

T.C. İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOKTORA TEZİ

METANIN OKSİDATİF BİRLEŞME REAKSİYONU İÇİN ETKİN KATALİZÖRLERİN HAZIRLANMASI VE KARAKTERİZASYONU

Hasan ÖZDEMİR

Kimya Mühendisliği Anabilim Dalı

Proses ve Reaktör Tasarımı Programı

Danışman

Prof. Dr. M. Ali GÜRKAYNAK

Temmuz, 2015

İSTANBUL

Bu çalışma 24/07/2015 tarihinde aşağıdaki jüri tarafından Kimya Mühendisliği Anabilim Dalı Proses ve Reaktör Tasarımı programında Doktora Tezi olarak kabul edilmiştir.

Tez Jürisi:

Prof. Dr. M. Ali GÜRKAYNAK (Danışman) İstanbul Üniversitesi Mühendislik Fakültesi

Prof. Dr. Maraffer YAŞAR

İstanbul Üniversitesi Mühendislik Fakültesi

Prof. Dr. Mesut AKGÜN Yıldız Teknik Üniversitesi Kimya-Metalurji Fakültesi

Prof. Dr. Mahmut Rahim BAYRAMOĞLU Gebze Teknik Üniversitesi Mühendislik Fakültesi

KSÜZÖMER

Doç. Dr. İstanbul Üniversitesi Mühendislik Fakültesi

Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin 22001 numaralı projesi ile desteklenmiştir.

ÖNSÖZ

Yüksek lisans ve doktora eğitimim boyunca gelişimimin ve çalışmalarımın gerçekleştirilmesinde en büyük desteği sağlayan ve her ihtiyacımda yanımda olan başta çok kıymetli hocam, değerli bilim adamı Prof. Dr. M. Ali GÜRKAYNAK'a ve yine çok değerli hocam Doç. Dr. M. A. Faruk ÖKSÜZÖMER'e sonsuz teşekkürlerimi sunarım.

Bu zamana kadar maddi ve manevi desteklerini hiçbir zaman esirgemeyen Prof. Dr. Hüseyin DELİGÖZ, Doç. Dr. Serkan Naci KOÇ, Yard. Doç. Dr Tuba Gürkaynak ALTINÇEKİÇ ve Yard. Doç. Dr Gülşen Albayrak ARI'ya çok teşekkür ederim. Ayrıca bu zamana kadar üzerimde emeği olan başta Kimya Mühendisliği bünyesindeki bütün hocalarıma da teşekkürü bir borç bilirim. Doktora çalışmalarım esnasında gerek yardımları, gerek dostlukları ile her zaman yanımda olan arkadaşlarım Araş. Gör. Vedat SARIBOĞA, Öznur YOLAÇAN, Araş. Gör. Göknur DÖNMEZ, Araş. Gör Murat TAMER, Emel ENGİNTEPE, Kübra DAYIOĞLU, Dilara YILMAZ, Meral HACIOĞLU, Zehra ÖZCAN, Büşra ÇALIŞ, Mehtap DER, Çağrı AGİN, Burcu AYGÜN ve Tugay PEHLİVAN'a çok teşekkür ederim. Burada isimlerini sayamadığım diğer dönem arkadaşlarıma da teşekkürü bir borç bilirim.

20.03.2015 tarihinde kaybettiğim; beni bu yaşa kadar büyütüp yetiştiren, hiçbir zaman dua ve desteğini esirgemeyen, hastalıklarla geçen yaşantısına rağmen kendisini bir an bile düşünmeyip varını yoğunu oğullarına adayan, hakkını hiçbir zaman ödeyemeyeceğim canımdan çok sevdiğim annem Emine ÖZDEMİR'e sonsuz teşekkür ederim. Yine bu yaşa gelmemde büyük emekleri olan, sevgilerinden hiçbir zaman şüphe etmediğim, haklarını ödeyemeyeceğim babam İrfan ÖZDEMİR ve abim Ali ÖZDEMİR'e bana verdikleri maddi ve manevi her türlü destekten dolayı sonsuz teşekkür ederim. Ayrıca her zaman yanımda olan çok sevdiğim arkadaşlarım Gökberk KURT, Emin Meriç ŞEKER, Mesut KAYA, İsmail Fırat DOĞANAY ve Egemen YÖRÜR'e, biricik yeğenim Miray ÖZDEMİR'e, kuzenlerime, kayınvalidem Reyhan KUĞUOĞLU'na ve yine yakın zaman önce kaybettiğimiz amcam Mustafa ÖZDEMİR'e tüm desteklerinden ötürü teşekkürlerimi sunarım.

Son olarak, hayatıma girdiği andan itibaren dünyamı güzelleştiren, sevgili eşim Renin Seda ÖZDEMİR'e iyi ve kötü günümde her şeyiyle her zaman yanımda olduğu için sonsuz teşekkür ederim.

Ek olarak doktora eğitimim boyunca burs desteği sağlayan TÜBİTAK'a da teşekkürlerimi sunarım.

Yaptığım bu çalışma, her an özlem ve minnetle andığım sevgili annem Emine ÖZDEMİR'e, değerli aileme ve sevgili eşim Renin Seda ÖZDEMİR'e ithaf edilmiştir...

Temmuz 2015

Hasan ÖZDEMİR

İÇİNDEKİLER

ÖNSÖZi
İÇİNDEKİLERii
ŞEKİL LİSTESİiv
TABLO LİSTESİvii
SİMGE VE KISALTMA LİSTESİix
ÖZETx
SUMMARYxiii
1. GİRİŞ1
2. GENEL KISIMLAR
2.1. METANIN OKSİDATİF BİRLEŞME REAKSİYONU (OCM)6
2.2. OCM REAKSİYONUNUN MEKANİZMASI
2.3. OCM REAKSİYONUNDA KULLANILAN KATALİZÖRLER VE PERFORMANSLARI
2.4. OCM REAKSİYONUNU ETKİLEYEN PARAMETRELER 17
3. MALZEME VE YÖNTEM18
3.1. KULLANILAN MALZEMELER
3.2. KATALİZÖRLERİN HAZIRLANMASI19
3.2.1. %2(ağ.)Mn/%5(ağ.)Na ₂ WO ₄ /SiO ₂ ve %4Li(ağ.)/MgO Katalizörlerinin Hazırlanması
3.2.2. Li Esaslı Katalizörlerinin Hazırlanması19
3.2.3. Sm ₂ O ₃ Esaslı Katalizörlerin Hazırlanması
3.3. KULLANILAN YÖNTEMLER
3.3.1. X-ışını Kırınım (XRD) Ölçümleri
3.3.2. Brunauer–Emmett–Teller (BET) Yüzey Alanı Ölçümleri
3.3.3. X-ışını fotoelektron spektroskopisi (XPS) Analizleri
3.3.4. Katalitik Aktivite, Seçimlilik ve Kararlılık Testlerinin Gerçekleştirilmesi22
3.3.5.1. Reaksiyon Sistemi Konfigürasyonu, GC Kalibrasyonu ve Hesaplamalar24
4. BULGULAR

4.1. BET YÜZEY ALANI SONUÇLARI2	9
4.2. XRD SONUÇLARI	1
4.2.1. 2Mn/5Na2WO4/SiO2 ve 4Li/MgO Katalizörüne Ait XRD Sonuçları	1
4.2.2. Li Esaslı Katalizörlere ait XRD Sonuçları	2
4.2.3. Sm ₂ O ₃ Esaslı Katalizörlere Ait XRD Sonuçları	5
4.3. OCM REAKSİYONU İÇİN REAKSİYON KOŞULLARININ ETKİSİ VE KATALİTİK PERFORMANSLARIN İNCELEMESİ	1
4.3.1. CH ₄ /O Oranı Etkisi	-1
4.3.2. Besleme Hızı (GHSV) Etkisi	.8
4.3.3. Sıcaklık Etkisi	4
4.4. Li ESASLI KATALİZÖRLERİN KATALİTİK PERFORMANSLARININ İNCELENMESİ6	0
4.5. SAMARYUM OKSİT (Sm2O3) ESASLI KATALİZÖRLERİN KATALİTİK PERFORMANSLARININ İNCELENMESİ7	0'
4.5. O2 VE N2O VARLIĞINDA YÜKSEK C2 VERİMİ ELDE EDİLEN KATALİZÖRLERİN DAYANIKLILIĞININ İNCELENMESİ 8	54
4.6. KATALİZÖRLERİN KARARLILIK TESTİ ÖNCESİ VE SONRASINDA XPS ANALİZİ İLE İNCELENMESİ9	2
5. TARTIŞMA VE SONUÇ10	0
KAYNAKLAR12	7
ÖZGEÇMİŞ13	4

ŞEKİL LİSTESİ

Sayfa No

Şekil 1.1: Metan dönüşümü için endüstriyel olarak kullanılan süreçler [2].	2
Şekil 2.1: OCM reaksiyonu için basitçe öngörülen mekanizma	7
Şekil 4.1: 2Mn/5Na ₂ WO ₄ /SiO ₂ katalizörüne ait XRD difraktogramı	.31
Şekil 4.2: 4Li/MgO katalizörüne ait XRD difraktogramı	.32
Şekil 4.3: LiAlO ₂ katalizörüne ait XRD difraktogramı	.32
Şekil 4.4: LiMn ₂ O ₄ katalizörüne ait XRD difraktogramı	.33
Şekil 4.5: LiCoO ₂ katalizörüne ait XRD difraktogramı	.33
Şekil 4.6: Li ₄ SiO ₄ katalizörüne ait XRD difraktogramı	.34
Şekil 4.7: Li ₂ ZrO ₃ katalizörüne ait XRD difraktogramı	.34
Şekil 4.8: Li ₂ TiO ₃ katalizörüne ait XRD difraktogramı	.35
Şekil 4.9: Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.36
Şekil 4.10: 1Mn/2,5Na ₂ WO ₄ /Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.36
Şekil 4.11: 2Mn/5Na ₂ WO ₄ /Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.37
Şekil 4.12: 4Mn/10Na ₂ WO ₄ /Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.37
Şekil 4.13: 2Li/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.38
Şekil 4.14: 4Li/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.38
Şekil 4.15: 6Li/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.39
Şekil 4.16: 5CaO/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.40
Şekil 4.17: 10CaO/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.40
Şekil 4.18: 15CaO/Sm ₂ O ₃ katalizörüne ait XRD difraktogramı	.41
Şekil 4.19: Gaz faz OCM reaksiyonu üzerinde CH ₄ /O oranı etkisi (Katalizör: Yok, Oksidant: O ₂ , GHSV: 22500L/kgsa, Sıcaklık:780°C, y _{N2} :0,4)	.42

Şekil 4.20: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde CH₄/O oranı etkisi (Katalizör:200 mg, Oksidant: O₂, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{N2}:0,4)......43

Şekil 4.21: OCM reaksiyonu için 4Li/MgO üzerinde CH ₄ /O oranı etkisi (Katalizör:200 mg, Oksidant: O ₂ , GHSV: 22500L/kgsa, Sıcaklık:780°C, y _{N2} :0,4)44
Şekil 4.22: Gaz faz OCM reaksiyonu üzerinde CH ₄ /O oranı etkisi (Katalizör:Yok, Oksidant: N ₂ O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y _{He} :0,4)
Şekil 4.23: OCM reaksiyonu için 2Mn/5Na ₂ WO ₄ /SiO ₂ üzerinde CH ₄ /O oranı etkisi (Katalizör:200 mg, Oksidant: N ₂ O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y _{He} :0,4)46
Şekil 4.24: OCM reaksiyonu için 4Li/MgO üzerinde CH ₄ /O oranı etkisi (Katalizör:200 mg, Oksidant: N ₂ O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y _{He} :0,4)
Şekil 4.25: Gaz faz OCM reaksiyonu üzerinde besleme hızı etkisi (Katalizör:Yok, Oksidant: O ₂ , CH ₄ /O:1, Sıcaklık:780°C, y _{N2} :0,4)
Şekil 4.26: OCM reaksiyonu için 2Mn/5Na ₂ WO ₄ /SiO ₂ üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: O ₂ , CH ₄ /O:1, Sıcaklık:780°C, y _{N2} :0,4)49
Şekil 4.27: OCM reaksiyonu için 4Li/MgO üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: O ₂ , CH ₄ /O:1, Sıcaklık:780°C, y _{N2} :0,4)
Şekil 4.28: Gaz faz OCM reaksiyonu üzerinde besleme hızı etkisi (Katalizör:Yok, Oksidant: N ₂ O, CH ₄ /O:1, Sıcaklık:780°C, y _{He} :0,4)
Şekil 4.29: OCM reaksiyonu için 2Mn/5Na ₂ WO ₄ /SiO ₂ üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: N ₂ O, CH ₄ /O:1, Sıcaklık:780°C, y _{He} :0,4)52
Şekil 4.30: OCM reaksiyonu için 4Li/MgO üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: N ₂ O, CH ₄ /O:1, Sıcaklık:780°C, y _{He} :0,4)
Şekil 4.31: Gaz faz OCM reaksiyonu üzerinde sıcaklık etkisi (Katalizör:Yok, Oksidant: O ₂ , CH ₄ /O:1, GHSV:7500 L/kgsa, y _{N2} :0,4)
Şekil 4.32: OCM reaksiyonu için 2Mn/5Na ₂ WO ₄ /SiO ₂ üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: O ₂ , CH ₄ /O:1, GHSV:7500 L/kgsa, y _{N2} :0,4)55
Şekil 4.33: OCM reaksiyonu için 4Li/MgO üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: O ₂ , CH ₄ /O:1, GHSV:7500 L/kgsa, y _{N2} :0,4)
Şekil 4.34: Gaz faz OCM reaksiyonu üzerinde sıcaklık etkisi (Katalizör:Yok, Oksidant: N ₂ O, CH ₄ /O:1, GHSV:7500 L/kgsa, y _{He} :0,4)
Şekil 4.35: OCM reaksiyonu için 2Mn/5Na ₂ WO ₄ /SiO ₂ üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: N ₂ O, CH ₄ /O:1, GHSV:7500 L/kgsa, y _{He} :0,4)58
Şekil 4.36: OCM reaksiyonu için 4Li/MgO üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: N ₂ O, CH ₄ /O:1, GHSV:7500 L/kgsa, y _{He} :0,4)
Şekil 4.37: O ₂ ortamında 2Mn/5Na ₂ WO ₄ /SiO ₂ katalizörüne ait kararlılık testi sonuçları85
Şekil 4.38: N ₂ O ortamında 2Mn/5Na ₂ WO ₄ /SiO ₂ katalizörüne ait kararlılık testi sonuçları86
Şekil 4.39: O ₂ ortamında 4Li/MgO katalizörüne ait kararlılık testi sonuçları

Şekil	4.40: N ₂ O ortamında 4Li/MgO katalizörüne ait kararlılık testi sonuçları	88
Şekil	4.41: O ₂ ortamında Li ₄ SiO ₄ katalizörüne ait kararlılık testi sonuçları	89
Şekil	4.42: N ₂ O ortamında Li ₂ ZrO ₃ katalizörüne ait kararlılık testi sonuçları	90
Şekil	4.43: O ₂ ortamında 6Li/Sm ₂ O ₃ katalizörüne ait kararlılık testi sonuçları	91
Şekil	4.44: N ₂ O ortamında 15CaO/Sm ₂ O ₃ katalizörüne ait kararlılık testi sonuçları	92
Şekil	4.45: 2Mn/5Na ₂ WO ₄ /SiO ₂ katalizörünün O ₂ ve N ₂ O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları	93
Şekil	4.46: 4Li/MgO katalizörünün O ₂ ve N ₂ O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları	94
Şekil	4.47: Li ₄ SiO ₄ katalizörünün O ₂ ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları.	95
Şekil	4.48: Li ₂ ZrO ₃ katalizörünün N ₂ O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları	96
Şekil	4.49: 6Li/Sm ₂ O ₃ katalizörünün O ₂ ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları.	97
Şekil	4.50: 15CaO/Sm ₂ O ₃ katalizörünün N ₂ O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları.	98
Şekil	5.1: Nadir toprak metal oksitler için önerilen OCM reaksiyon mekanizması [83]1	15

TABLO LÍSTESÍ

Sayfa No

Tablo 2.1: OCM reaksiyonu için bazı katalizörlere ait performans sonuçları	10
Tablo 3.1: Analiz edilen gazların N_2 ve He'ye göre relatif cevap faktörleri	26
Tablo 4.1: Katalizörlere ait BET yüzey alanı sonuçları (m²/g)	29
Tablo 4.2: Gaz faz reaksiyonlara ait performans sonuçları	61
Tablo 4.3: 2Mn/5Na2WO4/SiO2 katalizörüne ait katalitik performans sonuçları	61
Tablo 4.4: 4Li/MgO katalizörüne ait katalitik performans sonuçları	61
Tablo 4.5: LiAlO2 katalizörüne ait katalitik performans sonuçları	62
Tablo 4.6: LiMn ₂ O ₄ katalizörüne ait katalitik performans sonuçları	63
Tablo 4.7: LiCoO2 katalizörüne ait katalitik performans sonuçları	63
Tablo 4.8: Li ₄ SiO ₄ katalizörüne ait katalitik performans sonuçları	64
Tablo 4.9: Li ₂ ZrO ₃ katalizörüne ait katalitik performans sonuçları	65
Tablo 4.10: Li ₂ TiO ₃ katalizörüne ait katalitik performans sonuçları	65
Tablo 4.11: Gaz faz ve katalitik performansların 740°C'de karşılaştırılması	66
Tablo 4.12: Gaz faz ve katalitik performansların 780°C'de karşılaştırılması	67
Tablo 4.13: Gaz faz ve katalitik performansların 820°C'de karşılaştırılması	69
Tablo 4.14: Sm ₂ O ₃ katalizörüne ait katalitik performans sonuçları	70
Tablo 4.15: 1Mn/2,5Na2WO4/Sm2O3 katalizörüne ait katalitik performans sonuçları	71
Tablo 4.16: 2Mn/5Na2WO4/Sm2O3 katalizörüne ait katalitik performans sonuçları	71
Tablo 4.17: 4Mn/10Na2WO4/Sm2O3 katalizörüne ait katalitik performans sonuçları	71
Tablo 4.18: 2Li/Sm2O3 katalizörüne ait katalitik performans sonuçları	73
Tablo 4.19: 4Li/Sm2O3 katalizörüne ait katalitik performans sonuçları	74
Tablo 4.20: 6Li/Sm2O3 katalizörüne ait katalitik performans sonuçları	75
Tablo 4.21: 5CaO/Sm2O3 katalizörüne ait katalitik performans sonuçları	76

Tablo 4.22: 10CaO/Sm ₂ O ₃ katalizörüne ait katalitik performans sonuçları
Tablo 4.23: 15CaO/Sm ₂ O ₃ katalizörüne ait katalitik performans sonuçları
Tablo 4.24: Gaz faz ve Sm2O3 esaslı katalizörlerin 740°C'deki performansları 79
Tablo 4.25: Gaz faz ve Sm2O3 esaslı katalizörlerin 780°C'deki performansları
Tablo 4.26: Gaz faz ve Sm2O3 esaslı katalizörlerin 820°C'deki performansları
Tablo 4.27: Kararlılık testleri öncesi ve sonrasında 2Mn/5Na2WO4/SiO2 katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 4.28: Kararlılık testleri öncesi ve sonrasında 4Li/MgO katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 4.29: Kararlılık testleri öncesi ve sonrasında Li ₄ SiO ₄ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 4.30: Kararlılık testleri öncesi ve sonrasında Li ₂ ZrO ₃ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 4.31: Kararlılık testleri öncesi ve sonrasında 6Li/Sm ₂ O ₃ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 4.32: Kararlılık testleri öncesi ve sonrasında 15CaO/Sm ₂ O ₃ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri
Tablo 5.1: XRD analizi ile katalizörlerde tespit edilen fazlar ve kristal yapıları
Tablo 5.2: Kararlılık testleri sonrasında elde edilen sonuçlar ve literatürle karşılaştırılması 126

SİMGE VE KISALTMA LİSTESİ

Simgeler

Açıklama

φ _e p r Å o Atm n _{i(STP)}	 Elementel stokiyometrik katsayı (Oksidantlar/yakıtlar) Toplam okside edici kompozisyonu Toplam indirgeyici kompozisyonu Angström Derece Atmosfer i komponentinin STP'deki mol sayısı
n _{N2(He)}	: N ₂ veya He'nin STP'deki mol sayısı
A _i A _{N2(He)}	 i komponentine ait GC ile ölçülen pik alanı N₂ veya He'ye ait GC ile ölçülen pik alanı
RRF	: i komponentinin N ₂ veya He'ye göre cevap faktörü
n _{CH4}	: Reaksiyon sonucu kalan CH ₄ 'ün STP'deki mol sayısı
n _{O2}	: Reaksiyona girmeden kalan O ₂ 'nin STP'deki mol sayısı
n _{N2} O	: Reaksiyona girmeden kalan N ₂ O'nun STP'deki mol sayısı
n _{CO}	: Reaksiyon sonucu oluşan CO'nun STP'deki mol sayısı
n _{CO2}	: Reaksiyon sonucu oluşan CO ₂ 'nin STP'deki mol sayısı
n _{C2H4}	: Reaksiyon sonucu oluşan C ₂ H ₄ 'ün STP'deki mol sayısı
$n_{C_2H_6}$: Reaksiyon sonucu oluşan C ₂ H ₆ 'nın STP'deki mol sayısı
n _{C3H6}	: Reaksiyon sonucu oluşan C ₃ H ₆ 'nın STP'deki mol sayısı
n _{C3H8}	: Reaksiyon sonucu oluşan C ₃ H ₈ 'in STP'deki mol sayısı
n _{H2O}	: Reaksiyon sonucu oluşan H ₂ O'nun STP'deki mol sayısı

Kısaltmalar Açıklama

BET	: Brunauer–Emmett–Teller
C ₂	: İki karbonlu hidrokarbonlar (C ₂ H ₄ ve C ₂ H ₆)
GC	: Gaz kromatografisi
GHSV	: Birim saatteki gaz akış hızı
OCM	: Metanın oksidatif birleşmesi
STP	: Standart sıcaklık ve basınç (25°C ve 1 atm)
XPS	: X-ışını fotoelektron spektroskopisi
XRD	: X-ışını kırınımı

ÖZET

DOKTORA TEZİ

METANIN OKSİDATİF BİRLEŞME REAKSİYONU İÇİN ETKİN KATALİZÖRLERİN HAZIRLANMASI VE KARAKTERİZASYONU

Hasan Özdemir

İstanbul Üniversitesi

Fen Bilimleri Enstitüsü

Kimya Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. M. Ali GÜRKAYNAK

Metanın oksidatif birleşme reaksiyonu (OCM), doğal gazın direkt olarak yüksek hidrokarbonlara (C₂ ve C₃ hidrokarbonları) dönüştürülebilmesi için oldukça arzu edilen olup araştırmalar devam etmektedir. Ancak bu reaksiyonun bir vöntem endüstriyelleşebilmesi için önündeki en büyük engel, yüksek etilen verimi (>%40) sağlayan katalizörlerin geliştirilememesidir. Bu amaçla sentezlenen birçok katalizörün C_2 (C_2H_6 ve C_2H_4) verimi %30'ları geçememiştir. Bu durumun başlıca sebeplerinden biri, CH4'ün C-H bağlarının gerek homolitik gerekse heterolitik olarak koparılabilmesi için gerekli olan enerjinin, C₂H₆ ve C₂H₄'ten daha yüksek olmasıdır. Bu nedenle metanın oksijen vasıtası ile ayrıştırılması için yüksek sıcaklıklar gerekmekte (>700°C) ve oluşan reaksiyon ürünleri de (C_2H_6 ve C_2H_4) daha hızlı bir şekilde CO veya CO₂'ye okside olmaktadır. Dolayısı ile sentezlenecek katalizörlerin ya düşük sıcaklıkta yüksek aktivite göstermesi ya da yüksek sıcaklıkta yüksek C2 seçimliliği göstermesi gerekmektedir.

Bu amaçla, literatürden yararlanılarak OCM reaksiyonu için yüksek performans gösterebileceği düşünülen Li ve Sm₂O₃ esaslı katalizörler geliştirilmiş ve performansları incelenmiştir. Sentezlenen yeni katalizörlerin performanslarının uygun şartlarda karsılastırılabilmesi literatürde yüksek performans gösterdiği bilinen icin 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörleri sentezlenerek, reaksivon parametrelerinin etkisi (oksidant tipi, CH₄/O oranı, GHSV, sıcaklık) incelenmiş ve en yüksek C₂ veriminin elde edildiği şartlar belirlenmiştir. Ayrıca bu iki katalizörün performansının da karşılaştırılması sağlanmıştır. 2Mn/5Na₂WO₄/SiO₂, 4Li/MgO ve Sm₂O₃ esaslı katalizörlerin hazırlanması için ıslak emdirme yöntemi kullanılırken, stokiyometrik komponent içeriğine sahip Li esaslı katalizörlerin hazırlanması için üre-nitrat yakma ve katı hal sentez yöntemleri kullanılmıştır. Katalizörler elde edilen ara ürünlerin, 800°C'de 8 saat kalsine edilmesi ile hazırlanmışlardır. Sentezlenen katalizörler BET, XRD ve XPS analizleri ile karakterize edilmiştir. Katalizörlerin aktivite, seçimlilik ve kararlılık testleri Mikroreaktör-GC sistemi kullanılarak gerçekleştirilmiştir.

Performans denemeleri sonucunda, her iki oksidant türü ile de en uygun CH₄/O oranı 1, besleme hızı (GHSV) ise 7500 L/kgsa olmuştur. C₂ verimi, artan CH₄/O oranı ve besleme hızı ile azalmıştır. O₂'nin N₂O'dan daha etkin bir oksidant olduğu ancak N₂O' nun seçimliliği arttırdığı tespit edilmiştir. Katalizör performansı oksidant tipi (O₂ ve N₂O) ve sıcaklık ile değişmiştir. Bu nedenle sentezlenen Li ve Sm₂O₃ esaslı katalizörlerin performansları, O₂ ve N₂O kullanılarak 740°C ile 820°C aralığında sınanmıştır.

Li esaslı katalizörlerin OCM performanslarının, kullanılan metal oksitlerin yapısına bağlı olduğu görülmüştür. Li₂O katkısı ile yüzeyde yeni kusurlar oluşması ve bazisitenin artması sonucunda aktivitenin ve seçimliliğin yükseldiği düşünülmüştür. LiMn₂O₄ ve özellikle LiCoO₂'nin tam yanma reaksiyonunu desteklediği görülmüştür. İndirgenemeyen metal oksit içeriğine sahip katalizörlerin daha yüksek performans gösterdiği belirlenmiştir. Li esaslı katalizörlerin performansları kendi aralarında değerlendirildiğinde; 780°C'de en yüksek performans, Li₄SiO₄ (%5) ve Li₂ZrO₃ (%9,6) ile sırasıyla O₂ ve N₂O kullanılarak elde edilmiştir.

Sm₂O₃'ün O₂ dissosiyasyonu ve N₂O dekompozisyonu için aktif olduğu belirlenmiştir. Bu nedenle N₂O ile daha yüksek verim elde edilebildiği görülmüştür. Sm₂O₃ üzerine Mn/Na₂WO₄'ün emdirilmesi ile katalizörler üzerinde tam yanmayı destekleyen $Sm_{2-x}Mn_xO_3$ yapısının oluşması sonucu, performansin negatif etkilendiği düşünülmüştür. Farklı oranlarda emdirilen Li, Sm₂O₃'e kıyasla CH₄ dönüşümlerini düşürmüş fakat C₂ seçimliliklerini neredeyse 2 kat arttırmıştır. Li içeriğinin %2'den %6'ya çıkarılması ile CH4 dönüşümleri, SmLiO2 fazının varlığı nedeniyle her iki oksidant ile de artmıştır. Sm2O3 katalizörüne ağırlıkça CaO ilave edilmesi ile CH4 dönüşümünün değişmediği ancak C2 seçimliliklerinin arttığı belirlenmiştir. Her iki oksidant varlığında da en yüksek C2 verimi %15CaO katkılama ile elde edilmiştir. CaO ile Sm₂O₃'in etkileşimi sonucu artan yüzey bazisitesi performansları yükseltmiştir. Sm₂O₃ esaslı katalizörlerin performansları kendi aralarında değerlendirildiğinde; 780°C'de en yüksek performans, 6Li/Sm₂O₃ (%9,2) ve 15CaO/Sm₂O₃ (%13,4) ile sırasıyla O₂ ve N₂O kullanılarak elde edilmiştir.

Kararlılık testleri sonucunda Li₄SiO₄ ve Li₂ZrO₃'ün performanslarının Li kaybına bağlı olarak çok düştüğü belirlenmiştir. 2Mn/5Na₂WO₄/SiO₂, 4Li/MgO, 6Li/Sm₂O₃ ve 15CaO/Sm₂O₃ katalizörleri mükemmel kararlılık ve yüksek performans göstermişlerdir. 780°C'deki C₂H₄ verimleri göz önüne alındığında; 2Mn/5Na₂WO₄/SiO₂ > 15CaO/Sm₂O₃ > 4Li/MgO > 6Li/Sm₂O₃ > Li₂ZrO₃ >> Li₄SiO₄ sıralaması elde edilmiştir. Performans denemeleri ile 740°C'de elde edilen C₂H₄ verimi, 15CaO/Sm₂O₃ katalizörü için %8,2, 2Mn/5Na₂WO₄/SiO₂ için %5,3 olarak bulunmuştur. Bu bağlamda, 15CaO/Sm₂O₃ katalizörünün düşük sıcaklıklarda (<780°C) OCM reaksiyonu için

2Mn/5Na₂WO₄/SiO₂'den daha etkin olduğu görülmüştür. Ayrıca, 6Li/Sm₂O₃ katalizörünün 4Li/MgO'ya oldukça yakın performans gösterebildiği tespit edilmiştir.

Elde edilen sonuçlara göre, Li ve Sm_2O_3 esaslı katalizörler içerisinde en etkin katalizörler $15CaO/Sm_2O_3$ ve $6Li/Sm_2O_3$ olmuştur. Katalizörlerin performansları $2Mn/5Na_2WO_4/SiO_2$, 4Li/MgO ve literatürle karşılaştırıldığında, OCM reaksiyonu için iyi birer alternatif olabilecekleri belirlenmiştir.

Temmuz 2015, 134 Sayfa.

Anahtar kelimeler: Metanın oksidatif birleşme reaksiyonu, Li esaslı katalizörler, Sm₂O₃ esaslı katalizörler, üre-nitrat yakma yöntemi, reaksiyon şartlarının etkisi.

SUMMARY

Ph.D. THESIS

PREPARATION AND CHARACTERIZATION OF EFFICIENT CATALYSTS FOR OXIDATIVE COUPLING OF METHANE

Hasan ÖZDEMİR

İstanbul University

Institute of Graduate Studies in Science and Engineering

Department of Chemical Engineering

Supervisor : Prof. Dr. M. Ali GÜRKAYNAK

Oxidative coupling of methane (OCM), is a highly promised method for the direct transformation of methane into higher hydrocarbons (C₂ and C₃ hydrocarbons) where researches are ongoing. But the main obstacle for the industrialization of this reaction is being unable to develop the catalysts that give high yield ethylene (>40%). Catalysts for this purpose could not exceed 30% C₂ (C₂H₄ and C₂H₆) yield. One of the main reasons of this situation is the need of energy for homolytic and heterolytic cleavage of CH₄'s C-H bond that is higher than C₂H₆ and C₂H₄. Thus, high temperatures (>700°C) are needed for cleavage of CH₄ with O₂ and so, formed products (C₂H₆ and C₂H₄) oxidized to CO or CO₂ faster. Hence, synthesized catalysts must show high catalytic activty at low temperatures or high C₂ selectivity at high temperatures.

For this purpose, Li and Sm₂O₃ based catalysts which are thought to show high performance were developed with the help of the literature and their performances were investigated. In order to compare the performances of newly synthesized catalysts, effect of reaction parameters (oxidant type, CH₄/O ratio, GHSV, temperature) were investigated and the optimum conditions to obtain the highest C₂ yield were evaluated by synthesizing 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO catalysts that is known to show high performance from the literature. Additionally, it is provided to compare the performances of these two catalysts. While wet impregnation method was used for the synthesis of 2Mn/5Na₂WO₄/SiO₂, 4Li/MgO and Sm₂O₃ based catalysts; urea-nitrate combustion and solid state synthesis were used for the preparation of Li based catalysts

with stoichiometric component content. Catalysts were prepared by the calcination of intermediate products at 800°C for 8 hours. Sythesized catalysts were characterized by BET, XRD and XPS analysis. Activity, selectivity and stability tests of the catalysts were performed by using Microreactor-GC system.

