

T.C. İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

BAZALT NUMUNELERDE EABF VE EBF PARAMETRELERININ YENI BIR METOT ILE TAYINI

Yaşar KARABUL

Fizik Anabilim Dalı

Nükleer Fizik Programı

Danışman

Yrd. Doç. Dr. Lidya SUSAM

İkinci Danışman

Prof. Dr. Orhan İÇELLİ

Aralık, 2014

İSTANBUL

Bu çalışma 15/12/2014 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı Nükleer Fizik programında Yüksek Lisans Tezi olarak kabul edilmiştir.

Tez Jürisi:

İmza Yrd. Doç. Dr. Lidya Susam İstanbul Üniversitesi Fen Fakültesi

Imza

Prof. Dr. Baki Akkuş İstanbul Üniversitesi Fen Fakültesi

İmza

Doç. Dr. R. Burcu Çakırlı İstanbul Üniversitesi Fen Fakültesi

İmza Prof. Dr. Yeşim Öktem İstanbul Üniversitesi Fen Fakültesi

İmza

Yrd. Doç. Dr. H. Birtan Kavanoz Yıldız Teknik Üniversitesi Fen-Edebiyat Fakültesi

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin 38331 numaralı projesi ile desteklenmiştir.

ÖNSÖZ

Yüksek lisans çalışmalarımda ilminden yararlandığım, insani ve ahlaki değerleri ile örnek edindiğim, birlikte çalışmaktan onur duyduğum Prof. Dr. Orhan İÇELLİ hocama hoşgörü ve sabrından dolayı teşekkür ederim.

Bilgi, birikim ve pozitif enerjisini eksik etmeyen; her türlü sorunumu kendine dert edip çözüm üreten değerli danışman hocam Yrd. Doç. Dr. Lidya SUSAM' a teşekkür ederim.

İstanbul Üniversitesi'nde yüksek lisansa başladığım ilk günden beri bana sahip çıkan, çalışmalarım için her türlü destek ve yardımlarını esirgemeyen değerli hocalarım; Prof. Dr. Baki AKKUŞ, Prof. Dr. Yeşim ÖKTEM, Doç. Dr. R. Burcu ÇAKIRLI' ya teşekkür ederim.

Yıldız Teknik Üniversitesi'nde tez çalışmalarım boyunca teknik, programsal ve motivasyonel desteklerini esirgemeyen değerli Hocalarım; Prof. Dr. Zeynel YALÇIN, Yrd. Doç. Dr. H. Birtan KAVANOZ, Yrd. Doç. Dr. Önder EYECİOĞLU, Öğr. Gör. Hakan Ömer ÖZTEK ve Arş. Gör. Dr. Mehmet KILIÇ' a teşekkür ederim. Yüksek lisans tez çalışmalarımın ilk kısmında sağladığı desteklerden dolayı Yrd. Doç. Dr. Cem ÖZEN'e ve birlikte çalışmaktan zevk aldığım tüm çalışma arkadaşlarıma teşekkürleri borç bilirim.

Son olarak her zaman maddi manevi yanımda olan, çalışmalarım boyunca yaşadığım bütün stres, sıkıntı ve üzüntülerimi benimle paylaşıp destek olan "Aileme" bu tezi ithaf ediyorum.

Aralık 2014

Yaşar KARABUL

İÇİNDEKİLER

Sayfa No

ÖNSÖZ	i
İÇİNDEKİLER	ii
ŞEKİL LİSTESİ	iv
TABLO LİSTESİ	vi
SİMGE VE KISALTMA LİSTESİ	vii
ÖZET	viii
SUMMARY	ix
1. GİRİŞ	1
2. GENEL KISIMLAR	4
2.1. RADYASYONUN MADDE İLE ETKİLEŞİMİ	4
2.1.1. Fotoelektrik Olayı	4
2.1.2 Compton Etkileşmeleri	5
2.1.3. Çift Oluşumu	6
2.1.4. Rayleigh Saçılması	7
2.1.5. Fotobozunma	7
2.2. RADYASYON ŞİDDETİNDE AZALMA VE SOĞURULMA	7
2.3. ETKİN ATOM NUMARASI VE HESAPLAMA YÖNTEMLERİ	11
2.3.1. Direkt Yöntemi	12
2.3.2. İnterpolasyon Yöntemi	13
2.3.3. ZXCOM yöntemi	13
2.4. TEMEL PROGRAMLAR	15
2.4.1 XCOM	15
2.4.2 WINXCOM	16
2.4.3 Auto Zeff	16
2.4.4 Direct <i>Zeff</i>	16
2.4.5 ZXCOM	16
2.5. BUILDUP FAKTÖRÜ	19
2.5.1 EBF (Maruz Kalma Buildup Faktörü)	20
2.5.2 EABF (Enerji Soğurma Buildup Faktörü)	21
3. MALZEME VE YÖNTEM	23
3.1. BAZALT NUMUNELER	23

3.2. ETKİN ATOM NUMARASININ HESAPLANMASI	
3.3. BUILDUP FAKTÖRLERİNİN HESAPLANMASI	
4. BULGULAR	
TARTIŞMA VE SONUÇ	
KAYNAKLAR	75
ÖZGEÇMİŞ	80

ŞEKİL LİSTESİ

Sayfa No

Şekil	2.1: Üç radyasyon etkileşmesinin etkin olduğu bölgeler ve enerjileri	6
Şekil	2.2: Tüm etkileşmelerle küçük bir alıcıya ulaşan fotonların sayısının "ideal geometri" kullanılarak azaltılması	8
Şekil	2.3: Gelen demet ile alıcıya ulaşan saçılmış fotonlar arasındaki ilişkiyi gösteren "zayıf geometri" düzeninde bir foton demetinin azaltılması	8
Şekil	2.4: Azalma işlemleri ile foton demetinin değişimi	9
Şekil	2.5: ZXCOM programının kurulum sihirbazı görünümü1	7
Şekil	2.6: ZXCOM programının kullanıcı ara yüzü 1	8
Şekil	2.7: ZXCOM programının sonuç kısmının ve elde edilen grafiklerin görüntüsü1	9
Şekil	4.1: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği6	52
Şekil	4.2: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği	52
Şekil	4.3: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği6	3
Şekil	4.4: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği6	53
Şekil	4.5: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği6	64
Şekil	4.6: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği	64
Şekil	4.7: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği	5
Şekil	4.8: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği	5
Şekil	4.9: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği	6
Şekil	4.10: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği	6
Şekil	4.11: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği	7

Şekil 4.1 gra	2: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF afiği	.67
Şekil 4.1	3: CM1 numunesinin 25 mfp için EABF grafikleri	.68
Şekil 4.1	4: KYZ-13 numunesinin 25 mfp için EABF grafikleri	.68
Şekil 4.1	5: KYZ-24 numunesinin 25 mfp için EABF grafikleri	.69
Şekil 4.1	6: CM1 numunesinin 25 mfp için EBF grafikleri	.69
Şekil 4.1	7: KYZ-13 numunesinin 25 mfp için EBF grafikleri	.70
Şekil 4.1	8: KYZ-24 numunesinin 25 mfp için EBF grafikleri	.70
Şekil 4.1	9: CM1 numunesine ait iki farklı metot için etkin atom numarası grafikleri	.71
Şekil 4.2	0: KYZ-13 numunesine ait iki farklı metot için etkin atom numarası grafikleri	.71
Şekil 4.2	1: KYZ-24 numunesine ait iki farklı metot için etkin atom numarası grafikleri	.72

v

TABLO LÍSTESÍ

Sayfa No

Tablo 3.1: Üç bazalt örneğinin kompozisyon dağılımı. 24
Tablo 4.1: CM1 numunesine ait farklı ortalama serbest yollar için EABF değeri27
Tablo 4.2: KYZ-13 numunesine ait farklı ortalama serbest yollar için EABF değeri. 30
Tablo 4.3: KYZ-24 numunesine ait farklı ortalama serbest yollar için EABF değeri. 33
Tablo 4.4: CM1 numunesine ait farklı ortalama serbest yollar için EBF değeri
Tablo 4.5: KYZ-13 numunesine ait farklı ortalama serbest yollar için EBF değerleri
Tablo 4.6: KYZ-24 numunesine ait farklı ortalama serbest yollar için EBF değerleri41
Tablo 4.7: CM1 numunesine ait farklı ortalama serbest yollar için EABF değerleri44
Tablo 4.8: KYZ-13 numunesine ait farklı ortalama serbest yollar için EABF değerleri47
Tablo 4.9: KYZ-24 numunesine ait farklı ortalama serbest yollar için EABF değerleri.
Tablo 4.10: CM1 numunesine ait farklı ortalama serbest yollar için EBF değerleri. 52
Tablo 4.11: KYZ-13 numunesine ait farklı ortalama serbest yollar için EBF değerleri
Tablo 4.12: KYZ-24 numunesine ait farklı ortalama serbest yollar için EBF değerleri

SİMGE VE KISALTMA LİSTESİ

Açıklama
: Atom numarası
: Etkin atom numarası
: Etkin elektron yoğunluğu
: Planck sabiti
: Foton frekansı
: Lineer azaltma katsayısı
: Kütle azaltma katsayısı
: Enerji soğurma katsayısı
: Kütle enerji soğurma katsayısı
: Atomik Form Faktör
: İnkoherent Saçılma Fonksiyonu

Kısaltmalar

Açıklama

ANSI	: Amerikan Ulusal Stardart Enstitüsü
EABF	: Enerji soğurma buildup faktörü
EBF	: Maruz kalma buildup faktörü
eV	: Elektronvolt
GeV	: Giga elektronvolt
keV	: Kilo elektronvolt
MeV	: Mega elektronvolt
SI	: Uluslararası ölçüm sistemi

YÜKSEK LİSANS TEZİ

BAZALT NUMUNELERDE EABF VE EBF PARAMETRELERİNİN YENİ BİR METOT İLE TAYİNİ

Yaşar KARABUL

İstanbul Üniversitesi

Fen Bilimleri Enstitüsü

Fizik Anabilim Dalı

Danışman : Yrd. Doç. Dr. Lidya SUSAM

II. Danışman : Prof. Dr. Orhan İÇELLİ

Bu tez çalışmasında, enerji soğurma buildup faktörü (EABF) ve maruz kalma buildup faktörü (EBF) gibi bazı foton soğurma parametrelerini, Van şehrinin farklı bölgelerinden toplanmış üç farklı bazalt örneği için inceledik. Bazalt örneklerinin radyasyon zırhlama özellikleri EABF ve EBF parametre değerleriyle güçlü bir korelasyon gösterdi. EABF ve EBF parametrelerinin bazalt örneklerinin radyasyon zırhlama özellikleri ile ilişkisi bulundu. ZXCOM adında yeni bir metot ve algoritma kullanıldı. Bulunan etkin atom numaraları için ANSI/ANS 6.4.3 standart verileri kullanılarak EABF ve EBF değerleri hesaplandı.

Aralık 2014, 89 Sayfa

Anahtar kelimeler: Kütle azaltma katsayısı, etkin atom numarası, radyasyon zırhlama, EABF, EBF

SUMMARY

M. SC. THESIS

IDENTIFY OF EABF AND EBF PARAMETERS OF BASALT SAMPLES WITH NEW METHODS

Yaşar KARABUL

İstanbul University

Institute of Graduate Studies of Science and Engineering

Department of Physics

Supervisor : Yrd. Doç. Dr. Lidya SUSAM

Co-Supervisor : Prof. Dr. Orhan İÇELLİ

In this thesis, some photon absorption parameters such as the energy absorption buildup factor (EABF) and exposure buildup factor (EBF) have been investigated for three different basalt samples which were collected from different parts of Van city. Radiation shielding properties of the basalt samples indicated a strong correlation between EABF and EBF parameter values of basalt samples. It was found that EABF and EBF parameters are related to radiation shielding properties of basalt samples. A new method and algorithm called ZXCOM is used. EABF and EBF values were calculated for derived effective atomic number by using ANSI/ANS 6.4.3 standart data.

December 2014, 89 Pages

Keywords: Mass attenuation coefficient, effective atomic number, radiation shielding, basalt, EABF, EBF

1. GİRİŞ

Baş döndürücü bir hızla gelişen teknoloji ile birlikte radyasyon kullanımı ve etkilerinden korunma hayati önem kazanmıştır. 1895 yılında W.C. Röntgen tarafından X-ışınlarının keşfi ile başlayan radyasyon ile tanışıklığımız günümüze kadar arttırılan bilgi havuzu ile devam etmiştir. Radyasyonun kaynağını, yayınlanan radyasyonun çeşidini, özelliğini ve değişik ortamlarda soğurulan enerji mekanizmasını anlamak için fizik bilmek gereklidir [1]. Bir radyasyon kaynağından yayınlanan elektromanyetik dalgalar, madde atomlarıyla çeşitli etkileşmeler sonucunda enerjisinin ya tamamını ya da bir kısmını kaybeder. Kullanılan numune; element, bileşik veya karışım olsun, etkileşime giren radyasyon tipi ve enerjisi için; lineer azaltma katsayısı (μ), kütle azaltma katsayısı (μ/ρ), etkin atom numarası (Z_{etkin}), ve foton buildup faktörleri birer karakteristik özelliktir. Elementler, bileşikler ve karışımlar için ayırt edici özellikler olan bu fiziksel parametreler; temel fizikte, ziraat, endüstri, eczacılık, radyasyon dozimetrisi, inşaat, çevre ve metalürjinin uygulamalarında kullanılmaktadır. Ayrıca biyofizikte de önemli uygulama sahası bulunmaktadır [2].

Buildup faktörü kavramı ile ilgili ilk olarak 1950 yılında su için 16 mfp penetrasyon derinliğine kadar 1,25 MeV enerjili fotonlar kullanılarak, deneysel olarak çalışma gerçekleştirilmiş ve buildup faktörleri elde edilmiştir [3]. Ardından bu alan ile ilgili çalışmalar hız kazanmış ve günümüze kadar gelişerek devam etmiştir. Birçok araştırmacı farklı türdeki materyaller için buildup faktör değerlerini çalışmıştır. Son yıllarda yapılan çalışmaları sıralarsak; Al, Fe, Pb gibi zırhlayıcı olarak yaygın olarak kullanılan malzemelerin 1,43 ve 2,75 MeV enerjilerdeki açısal maruz kalma doz buildup faktörleri hesaplanmıştır [4]. Yine bu üç malzeme için 6.13 ve 7.12 MeV enerjili fotonlar kullanılarak açıya bağlı radyasyon akı spektrumu analiz edildi [5]. Çeşitli kodlar ve tablolar ile derlenen buildup faktör değerleri, Amerikan Ulusal Standart Enstitüsü tarafından rapor edilmiştir [6]. Rapor 0.015 - 15 MeV enerji aralığında, 40 mfp penetrasyon derinliğine kadar bir bölgeyi kapsamakta ve 4-92 atom numarası aralığında 23 element, su, hava ve beton olmak üzere 26 örnek hakkında veriler bulunmaktadır. Bu çalışmanın ardından buildup faktörlerini iyi uyumlulukta (belirsizlik < %5) hesaplayabilen bir yöntem geliştirilmiş olup yöntem G-P Fit metodu olarak

isimlendirilmiştir [7]. 1993 yılında radyasyon buildup faktörlerini tekrar gözden geçirilerek yayımlanmıştır [8]. Birçok araştırmacı, bu veriler ışığında elde edilen standartlardan yola çıkarak; alaşım [9], lüminesans materyal [10], insan dokusu [11], yaygın kullanılan solventler [12], dozimetri malzemeleri [13], bazı bor bileşikleri, kolemanitler [14], ve süperiletkenler [15] gibi çeşitli materyalleri için çalışmalar yapmıştır.

ANSI çalışmalarının yanında deneysel ve teorik olarak yapılan farklı araştırmalar da mevcuttur. 0,015 - 15 MeV enerji aralığında bazı termolüminesans dozimetrik bileşiklerin ve bazı aminoasitlerinin soğurma katsayıları, kütle enerji soğurma katsayıları, etkin atom numaraları, atomik ve elektronik tepkime kesitleri ile birlikte foton buildup faktörleri 40 mfp penetrasyon derinliğine kadar hesaplanmıştır. Bu parametrenin enerji, penetrasyon derinliği ve kimyasal yapıya bağımlılığı tartışılmıştır [16]. Bu çalışmada bazı potansiyel biyoaktif bileşiklerin kütle soğurma katsayıları, etkin atom numaraları ve atomik tesir kesitlerinin 8,04 - 59,54 keV enerji aralığında deneysel olarak ölçülmüştür. Aynı zamanda seçilen bu biyoaktif bileşiklerin foton kuvvetlendirme faktörleri teorik olarak hesaplanmıştır. Çalışmada elde edilen sonuçlar; medikal onkolojide ilaç adayı olmakla birlikte yeni bileşiklerin geliştirilmesine dayanak oluşturması açısından önemlidir [17].

