

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

FARKLI NÜKLEER KÜTLE MODELLERİNİN δV_{pn} DEĞERLERİ KULLANILARAK ANALİZİ

Duygu TARHAN Fizik Anabilim Dalı Nükleer Fizik Programı

Danışman Yard.Doç.Dr. Rabia Burcu ÇAKIRLI

Kasım, 2012

İSTANBUL

İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

FARKLI NÜKLEER KÜTLE MODELLERİNİN δV_{pn} DEĞERLERİ KULLANILARAK ANALİZİ

Duygu TARHAN Fizik Anabilim Dalı Nükleer Fizik Programı

Danışman Yard.Doç.Dr. Rabia Burcu ÇAKIRLI

Kasım, 2012

İSTANBUL

Bu çalışma 27/12/2012 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı Nükleer Fizik programında Yüksek Lisans Tezi olarak kabul edilmiştir.

Tez Jürisi

Yard. Doç. Dr. R. Burcu ÇAKIRLI (Danışman) İstanbul Üniversitesi Fen Fakültesi

Doç. Dr. Yeşim ÖKTEM İstanbul Üniversitesi Fen Fakültesi

Prof. Dr. Metin ARIK Boğaziçi Üniversitesi Fen-Edebiyat Fakültesi

Prof. Dr. Baki AKKUŞ İstanbul Üniversitesi Fen Fakültesi

Doç. Dr. Latife ŞAHİN İstanbul Üniversitesi Fen Fakültesi

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin 15010 numaralı projesi ile desteklenmiştir.

ÖNSÖZ

Yüksek lisans öğrenimim boyunca ve tez çalışmalarım sırasında bana göstermiş olduğu her türlü destek ve yardımının yanı sıra her zaman çalışkanın, zeki insanın ilerlemesi için elinden geleni yapan, her zaman öğrencisi olmaktan gurur duyduğum çok değerli hocam Prof. Dr. Baki AKKUŞ'a ve ailesine sonsuz teşekkür ederim.

Tanıştığım ilk günden beri bana her türlü yardımını esirgemeyen ve her daim başarılı ve değerli bir öğrenci olduğumu hissettirerek kendime güvenmemi sağlayan, bana ilerlemem için yapmış olduğu akademik katkılarının yanı sıra her zaman bir aile gibi sıcak, anlayışlı ve sabrılı kişiliği ile bana hayata dair çok şey öğreten sevgili hocam Doç. Dr. Yeşim ÖKTEM'e ve ailesine sonsuz teşekkür ederim.

Her zaman hayat ve akademik deneyimleri ile bana yol gösteren, akademik bir kariyer yapmam konusunda bana çok büyük yardımlarda bulunan, yüksek lisans tezimin mimarı olan, maddi ve manevi yardımlarını hiç bir zaman esirgemeyen ve ilk öğrencisi olmaktan gurur duyduğum yüksek lisans tez danışmanlığımı yürüten güleryüzlü hocam Yard. Doç. Dr. Rabia Burcu ÇAKIRLI'ya ve ailesine sonsuz teşekkürlerimi sunarım.

Tez çalışmalarım boyunca akademik olarak daha ileriye gitmemde büyük katkıları olan akademik bilgi ve maddi manevi yardımlarıyla beni gururlandıran Yale Üniversitesi'den Prof. Dr. Richard F. CASTEN, Max Planck Enstitüsü'nden Prof. Dr. Klaus Blaum'a ve CERN'e gitmemde büyük destek olan Boğaziçi Üniversitesi'nden Prof. Dr. Metin ARIK'a sonsuz teşekkür ederim.

Yüksek lisansım boyunca ablalıklarıyla, güleryüzleriyle ve yardımseverlikleriyle bana her zaman huzur veren, akademik bilgileriyle bana çok şey katan ve maddi manevi katkıda bulunan canım hocalarım Yard. Doç. Dr. Lidya SUSAM'a ve Yard. Doç. Dr. Ela GANİOĞLU'na ve ailelerine sonsuz teşekkürlerimi bir borç bilirim.

Birlikte çalışmaktan her zaman mutlu olduğum değerli hocalarım Prof. Dr. Ergun GÜLTEKİN'e, Doç. Dr. Latife ŞAHİN'e, Doç. Dr. Bayram DEMİR'e ve bu çalışma boyunca destekleri ile yanımda olan çalışma arkadaşlarım Arş. Gör. İffet ÇAVDAR'a, Arş. Gör. Gülfem SÜSOY'a, Arş. Gör. Bengü BİLGİER'e, Arş. Gör. Levent KÜÇÜK'e, Arş. Gör. Ayşegül ERTOPRAK'a, Arş. Gör. Fatma Çağla Öztürk'e, Hatice Candan KÖZER'e, Nesli ALBAYRAK'a, Enes AKYÜZ'e, Çağıl ÇINAR'a ve çalışmamın uygulama kısmını destekleyen İstanbul Üniversitesi'ne ve tüm çalışanlarına teşekkürü borç bilirim.

Hayatımda önemli yeri olan ve her zaman bana destek olan canım arkadaşım Mimar Gizem BÜYÜKÜNAL'a ve tüm değerli dostlarıma çok teşekkür ederim.

Son olarak hayatta bir insanın dürüst, alçakgönüllü ve şerefiyle yaşamasının, adaletli olmasının en büyük erdem olduğunu bana öğreten, hiç bir zaman desteklerini benden esirgemeyen, başarılarımın en büyük mimarları olan, her umudumu yitirdiğimde beni cesaretlendiren, ne yaparsam yapayım haklarını asla ödeyemeyeceğim dünyadaki en kıymetlilerim olan değerli annem, babam ve kız kardeşime sonsuz teşekkürlerimi sunuyorum.

Tüm yüksek lisansım boyunca değerli hocalarım ve çalışma arkadaşlarımla üç yıllık emek ve paylaştığım güzel anılar için ayrıca teşekkürlerimi sunarım.

Kasım, 2012

Duygu TARHAN

İÇİNDEKİLER

ÖNSÖZi
İÇİNDEKİLERiii
ŞEKİL LİSTESİ v
TABLO LİSTESİ vii
SEMBOL LİSTESİviii
ÖZETx
SUMMARY xi
1. GİRİŞ1
2. GENEL KISIMLAR2
2.1. BAĞLANMA ENERJİSİ2
2.1.1. Kütle Eksiği5
2.1.2. Mass Excess
2.2. AYRILMA ENERJİLERİ5
2.3. ORTALAMA PROTON NÖTRON ETKİLEŞİMİ (δV _{nn})
2.4. SIVI DAMLA MODELİ (BETHE – WEIZSÄCKER KÜTLE FORMÜLÜ)11
3. MALZEME VE YÖNTEM17
3.1. NÜKLEER KÜTLE MODELLERİ17
3.1.1. Duflo - Zuker Kütle Modeli17
3.1.2. Möller - Nix Kütle Modeli 19
3.1.3. Yoğunluk Fonksiyonu Teorisi (DFT) 26
3.1.4. Hartree-Fock-Bogoliubov (HFB) 29
3.2. AME2003 ATOMİK KÜTLE DÜZENLEMESİ31

4. BULGULAR	
4.1. ÇİFT-ÇİFT ÇEKİRDEKLER	
4.2. ÇİFT-TEK ÇEKİRDEKLER	44
4.3. TEK-ÇİFT ÇEKİRDEKLER	52
4.4. TEK-TEK ÇEKİRDEKLER	60
5. TARTIŞMA VE SONUÇ	70
KAYNAKLAR	80
ÖZGEÇMİŞ	

ŞEKİL LİSTESİ

Şekil 2.1	: Nükleon başına ortalama bağlanma enerjisinin (B/Kütle numarası), kütle numarasına (A=Z+N cekirdekteki toplam proton ve nötron	
	savısı) göre değisimi	. 4
Şekil 2.2	: $Z = 82$ sihirli sayısı civarındaki deneysel bir nötron ayrılma enerjilerinin nötron sayısına göre grafiği. N nötron sayısı 110 ile 138 arasındaki (a) cift Z proton ve N nötron sayılı (b) tek Z proton ve	
	cift N nötron savılı cekirdeklerin bir nötron avrılma eneriileri	7
Şekil 2.3	: $Z = 82$ sihirli sayısı civarındaki deneysel bir proton ayrılma enerjilerinin proton sayısına göre grafiği. Z proton sayısı 78 ile 92	. /
	tak N nötron savul sakirdaklarin proton avrilma anariilari	Q
Şekil 2.4	 Bir nükleonun komşuları 2 fm yarıçaplı bir küre içinde yer alan nükleonlardır (sağdaki daire). Yüzeye yakın olan nükleonun daha az komşuşu yardır ye bu yüzden bağlanma enerijişi de daha azdır. 	. 0
	(soldaki daire)	12
Sekil 2.5	: Yarı-denevsel kütle formülündeki cesitli terimlerin nükleon basına	
·, · · ·	bağlanma enerjisine katkıları	. 16
Şekil 3.1	: N nötron sayısına göre taban durum mikroskopik enerjisinin teorik	
	ve deneysel karşılaştırılması	. 25
Şekil 4.1	: Z=10-28, N=10-42 bölgesindeki çift-çift çekirdekler için $\Delta \delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo- Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi	. 36
Şekil 4.2	: Z=30-50, N=30-82 bölgesindeki çift-çift çekirdekler için $\Delta \delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo- Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi	38
Şekil 4.3	: Z=52-82, N=52-130 bölgesindeki çift-çift çekirdekler için $\Delta \delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo- Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi	. 40
Şekil 4.4	: Z=84-102, N=106-158 bölgesindeki çift-çift çekirdekler için $\Delta \delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo- Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	. 40
	grafiksel gösterimi	. 43
Şekil 4.5	: Z=10-28, N=9-41 bölgesindeki çift-tek çekirdekler için $\Delta\delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo- Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi	. 45
	0 0	

Şekil 4.6	: Z=30-50, N=29-81 bölgesindeki çift-tek çekirdekler için $\Delta\delta V_{pn}$	
	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
	grafiksel gösterimi	. 47
Şekil 4.7	: Z=52-82, N=57-129 bölgesindeki çift-tek çekirdekler için $\Delta \delta V_{pn}$	
	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
~	grafiksel gösterimi	. 49
Şekil 4.8	: Z=84-102, N=107-155 bölgesindeki çift-tek çekirdekler için $\Delta\delta V_{pn}$	
	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
~	grafiksel gösterimi	. 51
Şekil 4.9	: Z=9-29, N=10-44 bölgesindeki tek-çift çekirdekler için $\Delta\delta V_{pn}$	
	degerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
0 1 1 4 10		. 53
Şekil 4.10	: Z=31-51, N=30-82 bolgesindeki tek-çift çekirdekler için $\Delta \delta V_{pn}$	
	degerierinin N notron sayisinin bir Ionksiyonu olarak (a) Duilo-	
	Zuker, (b) Moller-Nix, (c) DF1 ve (d) HFB-21 kutle modelleri için	5 5
Gal-31 4 11	granksel gosterimi	. 33
Şekii 4.11	: $Z=55-85$, N=00-152 bolgesindeki tek-çili çekirdekiler için $\Delta 0 v_{pn}$	
	Zukar (b) Möller Nix (c) DET va (d) HEP 21 kötle medelleri jain	
	Zuker, (b) Moher-Mix, (c) DF1 ve (d) HFD-21 kute modellen için arafikaal göstərimi	57
Sabil 4 12	• 7–85 101 N–110 158 bölgesindeki tek gift gekirdekler igin ASV	. 37
ŞCKII 4.1 2	Δv_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker (b) Möller-Nix (c) DFT ve (d) HFB-21 kütle modelleri icin	
	orafiksel oösterimi	59
Sekil 4.13	: $7=9-29$ N=9-43 bölgesindeki tek-tek cekirdekler icin $\Lambda\delta V_{m}$	
ş • • • • • • • • • •	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri icin	
	grafiksel gösterimi	. 61
Sekil 4.14	: Z=31-51, N=31-79 bölgesindeki tek-tek cekirdekler icin $\Delta\delta V_{nn}$	
3	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
	grafiksel gösterimi	. 63
Şekil 4.15	: Z=53-83, N=61-133 bölgesindeki tek-tek çekirdekler için $\Delta \delta V_{pn}$	
	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
	grafiksel gösterimi	. 65
Şekil 4.16	: Z=85-101, N=109-157 bölgesindeki tek-tek çekirdekler için $\Delta \delta V_{pn}$	
	değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-	
	Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için	
	grafiksel gösterimi	. 67
Şekil 4.17	: Deney ile Teori arasında $\Delta \delta V_{pn}$ değeri (a) 50 keV ve 50 keV'den	
	az (b) 100 keV ve 100 keV'den az olan çekirdeklerin DZ, MN, DFT	
	ve HFB-21 kütle modellerine göre gösterimi	. 68

TABLO LÍSTESÍ

Tablo 2.1	: Kararlı çekirdek sayıları	14
Tablo 3.1	: HFB-21 Kütle Modeli Parametreleri	30
Tablo 4.1	: δV_{pn} değerlerinin incelendiği bölgelerde bulunan çift-çift ve çift-tek çekirdekler	34
Tablo 4.2	: δV_{pn} değerlerinin incelendiği bölgelerde bulunan tek-çift ve tek-tek cekirdekler	35
Tablo 5.1	: Z=10-102, N=10-156 çekirdekleri için δV_{pn} hata payları 50 keV'dan büyük olan çekirdekler	71

SEMBOL LİSTESİ

M _{Cek}	: Cekirdek kütlesi
MAtom	: Átom kütlesi
Me	: Elektron kütlesi
M _H	: Hidrojenin kütlesi
Z	: Proton savısı
M _n	: Protonun kütlesi
N	: Nötron sayısı
M_n	: Nötronun kütlesi
В	: Bağlanma enerjisi
c	: Işık hızı
Δm	: Kütle eksiği
S _n	: Bir nötron ayrılma enerjisi
Sp	: Bir proton ayrılma enerjisi
S_{2n}	: İki nötron ayrılma enerjisi
S _{2p}	: İki proton ayrılma enerjisi
δV_{pn}	: Ortalama proton nötron etkileşimi ifadesi
$\mathbf{B}_{\mathbf{V}}$: Hacim Terimi
B _S	: Yüzey Terimi
B _C	: Coulomb Terimi
B _{sim}	: Simetri Terimi
B _{çift}	: Çiftlenim Terimi
$\mathbf{a}_{\mathbf{V}}$: Hacim katsayı sabiti
as	: Yüzey katsayı sabiti
a _C	: Coulomb katsayı sabiti
a _{sim}	: Simetri katsayı sabiti
a _{çift}	: Çiftlenim katsayı sabiti
$\Delta \delta V_{pn}$: Teorik δV_{pn} değerleri ile deneysel δV_{pn} değerleri arasındaki fark
H _m	: Hamiltonyenin monopole kismi
H _M	: Hamiltonyenin multipole kismi
H _s	: Küresel çekirdeklerin enerji terimi
H _d	: Kalıcı olarak deforme olmuş taban durumların enerji ifadesi
M _H	: Hidrojen atomu mass excess
$\mathbf{M}_{\mathbf{n}}$: Notron mass excess
e	Elektron yükü
a _{el}	: Elektronik-baglanma sabiti
r _p	: Protonun ortalama karekok yarıçapı
Δ	: Çiftlenim-enerji sabiti
0	: ÇIITlenim-asimetri sabiti
r ₀	: INUKIEU YAIIÇAD SADILI • Vukeuse pule evenenciuel notargiuel ereleže
а	: i ukawa-puis-exponansiyei potansiyei araligi
ку	: Hacım-asımetri sabiti

κ _s	: Yüzey-asimetri sabiti
W	: Wigner sabiti
c ₀	: A ⁰ sabiti
ca	: Yük-asimetri sabiti

ÖZET

FARKLI NÜKLEER KÜTLE MODELLERİNİN δV_{pn} DEĞERLERİ KULLANILARAK ANALİZİ

Bu tez çalışmasında çeşitli nükleer kütle modellerinin teorilerine göre hesaplanmış olan mass excess değerleri kullanılarak son iki proton ve son iki nötron arasındaki ortalama proton-nötron etkileşimi ifadesi olan δV_{pn} değerleri hesaplandı. Hesaplanan δV_{pn} değerleri ile deneysel δV_{pn} değerleri karşılaştırıldı. Bugüne kadar nükleer kütle modelleri ayrılma enerjileri ile kıyaslama yapılmıştır. Bu sebeple bu yüksek lisans tez çalışmasında ilk defa nükleer kütle modelleri proton-nötron etkileşimleri baz alınarak test edilmiştir. Teorik kütle değerleri Duflo-Zuker, Möller-Nix, DFT ve HFB-21 modellerinden kullanılmıştır.

Farklı nükleer kütle modellerinde Z=10-102, N=10-156 çekirdekleri için $\Delta \delta V_{pn}$ [δV_{pn} (deney) - δV_{pn} (model)] değerlerinin N nötron sayısının bir fonksiyonu olarak grafikleri elde edildi ve grafiklerden elde edilen sonuçlar analiz edildi. Yapılan hesaplamalar ve analizlerden elde edilen sonuçlara göre, Duflo-Zuker modelinin bu tezde adı geçen diğer modellere kıyasla deneysel veriler ile daha uyumlu olduğu görüldü.

SUMMARY

AN ANALYSIS OF DIFFERENT NUCLEAR MASS MODELS USING δV_{pn} VALUES

In this thesis study, using predicted mass excess values in several mass models, the δV_{pn} values which is an average proton-neutron interaction between the last two protons and neutrons, were calculated. These calculated δV_{pn} values were compared with the experimental δV_{pn} values. Up until today, nuclear mass models have been compared with the separation energies. Thus, in this thesis, as the first time, some mass models were used from the Duflo-Zuker, Möller-Nix, DFT and HFB-21 nuclear mass.

In different nuclear mass models for the Z=10-102, N=10-156 nuclei, plots for the $\Delta \delta V_{pn} [\delta V_{pn}(experiment) - \delta V_{pn}(model)]$ values as a function of neutron number N were presented and the results were analyzed. According to the results obtained from the calculations and the analyses, the predicted δV_{pn} values using the Duflo-Zuker nuclear mass model works better than the other mass models presented in this thesis.

1. GİRİŞ

Bu tez çalışmasında, çeşitli nükleer kütle modellerinin teorisine göre hesaplanmış olan mass excess değerleri kullanılarak ortalama proton nötron etkileşimi (δV_{pn}) değerleri hesaplanmıştır. Elde edilen bu değerlerin deneysel δV_{pn} ve teorik δV_{pn} değerleri arasındaki farkın N nötron sayısına göre değişimleri ayrı ayrı analiz edilmiştir.

Bu zamana kadar kütle modellerinin deneysel veriler ile uyumluluğu tartışılırken ortalama proton nötron etkileşim değerlerinin göz önüne alınmaması bu çalışmayı daha çekici hale getirmiştir.

Farklı nükleer kütle modellerinin teorilerinin öngördüğü δV_{pn} değerleri ile deneysel δV_{pn} değerleri arasındaki fark N nötron sayısına göre çizilmiş olan grafikler kullanılarak incelendi. Elde edilen grafiklerin incelenmesi sonucunda Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri üzerinde yoğunlaşılmıştır.

2. GENEL KISIMLAR

2.1. BAĞLANMA ENERJİSİ

Bağlanma enerjisi nükleonları (protonları ve nötronları) çekirdek içinde bir arada tutmak için gerekli olan enerjidir. Bir çekirdeğin kütlesi, çekirdek içinde bulunan proton ve nötronun kendi kütlelerinin toplamından her zaman daha azdır. Bunun nedeni ise serbest nükleonlar çekirdeği meydana getirirken bir miktar kütle kaybına uğrarlar. Çekirdeğin kütlesi ile çekirdek içindeki proton ve nötronun kütleleri toplamı arasındaki fark deneysel olarak gözlenebilecek kadar büyüktür. Ayrıca çekirdeklerin bağlanma enerjileri onların kararlılık durumlarının iyi bir göstergesidir. Çekirdeğin bağlanma enerjisi çok yüksek ise daha kararlı bir durumda olduğu söylenebilir.

Bağlanma enerjisi denklemini elde etmek için öncelikle çekirdek kütlesi ifadesinden yola çıkılır. Çekirdek kütlesi şu şekilde tanımlanır:

$$\mathbf{M}_{\text{Cek}} = \mathbf{Z}\mathbf{M}_{\text{p}} + \mathbf{N}\mathbf{M}_{\text{n}} - \mathbf{B}/\mathbf{c}^2$$
(2.1)

M_{Çek} : çekirdek kütlesi

Z : proton sayısı

M_p : protonun kütlesi

N : nötron sayısı

- M_n : nötronun kütlesi
- B : bağlanma enerjisi
- c : 1 1 1 1 (c²=931.5 MeV)

Bağlanma enerjisini Denklem 2.1'deki ifadeden çekersek şu şekilde yazılır:

$$\mathbf{B} = (\mathbf{Z}\mathbf{M}_{\mathrm{p}} + \mathbf{N}\mathbf{M}_{\mathrm{n}} - \mathbf{M}_{\mathrm{C}\mathbf{e}\mathbf{k}}) \mathbf{c}^{2}$$
(2.2)

Elektronlar atom çekirdeğinin etrafında dolandıkları için, çekirdek kütlesine katkısı yoktur. Ancak atom kütlesine katkıları bulunur. Bu nedenle çekirdek kütlesine elektronların da kütlesi eklendiğinde atom kütlesi şu şekilde yazılır:

$$M_{Atom} = M_{Cek} + ZM_e \tag{2.3}$$

M_{Atom} : atom kütlesi M_e : elektron kütlesi

Denklem 2.2'deki bağlanma enerjisi ifadesinde elektronların bağlanma enerjileri göz ardı edilir. Çekirdeğin bağlanma enerjisi MeV (mega elektron volt), elektronların bağlanma enerjileri ise keV (kilo elektron volt) mertebesinde olduğundan, elektron bağlanma enerjisi ihmal edilir. Denklem 2.2'ye elektronun kütlesi de eklenecek olursa, ZM_p ile ZM_e ifadelerinin toplamı hidrojen atomunun kütlesini verir. O halde bağlanma enerjisinin Denklem 2.2'deki gösterimi sonuç olarak tamamen atomik kütleler (akb) cinsinden şu şekilde elde edilir:

$$B = \{Z.(M_p + M_e) + N.M_n - M_{Atom}\}c^2 = \{Z.M_H + N.M_n - M_{Atom}\}c^2$$
(2.4)

M_H : hidrojenin kütlesi

Bağlanma enerjisi A kütle numarası ile doğrusal olarak değişir. Bu doğrusallık bir nükleonun sadece yakın komşuları ile etkileştiğini ve uzaktaki nükleonlar ile etkileşmediğini gösterir. Eğer nükleonlar diğer tüm nükleonlar ile etkileşseydi, o zaman bağlanma enerjisi A(A-1) ya da kabaca A^2 ile orantılı olurdu.