From the results of these tests, it was determined that the most suitable CH₄/O ratio is 1, gas hourly space velocity (GHSV) is 7500 L/kgsa with both oxidant types. C₂ yield decreased with increasing CH₄/O ratio and space velocity. O₂ was found to be more efficient than N₂O as an oxidant, but N₂O increased the selectivity. The performances of catalysts changed with oxidant type (O₂ ve N₂O) and temperature. Hence, Li and Sm₂O₃ based catalysts' performances were investigated between 740°C ile 820°C by using O₂ and N₂O.

It was observed that the Li based catalysts' OCM performances depend on the used metal oxides' structure. The activity and selectivity was thought to increase due to the formation of new defects and increasing basicity on the surface with the addition of Li_2O . $LiMn_2O_4$ and especially $LiCoO_2$ were found to support the total oxidation of methane. Catalysts including non-reducible metal oxides showed higher performance. Comparing the results of Li based catalysts within; the highest performance at 780°C was obtained with Li_4SiO_4 (5%) and Li_2ZrO_3 (9.6%) by using O_2 and N_2O respectively.

 Sm_2O_3 was found to be active for both O_2 dissociation and N_2O decomposition. Thus, higher yield could be obtained with N_2O . Sm_2O_3 performance was negatively effected by the impregnation of Mn/Na_2WO_4 due to the formation of $Sm_{2-x}Mn_xO_3$ phase which supports the total oxidation of methane. Impregnation of Li with varying ratios, decreased the CH_4 conversions but increased C_2 selectivities by approximately 2 fold compared to Sm_2O_3 . CH_4 conversions increased with both oxidants as the Li introduction was increased to 6% from 2% due to the existence of $SmLiO_2$ phase. CH_4 conversions did not alter but C_2 selectivities increased with the introduction of CaO. The highest yield could be obtained with 15% CaO addition in the presence of both oxidants. Interaction of CaO with Sm_2O_3 increased the performances due to the increased surface basicity. Comparing the results of Sm_2O_3 based catalysts within; the highest performance at 780°C was obtained with $6Li/Sm_2O_3$ (%9,2) and $15CaO/Sm_2O_3$ (%13,4) by using O_2 and N_2O respectively.

Stability tests showed that Li₄SiO₄ and Li₂ZrO₃'s performance drops greatly due to the loss of Li. 2Mn/5Na₂WO₄/SiO₂, 4Li/MgO, 6Li/Sm₂O₃ and 15CaO/Sm₂O₃ catalysts showed great stability and high performance. Considering the C₂H₄ yields at 780°C 2Mn/5Na₂WO₄/SiO₂ > 15CaO/Sm₂O₃ > 4Li/MgO > 6Li/Sm₂O₃ > Li₂ZrO₃ >> Li₄SiO₄ sequence was obtained. C₂H₄ yield obtained with the performance tests at 740°C was found to be 8.2% for 15CaO/Sm₂O₃, 5.3% for 2Mn/5Na₂WO₄/SiO₂. In this context, 15CaO/Sm₂O₃ catalyst was observed to be more efficient than 2Mn/5Na₂WO₄/SiO₂ at lower temperatures (<780°C) for OCM reaction. Additionally, 6Li/Sm₂O₃ catalyst was determined to show very close performance to 4Li/MgO catalyst.

According to the results obtained, amongst the Li and Sm_2O_3 based catalysts, $15CaO/Sm_2O_3$ ve $6Li/Sm_2O_3$ are the most efficient catalysts. As the performances were compared with $2Mn/5Na_2WO_4/SiO_2$, 4Li/MgO and literature, it was determined that they could be good alternatives for OCM reaction.

July 2015, 134 Pages.

Keywords: Oxidative coupling of methane, Li based catalysts, Sm₂O₃ based catalysts, urea-nitrate combustion technique, influence of reaction parameters.

1. GİRİŞ

Günümüzde, birçok doğal gaz rezervinin başlıca bileşeni olan metan, evlerde ve endüstride ısıtma amaçlı kullanılırken, aynı zamanda elektrik üretim kaynağı olarak da kullanılmaktadır. Birçok açıdan metan, nüfus yoğun bölgelerdeki bulunabilirliği, sülfürik bileşiklerden kolaylıkla arındırılabilme ve yandığında açığa çıkan CO₂ miktarına kıyasla en yüksek ısıyı veren hidrokarbon olmasından dolayı bu amaçlar için ideal bir yakıttır. Öte yandan metan, kimyasal ve sıvı yakıt üretimi için de kullanılabilmektedir.

Doğal gazın bilinen rezervleri oldukça yüksek ve petrol ile neredeyse eşdeğer seviyededir. Ayrıca tespit edilen rezervlerin sayısı petrole oranla hızla artmaktadır ve gelecekte petrol rezervlerini aşması beklenmektedir [1]. Ancak doğal gaz rezervlerinin büyük bir kısmının, nüfusun ve endüstrinin yoğun olduğu bölgelere uzak olması neticesi ile boru hattı ile taşımak açık bir çözüm değildir. Ayrıca petrol kuyularında tespit edilen doğal gazın yakılarak uzaklaştırılması suretiyle bu kaynaklar hem boşa kullanılmakta hem de CO_x ürünlerinin çıkışı ile yoğun çevre kirliliğine sebebiyet vermektedir. Bu nedenlerden ötürü, ekonomik açıdan metanın daha kolay taşınabilir ve/veya daha değerli ürünlere dönüştürülmesi, gerek akademik gerekse endüstriyel anlamda giderek artan bir şekilde ilgi görmektedir.

Metan, kimyasal ve yakıtlara ya sentez gazı (CO ve H_2 gazı karışımı) eldesi yani endirekt yöntemlerle ya da direkt yöntemlerle dönüştürülebilmektedir. Ancak günümüzde büyük miktarda doğal gaz dönüşümü gerçekleştiren endüstriyel süreçlerin neredeyse tamamı sentez gazı eldesini içermektedir. Bunun dışında gerçekleştirilen direkt endüstriyel süreçler Şekil 1'de gösterilmiştir [2].

Endirekt yöntemler ile metan öncelikle CO ve H_2 'e dönüştürülür. Sentez gazı adı verilen bu gaz karışımı, farklı oranlarda kullanılarak yüksek hidrokarbonlar, dimetil eter ve metanol gibi daha değerli ürünlerin elde edilmesinde kullanılmaktadır. Gübre üretimde kullanılan NH₃'ün elde edilmesinde ise genellikle metan sentez gazına

dönüştürüldükten sonra ilave süreçler ve saflaştırma işlemleri ile üretilen H₂ kullanılmaktadır.

Şekil 1.1: Metan dönüşümü için endüstriyel olarak kullanılan süreçler [2].

Sentez gazı eldesi için kullanılan başlıca 3 yöntem veya bunların birleşimi mevcuttur [1]. Bu yöntemler;

• Su buharı-metan reformlaması (SMR)

$$CH_4 + H_2O \leftrightarrow CO + 3H_2$$
 $\Delta H^{\circ} = 206 \text{ kj/mol}$ (1.1)

• CO₂ reformlaması (DR)

 $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$ $\Delta H^\circ = 247 \text{ kj/mol}$ (1.2)

• Metanın kısmi oksidasyonu (POM)

$$CH_4 + 0.5O_2 \leftrightarrow CO + 2H_2$$
 $\Delta H = -35.6 \text{ kj/mol}$ (1.3)

olarak verilebilir. Yöntemlerin birbirlerine kıyasla farklı avantaj ve dezavantajları bulunmaktadır. Su buharı-hidrokarbon reformlaması oldukça oturmuş bir yöntem olduğundan endüstride sıklıkla tercih edilmektedir. Diğer yöntemler üzerindeki araştırmalar ise hala sürmektedir. Bu yöntemler içerisinde metanın kısmi oksidasyonu kısmen ekzotermik olması, daha hızlı gerçekleşmesi ve karbon birikiminin daha az olması sebebiyle oldukça umut vaat etmektedir. Ancak saf O₂ gereksinimi ve oluşan ısının uzaklaştırma zorluğu gibi güvenlik gerekçeleriyle endüstride kullanımı düşüktür.

Metanın sentez gazına çevrimi neticesinde büyük miktarlarda üretilen en önemli kimyasallar amonyak ve metanoldür. Bunun dışında Fischer-Tropsch yöntemi (GTL teknolojisi) ile sentez gazından sentetik yakıtlar üretilebilmektedir. Ancak GTL teknolojisinin yatırım ve işletme giderlerinin %60 veya daha fazlasını metanın sentez gazına dönüştürülmesi içermektedir. Bu yüzden araştırmalar sentez gazına dönüşümün olmadığı, metanın direkt olarak yakıtlara veya kimyasallara dönüştürüldüğü süreçler üzerinde yoğunlaşmıştır [2].

Metan (CH₄) oldukça stabil ve simetrik bir moleküldür. C-H bağları oldukça kuvvetli olup (425 kJ/mol) kimyasal saldırıyı kolaylaştıracak fonksiyonel grup, manyetik moment veya polar dağılım bulunmamaktadır. Metanın aktivasyonu için C-H bağının kırılması gerekli olup yüksek sıcaklık ve/veya oksidasyon ajanları gerekmektedir.

Günümüze kadar metanın direkt dönüşümü için birçok yöntem öne sürülmüş ve araştırılmıştır [2]. Bu yöntemler;

- Metanın termal veya katalitik pirolizi
- Metanın oksidatif birleşme reaksiyonu
- Metanın metanol ve formaldehite kısmi oksidasyonu
- Diğer (plazma, halojenasyon, fotokataliz, membranlar, vb.)

olarak sınıflanabilir. Ancak bu yöntemlerin hiç biri endüstriyel aşamaya ulaşamamışlardır. Bunun başlıca sebebi elde edilen verimin düşük olması sebebiyle ürünlerin ayrıştırılmalarının zor ve maliyetli olmasıdır.

Bu yöntemlerin içinde en ümit verici ve en ilgi çekici olanı, günümüzde üretimi ham petrol esaslı olan etilenin ve etanın (C₂ hidrokarbonları) metanın oksidatif birleşme reaksiyonu (OCM) ile eldesidir. Bu yöntem, CH₄ ve O₂'nin uygun bir katalizör üzerinde yüksek sıcaklıklarda (600-900°C) reaksiyona girerek başlıca C₂H₆ ve C₂H₄ oluşmasını içermektedir. Bu yöntemin endüstriyel olarak kullanılabilmesi için C₂H₄ verimliliğinin %40 civarında olması gerekmektedir [3].

Bu amaçla günümüze kadar pek çok araştırma yapılmış ve katalizör geliştirilmiştir. Ancak C₂ verimleri genellikle düşük olup sürekli bir reaktörde ve tek bir geçişte %27 verimin üzerine çıkabilen (<%31) az sayıda katalizör mevcuttur [4,5]. Sentezlenen katalizörler ile yeterli verim elde edilememesinin en büyük nedeni yüksek CH₄ dönüşümlerinde C₂ seçimliliğinin azalıp CO_x ürünlerine gidişin artmasıdır. Çünkü etan ve etilen metana göre çok daha reaktif olup yüksek sıcaklıklarda hızlıca okside olmaktadırlar. Bu nedenle hazırlanacak katalizörlerde istenmeyen yan reaksiyonların minimize edilmesi gerekmektedir.

OCM reaksiyonu için literatürde üzerinde en çok araştırma yapılan ve yüksek performans gösterdiği bulunan katalizörler Na₂WO₄/MnO₂/SiO₂ ve Li/MgO'tir [4,6-11]. Çözelti yakma sentezi ile hazırlanan %10(ağ.) Na₂WO₄/%5(ağ.)MnO₂/SiO₂ kullanılarak şu ana kadar rapor edilen en yüksek C₂ verimi %27 olmuştur [4]. %3 molce Li içeren MgO katalizör ile şu ana kadar maksimum %21 C₂ verimine ulaşılmıştır [12]. Ancak yapılan çalışmalarda reaksiyon koşullarının farklılık göstermesi nedeniyle bahsedilen katalizörler için performanslarını kıyaslayabilmek pek mümkün değildir. Ayrıca yüksek performans gösterdiği bilinen bu katalizörler için CH₄/O oranı, oksidant tipi, besleme hızı ve sıcaklık gibi önemli parametrelerin etkisinin incelendiği çok az sayıda çalışma bulunmaktadır [13,14].

İşte bu tez çalışmasında öncelikle yüksek performans gösterdiği bilinen Na₂WO₄/MnO₂/SiO₂ ve Li/MgO katalizörleri sentezlenmiş ve metanın oksidatif birleşme reaksiyonu (OCM) için reaksiyon koşullarının (CH₄/O oranı, oksidant tipi, besleme hızı ve sıcaklık) etkisi incelenmiştir. Böylece iki katalizörün reaksiyon performansları karşılaştırılmış, reaksiyon parametrelerinin etkisi incelenmiş ve de yeni katalizörlerin performanslarının incelenmesi için uygun koşullar belirlenmiştir. Devamında, literatürde denenmemiş Li esaslı ve az sayıda çalışma bulunan Sm₂O₃ esaslı katalizörler sentezlenerek OCM reaksiyonu için belirlenen koşullarda performansları sınanmıştır. Katalizörler Brunauer–Emmett–Teller (BET) yüzey alanı, X-ışını kırınımı (XRD) ve X-ışını fotoelektron spektroskopisi (XPS) kullanılarak

karakterize edilmişlerdir. Katalizörlerin OCM reaksiyonu için aktivite, seçimlilik, verim ve kararlılık testleri Mikroreaktör-GC sistemi kullanılarak gerçekleştirilmiştir.

Tezin genel kısımlar bölümünde metanın oksidatif birleşme reaksiyonu ve literatürde mevcut katalizörler hakkında detaylı bilgiler sunulmuştur. Malzeme ve yöntem kısmında katalizörlerin hazırlanması, karakterizasyonu ve aktivite testlerinin gerçekleştirilmesinde kullanılan malzeme, cihaz ve yöntemler verilmiştir.

2. GENEL KISIMLAR

2.1. METANIN OKSİDATİF BİRLEŞME REAKSİYONU (OCM)

Metanın oksidatif birleşme reaksiyonu (OCM) için ilk çalışmalar 1980'li yıllarda Keller [15] ve Hinsen [16] ile başlamış olup günümüzde de araştırmalar devam etmektedir. Araştırmalar yüksek CH₄ dönüşümü altında yüksek C₂ seçimliliği (C₂H₄ ve C₂H₆) elde edilebilecek katalizörlerin dizaynı üzerine yoğunlaşmıştır. Reaksiyon genellikle 600-900°C aralığında gerçekleşmekte ve reaksiyon koşullarına bağlı olarak elde edilen C₂ verimliliği oldukça değişkenlik göstermektedir. Reaksiyonun endüstriyelleşebilmesi önündeki en büyük engel geliştirilen katalizörlerin yüksek aktivite için yüksek sıcaklıklara gereksinim duyması (>700°C) ve C₂ ürünlerinin bu sıcaklıklarda CO_x ve H₂O'ya dönüşmesi sebebiyle C₂ seçimliliğinin düşük olmasıdır. OCM sürecinde meydana gelebilecek reaksiyonlar basitçe aşağıda verildiği gibidir [17]:

$$2CH_4 + 0.5O_2 \rightarrow C_2H_6 + H_2O + 174.2 \text{ kJ/mol}$$
 (2.1)

$$C_2H_6 + 0.5O_2 \rightarrow C_2H_4 + H_2O + 103.9 \text{ kJ/mol}$$
 (2.2)

$$C_2H_6 \leftrightarrow C_2H_4 + H_2 - 114,6 \text{ kJ/mol}$$

$$(2.3)$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 801 \text{ kJ/mol}$$
 (2.4)

$$CH_4 + 1.5O_2 \rightarrow CO + 2H_2O + 519,1 \text{ kJ/mol}$$
 (2.5)

$$C_2H_6$$
, C_2H_4 ve $H_2 + O_2 \rightarrow CO$, CO_2 ve $H_2O +$ yüksek miktarda ısı (2.6)

 CH_4 , C_2H_4 ve C_2H_6 'nın tam ve kısmi yanma reaksiyonları CH_4 'den C_2H_6 ve C_2H_4 elde edildiği reaksiyonlara göre termodinamik olarak gerçekleşmeye daha yatkındır. Bu nedenle yüksek sıcaklıklarda yanma reaksiyonları ilk iki reaksiyonu bastırarak C_2 seçimliliğini azaltacaktır. Öte yandan yüksek sıcaklıklarda C_2H_6 'nın dehidrojenasyonu ile C_2H_4 oluşumu endotermik oluşundan ötürü termodinamik olarak desteklenecektir. Dolayısı ile yüksek sıcaklıklarda aktivite yüksek fakat C_2 seçimliliği düşük olacaktır. Tam tersi düşük sıcaklıklarda CH_4 aktivasyonu zor olduğundan aktivite düşük fakat C_2 seçimliliği yüksek olacaktır. Bu nedenle sentezlenecek katalizörlerin ya düşük sıcaklıkta yüksek aktivite göstermesi ya da yüksek sıcaklıkta yüksek C2 seçimliliği göstermesi gerekmektedir.

2.2. OCM REAKSİYONUNUN MEKANİZMASI

 \cap

OCM reaksiyonu için önerilen ve genel olarak kabul edilen mekanizma basitçe Şekil 2.1'de ve Denklem 2.1-2.9 ile verilmiştir.

Şekil 2.1: OCM reaksiyonu için basitçe öngörülen mekanizma

$O_2 + 2()_s \leftrightarrow 2(O)_s$	(2.1)

$$CH_4 + (O)_s \leftrightarrow CH_3 + (OH)_s$$
 (2.2)

$$2CH_3 \leftrightarrow C_2H_6 \tag{2.3}$$

$$C_2H_6 + (O)_s \leftrightarrow C_2H_5 + (OH)_s \tag{2.4}$$

$$C_2H_5 + (O)_s \leftrightarrow C_2H_4 + (OH)_s$$
(2.5)

$$2(OH)_{s} \leftrightarrow H_{2}O + (O)_{s} + ()_{s}$$

$$(2.6)$$

$$CH_3 \cdot + O_2 \leftrightarrow CH_3O_2 \cdot$$
 (2.7)

$$CH_3 + O^{2-} \leftrightarrow CH_3O^{2-}$$
 (2.8)

$$CH_3O^{2-} \leftrightarrow CO + 3/2H_2$$
 (2.9)

OCM reaksiyonu için önerilen mekanizma homojen-heterojen faz reaksiyonlar içermektedir. Öncelikle CH4'ün katalizör yüzeyinde aktive olması ile birlikte CH3. radikalleri oluşur. Ardından oluşan CH3. radikallerinin bir kısmı gaz fazına geçerek birleşirler ve C2H6 oluşumu gerçekleşir. Diğer bir kısmı ise gaz faz O2 ile birleşerek CH₃O₂· türleri verirler ve bu türlerde CO_x türlerini verir. Bu reaksiyonlar esnasında gaz fazında oluşan C₂H₆'nın bir kısmı yüzey ile etkileşime girerek dehidrojenasyona uğrar ve C₂H₄ oluşur ya da C₂H₅· radikali desorbe olarak gaz faz O₂ ile reaksiyon verir ve C₂H₅O₂· radikalleri oluşturarak etilen veya CO_x türlerine kadar reaksiyon ilerler [18].

Kabul edilen mekanizma incelendiğinde, OCM reaksiyonu sonucunda maksimum C_2 verimi elde edebilmek için CH_3 · radikal oluşum hızının yüksek, bu türlerin gaz faz oksijen ile etkileşimini azaltmak gerekir. Ayrıca CH_4 dehidrojenasyonunun desteklenirken C_2 dehidrojenasyonunun bastırılması gerekmektedir.

Literatürde yapılan bir çalışmaya göre, olası yüzey ve gaz faz reaksiyonları içeren modellemede gözeneksiz bir katalizör için elde edilebilecek maksimum C_2 verimi %28 olarak bulunmuştur [19]. Elde edilen sonuçlar bunu kısmen doğrular niteliktedir. Fakat son zamanlarda bu değerin aşılabildiği çalışmalar literatürde mevcuttur [5].

2.3. OCM REAKSİYONUNDA KULLANILAN KATALİZÖRLER VE PERFORMANSLARI

OCM reaksiyonu için kullanılan katalizörler 4 gruba ayrılabilir. Bunlar [18];

- İndirgenebilir metal oksitler
- İndirgenemeyen metal oksitler
- Halojen içeren oksitler
- Katı elektrolitler

olarak verilebilir.

İndirgenebilir metal oksitler, destekli veya desteksiz olarak kullanılabilen redoks özelliği gösteren katalizör grubudur ve genellikle CH₄ ve O₂'nin sıra ile beslenildiği siklik operasyon için uygun olmaktadırlar. Örnek olarak Mn₃O₄, Mn- ve Co- esaslı perovskitler verilebilir. C₂ verimlilikleri %20'lere kadar çıkabilse de üretim hızı düşüktür. Yani indirgenen katalizörün tekrar yükseltgenip aktif hale gelmesi için gereken süre uzun olmaktadır. Jones ve diğ. [20] yaptığı çalışmaya göre Mn₃O₄ katalizörün üretim hızı yaklaşık 2 dakika olurken tekrar aktif hale gelebilmesi için 130 dakika gerektiği bulunmuştur. Bu süre üretim açısından oldukça uzundur. K katkılı SrCoO₃ katalizörde 1,5 dakika döngü ile %20 verim elde edilmesine rağmen üretim hızı oldukça düşüktür [21]. Bu nedenle bu operasyon modu endüstriyel açıdan çok uygun değildir.

İndirgenebilir metal oksitlere kıyasla indirgenemeyen metal oksitler siklik operasyon için oldukça düşük performans gösterirlerken, CH₄ ve O₂'nin birlikte gönderildiği sürekli operasyon modunda iyi performans göstermektedirler. Literatür incelendiğinde genellikle elde edilen verimler %25 civarında olmuştur.

Halojen içeren metal oksitler aslında indirgenemeyen metal oksitler içerisinde verilebilir. Tek farkı katalizörlerin Cl, F, Br gibi halojenler içermesidir.

Katı elektrolitler ise tamamen farklı bir operasyon modunun kullanıldığı malzemelerdir. Aslında SOFC prensibinde çalışan, yani oksidantın ve yakıtın farklı yönlerden beslendiği, oksijenin anyon olarak metanla ya da ya da metandan kopan hidrojenin, proton olarak oksijenle buluşması sonucu reaksiyonun gerçekleştiği operasyonda kullanılan oksit malzemelerdir. Bu malzemelerle %30'a yakın verim elde edilebilmiştir.

Tablo 2.1'de son yıllarda yapılan araştırmalarda incelenen çeşitli katalizörler ve performansları verilmiştir.

Sonuçlara bakıldığında en iyi performans gösteren katalizör sistemleri CeO_2/BaF_2 , LiO/MgO, Mn-Na₂WO₄/SiO₂, La_{9,33}(SiO₄)₆O₂, CeO₂/La₂O₃, Ba₀₅Sr_{0,5}Fe_{0,2}Co_{0,8} O_{3-x}Cl_{0,04} olarak verilebilir. Ancak verimleri Mn-Na₂WO₄/SiO₂ ve Ba_{0,5}Sr_{0,5}Fe_{0,2}Co_{0,8}O_{3-x}Cl_{0,04} hariç %25'in altında kalmıştır.

İncelenen katalizörlerden elde edilen önemli sonuçlar vardır. Örneğin; Xu ve diğ. [22], SrO-La₂O₃-CaO katalizörünü sınamış ve artan SrO oranının C₂ verimliliğini arttırdığını bulmuşlardır. Bu sonuç yüzey bazikliğini artışına bağlanmıştır. Ayrıca ortamda bulunan CO_2 'nin CO_3^{-2} türleri oluşturması neticesi ile katalizörleri deaktive ettiği gözlemlenmiştir. Benzer şekilde, Baerns ve diğ. [23], C₂ seçimliliğinin sırası ile BaO>CaO>MgO>BeO şeklinde azaldığını tespit etmişlerdir. Choudhary ve arkadaşları [17], yaptıkları birçok çalışmada metal oksit bazisitesinin yüksek oluşunun OCM reaksiyonunu pozitif yönde etkilediğini gözlemlemişlerdir. Ek olarak Papa ve arkadaşlarının [24] yaptığı bir çalışmada Sm₂O₃ ile karıştırılan toprak metal oksitlerin bazisitesinin artması ile C₂ seçimliliğinin ve veriminin arttığı bulunmuştur.

Katalizör	Sıcaklık (°C)	GHSV (l/kgsa) *(sa ⁻¹)	CH ₄ /O ₂ *CH ₄ /N ₂ O	Metan dönüşümü (%)	C ₂ H ₄ Seçimlilik (%)	C ₂ H ₆ Seçimlilik (%)	C ₂ Verim (%)	Ref.
CeO ₂ :BaF ₂ (1:4)	800	15000*	2,7	34,01	33,57	19,89	18,18	25
CeO2:BaO (1:1-5)	800	15000*	2,7	-	-	-	-	25
LiNiLaO _x (Li/Ni=1,6)	800	27000	2	34,7	31,5	28,6	20,85	26
Li _{0,9} Ni _{0,5} Co _{0,5} O _{2-x}	800	270	2	26,6	29,3	17,3	12,4	27
$Li_{0,9}Ni_{0,5}Co_{0,5}O_{2-x}$	800	2700	2	31,5	24,9	12,4	11,8	27
Li _{0,9} Ni _{0,5} Co _{0,5} O _{2-x}	800	2700	4	20,4	17,4	15,9	6,8	27
Na2CO3/ α-Al2O3 (Na/Al=0,086)	750	3000	2	28,5	18,3	20,3	11	28
Na-ZrO ₂ -Cl/ a-Al ₂ O ₃ (Na:Zr:Al=6,1:5: 100)	750	3000	2	30	25,1	13,9	11,7	28
Na-ZrO ₂ -Cl/ γ-Al ₂ O ₃ (Na:Zr:Al=80,6:2 9,3:100)	800	3000	2	37	16	24,8	15,1	28
Li _{0,1} CaTi _{0,9} O _{3-x}	800	1800	2	39	50),2	20	29
Mg _{0,1} CaTi _{0,9} O _{3-x}	800	1800	2	36	3	9	14	29
CaTiO ₃	800	1800	2	37	3	6	13	29
Amorf ZrO ₂ (Zr)	800	5463	3	-	-	-	3	30
Sülfate ZrO2 (SZ)	800	5463	3	-	-	-	3	30
Li/Zr	800	5463	3	-	33	3,8	4,13	30
Li/SZ	800	5463	3	31	60),9	19	30
Li/N/Zr	800	5463	3	-	-	-	7,8	30
Li/Cl/Zr	800	5463	3	-	-	-	11,33	30
Gd_2O_3	750	6000	2,5	28,1	42	2,8	12	31
(%30 mol) BaF ₂ / Gd ₂ O ₃	750	6000	2,5	32,4	53	3,4	17,3	31

Tablo 2.1: OCM reaksiyonu için bazı katalizörlere ait performans sonuçları

(%30 mol) BaCl ₂ / Gd ₂ O ₃	750	6000	2,5	36,6	57	,6	21,1	31
(%30 mol) BaBr ₂ / Gd ₂ O ₃	750	6000	2,5	31,2	55		17,2	31
(%20 mol) La ₂ O ₃ /CaO	800	60000	9	14,8	23,6	43,8	10	22
(%20-20 mol) SrO-La ₂ O ₃ /CaO	800	60000	9	18,5	30,3	48,1	14,2	22
(%30 mol) BaF ₂ /Y ₂ O ₃	800	6000	2,47	39	33,3	17,1	19,7	32
(%95 mol) BaF ₂ /Y ₂ O ₃	800	6000	2,47	36,9	40,1	17,1	21,1	32
Gaz faz OCM	700	298 cm/dk	4	3,6	4,9	57	2,22	33
NaCl/ZrP ₂ O ₇	750	6000	2	10	39	31	7,6	34
Na(0,001at%)/ CaO	750	25714	15	10	65,8		6,58	35
Na(0,001at%)/ CaO	750	25714	2	14	25,8		3,61	35
Na(6,4at%)/CaO	750	25714	15	8	81,1		6,49	35
Na(6,4at%)/CaO	750	25714	2	11	49,5		5,44	35
Na ₂ WO ₄ /SiO ₂	850	2000	4,5	44	42	10	19	36
K₂WO₄/SiO₂	850	2000	4,5	30	52	15	16	36
Rb ₂ WO ₄ /SiO ₂	850	2000	4,5	32	59	19	19	36
Cs ₂ WO ₄ /SiO ₂	850	2000	4,5	33	39	16	13	36
0,8%Na-3,1%W- 1%Mn/SiO ₂ (%ağırlıkça)	800	36000*	3	30,2	39,6	23,8	19,1	37
La ₂ O ₃	800	6250	8,1	19	37,7	29,9	13,9	38
Sm ₂ O ₃	780	13846	6,9	20	34,3	31,1	14,2	38
Eu ₂ O ₃	725	12857	6,7	23	32,4	40	17,7	38
CeO ₂	805	7686	5,8	10	9	7,2	1,6	38
%10(ağ.)CeO ₂ / La ₂ O ₃	775	43512	5,1	31	29,3	36,7	22,3	38

Tablo 2.1 (devam): OCM reaksiyonu için bazı katalizörlere ait performans sonuçları

%5,7Na-%2,4W- %1,5Mn- %3,8Zr-%2,1S- %0,4P/SiO ₂	750	4800	3	43,8	-	-	23,5	39
$\begin{array}{l} Ba_{0,5}Sr_{0,5}Fe_{0,2}\\ Co_{0,8}O_{3-x}Cl_{0,04} \end{array}$	850	21600	0,4*	66,8	46		30,7	5
(%23mol) LiNO ₃ /La ₂ O ₃ - MgO(25/75 mol oran)	800	12000	4	28,5	53		15,1	40
(%23mol) Li ₂ SO4/La ₂ O ₃ - MgO(25/75 mol oran)	800	12000	4	25,8	64,3		16,6	40
Li/MgO (Li/Mg:0,05) (mol oranı)	800	6000	5	17	56		9,52	41
Li/Ce/MgO (Li/Mg:0,05) (Ce/Mg:0,1) (mol oram)	800	6000	5	21,5	63		13,54	41
Na/MgO (Na/Mg:0,05) (mol oranı)	800	6000	5	10	43		4,3	41
Na/Ce/MgO (Na/Mg:0,05) (Na/Ce:0,1) (mol oranı)	800	6000	5	15	46		6,9	41
La _{9,33} (SiO ₄) ₆ O ₂	600	7500	3	33,4	25,6	24,8	16,8	42
%2Mn/%5 Na ₂ WO ₄ /MgO	800	6900*	7,4	20	80		16	43
ThO ₂	730	260000	5	16	13	18	5	44
%10Na/ThO ₂	730	260000	5	22	22,3	24,7	10	44
Th _{0,8} Ca _{0,2} O _{2-x}	730	260000	5	24	25	31	14	44
%5Sr/La ₂ O ₃	730	260000	5	25	18	45	16	44
%5Li/MgO	730	260000	5	1	40		0,5	44
%1,9Mn- %4Na2WO4/SiO2	730	260000	5	1	49		0,5	44
%2Mn- %5Na ₂ WO ₄ /La ₂ O ₃	750	72000	4	18	32		5,8	8
%2Mn- %5Na ₂ WO ₄ /CaO	750	72000	4	18	25		4,5	8
%2Mn- %5Na2WO4 /Al2O3	750	72000	4	13	24		3,1	8
%2Mn- %5Na2WO4 /ZrO2	750	72000	4	9,5	20		1,9	8
%2Mn- %5Na ₂ WO ₄ /SiO ₂	750	72000	4	6	58		3,5	8

Tablo 2.1 (devam): OCM reaksiyonu için bazı katalizörlere ait performans sonuçları

%2Mn- %5Na ₂ WO ₄ /SiC	750	72000	4	3	60)	1,8	8
%2Mn- %5Na2WO4 /MgO	750	72000	4	4	25	5	1	8
%2Mn- %5Na2WO4 /Fe2O3	750	72000	4	1,5	6	1	0,9	8
%2Mn- %5Na2WO4 /Fe3O4	750	72000	4	2	7	l	1,4	8
%2Mn- %5Na ₂ WO ₄ /SrO	750	72000	4	5	23	3	1,2	8
%2Mn- %5Na ₂ WO ₄ /TiO ₂	750	72000	4	3	78	3	2,3	8
%5La- %10Na2WO4- %5Mn/SiO2	800	3000	2	-	-	-	27	8
Sm_2O_3	740	18000	4	18	22,9	20,7	7,8	45
%20Sm ₂ O ₃ /n-Al ₂ O ₃	740	18000	4	16	17,4	14,7	5,1	45
%20Sm ₂ O ₃ /n-MgO	700	24000	4	20,8	26,3	25,3	11,1	46
%2,5Li/%20 Sm ₂ O ₃ /n-MgO	700	24000	4	21,2	38,1	23,7	13,4	46
%20TbO _x /n-MgO	700	24000	4	18,6	17,7	26,2	8,3	46
%2,5Li/%20 TbO _x /n-MgO	700	24000	4	21,8	37,9	23,8	13,8	46
%4,1Li/MgO	680	4103	0,072*	21,2	40	22	13,1	47
ZnO-Sm ₂ O ₃ (Sm/Zn:0,5)	775	14400	5	21,7	41,	,9	9,1	24
MgO-Sm ₂ O ₃ (Sm/Mg:0,5)	775	14400	5	23,2	49	,2	11,4	24
CaO-Sm ₂ O ₃ (Sm/Ca:0,5)	775	14400	5	25	57	,2	14,3	24
SrO-Sm ₂ O ₃ (Sm/Sr:0,5)	775	14400	5	25,9	59	,8	15,5	24

Tablo 2.1 (devam): OCM reaksiyonu için bazı katalizörlere ait performans sonuçları

Bu sonuçlar, iyi bir OCM katalizörünün yüksek bazisiteye sahip fakat reaksiyon şartlarında deaktivasyona sebep olabilecek kararlı -CO₃⁻² türleri oluşturmaya yatkın olmamasını gerektirmektedir.