Son yıllarda yapılan çalışmalarda; Compton saçılma tekniği kullanılarak, farklı gama ışını enerjilerinde Inconel 738 süper alaşımının kütle azaltma katsayıları hesaplanmıştır. Sonuçlar gama-ışını enerjisinin azalmasıyla, kütle azaltma katsayılarının, etkin atom numarasının ve elektron yoğunluklarının arttığını göstermektedir [18]. 59,54 keV enerjili gama ışınlarının saçılması çalışılarak, bazı alaşımlara ait etkin atom numarası belirlenmiştir. Deneysel Rayleigh/Compton saçılma şiddet oranının, atom numarasının fonksiyonu şeklinde grafiği çizilmiştir. Bu grafikten en iyi fit eğrisi oluşturularak ortaya çıkan eğriden alaşımlara ait etkin atom numarası hesaplanmıştır [19]. Benzer hesaplamalar bakterilere ait proteinler üzerinde de yapılmıştır. 1 keV- 100 GeV enerji aralığındaki fotonlar için; bacteriorhodopsin adı verilen özel protein türünün kütle azaltma katsayıları WINXCOM programı kullanılarak belirlenmiştir. Bu verilerden yola çıkılarak aynı enerji aralığı için etkin atom numarası ve elektron yoğunlukları hesaplanmıştır [20]. Bu enerji aralığındaki foton enerjilerinde 16 farklı beton türü için toplam kütle azaltma katsayısı, etkin atom numaraları ve etkin elektron numaraları değerleri hesaplanmıştır [21]. Bazı aminoasitlere ait 122, 356, 511, 662, 1170, 1275 ve

1330 keV foton enerjilerinde, kütle azaltma katsayıları ölçülmüştür. Bu azaltma katsayı verileri kullanılarak daha sonra etkin atom numaraları ve etkin elektron yoğunlukları elde edilerek, ardından deneysel sonuçlar interpolasyon metodundan elde edilen veriler ile karşılaştırılmıştır [22]. Bu hesaplamaların farklı bir numune üzerinde uygulaması; ateşli silah malzemesi üzerine yapılmıştır. Koherent ile Compton saçılma piklerinin şiddet oranları kullanılarak ateşli silah materyalleri için atom numarasına bağlı grafikler çizilmiş; bu grafikler üzerinden fit işlemi yapılarak, bu örneklere ait etkin atom numaraları belirlenmiştir [23].

Literatürdeki son çalışmalarda çeşitli radyasyon kaynaklarına ait ortalama foton enerjilerini kullanarak bazı insan dokuları ve dozimetrik materyaller için etkin atom numaraları ve elektron yoğunlukları hesaplanmıştır. Bu işlemi yaparken; direkt metot, interpolasyon yöntemi ve Auto Z_{eff} gibi bilgisayar programı kullanılmıştır. Bununla birlikte, hesaplama sonuçlarının uyumlu ve uyumsuz olduğu noktalar tartışılmıştır [24].

Yukarıda bahsedilen teorik ve deneysel çalışmalar ışığında farklı metot ve örnekler üzerinde incelemeler yapılmıştır. Bu tez çalışmasında buildup faktörünün hesaplanma kısmı farklı yaklaşımlar içermektedir. Ayrıca bu çalışmalardan farklı olarak, literatürde çalışılmamış üç farklı bazalt numunesini de kullanarak özgün bir örnek havuzu oluşturuldu. Çalışmamızın sonunda bu numunelerin radyasyon zırhlaması ile birlikte yeni kullanılabilir alanları ile ilgili tartışma ve yorumlar yapıldı. Hesaplamaların ilk kısmında kullandığımız farklı etkin atom numarası metotlarının sonuçları, birbirleriyle kıyaslama ve yeni bulgulara yol açma olanağını sağlamaktadır.

2. GENEL KISIMLAR

2.1. RADYASYONUN MADDE İLE ETKİLEŞİMİ

Radyasyon, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. Çevresine alfa, beta, gama gibi çeşitli ışınlar yayarak bozunan maddelere radyoaktif madde, çevreye bu bozunma esnasında yayılan ışınlara ise radyasyon adı verilir [25]. Radyasyonlar yüklü ve yüksüz parçacıklar olarak ikiye ayrılırlar. Bu radyasyonların maddeyle yapacakları etkileşimler farklılık göstereceği gibi, bu etkileşmeden elde edilecek bilgiler; radyasyonun tespit edilmesi, bu dedeksiyonu sağlayan araçların geliştirilmesi, radyasyondan korunma ilkelerinin geliştirilmesi, radyasyonun biyolojik yapılara verdiği zararların tayin edilmesi gibi çok çeşitli alanlarda kullanılır [26].

Foton demetinin madde içinde eksilmesi ve ortama enerji bırakması için ana etkileşmeler; Fotoelektrik olay, Compton saçılması, çift oluşumu, Rayleigh saçılması ve fotobozunmadır.

2.1.1. Fotoelektrik Olayı

Düşük enerjili bir foton atom yörüngesine bağlı olan elektronla çarpışır ve elektronu atomdan koparır. Bu olaya fotoelektrik olay, koparılan elektrona fotoelektron denir. Elektronun kopması için gelen fotonun enerjisinin elektronun atoma bağlanma enerjisinden büyük olması gerekmektedir. Fotoelektronun kinetik enerjisi şu şekilde formüle edilir;

$$K_e = h\nu - E_b \tag{2.1}$$

burada K_e elektronun atom yörüngesinden koptuktan sonra sahip olduğu kinetik enerji, hv gelen fotonun enerjisi ve E_b elektronun bağlanma enerjisidir. Ayrıca iç yörüngelerden uyarılan atomda oluşan bir boşluk, üst tabakalardan elektron geçişi ile doldurulur ve atom daha düşük enerji seviyesine düşer. Bu sırada ortaya çıkan enerji, bir dış yörüngedeki elektronu sökmek için kullanılırsa, ışımasız geçiş yapar ve fazla enerjisini dışarı atar. Bu olaya Auger olayı elektrona da Auger elektronu denilir [27]. Fotoelektrik soğurma olasılığını kesin bir fonksiyonla tanımlamak oldukça zordur. Ancak deneysel çalışmalar ile çeşitli özelliklerine ulaşılabilir. Düşük enerjili fotonlar için (~100 keV) oldukça baskındır [28]. Fotoelektrik soğurma katsayısı τ ; soğurucu maddenin atom numarası Z'ye ve radyasyon enerjisi E'ye bağlı bir fonksiyondur.

$$\tau \cong sabit \times \frac{Z^5}{E^3} \tag{2.2}$$

Denklem 2.2' de görüldüğü gibi fotoelektrik etkinin yüksek Z 'li malzemeler ve düşük enerjili fotonlarla gerçekleşme ihtimali daha yüksektir [29].

2.1.2 Compton Etkileşmeleri

Compton etkileşmesi, yüksek enerjili bir fotonun genellikle durgun ve serbest kabul edilen bir elektrondan veya bağlanma enerjisi gelen foton enerjisine kıyasla küçük olan bağlı bir elektrondan enerji kaybı ile saçılması olayıdır [30]. Compton etkileşimleri özellikle orta enerjideki (0,5 – 1,0 MeV) radyasyonlar için önemlidir. Doku gibi küçük atom numaralı malzemelerde 0,1 MeV enerjisinin altında kalan bölgede de baskın olabilir. Bu etkileşmede, momentum ve enerji korunumu geçerlidir. Beklenildiği gibi gelen fotonun enerjisi saçılırken kayba uğrar. Dolayısıyla saçılan fotonun enerjisi, gelen fotondan farklılık gösterir. Saçılan foton çarpışmadan yeni bir yönde ve artan bir dalga boyu ile çıkar. Compton kayması olarak adlandırılan dalga boyundaki değişim $\lambda' - \lambda$,

$$\lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \theta) \tag{2.3}$$

ile ifade edilir. Fotonun dalga boyundaki değişimin sadece saçılma açısı ile olan ilişkisi önemlidir. Genellikle Compton dalgaboyu olarak isimlendirilen h/m_0c teriminin sayısal değeri 2,4264×10⁻¹⁰ cm' dir. Saçılan elektronlar sıfırdan maksimum değere kadar aralıkta enerjiye sahip olabilir. 180°' lik saçılma açısında elektrona maksimum değer aktarılır. Compton etkileşim katsayısı σ ;

$$\sigma = \sigma_a + \sigma_s \tag{2.4}$$

ile ifade edilir. Formüldeki ifadeler sırasıyla; toplam Compton etkileşim katsayısı σ , elektronlarla çarpışmalar sebebiyle kaybedilmiş foton enerji için Compton soğurma katsayısı σ_a ve foton demetinden dışarı saçılmadan dolayı enerji kaybına karşılık gelen saçılma katsayısıdır σ_s . Compton etkileşme katsayıları yine fotoelektrik olayda olduğu gibi gelen foton enerjisi ve soğurucunun atom numarası ile ilişkilidir. Bu ilişki;

$$\sigma \cong sabit \times \frac{Z}{E} \tag{2.5}$$

ifadesi ile gösterilir [31].

2.1.3. Çift Oluşumu

Fotonların madde ile etkileşmelerinden bir diğeri de çift oluşumudur. Bu olay fotonun elektron-pozitron çiftine ayrılarak kendisinin yok olması olayıdır. Foton bu iki parçacığı oluşturabilecek minimum enerji olan 1,022 MeV' lik enerjiye sahip ise madde ortamından geçerken bu olayı gerçekleştirir. Çift oluşumu sırasında momentum ve enerji korunumu kanunları yine etkindir.

Şekil 2.1: Üç radyasyon etkileşmesinin etkin olduğu bölgeler ve enerjileri [33].

Genelde çift oluşumu sadece yüksek enerjili fotonlar için önem kazanmakta 5 MeV' in üzerindeki enerjiye sahip olan fotonlar içinse baskın hale gelmektedir. Fotonun enerjisi ile ortaya çıkabilecek etkileşimlerin, etkin oldukları bölgeler grafik Şekil 2.1' de gösterilmiştir [32]. Çift oluşumu etkileşme katsayısı κ , enerjisi 1,022 MeV' den büyük olan fotonlar için atom numarasının karesi ile ilişkilidir. Bu ilişki

$$\kappa \cong sabit \times Z^2 \left(E - 1,022 \right) \tag{2.6}$$

ifadesi ile açıklanır. Burada E fotonun MeV cinsinden enerjisini temsil eder [34].

2.1.4. Rayleigh Saçılması

Rayleigh saçılması etkin koherent saçılma türlerinden biri olarak adlandırılır. Foton tüm atomun ortak hareketiyle saçılır. Bu olay elastik bir şekilde gerçekleşir. Foton temel enerjisini kaybetmez. Atom, momentum korunumu için sadece yeterli seviyede hareket eder. Gelen foton genellikle küçük bir açı değişimi ile yön değiştirerek yoluna devam eder. Bu saçılmaların doz hesaplamalarına bir katkısı yoktur. Nedeni herhangi bir yüklü parçacığa enerji vermemesi, iyonlaşma veya uyarılma gibi olaylara sebep olmamasıdır. Rayleigh saçılma açısı soğurucu ortamın atom numarası ve gelen fotonun enerjisine bağlıdır. Rayleigh saçılma katsayısı;

$$\sigma_R \cong \frac{Z^2}{\left(h\upsilon\right)^2} \tag{2.7}$$

formülü ile ifade edilir [35].

2.1.5. Fotobozunma

Foton enerjisi yeterince büyükse, foton demetlerinde fotobozunma etkileşimi de gerçekleşir. Fotonun enerjisi 20 MeV' in üzerinde olduğu durumlarda etkin hale gelir ve zırhlama tasarımlarında hesaba katılmalıdır. Bu enerjilerde büyük nötron alanları oluşur ve bu nötronlar çok sayıda soğurulmamış foton ile karışırlar. Bu olaylar radyasyon dozimetrisi ve zırh tasarlamalarında dikkate alınmalıdır [36].

2.2. RADYASYON ŞİDDETİNDE AZALMA VE SOĞURULMA

Radyasyonların madde ile etkileşmeleri yüklü parçacıkların etkileşmelerinden oldukça farklıdır. X veya gama-ışınları maddeye girdiği zaman, bir kısmı soğurulur, diğer bir kısmı etkileşmeden geçer, bazıları da geldiği demetten farklı yönde saçılmaya uğrar. Bir foton demetinin bir soğurucu tarafından azaltılması, Şekil 2.2 ve 2.3' de gösterildiği gibi "ideal geometri" veya "zayıf geometri" olarak iki şekilde tanımlanır. İdeal geometri, her bir radyasyon fotonunun soğurulduğu ya da geldiği demetten saçıldığı durumları kapsar.

İdeal geometri olduğunda, soğurucu ile herhangi bir etkileşme yapmaksızın geçen fotonlar detektöre ulaşacaktır. Bu fotonların her birinin enerjisi başlangıçta soğurucuya gönderilen radyasyon fotonları ile aynı enerjidedir. Bu durum, gelen fotonların dar bir demete sıkıştırıldığı, alıcının çok küçük olduğu ve saçılan fotonların odaklanmış ilk demetle yeterince büyük açıya sahip olacak şekilde saçıldıkları durumlarda meydana gelir. Böylece saçılan fotonlar alıcıya ulaşamazlar. Bu özellikleri sebebiyle, bu geometri "dar-ışın" geometrisi olarak da isimlendirilir.

Şekil 2.2: Tüm etkileşmelerle küçük bir alıcıya ulaşan fotonların sayısının "ideal geometri" kullanılarak azaltılması [37].

Şekil 2.3:Gelen demet ile alıcıya ulaşan saçılmış fotonlar arasındaki ilişkiyi gösteren "zayıf geometri" düzeninde bir foton demetinin azaltılması [38].

Zayıf geometri veya "geniş-demet geometrisi" ile saçılan fotonların büyük bir kısmı, etkileşmeksizin alıcıya gelenlere ek olarak alıcıya ulaşır. Birçok zayıf geometri tipi vardır. Şekil 2.3' deki gösterime ek olarak, diğer tipik zayıf geometri gösterimleri; soğurucu ile kapatılmış bir kaynak, zırhlanmış bir detektör veya bir kaynaktan yayınlanan fotonların azaltılması için bir zırh kullanıldığında sıklıkla meydana gelir. Bu durumlarda saçılan her fotonun enerjisi, saçılma açısına göre azalacaktır. Alıcıya ulaşan fotonların enerji spektrumu karmaşıktır. Bu spektrum, farklı enerjili saçılmış fotonların ve birincil

demette mevcut olan saçılmamış fotonların enerjilerinden oluşur. Alıcıdaki enerji depolanmasının deseni aynı derecede karmaşık olacaktır. Kullanılan geometrik düzenleme ve enerji dağılımı ile ayarlanmalıdır. Böyle koşullar altındaki bir soğurucuda veya bir alıcıda depolanan enerji miktarını analitik olarak belirlemek oldukça zordur.

Soğurucu

Şekil 2.4: Azalma işlemleri ile foton demetinin değişimi [39].

İdeal geometrik şartlarda, radyasyon demetinin şiddetindeki değişim matematiksel olarak, soğurucu kalınlığının fonksiyonu olarak,

$$-\frac{dI}{dx} = \mu I \tag{2.8}$$

bağıntısı ile gösterilebilir. Bu ilişki Beer-Lambert kanunu olarak bilinir ve Şekil 2.4' de genel diyagramı gösterilmiştir. Formülde, μ ilgilendiğimiz fotonlar için ortamın lineer azaltma katsayısıdır. Fotonların hepsi aynı enerjiye sahiplerse (tek enerjili bir demet) ve fotonlar ideal geometri koşulları altında azalıyorsa, *x* kalınlığındaki bir soğurucuyu geçen fotonların şiddeti *I*(*x*) yeniden düzenlenirse;

$$\int_{I_0}^{I(x)} \frac{dI}{I} = \int_0^x -\mu dx$$
(2.9)

 $\ln I(x) - \ln I_0 = -\mu x \tag{2.10}$

ya da

$$\ln I(x) = -\mu x + \ln I_0 \tag{2.11}$$

olarak bulunur. Bu, eğimi $-\mu$ olan ve x eksenini lnI_0 ' da kesen bir doğrunun denklemidir. Logaritmik işlem özellikleri kullanılarak;

$$\ln \frac{I(x)}{I_0} = -\mu x$$
 (2.12)

şeklinde yazılır ve

$$\frac{I(x)}{I_0} = e^{-\mu x}$$
(2.13)

veya

$$I(x) = I_0 e^{-\mu x}$$
(2.14)

bağıntısı elde edilir. Burada I_0 gelen demetin şiddeti, I(x) soğurucu ortamın x kalınlığını geçen demet şiddetidir. Lineer azaltma katsayısı, soğurucu ortamda birim uzunluk başına etkileşme olasılığıdır. Foton soğurulması için bu üstel bağıntı; teorik olarak bir foton demetinin tam soğurulmasının asla gerçekleşmeyeceğini öne sürer. Ancak pratik anlamda üstel azaltma veya soğurma, demet şiddetini algılanamaz düzeylere getirmek için kullanılabilir.