Genellikle bağlanma enerjisi yerine ortalama bağlanma enerjisi ifadesi kullanılır. Bunun nedeni ise çekirdeği bir kuyuya doldurulmuş nükleonlar topluluğu olarak düşünelim. Kuyunun dibinde olan bir nükleonu çıkartmak, kuyunun en üst kısmındaki bir nükleonu çıkartmaktan daha zordur. Her nükleonu kuyudan çıkartmak için gereken enerji yani koparılan her bir nükleonun bağlanma enerjisini kırmak için gereken enerji nükleonun kuyudaki konumuna ve durumuna göre farklıdır. Fakat ortalama bağlanma enerjisi çekirdeklerin ortalama davranışı göz önünde tutularak ele alınır. Bu yüzden de gerçek bağlanma enerjisinden çok ortalama bağlanma enerjisini kullanmak daha yaygındır.

Şekil 2.1 : Nükleon başına ortalama bağlanma enerjisinin (B/Kütle numarası), kütle numarasına (A=Z+N, çekirdekteki toplam proton ve nötron sayısı) göre değişimi [1].

Nükleon başına ortalama bağlanma enerjisinin (B/Kütle Numarası), A kütle numarasına göre değişimi Şekil 2.1'de gösterilmiştir. A \leq 30 bölgesinde çok hızlı bir artış vardır. 30 \leq A \leq 60 bölgesinde daha yavaş bir artış ve A \sim 60 civarında ise maksimum değere ulaştığı kolayca görülür. Şekil 2.1'deki sonuçların en önemli özelliği ise çekirdeklerin büyük bir çoğunluğu için nükleon başına düşen bağlanma enerjisinin yaklaşık olarak 8 MeV olmasıdır. Kütle numarası A \sim 60 civarındaki çekirdekler diğer çekirdeklerden daha kararlıdır. Maksimum B/A değerine sahip olan $^{62}_{28}$ Ni₃₄ (Nikel) çekirdeği için nükleon başına bağlanma enerjisi yaklaşık olarak 8.8 MeV'dir. 62 Ni çekirdeğinden sonraki bölgede B/A değeri düzgün olarak azalır ve 238 U çekirdeğinde yaklaşık olarak 7.6 MeV değerine düşer. Bu azalmanın nedeni ise kütle numarası proton sayısı ile arttıkça protonlar arasındaki itici Coulomb etkileşiminin artmasıdır. A<30 bölgesinde ise B/A değeri hızla düşmektedir. Bu azalmanın nedeni ise hafif çekirdeklerde nükleonların tümü neredeyse yüzeydedir ve yüzeye yakın olan nükleonlar daha az sayıda nükleonla komşu olacağından çekirdeği merkezine yakın olan nükleonlardan daha zayıf bağlıdır.

Yani hafif çekirdeklerde nükleonların komşu sayısı az olacağından nükleon başına ortalama bağlanma enerjisi ifadesi daha düşük değerlere sahip olur [2].

2.1.1. Kütle Eksiği

Çekirdeğin deneysel olarak ölçülen kütlesi ile serbest nükleonların (nötronların ve protonların) toplam kütlesi arasındaki farka kütle eksiği denir. Kütle eksikliği Francis William Aston tarafından bulunmuştur ve şu şekilde tanımlanır [3]:

$$\Delta m = (n \ddot{o} tron ve protonların kütlelerinin toplamı) - (çekirdeğin kütlesi)$$
 (2.5)

 Δ m'nin enerji eşdeğeri toplam bağlanma enerjisidir. Bu ifade Denklem 2.6'da gösterilmiştir.

$$B_{toplam} = \Delta m.c^2$$
(2.6)

2.1.2. Mass Excess

Atomik kütleler cinsinden ölçülen çekirdeğin kendi kütlesi ile A kütle numarası arasındaki fark mass excessdir ve şu şekilde yazılabilir:

Mass Excess =
$$M_{Cek} - A$$
 (2.7)

Mass excess nükleer veri tabanlarında bulunan ve nükleonların kütlelerinden hesaplanan bir terimdir. Herhangi bir çekirdek için asla negatif değer almayan kütle eksikliğine karşın mass excess değeri negatif değerler alabilir.

2.2. AYRILMA ENERJİSİ

Ayrılma enerjisi, çekirdekten bir ya da daha fazla nükleon koparmak için gerekli olan enerji miktarıdır. Ayrılma enerjisi koparılan nükleonun cinsine ve bu nükleonun sayısına göre isim alır. Çekirdekten koparılan nükleon eğer bir tane nötron veya bir tane proton ise söz edilen ayrılma enerjisi sırasıyla bir nötron ayrılma enerjisi (S_p) olarak isimlendirilir. Çekirdekten koparılan eğer iki tane

nötron veya proton ise ayrılma enerjileri sırasıyla iki nötron ayrılma enerjisi (S_{2n}) ve iki proton ayrılma enerjisi (S_{2p}) olarak ifade edilir.

Proton ve nötron ayrılma enerjileri bağlanma enerjisi cinsinden

$$S_n(Z,N) = B(Z,N) - B(Z, N-1)$$

 $S_p(Z,N) = B(Z,N) - B(Z-1,N)$
(2.8)

şeklinde tanımlanırlar.

Denklem 2.8'deki B(Z,N) terimi Z proton sayılı, N nötron sayılı bir çekirdeğin bağlanma enerjisi, B(Z-1,N) terimi Z-1 proton sayılı, N nötron sayılı bir çekirdeğin bağlanma enerjisi, B(Z,N-1) terimi ise Z proton sayılı, N-1 nötron sayılı bir çekirdeğin bağlanma enerjisidir.

Aynı şekilde iki proton ve iki nötron ayrılma enerjileri bağlanma enerjisi cinsinden

$$S_{2n}(Z,N) = B(Z,N) - B(Z,N-2)$$

$$S_{2p}(Z,N) = B(Z,N) - B(Z-2,N)$$
(2.9)

şeklinde tanımlanırlar.

Denklem 2.8'e benzer olarak, Denklem 2.9'daki B(Z-2,N) terimi Z-2 proton sayılı, N nötron sayılı bir çekirdeğin bağlanma enerjisi, B(Z,N-2) terimi ise Z proton sayılı, N-2 nötron sayılı bir çekirdeğin bağlanma enerjisidir. Aynı şekilde $S_{2n}(Z,N)$ ve $S_{2p}(Z,N)$ terimleri ise Z proton sayılı, N nötron sayılı bir çekirdeğin sırasıyla iki nötron ve iki proton ayrılma enerjileridir.

Nükleer yapıdaki kabuk etkilerini gözlemlemek için proton ve nötron ayrılma enerjilerinin 2, 8, 20, 28, 50, 82, 126... vs. sihirli sayılarına bakmak yeterli olacaktır. Şekil 2.2 ve Şekil 2.3'de Z=82 sihirli sayısı civarındaki deneysel bir nötron ve bir proton ayrılma enerjilerinin nötron sayısına göre değişimleri gösterilmiştir. Panel (a) çift, Panel (b) tek proton sayılı çekirdekler içindir.

Şekil 2.2 : Z = 82 sihirli sayısı civarındaki deneysel bir nötron ayrılma enerjilerinin nötron sayısına göre grafiği. N nötron sayısı 110 ile 138 arasındaki (a) çift Z proton ve N nötron sayılı, (b) tek Z proton ve çift N nötron sayılı çekirdeklerin bir nötron ayrılma enerjileri.

 S_n nötron ayrılma enerjisi, nötron numarası büyüdükçe azalmaktadır. Şekil 2.2'de açıkça görüldüğü gibi nötron sayısı 110'dan 138'e doğru giderken S_n değerlerinde azalma görülmektedir. Ayrıca her iki panelde de sihirli sayı N=126'dan sonra S_n değerlerinde ani bir düşüş görülmektedir. N=126'dan sonra ani düşüşün sebebi basitçe şu şekilde açıklanır. Nötron numarası 126'da kabuk kapanır. Bu kabuk üzerinde bir kabuk boşluğu olup sonrasında 126-184 kabuğu başlar. N=126 üzerinde yerleştirilen nükleonların (örneğin 127. ya da 128. vs) koparılması kabuk altındaki 126. nükleonu (ya da 125. nükleonu) koparmaktan her zaman daha kolay olacaktır (daha az enerji harcanacaktır). Bu sebeple N=126'dan N=127'ye (ya da N=128'e) geçişte enerjide hızlı bir düşme gözlenmektedir. Bu enerjideki değişim kabuk genişliği ile orantılıdır.

Şekil 2.3'de ise deneysel S_p bir proton ayrılma enerjisinin Z proton sayısına göre grafikleri gösterilmektedir. Şekil 2.2'ye benzer olarak Panel (a) çift nötron sayıları, Panel (b) tek nötron sayıları içindir.

Şekil 2.3 : Z = 82 sihirli sayısı civarındaki deneysel bir proton ayrılma enerjilerinin proton sayısına göre grafiği. Z proton sayısı 78 ile 92 arasındaki (a) çift Z proton ve N nötron sayılı, (b) çift Z proton ve tek N nötron sayılı çekirdeklerin proton ayrılma enerjileri.

Şekil 2.2'de olduğu gibi Şekil 2.3'de de Z=82 proton sayısından sonra S_p proton ayrılma enerji değerinde ani bir azalma görülmektedir. Şekil 2.2'de N=126 için açıklanan yoruma benzer olarak, Şekil 2.3'de Z=82'nin sihirli sayı olması nedeniyle bu enerjideki azalma açıklanır.

- N nötron sayısı arttıkça S_{2n} ve S_n değerleri azalmaktadır.
- Z proton sayısı arttıkça S_{2p} ve S_p değerleri azalmaktadır.

Ayrılma enerjileri, çekirdeğin de atomun kabuk yapısına benzer bir kabuk yapısına sahip olduğunu gösteren bir kanıttır.

2.3. ORTALAMA PROTON NÖTRON ETKİLEŞİMİ (δV_{pn})

Ortalama proton-nötron etkileşimi (δV_{pn}) [4] değerleri kabuk yapısını ve Fermi yüzeyine [5] yakın işgal edilmiş yörüngelerin tanımlanması ve açıklanmasına yardımcı olur. Fermi yüzeyi, momentum uzayında belli enerji düzeylerinin bir hacim oluşturması ile basitçe açıklanabilir. Fermi yüzeyi, bu hacmi çevreleyen dolu enerji düzeyleri ile boş enerji düzeylerini ayıran bir yüzeydir. Yani momentum uzayında bir eş enerji yüzeyi belirler. Bu yüzeye Fermi yüzeyi denir.

Ortalama proton nötron etkileşimi ifadesi nötron ve proton sayıları çift olan çekirdekler (ç-ç çekirdekler) için bağlanma enerjileri cinsinden şu şekilde yazılır:

$$\left| \delta V_{pn}(Z, N) \right| = 0.25[\{B(Z, N) - B(Z, N-2)\} - \{B(Z-2, N) - B(Z-2, N-2)\}]$$
(2.10)

B bağlanma enerjisi olmak üzere, $\delta V_{pn}(Z,N)$ [4,6] terimi N nötron, Z proton sayılı bir çekirdeğin ortalama proton nötron etkileşim enerjisidir. Açıkça görüldüğü gibi Z ve N değerlerine sahip çekirdeğin δV_{pn} değerini hesaplamak için dört farklı bağlanma enerjisine ihtiyaç duyulmaktadır. Birinin eksikliği durumunda $\delta V_{pn}(Z,N)$ hesaplanamaz. Denklem 2.10 ifadesi aynı zamanda iki nötron ayrılma enerjisi cinsinden de yazılabilir:

$$|\delta V_{pn}(Z,N)| = 0.25[S_{2n}(Z,N)-S_{2n}(Z-2,N)]$$
(2.11)

Denklem 2.11'deki $S_{2n}(Z,N)$ terimi N nötron ve Z proton sayısına sahip çekirdeğin iki nötron ayrılma enerjisini, $S_{2n}(Z-2,N)$ ise N nötron ve Z-2 proton sayısına sahip çekirdeğin iki nötron ayrılma enerjisini ifade etmektedir.

 $\delta V_{pn}(Z,N)$ ifadesi (N-1). ve N. nötronların (en son iki nötron), (Z-1). ve Z. protonların (en son iki proton) dalga fonksiyonları arasındaki üstüste binme ile açıklanır. δV_{pn} sonuçlarının yorumlanması ilgilenilen çekirdeğin en son iki protonu ile en son iki nötronun doldurduğu orbitlerin incelenmesi ile gerçekleştirilmiştir [4,6]. Eğer bu son iki protonlar ve nötronlar, kabuk modelinde, benzer nl_j (n: düğüm sayısı, l: açısal momentum, j: orbital açısal momentum) orbitlerini dolduruyorlarsa yüksek δV_{pn} (yüksek proton-nötron etkileşimi), farklı nl_j ise düşük δV_{pn} değerleri beklenir. Bu yaklaşım daha çok deforme olmayan kapalı kabuğa yakın olan çekirdekler için elverişlidir. Orta kabuk çekirdekleri için deforme kabuk model, Nilsson modeli [7] gözönüne alınmıştır [8].

 δV_{pn} 'in Z proton sayısının ve N nötron sayısının tek-çift olmasına bağlı olarak aşağıdaki bağıntılar yazılır:

$$\left| \delta V_{pn}(Z, N) \right| = 0.5 [\{ B(Z, N) - B(Z, N - 2) \} - \{ B(Z - 1, N) - B(Z - 1, N - 2) \}]$$
(2.12)

$$\left| \delta V_{pn}(Z, N) \right| = 0.5 \left[\{ B(Z, N) - B(Z, N-1) \} - \{ B(Z-2, N) - B(Z-2, N-1) \} \right]$$
(2.13)

Denklem 2.12 N nötron sayısının çift, Z proton sayısının tek olduğu çekirdeklerin, Denklem 2.13 ise N nötron sayısı tek, Z proton sayısı çift olan çekirdeklerin δV_{pn} değerlerinin hesaplanmasında kullanılan bağlantılardır.

N nötron sayısı ve Z proton sayısının ikisininde tek sayı olduğu çekirdeklerin δV_{pn} değerlerinin hesaplanmasında aşağıdaki formül kullanılabilir:

$$\left| \delta V_{pn}(Z,N) \right| = \left[\{ B(Z,N) - B(Z,N-1) \} - \{ B(Z-1,N) - B(Z-1,N-1) \} \right]$$
(2.14)

2.4. SIVI DAMLA MODELİ (BETHE – WEIZSÄCKER KÜTLE FORMÜLÜ)

Sıvı damlası modeli çekirdeğin özelliklerinin açıklanması için kullanılan bir modeldir.

- 1. Çekirdeğin küresel yapıda olması,
- Nükleer çekirdek tablosundaki çekirdeklerin büyük bir kısmında nükleon başına bağlanma enerjisinin sabit olması,
- 3. Nükleer maddenin kütle yoğunluğunun nükleer çekirdek tablosundaki çekirdeklerin büyük bir kısmında sabit olması

özelliklerinin bir "sıvı damlası" özelliklerine benzemesinden yola çıkarak sıvı damla modeli adı verilen bu model geliştirilmiştir.

Sıvı damla modelinin öngördüğü bağlanma enerjisi ifadesini proton sayısı, nötron sayısı ve kütle numarasının bir fonksiyonu olarak veren formüle yarı-deneysel bağlanma enerjisi formülü denilmekle birlikte ilk olarak 1935 yılında formüle eden Alman fizikçinin adı ile Bethe-Weizsäcker yarı deneysel formülü olarak ifade edilir. Bu formül kısmen teorik kısmen deneyseldir. Bu nedenle "yarı deneysel" adını almaktadır. Yarı deneysel olmasının nedeni ise formüldeki her terimin teorik bir dayanağı vardır ve formüldeki katsayılar ise bilinen deneysel bağlanma enerjilerinden bulunur. Yarı-deneysel bağlanma enerjisi formülü şu şekilde yazılır:

$$B = B_V + B_S + B_C + B_{sim} + B_{cift}$$

$$(2.15)$$

Yarı-deneysel bağlanma enerjisinin Denklem 2.15'deki formülünde bulunan terimler tek tek incelenirse:

• Hacim Terimi B_V : Bu terim her bir nükleonun etrafinin diğer nükleonlarla çevrili olduğu varsayımına dayanarak yazılmıştır. Çekirdek kuvveti yaklaşık olarak 2 fm (1 fermi, fm = 10^{-15} m) erimlidir ve 2 fm değeri birçok çekirdeğin yarıçapından küçüktür. Şekil 2.4'de görüldüğü gibi her nükleon 2 fm yarıçapındaki bir küre içinde bulunan nükleonlar ile komşudur. Ayrıca tüm çekirdeklerin iç bölgesindeki yoğunlukları da aynıdır. O halde bir nükleonun komşu sayısı her çekirdekte yaklaşık olarak aynı olur ya da nükleon başına ortalama bağlanma enerjisi her çekirdekte aynı olduğu söylenebilir. Bu nedenle de çekirdeğin toplam bağlanma enerjisi A kütle numarası ile orantılı olur. Hacim de A kütle numarası ile orantılı olduğundan bu yaklaşık olan bağlanma enerjisi hacim terimidir ve a_V pozitif bir sabit olmak üzere, a_V .A olarak tanımlanır.

Şekil 2.4 : Bir nükleonun komşuları 2 fm yarıçaplı bir küre içinde yer alan nükleonlardır (sağdaki daire). Yüzeye yakın olan nükleonun daha az komşusu vardır ve bu yüzden bağlanma enerjisi de daha azdır (soldaki daire).

• Yüzey Terimi B_s : Bu terim nükleonların hepsinin ortada olmamasından yani bir kısmının merkezde bir kısmının yüzeyde olmasından dolayı hacim terimi için eklenen bir düzeltme terimidir. Şekil 2.4'de görüldüğü gibi yüzeye yakın olan nükleonların bağlı olduğu komşu sayısı daha azdır bundan dolayı daha içteki nükleonlara göre bağlanma enerjileri daha düşüktür. Yüzeydeki nükleonların bağlanma enerjilerine katkılarının daha az olması nedeniyle yüzey terimi bağlanma enerjisi ifadesinden çıkartılır. Çekirdeğin bir küre olduğu düşünüldüğünde yüzeyde bulunan nükleon sayısı $4\pi R^2 =$ $4\pi R_0^2 A^{2/3}$ çekirdek yüzey alanı ile orantılıdır. Bu yüzden bağlanma enerjisi de $A^{2/3}$ ile orantılı olmalıdır:

$$B_{\rm S} = -a_{\rm S} A^{2/3} \tag{2.16}$$

Yüzey teriminde bulunan a_s katsayısı pozitif bir sabittir. Yüzey terimi en çok hafif çekirdeklerde önemlidir. Çünkü hafif çekirdeklerde nükleonların daha büyük bir kısmı yüzeydedir.

• Coulomb Terimi B_C : Bu terim bağlanma enerjisine potansiyel enerjiden dolayı gelen katkıyı göstermektedir. Coulomb terimi protonlar arasındaki itici Coulomb etkileşmesi için gerekir. Bu itici etkileşim toplam çekirdek yükünün elektrostatik potansiyel enerjisi kadar bağlanma enerjisinde azalmaya neden olur. Yani Z tane protonun Z-1 tane proton ile arasındaki Coulomb itme kuvveti çekirdeğin daha zayıf bağlanmasına yol açacağından bağlanma enerjisinin azalmasına neden olur. Potansiyel enerjiyi göz önüne alırsak; düzgün Ze yüklü bir kürenin potansiyel enerjisi şu şekildedir:

$$U_{C} = \frac{3}{5} \frac{k(Ze)^{2}}{R}$$
(2.17)

 $R = R_0 A^{1/3}$ olduğu ve $Z(Z-1) \approx Z^2$ için Coulomb terimi şöyle yazılır:

$$B_c = -a_c \frac{Z^2}{A^{1/3}}$$
(2.18)

Coulomb terimindeki a_C katsayısı pozitif bir sabittir ve $a_C \approx 3ke^2 / 5R_0$ olur. Bu işlemler yapılırken çekirdeğin tam olarak küresel olduğu varsayılır ancak çekirdek tam küresel olmadığından dolayı a_C sabitinin bu ifadesi tam olarak doğru değildir. Ayrıca ağır çekirdekler için Coulomb terimi Z² ye bağlı olduğu için çok önemlidir.

 Simetri Terimi B_{sim}: Bu terim proton ve nötron sayısının eşit olmadığı durumda bağlanma enerjisinde meydana gelen azalmayı göstermektedir. Nötron ve proton sayıları birbirine eşit olan (N=Z) çekirdekler büyük bağlanma enerjilerine sahiptir. Mutlak değer olarak proton ve nötron sayıları arasındaki fark arttıkça bağlanma enerjisi azalır ve bundan dolayı (Z-N)² ile orantılı negatif bir düzeltme terimi gereklidir. Bu nedenle simetri terimi şöyledir:

$$B_{sim} = -a_{sim} \frac{(Z-N)^2}{A}$$
(2.19)

Simetri terimindeki a_{sim} katsayısı pozitif bir sabittir. Ağır çekirdekler için bu terim N/Z oranı fazla olduğundan önemlidir. Ayrıca paydada bulunan A faktörü, ağır çekirdeklerde enerji düzeyleri arasındaki fark az olduğu için komşu izobarlar (A kütle numaraları aynı Z proton ve N nötron sayıları farklı olan çekirdekler) arasındaki enerji farkının azalacağını gösterir.

A tane nükleona sahip bir çekirdek için simetri teriminin bağlanma enerjisine katkısı özetle ifade edilirse:

- 1. Çekirdek N=Z durumunda ise daha sıkı bağlıdır ve bağlanma enerjisi fazladır.
- Çekirdek N≠Z durumunda ise nükleon simetrisi bozulduğundan dolayı bağlanma enerjisi azalır.

• Çiftlenim Terimi B_{çift} : Bu terim iki aynı nükleonun farklı olanlara göre daha kuvvetli bağlanmasından kaynaklanır. Çekirdek içinde bulunan bir proton çifti (p-p) ya da bir nötron çifti (n-n) her zaman farklı cins bir nükleon çiftinden (n-p) daha sıkı bağlı bir yapı oluşturur. Bunun nedeni çekirdeğin kararlılığını ve toplam bağlanma enerjisini önemli ölçüde değiştiren ve aynı kuantum durumunda yalnız aynı cins nükleon çifti arasında ortaya çıkan çiftlenim etkileşmesidir.