Zhou ve diğ. [25], OCM reaksiyonu için CeO₂/BaF₂ katalizörün etkisini incelemiş ve yüksek performans gösterdiğini tespit etmişlerdir. BaF₂ ve CeO₂'nin tek başına herhangi

bir aktivite göstermemesine rağmen bu iki komponentin karışımının aktivite göstermesi anyon boşluklarının, O⁻ iyonlarının, elektronca zengin kafes oksijen türlerinin oluşumuna bağlanmıştır. Bir başka çalışmada nadir toprak metal oksitlere (genellikle ptipi yarı iletken malzeme olanlar, yani La₂O₃, Sm₂O₃, Nd₂O₃ gibi) alkali metal katılması ile metal oksitlerdeki oksijen boşluk konsantrasyonunu arttırdığı, böylece OCM aktivite ve seçimliliğini desteklediği bulunmuştur [48]. Yine bir başka çalışmada, (%30 molce) BaX₂/Gd₂O₃ (X=Cl, Br, F) katalizörlerinin performansı sınanmış, Gd₂O₃'e oranla baryum tuzu eklenen malzemelerin çok daha iyi aktivite ve seçimlilik gösterdiği bulunmuştur. C₂ verimliliğinin Cl>Br=F, C₂H₄/C₂H₆ oranının ise Br>Cl>F şeklinde azaldığı tespit edilmiştir. Performansın oksijen boşluk konsantrasyonu ile arttığı bunun da oksijen ile halojen sübstitüsyonu dolayısı ile gerçekleştiği öne sürülmüştür [31].

Yapılan araştırmalar sonucu metan aktivasyonu için yüzey oksijen türlerinin gerekliliği tartışılmazdır. Ancak literatürde bu türlerin hangilerinin daha reaktif ve seçimlilik gösterdiği, farklılıklar göstermektedir. Bunun başlıca nedeni birçok katalizör çeşidinin olması ve reaksiyonun yüksek sıcaklıklarda gerçekleştirilme gereksinimi dolayısı ile deneysel kısıtlamalardır [18]. İndirgenemeyen yüksek bant aralığına sahip metal oksitlerin yüzeyinde farklı yüklere sahip oksijen türleri (O⁻, O₂⁻, O₂⁻², O₃⁻², O⁻²) oluşabilmektedir. Metal oksitlerin sahip olduğu anyon boşlukları, ara yüzey boşlukları ve safsızlık kusurları elektronik transferlerde büyük önem taşımaktadırlar.

Sinev [49] ve Otsuka [50], Na₂O₂ ve BaO₂'nin metanı etan ve CO_x türlerine dönüştürdüğünü bulmuşlardır. Bu sonuç O₂⁻² türlerinin metan aktivasyonu için aktif olduğunu göstermektedir. Bazı araştırmacılar in-situ Raman tekniğini kullanarak Na/La₂O₃ ve Sr/La₂O₃ üzerinde 700°C'de [51], BaO/MgO üzerinde 700 ve 750°C'de [52] O₂⁻² türlerinin varlığını tespit etmişlerdir. Ayrıca bu yöntem kullanılarak nadir toprak metal oksit esaslı katalitik malzemeler yüzeyinde O₂⁻² ve O₂⁻ türleri gözlemlenmiştir [53]. Benzer şekilde in-situ IR analizi yapılarak florür içeren nadir toprak ve alkali toprak metal oksitlerinin yüzeyinde aktif oksijen türü olarak O₂⁻ gözlemlenmiştir [54]. Pacheco ve diğ. [55], O⁻ ve O₂⁻² türlerinin Na/CaO ve Ce/Na/CaO katalizörler yüzeyinde metan aktivasyonunda yer aldığını öne sürmüştür.

 O^{-} , O_2^{-2} ve O^{-2} türlerinin La₂O₃ yüzeyinde metandan hidrojen koparabilme aktiviteleri DFT hesaplamaları ile incelenmiştir. Hesaplamalar, O⁻nin en reaktif tür olduğunu göstermiştir. Peroksit türlerin reaktivitesi biraz daha düşük bulunmuştur. O⁻ oksijen türlerinin OCM reaksiyonundaki önemleri Lunsford ve ark. [56,57] tarafından defalarca tekrarlanmıştır. ESR spektroskopisi kullanılarak yapılan bu çalışmalarda Li/MgO, Li/ZnO ve Na/CaO içindeki aktif merkezlerin M(Li veya Na)⁺O⁻ olduğunu açıklamışlardır. M⁺O⁻ merkezleri katalizörün içinde tespit edildiğinden, yüzey ile iç kısım arasında bir dengenin kurulduğundan söz etmişlerdir.

Baerns ve arkadaşları [58-61], nadir toprak ve alkali toprak metal oksitler üzerinde oksijen adsorpsiyonunu kontakt potasiyel farkı ve kinetik analizler ile defalarca incelemişlerdir. Adsorbe olan moleküler ve atomik oksijen türlerinin O₂'den oluştuğunu ifade etmişlerdir. Oksijen kısmi basıncının bu türlerin yüzeydeki oranlarını oldukça etkilediği görülmüştür. Daha yüksek O₂ kısmi basıncının yüzeydeki moleküler O₂ oksijen türlerinin konsantrasyonunu arttırdığı gözlemlenmiştir. Nd₂O₃'ün SrO ile, CaO'nun Na₂O ile katkılanması anyon boşluklarının artması neticesinde moleküler oksijen türlerinin atomik oksijen türlerine dönüşümünü hızlandırmıştır. Bu nedenle Na₂O/CaO katalizörleri üzerinde C₂ seçimliliği CaO'ya oranla daha yüksek olmuştur. Yani atomik türlerin oranı moleküler türlere oranla ne kadar yüksek ise o kadar fazla seçimlilik elde edilmektedir. Bu sonuçlar iyi bir OCM katalizörünün yüksek oksijen boşluk konsantrasyonuna sahip olması gerektiğini göstermektedir.

Literatürde oksidant tipinin de seçimliliği değiştirdiği gözlemlenmiştir. Yamamoto ve diğ. [47], Li/MgO üzerinde gerçekleştirdikleri reaksiyonda O_2 yerine N_2O kullanıldığında seçimliliğin daha yüksek olduğunu tespit etmişlerdir. Bunun nedeninin N_2O 'nun yüzeyde CO_x oluşumu reaksiyonlarını azaltması olduğu ileri sürülmüştür. Ancak O_2 'nin katalizör içerisine girme hızı N_2O 'dan yüksek olması sebebiyle O_2 ile daha fazla CH_4 dönüşümü elde edilmiştir. Ayrıca CH_4 ile N_2O 'nun aynı siteler üzerinde reaksiyon vermesi sonucu N_2O 'nun dekompozisyon hızının CH_4 varlığında azaldığı tespit edilmiştir. Anshits ve diğ. [62] ise Li/Bi₂O₃ ve SrO katalizörleri üzerinde N_2O ve O_2 'nin etkisini incelemişler ve O_2 ile CH_4 dönüşümünün 10 kat daha fazla olduğunu ancak seçimliliğin N_2O 'ya oranla daha düşük olduğunu tespit etmişlerdir. Bu sonuçlar N_2O 'nun efektif bir oksidant olduğunu göstermektedir fakat elde edilen sonuçların iyileştirilmesi için N_2O dekompozisyonun farklı aktif siteler üzerinde gerçekleşmesi gerekmektedir. Katalizörlerin elektriksel özelliklerinin de OCM reaksiyonunda önemli role sahip olduğu gözlemlenmiştir [63]. n-tipi iletkenlik gösteren malzemeler genellikle selektif olmamakla beraber, p-tipi iletkenliğe ve oksijen iyon iletimine sahip malzemeler arzu edilen katalizörlerdir [58,60,64]. Bu malzemelerin bant aralığı 5-6 eV civarı olmalıdır.

Araştırmacılar katalizörlerin yapı-seçimlilik ilişkisini de incelemişler ve ilginç sonuçlar bulmuşlardır. Palermo ve diğ. [65], desteğin kristalin yapısının önemli olduğunu öne sürmüşlerdir. Na-Mn-W-SiO₂ yapısındaki katalizörde Na kullanılmadığında amorf silikanın kötü seçimlilik göstermesine rağmen, Na kullanıldığında α -kristobalit seçimliliği arttıran bir malzeme olmuştur. Bunun nedeninin Na'nın amorf silikanın α kristobalit'e dönüşümünü sağlaması ve WO_x türlerinin stabilite ve dispersiyonunu arttırmasıdır. Olası aktif sitenin tetrahedral yapıdaki WO₄ sitesindeki tek bağlı oksijen olduğu öne sürülmüştür [66].

İlginç bir sonuç da Zhang ve diğ. [42] tarafından bulunmuştur. La_{9.33}(SiO₄)₆O₂ yapısında katalizör sentezleyerek normalde 700-900°C'ler arasında gerçekleştirilen reaksiyonu 400-600°C arasında gerçekleştirmişlerdir. Elde edilen sonuçlar oldukça ümit verici olmuştur. Zira 600°C'de %33,4 CH₄ dönüşümü ve 16,8 C₂ verimliliği elde etmişlerdir. Literatürdeki diğer katalizörler ile karşılaştırıldığında benzer sonuçlar 750-800°C'ler civarında elde edilmiştir. Bu tip bir katalizör enerji maliyetini düşürebileceği gibi çift yataklı katalizör sisteminde de kullanılarak performans artışı sağlayabilir.

Bu çalışmaların dışında, Kruglov ve arkadaşları [67], karşıt akımlı akışkan yataklı kromatografik reaktör (SCMBCR) sistemi ile YBa₂Zr₃O_{9.5} katalizörünü kullanarak optimum operasyon koşulları altında %75 CH₄ dönüşümü ve %55 C₂ verimliliği elde etmişlerdir. Bu, o zamana kadar elde edilen en yüksek verimdir fakat endüstriyel açıdan kullanımı reaktör konfigürasyonunun kompleks ve yüksek miktarda CH₄ geri dönüşümü sonucu maliyetli olması sonucu mümkün olmamıştır. Bir başka çalışmada Yentekakis ve arkadaşları [68], piston akışlı reaktörde %1(ağ.)Sr/La₂O₃ pelletlerini kullanarak ve reaktör çıkışına ayrıştırıcı olarak moleküler elek yerleştirerek reaksiyonu gerçekleştirmiş %76 CH₄ dönüşümü ile %53 C₂ verimliliği elde etmişlerdir. Ancak bu sistem de yüksek miktarda metan geri dönüşümü içermektedir.

2.4. OCM REAKSİYONUNU ETKİLEYEN PARAMETRELER

Literatür incelendiğinde, OCM reaksiyonunun genellikle endüstride uygulanabilirliği en kolay olan piston akışlı sabit yataklı katalitik reaktörlerde gerçekleştirildiği gözlemlenmektedir. OCM reaksiyonunu etkileyen parametreler aşağıda verilmiştir:

- CH₄/O₂ oranı: Bu oran arttıkça metan dönüşümü azalırken C₂ hidrokarbon seçimliliği ve C₂H₄/C₂H₆ oranı genellikle artmaktadır [13, 14, 69].
- Sıcaklık: Operasyon sıcaklıkları genellikle 700-900°C arasında değişirken, artan sıcaklıklarda metan dönüşümü ve C₂ seçimliliği artarken belirli bir sıcaklıktan sonra düşüş yaşanmaktadır. Ayrıca artan sıcaklıkla beraber C₂H₄/C₂H₆ oranının daha fazla C₂H₆ dehidrojenasyonu sonucu arttığı gözlemlenmektedir [14, 25, 47, 69].
- Besleme hızı (GHSV): Besleme hızı etkisinin açık olarak görüldüğü tek sonuç, artışı ile beraber C₂H₄/C₂H₆ oranının azalmasıdır [14, 69].
- Basınç: Basınç artışı reaksiyon hızını arttırdığından verimi de arttırmaktadır [70, 71].
- Oksidant tipi: Oksidant olarak düşük kısmi basınçlarda O₂ yerine aynı miktarda
 N₂O kullanıldığında C₂ seçimliliği daha yüksek olmaktadır [5, 47, 62].
- **Katalizör BET yüzey alanı:** Artan yüzey alanı ile dönüşüm artarken, C₂ seçimliliği azalır [32, 72].
- Gözeneklilik: Artan gözenekliliğin C₂ üretimine daha fazla katkıda bulunacağı savunulmuştur [72].

3. MALZEME VE YÖNTEM

3.1. KULLANILAN MALZEMELER

Kullanılan tüm kimyasallar en az ACS reaktif ayarındadır (\geq %98). Kimyasallar katalizörlerin sentezi için gazlar ise reaksiyonların gerçekleştirilmesi (CH₄, O₂, N₂O, N₂, He), gaz kromatografisi (GC) işletim (He, N₂, kuru hava, H₂) ve kalibrasyonu (tüm gazlar) için kullanılmıştır. BET yüzey alanı ölçümleri için sıvı azottan faydalanılmıştır.

Silika jel (SiO ₂) (Grade 646)	(Sigma-Aldrich)
Mangan (II) nitrat tetrahidrat (Mn(NO ₃) ₂ .4H ₂ O)	(Sigma-Aldrich)
Sodyum tungstat dihidrat (Na ₂ WO ₄ .2H ₂ O)	(Sigma-Aldrich)
Lityum nitrat (LiNO ₃)	(Sigma-Aldrich)
Lityum karbonat (Li ₂ CO ₃)	(Sigma-Aldrich)
Kobalt (II) nitrat hekzahidrat (Co(NO ₃) ₂ .6H ₂ O)	(Sigma-Aldrich)
Aluminyum nitrat nonahidrat (Al(NO ₃) ₃ .9H ₂ O)	(Sigma-Aldrich)
Kalsiyum nitrat tetrahidrat (Ca(NO ₃) ₂ .4H ₂ O)	(Sigma-Aldrich)
Üre (CH ₄ N ₂ O)	(Sigma-Aldrich)
Samaryum (III) oksit (Sm ₂ O ₃)	(Sigma-Aldrich)
Zirkonyum oksit (ZrO ₂)	(Alfa Aesar)
Magnezyum oksit (MgO)	(Alfa Aesar)
Titanyum (IV) oksit (TiO ₂)	(Alfa Aesar)
Silisyum dioksit (SiO ₂)	(Alfa Aesar)
Oksijen (O ₂), Azot (N ₂), Kuru hava (\geq %99,99)	(Linde)
Helyum (He), Karbon monoksit (CO) (≥%99,99)	(Linde)
Hidrojen (H ₂), Karbon dioksit (CO ₂) (≥%99,99)	(Linde)
Metan (CH ₄), Etan (C ₂ H ₆), Etilen (C ₂ H ₄) (\geq %99,5)	(Linde)
Propan (C ₃ H ₈), Propilen (C ₃ H ₆) (≥%99,5)	(Linde)
Azot protoksit (N ₂ O) (≥%98) ve sıvı azot	(Linde)
3.2. KATALİZÖRLERİN HAZIRLANMASI

Katalizörler ıslak emdirme, üre-nitrat yakma veya katı hal sentez yöntemi kullanılarak hazırlanmışlardır. Aşağıda "%" ile belirtilen değerler adı geçen komponentin katalizör içerisindeki ağırlıkça yüzde içeriğini belirtmektedir.

3.2.1. %2(ağ.)Mn/%5(ağ.)Na₂WO₄/SiO₂ ve %4Li(ağ.)/MgO Katalizörlerinin Hazırlanması

Katalizörler ıslak emdirme metodu ile 10 gram olacak şekilde sentezlenmişlerdir. 4Li/MgO katalizörünün sentezi için 50 ml ultra saf su içerisinde hesaplanan miktarda LiNO₃ çözündürüldükten sonra uygun miktarda MgO eklenerek 1 saat boyunca 500 rpm hızla karıştırma uygulanmıştır. Takiben sıcaklık 60°C'ye çıkarılmış ve çamur kıvamında çözelti elde edene kadar karıştırma işlemi devam etmiştir. Ardından 120°C'de 1 gece boyunca kurutma uygulanmış ve elde edilen tozlar öğütülerek 800°C'de 8 saat kalsine edilmiştir. 2Mn/5Na₂WO₄/SiO₂ katalizörü de benzer şekilde sıralı emdirme uygulanarak hazırlanmıştır. Yani öncelikle hesaplanan miktarda Mn(NO₃)₂.4H₂O, SiO₂ jel üzerine emdirilip kurutma uygulanmış, ardından elde edilen tozlara uygun miktarda Na₂WO₄.2H₂O emdirilerek kurutulmuş ve 800°C'de 8 saat kalsine edilmiştir.

3.2.2. Li Esaslı Katalizörlerinin Hazırlanması

Literatürde yüksek bazisiteye sahip OCM katalizörlerinin çok daha iyi seçimlilik göstermesi ve Li içeren katalizörlerin de yüksek performans göstermesi nedeniyle yüksek performans gösterebilecekleri düşünülen LiAlO₂, LiMn₂O₄, LiCoO₂, Li₄SiO₄, Li₂ZrO₃, Li₂TiO₃ katalizörler sentezlenmiştir. Katalizörlerin stokiyometrik ve oldukça homojen bir şekilde hazırlanabilmesi için üre-nitrat yakma ve katı hal sentez yöntemi tercih edilmiştir. Silisyum, zirkonyum ve titanyumun nitrat tuzlarının var olmaması neticesinde Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃'ün hazırlanması için katı hal sentez yöntemi kullanılmıştır.

Üre-nitrat yakma tekniği oldukça basit bir yöntem olup metal nitratlar (oksidantlar) ve üre gibi yakıtların sulu çözeltilerinin kısmen yüksek sıcaklıklarda (200-300°C) yanması ile metal hidroksit/oksit eldesini içermektedir. Bu işlemde karışımın özelliklerini belirleyen ekivalens oranı, karışım oranı ve elementel stokiyometrik katsayı gibi önemli parametreler bulunmaktadır. Jain ve arkadaşları [73], elementel stokiyometrik oranın hesaplanması için basit bir metot geliştirmişlerdir. Bu hesaba göre;

$$\phi_{e} = \frac{\sum \text{Okside edici elementlerin formüldeki katsayısı x değerlilik sayısı}}{(-1)\sum \text{Indirgeyici elementlerin formüldeki katsayısı x değerlilik sayısı}} = \frac{p}{r}$$
(3.1)

- φ_e: Elementel stokiyometrik katsayı (Oksidantlar/yakıtlar)
- p: Toplam okside edici kompozisyonu
- r : Toplam indirgeyici kompozisyonu

olarak verilebilir. ϕ_e 'nin 1'den büyük olması karışımın yakıtça az, 1'den küçük olması yakıtça zengin 1'e eşit olması ise stokiyometrik olarak dengede olması demektir. Katalizörlerin hazırlanmasında stokiyometrik değerler kullanılmıştır. Örnek olarak LiAlO₂ sentezinde, LiNO₃, Al(NO₃)₃.9H₂O ve üre kullanıldığından indirgen elementler Li, Al, C ve H olup değerlilikleri sırası ile +1, +3, +4 ve +1'dir. Okside edici yani yükseltgen element ise sadece O olup değerliliği -2'dir. N ise nötraldir. Bu durumda toplam indirgen katsayısı yakıt için (CH₄ON₂) = (1x4)+(4x1)+(1x-2)+(2x0) = 6 olmaktadır. Yükseltgen katsayısı ise (LiNO₃ ve Al(NO₃)₃) = (1x1)+(1x0)+ (3x-2)+(1x3)+(3x0)+(9x-2) = -20'dir. Dolayısı ile ϕ_e =-20/-6=10/3 olarak bulunur. Yani LiAlO₂ sentezi için;

$$LiNO_{3} + Al(NO_{3})_{3} \cdot 9H_{2}O + \frac{10}{3}CH_{4}ON_{2} \rightarrow LiAlO_{2} + \frac{10}{3}CO_{2} + \frac{16}{3}N_{2} + \frac{47}{3}H_{2}O$$
(3.2)

denklemindeki stokiyometrik oranların kullanılması gerekmektedir. Bu hesaplamadan yola çıkarak hedeflenen miktarlarda LiNO₃, Al(NO₃)₃.9H₂O ve üre az miktarda ultra saf suda çözündürülmüş ve dayanıklı porselen kroze içinde 270°C'de ön ısıtılmış bir firina konulmuştur. Gaz çıkışının bitmesi ile elde edilen beyaz kabarık jel soğutulduktan ve öğütüldükten sonra 800°C'de 8 saat kalsine edilmiştir. LiMn₂O₄ ve LiCoO₂ katalizörlerinin hazırlanması için de benzer adımlar uygulanmıştır.

Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃ katalizörlerinin hazırlanması için geleneksel katı hal sentez yöntemi uygulanmıştır. Bu yöntem ile katalizörler uygun miktar Li₂CO₃ ile SiO₂, ZrO₂ veya TiO₂'nin akik havanda öğütme ve karıştırılmasından sonra 800°C'de 8 saat kalsine edilerek hazırlanmışlardır.

3.2.3. Sm₂O₃ Esaslı Katalizörlerin Hazırlanması

%1-2-4(ağ.)Mn/%2,5-5-10(ağ.)Na₂WO₄, %2-4-6(ağ.)Li ve %5-10-15(ağ.)CaO içerecek şekilde 9 farklı Sm₂O₃ esaslı katalizör ıslak emdirme yöntemi kullanılarak hazırlanmıştır. Mn/Na₂WO₄/Sm₂O₃ yapısındaki katalizörlerin hazırlanması için öncelikle içeriğinde ağırlıkça sırasıyla %1, %2 veya %4 Mn olacak şekilde Mn(NO₃)₂.4H₂O Sm₂O₃ üzerine emdirilip 120°C'de bir gece kurutma uygulanmıştır. Ardından elde edilen tozlara içeriğinde ağırlıkça sırasıyla %2,5, %5 veya %10 Na₂WO₄ olacak şekilde Na₂WO₄.2H₂O emdirilerek kurutulmuş ve 800°C'de 8 saat kalsine edilmiştir. Li/Sm₂O₃ ve CaO/Sm₂O₃ katalizörler de benzer şekilde hesaplanan miktarlarda LiNO₃ veya Ca(NO₃)₂.4H₂O emdirilerek kurutma işleminden sonra 800°C'de 8 saat kalsine edilerek hazırlanmışlardır.

3.3. KULLANILAN YÖNTEMLER

Katalizörlerin karakterizasyonu için XRD, BET yüzey alanı ve SEM analizleri gerçekleştirilmiştir. OCM reaksiyonlarının gerçekleştirilmesi için Mikroreaktör-GC sistemi kullanılmıştır.

3.3.1. X-ışını Kırınım (XRD) Ölçümleri

Hazırlanan katalizörlerin yapı tayinleri için İstanbul Üniversitesi İleri Analizler Laboratuarı'nda bulunan Rigaku D/Max-2200 marka XRD cihazı kullanılmıştır. 1,54 Å dalga boyuna sahip Cu/K_{α} ışını altında, 20 10-90° arasında çekim yapılmıştır.

3.3.2. Brunauer–Emmett–Teller (BET) Yüzey Alanı Ölçümleri

BET analizi, N₂ gibi genellikle korozif olmayan gazların çok katmanlı adsorbsiyonu ile relatif basınç arasında ilişki kurarak malzemelerin hassas bir şekilde yüzey alanı ölçümüne olanak sağlamaktadır. Katalizörlerin BET yüzey alanı ölçümleri Quantachrome marka Nova 3200e Model otomatik yüzey alanı ve gözenek boyutu analizörü ile gerçekleştirilmiştir. Adsorbat olarak N₂ gazı kullanılmıştır. Analizler -196°C'de sıvı azot ile 0,05-0,35 relatif kısmi basınç aralığında 7 farklı noktada ölçüm yapılarak gerçekleştirilmiştir. Analizler öncesinde katalizörler vakum altında 300°C'de 3 saat boyunca kurutulmuşlardır.

3.3.3. X-ışını fotoelektron spektroskopisi (XPS) Analizleri

X-ışını fotoelektron spektroskopisi (XPS) malzemenin yüzeyi ile ilgili olarak atomik ve moleküler bilgi sağlanması amacıyla kullanılan sayısal bir analiz tekniğidir. Çekirdekseviyelerinin incelenmesi ve bunu takiben yayılan çekirdek fotoelektronların analiz edilmesiyle numune yüzeyinin bileşimi ve elektrostatik seviyesi hakkında bilgi verir. Yüksek C₂ hidrokarbon verimi gösteren katalizörlerin kararlılık testleri öncesi ve sonrasında yüzey kompozisyonlarının belirlenmesi için XPS analizleri Thermo Scientific K-Alpha marka XPS cihazı ile gerçekleştirilmiştir. Analizler 400 µm spot genişliği altında, 1 ile 1361 eV enerji bandı arasında geniş tarama yapılarak elde edilmiştir.

3.3.4. Katalitik Aktivite, Seçimlilik ve Kararlılık Testlerinin Gerçekleştirilmesi

Katalizörlerin OCM reaksiyonu için aktivite, seçimlilik ve kararlılık testleri Mikroreaktör (CATLAB-Hiden Analytical)-GC (Agilent 7890A) sistemi ile gerçekleştirilmiştir. Mikroreaktör sisteminde kullanılan reaktörler OCM reaksiyonu için gaz faz reaksiyonları minimize etmesi amacıyla Şekil 3.1'de gösterildiği gibi tasarlanmıştır. Yüksek sıcaklıklarda (>700°C) CH₄, C₂H₄ ve C₂H₆'nın O₂ ile gaz faz reaksiyonları belirgin hale gelmeye başladığından dolayı reaksiyon ürünlerinin reaktörü hızla terk edebilmesi için katalizör yatağından sonra kuvars reaktörün iç çapı 1 mm'ye daraltılmıştır. Reaktör uzunlukları katalizör yatağı yerleştirildikten sonra fırının orta kısmında kalacak şekilde hesaplanmıştır.

Performans testleri öncesinde katalizörler 0,25-0,355 mm arasında pelet haline getirilmiştir. Aktivite ve seçimlilik testlerinde 200 mg katalizör, hem gaz faz reaksiyonların azaltılması hem de homojen ısı dağılımının sağlanması için toplam katalizör yatağı hacmi 0,5 ml olacak şekilde kuvars cips ile (0,25-0,355 mm) seyreltilmiş ve reaktör içerisine yerleştirilen kuvars yün üzerine yüklenmiştir. Böylelikle katalizör yoğunluklarının farklı olması neticesinde her katalizörde farklı olabilen yatak uzunlukları aynı seviyede tutulmuş ve performanslarının daha doğru bir şekilde karşılaştırılabilmesi mümkün olmuştur. Ayrıca piston akışlı davranışın sağlanması için reaktör çapının katalizör parçacık boyutundan en az 10 kat, katalizör yatak uzunluğunun ise en az 50 kat daha fazla olması gerektiğinden bu durum da sağlanmıştır. Performans testlerinden önce uygulanacak test şartlarında homojen gaz faz

reaksiyonlar gerçekleştirilmiştir. Bunun için katalizör yerine aynı miktarda kuvars cips yerleştirilmiştir. Kararlılık testleri için ise 400 mg katalizör kullanılmış olup kuvars cips ile seyreltme uygulanmamıştır. Tüm denemelerde reaksiyonların dengeye ulaşması için 3 saat beklenmiş ve ölçümler alınmıştır.

Şekil 3.1: OCM reaksiyonu için tasarlanan kuvars reaktörün ölçüleri

Başlangıç aşamasında gaz fazda, Mn/Na₂WO₄/SiO₂ ve Li/MgO katalizörü üzerinde CH₄/O oranı, oksidant tipi (O₂ veya N₂O), besleme hızı (GHSV) ve sıcaklık gibi OCM reaksiyonu için aktivite, seçimlilik ve verimi etkileyen parametreler incelenmiştir. Bu katalizörler ile elde edilen sonuçlar üzerinden sentezlenmiş olan diğer katalizörlerin

performans testleri, yukarıda belirtilen katalizörler ile en yüksek C₂ (etan ve etilen) veriminin elde edildiği şartlarda yapılmıştır. Denemeler şu şekilde gerçekleştirilmiştir;

- Oksidant tipi: Denemelerde oksidant olarak O₂ veya N₂O kullanılmıştır.
- CH₄/O oranı: Denemeler, oranlar 1/1, 1,5/1, 2/1, 3/1 ve 4/1 olacak şekilde 22500 L/kgsa besleme hızı ve 780°C sıcaklık altında gerçekleştirilmiştir. 200 mg katalizör kullanılmış ve kuvars cips ile 0,5 cm³'e seyreltilmiştir. Gaz karışımı O₂ kullanıldığında %40 oranında N₂, N₂O kullanıldığında %40 oranında He içermiştir. En yüksek C₂ veriminin elde edildiği CH₄/O oranı sabit tutularak bir sonraki deneme gerçekleştirilmiştir.
- Besleme hızı (GHSV) etkisi: Denemeler besleme hızları 7500-15000-22500-30000-37500 L/kgsa olacak şekilde optimum CH₄/O oranında ve 780°C'de gerçekleştirilmiştir. En yüksek C₂ veriminin elde edildiği besleme hızı sabit tutularak bir sonraki deneme gerçekleştirilmiştir.
- Sıcaklık etkisi: Denemeler 5 farklı sıcaklık altında (740-760-780-800-820°C) optimum CH₄/O oranı ve besleme hızı altında gerçekleştirilmiştir. Bu denemenin sonunda reaksiyon sonuçları incelenerek sentezlenmiş diğer katalizörler için analiz şartları belirlenmiştir.

Yapılan incelemeler sonucunda sıcaklığın etkisinin katalizöre göre farklı olduğu tespit edildiğinden Li esaslı ve Sm₂O₃ esaslı katalizörlerin performans testleri sabit CH₄/O oranı ve besleme hızında 740-820°C sıcaklık aralığında gerçekleştirilmiştir.

Son olarak yüksek performans gösteren katalizörlerin aktivite ve seçimliliklerinin zamana bağlı değişikliklerinin incelenmesi için kararlılık testleri gerçekleştirilmiştir. Testler 8 saat boyunca O_2 veya N_2O ile en yüksek C_2 verimliliğinin elde edildiği şartlarda yapılmıştır.