Fotonların insan dokusu gibi ortamlardan geçerken çeşitli etkileşmelerle depo ettikleri enerji miktarı soğurulan doz veya maruz kalma ile tespit edilir. Bazı etkileşmeler ortamda enerjiyi taşırken ışıma meydana getirdiği için, azalma katsayısı μ , ortamda depolanan enerjiyi belirlemede kullanılamaz. Bu durumda ortamda depolanan enerjiyi belirlemek için, lineer enerji soğurma katsayısı μ_{en} kullanılır. Bu parametre;

$$\mu_{en} = \mu - (\sigma_{sacilma} + \text{düşük olasılıklı diğer etkileşmeler})$$
(2.15)

bağıntısı ile formüle edilir. Soğurucu ortama gelen radyasyon demetinden kaçan fotonlar çeşitli etkileşmelere sebep olur. Bunlar Compton saçılma fotonları, yüksek enerjili geri tepen elektronlardan Bremstrahlung, anhilasyon ve karakteristik X ışınlarıdır. Kütle enerji soğurma katsayısı μ_{en} / ρ , X veya gama ışınlarının akısı biliniyorsa radyasyon maruz kalma değeri veya dozunu belirlemede lineer azaltma katsayısından daha kullanışlıdır. Radyasyon etkileşme parametresi olarak kullanılan lineer azaltma katsayısı, soğurucu ortamın fazından bağımsızdır. Bu noktada soğurucu ortamın fazına da bağlı olan kütle azaltma katsayısı μ / ρ , daha kullanışlıdır. Kütle azaltma katsayısı sadece lineer azaltma katsayısı μ değil, soğurucunun yoğunluğu ρ ile de ilişkilidir [40].

2.3. ETKİN ATOM NUMARASI VE HESAPLAMA YÖNTEMLERİ

Kompozit malzemelerin karakterizasyonunu ifade eden önemli parametrelerden biri etkin atom numarasıdır. Bu parametre gama radyasyonu bir materyale düştüğünde oluşacak durum hakkında bize kesin bilgiler sağlar. Eğer bazı sabitler kesin olarak biliniyorsa, verilen ortamda enerji soğurumu hesaplanabilir. Bu gerekli bilgilerden en önemlisi materyalin etkin atom numarasıdır. Etkin atom numarasını belirlemek için birçok deneysel yöntem kullanılır. Bunlar kimyasal analiz, atomik absorpsiyon spektrokopisi, PIXE (Particle-Induced X-ray emission), XRF (X-ray Fluorescence), PIGE (Proton-Induced Gamma Ray Emission), hızlı nötron aktivasyon analizi, akustik metot ve elektriksel empedans metodu olarak sıralanabilir [41].

Eğer elimizdeki numune; karışım, bileşik veya bunların dışında bir alaşım ise etkin atom numarasının bilinmesi gereklidir. Etkin atom numaraları hakkında elde edilen kesin ve güvenilir bilgiler; radyasyon uygulamaları, medikal fizik, radyografi ve radyasyon dozimetrisi gibi alanların hesaplamalarında ve diğer pek çok branşta zaruridir. Etkin atom numarası, materyallerin X ya da gama-ışını soğurma kesirlerinin anlamını ortaya çıkarmak için ölçülmesi gereken önemli bir parametredir. Bu parametre, son yıllarda teknik ve mühendislik uygulamalarda da kullanılmaya başlanmıştır. Polimerler ve alaşımların bilim, teknoloji, nükleer ve uzay araştırma programları gibi pek çok alanda kullanımından dolayı, bu materyallere eşdeğer ve onları temsil eden etkin atom numarasının belirlenmesi daha da önemli hale gelmiştir. Bu parametre ölçülürken numune ile etkileşen gama-ışınlarının etkileşme türü de önemlidir. Fotoelektrik, Compton, Rayleigh saçılması ve çift oluşumu gibi her bir işlem türü için kısmi etkin atom numarası parametresi tanımlanır. Kullanılan enerji ve numune durumuna göre, bu etkileşme türlerinin toplam etkin atom numarası parametresindeki katkıları da değişim gösterebilir [42].

Her bir olayın gerçekleşme ihtimali, o etkileşmenin tesir kesiti olarak adlandırılır. Etkin atom numarası hesaplamaları, tesir kesitlerinin oranlanması, interpolasyonları veya

saçılmaların dikkate alınması gibi farklı yöntemler ile yapılabilir. Hali hazırda kullanılan en yaygın metotlar; direkt, interpolasyon ve ZXCOM olarak üçe ayrılır.

2.3.1. Direkt Yöntemi

Etkileşmelerin tesir kesitlerinin oranlanarak etkin atom numarasının elde edilmesi direkt yöntem olarak isimlendirilmiştir. Eğer kütle soğurma katsayılarının değerlerini kullanarak toplam moleküler tesir kesitini belirleyecek olursak;

$$\sigma_{t,m} = \frac{1}{N} \left(\frac{\mu}{\rho} \right)_{bileşik} \sum_{i} \left(n_i A_i \right)$$
(2.16)

ifadesini kullanırız. Burada N avogadro sayısını, n_i atom sayısını, A_i *i*. elementin atomik ağırlığı ve $\left(\frac{\mu}{\rho}\right)_{bileşik}$ bileşiğin toplam kütle azaltma katsayısıdır. Toplam atomik tesir kesitini elde etmek istersek;

·····,

$$\sigma_{t,a} = \sigma_{t,m} \frac{1}{\sum_{i} n_i}$$
(2.17)

bağıntısını kullanırız. Toplam elektronik tesir kesitini ise;

$$\sigma_{t,e} = \frac{1}{N} \sum_{i} \frac{f_i A_i}{Z_i} (\mu_t)_i$$
(2.18)

formunda elde ederiz. Burada f_i , *i*. elementin atom sayılarının, bileşikteki tüm atomlara oranını ifade eder. Z_i bileşikteki i. elementin atom numarasını temsil eder. $(\mu_t)_i$ *i*. elementin toplam kütle azaltma katsayısıdır. Etkin atom numarasının, toplam atomik ve elektronik tesir kesitleri arasındaki ilişkiyle elde edildiği bağıntı;

$$Z_{etkin} = \frac{\sigma_{t,a}}{\sigma_{t,e}}$$
(2.19)

şeklinde verilir [43].

2.3.2. İnterpolasyon Yöntemi

Direkt yönteminden, tesir kesitleri oranlanarak etkin atom numaraları elde edilebileceği gibi, çeşitli interpolasyon yöntemleri kullanılarak etkin atom numaralarına ulaşılabilir. Özellikle WINXCOM programının yardımıyla logaritmik etkin atom numaralarını hesaplamak için;

$$Z_{etkin} = \frac{Z_1(\log \sigma_2 - \log \sigma_{etkin}) + Z_2(\log \sigma_{etkin} - \log \sigma_1)}{\log \sigma_2 - \log \sigma_1}$$
(2.20)

bağıntısı kullanılır. Formülde σ_{etkin} örneğin sahip olduğu toplam tesir kesitini; σ_1 ve σ_2 ise bu tesir kesitine en yakın elementsel tesir kesitlerini sembolize eder. Z_1 ve Z_2 bu iki tesir kesitinin ait olduğu atom numaralarını gösterir [44].

2.3.3. ZXCOM yöntemi

Etkin atom numarası bir karışım için Rayleigh ve Compton saçılma bilgileri yardımıyla karakterize edilebilir. İçelli [45] tarafından gösterilen teorik temel ve matematiksel yaklaşım aynı zamanda deneysel olarak yapılan çalışmalarda da kullanılır. Rayleigh ve Compton saçılma oranlarının teorik hesaplanması;

$$R = \frac{N_R}{N_C}(Z) = f(Z) = C \frac{\left[F^2(x, Z)\right]}{\left[S(x, Z)\right]}$$
(2.21)

Bağıntısı ile yapılır. Burada saçılma oranı atom numarasının bir fonksiyonu olarak verilir. f(Z) elementler için kesikli bir fonksiyonu temsil eder. F atomik form faktörünü verirken, S inkoherent saçılma fonksiyonunu temsil eder. Her bir bileşik veya karışım için bu formül genelleştirilirse;

$$R = \frac{N_R}{N_C} (\alpha_1, \dots, \alpha_n, Z_1, Z_2, \dots, Z_i, \dots, Z_n) = f(Z_{etkin}) = C \frac{\sum_{i=1}^n \alpha_i^{at} F^2(x, Z_i)}{\sum_{i=1}^n \alpha_i^{at} S(x, Z_i)}$$
(2.22)

denklemine ulaşırız. $f(Z_{etkin})$ sürekli bir fonksiyonu temsil eder. Burada gösterilen α_i^{at} her bir elementin atomik yüzdesini ifade etmektedir. Eğer herhangi bir element için bu yüzdeyi elde etmek istersek;

$$\alpha_i^{at} = \frac{\omega_i / A_i}{\sum_{i=1}^n \omega_i / A_i}$$
(2.23)

formülünü kullanabiliriz. Burada ω_i i. elementin kütle yüzdesini ifade etmektedir. Bir karışım için R oranının etkin atom numarasına bağlı olduğu söylenebilir. Etkin atom numarası; karışımlar için, elementlerin atom numarasının komplike bir fonksiyonudur. Bu yüzden, her bir momentum transfer değeri x için, kesikli bir f_x^K fonksiyonu vardır. Bu fonksiyon, atom numarasını F^2/S nin bir fonksiyonu gibi verir.

$$Z = f_x^K \left[\frac{F^2}{S} \right] \quad Z_n \in Z \tag{2.24}$$

Elementler için Z_{etkin} tam sayı değerindedir. Başka bir açıdan bakarsak; bileşik, alaşım veya karışımlar farklı elementlerin birer kümesidir. Bunların etkin atom sayısı tam sayı değerleri almayabilir. Bu aralık bütün tam sayı değerlerini kapsar. Bu aşamada kullanılacak f_x fonksiyonu ise sürekli bir fonksiyondur. Etkin atom numarasını genelleştirilmiş şekilde formüle edersek;

$$Z_{etkin} = f_x \left[\frac{\sum_{i=1}^n \alpha_i^{at} F^2(Z_i)}{\sum_{i=1}^n \alpha_i^{at} S(Z_i)} \right] = f_x \left[\left(\frac{F^2}{S} \right)_{etkin} \right] \quad (Z_n) = (Z_1, Z_2, \dots, Z_n) \in R \quad (2.25)$$

bağıntısını kullanabiliriz. Bu noktada ihmal edilen ilginç bir durum da etkin atom numarasının saçılma açısına da bağlı olduğudur. F ve S fonksiyonları momentum transfer parametresi x ve etkin atom numarası parametrelerine bağlıdır. Momentum transfer parametresini hesaplamak için;

$$x = \frac{\sin\left(\theta/2\right)}{\lambda} \tag{2.26}$$

ifadesini kullanabiliriz. Burada görüldüğü gibi saçılma açısı θ ve gelen fotonun dalgaboyu λ , etkin atom numarasının hesaplanmasında dikkate alınan önemli parametrelerdir. Bu bakış açısı, diğer hesaplama yöntemlerinden oldukça farklılık taşımaktadır [46].

2.4. TEMEL PROGRAMLAR

Enerji soğurma buildup faktörü (EABF) ve maruz kalma buildup faktörü (EBF) parametrelerini belirlerken çeşitli algoritma ve metotlar kullanılır. Bu adımları gerçekleştirirken hesaplamaları hızlandırmak amacıyla çeşitli programlar geliştirilmiştir. Bununla birlikte farklı malzemelerin EABF ve EBF değerlerini belirlemek için gereken parametreleri hesaplayan, çeşitli yazılımlar yapılmıştır. Bizim bu noktada çalışmamızı farklı kılan; ZXCOM programının diğer programlardan farklı hesaplama yöntemi ve veri tabanından yola çıkarak etkin atom numarasını elde etmesidir. Bu veriler kullanılarak EABF ve EBF parametrelerine ulaşılır. Son zamanlar bu konu ile ilgili oluşturulmuş programlar genellikle etkin atom numarası elde etmek üzere yapılmıştır. ZXCOM programının önemli noktalarından biri, sadece tek fonksiyon üzerine değil, aynı zamanda ek parametre olarak saçılma açısını da dikkate almasıdır.

Oluşturulan bu programlar veri tabanı olarak genellikle Amerikan Ulusal Standart Enstitüsü (ANSI/ANS 6.4.3) verilerini kullanmaktadır. Bu veri tabanı 23 element (Be, B, C, N, O, Na, Mg, Al, Si, P, S, Ar, K, Ca, Fe, Cu, Mo, Sn, La, Gd, W, Pb ve U), bir bileşik (su) ve iki karışım (hava ve beton) için buildup faktörü verisi sağlamaktadır. Bu veriler 0,015 - 15 MeV foton enerjisi aralığın da 40 ortalama serbest yol değerine kadar G-P fit etme yöntemi kullanılarak hesaplanmıştır [47].

2.4.1 XCOM

Fotonların (X ve gama ışını) soğurma ve saçılma verilerine çoğu bilimsel, mühendislik ve medikal uygulamalarda gerek duyulur. Mevcut tablolar genellikle seçilmiş elementler, bileşikler ve karışımlar için tesir kesitlerini içerir. Tablolaştırılmış bu bilgiler yardımıyla manuel farklı hesaplamalar yapılarak tesir kesitleri ve azaltma katsayıları bu element, bileşik ve karışım için elde edilir. Bu işlemleri yapmak için 1987 yılında XCOM adında bir bilgisayar programı geliştirildi. XCOM ile herhangi bir element, bileşik veya karışım için 1 keV' den 100 GeV enerji aralığına kadar radyasyon etkileşmelerinin kısmi tesir kesitleri ve azaltma katsayıları bu element, bileşik veya karışım için 1 keV' den 100 GeV enerji aralığına kadar radyasyon etkileşmelerinin kısmi tesir kesitleri ve azaltma katsayıları hesaplanabilir. Zaman içerisinde XCOM programında çeşitli güncellemeler yapılmış ve web ortamında paylaşılmıştır.

XCOM standart enerji aralığında, logaritmik yaklaşım aralığında veya kullanıcı tarafından seçilen aralıkta toplam tesir kesitlerini ve kütle azaltma katsayılarını üretebilir.

Program, toplam tesir kesitlerinin ve kütle azaltma katsayılarının sağlamasına ek olarak Compton saçılma, koherent saçılma, fotoelektrik soğurma ve çift oluşumu için kısmi tesir kesitlerini hesaplamaktadır [48].

2.4.2 WINXCOM

XCOM programı Gerward ve çalışma arkadaşları tarafından WINDOWS platformuna geçirilmiştir. İlk olarak XCOM 32 bit WINDOWS platformunda modernize edilmiştir. WINDOWS işletim sistemi ile çalışmaktadır. Materyalleri tanımlamak ve kaydetmek üzere tasarlanan ara yüzü, kullanıcıya kolaylık sağlamaktadır. Bu program sayesinde herhangi bir element, bileşik ya da karışımın kütle azaltma katsayıları, fotoelektrik olay, koherent, Compton saçılması ve çift oluşumu gibi kısmi foton etkileşimleri de hesaplanabilir. WINXCOM programı kaydedilen verileri bir Microsoft Excel şablonuna aktarabilmektedir. Böylece daha sonra yapılacak olan nümerik ve grafiksel işlemlerde kolaylık sağlamaktadır [49].

2.4.3 Auto Z_{eff}

Taylor ve arkadaşları tarafından yazılmış bu nümerik hesaplama programı, etkin atom numarasını belirlemeyi hedeflemektedir. Atom numarası 1 ile 100 arasında olan elementler için 10 keV' den 100 GeV' e kadar foton etkileşimlerinin tesir kesitini oluşturur. Tesir kesitleri bilgileri ışığında 0,6 sn gibi kısa bir sürede etkin atom numaralarını hesaplar. Sonuç olarak Z_{etkin} , enerjinin bir fonksiyonu olarak kolay bir şekilde hesaplanır [50].

2.4.4 Direct Z_{eff}

Bu program Un ve Caner [51] tarafından oluşturulmuştur. Direct- Z_{eff} kompozit materyallerin kütle azaltma katsayılarını, etkin atom numaralarını ve birim kütlede etkin elektron sayılarını hesaplar. Direct Z_{eff} Fortran programlama dilinde yazılmıştır. Hızlı kullanım için grafiksel kullanıcı ara yüzü geliştirilmiştir. Hesaplama öncesinde kütle azaltma katsayılarını içeren veriler WINXCOM' dan alınır.

2.4.5 ZXCOM

ZXCOM etkin atom numarası Z_{etkin} ve etkin elektronik yoğunluk N_{etkin} hesaplayan WINDOWS tabanlı bir uygulama programıdır. Etkin atom numarası ve etkin elektron

yoğunlukları herhangi bir element, bileşik veya karışım için R/C (Rayleigh/Compton) şiddet oranından hesaplanmaktadır. Hesaplamalar 1 keV ile 100 GeV aralığında tanımlanan herhangi bir enerji değerinde ve 0° ile 180° aralığındaki saçılma açılarında yapılabilmektedir. Bu hesaplamalara açı faktörünün uygulanabilir olması; ZXCOM programını literatürde bulunan diğer hesaplama programlarından ayıran en belirgin özelliğidir.

 Z_{etkin} ve N_{etkin} hesaplamasında kullanılan R/C oranı atomik form faktörü F ve inkoherent saçılma fonksiyonu S parametreleriyle hesaplanır. F değerleri ve S fonksiyonlarının her ikisi de enerjiye ve açıya bağımlı olan momentum transfer parametresine bağlıdır. ZXCOM programında F ve S fonksiyonlarının sürekli değerleri, yayınlanan belirli değerlerdeki verilerin fit edilmesi ile elde edilmiştir.

