

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKTORA TEZİ

PRO-TYR, GLU-ASN VE ALA-GLN DİPEPTİDLERİNİN KONFORMASYON ANALİZİ VE AB-INITIO DFT YÖNTEMLERİ İLE TİTREŞİM FREKANS VE KİPLERİNİN İNCELENMESİ

Serda KECEL

Fizik Anabilim Dalı Atom ve Molekül Fiziği Programı

Danışman Prof. Dr. Ayşen ERBÖLÜKBAŞ ÖZEL

EKİM 2009

İSTANBUL

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKTORA TEZİ

PRO-TYR, GLU-ASN VE ALA-GLN DİPEPTİDLERİNİN KONFORMASYON ANALİZİ VE AB-INITIO DFT YÖNTEMLERİ İLE TİTREŞİM FREKANS VE KİPLERİNİN İNCELENMESİ

Serda KECEL

Fizik Anabilim Dalı Atom ve Molekül Fiziği Programı

Danışman Prof. Dr. Ayşen ERBÖLÜKBAŞ ÖZEL

EKİM, 2009

İSTANBUL

Bu çalışma 26/10/2009 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı Atom ve Molekül Fiziği programında Doktora Tezi olarak kabul edilmiştir.

<u>Tez Jürisi</u>

Prof. Dr. Ayşen E. ÖZEL (Danışman) İstanbul Üniversitesi Fen Fakültesi Prof. Dr.Gönül BAŞAR İstanbul Üniversitesi Fen Fakültesi

Prof. Dr.Çetin ARIKAN İstanbul Üniversitesi Fen Fakültesi

Prof. Dr.Galip TEPEHAN Kadir Has Üniversitesi Fen Fakültesi Prof. Dr.Sevim AKYÜZ Kültür Üniversitesi Fen Fakültesi

ÖNSÖZ

Lisans, yüksek lisans ve doktora öğrenimim sırasında ve tez çalışmalarım boyunca gösterdiği her türlü destek, içtenlik, emek ve yardımlarından dolayı çok değerli hocam Sayın Prof. Dr. Ayşen ERBÖLÜKBAŞ ÖZEL'e, en içten dileklerimle teşekkür ederim.

Çalışmalarım süresince bilgisini ve tecrübesini bizlerden esirgemeyen saygıdeğer hocam Prof. Dr. Sevim AKYÜZ'e çok teşekkür ederim.

Ayrıca yüksek lisans çalışmalarıma başladığımdan beri benden desteklerini esirgemeyen sayın hocalarım Prof. Dr. Gönül BAŞAR, Doç. Dr. Yasemin AKKAYA, veYard. Doç. Dr. Kubilay BALCI 'ya ve burada ismini sayamadığım bütün hocalarıma en içten dileklerimle teşekkür ederim.

Azerbaycan'daki çalışmalarımız sırasında bizleri en iyi şekilde ağırlayıp, her türlü konuda yardımcı olan, vakitlerini ve emeklerini bizler için harcayan Sayın Prof. Dr. Niftali GODJAYEV, Doç. Dr. Gulshen AGAEVA, Doç Dr. Gülnare HAGVERDİ ve ismini sayamadığım tüm hocalarıma teşekkürü bir borç bilirim.

Çalışma arkadaşlarım Öğr. Gör. Sefa ÇELİK, Araş. Gör. Alev ER,'e ve Araş.Gör. Feyza GÜZELÇİMEN'e sonsuz teşekkürler.

Yaşamım boyunca sevgi inanç ve desteklerini esirgemeyen sevgili anne ve babama da herzaman yanımda oldukları için teşekkür ederim. Bu çalışmamın uygulama kısmını destekleyen İstanbul Üniversitesi'ne teşekkürü bir borç bilirim.

Ekim, 2009

Serda KECEL

Bu çalışma İstanbul Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Yürütücü Sekreterliği tarafından desteklenmiştir. **Proje No:T 3171**

İÇİNDEKİLER

ÖNSÖZ	İ
İÇİNDEKİLER	İİİ
ŞEKİL LİSTESİ	.vii
TABLO LİSTESİ	Xİ
SEMBOL LİSTESİ	.XV
ÖZET	xvi
SUMMARYX	vii
1. GİRİŞ	1
2. GENEL KISIMLAR	5
3. MALZEME VE YÖNTEM	9
3. 1. MOLEKÜLER SPEKTROSKOPİ	9
3. 2. KIRMIZI-ALTI (IR) SPEKTROSKOPİSİ	15
3.2.1 Kırmızı Altı Spektrumu	16
3.2.2. Kuantum Mekaniksel Görüş Altında Kırmızı Altı Spektrumu	17
3.2.3. Klasik Mekaniksel Görüş Altında Kırmızı Altı Spektrumu	19
3. 3. RAMAN SPEKTROSKOPİSİ	20
3.3.1 Klasik Görüş Altında Raman Spektrumunun İncelenmesi	23
3.3.2. Kuantum Mekaniksel Görüş Altında Raman Spektrumunun	
İncelenmesi	25
3.4. IR SPEKTROMETRELERİ	27
3.4.1. IR Spektrometresinin Bölümleri	27
3.4.2. FT-IR Spektrometreleri	30
3.4.2.1. İnterferogramın Elde Edilmesi	31
3.4.2.2. Fourier Dönüşümü İle İnterfegramı Spektruma Dönüştürmek	33
3.5. İKİ ATOMLU MOLEKÜLLERİN TİTREŞİM ENERJİ SEVİYELERİ	34

3.5.1. Harmonik Yaklaşım	35
3.5.2. Harmonik Olmayan Yaklaşım	37
3.6.BORN-OPPENHEIMER YAKLAŞIKLIĞI	40
3.7. MOLEKÜLER ENERJİ HESAPLAMA METODLARI	42
3.7.1. Moleküler Mekanik Metodlar	42
3.7.2. Kuantum Mekaniksel Metodlar	
3.7.2.1. Ab-initio Metodu	43
3.7.2.1.1. Density Functional Theory (DFT)	44
3.7.3. Yarı Deneysel Metodlar	49
3.8. MOLEKÜLÜN TİTREŞİM FREKANSLARININ BELİRLENMESİ.	50
3.8.1. Deneysel Yöntemler	50
3.8.1.1. Grup Frekansları	50
3.8.1.2. İzotopik Yer Değiştirme	53
3.8.2. Teorik Yöntemler	
3.8.2.1. Normal Koordinat Analizi	54
3.9. ATOMİK ORBİTALLER	57
3.9.1. Slater Tipi Atomik Orbitaller	
3.9.2. Gaussian Tipi Atomik Orbitaller	
3.10. AMİNO ASİTLERİN YAPISI VE ÖZELLİKLERİ	61
3.10.1 Amino Asitler Hakkında Genel Bilgiler	61
3.10.2. Amino Asitlerin Yapısı	
3.10.3. Amino Asitlerin İşaretlendirilmesi	63
3.10.4. Peptid Bağı ve Peptid Grubu	63
3.11. MOLEKÜLER MEKANİK YÖNTEM İLE BİYOLOJİK	
MOLEKÜLLERİN İNCELENMESİ	64
3.11.1. Teorik Konformasyon Analizi Yöntemi	
3.11.2. Molekülün Toplam Enerjisinin Hesaplanması	
3.11.2.1. Hidrojen Bağ Enerjisi	67
3.11.2.2. Torsiyon Enerjisi	68
3.11.2.3. Elektrostatik Etkileşme Enerjisi	69
3.11.2.4. Van der Waals Etkileşme Enerjisi	70
3.12. KONFORMASYON ANALİZİNDE KULLANILAN NOTASYON	71
3.13.GAUSSIAN 03 PROGRAMI	73
4 BULGULAR	75

4.1. ALA-GLN DİPEPTİDİ	
4.1.1. Ala-Gln Dipeptidini oluşturan Amino Asitler	75
4.1.1.1 Alanin ve Glutamin Amino Asitleri	75
4.1.2. Ala-Gln Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları	77
4.1.2.1. Nötral Ala-Gln Dipeptidinin programa tanıtılması	77
4.1.2.2. Alanin ve Glutamin'in Konformasyon Bölgeleri	77
4.1.2.3. Nötral Ala-Gln Teorik Konformasyon Analizi Sonuçları	
4.1.3. Ala-Gln Dipeptidinin Teorik Titreşim Dalga Sayıları Hesapları	80
4.1.4. Ala-Gln Dipeptidiyle ilgili Deneysel Sonuçlar	90
4.1.4.1. Ala-Gln Dipeptidiyle ilgili Deneysel Sonuçlar (Raman Spektrumları)	91
4.1.5. Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar	93
4.1.5.1. Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik Hesaplar	
4.1.5.2 Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik Spektrumlar	102
4.1.5.3 Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik ve	
Deneysel Spektrumlar	103
4.2 PRO-TYR DİPEPTİDİ	105
4.2.1. Pro-Tyr Dipeptidini oluşturan Amino Asitler	105
4.2.1.1 Prolin ve Tirosin Amino Asitleri	105
4.2.2. ProTyr Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları	107
4.2.2.1. Nötral Pro-Tyr Dipeptidinin programa tanıtılması	107
4.2.2.2. Prolin ve Tirosin'in Konformasyon Bölgeleri	108
4.2.2.3. Nötral Pro-Tyr Dipeptidinin Teorik Konformasyon Analizi Sonuçları	109
4.2.3. Pro-Tyr Dipeptidiyle ilgili Teorik Titreşim Dalga Sayıları Hesabı	110
4.2.4. Pro-Tyr Dipeptidiyle ilgili Deneysel Sonuçlar (IR-Raman Spektrumları)122
4.2.4.1. Pro-Tyr Dipeptidiyle Çalışılmış Monomer ve Dimer yapıların Teorik ve	Deneysel
Spektrumların Karşılaştırılması	124
4.3 PGLU-ASN DİPEPTİDİ	125
4.3.1. Pglu-Asn Dipeptidini oluşturan Amino Asitler	125
4.3.1.1 Pyroglutamik Asit ve Asparajin Amino Asitleri	125
4.3.2. Pglu-Asn Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları	127
4.3.2.1. Nötral Pglu-Asn Dipeptidinin programa tanıtılması	127
4.3.2.2. Pglu ve Asparagin'in Konformasyon Bölgeleri	128
4.3.2.3. Nötral Pglu-Asn Dipeptidinin Teorik Konformasyon Analizi Sonuçları	128
4.3.3. Pglu-Asn Dipeptidiyle ilgili Teorik Titreşim Dalga Sayıları Hesabı	130
4.3.4. Pglu-Asn Dipeptidiyle ilgili Deneysel Sonuçlar	141

4.3.5. Pglu-Asn Dipeptidiyle Çalışılmış Monomer ve Dim	ıer yapıların Teorik ve
Deneysel Spektrumların Karşılaştırılması	
5.TARTIŞMA VE SONUÇ	145
KAYNAKLAR	160
EKLER	
ÖZGEÇMİŞ	

ŞEKİL LİSTESİ

Şekil 3.1	:Elektromanyetik dalgalar, dalga boyları 10						
Şekil 3.2	:Molekülün I ve II olarak gösterilen elektronik seviyeleri,v titreşim						
	seviyeleri ve j dönü seviyeleri 12						
Şekil 3.3	:Küçük bir molekülün soğurma spektrumlarının görünüşü 14						
Şekil 3.4	:Kırmızı-altı spektroskopisi bölgeleri 15						
Şekil 3.5	:Bir maddeden geçen ışınımın soğurulması sonucu şiddetindeki						
	azalma16						
Şekil 3. 6	:Bir Raman Spektrometresinin Blok Diyagramı						
Şekil 3. 7	:Jasco NRS 3100 Micro Raman Spektrometresi 22						
Şekil 3.8	:Bir Kırmızı-altı spektrometresinin blok diyagramı						
Şekil 3.9	:Bir FT-IR (Fourier Dönüşüm Infrared Spektrometre)' nin blok						
	diagramı						
Şekil 3.10	:FT-IR Spektrometresinin bazı devre elemanları 31						
Şekil 3.11	:Harmonik titreșici için potansiyel enerji eğrisi						
Şekil 3.12	:Anharmonik titreşici için potansiyel enerji eğrisi						
Şekil 3.13	:Peptid bağı						
Şekil 3.14	:Amino Asitlerin ψ ve ϕ enerji bölgeleri						
Şekil 3.15	:Amino Asitlerin yan zincir bölgeleri						
Şekil 4.1	:Alanin amino asidinin yapısı						
Şekil 4.2	:Glutamin amino asidinin yapısı 76						
Şekil 4.3	:Nötral haldeki Ala-Gln dipeptidinin, atom numaraları yazılmış, dihedral						
	dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı						
Şekil 4.4	:a)Nötral Ala-Gln dipeptidi için Teorik Konformasyon analizi sonucuyla						
	elde ettiğimiz en düşük enerjiye sahip (-0,18kcal/mol) konformasyonun						
	Gaussian03 programına giriş geometrisi ve b)Gaussian03 programında						
	DFT-RB3LYP/6-31G++(d,p) baz setiyle hesaplandıktan sonraki						
	geometrik yapısı						
Şekil 4.5	:Nötral Ala-Gln dipeptidinin atom numaralarıyla belirtilmiş üç boyutlu						
	yapısı ve molekül içi Hidrojen bağları 81						

Şekil 4.6	:Nötral Ala-Gln dipeptidinin , NRS 3100 Micro Raman spektrometre ile
	elde edilen Raman spekrumu
Şekil 4.7	:4000cm ⁻¹ -400cm ⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm-1
	çözünürlük) ile elde edilen IR soğurma spekrumu
Şekil 4.8	:Ala-Gln dipeptidinin, NRS 3100 Micro Raman spektrometre ile elde
	edilen spekrumları (3400 cm ⁻¹ -200 cm ⁻¹ bölgesi.)
Şekil 4.9	:Nötral Ala-Gln dipeptidinin monomer yapıda, teorik ve deneysel
	spektrumları
Şekil 4.10	Nötral Ala-Gln dipeptidinin çalışılmış dimer yapıları93
Şekil 4.11	: Dimer a moleküller arası Hidrojen bağları101
Şekil 4.12	:Tüm dimer yapıların karşılaştırmalı teorik spektrumları102
Şekil 4.13	:Ala-Gln dipeptidinin DFT/631-G++(d,p) baz seti ile hesaplanan teorik
	spektrum ve deneysel FT-IR spektrumunun karşılaştırılması103
Şekil 4.14	:Dimer (a) formda Ala -Gln dipeptidinin, DFT/6-31G(d,p) baz seti ile
	hesaplanan teorik spektrum ve deneysel FT-IR spektrumunun
	karşılaştırılması103
Şekil 4.15	:Ala-gln Dipeptidi monomer yapıda DFT/6-31G++(d,p) baz seti ile
	hesaplanan teorik spektrumu (kırmızı), dimer (a) formda Ala-Gln
	dipeptidinin, DFT/6-31G(d,p) baz seti ile hesaplanan teorik spektrum
	(mavi), deneysel FT-IR spektrumunun karşılaştırılması104
Şekil 4.16	:Ala-gln dipeptidi monomer teorik spektrumu (kırmızı), dimer (a) teorik
	spektrum (mavi), deneysel FT-IR spektrumunun (siyah) ve deneysel
	Raman spektrumu (yeşil) karşılaştırılması104
Şekil 4.17	Prolin amino asidinin yapısı105
Şekil 4.18	:Tirosin amino asidinin yapısı106
Şekil 4.19	Nötral haldeki Pro-Tyr dipeptidinin atom numaraları yazılmış, dihedral:
	dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı107
Şekil 4.20	a)Nötral Pro-Tyr dipeptidi için Teorik Konformasyon analizi sonucuyla:
	elde ettiğimiz en düşük enerjiye sahip (-7,14kcal/mol) konformasyonun
	Gaussian03 programına giriş geometrisi ve b) Gaussian03 programında
	DFT-RB3LYP/6-31G++(d,p) baz setiyle hesaplandıktan sonraki
	geometrik yapısı

Şekil 4.21	1 : Monomer Nötral Pro-Tyr dipeptidindeki molekül içi Hidrojen					
	bağları111					
Şekil 4.22	:Dimer yapıdaki nötral Pro-Tyr dipeptidinin yapısı112					
Şekil 4.23	: Pro-Tyr dipeptidinin NRS 3100 Micro Raman spektrometre ile					
	edilen spekrumları.(3500 cm ⁻¹ -300 cm ⁻¹ -bölgesi.)122					
Şekil 4.24	: Pro-Tyr dipeptidinin 4000cm ⁻¹ -400cm ⁻¹ IR bölgede Jasco 300E FT-IR					
	spektrometre (2cm ⁻¹ çözünürlük) ile elde edilen IR soğurma					
	spekrumu122					
Şekil 4.25	: Pro-Tyr Raman spektrumları, a)200-1200 cm ⁻¹ ,b)800-2000cm-					
	¹ ,c)2800-3600cm- ¹					
Şekil4.26	:Monomer ve dimer yapıdaki Pro-Tyr dipeptidinin, teorik					
	spektrumlarının ve deneysel spektrumlarının karşılaştırılması124					
Şekil 4.27	:Pyroglutamik amino asidinin yapısı125					
Şekil 4.28	:Asparajin amino asidinin yapısı126					
Şekil 4.29	Nötral haldeki Pglu-Asn dipeptidinin,atom numaraları yazılmış,dihedral:					
	dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı127					
Şekil 4.30	a)Nötral Pglu-Asn dipeptidi için Teorik Konformasyon analizi:					
	sonucuyla elde ettiğimiz en düşük enerjiye sahip (-5,90 kcal/mol)					
	konformasyonun Gaussian03 programına giriş geometrisi ve b)					
	Gaussian03 programında DFT-RB3LYP/6-31G++(d,p) baz setiyle					
	hesaplandıktan sonraki geometrik yapısı130					
Şekil 4.31	: Nötral Pglu-Asn dipeptidindeki molekül içi Hidrojen bağları131					
Şekil 4.32	:Pglu-Asn dipeptidinin çalışılmış dimer a yapısı132					
Şekil 4.33	:Pglu-Asn dipeptidinin çalışılmış dimer b yapısı133					
Şekil 4.34	: Pglu-Asn dipeptidinin NRS 3100 Micro Raman spektrometre ile elde					
	edilen spekrumları.(4000 cm ⁻¹ -400 cm ⁻¹ -bölgesi.)141					
Şekil 4.35	: Pglu-Asn dipeptidinin 4000cm ⁻¹ -400cm ⁻¹ IR bölgede Jasco 300E FT-IR					
	spektrometre (2cm ⁻¹ çözünürlük) ile elde edilen IR soğurma					
	spekrumu141					
Şekil 4.36	: Pglu-Asn dipeptidinin Raman spektrumları, a)200-1000cm ⁻¹ ,b)800-					
	2000cm ⁻¹ ,c)2800-3600cm ⁻¹					

Şekil 4.37	:Monomer ve dimer yapılardakiPglu-Asn dipeptidinin karşılaştırmalı					
	spektrumları143					
Şekil 4.38	:Monomer ve dimer yapıdaki Pglu-Asn dipeptidinin, teorik					
	spektrumlarının ve deneysel spektrumlarının karşılaştırılması144					
Şekil 4.39	: a) Nötral Ala-Gln dipeptidi, b) Dimer a yapısı, c)Dimer b yapısı,					
	d) Dimer d yapısı, e) Dimer e yapısı hidrojen bağları gösterimi168					
Şekil 4.40	: Prolin sol a)100-800cm ⁻¹ ,b)700-1400cm ⁻¹ ,c)1300-1700cm ⁻¹ ,Tirosin sağ					
	a)100-800cm ⁻¹ ,b)600-1300cm ⁻¹ ,c)1200-1700cm ⁻¹ Raman					
	spektrumları					
Şekil 4.41:	Pglu-Asn dipeptidinin a) monomer yapısı molekül içi hidrojen bağları, b)					
	Dimer a yapısı ve moleküller arası H. bağları, c) Dimer c yapısı ve					
	moleküller arası H. bağları					

TABLO LÍSTESÍ

:Alanin amino asidinin konformasyon bölgeleri															
:Glutamin amino asidinin konformasyon bölgeler															
:Nötral Ala-Gln dipeptidinin tüm konformasyon bölgelerine göre incelenen															
konformasyon sayıları ve minimum enerjinin (global enerjinin) bulunduğu															
konformasyon bölgesi															
:-0,18 kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin global															
konformasyon için dönü açılar79															
:-0,18 kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin global															
konformasyona etki eden zincir etkileşimleri															
:-0,18 kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin global															
konformasyona etki eden diğer etkileşme enerjileri															
:-0,18 kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin global															
konformasyonda meydana gelen Hidrojen bağları ve enerjileri															
:Konformasyon analizi sonucu enerjisi -018 kcal/mol olarak belirlenen konformasyonun farklı baz setler kullanılarak elde edilen enerji değerleri															
								:Nötral Ala-Gln dipeptidindeki molekül içi Hidrojen bağları ve uzaklıkları81							
								-0.18 kcal/mol olarak belirlenen Nötr Ala-Gln dipeptidinin monomer global							
konformasyonun farklı baz setler kullanılarak hesaplanan temel titreşim															
dalgasayıları ve bu konformasyondan oluşturulan en düşük enerjili dimer															
yapının hesaplanan temel titreşim dalgasayıları ve deneysel															
dalgasayıları															
:Nötral Ala-Gln dipeptidi ile oluşturulmuş farklı konformasyonlara sahip dimer															
yapıların DFT/B3LYP 6-31G(d,p) baz seti ile elde edilen enerji değerleri ve bu															
enerjilerin karsılastırılması															

Tablo 4.12 :	Farklı dimer yapıların Gaussian03 programı kullanılarak DFT/B3LYP 6-							
	31G(d,p) baz seti ile hesaplanan teorik titreşim dalga sayıları ve deneysel							
	dalga sayılarının karşılaştırılması ve en düşük enerjili Dimer a yapısının							
	titreşim kiplerinin saptanması							
Tablo 4.13	:Dimer a molekülünde molekül içi ve moleküller arası Hidrojen Bağları101							
Tablo 4.14	Prolin amino asidinin konformasyon bölgeleri108							
Tablo 4.15	:Tirosin amino asidinin konformasyon bölgeleri108							
Tablo 4.16	:Nötral Pro-Tyr dipeptidinin tüm konformasyon bölgelerine göre incelenen							
	konformasyon sayıları ve minimum enerjinin (global enerjinin)bulunduğu							
	konformasyon bölgesi							
Tablo 4.17	:-7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global konformasyon							
	için dönü açıları109							
Tablo 4.18	:-7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global							
	konformasyona etki eden diğer etkileşme enerjileri109							
Tablo 4.19	:-7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global							
	konformasyona etki eden zincir etkileşimleri110							
Tablo 4.20	:-7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global							
	konformasyonda meydana gelen Hidrojen bağları ve enerjileri110							
Tablo 4.21	:Konformasyon analizi sonucu enerjisi -7,14 kcal/mol olarak belirlenen							
	minimum enerjili konformasyonun farklı baz setler kullanılarak elde edilen							
	enerji değerleri111							
Tablo 4.22	:Nötral Pro-Tyr dipeptidindeki molekül içi Hidrojen bağları ve uzaklıkları112							
Tablo 4.23	:Dimer yapıda Nötral Pro-Tyr dipeptidindeki Hidrojen bağı uzaklıkları112							
Tablo 4.24	:-7,14kcal/mol olarak belirlenen Nötr Pro-Tyr dipeptidinin monomer global konformasyonu ve bu konformasyondan oluşturulan en düşük enerjili dimer							
	yapının farklı baz setler kullanılarak elde edilen titreşim dalga sayıları ve							
	deneysel değerleri113							
Tablo 4.25	:Pglu amino asidinin konformasyon bölgeleri128							
Tablo 4.26	:Asparajin amino asidinin konformasyon bölgeleri128							
Tablo 4.27	:Nötral Pglu-Asn dipeptidinin tüm konformasyon bölgelerine göre incelenen							
	konformasyon sayıları ve minimum enerjinin (global enerjinin) bulunduğu							
	konformasyon bölgesi							
Tablo 4.28	:-5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global							

xii

	konformasyon için dönü açıları129
Tablo 4.29	:-5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global
	konformasyona etki eden zincir etkileşimleri129
Tablo 4.30	:-5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global
	konformasyona etki eden diğer etkileşme enerjileri129
Tablo 4.31	:-5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global
	konformasyonda meydana gelen Hidrojen bağları ve enerjileri129
Tablo 4.32	:Konformasyon analizi sonucu enerjisi -5,90 kcal/mol olarak belirlenen
	konformasyonun farklı baz setler kullanılarak elde edilen enerji değerleri130
Tablo 4.33	:Nötral Pglu-Asn dipeptidindeki molekül içi Hidrojen bağları
	ve uzaklıkları
Tablo 4.34	:Dimer a yapıda Nötral Pglu-Asn dipeptidindeki moleküller arası Hidrojen
	bağı uzaklıkları132
Tablo 4.35	:Dimer b yapıda Nötral Pglu-Asn dipeptidindeki moleküller arası Hidrojen
	bağı uzaklıkları133
Tablo 4.36	:Konformasyon analizi sonucu enerjisi -5,90 kcal/mol olarak belirlenen
	konformasyondan oluşturulan dimer yapıların enerji
	değerleri133
Tablo 4.37	:-5,90 kcal/mol olarak belirlenen Nötr Pglu-Asn dipeptidinin monomer global
	konformasyonu ve bu konformasyondan oluşturulan en düşük enerjili dimer
	yapının farklı baz setler kullanılarak elde edilen titreşim dalga sayıları ve
	deneysel değerleri
Tablo 4.38:	Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP-6-31G(d,p) baz seti ile
	hesaplanmış optimize bağ uzaklıkları (Å)169
Tablo 4.39 :	Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP-6-31G(d,p) baz seti ile
	hesaplanmış optimize açı değerleri (⁰)170
Tablo 4.40 :	Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP-6-31G(d,p) baz seti ile
	hesaplanmış optimize dihedral açı değerleri (⁰)171
Tablo 4.41 :	Pro-Tyr dipeptidinde DFT/B3LYP-6-31G(d,p) baz setiyle elde edilmiş
	Optimized bağ uzunlukları(Å)172
Tablo 4.42 :	Pro-Tyr dipeptidinde DFT/B3LYP-6-31G(d,p) baz setiyle elde edilmiş
	optimize açı değerleri (⁰)173

Tablo 4.43 :	Pro-Tyr	dipeptidinde	DFT/B3LYP-	-6-31G(d,p)	baz	setiyle	elde	edilmiş
	optimize d	lihedral açı de	eğerleri (⁰)					175
Tablo 4.44:	PGlu-Asn	dipeptidinde	DFT/B3LYP-	-6-31G(d,p) t	az set	iyle elde	edilm	iş
	optimize b	oağ uzunlukla	rı(Å)					179
Tablo 4.45:	Pglu-Asn	dipeptidinde	DFT/B3LYI	P-6-31G(d,p)	baz	setiyle	elde	edilmiş
	optimize a	açı değerleri (⁰)					180
Tablo 4.46:	Pglu-Asn	dipeptidinde	DFT/B3LYI	P-6-31G(d,p)	baz	setiyle	elde	edilmiş
	optimize o	dihedral açı de	eğerleri (⁰)					182

SEMBOL LİSTESİ

- **c** : Işık hızı
- λ : Dalgaboyu
- **v** : Titreşim kuantum sayısı
- $\boldsymbol{\upsilon}$: Frekans
- Ψ : Dalga fonksiyonu
- μ : Dipol moment
- **k** : Yay sabiti

ÖZET

PRO-TYR, GLU-ASN VE ALA-GLN DİPEPTİDLERİNİN KONFORMASYON ANALİZİ VE AB-INITIO DFT YÖNTEMLERİ İLE TİTREŞİM FREKANS VE KİPLERİNİN İNCELENMESİ

Bu çalışmada antikanser kemoterapi dipeptidi olarak bilinen Ala-Gln ve nöropeptid olarak bilinen Glu-Asn ve Pro-Tyr dipeptidleri ile analogları teorik konformasyon analizi yöntemi ile konformasyon olanakları, yapı fonksiyon ilişkisini saptamak amacıyla incelenmiştir. Dipeptidlerin konformasyon analizi yöntemi ile kararlı konformerleri saptanmış, en kararlı konformerin titreşim spektrumları hesaplanarak katı fazdaki IR ve Raman spektrumları ile karşılaştırılmıştır. Tüm titreşim dalga sayıları ve geometri optimasyonları Gaussian 03 paket programıyla gerçekleştirilmiştir. Dipeptidlerin titreşim dalga sayıları ve modları ab-initio metodlardan olan Yoğunluk Fonksiyon teorisi (DFT) ve 6-31G++(d,p) baz seti ile gerçekleştirilmiştir. Ayrıca dipeptidlerin toplam enerji dağılımı (TED) da hesaplanmış ve titreşim kipleri belirlenmiştir. Bu tip moleküllerin keşfi ve aktivitelerinin iyileştirilmesi özellikle biyokimya ve farmakoloji de aktif bir çalışma alanıdır.

SUMMARY

CONFORMATIONAL ANALYSIS AND AB INITIO DFT STUDIES OF VIBRATIONAL FREQUENCIES AND MODES OF PRO-TYR, GLU-ASN AND ALA-GLN DIPEPTIDES

In this work, conformational possibilities of anticancer chemotherapy dipeptide Ala-Gln and neuropeptide Glu-Asn and Pro-Tyr dipeptides and their anologs were investigated by theoretical conformational analysis, in order to determine the structure-function relation. Conformational analysis of dipeptides have been performed and the most stable conformation of the dipeptides were determineted. The vibrational spectra of the most stable conformers were calculated and compare with those of experimental IR and Raman spectra in solid phase. All vibrational wavenumbers and geometry optimization calculations were performed by 'Gaussian 03' packet program. The vibrational wavenumbers and modes of the dipeptides have been calculated using the ab-initio methods including, Density Functional Theory (DFT) with 6-31G++(d,p) basis sets. In addition, the total energy distributions (TED) of the dipeptides have been calculated and vibrational modes have been determined. Discovery of this type molecules and improvement of their activities is an active working area especially in biochemistry and pharmacology.

1. GİRİŞ

Glutamin amino asidi vücutta en çok bulunan amino asitlerdendir. İçerdiği Azot atomu bakımında metabolizma için önemli bir yer tutmaktadır. Özellikle cerrahi hastalara ilave glutamin amino asidi verilerek, ameliyattan sonra oluşacak bazı enfeksiyonlar kontrol altında tutulmaktadır. Glutamin temel bir amino asittir ve ciddi fiziksel stres altında, vücudun sentezlediğinden daha fazla glutamine ihtiyacı vardır. Glutamin sindirim sisteminin ve beyin fonksiyonlarının normal çalışması için, vücuttaki artık amonyağın çıkarılmasına ve idrar amonyağının taşınmasında önemli roller oynar. Bağışıklık sistemi için önemli bir amino asit olan Glutamin, bağırsak epitel dokusunun korunmasında da önemli bir enerji kaynağıdır. Aynı zamanda hayVanlarla yapılan deneyler göstermiştir ki beslenme yoluyla glutamin ilavesi, mideyi, kemoterapi ve radrasyon ışınlarının zararlı etkilerinden korumaktadır.

Ala-Gln dipeptidi memelilerde hücre ortamlarında glutamin yerine kullanılabilinir. Sulu çözelti içerisinde glutamin dayanıksızdır ve çözelti içinde glutaminin bozunması hücre yüzeyi üzerinde zararlı etkilere sebep olmaktadır. [1]. Ala-Gln dipeptidi, çeşitli yara tedavilerinde de kullanılmaktadır [2,3]. Glutamin bağışıklık sistemi için çok önemli rol oynar.Oral yollardan glutamin takviyesi alımı, özellikle kemoterapinin sebep olduğu ağız mukoza iltihaplarında azalmaya sebep olur ve böylelikle kanserli hastaların iyileşmesinde büyük önem teşkil eder [4,5,6]. Alanine-Glutamine (Ala-Gln) dipeptidi özellikle kanser tedavisinde kullanılan bir kimyasal olarak bilinir ve doğal öldürücü hücre fonksiyonlarını onararak tümör büyümesini azaltıcı yönde yardımcı olur ve antitümör ilaçların seçiciliğini arttırır. Glutamin kanser tedavilerinde karsılasılan kalp, nörolojik, mide ve bağırsak gibi mümkün komplikasyonların etkilerini azaltmasının yanı sıra pahalı olmayan bir maddedir. Ala-Gln dipeptid ürünleri, önemli organ fonksiyon bozuklarının azaltılmasında ve ameliyat sonrası enfeksiyon riskinin en aza indirilmesinde iyi sonuçlar vermiştir. Ayrıca Glutamin amino asidinin, kemoterapide ve vücuda radyasyon alımında zehirli maddeleri engellediği görülmüştür [7,8].

Ala-Gln dipeptidi, başlangıç ve ileri evre pankreas iltihabı gibi hastalıkları iyileştirici etkisi bulunmuştur. Akut pankreas iltihabı hastalığında, glutamin miktarındaki azalmanın, hastalık oranını arttırdığı gözlenmiştir [9,10]. Ala-Gln dipeptidi baş ve boyun kanserinde hastaların mukoza iltihabını önlemede de kullanılmaktadır. Baş ve boyun kanseri olan hastalarda Ala-Gln takviyesi ile önemli derecede mukoza iltihaplarında düşüşler ölçülmüştür [11]. Ala-Gln takviyesi koleraktal kanserli hastalarda ameliyat sonrası hastalardaki azot miktarını dengede tutarak, bağışıklık fonksiyonlarının geliştirilmesinde yardımcı olmaktadır [12].

Pro-Tyr dipeptidi ve Pro-Tyr dipeptinin içinde bulunduğu birçok peptid yapılar içerdiği Pro¹⁰ Tyr¹¹ yapısı ile bir nöropeptid olarak literatür de yer almaktadır. Pro-Tyr-NH₂ dipeptidi sülpiridin yapısına benzer bir yapıdadır ve deney hayVanları üzerine yapılan çalışmalarda nörolertik özellik gösterdiği bilinmektedir [13,14]. Sulpirid, şizofreni hastalığının bazı semptonlarında etkilidir. Bu ilaç güçlü bir kimyasala sahiptir ve anti pisikotik amisulpride benzer özelliklere sahiptir. Sulpiride, beyinde bulunan dopamin reseptörlerinin geçmesine engel olur, dopamin nörotransmitter olarak adlandırılan doğal bir bileşiktir. Sinir hücrelerinde depolanan kimyasaldır ve sinir hücreleri arasında mesaj iletilmesini sağlar ayrıca ruh durum ve davranışlarını düzenler. Psikotik hastalıkların, beyindeki nörotransmiterlerin (özellikle dopamin) aktivitesindeki bozukluk sebebiyle oluştuğu bilinmektedir. Şizofreni beyindeki dopaminin fazla çalışmasıyla oluşan bir hastalıktır ve bu hastalığın belirtileri olan hayal ve halüsülasyonlara sebep olur. Sulpiride beyinde dopamine etki eden reseptörleri bloke eder. Bu engelleme dopamin aktivitesindeki aşırılığı önler ve şizofreninin kontrol altında tutulmasını sağlar. Şizofrenik hastalar, pozitif sempton (halusinasyon, aşırı kızgınlık vb.) ve negatif semptonlara (sosyal izolasyon ve duygu eksikliği vb.) sahiptirler. Sulpiride akut ve kronik şizofreninin iyileştirilmesinde kullanılmaktadır

Fareler üzerinde yapılan çalışmalar göstermiştir ki N-caproyl-L-prolyl-Ltyrosine methyl esteri, beynin yapısı için çok önemli fonksiyonlara sahip olan bir nöro transmitterdir [15,16]. Glu-Asn dipeptidinin analoğu olan Pglu-Asn-NH₂ dipeptidini nörolojik özelliklere sahiptir. Pyroglutamyl (Pglu) ve prolyl-içeren dipeptitler bilinen klasik nootropik ilaç olan piracetam'ın yapısına benzemektedir. Alzheimer ve Parkinson hastalıklarının tedavisinde kullanılır [17,18]. Aktivitesi en yüksek olan pyroglutamyl dipeptidinin yapısı pGlu-Asn-NH₂. pGlu-Asn-NH₂ dipeptidinin 4 farklı konformeri sentezlenip fareler üzerinde hafıza testleri yapılmıştır. Yapılan çalışmalara göre pGlu-Asn-NH₂ dipeptidinin aktif resöptör mekanizmaları incelenmiştir [19,20].

Pglu-Asn ve Pro-Tyr dipeptidleri nöropeptidler olarak bilinirler. Nöropeptidler merkezi sinir sisitemine degişik yönlerden etki etmektedir. Örnegin fizyolojik uykuyu kontrol ederler, ağrı kesici ozellikleri vardır ve bu önemli etkileri nedeniyle Parkinson hastalığı, Şizofreni, Alzheimer hastalığı ve hafiza kaybı gibi birçok hastalığın tedavisinde kullanılmaktadır. Böyle çeşitli ve önemli işlevleri olduğu için nöropeptidleri incelemek son yıllarda arştırmacıların ilgi konusu olmuştur. Biyolojik moleküllerin yerine getirdikleri foksiyonlar, doğrudan doğruya moleküllerin uzaysal yapıları ile ilgilidir bu nedenle biyolojik reaksiyonların gerçekleşmesiyle ilgili sorulara açıklık getirebilmek icin etkileşmekte olan moleküllerin konformasyonlarının belirlenmesi büyük önem taşımaktadır. Bir molekülün ortaya koyabileceği biyolojik aktivite, molekülün sahip olacağı konformasyon özelliklerine bağlıdır. Moleküller biyolojik aktivelerini, en kararlı durumuna karşılık gelen temel elektronik enerji düzeylerinde gösterirler. Moleküllerin biyolojik aktiviteleri belirlenirken, molekülün serbest halde ve en kararlı konformasyonunun belirlenmesi gerekmektedir.

Tez çalışmamız dahilinde incelediğimiz üç ayrı dipeptinin serbest halde mümkün olan konformerleri ve en kararlı konformerleri Teorik Konformasyon Analizi Metodu yöntemiyle incelenmiş ve en düşük enerjili konformasyon ve enerjisi Prof.Dr.Niftali Godjayev ve çalışma arkadaşlarının hazırladığı bir Fortran [25] programıyla elde edilmiştir.En düşük enerjiye sahip kararlı konformerler daha sonra Gaussian 03 paket [58] programına tanıtılmış, Yoğunluk Fonksiyon Teorisi (DFT) yardımıyla geometri optimizasyonları gerçekleştirilmiş ve herbir kararlı konformere ait titreşim dalga sayıları hesaplanmıştır. Harmonik yaklaşıklık kullanılarak hesaplanan dalga sayıları, uygun ölçek çarpanları kullanılarak, deneysel değerlere yaklaştırılmıştır. Titreşim kiplerinin belirlenmesi için, 'Toplam Enerji Dağılımı' (%TED) hesabı, PQS ve SQM programları kullanılmıştır.[59] Titreşim kiplerine ait temel bantların belirlenebilmesi için, oda sıcaklığında, katı fazda, dipeptidlerin IR spektrumları (Jasco 300E FT-IR spektrometre 2cm⁻¹ çözünürlük ile) ve Micro Raman spektrumları (NRS 3100 spektrometre ile) kayıt edilmiş, belirgin bantlar spektrumlar üzerine işaretlenmiş ve literatürde yer alan grup frekanslarından yararlanılmıştır. Ek olarak dipeptidlerin dimer yapıları da incelenmiş ve titreşim dalga sayıları hesaplanarak, monomer yapıları ile farklar tablo ve şekiller üzerinde belirtilmiştir.

Literatür taraması sonucu, incelenen dipeptidlerle ilgili herhangi bir teorik ve spektroskopik çalışmaya rastlanmamıştır. Biyolojik aktivite gösteren ve ilaçların yapılarında yer alan Pglu-Asn, Pro-Tyr ve Ala-Gln dipeptidlerinin en kararlı konformasyonları teorik ve deneysel spektroskopik yöntemler kullanılarak belirlenen çalışmamız orijinal bir çalışmadır.

2. GENEL KISIMLAR

Canlı organizmayı oluşturan çok sayıdaki biyolojik moleküllerin yerine getirdikleri çok önemli ve değişik fonksiyonlar, doğrudan doğruya molekülün yapısına bağlıdır. Bu bakımdan biyolojik moleküllerin incelenmesi çok önemlidir. Canlı organizmada, özellikle insan vücudunda oluşan değişik işlemleri anlamak için ve bu işlemlerde ortaya çıkabilecek bozuklukları önleyebilmek için mutlaka molekül yapısının bilinmesi gerekir. Canlı sistemlerin yapısında bulunan peptidlerin biyolojik aktiviteleri, üç boyutlu yapılarıyla ilişkilidir. Biyolojik aktif peptidlerin konformasyon özellikleri ve üç boyutlu yapıları bu moleküllerin yapı-fonksiyon ilişkilerinin belirlenmesine olanak sağlar.

Biyolojik moleküllerin yerine getirdikleri fonksiyonlar, doğrudan doğruya moleküllerin uzaysal yapıları ile ilgilidir bu nedenle biyolojik reaksiyonların gerçekleşmesiyle ilgili sorulara açıklık getirebilmek icin etkileşmekte olan moleküllerin konformasyonlarının belirlenmesi büyük önem taşır. Biyolojik moleküller kendi fonksiyonlarını enerjisinin minimum değerinde yerine getirirler. Çalışmanın teorik hesaplamalardan oluşan bölümünde, incelenen dipeptidlerin teorik konformasyon analizi sonucu belirlenmiş olan en kararlı konformasyonu, Godjayev ve çalışma grubu tarafından yazılan bir Fortran programıyla belirlenmiştir. Molekülleri incelerken moleküle dahil olan atomlar arasında mevcut olan bütün karşılıklı etkiler göz önüne alınarak, molekülün geometrik yapısını ve mümkün yapılarını ve bunlara karşılık gelen enerjileri belirtmeye imkan veren metoda Teorik Konformasyon Analizi Metodu (T.K.A) denir.

Moleküllerin konformasyonel yapıları ile elektronik ve titreşimsel özellikleri arasında da doğrudan bağımlılık bulunmaktadır. Bu durum titreşimsel spektroskopi içinde yer alan deneysel ve teorik yöntemlerin molekülllerin konformasyonel özelliklerinin doğru bir biçimde saptanmasında son derece etkili bir araç olarak kullanılmasına olanak vermektedir. Moleküllerin titreşim enerjileri, molekül içi ve moleküller arası etkileşmeye göre değiştiğinden bu enerjilerden yararlanılarak, moleküler etkileşmeler saptanabilir. Moleküler etkileşmeler deneysel olarak IR ve Raman spektroskopileri ile, teorik olarak ab- initio, semi emprical (kuvvet alanı ayarlaması) vb.. yöntemlerle incelenebilir.

Elektronik yapı hesaplama yöntemleri bir molekülün yapısal özellikleri ile ilişkili tüm bilgileri kuantum mekaniksel teori çerçevesinde çok başarılı bir biçimde elde edebilmemize olanak sağlamaktadır. Bu bilgiler içinde molekülün konformasyonel yapısı ve geometrik parametreleri bu yapısal özeliklerden yalnızca ikisidir. Bu çalışmada geometri optimizasyonu ve titreşim enerjisi hesabı Gaussian 03 paket programı kullanılarak yapılmıştır. Gaussian 03 paket programı bir molekülün moleküler geometrisini, titreşim dalga sayılarını hesaplayan kuantum kimyasal bir programdır. Program ab-initio ve semi empirik metodlarla hesap yapabilmektedir. Molekülü oluşturan atomlar titreşim hareketi, atom grupları ise tekli bağ etrafında dönü (içdönme) hareteki yaparlar. Ayrıca molekül bütün olarak ötelenme ve dönü hareketleri yapabilir. Bu hareketlerin karakterleri doğrudan doğruya molekül yapısına bağlıdır. Dolayısıyla molekül içi titreşim ve dönü hareketlerinin incelenmesi molekül yapısı hakkında çok önemli bilgiler sağlamaktadır. Özellikle IR spektroskopisi molekül yapısı hakkında önemli bilgiler vermektedir.

Moleküllerin titreşim frekanslarının belirlenmesinde kullanılacak olan deneysel yöntemlerden biri IR spektroskopisidir. IR spektroskopisi soğurma spektroskopisidir. IR bölge dalga boyu 0,7µm ile 500 µm ve dalga sayısı 10cm⁻¹ ile 10000cm⁻¹ aralığında bir spektral bölgedir. Bu bölge molekülün titreşim ve dönü enerji düzeyleri arasındaki geçişe karşılık gelir. Infrared (titreşim) spektroskopisi, maddenin IR ışınlarını absorblaması üzerine kurulmuş bir spektroskopi dalıdır. IR spektroskopisinde absorblanan ışınların enerjileri, söz konusu madde moleküllerinin titreşim enerjileri kadardır. IR spektroskopisi yöntemi ile moleküllerin titreşim enerji geçişleri incelenmektedir. Dalga sayıları 400 cm⁻¹, den daha küçük ışınların enerjileri tarafından bile kolaylıkla absorbe edilirler.

Infrared spektroskopisi, daha çok yapı analizinde kullanılır ve çoğu kez elektronik ve NMR spektroskopisiyle birlikte uygulanmaktadır. Her maddenin kendine özgü bir IR spektrumu vardır. Bir maddenin IR spektrumu, UV spektrumuna göre daha karışıktır. Molekül içindeki atomların titreşimleri sırasında atomlar arasındaki uzaklık devamlı büyüyüp küçüldüğünden, iki atom arasında titreşim halinde bir elektriksel alan meydana gelir ve bu titreşim IR ışınlarının elektriksel alanının titreşimine uyunca, ışın absorblanır ve ışını absoblayan molekülün elektriksel yük dağılımı daha da asimetrik olur ve dipol momenti büyür. Böylece IR spektroskopisi incelenerek, frekans, şiddet ve bant yarı genişliklerindeki değişimlere bakılarak moleküler yapı hakkında çok önemli bilgilere ulaşılabilir.

Moleküllerin titreşim frekanslarının belirlenmesinde kullanılacak olan bir diğer deneysel yöntem RAMAN spektroskopisidir. Raman spektroskopisi saçılma spektroskopisidir. Görünür veya mor üstü bölgede monokromatik kaynak kullanılır. (Nd-Yag Lazeri, Görünür bölge lazerleri) Madde üzerine maddenin soğuramıyacağı bölgede frekansı bilinen monokromatik emd dalga gönderilir. Fotonun ve molekülün çarpışma öncesi ve sonrası kinetik enerji korunumundan gelen ışığın frekansı ile saçılan ışığın frekansı arasındaki fark belirlenebilir. Bu fark bize molekülün titreşim frekansını verir.

Çalışmamızın ilk kısmında biyolojik aktivite gösteren ve ilaçların yapılarında yer alan Ala-Gln, Pro-Tyr ve Glu-Asn analoğu Pglu-Asn dipeptidinin nötral halleri için konformasyon bölgeleri, moleküler mekanik bir yöntem olan Teorik Konformasyon Analizi Metodu yöntemiyle incelenmiş ve en düşük enerjili konformasyon ve enerjisi Prof.Dr.Niftali Godjaev ve çalışma arkadaşlarının hazırladığı bir Fortran [25] programıyla elde edilmiştir. Daha sonra elde edilen en düşük enerjili konformer, kuantum mekaniksel hesaplamaların içinde bulunduğu Gaussian03 paket programına tanıtılarak, ab-initio hesaplamalarından olan DFT (Yoğunluk Fonksiyon Teorisi) yöntemi, B3LYP fonksiyonu , 6-31++G(d,p) baz seti ile önce optimize edilip sonra titreşim dalga sayıları elde edilmiştir. Titreşim frekanslarının (%TED) toplam enerji dağılımları belirlenerek, titreşim kipleri saptanmıştır. Elde edilen bu teorik frekansların, deneysel frekanslara uygunluk göstermesi için bazı ölçek çarpanları ile çarpılmışlardır.

Bu çalışmada ikili ölçek çarpanı (Dual Scaling Factor) uygulanmıştır [26]. Teorik çalışmaların yanında deneysel çalışmalarla da dipeptidler incelenmiştir.

IR spektrumları, 4000cm⁻¹ -400cm⁻¹ bölgesinde Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlükte) ile, ayrıca Micro Raman spektrumları NRS 3100 spektrometre ile 50cm⁻¹-4000cm⁻¹ bölgelerde kayıt edilerek, spektrumlar üzerinden belirgin pikler işaretlenmiştir. Deneysel ve teorik olarak elde ettiğimiz tireşim frekansları karşılaştırmalı olarak tablolar halinde sunulmuştur. Aynı zamanda dipeptidlerin dimer yapıları da çalışılmış en düşük enerjili dimer yapıların da titreşim frekansları ve kipleri belirlenmiş ve monomer yapılar ile olan farkları şekil ve tablolar halinde sunulmuştur.

3. MALZEME VE YÖNTEM

3. 1. MOLEKÜLER SPEKTROSKOPİ

Spektroskopi, elektromanyetik dalgaların madde ile etkileşmesi ile madde hakkında bilgi edinme tekniğidir. Moleküler spektroskopi, moleküllerin elektromanyetik dalgalarla etkileşmesini inceler. Molekülün yapısıyla ilgili molekül simetrisi, bağ uzunluğu, bağlar arasındaki açılar, bağ kuvvetleri, molekül içi ve moleküller arasındaki kuvvetler ile elektronik dağılım gibi bilgiler spektroskopi çalışmalarından elde edilir.

İki veya daha fazla atomun bir araya gelerek kararlı bir düzen kurmaları ile molekül veya molekül sistemleri oluşur. Atomların molekül içindeki düzen ve kararlılığını incelemek için en iyi yöntem moleküler spektroskopidir. Elektromanyetik dalgalar ile numune molekülleri arasındaki etkileşmeler incelenerek moleküllerin geometrik ve elektronik yapıları, aralarındaki etkileşmeler hakkında birçok bilgiyi elde edebiliriz. Numune molekülleri elektromanyetik dalga ile etkileştiğinde başlangıçtaki enerjisi, elektromanyetik dalgayı soğurması veya salmasıyla değişir. Soğurulan ya da salınan elektromanyetik dalganın frekansı, bant şiddeti incelenerek etkileştiği molekülün simetrisi, bağ uzunlukları, bağ kuvvetleri, kararlılığı gibi önemli bilgilere ulaşabiliriz.

Elektromanyetik dalgalar boşlukta c ışık hızı ile yayılırlar. Bu dalgalar, belirli kaynaktan bir alıcıya enerji ve momentum taşırlar. Elektromanyetik dalgaların çeşitleri aşağıdaki gibidir.

Şekil 3.1: Elektromanyetik dalgalar, dalga boyları.[61]

<u>1-Gama Işınları Bölgesi</u>: Radyoaktif çekirdekler tarafından (60 Co ve 137 Cs gibi) ve belirli nükleer tepkimeler süresince yayınlanan elektromanyetik dalgalardır. Dalga boyları 10^{-11} m ve 10^{-15} m bölgesindedir. Bu ışınlar yüksek derecede girginlik özelliğine sahiptirler; canlı dokular tarafından soğurulduğunda ciddi zararlar oluştururlar.

<u>2-X-</u> Işınları Bölgesi: 10⁻⁸m (10 nm) ile10⁻¹¹m aralığında dalga boylarına sahip elektromanyetik dalgalardır. Atomun iç enerji düzeyleri arasındaki elektronik geçişlere karşılık gelirler.

<u>**3-Mor Üstü ve Görünür (UV) Bölgesi:**</u> Atomun dış enerji düzeyleri arasındaki elektronik geçişleri sırasında oluşurlar. Dalga boyları 8×10^{-7} m ile 2×10^{-7} m aralığında değişir.

<u>4-Kırmızı-Altı Bölgesi</u>: 10⁻³ m 'den görünür ışığın en uzun dalga boyu olan 10⁻⁶ m'ye kadar değişen dalga boylarına sahiptirler. Sıcak cisimler ve moleküller tarafından oluşturulan bu dalgalar, çoğu maddelerce kolaylıkla soğurulurlar. Bir maddenin soğurduğu kırmızı-altı enerji, ısı şeklinde kendini gösterir. Çünkü madde tarafından soğurulan bu enerji vasıtası ile cismin atomları yerinden oynadığından, onların titreşim

ve ötelenme hareketleri artar, dolayısıyla maddede bir sıcaklık artması meydana gelir. Molekülün titreşim enerji geçişleri bu bölgededir. Kendi arasında üç bölgeye ayrılır.

Yakın kırmızı-altı bölgesi: Dalga boyu aralığı 0.7μ m- 2.5μ m arasındadır. Molekül titreşimlerinin üs ton enerji seviyeleri arasındaki geçişler sırasında gözlenir. Frekans aralığı 10^{14} - $4x10^{14}$ Hertz'dir.

Orta kırmızı-altı bölgesi: Dalga boyu aralığı 2.5µm-25µm arasındadır. Moleküllerin titreşim enerji seviyeleri arasındaki geçişler sırasında yayınlanır. Frekans aralığı 10¹³-10¹⁴ Hertz'dir.

Uzak kırmızı-altı bölgesi: Dalga boyu aralığı 25μ m- 500μ m arasındadır. Ağır atomların titreşimleri ve örgü titreşimleri sırasında yayınlanır. Frekans aralığı 6×10^{11} - 10^{13} Hertz'dir.

<u>5-Mikrodalga Bölgesi</u>: 10⁻³ m ile 10⁻¹m arasında değişen dalga boylarına sahiptirler. Kısa dalga boylarından dolayı, hava yolculuklarında kullanılan radar sistemleri ve maddenin atomik ve moleküler parametrelerinin incelenmesi için çok uygundur. Moleküllerin dönü enerji düzeyleri arasındaki geçişlerde yayınlanırlar. Elektron Spin Rezonans (ESR) ve Elektron Paramanyetik Rezonanas (EPR) olayları bu bölgede gerçekleşir.