3.3.5.1. Reaksiyon Sistemi Konfigürasyonu, GC Kalibrasyonu ve Hesaplamalar

Sistem 3 ana komponentten oluşmaktadır. Bunlar; gaz besleme sistemi, CATLAB mikroreaktör sistemi ve GC sistemidir (Şekil 3.2).

Şekil 3.2: Mikroreaktör-GC sistemi: 1-Mikroreaktör 2- Kütle akış kontrolörleri 3-GC 4-Gazlar Gazlar bilgisayar vasıtasıyla otomatik kontrol edilebilen, kalibre edilmiş kütle akış konrol edicilerinden istenilen miktarlarda geçirilerek gönderilebilmektedir. Bu gazlar mikroreaktör sisteminde bulunan 3 yollu vana ile reaktör kısmına veya direkt GC'ye gönderilebilmektedir. Mikroreaktör-MS çıkışının kapatılıp, havalandırma çıkışlarına 3 yollu vana ve 1/8 inch paslanmaz çelik boru bağlanarak çıkış gazlarının tamamının GC'ye yönlendirilmesi sağlanmıştır. Reaksiyon sonunda açığa çıkan suyun yoğunlaşmasını engellemek için borular ısıtıcı bant ile sarılarak belirli sıcaklıkta tutulmuştur. Bu borulardan geçen gaz karışımı -7°C'de tutulan etilen glikol banyosu içerisine daldırılmış cam kondenserden geçirilerek açığa çıkan suyun GC kolonlarına zarar vermesini engellemek için karışımdan ayrılması sağlanmıştır. Gaz karışımı gaz enjeksiyon sistemi bulunan GC ile analiz edilmiştir.

GC sistemi 6 dakika içerisinde tüm rafineri çıkış gazlarını analiz edebilecek 5 kolon, 2 TCD, 1 FID dedektör ve birçok vanadan oluşan özel bir konfigürasyona sahiptir.

Denemeler öncesinde GC kalibrasyonu gaz karışımlarının analizi ile yapılmıştır. Bunun için reaksiyona gönderilen veya reaksiyonda oluşabilecek her bir komponent N_2 veya He ile belirli yüzdelerde karıştırılarak analiz edilmiş ve elde edilen sonuçlara göre N_2 veya He'ye göre relatif cevap faktörleri (RRF) bulunmuştur. İki farklı inert gaza göre analiz yapılmasının nedeni, reaksiyon esnasında N_2O kullanılması durumunda dissosiyasyonu veya dekompozisyonu sonucu N_2 ve O_2 'nin oluşması neticesinde N_2 'nin inert gaz olarak kullanılamamasıdır. Bu nedenle N_2O ile gerçekleştirilen denemelerde inert gaz olarak He kullanılmıştır. Tablo 3.1'de her bir komponentin hem N_2 hem de He'ye göre relatif cevap faktörleri verilmiştir.

Gazlar –	Referans (Dahili Standart)	
	N_2	Не
CH_4	0,08	0,26
O_2	0,87	2,8
N_2O	-	3,53
N_2	1	3,28
He	-	1
H_2	0,49	1,56
СО	1,16	3,86
CO_2	0,87	3,32
C_2H_6	0,14	0,51
C_2H_4	0,16	0,49
C_3H_8	0,23	0,78
C ₃ H ₆	0,26	0,79

Tablo 3.1: Analiz edilen gazların N2 ve He'ye göre relatif cevap faktörleri

Kütle akış kontrol edicileri standart sıcaklık ve basınca (STP) göre yani 25°C'ye ve 1 atm'ye göre kalibre edilmiş olup CATLAB yazılımı ile kontrol edilmektedir. Yapılan hesaplar her zaman STP'ye göre verilmiştir. Çünkü gazların mol sayısı sıcaklık ve basınca göre değiştiğinden belirli bir referans alınmak zorundadır.

 N_2 ve He reaksiyona girmediğinden dolayı reaksiyon sonrasında mol sayısı değişmemektedir. Bu özellikleri kullanılarak diğer komponentlerin mol sayıları aşağıdaki formül ile bulunmuştur;

$$n_{i(STP)} = \frac{A_i \times n_{N_2 (He)}}{A_{N_2 (He)} \times RRF}$$
(3.3)

 $n_{i(STP)}$: i komponentinin STP'deki mol sayısı

 $n_{N_2(He)}$: N₂ veya He'nin STP'deki mol sayısı

A_i : i komponentine ait GC ile ölçülen pik alanı

 $A_{N_2(\text{He})}$: N_2 veya He'ye ait GC ile ölçülen pik alanı

RRF : i komponentinin N2 veya He'ye göre cevap faktörü

Her bir komponentin reaksiyon öncesi ve reaksiyon sonrası mol sayıları bulunduktan sonra dönüşüm ve seçimlilikler;

CH₄ Dönüşümü (%);

$$X_{CH_4} = \frac{n_{CO} + n_{CO_2} + 2n_{C_2H_4} + 2n_{C_2H_6} + 3n_{C_3H_6} + 3n_{C_3H_8}}{n_{CH_4} + n_{CO} + n_{CO_2} + 2n_{C_2H_4} + 2n_{C_2H_6} + 3n_{C_3H_6} + 3n_{C_3H_8}} \times 100$$
(3.4)

O2 veya N2O Dönüşümü (%);

$$X_{O_2(N_2O)} = \frac{n_{CO} + 2n_{CO_2} + n_{H_2O}}{2n_{O_2}(n_{N_2O}) + n_{CO} + 2n_{CO_2} + n_{H_2O}} \times 100$$
(3.5)

CO veya CO₂ Seçimliliği (%);

$$S_{CO(CO_2)} = \frac{n_{CO}(n_{CO_2})}{n_{CO} + n_{CO_2} + 2n_{C_2H_4} + 2n_{C_2H_6} + 3n_{C_3H_6} + 3n_{C_3H_8}} \times 100$$
(3.6)

C₂H₄ ve C₂H₆ Seçimliliği (%);

$$S_{C_{2}H_{4}(C_{2}H_{6})} = \frac{2n_{C_{2}H_{4}}(2n_{C_{2}H_{6}})}{n_{CO}+n_{CO_{2}}+2n_{C_{2}H_{4}}+2n_{C_{2}H_{6}}+3n_{C_{3}H_{6}}+3n_{C_{3}H_{8}}} \times 100$$
(3.7)

C₃H₆ ve C₃H₈ Seçimliliği (%);

$$S_{C_{3}H_{6}(C_{3}H_{8})} = \frac{3n_{C_{3}H_{6}}(3n_{C_{3}H_{8}})}{n_{CO}+n_{CO_{2}}+2n_{C_{2}H_{4}}+2n_{C_{2}H_{6}}+3n_{C_{3}H_{6}}+3n_{C_{3}H_{8}}} \times 100$$
(3.8)

C₂ Seçimliliği (%);

$$S_{C_2} = S_{C_2H_4} + S_{C_2H_6}$$
(3.9)

C₂ Verimliliği (%);

$$Y_{C_2} = X_{CH_4} x S_{C_2}$$
(3.10)

olacak şekilde hesaplanmıştır. Formüllerdeki kısaltmalar;

 n_{CH_4} : Reaksiyon sonucu kalan CH₄'ün STP'deki mol sayısı

 n_{O_2} : Reaksiyona girmeden kalan O₂'nin STP'deki mol sayısı

 $n_{\rm N_2O}$: Reaksiyona girmeden kalan $\rm N_2O$ 'nun STP'deki mol sayısı

- n_{CO} : Reaksiyon sonucu oluşan CO'nun STP'deki mol sayısı
- n_{CO_2} : Reaksiyon sonucu oluşan CO₂'nin STP'deki mol sayısı
- $n_{C_2H_4}$: Reaksiyon sonucu oluşan C_2H_4 'ün STP'deki mol sayısı
- $n_{C_2H_6}$: Reaksiyon sonucu oluşan C_2H_6 'nın STP'deki mol sayısı
- $n_{C_3H_6}$: Reaksiyon sonucu oluşan C_3H_6 'nın STP'deki mol sayısı
- $n_{C_3H_8}$: Reaksiyon sonucu oluşan C_3H_8 'in STP'deki mol sayısı
- n_{H_2O} : Reaksiyon sonucu oluşan H_2O 'nun STP'deki mol sayısı

olarak verilmiştir. Oluşan suyun mol sayısı oksijen balansından yola çıkılarak teorik olarak hesaplanmıştır. Reaksiyonda oksijen mol balansı sağlanması gerektiğinden;

 $n_{H_2O} = 2n_{O_2}(n_{N_2O})_{(giren)} - n_{CO} - 2n_{CO_2} - 2n_{O_2}(n_{N_2O})_{(cikan)}$

formülü kullanılarak reaksiyon sonucu açığa çıkan su miktarı hesaplanmıştır. Analizlerde karbon ve hidrojen balansı \pm %5 olarak sağlanmıştır.

4. BULGULAR

4.1. BET YÜZEY ALANI SONUÇLARI

Hazırlanan tüm katalizörlere ait BET yüzey alanı sonuçları Tablo 4.1'de sunulmuştur.

Katalizör	BET Yüzey Alanı (m²/g)
MgO (destek)	23,5
4Li/MgO	5,3
SiO ₂ (Silika jel-destek)	293
2Mn/5Na ₂ WO ₄ /SiO ₂	6,9
LiAlO ₂	50
LiMn ₂ O ₄	5,1
LiCoO ₂	5,5
Li ₄ SiO ₄	3,9
Li ₂ ZrO ₃	3,7
Li ₂ TiO ₃	3,6
1Mn/2,5Na ₂ WO ₄ /Sm ₂ O ₃	5,3
$2Mn/5Na_2WO_4/Sm_2O_3$	5
$4Mn/10Na_2WO_4/Sm_2O_3$	5,8
Sm_2O_3	5,3
2Li/Sm ₂ O ₃	4,7
4Li/Sm ₂ O ₃	4,5
6Li/Sm ₂ O ₃	4,9
5CaO/Sm ₂ O ₃	5,2
10CaO/Sm ₂ O ₃	5,1
15CaO/Sm ₂ O ₃	4,8

Tablo 4.1: Katalizörlere ait BET yüzey alanı sonuçları (m²/g)

MgO destek üzerine LiNO₃'ün yüklenmesi ve 800°C'de 8 saat kalsinasyonu sonucu yüzey alanının 23,5 m²/g'dan 5,3 m²/g'a düşmüştür. Bu durum sinterleşmeyi kolaylaştırıcı etkisi bilinen Li₂O oluşumu sonucu katalizörde meydana gelen sinterleşme ve yüzeyin yeniden düzenlenmesi ile destek gözeneklerinin çöktüğünü veya tıkandığını göstermektedir. Benzer şekilde amorf silika jel (SiO₂) üzerine Mn(NO₃)₂.4H₂O ve Na₂WO₄.2H₂O tuzlarının yüklenmesi ve kalsinasyonu sonucu yüzey alanı 293 m²/g'dan 6,9 m²/g'a düşmüştür. Yüksek seviyedeki bu düşüş yükleme miktarı ve gözeneklerin tıkanmasından ziyade destek yapısının değişmiş olabileceğini göstermektedir. XRD sonuçları bu durumu doğrular niteliktedir.

Üre-nitrat yakma metodu ile hazırlanmış olan LiAlO₂'nun yüzey alanı 50 m²/g olurken, LiMn₂O₄ ve LiCoO₂ katalizörlerinin yüzey alanları sırası ile 5,1 m²/g ve 5,5 m²/g olmuştur. Katı hal sentez yöntemi ile hazırlanan Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃'ün yüzey alanları birbirlerine oldukça yakın olup 3,6-3,9 m²/g aralığında değişmiştir. Üre-nitrat yakma tekniği ile hazırlanan katalizörlerin yüzey alanı katı hal sentez yöntemine göre daha yüksek olmuştur.

 Sm_2O_3 esaslı katalizörler üzerine farklı tuzların farklı miktarlarda yüklenmesi ile yüzey alanlarında ciddi değişiklik gözlemlenmemiştir (4,5-6 m²/g). Bu durum Sm_2O_3 gözenekliliğinin yükleme miktarlarından çok etkilenmediğini göstermektedir.

Literatürde yapılan araştırmalarda, OCM reaksiyonu için katalizör gözenekliliğinin C₂ seçimliliğini ciddi oranda etkilediği gözlemlenmiş ve gözenek çaplarının artması ile C₂ seçimliliğinin genellikle yükseldiği tespit edilmiştir [32,72]. Bu durumda gözeneklerin içerisinde oluşan CH₃· radikallerinin gaz faza difüzyonun daha kolay olması neticesinde C₂ ürün oluşumunun destekleneceği düşünülmektedir. Yani BET yüzey alanı artışı ile gözenek çapları düşeceğinden dolayı kütle transfer sınırlamaları ortaya çıkacak ve gözenek içerisinde oluşan C₂ türleri gaz faza kolay geçemeyeceğinden dolayı bu türlerin CO_x ürünlerine dönüşümü artacak ve dolayısı ile C₂ seçimliliği azalacaktır. Bu nedenle hazırlanacak katalizörlerin yüksek yüzey alanı ve gözenek çaplarına sahip olması hem aktiviteyi hem de seçimliği artıracağından C₂ verimi de artırılmış olacaktır. Bu bağlamda, sentezlenen katalizörlerin neredeyse tamamı literatürle uyumlu olarak OCM reaksiyonu için uygun BET yüzey alanına sahip olmuşlardır.

4.2. XRD SONUÇLARI

4.2.1. 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO Katalizörüne Ait XRD Sonuçları

Şekil 4.1'de verilen XRD difraktogramına göre $2Mn/5Na_2WO_4/SiO_2$ katalizörünün başlıca α -kristobalit (JCPDS 82-1232), kuvars (JCPDS 78-1252), Mn_2O_3 (JCPDS 41-1442) ve Na_2WO_4 (JCPDS 40-0187) yapısından oluştuğu tespit edilmiştir. Literatürde, amorf SiO₂'den α -kristobalite geçişin Na varlığında çok daha düşük sıcaklıklarda gerçekleştiği bildirilmiş [36] ve ayrıca WO_4^{-2} iyonlarının sodyum ve mangan silikat oluşumunu engellediği belirlenmiştir [43]. Benzer şekilde, sentezlenen katalizörde başlangıçta amorf yapıda olan SiO₂'nin (silika jel) 800°C'deki kalsinasyon işlemi esnasında kristalin yapıdaki α -kristobalite ve kuvarsa dönüştüğü tespit edilmiştir. Ayrıca sodyum ve mangan silikat oluşumu gözlemlenmemiştir. Elde edilen sonuç katalizörün başarı ile sentezlendiğini göstermektedir.

Şekil 4.1: 2Mn/5Na₂WO₄/SiO₂ katalizörüne ait XRD difraktogramı

Şekil 4.2'de 4Li/MgO katalizörüne ait XRD difraktogramı verilmiştir. Katalizör yapısında başlıca MgO (JCPDS 77-2179) ve Li₂CO₃ (JCPDS 83-1454) fazları belirlenmiştir. Li₂O'in önemli bir kısmı MgO ile katı çözelti oluşturduğundan dolayı tespit edilememiştir [74].

Şekil 4.2: 4Li/MgO katalizörüne ait XRD difraktogramı

4.2.2. Li Esaslı Katalizörlere ait XRD Sonuçları

Şekil 4.3: LiAlO₂ katalizörüne ait XRD difraktogramı

Şekil 4.4: LiMn₂O₄ katalizörüne ait XRD difraktogramı

Şekil 4.5: LiCoO₂ katalizörüne ait XRD difraktogramı

2Θ (°)

Şekil 4.7: Li₂ZrO₃ katalizörüne ait XRD difraktogramı

Şekil 4.8: Li₂TiO₃ katalizörüne ait XRD difraktogramı

LiAlO₂, LiMn₂O₄, LiCoO₂, Li₄SiO₄, Li₂ZrO₃, Li₂TiO₃ katalizörlerine ait XRD sonuçları sırası ile Şekil 4.3, 4.4, 4.5, 4.6, 4.7 ve 4.8'de verilmiştir. İki farklı yöntem kullanılarak hazırlanan Li esaslı katalizörlerin öngörüldüğü şekilde başlıca LiAlO₂ (JCPDS 73-1338), LiMn₂O₄ (JCPDS 88-1026), LiCoO₂ (JCPDS 50-0653), Li₄SiO₄ (JCPDS 37-1472), Li₂ZrO₃ (JCPDS 33-0843) ve Li₂TiO₃ (JCPDS 33-0843) fazlarını içerdiği ve başarı ile sentezlendiği görülmüştür.

4.2.3. Sm₂O₃ Esaslı Katalizörlere Ait XRD Sonuçları

Sm₂O₃, 1Mn/2,5Na₂WO₄/Sm₂O₃, 2Mn/5Na₂WO₄/Sm₂O₃, 4Mn/10Na₂WO₄/Sm₂O₃, 2Li/Sm₂O₃, 4Li/Sm₂O₃, 6Li/Sm₂O₃, 5CaO/Sm₂O₃, 10CaO/Sm₂O₃ ve 15CaO/Sm₂O₃ katalizörlerine ait XRD sonuçları Şekil 4.9 ve Şekil 4.18 arasında verilmiştir.

Hazır olarak temin edilen Sm_2O_3 katalizörüne ait XRD sonucu Şekil 4.9'da verilmiştir. Farklı oranlarda Mn ve Na_2WO_4 içeren Sm_2O_3 esaslı katalizörlerde tespit edilen fazlar Mn_2O_3 (JCPDS 41-1442), Na_2WO_4 (JCPDS 40-0187) ve Sm_2O_3 (JCPDS 84-1878) olmuştur. Mn ve Na_2WO_4 içeriğinin artması ile bu fazlara ait piklerin şiddeti de artış göstermiş ve Sm_2O_3 yapısında değişim gözlemlenmiştir. Bu durum yeni bir fazın oluşmuş olabileceğini göstermektedir ancak çakışma dolayısı ile tespit edilememiştir.

Şekil 4.10: 1Mn/2,5Na₂WO₄/Sm₂O₃ katalizörüne ait XRD difraktogramı

Şekil 4.11: 2Mn/5Na2WO4/Sm2O3 katalizörüne ait XRD difraktogramı

Şekil 4.12: 4Mn/10Na2WO4/Sm2O3 katalizörüne ait XRD difraktogramı

Şekil 4.13: $2Li/Sm_2O_3$ katalizörüne ait XRD difraktogramı

Şekil 4.14: 4Li/Sm2O3 katalizörüne ait XRD difraktogramı

Şekil 4.15: 6Li/Sm₂O₃ katalizörüne ait XRD difraktogramı

Ağırlıkça %2, %4 ve %6 Li içeren Sm₂O₃ katalizörlerde sadece SmLiO₂ (JCPDS 73-1061) ve Sm₂O₃ fazları tespit edilmiştir. Elde edilen sonuçlar, Li katkılaması ve kalsinasyon sonrasında Li₂O ve Sm₂O₃'in katı hal reaksiyonu verdiğini ve Sm₂O₃ yüzeyinde SmLiO₂ yapısının oluştuğunu göstermektedir. Li yüklemesinin artırılması ile SmLiO₂ fazına ait pik şiddetlerinde artış meydana gelmiştir. Bu durum Li içeriğindeki artışla SmLiO₂ miktarının da arttığını göstermektedir. Ayrıca ağırlıkça %6 Li içeren katalizörde, sadece SmLiO₂ yapısının oluşması için gereken teorik miktarın üstünde yükleme yapılmasına rağmen XRD ile Li₂O fazının tespit edilememesi, Li₂O'in SmLiO₂ üzerinde oldukça ufak ve homojen bir şekilde dağılmış olabileceğini ortaya koymaktadır. Yani katalizörün Li₂O-SmLiO₂-Sm₂O₃ sıralaması ile çok katmanlı bir yapıda olduğu söylenebilir.

Farklı oranlarda CaO yüklenmiş Sm₂O₃ esaslı katalizörlerin XRD sonuçlarına göre yapılarında tespit edilen fazlar CaO (JCPDS 82-1691) ve Sm₂O₃ olmuştur. CaO miktarındaki artış ile CaO'ya ait pik şiddetinde artış gözlemlenmiştir. Sm₂O₃ yapısında herhangi bir değişiklik görülmemiştir.

Şekil 4.17: 10CaO/Sm₂O₃ katalizörüne ait XRD difraktogramı

Şekil 4.18: 15CaO/Sm₂O₃ katalizörüne ait XRD difraktogramı

4.3. OCM REAKSİYONU İÇİN REAKSİYON KOŞULLARININ ETKİSİ VE KATALİTİK PERFORMANSLARIN İNCELEMESİ

OCM reaksiyonu üzerinde farklı parametrelerin incelenmesi ve sentezlenmiş olan yeni katalizörlerin performanslarının sınanacağı en uygun şartları belirleyebilmek için literatürde yüksek performans gösterdiği bilinen 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörleri kullanılmıştır. Ayrıca reaksiyonlar, aynı şartlar kullanılarak katalizör olmadan gerçekleştirilmiş ve gaz faz reaksiyonların (homojen reaksiyonlar) katalitik sonuçlar üzerindeki etkisi de incelenmiştir.

4.3.1. CH₄/O Oranı Etkisi

Oksidant olarak O₂'nin kullanıldığı gaz faz, 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerine ait reaksiyon sonuçları Şekil 4.19, 4.20 ve 4.21'de sunulmuştur. Reaksiyonlar hacimce %40 inert gaz içeren besleme akımının 22500 L/kgsa hızla kuvars cips veya 0,5 ml katalizör yatağı üzerine gönderilmesiyle 780°C'de gerçekleştirilmiştir. CH₄/O oranı 1/1, 1,5/1, 2/1, 3/1 ve 4/1 olacak şekilde inceleme yapılmıştır. Oksidant olarak O₂ veya N₂O kullanılmıştır. Reaksiyonlar başlatıldıktan

sonra reaksiyonların dengeye ulaşması için 3 saat beklenmiş ve ardından ölçümler alınmıştır.

Şekil 4.19: Gaz faz OCM reaksiyonu üzerinde CH₄/O oranı etkisi (Katalizör: Yok, Oksidant: O₂, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{N2}:0,4)

Gaz faz reaksiyon sonuçları incelendiğinde CH₄ dönüşümünün reaksiyon koşullarında oldukça düşük olduğu (%2,2) ve artan CH₄/O oranı ile azalarak %1,5 seviyelerine düştüğü bulunmuştur. O₂ dönüşümü oran artışı ile %4,2'den %11,7'ye artış göstermiştir. C₂ seçimliliğinin artan CH₄/O oranı ile %40 seviyelerinden azalarak %22 seviyelerine düştüğü tespit edilmiştir. Dolayısı ile C₂ verimi de oldukça düşük seviyelerde olmuş ve CH₄/O oranının artması ile %0,9 seviyelerinden %0,3 seviyelerine düşüş gerçekleşmiştir. C₂H₄/C₂H₆ oranı ise CH₄/O oranı 1 olduğunda 0,15 civarında iken CH₄/O oranı 3 ve 4'e yükseldiğinde 0 olmuştur. Yani sadece C₂H₆ oluşumu gerçekleşmiştir. Elde edilen sonuçlar incelenen reaksiyon koşullarında homojen faz reaksiyonların ihmal edilebilir seviyede olduğunu göstermiştir. En yüksek C₂ verimi CH₄/O=1'de elde edilmiştir. 2Mn/5Na₂WO₄/SiO₂ katalizörü üzerinde CH₄/O oranı etkisi Şekil 4.20'de sunulmuştur. CH₄ dönüşümü artan CH₄/O oranı ile %15,2'den %7,6'ya kadar düşüş göstermiştir. O₂ dönüşümü %28,3'ten %48'e yükselmiştir. C₂ seçimliliği ise artan CH₄/O oranı ile önce %58,2'den %66,2'ye kadar yükselmiş ve sonrasında %65,2'ye düşmüştür. C₂ verimi CH₄ dönüşümüne benzer şekilde artan oranlar ile düşüş eğilimi göstererek %8,9'dan %5 civarına düşmüştür. C₂H₄/C₂H₆ oranı da 0,6'dan 0,3'e düşüş göstermiştir. En yüksek C₂ verimi CH₄/O=1'de elde edilmiştir.

Şekil 4.20: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde CH₄/O oranı etkisi (Katalizör:200 mg, Oksidant: O₂, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{N2}:0,4)

4Li/MgO katalizörüne ait sonuçlar Şekil 4.21'de verilmiştir. Yine CH₄ dönüşümü artan CH₄/O oranı ile azalma göstermiş ve %9,4'ten %3,2'ye düşmüştür. O₂ dönüşümünün net bir davranış göstermediği ve %12 ile %16 arasında değiştiği gözlemlenmiştir. C₂ seçimliliği ise CH₄/O=2 olana kadar %52'den %56,1'e yükselmiş ve ardından %50,4'e kadar düşüş yaşanmıştır. C₂ verimi ve C₂H₄/C₂H₆ oranı artan CH₄/O oranı ile düşüş

göstermiştir. C₂ verimi %4,9'dan %1,6'ya düşerken C₂H₄/C₂H₆ oranı 0,37'den 0,15'e düşmüştür. Yine en yüksek C₂ verimi CH₄/O=1'de elde edilmiştir.

Şekil 4.21: OCM reaksiyonu için 4Li/MgO üzerinde CH₄/O oranı etkisi (Katalizör:200 mg, Oksidant: O₂, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{N2}:0,4)

Elde edilen sonuçlar karşılaştırıldığında artan CH₄/O oranı ile genel olarak CH₄ dönüşümü, C₂ verimi ve C₂H₄/C₂H₆ oranının azaldığı görülmüştür. Ancak C₂ seçimliliğinin gaz faz reaksiyon olması durumunda azaldığı, katalizör varlığında ise belirli bir seviyeye kadar arttığı ve sonrasında azaldığı tespit edilmiştir. Ayrıca C₂H₄/C₂H₆ oranının katalizör kullanılması durumunda gaz faza kıyasla daha yüksek olduğu belirlenmiştir. Oksidant olarak O₂ kullanıldığı durumda katalizörlü veya katalizörsüz en yüksek C₂ veriminin CH₄/O=1 oranında elde edilebildiği bulunmuştur. Bu şartlarda 2Mn/5Na₂WO₄/SiO₂ katalizörü ile C₂ verimi %8,9 olurken 4Li/MgO katalizörü ile verim %4,9 olmuştur. Her durumda CH₄ dönüşümü, C₂ seçimliliği, C₂ verimi ve C₂H₄/C₂H₆ oranı sıralaması 2Mn/5Na₂WO₄/SiO₂>4Li/MgO>gaz faz şeklinde olmuştur. Oksidant olarak N₂O'nun kullanıldığı gaz faz, 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerine ait reaksiyon sonuçları Şekil 4.22, 4.23 ve 4.24'de sunulmuştur.

Gaz faz OCM reaksiyonuna ait sonuçlar incelendiğinde CH₄ dönüşümünün artan CH₄/O oranı ile %2,7'den 0,9'a düştüğü bulunmuştur. N₂O dönüşümü oran 2 oluncaya kadar %2,7'den %2,2'ye düşmüş, oranın daha da artması ile %3,1'e yükselmiştir. C₂ seçimliliği %91-92 civarında olup CH₄/O oranı ile çok fazla değişmediği tespit edilmiştir. C₂ verimliliği ve C₂H₄/C₂H₆ oranının ise artan CH₄/O ile azaldığı görülmüştür. C₂ verimi %2,5'ten %0,8'e düşerken C₂H₄/C₂H₆ oranı da 0,23'ten 0,14'e düşmüştür. En yüksek C₂ verimi CH₄/O=1 oranında elde edilmiştir.

Şekil 4.22: Gaz faz OCM reaksiyonu üzerinde CH₄/O oranı etkisi (Katalizör:Yok, Oksidant: N₂O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{He}:0,4)

Oksidant olarak N₂O kullanılması durumunda $2Mn/5Na_2WO_4/SiO_2$ katalizörü üzerinde CH₄/O oranı etkisi Şekil 4.23'te sunulmuştur. CH₄ dönüşümü artan CH₄/O oranı ile %3,5'den %1,1'e kadar düşüş göstermiştir. N₂O dönüşümü oran 3 oluncaya kadar %5,1'den %4,2'ye düşmüş, oranın daha da artması ile %5,5'e yükselmiştir. C₂

seçimliliği ise CH₄/O oranı ile pek değişmemiş ve %89-90 civarında olduğu bulunmuştur. C₂ verimi artan CH₄/O oranı ile %3,1'den %1 civarına düşmüştür. C_2H_4/C_2H_6 oranı da 0,25'den 0,13'e düşüş göstermiştir. En yüksek C₂ verimi yine CH₄/O=1'de elde edilmiştir.

Oksidant olarak N₂O kullanılması durumunda 4Li/MgO katalizörüne ait sonuçlar Şekil 4.24'de verilmiştir. Yine CH₄ dönüşümü artan CH₄/O oranı ile azalma göstermiş ve %3,8'den %1'e düşmüştür. N₂O dönüşümü oran 2 oluncaya kadar %4,7'den %2'ye düşmüş, oranın daha da artması ile %3,1'e yükselmiştir.C₂ seçimliliği ise %95'ten %93,5'e kadar düşmüştür. C₂ verimi ve C₂H₄/C₂H₆ oranı artan CH₄/O oranı ile düşüş göstermiştir. C₂ verimi %3,6'dan %0,9'a düşerken C₂H₄/C₂H₆ oranı 0,24'ten 0,13'e düşmüştür. En yüksek C₂ verimi CH₄/O=1'de elde edilmiştir.

Şekil 4.23: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde CH₄/O oranı etkisi (Katalizör:200 mg, Oksidant: N₂O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{He}:0,4)

N₂O kullanılarak elde edilen tüm veriler incelendiğinde, katalizörler ile seçimliliklerin gaz faza kıyasla 2Mn/5Na₂WO₄/SiO₂ katalizör kullanılması durumunda biraz azaldığı

ancak 4Li/MgO katalizör ile arttığı bulunmuştur. Dönüşümlerin bir miktar artması C_2 verimlerinin de gaz faz reaksiyonlara kıyasla artmasına yol açmıştır. C_2H_4/C_2H_6 oranlarında önemli bir değişiklik olmadığı görülmüştür.

Oksidant tipinin etkisinin incelenmesi için O_2 veya N_2O kullanılması durumunda elde edilen tüm sonuçlar göz önüne alındığında, eşit CH_4/O oranlarında gaz faz reaksiyon için CH_4 dönüşümlerinin birbirlerine yakın olduğu ancak elde edilen C_2 seçimliliklerinin N_2O ile çok daha yüksek olduğu tespit edilmiştir. Bu durumda C_2 verimlilikleri de O_2 'ye kıyasla daha yüksek olmuştur. Ayrıca C_2H_4/C_2H_6 oranlarının da daha yüksek olduğu bulunmuştur.

Şekil 4.24: OCM reaksiyonu için 4Li/MgO üzerinde CH₄/O oranı etkisi (Katalizör:200 mg, Oksidant: N₂O, GHSV: 22500L/kgsa, Sıcaklık:780°C, y_{He}:0,4)

Katalizörlü ortamda ise O₂ kullanılması durumunda CH₄ dönüşümleri N₂O'ya kıyasla daha yüksek lakin C₂ seçimlilikleri daha düşük bulunmuştur. CH₄ dönüşümlerinin daha yüksek olmasından dolayı C₂ verimlilikleri de O₂ kullanılması durumunda daha yüksek olmuştur. Ayrıca C₂H₄/C₂H₆ oranlarının da daha yüksek olduğu bulunmuştur.

Gaz faz veya katalizörlü ortamda en yüksek C_2 verimleri $CH_4/O=1$ oranında elde edildiğinden bu oran ve sıcaklık sabit tutularak besleme hızının etkisi incelenmiştir.

4.3.2. Besleme Hızı (GHSV) Etkisi

 O_2 ile yapılan reaksiyonların sonuçları Şekil 4.25, 4.26 ve 4.27'de verilmiştir. Denemeler CH₄/O=1 oranında ve 780°C'de besleme hızları 7500, 15000, 22500, 30000 ve 37500 L/kgsa olacak şekilde gerçekleştirilmiştir.