ZXCOM programı Microsoft Windows[®] işletim sistemi üzerinde hem 32 bit hem de 64 bit platformlar üzerine kurulabilmektedir. Programın kurulumu grafik tabanlı bir kurulum sihirbazı (Şekil 2.5) tarafından gerçekleştirilebilmektedir.

Şekil 2.5: ZXCOM programının kurulum sihirbazı görünümü.

Program nesne tabanlı Microsoft Visual C# programlama dilinde yazılmıştır. Foton, element, periyodik tablo, bileşik ve karışım olmak üzere beş sınıftan oluşmaktadır. ZXCOM programı kullanışlı bir ara yüze (Şekil 2.6) sahiptir. Bu grafik ara yüz

kullanılarak kolaylıkla enerji ve açı girdileri tanımlanabilmektedir. Böylece bu veriler ışığında gerekli element, bileşik veya karışımlar programa tanıtılabilmektedir. Program, temel çıktısı olan; enerji, etkin atom numarası, R/C saçılma şiddeti oranı, N_{etkin} parametre değerleriniü, MS Excel çıktısı olarak dışarıya aktarabilmektedir. Ayrıca programda bu değişkenlerin enerjiye bağlı olarak değişimleri grafiksel olarak (Şekil 2.7) görüntülenebilmektedir [52].

Şekil 2.6: ZXCOM programının kullanıcı ara yüzü.

Şekil 2.7: ZXCOM programının sonuç kısmının ve elde edilen grafiklerin görüntüsü.

Etkin atom numarası bileşik veya karışımlar için ZXCOM programıyla kolaylıkla belirlenebilir. Radyasyon hesaplamalarında kullanılan parametrelerin belirlenmesinde bu veriler kullanılabilir. Özellikle radyasyon saçılma parametrelerini ve radyasyon zırhlama özelliklerini ifade eden buildup faktörü değerlerinin hesaplanması bu kullanıma önemli bir örnektir.

2.5. BUILDUP FAKTÖRÜ

Buildup faktörü Beer-Lambert yasasının ihlal edilme mertebesini ölçen bir parametredir. Buildup faktörü, gama ışınlarının çoklu saçılmalarından dolayı ortaya çıkan etkiyi görmemiz açısından önemlidir. Bu saçılmalarda, etkileşen maddenin büyük kalınlıkta olması veya radyasyon demetindeki ıraksamalar da olabilir. Düzeltilen radyasyon şiddet eşitliği;

$$I(x) = BI_0 \exp(-\mu x) \tag{2.27}$$

formunu alır. B parametresi buildup parametresi olarak bilinir. Her zaman 1'e eşit veya büyük olur. B=1 olduğu durumlar; dar-ışın geometrisinin kullanıldığı, etkileşen malzemenin kalınlığının düşük, fotonun tek enerjili olduğu durumlarda geçerlidir. Aksi durumlarda buildup faktör değeri 1' den büyük değerler alır. Buildup faktörü iki kategoriye ayrılır. Bunlar EABF ve EBF olarak isimlendirilir [53].

Foton buildup faktör hesaplamaları üç bölümden oluşur;

- Materyalin etkin atom numarasının hesaplanması
- Geometrik dizi (G-P) fit parametrelerinin hesaplanması
- EABF ve EBF parametrelerinin hesaplanması

Etkin atom numaraları, tesir kesitleri veya R/C saçılma şiddeti oranından yararlanılarak hesaplanır. Bu hesaplamaların ardından, G-P fit parametreleri kullanılarak buildup faktörleri;

$$B(E, x) = 1 + \frac{b-1}{K-1}(K^{x} - 1) \qquad K \neq 1 \text{ için}$$
(2.28)

$$B(E, x) = 1 + (b-1)x$$
 $K = 1$ için (2.29)

bağıntıları ile belirlenebilir. Formüllerde gösterilen K parametresinin açık ifadesi;

$$K(E, x) = cx^{a} + d \frac{\tanh(\frac{x}{X_{k}} - 2) - \tanh(-2)}{1 - \tanh(-2)} \qquad x \le 40 \text{ mfp}$$
(2.30)

şeklindedir. a, b, c, d ve X_k değerleri G-P parametreleridir. Bu parametreleri ANSI 6.4.3 veri tabanından alınarak kompozit materyalimiz için kullanılabilir. Ayrıca formüllerde geçen; E gelen fotonun enerjisini, x nüfus etme derinliğini simgeler. b parametresi değeri 1 mfp' deki buildup faktörü değerine denk gelir. K parametresinin formülünü incelersek G-P fit parametresine bağımlılığı görülebilir [54]. G-P fit parametreleri tek tek hesaplandıktan sonra buildup değerleri belirlenebilir. Bunun dışında, bu tez çalışmasında yapıldığı gibi, G-P fit değerlerini ayrı ayrı hesaplamak yerine, buildup değerleri doğrudan interpolasyon yapılarak bulunabilir.

2.5.1 EBF (Maruz Kalma Buildup Faktörü)

EBF faktörünü açıklamadan önce ışınlama kavramını bilmek gerekir. Nükleer radyasyonların ortak özelliği, etkileştikleri atomları iyonlaştırma yetenekleridir. İlk olarak X ve gama ışını fotonlarının hava içerisinden geçişlerini düşünelim. Fotonlar havadaki atomlar ile değişik işlemler ile (Compton saçılması, fotoelektrik olay, elektron-pozitron çift oluşumu) birçok kez etkileşirler. Her etkileşmede yeteri kadar yüksek enerjili

serbest elektronlar oluşur. Bu ikincil elektronlar da iyonlaşma meydana getirebilirler. Havanın verilen bir m kütlesinde oluşan iyonlardaki toplam elektrik yükü Q ve maruz kalma (exposure) X olarak tanımlanır. Gama-ışınlarının enerjileri ve kaynakların aktiflikleri tamamen farklı olsa bile aynı ışınlamayı oluşturan gama ışını kaynakları aynı şiddetli olarak kabul edilir. Maruz kalma;

$$X = Q/m \tag{2.31}$$

bağıntısı ile ifade edilir. SI birim sisteminde kilogram başına Coulomb olarak ölçülür. Havada bir iyon oluşturmak için yaklaşık olarak 34 eV enerji gerekmektedir. Bir gama ışını ile oluşan iyonlaşma, gamaların enerjilerine bağlıdır. 1 MeV enerjili gama-ışını ortalama 30 000 civarında iyon meydana getirebilir [55].

EBF parametresi, buildup faktörünün iki sınıfından birini oluşturur. EBF havada gerçekleşen soğurulma veya depolanan enerjinin miktarı ile ilgili bir parametredir [56]. Bu parametrenin önemi, kaynak ile detektör arasında bulunan hava ortamında meydana gelebilecek etkileşimin ölçüsünü belirlenmesidir.

2.5.2 EABF (Enerji Soğurma Buildup Faktörü)

İyonlaştırıcı radyasyona maruz kalan havadan başka materyallerin enerji soğurma hızı farklıdır. Bu nedenle değişik maddelerde iyonlaşma ile enerjinin soğurulmasının tanımlanmasında bir standardın olması gerekmektedir. Bu niceliğe soğurulan doz, D, denir ve maddenin birim kütlesi başına iyonlaştırıcı radyasyon tarafından depo edilen enerjinin ölçüsüdür. Soğurulan dozun en yaygın kullanılan birim rad olup, 1 gram madde tarafından 100 erg' lik enerji soğurulmasına eşittir. SI birimi gray (Gy)' dir ve kilogram başına madde tarafından 1 joule soğurulmasına eşittir [57]. EABF radyasyonun etkileştiği maddede soğurulan enerjinin miktarı ile ilgili bir parametredir [58]. Bu madde kimi zaman detektöre, kimi zamanda farklı zırh veya kaplamalara ait bileşik veya karışım olabilir.

Buildup faktörlerinin kullanım alanları çok geniştir. Özellikle son yıllarda dozun radyal bağlılığı hesaplamalarında buildup faktörü kullanılmaktadır. Gama ışını yayan nokta bir kaynağın relatif doz oranı;

$$\frac{D_r}{D_0} = e^{-\mu r} \frac{B}{r^2}$$
(2.32)

bağıntısı ile gösterilir. D_0 başlangıç noktasındaki doz miktarını, D_r nokta kaynaktan r kadar mesafe sonrasındaki doz miktarını, B maruz kalma buildup faktörünü, r kaynak ile doz ölçümünün yapılacağı nokta arasındaki mesafeyi temsil eder [59].

3. MALZEME VE YÖNTEM

3.1. BAZALT NUMUNELER

Bazaltlar doğada yaygın olarak mevcut olan volkanik kayaç grubunu oluşturur. Geniş bölgelere yayılan lav akıntılarının oluşturduğu bazaltlar, kilometrelerce uzunluktaki alanlara kadar oluşabilir. Yerkabuğunun 2,5 milyon km^2 den fazlasını bazaltlar örter. Bazalt esas olarak SiO_2 , Al_2O_3 , MgO, CaO' dan meydana gelir. Bu bileşenlerin dışında az miktarda Na_2O , K_2O , P_2O_5 , MnO, TiO_2 oksitlerini de içermektedir. Bazaltların kullanım alanları oldukça geniştir. Yapı sektöründe katkı malzemesi olarak kullanılan bazaltlar, tehlikeli madde taşımacılığında ve radyoaktif malzemelerin korunumlarında kullanılabilen bir malzemedir [60].

Tez çalışmamızda, Van ve çevresinde elde edilen üç bazalt örneğini kullandık. Bunlar CM1, KYZ-13 ve KYZ-24 kod isimleriyle adlandırıldılar. Sahip oldukları bileşenlere göre gruplandırılan bu bazaltlardan, KYZ-13 ve KYZ-24 örnekleri günümüzden tahmini olarak 4 - 6 milyon yıl önceki bir zaman aralığında oluşmuşlardır. CM1 örneği ise günümüzden tahmini olarak 100 - 500 bin yıl öncesindeki bir zaman aralığında oluşmuştur. Örneklerin oluşum sıcaklıklarına ya da tamamen erime sıcaklıklarına bir yaklaşımda bulunacak olursak; CM1 oluşum sıcaklığının (1200 - 1300°C), KYZ-13 ve KYZ-24 (1100 - 1200°C)'den daha yüksek oldukları söylenebilir.

Bazaltların nicel ve nitel analizlerini yapmak amacıyla XRF cihazı kullanıldı. Bu ölçümler sonucunda elde edilen kompozisyonlar Tablo 3.1' de verilmiştir. XRF ölçümlerinin hata payları tüm kompozisyona dağıtılmıştır. Kompozisyon dağılımı incelendiğinde, dominant olan bileşiğin SiO_2 olduğu açık olarak görülmektedir.

Bileşik	CM1	KYZ-13	KYZ-24
SiO ₂	41,668	47,790	47,086
TiO ₂	2,0800	1,3950	1,7910
Al ₂ O ₃	13,106	16,918	17,574
Fe ₂ O ₃	13,823	10,878	11,493
MnO	0,1920	0,1630	0,1720
MgO	9,7540	7,6190	8,6710
CaO	10,602	11,357	9,9660
Na ₂ O	5,2610	3,1370	2,9340
K ₂ O	1,7370	0,5190	0,1210
P ₂ O ₅	1,7770	0,2240	0,1920
TOPLAM	100,00	100,00	100,00

Tablo 3.1: Üç bazalt örneğinin kompozisyon dağılımı.

3.2. ETKİN ATOM NUMARASININ HESAPLANMASI

Tez çalışmasında etkin atom numarası, hem ZXCOM metodu hem de direkt yöntem ile elde edildi. Her iki metot için malzemelerimize ait kompozisyon bilgilerini kullandık. Ardından ZXCOM programında, kompozisyon bilgileri karışım bölümüne işlenerek belirlediğimiz enerjiler için etkin atom numarası verilerini elde ettik. Hesaplamalar esnasında saçılma açısını 90° alarak belirledik. Bu saçılma açısının tercih edilmesinin sebebi; deneysel olarak bu geometride birçok uygulama ve çalışmanın yapılmakta olmasıdır. Direkt metodu ile elde ettiğimiz etkin atom numaraları için Fortran programlama dilinde yazdığımız uygulamayı kullandık. Burada kullanılan veriler için WINXCOM programından hesaplanan toplam elektronik ve atomik tesir kesitlerini temel alındı. Bu veriler ışığında, direkt metoduna ait etkin atom numaraları hesaplandı.
Buildup hesaplamalarımızın gerçekleşmesi amacıyla Fortran 95 dilinde buildup hesaplayıcı bir program oluşturduk. Oluşturulan bu hesaplama sisteminin veri tabanını ANSI 6.4.3 verileri oluşturmaktadır. ANSI 6.4.3, 23 element için buildup hesaplamalarını yapabilecek G-P fit parametrelerini içermektedir. Bu parametreleri kendi örneklerimiz için tek tek hesaplamak yerine doğrudan interpolasyon yaparak daha pratik biçimde buildup faktörlerini belirledik. Hazırladığımız kodların veri tabanını da buna göre düzenledik. Oluşturulan bu veri tabanı; 23 elemente ait, 0,015 - 15 MeV eneji aralığını kapsayan 25 enerji basamağında EABF ve EBF değerlerini kapsıyor. Bu değerler denklem 2.28, 2.29 ve 2.30 kullanılarak elde edildi.

Hesaplama uygulamasının başlaması için örneğimize ait etkin atom numaraları girdi olarak işlenir. Bu aşamadan sonra program, girilen etkin atom numaralarına en yakın alt ve üst limitlerde elementleri tespit eder. Ardından bu elementlere ait EABF ve EBF değerleri programın son kısmına aktarılır. Son kısımda örneğimize ait buildup değerlerini çıktı olarak alırız. Bu çıktının alınması için program, son işlemde "kübik spline" interpolasyon metodunu kullanarak iki elemente ait değerlerden örneğimize ait buildup değerlerini elde eder. Kübik spline interpolasyonu, 3. dereceden fonksiyon yaklaşımını içeren bir metottur. Herhangi bir $[x_i, x_{i+1}]$ aralığında bir kübik spline ve 1. türevi sırasıyla;

$$g_i(x) = a_{0i} + a_{1i}(x - x_i) + a_{2i}(x - x_i)^2 + a_{3i}(x - x_i)^3$$
(3.1)

$$g'_{i}(x) = a_{1i} + 2a_{2i}(x - x_{i}) + 3a_{3i}(x - x_{i})^{2}$$
(3.2)

şeklinde tanımlanır. x_i ve x_{i+1} uç noktalarında polinomun değerleri sırasıyla f_i ve f_{i+1} , birinci türevlerin değerleri de T_i ve T_{i+1} olmak üzere;

$$a_{0i} = f_i \tag{3.3}$$

$$a_{1i} = T_i \tag{3.4}$$

$$a_{2i} = 3\frac{f_{i+1} - f_i}{h_i^2} - \frac{2T_i + T_{i+1}}{h_i}$$
(3.5)

$$a_{3i} = -2 \frac{f_{i+1} - f_i}{h_i^3} + \frac{T_i + T_{i+1}}{h_i^2} \quad ; \quad i = 1, 2, \dots, N$$
(3.6)

formunda ifade edilir [61]. Hazırlanan kodlar vasıtasıyla, üç bazalt örneğine ait; 0.015 -15 MeV foton enerjileri için, 5-40 mfp arasındaki EABF ve EBF değerlerini elde edildi. Bu değişimler, daha detaylı yorumlanmak için grafiksel olarak gösterildi.

4. BULGULAR

Çalışmamızın ilk kısmında WINXCOM programından elde ettiğimiz tesir kesitleri verilerini kullanarak numunelerimize ait 0.015-15 MeV enerji aralığındaki etkin atom numaralarını hesapladık. Direkt yöntemi ile hesaplanan etkin atom numaralarına karşılık gelen EABF ve EBF parametrelerimiz Tablo 4.1, Tablo 4.2, Tablo 4.3, Tablo 4.4, Tablo 4.5 ve Tablo 4.6' da sırası ile gösterilmiştir. Bu hesaplamaları yaparken etkin atom numaraları literatürde olanın aksine G-P fit parametreleri ile doğrudan ilişkilendirilmedi. EABF ve EBF parametreleri literatürde bulunan yöntemlerden farklılık ve özgünlük ifade eden yeni bir metot ile elde edildi. Bu metot ile G-P fit parametreleri ile elementlere ait EABF ve EBF değerleri bulunmuştur.

ENERJİ	ETKİN	CTKİN ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	5	10	15	20	
0,015	17,231	1,024630	1,031400	1,036240	1,039760	
0,020	17,170	1,059280	1,073190	1,083290	1,091760	
0,030	16,789	1,208940	1,266200	1,310190	1,344350	
0,040	16,156	1,566530	1,742210	1,882950	2,000810	
0,050	15,421	2,369900	2,929700	3,393970	3,809380	
0,060	14,749	3,950580	5,555330	7,109000	8,669940	
0,080	13,760	10,25531	19,11716	29,23200	40,81734	
0,100	13,169	19,01456	45,51786	81,76096	128,6373	
0,150	12,579	29,63683	95,72718	208,4406	377,6873	

Tablo 4.1: CM1 numunesine ait farklı ortalama serbest yollar için EABF değeri.