<u>6-Radvo Frekans Bölgesi</u>: Dalga boyu aralığı 10³m–10⁻¹m kadardır. Çekirdek spin geçişleri sırasında meydana gelirler. Nükleer Manyetik Rezonans (NMR) ve Nükleer Kuadropol Rezonans (NQR) olayları bu bölgede gerçekleşir.

Serbest bir molekülün enerjisini,

 $E_{top} = E_{cekirdek} + E_{elektron}$

olarak yazabiliriz.

Born-Oppenheimer yaklaşımına göre moleküldeki elektronların kütlesi, çekirdeğin kütlesine göre çok çok küçüktür bu nedenle elektronik enerji çekirdek enerjisine göre çok büyüktür. Bu sebepten dolayı elektronik enerji ile çekirdek enerjisi arasındaki etkileşim ihmal edilebilir. Çekirdek enerjisi de dönü ve titreşim enerjilerinin toplamı şeklinde yazılabilir. Titreşim enerjisi, dönü enerjisine göre 1000 kat daha büyük olduğundan, titreşim ve dönü enerjileri arasındaki etkileşim de ihmal edilebilir.

Molekülün toplam enerjisi, molekülün bütününün dönmesi, molekül atomlarının titreşimi ve elektronların molekül içindeki hareketleri gibi enerji bileşenlerinin ayrı ayrı toplamı şeklinde yazmak mümkündür.

 $E_{top} = E_{tit} + E_{d\" on \" u} + E_{\" ote} + E_{el}$

Molekülün ötelenme hareketi kuantize olmadığı için ihmal edilmiştir.

Şekil 3.2: Molekülün I ve II olarak gösterilen elektronik seviyeleri, v titreşim seviyeleri ve j dönü seviyeleri.

Şekil 3.2' de bir molekülün I ve II olarak işaretlenmiş iki farklı elektronik uyarılmış hallerindeki titreşim ve dönme seviyeleri ve bunlar arasındaki mümkün geçişlerden bazılarını göstermektedir. Bu diyagrama göre üç tip optik spektrum şu şekilde birbirinden ayırt edilebilir.

Dönme Spektrumları: Özel bir elektronik halde verilen bir titreşim seviyesindeki, dönme seviyeleri arasındaki geçişlerdir. Bu geçişlerde sadece dönme kuantum sayısı (J)değişir. Bu spektrumlar mikrodalga bölgesinde ya da uzak kırmızı altı bölgede bulunurlar. Tipik olarak oldukça yakın yerleşmiş, eş uzaklıklı spektrum çizgileri takımı olmaktadır.

Dönme Titreşim Spektrumları: Özel bir titreşim halindeki dönme seviyelerinden aynı elektronik terimli başka bir titreşim halindeki dönme seviyelerine olan geçişleri içerir. Elektronik uyarılma hali aynı kalmaktadır. Dönme kuantum sayısı (J) ve titreşim kuantum sayısı (v) değişir. Bu spektrumlar kırmızı altı bölgededir. Bunlar bant çizgileri olarak bilinen oldukça yakın yerleşmiş bir dizi 'bant' tan oluşurlar. Bu spektrumlar kırmızı altı spektroskopisiyle tespit edilebileceği gibi Raman spektroskopisiyle de belirlenebilmektedir.

Elektronik Spektrumlar: Bir elektronik halin değişik titreşim seviyelerinin dönme seviyeleri ile farklı bir elektronik halin dönme ve titreşim seviyeleri arasındaki geçişleri içerir. Bu bir bant sistemi olarak adlandırılır. Bu geçişlerde dönme kuantum sayısı (J), titreşim kuantum sayısı (v), elektronik geçiş kuantum sayılarının hepsi değişir. Spektrumlar kırmızı altı, görünür ve mor üstü bölgede belirlenirler.

Geçiş, yani soğurma veya salma, yönü bu iki terim sembolü arasındaki ok ile işaretlenir. Üst terim bir üs işaretiyle $^{\prime}$ mesela J $^{\prime}$, v $^{\prime}$ gibi ve düşük terim ise iki üs işaretiyle J $^{\prime\prime}$, v $^{\prime\prime}$ işaretlenir.

Molekül spektrumlarındaki spektrum çizgileri, yani iki terim arasındaki geçişler, aşağıdaki gibi ifade edilebilir.

$$\overline{\upsilon}hc = E'_{el} - E''_{el} + E'_{tit} - E''_{tit} + E'_{don} - E''_{don}$$
[Joule]
$$= \Delta E_{el} + \Delta E_{tit} + \Delta E_{don}$$
(3.1)

Genelde

$$\Delta E_{el} \rangle \Delta E_{tit} \rangle \Delta E_{don} \tag{3.2}$$

Dönü Spektrumları için; $\Delta E_{el} = 0 \Delta E_{tit} = 0$ bu durumda sadece dönü geçişlerinde $\overline{v}hc = E'_{don} - E''_{don}$ (3.3)

İfadesi geçerlidir.

Dönü-titreşim Spektrumları için; $\Delta E_{el} = 0$ olduğundan burada geçişler titreşim ve dönü seviyeleri arasında meydana gelmektedir.

$$\overline{\upsilon}hc = E'_{tit} - E''_{tit} + E'_{don} - E''_{don}$$
(3.4)

Bir dönme titreşim bandı özel bir ΔE_{tit} terim geçişine ait olan $\Delta E_{dönü}$ bant çizgilerinin toplamı olmaktadır. Burada elektronik enerji de değişiyor ise, enerjideki üç terimin hepsi bu geçişte değişir ve karşılık gelen ΔE_{elek} elektronik geçişe ait bant sistemi elde edilir. Bir molekülün bant spektrumu deyimi, mümkün bütün elektronik geçişleri içeren bant sistemini göstermektedir.

Elektronik spektrum içindeki üç farklı spekrumun konumları şekil de küçük bir molekül için gösterilmiştir.

Şekil 3.3: Küçük bir molekülün soğurma spektrumlarının görünüşü.

Molekülün saf dönü spektrumu mikrodalga spektroskopisi ile, titreşim spektrumu IR (kırmızı-altı) spektroskopisi ile, elektronik spektrumu ise görünür ve morüstü (UV) spektroskopisi ile incelenir. Molekülün dönü ve titreşim spektrumları ayrıca Raman spektroskopisi ile de incelenir. [31,32,33,34]

3. 2. KIRMIZI-ALTI (IR) SPEKTROSKOPİSİ

Kırmızı altı spektral bölge 0.7µm ile 500µm arasında dalga boyuna veya 10cm⁻¹ ile 10.000cm⁻¹ arasında dalga sayısına sahip olan fotonların oluşturduğu ışınımları içeren spektral bölgedir. Kırmızı altı bölge moleküllerin titreşim ve dönü enerji düzeyleri arasında geçişlerin incelendiği ve molekülün yapısı hakkında çok önemli bilgilerin elde edildiği özel bir spektral bölgedir. Görünür bölge ile mikrodalga bölge arasında yer alır. Kendi içinde üç gruba ayrılır.

Şekil 3.4:Kırmızı-altı spektroskopisi bölgeleri.

Yakın kırmızı altı spektral bölge: Yakın kırmızı altı bölge 10.000 cm⁻¹ - 4000 cm⁻¹ dalga sayısına ve 0.7µm-2,5µm arasında dalga boyuna sahip fotonlardan oluşan ışınımları kapsar. Molekülün üston geçişleri incelenir.

Orta kırmızı altı spektral bölge: Orta kırmızı altı bölge 4000 cm⁻¹ - 400 cm⁻¹ dalga sayısına ve 2,5µm-25µm arasında dalga boyuna sahip fotonlardan oluşan ışınımları kapsar. Molekülün temel titreşimleri incelenir. Çoğu molekülün titreşimleri orta kırmızı altı bölgeye düştüğünden bu bölge temel kırmızı altı bölge olarak bilinir.

Uzak kırmızı altı spektral bölge: Uzak kırmızı altı bölge 400 cm⁻¹ - 10 cm⁻¹ dalga sayısına ve 25µm-500µm arasında dalga boyuna sahip fotonlardan oluşan ışınımları kapsar. Uzak kırmızı altı bölgede moleküllerin torsiyon ve düzlem dışı açı bükülmesi modlarına ait temel bantlar, moleküllerin serbest dönü geçişleri kristallerdeki örgü titreşimleri ve ağır atomların titreşimleri gözlenir.[35,36]

3.2.1 Kırmızı Altı Spektrumu:

Kırmızı altı spektrum; bir maddenin kırmızı altı ışıma ile etkileştiğinde, madde tarafından ışımanın soğurulması olayıdır. Bu soğurma molekülün titreşimine sebep olur. Maddelerin soğurduğu ışın miktarı, maddenin konsantrasyonu ve kalınlığına bağlıdır. Bir maddedeki ışınımın soğurulma miktarı Beer-Lambert yasası ile verilmektedir.

Şekil 3.5: Bir maddeden geçen ışınımın soğurulması sonucu şiddetindeki azalma.

Beer-Lambert yasası ile gelen ışınımın şiddeti geçen ışınımın şiddetine

$$\mathbf{I} = \mathbf{I}_0 \mathbf{e}^{-\mathbf{abc}} \tag{3.5}$$

Denklemindeki gibi bağlıdır.

b= ışınımın aldığı yol

c= ortamın yoğunluğu

a=ortamın soğuruculuk yeteneğini ifade etmektedir.

$$\frac{\mathbf{I}}{\mathbf{I}_0} = \mathbf{e}^{-\mathbf{abc}} \tag{3.6}$$

 $\frac{I}{I_0} = T$ (Transmittance), geçiş oranıdır.

$$Log_{10} \frac{I}{I_0} = Log_{10} e^{-abc}$$
(3.7)

$$\log_{10} \frac{I}{I_0} = \log_{10} T = -abc$$
 (3.8)
$$-\log_{10}T = \log_{10}\frac{1}{T} = abc$$
(3.9)

$$A = Log_{10} \frac{1}{T} = abc$$
(3.10)

A= Soğurma oranı (Absorbance), bir maddede v frekanslı ışınımın soğurulma yüzdesini ifade eder.

Bir Kırmızı altı spektrumunda y ekseninde soğurma şiddeti ya da yüzde geçirgenlik yer alırken, x ekseninde dalga sayısı bulunur.

Absorpsiyon spektrumlarının oluşması için, titreşim hareketi sırasında molekülün dipol momentinin değişmesi gereklidir. Çünkü değişen dipol moment, elektromanyetik dalganın elektrik alanı ile etkileşir ve moleküldeki hareketlerin birinin genliğinde bir değişmeye neden olur. Eş iki atomlu moleküllerin (H₂, O₂, ...) dipol momentleri sıfır olduğundan bu moleküller IR' de bir spektrum vermezler.

3.2.2. Kuantum Mekaniksel Görüş Altında Kırmızı Altı Spektrumu:

Kırmızı-altı spektroskopisinde bir titreşim frekansının gözlenebilmesi için molekülün titreşimi sırasında değişen bir elektriksel dipol momentinin olması gereklidir. Molekülün titreşimi sırasında değişen dipol momenti ile elektromanyetik dalganın elektrik alanı etkileşir. Böylece molekül ile elektromanyetik dalga arasında bir enerji alış-verişi gerçekleşir. Kuantum mekanik görüşe göre, geçişin izinli olabilmesi için, elektriksel dipol geçiş integralinin sıfırdan farklı olması gerekir.

$$\mu_{nm} = \int \Psi_n^* \mu \Psi_m d\tau \neq 0 \tag{3.11}$$

Burada μ elektriksel dipol momentidir. $\Psi_n ve \Psi_m$ üst ve alt titreşim enerjilerine karşılık gelen dalga fonksiyonlarıdır. Geçiş olasılığı $|\mu_{nm}|^2$ ile orantılıdır. Bu nedenle $\mu_{nm} = 0$ ise geçiş yasaktır.

Titreşen iki atomlu bir molekülün dipol momenti denge noktasında seriye açılırsa,

$$\mu(\mathbf{r}) = \mu_0 + \left(\frac{d\mu}{d\mathbf{r}}\right) q + \frac{1}{2} \left(\frac{d^2\mu}{d\mathbf{r}^2}\right) q^2 + \dots$$
(3.12)

Burada μ_0 molekülün başlangıçta sahip olduğu elektriksel dipol momentidir. q(q=r-r_d) ise denge noktasından ayrılma miktarıdır. Harmonik bir titreşici için $\mu(r)$ ifadesinin ilk iki terimini alıp μ_{nm} de yerine koyduğumuzda;

$$\mu_{nm} = \int \Psi_n^* \left(\mu_0 + \left(\frac{d\mu}{dr} \right) q \right) \Psi_m d\tau$$
(3.13)

Denge noktasında dipol moment $\mu_0 = 0$ olduğu için

$$\mu_{nm} = \mu_0 \int \Psi_n^* \Psi_m d\tau + \int \Psi_n^* \left(\frac{d\mu}{dr}\right) q \Psi_m d\tau$$
(3.14)

1. integral diklik nedeniyle sıfırdır. $\left(\frac{d\mu}{dr}\right)_0$ sabit olduğu için

$$\mu_{nm} = \left(\frac{d\mu}{dr}\right) \int \Psi_n^* q \Psi_m d\tau \neq 0$$
(3.15)

Görüldüğü gibi molekülün titreşimi süresince değişen bir dipol momenti yoksa geçiş gerçekleşmez ve böylece kırmızı-altı bölgede spektrum gözlenmez. Kuantum mekaniksel olarak n ve m gibi iki kararlı seviyeler arasında geçişin gerçekleşebilmesi için, gönderdiğimiz e.m.d'nın frekansı bu aralıkta uyumlu olmalıdır ve ayrıca geçiş integrali sıfırdan farklı olmalıdır. Bunun için de değişen dipol momentin olması gerekmektedir.

$$\mu_{nm} = \int \Psi_n^* \mu \Psi_m d\tau \neq 0$$

Denklemini incelediğimizde ,
$$\vec{\mu} = -e\vec{r}$$
(3.16)

tek boyutta iki atomlu bir molekül için

$$\vec{\mu} = -e\vec{x} \tag{3.17}$$

$$\mu_{nm} = \int \Psi_n^* x \Psi_m d\tau \neq 0 \text{ olmalıdır.}$$
(3.18)

Bu integralin sıfırdan farklı olması için $\psi_n^* x \psi_m$ ifadesinin çift fonksiyon olması gerekmektedir.

x tek fonksiyondur ve $\psi_n^* \psi_m$ çarpımının tek olması durumunda $\psi_n^* x \psi_m$ ifadesinin çift fonksiyon olur. Bunun için ψ_n^* ve ψ_m fonksiyonlarının biri çift diğeri tek fonksiyon olmalıdır. Sonuç olarak $\Delta v = \pm 1$ izinli geçiş kuralları ortaya çıkmaktadır.

Eşit iki atomlu moleküllerin titreşimi sırasında değişen bir dipol momentleri olmadığından bu tip moleküllerin titreşimi kırmızı-altı bölgede gözlenmez. [35,36,37]

3.2.3. Klasik Mekaniksel Görüş Altında Kırmızı Altı Spektrumu:

Klasik görüş altında iki atomlu bir molekülün titreşim modu, harmonik titreşici yaklaşımı altında açıklanır. Hook Yasası ve Newton'un İkinci Kanunu altında inceleme yapılır.

Harmonik titreşici modeline göre iki atomlu bir molekülün enerjisi;

$$\mathbf{E}_{\mathbf{v}} = \left(\mathbf{v} + \frac{1}{2}\right)\mathbf{h}\mathbf{v} \tag{3.19}$$

v:titreşim kuantum sayısı

u:titreşim frekansıdır.

Harmonik titreşici modeline göre iki atomlu bir molekülün titreşim frekansı;

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(3.20)

k: iki atomu birbirine bağladığı düşünülen yayın (kimyasal bağın) kuvvet sabiti.
µ: iki atomun kütlelerinden oluşmuş indirgenmiş kütle.

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \tag{3.21}$$

İki atomlu bir molekülün titreşim frekansı, atomların kütlelerine ve atomları birbirine bağlayan yayın(kimyasal bağ) kuvvet sabitine bağlıdır Çok atomlu moleküler için titreşim frekansı hesabı iki atomlu moleküllere kıyasla çok daha karmaşıktır. Çok

atomlu moleküllerde atom sayısı ve buna bağlı olarak kimyasal bağ sayının fazla olması ve bu yayların karmaşık etkileşmeler içinde bulunmaları sonucu, çok atomlu bir molekülün titreşim enerjileri ve frekansları J.Wilson'un GF Matris yöntemi tarafından hesaplanmaktadır.

3. 3. RAMAN SPEKTROSKOPİSİ

Kırmızı altı ve mikrodalga spektroskopisi ile birlikte, moleküllerin dönme ve titreşim spektrumlarını araştırmada kullanılabilecek önemli bir yöntem de Raman spektroskopisidir. Moleküllerin görünür ve yakın kırmızı-altı bölgesinde, soğurma bandlarından birine denk gelmeyen tek frekanslı bir elektromanyetik dalga ile ışınlanması ve saçılan elektromanyetik dalganın incelenmesi esasına dayanır.

Saçılan ışınımın frekansında bir değişim olmuyorsa bu saçılmalar Rayleigh saçılmaları olarak bilinmektedir. Klasik mekanikten bilindiği üzre herhangi başka dalga boyu da sistemden saçılma olarak çıkabilmektedir.

1928 yılında Raman, saçılmış ışık spektrumunda frekansı kaymış çizgiler gözlemiştir. Rayleigh saçılmasının tersine saçılan ve gelen ışık ahenkli değildir. Küçük enerjilere Stokes çizgileri ve büyük enerjilere anti-Stokes çizgileri kaymaların her ikisi birden de gözlenmiştir. Bu frekans kayması gelen ışığın frekansından bağımsız olmakta ve saçılan moleküle ait bir özellik taşımaktadır. Bu yöntemde madde ile etkileşen ışığın dalga boyuna göre, saçılan ışığın dalga boyunda oluşan farklar, yani Raman kaymaları ölçülerek moleküllerin titreşim frekansları belirlenmektedir.

Rayleigh çizgisi, spektrumda şiddetli band verir ve gelen ışınım ile aynı frekansa sahiptir. Stokes çizgileri, gelen ışınım frekansından daha küçük frekansta saçılan ışınımlardır. Antistokes çizgileri: gelen ışınım frekansından daha büyük frekansla saçılan ışınımlardır.

 $V_{g\ddot{o}zlenen} = V_{gelen\,isinum} \pm V_{molek\ddot{u}l} \tag{3.22}$

 $v_{gozlenen}$ saçılan ışınımın frekansı, $v_{gelen uşunum}$ saçılma olayında kullanılan monokromatik ışınım frekansını, $v_{molekul}$ molekülün kuantize elektronik titreşim veya dönü enerjilerinden herhangi birisini veya ikisini temsil eder.

Raman IR'nin tamamlayıcısı olup IR'de gözlenmeyen zayıf titreşimler burada gözlenir. Ayrıca kullanılan malzeme açısından sınırlama olmayışı, UV, Görünür ve yakın IR ışınların kullanılabilmesi, optik olarak ölçüm kolaylığının olması, sulu ortamda rahatlıkla çalışılabilmesi, dipol moment değişimine gerek duyulmaksızın yani simetrik gerilmelerin raman aktif olması gibi, IR'ye göre bir takım aVantajları vardır.

Lazer Kaynağı: Kullandığımız NRS 3100 Dispersif Mikro Raman spektrometresinde iki laser kaynağı kullanılmaktadır. Bunlardan birincisi 532nm dalga boyuna sahip Nd YAG laseridir ve çıkış gücü yaklaşık 30-60 mW kadardır ve yeşil renktedir. İkinci laser kaynağımız da 785 nm dalga boyuna sahip red diyot laseridir. Çıkış gücü yaklaşık 250 mW kadardır.

Numune hazırlama: Raman spektroskopisinde numune hazırlanması, IR spektroskopisine göre daha kolaydır. Lazer ışın demetleri çok küçük numuneler üzerine kolayca ayarlanarak odaklanabilir. Numune katı olduğu zaman, iyice ezilerek toz haline getirilir ve lam veya lamel üzerine yerleştirilir. Raman spektroskopisinde su çok zayıf bir saçılma verdiğinden önemli bir problem yaratmaz.

Raman spektrometrelerinde dalga boyu ayırıcıları olarak grating sistemi bulunur. Ayırma gücü (rezolüsyon) yaklaşık 2-4 cm⁻¹dir. Kullandığımız spektrometrede 3 adet grating sistemi bulunmaktadır, 1800 çizgi/mm, 600 çizgi/mm ve 1200çizgi/mm.

Dedektör: Dedektör olarak Fotonçoğaltıcı tüp veya CCD dedektör kullanılır.

Şekil 3. 6 : Bir Raman Spektrometresinin Blok Diyagramı

Şekil 3.7: Jasco NRS 3100 Micro Raman Spektrometresi.

Jasco NRS 3100 dispersif Micro Raman Spektrometresinde;

Cihazda, örneğin istediğimiz noktasını analiz edebilmemizi sağlayan mikroskop sistemi (5x, 20x,100x) cihaza yerleşik olarak bulunmaktadır. Cihaz, gerekli spektral aralığı karşılamak maksadıyla, isteğe bağlı olarak 3 farklı grating (1800 çizgi/mm, 600 çizgi/mm ve 1200çizgi/mm) içermektedir. Spektrometremizde kaynak olarak Nd YAG laser kaynağı (532nm) ve red diode Laser kaynağı (785nm) bulunmaktadır. Ayrıca (-60 C^0) soğutmalı CCD dedektör bulunmaktadır. 50 ile 8.000 cm⁻¹ dalga sayısı aralığında ölçüm yapılabilmektedir.[38]

3.3.1 Klasik Görüş Altında Raman Spektrumunun İncelenmesi

Bir elektromanyetik dalga bir maddeye gönderildiğinde, maddeyi oluşturan molekülleri yapıtaşları elektron ve çekirdekler, gelen elektromanyetik dalganın Elektrik alanıyla etkileşirler. Elektrik alanın etkisiyle Coulomb Yasası gereği birbirlerine zıt yönlerde hareket eder. Yüklerin yer değiştirmeleri sonucunda molekül içindeki yük dağılımı yani kutuplanması değişir. Molekülün yük dağılımında meydana gelen değişim bir indüklenmiş elektriksel dipol oluşturur ((3.18) ifadesi).

$$\vec{E} = \vec{E}_0 \sin \upsilon_0 t \tag{3.23}$$

$$\vec{\mu} = \alpha \vec{E} \tag{3.24}$$

 $\vec{\mu}$:oluşan indüklenmiş dipol moment,

α:molekülün kutuplanma tensörü olup molekül için karakteristik bir özelliktir.

$$\alpha = \begin{pmatrix} \alpha_{xx} & \alpha_{xv} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}$$
(3.25)

Küçük yer değiştirmeler için kutuplanma tensörü, molekülün denge konumu civarındaki küçük titreşimleri göz önünde tutularak Taylor serisine açılabilir.

$$\alpha = \alpha_{o} + \left(\frac{\partial \alpha}{\partial Q}\right)_{o} Q + \frac{1}{2} \left(\frac{\partial^{2} \alpha}{\partial Q^{2}}\right)_{o} Q^{2}$$
(3.26)

 α_{o} denge konumunda molekülün kutuplanma yatkınlığı,

 $\left(\frac{\partial \alpha}{\partial Q}\right)_{0}$ terimi Q normal titreşim moduna göre kutuplanmanın 1. türevidir.(titreşim modunun kutuplanma üzerinde yaptığı değişim.) İkinci terimin katkısı ilk terimlere göre daha az olduğundan ihmal edilir.

Q terimi normal titreşim modlarını gösterir.

$$Q = Q_o \sin(2\pi \upsilon_m t) \tag{3.27}$$

 υ_m : molekülün titreşim frekansı

$$\vec{\mu} = \alpha \vec{E}$$

$$\alpha = \alpha_{o} + \left(\frac{\partial \alpha}{\partial Q}\right)_{o} Q + \frac{1}{2} \left(\frac{\partial^{2} \alpha}{\partial Q^{2}}\right)_{o} Q^{2}$$

$$\vec{E} = E_{o} \sin \upsilon_{0} t$$
(3.28)

Denklemler yerlerine konulduğunda, elektrik alan etkisi altında moleküllerin indüklenmiş dipol momenti ifadesi elde edilir.

$$\vec{\mu} = \alpha_{o} E_{o} \sin(2\pi \upsilon_{o} t) + \left(\frac{\partial \alpha}{\partial Q}\right) Q_{o} E_{o} \sin(2\pi \upsilon_{m} t) \sin(2\pi \upsilon_{o} t)$$
(3.29)

$$\vec{\mu} = \alpha_{o} E_{o} \sin(2\pi \upsilon_{o} t) + \frac{1}{2} \left(\frac{\partial \alpha}{\partial Q} \right) Q_{o} E_{o} \left[\cos 2\pi (\upsilon_{o} - \upsilon_{m}) t - \cos 2\pi (\upsilon_{o} + \upsilon_{m}) t \right]$$
(3.30)

Rayleigh saçılması Stokes saçılması Anti-stokes saçılması

Stokes ve Antistokes saçılmaları Raman saçılmaları olarak adlandırılır.

Raman saçılmasının gerçekleşmesi için;

$$\left(\frac{\partial \alpha}{\partial Q}\right) \neq 0 \tag{3.31}$$

(molekül titreşimi sırasında değişen bir kutuplanma yatkınlığı) olması gerekir. [31,34]

3.3.2. Kuantum Mekaniksel Görüş Altında Raman Spektrumunun İncelenmesi

Fotonlar örnek moleküllerle çarpıştıktan sonra elastik veya inelastik olarak saçılır. Esnek çarpışma söz konusu ise; enerji korunumu söz konusu olduğundan saçılan fotonun frekansı değişmez, gelen fotonun enerjisine eşit olur. İnelastik çarpışma olduğunda enerji korunumu söz konusu olmadığından hv_0 enerjili fotonlar kuantum şartlarına uygun olarak iki titreşim düzeyi arasındaki enerji farkı kadar molekülden enerji alır veya aktarır.[31,34]

Foton ve moleküllerin çarpışma öncesi ve sonrası enerji korunumunu yazarsak aşağıdaki ifade elde edilir.

$$h\nu + E = h\nu' + E' \tag{3.32}$$

E: molekülün çarpışma öncesi titreşim, dönü ve elektronik enerjisi,

E': molekülün çarpışma sonrası titreşim, dönü ve elektronik enerjisi,

hv : gelen fotonun enerjisi,

hv': saçılan fotonun enerji ifadesidir.

Bu ifadeden yararlanarak gelen ve saçılan ışının frekansları arasında bir ilişki bulabiliriz.

$$\frac{E-E'}{h} = v - v' \tag{3.33}$$

Rayleigh Saçılması: Bir molekülün foton etkisiyle, taban titreşim düzeyinden daha yüksek bir titreşim düzeyine çıkıp tekrar ilk haline gere dönerken saçılan fonun aynı frekansta saçılmasıdır. Molekülün enerjisi değişmez. E = E' ve v = v' olup saçılma elastiktir.

Stokes Saçılması: Bir molekülün foton etkisiyle, taban titreşim düzeyinden daha yüksek bir titreşim düzeyine çıkıp taban düzeyinden farklı bir titreşimsel düzeye geri dönerken saçılan fotonun frekansının gelen fotonun frekansına göre küçülmesidir. Molekülün enerjisinde artma, saçılan fotonun enerjisinde azalma gözlenir.

Anti-Stokes Saçılması: Uyarılmış titreşim düzeyindeki bir molekülün foton etkisiyle daha yüksek kararsız bir düzeye uyartılıp kısa bir süre sonra taban titreşim düzeyine dönerken saçılan fotonun frekansı gelen fotonun frekansına göre büyümesidir. Molekülün enerjisi azalır, saçılan fotonun enerjisi artar.

Bir ortamdaki atom veya molekül nüfusunun enerji düzeylerine göre dağılımı Boltzman dağılım fonksiyonu ile verilmektedir. Bu dağılıma göre üst enerji düzeylerindeki tanecik sayısı alt enerji düzeylerine oranla çok daha azdır. Yani uyarılmış titreşim düzeylerinde bulunan molekül sayısı, temel titreşim düzeyinde bulunanlara göre çok daha az olduğundan Anti-Stokes saçılmasının gerçekleşmesi, Stokes saçılmalarına göre daha azdır.

3.4. IR SPEKTROMETRELERİ

IR spektrometreleri kullandıkları analizöre göre ikiye ayrılmaktadır. Gelen elektromanyetik dalgayı bileşenlerine ayırmak için prizma ve kırınım ağı kullanan 'Dispersif IR Spektrometresi' ve analizör olarak 'Michelson İnterferometresi kullanan 'FT-IR Spektrometresidir'.

Şekil 3.8: Bir Kırmızı-altı spektrometresinin blok diyagramı

3.4.1. IR Spektrometresinin Bölümleri

IR Kaynak:

İnfrared ışın kaynağı olarak 1700–2000 °C ye kadar ısıtılmış iyi bir siyah cisim özelliği taşıyan IR bölgedeki tüm frekansları veren maddeler kullanılır. Nernst Glower (Nadir toprak element oksitleri) ve Globar (Silisyum karbür) çubukları bu özelliktedir.

Nernst çubuğu: Toryum oksit, seryum oksit, zirkonyum oksit gibi nadir toprak element oksitlerinin iyi bir bağlayıcıyla pişirilmeleri sonucu elde edilir. Böyle bir çubuğun boyu 20mm, çapıysa 2mm kadardır. Sıcaklığı sabit tutmak için çubuğun iki tarafına platin levhalar konur. Bu çubuğun direnci sıcaklıkla düşer.

Globar çubuğu: Silisyum karbürden (karborandumdan) yapılır. Boyu 50 mm, çapı 5 mm dir. Silindirik bir çubuktur. Direnci sıcaklıkla artar.

Bu iki seramik ısıtılıp akkor haline geldiğinde IR bölgede ışıma yapar.

Tungsten-Flaman Lambası: 0,78–2,5µm dalga boyu arasındaki bölgede(yakın IR) ışıma yapan bir kaynaktır.

Civa-ark Lambası: 50µm dalga boyundan büyük (uzak IR) bölgede ışıma yapan bir kaynaktır.

Nikrom Tel: %80 Nikel ve %20 Kromdan oluşmuştur. Akkor halinde ısıtılabilinir. Uzun ömürlüdür.

<u>Örnek hazırlama:</u>

IR spektrumu alınacak örnek katı bir malzeme ise; 1mg örnek ve 100mg civarında 4000 cm⁻¹-400 cm⁻¹bölgede hiçbir soğurması olmayan Potasyum Bromür katık maddesi ile karıştırılıp birkaç tonluk basınç altında şeffaf bir tablet haline getirilerek spektrum çekilir. Örnek sıvı ise ve uygun bir çözücüsü yoksa bir disk üzerine küçük bir damla alınır ve aynı cinsten iki disk arasında çok ince (genellikle 0,01mm kadar) bir film haline getirilir. Çözeltiler ise 0,1-1mm kalınlık oluşturacak şekilde NaCl kristalleri arasına konur. IR spektrumu için kullanılacak çözeltiler CCl₄, CHCl₃ ve CS₂ gibi IR de az absorbsiyon yapan çözücülerdir.

<u>Analizör(Monokromatör):</u>

Örnek üzerine gönderilen kırmızı-altı bölgedeki ışınlar, monokromatörler vasıtasıyla frekanslarına ayrılır. IR spektrometreleri analizörün çeşidine göre dispersif spektrometreler ve FT-IR (Fourier Transform -Infrared) spektrometreleri olmak üzere iki gruba ayrılır. Dispersif spektrometrelerde monokromatör olarak hem prizma hem de optik ağ kullanılabilir. FT-IR spektrometrelerinde analizör olarak Michelson İnterferometresi kullanılır.

<u>IR Dedektörleri:</u>

Dedektörün görevi frekanslarına ayrılmış olan ışınımı elektrik sinyallerine dönüştürmektir. IR bölgesinde ışının ısı etkisine dayalı termal dedektörler veya yarı iletken kristallerden yapılan ve foto iletkenliğe dayalı dedektörler kullanılır.

Piroelektrik Dedektörler: Yalıtkan Piroelektrik malzemelerin kristalinden yapılmıştır. En çok kullanılanı **Triglisinsülfattır**(TGS). Dielektrik malzemeler boyunca bir elektriksel alan uygulandığında, malzemenin dielektrik sabitine bağlı olarak bir polarlanma gözlenir. Elektriksel alan ortadan kaldırılınca bu polarlanma kaybolur. Triglisinsülfat (TGS) kullanıldığında elektriksel alan ortadan kalktığında dahi polarlanma devam eder. Fotoiletken Dedektörler: Kurşun sülfür ve indiyum antimonür gibi yarı iletken maddelerden yapılmıştır. Bu maddelerin IR ışımasını soğurması sonucunda iletken olmayan değerlik elektronları iletkenlik bandına uyarılır ve yarıiletkenin elektriksel direncinin azalmasını sağlar.

Termal Dedektörler: Işımanın soğurulması sonucu sıcaklığın yükselmesine ve bu sıcaklık yükselmesinin ölçülmesine dayanır.

Yükseltici:

Frekanslarına ayrılmış IR ışınımı dedektör tarafından elektrik sinyaline dönüştürüldükten sonra ışınının şiddetini arttırır.

<u>Kayıt:</u>

Yükselticiden geçerek şiddeti arttırılmış olan ışının frekanslarının şiddeti çizilir.

Dispersif spektrometreler, elektromanyetik ışığı bileşenlerine ayırmak için prizma veya kırınım ağı gibi ayırıcı ortamlardan yararlanan spektrometrelerdir. Dispersif spektrometrelerle kaliteli bir spektrum elde edilmesinde bazı zorluklarla karşılaşılmıştır. Bu zorlukların sebebi de bu tür spektrometrelerde kullanılan monokromatör sistemlerin oluşturduğu yetersizliklerdir.

Elde edilmiş olan spektrumun kalitesi öncelikle kullanılan prizma veya optik ağın ayırma gücüne bağlıdır. Dispersif spektrometrelerde tüm dalga boyları için ayrı ayrı ölçüm alınması gerekmektedir bu yüzden spektrumun elde edilme süresi uzar. Dispersif spektrometrelerde kullanılan prizma veya kırınım ağının soğuruculuk özellikleri nedeniyle bu spektrometreler her spektrum bölgesinde aynı hassasiyette çalışamazlar.

Fourier spektrometreleri her spektrum bölgesinde aynı kalitede çalışabilir ve kullandıkları dedektöre bağlı olarak belirli bir spektrum bölgesinde çalışırlar. Kırmızıaltı spektral bölgede çalışan bir Fourier dönüşüm spektrometresi FT-IR spektrometresi olarak adlandırılır.

[40,41,42]

3.4.2. FT-IR Spektrometreleri:

FT-IR spektrometrelerinde analizör olarak Michelson İnterferometresi kullanılır.

Şekil 3.9: Bir FT-IR (Fourier Dönüşüm Infrared Spektrometre)' nin blok diagramı

Burada IR kaynaktan gelen ışık değişik dalga boylarının karışımından oluşmuştur. Işın demetleri kolimatörden geçtikten sonra paralel hale gelir. Daha sonra ışın bir sabit ayna, bir hareketli ayna ve bir ışın bölücüden oluşan Michelson interferometresine girer. İnterferometreyi terk eden ışınlar numuneye odaklanır ve dedektöre düşerler. Dedektördeki interferogram bir analog sinyaldir. Girişim desenleri dedektör tarafından elektrik sinyaline dönüştürüldükten sonra ana yükselticide yükseltilirler. Spektrum elde etmek üzere Fourier dönüşümünün uygulanabilmesi için sinyalin dijital hale getirilebilmesi gerekmektedir. Spektrometredeki apodizasyon fonsiyonu ise kosinüs olarak ayarlanmıştır. Daha sonra verilere Fourier dönüşümünün yapılacağı bilgisayara gönderilir. Son olarak da elde edilen kırmızı-altı spektrumunun çıktısı alınır.

Fourier dönüşüm tekniğini kullanan spektrometreler spektrum oluşumunda iki yol izlerler.

a)İnterferogram elde etmekb)Fourier dönüşümü ile interfegramı spektruma dönüştürmek

Şekil 3.10: FT-IR Spektrometresinin bazı devre elemanları

3.4.2.1. İnterferogramın Elde Edilmesi:

IR kaynaktan gelen ışın yarı geçirgen aynaya yönlendirilir. Yarı geçirgen ayna, potasyum bromit alaşımla desteklenen çok ince bir germanyum film tabakasıdır. Yarı geçirgen ayna gelen ışığın %50'sini yansıtıp %50'sini geçirir ve iki farklı optik yol oluşur. Dedektöre gelen toplam enerji ise bu iki ışının toplamı kadardır. Yarı geçirgen aynanın merkezi ile sabit konumlu ayna arasındaki uzaklık, hareketli aynaya olan uzaklığa eşit ise, her iki ışın eşit yollar almış olur. Hareketli aynanın ileri geri hareketi sonucu, iki ışın eşit yollar almamış olur ve bu ışınlar arasında bir yol farkı oluşur. Buna 'optik yol farkı' denir ve δ sembolü ile gösterilir. Hareketli ayna x uzaklığına yerleştirilirse, optik yol farkı 2x olur. Çünkü x mesafesi aynaya gitmek için ve diğer x mesafesi de hareket etmiş aynadan yansıdığı için harcar.

İnterferometredeki optik yol farkı δ =0 olduğunda, dedektörde toplanan iki ışın aynı fazda olacak ve birbirlerini kuvvetlendirecektir. Yapıcı girişim; δ = n λ olduğunda meydana gelir. Böylece dedektör sinyalinin şiddeti I(δ) maximum olur. Eğer hareketli ayna, kaynaktan yayınlanan ışının dalga boyunun dörtte biri eşit uzaklığa yerleştirilmişse x= $\lambda/4$ olduğunda bir gecikme meydana gelir ve optik yol farkı δ = $\lambda/2$ 'ye eşit olur iki dalga da dedektöre zıt fazlarla gelerek birbirlerini yok ederler ve yok edici girişim oluşur. Maksimumlar $\delta = n\lambda$ n=0,±1, ±2, ±3.....olduğunda, minimumlar ise $\delta = (n+1/2)\lambda$ 'da gerçekleşir.

İnterferogram için aşağıdaki denklem yazılabilir.

$$I(\delta) = B(\upsilon) \cos\left(2\pi \frac{\delta}{\lambda}\right)$$
(3.34)

I(δ) dedektöre düşen ışının şiddetidir ve optik yol farkına bağlıdır.
B(υ) Kaynağın şiddeti ya da parlaklığıdır ve frekansın fonksiyonudur.
IR spektroskopisinde dalga sayısını kullanmak daha uygundur.

$$I(\delta) = B(\overline{\upsilon})\cos(2\pi\delta\overline{\upsilon})$$
(3.35)

yazılabilir.

Kaynak birden fazla frekans yayınlıyorsa, her frekansı ayrı bir cosinüs takımı olarak hesaba katıp bu kosinüs dalgalarını geometrik olarak hesaplayıp interferogramın son formunu elde ederiz. Matematik olarak kaynağın tüm frekanslarının kosinüs dalgalarının toplamı interferogramı ifade eder.

$$I(\delta) = \sum_{v_i=1}^{v_n} B(\overline{v}_i) \cos(2\pi\delta\overline{v}_i)$$
(3.36)

İnfrared kaynak sürekli bir ışın yayınladığı için toplam yerine integral almalıyız.

$$I(\delta) = \int_{0}^{\infty} B(\overline{\upsilon}) \cos(2\pi\delta\overline{\upsilon}) d\overline{\upsilon}$$
(3.37)

Optik yol farkı δ = 0'da mevcut tüm frekansların kosinüs dalgaları aynı fazdadır. Böylece I(δ) sinyali genellikle δ = 0'da keskin bir maksimuma sahiptir.

3.4.2.2. Fourier Dönüşümü İle İnterfegramı Spektruma Dönüştürmek:

Eğer δ 'nın bir fonksiyonu olarak I(δ) interferogramının matematiksel formunu biliyorsak, Fourier Transformation matematiksel tekniği kullanılıp bu interferogramla ilgili spektrumu hesaplamamız mümkündür.

$$I(\delta) = \int_{0}^{\infty} B(\overline{\upsilon}) \cos(2\pi\delta\overline{\upsilon}) d\overline{\upsilon}$$
(3.38)

İnterferogramının spektrum ifadesi;

$$B(\overline{\nu}) = \int_{-\infty}^{+\infty} I(\delta) \cos(2\pi\nu\delta) d\delta$$
(3.39)

Burada B(υ) υ dalga sayısının bir fonksiyonu olan spektrumun şiddetidir. İntegrasyonun matematiksel değeri, gecikme değerinin - ∞ 'dan + ∞ 'a kadar olan tüm değerler üzerinden yapılmalıdır. [41,43]

Üstteki ikili Fourier çifti olarak bilinir. Spektrum ve buna bağlı interferogram birbirlerine Fourier dönüşümü ile bağlıdırlar. İnterferogramdan spektrum elde edilme tekniği (Fourier Transform Infrared Spectroscopy) kısaca FT-IR olarak bilinir.

Molekülümüzün kırmızı-altı spektrumunu Jasco Model FT/IR 300E spektrumu ile kaydettik.

3.5. İKİ ATOMLU MOLEKÜLLERİN TİTREŞİM ENERJİ SEVİYELERİ

Titreşimlerin spektroskopisi bize moleküllerin yapısı ve bağlanması hakkında bilgiler verir. Burada titreşimin temellerini iki atomlu moleküller üzerinde açıklayalım. Moleküller içindeki atomlar, elektronik taban hallerinde bulundukları denge konumları civarında titreșim hareketi yapabilirler. Bu titreşimler moleküllerin optik spektrumlarında kendini gösterebilmektedir; bu hareketin frekansı spektrumun kırmızı altı bölgesine düşmektedir. Titreşim spektrumları genelde soğurma spektrumu şeklinde araştırılırlar; uyarılmış titreşim hallerinden kendiliğinden salınım için geçiş olasılıkları oldukça küçüktür ve bu yüzden salma titreşim spektroskopisi çok da uygulanabilir değildir; ancak yine de etkiyle oluşturulmuş salma geçişleri durumunda bunlarla spektrumlarını çalışmanın başka karşılaşılabilir. Titreşim bir yolu Raman spektroskopisidir. İki atomlu moleküllerin titreşim enerji seviyeleri hesaplanırken atomların birbirlerine bir yayla bağlı olduğu varsayılır.

Harmonik titreşici modeline göre iki atomlu bir molekülün titreşim frekansı;

$$\omega = 2\pi\upsilon = \sqrt{\frac{k}{\mu}}$$
(3.40)

$$\upsilon = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
(3.41)

k: iki atomu birbirine bağladığı düşünülen yayın (kimyasal bağın) kuvvet sabiti.
µ: iki atomun kütlelerinden oluşmuş indirgenmiş kütle.

Bu noktada farklı bazı kimyasal bağlarla ilgili kuvvet sabitlerinin tipik sayısal değerleri:

Kovalent bağlar (H ₂ 'de olduğu gibi)	5.102 Nm ⁻¹
Çifte bağlar (O2'de olduğu gibi)	12.10^2 Nm^{-1}
Üçlü bağlar (N2'de olduğu gibi)	20.10^2 Nm^{-1}

3.5.1. Harmonik Yaklaşım

İki atomlu moleküllerin titreşim enerji seviyeleri hesaplanırken atomların birbirlerine bir yayla bağlı olduğu varsayılır. Harmonik titreşici modeline göre bu yay esnek olarak hareket eder. Atomlar denge noktasından (R_c) uzaklaştığında iki atomlu molekülün moleküler potansiyel enerjisi artar. Denge noktası civarındaki küçük yer değiştirmeler için, x = $R-R_c$ küçük yer değiştirmeleri için Potansiyel enerjiyi Taylor serisine açabiliriz.

$$V(x) = V(0) + \left(\frac{dV}{dx}\right)_0 + \frac{1}{2!} \left(\frac{d^2V}{dx^2}\right)_0 x^2 + \frac{1}{3!} \left(\frac{d^3V}{dx^3}\right)_0 + \dots \dots$$
(3.42)

Buradaki 0 alt indisi x = 0 denge noktasındaki türevleri göstermektedir. V(0)=0 alınabilir. Denge noktasında birinci türev de sıfırdır çünkü burada moleküler potansiyel eğrisi minimuma gitmektedir. Denge noktası civarındaki küçük yerdeğiştirmeler için üçüncü türev ihmal edilebilir. Yalnızca x^2 'ye bağlı terim kalmıştır. Böylece potansiyel enerjiyi aşağıdaki gibi yazabiliriz.

$$V(x) = \frac{1}{2}kx^{2}$$
 (3.43)

$$k = \left(\frac{d^2 V}{dx^2}\right)_0$$
(3.44)

k sabitinin değerini böyle gösterebiliriz.

m1 ve m2 kütleli iki atomlu molekülün hamiltonyenini aşağıdaki gibi gösterebiliriz.

$$H = -\frac{\hbar^2}{2m_1} \frac{d^2}{dx_1^2} - \frac{\hbar^2}{2m_2} \frac{d^2}{dx_2^2} + \frac{1}{2}kx^2$$
(3.45)

Buradaki hamiltonyeni bir toplam şeklinde yazabiliriz. İlk terim kütle merkezi sisteminin hareketini ikinci terim de bağıl hareketi gösterir. Böylece hamiltonyeni aşağıdaki gibi yazabiliriz.

$$H = -\frac{\hbar^2}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2} kx^2$$
(3.46)

Burada µ etkin kütledir.

$$\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2} \tag{3.47}$$

 $m_1\rangle\rangle m_2$ olduğunda $\mu \approx m_2$ dir. Çünkü biz hareketin daha hafif atom tarafından daha kuvvetli hissedildiğini varsayarız. Bu yüzden μ daha hafif olan parçacığın kütlesine eşittir. Parabolik potansiyel enerjili bir hamiltonyen harmonik osilatör karekterinde olduğundan harmonik osilatör için olan çözümlerden yararlanarak enerji düzeyleri bulunabilir.

$$E_{\nu} = \left(\nu + \frac{1}{2}\right)h\nu \tag{3.48}$$

$$E_{\nu} = \left(\mathbf{v} + \frac{1}{2}\right)\hbar\omega \qquad \qquad \omega = \left(\frac{\mathbf{k}}{\mu}\right)^{\overline{2}} \tag{3.49}$$

v=0,1,2,3.....değerlerini alabilen titreşim kuantum sayılarıdır. Harmonik yaklaşıklıkta enerji seviyeleri aralığı birbirine eşittir ve değeri hv kadardır.

Şekil 3.11: Harmonik titreşici için potansiyel enerji eğrisi.

Aynı tip atomların birbirlerine göre titreştikleri H_2 , N_2 ya da O_2 gibi eş çekirdekli iki atomlu moleküler durumunda dipol moment bulunmaz ve dipol momentte değişim de söz konusu olamaz. Böyle moleküllerde titreşim veya dönme titreşim geçişleri optik spektrumlarda yasaktır. Bunlar titreşimlere eşlik eden kutuplanabilirlikteki bir değişim sebebiyle Raman spektrumlarında da karşımıza çıkmaktadırlar. Diğer yandan bu frekanslar doğrudan kırmızı altı spektrumlarında da gözlenebilmektedirler.

Harmonik yaklaşıklıkta enerji seviyeleri aralığı birbirine eşittir ve değeri hv kadardır. Bu yaklaşıklıkta molekülün sonsuz uzunluktaki bir potansiyel kuyusunda olduğu düşünülür. Buna göre molekül hiçbir zaman atomlarına ayrılamaz. Bunun için harmonik yakalaşıklık molekülün gerçek titreşim enerji seviyelerini göstermez.

3.5.2. Harmonik Olmayan Yaklaşım

İki atomlu bir molekülün potansiyel eğrisi, parabolik değildir. Gerçek potansiyel farkına varılabileceği gibi R_d denge mesafesine göre simetrik olmamalıdır. R_d 'ye göre çekirdekler arasındaki mesafedeki bir azalma, çekici Coulomb potansiyeli iki atomun birbirine girmesini engelleyen ve uygun bir denge mesafesi üreten kısa mesafeli itici potansiyelle değiş tokuş edileceğinden, iki atom arasındaki itmede bir artışla sonuçlanacaktır. Bu yüzden potansiyel eğrisi $R > R_d$ için daha derin hale gelecektir. Diğer yandan çekirdekler arası mesafedeki artış kimyasal bağda bir zayıflamaya ve ayrışmaya götürecektir. Bu aralıkta, yani $R > R_d$ için, potansiyel eğrisi düzleşir. Harmonik titreşicininkinden daha gerçekçi bir potansiyel eğrisi ile ifade edilir..

Deneylerle oldukça iyi bir şekilde uyuşan ve sıklıkla kullanılan başka bir yaklaşım Morse potansiyeli olarak isimlendirilir:

$$V = D_{d} \left[1 - e^{-a(R - R_{d})} \right]^{2}$$
(3.50)

D_d spektroskopik ayrışma enerjisi, a moleküle bağlı bir sabittir.

$$a = (\mu/2D_d)^{1/2}\omega_d$$
 [cm⁻¹] (3.51)

Bu sabit indirgenmiş kütle ve harmonik titreşici frekansına bağlıdır.

Mors potansiyelindeki a sabiti yukarıda bahsi geçen bağımlılıklardan dolayı, hepsi moleküle özel olmak kaydıyla, bir harmonik titreşiciye karşılık gelen dalga sayısıyla, ayrışma enerjisi ve indirgenmiş kütleyi de içinde barındırır.

Şekil 3.12: Anharmonik titreşici modelinde potansiyel enerji eğrisi.

Büyük sapmalarda ($R > R_d$), *harmonik olmayan titreşicinin* hesaplanması arzu ediliyorsa, potansiyel enerji için Morse potansiyeli kullanılarak Schrödinger eşitliği çözülmek durumundadır.

Harmonik olmayan titreşicinin enerji terimleri;

$$\mathbf{E}_{\mathbf{v}} = \left(\mathbf{v} + \frac{1}{2}\right) \mathbf{h} \boldsymbol{\upsilon}_{\mathbf{d}} - \left(\mathbf{v} + \frac{1}{2}\right)^2 \mathbf{h} \boldsymbol{\upsilon}_{\mathbf{d}} \boldsymbol{\chi}_{\mathbf{d}}$$
(3.52)

$$\overline{E}_{v} = \frac{E_{v}}{hc} = \overline{\upsilon}_{d} \left(v + \frac{1}{2}\right) - \chi_{d} \overline{\upsilon}_{d} \left(v + \frac{1}{2}\right)^{2}$$
(3.53)

ifadesindeki x_d :

$$\chi_{\rm d} = \frac{\hbar\omega_{\rm d}}{4D_{\rm d}} \tag{3.54}$$

Burada χ_d anharmoniklik sabitidir ve pozitif değerdedir.

Harmonik olmayan titreşicide titreşim frekansı artan v kuantum sayısıyla azalmaktadır.

$$E_{v} = \hbar \omega_{d} \left(v + \frac{1}{2} \right) \left[1 - \chi_{d} \left(v + \frac{1}{2} \right) \right]$$
(3.55)

Harmoniklikten, harmonik olmayan titreşiciye geçtiğimizde;

$$\omega_{v} = \omega_{d} \left[1 - \chi_{d} \left(v + \frac{1}{2} \right) \right]$$
(3.56)

Sıfır noktası enerjisi;

$$\mathbf{E}_{0} = \frac{1}{2}\hbar\omega \left(1 - \frac{1}{2}\chi_{d}\right) \tag{3.57}$$

Harmonik olmayan titreşicinin sıfır nokta enerjisi harmonik titreşicininkinden bir miktar küçüktür, buradan hareketle, deneysel verilerle de uyuşma içinde olacak şekilde, artan v kuantum sayısıyla enerji seviyelerinin gerçek değerine daha yakın değerler vereceği söylenebilir.[32,34]

Bu en büyük bağ seviyesi D_d enerjisindedir. D_d enerjisi için molekül artık ayrışmıştır denebilir. Bu bölge ayrışma-sınırı süreklilik bölgesi olarak adlandırılır.

Harmonik olmayan titreşicinin ortalama çekirdekler arası mesafesi, harmonik titreşici durumunun tersine, simetrik olmayan potansiyel eğrisi sebebiyle artan v titreşim kuantum sayısıyla artmaktadır.

D_{d;} spektroskopik ayrışma enerjisi

$$D_{d} = \hbar \omega_{d} \left[(v_{max} + \frac{1}{2}) - \chi_{d} \left(v_{max} + \frac{1}{2} \right)^{2} \right]$$
(3.58)

Bir molekülün deneysel olarak tespit edilmiş D_o kimyasal ayrışma enerjisi, molekülün ayrışma sınırıyla (D_d ; spektroskopik ayrışma enerjisi) sıfır nokta enerjisi arasındaki enerji farkının bir ölçüsüdür.

3.6.BORN-OPPENHEIMER YAKLAŞIKLIĞI

Born-Oppenheimer yaklaşımı, genel moleküler problemi çekirdek ve elektronik hareketleri ayırarak basitleştirir. Bir çekirdeğin kütlesi, bir elektronun kütlesinden bin kat daha büyük olduğu için bu yaklaşımı yapmak uygundur. Çekirdek, elektronlara göre çok yavaş hareket eder ve elektronlar, çekirdeklerin konumdaki değişimlere o anda tepki gösterirler. Bu nedenle bir moleküler sistemdeki elektron dağılımı, elektronların hızlarına değilde, çekirdeklerin konumuna bağlıdır.