N (Nötron Sayısı)	Z (Proton Sayısı)	Kararlı Çekirdek Sayısı
Çift	Çift	148
Tek	Çift	51
Çift	Tek	49
Tek	Tek	4

Tablo 2.1 : Kararlı çekirdek sayıları

Tablo 2.1'de kararlı çekirdeklerin büyük çoğunluğunun çift Z ve N sayılarınına sahip olduğu görülmektedir. Z ve N sayılarının ikisininde tek olması durumunda ise kararlı çekirdek sayısı sadece 4 tanedir ($_{1}^{2}$ H, $_{3}^{6}$ Li, $_{5}^{10}$ B, $_{7}^{14}$ N). Z ve N sayılarının çift olma eğilimi çekirdek kuvvetinin çiftlenme etkisi adı verilen özelliğinden kaynaklanır ve çiftlenme etkisinin bağlanma enerjisine katkısı şöyledir:

$$B_{\text{cift}} = \delta \frac{a_{\text{cift}}}{A^{1/2}} \tag{2.20}$$

Çiftlenim terimindeki a_{cift} katsayısı pozitif bir sabittir ve δ terimi şöyledir:

$$\delta = \begin{cases} 1 & Z \text{ ve N sayılarının ikisi de çift ise} \\ 0 & Z \text{ ve N sayılarından biri tek ise} \\ -1 & Z \text{ ve N sayılarının ikisi de tek ise} \end{cases}$$
(2.21)

Bağlanma enerjisine bu beş katkı Denklem 2.15'deki şekilde eklenirse yarı deneysel bağlanma enerjisi formülü elde edilir:

$$B = a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3} - a_{sim} (Z - N)^2 A^{-1} + \delta a_{cift} A^{-1/2}$$
(2.22)

Yarı deneysel bağlanma enerjisi formülünde bulunun beş tane katsayı, deneysel değerleri en iyi verecek şekilde tayin edilir [9]. Bu sabitler Şekil 2.1'deki deneysel eğri ile uyuşacak şekilde ayarlanmış olup şu şekildedir:

 $a_V = 15.75 \text{ MeV}$ $a_S = 17.8 \text{ MeV}$ $a_C = 0.711 \text{ MeV}$ $a_{sim} = 23.7 \text{ MeV}$ $a_{cift} = 11.2 \text{ MeV}$

Hacim, yüzey, Coulomb, simetri ve çiftlenim katsayı değerleri yukarıdaki gibi kullanılarak nükleon başına bağlanma enerjisinde elde edilen sonuçlar Şekil 2.5'de gösterilmektedir. Nükleon başına bağlanma enerjisine en çok katkı mavi renkle gösterilen hacim teriminden geldiği Şekil 2.5'de görülür. Kırmızı renkteki eğride hacim terimine yüzey terimininde eklenmesi sonucunda B/A'ya olan katkı, siyah eğride ise simetri terimi haricindeki diğer terimlerin katkıları görülmektedir. Son olarak yeşil eğride diğer terimlerinde eklenmesi sonucunda elde edilen sonuçlar bağlanma enerjisinin gözlenen davranışlarına oldukça iyi uymaktadır.

Şekil 2.5 : Yarı-deneysel kütle formülündeki çeşitli terimlerin nükleon başına bağlanma enerjisine katkıları

Yarı-deneysel bağlanma enerjisi formülü Denklem 2.1'de kullanılırsa elde edilen bağıntı yarı-deneysel kütle formülü olur. Yarı-deneysel kütle formülünün önemi bağlanma enerjisi gibi bir nükleer özelliğin sistematik davranışını anlamak için nükleer model uygulaması olmasıdır.

3. MALZEME VE YÖNTEM

Bu tez çalışmasında, farklı nükleer kütle modellerinin öngördüğü teorik δV_{pn} değerleri ile deneysel δV_{pn} değerleri arasındaki fark ($\Delta \delta V_{pn}$) ile hangi nükleer kütle modellerinin deneysel değerlerle daha uyumlu olduğu incelendi.

Nükleer kütle modellerinden Duflo-Zuker [10], Möller-Nix [11], DFT [12] ve Hartree-Fock-Bogoliubov-21 [13] nükleer kütle modelleri üzerine yoğunlaşıldı. Nötron ve proton numaralarının çift ya da tek olması durumuna göre Denklem 2.10, 2.12, 2.13 ve 2.14 kullanarak her model için kendi teorik δV_{pn} değerleri hesaplandı.

Deneysel δV_{pn} değerleri için deneysel mass excess değerleri AME2003 [14] (<u>A</u>tomic <u>M</u>ass <u>E</u>valuation, Atomik Kütle Düzenlemesi) atomik kütle değerlerinden kullanıldı.

Deneysel ve teorik olarak ayrı ayrı elde edilmiş olan δV_{pn} değerleri kullanılarak deneysel δV_{pn} değerlerinden teorik δV_{pn} değerleri arasındaki farklar ($\Delta \delta V_{pn}$) hesaplandı.

3.1. NÜKLEER KÜTLE MODELLERİ

3.1.1. Duflo – Zuker Kütle Modeli

J. Duflo ve A.P. Zuker (Duflo-Zuker) tarafından mikroskopik kütle formülleri konusunda 1995 yılında bir nükleer kütle modeli yayınlandı [10]. Bu oluşturulan nükleer kütle modeli yaklaşımı mikroskopik-makroskopik metodlardan daha temel bir yaklaşımdır. Duflo-Zuker kütle modelinin başlangıç noktası, Hartree-Fock hesaplamaları [15] için yeterince kolaylaştırılmış 'pseudopotential (sahte potansiyel)' varsayımıdır. Pseudopotential varsayımı, karmaşık sistemleri basitçe tanımlamak için kullanılan bir yaklaşımdır.

Duflo-Zuker tarafından oluşturulan nükleer kütle modeli 1995 yılında 28 parametreli ve 1996 yılında 10 parametreli olarak iki şekilde incelendi. Duflo-Zuker 28 parametreli kütle modeli, 346 keV rms (ortalama karekök) hata miktarı ile 1768 tane kütlede doğru sonuç verdi. Duflo-Zuker nükleer kütle modeli 1996 yılında ise 10 parametre kullanılarak 506 keV rms hata miktarı ile 1810 kütlede doğru sonuçlar vermiştir. Duflo-Zuker 10 parametreli kütle modelinde parametre miktarı daha az olmasına rağmen rms hata miktarı daha fazla olduğundan daha çok Duflo-Zuker 28 parametreli kütle modeli üzerinde durulur.

Duflo-Zuker nükleer kütle modeli, kabuk modeli hesaplamalarının iyi bir şekilde anlaşılmasını sağlamış ve genel ölçeklendirmeye dayanan kütle formülleri oluşturmuştur. Bu modelde N nötron ve Z proton sayısı 8'e eşit ve daha büyük ($N,Z\geq8$) olan çekirdekler ele alınmıştır.

Duflo-Zuker nükleer kütle modelinin başlangıç noktası olarak ele alınan Hamiltonyen ifadesi monopole ve multipole olmak üzere ikiye ayrılır:

$$H=H_m+H_M \tag{3.1}$$

 H_m : Hamiltonyenin monopole kısmı

H_M : Hamiltonyenin multipole kısmı

Monopole Hamiltonyen H_m kısmı saturasyon ve tek-parçacık özelliklerini içerir. Bu kısım iki-cisim etkileşmesi kısmından ayrıldığı için kabuk modeli hesaplamalarında önemlidir. Herhangi bir seviye için H_m 'in beklenen değeri ait olduğu konfigürasyonun ortalama enerjisidir. Ayrıca monopole Hamiltonyen terimi Hartree-Fock hesaplamaları için bir alt yapı gibi görev yapar.

Multipole Hamiltonyen H_M kısmında çiftlenim ve kuadrupol gibi terimler içerir ve kabuk modeli boşluğuna bağlı olan durumlara etki etmez. Multipole terimi Wigner ve çiftlenim bağıntılarının dahil olduğu en genel konfigürasyon karışımı olarak kabul edilerek saf Hartree-Fock ötesine ilerlemek için izin verilen artık (rezidü) bir etkileşme gibi davranır.

Monopole Hamiltonyen H_m ve özellikle kütle tablosu hakkında genel ifadeler söyleyebilmek için kabuk oluşumu ve kitle özelliklerinden sorumlu olan bazı baskın terimleri H_m ifadesinden çıkartmak gerekir. Bu durumda H_m ifadesindeki katsayılar tipik matris elemanları gibi davranmak zorundadırlar ve bu matrisler köşegen forma indirgenebilirler.

Duflo-Zuker nükleer kütle modelinde çekirdeklerin enerji değerleri de incelenmiştir. Z proton sayılı ve N nötron sayılı bir çekirdeğin enerji ifadesi şu şekilde yazılabilir:

$$E(Z, N) = \max(\langle H_m \rangle + \langle H_s \rangle, \langle H_m \rangle + \langle H_d \rangle)$$
(3.2)

Denklem 3.2'deki H_s terimi küresel çekirdeklerin enerjilerini ifade eder. H_s çoğunlukla alt-kabuk etkilerine bağlıdır. H_d terimi ise kalıcı olarak deforme olmuş taban durumların enerjilerini temsil eder. Deforme olmuş durumlar sadece proton ve nötronların farklı orbitlerini doldurduğu (örneğin; kütle numarası 100 civarındaki) bölgelerde izinlidir. Bu değerin altında deformasyonun başlangıcı keskin değildir ve çiftlenim etkileri daha güçlüdür.

3.1.2. Möller – Nix Kütle Modeli

P. Möller ve J.R. Nix (Möller-Nix) tarafından 1981 yılında yayınlanan [11] nükleer kütle modelinde sadece 5 tane sabit değer ile ¹⁶O'den ²⁵⁹No'a (Nobelyum) kadar 1323 tane çekirdeğin taban durum kütleleri hesaplandı. Yapılan bu hesaplamadaki rms hata miktarı 835 keV'dir. Ayrıca ¹⁶O'den ²⁷⁹112'ye kadar 4023 tane çekirdeğin nükleer taban durum deformasyonları ve atomik kütleleri tablo haline getirilmiştir. Çekirdeklerin taban durum kütlelerinin teorik hesaplamaları ve deformasyonları nükleer fizikte önemlidir. Bu nedenle Möller-Nix nükleer kütle modelindeki amaç mevcut olan deneysel kütleler ile modelin teorisine göre hesaplanan kütleleri karşılaştırmak ve ¹⁶O'dan ²⁷⁹112'ye kadar 4023 tane çekirdeğin bu oluşturdukları formülün tabanında hesaplanan deformasyon ve taban durum kütlelerini çizelge haline getirmektir.

Möller ve Nix, daha önceden ihmal edilmiş birçok fiziksel etkileri de içeren, folded-Yukawa mikroskopik modeli ile Yukawa-plus-exponansiyel makroskopik modeline dayanan yeni bir nükleer kütle formülü geliştirdiler. Bu yaklaşım fisyon, füzyon ve ağır iyon elastik saçılması için birleşik bir nükleer potansiyel sağlar. Möller-Nix nükleer kütle modelinin toplam potansiyel enerji formülü ise şöyledir:

$$\begin{split} E(Z,N, \varsigma ekil) &= \\ & M_{II}Z + M_{R}N \\ & -a_{v}(1-\kappa_{v}I^{2})A \\ & -\frac{a_{s}(1-\kappa_{s}I^{2})}{8\pi} \iint \left(\frac{|r-r'|}{a} - 2 \right) \\ & \times \frac{e^{-|r-r|/a}}{8\pi} \iint \left(\frac{a^{3}rd^{3}r'}{a} - 2 \right) \\ & \times \frac{e^{-|r-r|/a}}{|r-r'|} d^{3}rd^{3}r' \\ & +\frac{1}{2} \left(\frac{3eZ}{4\pi . r_{0}^{3}.A} \right)^{2} \iint \frac{d^{3}rd^{3}r'}{|r-r'|} \\ & -\frac{3}{4} \left(\frac{3}{2\pi} \right)^{2/3} \frac{e^{2}}{r_{0}} \frac{Z^{4/3}}{A^{1/3}} \\ & -\frac{1}{2} \left(\frac{3eZ}{4\pi . r_{0}^{3}.A} \right)^{2} \iint \left(1 + \frac{1}{2} \frac{|r-r'|}{a_{y}} \right) \\ & \times \frac{e^{-|r-r|/a}}{|r-r'|} d^{3}rd^{3}r' \\ & + W \left(|I| + \left\{ \frac{1/A}{A}, Z = N = \text{Tek say1} \right. \right) \\ & -a_{el}Z^{2.39} \\ & + \left\{ \frac{\Delta/A^{1/2} - (1/2)\delta/A, Z \text{ ve N tek}}{(1/2)\delta/A, Z \text{ ve N tek}} \\ & + \left\{ \frac{\Delta/A^{1/2} - (1/2)\delta/A, Z \text{ ve N gift} \\ & -\frac{1}{8} \frac{r_{p}^{2}e^{2}}{r_{0}^{3}} \left[\frac{145}{48} - \frac{327}{2880} (k_{f}r_{p})^{2} + \frac{1527}{1209600} (k_{f}r_{p})^{4} \right] \frac{Z^{2}}{A} \\ & + c_{0}A^{0} \\ & + c_{a}(Z - N) \\ & + E_{kabuk}(Z,N, \varsigma ekil) \\ & + E_{cpfletom}(Z,N, \varsigma ekil) \\ & + E_{cp}(Z,N) \end{split}$$
 (3.3)

Denklem 3.3'de bulunan A=Z+N terimi kütle numarası ve $k_f = [(9/4)\pi Z/A]^{1/3}/r_0$ terimi ise Fermi dalga sayısıdır. Denklem 3.3'deki çift integraller nükleer konfigürasyonun hacmi üzerinden alınır. Makroskopik enerji için ifade edilen A^0 terimini meydana getiren bir çok fiziksel etki vardır. Örneğin bir Gauss dağılımı A^0 sabit terimine neden olabilir.

Möller-Nix modeli, çekirdeklerin deformasyon ve taban durum kütleleri ve ε_2^- ve $\varepsilon_4^$ şekil koordinatlarını içeren, E(Z,N, şekil) toplam potansiyel enerjisinin en düşük durumu ederek ele aldı. Ayrıca ε_2^- ve ε_4^- şekil koordinatları, yalnız makroskopik enerjiyi minimalize ederek belirlenen ε_2 ve ε_4 koordinatlarına bağlı olan ε_6^- şekil koordinatını da içermektedir.

Kütleye katkıda bulunan küresel makroskopik katkı önemlidir. Bu küresel katkı için Denklem 3.3'deki son üç terim değerlendirilir. Bu değerlendirme sonucunda elde edilen makroskopik potansiyel enerji şöyledir:
$$\begin{split} E_{macro}(Z, N, k \ddot{u} r e) &= \\ M_{H} Z + M_{n} N - a_{V} (1 - \kappa_{V} I^{2}) A \\ &+ a_{S} (1 - \kappa_{8} I^{2}) A^{2/3} \Biggl\{ 1 - 3 \Biggl(\frac{a}{r_{0} A^{1/3}} \Biggr)^{2} + \Biggl(\frac{r_{0} A^{1/3}}{a} + 1 \Biggr) \\ &\times \Biggl[2 + 3 \frac{a}{r_{0} A^{1/3}} + 3 \Biggl(\frac{a}{r_{0} A^{1/3}} \Biggr)^{2} \Biggr] e^{-2r_{0} A^{1/3}/a} \Biggr\} \\ &+ \frac{3}{5} \frac{e^{2}}{r_{0}} \frac{Z^{2}}{A^{1/3}} - \frac{3}{4} \Biggl(\frac{3}{2\pi} \Biggr)^{2/3} \frac{e^{2}}{r_{0}} \frac{Z^{4/3}}{A^{1/3}} \\ &- \frac{3e^{2} a_{Y}^{2} Z^{2}}{r_{0}^{3} A} \Biggl\{ 1 - \frac{15}{8} \Biggl(\frac{a_{y}}{r_{0} A^{1/3}} \Biggr)^{+} \frac{21}{8} \Biggl(\frac{a_{y}}{r_{0} A^{1/3}} \Biggr)^{3} \\ &- \frac{3}{4} \Biggl[1 + \frac{9}{2} \Biggl(\frac{a_{y}}{r_{0} A^{1/3}} \Biggr)^{+} 7 \Biggl(\frac{a_{y}}{r_{0} A^{1/3}} \Biggr)^{2} \\ &+ \frac{7}{2} \Biggl(\frac{a_{y}}{r_{0} A^{1/3}} \Biggr)^{3} \Biggr] e^{-2r_{0} A^{1/3}/a_{y}} \Biggr\} \\ &+ W \Biggl(|I| + \Biggl\{ \frac{1}{A}, Z = N = \text{Tek} \\ 0, Di \check{g} er \Biggr) \\ &- a_{el} Z^{2.39} \\ &+ \Biggl\{ \frac{\Delta / A^{1/2} - (1/2) \delta / A, Z \text{ ve N tek} \\ + \Biggl\{ (\frac{1}{2}) \delta / A, Z \text{ ya da N tek} \\ - [\Delta / A^{1/2} - (1/2) \delta / A \Biggr\} Z \text{ ve N ciff} \\ &- \frac{1}{8} \frac{r_{p}^{2} e^{2}}{r_{0}^{3}} \Biggl[\frac{145}{48} - \frac{327}{2880} (k_{f} r_{p})^{2} + \frac{1527}{1209600} (k_{f} r_{p})^{4} \Biggr] \frac{Z^{2}}{A} \end{aligned}$$

Denklem 3.3 ve 3.4'deki nükleer potansiyel enerji ifadelerinin birbirinden farkı Denklem 3.4'deki makroskopik nükleer potansiyel enerji ifadesidir. Oysaki Denklem 3.3 hem makroskopik hem mikroskopik nükleer potansiyel enerjileri içermektedir:

$$E(Z, N, \text{sekil}) = E_{\text{macr}}(Z, N, \text{sekil}) + E_{\text{micr}}(Z, N, \text{sekil})$$
(3.5)

Toplam nükleer potansiyel enerji ifadesi $E_{macr}(Z, N, \text{şekil})$ makroskopik nükleer potansiyel enerji ve $E_{micr}(Z, N, \text{şekil})$ mikroskopik nükleer potansiyel enerji terimlerinin toplamıdır. Makroskopik ve mikroskopik nükleer potansiyel enerji terimleri incelenirse; mikroskopik enerji kısmı kendi içinde kabuk ve çiftlenim enerjisi olarak ikiye ayrılır:

$$E_{\text{micr}}(Z, N, \text{sekil}) = E_{\text{kabuk}}(Z, N, \text{sekil}) + E_{\text{ciftlenim}}(Z, N, \text{sekil})$$
(3.6)

 $E_{kabuk}(Z, N, şekil)$ kabuk terimi ve $E_{ciftlenim}(Z, N, şekil)$ çiftlenim terimi hesaplanmış olan tek-parçacık seviyelerinden elde edilir.

Möller-Nix modelinde makroskopik enerji terimi ise şu şekilde yazılır:

$$E_{macr}(Z, N, şekil) = M_{H}Z + M_{n}N - a_{v}(1 - \kappa_{v}I^{2})A + a_{s}(1 - \kappa_{s}I^{2})B_{1}A^{2/3} + c_{0}A^{0} + c_{1}\frac{Z^{2}}{A^{1/3}}B_{3} - c_{4}\frac{Z^{4/3}}{A^{1/3}}$$
(3.7)
+ $f(k_{f}r_{p})\frac{Z^{2}}{A} - c_{a}(N - Z) + W\left(|I| + \begin{cases} 1/A, \quad Z=N=\text{Tek} \\ 0, \quad \text{Diger} \end{cases}\right) + \frac{\{+\overline{\Delta}_{p} + \overline{\Delta}_{n} - \delta_{np}, \quad Z \text{ ve N tek} + \overline{\Delta}_{p}, \quad Z \text{ tek ve N cift} + \overline{\Delta}_{n}, \quad Z \text{ cift ve N tek} + 0, \quad Z \text{ ve N cift} - a_{el}Z^{2.39}$

Denklem 3.3, 3.4 ve 3.7'deki sabit terimler ise üç gruba ayrılır:

• Birinci grup, herhangi bir değişiklik yapılmadan daha önceki çalışmalardan alınan sabitlerin değerleridir. Ayrıca Denklem 3.6'da bulunan mikroskopik enerji terimindeki kabuk ve çiftlenim düzeltmelerinin hesaplanması için kullanılan folded-Yukawa tek-parçacık potansiyelinin sabitleri de birinci grupta bulunmaktadır. Bu grupta bulunan sabitler şunlardır:

$M_{\rm H} = 7.289034 \; {\rm MeV}$	hidrojen atomu için mass excess
$M_n = 8.071431 \text{ MeV}$	nötron için mass excess
$e^2 = 1.4399764 \text{ MeV fm}$	elektron yükünün karesi
$a_{el} = 1.433 \times 10^{-5} \text{ MeV}$	elektronik-bağlanma sabiti
$a_y = 0.99/2^{1/2} \text{ fm}$	nükleer yoğunluk dağılımı üretmek için kullanılan
	Yukawa fonksiyon aralığı
$\Delta = 12 \text{ MeV}$	çiftlenim-enerji sabiti
$\delta = 20 \text{ MeV}$	çiftlenim-asimetri sabiti
$r_{p} = 0.80 \text{ fm}$	protonun ortalama karekök yarıçapı

• İkinci grup, nükleer taban durum kütlelerinin dışında hesaplamalardan belirlenen sabitlerdir. Bu grupta bulunan sabitlerden r_0 sabitinin değeri nükleer yoğunluk dağılımının mikroskopik hesaplamalarından ve elastik elektron saçılmasından elde edilir. Diğer bir sabit olan a sabitinin değeri ağır-iyon elastik saçılımından elde edilir. a_s ve κ_s sabitlerinin değerleri ise fisyon bariyer yüksekliğinden elde edilir. Bu sabitlerin değerleri ise şunlardır:

$r_0 = 1.16 \text{ fm}$	nükleer yarıçap sabiti
a = 0.68 fm	Yukawa-puls-exponansiyel potansiyel aralığı
$a_{s} = 21.13 \text{ MeV}$	yüzey-enerji sabiti
$\kappa_{\rm S} = 2.3$	yüzey-asimetri sabiti

• Üçüncü grup ise nükleer taban durum kütleleri için bir en küçük kareler (leastsquares) düzenlemesinden elde edilen sabitlerdir. Bu sabitler şunlardır:

$a_V = 15.9937 \text{ MeV}$	hacim-enerji sabiti
$\kappa_{\rm V} = 1.927$	hacim-asimetri sabiti
W = 36 MeV	Wigner sabiti
$c_0 = 4.4 \text{ MeV}$	A ⁰ sabiti
$c_a = 0.212 \text{ MeV}$	yük-asimetri sabiti

Şekil 3.1 : N nötron sayısına göre taban durum mikroskopik enerjisinin teorik ve deneysel karşılaştırılması [11].

Möller-Nix deneysel hata miktarı 1 MeV'den daha az olan ¹⁶O'den ²⁵⁹No'ya kadar 1323 tane çekirdeğin taban durum mikroskopik enerji hesaplamaları ve deneysel değerleri Şekil 3.1'de karşılaştırılmıştır. Taban durum mikroskopik enerji, Denklem 3.4'de verilen küresel makroskopik enerji ifadesi ile taban durum kütlesi arasındaki farktır. Şekil 3.1'de izotoplar birbirlerine çizgilerle bağlıdır. Taban durum enerjisinin teorik ve deneysel değerleri arasında yapılan Şekil 3.1'deki karşılaştırma, ¹⁶O'dan ²⁵⁹No'ya kadar olan bölgedeki 1323 tane çekirdek için yapılmıştır.