Tablo 4.1 (devam)

0,200	12,359	29,12741	104,2664	242,7077	460,75022
0,300	12,320	23,45967	84,35445	195,6067	366,6849
0,400	12,252	19,17938	65,48024	146,0562	264,2065
0,500	12,240	16,23116	52,14254	111,1299	193,6199
0,600	12,230	14,14238	42,99138	87,68829	147,1891
0,800	12,220	11,38220	31,51437	60,24045	96,18424
1,000	12,224	9,647470	24,79313	44,99863	69,01411
1,500	12,210	7,298350	16,44220	27,35162	39,43761
2,000	12,242	6,086530	12,69272	20,18937	28,27624
3,000	12,282	4,771380	9,053350	13,67920	18,54867
4,000	12,365	4,040190	7,209240	10,56213	14,07260
5,000	12,433	3,554900	6,110840	8,869630	11,80338
6,000	12,501	3,206260	5,390910	7,728000	10,21500
8,000	12,629	2,730330	4,414950	6,225850	8,160570
10,00	12,715	2,418740	3,824230	5,378810	7,101070
15,00	12,901	1,978040	2,930800	4,058360	5,387030
ENERJİ	ETKİN	OI	RTALAMA SE	RBEST YOL (n	nfp)
MeV	NUMARASI	25	30	35	40
0,015	17,231	1,042150	1,044100	1,046110	1,048290
0,020	17,170	1,098710	1,103770	1,106500	1,106640

Tablo 4.1 (devam)

0,030	16,789	1,366510	1,379580	1,391730	1,409560
0,040	16,156	2,086590	2,139820	2,179270	2,228720
0,050	15,421	4,150610	4,401000	4,599560	4,819020
0,060	14,749	10,08770	11,30833	12,59463	14,37130
0,080	13,760	53,15353	65,39183	78,16517	93,76550
0,100	13,169	185,8423	252,4672	329,1233	418,5714
0,150	12,579	621,1752	962,1859	1403,673	1905,518
0,200	12,359	788,1966	1269,559	1920,255	2672,951
0,300	12,320	615,4222	970,8653	1442,636	1978,259
0,400	12,252	426,9205	646,9597	926,7888	1235,786
0,500	12,240	302,5452	444,2196	618,1059	804,1654
0,600	12,230	222,6619	317,7825	431,4033	549,4686
0,800	12,220	139,4110	191,3557	251,1833	312,1488
1,000	12,224	96,61430	128,4918	164,2850	200,5647
1,500	12,210	52,68317	67,34051	83,05031	98,37427
2,000	12,242	36,91716	46,17867	55,87135	65,39892
3,000	12,282	23,58408	28,72799	33,93183	39,14440
4,000	12,365	17,65293	21,22760	24,83027	28,58733
5,000	12,433	14,73592	17,54127	20,36879	23,54870
6,000	12,501	12,71685	15,04351	17,14679	19,21218

Tablo 4.1 (devam)

8,000	12,629	10,12270	12,05610	14,07309	16,39961
10,00	12,715	8,907530	10,68961	12,47948	14,48793
15,00	12,901	6,804220	8,159560	9,514770	11,18858

Tablo 4.2: KYZ-13 numunesine ait farklı ortalama serbest yollar için EABF değeri.

ENERJİ	ETKİN	ORTALAMA SERBEST YOL (mfp)			nfp)
MeV	NUMARASI	5	10	15	20
0,015	17,031	1,025460	1,032410	1,037470	1,041080
0,020	16,963	1,061620	1,075840	1,086370	1,095290
0,030	16,559	1,218150	1,277990	1,323800	1,359490
0,040	15,914	1,595380	1,782260	1,932170	2,058050
0,050	15,193	2,446680	3,048560	3,548250	3,997710
0,060	14,537	4,140380	5,907130	7,628350	9,364260
0,080	13,621	10,65321	20,13948	31,06721	43,66898
0,100	13,081	19,36208	46,66927	84,15778	132,7711
0,150	12,560	29,70685	96,12399	209,5064	379,8804
0,200	12,362	29,12108	104,2245	242,5848	460,4828
0,300	12,343	23,43962	84,20628	195,1727	365,7715
0,400	12,275	19,16877	65,40451	145,8563	263,8303
0,500	12,265	16,22374	52,09066	111,0206	193,4604
0,600	12,256	14,13787	42,96168	87,60988	147,0377

Tablo 4.2 (devam)

[
0,800	12,247	11,37943	31,50237	60,21526	96,14587		
1,000	12,252	9,645980	24,78527	44,98127	68,98640		
1,500	12,237	7,297720	16,44008	27,34790	39,43211		
2,000	12,268	6,086360	12,69334	20,19318	28,28548		
3,000	12,303	4,771100	9,053110	13,67953	18,54980		
4,000	12,382	4,040010	7,208850	10,56132	14,07077		
5,000	12,443	3,554740	6,110840	8,869600	11,80340		
6,000	12,506	3,206150	5,390940	7,728350	10,21581		
8,000	12,630	2,730310	4,414930	6,225850	8,160660		
10,00	12,704	2,418920	3,824290	5,378090	7,098890		
15,00	12,878	1,978490	2,931330	4,058170	5,385150		
ENERJİ	ETKİN	OF	ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	25	30	35	40		
0,015	17,031	1,043450	1,045440	1,047730	1,050470		
0,020	16,963	1,102620	1,107950	1,110760	1,110780		
0,030	16,559	1,382910	1,396890	1,409720	1,428200		
0,030 0,040	16,559 15,914	1,382910 2,150110	1,396890 2,207670	1,409720 2,250480	1,428200 2,303830		
0,030 0,040 0,050	16,559 15,914 15,193	1,382910 2,150110 4,371220	1,396890 2,207670 4,649090	1,409720 2,250480 4,869000	1,428200 2,303830 5,107400		
0,030 0,040 0,050 0,060	16,559 15,914 15,193 14,537	1,382910 2,150110 4,371220 10,94548	1,396890 2,207670 4,649090 12,30948	1,409720 2,250480 4,869000 13,74872	1,428200 2,303830 5,107400 15,73812		

Tablo 4.2 (devam)

0,100	13,081	192,3062	261,9555	342,3147	435,9958
0,150	12,560	625,2777	969,4127	1415,145	1921,350
0,200	12,362	787,6789	1268,622	1918,725	2670,783
0,300	12,343	613,7247	967,8638	1437,721	1971,192
0,400	12,275	426,2804	645,8878	925,1188	1233,570
0,500	12,265	302,2942	443,7457	617,3229	803,2739
0,600	12,256	222,4023	317,3638	430,7898	548,6895
0,800	12,247	139,3612	191,2928	251,0991	312,0350
1,000	12,252	96,57618	128,4420	164,2213	200,4878
1,500	12,237	52,67481	67,32791	83,03441	98,35964
2,000	12,268	36,93254	46,19973	55,89915	65,43788
3,000	12,303	23,58581	28,73025	33,93511	39,14967
4,000	12,382	17,64924	21,22206	24,82447	28,58332
5,000	12,443	14,73665	17,54285	20,36960	23,54586
6,000	12,506	12,71817	15,04529	17,14910	19,21528
8,000	12,630	10,12294	12,05640	14,07322	16,39931
10,00	12,704	8,903460	10,68355	12,47108	14,47590
15,00	12,878	6,799920	8,152730	9,505240	11,17486

ENERJİ	ETKİN	OF	RTALAMA SE	RBEST YOL (n	nfp)
MeV	NUMARASI	5	10	15	20
0,015	17,097	1,025190	1,032080	1,037070	1,040650
0,020	17,030	1,060860	1,074990	1,085380	1,094140
0,030	16,620	1,215710	1,274860	1,320190	1,355480
0,040	15,965	1,587450	1,770980	1,918250	2,041820
0,050	15,230	2,434220	3,029270	3,523220	3,967140
0,060	14,565	4,115310	5,860670	7,559760	9,272560
0,080	13,634	10,61600	20,04387	30,89558	43,40229
0,100	13,086	19,34233	46,60384	84,02159	132,5362
0,150	12,559	29,71054	96,14488	209,5625	379,9958
0,200	12,358	29,12952	104,2803	242,7486	460,8393
0,300	12,339	23,44311	84,23206	195,2482	365,9304
0,400	12,269	19,17154	65,42426	145,9084	263,9284
0,500	12,259	16,22552	52,10311	111,0468	193,4987
0,600	12,249	14,13908	42,96968	87,63099	147,0785
0,800	12,240	11,38015	31,50548	60,22179	96,15582
1,000	12,246	9,646300	24,78695	44,98499	68,99233
1,500	12,231	7,297860	16,44055	27,34872	39,43333
2,000	12,262	6,086400	12,69319	20,19230	28,28335

Tablo 4. 3: KYZ-24 numunesine ait farklı ortalama serbest yollar için EABF değeri.

Tablo 4.3 (devam)

		1			
12,297	4,771180	9,053180	13,67943	18,54947	
12,376	4,040070	7,208980	10,56161	14,07141	
12,437	3,554840	6,110840	8,869620	11,80339	
12,500	3,206280	5,390910	7,727930	10,21483	
12,624	2,730420	4,415050	6,225830	8,160120	
12,698	2,419010	3,824320	5,377700	7,097690	
12,873	1,978580	2,931440	4,058130	5,384740	
ETKİN	ORTALAMA SERBEST YOL (mfp)				
NUMARASI	25	30	35	40	
17,097	1,043020	1,045000	1,047190	1,049750	
17,030	1,101350	1,106590	1,109380	1,109440	
16,620	1,378560	1,392300	1,404950	1,423260	
15,965	2,132000	2,188120	2,229660	2,281560	
15,230	4,335420	4,608830	4,825270	5,060600	
14,565	10,83219	12,17726	13,59629	15,55760	
13,634	56,83556	70,30603	84,43163	101,5766	
13,086	191,9389	261,4164	341,5652	435,0057	
12,559	625,4937	969,7932	1415,749	1922,183	
12,358	788,3692	1269,872	1920,766	2673,674	
12,339	614,0199	968,3859	1438,576	1972,422	
	12,297 12,376 12,437 12,500 12,624 12,698 12,873 ETKİN ATOM I12,873 I12,873 I12,873 I12,873 I13,086 I12,359 I12,358 I12,339	12,2974,77118012,3764,04007012,4373,55484012,5003,20628012,6242,73042012,6982,41901012,6982,41901012,8731,97858012,8731,97858012,8731,97858012,8731,04302017,0971,04302017,0971,04302017,0301,10135016,6201,37856015,9652,13200015,9652,13200015,96510,8321914,56510,8321913,63456,8355613,086191,938912,358788,369212,339614,0199	12,2974,7711809,05318012,3764,0400707,20898012,4373,5548406,11084012,5003,2062805,39091012,6242,7304204,41505012,6982,4190103,82432012,6731,9785802,93144012,8731,9785802,93144012,8731,9785802,93144012,8731,9785802,93144012,8731,9785802,93144012,8731,9785802,93144012,8731,0430201,04500017,0301,1013501,04500017,0301,1013501,04500015,9652,1320002,18812015,9652,1320002,18812015,96510,8321912,1772613,63456,8355670,3060313,086191,9389261,416412,559625,4937969,793212,358788,36921269,872	<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row><table-container><table-container><table-container><table-container><table-container><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-row></table-row></table-row></table-row></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>	

Tablo 4.3 (devam)

0,400	12,269	426,4474	646,1674	925,5544	1234,148
0,500	12,259	302,3544	443,8594	617,5108	803,4879
0,600	12,249	222,4722	317,4765	430,9550	548,8992
0,800	12,240	139,3741	191,3091	251,1210	312,0645
1,000	12,246	96,58435	128,4527	164,2349	200,5043
1,500	12,231	52,67667	67,33071	83,03794	98,36289
2,000	12,262	36,92899	46,19487	55,89273	65,42889
3,000	12,297	23,58532	28,72960	33,93417	39,14816
4,000	12,376	17,65054	21,22402	24,82652	28,58473
5,000	12,437	14,73622	17,54190	20,36911	23,54757
6,000	12,500	12,71658	15,04315	17,14633	19,21156
8,000	12,624	10,12153	12,05459	14,07245	16,40112
10,00	12,698	8,901240	10,68025	12,46649	14,46934
15,00	12,873	6,798980	8,151250	9,503170	11,17188

Tablo 4.4: CM1 numunesine ait farklı ortalama serbest yollar için EBF değeri.

ENERJİ	ETKİN	N ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	5	10	15	20	
0,015	17,231	1,025620	1,033010	1,037950	1,040720	
0,020	17,170	1,060070	1,073240	1,083460	1,092220	
0,030	16,789	1,208940	1,266200	1,310190	1,344350	

Tablo 4.4 (devam)

0,040	16,156	1,555350	1,729710	1,868070	1,983820
0,050	15,421	2,277320	2,814630	3,268380	3,675430
0,060	14,749	3,533950	5,024350	6,378100	7,690900
0,080	13,760	7,405140	13,65788	20,83197	29,03799
0,100	13,169	11,73403	27,26302	48,72420	76,65383
0,150	12,579	17,25300	52,54103	113,0139	204,9196
0,200	12,359	18,12336	60,55846	138,9972	264,1286
0,300	12,320	16,34045	54,94325	125,4530	235,2549
0,400	12,252	14,48106	46,64977	102,3044	184,6290
0,500	12,240	12,85637	39,45234	83,08138	144,5261
0,600	12,230	11,58239	33,81650	68,26944	114,5488
0,800	12,220	9,792340	26,30792	49,89134	79,58091
1,000	12,224	8,557610	21,52032	38,80018	59,40945
1,500	12,210	6,709660	14,92651	24,77203	35,73880
2,000	12,242	5,751980	11,90921	18,93397	26,52838
3,000	12,282	4,903920	10,77811	14,74506	20,30967
4,000	12,365	4,012290	7,176920	10,55615	14,09095
5,000	12,433	3,568720	6,198290	9,012910	11,89641
6,000	12,501	3,278130	5,558740	8,009790	10,58756
8,000	12,629	2,836810	4,627530	6,559250	8,637170

Tablo 4.4 (devam)

10,00	12,715	2,535620	4,067430	5,785080	7,682530
15,00	12,901	2,085310	3,160130	4,410270	5,870210
ENERJİ	ETKİN	O	RTALAMA SE	RBEST YOL (m	ıfp)
MeV	NUMARASI	25	30	35	40
0,015	17,231	1,042220	1,043830	1,045940	1,048440
0,020	17,170	1,099260	1,104090	1,106450	1,106670
0,030	16,789	1,366510	1,379580	1,391730	1,409560
0,040	16,156	2,069060	2,124160	2,167350	2,221010
0,050	15,421	4,004420	4,240690	4,433670	4,662570
0,060	14,749	8,892860	9,905150	10,79570	11,77270
0,080	13,760	37,70032	46,14140	54,73129	65,01053
0,100	13,169	110,2618	148,5356	192,7683	246,5845
0,150	12,579	334,7029	509,3563	734,4147	1009,592
0,200	12,359	447,6673	704,5522	1049,824	1486,001
0,300	12,320	391,9933	605,9973	886,5225	1228,867
0,400	12,252	296,9872	444,5998	630,5028	846,0602
0,500	12,240	224,5495	325,3149	448,1098	587,2960
0,600	12,230	172,7858	244,4149	329,5685	422,5541
0,800	12,220	114,9866	156,6441	204,5024	255,4778
1,000	12,224	83,00979	110,0037	140,3876	172,1641

1,500	12,210	47,73414	60,88752	74,92944	88,81110
2,000	12,242	34,57860	43,10397	52,06513	61,16048
3,000	12,282	26,11299	32,13872	38,43409	44,94476
4,000	12,365	17,64737	21,17347	24,80305	28,72903
5,000	12,433	14,75974	17,81596	21,38029	25,66327
6,000	12,501	13,15093	15,69998	18,47831	21,77097
8,00	12,629	10,75131	12,79630	14,85345	17,17237
10,00	12,715	9,628610	11,55071	13,63245	16,21122
15,00	12,901	7,452180	9,004630	10,51662	12,22054

Tablo 4.4 (devam)

Tablo 4.5: KYZ-13 numunesine ait farklı ortalama serbest yollar için EBF değerleri.