Diğer bir görüşe göre; çekirdek elektronlara sabitlenmiş gibi görünür ve elektronik hareket, sabit çekirdek alanı içinde meydana geliyormuş gibi ifade edilebilir.

Moleküler sistem için Hamiltonyen aşağıdaki gibidir;

$$H = T_{elek}(\vec{r}) + T_{cek}(\vec{R}) + V_{cek-elek}(\vec{R},\vec{r}) + V_{elek-elek}(\vec{r}) + V_{cek-cek}(\vec{R})$$
(3.59)

Born-Oppenheimer yaklaşımı; problemin iki kısmının birbirinden bağımsız iki çözümüne izin verir.Bu nedenle çekirdekler için kinetik enerji teriminin ihmal edildiği elektronik Hamiltonyen oluşturabiliriz.

$$\mathbf{H}_{\text{elek}} = -\frac{1}{2} \sum_{i}^{\text{elek}} \left(\frac{\partial^{2}}{\partial_{x_{i}}^{2}} + \frac{\partial^{2}}{\partial_{y_{i}}^{2}} + \frac{\partial^{2}}{\partial_{z_{i}}^{2}} \right) - \sum_{i}^{\text{elek}} \sum_{j}^{\text{elek}} \left(\frac{Z_{1}}{\left| \vec{R}_{1} - \vec{r}_{j} \right|} \right) + \sum_{i}^{\text{elek}} \sum_{j < i}^{\text{elek}} \left(\frac{1}{\left| \vec{r}_{i} - \vec{r}_{j} \right|} \right) + \sum_{j}^{\text{elek}} \sum_{j < i}^{\text{elek}} \left(\frac{Z_{1}Z_{j}}{\left| \vec{R}_{1} - \vec{R}_{j} \right|} \right)$$
(3.60)

(Atomik birimleri kullandığımız için temel fiziksel sabitler yok olmuştur.)

Bu Hamiltonyen daha sonra ; sabit çekirdek alanı içinde elektronların hareketini gösteren Schrödinger denkleminde kullanılır.

$$\mathbf{H}_{\text{elek}} \Psi_{\text{elek}} \left(\vec{\mathbf{r}}, \vec{\mathbf{R}} \right) = \mathbf{E}_{\text{eff}} \left(\vec{\mathbf{R}} \right) \Psi_{\text{elek}} \left(\vec{\mathbf{r}}, \vec{\mathbf{R}} \right)$$
(3.61)

Elektronik dalga fonksiyonu için bu denklemin çözümü efektif çekirdek potansiyel fonksiyonu olan E_{eff} 'i bize verir. E_{eff} , efektif çekirdek potansiyel fonksiyonudur, çekirdeğin koordinatlarına bağlıdır ve sistem için potansiyel enerji yüzeyini ifade eder.

E_{eff} ayrıca; çekirdek Hamiltonyen için, efektif potansiyel gibi kullanılır.

$$H_{cek} = T_{cek} \left(\vec{R} \right) + E_{eff} \left(\vec{R} \right)$$
(3.62)

Bu Hamiltonyen, çekirdek hareketi için Schrödinger denkleminde kullanılır ve çekirdeğin öteleme, dönü ve titreşim seviyelerini ifade eder. Nükleer Schrödinger denkleminin çözümü, molekülün titreşim spektrumlarının belirlenmesi için gereklidir.

Born-Oppenheimer yaklaşıklığına göre molekülün toplam enerjisini aşağıdaki gibi ifade edebiliriz.

$$E = E_E + E_C \tag{3.63}$$

Molekülün toplam enerjisi elektronik ve çekirdek kısımları ayrı ayrı yazılarak gösterilebilinir. Molekülün çekirdek enerjisini de öteleme, dönü ve titreşim olarak üçe ayırabiliriz. Öteleme enerjisi kuantumlu değildir, çünkü molekül herhangi bir hızla hareket edebilir. Bu yüzden ihmal edilebilir. Titreşim enerji seviyeleri aralığı, dönü enerji seviyeleri aralığının 1000 katı olduğu için titreşim-dönü enerjileri etkileşmeleri ihmal edilebilir. Böylece molekülün çekirdek enerjisini aşağıdaki gibi yazabiliriz.[39,44]

$$E_{C} = E_{tit} + E_{d\ddot{o}n\ddot{u}}$$
(3.64)

Born-Oppenheimer yaklaşıklığına göre molekülün toplam enerjisini aşağıdaki gibi yazabiliriz.

$$E_{top} = E_{tit} + E_{dönü} + E_E \tag{3.65}$$

3.7. MOLEKÜLER ENERJİ HESAPLAMA METODLARI

Araştırmacılar için üç farklı seçenek vardır: Moleküler Mekanik Metodlar, Kuantum Mekanik Metodlar ve Yarı Deneysel(semiampirik) Metotlar.

3.7.1. Moleküler Mekanik Metodlar

Kuvvet alanı yöntemi olarak da bilinen moleküler mekanik yöntemlerde, moleküllerin özelliklerini ve yapılarını tahmin etmede klasik fizik yasaları kullanılır. Moleküler mekanik hesaplamalarda, moleküler sistemlerin elektronları hesaba katılmazken çekirdek etkileşmeleri esas alınır. Elektronların etkileri dolaylı olarak kuvvet alanlarında parametre olarak yer alır.

Moleküler mekanik hesaplamalar çok büyük ve simetrisi olmayan protein, polimer ve enzimler için de kullanılır. Bu yöntem oldukça hızlıdır ve temel haldeki sistemin enerjisini tam olarak hesaplayabilir. Yalnız bir dezaVantajı vardır; molekül elektronları hesaba katılmadığı için elektronik etkileşmelerin ağırlıkta olduğu kimyasal problemlerle ilgili hesaplamaları içermez ve parametreleri için Ab-initio veya deneysel verilere ihtiyaç duyar.

HYPERCHEM, QUANTA, SYBYL, ALCEMY, AMBER, CHARMM, MMx ve OPLS gibi programlarda kullanılır.

3.7.2. Kuantum Mekaniksel Metodlar

Kuantum mekaniksel hesaplamalarda, molekülün elektronik yapısı, kuantum mekanik kurallar kullanılarak ve Schrödinger eşitliğinin çözümü ele alınarak sağlanır. Schrödinger denklemi çözülerek molekülün enerjisinin ve ona bağlı özelliklerinin elde edilmesi sağlanır. Schrödinger denkleminin tam çözümü küçük sistemler dışında mümkün değildir. Çözümün elde edilebilmesi için bazı matematiksel yaklaşımlar kullanılır. Bu yaklaşımlar varyasyon ve pertürbasyon yaklaşıklıklarıdır. Kuantum mekanik metotlar ikiye ayrılır.

Hesaplama süresi moleküler mekanik yöntemlere göre çok daha fazladır. GAUSSIAN, GAMES, HYPERCHEM vs. ab-initio metodların kullanıldığı bazı paket programlardır.

3.7.2.1. Ab-initio Metodu

Ab-initio metodu, Schrödinger dalga denkleminin, herhangi bir deneysel parametre kullanılmadan yaklaşık bir çözümüne dayanır. Bunun yerine hesaplamalar ışık hızı, elektron ve çekirdeklerin yükleri ve kütleleri, Planck sabiti gibi fiziksel sabitlere dayandırılır.

Ab-initio hesaplamaları yapılırken, kuantum mekaniksel hesaplamalarda belirli yaklaşıklıklar yapılır. Yapılan bu yaklaşıklıklar genellikle, bir fonksiyonunu en basit

yapısını kullanmak veya bir diferansiyel denklemin çözümünü yaklaşık olarak elde etmektir. Schrödinger denklemini çözmek için varyasyon yaklaşıklığı kullanılır. Yaklaşım biçimlerine göre ab-initio metotları çeşitlilik kazanır.

Ab-initio hesaplamalarında iki farklı matemtiksel yaklaşım kullanılır; Hartree-Fock Self Consistent Field (HF-SCF) ve Density Functional Theory (DFT).

HF modelinde, elektron elektron etkileşimleri için ortalama bir potansiyel temel alınır. Bu yaklaşım, molekül frekanslarının hesaplanması ve molekül geometrisinin tayini için uygundur. DFT modelinde, molekülün dalga fonksiyonları yerine, elektron yoğunluğu hesaplanır. Ab-initio hesaplamaları varyasyonel bir hesaplama olduğundan hesaplanan yaklaşık enerji değeri, gerçek enerji değerine eşit veya gerçek enerji değerinden büyüktür.

Ab-initio hesaplamalarının aVantajı, geniş aralıklı sistemler için kullanışlıdır, deneysel sonuçlara dayanmaz, bozulmuş ya da uyarılmış durumları hesaplar. Birçok sistem için yüksek kalitede sonuçlar sağlar. Kullanılan molekül küçüldükçe doğruluk oranı artar. Bilgisayarda çok büyük miktarda hafiza ve hard disk kaplar.[44,45]

3.7.2.1.1. Density Functional Theory (DFT)

Shrödinger dalga denkleminin çözümünde ortaya koydukları yeni yaklaşım biçimine bağlı olarak hesaplama süresi diğer ab-initio metotlara oranla çok daha kısa olan ve ortaya koydukları sonuçların deneysel bulgularla olan uyumu diğer ab-initio metotlara kıyasla çok daha iyi olan DFT (Yoğunluk fonksiyonu teorisi) elektronik hesaplama metotları artan bir popülarite kazanmıştır. DFT metotları ile elde edilen sonuçların deneysel verilerle uyumu Hartree-Fock teorisine kıyasla daha iyi olmaktadır. DFT metotları çok fazla atom içeren moleküller üzerine olan hesaplamalarda HF metotlarından çok daha hızlıdır ve d-bloğu metallerini içeren sistemler için DFT, HF hesaplamalarından daha çok deneysele yakın sonuçlar verir.

DFT metotlarının en büyük üstünlüğü anlık elektron-elektron etkileşmelerinin sonucu olarak ortaya çıkan ve Hartree-Fock teorisinin ihmal ettiği, diğer Post SCF metotlarının

ise çok büyük hesaplama zorlukları getirdiği elektron korelasyon etkisinin hesaplamaya dahil edilmesi işini çok daha küçük bir çaba ile gerçekleştirebilmeleri ve büyük molekül sistemleri için hesaplamaları HF teorisine kıyasla çok daha kısa sürelerde ve deney sonuçları ile daha iyi uyum sağlayacak biçimde gerçekleştirebilmeleridir.

DFT metotlarının dayandığı temel fikir, bir elektron sisteminin enerjisinin elektron olasılık yoğunluğu terimleri içinde yazılabilineceğidir. 1964 yılına kadar temel seviye enerjisi ve diğer tüm temel seviye özelliklerinin elektron yoğunluğu ile tanımlanabileceğini gösteren formal bir ispat yapılamamıştır. Hohenberg-Kohn tarafından ortaya konulan teorem ile ilk defa bunun ispatı yapılmıştır. Ancak bu teorem bize enerjinin elektron yoğunluğuna fonksiyonel bağımlılığı hakkında bir şey söylemez, sadece böyle bir fonksiyonun varlığını onaylamaktadır. DFT teorisindeki sonraki gelişme, Kohn ve Sham tarafından içinde elektron yoğunluğunun belirlenebileceği, teori içinden gelen, bir tek elektron denklem setinin türetilmesi ile sağlandı.

N elektronlu bir sistem için $\rho(r)$, uzayda bir r noktasında, toplam elektron yoğunluğunu ifade eder. DFT metotlarında, molekülün elektronik enerjisi verilen bir $\rho(r)$ fonksiyonu için, uygun gelen bir tek enerjinin olduğu duyarlılığı içinde $E[\rho]$ gösterimi ile elektron yoğunluğunun bir fonksiyoneli olarak ifade edilmektedir.[46,47]

N elektronlu bir sistem için en doğru temel seviye enerjisi $E[\rho]$, Kohn ve Sham tarafından aşağıdaki bağıntı ile verilir.

$$E[\rho] = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{n} \int \psi_i^{*}(r_i) \nabla_i^{2} \psi_i(r_i) dr_i - \sum_{i=1}^{N} \int \frac{z_i e^2}{4\pi\epsilon_0 r_i} \rho(r_i) dr_i + \frac{1}{2} \int \frac{\rho(r_i) \rho(r_2) e^2}{4\pi\epsilon_0 r_{i2}} dr_i dr_2 + E_{\rm xc}[\rho]$$
(3.66)

İlk terim elektronların kinetik enerji terimi, ikinci terim l indisli Z_1 atom numaralı N tane çekirdeğin üzerinden yapılan toplam ile çekirdek-elektron çekim potansiyel enerji terimi, üçüncü terim r_1 noktasındaki toplam yük dağılımı ile r_2 noktasındaki toplam yük dağılımı arasındaki Coulomb etkileşmesini gösteren elektron-elektron itme potansiyel enerji terimi, dördüncü terim de değiştokuş ve korelasyon enerji terimidir. Bu terim de yine ρ' nun bir fonksiyoneli olup tüm klasik olmayan elektron elektron etkileşmelerini hesaplamaya dahil eden, sistemin Exchange-Corelation (Değiştokuş-Korelasyon) enerjisidir. $E_{xc}[\rho]$ 'nun kesin olarak analitik formu bilinmediği için E_{xc} ifadesi için yaklaşık bir form kullanılacaktır.

Bu DFT metotları için ortak bir formdur. Burada ψ_i (i=0,1,2,3.....n) Kohn-Sham tek elektron orbitalleridir. $\rho(r)$, 'r' noktasındaki temel seviye yük yoğunluğu ile Kohn-Sham tek elektron dalga fonksiyonları arasındaki ilişki aşağıdaki bağıntı ile verilir.

$$\rho(\mathbf{r}) = \sum_{i=1}^{n} |\psi_i(\mathbf{r})|^2$$
(3.67)

bu bağıntıdaki toplam sistemdeki n tane elektronla ilişkili tüm işgal edilmiş

Kohn-Sham tek elektron orbitalleri üzerinden yapılır ve bu orbitaller bir defa hesaplandığında bu toplamın alacağı değer de bilinir.

 $E[\rho]$ enerjisi ve bu enerji ifadesi içinde yer alan ψ_i (Kohn-Sham orbitalleri) tek elektron orbital dalga fonksiyonları Kohn ve Sham tarafından ortaya koyulan Kohn-Sham denklem setinin çözümüyle elde edilir. Kohn-Sham denklemleri bir varyasyon prensibini $\rho(r)$ yük yoğunluğu ile $E[\rho]$ elektronik enerjisine uygulayarak türetilebilir.

 $\psi_i(\mathbf{r}_1)$ tek elektron orbitalleri için Kohn-Sham denklemleri;

$$\left\{-\frac{\hbar^{2}}{2m_{e}}\nabla_{1}^{2}-\sum_{l=1}^{N}\frac{Z_{l}e^{2}}{4\pi\varepsilon_{0}r_{l1}}+\int\frac{\rho(r_{2})e^{2}}{4\pi\varepsilon_{0}r_{12}}dr_{2}+V_{XC}(r_{1})\right\}\psi_{i}(r_{1})=\varepsilon_{i}\psi_{i}(r_{1})$$
(3.68)

 ϵ_i Kohn-Sham orbital enerjileridir, V_{XC} değiş-tokuş korelasyon potansiyelidir. V_{XC} değiş-tokuş korelasyon potansiyeli, $E_{XC}[\rho]$ değiş-tokuş korelasyon enerjisinin bir türevidir ve eğer

 $E_{xc}[\rho]$ biliniyorsa V_{xc} ' de hesaplanabilinir.

$$V_{\rm XC}[\rho] = \frac{\delta E_{\rm XC}[\rho]}{\delta \rho}$$
(3.69)

Kohn-Sham orbitallerinin önemi yoğunluğunun hesaplanmasına olanak ρ sağlamalarıdır. Kohn-Sham denklem seti bir SCF yaklaşımı içinde çözülür. Başlangıç olarak etkin Hamiltonyen operatörünün tanımı için p yoğunluk fonksiyonu tahmini olarak oluşturulur. Bunu yapmak için çoğu kez molekül sistemi için atomik yoğunlukların bir süperpozisyonu kullanılır. Exc'nin yoğunluğa fonksiyonel bağımlılığı için, birkaç yaklaşım biçimi kullanarak, V_{XC} terimi r'nin bir fonksiyonu olarak Exc'ye bağlı olarak hesaplanır. Kohn-Sham denklemler grubu, KS orbitallerinin bir başlangıç orbital grubunu elde etmek için çözülür. Bu orbital grubu düzeltilmemiş etkin hamiltonyen operatörü bağıntısında kullanılarak sistemdeki i.ci elektron tarafından $(\Psi_{i}(\mathbf{r}_{1}))$ birinci iyileştrilmiş edilen Kohn-Sham orbitallerinin işgal durumu $\operatorname{olan} \psi_i^{(1)}(\mathbf{r}_1)$ in elde edilmesinde kullanılır. Elde edilen birinci geliştirilmiş tek elektron orbital fonksiyonunun kullanımıyla birinci geliştirilmiş elektron yoğunluk fonksiyonu ve buna bağlı olarak da birinci geliştirilmiş etkin hamiltonyen operatörü elde edilir. Bu iyileştirme süreci Hartree-Fock yaklaşımında verilen Roothan denklem setinin çözümündekine çok benzer bir biçimde devam eder. Çözüm mekanizması elektron yoğunluk fonksiyonu ve değiş-tokuş korelasyon potansiyel enerji terimi istenilen düzeyde iyileştirildiğinde sona erer. İyileştirme işlemindeki her bir döngüde Kohm-Sham orbitalleri sayısal olarak hesaplanabilir veya bir baz fonksiyon seti terimleri içinde ifade edilebilir. Hartree-Fock metotlarında olduğu gibi çeşitli baz set fonksiyonları kullanılabilir ve Hartree-Fock hesaplamalarında kazanılan deneyim DFT baz set seçiminde aVantaj olarak kullanılabilir. Bazı farklı düzenlemeler Exchangekorelasyon enerjisinin yaklaşık fonksiyonel formunu elde etmek için geliştirilmiştir. DFT deki hataların ana kaynağı E_{xc} 'nin yaklaşık doğasından kaynaklanır.

Değiştokuş-Korelasyon (Exchange-Correlation) enerjisinin tanımı:

Değiştokuş-Korelasyon enerjisi için yaklaşık bir form belirlemek için çeşitli farklı formata sahip ifadeler geliştirilmiştir. Local Yoğunluk yaklaşımı (LDA) içinde E_{xc} ifadesi aşağıdaki bağıntıdaki gibi verilmektedir.

$$E_{\rm xc} = \int \rho(\mathbf{r}) \varepsilon_{\rm xc} [\rho(\mathbf{r})] d\mathbf{r}$$
(3.70)

Bu bağıntıda verilen ε_{xc} terimi sabit yoğunluğa sahip olan bir homojen elektron gazı içindeki her bir elektron için değiştokuş-korelasyon enerjisidir. Varsayımsal bir elektron gazı yaklaşımı içinde, sonlu sayıda elektron, içinde sürekli ve düzgün olarak dağılmış olan pozitif yük dağılımı olan sonlu bir hacme sahip uzay içinde hareket eder. Elektron korelasyonu için bu ifade bir yaklaşımdır çünkü ne pozitif yük, nede elektron yükü gerçek moleküllerde üniform olarak dağılmazlar. Bu sebeple ρ 'nun türevini içerenbir local olmayan düzeltme teriminin inhomogenlik özelliğini sağlaması ve molekülün gerçek elektron dağılımını verebilecek iyi bir değiştokuş-korelasyon enerji ifadesinin elde edilmesi amacıyla yukarıdaki enerji ifadesine düzeltme terimlerinin ilave edilmesi gerekmektedir. Bu nedenle enerji ifadesine ρ 'nun gradyentini içeren bir non-local düzeltme terimi eklenir.Non-local düzeltmeli LDA'nın DFT içinde d-metal komplexlerini içeren hesaplamalar için en doğru ve etkili metotlardan biri olduğu görülür.Aşağıda birkaç d-bloğu metalinin M-CO bağ gerilmelerinin hesaplanmış ve deneysel değerleri gösterilmiştir. Ortalama metal-ligand bağ enerjileri hemen hemen (±20kjmol⁻¹) kimyasal doğruluktadır.

Hesaplanmış ve deneysel ortalama metal-ligand bağ enerjileri

	Hesaplanan	Gözlenen
$Cr(CO)_6$	107	110
Mo(CO) ₆	126	15

Enerjiler her mol M-L bağlarında kilojoule (kjmol⁻¹) dir.

 $E_{xc}[\rho]$ terimi, bugün için tam olarak nasıl hesaplanacağı bilinemeyen bir terimdir ve bu sebeple yaklaşık formların kullanılması zorunlu olmaktadır. DFT metotlarının kendi içlerinde birbirlerinden farklılaştığı nokta $E_{xc}[\rho]$ (Exchange-correlation) enerji teriminin ifadesinde ortaya çıkmaktadır.

Yaygın olarak kullanılan DFT metotlarından bazıları:

BLYP: Becke, Lee, Yang ve Parr isimli araştırmacıların ortaya koyduğu bir DFT hesaplama metodudur.

B3LYP:Becke'nin 3 parametre hibrit fonksiyonunun BLYPY 'ye dahil edilmesi ile ortaya koyduğu bir DFT hesaplama metodudur.

B3PWD91: Becke'nin 3 parametre hibrit fonksiyonu ve Perdew'in önerdiği bazı önemli gradient-corrected korelasyon fonksiyonlarını içeren bir DFT metodu.

SVWN5: Slater, Vosko, Wilk ve Nusair tarafından verilen bir local korelasyon fonksiyonu içeren DFT metodudur.

3.7.3. Yarı Deneysel Metodlar

Yarı ampirik yöntemler elektron-elektron etkileşmelerine ait iki elektron integrallerini hesaplamazlar. Bu integral ifadeleri için inceleme konusu olan moleküle benzer elektronik yapıdaki moleküllerden, deneysel olarak elde edilen bilgilerden oluşturulmuş parametreleri kullanırlar. Bir başka deyişle yarı ampirik metotlar Schrödinger dalga denklemini deney verilerinden türetilen parametreleri içeren ve çözümü daha kolay olan bir forma dönüştürerek çözerler. Ab-initio hesaplama metotlarının yetersiz kaldığı biyolojik makro moleküller üzerinde yapılacak hesaplamalarda deney verileri ile uyumlu ve oldukça hızlı hesaplamalar gerçekleştirebilmeleri açısından aVantajlıdır. Yarı Ampirik metotta deneysel sonuçların yanı sıra kuantum fiziği kullanılır ve çok sayıda yaklaşıklık kullanılmaktadır. Bu metotta Ab-initio metoduna göre daha az veriye ihtiyaç duyulur bu nedenle aVantaj sağlamaktadır. Fakat deneysel verilere veya ab-initio verilerine ihtiyaç duyar. Ab-initio metodu kadar kesin sonuçlar vermez. Yarı Ampirik metotlardan en çok kullanılanları AM1, MNDO, MNDO/3, INDO, PM3, ZDO, CNDO vb...

3.8. MOLEKÜLÜN TİTREŞİM FREKANSLARININ BELİRLENMESİ

3.8.1. Deneysel Yöntemler

IR spektrumlarının kaydedilmesinden sonraki en önemli teknik spektrumların yorumlanmasıdır. Spektrumun yorumlanması spektrumdaki bandların ve molekülü oluşturan bazı grupların tanımlanmasını kolaylaştırır. Bunlar grup frekansı olarak bilinirler. Orta IR bölge 4 kısımdan oluşur, bu kısımlar grup frekansının çeşidine bağlıdır. IR spektrumlarının yorumlanmasını zorlaştıran etkenler de vardır. Bunlar; üstonlar, kombinasyon bantları, Fermi Rezonansı ve Hidrojen bağlarıdır.

Çok atomlu moleküllerin titreşimleri karmaşık olduğundan, bu karmaşıklık "normal titreşimlere" ayrılarak giderilebilinir. Temel titreşim veya normal titreşim moleküldeki bütün atomların aynı fazda ve frekansta titreşmesidir. Bu titreşimleri bir veya birden fazla normal titreşimin üst üste binmesi olarak ta gösterebiliriz. N atomlu molekülün 3N–6 tane normal titreşimi vardır. Eğer molekülümüz lineer ise 3N–5 tane normal titreşimi vardır. Molekülün normal titreşimleri teorik olarak Normal Koordinat Analizi yöntemi ile hesaplanabilir. Bu hesaplamalar bilgisayar ile yapılır ve hesaplama için molekülün kuvvet alanı oluşturulmalıdır. Molekülün normal titreşim frekans ve kipleri, deneysel IR ve Raman spektrumlarının analizinden, grup frekanslarından ve izotopik yer değiştirme yöntemleri kullanılarak uygun bir biçimde hesaplanır.[48]

3.8.1.1. Grup Frekansları

Çok sayıda molekülün IR ve Raman spektrumları incelendiğinde, bazı atom gruplarının, molekülün geri kalan kısmından bağımsız olarak, benzer frekanslarda titreşim hareketleri yaptıkları saptanmıştır. Yani bu gruplar molekülün temel titreşiminden farklı bir şekilde titreşmektedir. Bu frekanslara "grup frekansları" denir. Bu frekanslar molekülün normal titreşimlerini oluştururlar. Molekülün normal titreşiminde tüm atomlar aynı fazda titreşim hareketi yapmalarına rağmen bu titreşimlerin genlikleri farklı olabilir. Grup frekansı ifadesi, belirli grupların molekülün geri kalan kısmından bağımsız olarak hareket ettikleri varsayımına dayanır. Fakat normal titreşimde tüm çekirdekler harekete katılmaktadır. Yani grup frekansı gibi izole edilmiş titreşimler aslında normal titreşim tanımına aykırı düşmektedir. Ancak, eğer molekül, diğer atomlarına kıyasla daha hafif veya daha ağır atomlar bulunduruyorsa, izole titreşim fikri

pek de yanlış olmaz. Çünkü bu gruplara ait atomların harmonik titreşimlerinin genlikleri molekülün geri kalan atomlarından daha büyük veya daha küçüktür. Bu gruplar molekülün diğer atomlarına göre hafif atomlar (-OH, -CH,-CH₃,-NH₂) veya daha ağır atomlar (\equiv C-Br, \equiv C-CI, \equiv C-I) içeren gruplar veya kuvvet sabiti yönünden molekülün diğer kısmından bağımsız gruplardır ve bu gruplar molekülün geri kalan kısmı ne olursa olsun yaklaşık aynı frekansta titreşim bantları verirler. Birçok organik ve inorganik grupların frekansları bellidir ve tablolardan bulunabilir. Grup frekanslarında gözlenen değişimler maddenin ortamla olan etkileşmelerinin açıklanması açısından çok önemlidir. Bu karekteristik frekanslar :

X-H Gerilme bölgesi (4000cm⁻¹-2500cm⁻¹)

4000cm⁻¹-2500cm⁻¹ bölgesindeki tüm temel titreşimler X-H gerilmesini verir.

O-H bağ gerilme titreşimleri (3700cm⁻¹-3600cm⁻¹), N-H bağ gerilmesi (3400cm⁻¹-3300cm⁻¹) bölgesinde gözlenir. Aromatik halkadaki C-H bağ gerilmeleri (3100cm⁻¹-3000cm⁻¹) gözlenirken, alifatik yapılarda, C-H bağ gerilmeleri (3000cm⁻¹-2850cm⁻¹) gözlenir.CH₃ grubundaki simetrik ve asimetrik C-H gerilme absorbsiyonu mümkündür. Bu yaklaşık 2965 cm⁻¹ ve 2880 cm⁻¹de meydana gelir. CH₂ grubundaki absorbsiyonlar ise 2930 cm⁻¹ ve 2860 cm⁻¹ e karşılık gelir.

Dötere bileşiklerin C-H gerilmesi için gözlenen frekanstan daha düşük frekansta C-D gerilmesi (C-H gerilmesinden 0,73 faktör daha düşük frekansta) gözlenir.

Üçlü Bağ Gerilme Bölgesi(2500 cm⁻¹-2000 cm⁻¹)

Bağların yüksek kuvvet sabitleri nedeniyle 3'lü bağ gerilmesi absorbsiyonları (2500 cm⁻¹, 200 cm⁻¹)bölgesinde gözlenir. $C \equiv C$ bağ gerilme titreşimleri 2300 cm⁻¹ - 2050 cm⁻¹ aralığında, Nitril grubu $C \equiv N$ bağ gerilme titreşimleri 2300 cm⁻¹ ve 2200 cm⁻¹ aralığında gözlenir. $C \equiv C$ grubunun titreşim bandının şiddeti, nitril grubun titreşim bandının şiddetinden çok küçük olması sebebiyle bu iki titreşim birbirinden kolayca ayırt edilebilir. $C \equiv C$ bağındaki dipol moment değişimi absorbsiyon süresince çok küçüktür, $C \equiv N$ grubu yüksek dipole sahiptir ve bağ uzunluğunda da büyük değişimler olur. Absorbsiyonun şiddeti dipole momentteki değişime bağlıdır. Bu bölgede X-H gerilmesine de rastlanır şayet X atomu silikon ya da Fosfor gibi büyük ve ağır atomdur.

İkili Bağ Gerilme Titreşimi Bölgesi(2000 cm⁻¹-1500cm⁻¹)

Bu bölgedeki gözlenen temel titreşimler C=C ve C=O bağ gerilme titreşimleridir. Karbonil titreşimleri, spektrumda gözlenen en şiddetli bandlar olup 1650-1830 cm⁻¹ dalga sayısı aralığında gerçekleşmektedir. C=C bağ gerilmeleri çok zayıftır ve 1650 cm⁻¹ dalga sayısında gerçekleşmesine karşın şiddetinin çok düşük olması sebebiyle IR spektrumunda zayıf olarak veya hiç gözlenmez. N=C bağ gerilme titreşimleri de yine C=C ile aynı spektrum bölgesinde ancak şiddetli bandlarla gözlenir. Amino gruplarına ait N-H açı bükülme titreşimleri de 1630-1500 cm⁻¹ dalga sayısında gözlenir ve kuvvetlidir.

Parmak İzi Bölgesi(1500 cm⁻¹-600cm⁻¹)

IR spektrumlarında 1500cm⁻¹ dalga sayısından büyük herbir absorbsiyon bandını işaretlemek mümkündür. Ancak 1500 cm⁻¹'de tekli bağların çoğu birbirine çok yakın frekanslarda titreştiğinden bu titreşimler çiftlenirler. Bu çiftlenimlerden birbirine oldukça yakın frekanslarda titreşen C-C bağ gerilmesi ve C-H açı bükülme titreşimleri ile çiftlenirler. Bu nedenle 1500 cm⁻¹ 'de gözlenen titreşimlerin işaretlenmesi oldukça zordur.

Tekli açı bükülme frekansları da moleküller için karakteristik özelliklerin yer aldığı parmak izi bölgesinde yer almaktadır. Bu grubun üyeleri çoğunlukla X-H bükülme titreşim frekanslarından oluşmaktadır. Aromatik halka yapılı moleküllerde 700-100 cm⁻¹ arasında gözlenen C-H düzlem dışı açı bükülme frekansları, 1000-1300 cm⁻¹ arasında gözlenen düzlem içi C-H açı bükülme frekansları ve 1490-1650 cm⁻¹ arasında gözlenen N-H açı bükülme frekansları ve 1450-1200 cm⁻¹ arasındaki spektral bölgede gözlenen O-H bükülme frekansları bu gruptadır..

C-O bağ gerilme titreşimleri 1000-1400 cm⁻¹aralığında gerçekleşen oldukça şiddetli titreşimlerdir. Bir molekülün spektrumunda bu bölgede şiddetli bandın görülmemesi C-O bağ gerilme titreşiminin olmadığını göstermektedir. Nitro grubu (NO₂) ise 1475 cm⁻¹ ve 1550 cm⁻¹ değerlerinde oldukça şiddetli iki pik vermektedir.
Wagging(düzlem dışı sallanma)Frekans Bölgesi:

Genellikle CH ve NH wagging frekansları 650 cm⁻¹ 450 cm⁻¹ aralığındaki spektral bölgede gözlenir. Halka yapılı moleküllerde CH ve NH rocking frekansları 1050 cm⁻¹ gibi daha yüksek dalga sayısında gözlenir. Wagging frekansları molekülün geometrik yapısına bağlı olarak oldukça büyük farklılaşma gösterebilmektedir. Bu açıdan çok da belirleyici değildirler.

Rocking(düzlem içi sallanma) Frekans Bölgesi:

CH rocking frekansları genel olarak 900 cm⁻¹-600 cm⁻¹ aralığındaki, NH rocking frekansları ise 900 cm⁻¹-700 cm⁻¹ aralığındaki spektral bölgede gözlenirler. Halka yapılı moleküllerde CH ve NH rocking frekansları biraz daha yüksek (1050cm⁻¹ gibi) dalga sayısı bölgesinde gözlenmektedir.

3.8.1.2. İzotopik Yer Değiştirme

İzotopik yer değiştirme yöntemi, molekül içinde bir ya da daha çok atomun izotopu ile yer değiştirmesi yöntemine dayanır. Böylece molekülde sadece izotop değişimi yapılan atom ya da atomların hareketlerini gösteren titreşim frekanslarının, izotopik yer değiştirme sonucunda kayma göstermesi beklenir. Ancak molekül içindeki atom izotopu ile yer değiştirdiğinde molekülün potansiyel enerjisinin ihmal edilebilecek kadar az değiştiği kabul edilir. Yalnız titreşim frekansı kütle değiştiği için değişecektir. İzotopik yer değiştirme metodu, özellikle moleküldeki hidrojen atomlarının, izotopu olan döteryum atomlarıyla yer değiştirdiğinde önemli sonuçlar verir çünkü kütle iki katı kadar arttığından, frekansta önemli bir kayma gözlenecektir. Bu etki farklı iki atomlu moleküller için aşağıdaki eşitliklerden hesaplanabilir.

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
; $\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$ (3.71)

Bu denklemden;

$$v^{i} = v \left(\frac{\mu}{\mu^{i}}\right)^{\frac{1}{2}}$$
(3.72)

$$v^{i} = v \left[\frac{m_{1}m_{2}}{m_{1}^{i}m_{2}^{i}} \left(\frac{m_{1}^{i} + m_{2}^{i}}{m_{1} + m_{2}} \right) \right]^{\frac{1}{2}}$$
(3.73)

Burada i, izotop atomu tanımlamaktadır. Bu ifade, çok atomlu moleküllerde belirli bir titreşimin tahmini frekans kaymasını hesaplamak için de kullanılabilir.[49]

3.8.2. Teorik Yöntemler

3.8.2.1. Normal Koordinat Analizi

İki atomlu moleküllerde çekirdeklerin titreşimi sadece iki çekirdeği birleştiren çizgi üzerinde meydana gelir. Çok atomlu moleküllerde bu durum daha karmaşıktır. Çünkü bütün çekirdekler kendilerinin sahip olduğu harmonik osilasyonla titreşirler. Her çekirdeğin yer değişimini denge pozisyonundaki her çekirdeğin sisteminin orijini ile kartezyen koordinat sistemleri cinsinden ifade edelim. Molekülün karmaşık olan titreşimlerini normal titreşimlerin süper pozisyonu olarak tarif edebiliriz.

N atomlu molekül için kinetik enerji

$$T = \frac{1}{2} \sum_{N} m_{N} \left[\left(\frac{d\Delta x_{N}}{dt} \right)^{2} + \left(\frac{d\Delta y_{N}}{dt} \right)^{2} + \left(\frac{d\Delta z_{N}}{dt} \right)^{2} \right]$$
(3.74)

Eğer koordinatları;

$$q_{1} = \sqrt{m_{1}} \Delta x_{1} \qquad q_{2} = \sqrt{m_{1}} \Delta y_{1} \qquad q_{3} = \sqrt{m_{1}} \Delta z_{1} \qquad q_{4} = \sqrt{m_{2}} \Delta x_{2} , \dots \dots \qquad (3.75)$$

Şeklinde genelleştirirsek(yani kütle ağırlıklı koordinatlar cinsinden yazarsak) kinetik enerjiyi

$$T = \frac{1}{2} \sum_{i}^{3n} \dot{q}_{i}^{2}$$
(3.76)

Sistemin potansiyel enerjisi bütün koordinatları içeren kompleks bir fonksiyondur. Küçük yer değiştirmeler için potansiyel enerjiyi Taylor serisine açabiliriz.

$$\mathbf{V}(\mathbf{q}_{1,\mathbf{q}_{2,\dots,n}}\mathbf{q}_{3N}) = \mathbf{V}_{0} + \sum_{i}^{3N} \left(\frac{\partial \mathbf{V}}{\partial \mathbf{q}_{i}}\right)_{0} \mathbf{q}_{i} + \frac{1}{2} \sum_{i,j}^{3N} \left(\frac{\partial^{2} \mathbf{V}}{\partial \mathbf{q}_{i} \partial \mathbf{q}_{j}}\right)_{0} \mathbf{q}_{i} \mathbf{q}_{j} + \dots$$
(3.77)

Denge konumundaki potansiyel enerjiyi Vo=0 alabiliriz. Birinci türev denge konumundaki teğetin eğimini verir. Denge konumunda potansiyel minimum olmalıdır.

$$\left(\frac{\partial \mathbf{V}}{\partial \mathbf{q}_{i}}\right)_{0}$$
 her koşulda sıfırdır.

Böylece

$$V = \frac{1}{2} \sum_{i,j}^{3N} \left(\frac{\partial^2 V}{\partial q_i \partial q_j} \right)_0 q_i q_j = \frac{1}{2} \sum_{i,j}^{3N} b_{ij} q_i q_j$$
(3.78)

Olacak ve daha yüksek terimler ihmal edilecektir. Eğer potansiyel enerjide çapraz terimler olmasaydı problem direkt Newton eşitliğini kullanarak çözülebilirdi.

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial T}{\cdot}_{\partial \mathbf{q}_{i}} \right) + \frac{\partial V}{\partial \mathbf{q}_{i}} = 0 \qquad \qquad i=1,2,...,3N \qquad (3.79)$$

Kinetik ve potansiyel enerjiyi bu denklemde yerine koyarsak

$$\mathbf{a}_{i}^{*} + \sum_{j} b_{ij} q_{i} = 0$$
 $i, j=1,2,...,3N$ (3.80)

 $i \neq j$ için $b_{ij} = 0$ ise yukarıdaki eşitlik

$$\mathbf{q}_{i} + \mathbf{b}_{ii}\mathbf{q}i = 0 \tag{3.81}$$

Bu eşitlik çözüldüğünde

$$q_{i} = q_{i}^{0} \sin\left(\sqrt{b_{ii}}t + \delta_{i}\right)$$
(3.82)

Buradaki q_i^0 genlik ve δ_i faz sabitidir. Bu kısaltma uygulanabilir değildir. Bu koordinatları (Q_i) yeni koordinatlara dönüştürmemiz gerekir.

$$q_{1} = \sum_{i} B_{1i} Q_{i} \qquad (3.83)$$

$$q_{2} = \sum_{i} B_{2i} Q_{i}$$

$$\vdots$$

$$q_{k} = \sum_{i} B_{ki} Q_{i} \qquad (3.84)$$

Buradaki Qi, lere sistemin normal koordinatları denir.

Bu yeni koordinatlara göre tekrar kinetik ve potansiyel enerjiyi yazalım.

$$T = \frac{1}{2} \sum_{i} \dot{Q_{i}}^{2}$$
(3.85)

$$V = \frac{1}{2} \sum_{i} \lambda_{i} Q_{i}^{2}$$
(3.86)

Bu iki ifadeyi Newton eşitliğinde yerine koyarsak

 $\ddot{\mathbf{Q}}_{i} + \lambda_{i} \mathbf{Q}_{i} = 0 \tag{3.87}$

Bu eşitliğin çözümü

$$Q_{i} = Q_{i}^{0} \sin\left(\sqrt{\lambda_{i}}t + \delta_{i}\right)$$
(3.88)

$$\nu_{i} = \frac{1}{2\pi} \sqrt{\lambda_{i}}$$
(3.89)

Bu titreşime normal titreşim denir ve normal titreşimde tüm atomlar aynı frekansta ve fazda titreşirler. [48]

3.9. ATOMİK ORBİTALLER

LCAO-MO (Lineer Combination of Atomik Orbitals) metodunda her bir atomun atomik orbitallerinin lineer kombinasyonu şeklinde tek elektron moleküler orbitalleri oluşturulur. Moleküldeki her bir elektronun moleküler orbital fonksiyonu, atomik orbital fonksiyonlarının belirli orandaki katkılarıyla oluşturulur.

$$\phi_i = \sum_k C_{ik} . \psi_k \tag{3.90}$$

Burada i.elektron için oluşturulmuş dalga fonksiyonu yukarıdaki gibidir.

 ϕ_i : i.elektronun tek elektron moleküler orbitali.

 ψ_k : k.atomik orbital dalga fonksiyonu.

 C_{ik} : i.elektronun tek elektron moleküler orbitaline k.atomik orbital dalga fonksiyonun katkısını gösterir.

Elektronun spin durumlarını da hesaba katarak tek elektron spin-orbital moleküler dalga fonksiyonunun tanımlanmasıyla, antisimetrik özelliğe sahip molekülün toplam elektronik dalga fonksiyonu LCAO-MO yaklaşımı ile oluşturulur.

LCAO-MO yaklaşımı kullanılarak molekülün toplam elektronik dalga fonksiyonunu daha da geliştirilerek, molekülün elektronik enerjisini gerçeğe daha yakın değerlerde hesaplanmasına olanak sağlar. Bu sebeple molekül için en etkili atomik orbitali tanımlayarak, tek elektron moleküler orbitali en iyi biçimde tanımlamış oluruz. [44,50,51]

Atomik orbital dalga fonksiyonları iki çeşittir. Slater Tipi Atomik Orbital(STO), Gaussian Tipi Atomik Orbital(GTO) dur.

3.9.1. Slater Tipi Atomik Orbitaller:

Slater tipi orbitaller genelde iki atomlu moleküllerde kullanılır. Küresel simetriye sahip orbitalleri ifade eder. Yani Hidrojen atomu ve diğer tek elektronlu iyon atomlar için Schrödinger eşitliğinin çözümüyle elde edilen fonksiyonlar kullanarak bu orbitaller oluşturulmuştur.

$$\Psi_{\zeta,n,l,m}(\mathbf{r},\theta,\phi) = \mathbf{N}\mathbf{Y}_{l,m}(\theta,\phi)\mathbf{r}^{n-1}.\mathbf{e}^{-\zeta \mathbf{r}}$$
(3.91)

N normalizasyon sabitidir. $Y_{l,m}(\theta, \phi)$ Hidrojene benzer yapıdaki tek elektronlu bir atomik sistem için küresel harmoniği belirtir. ζ terimi, verilen atomik orbital tipi (s,p,d,f.....) için bir sabiti gösterir. n, l, m terimleri kuantum sayılarıdır. Bu atomik orbital Hidrojen atomunun orbitaline benzer bir yapıdadır.

Slater tipi orbitaller küresel simetrik elektron dağılımına sahip atomik orbitalleri tanımlamada oldukça başarılıdır ancak eksensel simetrideki elektron dağılımına sahip moleküler orbitallerin oluşturulmasında yetersiz kalmaktadır. Bunun yerine bu yetersizlikleri karşılayan Gaussian Tipi Atomik Orbitaller kullanılmaya başlanmıştır.

3.9.2. Gaussian Tipi Atomik Orbitaller:

Gaussian tipi orbitaller eksenel simetrideki elektron dağılımına sahip moleküler orbitallerin oluşturulmasında kullanılmaktadır. 'Ab- initio' metodların kullanıldığı hesaplamalarda bu atomik fonksiyonlar kullanılır. Gaussian tipi orbitaller, primitif gaussian fonksiyonlarından oluşmaktadır.

Primitif Gaussian fonksiyonunun genel formu aşağıdaki gibidir.

$$g_{ijk}(\mathbf{r}_{1} - \mathbf{r}_{c}) = (\mathbf{x}_{1} - \mathbf{x}_{c})^{i} \cdot (\mathbf{y}_{1} - \mathbf{y}_{c})^{j} \cdot (\mathbf{z}_{1} - \mathbf{z}_{c})^{k} \cdot \mathbf{e}^{-\alpha(\mathbf{r}_{1} - \mathbf{r}_{c})^{2}}$$
(3.92)

i, j, k pozitif tamsayılardır. α pozitif bir katsayıdır. x_c , y_c , z_c terimleri koordinat sisteminin merkezi koordinatlarını, x_1 , y_1 , z_1 terimleri elektronun kartezyen koordinatlarını gösterir. Primitif Gaussian fonksiyonları i, j, k tamsayılarına göre isimlendirilirler.

i+j+k=0 ise s-tipi Gaussian i+j+k=1 ise p-tipi Gaussian i+j+k=2 ise d-tipi Gaussian s, p, d, f terimleri, s, p, d, f atomik orbitallerinin tanımında kullanılan uygun simetri özelliğine sahip primitif Gaussian fonksiyonlarını göstermektedir.

Gaussian fonksiyonları, primitif Gaussian fonksiyonlarının lineer kombinasyonu sonucu oluşturulmaktadır. Eğer baz fonksiyonu tek bir primitif Gaussian fonksiyonundan oluşuyorsa **'sıkıştırılmamış baz fonksiyonu',** birden çok primitif Gaussian fonksiyonundan oluşuyorsa**'sıkıştırılmış baz fonksiyonu'** denir.

$$\chi_i = \sum_p d_{ip} g_p \tag{3.93}$$

Bu tür fonksiyonlara sıkıştırılmış Gaussian fonksiyonları denir. Primitif Gaussian setlerinden oluşmuş bir sıkıştırılmış Gaussian fonksiyonu yukarıdaki bağıntıdaki gibidir. d_{ip} terimi verilen set için sabit katsayıları, g_p ise verilen set içindeki primitif Gaussian fonksiyonlardan birisini gösterir. χ_i sıkıştırılmış Gaussian fonksiyonların lineer kombinasyonu ile atomik orbitaller oluşturulabilir.

$$\Psi_{k} = \sum_{i} C_{ki} \cdot \chi_{i} \tag{3.94}$$

 ψ_k = atomik orbital

 χ_i sıkıştırılmış Gaussian fonksiyonu

Gaussian baz setleri, atomların kapalı kabuk ve açık kabuk orbitallerini tanılanması açısından çeşitlenmektedir. Standart gaussian baz setleri, açık kabuk orbitallerini tanımlamak için kullandıkları primitif gaussian baz fonksiyonu sayısına bağlı olarak;

- a) İkili zeta baz set m-npG
- b) Üçlü zeta baz set m-np1G

Olarak iki grupta incelenir. m, n, p sıfırdan farklı pozitif tam sayıları, G ise gaussiani ifade etmektedir.

a) İkili zeta baz setleriyle oluşturulan kapalı kabuk atomik orbitalleri m tane primitif Gaussian fonksiyonundan oluşan bir tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir. Açık kabuk orbitalleri ise, birisi n tane primitif Gaussian fonksiyonundan ve diğeri p tane primitif Gaussian fonksiyonundan oluşturulan iki sıkıştırılmış Gaussian fonksiyonu ile temsil edilir.

İkili zeta baz setlere 3-21G, 4-31G, 6-31G baz setleri örnek verilebilir.

Baz set içinde yer alan primitif Gaussian fonksiyonlarının sayısı ne kadar büyükse atomik orbitallerin tanımlanması da o derece iyi olur.

b) Üçlü zeta baz setleriyle oluşturulan kapalı kabuk atomik orbitalleri yine m tane primitif Gaussian fonksiyonundan oluşan bir tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir.

Açık kabuk orbitalleri ise, birincisi n tane, ikincisi p tane, ve üçüncüsü 1 tane primitif Gaussian fonksiyonundan oluşturulan üç tane sıkıştırılmış Gaussian fonksiyonu ile temsil edilir.

Üçlü zeta baz setlere 6-311G, 6-321G baz setleri örnek verilebilir.

Polarizasyon ve diffuse fonksiyonlarının dahil edilmesiyle baz kümelerinde ki çeşitlilik daha da artmaktadır.

Diffuse fonksiyonlar: Elektronları çekirdekten çok uzakta yer alan moleküllerde atomik orbitaller daha geniş bir uzay bölgesini kaplayacaklarından, yalnızca sıkıştırılmış baz setlerin kullanılması yetersiz kalmaktadır. Genellikle ortaklaşmamış elektron çiftleri içeren moleküllerde, uyarılmış durumdaki sistemlerde bu yetersizlik daha da ön plana çıkmaktadır. Yetersizliklerin giderilebilmesi için baz kümelerine 'diffuse baz kümeleri' eklenir. Diffuse fonksiyonlarının dahil edilmesi '+' veya '++' işaretleriyle olur. Hidrojen dışındaki ağır atomlar için '+' işareti, hem ağır atomlar hem hidrojen atomları için '++' işareti ile gösterilir.

6-31+G ve 6-31++G baz kümeleri örnek olarak verilebilir.

Polarize fonksiyonlar: Molekül içindeki çekirdekler diğer çekirdeklerin etrafındaki polarize elektron yoğunluğunu bozduğundan, serbest atomların s,p,d,f....gibi orbitallerinden daha esnek olan moleküler orbitallerin oluşturulması gerekir.

Bunu sağlamanın en iyi yolu baz fonksiyonlarına daha yüksek açısal momentum kuantum sayısı eklemektir. Polarizasyon fonksiyonları baz kümelerine katılarak moleküler orbitalleri, atom orbitallerinin melezleşmesinden elde edilen melez orbitallerinden oluşturulur. Bunlara örnek olarak 631G(d) ve 6-31G(d,p) baz fonksiyonları verilebilir. Polarizasyon fonksiyonları karbon atomları için 'd', hidrojen atomları için 'p' ve geçiş metalleri için 'f' isimlerini alırlar.

Kullanılan baz kümesi ne kadar çok olursa, hesaplamalar da o kadar hassaslaşacaktır.

3.10. AMİNO ASİTLERİN YAPISI VE ÖZELLİKLERİ

3.10.1 Amino Asitler Hakkında Genel Bilgiler

Biyolojik makromoleküllerin (proteinler, hormonlar, enzimler v.s.) büyük çoğunluğu amino asitlerden oluşmuştur. Her bir makromolekülün yapısı ise doğrudan doğruya kendisini oluşturan amino asitlerin yapılarına bağlıdır. Bu nedenle önce amino asitler hakkında bazı bilgileri sunmak gerekmektedir.

Amino asitler NH₂ amin grubu ve COOH karboksil grubundan oluşmuş organik bileşiklerdir. Proteinler, hormonlar ve enzimler 20 çeşit doğal amino asidin farklı dizilişler halinde birbirine bağlanmasıyla oluşan makromoleküllerdir. Doğal amino asitler; elektrik yüklerine, polar ya da apolar olmalarına, hidrofob ya da hidrofil özelliklerine ve organizmada sentez edilip, edilemediklerine bağlı olarak değişik sınıflara ayrılırlar.

Amino asitler asit, baz veya nötr; yan zincirlerinin yapılarına göre ise alifatik, aromatik ya da heterosiklik olurlar. Bunların dışında hidroksil grubu (OH) içeren amino asitlere hidroksi-amino asit; dallarına tiol ya da tioeser grupları girenlere ise kükürt içeren amino asitler denir, ikinci amin grubu (-NH-) pirolidin halkasına giren amino asitler (prolin ve hidroksiprolin) ayrı bir sınıf oluşturmaktadırlar.

Amino asitler, yan zincirlerinin polarlık derecesine göre ise polar ve apolar olmak üzere ikiye ayrılırlar. Bir amino asitte negatif ve pozitif yüklerin dağılımı birbirine göre simetrik olduğunda, her iki yükün çekim merkezleri üst üste gelir ve bu molekülün dipol momenti sıfır olur. Böyle amino asitler apolar amino asitlerdir: **Gly, Ala, Val, Leu, Ile, Pro, Met ve Phe**^{*}. Bu amino asitlerin dalları tamamen kovalent yapıdadır ve suda az çözünürler, yani hidrofobiktirler (suyu sevmezler) [52]. Yükler dağılımı asimetrik olduğunda pozitif ve negatif yük merkezleri üst üste gelmez ve molekül hiçbir dış etki olmadığı halde, kendi iç yapısı nedeniyle belirli bir dipol momente sahip olur. Böyle amino asitler ise polardır: **Ser, Thr, Cys, Asp, Glu, Asn, Gln, Trp, Tyr, Lys, Arg** ve **His**. Polar amino asitler, dalların iyonik yapıda olması nedeniyle sulu ortamda

hidrojen bağları kurarak yapılarını kararlı hale getirebildiklerinden suda çok iyi çözünürler yani hidrofiliktirler (suyu severler).

Tüm bu karakteristikler amino asitlerin oluşturduğu moleküllerin özelliklerini doğrudan etkilemektedir. Örneğin hidrofil polar amino asitler, protein ve peptidlerin sulu ortamlarda çözülmesini arttırırlar; nötr-polar amino asitler ise enzimlerin katalitik aktivitesinden sorumludurlar. Polar amino asitler genelde protein yumağının dış yüzünde (çünkü suyu severler), apolar hidrofob amino asitler ise bu yumağın içinde (çünkü suyu sevmezler) yer almaya çalışırlar.

Doğal amino asitler içerisinde yan zincirleri yüklü olan dört amino asit bulunmaktadır. Bunlardan Lizin ve Argininin yan zincirleri amino grubu içerir ve pozitif yüklüdürler; Aspartik asit ve Glutamik asitinse yan zincirlerinde karboksil grup bulunur ve negatif yüklüdürler.