Şekil 4.25: Gaz faz OCM reaksiyonu üzerinde besleme hızı etkisi (Katalizör:Yok, Oksidant: O₂, CH₄/O:1, Sıcaklık:780°C, y_{N2}:0,4)

Gaz faz reaksiyonlar için besleme hızının 7500 L/kgsa'dan 37500 L/kgsa'ya çıkarılması ile CH₄ dönüşümünün %8'den %1,4'e düştüğü tespit edilmiştir. O₂ dönüşümü artan besleme hızı ile %23,6'dan %1,7'ye kadar azalmıştır. C₂ seçimliliği ise besleme hızı 22500 L/kgsa oluncaya kadar artmış ve ardından düşüş göstermiştir. C₂ verimi artan besleme hızı ile %2,3'ten %0,4'e düşmüştür. C₂H₄/C₂H₆ oranı da artan besleme hızı ile 0,25 civarından 0'a kadar düşüş göstermiştir. En yüksek C₂ verimi 7500 L/kgsa besleme hızı altında elde edilmiştir. 2Mn/5Na₂WO₄/SiO₂ katalizörüne ait besleme hızı etkisi sonuçları Şekil 4.26'da verilmiştir. Besleme hızındaki artış ile CH₄ dönüşümü %36,9'dan %7,1'e düşerken, C₂ seçimliliği %44,3'ten %59'a yükselmiştir. O₂ dönüşümü artan besleme hızı ile %94'ten %12,4'e kadar azalmıştır. C₂ verimi de %16,3'ten %4,2'ye düşmüştür. C₂H₄/C₂H₆ oranının 1,8 civarından 0,25'e düştüğü tespit edilmiştir. En yüksek C₂ verimi %16,3 ile 7500 L/kgsa besleme hızı altında elde edilmiştir.

Şekil 4.26: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: O₂, CH₄/O:1, Sıcaklık:780°C, y_{N2}:0,4)

4Li/MgO katalizörüne ait besleme hızı etkisi sonuçları Şekil 4.27'de sunulmuştur. Besleme hızının 7500 L/kgsa'dan 37500 L/kgsa'ya çıkarılması ile CH₄ dönüşümü %21,8'den %5,5'e düşmüştür. O₂ dönüşümü artan besleme hızı ile %48,3'ten %8,1'e kadar azalmıştır. C₂ seçimliliği ise başlangıçta %40,7 olurken artarak 30000 L/kgsa besleme hızında %50,2 ile en yüksek seviyeye ulaşmış ve ardından az bir düşüş göstermiştir (%49). C₂ verimliliği artan besleme hızıyla giderek azalmış ve %8,9'dan %2,7'ye düşüş gerçekleşmiştir. C₂H₄/C₂H₆ oranının ise 1,52'den 0,2'ye düştüğü

gözlemlenmiştir. En yüksek C₂ verimi %8,9 ile 7500 L/kgsa besleme hızı altında elde edilmiştir.

Şekil 4.27: OCM reaksiyonu için 4Li/MgO üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: O₂, CH₄/O:1, Sıcaklık:780°C, y_{N2}:0,4)

Oksidant olarak O_2 'nin kullanılması ile elde edilen sonuçlar incelendiğinde artan besleme hızı ile CH₄ dönüşümü, C₂ verimi ve C₂H₄/C₂H₆ oranının azaldığı görülmüştür. C₂ seçimliliğinin ise gaz faz reaksiyon veya katalizöre bağlı olarak değiştiği tespit edilmiştir. Tüm besleme hızlarında CH₄ dönüşümü, C₂ seçimliliği, C₂ verimi ve C₂H₄/C₂H₆ oranı sıralaması 2Mn/5Na₂WO₄/SiO₂>4Li/MgO>gaz faz şeklinde olmuştur. En yüksek C₂ veriminin 7500 L/kgsa besleme hızında elde edilebildiği bulunmuştur. Bu şartlarda 2Mn/5Na₂WO₄/SiO₂ katalizörü ile C₂ verimi %16,3 olurken 4Li/MgO katalizörü ile verim %8,9 olmuştur. 2Mn/5Na₂WO₄/SiO₂ katalizörü her durumda 4Li/MgO'dan yüksek performans göstermiştir.

Gaz faz OCM reaksiyonu için oksidant olarak N_2O kullanıldığında elde edilen sonuçlar Şekil 4.28'de verilmiştir. CH₄ dönüşümü artan besleme hızı ile %7,8'den %1,8'e düşmüştür. N₂O dönüşümü artan besleme hızı ile %8,1'den %3,7'ye kadar azalmıştır. C₂ seçimliliği ise %73,8'den %91'e kadar artış göstermiştir. Bu sonuçlara bağlı olarak C₂ verimliliği %5,8'den %1,6'ya düşüş göstermiştir. C₂H₄/C₂H₆ oranı ise 0,59'dan 0,13'e düşmüştür. En yüksek C₂ verimi 7500 L/kgsa besleme hızı altında elde edilmiştir (%5,8).

Şekil 4.28: Gaz faz OCM reaksiyonu üzerinde besleme hızı etkisi (Katalizör:Yok, Oksidant: N₂O, CH₄/O:1, Sıcaklık:780°C, y_{He}:0,4)

 $2Mn/5Na_2WO_4/SiO_2$ katalizörüne ait besleme hızı etkisi sonuçları Şekil 4.29'da verilmiştir. CH₄ dönüşümü besleme hızının 7500 L/kgsa'dan 37500 L/kgsa'ya artması ile %8'den %1,7'ye düşmüştür. N₂O dönüşümü artan besleme hızı ile %5,5'ten %1,3'e kadar azalmıştır. C₂ seçimliliği ise artan besleme hızıyla %83,8'den %91,3'e kadar artış göstermiştir. C₂ verimliliği ise %6,7'den %1,6'ya düşüş göstermiştir. C₂H₄/C₂H₆ oranı ise 0,59'dan 0,13'e düşmüştür. En yüksek C₂ verimi %6,7 ile 7500 L/kgsa besleme hızı altında elde edilmiştir.

Şekil 4.29: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: N₂O, CH₄/O:1, Sıcaklık:780°C, y_{He}:0,4)

4Li/MgO katalizörüne ait besleme hızı etkisi sonuçları Şekil 4.29'da sunulmuştur. Besleme hızındaki artış ile CH₄ dönüşümünün %11,3'ten %2,8'e düştüğü tespit edilmiştir. N₂O dönüşümü artan besleme hızı ile %9,3'ten %2,8'e kadar azalmıştır. C₂ seçimliliğinin ise 7500 L/kgsa besleme hızında %82,1 olduğu ve besleme hızındaki artış ile %95'e yükseldiği bulunmuştur. C₂ verimliliği artan besleme hızıyla giderek azalmış ve %9,3'ten %2,7'ye düşmüştür. C₂H₄/C₂H₆ oranının ise 0,95'ten 0,19'a düştüğü gözlemlenmiştir. En yüksek C₂ verimi %9,3 ile 7500 L/kgsa besleme hızı altında elde edilmiştir.

Oksidant olarak N₂O kullanılması durumunda elde edilen sonuçlar göz önüne alındığında gaz faz ve 2Mn/5Na₂WO₄/SiO₂ katalizörünün gösterdiği CH₄ dönüşümleri oldukça yakın olurken 2Mn/5Na₂WO₄/SiO₂ katalizörünün C₂ seçimlilikleri düşük besleme hızlarında (<30000 L/kgsa) daha yüksek olmuştur. C₂ verimlilikleri ise 2Mn/5Na₂WO₄/SiO₂ katalizörü için 30000 L/kgsa'ya kadar daha yüksek olurken 37500 L/kgsa'da gaz faz reaksiyonlar ile daha yüksek verim elde edilmiştir. 4Li/MgO

katalizörü ile neredeyse tüm besleme hızlarında CH₄ dönüşümü, C₂ seçimliliği ve C₂ verimi hem gaz fazdan hem de $2Mn/5Na_2WO_4/SiO_2$ 'den daha yüksek olmuştur. En yüksek verimler 7500 L/kgsa besleme hızında elde edilmiştir. Bu şartlarda C₂ verimi $2Mn/5Na_2WO_4/SiO_2$ için %6,7 olurken 4Li/MgO için %9,3 olmuştur.

Şekil 4.30: OCM reaksiyonu için 4Li/MgO üzerinde besleme hızı etkisi (Katalizör:200 mg, Oksidant: N₂O, CH₄/O:1, Sıcaklık:780°C, y_{He}:0,4)

Besleme hızı etkisinin incelenmesi için elde edilen tüm sonuçlar karşılaştırıldığında, gaz faz reaksiyon için O_2 veya N_2O kullanılması durumunda CH_4 dönüşümleri arasında çok fark olmadığı ancak N_2O ile C_2 seçimliliğinin çok daha yüksek olduğu bulunmuştur. Bu nedenle eşit besleme hızlarında elde edilen C_2 verimi ve C_2H_4/C_2H_6 oranı da N_2O kullanılması durumunda çok daha yüksek olmuştur. Düşük besleme hızlarındaki sonuçların (<22500 L/kgsa) katalitik reaksiyonlar sonuçlarını etkileyecek seviyede olduğu tespit edilmiştir.

Katalizörlü ortamda O₂ kullanılarak elde edilen CH₄ dönüşümleri N₂O'ya kıyasla daha yüksek olmuştur. C₂ seçimlilikleri ise çok daha düşük olmuştur. 7500 L/kgsa besleme

hızı altında 4Li/MgO katalizör hariç diğer tüm besleme hızlarında O_2 ile daha yüksek verim elde edilmiştir. C_2H_4/C_2H_6 oranları O_2 kullanıldığında N_2O' ya göre daha yüksek olmuştur. En yüksek C_2 verimi 2Mn/5Na₂WO₄/SiO₂ katalizörü ile O_2 kullanarak 7500 L/kgsa besleme hızında %16,3 olarak bulunmuştur. 4Li/MgO katalizörü ile en yüksek verim, 7500 L/kgsa besleme hızı altında ve N_2O kullanarak %9,3 olarak bulunmuştur.

Katalizörlü veya katalizörsüz olarak en yüksek verimler 7500 L/kgsa besleme hızında elde edildiğinden, CH₄/O=1 ve 7500 L/kgsa besleme hızı sabit tutularak sıcaklık etkisi incelenmiştir.

4.3.3. Sıcaklık Etkisi

 O_2 kullanılarak gerçekleştirilen reaksiyonlara ait sonuçlar Şekil 4.31, 4.32 ve 4.33'te verilmiştir. Reaksiyonlar CH₄/O=1 ve 7500 L/kgsa besleme hızı altında sıcaklıklar 740, 760, 780, 800 ve 820°C olacak şekilde gerçekleştirilmiştir.

Şekil 4.31: Gaz faz OCM reaksiyonu üzerinde sıcaklık etkisi (Katalizör: Yok, Oksidant: O₂, CH₄/O:1, GHSV:7500 L/kgsa, y_{N2}:0,4)
Gaz faz OCM reaksiyonu sonuçları incelendiğinde CH₄ dönüşümünün artan sıcaklıkla yükseldiği ve %3,1'den %15,2'ye çıktığı tespit edilmiştir. O₂ dönüşümünün 740°C'den 820°C'ye çıkması ile %7,1'den %46,7'ye yükseldiği gözlemlenmiştir. C₂ seçimliliği ise %30,7 ile başlamış ve 760°C'de %34,5 ile maksimuma ulaştıktan sonra düşüşe geçmiştir. 820°C'de C₂ seçimliliği %24,3 olarak bulunmuştur. C₂ verimleri ise artan sıcaklık ilse yaklaşık %1'den %3,7'ye ulaşmıştır. C₂H₄/C₂H₆ oranı da artan sıcaklık ile sürekli artış göstermiştir. C₂H₄/C₂H₆ oranı 740°C'de 0,12 olurken 820°C'de 0,65'e yükselmiştir. En yüksek verim 820°C'de elde edilmiştir. 740°C'den sonra gaz faz reaksiyonların katalitik reaksiyon sonuçlarını ciddi olarak etkileyeceği tespit edilmiştir.

Şekil 4.32: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: O₂, CH₄/O:1, GHSV:7500 L/kgsa, y_{N2}:0,4)

 $2Mn/5Na_2WO_4/SiO_2$ katalizörü ile elde edilen sonuçlar Şekil 4,32'de verilmiştir. Artan sıcaklık ile CH₄ dönüşümü 740°C'de %23,3 olurken, 800°C'de %37,4'e yükselmiş ve 820°C'de %37,1'e düşüş göstermiştir. O₂ dönüşümünün 740°C'den 820°C'ye çıkması ile %58,3'ten %99,6'ya yükseldiği gözlemlenmiştir. C₂ seçimliliği artan sıcaklık ile

düşüş gösterirken 780°C sonrasında bu düşüş hızlanmıştır. 740°C'de seçimlilik %45,2 olurken 820°C'de %41,5 olmuştur. C₂ verimliliği ise 780°C'ye kadar artış gösterirken sonrasında azalmıştır. En yüksek verim 780°C'de %16,4 olarak bulunmuştur. C_2H_4/C_2H_6 oranı sıcaklık ile sürekli artış göstermiş ve 1 civarından 2,23'e yükselmiştir.

4Li/MgO katalizörüne ait sonuçlar Şekil 4.33'te sunulmuştur. Artan sıcaklık ile CH₄ dönüşümünün sürekli arttığı ancak C₂ seçimliliğinin azaldığı belirlenmiştir. 740°C'de CH₄ dönüşümü %18,9 olurken 820°C'de %26,6'ya yükselmiştir. O₂ dönüşümünün 740°C'den 820°C'ye çıkması ile %41'den %61,7'ye yükseldiği gözlemlenmiştir. C₂ seçimliliği ise 740°C'de %44,5 olurken 820°C'de %36,6 olmuştur. C₂ verimi de artan sıcaklık ile sürekli artış gösterirken, 740°C'de %8,4 olan verim 820°C'de %9,7 olmuştur. C₂H₄/C₂H₆ oranı 740°C'de 0,86 olurken sürekli artarak 820°C'de 2,5'e ulaşmıştır. En yüksek verim 820°C'de %9,7 olarak bulunmuştur.

Şekil 4.33: OCM reaksiyonu için 4Li/MgO üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: O₂, CH₄/O:1, GHSV:7500 L/kgsa, y_{N2}:0,4)

 O_2 ile elde edilen sonuçlar incelendiğinde genel olarak CH₄ dönüşümünün artan sıcaklık ile artış gösterdiği, C₂ seçimliliğinin ise gaz faz için 760°C'ye kadar yükseldiği ancak katalizörler için sıcaklıkla azaldığı tespit edilmiştir. C₂ veriminin ise gaz faz ve 4Li/MgO katalizörü için artan sıcaklıkla yükseliş gösterdiği, 2Mn/5Na₂WO₄/SiO₂ katalizörü için 780°C'de maksimum verip sonra azaldığı gözlemlenmiştir. Yani C₂ veriminin sıcaklıkla değişiminin katalizör yapısına göre farklılık gösterdiği belirlenmiştir. C₂H₄/C₂H₆ oranının artan sıcaklık ile sürekli olarak arttığı tespit edilmiştir. En yüksek C₂ verimi 780°C'de 2Mn/5Na₂WO₄/SiO₂ ile %16,4 olarak bulunmuştur.

Şekil 4.34: Gaz faz OCM reaksiyonu üzerinde sıcaklık etkisi (Katalizör:Yok, Oksidant: N₂O, CH₄/O:1, GHSV:7500 L/kgsa, y_{He}:0,4)

Gaz faz OCM reaksiyonuna ait sonuçlar incelendiğinde artan sıcaklık ile CH₄ dönüşümünün sürekli olarak yükseldiği belirlenmiştir. 740°C'de %3,5 olarak bulunan CH₄ dönüşümünün 820°C'de %15,6 olduğu tespit edilmiştir. N₂O dönüşümünün 740°C'den 820°C'ye çıkması ile %3,3'ten %19,2'ye yükseldiği gözlemlenmiştir. C₂ seçimliliğinin ise 780°C'ye kadar arttığı ve sonrasında azaldığı bulunmuştur. Seçimlilik 740°C'de %72 olurken, 780°C'de %73,9 ve 820°C'de %64,9 olduğu belirlenmiştir. C₂ verimliliği de sıcaklık ile sürekli artış gösterirken, 740°C'de %2,5 ve 820°C'de %10,1 olduğu tespit edilmiştir. C₂H₄/C₂H₆ oranının 740°C'de 0,22 olduğu ve sıcaklıkla artarak 1,4'e yükseldiği bulunmuştur. En yüksek verim 820°C'de %10,1 olarak belirlenmiştir. Elde edilen sonuçların her sıcaklıkta katalitik sonuçları etkileyebileceği gözlemlenmiştir.

Şekil 4.35: OCM reaksiyonu için 2Mn/5Na₂WO₄/SiO₂ üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: N₂O, CH₄/O:1, GHSV:7500 L/kgsa, y_{He}:0,4)

2Mn/5Na₂WO₄/SiO₂ katalizöre ait sonuçlar incelendiğinde artan sıcaklık ile CH₄ dönüşümünün, C₂ veriminin ve C₂H₄/C₂H₆ oranının yükseldiği ancak C₂ seçimliliğinin azaldığı tespit edilmiştir. CH₄ dönüşümü 740°C'de %4,6 olurken 820°C'de %16,2 olmuştur. N₂O dönüşümünün 740°C'den 820°C'ye çıkması ile %1,5'ten %20,5'e yükseldiği gözlemlenmiştir. C₂ seçimliliğinin ise 740°C'de %88,2 ve 820°C'de %71,2 olduğu belirlenmiştir. C₂ verimi %4,1'den %11,5'e yükselmiştir. C₂H₄/C₂H₆ oranının 740°C'de 0,38 olduğu ve sıcaklıkla artarak 1,57'ye yükseldiği bulunmuştur. En yüksek verim 820°C'de %11,5 olarak belirlenmiştir.

Şekil 4.36'daki 4Li/MgO katalizörüne ait sonuçlar incelendiğinde, artan sıcaklık ile CH₄ dönüşümünün, C₂ veriminin ve C₂H₄/C₂H₆ oranının yükseldiği ancak C₂ seçimliliğinin azaldığı tespit edilmiştir. CH₄ dönüşümünün 740°C'de %7,7 ve 820°C'de %18,1 olduğu bulunmuştur. N₂O dönüşümünün 740°C'den 820°C'ye çıkması ile %4,7'den %21,5'e yükseldiği gözlemlenmiştir. C₂ seçimliliğinin ise 740°C'de %85,1 ve 820°C'de %70,2 olduğu belirlenmiştir. C₂ verimi %6,6'dan %12,7'ye yükselmiştir. C₂H₄/C₂H₆ oranının 740°C'de 0,51 olduğu ve sıcaklıkla artarak 1,9'a yükseldiği bulunmuştur. En yüksek verim 820°C'de %12,7 olarak belirlenmiştir.

Şekil 4.36: OCM reaksiyonu için 4Li/MgO üzerinde sıcaklık etkisi (Katalizör:200 mg, Oksidant: N₂O, CH₄/O:1, GHSV:7500 L/kgsa, y_{He}:0,4)

 N_2O kullanılarak elde edilen sonuçlar incelendiğinde hem gaz faz hem de katalizörlü ortamda CH_4 dönüşümü, C_2 verimi ve C_2H_4/C_2H_6 oranının sıcaklık ile arttığı gözlemlenmiştir. C_2 seçimliliğinin ise gaz faz için önce 780°C'ye kadar sıcaklıkla arttığı ve sonrasında azaldığı bulunmuştur. Katalizörlerin kullanılmasıyla C₂ seçimliliğinin artan sıcaklıkla azaldığı tespit edilmiştir. En yüksek verim 4Li/MgO ile 820°C'de %12,7 ile elde edilmiştir. $2Mn/5Na_2WO_4/SiO_2$ katalizör ile 820°C'de %11,5 verim elde edilirken gaz fazda elde edilen verim %10,1 olmuştur.

Sıcaklık etkisinin belirlenmesi için elde edilen tüm sonuçlar göz önüne alındığında, gaz faz reaksiyon için O_2 veya N_2O kullanılması durumunda CH_4 dönüşümleri arasında çok fark olmadığı ancak N_2O ile C_2 seçimliliğinin çok daha yüksek olduğu bulunmuştur. Bu nedenle aynı sıcaklıklarda elde edilen C_2 verimi ve C_2H_4/C_2H_6 oranı da N_2O kullanılması durumunda çok daha yüksek olmuştur. Özellikle N_2O kullanılması durumunda elde edilen sonuçların katalitik sonuçları etkileyebileceği belirlenmiştir.

Katalizörlü ortamda O₂ kullanılarak elde edilen CH₄ dönüşümleri N₂O'ya kıyasla daha yüksek olmuştur. C₂ seçimlilikleri ise çok daha düşük olmuştur. O₂ kullanılması durumunda en yüksek verim $2Mn/5Na_2WO_4/SiO_2$ ile $780^{\circ}C'$ de %16,4 olarak bulunmuştur. N₂O kullanılması durumunda ise en yüksek verim 4Li/MgO ile 820°C'de %12,7 olarak tespit edilmiştir. C₂H₄/C₂H₆ oranları O₂ ortamında N₂O'ya göre daha yüksek olmuştur.

Sonuç olarak en uygun şartlar altında O₂ kullanılması durumunda en yüksek performansı 2Mn/5Na₂WO₄/SiO₂ katalizörü gösterirken, N₂O kullanılması durumunda en yüksek performansı 4Li/MgO göstermiştir.

CH₄/O oranı, besleme hızı ve sıcaklık etkisi sonuçlarına göre en yüksek C₂ veriminin elde edildiği şartlar; CH₄/O=1 ve GHSV=7500 L/kgsa olarak bulunmuştur. Sıcaklık ile C₂ verimi arasında net bir ilişki tespit edilemediğinden sentezlenen yeni katalizörlerin performanslarının incelenmesi için; oksidant olarak O₂ ve N₂O kullanılmış, CH₄/O oranı ve GHSV sabit tutulmuş, sıcaklık 740-820°C aralığında değiştirilmiştir.

4.4. LI ESASLI KATALİZÖRLERİN KATALİTİK PERFORMANSLARININ İNCELENMESİ

LiAlO₂, LiMn₂O₄, LiCoO₂, Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃ katalizörlerinin OCM reaksiyonu için katalitik performansları hem O₂ hem de N₂O kullanılarak incelenmiştir.

Reaksiyonlar CH₄/O=1 oranında, 7500 L/kgsa besleme hızı altında ve 740-820°C sıcaklık aralığında gerçekleştirilmiştir.

LiAlO₂, LiMn₂O₄, LiCoO₂, Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃ katalizörlerine ait katalitik performans sonuçları performansların kolay karşılaştırılabilmesi açısından tablolar halinde verilmiştir. Ayrıca sonuçların gaz faz reaksiyonlar, 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörü ile karşılaştırılabilmesi için gaz faza ve bu katalizörlere ait olan sonuçlar da tablolar halinde sunulmuştur.

Sıcaklık		Gaz	z Faz (Og	2)		Gaz]	Faz (N ₂ O)		
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	
740	3,1	30,7	1	0,12	3,5	72	2,5	0,24	
760	4,6	34,5	1,6	0,21	5,1	73,7	3,8	0,37	
780	7	34	2,4	0,32	7,4	73,9	5,5	0,56	
800	10,2	32,2	3,3	0,47	10,8	70,4	7,6	0,86	
820	15,2	24,3	3,7	0,64	15,6	64,9	10,1	1,38	
Katalizör=Yok, CH ₄ /O=1, GHSV=7500 L/kgsa									

Tablo 4.2: Gaz faz reaksiyonlara ait performans sonuçları

Tablo 4.3: 2Mn/5Na₂WO₄/SiO₂ katalizörüne ait katalitik performans sonuçları

Sıcaklık	2	Mn/5Na	2WO4/Si	$O_2(O_2)$	2Mn/5Na ₂ WO ₄ /SiO ₂ (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6		
740	23,3	45,2	10,5	1,03	4,6	88,2	4,1	0,38		
760	32,3	44,9	14,5	1,61	7	84,5	5,9	0,57		
780	36,9	44,3	16,4	1,93	9,5	81,6	7,8	0,81		
800	37,4	42,2	15,8	2,08	12,7	77	9,2	1,14		
820	37,1	41,5	15,4	2,25	16,2	71,2	11,5	1,56		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.4: 4Li/MgO katalizörüne ait katalitik performans sonuçları

Sıcaklık		4Li/	MgO (O	2)	4Li/MgO (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	18,9	44,5	8,4	0,87	7,7	85,1	6,6	0,52		
760	19,2	43,9	8,4	1,08	9,1	83,1	7,6	0,68		
780	21,6	41,9	9,1	1,49	11,5	79,9	9,2	0,97		
800	24,5	39	9,6	1,98	14,4	75,8	10,9	1,34		
820	26,6	36,6	9,7	2,49	18,1	70,2	12,7	1,9		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.5'te LiAlO₂ katalizörü ile O₂ ve N₂O varlığında farklı sıcaklıklarda elde edilen sonuçlar verilmiştir. Görüldüğü üzere her iki oksidantın varlığında da CH₄ dönüşümü

artan sıcaklık ile artış göstermiştir. 740°C'de %12,7 olan dönüşüm 820°C'de %24,9'a yükselmiştir. Dönüşümler N₂O varlığında daha yüksek olmuştur. 740°C'deki dönüşüm %16 olurken 820°C'de %32,5'e yükselmiştir. O2 dönüşümü 740°C'de %49,9 olurken 820°C'de %86'ya ulaşmıştır. N₂O dönüşümü ise 740°C'de %44,3 olurken 820°C'de %98,8 olmuştur. C₂ seçimliliği O₂ varlığında sıcaklık ile %6,7'den %14,5'e artarken, N₂O varlığında çok az değişim göstermiştir (%22,5-25). C₂ verimliliği sıcaklık ile sürekli artış göstermiş (%0,9'dan %3,6'ya) ve N₂O varlığında daha yüksek olmuştur (%3,6'dan %7,5'e). C₂H₄/C₂H₆ oranları da her iki oksidant varlığında artan sıcaklık ile artış göstermiştir. C₂H₄/C₂H₆ oranları N₂O varlığında daha yüksek olmuştur. O₂ varlığında elde edilen sonuçlar aynı şartlarda gaz faz reaksiyonlar ile karşılaştırıldığında, LiAlO₂ ile daha yüksek CH₄ dönüşümü elde edilmesine rağmen seçimliliklerin daha düşük olduğu tespit edilmiştir. C2 verimliliklerinin ise gaz fazda biraz daha yüksek olduğu bulunmuştur. Benzer şekilde LiAlO2 ile N2O varlığında CH4 dönüşümleri çok daha yüksek olmasına rağmen C2 seçimlilikleri çok daha düşük olmuştur. Elde edilen C₂ verimlilikleri 780°C'de LiAlO₂ ile daha yüksek olurken bu sıcaklıktan sonra elde edilen sonuçlar gaz fazın altında kalmıştır. C₂H₄/C₂H₆ oranları ise her sıcaklıkta ve her iki oksidant varlığında gaz fazdan daha yüksek olmuştur. 2Mn/5Na2WO4/SiO2 ve 4Li/MgO katalizörü ile elde edilen C2 verimleri ise her durumda LiAlO₂'den daha yüksek olmuştur.

Sıcaklık		LiA	$lO_2(O_2)$)	LiAlO ₂ (N ₂ O)				
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	
740	12,7	6,7	0,9	0,14	16	22,7	3,6	0,67	
760	15,5	8,4	1,3	0,27	20,6	24,4	5	0,93	
780	18,2	10,5	1,9	0,51	25,7	24,8	6,4	1,33	
800	21,3	12,9	2,8	0,9	30,4	23,5	7,1	1,81	
820	24,9	14,5	3,6	1,43	32,5	23	7,5	2,36	
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa									

Tablo 4.5: LiAlO₂ katalizörüne ait katalitik performans sonuçları

Li Mn_2O_4 katalizörüne ait katalitik performans sonuçları Tablo 4.6'da verilmiştir. Her iki oksidant varlığında da CH₄ dönüşümü ve C₂ seçimliliği artış göstermiştir. O₂ varlığında dönüşüm %20,4'den %28,8'e yükselirken, C₂ seçimliliği %5,1'den %25,5'e artmıştır. N₂O varlığında CH₄ dönüşümü %20,9'dan %27,2'ye yükselirken, C₂ seçimliliği %4,1'den %17,5'e artmış ve 800°C'den sonra değişmemiştir. O₂ dönüşümü 740°C'de %90 olurken 820°C'de %98,3'ya ulaşmıştır. N₂O dönüşümü ise 740°C'de %91,9 olurken 820°C'de %98,9 olmuştur. C₂ verimi (%0,9'dan %4,7'ye) ve C₂H₄/C₂H₆ oranı (0,25'ten 0,97'ye) ise sürekli artış göstermiştir. CH₄ dönüşümü, C₂ seçimliliği ve verimi ile C₂H₄/C₂H₆ oranı her sıcaklıkta O₂ varlığında daha yüksek olmuştur. O₂ varlığında LiMn₂O₄ ile elde edilen CH₄ dönüşümü her sıcaklıkta gaz fazdan daha yüksek olurken, 820°C hariç C₂ seçimlilikleri daha düşük olmuştur. C₂ verimlerinin ve C₂H₄/C₂H₆ oranlarının gaz fazdan daha yüksek olduğu görülmüştür. N₂O varlığında ise CH₄ dönüşümleri LiMn₂O₄ ile daha yüksek olurken, C₂ seçimlilikleri çok düşük kalmıştır. Bu nedenle C₂ verimlerinin de gaz fazdan daha düşük olduğu görülmüştür. LiMn₂O₄'ün O₂ ve N₂O varlığındaki performansı 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerinin altında kalmıştır.

Tablo 4.6: LiMn₂O₄ katalizörüne ait katalitik performans sonuçları

Sıcaklık		LiM	n_2O_4 (O	2)	$LiMn_2O_4$ (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	20,4	5,1	1	0,23	20,9	4,1	0,9	0,25		
760	20,4	10,6	2,2	0,38	21,2	7,2	1,5	0,37		
780	22,1	17,3	3,8	0,59	21,6	12,7	2,7	0,55		
800	25,5	23,4	6	0,94	23,9	17,5	4,2	0,8		
820	28,8	25,5	7,3	1,32	27,2	17,4	4,7	0,97		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.7: LiCoO₂ katalizörüne ait katalitik performans sonuçları

Sıcaklık		LiC	$\operatorname{CoO}_2(\operatorname{O}_2$)	$LiCoO_2$ (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	22,7	2,4	0,55	0,13	22,9	1,9	0,4	0		
760	23	2,3	0,53	0,15	22,9	3,7	0,9	0,25		
780	22,9	2,5	0,57	0,18	23,6	5,8	1,4	0,34		
800	23,1	3	0,69	0,23	24,4	9,5	2,3	0,5		
820	23,1	4,2	0,97	0,32	26,2	13,6	3,6	0,71		
Katalizör=200 mg CH ₂ /O=1_GHSV=7500 L/kgsa										

LiCoO₂ katalizörü ile elde edilen sonuçlar Tablo 4.7'de mevcuttur. Her iki oksidant varlığında da CH₄ dönüşümlerinin %22-26 aralığında olduğu ve sıcaklık ile çok değişmediği gözlemlenmiştir. O₂ dönüşümü sıcaklık ile değişmezken neredeyse tamamı tükenmiştir. N₂O dönüşümü ise 740°C'de %93,5 olurken 820°C'de %98 olmuştur. C₂ seçimlilikleri özellikle O₂ varlığında oldukça düşük olup (<%5) C₂ verimlilikleri %1'in altında kalmıştır. N₂O varlığında 800°C'den sonra dönüşüm ve seçimlilikte bir miktar artış gözlemlenmesine rağmen elde edilen performanslar hem gaz faz hem de 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerinin çok altında olmuştur. %25 civarlarında elde edilen CH₄ dönüşümü ve %96 civarındaki CO₂ seçimliliği, LiCoO₂ katalizörünün tam yanma reaksiyonunu desteklediğini ortaya koymuştur.