ENERJİ	ETKİN	OR	TALAMA SER	BEST YOL (mf	p)
MeV	NUMARASI	5	10	15	20
0,015	17,031	1,026690	1,034440	1,039630	1,042290
0,020	16,963	1,062540	1,076190	1,086720	1,095740
0,030	16,559	1,218150	1,277990	1,323800	1,359490
0,040	15,914	1,583320	1,768660	1,915980	2,039430
0,050	15,193	2,346920	2,923680	3,412580	3,853210
0,060	14,537	3,689600	5,321470	6,814860	8,273600
0,080	13,621	7,665490	14,33393	22,06547	30,95664
0,100	13,081	11,94258	27,92860	50,11910	79,08397

Tablo 4.5 (devam)

0,150	12,560	17,30985	52,79923	113,6889	206,3037
0,200	12,362	18,11662	60,52497	138,9055	263,9361
0,300	12,343	16,31039	54,79241	125,0432	234,4091
0,400	12,275	14,46177	46,56133	102,0865	184,2173
0,500	12,265	12,84186	39,39098	82,93993	144,2764
0,600	12,256	11,57084	33,77066	68,16700	114,3645
0,800	12,247	9,784710	26,28316	49,84599	79,51576
1,000	12,252	8,552710	21,50307	38,76600	59,35614
1,500	12,237	6,707230	14,92082	24,76304	35,72516
2,000	12,268	5,751000	11,90781	18,93383	26,53187
3,000	12,303	4,896360	10,72062	14,74444	20,31087
4,000	12,382	4,011970	7,175870	10,55506	14,08986
5,000	12,443	3,568660	6,198300	9,013040	11,89739
6,000	12,506	3,278100	5,558930	8,010500	10,58903
8,000	12,630	2,836810	4,627560	6,559350	8,637360
10,00	12,704	2,535600	4,066630	5,782840	7,678170
15,00	12,878	2,085540	3,159840	4,409070	5,867410

Tablo 4.5 (devam)

ENERJİ	ETKİN	OR	TALAMA SER	BEST YOL (mf	p)
MeV	NUMARASI	25	30	35	40
0,015	17,031	1,043530	1,045100	1,047510	1,050650
0,020	16,963	1,103040	1,108090	1,110610	1,110810
0,030	16,559	1,382910	1,396890	1,409720	1,428200
0,040	15,914	2,130550	2,189680	2,236270	2,294170
0,050	15,193	4,211900	4,471670	4,684360	4,935400
0,060	14,537	9,625370	10,77984	11,79724	12,89656
0,080	13,621	40,39034	49,72010	59,48096	71,39825
0,100	13,081	114,0488	154,0281	200,3882	256,8378
0,150	12,560	337,2018	513,5408	740,9711	1019,081
0,200	12,362	447,3146	703,9517	1048,858	1484,553
0,300	12,343	390,4792	603,4805	882,5650	1223,067
0,400	12,275	296,2933	443,4864	628,8307	843,8306
0,500	12,265	224,1587	324,7276	447,2589	586,1610
0,600	12,256	172,4735	243,9009	328,8061	421,6196
0,800	12,247	114,8985	156,5209	204,3350	255,2855
1,000	12,252	82,93430	109,8996	140,2484	171,9923
1,500	12,237	47,71138	60,85119	74,88482	88,77776
2,000	12,268	34,58837	43,12198	52,09123	61,19230

Tablo 4.5 (devam)

3,000	12,303	26,11669	32,14558	38,44498	44,96050
4,000	12,382	17,64501	21,16917	24,79873	28,72869
5,000	12,443	14,76215	17,81889	21,38205	25,66206
6,000	12,506	13,15317	15,70279	18,48165	21,77518
8,000	12,630	10,75162	12,79676	14,85408	17,17320
10,00	12,704	9,621610	11,54062	13,61859	16,19231
15,00	12,878	7,446490	8,995050	10,50382	12,20661

Tablo 4. 6: KYZ-24 numunesine ait farklı ortalama serbest yollar için EBF değerleri.

ENERJİ	ETKİN	ORTALAMA SERBEST YOL (mfp			fp)
MeV	NUMARASI	5	10	15	20
0,015	17,097	1,026340	1,033970	1,039070	1,041770
0,020	17,030	1,061740	1,075230	1,085670	1,094600
0,030	16,620	1,215710	1,274860	1,320190	1,355480
0,040	15,965	1,575550	1,757610	1,902250	2,023430
0,050	15,230	2,335620	2,905980	3,389180	3,824360
0,060	14,565	3,669040	5,282220	6,757170	8,196640
0,080	13,634	7,641150	14,27070	21,95011	30,77720
0,100	13,086	11,93073	27,89078	50,03984	78,94588
0,150	12,559	17,31285	52,81283	113,7244	206,3765
0,200	12,358	18,12561	60,56962	139,0278	264,1928

Tablo 4.6 (devam)

0,300	12,339	16,31562	54,81865	125,1144	234,5563
0,400	12,269	14,46680	46,58440	102,1433	184,3247
0,500	12,259	12,84534	39,40571	82,97388	144,3363
0,600	12,249	11,57395	33,78300	68,19458	114,4141
0,800	12,240	9,786690	26,28958	49,85775	79,53265
1,000	12,246	8,553760	21,50677	38,77332	59,36757
1,500	12,231	6,707770	14,92208	24,76504	35,72819
2,000	12,262	5,751220	11,90813	18,93386	26,53107
3,000	12,297	4,898520	10,73705	14,74465	20,31066
4,000	12,376	4,012080	7,176240	10,55544	14,09024
5,000	12,437	3,568700	6,198290	9,012960	11,89680
6,000	12,500	3,278130	5,558700	8,009650	10,58727
8,000	12,624	2,836840	4,627360	6,558740	8,636210
10,00	12,698	2,535590	4,066200	5,781620	7,675790
15,00	12,873	2,085590	3,159780	4,408810	5,866800
ENERJİ	ETKİN	O]	RTALAMA SER	BEST YOL (m	fp)
MeV	NUMARASI	25	30	35	40
0,015	17,097	1,043100	1,044680	1,046990	1,049920
0,020	17,030	1,101810	1,106800	1,109270	1,109470
0,030	16,620	1,378560	1,392300	1,404950	1,423260

Tablo 4.6 (devam)

0,040	15,965	2,112860	2,170860	2,216460	2,273050
0,050	15,230	4,178230	4,434190	4,643680	4,891130
0,060	14,565	9,528620	10,66432	11,66496	12,74813
0,080	13,634	40,13876	49,38542	59,03676	70,80085
0,100	13,086	113,8336	153,7160	199,9552	256,2552
0,150	12,559	337,3333	513,7612	741,3163	1019,580
0,200	12,358	447,7849	704,7524	1050,146	1486,484
0,300	12,339	390,7426	603,9183	883,2534	1224,076
0,400	12,269	296,4743	443,7768	629,2668	844,4122
0,500	12,259	224,2525	324,8685	447,4631	586,4334
0,600	12,249	172,5576	244,0393	329,0114	421,8712
0,800	12,240	114,9214	156,5528	204,3784	255,3354
1,000	12,246	82,95048	109,9219	140,2782	172,0291
1,500	12,231	47,71644	60,85926	74,89474	88,78517
2,000	12,262	34,58612	43,11782	52,08521	61,18496
3,000	12,297	26,11598	32,14426	38,44273	44,95689
4,000	12,376	17,64584	21,17069	24,80026	28,72882
5,000	12,437	14,76070	17,81713	21,38099	25,66278
6,000	12,500	13,15048	15,69942	18,47765	21,77013
8,000	12,624	10,74974	12,79397	14,85026	17,16825

Tablo 4.6 (devam)

10,00	12,698	9,617780	11,53511	13,61103	16,18200
15,00	12,873	7,445250	8,992970	10,50104	12,20358

Hem karşılaştırmak hem de yeni bir metot ile elde edilecek verilerin uyumluluk seviyesini görmek adına ZXCOM programı kullanılarak etkin atom numaraları hesaplanmıştır. Bu etkin atom numaraları EABF ve EBF değerlerini doğrudan hesaplamak için kullanıldı. Her bir elemente ait EABF ve EBF değerleri hesaplandıktan sonra bu veriler örneğimize ait EABF ve EBF parametre değerlerini belirmede kullanılmıştır. ZXCOM programı kullanılarak elde edilen etkin atom numaraları ve bu örneklerimize ait EABF ve EBF değerleri Tablo 4.7, Tablo 4.8, Tablo 4.9, Tablo 4.10, Tablo 4.11, Tablo 4.12' de gösterildi.

ENERJİ	ETKİN	OF	RTALAMA SEF	RBEST YOL (m	fp)
MeV	NUMARASI	5	10	15	20
0,015	13,75133	1,050360	1,063940	1,073600	1,080410
0,020	15,05101	1,087220	1,110500	1,127390	1,140360
0,030	16,27053	1,229700	1,292780	1,340880	1,378490
0,040	13,07863	2,241680	2,729600	3,133090	3,489770
0,050	12,27131	4,524790	6,630330	8,681130	10,76362
0,060	12,51204	6,960660	11,66381	16,68995	22,12817
0,080	13,56671	10,80863	20,53877	31,78399	44,78276
0,100	14,79374	13,35752	27,53872	45,10770	66,27001
0,150	16,33063	18,34825	44,52289	80,79537	127,7140

Tablo 4.7: CM1 numunesine ait farklı ortalama serbest yollar için EABF değerleri.

Tablo 4.7 (devam)

0,200	17,43209	19,42237	52,22520	102,5841	172,6750
0,300	18,33857	18,21441	52,89083	108,6822	187,7245
0,400	18,69016	16,16385	47,45345	97,60146	168,2605
0,500	18,69741	14,39067	41,59076	84,14175	142,5428
0,600	18,70960	12,87054	36,25842	71,60638	118,5580
0,800	18,81171	10,72209	28,32390	53,20485	84,47066
1,000	19,34598	9,216610	22,90331	41,10860	62,96186
1,500	19,52438	7,135820	15,93074	26,51968	38,36916
2,000	19,59325	6,017440	12,55681	20,14715	28,50168
3,000	19,59327	4,732740	9,135550	14,13346	19,58085
4,000	19,59329	3,976640	7,318610	11,17834	15,42894
5,000	19,59332	3,468680	6,192170	9,362740	12,93218
6,000	19,59335	3,100710	5,429160	8,195910	11,35317
8,000	19,59344	2,608470	4,419530	6,641130	9,263470
10,00	19,59357	2,305180	3,779850	5,686970	8,107830
15,00	19,59481	1,858120	2,937810	4,444470	6,535940
ENERJİ	ETKİN	OF	RTALAMA SEF	RBEST YOL (mf	p)
MeV	NUMARASI	25	30	35	40
0,015	13,75133	1,084660	1,087910	1,091840	1,097170
0,020	15,05101	1,149130	1,154850	1,160130	1,166980

Tablo 4.7 (devam)

0,030	16,27053	1,403480	1,418610	1,432270	1,451590
0,040	13,07863	3,774760	3,976630	4,137100	4,323110
0,050	12,27131	12,70074	14,40380	16,17050	18,53578
0,060	12,51204	27,47725	32,36817	37,42826	44,03846
0,080	13,56671	58,80191	72,93041	87,77817	105,7480
0,100	14,79374	89,67007	113,6944	139,3691	170,5729
0,150	16,33063	184,1773	248,7047	322,1322	407,4267
0,200	17,43209	262,4181	371,5438	502,5462	659,2101
0,300	18,33857	291,0575	420,3145	577,1415	762,3264
0,400	18,69016	260,2531	374,5284	512,2441	672,8177
0,500	18,69741	216,8336	307,5944	415,5336	538,7139
0,600	18,70960	176,7665	246,6848	328,5103	419,2368
0,800	18,81171	121,5182	164,4603	213,2980	266,0668
1,000	19,34598	88,02142	116,3557	147,6882	180,2274
1,500	19,52438	51,31001	65,42561	80,53907	95,76476
2,000	19,59325	37,45341	46,94152	56,91288	67,17004
3,000	19,59327	25,25995	31,07693	37,15790	43,66505
4,000	19,59329	19,75875	24,12387	28,95913	34,78828
5,000	19,59332	16,61439	20,12496	23,56807	27,39904
6,000	19,59335	14,62268	17,83378	21,29758	25,59686

Tablo 4.7 (devam)

8,000	19,59344	12,10391	15,14398	18,80791	23,74676
10,00	19,59357	10,89603	13,82169	17,03889	21,22855
15,00	19,59481	9,267050	12,59848	16,68564	22,18906

Tablo 4. 8: KYZ-13 numunesine ait farklı ortalama serbest yollar için EABF değerleri.

ENERJİ	ETKİN	O	RTALAMA SEF	RBEST YOL (mi	fp)
MeV	NUMARASI	5	10	15	20
0,015	13,55103	1,052760	1,067250	1,077870	1,085510
0,020	14,72537	1,094280	1,119420	1,137580	1,151800
0,030	15,72575	1,256530	1,328450	1,383580	1,427000
0,040	12,46745	2,540990	3,203240	3,754640	4,252170
0,050	12,00539	4,824960	7,177910	9,494310	11,86707
0,060	12,33399	7,330160	12,47811	18,02986	24,06567
0,080	13,30552	11,55632	22,45978	35,23247	50,14119
0,100	14,42471	14,46189	30,84256	51,62569	77,11706
0,150	15,84053	19,52996	48,82087	90,24725	144,6415
0,200	16,94090	20,26920	55,97833	111,8074	190,6530
0,300	17,79898	18,67418	55,21046	114,5944	199,8549
0,400	18,15029	16,41809	48,84737	101,1974	175,2042
0,500	18,15644	14,53467	42,43393	86,33122	146,6977
0,600	18,16677	12,96559	36,78078	72,99314	121,2258

Tablo 4.8 (devam)

0,800	18,25326	10,76835	28,61314	53,84127	85,49976
1,000	18,81781	9,253100	23,06204	41,42038	63,43941
1,500	19,02392	7,145650	15,95517	26,56578	38,45494
2,000	19,08357	6,026200	12,57452	20,15922	28,48871
3,000	19,08359	4,734790	9,124520	14,07687	19,46715
4,000	19,08361	3,982430	7,326350	11,16700	15,36390
5,000	19,08363	3,469590	6,195710	9,365370	12,87824
6,000	19,08366	3,107020	5,432110	8,176530	11,28181
8,000	19,08373	2,616700	4,421900	6,611400	9,165450
10,00	19,08385	2,314200	3,776660	5,649570	8,005290
15,00	19,08492	1,865620	2,933390	4,406880	6,427330
ENERJİ	ETKİN	0	p)		
MeV	NUMARASI	25	30	35	40
0,015	13,55103	1,090100	1,093000	1,096220	1,100930
0,020	14,72537	1,161880	1,168560	1,174000	1,180250
0,030	15,72575	1,456140	1,473870	1,489720	1,511960
0,040	12,46745	4,668790	4,983060	5,235310	5,508460
0,050	12,00539	14,09940	16,10579	18,24653	21,14943
0,060	12,33399	30,04188	35,61775	41,57795	49,49504
0,080	13,30552	66,43450	83,11723	100,7681	121,9399

Tablo 4.8 (devam)

0,100	14,42471	106,0038	136,5561	169,6748	209,3737
0,150	15,84053	211,3499	289,2220	378,7729	482,0004
0,200	16,94090	293,5818	421,2206	575,7292	759,5983
0,300	17,79898	312,9858	455,7747	630,2224	837,3940
0,400	18,15029	272,0406	393,4211	540,7120	711,0462
0,500	18,15644	223,5931	317,8053	430,2443	558,6191
0,600	18,16677	180,9871	252,6004	336,4491	430,1156
0,800	18,25326	123,1040	166,9733	216,9383	270,1733
1,000	18,81781	88,74437	117,4793	149,2379	181,8418
1,500	19,02392	51,46901	65,67677	80,81583	95,89555
2,000	19,08357	37,40214	46,84851	56,76774	66,92809
3,000	19,08359	25,11861	30,93238	36,97261	43,34745
4,000	19,08361	19,61014	23,88929	28,63741	34,33877
5,000	19,08363	16,37762	19,62455	22,89707	26,74439
6,000	19,08366	14,46812	17,58296	20,94817	25,12355
8,000	19,08373	11,90828	14,84344	18,38690	23,13595
10,00	19,08385	10,69059	13,47701	16,51666	20,46500
15,00	19,08492	9,017390	12,09843	15,79362	20,71847

ENERJİ	ETKİN	OF	RTALAMA SEI	RBEST YOL (n	nfp)
MeV	NUMARASI	5	10	15	20
0,015	13,51102	1,053240	1,067910	1,078720	1,086530
0,020	14,69330	1,095010	1,120320	1,138600	1,152960
0,030	15,75259	1,254970	1,326320	1,380970	1,424000
0,040	12,50482	2,521730	3,172630	3,714400	4,202750
0,050	12,00099	4,829920	7,186970	9,507770	11,88533
0,060	12,30604	7,388170	12,60594	18,24020	24,36982
0,080	13,27394	11,64672	22,69205	35,64942	50,78906
0,100	14,40662	14,51603	31,00452	51,94521	77,64879
0,150	15,86083	19,47496	48,60315	89,74590	143,7115
0,200	16,99817	20,17047	55,54073	110,7320	188,5569
0,300	17,87628	18,60863	54,84917	113,6225	197,8927
0,400	18,22065	16,38495	48,66571	100,7287	174,2993
0,500	18,22706	14,51587	42,32386	86,04540	146,1553
0,600	18,23783	12,95314	36,71240	72,81161	120,8766
0,800	18,32799	10,76216	28,57443	53,75611	85,36205
1,000	18,91706	9,245180	23,02569	41,35524	63,35428
1,500	19,10113	7,144140	15,95140	26,55867	38,44171
2,000	19,16308	6,024830	12,57176	20,15733	28,49073

Tablo 4.9: KYZ-24 numunesine ait farklı ortalama serbest yollar için EABF değerleri.