Organizmada sentez edilip, edilemediklerine göre endojen ve eksojen amino asitler olarak iki sınıfa ayrılırlar. Bitkiler ve bazı mikroorganizmalar kendi hücre proteinlerinin sentezi için gereken tüm amino asitleri üretebilmelerine rağmen, insan ve hayVansal organizmalar protein sentezi için gerekli 20 amino asidin sadece yarısını üretebilirler. Bu amino asitler endojen amino asitler olarak adlandırılırlar. Organizmada sentez edilemeyen diğer 10 amino asit (Arg, His, Ile, Leu, Lys, Met, Phe, Trp, Thr ve Val), eksojen amino asitlerdir ve yalnızca dış kaynaklardan (besinle) sağlanabilirler. Proteinler yaşamın en önemli biyopolimerlerinden biri olduklarına göre, her iki grup ta organizmalar için büyük önem taşır.[52]

3.10.2. Amino Asitlerin Yapısı

Proteinlerin, peptitlerin, hormonların, enzimlerin vb. önemli biyolojik moleküllerin yapı taşları olan amino asitler, ortada bir karbon atomuna bağlı bir –NH₂ amin grubu, bir – COOH karboksil grubu, bir –H ve bir –R (Radikal) grubundan oluşurlar. Doğada halen 180 civarında amino asit bulunmaktadır. Bunların her biri farklı bir R grubuna (yan dal veya yan zincir olarak adandırılan radikal grup) sahiptir.

-R grubunun ve H atomunun birleştiği C atomu, α -karbon (C^{α}) olarak adlandırılır. Glisin haricindeki diğer tüm amino asitler C^{α} atomuna göre asimetriktir. Amin ve karboksil gruplarının aynı karbon atomuna birleştiği amino asitlere α -amino asitler denir. Proteinlerin yapısında α -amino asitler bulunur. Sözünü ettiğimiz fonksiyonel gruplar birbirine 2, 3 ya da 4 karbon atomu vasıtasıyla birleşseler, bu tür amino asitler sırasıyla, β -, γ -, ϵ -amino asitler olarak adlandırılırlar. Kimyasal yapı formülü NH₂-CHR-COOH şeklindeki amino asitler nötr amino asitlerdir.

3.10.3. Amino Asitlerin İşaretlendirilmesi

Amino asitlerin yapılarında bir çok karbon ve hidrojen atomu bulunduğundan, aynı çeşit atomları birbirinden ayırabilmek için bazı özel işaretlemeler kullanılmaktadır. Amino asitlerin C=O grubundaki karbon atomu C' olarak gösterilir. Dallara giren atomlar ise IUPAC-IUB komisyonunun önerisine uygun şekilde, C^{α} atomundan başlayarak yan zincirin atomları sırasıyla β -, γ -, δ -, ε -, ζ -, vs. şeklinde işaretlenir. İşaretlemeler, dalın ana zinciri üzerinde yer alan atomlar için verilir ve bu atomlara birleşen diğer atomlar da aynı işarete sahip olurlar. Örneğin, C^{β} atomuna bağlı her iki hidrojen atomu H^{β} olarak yazılır.

3.10. 4. Peptid Bağı ve Peptid Grubu

Amino asitlerin birleşmesi ile peptid ve proteinler oluşurlar. Bu esnada amino asitlerin birinin amin grubundaki bir hidrojenle (-H), diğerinin karboksil grubundaki hidroksil grubu (-OH) birleşerek bir su molekülü oluşturur. Karboksil grubunda kalan karbon atomu diğer amino asidin amino grubundaki azotla kimyasal bir bağ meydana getirerek birleşir. Şekil3-14'de iki amino asidin birleşmesinden oluşan bir dipeptid gösterilmektedir.

Şekil 3.13:Peptid bağı

Burada -OC – NH- grubuna **peptit grubu**, bu gruba giren C – N kimyasal bağına ise **amid** ya da **peptid bağı** denir. Dipeptide yeni bir amino asit bağlandığında bir tripeptid meydana gelir. Amino asit sayısına bağlı olarak bu peptidler mono-, di-, tri-, tetra-,

penta-, vs. peptid adını alırlar. Çok sayıda amino asitin peptid bağı ile biribirine bağlanmasıyla polipeptidler oluşur. polipeptid zincirinin NH_2 ya da NH_3^+ ile başlayan ucu N-terminal, COOH ya da COO⁻ ile sona eren ucu ise C-terminal olarak adlandırılır. Bazı özel hormon ve peptid zincirleri NH_2 amid grubu ile sona erer ki bunlara da amid peptidler denir.

Peptid grubunun geometrik parametreleri Pauling ve Corey tarafından belirlenmiştir [53]. Pauling ve Corey C' - N kimyasal bağ uzunluğunun olması gereken değerden %10 yani 0.15 Å kadar küçük, C' = O bağ uzunluğunun ise 0.02 Å kadar büyük olduğunu ortaya çıkarmışlardır. Bunun nedeni sözü edilen tekli ve ikili bağların, atomlar arası (peptid grubunun N ve O atomlarının moleküler bağa katılmayan elektronları arasında) özel etkileşimler sonucu bir buçuk bağ haline gelmeleridir. Bu durum CO – NH (peptid) grubu atomlarının aynı düzlem içinde yer almalarına neden olur

3.11. MOLEKÜLER MEKANİK YÖNTEM İLE BİYOLOJİK MOLEKÜLLERİN İNCELENMESİ

Biyolojik moleküllerin yapılarının değişmesine bağlı olarak, fonksiyon kaybı meydana gelmekte bu da hastalıkların gelişmesine neden olmaktadır. Biyolojik moleküllerin deneysel yollarla incelenmesiyle oldukça önemli bilgiler elde edinilebilinir ancak. biyolojik süreçte reaksiyonun gerçekleşme süresinin, deneysel çalışmaya elvermeyecek derecede kısa olması gibi sebeplerden dolayı deneysel çalışmalar bazı durumlarda yapılamamış, ya da çalışma yapılsa bile yoruma gidilememiştir. Öte yandan, moleküllerin davranışını daha ayrıntılı açıklamak için moleküler düzeyde bir bakış gereklidir. Çünkü deney verileri belirli etkileşimler içinde son duruma ait bilgiyi vermektedir; bu etkileşimlerin hangi türde olduklarını ve nasıl gerçekleştiklerini açıklayamaz.

Biyolojik moleküller hareketliliğe ve biyolojik fonksiyonlarını gerçekleştirmeleri az da olsa bu dinamiğe bağlıdır. Gerçekten, enzim-substrat, enzim-inhibitör ve molekülreseptör etkileşmelerinde, karşılıklı olarak etkileşen her iki molekülün uzay yapılarında bazı değişiklikler meydana gelmektedir. Bu değişiklikler, moleküllerin kendi mümkün konformasyonları arasından, birbirlerini tamamlayıp bir kompleks oluşturacakları en uygun geometriye gelmeleri şeklinde olur. Biyolojik moleküllerin yerine getirdikleri fonksiyonlar, doğrudan doğruya bu moleküllerin uzaysal yapıları ile ilişkilidir. Bu nedenle, biyolojik reaksiyonların gerçekleşmesiyle ilgili sorulara açıklık getirebilmek için etkileşmekte olan moleküllerin konformasyonlarının belirlenmesi büyük önem taşır.

Moleküllerin konformasyon analizi için kullanılan en pratik ve yaygın yöntemlerden biri Moleküler Mekanik (MM) yöntemidir. MM yöntemi, molekülleri statik ve dinamik olarak iki farklı açıdan inceler. Dinamik incelemenin yapılabilmesi için, önce statik durumda, molekülün sahip olduğu potansiyel enerji eğrisinin bilinmesi gerekir. Bu çalışma, moleküllerin statik durumda incelendiği MM yöntemlerinden biri olan Teorik Konformasyon Analiz (TKA) yöntemi ile yapılmıştır.

3.11.1. Teorik Konformasyon Analizi Yöntemi

Doğadaki sistemlerin en kararlı hali en düşük enerjiye karşılık gelir. Biyolojik moleküller de fonksiyonlarını ancak en düşük enerjili konformasyonlarında yerine getirebilirler. Yani, biyolojik fonksiyon gerçekleştiren (biyolojik aktif) bir molekül, en düşük enerjili (kararlı) konformasyonlarından birinde bulunur. O halde, molekülün tüm konformasyonları arasından kararlı olanları belirlemek gerekmektedir. **Teorik Konformasyon Analizi Yöntemi,** molekül içindeki tüm etkileşmeleri dikkate alarak molekülün toplam enerjisini ifade eden ve kararlı konformasyonları belirleyen bir yöntemdir. Bu yöntemle, biyolojik moleküllerin mümkün konformasyonları ve bu konformasyonların enerjilere göre dağılımları belirlenerek, bu bilgiler ışığında moleküllerin çalışma ya da çalışmama mekanizmalarına açıklık getirilebilir.

Bir yaklaşıklıkla; molekül sadece atomlardan oluşan noktasal kütleler topluluğu olarak düşünülür. Bu yaklaşıma göre, moleküle giren her bir atom diğer atomlarla teker teker ve kalanlardan bağımsız olarak etkileşir. Başka bir deyişle, her hangi bir atomun moleküldeki başka bir atomla etkileşmesi, molekülün içerdiği diğer atomların varlığından bağımsızdır.

Born-Oppenheimer yaklaşımına dayanarak, moleküle karşılıklı etkileşen atomlar sistemi olarak bakan modele ise molekülün **mekanik modeli** denir. Mekanik model, yarı ampirik esaslar üzerine kurulmuştur. Molekülün yapısını ve enerjisini belirlerken,

molekülü oluşturan atomlar arasındaki valens bağ uzunlukları, valens açı değerleri gibi bazı deneysel sonuçlardan yararlanılır.

3.11.2. Molekülün Toplam Enerjisinin Hesaplanması

Molekülün enerjisi belirlenirken biyolojik moleküllerin organizma içinde çeşitli etkileşimler içinde bulunduğu kabul edilir. Enerji hesabı yapılırken moleküler mekanik yöntemde molekülün toplam enerjisi, atom çiftlerinin etkileşmesi yaklaşımı altında hesaplanır. Molekülün toplam enerjisi belirlendikten sonra, kararlı konformasyonlar belirlenir.

Molekülün enerjisi belirlenirken içinde bulunduğu ortam dikkate alınmalıdır. Vücudumuzun %80'den fazlası su olduğundan, biyolojik moleküllerin sulu ortamda bulundukları söylenebilir. Buna bağlı olarak, biyolojik moleküller su molekülleri ile hidrojen bağları kurarlar. Bu etkileşme molekülün konformasyon enerjisini belirlemede dikkate alınmalıdır. Çünkü özellikle DNA, RNA, hormonlar, proteinler olmak üzere biyolojik moleküllerin doğal yapılarının belirlenmesinde, molekülün kendi içinde ve kuşatıcı ortamdaki su molekülleri ile kurduğu hidrojen bağlarının önemi büyüktür. Biyokimyasal yollarla DNA, RNA ve proteinlerin yapılarındaki hidrojen bağları kırıldığında, moleküllerin inaktif (biyolojik fonksiyon gerçekleştiremez) olduklarının gözlenmesi, bu önemi göstermektedir. (Bu nedenle molekül içinde ve molekül dışında kurulan **hidrojen bağlarının enerjileri** hesaplanmalıdır.[56,57]

Molekül içindeki valans bağlar üzerinde meydana gelen burulma hareketi sonucu, valans bağın her iki ucunda yer alan atom gruplarının uzay konumları değişir. Uzaysal yapıyı büyük ölçüde değiştiren bu hareketin sonucu olarak, molekülün enerjisinde de bir değişim olmalıdır. İkili ya da üçlü kimyasal bağ etrafında dönme olanaksız olduğundan, sözünü ettiğimiz burulma hareketi tekli kimyasal bağ etrafında gerçekleşir ve bu nedenle genellikle **tekli kimyasal bağ etrafında frenlenmiş iç dönme** olarak adlandırılır.

Molekülü oluşturan atomlar arasında, bağ oluşumu nedeniyle ortaya çıkan etkin yükler ve molekülde bulunan yüklü iyon grupları bir **elektrostatik etkileşim** içinde bulunurlar.

Bunların dışında birbirleriyle doğrudan kimyasal bağ oluşturmayan atomlar arasında çekme ya da itme olarak kendini gösteren **Van der Waals etkileşmesi** bulunmaktadır.

Tüm bu etkileşimler göz önüne alınarak, molekülün enerjisi:

 U_{hb} hidrojen bağı enerjisi, U_{tor} burulma (dönme) enerjisi, U_{elk} elektrostatik etkileşme, U_{vw} Van der Waals etkileşmesidir.

Böylece molekülün enerjisi;

$$U = U_{hb} + U_{tor} + U_{elk} + U_{vw}$$
(3.95)

Tüm enerji terimleri temelde etkileşmekte olan atomlar arası uzaklığa bağlıdır. Uzaklıkların değişmesine neden olan hareket ise tekli bağ etrafında dönme hareketidir.

3.11.2.1. Hidrojen Bağ Enerjisi

Hidrojen bağı; elektronegatif bir atomla kimyasal bağ kurmuş bir H atomu ile, elektronegatifliği yüksek başka bir atom (O, N, vb..) arasında meydana gelmektedir Hidrojen atomunun tek elektronu kimyasal bağ kurmuş olduğu elektronegatif atom tarafından çekileceğinden, tek elektron elektronegatif atoma doğru yönelmiştir.Bu durumda hidrojen çekirdeği tek başına pozitif bir yük gibi algılanabilir. Biyolojik moleküllerde bulunan ve elektronegatiflikleri yüksek O, F, Cl, N, vb. atomlar kimyasal bağ ile bağlı oldukları diğer atomun (atomların) elektron bulutunu kendilerine doğru çektiklerinden, kısmi bir negatif yüke sahiptir. Kısmi negatif yük bulutuna sahip olan bu atomlar, başka bir elektronegatif atomla bağ yapmış bir H atomuna yaklaştığında, kısmi negatif ve kısmi pozitif yükler arasında meydana gelen elektrostatik çekim etkisiyle bir bağlanma oluşur. Bu tip bağların bir ucunda daima H atomu bulunduğundan bunlara **hidrojen bağı** adı verilmiştir..

Organik moleküllerin yapılarında birçok Hidrojen atomu dahil etmeleri sebebiyle, çok fazla Hidrojen bağları meydana gelmektedir. Kimyasal bağdan yaklaşık 10 kez daha zayıf enerjili olmakla beraber büyük moleküllerin yapısında çok sayıda hidrojen bağı bulunması, bu moleküllerin kararlılığını artırır; bu nedenle hidrojen bağlarının kırılması için büyük bir enerji harcanması gerekir.

Hidrojen bağı moleküller arası var olabileceği gibi molekül içi Hidrojen bağları da bulunmaktadır. Hidrojen bağları Van der Waals bağından daha güçlü ancak kovalent ve iyonik bağlara göre daha zayıftır.

Hidrojen bağı oluşması durumunda, elektronegatif atoma kimyasal bağ ile bağlı H atomu arasındaki bağ gerilme titreşimi, daha düşük frekanslara kaymaktadır. Çünkü bu gerilmenin kuvvet sabiti zayıflamaktadır. Bükülme titreşimleri ise kuvvet sabitlerinin artması nedeniyle daha yüksek frekanslara kaymaktadır. Oluşan Hidrojen bağları bağın uzunluğuna göre sınıflandırılabilinir.

H	lidrojen bağ uzunluğu(Å)	Hidrojen bağ enerjisi (kcal/mol)
Çok Güçlü Hidrojen Ba	ğları: 1,2-1,5 Å	15-40kcal/mol
Güçlü Hidrojen Bağları	: 1,5-2,2 Å	4-15 kcal/mol
Zayıf Hidrojen Bağları:	2,2-3,2 Å	1-4kcal/mol

Hidrojen bağı enerjisi için Mors potansiyeli kullanılmıştır:

$$U_{hb} = D \left[1 - e^{-\alpha \Delta r} \right]^2$$
(3.96)

Burada D, hidrojen bağının ayrışma (disasiasyon) enerjisi; α molekülün kutuplanma yatkınlığına bağlı ampirik bir sabit; Δr ise hidrojen bağının denge konumundan sapma miktarıdır. D, ayrışma enerjisi molekülün bulunduğu ortamın polarlık derecesine bağlıdır.

3.11.2.2. Torsiyon Enerjisi

Valans bağ ve valans açı değerlerinde başka molekülün uzaysal yapısının belirlenebilmesi için molekülün ana zincir ve yan zincirin uzay konumunu belirten ikiyüzlü dihedral açı değerleri de bilmek gerekir. Molekül, bulunduğu ortamdan alacağı küçük bir enerji ile tekli kimyasal bağlar etrafında dönme hareketi yapar. Bu hareket tamamen serbest değil, frenlenmiştir. Bu dönme (burulma, torsiyon) enerjisi Lennard-Jones potansiyeli olarak tanımlanmıştır.

$$U_{tor} = \frac{U_o}{2} \left[1 - \cos n\varphi \right]$$
(3.97)

Burada U_0 , dönü potansiyel engeli yüksekliği; n, molekülün simetrisini gösteren katsayı, φ dönme açısıdır. Biyolojik moleküllerde bulunan her farklı iki-yüzlü dihedral açı için dönü potansiyel enerjileri ve potansiyel bariyerleri Scheraga tarafından tanımlanmıştır [54]:

N-C^{α} bağı etrafında dönme potansiyeli, $U_{\phi} = \frac{U_{0}^{\phi}}{2} [I + \cos \beta \phi];$

 C^{α} C- bağı etrafında dönme potansiyeli, $U_{\Psi} = \frac{U_{0}^{\Psi}}{2} [1 - \cos 3\Psi];$

C-N peptid bağı etrafında dönme potansiyeli, $U_{\omega} = \frac{U_0^{\omega}}{2} [1 - \cos 2\omega];$

yan zincir üzerindeki C^{α}-C bağı etrafındaki dönme potansiyeli, U_{χ} = $\frac{U_0^{\chi}}{2} [1 + \cos 3\chi];$

Dönü potansiyel engelleri;

 $U_{0}^{\phi} = 0.6 \text{kcal} / \text{mol}, U_{0}^{\psi} = 0.2 \text{kcal} / \text{mol}, U_{0}^{\omega} = 20 \text{kcal} / \text{mol}$

3.11.2.3 Elektrostatik Etkileşme Enerjisi

Amino asitler içerisinde yan dalları yüklü olan dört amino asit bulunmaktadır (Arg, Lys, Glu, Asp). Lizin ve Arginin yan zincirlerinde amino grubu içerirler ve pozitif yüklüdürler. Aspartik asit ve Glutamik asit yan zincirlerinde karboksil grubu içermektedirler ve negatif yüklüdürler.Peptid zincirindeki yüklü amino asitler arasında kuvvetli elektrostatik etkileşmeler meydana gelmektedir ve buda molekülün enerjisine katkı sağlamaktadır.

$$U_{elek} = K \sum_{i,j=1}^{N} \frac{q_i q_j}{\varepsilon r_{ij}}$$
(3.98)

N, molekülün içerdiği atom sayısı; q_i ve q_j, etkileşmekte olan i. ve j. atoma ait etkin yükler; r_{ij} bu atomlar arası uzaklık; ε molekülün bulunduğu ortamın dielektrik katsayısı, K ise enerjiyi kcal/mol cinsinden ifade etmek için kullanılan dönüşüm katsayısıdır. Bu hesaplama için dielektrik katsayısının değerini belirlenmesi önemlidir. Peptid zincirinin etkisi nedeniyle suyun dielektrik katsayısından çok daha küçük bir değer kullanılmalıdır. Yapılan çalışmalar sonucunda dielektrik katsayısı için deneysel çalışmalarla en iyi uyum gösteren $\varepsilon = 10$ değeri kullanılmıştır [55].

Moleküllerin bulunduğu ortamın konformasyon enerjisine etkisi, ortamın dielektrik katsayısı ve hidrojen bağının ayrışma enerjisi ile değerlendirilmiştir.

3.11.2.4. Van der Waals Etkileşme Enerjisi

Bir atomun etrafındaki elektronların düzenlenmesi ortalama olarak simetrikse de, elektron dağılımındaki sabit bir dalgalanma, düzenlenmenin bir an için asimetrik gibi olabileceği anlamına gelir. Böyle bir durum, anlık bir dipol meydana getirdiğinden ve bütün komşu atomlarda bir etkilenmeyi indüklediğinden, atomların birbirini çekmesine neden olur. Bu bütün atomlar için hatta soygazlar için bile doğrudur. Ancak iki atom çok yakın bir mesafeye geldiğinde, etrafındaki elektron bulutlarının arasındaki itme, indüklenen çekimden daha büyüktür. İki bağlanmamış atom arasında Van der Waals değme uzaklığı olarak bilinen optimum bir uzaklık vardır. Bu uzaklıkta itme ve çekme kuvvetleri London dispersiyon kuvvetleri olarak bilinir ve dipol etkilerden kaynaklanan bu zayıf bağlanmalar, **Van der Waals bağları** olarak adlandırılır. Bunlar protein tarafından oluşturulan üç boyutlu yapının devamlılığını sağlamada önemli bir rol üstlenirler. Atomlar arası uzaklık 2.5-2.7 Å iken ideal bir Van der Waals etkileşmesi gerçekleşir.

Van der Waals etkileşimi, enerji bakımından kimyasal bağ enerjisinden 1/100 oranında küçük olmasına rağmen, çok fazla sayıda atom arasında gerçekleştiğinden molekülün enerjisine olan katkısı önem kazanır. Bu enerjinin tanımlanmasında Lennard-Jones potansiyeli kullanılmıştır.

$$U_{vw} = -\frac{A}{r^6} + \frac{B}{r^{12}}$$
(3.99)

Denklemde negatif terim çekmeyi, pozitif terim itmeyi ifade eden terimlerdir. A ve B atomların polaritelerine bağlı katsayılar, r ise etkileşen atomlar arasındaki uzaklıktır. Dikkat edilecek olursa, itme enerjisi atomlar arası uzaklığın 12. mertebeden kuvveti ile ifade edilmiştir; atomlar birbirlerine çok yaklaştıklarında büyük bir itme meydana gelecektir.

3.12. KONFORMASYON ANALİZİNDE KULLANILAN NOTASYON

Konformasyon analizi sonuçlarını ifade etmek için kullanılan uluslar arası notsayon hakkında bilgi vermek uygun olacaktır. Peptid zincirinin birinci yapısında yer alan ardışık amino asit artıklarının $\psi - \phi$ konformasyon haritasında yer aldığı enerji bölgesi ana zincirin **formu** olarak adlandırılır. Bu forma bağlı olarak ana zincirin şekli ortaya çıkar ki buna **shape (şekil)** denilmektedir.

Şekil 3.15' de, $\psi - \phi$ değerlerine göre belirlenen **enerji bölgeleri** gösterilmiştir. Molekülün konformasyonu yazılırken, sırayla her bir amino asit artığının bulunduğu enerji bölgesi belirtilir.

Şekil 3.14 : Amino Asitlerin ψ ve φ enerji bölgeleri

Konformasyon yazılımı sadece ana zincirin değil, yan zincirin de konumunu belirtmelidir. Yan zincire ait iki yüzlü açıların değerleri için üç bölge tanımlanmıştır.

Şekil 3.15 : Amino Asitlerin yan zincir bölgeleri

Yan zincir üzerindeki açılar sırayla ve açı değerlerinin bulunduğu bölgeye uygun gelen 1, 2 ve 3 rakamları ile o amino asitin formunu (enerji bölgesini) belirten harfin altına indis olarak yan yana yazılırlar. Örneğin $B_{212}R_{31}$ şeklindeki yazılış, bir dipeptidin konformasyonunu göstermektedir. Birinci amino asit B, ikincisi ise R enerji bölgesindedir. Birinci amino asidin 212 indisleri ile belirtilen üç yan zincir açısı bulunmaktadır ve bunlar sırasıyla Şekil 3.16 da gösterilen değer aralığındadırlar. İkinci amino asidin 31 indisleri ile gösterilen iki yan zincir açısı bulunmaktadır.

Bir dipeptidin ana zinciri ya gerilmiş (extended), ya da katlanmış (folded) durumda bulunur. Gerilmiş ise e şekli, katlanmış ise f şekli olarak gösterilir. Buna bağlı olarak, bir tripeptid için *ee*, *ef*, *fe*, *ff* şekilleri mümkündür.

$$\theta = \psi_i + \phi_{i+1} \tag{3.100}$$

Ana zincirin şekli (shape), $\psi - \phi$ iki-yüzlü dihedral açılarına bağlı olarak yukarıdaki formül ile belirlenebilir.

Molekülün formuna bağlı olarak her bir amino asitin enerji bölgesi belirlidir. Enerji bölgelerine göre ψ ve ϕ açı değerleri, bölge sınırlarının tam orta değeri olarak +90° ya da -90° alınır. Ardışık amino asitlerden ilkinin ψ açı değeri ile sonra gelenin ϕ açı değeri toplamı sonucu $\theta = \pm 180^\circ$ ise f şeklini, $\theta = 0^\circ$ ise e şeklini verir. Buna göre bir dipeptidin BB, BR, LR, RP, RL, LB, PL ve PP formları e; RR, RB, BL, BP, LL; LP, PR ve PB formları f şeklini verir.

Konformasyon haritalar, serbest bir amino asitin ϕ , ψ ve χ iki-yüzlü dihedral açılarının, molekülün en alçak enerjili, kararlı konformasyonlarını veren değerlerini göstermektedir. Peptid zinciri içinde yer alan bir amino asitin konformasyonlarının, o amino asitin serbest halde iken sahip olduğu alçak enerjili konformasyonlarından birinde bulunduğu belirlenmiştir. Bu nedenle Teorik Konformasyon Analizi çalışmalarında konformasyon haritalarından sağlanan bilgiler esas alınır.İlk kez 1963 yılında Ramachandran bazı basit amino asitlerin konformasyon haritasını kurmuştur

Molekülün en düşük enerjili konformasyonları bulmak için; molekül N-terminalden başlayarak, C-terminale doğru atomlar numaralandırılır. Molekülün yapısını programa tanıtmak için, amino asitleri oluşturan atomlar programa değişik rakamlarla kodlanır. Atomların hangilerinin ana zincirde hangilerinin yan zincir üzerinde bulunduğu farklı kodlama yöntemleriyle anlaşılır. Ana zincir ve yan zincir atomları kodlandıktan ve atomlar birbirine bağlandıktan sonra bu parametreler Dict1 ve Dict2 kısımlarla programa tanıtılır. Daha sonra peptid zincirini oluşturan herbir amino asidin serbest haldeki en düşük enerjideki konformasyonuna ait iki-yüzlü dihedral açı değerleri başlangıç verileri olarak programa sunulur. Program bu başlangıç verilerini kullanarak molekülün toplan enerjisini hesaplar, en düşük enerjili hal için gerçek dihedral dönü açı değerleri bulur.

Program sadece enerji hesabı yapmakla kalmaz, hangi atomlar arasında hidrojen bağı kurulduğunu, her komformasyonun enerji katkılarını, amino asitlerdeki yan zincir ve ana zincir arasındaki etkileşmeleri, herhangi bir konformasyon için istenilen atomlar arasındaki uzaklıkları da hesaplayabilmektedir.

3.13.GAUSSIAN 03 PROGRAMI

Gaussian 03 paket programı, bir molekül ile ilgili olan moleküler geometri, kuvvet alanları, IR şiddetleri gibi değerleri kuantum kimyasal olarak hesaplamaya yarayan bir paket programdır. Programda, ab-initio metodlar, ampirik ve yarı ampirik metodlar vardır ve bu metodlar kullanılarak hesaplamalar yapılmaktadır.

Gaussian 03 ile birlikte, bir molekülün 3 boyutlu tasarımını yaparak molekülün özelliklerinin görsel olarak tanımlanmasına ve bu değerler üzerinde değişiklik yapılabilmesine ve giriş dataları oluşturarak hesaplamaların başlatılmasına imkân veren 'Gaussian View' programı da bu programa dahil edilmiştir. Gaussian View orogramı, Gaussian programında çalışılmış bir molekül için hesaplanmış olan sonuçları görselleştirir ve hesaplamalar sonucu elde edilen dalga sayıları ve kiplerin görselleşmesinde yararlanılan bir programdır.

Program kullanılırken öncelikle bir teori düzeyi belirlemek gerekmektedir. Gaussian 03 programında pek çok teori düzeyi bulunmaktadır. Bunlardan en çok kullanılanları kısaltmaları ile birlikte aşağıda verilmektedir.[50,51]

Kısaltma	Metod
HF	Hartree-Fock Öz Uyumlu Alan Teorisi
B3LYP	Becke tipi 3-parametreli Yoğunluk Fonksiyon Teorisi
	(Lee-Yang-Parr korelasyon modelini kullanır)
MP2	2. derece Moller-Plesset Pertürbasyon Teorisi
MP4	4. derece Moller-Plesset Pertürbasyon Teorisi
QCISD(T)	2. derece Konfigürasyon Etkileşmesi (tekli, ikili,üçlü)

4. BULGULAR

4.1 ALA-GLN DİPEPTİDİ

4.1.1. Ala-Gln Dipeptidini oluşturan Amino Asitler

4.1.1.1 Alanin ve Glutamin Amino Asitleri

Alanin: Alanin vücutta glukoz metabolizmasında kullanılan amino asittir ve karbonhidratların yanarak vücut enerjisinin üretilmesinde yardımcıdır. Alanin ya da Lalanin vücutta basit şeker glukozun enerjiye çevrilmesinde, karaciğerden zehirli maddelerin atılmasında rol oynar. Alanin yoğun egzersiz esnasında vücudun kaslardaki proteini enerjiye dönüştürmesini engelleyerek, hücreleri zarar görmekten korur. Alanin, glukoz seviyesi ve enerji üretimi açısından anahtar role sahiptir. Alanin kan şekeri seviyesini düzenlemeye yardımcı olabilir. İnsüline bağlı şeker hastalarında oral yolla Lalanın alımının geceleri kan şekeri düşmesini etkili biçimde engellediği görülmüştür. Alanin dışardan takviyesine lüzum olmadan vücut tarafından üretilebilmektedir. [60] *Alanin kaynakları:* kırmızı ve beyaz et, yumurta, süt ve süt ürünleridir. Avokado gibi proteince zengin meyvelerde de bulunur.

H₂N、 OH CH2

Şekil 4.1: Alanin amino asidinin yapısı

Glutamin: Glutamin kasların yapımı ve tamiri için gerekli bir amino asittir. Karaciğerden amonyak gibi zehirli atıkların atılmasında, sinir sisteminin sağlığının Glutamin beyinde beyin fonksiyonlarının korunmasında görevlidir. sağlıklı çalışmasında görevli glutamik asite dönüştürülür ayrıca nörotransmiter gammaaminobutirik asitin (GABA) seviyesini artırır. L-glutamin takviyesi, zihin kapasitesini artırır, sara, depresyon, şizofreni ve bunaklık tedavisinde kullanılır. Glutamin sinir sistemi için önemli bir enerji kaynağıdır. Eğer beyin yeteri kadar glukoz almıyorsa enerji açığını glutamin metabolizmasını artırarak kapatır. Glutamin kanda ve kas dokularında en bol bulunan amino asittir. Kas dokusundaki amino asitlerin % 60 ını glutamin oluşturur. Glutamin kasların yapımında ve tamirinde görevli olduğundan glutamin takviyesi, diyet uygulayanlar, vücut geliştirenler, uzun süre yatak istirahati gerektiren hastalıkları olanlar için faydalı olabilir. Yeterli glutamin olmazsa bağışıklık sistemi düzgün çalışamaz. Bu yüzden, bağışıklık sisteminin düzgün çalışmaması nedeniyle ortaya çıkan eklem iltihabı, kronik halsizlik, skleroderma (derinin kalınlaşması), AİDS gibi rahatsızlıkların en aza indirgenmesinde ve ameliyat yaralarının ve diğer yaraların iyileşme sürecinde faydalı olabilir. [60]

Glutamin Kaynakları: Glutamin birçok besinde bulunur ancak pişirme işlemiyle kolayca yok olabilir. Eğer çiğ yenirse ıspanak ve maydanoz zengin glutamin kaynaklarıdır

Şekil 4.2: Glutamin amino asidinin yapısı

4.1.2. Ala-Gln Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları

4.1.2.1. Nötral Ala-Gln Dipeptidinin Programa Tanıtılması

Şekil 4.3: Nötral haldeki Ala-Gln dipeptidinin, atom numaraları yazılmış, dihedral dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı

Nötral Ala-Gln dipeptidinin 30 atomu ve 9 dihedral dönüsü vardır.

4.1.2.2. Alanin ve Glutamin'in Konformasyon Bölgeleri

Tablo 4.1 : Alanin amino asidinin konformasyon bölgeleri

Alanine	φ	Ψ	X		
В	-115	140	60		
R	-90	-50	180		
L	50	60	-60		

Glutamin	φ	Ψ	χ1	χ2	χ3
	-90	-40	60	60	90/-90
R	-100	-60	180	180	90/-90
	-100	-60	-60	-60	90/-90
	-150	150	60	60	90/-90
В	-100	140	180	180	90/-90
	-100	140	-60	-60	90/-90
			60	60	90/-90
L	60	60	180	180	90/-90
			-60	-60	90/-90

Tablo 4.2: Glutamin amino asidinin konformasyon bölgeleri

4.1.2.3. Nötral Ala-Gln Teorik Konformasyon Analizi Sonuçları

Tablo 4.3: Nötral Ala-Gln dipeptidinin tüm konformasyon bölgelerine göre incelenenkonformasyon sayıları ve minimum enerjinin (global enerjinin) bulunduğukonformasyon bölgesi.

Konformasyon bölgeleri	Konformasyon sayısı	Global		
		enerji (kcal/mol)		
BR	108			
BB	108			
BL	54			
RR	108			
RB	108			
RL	54			
LR	108			
LB	108	-0,18		
LL	54			

Nötral Ala-Gln dipeptidinin toplam 810 konformasyonu incelenmiş ve minimum enerjisi (global enerji) **LB** konformasyon bölgesinde gözlenmiştir ve değeri -0,18 kcal/mol'dür. Global konformasyon L_3B_{131} formunda ve ana zincir e(extended) gerilmiş halde bulunmaktadır.

Tablo4.4: -0,18 kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin globalkonformasyon için dönü açıları.

Açılar	PHI ₁	CH ₁₁	PSI ₁	W ₂	PHI ₂	CH ₂₁	CH ₂₂	CH ₂₃	PSI ₂
	φ1	χ11	Ψ1	W	φ ₂	χ21	χ22	X23	Ψ2
Giriş	50.00	-60.00	60.000	180.00	-150.00	60.00	-60.00	90.00	150.00
Çıkış	50.27	-60.28	71.74	180.87	-150.31	58.25	-76.21	101.43	156.78

Tablo4.5 : -0,18kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin global konformasyona etki eden zincir etkileşimleri.

Global konformasyon için ana zincir ve yan zincir etkileşim enerjileri (kcal/mol)										
Ala-Ana zincir	Ala-Yan zincir	Gln-Ana	Gln-Yan zincir							
		zincir								
4,76	0,81	-2,95	-4,68	Ala-Ana zincir						
	0,00	-0,29	-0,15	Ala-Yan zincir						
		4,65	-0,28	Gln-Ana zincir						
			-1,79	Gln-Yan zincir						

Tablo4.6: -0,18kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin globalkonformasyona etki eden diğer etkileşme enerjileri.

E _{Van der Waals}	E _{elektrostatik}	E _{torsiyon}	E _{toplam}		
-6.06 kcal/mol	4.41 kcal/mol	1.47 kcal/mol	-0,18kcal/mol		

Tablo4.7: -0,18kcal/mol enerjiye sahip Nötral Ala-Gln dipeptidinin globalkonformasyonda meydana gelen Hidrojen bağları ve enerjileri.

Atomlar	Uzaklık(Å)	Hidrojen Bağ Enerjisi (kcal/mol)
3-23	1,95	-0,95
13-28	2,29	-0,45

4.1.3. Ala-Gln Dipeptidinin Teorik Titreşim Dalga Sayıları Hesapları

Şekil 4.4: a) Nötral Ala-Gln dipeptidi için Teorik Konformasyon analizi sonucuyla elde ettiğimiz en düşük enerjiye sahip (-0,18kcal/mol) konformasyonun Gaussian03 programına giriş geometrisi ve **b**)Gaussian03 programında DFT-RB3LYP/6-31G++(d,p) baz setiyle hesaplandıktan sonraki geometrik yapısı.

Ala-Gln dipeptidinin monomer yapısı 30 atomlu olup 3N-6=84 tane titreşim frekansına sahiptir. Konformasyon analizi sonucu en düşük enerjiye sahip konformasyon Gaussian 03 programına tanıtılarak farklı baz setlerde titreşim dalga sayıları hesaplanmıştır.. Farklı baz setlerde çalışan molekülümüzün enerji değerleri aşağıdaki gibidir.

Tablo4.8: Konformasyon analizi sonucu enerjisi -018 kcal/mol olarak belirlenen konformasyonun farklı baz setler kullanılarak elde edilen enerji değerleri.

Nötral	DFT-RB3LYP	DFT-RB3LYP	DFT-RB3LYP		
Ala-Gln	6-31G++(d,p)	6-31G(d,p)	6-31G(d)		
Enerii	-779 15006391au	-779 11134355au	-779 07664143au		
Literji	400016 66 5 1 1/ 1	40000 2 2001 1/ 1	407212 4201 1/ 1		
	-488916.665kcal/mol	-488892.368kcal/mol	-48/312.439kcal/mol		

Nötral Ala-Gln dipeptidinin kimyasal formülü $C_8H_{15}N_3O_4$ olup, birçok biyolojik molekül gibi içinde çok fazla H atomu barındırmaktadır. H atomları ve elektronegativitesi yüksek atomların (O,N) da bulunduğu ana zincir ve yan zincirler birbirleriyle etkileşerek H.bağları kurarlar.

Şekil 4.5: Nötral Ala-Gln dipeptidinin atom numaralarıyla belirtilmiş üç boyutlu yapısı ve molekül için Hidrojen bağları.

Tablo 4.9: Nötral Ala-Gln dipeptidindeki molekül içi Hidrojen bağları ve uzaklıkları

Nötral ALA-GLN dipeptidi	
Atomlar	H.BAĞI (Å)
3H-23O	2.33474
13H-28O	2.36268

Tablo 4.10: -0.18 kcal/mol olarak belirlenen Nötr Ala-Gln dipeptidinin monomer global konformasyonun farklı baz setler kullanılarak hesaplanan temel titreşim dalgasayıları ve bu konformasyondan oluşturulan en düşük enerjili dimer yapının hesaplanan temel titreşim dalga sayıları ve deneysel dalga sayıları.

					Mo	onomer							Di	mer a	
	Assign.	IR	Raman	D	FT-RB3L	YP n)	DI	FT-RB3LY	Р	D	FT-RB3L	YP	DFT-] 6-31	RB3LYP G(d n)	TED of mono Ala-Gln
				U	-310++(u,	h)	,	J-31G(u,p)			0-310(u)		0-51	G(u,p)	6-31G++(d.p)
						IR			IR			IR			
		vexp	Uexp	υ_{cal}	$* \upsilon_{scaled}$	int.	υ_{cal}	*U _{scaled}	int.	υ_{cal}	$*v_{scaled}$	int.	U _{cal}	*U _{scaled}	
1	υ_{OH}	-	-	3751	3583	84	3751	3582	66	3716	3549	31	3748 3748	3580 3580	υ _{OH} (100)
2	U _{NH2(asim)}	-	-	3736	3568	39	3742	3573	33	3683	3517	61	3681 3680	3515 3515	υ _{NH} (100)
3	$\upsilon_{\text{NH(peptid)}}$	-	-	3621	3459	56	3623	3460	54	3609	3446	49	3616 3615	3453 3453	υ _{NH} (100)
4	U _{NH2(sim)}	-	-	3596	3434	45	3603	3441	40	3591	3429	39	3343 3299	3193 3151	υ _{NH} (100)
5	U _{NH2(asim)}	3400s	3393w	3570	3409	19	3547	3388	15	3527	3368	14	3564 3561	3403 3401	υ _{NH} (100)
6	υ _{NH2(sim)}	3332vs	3330s	3478	3321	14	3459	3303	16	3439	3284	14	3470 3468	3314 3312	υ _{NH} (100)
7	UCH3(asim)	3225s	3224w	3134	2993	16	3142	3001	17	3144	3002	18	3144 3144	3002 3002	υ _{CH} (97)
8	UCH 2(asim)	-	2991	3120	2979	7	3125	2985	8	3127	2986	8	3119 3119	2979 2979	υ _{CH} (99)
9	UCH3(asim)	2979m	2975s	3118	2977	25	3124	2983	24	3125	2985	26	3130 3130	2990 2990	υ _{CH} (99)
10	UCH 2(asim)	2965w	-	3109	2969	11	3116	2976	10	3117	2977	10	3106 3106	2966 2966	υ _{CH} (97)
11	υ_{CH}	-	-	3079	2940	16	3085	2946	14	3094	2955	12	3108 3108	2968 2968	υ _{CH} (99)
12	U _{CH2 (sim)}	2937w	2932vs	3069	2931	9	3071	2933	14	3076	2938	16	3062 3062	2924 2924	υ _{CH} (98)

	Assign.	IR	Raman	Monomer DFT-RB3LYP 6-31G++(d,p)			DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d)			Di DFT-1 6-31	mer a RB3LYP G(d,p)	TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d.p)
		U _{exp}	υ _{exp}	υ _{cal}	*U _{scaled}	IR int.	υ _{cal}	*V _{scaled}	IR int.	υ _{cal}	*U _{scaled}	IR int.	υ _{cal}	*V _{scaled}	
13	U _{CH2(sim)}	-	-	3054	2917	16	3057	2919	15	3061	2923	15	3056 3056	2919 2919	υ _{CH} (99)
14	υ_{CH}	2915w	2911m	3050	2913	20	3053	2916	21	3059	2921	21	3040 3039	2903 2902	υ _{CH} (100)
15	UCH3(sim)	2877vw	2874m	3046	2909	25	3051	2914	24	3057	2919	25	3055 3055	2918 2918	υ _{CH} (100)
16	U _{OC(COOH)}	1733vw	-	1815	1733	254	1838	1755	207	1840	1758	207	1841 1840	1758 1758	$\upsilon_{CC}(4) + \upsilon_{OC}(85) + \delta_{COH}(4)$
17	U _{OC(gln)}	-	-	1755	1715	391	1784	1725	334	1786	1727	339	1763	1705	$\upsilon_{\rm NC}(5) + \upsilon_{\rm OC}(75) + \delta_{\rm CNH}(4)$
18	U _{OC} (peptit bağ)	-	1666vw	1724	1684	175	1750	1693	141	1753	1695	143	1749 1745 1740	1691 1688 1682	$\upsilon_{\rm NC}(3) + \upsilon_{\rm OC}(77) + \delta_{\rm CNH}(3)$
19	$\delta_{NH2(scis)}$	1648vs	1636m	1675	1637	12	1683	1628	9	1712	1655	9	1681 1668	1626 1613	CHNH(CT) CCNH(CC)
20	$\delta_{NH2(scis)}$	1605m	1600w	1630	1592	108	1633	1579	110	1652	1598	101	1674 1666	1619 1611	$\upsilon_{\rm NC}(5) + \upsilon_{\rm OC}(4) + \delta_{\rm HNH}(58) + \delta_{\rm CNH}(30)$
21	δ _{CNH}	1527s	1525m	1546	1510	243	1546	1495	225	1554	1503	219	1563 1562	1511 1510	$v_{\rm NC}(27) + \delta_{\rm CNH}(54)$
22	δ_{CH3}	-	-	1502	1467	4	1513	1463	1	1528	1478	1	1514 1513	1464 1463	$\delta_{\text{CCH}}(13) + \delta_{\text{HCH}}(50) + \Gamma_{\text{HCCN}}(6) + \Gamma_{\text{HCCC}}(7) + \Gamma_{\text{HCCH}}(10)$
23	$\delta_{CH2(scis)}$	1456w	1448vs	1497	1462	33	1504	1455	4	1520	1470	5	1513 1513	1463 1463	$ \delta_{\text{CCH}}(4) + \delta_{\text{HCH}}(28) + \Gamma_{\text{HCCN}}(10) + \Gamma_{\text{HCCC}}(13) + \Gamma_{\text{HCCH}}(28) $
24	$\delta_{CH2(scis)}$	-	-	1495	1461	2	1502	1453	28	1519	1469	29	1504 1504	1455 1454	$ \begin{aligned} \delta_{\text{CCH}}(4) + \delta_{\text{HCH}}(29) + \Gamma_{\text{HCCN}}(8) + \\ \Gamma_{\text{HCCC}}(10) + \Gamma_{\text{HCCH}}(18) + \\ \Gamma_{\text{OCCH}}(8) \end{aligned} $

	Assign.	IR	Raman	Monomer DFT-RB3LYP 6-31G++(d,p)			DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d)			Dimer a DFT-RB3LYP 6-31G(d,p)		TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d.p)	
		υ _{exp}	υ _{exp}	υ _{cal}	*U _{scaled}	IR int.	υ _{cal}	*v _{scaled}	IR int.	υ _{cal}	*V _{scaled}	IR int.	U _{cal}	*V _{scaled}		
25	δ_{CH3}	1416vw	1414m	1492	1458	11	1501	1451	12	1516	1466	11	1501 1501	1451 1451	$δ_{\text{CCH}}(9) + \delta_{\text{HCH}}(51) + \Gamma_{\text{HCCN}}(11) + \Gamma_{\text{HCCN}}(16) + \Gamma_{\text{HCCH}}(6)$	
26	$\begin{array}{l} \delta_{CH3(umb)} \ _{+} \\ \delta_{CCH} \end{array}$	1404w	-	1417	1384	52	1428	1381	81	1437	1389	40	1424 1424	1377 1377	$ \begin{array}{l} \upsilon_{\rm CC}(3) + \delta_{\rm CNH}(17) + \delta_{\rm CCH}(17) + \\ \delta_{\rm HCH}(17) + \Gamma_{\rm HCCH}(4) \end{array} $	
27	$\delta_{CH3(umb)}$	1380s	1375w	1409	1376	54	1419	1372	50	1427	1380	78	1418 1417	1371 1370	$\upsilon_{\rm NC}(3) + \upsilon_{\rm CC}(7) + \upsilon_{\rm OC}(7) + \delta_{\rm CCH}(18) + \delta_{\rm HCH}(17) + \delta_{\rm OCH}(4) + \Gamma_{\rm UCCH}(3)$	
28	$\delta_{CCH+}\upsilon_{NC}$	-	-	1400	1368	42	1406	1359	8	1418	1371	13	1448 1435	1400 1387	$\upsilon_{\text{NCO}}(14) + \upsilon_{\text{CC}}(7) + \delta_{\text{CCH}}(30) + \delta_{\text{NCO}}(3) + \delta_{\text{CNH}}(3) + \Gamma_{\text{CCCH}}(3)$	
29	$\delta_{\rm NCH}+$ $\delta_{\rm CH3(umb)}$	-	1360w	1397	1364	16	1405	1359	38	1415	1369	31	1401 1400	1355 1353	$ \delta_{\text{CCH}}(15) + \delta_{\text{NCH}}(31) + \delta_{\text{HCH}}(17) + \Gamma_{\text{HCCN}}(5) + \Gamma_{\text{HCCH}}(8) + \Gamma_{\text{OCCH}}(4) $	
30	$\delta_{\rm CCH}$	1350vw	-	1382	1350	29	1386	1340	24	1395	1349	27	1395 1393	1349 1347	$ \upsilon_{CC}(5) + \upsilon_{NC}(7) + \delta_{HCN}(3) + \delta_{CCH}(28) + \Gamma_{OCCH}(7) $	
31	δ_{CCH}	1319w	1323m	1367	1336	41	1370	1325	34	1380	1335	36	1376 1376	1331 1330	$\upsilon_{OC}(4) + \delta_{HCN}(8) + \delta_{CCH}(15) + \delta_{COH}(3) + \Gamma_{HCCH}(5) + \Gamma_{HCNH}(14)$	
32	δ_{CCH}	1300w	-	1340	1309	11	1349	1304	6	1358	1313	9	1360 1357	1315 1312	$ \begin{array}{l} \upsilon_{\text{NC}}(8) + \upsilon_{\text{OC}}(3) + \delta_{\text{CCH}}(31) + \delta_{\text{COH}} \\ (7) + \Gamma_{\text{HCCH}}(4) + \Gamma_{\text{OCCH}}(4) \end{array} $	
33	δ_{CCH}	1281vw	1279m	1317	1287	46	1321	1277	31	1330	1286	35	1333 1332	1289 1288	$ \begin{array}{l} \upsilon_{\text{NC}}(9) + \delta_{\text{NCH}}(6) + \delta_{\text{COH}}(5) + \delta_{\text{NCC}} \\ (4) + \delta_{\text{CCH}}(18) + \Gamma_{\text{HCCH}}(9) + \\ \Gamma_{\text{OCCH}}(9) \end{array} $	
34	δ_{COH}	-	-	1285	1256	0	1295	1252	7	1305	1262	8	1297 1296	1254 1254	$\delta_{\text{COH}}(24) + \delta_{\text{CCH}}(21) + \Gamma_{\text{HCNH}}(4) + \Gamma_{\text{CNCH}}(5)$	
35	$\begin{array}{c} \delta_{NCH} \\ + \delta_{CCH} \end{array}$	1232w	1238m	1272	1243	2	1280	1238	2	1290	1247	2	1277 1276	1234 1233	$ \begin{array}{l} \upsilon_{\text{NC}}(3) + \delta_{\text{CCH}}(25) + \delta_{\text{CNH}}(27) + \\ \Gamma_{\text{HCCH}}(6) + \Gamma_{\text{OCCH}}(3) + \Gamma_{\text{NCCH}}(4) \end{array} $	
36	δ_{CCH}	1214vw	1212m	1262	1233	46	1260	1219	45	1296	1254	48	1263 1263	1221 1221	$\upsilon_{\text{NC}}(18) + \delta_{\text{HCN}}(6) + \delta_{\text{CCH}}(30) + \Gamma_{\text{HCCH}}(9)$	

84

	Assign.	IR	Raman	Monomer DFT-RB3LYP 6-31G++(d,p)			DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d)			Dimer a DFT-RB3LYP 6-31G(d,p)		TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d,p)
		Down	Down	\mathcal{V}_{aal}	*Decolor	IR int.	Dasl	*Decolod	IR int.	Deel	*Decolod	IR int.	Deel	*Decolod	
37	UNC(peptit)	1208vw	1180vw	1228	1200	32	1226	1185	18	1234	1193	27	1236 1235	1195 1194	$\upsilon_{\text{NC}}(29) + \delta_{\text{HCN}}(19) + \delta_{\text{CCH}}(3) + \Gamma_{\text{HCCH}}(3)$
38	δ_{CCH}	1165vw	1160vw	1194	1166	40	1197	1158	77	1206	1166	60	1210 1208	1170 1168	$\upsilon_{OC}(8) + \delta_{COH}(4) + \delta_{CCH}(44) + \delta_{CNH}(8)$
39	υ _{OC} + δ _{COH}	-	-	1176	1149	147	1181	1142	135	1187	1148	161	1179 1178	1140 1139	$\upsilon_{\rm NC}(12) + \upsilon_{\rm OC}(19) + \delta_{\rm COH}(16) + \delta_{\rm CCH}(3)$
40	υ_{NC}	1110m	-	1141	1114	26	1150	1112	28	1156	1117	33	1152 1148	$\begin{array}{c} 1114\\1110\end{array}$	$\begin{array}{l} \upsilon_{\text{NC}}(39) + \upsilon_{\text{CC}}(13) + \delta_{\text{CCC}}(4) + \\ \delta_{\text{CCH}}(14) + \delta_{\text{CNH}}(4) + \Gamma_{\text{HCCH}}(3) \end{array}$
41	υ_{NC}	1089w	1104s	1130	1104	118	1138	1100	76	1141	1104	71	1135 1134	1097 1096	υ _{NC} (33)+υ _{CC} (11)+υ _{OC} (21)+ δ _{COH} (11)
42	r _{NH2}	-	-	1097	1071	1	1104	1067	1	1111	1074	1	1145 1139	1107 1101	$ \begin{array}{l} \upsilon_{\text{NC}}\left(11\right) + \upsilon_{\text{OC}}(8) + \delta_{\text{CCN}}(4) + \\ \delta_{\text{CCH}}(7) + \delta_{\text{CNH}}(44) \end{array} $
43	W _(CH3)	1068w	1067w	1086	1061	20	1096	1060	45	1105	1068	54	1092 1089	1056 1053	$\begin{split} \upsilon_{\text{NC}}(4) + \upsilon_{\text{CC}}(21) + \upsilon_{\text{OC}}(4) + \\ \delta_{\text{CNH}}(5) + \delta_{\text{CCH}}(28) + \Gamma_{\text{HNCH}}(6) + \\ \Gamma_{\text{NCCH}}(5) + \Gamma_{\text{CCCH}}(8) \end{split}$
44	υ_{CC}	1044w	1043w	1051	1027	1	1052	1018	2	1057	1022	1	1056 1054	1021 1019	$\upsilon_{CC}(64) + \delta_{CCN}(3) + \delta_{CCH}(3)$
45	υ_{CC}	1022w	1017w	1037	1014	9	1042	1007	6	1047	1013	7	1044 1043	1009 1009	$\upsilon_{\text{NC}}(6) + \upsilon_{\text{CC}}(15) + \delta_{\text{CCC}}(4) + \delta_{\text{CCH}}$ (7)+ $\Gamma_{\text{CCCH}}(10) + \Gamma_{\text{NCCC}}(3)$
46	$\begin{array}{l} \delta_{CCH} + \\ t_{NH2} \end{array}$	1010w	1013vw	1027	1003	23	1032	998	25	1038	1004	24	1030 1029	996 996	$\upsilon_{\rm NC}(3) + \upsilon_{\rm CC}(17) + \delta_{\rm CCH}(33) + \delta_{\rm CNH}(6)$
47	δ_{CCH}	961w	958w	961	939	37	966	934	85	973	940	129	974 973	941 941	$\upsilon_{CC}(14) + \upsilon_{NC}(12) + \delta_{CCH}(14) + \delta_{OCN}(4)$
48	$\Gamma_{\rm CCCH}$	918vw	916vw	947	925	3	952	921	17	959	927	32	954 951	922 920	$\upsilon_{\text{NC}}(11) + \upsilon_{\text{CC}}(5) + \delta_{\text{CCC}}(3) + \delta_{\text{HCC}}(4) + \Gamma_{\text{CCCH}}(12) + \Gamma_{\text{OCCH}}(6)$
49	UC-CH3	893vw	894vs	915	894	65	943	912	81	952	921	24	945 932	914 901	$\upsilon_{CC}(22) + \delta_{CNH}(21) + \delta_{CCH}(8) + \Gamma_{HCNC}(20) + \Gamma_{HCNH}(9)$