Sıcaklık		Li ₄ 9	$SiO_4 (O_2$)	Li_4SiO_4 (N ₂ O)							
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6				
740	5,6	36,4	2	0,4	6,9	61,1	4,2	0,43				
760	8,8	38,5	3,4	0,69	9,6	62,9	6	0,65				
780	13,1	38,2	5	1,1	13	62,6	8,1	0,98				
800	19,1	33,3	6,4	1,67	16,5	61,3	10,1	1,41				
820	25,5	27	6,9	2,33	21,1	56,9	12	2,04				
	K atalizõr=200 mg CH./O=1 GHSV=7500 L/kgsa											

Tablo 4.8: Li₄SiO₄ katalizörüne ait katalitik performans sonuçları

Tablo 4.8'de Li₄SiO₄ katalizörüne ait katalitik performans sonuçları verilmiştir. Elde edilen sonuçlara göre CH₄ dönüşümünün artan sıcaklıkla her iki oksidant varlığında da sürekli olarak arttığı görülmüştür. O2 varlığında 740°C'de %5,6 olan dönüşüm %25,5'e yükselmiştir. N₂O ortamında ise %6,9'dan %21,1'e çıkmıştır. O₂ dönüşümü 740°C'de %13,9 olurken 820°C'de %64,4'e ulaşmıştır. N2O dönüşümü ise 740°C'de %5,8 olurken 820°C'de %28,4 olmuştur. C2 seçimlilikleri O2 varlığında %36,4'ten %38,5'e (760°C'de) yükselmiş ve sonrasında %27'ye düşmüştür. N₂O varlığında ise %61,1'den %62,9'a yükselmiş ve %56,9'a düşmüştür. O₂ varlığında C₂ verimi %2'den %6,9'a, N₂O ortamında %4,2'den %12'ye yükselmiştir. C₂H₄/C₂H₆ oranlarının da artan sıcaklıkla artış gösterdiği tespit edilmiştir. N₂O varlığında CH₄ dönüşümlerinin 760°C'ye kadar daha yüksek olduğu ancak bu sıcaklıktan sonra O₂'ye kıyasla daha düşük olduğu gözlemlenmiştir. C2 seçimliliği ve C2 verimleri ise her sıcaklıkta daha yüksek olurken C₂H₄/C₂H₆ oranları 740°C hariç daha düşük bulunmuştur. O₂ varlığında elde edilen her sıcaklıktaki CH₄ dönüşümü, C₂ seçimliliği, C₂ verimi ve C₂H₄/C₂H₆ oranı gaz faz reaksiyonlara kıyasla daha yüksek olmuştur. N2O varlığında ise CH4 dönüşümlerinin daha yüksek olduğu ancak C₂ seçimliliklerinin daha düşük olduğu bulunmuştur. C₂ verimleri ve C₂H₄/C₂H₆ oranları ise gaz faz reaksiyonlara kıyasla daha yüksek olmuştur. Li4SiO4 katalizörü ile N2O varlığında elde edilen C2 verimi her sıcaklıkta 2Mn/5Na₂WO₄/SiO₂ katalizörünün üzerinde fakat 4Li/MgO katalizörünün altında kalmıştır. O₂ varlığında ise 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörünün altında olmuştur.

Sıcaklık		Li ₂ Z	ZrO₃ (O 2	2)	$Li_2ZrO_3(N_2O)$					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	8,1	18,4	1,5	0,23	10	56,2	5,6	0,65		
760	10,5	23,3	2,5	0,41	13	57,4	7,5	0,94		
780	14,8	26,3	3,9	0,72	17	56,6	9,6	1,44		
800	19,5	27	5,3	1,12	22	53,7	11,8	2,24		
820	24,5	26,9	6,6	1,71	27,5	48,3	13,3	3,32		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.9: Li₂ZrO₃ katalizörüne ait katalitik performans sonuçları

Li₂ZrO₃ katalizörüne ait performans sonuçları Tablo 4.9'da sunulmuştur. O₂ ve N₂O varlığında artan sıcaklıkla beraber CH₄ dönüşümünün, C₂ veriminin ve C₂H₄/C₂H₆ oranının arttığı belirlenmiştir. O₂ varlığında 740°C'de %8,1 olan dönüşümü %24,5'e yükselmiştir. N₂O ortamında ise %10'dan %27,5'e çıkmıştır. O₂ dönüşümü 740°C'de %26,1 olurken 820°C'de %75,4'e ulaşmıştır. N₂O dönüşümü ise 740°C'de %10,3 olurken 820°C'de %41,7 olmuştur. C₂ seçimliliğinin O₂ varlığında 800°C'ye kadar artıp sabitlendiği, N₂O varlığında ise 760°C'ye kadar artıp sonrasında azaldığı tespit edilmiştir. Ayrıca N₂O varlığında Li₂ZrO₃ katalizörünün performansının O₂'ye kıyasla daha yüksek olduğu görülmüştür. CH₄ dönüşümlerinin gaz faz reaksiyonlara kıyasla daha yüksek olduğu C₂ seçimliliklerinin ise daha düşük olduğu gözlemlenmiştir. Lakin her iki oksidant varlığında da Li₂ZrO₃ katalizörü ile elde edilen C₂ verimleri ve C₂H₄/C₂H₆ oranları daha yüksek olmuştur. O₂ varlığında Li₂ZrO₃ katalizörünün altında kalırken, N₂O varlığında 2Mn/5Na₂WO₄/SiO₂'den her sıcaklıkta, 4Li/MgO'dan ise 760°C'den sonra daha yüksek bulunmuştur.

Tablo 4.10: Li₂TiO₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık	_	Li ₂	Гі О ₃ (О ₂	2)		Li ₂ T	iO ₃ (N ₂ O)		
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	2,4	24,2	0,6	0,14	4,1	47,1	1,9	0,22		
760	3,3	29,5	1	0,23	5,4	59,2	3,2	0,34		
780	4,7	36,1	1,7	0,36	8,2	63,2	5,2	0,56		
800	7,9	36,7	2,9	0,61	11,7	65	7,6	0,9		
820	14,1	33,5	4,7	1,11	15,9	63,6	10,1	1,42		
Katalizor=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

 Li_2TiO_3 katalizörüne ait sonuçlar Tablo 4.10'da verilmiştir. Diğer katalizörlere benzer şekilde O_2 ve N_2O varlığında CH_4 dönüşümü artan sıcaklıkla artış göstermiştir. C_2 seçimliliği de 800°C'ye kadar artmış ve sonrasında azalmıştır. O_2 dönüşümü 740°C'de %7,5 olurken 820°C'de %34,7'ye ulaşmıştır. N₂O dönüşümü ise 740°C'de %2 olurken 820°C'de %18,7 olmuştur. C₂ verimleri ve C₂H₄/C₂H₆ oranları da artış göstermiştir. O₂ varlığında Li₂TiO₃ ile elde edilen CH₄ dönüşümleri gaz faza kıyasla her sıcaklıkta daha düşük olmuştur. Ancak 760°C'den sonra daha yüksek C₂ seçimliliği elde edilmiştir. Bu sonuçlar neticesinde Li₂TiO₃ ile elde edilen C₂ verimi 800°C'ye kadar daha düşük olurken 820°C'de daha yüksek olmuştur. N₂O varlığında katalizörle elde edilen CH₄ dönüşümleri her sıcaklıkta bir miktar daha yüksek olurken C₂ seçimlilikleri daha düşük olmuştur. 800°C'den sonra elde edilen C₂ verimleri yakınlık gösterirken bu sıcaklığın altında gaz fazda elde edilen verimler daha yüksek olmuştur. O₂ varlığında C₂H₄/C₂H₆ oranları biraz daha yüksek olurken, N₂O varlığında gaz faza yakın değerler elde edilmiştir. Katalizörün performansı hem O₂ hem de N₂O varlığında 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörünün altında kalmıştır.

Tablo 4.11: Gaz faz ve katalitik performansların 740°C'de karşılaştırılması

T7 / 1º ••			O ₂				N_2O	
Katalizor	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6
Gaz Faz*	3,1	30,7	1	0,12	3,5	72	2,5	0,24
2Mn/5Na ₂ WO ₄ /SiO ₂	23,3	45,2	10,5	1,03	4,6	88,2	4,1	0,38
4Li/MgO	18,9	44,5	8,4	0,87	7,7	85,1	6,6	0,52
LiAlO ₂	12,7	6,7	0,9	0,14	16	22,7	3,6	0,67
LiMn ₂ O ₄	20,4	5,1	1	0,23	20,9	4,1	0,9	0,25
LiCoO ₂	22,7	2,4	0,55	0,13	22,9	1,9	0,44	0
Li ₄ SiO ₄	5,6	36,4	2	0,4	6,9	61,1	4,2	0,43
Li ₂ ZrO ₃	8,1	18,4	1,5	0,23	10	56,2	5,6	0,65
Li ₂ TiO ₃	2,4	24,2	0,6	0,14	4,1	47,1	1,9	0,22
Katalizör	=200 mg	(Yok*), (CH ₄ /O=1	, GHSV=7500 L	/kgsa, Sic	aklık: 74	40°C	

O₂ varlığında gaz faz reaksiyonların katalitik performanslara etkisinin en düşük seviyede olduğu 740°C'de elde edilen sonuçlar karşılaştırıldığında (Tablo 4.11);

Aktivite (% CH₄ dönüşümü): $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > LiCoO_2 > LiMn_2O_4 > LiAlO_2 > Li_2ZrO_3 > Li_4SiO_4 > Li_2TiO_3 > Gaz Faz$

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Gaz Faz > Li_2TiO_3 > Li_2ZrO_3 > LiAlO_2 > LiMn_2O_4 > LiCoO_2$

% C₂ verimi: 2Mn/5Na₂WO₄/SiO₂ > 4Li/MgO > Li₄SiO₄ > Li₂ZrO₃ > LiMn₂O₄ ≥ Gaz Faz > LiAlO₂ > Li₂TiO₃ ≥ LiCoO₂

$$\begin{split} C_2H_4/C_2H_6 \ \ orani: \ 2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Li_2ZrO_3 \geq \\ LiMn_2O_4 > Li_2TiO_3 \geq LiAlO_2 \geq LiCoO_2 > Gaz \ Faz \ sıralaması \ ile \ azalmıştır. \end{split}$$

N₂O varlığında sonuçlar karşılaştırıldığında (Tablo 4.11);

Aktivite (% CH₄ dönüşümü): LiCoO₂ > LiMn₂O₄ > LiAlO₂ > Li₂ZrO₃ > 4Li/MgO > Li₄SiO₄ > 2Mn/5Na₂WO₄/SiO₂ > Li₂TiO₃ > Gaz Faz

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz Faz > Li_4SiO_4 > Li_2ZrO_3 > Li_2TiO_3 > LiAlO_2 > LiMn_2O_4 > LiCoO_2$

% C₂ verimi: $4Li/MgO > Li_2ZrO_3 > Li_4SiO_4 > 2Mn/5Na_2WO_4/SiO_2 > LiAlO_2 > Gaz Faz > Li_2TiO_3 > LiMn_2O_4 > LiCoO_2$

Bu sonuçlara göre O_2 varlığında C_2 verimine bağlı olarak en iyi performansı 2Mn/5Na₂WO₄/SiO₂, N₂O varlığında ise 4Li/MgO göstermiştir. Sadece Li esaslı katalizörler değerlendirildiğinde O₂ varlığında en yüksek performansı Li₄SiO₄ verirken, N₂O ortamında Li₂ZrO₃ vermiştir.

T 7 / 1 ° v	_		O_2				N_2O		
Katalizor	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	
Gaz Faz*	7	34	2,4	0,32	7,4	73,9	5,5	0,56	
2Mn/5Na ₂ WO ₄ /SiO ₂	36,9	44,3	16,4	1,93	9,5	81,6	7,8	0,81	
4Li/MgO	21,6	41,9	9,1	1,49	11,5	79,9	9,2	0,97	
LiAlO ₂	18,2	10,5	1,9	0,51	25,7	24,8	6,4	1,33	
LiMn ₂ O ₄	22,1	17,3	3,8	0,59	21,6	12,7	2,7	0,55	
LiCoO ₂	22,9	2,5	0,57	0,18	23,6	5,8	1,37	0,34	
Li ₄ SiO ₄	13,1	38,2	5	1,1	13	62,6	8,1	0,98	
Li ₂ ZrO ₃	14,8	26,3	3,9	0,72	17	56,6	9,6	1,44	
Li ₂ TiO ₃	4,7	36,1	1,7	0,36	8,2	63,2	5,2	0,56	
Katalizör=200 mg (Yok*), CH ₄ /O=1, GHSV=7500 L/kgsa, Sıcaklık: 780°C									

Tablo 4.12: Gaz faz ve katalitik performansların 780°C'de karşılaştırılması

Yine O₂ varlığında 2Mn/5Na₂WO₄/SiO₂ katalizörü ile en yüksek C₂ veriminin (%16,4) elde edildiği 780°C'de (Tablo 4.12);

 $\label{eq:aktivite} Aktivite (\% CH_4 dönüşümü): 2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > LiCoO_2 > LiMn_2O_4 > LiAlO_2 > Li_2ZrO_3 > Li_4SiO_4 > Gaz Faz > Li_2TiO_3$

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Li_2TiO_3 > Gaz$ Faz $> Li_2ZrO_3 > LiMn_2O_4 > LiAlO_2 > LiCoO_2$

% C₂ verimi: 2Mn/5Na₂WO₄/SiO₂ > 4Li/MgO > Li₄SiO₄ > Li₂ZrO₃ > LiMn₂O₄ > Gaz Faz > LiAlO₂ > Li₂TiO₃ \ge LiCoO₂

 $C_2H_4/C_2H_6 \text{ oran1: } 2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Li_2ZrO_3 > LiMn_2O_4 > LiAlO_2 > Li_2TiO_3 > Gaz Faz > LiCoO_2 \text{ stralamas1 ile azalma göstermiştir.}$

N₂O varlığında ise;

 $\label{eq:aktivite} Aktivite (\% CH_4 dönüşümü): LiAlO_2 > LiCoO_2 > LiMn_2O_4 > Li_2ZrO_3 > Li_4SiO_4 \\ > 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 > Li_2TiO_3 > Gaz Faz$

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz Faz > Li_2TiO_3 > Li_4SiO_4 > Li_2ZrO_3 > LiAlO_2 > LiMn_2O_4 > LiCoO_2$

% C₂ verimi: Li₂ZrO₃ > 4Li/MgO > Li₄SiO₄ > 2Mn/5Na₂WO₄/SiO₂ > LiAlO₂ > Gaz Faz > Li₂TiO₃ > LiMn₂O₄ > LiCoO₂

 $C_2H_4/C_2H_6 \quad \text{oran1:} \quad Li_2ZrO_3 > LiAlO_2 > Li_4SiO_4 \geq 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 > Li_2TiO_3 \geq Gaz \quad Faz \geq LiMn_2O_4 > LiCoO_2 \quad \text{stralamas1} \quad \text{ile gerçekleşmiştir.}$

780°C'deki sonuçlara göre O₂ varlığında C₂ verimine bağlı olarak en iyi performansı 2Mn/5Na₂WO₄/SiO₂, N₂O varlığında ise Li₂ZrO₃ göstermiştir. Sadece Li esaslı katalizörler değerlendirildiğinde O₂ varlığında en yüksek performansı Li₄SiO₄ verirken, N₂O ortamında Li₂ZrO₃ vermiştir.

Gaz faz reaksiyonların etkisinin en yüksek olduğu 820°C'de ise (Tablo 4.13);

 $\label{eq:aktivite} \mbox{ (\% CH}_4 \mbox{ dönüşümü): } 2Mn/5Na_2WO_4/SiO_2 > LiMn_2O_4 > 4Li/MgO > Li_4SiO_4 > LiAlO_2 \geq Li_2ZrO_3 > LiCoO_2 > Gaz\ Faz > Li_2TiO_3$

TZ / 1º **			O ₂				N_2O			
Katalizor	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6		
Gaz Faz*	15,2	24,3	3,7	0,64	15,6	64,9	10,1	1,38		
2Mn/5Na ₂ WO ₄ /SiO ₂	37,1	41,5	15,4	2,25	16,2	71,2	11,5	1,56		
4Li/MgO	26,6	36,6	9,7	2,49	18,1	70,2	12,7	1,9		
LiAlO ₂	24,9	14,5	3,6	1,43	32,5	23	7,5	2,36		
LiMn ₂ O ₄	28,8	25,5	7,3	1,32	27,2	17,4	4,7	0,97		
LiCoO ₂	23,1	4,2	0,97	0,32	26,2	13,6	3,56	0,71		
Li ₄ SiO ₄	25,5	27	6,9	2,33	21,1	56,9	12	2,04		
Li ₂ ZrO ₃	24,5	26,9	6,6	1,71	27,5	48,3	13,3	3,32		
Li ₂ TiO ₃	14,1	33,5	4,7	1,11	15,9	63,6	10,1	1,42		
Katalizör=200 mg (Yok*), CH ₄ /O=1, GHSV=7500 L/kgsa, Sıcaklık: 820°C										

Tablo 4.13: Gaz faz ve katalitik performansların 820°C'de karşılaştırılması

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_2TiO_3 > Li_4SiO_4 \ge Li_2ZrO_3 > LiMn_2O_4 > Gaz Faz > LiAlO_2 > LiCoO_2$

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > LiMn_2O_4 > Li_4SiO_4 > Li_2ZrO_3$ Li₂TiO₃ > Gaz Faz > LiAlO₂ > LiCoO₂

 $C_2H_4/C_2H_6 \text{ oran1: } 4\text{Li}/\text{MgO} > \text{Li}_4\text{SiO}_4 > 2\text{Mn}/5\text{Na}_2\text{WO}_4/\text{SiO}_2 > \text{Li}_2\text{ZrO}_3 > \text{LiAIO}_2 > \text{LiMn}_2\text{O}_4 > \text{Li}_2\text{TiO}_3 > \text{Gaz Faz} > \text{LiCoO}_2$ şeklinde düşüş gerçekleşmiştir.

N₂O varlığında ise;

 $\label{eq:aktivite} Aktivite (\% CH_4 dönüşümü): LiAlO_2 > Li_2ZrO_3 \geq LiMn_2O_4 > LiCoO_2 > Li_4SiO_4 \\ > 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 \geq Li_2TiO_3 \geq Gaz \ Faz$

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz Faz > Li_2TiO_3 > Li_4SiO_4 > Li_2ZrO_3 > LiAlO_2 > LiMn_2O_4 > LiCoO_2$

% C₂ verimi: Li₂ZrO₃ > 4Li/MgO > Li₄SiO₄ > 2Mn/5Na₂WO₄/SiO₂ > Gaz Faz \ge Li₂TiO₃ > LiAlO₂ > LiMn₂O₄ > LiCoO₂

 $C_2H_4/C_2H_6 \quad \text{oran1:} \quad Li_2ZrO_3 > LiAlO_2 > Li_4SiO_4 > 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 > Li_2TiO_3 \geq Gaz \quad Faz > LiMn_2O_4 > LiCoO_2 \quad \text{stralamas1} \quad \text{ile gerçekleşmiştir.}$

820°C'de elde edilen sonuçlara göre O₂ varlığında C₂ verimine bağlı olarak yine en iyi performansı 2Mn/5Na₂WO₄/SiO₂, N₂O varlığında ise Li₂ZrO₃ göstermiştir. Sadece Li

4.5. SAMARYUM OKSİT (Sm₂O₃) ESASLI KATALİZÖRLERİN KATALİTİK PERFORMANSLARININ İNCELENMESİ

 $1Mn/2,5Na_2WO_4/Sm_2O_3$, $2Mn/5Na_2WO_4/Sm_2O_3$, $4Mn/10Na_2WO_4/Sm_2O_3$, Sm_2O_3 , $2Li/Sm_2O_3$, $4Li/Sm_2O_3$, $6Li/Sm_2O_3$, $5CaO/Sm_2O_3$, $10CaO/Sm_2O_3$ ve $15CaO/Sm_2O_3$ katalizörlerinin OCM performansları hem O_2 hem de N_2O varlığında incelenmiştir. Reaksiyonlar CH₄/O=1 oranında, 7500 L/kgsa besleme hızı altında ve 740-820°C sıcaklık aralığında gerçekleştirilmiştir.

 Tablo 4.14: Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık		Sm	$1_2O_3(O_2)$		$Sm_2O_3(N_2O)$					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	31,1	16,6	5,2	0,82	31,5	35	11	1,72		
760	31,6	18,4	5,8	0,98	35,9	32,7	11,7	1,95		
780	31,6	19,7	6,2	1,13	36,1	31,4	11,3	2,19		
800	31,6	20	6,3	1,32	35,7	30,7	11	2,37		
820	31,4	19,4	6,1	1,58	35,3	29	10,2	2,55		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.14'de Sm₂O₃ katalizörüne ait katalitik performans sonuçları verilmiştir. Elde edilen sonuçlara göre O₂ varlığında CH₄ dönüşümü artan sıcaklıkla neredeyse değişmemiştir (%31-32). O₂ ve N₂O neredeyse her sıcaklıkta tamamen tükenmiştir. C₂ seçimliliği ve C₂ verimi ise 800°C'ye kadar artarken bu sıcaklıktan sonra düşüş göstermiştir. C₂ seçimliliği 740°C'de %16,6 olurken 800°C'de %20'ye ulaşmış ve 820°C'de %19,4'e düşmüştür. C₂ verimi ise 740°C'de %5,2 olurken 800°C'de %6,3'e ulaşmış ve 820°C'de %6,1'e düşmüştür. C₂H₄/C₂H₆ oranının artan sıcaklıkla 0,82'den 1,58'e yükseldiği tespit edilmiştir. N₂O varlığında CH₄ dönüşümü 740°C'de %31,5 olurken 780°C'de %36,1'e yükselmiş ve 820°C'de %35,3'e kadar düşmüştür. C₂ seçimliliği artan sıcaklık ile düşüş eğilimi gösterirken 740°C'de %35 ve 820°C'de %29 olmuştur. C₂ verimi 760°C'de %11,7 ile maksimuma ulaşırken artan sıcaklıkl ile 820°C'de %10,2'ye düşmüştür. C₂H₄/C₂H₆ oranı ise artan sıcaklık ile 1,72'den 2,55'e yükselmiştir. N₂O varlığında CH₄ dönüşümleri, C₂ seçimlilik ve verimleri ile C₂H₄/C₂H₆ oranları O₂'den daha yüksek olmuştur. Hem O₂ hem de N₂O ortamında gaz faza kıyasla CH₄ dönüşümü çok daha yüksek olurken, C₂ seçimliliği düşük olmuştur. Ancak CH₄ dönüşümleri oldukça yüksek olduğundan Sm₂O₃ ile elde edilen C₂ verimleri ve C₂H₄/C₂H₆ oranları gaz faza kıyasla daha yüksek olmuştur. O₂ ortamında Sm₂O₃'ün C₂ verimi her sıcaklıkta 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'dan daha düşük olurken, N₂O varlığında 740°C'den 800°C'ye kadar daha yüksek olmuştur.

Tablo 4.15: 1Mn/2,5Na₂WO₄/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık	1M	n/2,5Na	₂ WO ₄ /Sn	$n_2O_3(O_2)$	$1Mn/2,5Na_2WO_4/Sm_2O_3(N_2O)$				
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	
740	24,9	9,6	2,4	0,36	22,5	16	3,6	0,57	
760	26,3	9,2	2,4	0,4	25,8	14,6	3,8	0,65	
780	26,4	9,4	2,5	0,46	27	13,6	3,7	0,69	
800	26,7	9,4	2,5	0,55	27,3	12,4	3,4	0,74	
820	26,3	9,3	2,5	0,64	27,1	10,9	3	0,82	
Katalizör=200 mg, $CH_4/O=1$, GHSV=7500 L/kgsa									

Tablo 4.16: 2Mn/5Na₂WO₄/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık	2N	In/5Na ₂	WO ₄ /Sm	$_{2}O_{3}(O_{2})$	$2Mn/5Na_2WO_4/Sm_2O_3(N_2O)$					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	25,4	8,2	2,1	0,35	20,9	16,7	3,5	0,64		
760	26,2	8,1	2,1	0,38	24,5	15,1	3,7	0,74		
780	26,2	8,6	2,3	0,44	26,1	15,4	4	0,86		
800	25,9	9	2,3	0,52	27,1	15,1	4,1	1		
820	26,2	9,2	2,4	0,66	27,7	13,9	3,9	1,17		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.17: 4Mn/10Na₂WO₄/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık	4M	n/10Na ₂	WO ₄ /Sn	$n_2O_3(O_2)$	4 M	n/10Na ₂ V	VO ₄ /Sm ₂	$O_3(N_2O)$		
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	23,1	4,6	1,1	0,24	12,7	24,7	3,1	0,42		
760	24,5	4,9	1,2	0,28	16,3	24,5	4	0,55		
780	24,7	5,5	1,4	0,32	19,5	25,7	5	0,75		
800	24,8	6,3	1,6	0,41	22,9	25,7	5,9	0,98		
820	25,3	6,9	1,8	0,55	26	25,4	6,6	1,27		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Ağırlıkça %1 Mn ve %2,5Na₂WO₄ içeren Sm_2O_3 destekli $1Mn/2,5Na_2WO_4/Sm_2O_3$ katalizörüne ait sonuçlar Tablo 4.15'te verilmiştir. O₂ ortamında CH₄ dönüşümü artan sıcaklık ile 760°C'ye kadar artış gösterirken sonrasında önemli bir değişiklik gerçekleşmemiştir. O₂ neredeyse her sıcaklıkta tamamen tükenmiştir. N₂O ise 740°C'de %88, 820°C'de %100 dönüşüm göstermiştir. C₂ seçimliliği %9-10 civarında olurken sıcaklık ile değişim göstermemiştir. C₂ verimleri %2,5 civarında olurken sıcaklık ile

önemli bir değişiklik gözlemlenmemiştir. Elde edilen C_2H_4/C_2H_6 oranı artan sıcaklık ile 0,36'dan 0,64'e yükselmiştir. N₂O ortamında CH₄ dönüşümü 740°C'de %22,5 olurken 780°C'ye kadar yükselmiş (~%27) ve neredeyse sabitlenmiştir. C₂ seçimliliği ise 740°C'de %16 olurken artan sıcaklık ile %10,9'a düşmüştür. C₂ verimi 760°'de maksimuma ulaşmış (%3,8) ve sonrasında azalmıştır. C₂H₄/C₂H₆ oranı ise artan sıcaklık ile 0,57'den 0,82'ye artış göstermiştir. N₂O ortamında dönüşüm, seçimlilik, verim ve C₂H₄/C₂H₆ oranı daha yüksek olurken, C₂ seçimlilikleri daha düşük kalmıştır. Verimler ise düşük sıcaklıklarda daha yüksek olurken 760°C'nin üzerinde gaz faz değerlerin altında olmuştur. 1Mn/2,5Na₂WO₄/Sm₂O₃ katalizörünün katalitik performansı 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalmıştır.

Ağırlıkça %2 Mn ve %5Na₂WO₄ içeren Sm₂O₃ destekli 2Mn/5Na₂WO₄/Sm₂O₃ katalizörüne ait sonuçlar Tablo 4.16'da verilmiştir. O2 varlığında elde edilen CH4 dönüşümleri sıcaklık ile %23,1'den %25,3'e artış gösterirken C2 seçimliliği sıcaklık ile %4,6'dan %6,9'a artmıştır. O₂ neredeyse her sıcaklıkta tamamen tükenmiştir. N₂O ise 740°C'de %84,5, 820°C'de %99,6 dönüşüm göstermiştir. C2 verimi de %2-2,5 aralığında değişirken C₂H₄/C₂H₆ oranı sıcaklıkla 0,35'ten 0,66'ya artış göstermiştir. N₂O ortamında CH₄ dönüşümü artan sıcaklık ile %20,9'dan %27,7'ye artış gösterirken, C₂ seçimliliği %16,7'den %13,9'a düşmüştür. C₂ verimi %3,5-4 aralığında değişim göstermiştir. C₂H₄/C₂H₆ oranı sıcaklık ile 0,64'ten 1,17'ye artmıştır. N₂O ortamında seçimlilik, verim ve C₂H₄/C₂H₆ oranı daha yüksek olmuştur. Ancak CH₄ dönüşümü 800°C'ye kadar daha düşük olmuştur. Dönüşümler her iki oksidant varlığında da gaz faza kıyasla daha yüksek olurken, C₂ seçimlilikleri daha düşük kalmıştır. Verimler ise düşük sıcaklıklarda daha yüksek olurken 760°C'nin üzerinde gaz faz değerlerin altında olmustur. $2Mn/5Na_2WO_4/Sm_2O_3$ katalizörünün katalitik performansı 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında olmuştur.

Ağırlıkça %4 Mn ve %10Na₂WO₄ içeren Sm₂O₃ destekli 4Mn/10Na₂WO₄/Sm₂O₃ katalizörüne ait sonuçlar Tablo 4.17'de verilmiştir. O₂ varlığında elde edilen CH₄ dönüşümleri %25-26 aralığında olurken C₂ seçimliliğinin sıcaklık ile %8,2'den %9,2'ye arttığı gözlemlenmiştir. O₂ dönüşümü %98-99 aralığında değişirken, N₂O dönüşümü 740°C'de %54,4, 820°C'de %86 olmuştur. C₂ verimi de %1-2 aralığında değişirken

 C_2H_4/C_2H_6 oranı sıcaklıkla 0,24'ten 0,55'e artış göstermiştir. N₂O ortamında CH₄ dönüşümü artan sıcaklık ile %12,7'den %26'ya artış gösterirken, C₂ seçimliliği %24,7 ile %25,4 arasında değişmiştir. C₂ verimi %3,1'den %6,6'ya yükselmiştir. C₂H₄/C₂H₆ oranı sıcaklık ile 0,42'den 1,27'ye artmıştır. N₂O ortamında seçimlilik, verim ve C₂H₄/C₂H₆ oranı daha yüksek olmuştur. Ancak CH₄ dönüşümü 800°C'ye kadar daha düşük olmuştur. Dönüşümler her iki oksidant varlığında da gaz faza kıyasla daha yüksek olurken, C₂ seçimlilikleri daha düşük kalmıştır. Verimler ise düşük sıcaklıklarda daha yüksek olurken 740°C'nin üzerinde gaz faz değerlerin altında olmuştur. 4Mn/10Na₂WO₄/Sm₂O₃ katalizörünün katalitik performansı 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında olmuştur.

 Sm_2O_3 'e farklı oranlarda yapılan Mn ve Na_2WO_4 katkılaması ile genel olarak Sm_2O_3 'ün katalitik performansının düştüğü belirlenmiştir. Mn ve Na_2WO_4 miktarlarının ağırlıkça %1 ve %2,5'tan, %4 ve %10'a çıkarılması ile O_2 varlığında hem CH₄ dönüşümünün hem de C_2 seçimliliğinin düştüğü görülmüştür. C_2 verimi de oldukça düşüş göstermiştir. Ayrıca C_2H_4/C_2H_6 oranı da düşüş göstermiştir. N_2O varlığında ise CH₄ dönüşümü özellikle düşük sıcaklıklarda düşüş gösterirken C_2 seçimliliği artış göstermiştir. C_2 verimi ise 740°C hariç diğer sıcaklıklarda daha yüksek olmuştur. C_2H_4/C_2H_6 oranı ise düşük sıcaklıklarda düşüş gösterirken 800°C'den sonra yükselmiştir.

Ağırlıkça %2, %4 ve %6 Li içeren Sm₂O₃ destekli katalizörlere ait sonuçlar Tablo 4.18, 4.19 ve 4.20'de sunulmuştur.

Sıcaklık		2Li/S	$Sm_2O_3(C)$	D ₂)	2Li/Sm ₂ O ₃ (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	11,7	36	4,2	0,67	5,6	66,7	3,7	0,42		
760	15,8	35	5,5	1,04	8	65,3	5,2	0,61		
780	20,6	33,5	6,9	1,56	11,2	63,2	7,1	0,87		
800	24,8	29	7,2	2,1	15	59,9	9	1,27		
820	28	29,1	8,2	2,62	20,2	53,8	10,9	1,9		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.18: 2Li/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

 $2Li/Sm_2O_3$ katalizörüne ait sonuçlar Tablo 4.18'de verilmiştir. O_2 varlığında CH₄ dönüşümünün artan sıcaklık ile %11,7'den %28'e yükseldiği gözlemlenmiştir. O_2 dönüşümü 740°C'de %26,6 olurken 820°C'de %72,1'e ulaşmıştır. N₂O dönüşümü ise 740°C'de %26,8 olurken 820°C'de %49,1 olmuştur. C₂ seçimliliği ise %36'dan %29,1'e düşmüştür. C₂ verimi de sıcaklık ile %4,2'den %8,2'ye yükselmiştir. C₂H₄/C₂H₆ oranı artan sıcaklık ile 0,67'den 2,62'ye artış göstermiştir. N₂O ortamında dönüşüm %5,6'dan %20,2'ye yükselirken, C₂ seçimliliği %66,7'den %53,8'e düşüş göstermiştir. C₂ verimi ise %3,7'den %10,9'a yükselmiştir. C₂H₄/C₂H₆ oranı da artan sıcaklık ile 0,42'den 1,9'a yükseliş göstermiştir. N₂O ile elde edilen dönüşümler ve C₂H₄/C₂H₆ oranı O₂'ye göre daha düşük olurken, seçimlilik ve verim daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranı gaz faza kıyasla daha yüksek olurken, N₂O varlığında seçimlilik daha düşük olmuştur. 2Li/Sm₂O₃ ile O₂ ve N₂O ortamında elde edilen C₂ verimi 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalmıştır.