Tablo 4.9 (devam)

3,000	19,16310	4,734470	9,126240	14,08570	19,48489
4,000	19,16312	3,981530	7,325140	11,16877	15,37405
5,000	19,16314	3,469450	6,195160	9,364960	12,88665
6,000	19,16317	3,106030	5,431650	8,179550	11,29295
8,000	19,16325	2,615410	4,421530	6,616040	9,180740
10,00	19,16337	2,312790	3,777160	5,655400	8,021290
15,00	19,16448	1,864450	2,934080	4,412740	6,444270
ENERJİ	ETKİN	OF	RTALAMA SEI	RBEST YOL (m	fp)
MeV	NUMARASI	25	30	35	40
0,015	13,51102	1,09118	1,09401	1,097090	1,101690
0,020	14,69330	1,163190	1,169980	1,175430	1,181570
0,030	15,75259	1,452870	1,470450	1,486160	1,508200
0,040	12,50482	4,610740	4,917580	5,163760	5,431180
0,050	12,00099	14,12255	16,13395	18,28088	21,19267
0,060	12,30604	30,44447	36,12787	42,22937	50,35161
0,080	13,27394	67,35735	84,34889	102,3387	123,8977
0,100	14,40662	106,8045	137,6768	171,1604	211,2758
0,150	15,86083	209,8036	286,8404	375,3701	477,4849
0,200	16,99817	289,9483	415,4286	567,1965	747,8936
0,300	17,87628	309,5365	450,1192	621,4637	824,8816

Tablo 4.9 (devam)

0,400	18,22065	270,5044	390,9588	537,0018	706,0640
0,500	18,22706	222,7107	316,4724	428,3239	556,0206
0,600	18,23783	180,4346	251,8260	335,4099	428,6915
0,800	18,32799	122,8918	166,6370	216,4512	269,6238
1,000	18,91706	88,63143	117,3064	148,9932	181,5938
1,500	19,10113	51,44448	65,63802	80,77313	95,87537
2,000	19,16308	37,41014	46,86302	56,79038	66,96584
3,000	19,16310	25,14066	30,95493	37,00152	43,39700
4,000	19,16312	19,63332	23,92589	28,68760	34,40889
5,000	19,16314	16,41455	19,70261	23,00174	26,84651
6,000	19,16317	14,49223	17,62208	21,00268	25,19738
8,000	19,16325	11,93880	14,89032	18,45258	23,23125
10,00	19,16337	10,72264	13,53078	16,59813	20,58412
15,00	19,16448	9,056350	12,17645	15,93280	20,94793

Tablo 4. 10: CM1 numunesine ait farklı ortalama serbest yollar için EBF değerleri.

ENERJİ	ERJİ ETKİN	ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	5	10	15	20	
0,015	13,75133	1,050240	1,064820	1,075860	1,083220	
0,020	15,05101	1,088980	1,112010	1,128090	1,140510	
0,030	16,27053	1,229700	1,292780	1,340880	1,378490	

Tablo 4.10 (devam)

0,040	13,07863	2,200900	2,680300	3,074900	3,423130
0,050	12,27131	4,224990	6,188220	8,077040	10,01358
0,060	12,51204	6,009060	10,01711	14,29613	18,95749
0,080	13,56671	7,767180	14,59797	22,54724	31,70601
0,100	14,79374	8,356780	16,88941	27,46971	40,20374
0,150	16,33063	9,852670	23,03788	41,38344	65,06436
0,200	17,43209	10,43594	26,81183	51,92419	86,66269
0,300	18,33857	10,70512	29,60800	59,78035	101,7235
0,400	18,69016	10,42127	29,17315	59,16088	100,5388
0,500	18,69741	9,959690	27,50827	54,65088	91,82727
0,600	18,70960	9,407310	25,36762	49,27834	81,05746
0,800	18,81171	8,380800	21,44498	39,82583	62,96124
1,000	19,34598	7,512720	18,17234	32,27419	49,17093
1,500	19,52438	6,185160	13,56760	22,47194	32,47099
2,000	19,59325	5,455630	11,27678	18,04428	25,49984
3,000	19,59327	4,552210	8,781000	13,58616	18,80568
4,000	19,59329	3,988560	7,398540	11,30410	15,58394
5,000	19,59332	3,573320	6,452010	9,775840	13,50732
6,000	19,59335	3,284770	5,837680	8,859230	12,33000
8,000	19,59344	2,844750	4,927100	7,489280	10,56134

Tablo 4.10 (devam)

10,00	19,59357	2,534180	4,324770	6,635140	9,544090
15,00	19,59481	2,074670	3,434590	5,395500	8,171360
ENERJİ	ETKİN	OF	RTALAMA SER	BEST YOL (mf	p)
MeV	NUMARASI	25	30	35	40
0,015	13,75133	1,086680	1,088570	1,091480	1,096590
0,020	15,05101	1,149360	1,155510	1,160960	1,167430
0,030	16,27053	1,403480	1,418610	1,432270	1,451590
0,040	13,07863	3,702510	3,903280	4,065970	4,254470
0,050	12,27131	11,88550	13,58669	15,28163	17,38459
0,060	12,51204	23,64982	28,04109	32,47370	37,95645
0,080	13,56671	41,44099	51,11785	61,33606	73,89312
0,100	14,79374	54,24333	68,45959	83,19175	100,5545
0,150	16,33063	92,99240	124,1180	159,5568	202,0014
0,200	17,43209	130,2175	182,3805	245,7426	323,9518
0,300	18,33857	155,3560	222,2654	303,9700	400,4127
0,400	18,69016	153,4592	219,4236	298,8578	390,4729
0,500	18,69741	138,9437	195,8432	262,7417	340,1191
0,600	18,70960	120,3303	166,8818	220,6900	281,0880
0,800	18,81171	90,37011	121,9284	157,4830	195,8175
1,000	19,34598	68,47221	90,14365	114,0351	139,1020

1,500	19,52438	43,39616	55,27565	67,98280	80,88580
2,000	19,59325	33,48893	41,95325	50,85235	60,03086
3,000	19,59327	24,21652	29,71399	35,38408	41,35585
4,000	19,59329	19,99601	24,523300	29,49108	35,25686
5,000	19,59332	17,43856	21,40051	25,55490	30,30585
6,000	19,59335	16,01645	19,72413	23,67033	28,38702
8,000	19,59344	13,94318	17,42538	21,22103	25,95900
10,00	19,59357	12,89445	16,48399	20,55185	25,86308
15,00	19,59481	11,75657	16,02788	21,36952	29,09828

Tablo 4.10 (devam)

Tablo 4.11: KYZ-13 numunesine ait farklı ortalama serbest yollar için EBF değerleri.

ENERJİ	ETKİN ATOM NUMARASI	ORTALAMA SERBEST YOL (mfp)				
MeV		5	10	15	20	
0,015	13,55103	1,053070	1,068070	1,079360	1,087250	
0,020	14,72537	1,095570	1,120500	1,138070	1,151900	
0,030	15,72575	1,256610	1,328040	1,382720	1,426160	
0,040	12,46745	2,483520	3,129020	3,668200	4,155460	
0,050	12,00539	4,498770	6,671120	8,812150	11,04106	
0,060	12,33399	6,311740	10,67854	15,37970	20,54592	
0,080	13,30552	8,256400	15,86831	24,86507	35,31128	
0,100	14,42471	9,011330	18,79020	31,22728	46,48102	

Tablo 4.11 (devam)

0,150	15,84053	10,48985	25,19968	46,13732	73,60194		
0,200	16,94090	10,96441	28,87244	56,88176	96,17212		
0,300	17,79898	11,09062	31,22295	63,76475	109,3546		
0,400	18,15029	10,66900	30,25293	61,82528	105,7061		
0,500	18,15644	10,14849	28,27096	56,46754	95,20660		
0,600	18,16677	9,560690	25,96821	50,64825	83,49229		
0,800	18,25326	8,492800	21,81278	40,53381	64,04639		
1,000	18,81781	7,574210	18,36980	32,66648	49,81028		
1,500	19,02392	6,221040	13,66487	22,64215	32,72317		
2,000	19,08357	5,467730	11,29377	18,06672	25,53330		
3,000	19,08359	4,562350	8,774940	13,57154	18,76749		
4,000	19,08361	3,989970	7,387440	11,26738	15,49060		
5,000	19,08363	3,573060	6,434730	9,714040	13,37828		
6,000	19,08366	3,285310	5,813510	8,781390	12,17359		
8,000	19,08373	2,844720	4,903330	7,418650	10,41049		
10,00	19,08385	2,532480	4,299890	6,557090	9,368360		
15,00	19,08492	2,071670	3,414130	5,319150	7,960440		
ENERJİ	ENERJİ ETKİN		ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	25	30	35	40		
0,015	13,55103	1,091440	1,093630	1,096120	1,100280		

Tablo 4.11 (devam)

				-	
0,020	14,72537	1,162060	1,169080	1,174660	1,180600
0,030	15,72575	1,455940	1,474370	1,490240	1,511720
0,040	12,46745	4,563650	4,872270	5,122780	5,397810
0,050	12,00539	13,20973	15,19366	17,21827	19,81314
0,060	12,33399	25,79714	30,68725	35,45256	41,12180
0,080	13,30552	46,49573	57,84247	70,26102	85,89607
0,100	14,42471	63,66140	81,57437	100,6820	123,4316
0,150	15,84053	106,5046	143,9008	187,2177	239,4100
0,200	16,94090	146,1656	207,0741	281,8429	374,0826
0,300	17,79898	168,4930	243,3549	335,3155	443,8658
0,400	18,15029	162,4196	233,3877	318,5060	415,9095
0,500	18,15644	144,3758	203,8178	273,8805	355,4482
0,600	18,16677	124,0860	172,2363	228,0786	291,2331
0,800	18,25326	91,90286	124,1068	160,6033	200,0571
1,000	18,81781	69,43034	91,50843	115,8113	141,0691
1,500	19,02392	43,75056	55,75756	68,57838	81,50665
2,000	19,08357	33,53902	42,01370	50,88469	59,95400
3,000	19,08359	24,12011	29,61339	35,46150	41,83973
4,000	19,08361	19,80744	24,24041	29,15279	34,90019
5,000	19,08363	17,24006	21,13895	25,20799	29,80910

6,000	19,08366	15,77172	19,38256	23,19238	27,69562
8,000	19,08373	13,66562	16,97020	20,53987	24,99136
10,00	19,08385	12,56611	15,94943	19,75099	24,69156
15,00	19,08492	11,29015	15,18437	20,03770	27,05787

Tablo 4.11 (devam)

Tablo 4.12: KYZ-24 numunesine ait farklı ortalama serbest yollar için EBF değerleri.

ENERJİ	ETKİN	ORTALAMA SERBEST YOL (mfp)			
MeV NUMARASI	5	10	15	20	
0,015	13,51102	1,053630	1,068710	1,080050	1,088060
0,020	14,69330	1,096240	1,121360	1,139070	1,153050
0,030	15,75259	1,255040	1,325950	1,380190	1,423240
0,040	12,50482	2,465360	3,100050	3,629780	4,107950
0,050	12,00099	4,503300	6,679110	8,824310	11,05806
0,060	12,30604	6,359250	10,78237	15,54980	20,79527
0,080	13,27394	8,315550	16,02190	25,14531	35,74718
0,100	14,40662	9,043420	18,88338	31,41148	46,78873
0,150	15,86083	10,45840	25,08546	45,87708	73,12329
0,200	16,99817	10,90280	28,63218	56,30373	95,06337
0,300	17,87628	11,03189	30,97337	63,13490	108,1069
0,400	18,22065	10,63671	30,11221	61,47803	105,0327
0,500	18,22706	10,12384	28,17139	56,23038	94,76545

Tablo 4.12 (devam)

0,600	18,23783	9,540610	25,88959	50,46892	83,17357	
0,800	18,32799	8,477810	21,76356	40,43907	63,90118	
1,000	18,91706	7,560630	18,32607	32,58222	49,68084	
1,500	19,10113	6,215500	13,64986	22,61589	32,68426	
2,000	19,16308	5,465840	11,29112	18,06322	25,52808	
3,000	19,16310	4,560770	8,775880	13,57382	18,77345	
4,000	19,16312	3,989750	7,389170	11,27311	15,50517	
5,000	19,16314	3,573100	6,437420	9,723680	13,39841	
6,000	19,16317	3,285220	5,817280	8,793530	12,19799	
8,000	19,16325	2,844720	4,907040	7,429670	10,43402	
10,00	19,16337	2,532750	4,303770	6,569260	9,395770	
15,00	19,16448	2,072140	3,417330	5,331060	7,993350	
ENERJİ	ETKİN	ORTALAMA SERBEST YOL (mfp)				
MeV	NUMARASI	25	30	35	40	
0,015	13,51102	1,092390	1,094650	1,097050	1,101020	
0,020	14,69330	1,163370	1,170490	1,176060	1,181900	
0,030	15,75259	1,452690	1,470910	1,486640	1,507980	
0,040	12,50482	4,507710	4,809250	5,053990	5,323330	
0,050	12,00099	13,23165	15,22026	17,25031	19,85332	
0,060	12,30604	26,13423	31,10264	35,92019	41,61869	

Tablo 4.12 (devam)

0,080	13,27394	47,10688	58,65553	71,34012	87,34732
0,100	14,40662	64,12309	82,21727	101,5394	124,5530
0,150	15,86083	105,7286	142,7309	185,5363	237,0954
0,200	16,99817	144,3062	204,1950	277,6338	368,2376
0,300	17,87628	166,2858	239,7866	330,0009	436,4641
0,400	18,22065	161,2518	231,5678	315,9453	412,5944
0,500	18,22706	143,6667	202,7768	272,4264	353,4471
0,600	18,23783	123,5944	171,5354	227,1114	289,9051
0,800	18,32799	91,69775	123,8152	160,1858	199,4898
1,000	18,91706	69,25117	91,26640	115,4802	140,6196
1,500	19,10113	43,69588	55,68321	68,48650	81,41087
2,000	19,16308	33,53121	42,00427	50,87964	59,96599
3,000	19,16310	24,13515	29,62908	35,44942	41,76425
4,000	19,16312	19,83685	24,28454	29,20556	34,95583
5,000	19,16314	17,27102	21,17975	25,26211	29,88659
6,000	19,16317	15,80989	19,43584	23,26694	27,80348
8,000	19,16325	13,70892	17,04121	20,64614	25,14232
10,00	19,16337	12,61733	16,03282	19,87593	24,87432
15,00	19,16448	11,36293	15,31599	20,24551	27,37625
Dikkatli bir şekilde tablolar incelenirse; belirli enerjilerde buildup parametrelerin maksimum değerlere ulaştığı gözlemlenebilir. Bu değerler, numunenin cinsine ve ortalama serbest yola göre değişiklik göstermektedir. Eğer bu bilgiler, grafik olarak işlenirse; enerji, ortalama serbest yol, etkin atom numarası gibi parametrelere ait değişimlerin, EABF ve EBF değerlerine etkisi ayrıntılı olarak görülebilir. Oluşturulan grafik verilerinde, Direkt ve ZXCOM metotları kullanıldı. Bu iki farklı metoda ait etkin atom numaraları hesaplandı. Direkt metodu kullanılarak hesaplanan EABF ve EBF değerlerinin değişim grafikleri Şekil 4.1, Şekil 4.2, Şekil 4.3, Şekil 4.4, Şekil 4.5, Şekil 4.6' da gösterilmiştir. İlk üç grafik CM1, KYZ-13 ve KYZ-24 örnekleri için EABF değerlerindeki değişimi gösterirken, sonraki üç şekil ise her üç örneğimize ait EBF değerlerindeki değişimleri göstermektedir. Grafikler 40 mfp ile 5 mfp arasındaki penetrasyon derinliklerinde hesaplanmıştır. Toplam 8 farklı ortalama serbest yol için farklı renk veya gösterimlere sahip imleçler kullanılmıştır.

Şekil 4.1: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.2: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.3:KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.4: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği

Şekil 4.5: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.6: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği. ZXCOM metodundan elde edilen etkin atom numaraları kullanılarak hesaplanan EABF ve EBF parametrelerinin grafikleri Şekil 4.7, Şekil 4.8, Şekil 4.9, Şekil 4.10, Şekil 4.11, Şekil 4.12' de verilmiştir. Bu kısımda dikkat edilmesi gereken nokta; ZXCOM metodu hesaplamalarında açıya bağlı etkin atom numaralarının hesaplanmış olmasıdır.

Grafiklerin içerdiği bilgilerin temelini 90° saçılma açısı için hesaplanan etkin atom numarası değerleri oluşturmaktadır.

Şekil 4.7: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.8: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.9: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EABF grafiği.

Şekil 4.10: CM1 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği.

Şekil 4.11: KYZ-13 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği.

Şekil 4.12: KYZ-24 numunesine ait enerji ve ortalama serbest yol dağılımlarına bağlı EBF grafiği.
Bu grafikler ve tablolar kullanılarak iki farklı metoda ait EABF ve EBF değişimleri Şekil
4.13' den Şekil 4.18' e kadar grafiksel olarak karşılaştırılmıştır.

Şekil 4.13: CM1 numunesinin 25 mfp için EABF grafikleri.

Şekil 4.14: KYZ-13 numunesinin 25 mfp için EABF grafikleri.

Şekil 4.15: KYZ-24 numunesinin 25 mfp için EABF grafikleri.

Şekil 4.16: CM1 numunesinin 25 mfp için EBF grafikleri.

Şekil 4.17: KYZ-13 numunesinin 25 mfp için EBF grafikleri.

Şekil 4.18: KYZ-24 numunesinin 25 mfp için EBF grafikleri.