	Assign.	IR	Raman	1 DFT-RB3LYP 6-31G++(d,p) mono			D	FT-RB3LY 6-31G(d,p) mono	P	1	DFT-RB3L 6-31G(d) mono	YP	DFT-RB3LYP 6-31G(d,p) Dimer a		TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d,p)
						IR			IR			IR			
50		υ _{exp} 860w	υ _{exp} 858vw		*U _{scaled} 879	int.	v_{cal}	*U _{scaled} 875	int.	υ _{cal} 9∩9	*U _{scaled} 879	int.	υ _{cal} 911 910	*0 _{scaled} 881 880	$\upsilon_{\rm NC}(30) + \upsilon_{\rm CC}(17) + \delta_{\rm CNH}(4) + \delta_{\rm CNH}(4)$
51	$v_{\rm NC}$	-	-	892	879	11	893	875 864	40	895	866	3	906 905	876 875	$\upsilon_{\rm NC}(6) + \upsilon_{\rm CC}(58)$
52	υ _{CC}	808m	808vw	839	820	11	844	816	5	845	817	5098	839	811	$\begin{array}{l} \upsilon_{CC}(29) + \upsilon_{CN}(4) + + \upsilon_{OC}(4) + \\ \delta_{OCN}(4) + \Gamma_{OCNC}(5) + \Gamma_{OCCC}(3) + \\ \Gamma_{OCOH}(3) \end{array}$
53	υ_{CC}	766vw	764vw	794	776	15	799	773	19	801	774	20	812 810	785 783	$\upsilon_{CC}(35) + \upsilon_{NC}(3) + \Gamma_{HCCH}(3)$
54	Γ _{ocnc} + Γ _{ocnh}	-	-	778	760	11	781	755	8	781	755	7	778 778	753 752	$ \begin{array}{l} \upsilon_{CC}(7) + \delta_{CCN}(6) + \Gamma_{OCCN}(7) + \\ \Gamma_{OCCH}(4) + \Gamma_{OCCC}(7) + \Gamma_{NCCN}(4) + \\ \Gamma_{HCCN}(6 + \Gamma_{OCNH}(8) + \Gamma_{OCNC}(12) \end{array} $
55	Госон	-	-	743	726	31	750	725	46	752	727	49	752 752	727 727	$ \begin{array}{l} \upsilon_{\rm CC}(11) + \Gamma_{\rm OCCH}(11) + \\ \Gamma_{\rm OCNH}(10) + \Gamma_{\rm NCCO}(6) + \Gamma_{\rm CCCO}(4) \\ + \Gamma_{\rm OCOH}(13) \end{array} $
56	υ_{CC}	697vw	696vw	724	707	6	730	706	7	733	709	7	729 722	705 698	$ u_{CC}(29) + \delta_{OCO}(3) + \Gamma_{OCCC}(5) + Γ_{HCCN}(12) + Γ_{OCNH}(19) $
57	δ_{CCO}	651m	649m	688	672	4	695	672	4	696	673	4	697 694	674 671	$ \begin{aligned} \upsilon_{\rm CC}(16) + \upsilon_{\rm CO}(3) + \delta_{\rm CCH}(9) + \\ \delta_{\rm CCC}(3) + \delta_{\rm CCO}(16) + \delta_{\rm NCO}(7) + \\ \delta_{\rm OCO}(3) + \Gamma_{\rm HCCN}(7) \end{aligned} $
58	$\Gamma_{\rm CCOH}$	620vw	619vw	647	632	51	662	640	46	665	643	46	654 654	633 632	$ \begin{aligned} \delta_{\text{CCC}}(3) + \delta_{\text{CCO}}(8) + \delta_{\text{NCO}}(4) + \\ \delta_{\text{OCO}}(4) + \Gamma_{\text{HOCO}}(27) + \Gamma_{\text{HOCC}}(18) \end{aligned} $
59	Гссон	596vw	592vw	589	576	58	600	580	70	603	583	73	608 607	588 587	$ \begin{split} \upsilon_{\rm CC}(9) + \delta_{\rm CCO}(10) + \delta_{\rm OCO}(14) + \\ \Gamma_{\rm CCNH}(6) + \Gamma_{\rm OCNH}(5) + \\ \Gamma_{\rm HOCO}(7) + \Gamma_{\rm HOCC}(19) \end{split} $
60	t _(NH2)	-	-	578	565	32	581	562	32	582	563	29	878 843	849 816	$\delta_{\text{CCO}}(6) + \delta_{\text{OCO}}(14) + \Gamma_{\text{CCNH}}(22) + \Gamma_{\text{OCNH}}(13)$

	Assign.	IR	Raman	Monomer DFT-RB3LYP 6-31G++(d,p)			D	DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d)			imer a •RB3LYP 1G(d,p)	TED of mono Ala-Gln DFT-RB3LYP 6-31C++(d p)
		D.	D	Dat	*1)	IR int.	Dat	*0	IR int.	Dat	*1)	IR int.	Der	*1)	
61	$\Gamma_{\rm CCNH^+} \\ \Gamma_{\rm HOCC}$	-	-	576	562	24	577	558	12	581	562	14	570 565	551 547	$\delta_{\text{CCN}}(3) + \delta_{\text{CCO}}(9) + \delta_{\text{NCO}}(8) + \Gamma_{\text{CCNH}}(16) + \Gamma_{\text{OCNH}}(11) + \Gamma_{\text{HOCO}}(3) + \Gamma_{\text{HOCC}}(11)$
62	δ_{NCO}	532vw	531vw	539	527	6	542	524	5	543	525	6	589 586 516	570 566 499	$ u_{CC}(10) + δ_{CCO}(16) + δ_{NCO}(33) + δ_{CNH}(3) + Γ_{CCNH}(4) $
63	$\Gamma_{\rm CCNH}$	503w	495w	507	496	104	509	492	117	512	495	122	511 509	494 492	$\delta_{\text{NCC}}(4) + \Gamma_{\text{OCNH}}(26) + \Gamma_{\text{CCNH}}(47)$
64	δ_{NCC}	454w	452w	478	467	13	476	461	19	477	462	20	479 466 457	464 451 442	$\begin{split} \delta_{\text{NCC}}(18) + & \delta_{\text{CCC}}(7) + \Gamma_{\text{OCCC}}(7) + \\ & \Gamma_{\text{CCNH}}(4) + \Gamma_{\text{NCCO}}(4) + \Gamma_{\text{CCOH}}(4) \end{split}$
65	$\delta_{\rm CCO^+} t_{\rm (NH2)}$	422vw	-	439	429	15	438	424	12	439	424	12	442	427	$\delta_{\text{NCC}}(10) + \delta_{\text{CCC}}(3) + \delta_{\text{CCO}}(25) + \Gamma_{\text{CCNH}}(11) + \Gamma_{\text{NCCN}}(3)$
66	δ_{NCC}	419vw	-	419	409	7	420	407	8	421	407	9	436 428	422 414	$\delta_{CCO}(27) + \delta_{NCC}(46) + \Gamma_{HCCH}(3)$
67	r _(NH2)	-	359vw	374	365	32	393	380	26	394	381	27	401 349	388 337	$\Gamma_{\text{HNCH}}(16) + \Gamma_{\text{HNCC}}(57)$
68	Γ _{CCNH}	-	350w	331	324	2	330	319	4	331	320	4	357 350	345 339	$ \begin{array}{l} \upsilon_{\rm CC}(10) + \delta_{\rm NCO}(5) + \delta_{\rm NCC}(14) + \\ \delta_{\rm CCC}(12) + \delta_{\rm OCC}(3) + \delta_{\rm OCO}(3) + \\ \Gamma_{\rm HNCC}(20) + \Gamma_{\rm NCCC}(3) + \\ \Gamma_{\rm HCCH}(3) \end{array} $
69	δ_{NCC}	-	291w	305	298	15	311	301	16	311	301	15	323 314	312 304	$\begin{split} & \upsilon_{\rm CC}(10) + \delta_{\rm NCO}(8) + \delta_{\rm NCC}(18) + \\ & \delta_{\rm CCC}(7) + \delta_{\rm OCC}(11) + \\ & \Gamma_{\rm HNCC}(15) + \Gamma_{\rm NCCC}(3) + \\ & \Gamma_{\rm HNCH}(4) \end{split}$
70	δ_{CCC}	-	-	287	280	8	289	280	5	289	280	5	303 301	293 291	$ \begin{array}{l} \delta_{NCC}(4) + \delta_{CCC}(27) + \Gamma_{HNCC}(15) + \\ \Gamma_{CNCO}(8) + \Gamma_{HNCO}(6) \end{array} \end{array} $

	Assign.	IR	Raman	Monomer DFT-RB3LYP 6-31G++(d,p)			DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d)			Dimer a DFT-RB3LYP 6-31G(d,p)		TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d p)
		Uevn	Uevn	Ucal	*Uscaled	IR int.	Ucal	*Uscaled	IR int.	Ucal	*Uscaled	IR int.	$v_{\rm cal}$	*Uscaled	
71	$\Gamma_{\rm CCNH}$	-	-	275	269	21	279	270	12	278	269	12	280 279	271 270	$ \begin{aligned} \delta_{\text{NCC}}(16) + & \delta_{\text{OCC}}(27) + \\ \Gamma_{\text{HNCO}}(3) + & \Gamma_{\text{HNCC}}(20) \end{aligned} $
72	t _{(NH2)+} Γ _{CCNH}	-	-	261	255	166	256	248	26	255	247	11	491	475	$\Gamma_{\rm HNCC}(41) + \Gamma_{\rm HNCO}(39)$
73	$\Gamma_{\rm CCNH}$	-	248vw	249	244	26	247	239	197	237	229	230	257 255	248 247	$\upsilon_{CC}(7) + \upsilon_{NC}(4) + \delta_{NCC}(16) + \delta_{CCC}(13) + \Gamma_{HNCC}(33) + \Gamma_{HCCC}(7)$
74	$\Gamma_{\rm HCCC}$	-	229w	228	223	5	232	224	7	230	223	6	231 230	224 222	$\delta_{\text{NCC}}(4) + \Gamma_{\text{HCCH}}(16) + \Gamma_{\text{HCCC}}(56)$
75	δ_{CCC}	-	-	210	205	1	212	205	3	211	204	3	224 223	216 215	$ \delta_{\text{NCC}}(14) + \delta_{\text{CCC}}(29) + \\ \Gamma_{\text{OCCH}}(5) + \Gamma_{\text{NCCO}}(10) $
76	δ_{CCC}	-	-	151	148	4	154	149	8	156	151	10	182 178	176 172	$\delta_{\text{NCC}}(3) + \delta_{\text{CCC}}(41) + \Gamma_{\text{CNCC}}(5) + \Gamma_{\text{HNCC}}(5)$
77	δ_{CNC}	-	-	116	114	6	121	117	15	122	118	13	158 155	152 150	$\begin{split} &\delta_{\text{NCC}}(34) + \delta_{\text{OCN}}(3) + \delta_{\text{CNH}}(8) + \\ &\delta_{\text{CCC}}(5) + \Gamma_{\text{CCCC}}(4) + \Gamma_{\text{HNCC}}(3) + \\ &\Gamma_{\text{OCCC}}(3) + \Gamma_{\text{HCCC}}(10) \end{split}$
78	$\Gamma_{\rm NCCC}$	-	-	107	105	13	119	115	7	120	116	9	140	135	$\delta_{\text{NCC}}(7) + \delta_{\text{CCC}}(9) + \Gamma_{\text{HNCC}}(20) + \\\Gamma_{\text{NCCC}}(24) + \Gamma_{\text{HCCC}}(17) + \\\Gamma_{\text{CCCC}}(15) + \Gamma_{\text{OCCC}}(9) + \\\Gamma_{\text{OCCH}}(6)$
79	$\Gamma_{\rm NCCC}$	-	-	77	75	3	92	89	2	90	87	2	107 86	103 83	$ \delta_{\text{NCC}}(3) + \Gamma_{\text{NCCC}}(65) + \Gamma_{\text{OCNC}}(10) + \Gamma_{\text{CNCH}}(11) + \Gamma_{\text{HCCH}}(5) + \Gamma_{\text{CCCO}}(7) $
80	$\Gamma_{\rm CCNH}$	-	-	61	60	1	67	65	0	68	66	0	74 67 41	71 65 40	$\Gamma_{\text{HNCC}}(24) + \Gamma_{\text{OCNH}}(6) + \\\Gamma_{\text{HNCH}}(3) + \Gamma_{\text{CNCC}}(21) + \\\Gamma_{\text{CCCC}}(7) + \Gamma_{\text{HCCC}}(6) + \Gamma_{\text{OCCC}}(9)$
	Assign.	IR	Raman]	DFT-RB3L 6-31G++(d,	Monon YP ,p)	ner D	0FT-RB3LY 6-31G(d,p)	7 P]	DFT-RB3L 6-31G(d)	YP	Din DFT- 6-3	mer a •RB3LYP 1G(d,p)	TED of mono Ala-Gln DFT-RB3LYP 6-31G++(d.p)
----	---------------------	------------------	------------------	------------------	------------------------	--------------------	------------------	-------------------------	------------	------------------	----------------------	------------	----------------------------	-----------------------------	--
		υ_{exp}	υ_{exp}	υ_{cal}	*U _{scaled}	IR int.	υ_{cal}	*U _{scaled}	IR int.	υ_{cal}	*U _{scaled}	IR int.	υ_{cal}	*U _{scaled}	
81	$\Gamma_{\rm OCCN}$	-	-	57	55	1	62	60	2	62	60	2	91 90 30 23 21	88 87 29 22 20	$\Gamma_{OCCN}(36) + \Gamma_{OCCH}(15) + \Gamma_{OCCC}(9) + \Gamma_{NCCN}(10) + \Gamma_{NCCH}(7) + \Gamma_{NCCC}(10) + \Gamma_{CCCC}(5) + \Gamma_{CCCH}(4)$
82	Γ _{occc}	-	-	47	46	0	48	47	1	49	47	1	47 48	45 47	$\Gamma_{\text{HNCH}}(4) + \Gamma_{\text{HCCC}}(7) + \Gamma_{\text{CCCC}}(4) + \Gamma_{\text{HNCC}}(4) + \Gamma_{\text{OCCH}}(12) + \Gamma_{\text{OCCC}}(52)$
83	Гсссн	-	-	27	26	5	28	27	3	29	28	3	57 34	55 33	$\Gamma_{\text{NCCN}}(11) + \Gamma_{\text{NCCC}}(15) + \\\Gamma_{\text{NCCH}}(14) + \Gamma_{\text{HCCC}}(30) + \\\Gamma_{\text{CCCC}}(13) + \Gamma_{\text{NCCO}}(8)$
84	$\Gamma_{\rm CCNH}$	-	-	19	19	13	13	13	16	21	20	15	101 30	97 29	$\Gamma_{\text{HNCC}}(30) + \Gamma_{\text{HNCH}}(7) + \\\Gamma_{\text{CNCC}}(27) + \Gamma_{\text{CCCH}}(5) + \\\Gamma_{\text{OCCC}}(7) + \Gamma_{\text{CCCC}}(5)$

t:twisting, w:wagging, r:rocking, scis: makas hareketi, umb: şemsiye hareketi, sim: simetrik, asim: asimetrik, v_{scaled} : ölçeklenmiş, v_{cal} : ölçeklenmemiş *Dalga sayıları RB3LYP/6-31G++(d,p) için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,977 ve DFT-RB3LYP/6-31G(d) için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,967 ölçek çarpanlarıyla çarpılmıştır.[26]

4.1.4. Ala-Gln Dipeptidiyle ilgili Deneysel Sonuçlar

Şekil 4.6: Nötral Ala-Gln dipeptidini, NRS 3100 Micro Raman spektrometre ile elde edilen Raman spekrumu.

Şekil 4.7: 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu.

4.1.4.1. Ala-Gln Dipeptidiyle ilgili Deneysel Sonuçlar (Raman Spektrumları)

Şekil 4.8: Ala-Gln dipeptidinin, NRS 3100 Micro Raman spektrometre ile elde edilen spekrumları. (3400 cm⁻¹-200 cm⁻¹bölgesi.)

Şekil 4.9: Nötral Ala-Gln dipeptidinin monomer yapıda, teorik ve deneysel spektrumları.

4.1.5. Ala-Gln Dipeptidiyle Çalışılmış Dimer yapılar

4.1.5.1. Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik Hesaplar

Şekil 4.10: Nötral Ala-Gln dipeptidinin çalışılmış dimer yapıları.

Tablo 4.11:Nötral Ala-Gln dipeptidi ile oluşturulmuş farklı konformasyonlara sahip dimer yapıların DFT/B3LYP 6-31G(d,p) baz seti ile elde edilen enerji değerleri ve bu enerjilerin karşılaştırılması.

	ENERJİ	ENERJİ (kcal/mol)	BAĞIL-FARKLAR (kcal/mol)
Dimer (a)	-1558,25542661 a.u	-977809,9549640550kcal/mol	0 (Global minimum)
Dimer (b)	-1558,25486916 a.u	-977809,6051625080kcal/mol	0,349801514
Dimer (c)	-1558,25474648 a.u	-977809,5281804390kcal/mol	0,426784111
Dimer (d)	-1558,25403846 a.u	-977809,0838957650kcal/mol	0,87106829

En düşük enerjili yani en karalı yapıdaki dimer yapı **Dimer a** yapısıdır. Tüm dimer yapılar içi Gaussian03 programı kullanılarak DFT/B3LYP 6-31G(d,p) baz seti ile teorik titreşim dalga sayıları hesaplanmıştır. Fakat dimer yapılar için kipler belirlenirken Dimer a yapısı esas alınmıştır. Dimer a formunun kipleri de Monomer Ala-Gln dipeptidinden faydalanarak oluşturulmuştur.

	Assign. (Dimer a)	IR	RAMAN		Dimer(a	a)		Dimer()	b)		Dimer(c)		Dimer(o	l)
						IR			IR			IR			IR
		v_{exp}	υ _{exp}	υ_{cal}	$*v_{scaled}$	Intensity	υ_{cal}	*v _{scaled}	Intensity	υ_{cal}	*U _{scaled}	Intensity	υ_{cal}	*v _{scaled}	Intensity
1	υ_{OH}			3748	3580	33	3747	3578	51	3751	3582	72	3742	3574	35
2	υ_{OH}			3748	3580	96	3747	3578	61	3744	3575	33	3741	3573	34
3	U _{NH2(asim)}			3681	3515	140	3685	3519	6	3692	3526	100	3629	3466	53
4	U _{NH2(asim)}			3680	3515	0	3685	3519	98	3626	3463	39	3629	3466	49
5	UNH(peptid)			3616	3453	98	3533	3374	91	3615	3452	54	3604	3442	41
6	U _{NH(peptid)}			3615	3453	23	3533	3374	9	3604	3442	40	3603	3441	45
7	U _{NH2(asim)}			3564	3403	5	3507	3349	200	3547	3387	17	3549	3390	16
8	U _{NH2(asim)}	3400s	3393w	3561	3401	22	3506	3348	205	3546	3386	4	3549	3389	15
9	U _{NH2(sim)}	3332vs	3330s	3470	3314	4	3436	3282	2	3467	3311	1	3459	3303	18
10	U _{NH2(sim)}			3468	3312	34	3436	3281	103	3460	3304	18	3458	3303	17
11	U _{NH2(sim)}			3343	3193	1287	3141	3000	201	3373	3222	975	3144	3003	43
12	U _{NH2(sim)}			3299	3151	1	3141	3000	24	3141	3000	18	3144	3002	32
13	UCH3(asim)			3144	3002	11	3136	2995	2698	3140	2999	21	3139	2997	4682
14	UCH3(asim)			3144	3002	16	3132	2991	13	3133	2992	5	3127	2986	1
15	UCH3(asim)			3130	2990	36	3132	2991	398	3126	2985	15	3126	2985	235
16	UCH3(asim)	2979m	2975s	3130	2990	6	3120	2980	8	3125	2984	20	3126	2985	41
17	UCH2(asim)			3119	2979	9	3117	2977	37	3123	2982	26	3126	2985	43
18	UCH2(asim)			3119	2979	1	3117	2977	1	3121	2980	2	3117	2976	11
19	υ_{CH}			3108	2968	13	3107	2967	18	3117	2977	11	3117	2976	11
20	υ_{CH}			3108	2968	13	3107	2967	25	3117	2977	5	3089	2950	17
21	U _{CH2(asim)}			3106	2966	9	3096	2957	23	3091	2952	10	3089	2950	72
22	U _{CH2(asim)}	2965w		3106	2966	5	3096	2957	13	3079	2941	10	3075	2936	3
23	U _{CH2 (sim)}			3062	2924	18	3074	2936	10	3073	2935	10	3075	2936	21
24	U _{CH2 (sim)}	2937w	2932vs	3062	2924	29	3074	2936	17	3067	2929	10	3058	2920	23
25	U _{CH2 (sim)}			3056	2919	11	3061	2923	18	3063	2925	13	3058	2920	5

Tablo 4.12: Farklı dimer yapıların Gaussian03 programı kullanılarak DFT/B3LYP 6-31G(d,p) baz seti ile hesaplanan teorik titreşim dalga sayıları ve deneysel dalga sayılarının karşılaştırılması ve en düşük enerjili Dimer a yapısının titreşim kiplerinin saptanması.

	Assign. (Dimer a)	IR	RAMAN		Dimer(a)		Dimer(b))		Dimer(c	;)		Dimer(d)
		υ _{exp}	υ _{exp}	υ_{cal}	*v _{scaled}	IR Int	υ_{cal}	*v _{scaled}	IR Int	υ_{cal}	*v _{scaled}	IR Int	υ_{cal}	*v _{scaled}	IR Int
26	UCH2 (sim)			3056	2919	11	3061	2923	17	3060	2922	11	3053	2916	21
27	UCH3(sim)	2877vw	2874m	3055	2918	13	3057	2920	4	3054	2917	22	3053	2915	18
28	UCH3(sim)			3055	2918	26	3057	2920	36	3051	2913	16	3050	2913	28
29	υ_{CH}	2915w	2911m	3040	2903	36	3051	2914	35	3050	2913	25	3050	2913	29
30	υ_{CH}			3039	2902	23	3051	2914	0	2974	2840	1985	3020	2885	2
31	UOC(COOH) C=O	1733vw		1841	1758	252	1845	1762	276	1844	1761	211	1783	1724	771
32	UOC(COOH) C=O			1840	1758	162	1845	1762	124	1777	1718	284	1783	1724	157
33	U _{OC(gln)}			1763	1705	617	1769	1711	237	1770	1712	369	1779	1720	105
34	UOC(peptit)			1749	1691	269	1769	1710	90	1758	1700	243	1755	1697	65
35	U _{OC(peptit)}		1666vw	1745	1688	30	1751	1693	906	1751	1693	247	1750	1692	390
36	$\delta_{\text{NH2(scis)}}$			1740	1682	20	1750	1692	23	1728	1671	66	1719	1663	2
37	$\delta_{\rm NH2(scis)}$	1648vs	1636m	1681	1626	4	1679	1623	9	1682	1627	8	1683	1627	8
38	$\delta_{\rm NH2(scis)}$			1674	1619	105	1675	1620	34	1681	1626	13	1683	1627	8
39	$\delta_{\text{NH2(scis)}}$			1668	1613	29	1664	1609	1	1638	1584	53	1632	1579	67
40	$\delta_{\rm NH2(scis)}$	1605m	1600w	1666	1611	0	1663	1609	31	1630	1576	121	1632	1578	171
41	$\delta_{\text{CNH(peptid)}}$	1527s	1525m	1563	1511	157	1595	1543	366	1559	1507	226	1549	1498	66
42	$\delta_{\text{CNH(peptid)}}$			1562	1510	288	1593	1541	28	1544	1493	176	1548	1496	324
43	$\delta_{CH3(d.disi)}$			1514	1464	5	1511	1461	1	1514	1464	8	1523	1473	5
44	$\delta_{CH3(d.disi)}$			1513	1463	4	1511	1461	7	1512	1462	1	1513	1463	14
45	$\delta_{CH2(scis)}$	1456w	1448vs	1513	1463	3	1501	1451	5	1509	1460	23	1512	1462	2
46	$\delta_{CH2(scis)}$			1513	1463	1	1501	1451	4	1504	1454	45	1509	1459	97
47	$\delta_{CH2(scis)}$			1504	1455	15	1494	1445	4	1502	1453	7	1506	1456	3
48	$\delta_{CH2(scis)}$			1504	1454	25	1494	1445	5	1502	1453	6	1502	1452	49
49	$\delta_{CH3(d.disi)}$	1416vw	1414m	1501	1451	7	1493	1444	16	1500	1450	16	1501	1452	3
50	$\delta_{CH3(d.disi)}$			1501	1451	11	1493	1444	35	1499	1450	38	1501	1452	11
51	$\upsilon_{NC+}\delta_{CCH}$			1448	1400	13	1450	1402	209	1498	1449	42	1501	1452	26
52	$\upsilon_{NC+}\delta_{CCH}$			1435	1387	196	1450	1402	11	1451	1403	238	1485	1436	351
53	$\delta_{CH3(umb)+}\delta_{CCH}$	1404w		1424	1377	32	1431	1384	0	1435	1388	20	1422	1375	17
54	$\delta_{CH3(umb)+}\delta_{CCH}$			1424	1377	73	1430	1383	32	1424	1377	10	1422	1375	3
55	$\delta_{CH3(umb)}$	1380s	1375w	1418	1371	4	1424	1377	25	1417	1370	66	1408	1362	19

	Dimer a	υ _{exp} ir	U _{exp} RAMAN	υ _{cal} Dim.a	*U _{scaled}	IR Int.	υ _{cal} Dim.b	*U _{scaled}	IR Int.	υ _{cal} Dim.c	*U _{scaled}	IR Int.	υ _{cal} Dim.d	*U _{scaled}	IR Int.
56	$\delta_{CH3(umb)}$			1417	1370	32	1424	1377	130	1409	1363	4	1408	1361	24
57	$\delta_{NCH} + \delta_{CH3(umb)}$		1360w	1401	1355	2	1409	1362	3	1407	1361	5	1406	1360	8
58	$\delta_{\rm NCH} + \delta_{\rm CH3(umb)}$			1400	1353	3	1408	1362	0	1403	1357	29	1405	1359	7
59	δ _{CCH}	1350vw		1395	1349	12	1394	1348	0	1394	1348	154	1400	1354	9
60	$\delta_{\rm CCH}$			1393	1347	85	1394	1348	27	1388	1342	17	1397	1351	148
61	$\delta_{\rm CCH}$			1376	1331	1	1379	1333	34	1384	1338	16	1385	1339	30
62	$\delta_{\rm CCH}$	1319w	1323m	1376	1330	55	1378	1333	0	1365	1320	97	1383	1338	2
63	$\delta_{\rm CCH}$	1300w		1360	1315	0	1356	1311	299	1362	1318	23	1370	1325	198
64	$\delta_{\rm CCH}$			1357	1312	1	1356	1311	1	1357	1312	9	1369	1324	3
65	$\delta_{\rm CCH}$			1333	1289	3	1328	1285	16	1342	1298	18	1347	1302	17
66	$\delta_{\rm CCH}$	1281vw	1279m	1332	1288	44	1328	1284	58	1332	1288	8	1346	1301	11
67	$\delta_{\rm COH}$			1297	1254	4	1300	1257	2	1316	1273	38	1319	1275	94
68	δ_{COH}			1296	1254	1	1300	1257	4	1294	1252	4	1319	1275	27
69	$\delta_{NCH} + \delta_{CCH}$	1232w	1238m	1277	1234	5	1283	1241	70	1287	1244	15	1284	1242	37
70	$\delta_{NCH^+}\delta_{CCH}$			1276	1233	2	1282	1240	21	1283	1241	6	1283	1241	7
71	$\delta_{\rm CCH}$	1214vw	1212m	1263	1221	23	1277	1235	10	1271	1229	79	1276	1234	39
72	$\delta_{\rm CCH}$	1208vw		1263	1221	88	1274	1232	30	1262	1220	16	1275	1233	2
73	U _{NC(peptit)}			1236	1195	59	1256	1214	248	1250	1209	39	1261	1220	6
74	U _{NC(peptit)}			1235	1194	23	1254	1213	5	1230	1190	20	1261	1219	154
75	δ _{CCH}			1210	1170	0	1215	1175	0	1218	1177	102	1223	1182	53
76	$\delta_{\rm CCH}$	1165vw	1160vw	1208	1168	58	1214	1174	38	1199	1160	52	1222	1182	99
77	$\upsilon_{OC} + \delta_{COH}$			1179	1140	16	1179	1140	2	1192	1153	26	1193	1153	23
78	$\upsilon_{OC} + \delta_{COH}$			1178	1139	300	1179	1140	287	1183	1144	156	1193	1153	10
79	υ_{NC}			1152	1114	0	1149	1111	0	1161	1122	20	1156	1118	9
80	υ _{NC}	1110m		1148	1110	12	1148	1110	220	1151	1113	21	1156	1118	14
81	r _{NH2}			1145	1107	4	1142	1104	0	1141	1103	6	1145	1107	9
82	r _{NH2}			1139	1101	14	1139	1101	2	1138	1100	8	1145	1107	7
83	υ_{NC}	1089w	1105s	1135	1097	230	1134	1096	101	1132	1095	89	1104	1067	3
84	υ_{NC}			1134	1096	7	1129	1092	0	1102	1066	6	1103	1067	4
85	W _(CH3)	1068w	1067w	1092	1056	4	1105	1068	3	1100	1063	42	1094	1058	22
86	W _(CH3)			1089	1053	43	1104	1068	149	1098	1062	69	1094	1058	69

	Dimer a	U _{exp} IR	U _{exp} RAMAN	υ _{cal} Dim.a	*U _{scaled}	IR Int.	υ _{cal} Dim.b	*U _{scaled}	IR Int.	υ _{cal} Dim.c	*U _{scaled}	IR Int.	υ _{cal} Dim.d	*v _{scaled}	IR Int.
87	v_{cc}	1044w	1043w	1056	1021	56	1065	1030	2	1053	1019	16	1055	1020	3
88	υ _{CC}			1054	1019	7	1065	1029	1	1053	1018	5	1055	1020	4
89	v_{CC}	1022w	1017w	1044	1009	1	1057	1022	15	1048	1013	4	1045	1011	6
90	υ _{CC}			1043	1009	13	1050	1016	87	1045	1010	8	1045	1011	17
91	$\delta_{CCH} + t(NH_2)$			1030	996	16	1049	1014	82	1037	1003	133	1034	1000	35
92	$\delta_{CCH}+t(NH_2)$	1010w	1013vw	1029	996	9	1046	1011	4	1033	998	13	1034	1000	5
93	$\delta_{\rm CCH}$			974	941	1	1027	993	91	1027	993	11	1011	977	188
94	$\delta_{\rm CCH}$	961w	958w	973	941	97	1023	989	94	968	936	6	970	938	11
95	$\Gamma_{\rm CCCH}$	918vw	916vw	954	922	0	973	941	52	967	935	233	968	936	1
96	$\Gamma_{\rm CCCH}$			951	920	4	971	939	4	957	925	54	968	936	128
97	U _{CC-CH3}	893vw	894vs	945	914	9	945	914	22	954	923	25	952	921	6
98	U _{CC-CH3}			932	901	192	945	913	46	952	921	66	952	921	9
99	υ_{NC}			911	881	0	942	911	2	946	915	58	940	909	71
100	υ_{NC}	860w	858vw	910	880	60	941	910	21	912	882	4	940	909	112
101	v_{cc}			906	876	7	915	884	44	912	882	37	912	882	88
102	υ _{CC}			905	875	40	914	884	7	903	873	5	911	881	5
103	t _(NH2)			878	849	184	902	872	29	901	872	17	899	869	25
104	t _(NH2)			843	816	12	902	872	0	855	827	1	898	869	2
105	υ_{CC}	808m	808vw	839	811	3	837	809	25	841	814	8	857	829	6
106	t _(NH2)			834	806	21	836	809	1	838	810	56	854	826	0
107	v_{cc}			812	785	15	806	779	6	815	788	31	810	783	54
108	υ _{CC}			810	783	0	806	779	55	811	784	5	806	779	1
109	$\Gamma_{OCNC} + \Gamma_{OCNH(peptit)}$	766vw	764vw	778	753	1	780	754	6	781	755	4	784	758	7
110	$\Gamma_{OCNC} + \Gamma_{OCNH(peptit)}$			778	752	11	779	753	3	766	741	8	782	757	0
111	Госон			752	727	14	751	726	53	755	730	14	753	728	0
112	Госон			752	727	37	751	726	5	743	719	33	747	722	11
113	υ_{CC}			729	705	15	721	697	9	733	708	7	737	713	14
114	υ_{CC}	697vw	696vw	722	698	7	720	697	3	716	692	10	735	711	8
115	δ_{CCO}	651m	647m	697	674	5	691	668	61	706	683	11	697	674	7
116	δ_{CCO}			694	671	17	689	666	40	700	676	11	695	672	3
117	$\Gamma_{\rm CCOH}$			654	633	73	676	654	121	664	642	19	644	623	56

	Dimer a	U _{exp} IR	U _{exp} Raman	υ _{cal} Dim.a	*U _{scaled}	IR Int.	υ _{cal} Dim.b	*U _{scaled}	IR Int.	υ _{cal} Dim.c	*U _{scaled}	IR Int.	υ _{cal} Dim.d	*U _{scaled}	IR Int.
118	$\Gamma_{\rm CCOH}$	620vw	619vw	654	632	41	673	651	60	654	632	63	638	617	1
119	$\Gamma_{\rm CCOH}$	596vw	592vw	608	588	38	644	623	186	611	591	14	610	590	15
120	$\Gamma_{\rm CCOH}$			607	587	111	644	622	57	595	575	58	603	583	6
121	δ_{NCO}			589	570	18	605	585	18	586	567	21	585	566	20
122	δ_{NCO}	532vw	531vw	586	566	17	604	584	0	585	566	21	583	564	17
123	$\Gamma_{\text{CCNH+}}\Gamma_{\text{HOCC}}$			570	551	32	594	575	4	566	547	19	544	526	7
124	$\Gamma_{\text{CCNH+}}\Gamma_{\text{HOCC}}$			565	547	2	585	565	37	547	529	12	543	525	1
125	$\Gamma_{\rm CCNH}$			516	499	3	564	546	70	523	505	148	503	487	122
126	$\Gamma_{\rm CCNH}$	503w	495w	511	494	181	557	538	1	520	503	92	502	485	149
127	$\Gamma_{\rm CCNH}$			509	492	29	521	504	25	484	468	16	489	473	2
128	$t_{(NH2)+} \Gamma_{CCNH}$			491	475	76	520	503	40	479	463	16	484	468	48
129	δ_{NCC}	453w	452w	479	464	27	487	470	43	464	449	69	475	459	6
130	$\Gamma_{\rm CCNH}$			466	451	111	471	455	8	458	442	115	453	438	6
131	δ_{NCC}			457	442	64	458	443	45	437	423	6	423	409	6
132	$\delta_{\text{CCO+}} t_{(\text{NH2})}$	422vw		442	427	72	443	428	98	434	420	13	423	409	1
133	δ_{NCC}	419vw		436	422	9	436	422	27	421	407	1	406	393	68
134	δ_{NCC}			428	414	23	430	415	10	395	382	37	401	388	17
135	r _(NH2)			401	388	216	414	400	2	357	345	43	360	348	0
136	$\Gamma_{\rm CCNH}$		359vw	357	345	2	406	393	63	340	329	13	345	334	8
137	$\Gamma_{\rm CCNH}$		350w	350	339	0	361	349	0	337	326	1	336	325	15
138	r _(NH2)			349	337	23	354	342	7	322	311	1	320	309	1
139	$\delta_{ m NCC}$			323	312	4	325	314	15	309	299	3	296	287	18
140	δ_{NCC}			314	304	20	322	312	0	296	287	62	296	286	1
141	δ_{CCC}			303	293	19	304	294	0	295	285	22	292	282	109
142	δ_{CCC}			301	291	11	299	289	6	284	274	33	288	278	0
143	$\Gamma_{\rm CCNH}$			280	271	2	286	276	0	279	270	6	277	268	21
144	$\Gamma_{\rm CCNH}$			279	270	13	281	272	3	263	254	2	261	252	122
145	$\Gamma_{\rm CCNH}$			257	248	11	254	246	26	250	242	14	258	250	185
146	$\Gamma_{\rm CCNH}$		248vw	255	247	1	252	244	4	246	238	12	253	245	107
147	$\Gamma_{\rm CCNH}$			231	224	11	234	226	8	231	223	143	243	235	1
148	$\Gamma_{\rm CCNH}$		229w	230	222	1	229	222	3	229	221	42	241	233	21

	Assign. (Dimer a)	IR	RAMAN		Dimer(a	a)		Dimer(b)		Dimer(c)		Dimer(d)
		•	•	•	*•>	IR Intonsity	•	*•>	IR Intonsity	•	*•>	IR Intonsity		*••	IR Intoncity
1/0	8	Uexp	Uexp	O_{cal}	216		O_{cal}	218	15	0_{cal}	212		O_{cal}	206	
150	0 _{CCC} S			224	210	1 27	223	216	3	215	207	1 7	213	200	1
151	0 _{CCC}			182	176	10	213	107	2	176	170	9	178	172	1
151	0 _{CCC}			172	170	3	104	197	2	160	163	9 1	168	163	+ 12
152	OCCC S			170	172	5	154	155	38	167	161	1 28	152	105	13
154	0 _{CNC}			155	152	0 45	150	145	30 4	155	150	15	132	147	17
154	о _{сnc}			135	130	4J 6	130	145	4	133	120	5	149	145	17
155	Г _{CCCN}			140	135	0	127	120	13	124	120	5 22	142	127	4 20
157	г _{NCCN}			120	110	12	127	109	12 8	124	108	5	110	120	20
157	Г NCCN			107	103	12	107	103	0	108	108	5	106	100	2 10
150	Г _{CCCN}			107	105	2	107	105	1	100	08	2	00	105	0
159	Г _{CCNH}			01	97	6	01	90	0	101 82	90 90	0	99 96	90 94	0
100	I OCCN			91	00 07	0	91	00 77	0	02 75	80 72	1	80 84	04 92	0
101	I OCCN			90	8/	1	80 74	71	0	/5	/3	3	84 69	82	3 1
162	I _{CCCN}			80	83	1	74	/1	3	61	59 59	0	68	66	1
163	I _{CCNH}			/4	/1	12	65	63	0	60	58	5	63	61	1
164	I _{CCNH}			67	65	11	60	58	1	56	55	2	63	61	0
165	Гсссн			57	55	2	51	49	8	50	48	1	49	47	l
166	Toccc			48	47	0	46	45	2	47	45	0	47	45	0
167	Γ _{OCCC}			48	46	0	43	41	2	41	40	3	41	40	5
168	Γ _{OCCC}			47	45	0	36	35	5	40	39	0	37	36	2
169	$\Gamma_{\rm CCNH}$			41	40	1	36	35	0	34	33	1	31	30	3
170	$\Gamma_{\rm CCCH}$			34	33	0	27	26	0	30	29	4	27	26	4
171	Γ_{OCCN}			30	29	1	22	21	0	22	21	0	25	25	20
172	$\Gamma_{\rm CCNH}$			30	29	3	19	18	4	19	18	2	21	21	2
173	Γ_{OCCN}			23	22	0	14	14	1	14	13	15	16	16	0
174	Γ_{OCCN}			21	20	4	8	8	1	9	8	2	13	12	2

Dalga sayıları DFT-RB3LYP/6-31G(d) için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,967 ölçek çarpanlarıyla çarpılmıştır.[26]

Tablo 4.13 :Dimer a molekülünde molekül içi ve moleküller arasıHidrojen Bağları

n	im	014	•
ν	ш	er	a

Molekül içi

H-bağları

Atoms	Bond(Å)
51056H	2.28917
28030H	2.28921
13H23O	2.37558
38H57O	2.38039
Moleküller	· arası
H-bağları	
23060H	1.87079
26H57O	1.87155
11040H	2.33151
1H310	2.33838

Şekil 4.11: Dimer a, moleküller arası Hidrojen bağları

4.1.5.2 Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik Spektrumlar

Şekil 4.12: Tüm dimer yapıların karşılaştırmalı teorik spektrumları

Şekil 4.13: Ala –Gln dipeptidinin DFT/631-G++(d,p) baz seti ile hesaplanan teorik spektrum ve deneysel FT-IR spektrumunun karşılaştırılması.

Şekil 4.14: Dimer (a) formda Ala–Gln dipeptidinin, DFT/6-31G(d,p) baz seti ile hesaplanan teorik spektrum ve deneysel FT-IR spektrumunun karşılaştırılması.

4.1.5.3 Ala-Gln Dipeptidiyle Çalışılmış Dimer Yapılar Teorik ve Deneysel Spektrumlar

Şekil 4.15: Ala-gln Dipeptidi monomer yapıda DFT/6-31G++(d,p) baz seti ile hesaplanan teorik spektrumu (kırmızı), dimer (a) formda Ala–Gln dipeptidinin, DFT/6-31G(d,p) baz seti ile hesaplanan teorik spektrum (mavi), deneysel FT-IR spektrumunun karşılaştırılması.

Şekil 4.16: Ala-gln dipeptidi monomer teorik spektrumu (kırmızı), dimer (a) teorik spektrum (mavi), deneysel FT-IR spektrumunun (siyah) ve deneysel Raman spektrumu (yeşil) karşılaştırılması.

4.2 PRO-TYR DİPEPTİDİ

4.2.1. Pro-Tyr Dipeptidini oluşturan Amino Asitler

4.2.1.1 Prolin ve Tirosin Amino Asitleri

Prolin: Prolin kollagen ve kıkırdak dokunun üretimi için gerekli olan bir amino asittir. Kas ve eklemlerin esnek olması içn gereklidir. Ultraviyole ışınlardan ve yaşlanmadan kaynaklanan kırışıklıkların ve sarkmaların önlenmesine yardımcı olur. Vücudun proteinleri sentezleyip sağlıklı hücreler oluşturmasında görevlidir. Sağlıklı cilt ve bağ doku üretimi ve tamiri için mutlaka gereklidir özellikle travmatik yaralanmalarda. Prolin protein sentezinde görevli diğer bir amino asit olan lisinle beraber kollagen dokuyu oluşturan hidroksiprolin ve hidroksilisin aminoasitlerinin yapımında kullanılırlar. Kollajen kıkırdağın iyileşmesine yardımcı olur eklemleri ve omurgayı destekler. Prolin takviyesi kemik iltihabı, kronik sırt ağrısı ve yumuşak doku hasarlarında faydalı olabilir.[60]

Kaynaklar:

Et, süt ve süt ürünleri, yumurta en iyi prolin kaynaklarıdır.

Şekil 4.17: Prolin amino asidinin yapısı.

Tirosin:

Tirosin vücutta üretilen, sinir sisteminde görevli bir amino asittir. Metabolizmayı hızlandırır ve kronik halsizliğin tedavisine yardım eder. Tirosin vücudumuzda iştahı düzenlemek, ağrı ve stresle mücadele etmek için gerekli beyin kimyasallarının üretiminde görevlidir. Tiroid, hipofiz ve adrenal bezlerinin normal çalışması için gereklidir. Düşük tirosin seviyesi hipotriodizme, düşük kan basıncına, kronik halsizliğe ve yavaş metabolizmaya neden olabilir. Çevresel uyaranları algılamamızı ve bunlarla ilişkilerimizi kontrol eden üç nörotransmiter, epinefrinin orepinefrin ve dopaminin üretimi için fenilalanın ve tirosin amino asitleri gerekir. Yeterli fenilalanın olmadan vücut gerektiği kadar tirosin üretemez. Yeterli tirosin olmadan da vücut fenilalanıni

İki amino asitten herhangi birinin eksikliği anksiyete, depresyon, düşük libido ve kronik halsizlik gibi sorunlara neden olabilir. Tirosin takviyeleri özellikle 5-HTP (5-hidroksitriptofan) ile birlikte alındığında depresyon tedavisinde etkili olmaktadır. Tirosin takiyesi alerji, baş ağrısı, Parkinson hastalığının tedavisinde de kullanılır.

Şekil 4.18: Tirosin amino asidinin yapısı.

4.2.2. ProTyr Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları

4.2.2.1. Nötral Pro-Tyr Dipeptidinin programa tanıtılması

Şekil 4.19 : Nötral haldeki Pro-Tyr dipeptidinin atom numaraları yazılmış, dihedral dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı

Pro-Tyr dipeptidi 38 atoma ve 7 dihedral dönüye sahiptir. Prolin halkalı bir yapıya sahip olduğundan prolin halkası içine dihedral dönü uygulanmaz.

4.2.2.2. Prolin ve Tirosin'in Konformasyon Bölgeleri

Tablo 4.14 : Prolin amino asidinin konformasyon bölgeleri

Pro	Ψ	W
В	130	180
R	-50	180

Tablo 4.15: Tirosin amino asidinin konformasyon bölgeleri

Tyr	φ	ψ	χ1	χ2	χ3
	-100	-33	60		60
R	-110	-60	180	90/-90	180
	-140	-60	-60		-60
	-115	160	60		60
В	-110	150	180	90/-90	180
	-120	150	-60		-60
	40	40	60		60
L	50	80	180	90/-90	180
	50	60	-60		-60

4.2.2.3. Nötral Pro-Tyr Dipeptidinin Teorik Konformasyon Analizi Sonuçları

Tablo 4.16 : Nötral Pro-Tyr dipeptidinin tüm konformasyon bölgelerine göre incelenen konformasyon sayıları ve minimum enerjinin (global enerjinin) bulunduğu konformasyon bölgesi.

Konformasyon bölgeleri	Konformasyon sayısı	Global enerji (kcal/mol)
BR	18	
BB	18	
BL	18	
RR	18	-7,14 kcal/mol
RB	18	
RL	18	

Nötral Pro-Tyr dipeptidinin toplam108 konformasyonu incelenmiş ve minimum enerjisi (global enerji) **RR** konformasyon bölgesinde gözlenmiştir ve değeri -7.14 kcal/mol'dür. Global konformasyon **RR**₃₁₂ formunda ve ana zincir **f** (folded) katlanmış halde bulunmaktadır.

Tablo 4.17: -7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin globalkonformasyon için dönü açıları.

Açılar	$PSI_1(\Psi_1)$	W ₂ (W)	$PHI_2(\Phi_2)$	CH ₂₁ (χ_{21})	CH ₂₂ (χ_{22})	CH ₂₃ (χ_{23})	$PSI_2(\Psi_2)$
Giriş	-50.00	180.00	-140.00	-60.00	90.00	180.00	-60.00
Çıkış	-52.37	179.40	-139.83	-57.13	101.32	179.82	-60.00

Tablo 4.18: -7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global konformasyona etki eden diğer etkileşme enerjileri.

E _{Van der Waals}	Eelektrostatik	Etorsiyon	E _{toplam}
-5.74 kcal/mol	-1.57 kcal/mol	0.17 kcal/mol	-7.14kcal/mol

Tablo 4.19 : -7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin global konformasyona etki eden zincir etkileşimleri.

Global konf	Global konformasyon için ana zincir ve yan zincir etkileşim enerjileri (kcal/mol)												
Pro-Ana	Pro-Yan	Tyr-Ana	Tyr-Yan zincir										
zincir	zincir	zincir											
1.27	-1.10	0.55	-1.69	Pro-Ana zincir									
	0.00	-1.61	-0.95	Pro-Yan zincir									
		0.16	-1.77	Tyr-Ana zincir									
			-0.27	Tyr-Yan zincir									

Tablo 4.20: -7,14kcal/mol enerjiye sahip Nötral Pro-Tyr dipeptidinin globalkonformasyonda meydana gelen Hidrojen bağları ve enerjileri.

Atomlar	Uzaklık(Å)	Hidrojen Bağ Enerjisi (kcal/mol)
17-36	2,44	-0.30

4.2.3. Pro-Tyr Dipeptidinin Teorik Titreşim Dalga Sayıları Hesabı

Şekil 4.20: a) Nötral Pro-Tyr dipeptidi için Teorik Konformasyon analizi sonucuyla elde ettiğimiz en düşük enerjiye sahip (-7,14kcal/mol) konformasyonun Gaussian03 programına giriş geometrisi ve b) Gaussian03 programında DFT-RB3LYP/6-31G++(d,p) baz setiyle hesap yaptırıldıktan sonraki geometrik yapısı.

Pro-Tyr dipeptidinin monomer yapısı 38 atomlu olup 3N-6=108 tane titreşim frekansına sahiptir. Konformasyon analizi sonucu en düşük enerjiye sahip konformasyon Gaussian 03 programına tanıtılarak farklı baz setlerde titreşim dalga sayıları hesaplanmıştır.. Farklı baz setlerde çalışan molekülümüzün enerji değerleri aşağıdaki gibidir.

Tablo 4.21: Konformasyon analizi sonucu enerjisi -7,14 kcal/mol olarak belirlenen minimum enerjili konformasyonun farklı baz setler kullanılarak elde edilen enerji değerleri.

Nötral Pro-Tyr	DFT-RB3LYP	DFT-RB3LYP	DFT-RB3LYP				
	6-31G++(d,p)	6-31G(d,p)	6-31G(d)				
Enerji	-954.82769350au	-954.78485472au	-954.74682475au				
	-599157.2422kca/mol	-599106.4967kcal/mol	-599103.6325kcal/mol				

Nötral Pro-Tyr dipeptidinin kimyasal formülü $C_{14}H_{18}N_2O_4$ olup, birçok biyolojik molekül gibi içinde çok fazla H atomu barındırmaktadır. H atomları ve elektronegativitesi yüksek atomların (O,N) da bulunduğu ana zincir ve yan zincirler birbirleriyle etkileşerek H.bağları kurarlar.

Şekil 4.21: Monomer Nötral Pro-Tyr dipeptidindeki molekül içi Hidrojen bağları.

Tablo 4.22 : Nötral Pro-Tyr dipeptidindeki molekül içi Hidrojen bağları ve uzaklıkları

Nötral Pro-Tyr dipeptidi	
Atomlar	H.BAĞI (Å)
17H-36O	2.78872

Şekil 4.22: Dimer yapıdaki nötral Pro-Tyr dipeptidinin yapısı.

Tablo 4.23 :Dimer yapıda Nötral Pro-Tyr dipeptidindeki Hidrojen bağı uzaklıkları

Dimer Pro-Tyr dipeptidi	
Atomlar	H.BAĞI (Å)
36H-58O	1.6297
34O-62H	1.6317

			MONOMER DİMER												
	Assign.	IR	Raman	DF 6-3	T-RB3LY 81G++(d,p	'P))	DI	FT-RB3L 6-31G(d,p	YP))	DI	FT-RB3L 6-31G(d	LYP)	DFT-R 6-31(B3LYP G(d , p)	TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		Uexp	υ_{exp}	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	$^{*}\upsilon_{scale}$	
1	υ_{OHtyr}			3829	3657	66	3822	3650	49	3751	3582	45	3823 3822	3650 3650	υ _{OH} (100)
2	U _{OH}			3750	3581	74	3749	3580	59	3681	3515	54	3119 2999	2979 2864	υ _{OH} (100)
3	U _{NH (pro)}			3572	3411	4	3570	3409	2	3545	3385	2	3569 3569	3409 3408	υ _{NH} (99)
4	U _{NH}	3318s	3317m	3540	3381	116	3550	3390	117	3537	3378	110	3553 3553	3393 3393	υ _{NH} (99)
5	U _{CH tyr sim}		3060vw	3210	3066	5	3212	3067	6	3215	3070	7	3211 3211	3067 3067	υ _{CH} (99)
6	$\upsilon_{CH \; tyr \; sim}$			3185	3042	9	3190	3046	10	3193	3049	11	3195 3195	3051 3051	υ _{CH} (98)
7	$\upsilon_{CH \; tyr \; asim}$		3036vw	3177	3034	12	3178	3035	11	3182	3039	12	3176 3176	3033 3033	υ _{CH} (99)
8	$\upsilon_{CH \; tyr \; asim}$			3165	3023	18	3165	3023	20	3167	3024	22	3167 3166	3024 3024	υ _{CH} (99)
9	$\upsilon_{CH \text{ pro asim}}$		2993s	3133	2992	14	3140	2999	12	3142	3001	12	3140 3140	2999 2999	υ _{CH} (96)
10	U _{CH pro}			3113	2973	34	3121	2981	29	3122	2982	32	3123 3122	2982 2982	υ _{CH} (98)
11	αsim U _{CH tyr asim}	2958m	2957s	3105	2965	16	3100	2961	19	3108	2968	16	3102 3100	2962 2960	υ _{CH} (100)

Tablo 4.24: -7,14kcal/mol olarak belirlenen Nötr Pro-Tyr dipeptidinin monomer global konformasyonu ve bu konformasyondan oluşturulanen düşük enerjili dimer yapının farklı baz setler kullanılarak elde edilen teorik titreşim dalga sayıları ve deneysel değerleri.