Ayrıca Möller-Nix 1995 yılında nükleer kütle modelleri hakkında 30 yıl önce yayınladıkları makroskopik-mikroskopik nükleer kütle hesaplamalarını tekrar gözden geçirdiler [16]. Bu kütle modelinin yeni rms hata miktarı çekirdek tablosunda göz önüne alınan çekirdekler için 669 keV dır; fakat N nötron sayısı 65 ve daha fazla olan bölgedeki (N≥65) çekirdekler için yapılan hesaplamalardaki rms hata miktarı sadece 448 keV dır.

3.1.3. Yoğunluk Fonksiyonu Teorisi (DFT)

Yoğunluk fonksiyonu teorisi (DFT, Density Functional Theory) [12] fizik ve kimyada kullanılan maddenin elektronik yapısının kuantum teorisidir. DFT, çok cisimli sistemler için enerji fonksiyonlarının varoluşunu gösteren teoremlere dayanır. Yoğunluk fonksiyonu teorisi ile fonksiyonlar kullanılarak bir çoklu elektron sisteminin özellikleri belirlenebilir. DFT sayısal fizik, sayısal kimya ve yoğun madde fiziğinde mevcut en popüler ve kullanışlı metodlar arasındadır. Çoğu zaman katı-hal sistemleri için DFT hesaplamaları sonucu deneysel verilerle oldukça memnun edici bir uyum sağladığı için katı-hal fiziğindeki hesaplamalarda 1970'den beri DFT çok önem kazanmıştır.

Yoğunluk fonksiyonu teorisinde, karmaşık N tane elektron dalga fonksiyonu $\Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3, ..., \vec{x}_N)$ yerine daha basit olan elektron yoğunluğu $\rho(\vec{r})$ göz önüne alınır.

Thomas-Fermi modelinde (TF), DFT konusuyla ilgili ilk görüşler ortaya konulmuştur. TF modelindeki temel varsayım, çoklu cisim sistemindeki elektronik dağılımın istatiksel olarak göz önüne alınabileceğidir.

TF modelinde elektron yoğunluğunu elde etmek için uzayın *l* kenar uzunluğuna sahip çok sayıda l^3 hacimli kübik hücrelerden oluştuğu varsayımı yapılır. Her hücrede ΔN tane elektron olduğu ve bu elektronların mutlak sıfırda bağımsız fermiyonlar (spini buçuklu değerlere sahip parçacık, elektron v.b.) gibi davrandığı düşünülür. Bununla birlikte bütün hücreler birbirinden bağımsızdır. Her hücredeki ΔN sayısı değişebilirken, bir hücredeki elektron sayısı değişmez.

TF modelinin dezavantajı, moleküllere uygulandığında başarısız olmasıdır. Ayrıca TF modeli taban durumlar için DFT'ye bir yaklaşım olur.

Nükleer yoğunluk fonksiyonu teorisinin esas bileşenleri yerel nükleonik yoğunluklardır. Genel olarak yoğunluklar iki şekilde ele alınırsa;

- 1. Yerel parçacık-boşluk yoğunlukları (p-h); parçacık $\rho(r)$, kinetik $\tau(r)$, spin s_k(r), spin kinetik T_k(r), akım j_k(r), tensör-kinetik F_k(r), spin-akım J_{kl}(r) içerir.
- 2. Yerel parçacık parçacık (p-p; veya çiftlenim) yoğunlukları; $\tilde{\rho}(r), \tilde{\tau}(r), \tilde{s}_k(r), \tilde{T}_k(r), \tilde{j}_k(r), \tilde{F}_k(r)$ ve $\tilde{J}_{kl}(r)$ içermektedir.

Yerel p-h ve p-p yoğunlukları spin bağımlı (spin-dependent) tek-cisim etkileşimli yoğunluk matrisleri tarafından aşağıdaki şekilde tanımlanır:

$$\rho(r\sigma, r'\sigma') = \frac{1}{2}\rho(r, r')\delta_{\sigma\sigma'} + \frac{1}{2}\sum_{i} (\sigma|\sigma_{i}|\sigma')\rho_{i}(r, r')$$

$$\tilde{\rho}(r\sigma, r'\sigma') = \frac{1}{2}\tilde{\rho}(r, r')\delta_{\sigma\sigma'} + \frac{1}{2}\sum_{i} (\sigma|\sigma_{i}|\sigma')\tilde{\rho}_{i}(r, r')$$
(3.8)

Nükleer DFT iki tip nükleonla ilgili olduğundan dolayı, izospin serbestlik derecesi tanımlanmalı ve izoskaler ile izovektör yoğunluklar dikkate alınmalıdır.

Enerji yoğunluk fonksiyonu aşağıdaki şekilde yazılabilir.

$$E[\rho, \tilde{\rho}] = \int d^3 r \,\mathcal{H}(r) \tag{3.9}$$

Denklem 3.9'daki $\mathcal{H}(r)$ enerji yoğunluğudur. Genelde $\mathcal{H}(r)$ enerji yoğunluğu, p-p enerji yoğunluğu $\tilde{H}(r)$ ve p-h enerji yoğunluğu olan H(r)'nin toplamıdır.

Yoğunluk fonksiyonu teorisine göre nükleer sistemin eksiksiz bağlanma enerjisine sahip bir nükleer universal enerji fonksiyonu vardır. Bu fonksiyon prensipte, tüm çoklu nükleon ilişkilerini içermektedir. Yerel p-h ve p-p yoğunluklarında ikinci derecede olan enerji yoğunluk fonksiyonunun en genel formu time-reversal simetri, invaryans yük ve proton-nötron simetrisi gibi güçlü etkileşimin temel simetrilerini korumaktadır.

Uygulamada enerji yoğunluk fonksiyonunun basitleştirilmiş formları kullanılır. Örneğin, çift-çift çekirdeklerin taban durumu için p-h enerji fonksiyonu aşağıdaki gibi yazılabilir:

$$\tilde{H}(r) = \frac{1}{2} V_0 \left[1 - V_1 \left(\frac{\rho}{\rho_0} \right)^{\gamma} \right] \sum_q \rho_q^{-2}$$
(3.10)

Çift-çift çekirdeklerin taban durumu için p-p enerji fonksiyonu ise aşağıdaki gibidir:

$$H(r) = \frac{\hbar}{2M} \tau + \frac{1}{2} t_0 \left[\left(1 + \frac{1}{2} x_0 \right) \rho^2 - \left(\frac{1}{2} + x_0 \right) \sum_q \rho_q^2 \right] + \frac{1}{4} t_1 \left[\left(1 + \frac{1}{2} x_1 \right) \rho \left(\tau - \frac{3}{4} \Delta \rho \right) - \left(\frac{1}{2} + x_1 \right) \sum_q \rho_q \left(\tau_q - \frac{3}{4} \Delta \rho_q \right) \right] + \frac{1}{4} t_2 \left[\left(1 + \frac{1}{2} x_2 \right) \rho \left(\tau - \frac{1}{4} \Delta \rho \right) + \left(\frac{1}{2} + x_2 \right) \sum_q \rho_q \left(\tau_q + \frac{1}{4} \Delta \rho_q \right) \right] + \frac{1}{12} t_3 \rho^\alpha \left[\left(1 + \frac{1}{2} x_3 \right) \rho^2 - \left(x_3 + \frac{1}{2} \right) \sum_q \rho_q^2 \right] - \frac{1}{8} (t_1 x_1 + t_2 x_2) \sum_{ij} J_{ij}^2 + \frac{1}{8} (t_1 - t_2) \sum_{q,ij} J_{q,ij}^2 - \frac{1}{2} W_0 \sum_{ijk} \varepsilon_{ijk} \left[\rho \nabla_k J_{ij} + \sum_q \rho_q \nabla_k J_{q,ij} \right] + H^c(r)$$
(3.11)

Denklem 3.10 ve 3.11'den görüldüğü gibi Skyrme yoğunluk fonksiyonları yaklaşık 14 bilinmeyen parametre içermektedir.

p-p enerji fonksiyonu yoğunluğa bağlı delta etkileşimine uygundur. Genellikle $\gamma = 1$, $\rho_0 = 0,16 \text{ fm}^{-3}$ ve hacim, yüzey ya da karma çeşit çiftlenim için V₁=0,1 ya da ½'dir. Denklem 3.11'deki H^C(r) Slater yaklaşımında işlem gören exchange (değişim) terimi ile Coulomb enerji yoğunluğu yerine geçer.

3.1.4. Hartree-Fock-Bogoliubov (HFB)

J. M. Pearson, M. Onsi, S. Goriely ve M. Samyn nükleer kütle formüllerini nükleosentez r-süreci çalışmaları için geliştirmişlerdir. Bu r-sürecinin oluşumu nötron zengini (nötron sayısı daha fazla) olan ara çekirdeklerin kütlelerine bağlıdır. Bu nedenle r-süreci için bir kütle formülü gerekliydi. Bunun için de güvenilir bir kütle modeline ihtiyaçları vardı. Şimdiye kadar yapılmış kütle modellerinden farklı olan Hartree-Fock-Bogoliubov (HFB) kütle modelini oluşturdular. Yıllar ilerledikçe yapılan her çalışmada nötron ve proton numarası 8 ve daha büyük çekirdekler için yeni bir kütle tablosu elde edildi. Bu çalışmaların en sonuncusu HFB-21 [13] olarak isimlendirilmiştir. HFB21 için tamamlanan tablo, proton ve nötron drip line'ları arasında uzanan ve proton sayısı $8 \le Z \le 110$ ve nötron sayısı N ≥ 8 olan tüm çekirdekleri içeren 8389 tane kütle içermektedir [17].

Hartree-Fock-Bogoliubov modelinin kuvvetleri; konvansiyonel Skyrme kuvveti, çiftlenim kuvveti ve nötron ile proton sayısı birbirine eşit veya çok yakın olan çekirdekler için genelleştirilmiş Wigner terimidir. Kuvvet parametreleri tamamen orijinal Weizsäcker yarı-deneysel formülünde olduğu gibi kütle verilerine göre ayarlandı. Ayrıca kütleler için HFB kütle modelinde ayarlanmış olan kuvvetler, nötron yıldız maddesinin EOS (the Equation Of State) ifadesinin hesaplanmasında da çok iyi uyum sağlamıştır. Bunun yanı sıra, HFB denklemleri osilatör taban üzerinde açılarak çözülmektedir.

Hartree-Fock-Bogoliubov kütle modelinde kullanılmış olan kuvvet sonsuz nükleer ve nötron maddesinin realist hesaplamalarından elde edilen 4 parametreli bir çiftlenim kuvveti delta-fonksiyonu ile beraber genişletilmiş bir Skyrme kuvvetidir [18]. Çiftlenim korelasyonları Bogoliubov methodunun yapısında ifade edilmiştir. Eksenel ve sağ-sol simetri deformasyonları da kabul edilmiştir.

S. Goriely, N. Chamel ve J. M. Pearson tarafından 2010 yılında HFB-19, HFB-20 ve HFB-21 üç yeni Hartree-Fock-Bogoliubov kütle modeli elde edilmiştir [13]. Bu üç yeni HFB kütle modeli sırasıyla t_1 ve t_2 terimlerinin yoğunluğa bağlı genelleştirilmiş ifadeleri olan t_4 ve t_5 terimlerini içeren konvensiyol olmayan Skyrme kuvvetleri ile oluşturulmuştur. HFB kütle modellerinin her yeni versiyonunun isimlendirilmesi ise

HFB'den sonra verilen numaranın büyümesiyle devam etmektedir. HFB kütle modelinin en sonuncusu HFB-21 kütle modeli olduğundan dolayı bu tez çalışmasında HFB-21 kütle modelinin mass excess değerleri ele alındı. Bundan önceki elde edilmiş olan HFB kütle modellerinde konvensiyonel Skyrme kuvvetleri kullanılmıştır. HFB-21 kütle modelinin kuvvet parametreleri Tablo 3.1'de verilmiştir.

Parametre	Değeri
t ₀	-3961.39 MeV fm ³
t_1	396.131 MeV fm ⁵
t_2	0 MeV fm^5
t_3	22588.2 MeV fm ^{3+3α}
t_4	-100.000 MeV fm ^{5+3β}
t ₅	-150.000 MeV fm ^{5+3γ}
X_0	0.885231
X1	-0.0648452
t_2x_2	1390.38 MeV fm ⁵
X3	1.03928
X4	2.00000
X5	-11.0000
W_0	109.622 MeV fm ⁵
α	1/12
β	1/2
γ	1/12
f_n^+	1.00
f_p^+	1.07
f_n	1.05
f_p	1.13
V _W	-1.80 MeV
λ	280
Vw	0.96
A0	24

Tablo 3.1 : HFB-21 Kütle Modeli Parametreleri

Tablo 3.1'deki f_n^+ , f_n^- , f_p^+ ve f_p^- ifadeleri renormalizasyon faktörleridir ve f_n^- teriminin f_n^+ terimine oranı yaklaşık olarak f_p^- teriminin f_p^+ terimine oranına $(f_n^-/f_n^+ \cong f_p^-/f_p^+)$ eşittir. t₀, t₁, t₂, t₃, t₄, t₅, x₀, x₁, t₂x₂, x₃, x₄, x₅, W₀, α , β ve γ terimleri Skyrme parametreleridir. Ayrıca t₄ ve t₅ terimleri sırasıyla t₁ ve t₂ terimlerinin yoğunluğa bağlı geneleştirilmiş ifadeleridir. Tablo 3.1'deki son dört terim ise Wigner parametreleridir ve tabloda bulunan fm ve MeV birimleri de sırasıyla uzunluk ve enerji birimleridir.

HFB kütle modelinin toplam bağlanma enerjisi ifadesine Wigner enerjiside eklenmektedir. Böylece toplam bağlanma enerjisi bağıntısı aşağıdaki şekilde yazılır:

$$E_{top} = E_{HFB} + E_{wigner}$$
(3.12)

Buradaki E_{HFB} fenomenolojik bir titreşim düzeltme enerjisi ve sahte dönme enerjisine bir ayırma düzeltmesinin dahil olduğu HFB bağlanma enerjisidir. E_{wigner} ise Wigner enerjisi için fenomenolojik bir düzeltmedir ve formülü aşağıdaki şekilde yazılır:

$$E_{wigner} = V_{W} \exp\left\{-\lambda \left(\frac{N-Z}{A}\right)^{2}\right\} + V_{W}' \left|N-Z\right| \exp\left\{-\left(\frac{A}{A_{0}}\right)^{2}\right\}$$
(3.13)

Denklem 3.13'de bulunan Vw terimi her zaman negatiftir.

HFB-21 ile adlandırılmış final parametre takımı G. Audi, O. Bersillon, J. Blachot ve A. H. Wapstra' ın [14] proton ve nötron numarası 8 ve daha büyük 2149 tane ölçülmüş kütlesinin bütün veri takımı ayarları optimize edilerek belirlenmiştir. Bu veri takımı için ilgili ortalama karekök (root mean square) hata miktarı ise 0,577 MeV'dir.

3.2. AME2003 ATOMİK KÜTLE DÜZENLEMESİ

Nükleer kütle modellerinin teorik mass excess değerleri kullanılarak hesaplanan δV_{pn} değerleri ile deneysel mass excess değerlerinden elde edilen δV_{pn} değerlerini karşılaştırırken deneysel değerler için AME2003 [14] (Atomic Mass Evaluation, Atomik Kütle Düzenlemesi) verileri kullanıldı. AME2003'den önce 1993 yılında

AME'93 [19, 20, 21, 22] deneysel olarak elde edilmiş kütle değerlerinin tümü düzenlenip yayınlandı. İki yıl sonra AME'93 tekrar modifiye edilerek AME'95 [23] adı ile hazırlandı. Ayrıca AME2003 hesaplamasında kullanılmış verilerin %34 kadarı 1993 yılında yapılan AME'93 hesaplamalarında kullanılmamıştır.

AME2003 hesaplamalarında deneysel mass excess değerlerini içeren bir atomik kütle tablosu hazırlanmıştır ve bu tabloda kullanılan değerlerin her birinin referansları da tek tek verilmiştir. Yani AME kütle tablolarının her biri, deneysel olarak elde edilmiş atomik kütle değerlerinin bir derlemesidir. AME2003 atomik kütle tablosu, 325 tane uyarılmış izomer (201 deneysel ve 122 tane tahmini olanlar) ve 3179 tane taban durum kütleleri (2228 deneysel kütle ile 951 tane tahmini) olmak üzere toplam 3504 tane kütle içermektedir.

4. BULGULAR

Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri kendi teorilerinin öngördüğü δV_{pn} değerleri ile deneysel δV_{pn} değerleri arasındaki fark olan $\Delta \delta V_{pn}$ ifadesinin N nötron sayısına göre grafikleri nükleer tabloda farklı bölgedeki çekirdekler için elde edildi. Çift-çift çekirdekler (Z ve N çift sayıda) ve çift-tek çekirdekler (Z çift, N tek sayıda) için Z=10-28, Z=30-50, Z=52-82 ve Z=84-102 bölgeleri göz önüne alınırken tek-çift çekirdekler (Z tek, N çift sayıda) ve tek-tek çekirdekler (Z ve N tek sayıda) için Z=9-29, Z=31-51, Z=53-83 ve Z=85-101 bölgeleri ele alınmıştır. Çekirdekleri Z proton sayısı ve N nötron sayılarının çift veya tek olması durumuna göre ayırmamızın nedeni ise proton ve nötron sayılarının tek ve/veya çift sayıda olmasına göre δV_{pn} bağıntısının Denklem 2.10, 2.12, 2.13 ve 2.14'de gösterildiği gibi farklı olmasındandır.

Nükleer kütle modellerini incelemek için ele alınan Z=2-8 bölgesinde nükleer yapı üzerinde farklı etkilerin baskın olması ve bu bölgedeki kabuğun çok küçük olması nedeniyle Z=2-8 bölgesi δV_{pn} analizi için göz önüne alınmamıştır. Ek olarak DFT nükleer kütle modeli haricinde de Z=2-8 bölgesinde teorik bir çalışma bulunmamaktadır.

 δV_{pn} değerleri incelenirken çift-çift ve çift-tek çekirdekler için göz önüne alınan Z=10-28, Z=30-50, Z=52-82 ve Z=84-102 bölgelerinde bulunan çekirdekler Tablo 4.1'de gösterilmektedir.

Bölge	Çekirdekler
	$_{10}$ Ne (Neon)= $^{20-30}$ Ne, $_{12}$ Mg (Magnezyum)= $^{21-34}$ Mg,
	$_{14}$ Si (Silisyum)= $^{25-40}$ Si, $_{16}$ S (Kükürt)= $^{28-45}$ S,
Z=10-28	$_{18}$ Ar (Argon)= $^{32-47}$ Ar, $_{20}$ Ca (Kalsiyum)= $^{37-52}$ Ca,
	$_{22}$ Ti (Titanyum)= $^{42-57}$ Ti, $_{24}$ Cr (Krom)= $^{47-62}$ Cr,
	$_{26}$ Fe (Demir)= $^{51-68}$ Fe, $_{28}$ Ni (Nikel)= $^{55-72}$ Ni
Z=30-50	$_{30}$ Zn (Çinko)= ⁵⁹⁻⁸⁰ Zn, $_{32}$ Ge (Germanyum)= ⁶⁵⁻⁸⁵ Ge,
	$_{34}$ Se (Selenyum)= $^{69-89}$ Se, $_{36}$ Kr (Kripton)= $^{73-95}$ Kr,
	$_{38}$ Sr (Stronsiyum)= ⁷⁷⁻¹⁰² Sr, $_{40}$ Zr (Zirkonyum)= ⁸⁵⁻¹⁰⁵ Zr,
	$_{42}$ Mo (Molibden)= $^{87-110}$ Mo, $_{44}$ Ru (Rutenyum)= $^{95-115}$ Ru,
	$_{46}$ Pd (Palladyum)= $^{98-120}$ Pd, $_{48}$ Cd (Kadmiyum)= $^{100-130}$ Cd,
	$_{50}$ Sn (Kalay)= $^{102-134}$ Sn
	$_{52}$ Te (Tellür)= $^{108-137}$ Te, $_{54}$ Xe (Ksenon)= $^{112-146}$ Xe,
	$_{56}$ Ba (Baryum)= $^{121-148}$ Ba, $_{58}$ Ce (Seryum)= $^{127-151}$ Ce,
	$_{60}$ Nd (Neodim)= $^{131-156}$ Nd, $_{62}$ Sm (Samaryum)= $^{137-159}$ Sm,
Z=52-82	$_{64}$ Gd (Gadolinyum)= $^{141-163}$ Gd, $_{66}$ Dy (Disprosiyum)= $^{145-168}$ Dy,
	$_{68}$ Er (Erbiyum)= $^{151-174}$ Er, $_{70}$ Yb (İterbiyum)= $^{154-178}$ Yb,
	$_{72}$ Hf (Hafniyum)= $^{158-186}$ Hf, $_{74}$ W (Tungsten)= $^{162-190}$ W,
	$_{76}$ Os (Osmiyum)= $^{166-196}$ Os, $_{78}$ Pt (Platin)= $^{170-202}$ Pt,
	$_{80}$ Hg (Civa)= $^{174-208}$ Hg, $_{82}$ Pb (Kurşun)= $^{180-214}$ Pb
Z=84-102	$_{84}$ Po (Polonyum)= $^{189-220}$ Po, $_{86}$ Rn (Radon)= $^{197-229}$ Rn,
	$_{88}$ Ra (Radyum)= $^{203-230}$ Ra, $_{90}$ Th (Toryum)= $^{211-235}$ Th,
	$_{92}$ U (Uranyum)= ²²⁵⁻²⁴⁰ U, $_{94}$ Pu (Plütonyum)= ²²⁹⁻²⁴⁶ Pu,
	$_{96}$ Cm (Küriyum)= $^{240-250}$ Cm, $_{98}$ Cf (Kaliforniyum)= $^{244-254}$ Cf,
	$_{100}$ Fm (Fermiyum)= $^{248-257}$ Fm, $_{102}$ No (Nobelyum)= $^{254-257}$ No

Tablo 4.1 : δV_{pn} değerlerinin incelendiği bölgelerde bulunan çift-çift ve çift-tek çekirdekler

 δV_{pn} değerleri incelenirken tek-çift ve tek-tek çekirdekler için göz önüne alınan Z=9-29, Z=31-51, Z=53-83 ve Z=85-101 bölgelerinde bulunan çekirdekler ise Tablo 4.2'de gösterilmektedir.

