Bilim Yayınları, Ankara, 975-556-005-X.
- [25]. TAYLOR, J. R., ZAFARITOS, C., 1996, *Fizik ve Mühendislikte Modern Fizik*, Güven Yayınları, İstanbul.
- [26]. HAKEN, H., WOLF, H.C., 2000, *The Physics of Atoms And Quanta*, Springer-Verlag Berlin, 3-540-67274-5.
- [27]. THORNE, A., LITZEN, U., JOHANSSON, S., 1999, Spectrophysics, Springer Verlag Berlin, 3-540-65117-9.
- [28]. KARAOĞLU, B., 1997, Kuantum Mekaniğine Giriş, Bilgitek Yayıncılık, İstanbul.
- [29]. SVANBERG, S., 1991, Atomic and Molecular Spectroscopy, Springer-Verlag Berlin, 3-540-52594-7.
- [30]. COWAN, R., D., 1993, Programs RCN/RCN2/RCG/RCE, ftp://plasmagate.weizmann.ac.il/pub/software/dos/cowan [Ziyaret Tarihi:12 Kasım 2006
- [31]. BAŞAR, G.,1994, Lazer Spektroskopisi ve İnterferens Spektroskopisi ile Rhenium ve Platin Elementlerinin İzotopik Kaymalarının ve Hiper İnce Yapı Ayrılmalarının İncelenmesi, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
- [32]. ÖZTÜRK, K., İ., 2003, Manganez I ve Skandiyum I Elementlerinin İnce ve Aşırı İnce Yapılarının İncelenmesi, Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü,İstanbul.

- [33]. http://en.wikipedia.org [Ziyaret Tarihi: 26 Kasım 2006]
- [34]. http://www.odev.sitesi.com [Ziyaret Tarihi: 2 Aralık 2006]
- [35]. http://www.chemicalelements.com/elements/mn.html [Ziyaret Tarihi: 2 Aralık 2006]
- [36]. http://www.darphane.gov.tr [Ziyaret Tarihi: 3 Aralık 2006]
- [37]. http://www.biltek.tubitak.gov.tr/periyodik/gecis.html [Ziyaret Tarihi: 3 Aralık 2006]
- [38]. KOPFERMANN H., SCHNEIDER E. E., 1958, Nuclear Moments, Academic Press Inc, Catalog Card Number 56-6607.
- [39]. NIST Atomic Spectra Database: http://www.nist.gov [Ziyaret Tarihi: 26 Kasım 2006]
- [40]. SANDARS, P. G. H., BECK, 1965, Relativistic Effects in Many Electron Hyperfine Structure I. Theory, J., Proc. R. Soc. London, Ser. A 289, 97
- [41]. BEHRENS, H. O., GUTHÖHRLEIN, G. H., 1983, High Resolution Optogalvanic Spectroscopy as a Useful Tool in the Determination of Atomic Hyperfine Parameters and Isotopic Shifts, Journal de Physique, Colloque C7, No.11, Tome 44, 149.
- [42]. WALTHER, H., 1962, Hyperfine Structure Measurements of Mn I, Z. Phys., 170, 507.
- [43]. GARSTANG, R. H., 1984, Hyperfine Structure and Sunspot Spectral Lines, J. Opt. Soc. Am. B., vol. 1, No. 2, 311.

ÖZGEÇMİŞ

09.01.1982 tarihinde Ankara'da doğdum. İlk öğrenimimi 1987-1992 yılları arasında Sarıyer İlköğretim Okulu'nda (Sarıyer,İstanbul), orta öğrenimimi 1992-1995 yılları arasında Sarıyer Ortaokulu'nda (Sarıyer,İstanbul), lise öğrenimimi de 1995-1999 yılları arasında Behçet Kemal Çağlar Süper Lisesi'nde (Baltalimanı,İstanbul) tamamladım. 2000-2004 yılları arasında, İstanbul Üniversitesi Fen Fakültesi Fizik Bölümü'nde (Vezneciler,İstanbul) üniversite öğrenimi gördüm. 2004 yılında İstanbul Üniversitesi Fizik Bölümü, Atom ve Molekül Fiziği Programı'nda yüksek lisans öğrenimime başladım.

16 Mayıs-24 Haziran 2005 tarihinde İtalya'da yapılan International Summer School on Soft Matter: Nanoscience and Photonics, science başlıklı yaz okuluna ve Technology – 7th International Conference on Novel Materials and Applications (NOMA) konferansına katıldım. 03-08 Eylül 2006 tarihinde arasında İstanbul'da yapılan XXVIII European Congress on Molecular Spectroscopy konferansına katıldım. 05-07 Nisan 2007 tarihinde İstanbul'da yapılan The International Congress on Spectroscopic Methods for Conservation of Cultural Heritage konferansına katıldım.