	Assig.	IR	Raman	DF] 6-3	F-RB3LY 1G++(d,p mono	7 P D)	DH (DFT-RB3LYP 6-31G(d,p) mono		DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		υ _{exp}	υ _{exp}	v_{cal}	*v _{scale}	IR	v_{cal}	$*v_{scale}$	IR	υ_{cal}	*v _{scale}	IR	v_{cal}	v_{scale}	
12	$\upsilon_{CH \ tyr \ asim}$			3088	2949	5	3087	2948	3	3089	2950	7	3086 3086	2947 2947	υ _{CH} (100)
13	U _{CH pro}			3075	2937	44	3076	2938	43	3081	2942	46	3077 3077	2939 2939	υ _{CH} (97)
14	$\upsilon_{CH \text{ pro sim}}$			3064	2926	36	3066	2928	19	3070	2932	16	3067 3067	2929 2929	υ _{CH} (98)
15	$\upsilon_{CH \text{ pro sim}}$			3059	2921	15	3063	2925	34	3066	2928	39	3064 3064	2926 2926	υ _{CH} (99)
16	$\upsilon_{CHtyr\;sim}$			3045	2908	25	3049	2912	14	3051	2914	14	3044 3044	2907 2907	υ _{CH} (99)
17	υ_{CHpro}			3044	2907	15	3046	2909	27	3049	2912	27	3048 3048	2911 2911	υ _{CH} (97)
18	$\upsilon_{CH pro}$			2979	2845	98	2984	2850	89	2987	2853	90	2983 2982	2848 2848	υ _{CH} (97)
19	$\upsilon_{OC(COOH)}$			1817	1735	291	1844	1761	241	1845	1762	240	1782 1722	1723 1665	$v_{CC}(3) + v_{OC}(85) + \delta_{COH}(4)$
20	U _{OC}	1696w	1661w	1740	1700	265	1772	1714	201	1773	1714	203	1771 1767	1713 1709	$v_{\rm NC}(5) + v_{\rm OC}(82) + \delta_{\rm NCC}(3)$
21	$v_{\rm CC}$	1650s	1612m	1664	1626	52	1675	1620	48	1677	1622	46	1675 1675	1620 1620	$\upsilon_{CC}(64) + \delta_{HCC}(15)$
22	U _{CC}		1594vw	1640	1602	11	1647	1593	13	1651	1597	15	1647 1647	1593 1593	$\upsilon_{CC}(68) + \delta_{HCC}(4) + \delta_{COH}(5)$
23	δ_{HCCtyr}	1513		1553	1517	155	1562	1510	111	1567	1515	115	1562 1562	1511 1511	$\upsilon_{\rm NC}(5) + \upsilon_{\rm OC}(5) + \upsilon_{\rm CC}(23) + \delta_{\rm HNC}(40) + \delta_{\rm HNC}(10)$
24	$\delta_{\rm HNC}$	1516s		1546	1510	240	1550	1499	153	1562	1510	70	1551 1550	1500 1499	$v_{\rm NC}(22) + \delta_{\rm HNC}(33)$
25	δ _{HCHpro}			1531	1496	32	1538	1487	150	1549	1498	215	1539 1538	1488 1488	$\delta_{\text{HCH}}(25) + \Gamma_{\text{HCNH}}(9) + \Gamma_{\text{HCCH}}(17) + \Gamma_{\text{HCCH}}(10)$
26	δ _{HCHpro}		1474	1509	1474	5	1515	1465	3	1531	1480	3	1519 1519	1469 1469	$\delta_{\text{HCH}}(25) + \Gamma_{\text{HCCH}}(47) + \Gamma_{\text{NCCH}}(8)$

	Assign.	IR	Raman	DF7 6-3	F-RB3LY 1G++(d,p mono	7 P D)	DF 6	T-RB3L 5-31G(d,g mono	YP D)	DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		υ_{exp}	Vexp	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	$^{*}\upsilon_{scale}$	
27	δ _{HCHpro}		1451m	1498	1464	6	1504	1454	10	1520	1470	9	1507 1507	1458 1458	$\delta_{\text{HCH}}(28) + \Gamma_{\text{HCCH}}(35) + \Gamma_{\text{NCCH}}(8) + \Gamma_{\text{CCCH}}(9)$
28	δ _{HCH tyr} (scis)	1447w	1449	1493	1459	30	1503	1453	23	1519	1469	32	1501 1501	1452 1452	$\delta_{\text{HCH}}(28)+\delta_{\text{HCC}}(5)+\Gamma_{\text{NCCH}}(13)+\Gamma_{\text{CCCH}}(42)$
29	δ _{CCHtyr,} (d.içi)	1442m	1433	1472	1438	13	1480	1431	19	1487	1438	22	1481 1479	1432 1431	$\upsilon_{CC}(32) + \delta_{CCO}(3) + \delta_{COH}(7) + \delta_{CCH}(29)$
30	δ_{CNHpro}			1441	1408	9	1441	1393	7	1454	1406	6	1441 1440	1393 1393	$υ_{CC}(3)+\delta_{CNH}(42)+\Gamma_{HCNC}(16)+$ $\Gamma_{HCNH}(14)$
31	$\begin{matrix} \upsilon_{CC^+} \\ \delta_{COH} \end{matrix}$		1365vw	1397	1365	89	1402	1356	139	1408	1362	131	1389 1388	1343 1342	$\begin{aligned} \upsilon_{CC}(10) + \upsilon_{OC}(9) + \delta_{HNC}(7) + \\ \delta_{HCC}(10) + \\ \delta_{OCO}(10) + \delta_{COH}(7) + \delta_{OCC}(4) + \\ \Gamma_{HCCH}(15) + \Gamma_{CCCH}(7) \end{aligned}$
32	δ _{HNCpro+} δ _{HCC} (wagging)	1377m	1374	1380	1348	0	1387	1341	0	1397	1351	0	1384 1384	1339 1338	$\delta_{\text{HNC}}(17) + \delta_{\text{HCC}}(13) + \Gamma_{\text{HCCH}}(9) + \Gamma_{\text{CCCH}}(15) + \Gamma_{\text{HCNC}}(6) + \Gamma_{\text{HCNH}}(6)$
33	U _{CCtyr}			1373	1341	1	1380	1334	2	1387	1341	4	1380 1380	1334 1334	$\upsilon_{CC}(54) + \delta_{HCC}(16) + \delta_{COH}(7)$
34	δ_{HCCtyr}			1365	1334	28	1376	1331	32	1384	1338	31	1376 1376	1331 1331	$\delta_{HCC}(65) + \delta_{COH}(11)$
35	δ_{HCCpro}			1351	1320	1	1360	1315	2	1369	1324	3	1360 1360	1315 1315	$ \begin{array}{l} \upsilon_{CC}(3) + \delta_{HCC}(32) + \\ \Gamma_{HCCH}(23) + \Gamma_{CCCH}(4) + \Gamma_{HCNC}(10) \end{array} $
36	δ_{HCCtyr}			1342	1311	12	1350	1305	3	1358	1313	3	1344 1343	1300 1300	$v_{CC}(12) + \delta_{HCC}(42)$
37	δ_{COH}		1303vw	1333	1302	18	1343	1299	3	1350	1305	3	1520 1333 1331	1470 1289 1287	$\begin{split} \upsilon_{\text{OC}}(9) + \delta_{\text{HNC}}(4) + \delta_{\text{HCC}}(20) + \\ \delta_{\text{OCO}}(5) + \delta_{\text{COH}}(20) + \Gamma_{\text{OCCH}}(9) \end{split}$
38	δ_{HCCpro}			1328	1297	30	1329	1285	23	1340	1296	24	1330 1330	1286 1286	$\delta_{\text{HCC}}(24) + \Gamma_{\text{HCCH}}(10) + \Gamma_{\text{CCCH}}(5) + \Gamma_{\text{HCNC}}(7) + \Gamma_{\text{HCNH}}(12)$

	Assign.	IR	Raman	DFT 6-3	F-RB3LY 1G++(d,p mono	7 P))	DFT-RB3LYP 6-31G(d,p) mono			DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		v _{exp}	υ _{exp}	υ_{cal}	*v _{scale}	IR	υ_{cal}	$* \upsilon_{scale}$	IR	υ_{cal}	$* \upsilon_{scale}$	IR	υ_{cal}	v_{scale}	
39	$\delta_{HCCpro\ wagging}$		1290	1324	1294	1	1325	1281	8	1335	1291	7	1326 1326	1282 1282	$\delta_{\text{HCC}}(33) + \Gamma_{\text{HCCH}}(26) + \Gamma_{\text{CCCH}}(3)$
40	$\upsilon_{OC \ tyr}$			1287	1257	118	1307	1264	106	1308	1265	105	1308 1308	1265 1264	$\upsilon_{CC}(21) + \upsilon_{OC}(50) + \delta_{HCC}(11)$
41	δ _{HCC+} δ _{COH}		1231w	1283	1253	8	1283	1241	15	1293	1250	16	1279 1278	1237 1236	$\delta_{\text{COH}}(17) + \delta_{\text{HCC}}(30) + \Gamma_{\text{HCCH}}(4) + \Gamma_{\text{HCNH}}(5) + \Gamma_{\text{HCNH}}(5)$
42	$\delta_{\text{HCCpro twist}}$		1265	1272	1243	12	1275	1233	17	1283	1241	18	1274 1274	1232 1232	$\delta_{\text{HCN}}(5) + \delta_{\text{HCC}}(23) + \Gamma_{\text{CCCH}}(4) + \Gamma_{\text{HCNC}}(4) + \Gamma_{\text{HCNH}}(5) + \Gamma_{\text{OCCH}}(6)$
43	δ _{HNC} peptid bağ		1225	1256	1227	10	1251	1210	1	1259	1217	1	1238 1237	1197 1197	$\upsilon_{CC}(8) + \upsilon_{NC}(12) + \delta_{HNC}(24)$
44	δ _{HCCprotwist}		1237	1245	1216	18	1245	1204	20	1253	1212	21	1251 1251	1210 1210	$\upsilon_{\text{NC}}(5) + \delta_{\text{HNC}}(8) + \delta_{\text{HCC}}(13) + \Gamma_{\text{CCCH}}(3)$
45	U _{CC tyr} ring breth			1229	1201	1	1232	1191	2	1236	1195	1	1231 1231	1191 1191	$\upsilon_{CC}(60) + \delta_{HCC}(9) + \delta_{CCC}(3)$
46	$\delta_{HCN+} \upsilon_{NC}$ peptid	1189m	1199m	1223	1195	1	1227	1187	2	1234	1193	2	1226 1226	1186 1186	$\upsilon_{CC}(4) + \upsilon_{NC}(13) + \delta_{HCC}(12) + \delta_{HCN}(14)$
47	$\delta_{\text{HCCprotwist}}$	1174w	1176vw	1204	1176	2	1207	1167	3	1214	1174	9	1209 1209	1169 1169	$ u_{\rm CC}(10) + \delta_{\rm HCC}(26) + \Gamma_{\rm CCCH}(3) + \Gamma_{\rm HCNC}(4) + \Gamma_{\rm HCCH}(6) $
48	δ_{HCCtyr}			1198	1170	8	1203	1163	46	1213	1173	124	1204 1204	1164 1164	$\upsilon_{\rm CC} (15) + \delta_{\rm HCC} (77)$
49	δ_{COHtyr}			1189	1162	169	1200	1160	144	1208	1168	57	1199 1198	1159 1159	$\upsilon_{CC}(18) + \delta_{HCC}(14) + \delta_{COH}(59)$
50	$\begin{array}{l} \delta_{HNCpeptid+} \\ \delta_{HCCpro} \\ \\ {}^{twist} \end{array}$			1177	1150	14	1178	1139	17	1185	1146	13	1177 1177	1138 1138	$\upsilon_{NC}(11)+\delta_{HCC}(4)+\delta_{HNC}(19)+$ $\Gamma_{HCCH}(7)+$ $\Gamma_{CCCH}(8)$
51	$ u_{OC^+} $ δ _{COH}			1165	1138	95	1175	1136	102	1181	1142	113	1153 1153	1115 1115	$\upsilon_{\rm NC}(9) + \upsilon_{\rm OC}(19) + \delta_{\rm COH}(17) + \delta_{\rm HCC}(3)$
52	UNC			1133	1107	178	1141	1103	166	1145	1107	166			$\upsilon_{NC}(28) + \upsilon_{CC}(5) + \upsilon_{OC}(17) + \delta_{COH}(8)$

	Assign.	IR	Raman	DFT-RB3LYP 6-31G++(d,p) mono		DFT-RB3LYP 6-31G(d,p) mono			DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d,p)	
		υ _{exp}	υ_{exp}	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	$^{*}\upsilon_{scale}$	
53	δ_{HCCtyr}			1130	1104	31	1134	1097	0	1139	1101	1	1136 1135	1098 1098	$\upsilon_{\rm NC}(3) + \upsilon_{\rm CC}(19) + \delta_{\rm HCC}(41)$
54	U _{NC (N-C})		1099vw	1123	1097	20	1129	1092	24	1133	1096	23	1130 1130	1093 1093	$\upsilon_{NC}(40) + \upsilon_{CC}(3) + \upsilon_{OC}(6)$
55	$\delta_{HCCpro\ rocking}$		1082	1096	1071	20	1097	1061	14	1103	1067	17	1099 1099	1063 1063	$ u_{\text{NC}}(23)+u_{\text{CC}}(3)+\delta_{\text{HCC}}(10)+$ $\Gamma_{\text{HCNH}}(3)+\Gamma_{\text{CCCC}}(3)+\Gamma_{\text{CCCH}}(15)$
56	υ _{CCpro}	1030m	1040w	1060	1036	9	1058	1023	7	1063	1028	7	1060 1060	1025 1025	$\upsilon_{\rm NC}(6) + \upsilon_{\rm CC}(41) + \delta_{\rm HCC}(7) + \delta_{\rm CNC}(3)$
57	υ_{CCtyr}		1025w	1039	1015	12	1034	1000	10	1038	1004	11	1035 1034	1001 1000	$\upsilon_{CC}(26) + \delta_{HCC}(8) + \delta_{CNC}(4) + \Gamma_{CCCH}(3) + \Gamma_{OCCH}(3)$
58	$\upsilon_{CCtyr+}\delta_{HCCtyr}$			1029	1005	1	1030	996	1	1033	999	1	1030 1030	996 996	$\upsilon_{CC}(31) + \delta_{HCC}(31) + \delta_{CCC}(32)$
59	U _{CCpro}	963m		986	963	4	993	960	4	996	963	3	1000 996	967 963	$v_{\rm NC}(21) + v_{\rm CC}(41)$
60	$\Gamma_{\rm HCCH}$			967	945	2	969	937	3	974	942	3	978 971	946 939	$\upsilon_{\text{NC}}(4) + \upsilon_{\text{CC}}(8) + \Gamma_{\text{HCCH}}(23) + \Gamma_{\text{CCCH}}(18) + \Gamma_{\text{OCCH}}(3)$
61	Г _{НССН}			965	943	2	961	929	1	963	931	2	968 966	936 934	$\upsilon_{\rm NC}(5) + \upsilon_{\rm CC}(15) + \delta_{\rm HCC}(3) + \Gamma_{\rm HCC}(16) + \Gamma_{\rm CCC}(8)$
62	Гсссн		939vw	956	934	1	954	923	1	951	920	1	955 955	924 924	$v_{CC}(10) + \delta_{CCC}(4) +$ $F_{VCC}(20) + F_{CCC}(22)$
63	^{tyr} Γ _{HCCH}			939	917	2	939	908	3	939	908	3	938 938	907 907	$v_{\rm NC}(7) + v_{\rm CC}(22) + \Gamma_{\rm HCCH}(13)$
64	tyr U _{CCpro}			929	908	3	928	897	3	930	899	2	929 929	899 899	$\upsilon_{\rm NC}(6) + \upsilon_{\rm CC}(27) + \delta_{\rm CCC}(3) + \Gamma_{\rm HCCH}(4)$
65	U _{CCpro}		912w	913	892	1	914	884	1	917	887	1	915 915	885 885	$v_{\rm NC}(22) + v_{\rm CC}(40)$
66	δ _{HCCpro} rocking	859w	866	892	871	7	892	863	8	896	866	7	895 895	865 865	$ \begin{array}{l} \upsilon_{\text{NC}}\left(8\right) + \upsilon_{\text{CC}}\left(15\right) + \delta_{\text{HCC}}(12) + \\ \delta_{\text{CNC}}(4) + \delta_{\text{CCC}}(5) + \Gamma_{\text{HCCH}}(3) \end{array} $

Assig.		IR	Raman	DFT-RB3LYP 6-31G++(d,p) mono			DFT-RB3LYP 6-31G(d,p) mono			DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d.p)
67	U _{NC}	U _{exp}	o U _{exp}	υ _{cal} 880	* v_{scale} 860	IR 9	υ _{cal} 888	*v _{scale} 859	IR 6	υ _{cal} 891	* v_{scale} 862	IR 5	υ _{cal} 891 891	[*] v _{scale} 861 861	$v_{\rm NC}(10) + v_{\rm CC}(7) + \delta_{\rm HCC}(5) + \Gamma_{\rm CCCH}(4)$
68	$\upsilon_{CC \ tyrbreth}$		841s	861	841	25	866	837	8	867	838	11	867 867	839 838	$v_{\rm NC}(43) + v_{\rm OC}(6)$
69	δ_{CNHpro}			856	836	40	858	830	25	863	835	33	860 860	831 831	$\upsilon_{CC}(6) + \delta_{CNH}(9) + \Gamma_{CNCH}(9) + \Gamma_{HCNH}(4) + \Gamma_{OCCC}(3)$
70	υ_{CCtyr}		824vs	847	828	10	852	824	29	853	825	22	855 854	826 826	$v_{CC}(13) + v_{OC}(3) + \delta_{OCN}(6)$
71	$\Gamma_{\rm CCCH}$			834	815	17	835	807	14	836	808	16	835 835	808 808	$\upsilon_{CC}(3) + \Gamma_{OCCH}(17) + \Gamma_{CCCH}(49)$
72	Γ _{CCCH}			817	798	12	814	787	12	814	787	13	816 815	789 788	$\Gamma_{\text{OCCH}}(22) + \Gamma_{\text{CCCH}}(63)$
73	δ_{CCC}			793	775	15	796	770	20	797	771	22	806 802	780 776	$\upsilon_{\text{CC}}(31) + \upsilon_{\text{OC}}(12) + \delta_{\text{CCC}}(10) + \Gamma_{\text{COOH}}(4)$
74	$\Gamma_{ m OCNH\ peptid}$			765	747	14	761	736	16	764	739	15	764 764	739 739	$\delta_{\text{CCC}}(3) + \Gamma_{\text{OCCCH}}(4) + \Gamma_{\text{OCCH}}(4) + \Gamma_{\text{OCNH}}(4) + \Gamma_{\text{NCCC}}(4) + \Gamma_{\text{NCCN}}(6) + \Gamma_{\text{NCCH}}(4)$
75	$\Gamma_{\rm CCCC}$	718m	719w	734	717	7	736	712	14	738	714	16	728 727	704 703	$\delta_{\text{CCC}}(4) + \Gamma_{\text{OCCC}}(6) + \Gamma_{\text{CCCC}}(22) + \Gamma_{\text{COOH}}(15) + \Gamma_{\text{OCCH}}(4) + \Gamma_{\text{OCCN}}(5)$
76	Γ _{CCCC}			709	693	9	714	690	17	715	691	17	720 708	696 685	$\upsilon_{CC}(12) + \upsilon_{OC}(3) + \delta_{CCC}(3) + \Gamma_{COOH}(11) + \Gamma_{CCCC}(26)$
77	Γ _{CCNH}			692	676	79	683	660	70	684	661	71	686 684	663 661	$\delta_{CNC}(3) + \delta_{OCN}(4) + \Gamma_{NCCH}(43) + \Gamma_{OCNH}(18) + \Gamma_{HCNH}(4)$
78	$\delta_{OCO (COOH)}$			657	642	22	657	635	1	658	636	1	693 683	670 660	$\upsilon_{OC}(14) + \delta_{CCN}(4) + \delta_{CCO}(19) + \delta_{OCO}(27) + \delta_{COH}(4)$
79	δ_{CCCtyr}		641m	656	641	0	655	633	29	656	634	29	656 656	635 635	$\upsilon_{CC}(7) + \delta_{HCC}(14) + \delta_{OCC}(7) + \delta_{CCC}(49)$
80	$\Gamma_{\rm CCNH}$	603w		624	610	25	617	597	23	620	600	24	620 619	600 599	$ \begin{array}{l} \upsilon_{CC}(10) + \upsilon_{NC}(3) + \delta_{OCN}(5) + \delta_{CCC}(3) + \\ \delta_{CNC}(8) + \Gamma_{HCNH}(6) + \Gamma_{CCNH}(16) \end{array} $

	Assig.	IR	Raman	D] 6-	FT-RB3LY •31G++(d,j mono	7 P D)	D	OFT-RB3L 6-31G(d,j mono	YP p)	DI	T-RB3L 6-31G(d) mono	YP	DFT-I 6-31 D	RB3LYP G(d,p) imer	TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		υ_{exp}	U _{exp}	υ_{cal}	$* \upsilon_{scale}$	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	$* \upsilon_{scale}$	IR int.	υ_{cal}	$^{*}\upsilon_{\text{scale}}$	
81	$\Gamma_{\rm CCOH}$			597	583	120	608	588	99	612	592	99	1020	986	$\upsilon_{CC}(3)+\Gamma_{NCCO}(3)+\Gamma_{CCOH}(50)+\Gamma_{COOH}(24)$
82	Γ_{OCCN}			589	575	18	586	567	24	588	569	26	600 594	580 574	$\upsilon_{\text{NC}}(5) + \delta_{\text{CCC}}(4) + \delta_{\text{NCC}}(7) + \delta_{\text{OCN}}(3) + \delta_{\text{OCC}}(4) + \Gamma_{\text{CCCN}}(3) + \Gamma_{\text{CCCH}}(4) + \Gamma_{\text{OCCN}}(4) + \Gamma_{\text{OCCN}}(3)$
83	Γ _{CCNH} pro			568	555	35	568	549	30	570	551	28	573 571	554 552	$\delta_{\text{CCC}}(12) + \delta_{\text{NCC}}(18) + \delta_{\text{OCC}}(4) + \Gamma_{\text{CCNH}}(12) + \Gamma_{\text{CCCH}}(3)$
84	$\Gamma_{\rm CCCH}$ tyrbutterfl	525m		546	533	24	550	532	22	551	533	21	551 551	533 533	$\delta_{\text{CCC}}(10) + \Gamma_{\text{CCCH}}(28) + \Gamma_{\text{CCCC}}(6)$
85	Γ _{CCCH}		490vw	499	488	18	502	485	10	503	486	11	510 505	494 488	$\delta_{\text{CCC}}(8) + \Gamma_{\text{CCCH}}(16) + \Gamma_{\text{CCCC}}(8) + \Gamma_{\text{CCCC}}(3)$
86	δοςς			483	472	21	483	467	23	483	467	24	497 494	481 478	$\upsilon_{CC}(14) + \delta_{CCC}(7) + \delta_{OCO}(9) + \delta_{OCO}(3) + \delta_{OCC}(18)$
87	δ_{OCC}		457w	444	434	1	447	432	2	448	433	2	463 455	448 440	$\upsilon_{\rm NC}(4) + \upsilon_{\rm CC}(9) + \delta_{\rm NCC}(9) + \delta_{\rm OCC}(26)$
88	δ_{OCCtyr}			429	419	7	430	416	9	430	416	9	442 438	428 423	$\delta_{CCC}(5) + \delta_{OCC}(34)$
89	$\Gamma_{\rm CCCC}$			423	413	5	425	411	8	424	410	9	424 424	410 410	$\delta_{CCC}(3) + \delta_{OCC}(20) + \Gamma_{CCCH}(3) + \Gamma_{CCCO}(4) + \Gamma_{CCCC}(27)$
90	$\Gamma_{\rm CCCC}$			422	412	6	422	408	2	422	408	2	422 422	408 408	$\delta_{\text{NCC}}(6) + \delta_{\text{OCC}}(3) + \Gamma_{\text{CCCH}}(3) + \Gamma_{\text{CCCH}}(3) + \Gamma_{\text{CCCH}}(5) + \Gamma_{\text{CCCH}}(4) + \Gamma_{\text{CCCC}}(29)$
91	$\delta_{\rm NCC}$			350	342	6	359	347	91	365	353	115	364 360	352 348	$\delta_{\text{NCC}}(15) + \delta_{\text{OCC}}(3) + \Gamma_{\text{CCCC}}(8) + \Gamma_{\text{CCCC}}(11)$
92	$\Gamma_{\rm CCOH tyr}$			337	329	103	353	341	23	354	342	2	353 352	342 341	Г _{ССОН} (97)
93	δ_{CCC}		314w	319	312	2	321	310	2	321	310	2	316 316	306 305	$\delta_{OCN}(3) + \delta_{OCC}(21) + \delta_{CCC}(28) + \Gamma_{CCNH}(9)$

Assig.		IR	Raman	D 6	FT-RB3LY -31G++(d,p) mono	P)	Ι	OFT-RB3LY 6-31G(d,p) mono	YP)	DFT-RB3LYP 6-31G(d) mono			DFT-RB3LYP 6-31G(d,p) Dimer		TED(monomer) DFT-RB3LYP 6-31G++(d,p)
94	δ_{CCC}	υ_{exp}	v_{exp}	υ _{cal} 309	*υ _{scale} 302	IR 2	υ _{cal} 313	*υ _{scale} 303	IR 2	υ _{cal} 312	*υ _{scale} 302	IR 2	υ _{cal} 344	[*] υ _{scale} 332	$\delta_{OCN}(4) + \delta_{OCC}(6) + \delta_{CCC}(19) +$
95	Γ _{CCCH}			279	273	2	284	275	2	284	275	2	303 297	322 293 287	$\delta_{CNC}(7) + \Gamma_{CCCO}(7)$ $\upsilon_{CC}(10) + \delta_{CCC}(5) + \Gamma_{CCCH}(13) +$ $\Gamma_{CCCC}(5) + \Gamma_{CCCH}(3) + \Gamma_{UCCV}(7)$
96	δ_{OCC}			266	260	2	265	256	3	266	257	3	284 280	275 270	$\upsilon_{\text{NC}}(4) + \upsilon_{\text{CC}}(4) + \delta_{\text{NCC}}(16) + \delta_{\text{OCC}}(25) + \Gamma_{\text{CCCN}}(3)$
97	δ_{OCC}			219	214	10	218	211	11	219	212	11	230 227	222 220	$\delta_{\text{NCC}}(3) + \delta_{\text{CCC}}(10) + \delta_{\text{OCC}}(25) + \Gamma_{\text{HCCN}}(12) + \Gamma_{\text{CCCH}}(12) + \Gamma_{\text{CCCH}}(7) + \Gamma_{\text{OCCN}}(3)$
98	δ_{CCC}			189	185	0	187	181	0	186	180	0	204 192	197 185	$ \upsilon_{CC} (13) + \delta_{CCN}(4) + \delta_{CCC}(18) + \Gamma_{CCCN}(4) + \Gamma_{CCCO}(10) $
99	δ_{CCC}			137	134	0	139	134	0	139	134	0	164 164	159 159	$ \delta_{\text{CCC}}(22) + \delta_{\text{CCN}}(5) + \Gamma_{\text{CCCN}}(4) + \\ \Gamma_{\text{CCCO}}(11) + \Gamma_{\text{CCCC}}(6) + \Gamma_{\text{HCCN}}(3) $
100	δ_{CCNpro}			125	122	4	127	123	4	126	122	4	146 140	141 135	$ \begin{aligned} &\delta_{\text{CCC}}(3) + \delta_{\text{CCN}}(41) + \delta_{\text{OCN}}(5) + \delta_{\text{CNH}}(7) + \\ &\Gamma_{\text{HCCN}}(10) + \Gamma_{\text{CCCO}}(7) + \Gamma_{\text{CCCO}}(10) \end{aligned} $
101	$\Gamma_{\rm CCCN}$			78	76	0	78	75	0	78	75	0	119 104	115 101	$\delta_{\text{CCC}}(12) + \Gamma_{\text{CCCN}}(19) + \Gamma_{\text{CNCO}}(7) + \\\Gamma_{\text{CCCH}}(10) + \Gamma_{\text{CCCC}}(15)$
102	Г _{СССН}			62	61	1	63	61	0	63	61	0	66 65	64 63	$\delta_{CCC}(5)+\delta_{CCN}(3)+\Gamma_{CCCC}(21)+\Gamma_{CCCH}(3)$ 0)+ $\Gamma_{CCCN}(7)+\Gamma_{OCCH}(4)+\Gamma_{CCCO}(3)+$ $\Gamma_{CNCO}(6)+\Gamma_{HCNH}(5)+\Gamma_{HCCH}(3)$
103	$\Gamma_{\rm NCCC}$			57	56	2	58	56	1	57	55	1	66 95	64 92	$\Gamma_{\text{CCCO}}(7) + \Gamma_{\text{NCCN}}(14) + \Gamma_{\text{NCCC}}(30) + \Gamma_{\text{NCCH}}(22)$
104	$\Gamma_{\rm CCCH}$			53	52	4	53	51	8	53	51	7	59 57 30	57 56 29	$\Gamma_{\text{CCCH}}(16) + \Gamma_{\text{CCCC}}(16) + \Gamma_{\text{CCNH}}(8) + \Gamma_{\text{NCCC}}(6) + \Gamma_{\text{NCCO}}(14) + \Gamma_{\text{OCCH}}(3)$
105	$\Gamma_{\rm CCOH}$			42	41	1	45	44	1	44	43	1	82 asim 54sim	79 52	$\Gamma_{\text{CCCC}}(4) + \Gamma_{\text{OCCN}}(32) + \Gamma_{\text{OCCH}}(12) + \Gamma_{\text{OCCC}}(25)$
106	$\Gamma_{ m CCCC}$			29	28	1	31	30	1	31	30	0	35 32	34 31	$\Gamma_{\rm CCCC}(40) + \Gamma_{\rm CCCH}(37)$

	Assig.	IR	Raman	D] 6-	DFT-RB3LYP 6-31G++(d,p) mono			DFT-RB3LYP 6-31G(d,p) mono			DFT-RB3LYP 6-31G(d) mono			-RB3LYP 81G(d,p) Dimer	TED(monomer) DFT-RB3LYP 6-31G++(d,p)
		υ_{exp}	υ_{exp}	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	*U _{scale}	IR int.	υ_{cal}	$*v_{scale}$	IR int.	υ_{cal}	$^{*}\upsilon_{\mathrm{scale}}$	
107	ГССИС			25	24	2	20	19	1	19	18	1	41 37	39 36	ГССNH(30)+ ГССNС(65)
108	$\Gamma_{\rm CCNC}$			22	21	0	12	12	1	12	12	1	24 23 19	23 22 18	$\Gamma_{\text{CCNH}}(25) + \Gamma_{\text{CCNC}}(26) + \Gamma_{\text{CCCC}}(10) + \\\Gamma_{\text{OCCN}}(13) + \Gamma_{\text{OCCC}}(4) + \Gamma_{\text{OCCH}}(4) + \\\Gamma_{\text{NCCN}}(3) + \Gamma_{\text{HCNH}}(8)$

t:twisting, w:wagging, r:rocking, scis: makas hareketi, umb: şemsiye hareketi, sim: simetrik, asim: asimetrik, $v_{scaled:}$ ölçeklenmiş, $v_{cal:}$ ölçeklenmemiş *Dalga sayıları RB3LYP/6-31G++(d,p) için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,977 ve DFT-RB3LYP/6-31G(d) için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,967 ölçek çarpanlarıyla çarpılmıştır.[26]

4.2.4. Pro-Tyr Dipeptidiyle ilgili Deneysel Sonuçlar (IR-Raman Spektrumları)

Şekil 4.23: Pro-Tyr dipeptidinin NRS 3100 Micro Raman spektrometre ile elde edilen spekrumları.(3500 cm-1 -300 cm-1-bölgesi.)

Şekil 4.24: Pro-Tyr dipeptidinin 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu

Şekil 4.25: Pro-Tyr Raman spektrumları, a)200-1200cm⁻¹,b)800-2000cm⁻¹,c)2800-3600cm⁻¹

4.2.4.1. Pro-Tyr Dipeptidiyle Çalışılmış Monomer ve Dimer yapıların Teorik ve Deneysel Spektrumların Karşılaştırılması

Şekil 4.26: Monomer ve dimer yapıdaki Pro-Tyr dipeptidinin, teorik spektrumlarının ve deneysel spektrumlarının karşılaştırılması.
4.3 PGLU-ASN DİPEPTİDİ

4.3.1. Pglu-Asn Dipeptidini oluşturan Amino Asitler

4.3.1.1 Pyroglutamik Asit ve Asparajin Amino Asitleri

Pyroglutamik asit: Pidolik asit ve ya pyroglutamat olarak bilinir. Nadir bir aminoasittir çünkü glutamik asidin serbest amino grubunun bir laktam (laktam cyclik amid) formuna dönüşmesiyle oluşan bir amino asittir. N terminal glutamin artıklarıda kendiliğinden pyroglutamat amino asidine dönüşebilir. L-pyroglutamate; Normalde insan beyninde, serebrospinal sıvıda ve kanda fazlaca bulunan bir amino asittir. Demans (bunama), Alzheimer ve alkol tüketimine bağlı hafiza kaybının önlenmesinde kullanılır.

Glutamik asit ya da glutamat merkezi sinir sisteminde heyecan duygularıyla ilgili sinir hücrelerinin haberleşmesinde görev alan bir nörotransmiterdir. Heyecan duygularıyla ilgili beyin ve omurilikte bulunan ana nörotransmiterdir. Glutamik asit kişilik bozuklukları ve çocuklarda görülen davranış bozukluklarının tedavisinde yardımcı olur. Sara, zihinsel sorunlar, kas gelişim bozuklukları, hipoglisemik koma, diyabette insülin tedavisi komplikasyonlarında kullanılır.[60]

Şekil 4.27 : Pyroglutamik amino asidinin yapısı

Asparajin:

Asparagin (Asn, N) proteinleri oluşturan 20 aminoasitten biridir. Yan zincirinde karboksamit grubu içerir. Polar özelliktedir, ancak fizyolojik pH'da yüksüzdür. Non esansiyel aminoasittir. L-Asparagin, merkezi sinir sisteminin dengesinin korunması için gereklidir. Aşırı sinir ve asabiyet oluşumunu engeller, teskin edici özelliği vardır. Patates, sığır eti, yumurta, mandıra ürünlerinde bulunur.[60]

Şekil 4.28 : Asparajin amino asidinin yapısı

4.3.2. Pglu-Asn Dipeptidiyle ilgili Teorik Konformasyon Analizi Sonuçları

4.3.2.1. Nötral Pglu-Asn Dipeptidinin programa tanıtılması

Şekil 4.29 : Nötral haldeki Pglu-Asn dipeptidinin,atom numaraları yazılmış,dihedral dönüleri tanımlanmış ve programa tanıtılan 2 boyutlu yapısı

Pglu-Asn dipeptidi 31 atoma ve 7 dihedral dönüye sahiptir. Prolin gibi kapalı halkaya sahip olan Pyroglutamik asit halkalı bir yapıya sahip olduğundan, halka içine dihedral dönü uygulanmaz.

Tablo 4.25: Pglu amino asidinin konformasyonbölgeleri.

Pglu	Ψ	ω
В	130	180
R	-50	180

Tablo 4.26: Asparajin amino asidininkonformasyon bölgeleri.

	φ	Ψ	χ1	χ2
	-100	-40	60	
R	-100	-60	180	90/-90
	-100	-60	-60	
	-120	160	60	
В	-120	140	180	90/-90
	-100	120	-60	
	60	40	60	
L	60	80	180	90/-90
	60	60	-60	

4.3.2.3. Nötral Pglu-Asn Dipeptidinin Teorik Konformasyon Analizi Sonuçları

Tablo 4.27 :Nötral Pglu-Asn dipeptidinin tüm konformasyon bölgelerine göre incelenen konformasyon sayıları ve minimum enerjinin (global enerjinin) bulunduğu konformasyon bölgesi.

Konformasyon bölgeleri	Konformasyon sayısı	Global enerji
BR	12	
BB	18	
BL	12	
RR	12	-5.90 kcal/mol
RB	18	
RL	12	

Nötral Pglu-Asn dipeptidinin toplam 84 konformasyonu incelenmiş ve minimum enerjisi (global enerji) **RR** konformasyon bölgesinde gözlenmiştir ve değeri -5.90 kcal/mol'dür. Global konformasyon **RR**₃₁ formunda ve ana zincir **f**(folded) katlanmış halde bulunmaktadır.

Tablo 4.28: -5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global konformasyon için dönü açıları.

Açılar	$PSI_1(\psi)$	W ₂ (W)	PHI ₂ (φ)	$CH_{21}(\chi_{21})$	$CH_{22}(\chi_{22})$	$PSI_2(\psi)$	W ₃
Giriş	-50.00	180.00	-100.00	-60.00	90.00	-60.000	180.00
Çıkış	-52.97	181.97	-102.24	-61.43	87.27	-57.16	179.40

Tablo 4.29: -5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global konformasyona etki eden zincir etkileşimleri.

Global konformasyon için ana zincir ve yan zincir etkileşim enerjileri (kcal/mol)				
Pglu-Ana	Pglu-Yan	Asn-Ana	Asn-Yan zincir	
zincir	zincir	zincir		
4,33	-1,29	-2,10	-1,57	Pglu-Ana zincir
	0,00	-0,80	-0,88	Pglu-Yan zincir
		3,95	-1,50	Asn-Ana zincir
			-1,64	Asn-Yan zincir

Tablo 4.30: -5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global konformasyona etki eden diğer etkileşme enerjileri.

${ m E_{Van}}$ der Waals	Eelektrostatik	E _{torsiyon}	E _{toplam}
-5.83 kcal/mol	-0.23 kcal/mol	0.16 kcal/mol	-5.90 kcal/mol

Tablo 4.31: -5,90 kcal/mol enerjiye sahip Nötral Pglu-Asn dipeptidinin global konformasyonda meydana gelen Hidrojen bağları ve enerjileri.

Atomlar	Uzaklık(Å)	Hidrojen Bağ Enerjisi (kcal/mol)
28-30	2,62	-0.18

4.3.3. Pglu-Asn Dipeptidiyle ilgili Teorik Titreşim Dalga Sayıları Hesabı

Şekil 4.30: a) Nötral Pglu-Asn dipeptidi için Teorik Konformasyon analizi sonucuyla elde ettiğimiz en düşük enerjiye sahip (-5,90 kcal/mol) konformasyonun Gaussian03 programına giriş geometrisi ve b) Gaussian03 programında DFT-RB3LYP/6-31G++(d,p) baz setiyle hesaplandıktan sonraki geometrik yapısı.

Pglu-Asn dipeptidinin monomer yapısı 31 atomlu olup 3N-6=87 tane titreşim frekansına sahiptir. Konformasyon analizi sonucu en düşük enerjiye sahip konformasyon Gaussian 03 programına tanıtılarak farklı baz setlerde titreşim frekansı hesabı yaptırılmıştır. Farklı baz setlerde çalışan molekülümüzün enerji değerleri aşağıdaki gibidir.

Tablo 4.32 : Konformasyon analizi sonucu enerjisi -5,90 kcal/mol olarak belirlenen konformasyonun farklı baz setler kullanılarak elde edilen enerji değerleri.

	DFT-RB3LYP	DFT-RB3LYP	DFT-RB3LYP
Pglu-Asn	6-31G++(d,p)	6-31G(d,p)	6-31G(d)
Enerji	-871.43504675au	-871.39221632au	-871.36061485au
	-546825.4918kca/mol	-546798.6157kcal/mol	-546778.7858kcal/mol

Nötral Pglu-Asn dipeptidinin kimyasal formülü $C_9H_{14}N_4O_4$ olup, birçok biyolojik molekül gibi içinde çok fazla H atomu barındırmaktadır. H atomları ve elektronegativitesi yüksek atomların (O,N) da bulunduğu ana zincir ve yan zincirler birbirleriyle etkileşerek H.bağları kurarlar.

Şekil 4.31 : Nötral Pglu-Asn dipeptidindeki molekül içi Hidrojen bağları.

Tablo 4.33 : Nötral Pglu-Asn dipeptidindeki molekül içi Hidrojen bağları ve uzaklıkları

Nötral Pglu-Asn dipeptidi	
Atomlar	H.BAĞI (Å)
14O-30H	1.9660
16H -23O	2.1762

(a)

Şekil 4.32: Pglu-Asn dipeptidinin çalışılmış dimer a yapısı

Tablo 4.34 : Dimer a yapıda Nötral Pglu-Asn dipeptidindeki moleküller arası Hidrojen

 bağı uzaklıkları

Dimer Pglu-Asn dipeptidi	
Atomlar	H.BAĞI (Å)
25H -48O	1.8842
23О-53Н	1.8839

Şekil 4.33: Pglu-Asn dipeptidinin çalışılmış dimer b yapısı

Tablo 4.35 : Dimer b yapıda Nötral Pglu-Asn dipeptidindeki moleküller arası Hidrojenbağı uzaklıkları

Dimer Pglu-Asn dipeptidi	
Atomlar	H.BAĞI (Å)
25H-55O	1,8646
23O-60H	1,8498

Tablo 4.36 :Konformasyon analizi sonucu enerjisi -5,90 kcal/mol olarak belirlenenglobal konformasyondan oluşturulan dimer yapıların enerji değerleri.

Dimer	Dimer a	Dimer b
Pglu-Asn		
DFT-RB3LYP	-1742.80519985au	-1742.80160349au
6-31G(d,p)	-1093610.262kcal/mol	-1093608.006kcal/mol

Tablo 4.37: -5,90 kcal/mol olarak belirlenen Nötr Pglu-Asn dipeptidinin monomer global konformasyonu ve bu konformasyondan oluşturulanen düşük enerjili dimer a yapının farklı baz setler kullanılarak elde edilen titreşim dalga sayıları ve deneysel değerleri.

		Monomer Dimer a												ner a	
	Assign.	IR	Raman	DF 6-3	DFT-RB3LYP 6-31G++(d,p)			DFT-RB3LYP 6-31G(d,p)			FT-RB3L 6-31G(d)	YP	DFT-RB3LYP 6-31G(d,p)		TED-MONOMER DFT-RB3LYP 6-31G++(d,p)
						IR			IR			IR			
		v_{exp}	v_{exp}	υ_{cal}	$*v_{scaled}$	int.	υ_{cal}	$*v_{scaled}$	int.	υ_{cal}	$*v_{scaled}$	int.	U _{cal}	*U _{scaled}	
1	υ_{Nasim}			3736	3568	45	3745	3576	40	3719	3552	36	3700 3700	3534 3533	υ _{NH} (100)
2	1)			3682	3516	103	3685	3519	89	3662	3497	80	3689	3523	рууг (100)
2	ONHasim			5002	5510	105	5005	5517	07	5002	5177	00	3688	3522	0 _{NH} (100)
3	$\upsilon_{\rm NH}$			3615	3453	30	3627	3464	28	3606	3444	25	3610	3448	υ _{NH} (99)
													3521	3363	
4	υ_{NH2sim}	3589vw		3595	3433	55	3603	3441	53	3592	3430	51	3521	3363	υ _{NH} (99)
5		2202	2274-	2521	2270	114	2510	2250	144	2502	2245	124	3603	3441	
3	U _{NHpept.}	22028	55748	5551	5572	114	5510	5552	144	5502	5545	154	3603	3441	U _{NH} (99)
6	UNH2sim	3274m	3271s	3477	3320	181	3470	3313	188	3469	3312	179	3362	3210	UNH (99)
	- 14123111												3321	3172	
7	$\upsilon_{CH2asim}$	3196vw	3168s	3143	3001	14	3146	3004	15	3148	3006	17	3160	3019	υ _{CH} (99)
									_				3143	3002	
8	$\upsilon_{CH2asim}$	2993vw	2996vs	3132	2991	9	3135	2994	5	3136	2995	6	3143	3002	υ _{CH} (100)
0	•		207810	3130	2080	5	3131	2000	11	3132	2001	12	3134	2993	v) (07)
9	OCHasimpglu		297008	5150	2989	5	5151	2990	11	5152	2991	12	3134	2993	0 _{CH} (97)
10	\mathcal{V}_{CHsim}			3082	2944	4	3083	2944	5	3088	2949	5	3077	2938	υ _{сн} (97)
	Crisiii												3077	2938	(07)
	Dave												3087	2948	$U_{\rm CH}(97)$
11	UCHsim			3079	2941	12	3081	2942	11	3086	2947	12	3084	2948	

	Assign.	IR	Raman	DFT-RB3LYP 6-31G++(d,p) Mono			DFT-RB3LYP 6-31G(d,p) Mono			DFT-RB3LYP 6-31G(d) Mono			DFT-R 6-310 Dim	B3LYP G(d,p) Ier a	TED-MONOMER DFT-RB3LYP 6-31G++(d,p)
					*	IR		*	IR int		*	IR		*	
		Uexp	Uexp	Ucal	*U _{scaled}	ını.	Ucal	*U _{scaled}	ını.	Ucal	*U _{scaled}	ini.	v_{cal}	2930	
12	$\upsilon_{CHsimpglu}$		2933vs	3063	2925	12	3064	2926	13	3066	2928	14	3068	2930	υ _{CH} (99)
13	υ_{CH}			3042	2906	24	3039	2903	30	3045	2908	22	3053	2916	υ _{CH} (100)
													3033	2910	
14	υ_{CH}			3036	2900	10	3037	2901	12	3044	2907	21	3090	2951	υ _{CH} (98)
15	υ_{OCpglu}			1806	1724	531	1845	1762	433	1846	1763	433	1845 1843	1762 1780	$\upsilon_{OC}(83)+\delta_{CCN}(3)$
16	Voc			1766	1725	390	1803	1722	315	1806	1724	312	1808	1727	$v_{NC}(5) + v_{OC}(78)$
	00												1808	1727	
17	υ_{OC}			1745	1704	415	1769	1710	334	1772	1713	336	1744	1686	$\upsilon_{\rm NC}(7) + \upsilon_{\rm OC}(80)$
18	U _{OCpeptit}	1697s	1687m	1720	1680	191	1748	1690	163	1751	1693	158	1741 1740	1684 1683	$\upsilon_{NC}(5) + \upsilon_{OC}(77) + \delta_{CNH}(3)$
19	δunuscie	1648vs	1657m	1629	1591	58	1634	1580	180	1653	1598	171	1657	1602	$v_{NC}(5) + \delta_{HNH}(57) + \delta_{CNH}(28)$
	- 111 (113013												1648 1634	1594	
20	$\delta_{HNHscis.}$		1604m	1626	1589	254	1629	1575	138	1648	1594	136	1634	1580	$\upsilon_{\text{NC}}(3) + \delta_{\text{HNH}}(57) + \delta_{\text{CNH}}(27)$
21	$\delta_{CNHpeptid}$	1535m		1560	1524	344	1566	1515	373	1574	1522	364	1551 1549	1500 1498	$\upsilon_{CC}(4) + \upsilon_{CN}(30) + \delta_{OCN}(3) + \delta_{CNH}(51)$
22	Source in the second	1463vw		1507	1472	6	1513	1463	5	1528	1477	5	1526	1476	$\delta_{\text{WGW}}(27) + \Gamma_{\text{WGGW}}(20) + \Gamma_{\text{WGGW}}(28) + \Gamma_{\text{WGGW}}(10)$
	OCH2pgiu(scis)	1100/11		1007	11/2	U	1010	1100	0	1020	11//	5	1520	1469	$S_{\rm H}(2) + S_{\rm H}(2) + T_{\rm H}(2) + T_{\rm H}(2) + T_{\rm H}(2)$
23	$\delta_{CH2asn\ scis.}$	1436v	1441m	1474	1440	22	1480	1431	2	1496	1447	2	1488 1488	1439	$O_{CCH}(8) + O_{HCH}(51) + 1_{HCCN}(14) + 1_{HCCC}(8) + \Gamma_{UCCU}(12) + \Gamma_{UCCO}(14)$
24	S			1472	1429	1	1476	1427	22	1402	1442	21	1479	1431	$\delta_{\text{CCH}}(15) + \delta_{\text{HCH}}(30) + \Gamma_{\text{HCCN}}(18) +$
24	OCH2pgluscis			1472	1430	1	1470	1427	22	1495	1445	21	1439	1430	$\Gamma_{\rm HCCO}(18) + \Gamma_{\rm HCCH}(3)$
25	δ_{HCC}			1423	1390	43	1425	1378	73	1432	1385	67	1417	1371	$\upsilon_{\rm CC}(15) + \upsilon_{\rm CN}(9) + \delta_{\rm HCC}(18) + \Gamma_{\rm HCCN}(4) + \Gamma_{\rm HCN}(4) + \Gamma_{\rm HCN}(4) + \Gamma_{\rm HCN}(4) + \Gamma_{\rm HCN}(4) + \Gamma_{$
													1417 1444	13/1	$1_{\text{HCCC}}(3)+1_{\text{HCCH}}(4)$
26	δ_{CNH}			1417	1384	58	1424	1377	40	1432	1385	37	1436	1388	$O_{\rm NC} (10) + O_{\rm OC} (4) + O_{\rm CNH} (42) + 1 \text{ HCNH} (4)$

(tablo devam ediyor)

	Assign. IR		Raman	DFT-RB3LYP			DF	T-RB3LY	P	DI	T-RB3L	YP	DFT-R	B3LYP	TED-MONOMER
				6-3	81G++(d,j Moro	p)	6	-31G(d,p) Mono)		6-31G(d)		6-31(Din	G(d,p)	DFT-RB3LYP 6-31C++(d p)
					WIDHU	IR		WIOHO	IR		WIOHO	IR	Dill	ici a	0-510++(u , p)
		υ _{exp}	υ _{exp}	υ_{cal}	$*v_{scaled}$	int.	υ_{cal}	*v _{scaled}	int.	υ_{cal}	*v _{scaled}	int.	υ_{cal}	*U _{scaled}	
27	υ _{CN}			1391	1359	136	1398	1351	107	1404	1357	118	1404 1402	1357 1356	$ u_{CC}(11)+u_{CN}(21)+\delta_{CNH}(15)+\delta_{CCH}(5)+\delta_{OCC}(3)+\delta_{OCN}(4)+\delta_{HNH}(4)+\Gamma_{HCCC}(4)+\Gamma_{HCCH}(10) $
28	δ_{CCH}		1340w	1374	1343	15	1376	1330	13	1384	1338	11	1373 1371	1327 1326	$\upsilon_{\text{NC}}(5) + \delta_{\text{CCH}}(19) + \Gamma_{\text{HCCC}}(11) + \Gamma_{\text{NCCH}}(5) + \Gamma_{\text{HCCH}}(12)$
29	δ_{CNH}			1369	1337	6	1372	1327	7	1381	1335	6	1367 1366	1322 1320	$ \begin{array}{l} \upsilon_{\text{NC}} \left(10\right) + \delta_{\text{CNH}} \left(11\right) + \delta_{\text{CCH}}(6) + \Gamma_{\text{HCCH}}(5) + \\ \Gamma_{\text{CCCH}}(4) + \Gamma_{\text{OCCH}}(7) + \Gamma_{\text{NCCH}}(9) \end{array} $
30	δ_{CCH}	1306vw		1343	1312	17	1351	1307	19	1360	1315	20	1339 1339	1295 1294	$ \begin{array}{l} \upsilon_{\text{NC}}(3) + \delta_{\text{CNH}}(5) + \delta_{\text{CCH}}(21) + \Gamma_{\text{CCCH}}(9) + \\ \Gamma_{\text{HCCH}}(26) + \Gamma_{\text{OCCH}}(4) + \Gamma_{\text{NCCH}}(4) \end{array} $
31	δ_{CCH}			1326	1296	50	1328	1284	27	1337	1293	8	1330 1328	1286 1284	$\upsilon_{\text{NC}}(6) + \upsilon_{\text{CC}}(8) + \delta_{\text{CCH}}(22) + \Gamma_{\text{HCCH}}(11) + \Gamma_{\text{HCNH}}(6) + \Gamma_{\text{HCNC}}(7) + \Gamma_{\text{HCCC}}(4)$
32	υ_{NC}			1325	1294	40	1326	1283	63	1335	1291	81	1330 1329	1286 1285	$ \begin{array}{l} \upsilon_{\text{NC}}\left(24\right) + \delta_{\text{CCH}}(17) + \delta_{\text{OCN}}(3) + \delta_{\text{HCN}}(8) + \\ \Gamma_{\text{HCNH}}(3) + \Gamma_{\text{HCNC}}(4) + \Gamma_{\text{HCCH}}(6) \end{array} $
33	$\delta_{CNHpeptid}$		1282w	1314	1283	21	1319	1275	16	1325	1282	17	1269 1268	1227 1226	$\upsilon_{\text{NC}}(5)+\delta_{\text{HCN}}(3)+\delta_{\text{CCH}}(25)+\Gamma_{\text{HCCC}}(4)+\Gamma_{\text{NCCH}}(4)+\Gamma_{\text{HCCH}}(3)$
34	$\delta_{CH2wag.pglu}$	1268m	1253w	1293	1263	19	1296	1253	21	1305	1262	24	1302 1301	1259 1258	$\upsilon_{CC}(8) + \upsilon_{CN}(13) + \delta_{CNH}(6) + \delta_{CCH}(25)$
35	$\delta_{CH2wag.asn}$	1249vw		1276	1247	68	1279	1237	66	1288	1246	67	1282 1282	1240 1240	$ \begin{array}{l} \upsilon_{CC}(3) + \upsilon_{CN}(11) + \delta_{CNH}(7) + \delta_{CCH}(30) + \Gamma_{HCCH}(4) + \\ \Gamma_{HCCN}(3) + \Gamma_{OCCH}(3) \end{array} $
36	υ_{CNpglu}			1262	1233	129	1262	1220	105	1269	1227	114	1254 1253	1213 1212	$\upsilon_{CC}(6) + \upsilon_{CN}(23) + \delta_{CNH}(4) + \delta_{OCN}(4) + \delta_{CCH}(18) + \delta_{OCC}(5) + \Gamma_{HCNH}(3) + \Gamma_{OCCH}(4) +$
37	$\delta_{CH2twistpglu}$	1203v	1200w	1227	1199	15	1227	1186	19	1234	1193	21	1240 1236	1199 1195	$ \upsilon_{CC}(8) + \delta_{CNH}(4) + \delta_{CCH}(33) + \Gamma_{NCCH}(9) + \Gamma_{OCCH}(3) + \Gamma_{HCCH}(5) + \Gamma_{CCCH}(5) $
38	$\delta_{CH2twistasn}$			1216	1188	18	1218	1178	13	1228	1187	15	1207 1206	1167 1166	$\delta_{\text{CNH}}(7) + \delta_{\text{CCH}}(38) + \Gamma_{\text{NCCH}}(5) + \Gamma_{\text{HCNH}}(3) + \Gamma_{\text{HCCH}}(4) + \Gamma_{\text{OCCH}}(4)$
39	$\delta_{CH2twistpglu}$	1131v	1137vs	1166	1139	27	1168	1130	29	1176	1137	32	1167 1167	1129 1128	$\upsilon_{CC}(5) + \delta_{CCH}(39) + \Gamma_{NCCH}(3) + \Gamma_{CCCH}(16)$
40	υ_{NC}			1144	1117	2	1155	1117	2	1162	1124	2	1150 1147	1112 1109	$\upsilon_{\text{NC}}(25) + \upsilon_{\text{CC}}(20) + \upsilon_{\text{OC}}(5) + \delta_{\text{CNH}}(15) + \delta_{\text{NCC}}(3) + \delta_{\text{CCH}}(3)$