Bölge	Çekirdekler
Z=9-29	$_{9}F$ (Flor)= $^{18-27}F$, $_{11}Na$ (Sodyum)= $^{20-33}Na$,
	$_{13}$ Al (Alüminyum)= ²⁴⁻³⁹ Al, $_{15}$ P (Fosfor)= ²⁸⁻⁴³ P,
	$_{17}$ Cl (Klor)= $^{32-46}$ Cl, $_{19}$ K (Potasyum)= $^{36-50}$ K,
	$_{21}$ Sc (Skandiyum)= $^{40-52}$ Sc, $_{23}$ V (Vanadyum)= $^{45-60}$ V,
	$_{25}$ Mn (Manganez)= $^{49-65}$ Mn, $_{27}$ Co (Kobalt)= $^{54-71}$ Co,
	$_{29}$ Cu (Bakır)= $^{58-76}$ Cu
Z=31-51	$_{31}$ Ga (Galyum)= $^{62-82}$ Ga, $_{33}$ As (Arsenik)= $^{66-87}$ As,
	$_{35}$ Br (Brom)= $^{72-92}$ Br, $_{37}$ Rb (Rubidyum)= $^{75-96}$ Rb,
	$_{39}$ Y (İtriyum)= ⁸⁵⁻¹⁰² Y, $_{41}$ Nb (Niyobyum)= ⁸⁶⁻¹⁰⁷ Nb,
	$_{43}$ Tc (Teknesyum)= $^{91-112}$ Tc, $_{45}$ Rh (Rodyum)= $^{96-118}$ Rh,
	$_{47}$ Ag (Gümüş)= ⁹⁸⁻¹²¹ Ag, $_{49}$ In (İndiyum)= ¹⁰⁴⁻¹³² In,
	₅₁ Sb (Antimon)= ¹¹²⁻¹²⁶ Sb
	$_{53}$ I (İyot)= ¹¹⁶⁻¹³⁹ I, $_{55}$ Cs (Sezyum)= ¹¹⁸⁻¹⁴⁸ Cs,
	$_{57}$ La (Lantan)= $^{126-148}$ La, $_{59}$ Pr (Praseodim)= $^{130-154}$ Pr,
	$_{61}$ Pm (Prometyum)= $^{134-158}$ Pm, $_{63}$ Eu (Evropyum)= $^{140-159}$ Eu,
7 52 92	₆₅ Tb(Terbiyum)= ¹⁴⁴⁻¹⁶⁴ Tb, ₆₇ Ho (Holmiyum)= ¹⁴⁸⁻¹⁷¹ Ho,
Z=33-65	$_{69}$ Tm (Tulyum)= $^{152-176}$ Tm, $_{71}$ Lu (Lutesyum)= $^{156-181}$ Lu,
	$_{73}$ Ta (Tantal)= $^{164-188}$ Ta, $_{75}$ Re (Renyum)= $^{170-193}$ Re,
	$_{77}$ Ir (İridyum)= ¹⁷⁴⁻¹⁹⁷ Ir, $_{79}$ Au (Altın)= ¹⁷⁸⁻²⁰³ Au,
	₈₁ Tl (Talyum)= ¹⁸²⁻²¹⁰ Tl, ₈₃ Bi (Bizmut)= ¹⁸⁸⁻²¹⁶ Bi
	$_{85}$ At (Astatin)= ¹⁹⁴⁻²²⁰ At, $_{87}$ Fr (Fransiyum)= ²⁰⁰⁻²²⁷ Fr,
Z=85-101	$_{89}$ Ac (Aktinyum)= $^{208-232}$ Ac, $_{91}$ Pa (Protaktinyum)= $^{214-238}$ Pa,
	$_{93}$ Np (Neptünyum)= $^{227-241}$ Np, $_{95}$ Am (Amerikyum)= $^{240-246}$ Am,
	₉₇ Bk (Berkelyum)= ²⁴⁴⁻²⁵¹ Bk, ₉₉ Es (Einsteinium)= ²⁵²⁻²⁵⁵ Es,
	₁₀₁ Md (Mendelevyum)= ²⁵⁶⁻²⁵⁸ Md

Tablo $4.2: \delta V_{pn}$ değerlerinin incelendiği bölgelerde bulunan tek-çift ve tek-tek çekirdekler

Tablo 4.1'de görüldüğü gibi Z=84-102 bölgesinde ve aynı şekilde Tablo 4.2'deki Z=85-101 bölgesinde sırasıyla 102 proton numaralı No (Nobelyum) ve 101 proton numaralı Md (Mendelevyum) çekirdekleri ile sonlanmalarının nedeni deneysel δV_{pn} değerlerinin hesaplanamamasıdır çünkü gerekli olan deneysel bağlanma enerjisi yoktur. Daha fazla deneysel bağlanma enerjisinin olmamasının nedeni ise deneysel mass excess değerlerinin ölçümünde ağır çekirdeklerde net sonuçlar alınmamasıdır. Kütle ölçümünde kısmen ya da tamamen izotoplar iyonize edildiğinde uyarılma enerjisi gibi bilgiler hafif çekirdeklerde deneysel olarak elde edilebiliyorken ağır çekirdeklerde elde edilemiyor.

4.1. ÇİFT-ÇİFT ÇEKİRDEKLER

Proton ve nötron sayıları çift sayı olan çekirdekler çift-çift çekirdekler olarak adlandırılırlar. Duflo-Zuker, Möller-Nix, DFT ve HFB-21 nükleer kütle modellerinin $\Delta\delta V_{pn}$ değerleri çift-çift çekirdekler için Z=10-28, Z=30-50, Z=52-82 ve Z=84-102 bölgelerinde ayrı ayrı analiz edildi.

Çift-çift çekirdekler için göz önüne aldığımız Z=10-28 bölgesinde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafikleri Şekil 4.1'de gösterilmektedir. Düşey eksendeki $\Delta\delta V_{pn}$ değerleri 2,5 MeV ile -1 MeV arasında ve yatay eksendeki N nötron numarası ise 10 ile 42 arasındadır.

Şekil 4.1 : Z=10-28, N=10-42 bölgesindeki çift-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Z=10-28 bölgesi için elde edilen Şekil 4.1'de dört farklı nükleer kütle modelini aynı anda inceleyebilmek için yatay ve düşey eksende aynı değer aralıkları kullanılmıştır. Yatay eksendeki $\Delta\delta V_{pn}$ değerleri 2,5 MeV'den -1 MeV'e kadarken, düşey eksendeki N nötron sayısı 10'dan 42'ye kadardır.

Bu dört kütle modelinde ilk dikkat çeken belli nötron sayılarında DFT ve HFB-21 kütle modellerindeki ani artışlardır. Wigner etkisi N=Z çekirdeklerinde görüldüğünden deneysel δV_{pn} değerlerinde bu durum maksimum δV_{pn} olarak görülür [24].

DFT kütle modelinde ₁₀Ne, ₁₂Mg, ₁₄Si, ₁₆S, ₁₈Ar, ₂₀Ca, ₂₂Ti, ₂₄Cr, ₂₆Fe ve ₂₈Ni çekirdeklerinin N=Z olan izotoplarında $\Delta\delta V_{pn}$ değerlerinde ani yükselişler gözlenmektedir ve yaklaşık olarak bu izotopların $\Delta\delta V_{pn}$ değerleri 50 keV'den daha büyük değerdedir. Değişim pozitif yönde olup deneysel verilerin modelden daha *bağlı* olduğu ve DFT'nin N=Z çekirdeklerinde çalışmadığı görülür. HFB-21 kütle modelinde $\Delta\delta V_{pn}$ değerleri N=Z'de negatif olduğundan, model deneysel verilerden daha bağlıdır ve DFT'ye benzer şekilde Wigner etkisi HFB-21 modelinde de iyi çalışmamaktadır.

Duflo-Zuker ve Möller-Nix modellerinde DFT ve HFB-21 modellerine göre N=Z'de daha iyi bir uyum görülür. Möller-Nix kütle modelinde ise sadece ₁₀Ne çekirdeğinin 10 nötron numaralı izotopu ile ₂₂Ti çekirdeğinin 22 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değerleri 50 keV'den daha büyüktür. Duflo-Zuker kütle modeli diğer üç kütle modeline kıyasla bu bölgedeki tüm çekirdekler için deneysel değerlerle daha iyi uyum sağlamıştır. Şekil 4.1'den de görüldüğü gibi Duflo-Zuker kütle modelinin Z=10-28 bölgesinde bulunan ₁₀Ne, ₁₂Mg, ₁₄Si, ₁₆S, ₁₈Ar, ₂₀Ca, ₂₂Ti, ₂₄Cr, ₂₆Fe ve ₂₈Ni çekirdeklerinin tüm izotopları için $\Delta\delta V_{pn}$ değerleri 50 keV'den daha azdır. Deneysel ve teorik δV_{pn} değerleri arasındaki farkı ifade eden $\Delta\delta V_{pn}$ değerlerinin sıfıra yakınlığı deneysel değerler ile teorik değerlerin birbiri ile olan uyumunu gösterdiğinden Duflo-Zuker modeli bu bölge çekirdekleri ile iyi çalışmaktadır.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 17, Möller-Nix kütle modelinde 7, DFT'de 10 ve HFB-21'de 6 dır. Çift-çift çekirdekler için göz önüne aldığımız Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin $\Delta\delta V_{pn}$ değerlerinin Z=30-50 bölgesinde N nötron sayısına göre grafikleri Şekil 4.2'de gösterilmektedir. Düşey eksendeki $\Delta\delta V_{pn}$ değerleri 0,8 MeV ile -0,4 MeV arasında ve yatay eksendeki N nötron numarası ise 30 ile 82 arasındadır.

Şekil 4.2 : Z=30-50, N=30-82 bölgesindeki çift-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Şekil 4.2'deki Duflo-Zuker kütle modelinde N=42'de $_{30}$ Zn çekirdeğinde, N=48'de $_{32}$ Ge çekirdeğinin, N=50'de $_{34}$ Se, $_{36}$ Kr ve $_{38}$ Sr çekirdeklerinin, N=64'de $_{40}$ Zr çekirdeğinin ve N=58 ve 60'da $_{42}$ Mo çekirdeğinin $\Delta\delta V_{pn}$ değerlerinin keskin bir şekilde 100 keV üstünde değerlere sahip olduğu görülmektedir. Duflo-Zuker 28 parametreli kütle modeline göre Z=30-50 bölgesindeki tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den az olan çekirdekler $_{44}$ Ru ve $_{48}$ Cd çekirdekleridir. Ayrıca $_{32}$ Ge ve $_{34}$ Se çekirdeklerinin N=48, 50 nötron numaralı izotopları, $_{36}$ Kr çekirdeğinin N=38, 50 nötron numaralı, $_{40}$ Zr çekirdeğinin N=56, 60, 64 nötron numaralı izotopları ve $_{46}$ Pd çekirdeğinin 70 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri de 50 keV'den daha azdır. $_{30}$ Zn çekirdeğinin 42 nötron numaralı izotopu, $_{38}$ Sr çekirdeğinin 50 nötron numaralı izotopunun, $_{50}$ Sn çekirdeğinin 82 nötron numaralı izotopu ve $_{42}$ Mo çekirdeğinin N=56,

58, 60 nötron numaralı izotopları dışındaki tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 100 keV'den daha küçük bir değere sahiptir.

Z=30-50 bölgesinde Şekil 4.2'deki Möller-Nix kütle modelindeki ₃₂Ge çekirdeğinin N=34, 38, 48 nötron numaralı izotopları, ₃₄Se çekirdeğinin N=44, 50 nötron numaralı izotopları ve ₃₈Sr çekirdeğinin N=42, 44, 58 nötron numaralı izotopları dışında geri kalan tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'dan daha küçüktür. Bu kütle modelinin ₃₀Zn çekirdeğinin N=30, 44 nötron numaralı izotopları, ₃₆Kr çekirdeğinin N=42, 44, 46 nötron numaralı, ₄₀Zr çekirdeğinin N=50, 56, 64 nötron numaralı izotopları, ₄₄Ru çekirdeğinin 58 nötron numaralı, ₄₆Pd çekirdeğinin 52 nötron numaralı izotopları dışında geri kalan tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha fazla değildir. ₄₈Cd çekirdeğinin ise bu bölgedeki tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha fazla değildir. ₄₂Mo çekirdeğinin 58 ve 60 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV'den fazladır. Ayrıca Şekil 4.2'de görüldüğü gibi ₃₀Zn, ₃₂Ge, ₃₄Se, ₃₆Kr, ₃₈Sr, ₄₀Zr, ₄₂Mo ve ₅₀Sn çekirdeklerinin $\Delta\delta V_{pn}$ değerlerinde ani değişimler gözlenmektedir.

DFT modelinin Şekil 4.2'de gösterilen N nötron numarasına göre $\Delta \delta V_{pn}$ değerleri grafiğinde görüldüğü gibi ₃₂Ge çekirdeğinin N=46, 48 nötron numaralı izotopları, ₃₄Se çekirdeğinin N=36, 50 nötron numaralı izotopları, ₃₆Kr çekirdeğinin N=46, 50 izotopları, ₄₄Ru çekirdeğinin N=52, 58, 64 nötron numaralı izotopları ve ₄₈Cd çekirdeğinin N=58 nötron numaralı izotopu haricindeki tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 50 keV'den daha azdır. DFT modelindeki geri kalan çekirdeklerden ₃₀Zn çekirdeğinin N=30, 42 nötron numaralı izotopları, (⁶⁰Zn, N=Z), ₃₈Sr çekirdeğinin N=50, 56 nötron numaralı izotopları, ₄₀Zr çekirdeğinin N=56, 64 nötron numaralı izotopları, ₄₆Pd çekirdeğinin nötron numarası 70 olan izotopu ve ₅₀Sn çekirdeğinin ise N=54, 82 nötron numaralı izotopları dışındaki tüm izotoplarının $\Delta \delta V_{pn}$ değeri 100 keV'den daha küçük bir değere sahiptir. Ayrıca ₄₂Mo çekirdeğinin nötron numarası 52, 54, 62 ve 64 olan izotopları dışındaki izotoplarının $\Delta \delta V_{pn}$ değerleri 100 keV'dan daha büyük değerdedir.

HFB-21 kütle modelinde ise Şekil 4.2'den de görülebileceği gibi $_{30}$ Zn çekirdeğinin N=30, 32, 36, 40, 42 ve 44 olan izotoplarının, $_{32}$ Ge çekirdeğinin N=34, 48 izotoplarının,

³⁴Se çekirdeğinin sadece N=36 nötron numaralı ve ₃₆Kr çekirdeğinin sadece N=38 nötron numaralı izotopunun, ₃₈Sr çekirdeğinin N=40, 56 izotoplarının, ₄₀Zr çekirdeğinin Z=50, 64 izotoplarının, ₄₂Mo çekirdeğinin N=58, 60 izotoplarının, ₄₈Cd çekirdeğinin sadece N=52 olan izotopunun ve ₅₀Sn çekirdeğinin ise N=52, 58, 70, 76 ve 82 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha büyük değerdedir. Geri kalan tüm izotopların $\Delta\delta V_{pn}$ değerleri ise 100 keV'den küçüktür.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 82, Möller-Nix kütle modelinde 59, DFT'de 66 ve HFB-21'de 59 kadardır.

Z=52-82 bölgesinde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafikleri Şekil 4.3'de gösterilmektedir. Şekil 4.3'de görüldüğü üzere dört kütle modeli için de düşey eksendeki $\Delta\delta V_{pn}$ değerleri 0,3 MeV'den -0,4 MeV'e kadardır. Yatay eksendeki N nötron numarası ise 52'den 130'a kadardır.

Şekil 4.3 : Z=52-82, N=52-130 bölgesindeki çift-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.3'de görüldüğü gibi ₅₈Ce, ₈₀Hg çekirdeklerinin nötron numarası 84 ile 126 arasındaki tüm izotopları ile ₆₀Nd çekirdeğinin sadece N=92 nötron numaralı izotopu ve ₆₆Dy çekirdeğinin N=98 nötron numaralı izotopu dışındaki tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den daha küçüktür. Yine aynı bölgede nötron numarası 84 ile 126 arasındaki ₅₄Xe, ₅₆Ba, ₆₂Sm, ₆₄Gd, ₆₈Er, ₇₆Os ve ₇₈Pt çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha az bir değere sahiptir. Ayrıca ₇₀Yb çekirdeğinin N=94 nötron numaralı, ₇₂Hf çekirdeğinin N=96 nötron numaralı, ₇₄W çekirdeğinin N=98 nötron numaralı ve ₈₂Pb çekirdeğinin N=126 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha büyüktür. Möller-Nix kütle modeline benzer şekilde ₅₂Te çekirdeğinin N=84 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değeri 150 keV'den büyüktür.

Şekil 4.3'de gösterilen grafikteki Möller-Nix kütle modelinde nötron numarası 84 ile 126 arasındaki ₆₆Dy, ₇₂Hf, ₇₄W çekirdeklerinin tüm izotopları ve N=90, 92 izotopları hariç ₆₀Nd çekirdeğinin, N=96 izotopu hariç ₆₂Sm çekirdeğinin, N=90 izotopu hariç ₆₄Gd çekirdeğinin, N=88, 92 izotopları hariç ₆₈Er çekirdeğinin ve N=84, 96, 102 izotopları hariç ₇₀Yb çekirdeğinin diğer tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den daha küçüktür. Nötron numarası 84 ile 126 arasındaki, ₅₆Ba çekirdeğinin tüm izotopları ile ₅₈Ce çekirdeğinin N=92, ₇₆Os çekirdeğinin N=112, ₇₈Pt çekirdeğinin N=110, 120, ₈₀Hg çekirdeğinin N=110 ve ₅₂Te çekirdeğinin N=60 ve 80 nötron numaralı izotopları dışındaki tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'dan küçüktür. Sadece ₅₂Te çekirdeğinin N=84 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değeri 150 keV'den büyük değere sahiptir. Ayrıca Şekil 4.3'deki DFT, HFB-21 kütle modellerinde olduğu gibi Möller-Nix kütle modelinin grafiğinde de ₈₂Pb çekirdeğinin N=118 değerinden sonra $\Delta\delta V_{pn}$ değerlerinde ani değişimler gözlenmektedir.

DFT modelinin Şekil 4.3'de N nötron sayısının bir fonksiyonu olarak $\Delta\delta V_{pn}$ değerlerinin grafiksel gösterimi görülmektedir. ₅₈Ce, ₆₄Gd, ₇₄W, ₇₆Os çekirdeklerinin nötron sayısı 84 ile 126 arasındaki tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'dan daha küçüktür. Aynı bölgede ₈₀Hg çekirdeğinin N=122 ve 124 nötron numaralı izotopları ve ₇₀Yb çekirdeğinin N=90 nötron numaralı izotopu haricinde geri kalan nötron numarası 84 ile 126 arasındaki tüm izotopları da $\Delta\delta V_{pn}$ değerleri 50 keV'den küçüktür. Ayrıca nötron numarası 84 ile 126 arasındaki ₆₀Nd, ₆₂Sm, ₆₆Dy, ₆₈Er, ₇₂Hf, ₇₈Pt çekirdeklerinin

tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha küçük değerlere sahiptir. ₈₂Pb çekirdeğinin N=126 nötron numaralı izotopu haricindeki nötron numarası 84 ile 126 arasındaki izotopları ve ₅₄Xe çekirdeğinin izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV'den daha azdır. En belirgin olarak Şekil 4.3'de görüldüğü gibi Hg ve Pb çekirdeklerinin N nötron numarası 114'den büyük olan izotoplarında $\Delta\delta V_{pn}$ değerlerinde ani değişimler gözlenmiştir. ₅₂Te çekirdeğinin ise N=60 ve 84 nötron numaralı izotopları haricinde tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den küçüktür. Duflo-Zuker, Möller-Nix ve HFB-21 kütle modellerine benzer şekilde DFT kütle modelinde de ₅₂Te çekirdeğinin N=84 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değeri yine 150 keV'den büyüktür.

HFB-21 kütle modelinin Şekil 4.3'de görüldüğü üzere N nötron numarasına göre $\Delta \delta V_{pn}$ değerlerinin grafiksel gösterimidir. Bu bölgede bulunan ₅₂Te çekirdeğinin N=62 nötron numaralı izotopu, ₅₄Xe çekirdeğinin N=60 ve 70 nötron numaralı izotoplarının, ₅₈Ce ve ₆₀Nd çekirdeklerinin sırasıyla sadece 80 nötron numaralı ve 92 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 100 keV ve 150keV arasındadır. Sadece ₅₄Xe çekirdeğinin N=58 ve 82 nötron numaralı izotoplarının, ₈₂Pb çekirdeğinin N=124 ve 126 nötron numaralı izotoplarının, ₇₄W çekirdeğinin N=114 nötron numaralı izotoplurun, ₅₂Te çekirdeğinin N=58, 80, 82 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri ve Duflo-Zuker ve Möller-Nix kütle modellerine benzer şekilde ₅₂Te çekirdeğinin N=84 nötron numaralı izotopunun $\Delta \delta V_{pn}$ değeri 150 keV'den büyüktür.

Z=52-82, N=52-130 bölgesi için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 153, Möller-Nix kütle modelinde 145, DFT'de 138 ve HFB-21'de 140 kadardır.

Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin Z=84-102 bölgesindeki $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafikleri Şekil 4.4'de gösterilmektedir. Şekil 4.4'de görüldüğü üzere düşey eksendeki $\Delta\delta V_{pn}$ değerleri 0,3 MeV'den -0,3 MeV'e kadardır. Yatay eksendeki N nötron numarası ise 106'dan 158'e kadardır.

Şekil 4.4 : Z=84-102, N=106-158 bölgesindeki çift-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Z=84-102 bölgesinde bulunan Şekil 4.4.a'dan da görüldüğü gibi ₈₆Rn, ₈₈Ra, ₉₀Th, ₉₂U, ₉₄Pu, ₉₆Cm, ₉₈Cf ve ₁₀₂No çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'nin altında değerlere sahiptir. Bunların haricinde ₈₄Po çekirdeğinin 128 ve 132 nötron numaralı izotoplarının ve ₁₀₀Fm çekirdeğinin sadece 152 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değerleri 50 keV'den büyüktür.

Möller-Nix kütle modelinin Şekil 4.4.b'de bulunan grafiğinde görüldüğü üzere ₈₄Po çekirdeğinin N=106, 126 ve 128 nötron numaralı izotoplarının, ₈₈Ra çekirdeğinin N=132 ve 136 nötron numaralı izotoplarının, ₉₀Th ve ₉₂U çekirdeklerinin ise sırasıyla sadece N=134 ve N=136 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den büyüktür. ₉₄Pu ve ₁₀₂No çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den küçüktür.

DFT kütle modelinin Şekil 4.4.c'de bu bölge için $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafiksel gösterimi verilmiştir. ⁸⁴Po çekirdeğinin N=108, 122, 124, 126, 128, 130 ve 132 nötron numaralı izotoplarının, ⁸⁶Rn çekirdeğinin N=112, 122, 126, 128, 130,

132, 134 ve 136 nötron numaralı izotoplarının, ₈₈Ra çekirdeğinin N=116, 126, 128, 130, 140 ve 142 nötron numaralı izotoplarının ve ₉₀Th ile ₁₀₀Fm çekirdeklerinin sırasıyla sadece N=128 ile N=152 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den daha büyüktür. ₉₂U, ₉₄Pu, ₉₆Cm, ₉₈Cf ve ₁₀₂No çekirdeklerinin ise bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den daha küçük bir değere sahiptir.