Tablo 4.19: 4Li/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık		4Li/S	$Sm_2O_3(C)$	D ₂)	$4 \text{Li}/\text{Sm}_2\text{O}_3(\text{N}_2\text{O})$				
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	
740	11,6	36,2	4,2	0,42	6,5	66,4	4,3	0,42	
760	16,1	35,8	5,8	0,71	9	66	5,9	0,6	
780	19,8	36,3	7,2	1,1	11,7	65	7,6	0,84	
800	24,2	34,3	8,3	1,63	15	62,2	9,3	1,17	
820	28,1	32,2	9,1	2,27	19	57,8	11	1,64	
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa									

4Li/Sm₂O₃ katalizörüne ait sonuçlar Tablo 4.19'da verilmiştir. O₂ varlığında CH₄ dönüşümü artan sıcaklık ile %11,6'dan %28,1'e yükselmiştir. O₂ dönüşümü 740°C'de %30 olurken 820°C'de %75,7'e ulaşmıştır. N₂O dönüşümü ise 740°C'de %29,2 olurken 820°C'de %44,8 olmuştur. C₂ seçimliliği ise %36,2'den %32,2'ye düşmüştür. C₂ verimi de sıcaklık ile %4,2'den %9,1'e yükselmiştir. C₂H₄/C₂H₆ oranı artan sıcaklık ile 0,42'den 2,27'ye artış göstermiştir. N₂O ortamında dönüşüm %6,5'tan %19'a yükselirken, C₂ seçimliliği %66,4'ten %57,8'e düşüş göstermiştir. C₂ verimi ise %4,3'ten %11'e yükselmiştir. C₂H₄/C₂H₆ oranı da artan sıcaklık ile 0,42'den 1,64'e yükseliş göstermiştir. N₂O ile elde edilen dönüşümler ve C₂H₄/C₂H₆ oranı O₂'ye göre daha düşük olurken, seçimlilik ve verim daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranı gaz faza kıyasla daha yüksek olmuştur. 4Li/Sm₂O₃ ile C₂ seçimliliği O₂ varlığında daha yüksek olurken, N₂O varlığında seçimlilik daha düşük olmuştur. 4Li/Sm₂O₃ ile O₂ ve N₂O ortamında elde edilen C₂ verimi 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalmıştır.

Sıcaklık		6Li/S	$Sm_2O_3(C$	D ₂)	$6 \text{Li}/\text{Sm}_2\text{O}_3(\text{N}_2\text{O})$					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	21	33,9	7,1	1,43	9,9	70,1	6,9	0,74		
760	26,5	31,7	8,4	2,09	12,9	67,3	8,7	1,06		
780	30,2	30,6	9,2	2,75	17	62,1	10,6	1,56		
800	32,6	30,1	9,8	3,54	21,2	56,6	12	2,17		
820	34,5	28,5	9,8	4,48	26	49,7	12,9	2,98		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.20: 6Li/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Tablo 4.20'de 6Li/Sm₂O₃ katalizörüne ait sonuçlar verilmiştir. CH₄ dönüşümleri hem O₂ (%21'den %34,5'e) hem de N₂O varlığında (%9,9'dan %26'ya) artan sıcaklık ile artış göstermiş, C₂ seçimlilikleri (O₂ varlığında %33,9'dan %28,5'e) (N₂O ortamında %70,1'den %49,7'ye) ise düşmüştür. O₂ dönüşümü 740°C'de %51,2 olurken 820°C'de %93,4'e ulaşmıştır. N₂O dönüşümü ise 740°C'de %30,6 olurken 820°C'de %58 olmuştur. C2 verimleri (O2 varlığında %7,1'den %9,8'e) (N2O ortamında %6,9'dan %12,9'a) ve C₂H₄/C₂H₆ oranı da artan sıcaklık ile artış göstermiştir. O₂ varlığında dönüşüm N2O'ya göre daha yüksek olurken C2 seçimliliği daha düşük olmuştur. C2 verimleri N2O ortamında 740°C'den sonra, C2H4/C2H6 oranları ise O2 varlığında her sıcaklıkta daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranı gaz faza kıyasla daha yüksek olmuştur. Ayrıca 6Li/Sm₂O₃ ile C₂ seçimliliği O2 varlığında daha yüksek olurken, N2O varlığında seçimlilik daha düşük olmuştur. 6Li/Sm₂O₃ ile O₂ ortamında elde edilen C₂ verimi 2Mn/5Na₂WO₄/SiO₂ katalizöründen düşük olurken 760°C'nin üzerinde 4Li/MgO'nun üzerinde olmuştur. Ek olarak N2O ortamında elde edilen C2 verimi her sıcaklıkta 2Mn/5Na2WO4/SiO2 ve 4Li/MgO'dan daha yüksek olmuştur. Ayrıca C₂H₄/C₂H₆ oranları hem O₂ hem de N₂O ortamında diğer katalizörlerin oldukça üzerinde kalmıştır.

 Sm_2O_3 üzerine ağırlıkça %2 ve %4 Li eklenmesi ile Sm_2O_3 'e kıyasla dönüşümün her iki oksidant varlığında da düştüğü gözlemlenmiştir. Ancak Li ilavesi ile C₂ seçimlilikleri oldukça artış göstermiştir. Böylelikle O₂ varlığında, özellikle 780°C'nin üzerinde C₂ verimleri ve C₂H₄/C₂H₆ oranları artmıştır. N₂O varlığında ise C₂ verimleri ancak 820°C'de Sm₂O₃ üzerine çıkabilmiştir. %6Li ilavesi ile her iki oksidant varlığında da dönüşümler %2Li ve %4Li ilavesine göre daha yüksek olurken birkaç istisna hariç saf Sm₂O₃ altında kalmıştır ancak C₂ seçimlilikleri daha yüksek olmuştur. Dönüşümlerin saf Sm₂O₃ ile elde edilen değerlere yaklaşması sebebiyle O₂ varlığında elde edilen C₂ verimleri ve C_2H_4/C_2H_6 oranları her sıcaklıkta Sm_2O_3 , $2Li/Sm_2O_3$ ve $4Li/Sm_2O_3$ 'ten yüksek olmuştur. N₂O varlığında ise C₂ verimleri ve C_2H_4/C_2H_6 oranları $2Li/Sm_2O_3$ ve $4Li/Sm_2O_3$ 'ten her sıcaklıkta yüksek olmuş ve 780°C'den sonra Sm_2O_3 ile elde edilen değerleri aşmıştır. O₂ ve N₂O varlığında $2Li/Sm_2O_3$ ve $4Li/Sm_2O_3$ katalizörleri ile elde edilen C₂ verimi $2Mn/5Na_2WO_4/SiO_2$ ve 4Li/MgO'dan düşük olurken, O₂ ortamında $6Li/Sm_2O_3$ ile 760°C'den itibaren 4Li/MgO'ya çok yakın sonuçlar elde edilmiş ancak $2Mn/5Na_2WO_4/SiO_2$ 'nun altında kalınmıştır. Lakin N₂O ortamında $6Li/Sm_2O_3$ katalizörü ile her sıcaklıkta çok daha yüksek C₂ verimi elde edilmiştir. Ayrıca C_2H_4/C_2H_6 oranları da daha yüksek olmuştur.

Ağırlıkça %5, %10 ve %15 CaO içeren Sm_2O_3 destekli katalizörlere ait sonuçlar Tablo 4.21, 4.22 ve 4.23'te verilmiştir.

Sıcaklık		5CaO	$/Sm_2O_3($	(O ₂)	$5CaO/Sm_2O_3(N_2O)$					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	31,1	22,2	6,9	0,75	29,4	35,5	10,4	1,53		
760	32,2	23,5	7,6	0,89	34,1	38,2	13	1,96		
780	32,6	24,9	8,1	1,06	35,9	36,7	13,2	2,33		
800	32,7	25,6	8,4	1,26	36,8	35,2	13	2,81		
820	32,5	25,4	8,3	1,53	37,1	34	12,6	3,33		
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa										

Tablo 4.21: 5CaO/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

5CaO/Sm₂O₃ katalizörüne ait sonuçlar incelendiğinde (Tablo 4.21), O₂ ortamında CH₄ dönüşümünün artan sıcaklıkla çok değişmediği (%31-32,5), C₂ seçimliliğinin ise %22,2'den %25,6'ya kadar yükseldiği ve sonrasında %25,4'e düştüğü gözlemlenmiştir. O₂ dönüşümünün her sıcaklıkta %99 civarında olduğu bulunmuştur. N₂O dönüşümü ise 740°C'de %85 olurken 820°C'de %99,6 olmuştur. C₂ verimi artan sıcaklık ile %6,9'dan %8,3'e çıkmıştır. C₂H₄/C₂H₆ oranının ise 0,75'ten 1,53'e yükseldiği belirlenmiştir. N₂O varlığında ise CH₄ dönüşümü %29,4'ten %37,1'e yükselmiş, C₂ seçimliliği de önce %35,5'ten %38,2'ye yükselmiş sonrasında %34'e düşmüştür. C₂ verimi 740°C'de %10,4 olurken 780°C'de %13,2'ye yükselmiş ve 820°C'de %12,6'ya düşmüştür. C₂H₄/C₂H₆ oranının 1,53'ten 3,33'e yükseldiği tespit edilmiştir. N₂O ile elde edilen dönüşümler 740°C'nin üzerinde, seçimlilik, verim ve C₂H₄/C₂H₆ oranı ise her sıcaklıkta O₂'ye göre daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranı gaz faza kıyasla daha yüksek olmuştur. Ancak seçimlilikler gaz faza kıyasla daha düşük kalmıştır. 5CaO/Sm₂O₃ ile O₂ varlığında elde edilen C₂ verimi 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalırken, N₂O ortamında daha yüksek olmuştur.

Sıcaklık		10CaO	$\sqrt{Sm_2O_3}$	(O ₂)	10CaO/Sm ₂ O ₃ (N ₂ O)					
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6		
740	30,2	20,2	6,1	0,76	32,1	32,8	10,5	1,2		
760	31,9	21,4	6,8	0,91	34,8	31,1	10,8	1,45		
780	32,2	22,8	7,3	1,08	35,7	31,5	11,3	1,71		
800	32,2	23,2	7,5	1,33	36,4	31,3	11,4	2		
820	31,8	22,6	7,2	1,68	36,4	30,8	11,2	2,3		
Katalizör=200 mg CH_/Q=1 GHSV=7500 L/kgsa										

Tablo 4.22: 10CaO/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

10CaO/Sm₂O₃ katalizörüne ait sonuçlar Tablo 4.22'de verilmiştir. CH₄ dönüşümü, O₂ varlığında ve 740°C'de %30,2 olurken, 800°C'de %32,2'ye çıkmış ve 820°C'de %31,8'e düşmüştür. O₂ dönüşümünün her sıcaklıkta %99 civarında olduğu bulunmuştur. N₂O dönüşümü ise 740°C'de %90,2 olurken 820°C'de %99,8 olmuştur. C2 seçimliliği de 740°C'de %20,2 olurken 800°C'de %23,2'ye çıkmış ve 820°C'de %22,6'ya inmiştir. C₂ verimi ise %6,1'den %7,5'e yükselmiş ve sonrasında %7,2'ye düşmüştür. C₂H₄/C₂H₆ oranı artan sıcaklık ile 0,76'dan 1,68'e yükselmiştir. N₂O varlığında CH₄ dönüşümü sıcaklık artışı ile %32,1'den %36,4'e artmıştır. C₂ seçimliliği ise 740°C'de %32,8 olurken, 820°C'de %30,8'e düşüş göstermiştir. C2 verimi 740°C'de %10,5 olurken, 800°C'de %11,4 ile maksimuma ulaşmış ve sonrasında %11,2'ye düşmüştür. C₂H₄/C₂H₆ oranı artan sıcaklık ile 1,2'den 2,3'e yükselmiştir. N₂O ile elde edilen dönüşümler, seçimlilik, verim ve C₂H₄/C₂H₆ oranı her sıcaklıkta O₂'ye göre daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranı gaz faza kıyasla daha yüksek olmuştur. Ancak seçimlilikler gaz faza kıyasla daha düşük kalmıştır. 10CaO/Sm2O3 ile O2 varlığında elde edilen C2 verimi 2Mn/5Na2WO4/SiO2 ve 4Li/MgO'nun altında kalırken, N₂O ortamında 800°C'ye kadar daha yüksek olmuştur.

15CaO/Sm₂O₃ katalizörüne ait katalitik sonuçlar Tablo 4.23'de sunulmuştur. O₂ varlığında dönüşüm 740°C'de %31,5 olurken 760-820°C aralığında %33 civarında değişim göstermiştir. O₂ dönüşümünün her sıcaklıkta %99 civarında olduğu bulunmuştur. N₂O dönüşümü ise 740°C'de %86 olurken 820°C'de %99 olmuştur. C₂ seçimliliği artan sıcaklık ile %22,6'dan %26,7'ye ulaşmış (800°C) ve sonrasında

%26,3'e düşüş göstermiştir. 740°C'de %7,1 olan C₂ verimi 800°C'de %8,8 ile maksimuma ulaşmıştır. C₂H₄/C₂H₆ oranı ise artan sıcaklık ile 0,76'dan 1,44'e yükselmiştir. N₂O ortamında CH₄ dönüşümü %32,4'ten %37,4'e artış göstermiştir. C₂ seçimliliği ise 740°C'de %40,7 olurken 820°C'de %34'e düşmüştür. C₂ verimi 740°C'de %13,2 olmuş ve 780°C'de %13,4 ile maksimuma ulaşmıştır. C₂H₄/C₂H₆ oranı artan sıcaklık ile 1,65'ten 3,57'ye yükselmiştir. N₂O varlığında dönüşüm, seçimlilik, verim ve C₂H₄/C₂H₆ oranı O₂ kıyasla daha yüksek olmuştur. Her iki oksidant varlığında da dönüşüm, verim ve C₂H₄/C₂H₆ oranları gaz faza kıyasla daha yüksek olurken, seçimlilikler daha düşük kalmıştır. 15CaO/Sm₂O₃ ile O₂ varlığında elde edilen C₂ verimi 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalırken, N₂O ortamında her sıcaklıkta daha yüksek olmuştur.

Tablo 4.23: 15CaO/Sm₂O₃ katalizörüne ait katalitik performans sonuçları

Sıcaklık		15CaO	$\sqrt{Sm_2O_3}$	(O ₂)	15CaO/Sm ₂ O ₃ (N ₂ O)				
(°C)	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y _{C2}	C_2H_4/C_2H_6	
740	31,5	22,6	7,1	0,76	32,4	40,7	13,2	1,65	
760	33	24,2	8	0,91	35,1	38	13,3	2	
780	33,2	25,7	8,5	1,03	36,5	36,7	13,4	2,41	
800	33,1	26,7	8,8	1,22	37,4	35,2	13,2	2,96	
820	33	26,3	8,7	1,44	37,4	34	12,7	3,57	
Katalizör=200 mg, CH ₄ /O=1, GHSV=7500 L/kgsa									

 Sm_2O_3 'e %5, %10 ve %15 CaO katkılaması ile genel olarak dönüşümlerin çok değişmediği ancak seçimliliklerin artmış olduğu gözlemlenmiştir. Özellikle O_2 varlığında C_2 verimlerinin her sıcaklıkta daha yüksek olduğu belirlenmiştir. C_2H_4/C_2H_6 oranı için net bir davranış gözlemlenmemiştir. N_2O varlığında ise 5CaO/Sm₂O₃ ve 15CaO/Sm₂O₃ ile daha yüksek C_2 verimleri elde edilmiştir. 10CaO/Sm₂O₃ ile elde edilen C_2 verimlerinin 780°C'den sonra daha yüksek olduğu belirlenmiştir. C_2H_4/C_2H_6 oranlarının 5CaO/Sm₂O₃ ve 15CaO/Sm₂O₃ varlığında 740°C'den sonra daha yüksek olduğu, 10CaO/Sm₂O₃ ile daha düşük olduğu tespit edilmiştir.

O₂ varlığında gaz faz reaksiyonların katalitik performanslara etkisinin en düşük seviyede olduğu 740°C'de elde edilen sonuçlar karşılaştırıldığında (Tablo 4.24);

T Z / 10 0			O ₂				N_2O	
Katalizör	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6
Gaz Faz*	3,1	30,7	1	0,12	3,5	72	2,5	0,24
2Mn/5Na ₂ WO ₄ /SiO ₂	23,3	45,2	10,5	1,03	4,6	88,2	4,1	0,38
4Li/MgO	18,9	44,5	8,4	0,87	7,7	85,1	6,6	0,52
Sm_2O_3	31,1	16,6	5,2	0,82	31,5	35	11	1,72
1Mn/2,5Na ₂ WO ₄ / Sm ₂ O ₃	24,9	9,6	2,4	0,36	22,5	16	3,6	0,57
2Mn/5Na ₂ WO ₄ / Sm ₂ O ₃	25,4	8,2	2,1	0,35	20,9	16,7	3,5	0,64
4Mn/10Na ₂ WO ₄ / Sm ₂ O ₃	23,1	4,6	1,1	0,24	12,7	24,7	3,1	0,42
2Li/Sm ₂ O ₃	11,7	36	4,2	0,67	5,6	66,7	3,7	0,42
4Li/Sm ₂ O ₃	11,6	36,2	4,2	0,42	6,5	66,4	4,3	0,42
6Li/Sm ₂ O ₃	21	33,9	7,1	1,43	9,9	70,1	6,9	0,74
5CaO/Sm ₂ O ₃	31,1	22,2	6,9	0,75	29,4	35,5	10,4	1,53
10CaO/Sm ₂ O ₃	30,2	20,2	6,1	0,76	32,1	32,8	10,5	1,2
15CaO/Sm ₂ O ₃	31,5	22,6	7,1	0,76	32,4	40,7	13,2	1,65

Tablo 4.24: Gaz faz ve Sm₂O₃ esaslı katalizörlerin 740°C'deki performansları

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > 6Li/Sm_2O_3 > Gaz Faz > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 >$

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > 6Li/Sm_2O_3 = 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > 4Li/Sm_2O_3 = 2Li/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > Gaz faz$

$$\begin{split} C_2H_4/C_2H_6 \ \ orani: \ \ 6Li/Sm_2O_3 \ > \ \ 2Mn/5Na_2WO_4/SiO_2 \ > \ \ 4Li/MgO \ > \ \ Sm_2O_3 \\ 15CaO/Sm_2O_3 \ = \ \ 10CaO/Sm_2O_3 \ > \ \ 5CaO/Sm_2O_3 \ > \ \ 2Li/Sm_2O_3 \ > \ \ 4Li/Sm_2O_3 \$$

N₂O varlığında sonuçlar karşılaştırıldığında (Tablo 4.24);

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz faz > 6Li/Sm_2O_3 > 2Li/Sm_2O_3 > 4Li/Sm_2O_3 > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 4Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 2Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 4Mn/2Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3$

% C₂ verimi: $15CaO/Sm_2O_3 > Sm_2O_3 > 10CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 6Li/Sm_2O_3 > 4Li/MgO > 4Li/Sm_2O_3 > 2Mn/5Na_2WO_4/SiO_2 > 2Li/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > Gaz faz$

$$\begin{split} C_2H_4/C_2H_6 \ \ orani: \ Sm_2O_3 > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > \\ 6Li/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2, \\ 5Na_2WO_4/Sm_2O_3 = 4Li/Sm_2O_3 = 2Li/Sm_2O_3 > 2Mn/5Na_2WO_4/SiO_2 > Gaz \ faz \ siralamasi \ ile \ azalmıştır. \end{split}$$

Bu sonuçlara göre 740°C'de ve O_2 varlığında C_2 verimine bağlı olarak en iyi performansı 2Mn/5Na₂WO₄/SiO₂, N₂O varlığında ise 15CaO/Sm₂O₃ göstermiştir. 15CaO/Sm₂O₃ ile N₂O varlığında elde edilen C₂ verimi, 2Mn/5Na₂WO₄/SiO₂ ile O₂ varlığında elde edilen C₂ veriminden %2,7 daha yüksek olmuştur. Sadece Sm₂O₃ esaslı katalizörler değerlendirildiğinde O₂ varlığında en yüksek performansı 15CaO/Sm₂O₃ ve 6Li/Sm₂O₃ verirken, N₂O ortamında 15CaO/Sm₂O₃ vermiştir.

O₂ varlığında 2Mn/5Na₂WO₄/SiO₂ ile en yüksek C₂ veriminin elde edildiği 780°C'de katalizörlerin performansları Tablo 4.25'te verilmiştir. Bu sonuçlara göre;

			0,				N ₂ O	
Katalizör	X _{CH4}	Sc ₂	Y _{C2}	C_2H_4/C_2H_6	X _{CH4}	S _{C2}	Y _{C2}	C_2H_4/C_2H_6
Gaz Faz*	7	34	2,4	0,32	7,4	73,9	5,5	0,56
2Mn/5Na ₂ WO ₄ /SiO ₂	36,9	44,3	16,4	1,93	9,5	81,6	7,8	0,81
4Li/MgO	21,6	41,9	9,1	1,49	11,5	79,9	9,2	0,97
Sm_2O_3	31,6	19,7	6,2	1,13	36,1	31,4	11,3	2,19
1Mn/2,5Na ₂ WO ₄ / Sm ₂ O ₃	26,4	9,4	2,5	0,46	27	13,6	3,7	0,69
2Mn/5Na ₂ WO ₄ / Sm ₂ O ₃	26,2	8,6	2,3	0,44	26,1	15,4	4	0,86
4Mn/10Na ₂ WO ₄ / Sm ₂ O ₃	24,7	5,5	1,4	0,32	19,5	25,7	5	0,75
2Li/Sm ₂ O ₃	20,6	33,5	6,9	1,56	11,2	63,2	7,1	0,87
4Li/Sm ₂ O ₃	19,8	36,3	7,2	1,1	11,7	65	7,6	0,84
6Li/Sm ₂ O ₃	30,2	30,6	9,2	2,75	17	62,1	10,6	1,56
5CaO/Sm ₂ O ₃	32,6	24,9	8,1	1,06	35,9	36,7	13,2	2,33
10CaO/Sm ₂ O ₃	32,2	22,8	7,3	1,08	35,7	31,5	11,3	1,71
15CaO/Sm ₂ O ₃	33,2	25,7	8,5	1,03	36,5	36,7	13,4	2,41
Sm ₂ O ₃ 4Mn/10Na ₂ WO ₄ / Sm ₂ O ₃ 2Li/Sm ₂ O ₃ 4Li/Sm ₂ O ₃ 6Li/Sm ₂ O ₃ 5CaO/Sm ₂ O ₃ 10CaO/Sm ₂ O ₃ 15CaO/Sm ₂ O ₃ Katalizör	20,2 24,7 20,6 19,8 30,2 32,6 32,2 33,2 =200 mg	5,5 33,5 36,3 30,6 24,9 22,8 25,7 (Yok*),6	1,4 6,9 7,2 9,2 8,1 7,3 8,5 CH ₄ /O=1	0,32 1,56 1,1 2,75 1,06 1,08 1,03	19,5 11,2 11,7 17 35,9 35,7 36,5 /kgsa, Suc	25,7 63,2 65 62,1 36,7 31,5 36,7 :aklık: 78	5 7,1 7,6 10,6 13,2 11,3 13,4	0,75 0,87 0,84 1,56 2,33 1,71 2,41

Tablo 4.25: Gaz faz ve Sm₂O₃ esaslı katalizörlerin 780°C'deki performansları

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > 4Li/Sm_2O_3 > Gaz faz > 2Li/Sm_2O_3 > 6Li/Sm_2O_3 > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 >$

$$\begin{split} C_2H_4/C_2H_6 \mbox{ oran1: } 6Li/Sm_2O_3 &> 2Mn/5Na_2WO_4/SiO_2 &> 2Li/Sm_2O_3 &> 4Li/MgO \\ &> Sm_2O_3 &> 4Li/Sm_2O_3 &> 10CaO/Sm_2O_3 &> 5CaO/Sm_2O_3 &> 15CaO/Sm_2O_3 &> 1Mn/2, 5Na_2WO_4/Sm_2O_3 &> 2Mn/5Na_2WO_4/Sm_2O_3 &> 4Mn/10Na_2WO_4/Sm_2O_3 &= Gaz \mbox{ faz sıralamas1 ile azalmıştır.} \end{split}$$

N₂O varlığında ise (Tablo 4.25);

 % C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz faz > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > 6Li/Sm_2O_3 > 15CaO/Sm_2O_3 = 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 4Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/$

% C₂ verimi: $15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 = Sm_2O_3 > 6Li/Sm_2O_3 > 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > Gaz faz > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_$

$$\begin{split} C_2H_4/C_2H_6 \mbox{ oran1: } 15CaO/Sm_2O_3 &> 5CaO/Sm_2O_3 &> Sm_2O_3 &> 10CaO/Sm_2O_3 &> \\ 6Li/Sm_2O_3 &> 4Li/MgO &> 2Li/Sm_2O_3 &> 2Mn/5Na_2WO_4/Sm_2O_3 &> 4Li/Sm_2O_3 &> \\ 2Mn/5Na_2WO_4/SiO_2 &> 4Mn/10Na_2WO_4/Sm_2O_3 &> 1Mn/2,5Na_2WO_4/Sm_2O_3 &> Gaz \mbox{ faz sıralamas1 ile azalmıştır.} \end{split}$$

Sonuçlar karşılaştırıldığında O₂ varlığında ve 780°C'de C₂ verimine bağlı olarak en iyi performansı $2Mn/5Na_2WO_4/SiO_2$, N₂O varlığında ise $15CaO/Sm_2O_3$ göstermiştir. Sadece Sm_2O_3 esaslı katalizörler değerlendirildiğinde O₂ varlığında en yüksek performansı $6Li/Sm_2O_3$ verirken, N₂O ortamında $15CaO/Sm_2O_3$ vermiştir.

Gaz faz reaksiyonların katalitik sonuçlara etkisinin en yüksek olduğu 820°C'deki sonuçlar Tablo 4.26'da verilmiştir. O₂ varlığındaki sonuçlara göre;

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 6Li/Sm_2O_3 > 4Li/MgO > 4Li/Sm_2O_3 > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 2Li/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > Gaz faz > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3$

Katalizör	O ₂				N ₂ O			
	X _{CH4}	S_{C_2}	Y_{C_2}	C_2H_4/C_2H_6	X _{CH4}	S_{C_2}	Yc2	C_2H_4/C_2H_6
Gaz Faz*	15,2	24,3	3,7	0,64	15,6	64,9	10,1	1,38
2Mn/5Na ₂ WO ₄ /SiO ₂	37,1	41,5	15,4	2,25	16,2	71,2	11,5	1,56
4Li/MgO	26,6	36,6	9,7	2,49	18,1	70,2	12,7	1,9
Sm_2O_3	31,4	19,4	6,1	1,58	35,3	29	10,2	2,55
1Mn/2,5Na ₂ WO ₄ / Sm ₂ O ₃	26,3	9,3	2,5	0,64	27,1	10,9	3	0,82
2Mn/5Na ₂ WO ₄ / Sm ₂ O ₃	26,2	9,2	2,4	0,66	27,7	13,9	3,9	1,17
4Mn/10Na ₂ WO ₄ / Sm ₂ O ₃	25,3	6,9	1,8	0,55	26	25,4	6,6	1,27
2Li/Sm ₂ O ₃	28	29,1	8,2	2,62	20,2	53,8	10,9	1,9
4Li/Sm ₂ O ₃	28,1	32,2	9,1	2,27	19	57,8	11	1,64
6Li/Sm ₂ O ₃	34,5	28,5	9,8	4,48	26	49,7	12,9	2,98
5CaO/Sm ₂ O ₃	32,5	25,4	8,3	1,53	37,1	34	12,6	3,33
10CaO/Sm ₂ O ₃	31,8	22,6	7,2	1,68	36,4	30,8	11,2	2,3
15CaO/Sm ₂ O ₃	33	26,3	8,7	1,44	37,4	34	12,7	3,57
Katalizör=200 mg (Yok*), CH₄/O=1, GHSV=7500 L/kgsa, Sıcaklık: 820°C								

Tablo 4.26: Gaz faz ve Sm₂O₃ esaslı katalizörlerin 820°C'deki performansları

$$\begin{split} C_2H_4/C_2H_6 \ \ orani: \ \ 6Li/Sm_2O_3 \ > \ 2Li/Sm_2O_3 \ > \ 4Li/MgO \ > \ 4Li/Sm_2O_3 \ > \ 2Mn/5Na_2WO_4/SiO_2 \ > \ 10CaO/Sm_2O_3 \ > \ \ Sm_2O_3 \ > \ 5CaO/Sm_2O_3 \ > \ 15CaO/Sm_2O_3 \ > \ 2Mn/5Na_2WO_4/Sm_2O_3 \ > \ 1Mn/2, \ 5Na_2WO_4/Sm_2O_3 \ = \ Gaz \ \ faz \ > \ 4Mn/10Na_2WO_4/Sm_2O_3 \ siralaması gerçekleşmiştir. \end{split}$$

N₂O varlığında ise (Tablo 4.25);

 $\begin{aligned} & \text{Aktivite (\% CH_4 dönüşümü): } 15 \text{CaO/Sm}_2\text{O}_3 > 5 \text{CaO/Sm}_2\text{O}_3 > 10 \text{CaO/Sm}_2\text{O}_3 > \\ & \text{Sm}_2\text{O}_3 > 2 \text{Mn}/5 \text{Na}_2 \text{WO}_4/\text{Sm}_2\text{O}_3 > 1 \text{Mn}/2, \\ & 5 \text{Na}_2 \text{WO}_4/\text{Sm}_2\text{O}_3 > 4 \text{Mn}/10 \text{Na}_2 \text{WO}_4/\text{Sm}_2\text{O}_3 \\ & = 6 \text{Li}/\text{Sm}_2\text{O}_3 > 2 \text{Li}/\text{Sm}_2\text{O}_3 > 4 \text{Li}/\text{Sm}_2\text{O}_3 > 4 \text{Li}/\text{MgO} > 2 \text{Mn}/5 \text{Na}_2 \text{WO}_4/\text{SiO}_2 > \text{Gaz faz} \end{aligned}$

% C₂ seçimliliği: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Gaz faz > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > 6Li/Sm_2O_3 > 15CaO/Sm_2O_3 = 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 \ge Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 4Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/Sm_2O_3 > 2Mn/2,5Na_2WO_4/Sm_2O_3 > 10CaO/$

% C₂ verimi: $6Li/Sm_2O_3 > 15CaO/Sm_2O_3 = 4Li/MgO > 5CaO/Sm_2O_3 > 2Mn/5Na_2WO_4/SiO_2 > 10CaO/Sm_2O_3 > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > Sm_2O_3 > Gaz faz > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5$

$$\begin{split} C_2H_4/C_2H_6 \ \ oran1: \ 15CaO/Sm_2O_3 \ > \ 5CaO/Sm_2O_3 \ > \ 6Li/Sm_2O_3 \ > \ \ Sm_2O_3 \ > \ \\ 10CaO/Sm_2O_3 \ > \ 4Li/MgO \ = \ 2Li/Sm_2O_3 \ > \ 4Li/Sm_2O_3 \ > \ 2Mn/5Na_2WO_4/SiO_2 \ > \ \ Gaz \ \\ faz \ > \ \ 4Mn/10Na_2WO_4/Sm_2O_3 \ > \ \ 2Mn/5Na_2WO_4/Sm_2O_3 \ > \ \ 1Mn/2, \\ 5Na_2WO_4/Sm_2O_3 \ > \ \\ stralamas1 \ tespit \ edilmiştir. \end{split}$$

Sonuçlar incelendiğinde O_2 varlığında ve 820°C'de C_2 verimine bağlı olarak en iyi performansı 2Mn/5Na₂WO₄/SiO₂, N₂O varlığında ise 6Li/Sm₂O₃ göstermiştir. Sadece Sm₂O₃ esaslı katalizörler değerlendirildiğinde O₂ ve N₂O varlığında en yüksek performansı 6Li/Sm₂O₃ vermiştir.