	Assign.	IR	Raman	DFT-RB3LYP 6-31G++(d,p)		DFT-RB3LYP 6-31G(d,p)			DFT-RB3LYP 6-31G(d) Mono			DFT-R 6-310	B3LYP G(d,p)	TED-MONOMER DFT-RB3LYP	
					Mono	ID		Mono	ID		Mono	TD	Dim	er a	6-31G++(d,p)
		n	n	n .	*1)	IK int	n .	*1)	IK int	n .	*1)	IK int	n .	*1)	
41	δ_{CNH}	Uexp	Uexp	1127	1101	3	1134	1097	1	1139	1101	1	1136 1135	1099 1097	$\upsilon_{\text{NC}}(29) + \upsilon_{\text{CC}}(10) + \upsilon_{\text{OC}}(7) + \delta_{\text{CNH}}(41)$
42	υ_{NC}			1111	1085	12	1114	1077	12	1118	1081	10	1117 1116	1080 1080	$\upsilon_{NC}(40) + \upsilon_{CC}(13) + \delta_{CNC}(4) + \delta_{CNH}(8)$
43	δ_{CNH}			1106	1081	6	1110	1073	4	1115	1078	6	1104 1103	1067 1067	$\upsilon_{NC}(25) + \upsilon_{CC}(8) + \delta_{CNC}(3) + \delta_{CNH}(39)$
44	υ_{NC}			1057	1033	7	1062	1027	7	1069	1034	9	1064 1063	1029 1027	$\upsilon_{\rm NC}$ (14)+ $\upsilon_{\rm CC}$ (13)+ $\delta_{\rm CNC}$ (3)+ $\delta_{\rm CNH}$ (12)+ $\delta_{\rm CCH}$ (10)
45	$CH_{2rockpglu}$		1014m	1047	1023	6	1052	1017	6	1058	1024	6	1051 1050	1016 1015	$ \begin{array}{l} \upsilon_{\text{NC}}(4) + \delta_{\text{CCH}}(10) + \Gamma_{\text{CCCH}}(3) + \Gamma_{\text{NCCC}}(4) + \Gamma_{\text{HCCH}}(2\\7) + \\\Gamma_{\text{CCCC}}(6) + \Gamma_{\text{CCCH}}(3) \end{array} $
46	U _{CCpglu}	1018vw	987w	1017	994	5	1018	984	6	1020	987	6	1022 1021	988 988	$v_{\rm NC}$ (10)+ $v_{\rm CC}$ (48)
47	υ_{CCpglu}			989	966	1	992	959	1	995	962	1	996 994	963 961	$v_{NC}(4) + v_{CC}(59)$
48	υ_{CC}		947m	944	923	4	945	914	7	949	918	7	941 941	910 910	υ _{CC} (26)
49	$\upsilon_{CCpgluasim}$		903w	922	900	8	924	894	6	927	897	6	917 916	887 886	υ_{NC} (16)+ υ_{CC} (21)+ δ_{CCH} (8)+ δ_{CCC} (6)
50	$\upsilon_{CCpglusim}$		881m	890	870	4	892	863	4	895	866	4	906 904	876 874	$ \begin{array}{l} \upsilon_{NC}(8) + \upsilon_{CC}(8) + \delta_{CCH}(5) + \delta_{CCC}(3) + \Gamma_{OCCC}(5) + \Gamma_{N} \\ _{CCH}(12) \end{array} $
51	U _{CCpglusim}			883	863	2	885	856	1	889	859	2	890 885	861 856	$\upsilon_{NC}(6) + \upsilon_{CC}(26) + \delta_{OCN}(4) + \Gamma_{OCCH}(4)$
52	υ_{CC}			861	842	0	861	832	1	863	835	1	879 878	850 849	$v_{\rm NC}(9) + v_{\rm CC}(55) + \delta_{\rm CNH}(9)$
53	υ_{CC}		826w	833	814	10	833	806	11	836	809	12	840 838	812 811	$\upsilon_{CC}(27) + \delta_{CCH}(3) + \Gamma_{OCCH}(13) + \Gamma_{NCCH}(7)$
54	$\Gamma_{\rm HNCO}$			785	767	4	791	765	5	792	766	6	784 784	758 758	$\upsilon_{CC}(11) + \delta_{OCN}(8) + \Gamma_{HNCO}(24)$

(tablo devam ediyor)

	Assign.	IR	Raman	DFT-RB3LYP 6-31G++(d,p) Mono			DFT-RB3LYP 6-31G(d,p) Mono			DFT-RB3LYP 6-31G(d) Mono			DFT-RB3LYP 6-31G(d,p) Dimer a		TED-MONOMER DFT-RB3LYP 6-31G++(d,p)
						IR			IR			IR			
		v_{exp}	v_{exp}	υ_{cal}	$* v_{scaled}$	int.	υ_{cal}	$*v_{scaled}$	int.	υ_{cal}	$* v_{scaled}$	int.	v_{cal}	* v_{scaled}	
55	$\Gamma_{\rm HNCO}$			760	742	5	761	736	8	762	737	7	763 762	737	$o_{\text{CNH}}(4) + o_{\text{CNC}}(4) + o_{\text{OCC}}(7) + o_{\text{OCN}}(3) + 1_{\text{NCCC}}(3) + \Gamma_{\text{HNCO}}(15)$
56	υ_{CC}			727	710	2	733	708	3	734	710	4	737 731	713 707	$ \nu_{\text{CC}} (12) + \delta_{\text{CCN}}(4) + \Gamma_{\text{OCCC}}(7) + \Gamma_{\text{OCCH}}(3) + \\ \Gamma_{\text{NCCN}}(6) + \\ \Gamma_{\text{NCCH}}(4) + \Gamma_{\text{HNCO}}(7) + \Gamma_{\text{ONCO}}(9) $
57	$\Gamma_{\rm NCCH}$			718	701	13	719	696	21	721	697	23	722 721	698 697	$\delta_{CCN}(4) + \delta_{OCN}(5) + \Gamma_{NCCH}(24) + \Gamma_{HNCO}(21)$
58	$\Gamma_{\rm NH2twist}$	672v	682m	707	691	19	712	688	14	713	690	16	692 688	669 665	$\upsilon_{CC}(3)+\upsilon_{CN}(5)+\delta_{OCC}(4)+\delta_{OCN}(5)+\Gamma_{NCCH}(23)+\Gamma_{HNCO}(11)$
59	$\Gamma_{\rm HNCO}$			671	656	28	679	656	46	682	659	55	666 666	644 644	$\delta_{OCC}(4) + \delta_{CCN}(10) + \Gamma_{OCCH}(8) + \Gamma_{NCCH}(4) + \Gamma_{HNCO}(39)$
60	$\Gamma_{\rm OCNH}$			643	629	50	657	635	48	659	637	44	620 620	600 599	$ \begin{aligned} \upsilon_{\text{CN}}(5) + \delta_{\text{OCC}}(14) + \delta_{\text{CCC}}(4) + \delta_{\text{OCN}}(16) + \\ \Gamma_{\text{OCCH}}(3) + \\ \Gamma_{\text{OCNH}}(13) + \Gamma_{\text{NCCH}}(3) \end{aligned} $
61	$\Gamma_{\rm CCNH}$	626vw		625	611	10	631	610	6	633	612	5	633 632	612 612	$\delta_{\text{OCN}}(9) + \delta_{\text{OCC}}(4) + \Gamma_{\text{OCNH}}(14) + \Gamma_{\text{HCNH}}(5) + \Gamma_{\text{CCNH}}(27)$
62	$\Gamma_{\rm NH2twist}$	619vw		611	597	19	619	599	38	621	600	42	864 811	835 785	$ \upsilon_{CC}(4) + \delta_{OCC}(8) + \delta_{CCC}(8) + \delta_{CCN}(4) + \Gamma_{HCCH}(4) + \Gamma_{HNCC}(6) + \Gamma_{HNCO}(5) $
63	δ_{OCC}			572	559	55	581	562	51	583	564	56	595 594	575 575	$\upsilon_{CC}(6) + \delta_{OCC}(24) + \delta_{OCN}(10) + \Gamma_{HNCC}(8) + \Gamma_{HNCO}(4)$
64	$\Gamma_{\rm HNCC}$			567	554	48	568	549	52	570	551	48	564 561	545 543	$\delta_{CCN}(6) + \delta_{OCC}(4) + \delta_{CCC}(4) + \Gamma_{HNCO}(12) + \Gamma_{HNCC}(20) + \Gamma_{CCCH}(4)$
65	NH2rocking		546w	552	540	29	555	536	33	555	537	35	568 568	549 549	$\delta_{\text{CCN}}(28) + \delta_{\text{CNH}}(3) + \delta_{\text{OCN}}(33)$
66	$\Gamma_{\rm HNCC}$	502vw	498w	507	495	71	509	493	51	514	497	115	524 523 494 493	506 505 477 476	$\Gamma_{\text{HNCC}}(48) + \Gamma_{\text{CCCO}}(3) + \Gamma_{\text{HCNH}}(4) + \Gamma_{\text{HNCO}}(10)$

	Assign.	IR	Raman	DF 6-3	T-RB3LY 31G++(d,j Mono	7 P p)	DI (T-RB3LY 5-31G(d,p) Mono	7 P)	D	FT-RB3L' 6-31G(d) Mono	YР	DFT-R 6-31 Din	RB3LYP G(d,p) ner a	TED-MONOMER DFT-RB3LYP 6-31G++(d,p)
		v_{exp}	v _{exp}	υ_{cal}	*U _{scaled}	IR	υ_{cal}	$*v_{scaled}$	IR	υ_{cal}	*U _{scaled}	IR	v_{cal}	$*v_{scaled}$	
68	δ_{OCC}			484	473	161	488	472	9	489	473	9	445 438	430 423	$ \begin{array}{l} \upsilon_{CC}(9) + \delta_{OCC}(25) + \delta_{OCN}(16) + \delta_{CNC}(5) + \Gamma_{CCNH}(3) \\ + \Gamma_{OCCN}(4) \end{array} $
69	$\Gamma_{\rm HNCO}$			481	470	22	481	465	7	481	465	7	481 480	465 465	$\Gamma_{\rm CCNH}(44) + \Gamma_{\rm HNCO}(43)$
70	δ_{OCC}		421m	409	400	6	411	398	8	412	399	8	398 396	384 383	$\upsilon_{CC}(15) + \upsilon_{CN}(12) + \delta_{OCN}(10) + \delta_{OCC}(25) + \delta_{NCC}(7)$
71	$\Gamma_{\rm HNCC}$			388	379	0	386	374	0	388	375	1	324 323	313 313	$ \upsilon_{\text{CC}}(10) + \delta_{\text{NCC}}(16) + \delta_{\text{OCN}}(4) + \Gamma_{\text{CCNC}}(14) + \Gamma_{\text{HCCN}}(24) $
72	δ_{NCC}			370	362	3	369	357	3	369	356	3	352 351	340 339	$\upsilon_{CC}(10) + \delta_{OCC}(14) + \delta_{OCN}(9) + \delta_{NCC}(56)$
73	δ_{NCC}		299w	308	301	18	308	298	11	307	297	11	398 396	384 383	$ \begin{array}{l} \upsilon_{\text{CN}}(4) + \delta_{\text{OCN}}(5) + \delta_{\text{OCC}}(4) + \delta_{\text{NCC}}(33) + \Gamma_{\text{HCCH}}(3) + \\ \Gamma_{\text{OCCC}}(5) + \Gamma_{\text{NCCC}}(4) \end{array} $
74	$\Gamma_{\rm CCNH}$			294	287	170	272	263	125	269	260	10			$\upsilon_{CC}(4) + \delta_{NCC}(5) + \delta_{OCC}(3) + \Gamma_{CCNH}(29) + \Gamma_{HNCO}(28)$
75	$\Gamma_{\rm CCNH}$		258w	264	258	1	267	259	63	259	250	188	278 271	268 262	$ \upsilon_{\rm CC}(9) + \delta_{\rm NCC}(6) + \delta_{\rm OCC}(5) + \delta_{\rm CCC}(3) + \Gamma_{\rm CCNH}(25) + \Gamma_{\rm HNCO}(21) $
76	δ_{CCC}			246	240	19	248	239	19	247	239	23	252 243	244 235	$ \delta_{\text{NCC}}(17) + \delta_{\text{OCC}}(6) + \delta_{\text{CCC}}(19) + \Gamma_{\text{CCNH}}(8) + \\ \Gamma_{\text{CNCO}}(4) + \Gamma_{\text{CNCC}}(9) $
77	δ_{CCC}			205	201	25	212	205	26	213	206	26	196 194	189 188	$\delta_{\text{CCC}}(15) + \delta_{\text{NCC}}(9) + \Gamma_{\text{CNCC}}(7) + \\\Gamma_{\text{CCNH}}(12) + \Gamma_{\text{OCCN}}(6) + \Gamma_{\text{OCCC}}(3)$
78	$\Gamma_{\rm CNCC}$			176	172	5	180	174	4	181	175	3	99 97	96 94	$\delta_{\text{CCC}}(19) + \delta_{\text{NCC}}(7) + \Gamma_{\text{CNCC}}(23) + \Gamma_{\text{NCCN}}(3) + \Gamma_{\text{CCNH}}(8)$
79	δ_{NCC}			154	150	8	154	149	5	153	148	5	167 161	161 156	$\delta_{\text{NCC}}(26) + \delta_{\text{OCN}}(4) + \delta_{\text{CCC}}(4) + \Gamma_{\text{OCCH}}(9) + \Gamma_{\text{CCCO}}(8) + \Gamma_{\text{NCCC}}(16) + \Gamma_{\text{OCNC}}(7)$
80	$\Gamma_{\rm HCCN}$			134	130	2	143	139	4	144	139	4	145 140	141 136	$ \delta_{\text{NCC}}(8) + \Gamma_{\text{CNCC}}(14) + \Gamma_{\text{HCCN}}(21) + \Gamma_{\text{OCCC}}(9) + \Gamma_{\text{OC}} \\ CC(9) + \Gamma_{\text{CCCH}}(18) + \Gamma_{\text{CCCC}}(7) $
81	$\Gamma_{\rm NCCC}$			105	103	3	111	107	3	111	108	3	133 123	129 119	$\begin{aligned} &\delta_{\text{CCC}}(17) + \Gamma_{\text{OCCN}}(5) + \Gamma_{\text{OCCC}}(6) + \\ &\Gamma_{\text{OCCH}}(4) + \Gamma_{\text{NCCN}}(5) + \Gamma_{\text{NCCC}}(22) + \Gamma_{\text{NCCH}}(13) + \\ &\Gamma_{\text{HCCH}}(4) + \Gamma_{\text{HCCC}}(3) \end{aligned}$

	Assign.	gn. IR Rama		aman DFT-RB3LYP 6-31G++(d,p) Mono				T-RB3LY 5-31G(d,p) Mono	7 P)	D	FT-RB3L 6-31G(d) Mono	YP	DFT-R 6-31(Din	RB3LYP G(d,p) ner a	TED-MONOMER DFT-RB3LYP 6-31G++(d,p)
						IR			IR			IR			
		υ _{exp}	v_{exp}	υ_{cal}	*v _{scaled}	int.	υ_{cal}	*v _{scaled}	int.	υ_{cal}	*v _{scaled}	int.	v_{cal}	*U _{scaled}	
82	$\Gamma_{\rm HCCC}$			72	70	10	71	69	6	72	69	7	177 156	171 151	$\Gamma_{\text{NCCC}}(22) + \Gamma_{\text{HCCC}}(34) + \Gamma_{\text{CCCC}}(22) + \Gamma_{\text{NCCN}}(3)$
													71	69	$(19) + \Gamma$ (4) + Γ (15) + Γ (27) +
83	Γ_{HCCC}			69	67	0	70	67	1	70	68	0	67 31	65 30	$\Gamma_{\text{CCCC}}(16) + \Gamma_{\text{OCCN}}(4) + \Gamma_{\text{NCCC}}(15) + \Gamma_{\text{HCCC}}(27) + \Gamma_{\text{CCCC}}(16) + \Gamma_{\text{NCCH}}(5) + \Gamma_{\text{NCCN}}(4)$
Q 1	Г			40	19	1	51	40	n	50	50	1	48	47	$\Gamma_{\text{NCCN}}(18) + \Gamma_{\text{NCCC}}(12) + \Gamma_{\text{OCCN}}(16) +$
04	I NCCN			49	40	1	51	49	2	52	50	1	45	44	$\Gamma_{\text{OCCH}}(12) + \Gamma_{\text{OCCC}}(10) + \Gamma_{\text{NCCH}}(11)$
85	$\Gamma_{\rm NCCC}$			41	40	4	48	47	6	50	48	6	92 81	89 79	$\delta_{\text{NCC}}(4) + \Gamma_{\text{CCCC}}(4) + \Gamma_{\text{CCCH}}(6) + \\\Gamma_{\text{OCCC}}(4) + \Gamma_{\text{NCCN}}(12) + \\\Gamma_{\text{NCCC}}(40) + \Gamma_{\text{NCCH}}(20) + \Gamma_{\text{OCCN}}(7)$
86	Г			40	30	7	12	41	1	13	41	2	54	53	$\Gamma_{\text{NCCC}}(34) + \Gamma_{\text{OCCN}}(19) + \Gamma_{\text{OCCC}}(8) +$
80	I NCCC			40	39	/	42	41	1	45	41	2	52	50	$\Gamma_{\text{HCNH}}(10) + \Gamma_{\text{CCNH}}(10)$
													58	56	
~-							~ ~					-	41	40	
87	$\Gamma_{\rm NCCC}$			32	32	1	32	31	2	32	31	2	38	37	$\Gamma_{\text{OCCC}}(26) + \Gamma_{\text{OCCH}}(20) + \Gamma_{\text{NCCC}}(29) + \Gamma_{\text{NCCH}}(26)$
													14	14	
													10	9	

sim: simetrik, asim: asimetrik, * $\upsilon_{scaled:}$ ölçeklenmiş, $\upsilon_{cal:}$ ölçeklenmemiş

*Dalga sayıları RB3LYP/6-31G++(d,p)için 1800cm⁻¹ üstü 0,955-1800cm⁻¹ altı 0,977 ve DFT-RB3LYP/6-31G(d) için 1800cm⁻¹ üstü 0,955-

1800cm⁻¹ altı 0,967 ölçek çarpanlarıyla çarpılmıştır.[26]

4.3.4. Pglu-Asn Dipeptidiyle ilgili Deneysel Sonuçlar

Şekil 4.34: Pglu-Asn dipeptidinin NRS 3100 Micro Raman spektrometre ile elde edilen spekrumları.(4000 cm⁻¹-400 cm⁻¹-bölgesi.)

Şekil 4.35: Pglu-Asn dipeptidinin 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu.

Şekil 4.36: Pglu-Asn dipeptidinin Raman spektrumları, a)200-1000cm⁻¹,b)800-2000cm⁻¹,c)2800-3600cm⁻¹

Şekil 4.37: Monomer ve dimer yapılardaki Pglu-Asn dipeptidinin karşılaştırmalı spektrumları.

Şekil 4.38: Monomer ve dimer yapıdaki Pglu-Asn dipeptidinin, teorik spektrumlarının ve deneysel spektrumlarının karşılaştırılması.

5. TARTIŞMA VE SONUÇ

Ala-Gln Dipeptidi

Bu çalışmada özellikle kanser tedavisinde kullanılan, antitümör ilaçların seçiciliğini arttıran, ameliyat sonrası enfeksiyon riskinin en aza indirilmesinde iyi sonuçlar veren, pankreas iltihabı gibi hastalıkları iyileştirici etkisi bulunan, koleraktal kanserli hastalarda ameliyat sonrası hastalardaki bağışıklık fonksiyonlarının geliştirilmesinde yardımcı olan, mukoza iltihabını önlemede de kullanılan serbest haldeki nötral Ala-Gln dipeptidinin, yapı-foksiyon ilişkisini saptamak amacıyla Teorik Konformasyon Analizi Yöntemiyle konformasyon olanakları incelenmiştir.

Konformasyon olanaklarının incelenmesi ve en düşük enerjili konformerin bulunması için Godjayev ve çalışma grubu tarafından yazılan bir Fortran programı [25] kullanılmıştır. Öncelikle programa dipeptidin kimyasal yapısını (dipeptidi oluşturan atomları, iki yüzlü dönü açılarını, kimyasal bağların uzunluğu, valans açı değerleri, atomların etkin yükleri) tanıtılmış ve her bir amino asidin ana zincir ve yan zincir formunu veren konformasyon bölgeleri girilerek mümkün konformasyonlar ve enerjileri elde edilmiştir.

Nötral Ala-Gln dipeptinin Konformasyon analizi sonucu 810 konformasyonu incelenmiştir. Bu konformasyonlar arasından en düşük enerjiye sahip konformasyonun **LB** konformasyon bölgesinde gözlenmiştir. Bu konformasyondaki Nötral Ala-Gln dipeptidinin enerjisi -**0,18kcal/mol** hesaplanmıştır.

En düşük enerjili konformasyona bakıldığında ana zincir **LB** konformasyonunda yani **e (extended) (gerilmiş)** şeklindedir. En düşük enerjili kararlı konformasyona en büyük katkı -6.06 kcal/mol enerji ile Van der Waals enerjisinden gelmektedir tablo 4.6. Kararlı konformasyonun oluşmasında Gln-Yan zinciri ve Ala-Ana zinciri arasındaki etkileşmenin rolü çok büyüktür bu etkileşme nerjisi -4,68 kcal/mol'dür (tablo 4.5).Bu konformasyonda, N terminal grubunu oluşturan Alanin'in hidrojenlerinden biri ile, Glutamin'in yan dalı üzerindeki oksijen atomuyla 1,95 Å uzaklıkta, -0,95kcal/mol'lük bir hidrojen bağı kurulmuştur.

Diğer bir hidrojen bağı da ana zincirin peptid grubunu oluşturan hidrojen atomu ile Glutamin'in yan dalı üzerindeki oksijen atomu arasında 2,25 Å uzaklıkta ve-0,49 kcal/mol enerjide oluşmuştur (tablo 4.7). En düşük enerjili konformasyonun açı değerleri de programdan elde edilmiştir. (tablo 4.4)

Teorik konformasyon analizi sonucu elde edilmiş olan en düşük enerjili konformer, geometri optimizasyonunun yapılması ve temel titreşim dalga sayılarının elde edilmesi için DFT teori düzeyinde ve B3LYP/ 6-31++G(d,p) baz seti kullanılarak harmonik titresici modeli cercevesinde hesaplanmıştır. Polarizasyon ve diffuse fonksiyonları dahil edilerek moleküler orbitallerin uzayda daha geniş bir dağılımına imkan verilmektedir. Serbest halde dipeptidimiz 30 atomlu olup 3N-6=84 tane temel titreşim dalga sayısına sahiptir. Geometri optimiizasyonu sonucu elde edilen geometrik yapı, konformasyon analizi sonucu elde edilmiş yapının bir benzeridir. Optimizasyon geometrik yapının bozulmasına sebep olmamıştır (Şekil 4.4). Dipeptimize ait 84 tane temel titreşim dalga sayısını hesaplanmış ve titreşimsel kiplerin analiz edilmesi amacıyla toplam enerji dağımından (%TED) faydalanılmıştır. Teorik hesaplamalar vanında Nötral Ala-Gln dipeptidinin, NRS 3100 Micro Raman spektrometre ile elde edilen Raman spekrumu 4000cm⁻¹-400cm⁻¹ bölgede avrı avrı kaydedilmiştir ve belirgin pikler şekil üzerlerinde işaretlenmiştir (Şekil 4.6) Oda sıcaklığında katı fazda ayrı ayrı bölgelerde Raman spektrumları kaydedilmiştir. (Şekil 4.8). Ayrıca 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu kaydedilmiştir ve temel bantlar spektrum üzerine işaretlenmiştir.(Şekil 4.7). Harmonik yaklaşıklık kullanılarak hesaplanan dalga sayılarını deneysel dalga sayılarına yaklaştırabilmek için ikili ölçek çarpanları kullanılmıştır.[26]

Teorik olarak hesaplanan dalga sayıları, deneysel dalga sayıları, teorik IR şiddet değerleri karşılaştırmalı olarak tablo 4.10'da verilmiştir.

Nötral Ala-Gln dipeptidi, karboksil grubuna sahip olması nedeniyle dimerizasyona elverişli bir yapısı vardır. Bu nedenle nötral Ala-Gln dipeptinin oluşturabileceği düşünülen 4 farklı dimer yapısı da incelenmişir (Şekil 4.10). Bu dört farklı dimer yapı içerisinde enerjisi en düşük olan yapı **dimer a** yapısıdır. Dimer (a) yapısına sahip molekülde, <u>moleküler arası H.bağı sayısı</u>, diğer molekül yapılarına göre daha fazladır. Dimer (a) yapısında <u>molekül içi H.bağı sayısı</u> da diğer dimer şekillerine

göre çok daha fazladır. Bu da molekülün daha kararlı bir yapıda olmasını sağlar. Sonuç olarak bu dimer yapının enerjisi de diğer yapılarla kıyaslandığında çok daha küçüktür, yani dimer(a) yapısı daha kararlıdır denilebilir.

Monomer nötr Ala-Gln dipeptidinde peptid bağının DFT/B3LYP-6-31G(d,p) baz seti ile hesaplanmış optimize bağ uzaklıklğı (C_{10} - N_{12}) 1,3635 Å olarak ölçülmüş olup, aynı teori düzeyi ve aynı baz setler kullanıldığında dimer a yapısında ölçülen peptid bağı 1,3620 Å ve 1,36219 Å'dur (tablo 4.39).Peptid grubunun düzlemi, H₁₃-N₁₂-C₁₀-O₁₁ monomer yapı için 166.9585⁰ olarak ve **dimer a** yapısında aynı düzlem 171.62023⁰ olarak belirlenmiştir (tablo 4.41). Peptid bağının her iki amino asit arasındaki dihedral dönü açısı monomer yapı için C₄-C₁₀-N₁₂ -C₁₄, -174.40⁰ olarak, **dimer a** yapısında bu dihedral dönüsü -179.40° olarak ölçülmüştür. Bunun sebebi de dimer a yapısının her iki ucundan olan hidrojen bağlarıdır. Dimer yapıda glutamine yan zincirini oluşturan NH₂ grupları arasında güçlü hidrojen bağları kurulurken (O₂₃-H₆₀,O₅₇-H₂₆) aynı zamanda dimer yapıda alaninin N terminal grubundaki hidrojen atomundan bir tanesi, karşısında bulunan diğer molekülün peptid grubunu oluşturan oksijen atomuyla da hidrojen bağları kurmaktadır (O₃₁-H₁,O₁₁-H₄₀). Dimer yapının her iki ucundan olan bu hidrojenik bağlanma, dimer a şeklinin oluşmasında katkıda bulunmuş ve iki amino asidi birbirine bağlayan, amino asitler arasındaki dihedral dönünün (C₄-C₁₀-N₁₂-C₁₄) düzlemsele yaklaşmasına sebep olmuştur.Dimer a yapısının şekli ve moleküller arası ve molekül içi hidrojen bağları tablo 4.13 ve tablo 4.14' te verilmektedir.

Monomer yapıda glutamine ait NH₂ grubundaki N-H bağları (N₂₄-H₂₆) 1,0089 Å iken dimer a yapısındaki bu uçlar arasında oluşan hidrojen bağları sonucu bu bağ uzunluğu, 1,02754 Å olmuştur. Aynı etki glutamine yan zincirinde yer alan C-O bağı için de geçerlirir. Monomer yapıda C₂₂-O₂₃ bağ uzunluğu 1.2273 Å iken dimer yapıda yine bu bağ da hidrojenik bağlanma nedeniyle uzamış ve 1.2418 Å olmuştur (tablo 4.39). Monomer yapıda glutamine ait CN H açısı, C₂₂-N₂₄-H₂₆ 118.28⁰ iken, dimer yapı da bu açı değeri 120.19⁰, dir. Aynı şekilde OCN açısı da monomer yapıda 121.89⁰ iken bu açı dimer yapıda 122.35⁰, dir. Karboksil grubunun yönelimini belirten C₁₀-N₁₂-C₁₄-C₂₇ dihedral açısı monomer yapıda -167.64⁰ ölçülmüş iken **dimer a** yapıda dihedral dönü açısı -139.37⁰ hesaplanmıştır. Bunun sebebi de yine dimer a yapının her iki ucundan olan hidrojenik bağlanma nedeni ile dimer a yapısındaki glutaminin NH₂ uçlarının, birbirlerine yönelmesi ve karboksil ucunun ana zincire yaklaşmasıdır. Glutamin uçlarındaki bu yönelme sebebi ile C_{10} - N_{12} - C_{14} - C_{16} dihedral dönü monomer yapıda 68.95⁰ iken dimer yapıda 97.15⁰ ölçülmüştür.

Metil ve methin grup titreşimleri; CH3 ve CH titreşimleri her iki amino asit için de işaretlenmiştir. Asimetrik CH3 gerilme bandı 2979 cm⁻¹'de IR'de orta şiddette bir bant verirken, 2975 cm⁻¹ Raman spektrumunda şiddetli bir bant gözlenmektedir. Bu bantlar M.K.Mohammady [24], L.Padmaja ve diğ. tarafından yaklaşık dalga sayılarında bulunmuştur [21]. M.T.S Rosado ve diğ. yaptıkları çalışmalarda α Alanin için HF ile yapılan hesaplamalarda bu değerleri 2949 cm⁻¹ ve 2925 cm⁻¹ olarak işaretlemişlerdir [23]. Deneysel olarak ölçülen bu bantlar teorik olarak monomer nötral Ala–Gln dipeptidinde DFT teori düzeyi RB3LYP fonksiyonu ve 6-31G++(d,p) baz seti ile hesaplanan değeri 2977 cm⁻¹ ve dimer a için, DFT teori düzeyi RB3LYP fonksiyonu ve 6-31G(d,p) baz seti ile hesaplanan değeri 2990 cm⁻¹ bulunmuştur. Simetrik CH3 gerilme modu 2874 cm⁻¹, de Raman spektrumunda orta şidette, 2877 cm⁻¹, de IR 'de çok zayıf şiddette gözlenmiştir. Düzlem dışı açı bükülme titreşimleri de 1502cm⁻¹-1492 cm⁻¹ δ_{CH3} düzlem dışı hareketi teorik olarak hesaplanmış ve 1416 cm⁻¹, de IR de çok zayıf bir bant gözlenirken, 1414 cm⁻¹'de Raman spektrumunda orta şiddette bir bant gözlenirken, 1414 cm⁻¹'de Raman spektrumunda orta şidette bir bant gözlenmektedir.

1417 cm⁻¹,1409 cm⁻¹ ve 1397 cm⁻¹'de hesaplanan dalga sayılarında δ_{CH3} düzlem dışı açılıp-kapanma (şemsiye hareketi) gözlenmiştir. Bu dalga sayıları sırasıyla 1404 cm⁻¹ çok zayıf şiddette,1380 cm⁻¹'çok şiddetli IR bantları verirken, 1375 cm⁻¹ ve 1360 cm⁻¹'de zayıf şiddetteki bantlar Raman spektrumunda kaydedilmiştir. υ_{C-CH3} bağ gerilme titreşimi IR 'de 893 cm⁻¹ çok zayıf bir bant verirken, Raman spektrumunda 894 cm⁻¹ de çok şiddetli bir bant olarak işaretlenmiştir. Rosado ve diğ. bu değeri 894 cm⁻¹olarak işaretlemişlerdir [23].

Metilen Titreşimleri: Glutaminin CH_2 asimetrik gerilme modları 3120 cm⁻¹ ve 3109 cm⁻¹ hesaplanmış ve ölçek çarpanlarıyla çarpılarak 2979 cm⁻¹ ve 2969 cm⁻¹'de bu modlar deneysel değerlerine yaklaştırılmıştır. IR 'de bu mod 2965 cm⁻¹ de zayıf bir bant vererek gözlenmiştir. CH₂ simetrik gerilme modları 3069 cm⁻¹ ve 3054 cm⁻¹' de teorik olarak hesap edilmiş, ölçek çarpanlarıyla çarpılarak bu dalga sayıları 2931 cm⁻¹ ve 2917 cm⁻¹ olarak işaretlenmiştir. 2937 cm⁻¹'de zayıf IR bandı ve 2932 cm⁻¹'de Raman

spektrumunda çok şiddetli bir bant gözlenmiştir. δ_{CH2} makas hareketi (scis.) 1497 cm⁻¹ ve 1495 cm⁻¹ de hesaplanmış ve ölçek çarpanlarıyla çarpılarak 1462 cm⁻¹ ve 1461cm⁻¹ değerleri ile 1456 cm⁻¹ zayıf IR bandı ve 1448 cm⁻¹ ile Raman spektrumunda çok şiddetli bir bant olarak gözlenmiştir.

Karboksil grubu ve karbonil titreşimleri:Karboksil grubu titreşimleri 1700-1800cm⁻¹ aralığında yer almaktadır. IR de 1733cm⁻¹ $\upsilon_{C=O}$ (COOH) gerilme titreşimi çok zayıf bir bant olarak gözlenmiş ve bu bant 1733 cm⁻¹olarak hesap edilmiştir. δ_{C-O} bükülmesi 1176 cm⁻¹gözlenmiştir. δ_{COH} açı bükülmesi 1285 cm⁻¹de işaretlenmiştir.

Amino grup titreşimleri: NH₂ asimetrik bağ gerilmesi 3736-3570cm⁻¹ dalga sayısı aralığında teorik olarak hesaplanmıştır. Ölçek çarpanları ile bu değerler 3568-3409cm⁻¹ düşürülmüş ve IR spektrumunda 3400 cm⁻¹'de şiddetli bir IR bandı ve Raman spektrumunda 3393 cm⁻¹'lik zayıf bir bant işaretlenmiştir. NH₂ simetrik bağ gerilmeleri, 3596 cm⁻¹, 3478 cm⁻¹dalga sayılarında teorik olarak hesaplanmış, ölçek çarpanları ile çarpılarak dalga sayıları 3434 cm⁻¹ ve 3321 cm⁻¹'e yaklaştırılmıştır. Deneysel olarak NH₂ simetrik bağ gerilmesi IR spektrumunda 3332 cm⁻¹' de çok şiddetli ve Raman spektrumunda 3330 cm⁻¹şiddetli bantlarla gözlenmiş ve işaretlemesi yapılmıştır. $\delta_{\text{NH2(scis)}}$ makas hareketi IR de 1648 cm⁻¹ çok şiddetli olarak gözlenirken Raman spektrumunda 1636 cm⁻¹olarak orta şiddette bir bant olarak işaretlenmiştir. Diğer bir $\delta_{\text{NH2(scis)}}$ makas hareketi IR de 1605 cm⁻¹ de orta şiddette bir bant vermişken Raman spektrumunda bu bant 1600 cm⁻¹ de ve zayıf şiddette bir banttır. Bu değer S.Kumar ve diğ. tarafından farklı yük durumlarındaki alanin için 1654-1642 ve 1620 cm⁻¹ de işaretlenmiştir [22].

Peptid bağı: Peptid bağı düzlem içi açı bükülmesi IR de 1527 cm⁻¹ şiddetli bir bant verirken, Raman spektrumunda 1525cm⁻¹ orta şiddetli bir bant olarak gözlenmiştir. Teorik hesaplama sonucu 1546 cm⁻¹ ve ölçeklenmiş hali 1510cm⁻¹dalga sayısı olarak işaretlenmiştir. $\upsilon_{NC(peptit)}$ bağ gerilmesi 1208cm⁻¹ ve 1180 cm⁻¹ de zayıf IR ve Raman bantları vermiştir. $\upsilon_{OC(peptit bağ)}$ bağ gerilmesi Raman spektrumunda 1666 cm⁻¹ile zayıf bir bant vermiştir.

Dimer yapıda, moleküller arası hidrojen bağlarının etkisi ile, amino grubunun NH₂ açı bükülme dalga sayılarında, monomer yapıdaki değerlerine, göre artma gözlenmiştir. Monomer ve dimer a yapıları için teorik ve deneysel spektrumlar karşılaştılmş ve dimer a yapısının teorik spektrumunun deneysel FT-IR spektrumu ile daha çok örtüştüğü görülmüştür.(Şekil 4.12,4.13,4.14)

Pro-Tyr dipeptidi:

Pro-Tyr dipeptidi ve Pro-Tyr dipeptinin içinde bulunduğu birçok peptid yapılar içerdiği Pro¹⁰ Tyr¹¹ yapısı ile bir nöropeptid olarak bilinirler. Pro-Tyr-NH₂ dipeptidi sülpiridin yapısına benzer bir yapıdadır. Sulpirid, şizofreni hastalığının bazı semptonlarında etkilidir. N-caproyl-L-prolyl-L-tyrosine methyl esteri, beynin yapısı için çok önemli fonksiyonlara sahip olan bir nöro transmitterdir.

Konformasyon olanaklarının incelenmesi ve en düşük enerjili konformerin bulunması için Godjayev ve çalışma grubu tarafından yazılan bir Fortran programı [25] kullanılmıştır. Öncelikle programa dipeptidin kimyasal yapısını (dipeptidi oluşturan atomları, iki yüzlü dönü açılarını, kimyasal bağların uzunluğu, valans açı değerleri, atomların etkin yükleri) tanıtılmış ve her bir amino asidin ana zincir ve yan zincir formunu veren konformasyon bölgelerini girilerek mümkün konformasyonlar ve enerjileri elde edilmiştir.

Nötral Pro-Tyr dipeptinin Konformasyon analizi sonucu 108 konformasyonu incelenmiştir. Bu konformasyonlar arasından en düşük enerjiye sahip konformasyonun **RR** konformasyon bölgesinde gözlenmiştir .Bu konformasyondaki Nötral Pro-Tyr dipeptidinin enerjisi -**7,14 kcal/mol** hesaplanmıştır. Prolin amino asidi halkalı bir yapıya sahip olduğu için, halka yapının içine dihedral dönü uygulanmaz.

En düşük enerjilikonformasyona bakıldığında ana zincir **RR** konformasyonunda yani **f** (katlanmış) şeklindedir. En düşük enerjili kararlı konformasyona en büyük katkı -5.74 kcal/mol enerji ile Van der Waals enerjisinden gelmektedir tablo 4.19. Kararlı konformasyonun oluşmasında Tyr yan zinciri ile yine

Tyr-ana zinciri arasındaki etkileşmenin rolü çok büyüktür bu etkileşme nerjisi -1,77 kcal/mol'dür (tablo 4.20).Bu konformasyonda, peptid grubunu oluşturan hidrojen ile, karboksil grubundaki oksijen atomu arasında 2,44 Å uzaklıkta, -0,30 kcal/mol'lük bir hidrojen bağı kurulmuştur. (tablo 4.21). En düşük enerjili konformasyonun açı değerleri de programdan elde edilmiştir. (tablo 4.18)

Teorik konformasyon analizi sonucu elde edilmiş olan en düşük enerjili konformer, geometri optimizasyonunun yapılması ve temel titreşim dalga sayılarının elde edilmesi için DFT teori düzeyinde ve B3LYP/ 6-31++G(d,p) baz seti kullanılarak harmonik titreşici modeli çerçevesinde hesaplanmıştır. Serbest halde dipeptidimiz 38 atomlu olup 3N-6=108 tane temel titreşim dalga sayısına sahiptir. Geometri optimizasyonu sonucu elde edilen geometrik yapı, konformasyon analizi sonucu elde edilmiş yapının bir benzeridir. Optimizasyon geometrik yapının bozulmasına sebep olmamıştır (Şekil 4.19). Dipeptimize ait 108 tane temel titreşim dalga sayısı hesaplanmış ve titreşimsel kiplerin analiz edilmesi amacıyla toplam enerji dağımından (%TED) faydalanılmıştır. Teorik hesaplamalar yanında Nötral Pro-Tyr dipeptidinin, NRS 3100 Micro Raman spektrometre ile elde edilen Raman spekrumu 4000 cm⁻¹-400 cm⁻¹ bölgede avrı avrı kavdedilmistir ve belirgin pikler sekil üzerlerinde isaretlenmistir. (Şekil 4.22) Oda sıcaklığında katı fazda ayrı ayrı bölgelerde Raman spektrumları kaydedilmiştir. (Şekil 4.21). Ayrıca 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu kaydedilmiştir ve temel bantlar spektrum üzerine işaretlenmiştir.(Şekil4.23). Harmonik yaklaşıklık kullanılarak hesaplanan dalga sayılarını deneysel dalga sayılarına yaklaştırabilmek için ikili ölçek çarpanları kullanılmıştır.[26]

Teorik olarak hesaplanan dalga sayıları, deneysel dalga sayıları, teorik IR şiddet değerleri karşılaştırmalı olarak tablo 4.25'da verilmiştir.

Nötral Pro-Tyr dipeptidi, karboksil grubuna sahip olması nedeniyle dimerizasyona elverişli bir yapıya sahiptir.. Bu nedenle nötral Pro-Tyr dipeptinin dimer yapısı da incelenmişir (Şekil 4.20).

Nötr Pro-Tyr dipeptidinde peptid bağının DFT/B3LYP–6-31G(d,p) baz seti ile hesaplanmış optimize bağ uzaklıklğı (C_{14} - N_{16}) 1,3587 Å olarak ölçülmüş olup, aynı teori düzeyi ve aynı baz setler kullanıldığında **dimer** yapısında ölçülen peptid bağı 1,3585 Å ve 1,3585 Å'dur (tablo 4.42).Peptid grubunun düzlemi, H₁₇-N₁₆-C₁₄-O₁₅ monomer yapı için -173.974⁰ olarak ve **dimer** yapısında aynı düzlem -174.882⁰ olarak belirlenmiştir (tablo 4.44). Peptid bağının her iki amino asit arasındaki dihedral dönü açısı monomer yapı için C₁₂-C₁₄-N₁₆-C₁₈, 175.88⁰ olarak, **dimer** yapısında bu dihedral dönü 176.788⁰ olarak ölçülmüştür. Dimer yapı, komşu karboksil grupları arasında güçlü hidrojen bağları kurulması ile oluşmuştur. (O₃₄-H₆₂,O₅₈-H₃₆) Dimer yapının şekli (sekil 4.20) ve moleküller arası hidrojen bağları tablo 4.24' te verilmektedir.

Monomer yapıda karboksil grubundaki O-H bağı (O_{37} - H_{38}) 0,9724 Å iken dimer yapıdaki bu uçlar arasında oluşan hidrojen bağları sonucu bu bağ uzunluğu, 1,0073 Å olmuştur. Aynı şekilde karboksil grubunda yer alan C-O ikili bağ, monomer yapıda C₃₅-O₃₆ bağ uzunluğu 1.2109 Å iken dimer yapıda yine bu bağ da hidrojenik bağlanma nedeniyle uzamış ve 1.2326 Å olmuştur (tablo 4.42).

Monomer yapıda C_{35} - O_{37} - H_{38} karboksil grubuna ait olan açı 106.319⁰ iken, dimer yapıda 110.506⁰ olmuştur. Yine karboksil grubuna ait O_{36} - C_{35} - O_{37} 122.909⁰ iken, dimer yapıda 124.559⁰ bulunmuştur.Komşu karboksil grubu ile hidrojen bağları kurması nedeniyle karboksil grubundaki bu açı değerleri, dimer yapıda, monomer yapıya göre 2 ila 4⁰ arasında artma göstermiştir (tablo 4.43.)

Metilen titreşimleri: Sheena ve diğ. Prolin amino asidinin CH₂ asimetrik ve simetrik bağ gerilme titreşimleri 3000±50, CH₂ makas titreşim kipi 1455±55, CH₂ wagging titreşim kipi 1350±85 cm⁻¹aralığında olduğunu göstermişlerdir. CH₂ asimetrik bağ gerilme titreşimleri 3133-3113 cm⁻¹aralığında hesaplanmış, ölçek çarpanlarıyla bu dalga sayıları deneysel değerlere yaklaştırılarak sırasıyla 2992-2973cm⁻¹ aralığında bu kipler işaretlenmiştir. Raman spektrumunda 2993 cm⁻¹olarak çok şiddetli bir bant vermektedir. Prolin amino asidinde CH₂ simetrik bağ gerilme titreşimleri, harmonik yaklaşıklıkla 3064-3059 cm⁻¹olarak hesaplanmış yine ölçeklenerek bu dalga sayıları, 2926-2921cm⁻¹olarak işaretlenmiştir. Prolin amino asidinde CH₂ makas hareketi, 1465 cm⁻¹ de gözlendiği gösterilmiştir. [27] Bizim çalışmamız da da bu hareket 1474ve 1464 cm⁻¹ gözlenmiştir. Makas hareketleri 1531, 1509, 1498cm⁻¹ olarak harmonik yaklaşıklıklı

altında hesaplanmış, ölçekleme ile dalga sayıları 1496, 1474, 1464 cm⁻¹ olarak deneysel değerlere yaklaştırılmıştır. Raman spektrumunda 1474 ve 1451cm⁻¹ gözlenmiştir.(şekil 4.37) Ayrıca Pro-Tyr Raman spektrumunda bu bant 1449 cm⁻¹ de işaretlenmiştir (şekil 4.22,4.23).Wagging hareketleri Raman spektrumunda (şekil 4.37) 1374,1350 cm⁻¹ de şiddetli bantlar vermiş (şekil 4.37) ve IR de 1377 cm⁻¹ ve harmonik yaklaşıklıkta bu bantlar 1380 ve 1324cm⁻¹ de işaretlenmiştir. Sheena ve diğ bu işaretlemeleri 1363, 1351 ve 1342 cm⁻¹, de yapmışlardır. Twistting hareketi, 1272,1245,1204,1177 cm⁻¹olarak harmonik yaklaşıklıkla hesaplanmış ölçek çarpanlarıyla çarpılarak bu değerler 1243, 1216, 1176 ve 1150 cm⁻¹, e düşürülmüştür. Prolin Raman spektrumunda 1286, 1265 ve 1237 cm⁻¹orta şidette bantlar gözlenmiştir. (şekil 4.37).Rocking hareketi;harmonik yaklaşıklıkla 1096 ve 892 cm⁻¹'de gözlenmiş ve ölçeklenerek 1071 ve 871 cm⁻¹ olarak mümkündür.IR de 859 cm⁻¹ ve Pro-Tyr Raman spektrumunda 866 cm⁻¹ de zayıf bir bant gözlenmektedir.

Tyrozine amino asidinde simetrik CH gerilme titreşimleri Raman spektrumlarında 3060 ve 3036cm⁻¹ deki bantlarda gözlenmiştir. Asimetrik CH₂ gerilmesi 2958 cm⁻¹'de IR spektrumunda ve 2957 cm⁻¹de Raman spektrumlarında gözlenmiş ve harmonik yaklaşıklık altında 2965 cm⁻¹olarak işaretlemesi yapılmıştır. Düzlem içi CH bükülme titreşimleri 1517cm⁻¹ olarak hesaplanmış ve 1513 cm⁻¹ de IR spektrumunda işaretlenmiştir. **R.Ramaekers** ve diğ bu bantı 1518 cm⁻¹ de gözlemişlerdir**[29].**Diğer bir Düzlem içi CH bükülme titreşimi IR spektrumunda 1442 cm⁻¹ de güçlü bir bantla belirlenmiş ve 1438 cm⁻¹ de işaretlemesi yapılmıştır. δ_{COH} açı bükülmesi 1302 cm⁻¹ olarak hesaplanmış ve 1303 cm⁻¹ de Raman spektrumunda gözlenmiştir.

Tyrozin de CH_2 makas hareketi IR ve Raman spektrumlarında sırasıyla 1447 ve 1449 cm⁻¹ zayıf bantlarda gözlenmiş ve işaretlemesi 1459 cm⁻¹ de yapılmıştır.

Karboksil Titreşimleri:Karboksil grubu hareketleri C(=O)OH ,C=O titreşimi ve OH düzlem dışı deformasyonu ve C-O gerilmesi ve OH düzlem içi deformasyon hareketlerinden oluşmaktadır ve C=O gerilme titreşimleri 1725±65 cm⁻¹olarak ayrıca C-O gerilmesi 1390±55 cm⁻¹ işaretlenebilir. C=O titreşimi ve OH düzlem dışı deformasyonu üstüste binerek 1250±80 cm⁻¹ 'de gözlenebilir. **[27]**

Çalışmamızda harmonik yaklaşıklıkta C=O titreşimi 1817 cm⁻¹ de hesaplanmış ve ölçeklenmiş değeri 1735 cm⁻¹'dir. C-O gerilme titreşim hareketi de 1333 cm⁻¹ de hesaplanmış ölçeklenmiş değeri 1302 cm⁻¹'dir ayrıca 1303 cm⁻¹de Raman spektrumunda gözlenmektedir.(şekil 4.21) C=O titreşimi ve OH düzlem dışı deformasyonu üstüste binerek oluşturduğu hareket 1283 cm⁻¹de harmonik olarak hesaplanmış ve işaretlenmiştir (tablo 4.25) bu bant şekil 4.21 deki Raman spektrumunda 1231 cm⁻¹de gözlenmiştir.

Halka titresimi: Halka gerilme titresimleri 1100 ve 800 cm⁻¹ de halka bükülme titreşimleri de 800 cm⁻¹'in altında gözlenmektedir. [28] Rippon ve diğ. Prolin amino asidinin halka gerilme titreşimlerini 914, 983 ve 1000cm⁻¹ olarak belirlediler. Bizim 986cm⁻¹olarak çalışmamızda hesaplanmış ve ölçeklenerek 963 cm⁻¹olarak işaretlenmiştir. IR spektrumunda 963cm⁻¹ de bu bant gözlenmiştir. Diğer bir halka nefes alma modumuz 913cm⁻¹ de hesaplanmış ve Raman spektrumunda 912 cm⁻¹ de bu bant işaretlenmiştir.Tyrozin amino asidi için halka nefes alma modu 841 cm⁻¹ de hesaplanmış ve deneysel olarak da Raman spektrumunda 841 cm⁻¹ de şiddetli bir bant verdiği görülmüş ve işaretlemesi yapılmıştır. Tyrozin için düzlem dışı torsiyonu (Γ_{CCCH}) 533cm⁻¹ de hesaplanmış ve IR spektrumunda 525cm⁻¹ de bu hareketi tanımlayan banta rastlanmıştır.

Peptid grubu hareketleri: Peptid grubundaki δ_{HNC} açı bükülmesi 1546 cm⁻¹de hesaplanmış ve ölçeklenmş hali 1510 cm⁻¹ dir. IR spektrumun da 1516 cm⁻¹ de bu bant kaydedilmiştir. Diğer bir δ_{HNC} açı bükülmesiyle birlikte $\upsilon_{\text{NC}(\text{peptit})}$ bağ gerilme titreşimi 1256 cm⁻¹de hesaplanmış ve ölçeklenmiş hali 1227 cm⁻¹'dir. Raman spektrumunda 1225 cm⁻¹ de bu bant gözlenmiştir.(şekil 4.21) $\upsilon_{\text{NC}(\text{peptit})}$ bağ gerilmesi 1223cm⁻¹ de çok şiddetli gözlenmiştir. Ölçeklenmiş hali 1195cm⁻¹ dir ve IR ve Raman spektrumlarında 1189 ve 1199cm⁻¹ de şiddetli bantlar vererek işaretlemesi yapılmıştır. $\upsilon_{\text{OC}(\text{peptit})}$ bağ gerilmesi hali 1700 cm⁻¹ dir ve IR spektrumunda 1696 cm⁻¹, Raman spektrumunda 1661 cm⁻¹ de işaretlemesi yapılmıştır. $\upsilon_{\text{NH}(\text{peptit})}$ bağ gerilmesi IR spektrumunda 1661 cm⁻¹ de işaretlemesi yapılmıştır. $\upsilon_{\text{NH}(\text{peptit})}$ bağ gerilmesi IR spektrumunda 3318 cm⁻¹ ve Raman spektrumunda

Monomer yapıda 1817cm⁻¹dalga sayısında gözlenen C=O karboksil grubu bağ gerilmesi dimer yapıda 1782, 1722cm⁻¹dalga sayısında gözlenmiştir. Bunun sebebi dimer yapıda

komşu karboksil grupları arasındaki hidrojen bağlarının bağ gerilme titreşimlerini düşürmesi ve açı bükülme titreşimlerini arttırmasıdır. 657 cm⁻¹dalga sayısında karboksil grumu δ_{OCO} düzlem içi açı bükülmesi monomer yapı için hesaplanmıştır. Aynı hareket dimer yapıda 693 ve 683cm⁻¹ de gözlenmektedir. Deneysel ve teorik spektrumları karşılaştırması sonucu dimer yapının deneysel titreşim dalga sayıları ile daha çok uyum içinde olduğunu gözlemek mümkündür.(Şekil 4.24)

Pglu-Asn Dipeptidi:

Pglu-Asn-NH₂ dipeptidini nörolojik özelliklere sahiptir. Pyroglutamyl (Pglu)-ve prolyl-içeren dipeptitler bilinen klasik nootropik ilaç olan piracetam'ın yapısına benzemektedir. Alzheimer ve Parkinson hastalıklarının tedavisinde kullanılır. Literatürde pGlu-Asn-NH₂ dipeptidinin aktif resöptör mekanizması ile ilgili çalışmalar bulunmaktadır..