Şekil 4.4.d'de verilen HFB-21 kütle modelinde ₈₄Po çekirdeğinin N=108, 122, 124, 126 ve 136 nötron numaralı izotoplarının, ₈₆Rn çekirdeğinin N=124, 126, 128, 130 ve 136 nötron numaralı izotoplarının, ₉₀Th çekirdeğinin N=132, 138, 142 nötron numaralı izotoplarının, ₁₀₀Fm çekirdeğinin N=150, 152, 154 nötron numaralı izotoplarının ve ₉₂U, ₉₄Pu ve ₉₆Cm, çekirdeklerinin sırasıyla sadece 136, 148 ve 150 nötron numaralı izotoplarının ve ₉₈Cf ile ₁₀₂No çekirdeklerinin sadece 154 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV değerinden daha büyüktür. Z=84-102 bölgesinde, HFB-21 kütle modelinde bir tek ₈₈Ra çekirdeğinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 50 keV'den küçük değerlerdedir.

Bu bölge için Duflo-Zuker kütle modelinde 79, Möller-Nix kütle modelinde 51, DFT'de 58 ve HFB-21'de 61 adet çekirdeğin $\Delta\delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşüktür. Bu bölge çekirdekleri için deney ile en uyumlu Duflo-Zuker kütle modeli görülmektedir.

4.2. ÇİFT-TEK ÇEKİRDEKLER

Proton numarası çift sayı, nötron numarası ise tek sayı olan çekirdekler çift-tek çekirdekler olarak adlandırılırlar. Duflo-Zuker, Möller-Nix, DFT ve HFB-21 nükleer kütle modellerinin $\Delta\delta V_{pn}$ değerleri çift-tek çekirdekler için yine çift-çift çekirdeklerde olduğu gibi Z=10-28, Z=30-50, Z=52-82 ve Z=84-102 bölgelerinde ayrı ayrı analiz edildi.

Z=10-28 bölgesinde çift-tek çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için elde edilmiş olan grafikler Şekil 4.5'de gösterilmektedir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 2 MeV ile -3 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 9'dan 41'e kadardır.

Şekil 4.5 : Z=10-28, N=9-41 bölgesindeki çift-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Şekil 4.5.a'daki Duflo-Zuker kütle modelinde ₁₀Ne çekirdeğinin N=13, 15 izotoplarının, ₁₂Mg ve ₂₆Fe çekirdeklerinin sırasıyla sadece 19 ve 37 nötron numaralı izotoplarının, ₁₄Si çekirdeğinin N=11, 13, 15, 17, 21 nötron numaralı izotoplarının, ₁₆S çekirdeğinin N=13, 17, 19, 21, 23, 25, 27 nötron numaralı izotoplarının, ₁₈Ar çekirdeğinin N=17, 21, 25, 27, 29 nötron numaralı izotoplarının, ₂₀Ca çekirdeğinin N= 27, 29 nötron numaralı izotoplarının, ₂₂Ti çekirdeğinin N= 27, 29, 31 nötron numaralı izotoplarının, ₂₄Cr çekirdeğinin N=25, 27, 31 nötron numaralı izotoplarının ve ₂₈Ni çekirdeğinin ise N=27, 29, 39 ve 41 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV değerinden büyüktür.

Möller-Nix kütle modelinin Şekil 4.5'de gösterilen Z=10-28 bölgesindeki grafiğinden görüldüğü üzere $_{10}$ Ne çekirdeğinin N=11, 13, 15 izotoplarının, $_{12}$ Mg çekirdeğinin N=9, 15, 17 ve 19 nötron numaralı izotoplarının, $_{14}$ Si çekirdeğinin N=11, 15, 17, 19, 21 izotoplarının, $_{16}$ S çekirdeğinin N=13, 15, 17, 19, 21, 23, 25, 27 nötron numaralı izotoplarının, $_{18}$ Ar çekirdeğinin N=15, 17, 19, 21, 23, 25, 27, 29 nötron numaralı izotoplarının, $_{20}$ Ca çekirdeğinin N=17, 19, 27, 29 izotoplarının, $_{22}$ Ti çekirdeğinin N=21,

23, 25, 27, 29, 31 nötron numaralı izotoplarının, ₂₄Cr çekirdeğinin N=23, 25, 27, 31 izotoplarının, ₂₆Fe çekirdeğinin N=25, 31, 37 izotoplarının ve ₂₈Ni çekirdeğinin ise N=27, 29, 37, 41 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV değerinden büyüktür. Geri kalan diğer izotopların $\Delta\delta V_{pn}$ değerleri ise 100 keV'den küçüktür.

DFT kütle modelinin Şekil 4.5.c'de gösterildiği gibi Z=10-28 bölgesinde bulunan 10Ne cekirdeğinin N=9, 11, 13, 15 nötron numaralı izotoplarının, ₁₂Mg çekirdeğinin N=9, 11, 13, 15, 19 nötron numaralı izotoplarının, 14Si çekirdeğinin N=11, 13, 15, 17, 21 nötron numaralı izotoplarının, 16S çekirdeğinin N=15, 17, 19, 23, 25, 27 nötron numaralı izotoplarının, 18Ar çekirdeğinin N=17, 19, 25, 27, 29 nötron numaralı izotoplarının, 20Ca çekirdeğinin N=17, 19, 21, 27, 29 nötron numaralı izotoplarının, 22Ti çekirdeğinin N=21, 23, 25, 27, 29, 31 nötron numaralı izotoplarının, 24Cr çekirdeğinin N=23, 25, 29, 31 nötron numaralı izotoplarının, 26Fe çekirdeğinin N=25, 27, 29, 37 nötron numaralı izotoplarının ve son olarak ₂₈Ni çekirdeğinin N=27, 29, 39 ve 41 nötron numaralı 100 keV'den daha büyüktür. izotoplarının $\Delta \delta V_{pn}$ değerleri Ayrıca N=Z çekirdeklerindekine benzer şekilde N~Z çekirdeklerinde de Wigner etkisi görüldüğünden dolayı deneysel δV_{pn} değerlerinde bu etki maksimum δV_{pn} olarak görülür [24].

HFB-21 kütle modelinin Şekil 4.5.d'de bulunan grafiğine göre ₁₀Ne çekirdeğinin N= 9, 11, 13, 15 izotoplarının, ₁₂Mg çekirdeğinin N=9, 11, 13, 15 ve 17 izotoplarının, ₁₄Si çekirdeğinin N=11, 13, 19, 21 izotoplarının, ₁₆S çekirdeğinin N=13, 15, 23, 25, 27 izotoplarının, ₁₈Ar çekirdeğinin N=15, 17, 19, 21, 23, 25, 27, 29 izotoplarının, ₂₀Ca çekirdeğinin N=17, 19, 21, 23, 25, 27 izotoplarının, ₂₂Ti çekirdeğinin N=21, 23, 25, 27, 29, 31 izotoplarının, ₂₄Cr çekirdeğinin N=23, 25, 29, 31, 33, 35 izotoplarının, ₂₆Fe çekirdeğinin N=25, 27, 35, 37 izotoplarının ve ₂₈Ni çekirdeğinin N=27, 29, 31, 37 ve 39 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 100 keV'den daha büyük değerlerdedir. Geri kalan diğer izotopların $\Delta\delta V_{pn}$ değerleri ise 100 keV'den küçüktür.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 17, Möller-Nix kütle modelinde 10, DFT'de 8 ve HFB-21'de 3 kadardır. Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin Z=30-50 bölgesinde bulunan çift-tek çekirdekler için elde edilmiş olan grafikler Şekil 4.6'da gösterilmektedir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 0,6 MeV ile -0,6 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 29'dan 81'e kadardır.

Şekil 4.6 : Z=30-50, N=29-81 bölgesindeki çift-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Şekil 4.6.a'daki Duflo-Zuker kütle modelinin Z=30-50 bölgesinde bulunan $_{30}$ Zn ve $_{36}$ Kr çekirdeklerinin sadece 39 nötron numaralı izotoplarının, $_{38}$ Sr çekirdeğinin N=39, 49 nötron numaralı izotoplarının, $_{48}$ Cd ve $_{50}$ Sn çekirdeklerinin sırasıyla sadece 73 ve 75 nötron numaralı izotoplarının ve $_{42}$ Mo çekirdeğinin N=55, 57 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV değerinden büyüktür.

Möller-Nix kütle modelinin Şekil 4.6.b'de gösterilen grafiğine göre $_{30}$ Zn çekirdeğinin N=29, 43 nötron numaralı izotoplarının, $_{32}$ Ge çekirdeğinin N=33, 39, 41 nötron numaralı izotoplarının, $_{36}$ Kr çekirdeğinin N=39, 41, 47 nötron numaralı izotoplarının, $_{38}$ Sr, $_{40}$ Zr ve $_{42}$ Mo çekirdeklerinin sırasıyla sadece 41, 57 ve 55 nötron numaralı

izotoplarının ve ${}_{50}$ Sn çekirdeğinin N=57 ve 79 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 200 keV'den daha büyüktür.

Şekil 4.6.c'de bulunan DFT kütle modeli grafiğindeki $_{30}$ Zn çekirdeğinin N=29, 39 nötron numaralı izotoplarının, $_{32}$ Ge, $_{36}$ Kr, $_{38}$ Sr, $_{44}$ Ru, $_{46}$ Pd ve $_{48}$ Cd çekirdeklerinin sırasıyla sadece 33, 39, 49, 61, 71 ve 73 nötron numaralı izotoplarının, $_{34}$ Se çekirdeğinin N=35 ve 37 nötron numaralı izotoplarının, $_{40}$ Zr çekirdeğinin N=55, 57 nötron numaralı izotoplarının ve $_{42}$ Mo çekirdeğinin N=49, 55 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV değerinden daha büyüktür. Geri kalan tüm izotoplar ise 200 keV'den küçüktür.

HFB-21 kütle modelinin Şekil 4.6.d'de görüldüğü üzere $_{30}$ Zn çekirdeğinin N=29, 31, 41 nötron numaralı izotoplarının, $_{32}$ Ge çekirdeğinin N=33, 37, 41, 43 nötron numaralı izotoplarının, $_{34}$ Se çekirdeğinin N=35, 41 nötron numaralı izotoplarının, $_{36}$ Kr, $_{38}$ Sr, $_{44}$ Ru, $_{46}$ Pd ve $_{48}$ Cd çekirdeklerinin sırasıyla sadece 43, 59, 65, 57 ve 51 nötron numaralı izotoplarının, $_{40}$ Zr çekirdeğinin N=45, 59 nötron numaralı izotoplarının, $_{42}$ Mo çekirdeğinin N=53, 55, 57 nötron numaralı izotoplarının ve son olarak $_{50}$ Sn çekirdeğinin N=57 ve 75 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV'den büyüktür.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 55, Möller-Nix kütle modelinde 33, DFT'de 45 ve HFB-21'de 33 kadardır.

Z=52-82 bölgesindeki çift-tek çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.7'de verilmiştir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 0,6 MeV ile -0,4 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 57'den 129'a kadardır.

Şekil 4.7 : Z=52-82, N=57-129 bölgesindeki çift-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.7.a'da gösterilen grafiğine göre ${}_{52}$ Te, ${}_{62}$ Sm ve ${}_{82}$ Pb çekirdeklerinin sırasıyla sadece 65, 75 ve 125 nötron numaralı izotoplarının ve ${}_{60}$ Nd çekirdeğinin N=73 ve 75 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV'den büyüktür. Z=52-82 bölgesinde bulunan ${}_{64}$ Gd, ${}_{68}$ Er, ${}_{70}$ Yb, ${}_{74}$ W ve ${}_{76}$ Os çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV'den küçüktür.

Möller-Nix kütle modelinin Şekil 4.7.b'de Z=52-82 bölgesindeki $\Delta\delta V_{pn}$ değerlerinin N nötron numarasına göre grafiği gösterilmektedir. Bu bölgede bulunan ₅₂Te çekirdeğinin N=57, 63 nötron numaralı izotoplarının, ₅₄Xe, ₆₀Nd, ₆₄Gd, ₈₀Hg ve ₈₂Pb çekirdeklerinin sırasıyla sadece 61, 89, 77, 97 ve 125 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV değerinden büyüktür. ₅₈Ce, ₆₂Sm, ₆₆Dy, ₆₈Er, ₇₀Yb, ₇₂Hf, ₇₄W ve ₇₆Os çekirdeklerinin Z=52-82 bölgesinde bulunan bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV değerinden küçüktür.

DFT kütle modelinin Z=52-82 bölgesindeki $\Delta \delta V_{pn}$ değerlerinin N nötron numarasına göre grafiksel gösterimi Şekil 4.7.c'de gösterilmektedir. DFT kütle modeline göre bu bölgede bulunan ₅₂Te, ₅₄Xe, ₆₀Nd, ₆₂Sm ve ₈₂Pb çekirdeklerinin sırasıyla sadece 57, 85,

91, 75 ve 125 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 200 keV'den büyüktür. Ayrıca ₅₈Ce, ₆₄Gd, ₆₆Dy, ₆₈Er, ₇₀Yb, ₇₂Hf, ₇₄W, ₇₆Os ve ₇₈Pt çekirdeklerinin tüm izotoplarının $\Delta \delta V_{pn}$ değerleri de 150 keV değerinin altındadır.

Şekil 4.7.d'deki HFB-21 kütle modelinin Z=52-82 bölgesinde bulunan ${}_{52}$ Te çekirdeğinin N=57, 61, 73, 79 nötron numaralı izotoplarının, ${}_{54}$ Xe çekirdeğinin N=61, 73, 85 nötron numaralı izotoplarının, ${}_{60}$ Nd, ${}_{64}$ Gd, ${}_{76}$ Os ve ${}_{78}$ Pt çekirdeklerinin sırasıyla sadece 91, 81, 105 ve 109 nötron numaralı izotoplarının, ${}_{80}$ Hg çekirdeğinin N=95 ve 109 nötron numaralı izotoplarının ve ${}_{82}$ Pb çekirdeğinin N=119, 125 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 200 keV değerinden daha büyük değerlere sahiptir. ${}_{58}$ Ce, ${}_{62}$ Sm, ${}_{66}$ Dy, ${}_{68}$ Er, ${}_{70}$ Yb, ${}_{72}$ Hf ve ${}_{74}$ W çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV değerinin altındadır.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 90, Möller-Nix kütle modelinde 96, DFT'de 101 ve HFB-21'de 83 kadardır.

Son olarak çift-tek çekirdekler için Z=84-102 bölgesinde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için elde edilmiş olan grafikler Şekil 4.8'de gösterilmektedir. Düşey eksendeki $\Delta\delta V_{pn}$ değerleri 0,5 MeV ile -0,5 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 107'den 155'e kadardır.

Şekil 4.8 : Z=84-102, N=107-155 bölgesindeki çift-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin $\Delta \delta V_{pn}$ değerlerinin grafiksel gösterimi Şekil 4.8.a'da verilmiştir. Z=84-102 bölgesinde Duflo-Zuker kütle modeline göre ₈₄Po, ₈₆Rn, ₉₀Th, ₉₂U, ₉₄Pu, ₉₆Cm, ₉₈Cf, ₁₀₀Fm ve ₁₀₂No çekirdeklerin bütün izotopları için $\Delta \delta V_{pn}$ değerleri 150 keV değerinin altındadır. Bir tek ₈₈Ra çekirdeğinin sadece 135 nötron numaralı izotopunun $\Delta \delta V_{pn}$ değeri 150 keV değerinden büyüktür.

Şekil 4.8.b'de verilmiş olan Möller-Nix kütle modeline göre Z=84-102 bölgesinde bulunan $_{84}$ Po, $_{92}$ U, $_{94}$ Pu, $_{96}$ Cm, $_{98}$ Cf ve $_{102}$ No çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV değerinin altındadır. Ayrıca $_{86}$ Rn çekirdeğinin N=131, 133 ve 135 nötron numaralı izotoplarının, $_{88}$ Ra ve $_{90}$ Th çekirdeklerinin her ikisinin de sadece 135 nötron numaralı izotoplarının ve $_{100}$ Fm çekirdeğinin sadece 155 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değerleri 150 keV'den büyüktür.

Şekil 4.8.c'de verilmiş olan DFT kütle modelinin Z=84-102 bölgesindeki $\Delta\delta V_{pn}$ değerleri grafiğine göre ₈₄Po, ₉₀Th, ₉₂U, ₉₄Pu, ₉₆Cm, ₉₈Cf, ₁₀₀Fm ve ₁₀₂No çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV değerinin altındadır. Sadece ₈₆Rn

çekirdeğinin N=131, 133, 135 nötron numaralı izotoplarının ve ₈₈Ra çekirdeğinin ise N=133 ve 135 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV'den daha büyüktür.

HFB-21 kütle modelinin Z=84-102 bölgesindeki $\Delta\delta V_{pn}$ değerlerinin Şekil 4.8.d'deki grafiksel gösteriminden de anlaşılacağı üzere ₈₄Po çekirdeğinin N=115, 117 ve 129 nötron numaralı izotoplarının, ₈₆Rn çekirdeğinin N=115, 125 ve 127 nötron numaralı izotoplarının, ₉₀Th çekirdeğinin 125 nötron numaralı izotopunun, ₉₂U ve ₉₄Pu çekirdeklerinin ikisininde sadece 135 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV değerinin üzerindedir. ₈₈Ra, ₉₆Cm, ₉₈Cf, ₁₀₀Fm ve ₁₀₂No çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 150 keV'den daha küçüktür.

Çift-tek çekirdeklerde bu son bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 64, Möller-Nix kütle modelinde 33, DFT'de 44 ve HFB-21'de 34 kadardır.

4.3. TEK-ÇİFT ÇEKİRDEKLER

Proton numarası tek sayı, nötron numarası ise çift sayı olan çekirdekler tek-çift çekirdeklerdir. Duflo-Zuker, Möller-Nix, DFT ve HFB-21 nükleer kütle modellerinin $\Delta\delta V_{pn}$ değerleri tek-çift çekirdekler için Z=9-29, Z=31-51, Z=53-83 ve Z=85-101 bölgelerinde ayrı ayrı analiz edildi.

Z=9-29 bölgesindeki tek-çift çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.9'da verilmiştir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 2,5 MeV ile -2,5 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 10'dan 44'e kadardır.

Şekil 4.9 : Z=9-29, N=10-44 bölgesindeki tek-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinde Şekil 4.9.a'dan da görüldüğü gibi ${}_{9}F$, ${}_{11}Na$, ${}_{17}Cl$ ve ${}_{19}K$ çekirdeklerinin sırasıyla yalnız 14, 20, 45 ve 41 nötron numaralı izotoplarının, ${}_{13}Al$ ve ${}_{15}P$ çekirdeklerinin her ikisinde de nötron numaraları 14, 20 ve 22 olan izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV üzerindedir. ${}_{21}Sc$, ${}_{23}V$, ${}_{25}Mn$, ${}_{27}Co$ ve ${}_{29}Cu$ çekirdeklerinin ise tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Möller-Nix kütle modelinin Z=9-29 bölgesindeki N nötron sayısına göre $\Delta\delta V_{pn}$ değerlerine ait grafik Şekil 4.9.b'de gösterilmektedir. Bu bölgede bulunan ₉F çekirdeğinin N=14, 16 nötron numaralı izotoplarının, ₁₁Na çekirdeğinin N=10, 16, 18, 20 nötron numaralı izotoplarının, ₁₃Al çekirdeğinin N=16, 20 nötron numaralı izotoplarının, ₁₅P çekirdeğinin N=14, 22, 24, 26 nötron numaralı izotoplarının, ₁₇Cl, ₂₃V ve ₂₇Co çekirdeklerinin sırasıyla sadece 20, 34 ve 28 nötron numaralı izotoplarının, ₁₉K çekirdeğinin N=20, 22 nötron numaralı izotoplarının, ₂₅Mn çekirdeğinin N=26, 28 nötron numaralı izotoplarının ve ₂₉Cu çekirdeğinin N=30, 44 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin üstündedir. Sadece ₂₁Sc çekirdeğinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin altındadır.

DFT kütle modelinin Z=9-29 bölgesindeki $\Delta \delta V_{pn}$ değerlerinin N nötron sayısına göre grafiksel gösterimi olan Şekil 4.9.c'ye göre ₉F çekirdeğinin N=10, 14, 16 nötron numaralı izotoplarının, ₁₁Na çekirdeğinin N=10 ve 12 nötron numaralı izotoplarının, ₁₃Al çekirdeğinin N=12, 14, 18, 20, 22 nötron numaralı izotoplarının, ₁₅P çekirdeğinin N=14, 16, 20, 22, 24 nötron numaralı izotoplarının, ₁₇Cl çekirdeğinin N=18, 28 nötron numaralı izotoplarının, ₁₉K çekirdeğinin N=18, 20, 22 nötron numaralı izotoplarının, ₂₁Sc çekirdeğinin N=22, 28 nötron numaralı izotoplarının, ₂₇Co çekirdeğini ise N=28 ve 30 nötron numaralı izotoplarının, ₂₃V, ₂₅Mn ve ₂₉Cu çekirdeklerinin sırasıyla 30, 26 ve 30 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir.

Şekil 4.9.d'deki HFB-21 kütle modelinin $\Delta \delta V_{pn}$ değerlerinin N nötron sayısına göre grafiğinde ₉F çekirdeğinin N=10, 12, 14 nötron numaralı izotoplarının, ₁₁Na çekirdeğinin N=10, 12, 14, 20 nötron numaralı izotoplarının, ₁₃Al çekirdeğinin N=14, 16, 20 nötron numarasına sahip izotoplarının, ₁₅P çekirdeğinin N=14 ve 18 nötron numaralı izotoplarının, ₁₇Cl çekirdeğinin N=18, 24, 26, 28 nötron numaralı izotoplarının, ₁₉K çekirdeğinin N=18, 20, 24, 26 nötron numaralı izotoplarının, ₂₁Sc çekirdeğinin N=20, 22 nötron numaralı izotoplarının, ₂₃V çekirdeğinin sadece 24 nötron numaralı izotoplarının, ₂₅Mn çekirdeğinin N=32, 36, 38 nötron numaralı izotoplarının, ₂₇Co çekirdeğinin N=28, 30, 40 nötron numaralı izotoplarının ve ₂₉Cu çekirdeğinin ise N=30 ve 44 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 19, Möller-Nix kütle modelinde 9, DFT'de 11 ve HFB-21'de 7 kadardır.

Z=31-51 bölgesindeki tek-çift çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için gösterilmekte olan grafikler Şekil 4.10'da verilmiştir. $\Delta\delta V_{pn}$ değerleri temsil eden düşey eksen 0,6 MeV ile -0,8 MeV değerleri arasında ve N nötron numarasını temsil eden yatay eksen ise 30'dan 82'ye kadardır.