Direkt ve ZXCOM yöntemleriyle bulunan etkin atom numaraları, buildup faktörleri hesaplanırken kullanılır. Buildup faktörlerinin değerleri, iki farklı yöntem için karşılaştırıldığında farklılıklar göstermektedir.. Bu farklılığın temeli olan etkin atom numarası değerlerinin iki metot için karşılaştırılması Şekil 4.19, 4.20 ve 4.21' de verilmiştir.

Şekil 4.19: CM1 numunesine ait iki farklı metot için etkin atom numarası grafikleri.

Şekil 4.20: KYZ-13 numunesine ait iki farklı metot için etkin atom numarası grafikleri.

Şekil 4.21: KYZ-24 numunesine ait iki farklı metot için etkin atom numarası grafikleri.

TARTIŞMA VE SONUÇ

Bu tez çalışmasında CM1, KYZ-13 ve KYZ-24 olarak isimlendirilmiş üç bazalt örneğinin sahip oldukları buildup faktör değerleri incelendi. Öncelikle Van ili ve çevresinden elde edilen bu örneklere ait nicel ve nitel analizler yapıldı. Bu analizlere göre bazalt örneklerinin sahip oldukları kompozisyonlar Tablo 3.1' de gösterilmiştir. Analizlere göre SiO_2 bileşiği, üç bazalt örneği içinde en yüksek kompozisyona sahiptir. Bununla birlikte, CM1 bazalt örneği; Fe_2O_3 , MgO, Na_2O ve TiO_2 bileşik oranları açısından diğer iki örnekle kıyaslandığında zengindir.

Bazaltları oluşturan bileşikler ve bu bileşiklerin oranları, etkin atom numarası parametresini doğrudan etkiler. Etkin atom numaraları direkt metodu için Tablo 4.1, Tablo 4.2 ve Tablo 4.3' de, ZXCOM metodu için Tablo 4.7, Tablo 4.8 ve Tablo 4.9' da yer almaktadır. Genel olarak bazalt örneklerini oluşturan en düşük atom numaralı element oksijen, en yüksek atom numaralı element ise demirdir. Fark edileceği gibi, hesaplanan etkin atom numaraları, oksijen ve demir elementlerine ait atom numarası değerlerinin arasında bir dağılım göstermektedir. Bu nokta, kimyasal kompozisyon ve etkin atom numarası arasındaki ilişkiyi daha belirgin hale getirir.

Çalışmanın diğer kısmında, buildup faktörleri hesaplandı ve sonuçlar grafiksel olarak hazırlandı. Direkt yöntemine ait etkin atom numaralarından hesaplanan buildup faktörleri Şekil 4.1 - 4.6' de verilmiştir. ZXCOM yöntemine ait etkin atom numaralarından hesaplanan buildup faktörleri ise Şekil 4.7 - 4.12' de verilmiştir. EABF ve EBF parametreleri 40 mfp penetrasyon derinliğine kadar hesaplandı. Grafiklerde görüldüğü gibi buildup değerleri önce artar, bir maksimuma ulaşır ve ardından artan enerjiyle birlikte minimuma yaklaşır. EABF 0.1 - 0.4 MeV, EBF 0.15 - 0.5 MeV enerji değerlerinde maksimumdadır. Bu enerjilerdeki etkin artışın sebebi foton saçılmalarının bu noktada artış göstermesidir. Öyle ki Fotoelektrik soğurma, Compton etkileşmesine oranla oldukça önemsiz kalır. WINXCOM ile ZXCOM yöntemleri kullanılarak elde edilen iki farklı buildup değerleri, ZXCOM yöntemlinin değerlerine göre oldukça yüksektir. Özellikle Şekil 4.13 – 4.18 arasında bulunan grafiklerde gösterildiği gibi, pik noktalarında oluşan farklılığın iki nedeni vardır. İlk dikkat edilmesi gereken nokta G-P fit parametrelerinin dağılımından meydana gelir. Elde edilen etkin atom numaraları

kullanılarak EABF ve EBF değerleri hesaplanır. Burada hesaplanacak değerler soğurucunun etkin atom numarası ile doğrudan ilişkilidir. WINXCOM etkin atom numarası değerleri özellikle 0,1 MeV enerji noktaları geçildikten sonra ZXCOM etkin atom numaralarından daha düşük seviyelerdedir. Bu sebeple burada hesaplanan EABF parametrelerinde değişimler oluşur. İkinci olarak ZXCOM metodu, açıya bağlı hesaplama yapar. Bu noktada 90° saçılma açıları dikkate alınarak yapılmıştır. Dolayısıyla metot kullanılırken, belirli saçılma açıları dikkate alındığı için; hesaplanan EABF ve EBF değerlerinde etkili bir düşüş görülür.

Bu çalışma ile farklı özellikteki üç bazalt örneğinin EABF ve EBF değerleri belirlenmiştir. Örneklerin sahip oldukları element kompozisyonlarının EABF ve EBF parametreleri ile ilişkileri araştırılmıştır. Aynı zamanda bazaltların betonlarda radyasyon zırhlama amacıyla kullanım potansiyeli belirlenmiştir. Sonuç olarak bazalt örneklerinin fiziksel, kimyasal ve foton buildup parametreleri tanımlanmıştır. Bu bilgiler ışığında CM1 bazaltı KYZ-13 ve KYZ-24 örneklerine göre yüksek etkin atom numarası, düşük buildup değerlerine sahiptir. Dolayısıyla daha iyi bir radyasyon zırh malzemesidir. Bu alanda diğer iki örneğe göre tercih edilebilir [62].

Tez çalışmamız, radyasyon etkileşmeleri ve zırhlanması alanındaki literatüre pozitif katkı sağlamıştır. Bu katkı yapacağımız yeni çalışmalara ışık tutacaktır. Öyle ki planladığımız yeni proje ile radyasyon buildup faktörlerini doğrudan hesaplayabilen, kullanışlı bir kullanıcı ara yüzüne sahip BXCOM isimli program oluşturmayı hedeflemekteyiz. BXCOM programı bu alanda tasarlanmış ve kullanıcıya sunulmuş ilk program özelliğine sahip olacaktır.

KAYNAKLAR

- [1]. Martin, J.E., 2006, Physics for Radiation Protection, Wiley-VCH, Weinheim.
- [2]. Adıgüzel, S., 2013, Bazı Termolüminesans dozimetrik bileşiklerin ve aminoasitlerin 0,015-15 MeV enerji aralığında kütle ve enerji soğurma katsayıları, etkin atom numaraları, atomik ve elektronik tesir kesitleri ve foton kuvvetlendirme faktörlerinin incelenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi F.B.E.
- [3]. White, G.R., 1950, The penetration and diffusion of 60Co gamma-rays in water using spherical geometry, Phys. Rev., 80, 154-156.
- [4]. Bakos, G.C., Tsagas, N.F., 1995, Angular exposure dose build up factors for combined energies source of disc geometry, Ann. Nucl. Energy, 22(8), 553-558.
- [5]. Geguchadze, R., 1999, Angular exposure build up factors for combined energy source photons penetrating aluminium, steel and lead shielding slabs, Ann. Nucl. Energy, 26, 1509-1515.
- [6]. ANSI, 1991, American National Standard Gamma-Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, ANSI/ANS-6.4.3.
- [7]. Harima, Y., Sakamoto, Y., Tanaka, S., Kawai, M., 1986, Validity of geometricprogression formula in approximating the gamma ray buildup factors, Nucl. Sci. Eng., 94, 24-35.
- [8]. Harima, Y., 1993, A historical review and current status of build-up factor calculations and applications, Radiat. Phys. Chem., 41, 631-672.
- [9]. Singh, V.P., Badiger, N.M., 2014, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy, 64, 301-310.
- [10]. Singh, V.P., Badiger, N.M., 2014, Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry, Radiat. Phys. Chem., 104, 61-67.
- [11]. Kurudirek, M., Doğan, B., İngeç, M., Ekinci N., Özdemir Y., 2011, Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis, Applied Radiation and Isotopes, 69, 381-388.
- [12]. Singh, P.S., Singh, T., Kaur, P., 2008, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy, 35, 1093-1097.
- [13]. Manohara, S.R., Hanagodimath, S.M., Gerward, L., 2010, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem., 79, 575-582.
- [14]. İçelli, O., Mann, K.S., Yalçın, Z., Orak, S., Karakaya, V., 2013, Investigation of shielding properties of some boron compounds, Ann. Nucl. Energy, 55, 341-350.

- [15]. Singh, V.P., Medhat, M.E., Badiger, N.M., Rahman, A.Z.M.S., 2015, Radiation shielding effectiveness of newly developed superconductors, Radiat. Phys. Chem., 106, 175-183.
- [16]. Kurudirek, M., 2011, Bazı çoklu element yapıdaki maddelerin foton etkileşimi, foton enerji soğurması, foton kuvvetlendirme faktörü ve hızlı nötron azaltma tesir kesitleri açısından incelenmesi, Doktora Tezi, Atatürk Üniversitesi F.B.E.
- [17]. Gedik, Z., 2013, Bazı potansiyel biyoaktif bileşiklerin kütle soğurma katsayıları, etkin atom numaraları, atomik tesir kesitleri ve foton kuvvetlendirme faktörlerinin incelenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi F.B.E.
- [18]. Limkitjaroenporn, P., Kaewkhao, J., Asavavisithchai, S., 2012, Determination of mass attenuation coefficients and effective atomic numbers for Inconel 738 alloy for different energies obtained from Compton scattering, Annals of Nuclear Energy, 53, 64-68.
- [19]. Demir, D., Turşucu, A., 2013, Measurement of the effective atomic number of Fe_xCr_{1-x} and Fe_xNi_x alloys using scattering of gamma rays, Journal of Alloys and Compounds, 581, 213-216.
- [20]. Ahmadi, M., Lunscher, N., Yeow, J.T.W., 2013, Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV, Nuclear Instruments and Methods in Physics Research B, 300, 30-34.
- [21]. Un, A., Demir, F., 2013, Determination of mass attenuation coefficients effective atomic numbers and effective electron numbers for heavy-weight and normalweight concretes, Applied Radiation and Isotopes, 80, 73-77.
- [22]. Prashant, S.K., Pravina, P.P., 2014, Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids, Radiation Physics and Chemistry, 98, 86-91.
- [23]. Yılmaz, D., Turşucu, A., Uzunoğlu, Z., Korucu, D., 2014, Measurement of effective atomic number of gunshot residues using scattering of gamma rays, Radiation Physics and Chemistry, 102, 68-71.
- [24]. Kurudirek, M., 2014, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications, Radiation Physics and Chemistry, 102, 139-146.
- [25]. Derici, N., 2005, Radyoterapide dış ışınlamada kullanılan çeşitli elektron enerjilerinin dozimetresi ve kanser tedavisindeki yeri, Yüksek Lisans, Gazi Üniversitesi F.B.E.
- [26]. Şahin, L., 2008, Parçacıklar ve radyasyonun madde ile etkileşmesi, http://tarlafel.org/thm/tac/YAZOKULU/yazokulu4/dersnotlari/Latife_sahin.doc, [Ziyaret tarihi: 03 Mart 2014].

- [27]. Şahin, Y., 1999, Çekirdek Fiziğinin Esasları, Çeviri, Atatürk Üniversitesi Yayınları, Erzurum.
- [28]. Krane, K.S., 1988, Introductory Nuclear Physics, John Wiley & Sons, Canada.
- [29]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [30]. Turşucu, A., 2012, Atom numarası 21≤Z≤71 arasında olan nadir toprak elementlerinin ve oksitli bileşiklerinin etkin atom numaralarının gama ışınlarının saçılması ve soğurulmasından faydalanılarak bulunması ve K X-ışını şiddet oranlarına kimyasal etkinin araştırılması, Doktora, Atatürk Üniversitesi F.B.E, 25.sayfa.
- [31]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [32]. Krane, K.S., 2011, Nükleer Fizik (Çeviri), Palme Yayıncılık, Ankara.
- [33]. Coderre, J.A., 2006, Introduction to ionizing radiation, https://www.flickr.com/photos/mitopencourseware/3706466731/in/photostream/, [Ziyaret tarihi: 11 Kasım 2014].
- [34]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [35]. Attix, F.H., 1986, Introduction to Radiological Physics and Radiation Dosimetry, WILEY-VCH, Wisconsin.
- [36]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [37]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [38]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [39]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [40]. Martin, J.E., 2013, Radyasyon ve Radyasyondan Korunma Fiziği, Palme Yayıncılık, Ankara.
- [41]. Singh, M.P., Sandhu, B.S., Singh, B., 2007, Measurement of effective atomic number of composite materials using scattering of γ-rays, Nuclear Instruments and Methods in Physics Research A, 580, 50-53.
- [42]. Adıgüzel, S., 2013, Bazı Termolüminesans dozimetrik bileşiklerin ve aminoasitlerin 0,015-15 MeV enerji aralığında kütle ve enerji soğurma katsayıları,

etkin atom numaraları, atomik ve elektronik tesir kesitleri ve foton kuvvetlendirme faktörlerinin incelenmesi, Yüksek Lisans Tezi, Atatürk Üniversitesi F.B.E.

- [43]. İçelli, O., Erzenoğlu, S., 2004, Effective atomic numbers of some vanadium and nickel compounds for total photon interactions using transmission experiments, Journal of Quantitative Spectroscopy & Radiative Transfer, 85, 115-124.
- [44]. Kurudirek, M., Çelik A., 2012, A simple method to determine effective atomic numbers of some compounds for multi-energetic photons, Nuclear Instruments and Methods in Physics Research A, 689, 75-78.
- [45]. İçelli, O., 2006, Practical method for experimental effective atomic number in the coherent to Compton scattering ratio, Journal of Quantitative Spectroscopy & Radiative Transfer, 101, 151-158.
- [46]. Yalçın, Z., İçelli, O., Okutan, M., Boncukçuoğlu, R., Artun, O., Orak, S., 2012, A different perspective to the effective atomic number (Zeff) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM, Nuclear Instruments and Methods in Physics Research A, 686, 43-47.
- [47]. ANSI, 1991, American National Standard Gamma-Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, ANS/ANSI-6.4.3.
- [48]. Berger, M.J., Hubbell, J.H., 1987, NBSIR87-3597, XCOM: Photon Cross Sections on a Personal Computer, NIST, Gaithersburg.
- [49]. Gerward, L., Guilbert, N., Jensen, K.B., Levring, H., 2004, WinXCom a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem., 71, 653-654.
- [50]. Taylor, M.L., Smith, R.L., Dossing, F., Franich, R.D., 2012, Robust calculation of effective atomic numbers: the Auto-Zeff software, Med. Phys., 39, 1769-1778.
- [51]. Un, A., Caner, T., 2014, The Direct-Zeff software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number, Annals of Nuclear Energy, 65, 158-165.
- [52]. Yalçın, Z., İçelli, O., Okutan, M., Boncukçuoğlu, R., Artun, O., Orak, S., 2012, A different perspective to the effective atomic number (Zeff) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM, Nuclear Instruments and Methods in Physics Research A, 686, 43-47.
- [53]. Singh, P.S., Singh, T., Kaur, P., 2008, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy, 35, 1093-1097.
- [54]. Singh, V.P., Badiger, N.M., 2014, Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry, Radiation Physics and Chemistry, 104, 61-67.
- [55]. Krane, K.S., 2011, Nükleer Fizik (Çeviri), Palme Yayıncılık, Ankara.

- [56]. ANSI, 1991, American National Standard Gamma-Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, ANS/ANSI-6.4.3.
- [57]. Krane, K.S., 2011, Nükleer Fizik (Çeviri), Palme Yayıncılık, Ankara.
- [58]. ANSI, 1991, American National Standard Gamma-Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, ANS/ANSI-6.4.3.
- [59]. Manjunatha, H.C., Rudraswamy, B., 2011, Computation of exposure build-up factors in teeth, Radiation Physics and Chemistry, 80, 14-21.
- [60]. Akıllı, A., 2012, Bazalt agregasının mekanik özelliklerinin yol üstyapısında kullanımı açısından incelenmesi, Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi F.B.Ü.
- [61]. Yükselen, M.A, 2014, Eğri uydurma ve interpolasyon, http://web.itu.edu.tr/~yukselen/HM504/02%20E%F0ri%20uydurma%20ve%20int erpolasyon.pdf, [Ziyaret tarihi: 11 Kasım 2014].
- [62]. Tapan, M., Yalçın, Z., İçelli, O., Kara, H., Orak, S., Özvan, A., Depci, T., 2014, Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material, Annals of Nuclear Energy, 65, 290-298.

ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı	Yaşar Karabul
Uyruğu	T.C.
Doğum tarihi, Yeri	1990, İstanbul
E-mail	karabulyasar@gmail.com karabul@yildiz.edu.tr
Web adres	http://www.yarbis.yildiz.edu.tr/karabul

Eğitim

Derece	Kurum/Anabilim Dalı/Programı	Yılı
Yüksek Lisans	İ.Ü. Fen Bilimleri Enstitüsü/ Fizik Anabilim Dalı / Nükleer Fizik Programı	2014
Lisans	A.İ.B.Ü. Fizik Bölümü	2012
Lise	Ataköy Cumhuriyet Lisesi	2007

Makaleler / Bildiriler

Karabul, Y., İçelli, O., Yalçın, Z., Eyecioğlu, Ö., Tapan, M., Bilgen, A.N., 2014, Identify of EABF and EBF Parameters of Basalt Samples with New Methods, Turkish Physical Society 31th International Physics Conference, Muğla.