Konformasyon olanaklarının incelenmesi ve en düşük enerjili konformerin bulunması için Godjayev ve çalışma grubu tarafından yazılan bir Fortran programı [25] kullanılmıştır. Öncelikle programa dipeptidin kimyasal yapısını (dipeptidi oluşturan atomları, iki yüzlü dönü açılarını, kimyasal bağların uzunluğu, valans açı değerleri, atomların etkin yükleri) tanıtılmış ve her bir amino asidin ana zincir ve yan zincir formunu veren konformasyon bölgeleri girilerek mümkün konformasyonlar ve enerjiler elde edilmiştir.

Nötral Pglu-Asn dipeptinin konformasyon analizi sonucu 84 konformasyonu incelenmiştir. Bu konformasyonlar arasından en düşük enerjiye sahip konformasyonun **RR** konformasyon bölgesinde gözlenmiştir .Bu konformasyondaki Nötral Pglu-Asn dipeptidinin enerjisi -**5,90 kcal/mol** hesaplanmıştır. Proglutamik amino asidi halkalı bir yapıya sahip olduğu için, halka yapının içine dihedral dönü uygulanmaz.

En düşük enerjili konformasyona bakıldığında ana zincir **RR** konformasyonunda yani **f (katlanmış)** şeklindedir. En düşük enerjili kararlı konformasyona en büyük katkı -5.83 kcal/mol enerji ile Van der Waals enerjisinden

gelmektedir (tablo 4.31). Kararlı konformasyonun oluşmasında Asn ana zinciri ile yine Pglu-ana zincir arasındaki etkileşmenin rolü çok büyüktür bu etkileşme enerjisi -2.10 kcal/mol'dür (tablo 4.30).Bu konformasyonda, Asn amino asidinin NH₂ hidrojeni ile, yan zincirdeki oksijen atomu arasında 2,62 Å uzaklıkta, -0,18 kcal/mol'lük bir hidrojen bağı kurulmuştur. (tablo 4.32). En düşük enerjili konformasyonun açı değerleri de programdan elde edilmiştir. (tablo 4.29)

Teorik konformasyon analizi sonucu elde edilmiş olan en düşük enerjili konformer, geometri optimizasyonunun yapılması ve temel titresim dalga sayılarının elde edilmesi için DFT teori düzeyinde ve B3LYP/ 6-31++G(d,p) baz seti kullanılarak harmonik titreşici modeli çerçevesinde hesaplanmıştır. Polarizasyon ve diffuse fonksiyonları dahil edilerek moleküler orbitallerin uzayda daha geniş bir dağılımına imkan verilmektedir. Serbest halde dipeptidimiz 31 atomlu olup 3N-6=87 tane temel titreşim dalga sayısına sahiptir. Geometri optimizasyonu sonucu elde edilen geometrik yapı, konformasyon analizi sonucu elde edilmiş yapının bir benzeridir, optimizasyonla geometrik yapı aynı kalmıştır.(Şekil 4.28). Dipeptimize ait 87 tane temel titreşim dalga sayısını hesaplanmış ve titreşimsel kiplerin analiz edilmesi amacıyla toplam enerji dağılımından (%TED) faydalanılmıştır. Teorik hesaplamalar yanında Nötral Pglu-Asn dipeptidinin, NRS 3100 Micro Raman spektrometre ile elde edilen Raman spekrumu 4000 cm⁻¹-400cm⁻¹ bölgede ayrı ayrı kaydedilmiştir ve belirgin pikler şekil üzerlerinde işaretlenmiştir. (Şekil 4.32) Oda sıcaklığında katı fazda farklı bölgelerde Raman spektrumları kaydedilmiştir. (Sekil 4.31). Ayrıca 4000cm⁻¹-400cm⁻¹ IR bölgede Jasco 300E FT-IR spektrometre (2cm⁻¹ çözünürlük) ile elde edilen IR soğurma spekrumu kaydedilmiştir ve temel bantlar spektrum üzerine işaretlenmiştir.(Şekil4.33). Harmonik yaklaşıklık kullanılarak hesaplanan dalga sayılarını deneysel dalga sayılarına yaklaştırabilmek için ikili ölçek çarpanları kullanılmıştır.[26]

Teorik olarak hesaplanan dalga sayıları, deneysel dalga sayıları, teorik IR şiddet değerleri karşılaştırmalı olarak tablo 4.38'da verilmiştir.

Nötral Pglu-Asn dipeptinin dimer yapıları da incelenmişir (Şekil 4.29,Şekil 4.30). Pglu-Asn için iki dimer yapı incelenmiş ve içlerinden daha düşük enerjili olan dimer a yapısının teorik titreşim dalga sayıları hesaplanmış ve titreşim kipleri monomer

yapı sayesinde belirlenmiştir. Monomer yapının uçlarında bulunan NH₂ grupları birbirleriyle hidrojen bağlarıyla bağlanarak dimer yapıyı oluşturmuşlardır. Hidrojen bağlarının etkisi ile NH₂ grubunun titreşim dalga sayıları monomer ve dimer yapıda farklılıklar göstermiştir. Örneğin NH₂ grubu titreşimlerinden olan NH₂ twisting modu dimer yapıda çok daha büyük dalga sayılarında gözlenmiştir.Monomerde bu değer 611cm⁻¹ iken dimer a daki değeri 864 ve 811cm⁻¹ dalga sayılarına kaymıştır. Hidrojen bağları açı bükülme titreşim dalga sayılarını arttırmıştır.

Nötr Pglu-Asn dipeptidinde peptid bağının DFT/B3LYP/6-31G(d,p) baz seti ile hesaplanmış optimize bağ uzaklıklğı (C_{13} - N_{15}) 1,3542 Å olarak ölçülmüş olup, aynı teori düzeyi ve aynı baz setler kullanıldığında **dimer a** yapısında ölçülen peptid bağı 1,3535 Å ve 1,3535 Å'dur (tablo 4.45).Peptid grubunun düzlemi, H₁₆-N₁₅-C₁₃-O₁₄ monomer yapı için 165.405⁰ olarak ve **dimer a** yapısında aynı düzlem -177.344⁰ olarak belirlenmiştir (tablo 4.47). Peptid bağının her iki amino asit arasındaki dihedral dönü açısı monomer yapı için C₁₁-C₁₃-N₁₅ –C₁₇, -164.146⁰ olarak, **dimer a** yapısında bu dihedral dönü -167.299⁰olarak ölçülmüştür. Dimer yapı, komşu NH₂ grupları arasında güçlü hidrojen bağları kurulması ile oluşmuştur. (O₂₃-H₅₃,O₄₈-H₂₅) Dimer yapının şekli (sekil 4.29) ve moleküller arası hidrojen bağları tablo 4.35' te verilmektedir.

Monomer yapıda NH₂ (N₂₄,H₂₅) 1,009 Å iken dimer a yapıdaki bu uçlar arasında oluşan hidrojen bağları sonucu bu bağ uzunluğu, 1,026 Å olmuştur. Aynı şekilde C=O (C₂₂-O₂₃) ikili bağ, monomer yapıda bağ uzunluğu 1.23159 Å iken **dimer a** yapıda yine bu bağ da hidrojenik bağlanma nedeniyle uzamış ve 1.2395 Å olmuştur (tablo 4.45).

Monomer yapıda N_{24} - C_{22} - O_{23} NH₂ grubuna ait olan açı 121.755⁰ iken, dimer a yapıda 122.635⁰ olmuştur. Yine NH₂ grubuna ait H₂₅-N₂₄-C₂₂ 118.083⁰ iken, dimer a yapıda 118.356⁰ bulunmuştur.

Amino grubu titreşimleri: Asparajin amino asidinin simetrik NH₂ bağ gerilmesi IR spektrumunda 3274cm⁻¹ de Raman spektrumun da 3271 cm⁻¹ de şiddetli bantlar vermiştir. E.J Baran ve diğ.[30] bu titreşimi 3249 cm⁻¹ de gözlemlemiştir.NH₂ makas hareketi 1629 ve 1626 cm⁻¹ olarak harmonik yaklaşıkla hesaplanmış 1648 cm⁻¹ de şiddetli IR bandı vermiş ve aynı zamanda Raman spektrumunda 1657 ve 1604 cm⁻¹ de

orta şiddetteki bantlarla işaretlemeleri yapılmıştır. NH_2 twisting hareketi 707cm⁻¹olarak harmonik yaklaşıklıkla hesaplanmış, ölçek çarpanlarıyla çarpılarak 691 cm⁻¹ olarak kaydedilmiştir. Bu hareket 672 cm⁻¹ de zayıf IR bandı verirken 682 cm⁻¹ de orta şiddetteki Raman bandı ile gözlenmektedir. Bir başka twisting modu 611 cm⁻¹ olarak hesaplanmış ve çok zayıf bir bant olarak IR de gözlenmiştir (619 cm⁻¹)

NH₂ sallanma titreşimi (rocking) 546 cm⁻¹ dalga sayısıyla Raman spektrumunda gözlenmiş ölçeklenmiş hali 540 cm⁻¹ de işaretlemesi yapılmıştır.

Metilen titreşimleri:CH₂ asimetrik bağ gerilmesi Raman spektrumunda 3168 cm⁻¹ de şiddetli bir bant verirken IR de 3196 cm⁻¹ de zayıf bant olarak gözlenmiştir. Aynı zamanda 2996 cm⁻¹ de çok şiddetli bir Raman bandı ile bir başka asimetrik bağ gerilmesi görülmiş ve 2991 cm⁻¹ de işaretlemesi yapılmıştır.Pglu amino asidi için asimetrik CH₂ 2989 cm⁻¹ de hesaplanmış ve bu titreşim Raman spektrumunda 2978 cm⁻¹ de gözlenmektedir. Pglu amino asidi için simetrik CH₂ Raman spektrumunda 2933 cm⁻¹ de gözlenmiş ve 2925 cm⁻¹ de işaretlemesi yapılmıştır.CH₂ makas hareketi(scis.) Pglu amino asidi için 1472 cm⁻¹ olarak hesaplanmış ve 1463 cm⁻¹ de IR spektrumunda kaydedilmiş ve işaretlemesi yapılmıştır.Asparajin amino asidinin CH₂ makas hareketi 1440 cm⁻¹ olarak hesaplanmış, 1441 cm⁻¹de şiddetli Raman ve 1436 cm⁻¹ de zayıf IR bantlarıyla gözlenmiştir. Pglu amino asidinin CH₂ wagging hareketi 1263 cm⁻¹ olarak hesaplanmış, IR spektrumunda 1268 cm⁻¹ de orta şiddete bir bant ile gözlenmektedir. Asparajin amino asidinin CH₂ wagging hareketi 1247 cm⁻¹ olarak hesaplanmış, IR spektrumunda 1249 cm⁻¹ de zayıf şiddete bir bant ile gözlenmektedir.

 CH_2 twisting hareketi Pglu amino asidi için 1199 ve 1139 cm⁻¹ de işaretlemeleri yapılmıştır. Bu kipler sırasıyla IR spektrumunda 1203, 1131 cm⁻¹ de ve Raman spektrumunda 1200 ve 1137 cm⁻¹ de gözlenmişlerdir. CH_2 rocking hareketi 1023 cm⁻¹ olarak işaretlenmiş ve Raman spektrumunda 1014 cm⁻¹ de bu bant gözlenmiştir.

Halka titreşimi: Pglu amino asidi halkalı bir yapıya sahip olduğu için halka içinde de simetrik ve asimetrik bağ gerilme titreşimleri bulunmaktadır. 900 cm⁻¹ de asimetrik halka içi bağ gerilmesi gözlenmiş ve 903 cm⁻¹ de zayıf bir Raman bandı ile bu kip işaretlenmiştir. 870 cm⁻¹ ve 863cm⁻¹ de simetrik halka içi bağ gerilme titreşimleri işaretlenmiş 881 cm⁻¹de Raman spektrumunda orta şiddette bir pik ile bu hareket belirlenmiştir.

Peptid grubu hareketleri: Peptid grubundaki δ_{HNC} açı bükülmesi 1560 cm⁻¹de hesaplanmış ve ölçeklenmş hali 1524 cm⁻¹ dir. IR spektrumun da 1535cm⁻¹ de bu bant kaydedilmiştir. Diğer bir δ_{HNC} açı bükülmesiyle birlikte $\upsilon_{\text{NC}(\text{peptit})}$ bağ gerilme titreşimi 1314 cm⁻¹de hesaplanmış ve ölçeklenmiş hali 1283 cm⁻¹, dir. Raman spektrumunda 1282 cm⁻¹ de bu bant gözlenmiştir. $\upsilon_{\text{OC}(\text{peptit bag})}$ bağ gerilmesi harmonik olarak 1720 cm⁻¹ olarak hesaplanmış, ölçeklenmiş hali 1680 cm⁻¹ dir ve IR spektrumunda 1697 cm⁻¹, Raman spektrumunda 1687 cm⁻¹ de işaretlemesi yapılmıştır. N-H peptid bağ gerilmesi υ_{NHpept} 3372 cm⁻¹ de işaretlemesi yapılmıştır, 3383 cm⁻¹ de şiddetli IR bandı ve 3374 cm⁻¹ de güçlü bir Raman bandı ile gözlenmiştir.

Literatür taraması sonucu, incelenen dipeptidlerle ilgili herhangi bir teorik ve spektroskopik çalışmaya rastlanmamıştır. Biyolojik aktivite gösteren ve ilaçların yapılarında yer alan Pglu-Asn, Pro-Tyr ve Ala-Gln dipeptidlerinin en kararlı konformasyonları teorik yöntemler ve deneysel spektroskopik yöntemler kullanılarak belirlediğimiz çalışmamız orijinal bir çalışmadır.

KAYNAKLAR

- [1]. HASSELL, T., et al., 1991, Growth inhibition in animal cell culture. The effect of lactate and ammonia., *Appl. Biochem. Biotechnol.*, 30(1), 29-41.
- [2]. BÍOLO, G., et al., 1997, Metabolic Response To Injury And Sepsis: Changes In Protein Metabolism.. *Nutrition*, 13(9 Suppl), 52S-57S.
- [3]. HOLECEK, M., et al., 2002, Effect Of Alanyl-Glutamine On Leucine And Protein Metabolism In Irradiated Rats.. Amino Acids, 22(1) 95-108
- [4]. SKUBITZ M.K., ve ANDERSON M.P, 1996, Oral Glutamine to Prevent Chemotherapy Induced Stomatitis: APilot Study, *Journal of Laboratory and Clinic Medicine* 127(2), 223-228
- [5]. ANDERSON PM., SCHROEDER G., SKUBITZ M.K. 1998, Oral glutamine reduces the duration and severity of stomatitis after cytotoxic cancer chemotherapy. *Cancer*;83: 1433
- [6]. HUANG EY., LEUNG SW., WANG CJ., et al. 2000. Oral glutamine to alleviate radiation induced oral mucositis: a pilot randomized trial. *Int J Radiat Oncol Biol Phys* ;46: 535
- [7]. SAVARESE M.F., SAVY G., VAHDAT L., WISCHMEYER E.P, ve COREY B.,2003, Prevention of chemotherapy and radiation toxicity with glutamine, *Cancer Treatment Reviews* 29, 501-513
- [8]. BARTLETT D., CHARLAND S., TOROSIAN M., 1995, Effect of glutamine on tumor and host growth. *Ann Surg Oncol*; 2: 71–76.
- [9]. JOHANN OCKENGA, KERSTENBORCHERT, KINANRIFAI, PATERMANNS M., BISCHOFF S., 2002, Efect of glutamine-enriched total parenteral nutrition in patients with acute pancreatitis, *Clinical Nutrition* 21(5):409-416
- [10]. XUE P., DENG L., XIA Q., ZHANG Z., HU W., YANG X., SONG B., HUANG Z.,2008, Impact of alanyl-glutamine dipeptide on severe acute pancreatitis in early stage, *World J Gastroenterol*; 14(3): 474-478
- [11]. LEANDRO C.A., CERCHIETTI M.D., ALFREDO H. NAVI, GANTE M.D., 2006, Double-blinded, placebo-controlled trial on intravenous l-alanyl-lglutamine in the incidence of oral mucositis following chemoradiotherapy in patients with head-and-neck cancer. *International Journal of Radiation Oncology Biology Physics*,65(5) 1330-1337.
- [12]. XIANG S., HUANG T., LIE W., JING L., 2004 Glutamine dipeptidesupplemented parenteral nutrition in patients with colorectal cancer. *Clinical Nutrition Supplements*. 1, 49–53
- [13]. GUDASHEVA, T., ZAITSEVA, N. 2005, Design of the Neurotensinergic Dipeptide Neuroleptic Drug Dilept, *Pharmaceutical Chemistry Journal*, 39, 230-235(6).
- [14]. GUDASHEVA, T., ZAITSEVA, N.,BONDARENKO N., SCHERBAKOVA I., ASMAKOVA L., ROZANTSEV G., OSTROVSKAYA R., VORONINA T., and SEREDENIN S.,1997, Molecular design, synthesis and neuroleptic activity of dipeptide analogs of sulpride, *Pharmaceutical Chemistry Journal*,31,574-580.

- [15]. RETIUNSKAIA MV., KUDRIN PM., GUDASHEVA TA., OSTROVAKAIA RU., 2005, The new tripeptoid neurotensin analog dilept selectively affects dopamine turnover in nucleus accumbens and hypothalamus, *Eksperimental'naia i klinicheskaia farmakologiia*, 68(6), 8-15
- [16]. RETYUNSKAYA MV., GUZEVATYKH LS., BONDARENKO NA., GUDASHEVA TA., OSTROVAKAIA RU., VORONINA TA., 2003, Neuromodulatory mechanism underlying the effect of the atypical dipeptide neuroleptic dilept. *Bulletin of experimental biology and medicine* 136(5):467-70
- [17]. GUDASHEVA, T., BOYKO S., AKPAROV V., OSTROVSKAYA R., SKOLDINOV S., ROZANTSEV G., VORONINA T., ZHERDEV V., SEREDENIN S.,1996, Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolyglycine in abrain.*FEBA Letters* 391,149-152.
- [18]. ZENINA T., GUDASHEVA, T., BUKREYEV Y., SEREDENIN B.,2006 Neuroprotective Effect of Dipeptide AVP(4-5)-NH2 is Associated with Nerve Growth Factor and Heat Shock Protein HSP70, *Bulletin of Experimental Biology* and Medicine, 144, 424-426.
- [19]. GUDASHEVA, T.,ROZANTSEV G., OSTROVSKAYA R. TOROFIMOV S., VORONINA T., SKLODINOV A., SEREDENIN S.,1993, Synthesis Of Pyroglutamylasparagine Amide Dipeptide Fragment Of Vasopressin, And The Stereoselectivity Of Its Mnemic Effect *Pharmaceutical Chemistry Journal*,29(1)14-17
- [20]. KECEL S., AGAEVA G., OZEL E. A., AKYUZ S.,2008, Conformation Analysis of Drug Based Dipeptides. *Journal of Qafqaz University*, 23,103-108

- [21]. PADMAJA L., RAVIKUMAR C., JAMES C., JAYAKUMAR V.S., JOE I., 2008, Analysis Of Vibrational Spectra Of L-Alanylglcine Based On Density Functional Theory Calculations, *Spectrochimica Acta Part A* 71 252-262
- [22]. KUMAR S., KUMAR RAI A., RAI S.B., RAI D.K., SINGH A.N., SINGH V.B.,2006, Infrared, Raman And Elelktronic Spectra Of Alanine: A Comparison With Ab Initi Calculation, *Journal Of Molecular Structure* 791, 23-29
- [23]. ROSADO M., DUARTE M., FAUSTO R., 1997, Vibrational spectra (FT-IR, Raman and MI-IR) of α-and β-alanine, *Journal Of Molecular Structure* 410-411 343-348
- [24]. MOHAMMADY M.K., JALKANEN K.J., NARDIN., WADE R.C., SUHAI S., 1999, Chem. Phys. 240, 63
- [25]. GODJAEV N.M., MAKSUMOV I.S., ISMAILOVAL.I., J.Chem.Struc. (Russian), 24, (1983)147–152.
- [26]. BALCI K., AKYUZ S., 'A Vibrational Spectroscopic Investigation On Benzocaine Molecule' Vibrational Spectroscopy 48 (2008) 215–228
- [27]. MARY Y.S., USHAKUMARI L., HARIKUMAR B., VARGHESE T.H., PANICKER Y.C., 2008, Ft-Ir, Ft-Raman and Sers Spectra of L-Proline, *J.Iran Chem.Soc.*, 6 138-144
- [28]. RIPPON W.P., KOENIG K,J., WALTON A.G., 1970, J.Am Chem. 92 7455
- [29]. RAMAEKERS R., PAJAK J., ROSPENK M., MAES G., 2005, Matrix-isolation FT-IR Spectroscopic study and theoretical DFT(B3LYP)/6-31++G^{**} Calculations of the vibrational and conformational properties of Tyrosine, *Spectrochimica Acta Part* A 61 1347-1356

- [30]. BARAN E., VIERA INES., TORRE M., 2007, Vibrational spectra of the Cu(II) complexes of L-asparagine and L-glutamine, *Spectrochimica Acta Part* A 66, 114-117
- [31]. CHANG, R.,(1971) Basic Principles of Spectroscopy, McGraw-Hill Kogakusha Ltd.,Japan, ISBN:0882756133
- [32]. BARROW,G. M., 1962, Molecular Spectroscopy,, Mc. Graw-Hill, New York. SBN: 0070859043
- [33]. PULAY, P. and MEYER, W., : J. Mol. Spectrosc., 40 (1971) 59.
- [34]. HAKEN H.WOLF H.C., 1995, Molecular Physics and Elements of QUANTUM Chemistry, New York, ISBN: 3-58363-7 and ISBN 0-58363-7
- [35]. GEORGE W.O, MCINTYRE P.S., 1990, *Infrared spectroscopy*, John Willey and Sons, London-England, ISBN: 0471913820
- [36]. KENDAL D.N., 1966, *Applied Infrared Spectroscopy* Reinhold Publishing Co., New York.
- [37]. GEORGE W.O, MCINTYRE P.S., 1990, *Infrared Spectroscopy*, John Willey and Sons, London-England, ISBN: 0471913820
- [38]. HENDRA P., JONES C., WARNES G., 1991, Fourier Transform Raman Spectroscopy Instrumental and Chemical Applications, ISBN:0-13-327032-7
- [39]. KING, G.W., 1964, *Spectroscopy and Molecular Structure*, Holt Rinehart And Winston Inc., USA
- [40]. PERKINS, W., D., 1986, *Topics in Chemical Instrumentation*, Vol 63, Number 1

- [41]. JASCO Corp. Model FT/IR-300 E Fourier Transform Infrared Spectrometer Hardware Manual, 1994, Tokyo
- [42]. HOLLAS J.M., 1996, *Modern Spectroscopy* Jonh Wiley And Sons Ltd. ISBN: 0471965235
- [43]. FOGARASI, G. AND PULAY, P IN J.R. DURIG (ED.), *Vibrational Spectra and Structure*, Vol.14, Elsevier, Amsterdam, 1985, p. 125.
- [44]. FORESMAN, J.B. AND FRISCH, A.E., 1996, *Exploring Chemistry with Electronic Structure Methods*, Gaussian, Pittsburgh, p 114.,ISBN:0-9636769-3-8
- [45]. HINCHLIFFE.A.UMIST, Manchester; M60 1D, UK John Willey and Sons P 55
- [46]. ATKINS, P.W., FRIEDMAN, R.S., 1997, *Molecular Quantum Mechanics*, Tird Edition, Oxford University Press, Malta, p:335 ISBN:0-19-855948-8
- [47]. LEVINE.N.I, *Quantum Chemistry* Fifth Edition, New York ISBN: 0-13-685512-1
- [48]. NAKAMATO, K., 1986, Infared and Raman Spectra of Inorganic and Coordination Compounds, Fourth Edition, John Wiley & Sons, U.S.A., P:335 ISBN:0-471-01066-9
- [49]. WILSON, E.B., DECIUS, J.C., CROSS, P.C., 1995, Molecular Vibrations, Dover publications, New York., ISBN:0-486-63941-X
- [50]. FRISCH, A. AND FRISCH, M.J. (1998) Gaussian 98 User's Reference, Gaussian Inc., Pittsburgh, PA.
- [51]. FRISCH.,/ E., NIELSEN A.B., HOLDRE A.J., 2000, Gauss View User's Reference, Version 2.0, Gaussian Inc., U.S.A., ISBN:09636769-5-4

- [52]. CENGİZ S., CENGİZ M., 1994, Proteinlerin yapısı, Enzim bilgisi 2, Bilim ve Teknik Yayınları Çeviri Vakfı, İstanbul
- [53]. PAULING L., COREY RB., 1951, Configuration of Polypeptide Chains with Favored Orientations Around Single Bonds, Two New Pleated Sheets Proc. Nat Acad. Sci.USA
- [54]. MOMANY F.A., GUIRE R.F., BURGESS A.W., and SHERAGA H.A., 1975, Energy Parameters in Polypeptides, Geometric Parameters, Partial Atomic Charge, Nonbonded Interactions, Hyrogen Bond Interactions and Intrinsic Torsional Potentials for the Naturally Occurring Amino Acids. *The Journal of Physical Chem*, 79(22) 2361-2379
- [55]. GOCAYEV N., AKYUZ S., AKVERDIYEVA G.A, 1997, A Molecular Mechanics Conformational Study of Peptid T, *J.Mol.Struc*, 403, 95-110
- [56]. GODJAYEV N., ŞAHİN Y., 1993, Molekülün Yapısı I.Cilt, Atatürk Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü, Erzurum
- [57]. GODJAYEV N., ŞAHİN Y., 1993, *Molekülün Yapısı II.Cilt*, Atatürk Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü, Erzurum
- [58]. Gaussian 03, Revision C.02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T.Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V.Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E.Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J.Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O.Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V.Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.

Cioslowski, B.B. Stefanov, G.Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- [59]. PQS Version 3.1, Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville Arkansas 72703
- [60]. http://www.sifalibitkilervedogaltedavi.com/aminoasitler[ZiyaretTarihi:2 Ağustos]
- [61] http://www.msxlabs.org/forum/fizik/201219-ems-elektromanyetik-spektrumelektromanyetik-tayf.html [Ziyaret Tarihi:2 Agustos]

(a)

(d)

(b)

(c)

Şekil 4.39 : a) Nötral Ala-Gln dipeptidi, b) Dimer a yapısı, c)Dimer b yapısı, d) Dimer c yapısı, e) Dimer d yapısı, hidrojen bağları gösterimi.

Parametre	Monomer Ala-Gln	Dimer (a)
H ₁ -N ₂	1.0197	1.0212
H_3-N_2	1.0202	1.0174
C_4-N_2	1.4680	1.4686
C ₆ -C ₄	1.5305	1.529
C ₆ -H ₇	1.0926	1.0927
C ₆ -H ₈	1.0926	1.0927
C ₆ -H ₉	1.0926	1.0927
C_4 - C_{10}	1.5377	1.5396
C ₁₀ -O ₁₁	1.2319	1.2326
C ₁₀ -N ₁₂	1.3635	1.3620
N ₁₂ -H ₁₃	1.0114	1.0119
N ₁₂ -C ₁₄	1.4474	1.4475
C ₁₄ -H ₁₅	1.0949	1.0934
C ₁₄ -C ₁₆	1.5539	1.5528
C ₁₆ -H ₁₇	1.0933	1.0934
C ₁₆ -H ₁₈	1.0933	1.0934
C ₁₆ -C ₁₉	1.5499	1.5506
C ₁₉ -H ₂₀	1.0933	1.0938
C ₁₉ -H ₂₁	1.0957	1.0954
C ₁₉ -C ₂₂	1.5269	1.5252
$C_{22}-O_{23}$	1.2273	1.2418
C ₂₂ -N ₂₄	1.3637	1.3494
N ₂₄ -H ₂₅	1.0069	1.0081
N ₂₄ -H ₂₆	1.0089	1.0275
C ₁₄ -C ₂₇	1.5198	1.5231
C ₂₇ -O ₂₈	1.2122	1.2114
C ₂₇ -O ₂₉	1.3503	1.3519
O ₂₉ -H ₃₀	0.9725	0.9725

Tablo 4.38 : Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP–6-31G(d,p) baz seti ile hesaplanmış optimize bağ uzaklıkları (Å).

Parametre	Monomer Ala-Gln	Dimer (a)
$N_2-C_4-C_6$	110.00	109.8
N_2 - C_4 - C_{10}	111.17	111.47
C_4 - C_{10} - N_{12}	116.17	115.73
C_{10} - N_{12} - C_{14}	121.37	122.19
N ₁₂ -C ₁₄ -C ₁₆	114.55	114.53
C_{14} - C_{16} - C_{19}	115.36	115.32
C_{16} - C_{19} - C_{22}	113.33	113.74
C_{19} - C_{22} - C_{23}	123.11	121.63
C ₁₉ -C ₂₂ -N ₂₄	114.98	116.00
O ₂₃ -C ₂₂ -N ₂₄	121.89	122.35
C_{22} - N_{24} - H_{25}	122.42	120.18
C ₂₂ -N ₂₄ -H ₂₆	118.28	120.19

Tablo 4.39 : Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP–6-31G(d,p) baz setiile hesaplanmış optimize açı değerleri (0).

Parametre	Monomer Ala-Gln	Dimer (a)
$H_1 - N_2 - C_4 - C_6$	-70.02	-64.84
$H_3 - N_2 - C_4 - C_6$	174.90	174.96
H ₁ - N ₂ -C ₄ -C ₁₀	51.49	56.88
$N_2-C_4-C_6-H_7$	-53.75	-53,50
$C_6-C_4-C_{10}-N_{12}$	-122.59	-125.07
C_4 - C_{10} - N_{12} - C_{14}	-174.40	-179.40
C_{10} - N_{12} - C_{14} - C_{27}	-167.64	-139.37
C_{10} - N_{12} - C_{14} - C_{16}	68.95	97.15
N_{12} - C_{14} - C_{16} - C_{19}	57.99	59.06
C_{14} - C_{16} - C_{19} - C_{22}	-85.10	-81.58
C_{16} - C_{19} - C_{22} - O_{23}	91.99	92.04
C_{16} - C_{19} - C_{22} - N_{24}	-87.43	-87.31
C_{19} - C_{22} - N_{24} - H_{25}	4.35	5.08
C_{19} - C_{22} - N_{24} - H_{26}	174.41	171.70
C_{16} - C_{14} - C_{27} - O_{29}	-70.26	-72.43
C_{16} - C_{14} - C_{27} - O_{28}	107.49	104.98
N_{12} - C_{14} - C_{27} - O_{29}	163.81	161.38
$N_2 - C_4 - C_{10} - N_{12}$	115.61	113.07
H ₁₃ -N ₁₂ -C ₁₀ -O ₁₁	166.9585	171.6202

Tablo 4.40 : Ala-Gln dipeptidi ve Dimer a yapısının DFT/B3LYP–6-31G(d,p) baz seti ile hesaplanmış optimize dihedral açı değerleri (0).

		Monomer	Dimer			Monomer	Dimer
	Parametre	Pro-Tyr	Pro-Tyr		Parametre	Pro-Tyr	Pro-Tyr
R 1	R(1,2)	1,0135	1,0136	R25	R(23,24)	1,4009	1,4009
R2	R(2,3)	1,4768	1,4764	R26	R(23,31)	1,4001	1,4003
R3	R(2,12)	1,4803	1,48	R27	R(24,25)	1,0871	1,0872
R4	R(3,4)	1,102	1,1021	R28	R(24,26)	1,3932	1,3933
R5	R(3,5)	1,0957	1,0957	R29	R(26,27)	1,0849	1,0849
R6	R(3,6)	1,5322	1,5322	R30	R(26,28)	1,3976	1,3674
R7	R(6,7)	1,0934	1,0933	R31	R(28,29)	1,3989	1,3990
R8	R(6,8)	1,0953	1,0952	R32	R(28,33)	1,3677	1,3677
R9	R(6,9)	1,536	1,5363	R33	R(29,30)	1,088	1,088
R10	R(9,10)	1,0956	1,0955	R34	R(29,31)	1,3928	1,3927
R11	R(9,11)	1,0915	1,0914	R35	R(31,32)	1,0866	1,0862
R12	R(9,12)	1,5491	1,55	R36	R(33,34)	0,9662	0,9662
R13	R(12,13)	1,0965	1,0966	R37	R(35,36)	1,211	1,232
R14	R(12,14)	1,5406	1,5399	R38	R(35,37)	1,3538	1,3167
R15	R(14,15)	1,2282	1,2285	R39	R(37,38)	0,9724	1,0074
R16	R(14,16)	1,3587	1,3585				
R17	R(16,17)	1,0157	1,0155				
R18	R(16,18)	1,4394	1,4394				
R19	R(18,19)	1,0945	1,0966				
R20	R(18,20)	1,5594	1,5126				
R21	R(18,35)	1,5238	1,5219				
R22	R(20,21)	1,0965	1,0965				
R23	R(20,22)	1,0957	1,0959				
R24	R(20,23)	1,5119	1,5126				

Tablo 4.41 : Pro-Tyr dipeptidinde DFT/B3LYP–6-31G(d,p) baz setiyle elde edilmiş Optimized bağ uzunlukları(Å).

Tablo 4.42 : Pro-Tyr dipeptidinde DFT/B3LYP–6-31G(d,p) baz setiyle elde edilmiş optimize açı değerleri (⁰).

Parametre	Monomer	Dimer Pro-	Parametre	Monomer	Dimer Pro-	Parametre	Monomer	Dimer Pro-
	Pro-Tyr	Tyr		Pro-Tyr	Tyr		Pro-Tyr	Tyr
A(1,2,3)	112,2568	112,2556	A(13,12,14)	105,0988	105,0601	A(6,9,12)	103,1487	103,2847
A(1,2,12)	112,0284	111,9859	A(12,14,15)	120,9409	120,9188	A(10,9,11)	107,951	107,8999
A(3,2,12)	109,4762	109,459	A(12,14,16)	114,5295	114,6026	A(10,9,12)	109,6811	109,6091
A(2,3,4)	112,286	112,3592	A(15,14,16)	124,5286	124,4774	A(11,9,12)	111,616	111,6684
A(2,3,5)	110,6895	110,655	A(14,16,17)	115,5197	115,6383	A(2,12,9)	105,5307	105,4979
A(2,3,6)	103,4403	103,3392	A(14,16,18)	122,1458	122,0156	A(21,20,23)	109,5354	109,2883
A(4,3,5)	107,5489	107,5659	A(17,16,18)	121,4694	121,7487	A(22,20,23)	110,7362	110,9164
A(4,3,6)	109,8918	109,9066	A(16,18,19)	106,6379	106,775	A(20,23,24)	121,0279	120,799
A(5,3,6)	113,0494	113,0799	A(16,18,20)	113,2266	113,3188	A(20,23,31)	121,17	121,42
A(3,6,7)	112,5727	112,5871	A(16,18,35)	109,9221	110,6737	A(24,23,31)	117,8015	117,788
A(3,6,8)	110,2857	110,25	A(19,18,20)	108,9318	108,9005	A(23,24,25)	119,3235	119,3191
A(3,6,9)	102,3557	102,316	A(19,18,35)	108,843	108,428	A(23,24,26)	121,6673	121,7179
A(7,6,8)	108,0637	108,0523	A(20,18,35)	109,1702	108,7564	A(25,24,26)	119,0079	119,319
A(7,6,9)	113,3256	113,2627	A(18,20,21)	108,4112	108,5340	A(24,26,27)	121,3721	121,3580
A(8,6,9)	110,1747	110,3132	A(18,20,22)	107,5416	107,4399	A(24,26,28)	119,596	119,072
A(6,9,10)	110,1126	110,0356	A(18,20,23)	113,5552	113,6315	A(27,26,28)	119,0317	119,634
A(6,9,11)	114,2517	114,2636	A(21,20,22)	106,8087	106,7749	A(26,28,29)	119,6619	117,619

A(6,9,12)	103,1487	103,2847	A(21,20,23)	109,5354	109,2883	A(26,28,33)	117,5932	117,619
A(10,9,11)	107,951	107,8999	A(22,20,23)	110,7362	110,9164	A(29,28,33)	122,7448	112,746
A(10,9,12)	109,6811	109,6091	A(20,23,24)	121,0279	120,799	A(28,29,30)	120,0302	120,027
A(11,9,12)	111,616	111,6684	A(20,23,31)	121,17	121,42	A(28,29,31)	119,9519	120,0206
A(2,12,9)	105,5307	105,4979	A(24,23,31)	117,8015	117,788	A(30,29,31)	120,0177	119,950
A(18,35,36)	125,5413	122.225						
A(18,35,37)	111,5085	113,165						
A(36,35,37)	122,91	124,559						
A(35,37,38)	106,3192	110,506						

Tablo 4.43 : Pro-Tyr dipeptidinde DFT/B3LYP–6-31G(d,p) baz setiyle elde edilmiş optimize dihedral açı değerleri (⁰).

Parametre	Monomer	Dimer Pro-	Parametre	Monomer	Dimer Pro-	Parametre	Monomer	Dimer
	Pro-Tyr	Tyr		Pro-Tyr	Tyr		Pro-Tyr	Pro-Tyr
D(1,2,3,4)	-32,6154	-33,5364	D(8,6,9,11)	-41,2347	-41,0252	D(16,18,35,36)	-16,8419	-18,259
D(1,2,3,5)	87,5903	86,7164	D(8,6,9,12)	80,1081	80,4798	D(16,18,35,37)	165,4208	164,203
D(1,2,3,6)	-151,0405	-151,955	D(6,9,12,2)	21,943	20,9999	D(19,18,35,36)	-133,2958	-134,885
D(12,2,3,4)	92,4554	91,4655	D(6,9,12,13)	143,4623	142,5314	D(19,18,35,37)	48,9668	47,577
D(12,2,3,5)	-147,3389	-148,282	D(6,9,12,14)	-100,3669	-101,367	D(20,18,35,36)	107,9152	106,837
D(12,2,3,6)	-25,9697	-26,9531	D(10,9,12,2)	-95,3531	-96,2463	D(20,18,35,37)	-69,8221	-70,699
D(1,2,12,9)	127,6556	128,8218	D(10,9,12,13)	26,1662	25,2852	D(18,20,23,24)	109,8565	115,529
D(1,2,12,13)	7,269	8,5619	D(25,24,26,27)	-0,0038	-0,0431	D(18,20,23,31)	-69,8521	-64,640
D(1,2,12,14)	-111,1078	-109,839	D(25,24,26,28)	179,8151	179,802	D(21,20,23,24)	-11,4941	-5,851
D(3,2,12,9)	2,4526	3,6638	D(24,26,28,29)	-0,2354	-0,117	D(21,20,23,31)	168,7973	173,979
D(3,2,12,13)	-117,934	-116,596	D(24,26,28,33)	179,9309	179,915	D(22,20,23,24)	-129,0377	-123,309
D(3,2,12,14)	123,6893	125,0033	D(27,26,28,29)	179,5878	179,731	D(22,20,23,31)	51,2537	56,520
D(2,3,6,7)	160,9319	161,1584	D(27,26,28,33)	-0,2459	-0,234	D(20,23,24,25)	0,5824	0,0442
D(31,23,24,25)	-179,6994	-179,792	D(26,28,29,30)	179,9533	179,731	D(20,23,24,26)	-179,828	179,632
D(31,23,24,26)	-0,1098	-0,2043	D(26,28,29,31)	0,1386	0,0228	D(28,29,31,23)	-0,0254	-0,0179
D(20,23,31,29)	179,7273	-179,729	D(33,28,29,30)	-0,2219	-0,3039	D(28,29,31,32)	179,6245	179,256
D(20,23,31,32)	0,0806	1,004	D(33,28,29,31)	179,9633	179,9871	D(30,29,31,23)	-179,8402	-179,727

D(24,23,31,29)	0,0096	0,1056	D(26,28,33,34)	-179,0855	-179,530	D(30,29,31,32)	-0,1902	-0,4526
D(24,23,31,32)	-179,6371	-179,160	D(29,28,33,34)	1,0863	0,5048	D(18,35,37,38)	177,5184	177,0852
D(23,24,26,27)	-179,5947	-179,632	D(12,14,16,18)	175,8821	176,7889	D(36,35,37,38)	-0,2886	-0,3844
D(2,12,14,16)	-2,393	-3,3985	D(15,14,16,17)	-173,974	-174,882	D(12,14,16,17)	6,392	5,5098
D(9,12,14,15)	-63,9638	-64,9096	D(15,14,16,18)	-4,4839	-3,6034			
D(9,12,14,16)	115,6847	114,7135	D(14,16,18,19)	-5,6212	-7,5472			
D(13,12,14,15)	55,4837	54,4126	D(14,16,18,20)	114,1627	112,247			
D(13,12,14,16)	-124,8678	-125,964	D(14,16,18,35)	-123,4514	-125,279			

Şekil 4.40 : Prolin sol a)100-800cm⁻¹,b)700-1400cm⁻¹,c)1300-1700cm⁻¹,Tirosin sağ a)100-800cm⁻¹,b)600-1300cm⁻¹,c)1200-1700cm⁻¹Raman spektrumları

Şekil 4.41: Pglu-Asn dipeptidinin a) monomer yapısı molekül içi hidrojen bağları, b) Dimer a yapısı ve moleküller arası hid. bağları, c) Dimer b yapısı ve moleküller arası hid. bağları.

		Monomer	Dimer	
Param	etre	Pglu-Asn	Pglu-Asn	
R1	R(1,2)	1,0113	1,0125	
R2	R(2,3)	1,383	1,3904	
R3	R(2,11)	1,4542	1,4579	
R4	R(3,4)	1,2148	1,2143	
R5	R(3,5)	1,5304	1,5267	
R6	R(5,6)	1,0966	1,0962	
R7	R(5,7)	1,0917	1,0922	
R8	R(5,8)	1,5357	1,536	
R9	R(8,9)	1,0911	1,09	
R10	R(8,10)	1,0941	1,0939	
R11	R(8,11)	1,5589	1,5618	
R12	R(11,12)	1,0979	1,0969	
R13	R(11,13)	1,5291	1,5302	
R14	R(13,14)	1,2355	1,2349	
R15	R(13,15)	1,3542	1,3535	
R16	R(15,16)	1,0184	1,012	
R17	R(15,17)	1,467	1,4646	
R18	R(17,18)	1,0983	1,0947	
R19	R(17,19)	1,5366	1,5333	
R20	R(17,27)	1,5565	1,5476	
R21	R(19,20)	1,0947	1,0948	
R22	R(19,21)	1,0924	1,0918	
R23	R(19,22)	1,5218	1,5229	
R24	R(22,23)	1,2315	1,2395	
R25	R(22,24)	1,3591	1,3495	
R26	R(24,25)	1,0093	1,0267	
R27	R(24,26)	1,0066	1,0074	
R28	R(27,28)	1,2245	1,2229	
R29	R(27,29)	1,3543	1,3575	
R30	R(29,30)	1,0178	1,0146	
R31	R(29,31)	1,0092	1,0087	

Tablo 4.44: PGlu-Asn dipeptidinde DFT/B3LYP/6-31G(d,p) baz setiyle elde edilmiş optimize bağ uzunlukları(Å).

		Monomer	Dimer	
Param	etre	Pglu-Asn	Pglu-Asn	
A1	A(1,2,3)	118,6527	117,4297	
A2	A(1,2,11)	122,3331	121,549	
A3	A(3,2,11)	114,4272	114,2887	
A4	A(2,3,4)	125,4355	124,698	
A5	A(2,3,5)	106,7307	107,0758	
A6	A(4,3,5)	127,8196	128,2197	
A7	A(3,5,6)	107,5073	107,3448	
A8	A(3,5,7)	110,46	110,727	
A9	A(3,5,8)	104,6883	105,1677	
A10	A(6,5,7)	107,5322	107,5893	
A11	A(6,5,8)	112,3014	112,4703	
A12	A(7,5,8)	114,1716	113,401	
A13	A(5,8,9)	114,3927	113,8661	
A14	A(5,8,10)	109,6883	109,2507	
A15	A(5,8,11)	103,9787	104,5929	
A16	A(9,8,10)	108,4925	107,8625	
A17	A(9,8,11)	111,2799	111,8149	
A18	A(10,8,11)	108,8523	109,3731	
A19	A(2,11,8)	101,7509	102,2332	
A20	A(2,11,12)	112,3453	112,3659	
A21	A(2,11,13)	114,5599	113,5206	
A22	A(8,11,12)	110,7539	111,1473	
A23	A(8,11,13)	111,5544	110,9639	
A24	A(12,11,13)	105,9876	106,6913	
A25	A(11,13,14)	120,0991	121,4129	
A26	A(11,13,15)	115,813	115,1516	
A27	A(14,13,15)	124,0586	123,3633	
A28	A(13,15,16)	116,8176	116,6972	
A29	A(13,15,17)	121,6596	123,3565	
A30	A(16,15,17)	115,5267	119,5803	
A31	A(15,17,18)	107,8287	106,5346	
A32	A(15,17,19)	110,7398	110,1197	
A33	A(15,17,27)	111,3195	111,0138	
A34	A(18,17,19)	110,5454	109,0472	
A35	A(18,17,27)	107,6694	108,3273	
A36	A(19,17,27)	108,6969	111,6306	
A37	A(17,19,20)	108,2609	110,019	
A38	A(17,19,21)	108,0876	108,5125	
A39	A(17,19,22)	113,7685	109,0523	
A40	A(20,19,21)	106,1149	107,1617	

Tablo 4.45: Pglu-Asn dipeptidinde DFT/B3LYP/6-31G(d,p) baz setiyle elde edilmiş optimize açı değerleri (⁰).

A41	A(20,19,22)	108,0891	109,0564	
A42	A(21,19,22)	112,1794	112,9333	
A43	A(19,22,23)	122,0766	120,1286	
A44	A(19,22,24)	116,1649	117,169	
A45	A(23,22,24)	121,756	122,6376	
A46	A(22,24,25)	118,0834	118,3565	
A47	A(22,24,26)	122,461	120,9647	
A48	A(25,24,26)	118,9642	119,2426	
A49	A(17,27,28)	121,7965	122,4343	
A50	A(17,27,29)	113,6886	112,9172	
A51	A(28,27,29)	124,4984	124,6478	
A52	A(27,29,30)	119,4945	120,4939	
A53	A(27,29,31)	117,5492	118,3124	
A54	A(30,29,31)	120,7962	120,5705	

		Monomer	Dimer	
Para	metre	Pglu-Asn	Pglu-Asn	
D1	D(1,2,3,4)	13,4315	18,6677	<u></u>
D2	D(1,2,3,5)	-165,287	-160,4715	
D3	D(11,2,3,4)	170,0052	170,4269	
D4	D(11,2,3,5)	-8,7135	-8,7123	
D5	D(1,2,11,8)	179,4692	172,2714	
D6	D(1,2,11,12)	60,9906	53,0365	
D7	D(1,2,11,13)	-60,0243	-68,1491	
D8	D(3,2,11,8)	23,8566	21,7979	
D9	D(3,2,11,12)	-94,622	-97,437	
D10	D(3,2,11,13)	144,3631	141,3774	
D11	D(2,3,5,6)	108,8077	111,2404	
D12	D(2,3,5,7)	-134,139	-131,5864	
D13	D(2,3,5,8)	-10,7987	-8,7286	
D14	D(4,3,5,6)	-69,8708	-67,8588	
D15	D(4,3,5,7)	47,1831	49,3144	
D16	D(4,3,5,8)	170,5229	172,1722	
D17	D(3,5,8,9)	145,9189	143,5335	
D18	D(3,5,8,10)	-91,93	-95,8167	
D19	D(3,5,8,11)	24,3488	21,1837	
D20	D(6,5,8,9)	29,5822	27,0217	
D21	D(6,5,8,10)	151,7332	147,6714	
D22	D(6,5,8,11)	-91,9879	-95,3281	
D23	D(7,5,8,9)	-93,1679	-95,344	
D24	D(7,5,8,10)	28,9832	25,3057	
D25	D(7,5,8,11)	145,262	142,3062	
D26	D(5,8,11,2)	-28,4859	-25,3927	
D27	D(5,8,11,12)	91,1245	94,6962	
D28	D(5,8,11,13)	-151,076	-146,7496	
D29	D(9,8,11,2)	-152,106	-149,0722	
D30	D(9,8,11,12)	-32,4959	-28,9833	
D31	D(9,8,11,13)	85,3032	89,5709	
D32	D(10,8,11,2)	88,3774	91,5234	
D33	D(10,8,11,12)	-152,012	-148,3877	
D34	D(10,8,11,13)	-34,213	-29,8335	
D35	D(2,11,13,14)	153,1707	155,2239	
D36	D(2,11,13,15)	-28,7173	-27,7661	
D37	D(8,11,13,14)	-91,9149	-90,3053	

Tablo 4.46: Pglu-Asn dipeptidinde DFT/B3LYP/6-31G(d,p) baz setiyle elde edilmişoptimize dihedral açı değerleri (0).

D38	D(8,11,13,15)	86,1971	86,7047
D39	D(12,11,13,14)	28,7158	30,9076
D40	D(12,11,13,15)	-153,172	-152,0824
D41	D(11,13,15,16)	-12,6232	5,711
D42	D(11,13,15,17)	-164,147	-167,2995
D43	D(14,13,15,16)	165,4051	-177,3443
D44	D(14,13,15,17)	13,8818	9,6451
D45	D(13,15,17,18)	33,2217	28,3507
D46	D(13,15,17,19)	154,2849	146,4697
D47	D(13,15,17,27)	-84,6684	-89,3865
D48	D(16,15,17,18)	-118,643	-144,4681
D49	D(16,15,17,19)	2,4199	-26,3491
D50	D(16,15,17,27)	123,4666	97,7947
D51	D(15,17,19,20)	68,6701	63,2336
D52	D(15,17,19,21)	-176,795	-179,8186
D53	D(15,17,19,22)	-51,5007	-61,1393
D54	D(18,17,19,20)	-171,888	179,7929
D55	D(18,17,19,21)	-57,3529	-63,2593
D56	D(18,17,19,22)	67,9414	55,4199
D57	D(27,17,19,20)	-53,9161	-60,5528
D58	D(27,17,19,21)	60,6189	56,395
D59	D(27,17,19,22)	-174,087	175,0743
D60	D(15,17,27,28)	-111,811	-112,634
D61	D(15,17,27,29)	69,6042	67,6593
D62	D(18,17,27,28)	130,2032	130,7245
D63	D(18,17,27,29)	-48,3821	-48,9822
D64	D(19,17,27,28)	10,4245	10,6462
D65	D(19,17,27,29)	-168,161	-169,0606
D66	D(17,19,22,23)	57,1265	-68,4819
D67	D(17,19,22,24)	-123,444	108,6661
D68	D(20,19,22,23)	-63,1411	168,8772
D69	D(20,19,22,24)	116,2889	-13,9748
D70	D(21,19,22,23)	-179,788	49,8567
D71	D(21,19,22,24)	-0,3581	-132,9953
D72	D(19,22,24,25)	-175,648	-163,3012
D73	D(19,22,24,26)	-3,7803	2,9198
D74	D(23,22,24,25)	3,7838	13,7695
D75	D(23,22,24,26)	175,6517	179,9906
D76	D(17,27,29,30)	-10,5836	-4,8119
D77	D(17,27,29,31)	-174,023	-175.814
D78	D(28,27,29,30)	170,8754	175,4890
D79	D(28,27,29,31)	7,4364	4,48680

ÖZGEÇMİŞ

26.06.1979, Tekirdağ Çorlu doğumluyum. İlk Öğrenimimi Muratlı Mithatpaşa İlkokulunda, Orta öğrenimimi Muratlı Ortaokulunda ve Lise öğrenimimi de Tekirdağ Tuğlacılar Süper Lisesinde tamamladım. Lisans öğrenimim İstanbul Üniversitesi, Fen Fakültesi, Fizik Bölümünde 1998-2002 yılları arasında tamamladım. Fizik bölümünü bölüm üçüncüsü olarak bitirdikten sonra, 2002 yılında İstanbul Üniversitesi, Fen Fakültesi, Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Atom ve Molekül Fiziği Programında Yüksek Lisans Öğrenimime başladım. Yüksek Lisansı 2005 yılında tamamladım.2005 yılında İstanbul Üniversitesi, Fen Fakültesi, Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Atom ve Molekül Fiziği Programında Doktora öğrenimime başladım. 2005 yılından beri İstanbul Üniversitesi, Fen Fakültesi, Fizik Bölümünde Araştırma görevlisi olarak çalışmaktayım.