Şekil 4.10 : Z=31-51, N=30-82 bölgesindeki tek-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.10.a'daki $\Delta \delta V_{pn}$ değerlerinin N nötron sayısına göre çizilmiş grafiğinde ₃₁Ga, ₃₃As, ₃₇Rb, ₃₉Y ve ₄₁Nb çekirdeklerinin sırasıyla 48, 50, 50, 42 ve 60 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. Ayrıca ₃₅Br, ₄₃Tc, ₄₅Rh, ₄₇Ag, ₄₉In ve ₅₁Sb çekirdeklerinin bütün izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinden daha küçüktür.

Möller-Nix kütle modeline göre Şekil 4.10.b'de verilmiş olan grafikte ₃₉Y çekirdeğinin N=42, 44 nötron numaralı izotoplarının ve ₃₅Br, ₄₁Nb, ₄₃Tc, ₄₅Rh, ₄₇Ag ve ₄₉In çekirdeklerinin sırasıyla 44, 60, 66, 66, 74 ve 82 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV'den büyüktür. ₃₁Ga, ₃₃As, ₃₇Rb ve ₅₁Sb çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin altındadır.

DFT kütle modelinin Şekil 4.10.c'deki $\Delta\delta V_{pn}$ değerlerinin N nötron sayılarının bir fonksiyonu olarak elde edilmiş olan grafikte ₃₁Ga, ₃₅Br, ₃₇Rb, ₃₉Y, ₄₁Nb, ₄₃Tc, ₄₇Ag ve ₅₁Sb çekirdeklerinin sırasıyla 32, 38, 50, 44, 60, 68, 54 ve 72 nötron numaralı izotoplarının ve ₃₃As çekirdeğinin N=34, 36 nötron numaralarına sahip izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. ₄₅Rh ve ₄₉In çekirdeklerinin ise bütün izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Şekil 4.10.d'deki HFB-21 kütle modelinin $\Delta \delta V_{pn}$ değerlerinin grafiğine göre ${}_{35}Br$, ${}_{37}Rb$, ${}_{39}Y$, ${}_{41}Nb$ ve ${}_{45}Rh$ çekirdeklerinin sırasıyla 38, 50, 42, 60 ve 54 nötron numaralı izotoplarının, ${}_{43}Tc$ çekirdeğinin N=50, 60 nötron numaralı izotoplarının ve ${}_{49}In$ çekirdeğinin N=70 ve 74 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. ${}_{31}Ga$, ${}_{33}As$ ve ${}_{47}Ag$ çekirdeklerinin tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Bu bölge için Duflo-Zuker kütle modelinde 47, Möller-Nix kütle modelinde 44, DFT'de 45 ve HFB-21'de 33 tane $\Delta\delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek vardır.

Z=53-83 bölgesindeki tek-çift çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.11'de verilmiştir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 0,6 MeV ile -0,8 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 60'dan 132'ye kadardır.

Şekil 4.11 : Z=53-83, N=60-132 bölgesindeki tek-çift çekirdekler için $\Delta\delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.11.a'daki $\Delta\delta V_{pn}$ değerlerinin Z=53-83 bölgesindeki grafiğine göre 59Pr ve 65Tb çekirdeklerinin sırasıyla 92 ve 90 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinden büyüktür. 53I, 55Cs, 57La, 61Pm, 63Eu, 67Ho, 69Tm, 71Lu, 73Ta, 75Re, 77Ir, 79Au, 81Tl ve 83Bi çekirdeklerinin ise bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Möller-Nix kütle modelinin $\Delta\delta$ Vpn değerlerinin N nötron numarasına göre Z=53-83 bölgesinde elde edilen Şekil 4.11.b'deki grafikte ₅₉Pr, ₇₉Au ve ₈₁Tl çekirdeklerinin sırasıyla 92, 110 ve 126 nötron numaralı izotoplarının $\Delta\delta$ V_{pn} değerleri 250 keV değerinin üzerindedir. ₅₃I, ₅₅Cs, ₅₇La, ₆₁Pm, ₆₃Eu, ₆₅Tb, ₆₇Ho, ₆₉Tm, ₇₁Lu, ₇₃Ta, ₇₅Re, ₇₇Ir ve ₈₃Bi çekirdeklerinin ise tüm izotoplarının $\Delta\delta$ V_{pn} değerleri 250 keV'den daha küçüktür.

Şekil 4.11.c'deki DFT kütle modelinin $\Delta \delta V_{pn}$ değerleri grafiğine göre 55Cs, 61Pm, 65Tb ve 81Tl çekirdeklerinin sırasıyla 80, 76, 80 ve 100 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV'den büyüktür. 53I, 57La, 59Pr, 63Eu, 67Ho, 69Tm, 71Lu, 73Ta, 75Re, 77Ir,
$_{79}$ Au ve $_{83}$ Bi çekirdeklerinin bütün izotoplarının $\Delta \delta V_{pn}$ değerleri ise 250 keV değerinin altındadır.

HFB-21 kütle modelinde Şekil 4.11.d'de verilmiş olan $\Delta\delta V_{pn}$ değerleri grafiğinde ₅₃I, ₅₉Pr, ₆₇Ho, ₆₉Tm, ₇₉Au ve ₈₁Tl çekirdeklerinin sırasıyla 82, 92, 84, 86, 124 ve 126 nötron numaralı izotoplarının, ₇₃Ta çekirdeğinin N=86 ve 114 nötron numaralı izotoplarının, ₈₃Bi çekirdeğinin N=122 ve 132 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. ₅₅Cs, ₅₇La, ₆₁Pm, ₆₃Eu, ₆₅Tb, ₇₁Lu, ₇₅Re ve ₇₇Ir çekirdeklerinin ise tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 109, Möller-Nix'de ve DFT'de 99 ve HFB-21'de ise 77 kadardır.

Z=85-101 bölgesindeki tek-çift çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin grafikleri Şekil 4.12'de verilmiştir. Düşey eksen olan $\Delta\delta V_{pn}$ değerleri 0,4 MeV ile -0,5 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 110'dan 158'e kadardır. Bu bölgede tek-çift çekirdekler için ₁₀₁Md çekirdeğinin sadece kütle numarası 257 olan izotopunun $\Delta\delta V_{pn}$ değeri hesaplanabilmiştir. ₁₀₁Md çekirdeğinin tek bir izotopunun $\Delta\delta V_{pn}$ değeri var olduğundan grafiklere ₁₀₁Md çekirdeği eklenmemiştir.

Şekil 4.12 : Z=85-101, N=110-158 bölgesindeki tek-çift çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Şekil 4.12.a'daki $\Delta \delta V_{pn}$ değerleri grafiği olan Duflo-Zuker kütle modelinde ise ₈₅At, ₈₇Fr, ₈₉Ac, ₉₁Pa, ₉₃Np, ₉₅Am, ₉₇Bk ve ₉₉Es çekirdeklerinin yani bu bölgedeki bütün çekirdeklerin izotoplarının hepsinin $\Delta \delta V_{pn}$ değerleri 250 keV değerinin altındadır.

Möller-Nix kütle modelinin Şekil 4.12.b'de verilmiş olan grafiğine göre $_{85}$ At, $_{89}$ Ac, $_{93}$ Np, $_{95}$ Am, $_{97}$ Bk ve $_{99}$ Es çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinden küçüktür. Bir tek $_{87}$ Fr çekirdeğinin N= 132 nötron numaralı izotoplunun ve $_{91}$ Pa çekirdeğinin N=130 ve 132 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinin üzerindedir.

DFT kütle modeli için $\Delta \delta V_{pn}$ değerlerinin N nötron numarasına göre Şekil 4.12.c'de gösterilmekte olan grafiğinde yalnız ₈₇Fr çekirdeğinin 132 nötron numaralı izotopunun $\Delta \delta V_{pn}$ değerleri 250 keV'den büyüktür. ₈₅At, ₈₉Ac, ₉₁Pa, ₉₃Np, ₉₅Am, ₉₇Bk ve ₉₉Es çekirdekelrinin bütün izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir.

HFB-21 kütle modelinin Şekil 4.12.d'de verilmiş olan $\Delta\delta V_{pn}$ değerleri grafiğine göre ₈₇Fr, ₈₉Ac, ₉₁Pa, ₉₃Np, ₉₅Am ve ₉₉Es çekirdeklerinin bütün izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV'den daha küçüktür. Yalnız ₈₅At çekirdeğinin N=110, 128 ve 130 nötron numaralı izotoplarının ve ₉₇Bk çekirdeğinin 154 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değerleri 250 keV değerinin üzerindedir.

Tek-çift çekirdekler için bu bölgede $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 45, Möller-Nix kütle modelinde 27, DFT'de 33 ve HFB-21'de 23 kadardır.

4.4. TEK-TEK ÇEKİRDEKLER

Proton ve nötron numaralarının her ikisi birden tek sayı olan çekirdekler tek-tek çekirdekler olarak adlandırılırlar. Duflo-Zuker, Möller-Nix, DFT ve HFB-21 nükleer kütle modellerinin $\Delta\delta V_{pn}$ değerleri tek-tek çekirdekler için yine tek-çift çekirdeklerde olduğu gibi Z=9-29, Z=31-51, Z=53-83 ve Z=85-101 bölgelerinde ayrı ayrı analiz edildi.

Z=9-29 bölgesindeki tek-tek çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.13'de verilmiştir. $\Delta\delta V_{pn}$ değerlerini gösteren düşey eksen 5 MeV ile -2 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 9'dan 43'e kadardır.

Şekil 4.13 : Z=9-29, N=9-43 bölgesindeki tek-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.13.a'daki $\Delta \delta V_{pn}$ değerlerinin N nötron numarasına göre elde edilmiş olan grafiğine göre yalnız ₉F, ₁₃Al ve ₁₇Cl çekirdeklerinin sırasıyla 11, 21 ve 29 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 1 MeV değerinin üzerindedir. Geri kalan tüm çekirdeklerin izotoplarının $\Delta \delta V_{pn}$ değerleri 1 MeV (1000 keV) değerinden küçüktür.

Möller-Nix kütle modelinin $\Delta \delta V_{pn}$ değerlerinin grafiği Şekil 4.13.b'de gösterilmektedir. Bu grafiğe göre ₉F, ₁₇Cl, ₂₃V ve ₂₉Cu çekirdeklerinin sırasıyla 15, 29, 23 ve 29 nötron numaralı izotoplarının, ₁₃Al çekirdeğinin N=15, 17, 21 nötron numaralı izotoplarının, ₁₅P çekirdeğinin N=13 ve 27 nötron numaralı izotoplarının, ₂₅Mn çekirdeğinin N=25, 27 nötron numaralı izotoplarının ve ₂₇Co çekirdeğinin N=27, 41 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 1 MeV değerinin üzerindedir. ₁₁Na, ₁₉K ve ₂₁Sc çekirdeklerinin ise tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 1 MeV değerinin altındadır.

Şekil 4.13.c'deki DFT kütle modelinin grafiğinde ₁₃Al çekirdeğindeki N=13 ve 21 nötron numaralı izotoplarının, ₁₇Cl çekirdeğinin N=17, 29 nötron numaralı izotoplarının

ve ₉F, ₁₁Na, ₁₅P, ₁₉K, ₂₁Sc, ₂₃V, ₂₅Mn, ₂₇Co ve ₂₉Cu çekirdeklerinin ise Z=N olan yani sırasıyla 9, 11, 15, 19, 21, 23, 25 ve 27 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 1 MeV'den büyüktür.

HFB-21 kütle modelinin Z=85-101 bölgesinde $\Delta \delta V_{pn}$ değerlerinin N nötron numarasına göre elde edilmiş olan Şekil 4.13.d'deki grafiğine göre ₉F, ₁₃Al, ₁₇Cl, ₁₉K, ₂₃V ve ₂₇Co çekirdeklerinin sırasıyla 11, 15, 29, 19, 23 ve 33 nötron numaralı izotoplarının ve ₁₁Na çekirdeğinin N=9, 11 ve 13 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 1 MeV değerinin üzerindedir.

Z=9-29, N=9-43 bölgesi için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 6, Möller-Nix kütle modelinde 4, DFT'de 5 ve HFB-21'de 3 kadardır.

Z=31-51 bölgesindeki tek-tek çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.14'de verilmiştir. Düşey eksen 2,4 MeV ile -0,8 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 31 ile 79 arasındadır.

Şekil 4.14 : Z=31-51, N=31-79 bölgesindeki tek-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Z=31-51 bölgesindeki $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafiği Şekil 4.14.a'da gösterilmektedir. Bu grafikten görüldüğü üzere sadece ₃₇Rb çekirdeğinin 49 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değeri 800 keV'den büyüktür. Diğer çekirdeklerin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 800 keV değerinin altındadır.

Möller-Nix kütle modelinin Şekil 4.14.b'de Z=31-51 bölgesinde elde edilmiş olan $\Delta \delta V_{pn}$ değerlerinin grafiğine bakıldığında ₃₁Ga, ₃₃As ve ₃₉Y çekirdeklerinin sırasıyla 31, 33 ve 43 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 800 keV değerinin üzerindedir. Şekil 4.14.b'den de görülebileceği gibi ₃₅Br, ₃₇Rb, ₄₁Nb, ₄₃Tc, ₄₅Rh, ₄₇Ag, ₄₉In ve ₅₁Sb çekirdeklerinin $\Delta \delta V_{pn}$ değerleri ise 800 keV'den küçüktür.

DFT kütle modelinin Şekil 4.14.c'de verilmiş olan $\Delta\delta V_{pn}$ değerlerine ait grafiğine bakıldığında ₃₁Ga çekirdeğinin N=31, 33 ve 47 nötron numaralı izotoplarının, ₃₇Rb çekirdeğinin N=47 ve 49 nötron numaralı izotoplarının ve ₃₃As, ₃₅Br, ₄₇Ag ve ₅₁Sb çekirdeklerinin sırasıyla 33, 39, 73 ve 71 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri

800 keV değerinin üstündedir. ³⁹Y, ⁴¹Nb, ⁴³Tc, ⁴⁵Rh ve ⁴⁹In çekirdeklerinin ise tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 800 keV değerinden küçüktür.

Şekil 4.14.d'de gösterilen HFB-21 kütle modelinin $\Delta\delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak elde edilmiş olan grafiğine göre ₃₁Ga, ₃₅Br, ₃₇Rb, ₄₃Tc, ₄₇Ag ve ₄₉In çekirdeklerinin sırasıyla 31, 43, 59, 49, 73 ve 75 nötron numarasına sahip izotoplarının, ₃₃As çekirdeğinin ise N=33 ve 41 nötron numaralı izotoplarının ve ₄₁Nb çekirdeğinin N=45 ve 59 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 800 keV'den büyüktür. ₃₉Y, ₄₅Rh ve ₅₁Sb çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri ise 800 keV değerinin altındadır.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 5, Möller-Nix kütle modelinde 14, DFT'de 11 ve HFB-21'de 10 kadardır.

Z=53-83 bölgesindeki tek-tek çekirdeklerde Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.15'de verilmiştir. Düşey eksendeki $\Delta\delta V_{pn}$ değerleri 1,2 MeV ile -0,8 MeV değerleri arasında ve yatay eksendeki N nötron numarası ise 61 ile 133 arasındadır.

Şekil 4.15 : Z=53-83, N=61-133 bölgesindeki tek-tek çekirdekler için ΔδV_{pn} değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Şekil 4.15.a'da verilen Z=53-83 bölgesindeki $\Delta\delta V_{pn}$ değerlerine ait grafiğinde ₅₃I, ₅₅Cs, ₅₉Pr, ₆₁Pm ve ₈₁Tl çekirdeklerinin sırasıyla 63, 67, 73, 75 ve 103 nötron numaralı izotoplarının ve ₆₃Eu çekirdeğinin N=77 ve 79 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 400 keV değerinin üzerindedir. Geri kalan ₅₇La, ₆₅Tb, ₆₇Ho, ₆₉Tm, ₇₁Lu, ₇₃Ta, ₇₅Re, ₇₇Ir, ₇₉Au ve ₈₃Bi çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 400 keV'den küçüktür.

Möller-Nix kütle modelinin Z=53-83 bölgesindeki $\Delta\delta V_{pn}$ değerlerine ait grafik Şekil 4.15.b'de verilmiştir. Bu grafiğe göre ₅₃I, ₅₅Cs, ₆₃Eu, ₆₅Tb, ₇₇Ir, ₇₉Au ve ₈₁Tl çekirdeğinin sırasıyla 85, 91, 81, 81, 99, 123 ve 125 nötron numarasına sahip izotoplarının $\Delta\delta V_{pn}$ değerleri 400 keV'den büyüktür. ₅₇La, ₅₉Pr, ₆₁Pm, ₆₇Ho, ₆₉Tm,₇₁Lu, ₇₃Ta, ₇₅Re ve ₈₃Bi çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri ise 400 keV değerinin altındadır.

DFT kütle modelinde Z=53-83 bölgesindeki çekirdekler için elde edilmiş olan $\Delta\delta V_{pn}$ değerlerinin N nötron numarasına göre çizilmiş olan grafiği Şekil 4.15.c'de verilmiştir. Bu grafiğe göre ₅₃I, ₅₇La, ₆₉Tm ve ₈₃Bi çekirdeklerinin sırasıyla 63, 81, 89 ve 107 nötron numarasına sahip izotoplarının, ${}_{55}$ Cs çekirdeğinin N=65, 71, 91 nötron numaralı izotoplarının, ${}_{59}$ Pr çekirdeğinin N=71, 75 nötron numaralı izotoplarının, ${}_{61}$ Pm çekirdeğinin N=75, 81, 91 nötron numaralı izotoplarının, ${}_{63}$ Eu çekirdeğinin N=77, 79, 81 nötron numaralı izotoplarının, ${}_{65}$ Tb çekirdeğinin N=79, 85 nötron numaralı izotoplarının, ${}_{71}$ Lu çekirdeğinin N=89, 91 nötron numaralı izotoplarının, ${}_{73}$ Ta çekirdeğinin N=87, 91 nötron numaralı izotoplarının, ${}_{79}$ Au çekirdeğinin N=115, 121, 123 nötron numaralı izotoplarının ve ${}_{81}$ Tl çekirdeğinin N=105, 121, 123, 125 ve 127 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 400 keV'den büyüktür. Geri kalan ${}_{67}$ Ho, ${}_{75}$ Re ve ${}_{77}$ Ir çekirdeklerinin $\Delta \delta V_{pn}$ değerleri ise 400 keV değerinin altındadır.

HFB-21 kütle modelinde ise Şekil 4.15.d'de verilmiş olan grafiğine bakılırsa ${}_{53}$ I çekirdeğinin N=71, 73, 83 ve 85 nötron numaralı izotoplarının, ${}_{55}$ Cs çekirdeğinin N=69, 91 nötron numaralı izotoplarının, ${}_{57}$ La çekirdeğinin N=71, 77 nötron numaralı izotoplarının, ${}_{59}$ Pr çekirdeğinin N=71, 75 ve 91 nötron numaralı izotoplarının, ${}_{61}$ Pm çekirdeğinin 81 nötron numaralı izotoplurun, ${}_{63}$ Eu çekirdeğinin N=79, 85 nötron numaralı izotoplarının, ${}_{65}$ Tb çekirdeğinin N=79, 81, 87 nötron numaralı izotoplarının, ${}_{67}$ Ho çekirdeğinin N=81, 83, 99 nötron numaralı izotoplarının, ${}_{71}$ Lu çekirdeğinin N=85, 89, 91 nötron numaralı izotoplarının, ${}_{73}$ Ta çekirdeğinin N=87 ve 107 nötron numaralı izotoplarının, ${}_{75}$ Re çekirdeğinin 115 nötron numaralı izotopluru, ${}_{79}$ Au çekirdeğinin N=107, 109 ve 115 nötron numaralı izotoplarının, ${}_{81}$ Tl çekirdeğinin N=105 ve 125 nötron numaralı izotoplarının ve ${}_{83}$ Bi çekirdeğinin N=107, 125, 127 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 400 keV değerinin üzerindedir. ${}_{69}$ Tm ve ${}_{77}$ Ir çekirdeklerinin ise tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 400 keV değerinin altındadır.

Bu bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 34, Möller-Nix kütle modelinde 39, DFT'de 13 ve HFB-21'de ise 14 kadardır.

Z=85-101 bölgesindeki tek-tek çekirdeklerde, Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modelleri için çizilmiş olan grafikler Şekil 4.16'da verilmiştir. Düşey eksendeki $\Delta\delta V_{pn}$ değerleri 1,6 MeV ile -0,8 MeV değerleri arasında ve yatay eksen olan N nötron numarası ise 109'dan 157'ye kadardır.

Şekil 4.16 : Z=85-101, N=109-157 bölgesindeki tek-tek çekirdekler için $\Delta\delta V_{pn}$ değerlerinin N nötron sayısının bir fonksiyonu olarak (a) Duflo-Zuker, (b) Möller-Nix, (c) DFT ve (d) HFB-21 kütle modelleri için grafiksel gösterimi.

Duflo-Zuker kütle modelinin Z=85-101 bölgesindeki $\Delta\delta V_{pn}$ değerlerinin N nötron numarasına göre Şekil 4.16.a'daki grafikte ₈₅At, ₈₇Fr ve ₁₀₁Md çekirdeklerinin sırasıyla 109, 135 ve 155 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV'den büyüktür. Geri kalan ₈₉Ac, ₉₁Pa, ₉₃Np, ₉₅Am, ₉₇Bk ve ₉₉Es çekirdeklerinin ise tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV'den küçüktür.

Möller-Nix kütle modelinde Şekil 4.16.b'deki $\Delta \delta V_{pn}$ değerleri grafiğinde ₈₅At çekirdeğinin N=109, 113, 117, 119, 121 ve 135 nötron numaralı izotoplarının, ₈₇Fr çekirdeğinin N=131, 133 ve 135 nötron numaralı izotoplarının, ₉₁Pa çekirdeğinin N=129, 133 ve 135 nötron numaralı izotoplarının ve ₁₀₁Md çekirdeğinin yalnız 155 nötron numaralı izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. ₈₉Ac, ₉₃Np, ₉₅Am, ₉₇Bk ve ₉₉Es çekirdeklerinin tüm izotoplarının $\Delta \delta V_{pn}$ değerleri 250 keV değerleri 250 keV değerleri 250 keV

DFT kütle modelinin Şekil 4.16.c'de verilmiş olan Z=85-101 bölgesindeki grafiğinde ₈₅At çekirdeğinin 109 nötron numaralı izotopunun, ₈₇Fr çekirdeğinin N=113, 123, 131, 133, 135 ve 137 nötron numaralı izotoplarının, ₈₉Ac çekirdeğinin N=123, 131 ve 141 nötron numaralı izotoplarının, ₉₁Pa çekirdeğinin N=129, 139 ve 145 nötron numarasına sahip izotoplarının ve ₉₃Np çekirdeğinin 137 nötron numaralı izotopunun $\Delta\delta V_{pn}$ değerleri 250 keV değerinin üzerindedir. Z=85-101 bölgesinde geri kalan ₉₅Am, ₉₇Bk, ₉₉Es ve ₁₀₁Md çekirdeklerinin tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinden küçüktür.

Şekil 4.16.d'deki HFB-21 kütle modelinin Z=85-101 bölgesindeki $\Delta\delta V_{pn}$ değerlerin grafiğine göre ₈₅At çekirdeğinin N=109, 1113, 125, 127, 129 ve 133 nötron numaralı izotoplarının, ₈₇Fr çekirdeğinin N=113, 117, 119, 127, 131, 133, 135 ve 137 nötron numaralı izotoplarının, ₈₉Ac çekirdeğinin N=127, 135, 137 ve 141 nötron numaralı izotoplarının, ₉₁Pa çekirdeğinin N=125, 133, 135, 137, 143 ve 145 nötron numaralı izotoplarının, ₉₃Np, ₉₉Es ve ₁₀₁Md çekirdeklerinin sırasıyla 137, 155 ve 157 nötron numaralı izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV'den büyüktür. ₉₅Am ve ₉₇Bk çekirdeklerinin ise tüm izotoplarının $\Delta\delta V_{pn}$ değerleri 250 keV değerinni altındadır.

Bu son bölge için $\Delta \delta V_{pn}$ değerleri 50 keV ve 50 keV'den düşük olan çekirdek sayısı Duflo-Zuker kütle modelinde 13, Möller-Nix kütle modelinde 9, DFT'de 6 ve HFB-21'de 5 kadardır.

Şekil 4. 17 : Deney ile Teori arasında $\Delta \delta V_{pn}$ değeri (a) 50 keV ve 50 keV'den az (b) 100 keV ve 100 keV'den az olan çekirdeklerin DZ, MN, DFT ve HFB-21 kütle modellerine göre gösterimi.

Çift-çift, çift-tek, tek-çift ve tek-tek çekirdekler için bu tez çalışmasında göz önüne aldığımız tüm bölgelerinde $\Delta\delta V_{pn}$ değerleri toplamda ~1750 tane için, 50 keV ve 50 keV'den az olan çekirdeklerin sayısı DZ kütle modelinde 835, MN kütle modelinde 679, DFT kütle modelinde 693 ve HFB-21 kütle modelinde 591'dir. Şekil 4.17 Panel (a)'da görüldüğü üzere DZ kütle modelinin $\Delta\delta V_{pn} \leq 50$ keV olan çekirdek sayısı daha fazla olduğundan deney ile teori uyumluluğu diğer modellere kıyasla daha fazladır. Ayrıca Şekil 4.17 Panel (b)'de $\Delta\delta V_{pn}$ değerleri 100 keV ve 100 keV'den az olan çekirdeklerin sayısı DZ kütle modelinde 1181, MN kütle modelinde 1063, DFT kütle modelinde 1036 ve HFB-21 kütle modelinde 948 tanedir. Panel (a)'ya benzer şekilde DZ kütle modeli deney ile daha uyumlu sonuçlar vermektedir. Bunun yanı sıra MN kütle modeli Panel (a)'da DFT'den biraz daha düşük olmasına rağmen Panel (b)'de DFT'den az bir farkla da olsa biraz daha fazladır. Ancak bu az farkı hemen hemen birbirlerine eşit olarak varsayabiliriz. Şekil 4.17'ye göre HFB-21 modeli diğer modellere göre deneyle ile en az uyumu olan model olarak görülmektedir.

5. TARTIŞMA VE SONUÇ

Duflo-Zuker, Möller-Nix, DFT ve HFB-21 kütle modellerinin Z=10-102, N=10-156 çekirdekleri için elde edilen $\Delta\delta V_{pn}$ değerlerinin N nötron sayısına göre grafikleri incelendi. $\Delta\delta V_{pn}$ terimi, deneysel ve modelin öngördüğü teorik δV_{pn} değerlerinin arasındaki fark olduğuna göre bu fark ne kadar küçük bir değerde olursa modelin öngördüğü teori ile deneysel değerler birbiri ile o kadar uyumludur. Duflo-Zuker kütle modelinin diğer üç kütle modeline göre deneysel δV_{pn} değerleri ile daha uyumlu teorik δV_{pn} değerlerine sahip olduğu görülmüştür.

Duflo-Zuker kütle modelinden sonra HFB-21 ve DFT kütle modellerine kıyasla Möller-Nix kütle modelinin öngördüğü teorik δV_{pn} değerleri ile deneysel δV_{pn} değerleri arasında oldukça yakın bir uyum vardır. HFB-21 ile DFT kütle modelleri benzer sonuçlar vermekte olup DFT'de HFB-21'e göre daha ani değişimler gözlenmiştir. Möller-Nix kütle modelinde Pt çekirdeğinin N~110 civarında oluşturduğu zig-zag, Möller-Nix kütle modelinin en son hesaplamaları ile düzeltilmiştir [25].

Sonuç olarak, $\Delta \delta V_{pn}$ 'de gözle görülecek zig-zag etkisi modelde ya da deneyde bir hatanın (ya da eksiğin) olduğunu yansıtmaktadır. $\Delta \delta V_{pn}$ 'de görülen sonuçlar ile teorik hesaplar yenilenip modellerin geliştirilmesi amaçlanmaktadır. Bu tez çalışmasında sadece δV_{pn} değerlerinin model ve deneysel değerleri arasındaki farklar ve δV_{pn} değerlerinin hangi çekirdeklerde hangi modellerde uyum içerisinde olduğu incelenmiştir. Elde edilen sonuçlar ile farklı projeler üstünde çalışılmaktadır [25]. Nükleer yapıdaki değişim δV_{pn} icin 50 keV ve üzerinde etkili olmasi sebebi ile bu özelliğe sahip çekirdekler Tablo 5.1'de (Z=10-102, N=10-156 için) listelenmiştir. Bu tabloya bağlı olarak deneysel olarak yeni kütle ölçümleri de planlanmıştır.

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
10	15	25	0,743	68,330
10	16	26	0,852	62,214
11	17	28	2,112	114,079
11	18	29	1,314	76,508
11	19	30	1,124	310,152
11	20	31	0,938	312,917
12	17	29	1,120	57,072
12	19	31	0,563	154,603
12	20	32	0,976	147,434
13	19	32	1,800	93,317
13	21	34	0,249	133,132
13	22	35	0,683	150,436
14	22	36	0,572	65,106
15	22	37	0,805	63,639
15	23	38	1,670	234,307
15	24	39	1,145	106,771
15	25	40	1,240	405,956
15	26	41	0,975	312,890
15	27	42	1,870	1987,486
16	23	39	1,100	107,062
16	25	41	1,075	205,670
16	27	43	1,190	968,710
16	24	40	1,105	57,906
16	26	42	1,088	151,493
17	15	32	1,278	50,599
17	23	40	1,461	58,753
17	24	41	0,750	78,345
17	25	42	1,450	241,868
17	26	43	1,025	126,984
17	27	44	1,770	303,480

Tablo 5.1 : Z=10-102, N=10-156 çekirdekleri için δV_{pn} hata payları 50 keV'dan büyük olan çekirdekler

Z	N	•	δV_{pn} MeV	δV _{pn} Hata Payı
	IN	A		keV
17	28	45	1,375	227,211
17	29	46	2,220	1926,785
18	25	43	0,719	92,278
18	27	45	1,404	116,622
18	29	47	1,030	893,211
18	28	46	1,402	102,501
19	29	48	0,238	110,635
20	29	49	0,442	53,926
21	31	52	0,853	211,379
22	31	53	0,538	67,509
22	32	54	0,797	177,576
23	31	54	0,677	101,405
23	32	55	0,588	78,195
23	33	56	0,850	294,788
23	34	57	0,845	171,245
23	35	58	1,420	605,805
24	31	55	0,405	50,126
24	33	57	0,581	96,056
24	34	58	0,800	50,005
24	35	59	0,730	295,466
25	34	59	0,722	101,127
25	35	60	1,640	326,497
25	36	61	0,705	185,674
25	37	62	0,800	455,961
25	38	63	0,440	264,670
26	35	61	0,725	156,532
26	37	63	0,485	184,185
26	34	60	0,677	50,008
26	36	62	0,705	72,588
26	38	64	0,490	122,039

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
27	37	64	1,304	172,905
27	38	65	0,730	140,681
27	39	66	0,830	445,723
27	40	67	0,545	260,273
27	41	68	0,170	686,440
27	42	69	0,690	446,654
28	37	65	0,689	85,289
28	39	67	0,813	184,398
28	41	69	0,198	258,082
28	38	66	0,760	70,088
28	40	68	0,664	102,595
28	42	70	0,548	190,397
31	31	62	2,753	60,506
31	45	76	1,072	86,080
32	33	65	0,562	50,290
33	35	68	1,212	111,915
33	36	69	0,540	54,397
33	37	70	1,129	58,632
33	47	80	0,894	93,172
35	37	72	0,890	577,062
35	38	73	0,363	287,726
35	39	74	1,352	54,681
39	41	80	0,481	450,180
39	42	81	0,108	225,074
39	45	84	1,203	99,177
39	63	102	1,246	150,483
40	41	81	0,288	749,555
40	63	103	0,323	60,318
41	45	86	1,104	220,245
41	46	87	0,684	114,111
41	47	88	0,500	117,103

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

7	N	A	SV MoV	δV_{pn} Hata Payı	
L	ŢŅ	A	ov _{pn} wiev	keV	
43	61	104	0,497	51,691	
43	63	106	0,460	60,803	
45	51	96	0,457	151,598	
45	52	97	0,373	77,995	
46	51	97	0,344	167,938	
47	51	98	0,670	468,828	
47	52	99	0,435	192,250	
47	53	100	0,502	171,948	
47	54	101	0,267	90,915	
47	55	102	0,843	104,456	
47	56	103	0,436	51,037	
47	69	116	0,643	60,498	
47	71	118	0,708	78,918	
47	72	119	0,365	51,788	
47	73	120	1,073	114,652	
47	74	121	0,590	87,698	
48	51	99	0,366	172,411	
49	55	104	0,520	83,844	
49	71	120	0,835	92,000	
49	73	122	0,636	57,115	
49	75	124	0,860	72,658	
49	77	126	0,667	86,544	
49	79	128	1,107	94,962	
49	82	131	0,439	142,203	
50	52	102	0,396	181,556	
50	82	132	0,522	70,187	
52	57	109	0,370	75,000	
52	61	113	0,473	86,500	
52	83	135	0,486	50,042	
53	62	115	0,309	90,864	
53	63	116	0,978	111,396	

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
53	83	136	0,439	103,779
53	85	138	0,697	155,190
54	59	113	0,460	77,136
54	61	115	0,262	86,529
54	85	139	0,270	65,848
54	60	114	0,524	50,942
55	63	118	0,831	63,545
55	87	142	0,696	91,378
55	91	146	0,942	72,058
56	65	121	0,567	165,680
56	66	122	0,407	75,427
57	69	126	0,633	95,084
57	71	128	0,588	58,660
57	79	136	0,488	50,993
57	87	144	0,590	54,129
57	89	146	0,489	134,421
57	90	147	0,314	62,588
58	89	147	0,354	52,127
59	71	130	0,653	77,897
59	73	132	0,633	88,227
59	87	146	0,415	72,512
59	89	148	0,726	83,696
59	90	149	0,447	56,281
59	91	150	0,935	133,854
59	92	151	0,641	50,671
59	93	152	0,359	165,617
60	91	151	0,477	52,103
60	93	153	0,255	58,852
61	73	134	0,426	95,791
61	75	136	0,652	102,494
61	79	140	0,740	50,882

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Ν	А	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
93	154	0,624	55,453
94	155	0,376	58,622
96	157	0,280	127.574
96	158	0,250	60,519
77	140	0,710	54,166
95	158	0,383	95,000
79	143	0,393	101,253
97	161	0,282	64,059
78	143	0,356	65,704
79	144	0,668	212,528
81	146	0,723	85,118
89	154	0.664	50,284
99	164	0,292	122,270
79	145	0,220	105,100
81	148	0,549	137,160
101	168	0,433	67,400
102	169	0,273	70,786
103	170	0.397	335.410
103	171	0,285	165,541
83	152	0.555	76.453
89	158	0.787	52.621
84	154	0.239	52.914
84	155	0.260	149.071
85	156	0.627	76.668
89	160	0.732	74.753
91	162	0.604	87.915
95	166	0.315	51.662
97	168	0.554	59.068
86	158	0.231	52,935
86	159	0.282	149 135
	N 93 94 96 96 96 97 95 79 97 78 79 81 89 99 79 81 101 102 103 103 83 89 84 85 89 91 95 97 86	N A 93 154 94 155 96 157 96 158 77 140 95 158 79 143 97 161 78 143 79 144 81 146 89 154 99 164 79 145 81 146 89 154 99 164 79 145 81 148 101 168 102 169 103 170 103 170 103 171 83 152 89 158 84 155 85 156 89 160 91 162 95 166 97 168 86 158 86 158	N A δV _{pn} MeV 93 154 0,624 94 155 0,376 96 157 0,280 96 158 0,250 77 140 0,710 95 158 0,383 79 143 0,393 97 161 0,282 78 143 0,356 79 144 0,668 81 146 0,723 89 154 0,664 99 164 0,292 79 145 0,220 81 148 0,549 101 168 0,433 102 169 0,273 103 171 0,285 83 152 0,555 89 158 0,787 84 154 0,239 84 155 0,260 85 156 0,604 95 166 </td

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
73	91	164	0,630	57,166
73	95	168	0.434	56.000
73	97	170	0.492	56.000
73	99	172	0.433	56.507
73	101	174	0.336	54 111
73	113	186	0 394	115 399
73	88	162	0.202	52 969
74	88	163	0,202	1/9 101
75	07	172	0,242	65 521
75	97	172	0,477	56,000
75	99	174	0,489	56,000
75	101	176	0,369	56,000
75	103	178	0,324	56,000
75	107	182	0,329	101,045
75	115	190	0,683	76,538
75	117	192	0,520	75,723
76	90	166	0,187	52,969
77	107	184	0,363	66,280
77	119	196	0,671	70,524
78	92	170	0,178	52,991
79	99	178	0,338	64,730
79	107	186	0,500	55,145
79	121	200	0,691	50,183
79	123	202	0,862	178,351
80	95	175	0,252	59,517
80	94	174	0,191	53,051
81	101	182	0,133	83,078
81	103	184	0,079	52,574
81	105	186	0,603	187,766
81	109	190	0,300	60,539
81	112	193	0,199	56,294
81	113	194	0,470	179,391

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
81	114	195	0,327	56,394
81	117	198	0,435	81,691
81	127	208	0,441	151,423
82	127	209	0,296	75,671
83	105	188	0,528	53,944
83	107	190	0,775	189,528
83	109	192	0,477	51,894
83	111	194	0,483	72,588
85	111	196	0,379	73,824
85	113	198	0,444	87,573
85	115	200	0,426	62,402
85	135	220	0,358	58,496
87	113	200	0,351	108,485
87	115	202	0,396	111,665
87	119	206	0,207	59,775
87	121	208	0,315	76,818
87	137	224	0,746	51,161
87	139	226	0,560	107,643
87	140	227	0,232	53,342
87	142	229	0,170	55,573
88	115	203	0,253	61,378
89	119	208	0,345	100,120
89	121	210	0,186	93,941
89	123	212	0,295	103,446
89	125	214	0,270	59,203
89	129	218	0,463	53,207
89	131	220	0,561	53,944
89	133	222	0,590	51,293
89	141	230	0,561	302,104
89	142	231	0,203	52,559
91	123	214	0,199	128,546

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

Z	Ν	Α	$\delta V_{pn} MeV$	δV _{pn} Hata Payı keV
91	124	215	0,206	58,337
91	125	216	0,285	118,398
91	126	217	0,196	52,579
91	127	218	0,313	61,115
91	129	220	0,236	93,643
91	133	224	0,633	73,355
91	134	225	0,387	50,162
91	135	226	0,621	71,882
91	145	236	0,626	212,153
93	136	229	0,338	57,866
93	137	230	0,526	104,216
93	138	231	0,270	52,082
93	141	234	0,303	50,923
93	143	236	0,439	50,105
97	149	246	0,396	60,108
99	153	252	0,185	50,561
101	155	256	0,118	50,812

Tablo 5.1 (Devam) : Z=10-102, N=10-156 çekirdekleri için $\delta V_{\rm pn}$ hata payları 50 keV'dan büyük olan çekirdekler

KAYNAKLAR

- 1. AUDI, G. and MENG W., April 2011. Private Communication.
- 2. TAYLOR, J.R., ZAFIRATOS, C.D. ve DUBSON, M.A., 2008, *Fen ve Mühendislikte Modern Fizik*, Okutman Yayıncılık, Ankara, 978-605-5884-06-2.
- 3. LUNNEY, D., PEARSON, J.M., THIBAULT C., 2003, Recent Trends in the Determination of Nuclear Masses. *Reviews of Modern Physics*. Vol.75.
- ZHANG, J.-Y., CASTEN, R.F., BRENNER, D.S., 1989, Empirical Proton-Neutron Interaction Energies. Linearity and Saturation Phenomena. *Physics Letters B.* Vol.227, No.1, 1-5.
- 5. LUTTINGER, J. M., 1960, Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions. *Physical Review*. Vol.119, 1153–1163.
- 6. CAKIRLI, R.B., BRENNER, D.S., CASTEN, R.F. and MILLMAN, E.A., 2005, Proton-Neutron Interactions and the New Atomic Masses. *Physical Review Letters*. Vol.94, No.9, 092501.
- 7. CASTEN, R.F., 2000, *Nuclear Structure from a Simple Perspective*, Oxford Science Publications, New York, 0-19-850724-0.
- 8. OKTEM, Y., CAKIRLI, R.B., CASTEN, R.F., CASPERSON, R.J., and BRENNER, D.S., 2006, Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei. *Physical Review C*. Vol.74, No.2, 027304.
- 9. WAPSTRA, A. H., 1958, Atomic Masses of Nuclides, Springer.
- 10. DUFLO, J. and ZUKER, A.P., 1995, Microscopic Mass Formulas. *Physical Review C*. Vol.52, No.1.
- MÖLLER, P. and NIX, J.R., 1981, Atomic Masses and Nuclear Ground-State Deformations Calculated with a New Macroscopic-Microscopic Model. *Atomic Data and Nuclear Data Tables*. Vol.26, No.2, 165-196.
- STOITSOV, M.V., DOBACZEWSKI, J., NAZAREWICZ, W. and BORYCKI, P., 2006, Large-Scale Self-Consistent Nuclear Mass Calculations. *International Journal of Mass Spectrometry*. DOI:10.1016.
- 13. GORIELY, S., CHAMEL, N. and PEARSON, J.M., 2010, Further Explorations of Skyrme-Hartree-Fock-Bogoliubov Mass Formulas. XII. Stiffness and Stability of Neutron-Star Matter. *Physical Review C*. Vol.82, No.3, 035804.
- 14. AUDI, G., WAPSTRA, A.H., and THIBAULT, C., 2003, The AME2003 Atomic Mass Evaluation (II). Tables, Graphs and References. *Nuclear Physics A*. Vol.729, 337–676.
- 15. SLATER, J.C., 1951, A Simplification of the Hartree-Fock Method. *Physical Review*. Vol.81, 385–390.

- MÖLLER, P., NIX, J.R., MYERS W.D. and SWIATECKI, W.J., 1995, Nuclear Ground-State Masses and Deformations. *Atomic Data Nuclear Data Tables*. Vol.59, No.2, 185-381.
- 17. 2011, HFB-21 Mass Formula [online], Universite Libre de Bruxelles, http://www.astro.ulb.ac.be/pmwiki/Brusslib/Hfb17, [Ziyaret tarihi 1 Mart 2012].
- 18. KÖHLER, H.S., 1976, Skyrme Force and the Mass Formula. *Nuclear Physics* A. Vol.258, No.2, 301-316.
- 19. AUDI, G. and WAPSTRA, A.H., 1993, The 1993 Atomic Mass Evaluation: (I) Atomic Mass Table. *Nuclear Physics A*. Vol.565 No.1, 1-65.
- AUDI, G. and WAPSTRA, A.H., 1993, The 1993 Atomic Mass Evaluation: (II) Nuclear-reaction and Separation Energies. *Nuclear Physics A*. Vol.565, No.1, 66-157.
- BORCEA, C., AUDI, G., WAPSTRA, A.H. and FAVARON, P., 1993, The 1993 Atomic Mass Evaluation: (III) Separation and Decay Energies. Graphs of Systematic Trends. *Nuclear Physics A*. Vol.565, No.1, 158-192.
- AUDI, G., WAPSTRA, A.H. and DEDIEU, M., 1993, The 1993 Atomic Mass Evaluation: (IV) Evaluation of Input Data, Adjustment Procedures. *Nuclear Physics A*. Vol.565, No.1, 193-397.
- 23. AUDI, G. and WAPSTRA, A.H., 1995, The 1995 Update to the Atomic Mass Evaluation. *Nuclear Physics A*. Vol.595, No.4, 409-480.
- CAKIRLI, R.B., BLAUM, K. and CASTEN, R.F., 2010, Indication of a minivalence Wigner-like Energy in Heavy Nuclei. *Physical Review C*. Vol.82, No.6, 061304.
- 25. CAKIRLI, R.B., Physical Review C için hazırlık aşamasında.

ÖZGEÇMİŞ

Duygu TARHAN, 8 Haziran 1987 yılında Ankara'da doğdu. İlk ve orta öğrenimini İstanbul'da tamamladı. 2005 yılında İstanbul Üniversitesi Fen Fakültesi Fizik Bölümü Lisans Programın kazandı. 2006 yılında İstanbul Üniversitesi Fen Fakültesi Matematik Bölümü Lisans Programı ile Çift Anadal yapmaya hak kazandı. 2009 yılında Fizik Bölüm birinciliği ve Fen Fakültesi üçüncülük dereceleri ile mezun oldu. Aynı zamanda Matematik Bölümünden de mezun oldu. 2010 yılında yine aynı üniversitede Nükleer Fizik Anabilim Dalında yüksek lisans öğrenimine başladı. 2010 yılında İsviçre'de bulunan CERN Araştırma Merkezi tarafından düzenlenen yaz okulu tarafından kabul edildi. Ayrıca yüksek lisans çalışmaları süresince iki kez Almanya Heidelberg'de bulunan Max Planck Enstitüsü'nde bulundu. Ek olarak 2010-2011 yılları arasında Türk Fizik Derneği'nin düzenlediği birçok yaz okulu ve kongrelerine katılmış olup Türk Fizik Derneği 28. Kongresinde yüksek lisans tez çalışması ile ilgili 'Evaluation of Global Mass Models with Double Differences of Binding Energies' başlıklı sunumu yapmıştır.