4.5. O2 VE N2O VARLIĞINDA YÜKSEK C2 VERİMİ ELDE EDİLEN KATALİZÖRLERİN DAYANIKLILIĞININ İNCELENMESİ

Literatürde yüksek performans gösterdiği bilinen 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörleri ile Li ve Sm₂O₃ esaslı katalizörler içerisinde O₂ ve N₂O ortamında en yüksek C₂ verimi veren katalizörlerin zamana bağlı olarak OCM performanslarının incelenmesi için kararlılık testleri gerçekleştirilmiştir. Testler O₂ ve N₂O ortamında en yüksek C₂ veriminin elde edildiği şartlarda yapılmıştır. Yani O₂ ortamında en yüksek C₂ verimi (%16,4) 2Mn/5Na₂WO₄/SiO₂ katalizörü ile CH₄/O=1 oranında, 7500 L/kgsa besleme hızında ve 780°C'de elde edilmiş olduğundan yüksek performans gösteren Li ve Sm₂O₃ esaslı katalizörlerin de kararlılık testleri aynı şartlarda gerçekleştirilmiştir. Benzer şekilde N₂O ortamında en yüksek C₂ verimi (%13,4) 15CaO/Sm₂O₃ ile aynı şartlarda elde edildiğinden Li ve Sm₂O₃ esaslı katalizörlerin de karalılık testleri 8 saat boyunca gerçekleştirilmiştir.

Li ve Sm_2O_3 esaslı katalizörler içerisinde 780°C'de ve O_2 varlığında Li₄SiO₄ ile 6Li/Sm₂O₃, N₂O varlığında ise Li₂ZrO₃ ile 15CaO/Sm₂O₃ en yüksek C₂ verimini gösterdiğinden kararlılık testlerine tabi tutulan diğer katalizörler olmuştur.

O₂ ve N₂O ortamında 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörüne ait test sonuçları sırası ile Şekil 4.37, 4.38, 4.39 ve 4.40'ta verilmiştir.

Şekil 4.37: O2 ortamında 2Mn/5Na2WO4/SiO2 katalizörüne ait kararlılık testi sonuçları

 O_2 ortamında 2Mn/5Na₂WO₄/SiO₂ ile gerçekleştirilen testlerde, başlangıçta %40,8 olan CH₄ dönüşümü 2 saat sonra %38'e düşmüş, sonrasında %41,5'e yükselerek testin sonuna kadar neredeyse hiç değişmemiştir. C₂ seçimliliği ise başlangıçta %41,7 olurken ilk saatin sonunda %41,8 olmuş ve sonrasında yavaşça azalarak 7 saat sonunda %39,8'e ulaşmış ve kararlı hale gelmiştir. C₂ verimi başlangıçta %17 civarında olurken 2. saatin sonunda %15,7'ye düşmüş ve sonrasında yükselerek tekrar %17'ye çıkmış ve yavaşça azalarak 8 saatin sonunda %16,6'ya ulaşmıştır. C₂H₄/C₂H₆ oranı başlangıçta 1,8 civarında olurken zamanla 1,84'e ulaşmış ve sonrasında düşüşe geçerek testin sonunda 1,8 civarında olduğu bulunmuştur. Deneme boyunca O₂ dönüşümünün oldukça yüksek olduğu ve %99,2'den %98'e düştüğü belirlenmiştir. Elde edilen sonuçlar 2Mn/5Na₂WO₄/SiO₂ katalizörünün O₂ ortamında oldukça kararlı olduğunu ve 2,5 saat sonunda dengeye ulaştığını göstermiştir. Ayrıca kuvars cips ile seyreltme

uygulanmamasına rağmen elde edilen C_2 verimi (%16,6), benzer şartlarda gerçekleştirilen performans testleri ile ulaşılan C_2 verimine (%16,4) oldukça yakın olmuştur.

Şekil 4.38: N₂O ortamında 2Mn/5Na₂WO₄/SiO₂ katalizörüne ait kararlılık testi sonuçları

Şekil 4.38'de verilen kararlılık testi sonuçlarına göre, CH₄ dönüşümünün başlangıçtan itibaren zamanla hızla azaldığı ve 1,5 saat sonunda yavaşlamaya başladığı görülmüştür. Başlangıçta %13,6 olan dönüşüm 8 saat sonunda %11,4'e düşmüştür. C₂ seçimliliği ise ilk 30 dakika sonunda %70 civarında olup zamanla artış göstermiş ve 6 saat sonunda %74,5'e ulaşarak karalı hale gelmiştir. Elde edilen C₂ verimi başlangıçta %9,6 olurken 1,5 saat sonunda %8,5'e düşmüş ve zamanla neredeyse değişim göstermemiştir. C₂H₄/C₂H₆ oranı 1,5 saat sonunda 1'den 0,85'e düşmüş ve sonrasında oldukça kararlı olmuştur. Başlangıçta %57 olan N₂O dönüşümü zamanla azalarak deneme sonunda %50 civarına düşmüştür. Elde edilen sonuçlar 2Mn/5Na₂WO₄/SiO₂ katalizörünün N₂O ortamında da oldukça kararlı olduğunu ortaya koymuştur. Deneme sonunda elde edilen C₂ verimi (%8,5), performans denemelerinde elde edilen verime (%7,8) yakın olmuştur.

Şekil 4.39: O2 ortamında 4Li/MgO katalizörüne ait kararlılık testi sonuçları

 O_2 varlığında 4Li/MgO katalizörü ile gerçekleştirilen kararlılık testlerine ait sonuçlar Şekil 4.39'da verilmiştir. CH₄ dönüşümü başlangıçta %31,8 olurken 1. saat sonunda %33'e yükselmiş sonrasında %31,7'ye düşüş göstermiştir. 2. saatten sonra tekrar yükselişe geçmiş ve 8 saat sonunda %33,7 olmuştur. 1 saatin sonunda C₂ seçimliliği %43,3'ten %44,5'e yükselirken sonrasında sürekli azalarak %41,3'e düşmüştür. C₂ verimi başlangıçta %13,8 olurken 1. saatin sonunda %14,7'ye yükselmiş, hızla düşerek %13,8 olmuş ve 2,5 saatten sonra artarak 7,5 saat sonunda %14,1 olmuştur. 8 saat sonunda ise %13,9 olarak bulunmuştur. Başlangıçta 1,48 olan C₂H₄/C₂H₆ oranı 5 saat sonunda 1,59 olmuş ve sonrasında azalarak 1,54'e düşmüştür. O₂ dönüşümü başlangıçta %68 civarında olurken ilk 3 saat içinde %65'e düşmüş ve sonrasında yükselerek 8 saat sonunda %73,5 olmuştur. Elde edilen sonuçlar 4Li/MgO katalizörünün O₂ ortamında çok kararlı olmadığını ve performansında sürekli değişim olduğunu ortaya koymuştur. Deneme sonunda elde edilen C₂ veriminin (%13,9) ise performans testlerinde elde edilen C₂ veriminden (%9,1) çok daha yüksek olduğu belirlenmiştir.

Şekil 4.40: N₂O ortamında 4Li/MgO katalizörüne ait kararlılık testi sonuçları

N₂O varlığında 4Li/MgO katalizörüne ait sonuçlar incelendiğinde, CH₄ dönüşümü, C₂ seçimliliği ve C₂H₄/C₂H₆ oranının 2 saat sonunda neredeyse değişmediği belirlenmiştir. C₂ seçimliliğinin ise sürekli artış gösterdiği bulunmuştur. Başlangıçta %14,8 olan dönüşüm 8 saat sonunda %13,3 olmuştur. C₂ seçimliliği ise %74,7'den %78,5'e yükselmiştir. C₂ verimi başlangıçta %11,2 civarında olurken, 8 saat sonunda %10,5 olarak bulunmuştur. C₂H₄/C₂H₆ oranı ise 1'den 0,88'e düşüş göstermiştir. N₂O dönüşümünün 3 saat sonunda %53'ten %50'ye düştüğü ve pek değişmediği gözlemlenmiştir. Elde edilen sonuçlar 4Li/MgO katalizörünün N₂O ortamında O₂'ye kıyasla çok daha kararlı olduğu ve performansının C₂ verimi açısından 2 saat sonunda dengeye ulaştığını ortaya koymuştur. Deneme sonunda elde edilen C₂ veriminin (%10,5) ise performans testlerinde elde edilen C₂ veriminden (%9,2) yüksek olduğu belirlenmiştir.

Şekil 4.41: O2 ortamında Li4SiO4 katalizörüne ait kararlılık testi sonuçları

Li₄SiO₄'ün zamana bağlı olarak performansı incelendiğinde dönüşüm, seçimlilik, verim ve C_2H_4/C_2H_6 oranının ilk 1,5 saat içinde hızlı bir şekilde düşüş gösterdiği gözlemlenmiştir. Sonrasında ise azalma yavaş bir şekilde gerçekleşmiştir. Başlangıçta %21,5 olan CH₄ dönüşümü önce hızla %13'e, 8 saat sonunda ise %11,1'e düşüş göstermiştir. C₂ seçimliliği ise %45'ten %28'e hızlı bir düşüş göstermiş ve 8 saat sonunda %23 olmuştur. C₂ verimi de başlangıçta %9,7 olurken hızla %3,5'e düşmüş ve deneme sonunda %2,6 olarak bulunmuştur. C₂H₄/C₂H₆ oranı 1 civarından 0,45'e kadar düşüş göstermiştir. O₂ dönüşümü ise 1,5 saat sonunda %49'dan %12'ye düşmüş ve deneme sonunda %10,6 olmuştur. Elde edilen sonuçlar Li₄SiO₄'ün zamana bağlı olarak performansının oldukça düşük olduğunu ve sürekli azaldığını ortaya koymuştur. Ancak

elde edilen C_2 veriminin (%2,6) performans testlerinde elde edilen C_2 veriminin (%5) neredeyse yarısı kadar olduğu belirlenmiştir.

Şekil 4.42: N₂O ortamında Li₂ZrO₃ katalizörüne ait kararlılık testi sonuçları

Li esaslı katalizörler içerisinde N₂O ortamında en yüksek performansı gösteren Li₂ZrO₃ katalizörüne ait kararlılık test sonuçları Şekil 4.42'de verilmiştir. CH₄ dönüşümü zamanla azalarak %16'dan %14,4'e düşmüştür. C₂ seçimliliği başlangıçta %76 iken 2 saat sonunda %77,5'e yükselmiş ve sonrasında düşüşe geçerek 8 saat sonunda %68,9 olmuştur. C₂ verimi ise sürekli düşüş göstermiş ve %12,1'den %9,8'e inmiştir. Başlangıçta 0,94 olan C₂H₄/C₂H₆ oranı 8 saat sonunda 0,76'ya düşmüştür. N₂O dönüşümü ise 2 saat içinde %54'ten %50'ye düşmüş ve sonrasında yükselişe geçerek deneme sonunda %53,6 olmuştur. Elde edilen sonuçlar katalizörün performansının C₂ verimine göre zamanla düştüğünü göstermiştir. Başlangıçta elde edilen C₂ verimi (%12,1) deneme sonunda düşmesine rağmen (%9,8) performans testlerinde elde edilen C₂ verimine (%9,6) oldukça yakın olmuştur.

Şekil 4.43: O2 ortamında 6Li/Sm2O3 katalizörüne ait kararlılık testi sonuçları

 O_2 ortamında ve Sm₂O₃ esaslı katalizörler içerisinde en yüksek C₂ verimin elde edildiği 6Li/Sm₂O₃ katalizörüne ait kararlılık testi sonuçları Şekil 4.43'te sunulmuştur. Elde edilen sonuçlara göre CH₄ dönüşümü başlangıçta %23,5 olurken sürekli artış göstermiş ve 8 saat sonunda %28'e ulaşmıştır. Başlangıçta %52 olan C₂ seçimliği ise 1 saat sonunda %44'e düşmüş ve deneme boyunca %44-46 arasında değişim göstermiştir. C₂ verimi başlangıçta %12,2 olurken 1 saat sonunda %10,2'ye düşmüş ve sonrasında sürekli artış göstererek deneme sonunda %12,8'e ulaşmıştır. C₂H₄/C₂H₆ oranı ise sürekli artış göstererek %0,95'ten 1,3'e yükselmiştir. Başlangıçta %57 olan O₂ dönüşümü önce %33'e düşmüş ve deneme sonunda %49,5'e kadar yükselmiştir. Elde edilen sonuçlar 6Li/Sm₂O₃'ün C₂ veriminin zamana bağlı olarak arttığını ortaya koymuştur. Deneme sonunda elde edilen C₂ veriminin (%12,8) performans testlerinde elde edilen C₂ veriminden (%9,2) çok daha yüksek olduğu belirlenmiştir.

Şekil 4.44: N₂O ortamında 15CaO/Sm₂O₃ katalizörüne ait kararlılık testi sonuçları

N₂O varlığında 15CaO/Sm₂O₃ katalizörüne ait kararlılık testi sonuçları Şekil 4.44'te verilmiştir. CH₄ dönüşümü başlangıçta %37,8 olurken, sonrasında %38-39 aralığında değişim göstermiştir. C₂ seçimliliği ise deneme süresince %39-40 aralığında olmuştur. C₂ verimi %14,9'dan %15,3'e yükselmiş ve %15-15,4 aralığında değişime uğramıştır. C₂H₄/C₂H₆ oranı zamanla artış göstererek 1,66'dan 1,77'ye yükselmiştir. Deneme süresince N₂O'nun neredeyse tamamı tükenmiştir. N₂O varlığında 15CaO/Sm₂O₃'ün yüksek performans gösterdiği ve oldukça dayanıklı olduğu tespit edilmiştir. Deneme sonunda elde edilen C₂ veriminin (%15,2) performans testlerinde elde edilen C₂ veriminden (%13,4) daha yüksek olduğu bulunmuştur.

4.6. KATALİZÖRLERİN KARARLILIK TESTİ ÖNCESİ VE SONRASINDA XPS ANALİZİ İLE İNCELENMESİ

O₂ ve N₂O varlığında kararlılık testlerine tabi tutulan 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerinin reaksiyon öncesi ve sonrasına ait XPS sonuçları Şekil 4.45 ve 4.46'da sırası ile verilmiştir.

 $2Mn/5Na_2WO_4/SiO_2$ katalizörünün XPS sonuçlarını incelemek için Na-1s (~1071 eV), Mn- $2p_{3/2}$ (~641 eV), O-1s (~532 eV), W- $4d_{5/2}$ (~247 eV) ve Si-2p (~103 eV) pikleri göz önüne alınmıştır. Elementlerin bağ enerjileri ve yakın yüzey kompozisyonları Tablo 4.27'de verilmiştir.

Şekil 4.45: 2Mn/5Na₂WO₄/SiO₂ katalizörünün O₂ ve N₂O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

Tablo 4.27: Kararlılık testleri öncesi ve sonrasında 2Mn/5Na₂WO₄/SiO₂ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri

	Na (1s)		Mn (2p _{3/2})		O (1s)		W (4d _{5/2})		Si (2p)	
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %
2Mn/5Na2WO4/SiO2	1071	2,68	641	0,41	532	62,08	247	0,45	103	34,38
2Mn/5Na ₂ WO ₄ /SiO ₂ - O ₂	1071	6,39	642	0,54	532	62,03	247	2,26	103	28,47
2Mn/5Na ₂ WO ₄ /SiO ₂ - N ₂ O	1071	7,72	642	1,32	532	60,93	247	3,62	103	26,41

Elde edilen sonuçlara göre, O_2 ortamında yapılan kararlılık testleri sonrasında yüzeydeki Mn ve özellikle Na ile W oranının reaksiyon öncesine göre artmış olduğu bulunmuştur. N₂O varlığında ise Mn, Na ve W oranının hem reaksiyon öncesine hem de O_2 ile gerçekleştirilen reaksiyon sonrasına göre daha yüksek olduğu belirlenmiştir. Yüzeyde bulunan oksijen miktarının reaksiyon öncesi ve O_2 ile kararlılık testi sonrasında çok değişmediği, N₂O ile gerçekleştirilen test sonrasında azaldığı gözlemlenmiştir.

Şekil 4.46: 4Li/MgO katalizörünün O₂ ve N₂O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

4Li/MgO katalizörüne ait XPS sonuçları Şekil 4.46'da sunulmuştur. İncelenen komponentler Mg-1s (~1303 eV), O-1s (~531 eV) ve Li-1s (~55 eV) olmuştur. Tablo 4.28'deki bağ enerjileri ve yakın yüzey atomik kompozisyonları incelendiğinde yüzeydeki Li ve O içeriğinin N₂O ile gerçekleştirilen kararlılık testi sonrasında hem reaksiyon öncesi hem de O₂ ile yapılan kararlılık testine göre artmış olduğu belirlenmiştir. Mg içeriği ise daha düşük olmuştur. Benzer şekilde O₂ ile gerçekleştirilen

kararlılık testi sonrasında Li ve O içeriği reaksiyon öncesinde göre daha yüksek olurken, Mg içeriği düşüş göstermiştir.

	Li	Li (1s)		g (1s)	O (1s)	
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %
4Li/MgO	55,1	9,4	1303	24,4	531	66,2
4Li/MgO-O ₂	55,1	10,1	1303	21,9	531	68
4Li/MgO-N ₂ O	55,1	11,8	1303	19,6	531	68,6

Tablo 4.28: Kararlılık testleri öncesi ve sonrasında 4Li/MgO katalizörüne ait element bağ
enerjileri ve yakın yüzey atomik yüzdeleri

Li₄SiO₄ katalizörüne ait XPS sonuçları Şekil 4.47'de verilmiş ve Li-1s (~55 eV), Si-2p (~100 eV) ve O-1s (~531 eV) komponentleri incelenmiştir.

Şekil 4.47: Li₄SiO₄ katalizörünün O₂ ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

Tablo 4.29'da elementlerin bağ enerjileri ve yakın yüzey kompozisyonları verilmiştir. Bu sonuçlara göre hazırlanan katalizörün yüzeyinde Li içeriğinin yüzeyi neredeyse kapladığı ve Si içeriğinin oldukça düşük olduğu belirlenmiştir. O₂ ile gerçekleştirilen kararlılık testleri sonrasında yüzeydeki Li miktarının %3,5 azaldığı, Si ve O miktarının artış gösterdiği tespit edilmiştir.

	Li	Li (1s)		Si (2p)		(1s)
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %
Li ₄ SiO ₄	55,1	47,88	100	0,24	531	51,87
Li ₄ SiO ₄ -O ₂	55,1	44,39	100	2,61	531	53

 Tablo 4.29: Kararlılık testleri öncesi ve sonrasında Li₄SiO₄ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri

Şekil 4.48: Li₂ZrO₃ katalizörünün N₂O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

 Li_2ZrO_3 katalizörüne ait XPS sonuçları Şekil 4.48'de verilmiştir. O-1s (~531 eV), Zr-3p_{3/2} (~332 eV) ve Li-1s (~55 eV) komponentleri incelenmiştir. Tablo 4.30'da elementlerin bağ enerjileri ve yakın yüzey kompozisyonları verilmiştir. N₂O varlığında kararlılık testi sonrasında yüzeydeki Li ve O miktarının azaldığı ancak Zr oranının arttığı gözlemlenmiştir. 6Li/Sm₂O₃ katalizörüne ait XPS sonuçları Şekil 4.49'da sunulmuştur. XPS sonuçlarını incelemek için Sm-3d_{5/2} (~1082 eV), O-1s (~532 eV) ve Li-1s (~55 eV) pikleri göz önüne alınmıştır.

	Li	(1s)	Zr	(3 p _{3/2})	O (1s)		
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %	
Li ₂ ZrO ₃	55,1	29,2	332	4,54	531	66,26	
Li ₂ ZrO ₃ -N ₂ O	55,1	27,43	332	14,57	531	58	

 Tablo 4.30: Kararlılık testleri öncesi ve sonrasında Li2ZrO3 katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri

Şekil 4.49: 6Li/Sm₂O₃ katalizörünün O₂ ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

Tablo 4.31'de verilen elementlerin bağ enerjileri ve yakın yüzey kompozisyonlarına göre O₂ varlığında kararlılık testi sonrasında yüzeydeki Li miktarının oldukça azaldığı, Sm ve O miktarının ise oldukça arttığı belirlenmiştir.

	Li (1s)		Sm ((3d _{5/2})	O (1s)	
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %
6Li/Sm ₂ O ₃	55	43,77	1082	1,55	531	54,68
6Li/Sm ₂ O ₃ -O ₂	54	28,12	1082	4,72	531	67,16

 Tablo 4.31: Kararlılık testleri öncesi ve sonrasında 6Li/Sm2O3 katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri

Şekil 4.50'de 15CaO/Sm₂O₃ katalizörüne ait XPS sonuçları verilmiştir. İncelenen komponentler Sm- $3d_{5/2}$ (~1082 eV), O-1s (~532 eV) ve Ca-2p (~347 eV) olmuştur. Tablo 4.32'de verilen elementlerin bağ enerjileri ve yakın yüzey kompozisyonları incelendiğinde N₂O varlığında gerçekleştirilen kararlılık testi sonrasında yüzeydeki Ca miktarının arttığı ancak Sm ve O miktarının ise azaldığı belirlenmiştir.

Şekil 4.50: 15CaO/Sm₂O₃ katalizörünün N₂O ortamında kararlılık testleri öncesi ve sonrasına ait XPS spektrumları

	Ca	(2p)	Sm ((3d _{5/2})	O (1s)		
Katalizör	B.E. (eV)	At. %	B.E. (eV)	At. %	B.E. (eV)	At. %	
$15 CaO/Sm_2O_3$	347	18,87	1082	6,49	531	74,64	
$15CaO/Sm_2O_3-N_2O$	347	22,44	1083	3,59	531	73,97	

Tablo 4.32: Kararlılık testleri öncesi ve sonrasında 15CaO/Sm₂O₃ katalizörüne ait element bağ enerjileri ve yakın yüzey atomik yüzdeleri

5. TARTIŞMA VE SONUÇ

Metanın oksidatif birleşme reaksiyonu (OCM) doğal gazın direkt olarak yüksek hidrokarbonlara (C₂ ve C₃ hidrokarbonları) dönüştürülebilmesi için oldukça arzu edilen bir yöntem olup araştırmalar günümüzde de devam etmektedir. Ancak bu reaksiyonun endüstriyelleşmesi için önündeki en büyük engel yüksek etilen verimi (>%40) sağlayan katalizörlerin geliştirilememesidir. Bu amaçla sentezlenen birçok katalizörün C₂ (C₂H₆ ve C₂H₄) verimi %30'ları geçememiştir. Bu durumun başlıca sebeplerinden biri CH₄'ün C-H bağlarının gerek homolitik gerek heterolitik olarak koparılabilmesi için gerekli olan enerjinin C₂H₆ ve C₂H₄'ten daha yüksek olmasıdır. Bu nedenle CH₄'ün O₂ vasıtası ile ayrıştırılması yüksek sıcaklıklar gerektirmekte (>700°C) ve oluşan reaksiyon ürünleri de (C₂H₆ ve C₂H₄) daha hızlı bir şekilde CO veya CO₂'ye okside olmaktadır. Dolayısı ile sentezlenecek katalizörlerin ya düşük sıcaklıkta yüksek aktivite göstermesi ya da yüksek sıcaklıkta yüksek C₂ seçimliliği göstermesi gerekmektedir.

Bu amaçla tez kapsamında literatürden elde edilen bilgiler vasıtasıyla reaksiyon için yüksek performans gösterebileceği düşünülen Li ve Sm2O3 esaslı katalizörler geliştirilmiş ve performansları incelenmiştir. Sentezlenen yeni katalizörlerin performanslarının uygun şartlarda karşılaştırılabilmesi için literatürde yüksek performans gösterdiği bilinen 2Mn/5Na2WO4/SiO2 ve 4Li/MgO (miktarlar % ağırlıkçadır) katalizörleri sentezlenerek reaksiyon parametrelerinin etkisi incelenmiş ve en yüksek C₂ veriminin elde edildiği şartlar belirlenmiştir. Ayrıca bu iki katalizörün performansının da karşılaştırılması sağlanmıştır. Destek üzerine hesaplanan miktarda metal oksit yüklemesinin yapılabilmesi için (2Mn/5Na2WO4/SiO2 4Li/MgO ve Sm2O3 esaslı katalizörler için) ıslak emdirme yöntemi kullanılırken, stokiyometrik komponent içeriğine sahip Li esaslı katalizörlerin hazırlanması için üre-nitrat yakma ve katı hal sentez yöntemleri kullanılmıştır. Katalizörler elde edilen ara ürünlerin 800°C'de 8 saat kalsine edilmesi ile hazırlanmışlardır. Sentezlenen katalizörler BET, XRD ve XPS analizleri ile karakterize edilmiş ve Mikroreaktör-GC sistemi ile performansları incelenmiştir. Kullanılan kuvars mikroreaktör çıkış ürünlerinin uzun süre yüksek sıcaklıkta kalmaması ve oksidasyonun minimize edilmesi için modifiye edilmiş ve katalizör yatağından sonra 4 mm olan iç çap 1 mm'ye düşürülmüştür (Şekil 3.1). Böylelikle ürünlerin reaktörü daha hızlı terk etmesi sağlanmıştır.

Uygun parametrelerin belirlenmesi için öncelikle $2Mn/5Na_2WO_4/SiO_2$ ve 4Li/MgO katalizörleri üzerinde oksidant tipi (O₂ ve N₂O), CH₄/O oranı (1/1, 1,5/1, 2/1, 3/1 ve 4/1), besleme hızı (7500, 15000, 22500, 30000 ve 37500 L/kgsa) ve sıcaklık (740, 760, 780, 800 ve 820°C) etkisi incelenmiştir. Başlangıçta hem O₂ hem de N₂O varlığında CH₄/O oranının etkisi incelenmiş ve sonrasında her iki oksidant varlığında da en yüksek C₂ veriminin elde edildiği oran sabitlenerek besleme hızının etkisi sınanmıştır. Bir sonraki aşamada en yüksek C₂ veriminin elde edildiği besleme hızı da sabitlenmiş ve sıcaklığın etkisi incelenmiştir. Uygun parametrelerin tespit edilmesi ile diğer katalizörlerin performansları belirlenen şartlarda gerçekleştirilmiştir. Son olarak O₂ ve N₂O varlığında en yüksek C₂ verimini gösteren katalizörlere 8 saat boyunca belirlenen şartlarda kararlılık testleri uygulanmıştır.

Katalizörlere ait BET yüzey alanı sonuçları (Tablo 4.1) incelendiğinde, üre-nitrat yakma metodu ile hazırlanan LiAlO₂ hariç (50 m^2/g) neredeyse tüm katalizörlerin yüzey alanları 3 m²/g ile 7 m²/g arasında değişim göstermiştir. Emdirme yöntemi ile hazırlanan 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerinin yüzey alanlarının emdirme işlemi ve kalsinasyon sonrasında oldukça azaldığı tespit edilmiştir. 4Li/MgO katalizörünün BET yüzey alanındaki düşüşün (23,5 m²/g'dan 5,3 m²/g'a) yüklenen Li₂O'nin sinterleştirici etkisinden ötürü gerçekleştiği düşünülmüştür. 2Mn/5Na₂WO₄/SiO₂ katalizöründeki düşüşün (293 m²/g'dan 6,9 m²/g'a) ise başlıca faz değişimi neticesinde gerçekleştiği XRD sonuçları ile de desteklenmiştir. Emdirme ve kalsinasyon işlemi sonrasında Sm₂O₃ esaslı katalizörlerin yüzey alanlarında önemli bir değişiklik gözlemlenmemiştir.

OCM reaksiyonu için yapılan araştırmalar sonucunda yüksek BET yüzey alanına sahip katalizörlerde düşük yüzey alanlı katalizörlere kıyasla C_2 seçimliliğinin daha düşük olduğu tespit edilmiştir [28]. Bunun nedeni kütle transfer sınırlamaları neticesinde gözenek içerisinde oluşan C_2 türlerinin gaz faza difüzyon hızının azalması ve bu türlerin CO_x ürünlerine dönüşümünün artmasıdır [32,72]. Dolayısı ile sentezlenecek katalizörlerin yüksek CH₄ dönüşümü gösterebilecek seviyede düşük BET yüzey alanına sahip olması C_2 seçimliliğini de arttıracağından katalitik performansı da yükseltecektir.

Bu durum göz önüne alındığında sentezlenmiş olan katalizörlerin neredeyse tamamı literatürle uyumlu olarak OCM reaksiyonu için uygun BET yüzey alanına sahip olmuşlardır [11,24-25,75].

Katalizörlere ait XRD sonuçları incelendiğinde tüm katalizörlerin başarı ile sentezlendiği belirlenmiş ve tespit edilen fazlar Tablo 5.1'de verilmiştir.

Katalizör	Fazlar					
4Li/MgO	Li ₂ CO ₃ (monoklinik), MgO (kübik)					
2Mn/5Na2WO4/SiO2	Na ₂ WO ₄ (rombohedral), Mn ₂ O ₃ (kübik), α-kristobalit (tetragonal), kuvars (hekzagonal)					
LiAlO ₂	LiAlO ₂ (tetragonal)					
LiMn ₂ O ₄	LiMn ₂ O ₄ (kübik)					
LiCoO ₂	LiCoO ₂ (rombohedral)					
Li ₄ SiO ₄	Li ₄ SiO ₄ (monoklinik)					
Li ₂ ZrO ₃	Li ₂ ZrO ₃ (monoklinik)					
Li ₂ TiO ₃	Li ₂ TiO ₃ (monoklinik)					
Sm_2O_3	Sm ₂ O ₃ (monoklinik)					
1Mn/2,5Na ₂ WO ₄ /Sm ₂ O ₃	Na ₂ WO ₄ (rombohedral), Mn ₂ O ₃ (kübik), Sm ₂ O ₃ (monoklinik)					
2Mn/5Na ₂ WO ₄ /Sm ₂ O ₃	Na ₂ WO ₄ (rombohedral), Mn ₂ O ₃ (kübik), Sm ₂ O ₃ (monoklinik)					
4Mn/10Na ₂ WO ₄ /Sm ₂ O ₃	Na ₂ WO ₄ (rombohedral), Mn ₂ O ₃ (kübik), Sm ₂ O ₃ (monoklinik)					
2Li/Sm ₂ O ₃	SmLiO ₂ (monoklinik), Sm ₂ O ₃ (monoklinik)					
4Li/Sm ₂ O ₃	SmLiO ₂ (monoklinik), Sm ₂ O ₃ (monoklinik)					
6Li/Sm ₂ O ₃	SmLiO ₂ (monoklinik), Sm ₂ O ₃ (monoklinik)					
5CaO/Sm ₂ O ₃	CaO (kübik), Sm ₂ O ₃ (monoklinik)					
10CaO/Sm ₂ O ₃	CaO (kübik), Sm ₂ O ₃ (monoklinik)					
15CaO/Sm ₂ O ₃	CaO (kübik), Sm ₂ O ₃ (monoklinik)					

Tablo 5.1: XRD analizi ile katalizörlerde tespit edilen fazlar ve kristal yapıları

MgO üzerine ağırlıkça %4 Li eklenmesi ile elde edilen 4Li/MgO katalizöründe başlıca MgO fazı tespit edilirken, az miktarda Li₂CO₃ oluşumu gözlemlenmiştir. Li₂CO₃'nun kalsinasyon sonucunda oluşan Li₂O ile havada mevcut olan CO₂'nin reaksiyonu sonucu oluştuğu düşünülmektedir. Li⁺¹ ve Mg⁺² iyonik yarıçaplarının oldukça yakın olmasından dolayı Li₂O ile MgO katı çözelti oluşturmuş ve ayrı bir Li₂O fazı tespit edilememiştir. XRD sonuçlarına göre kübik yapıdaki MgO'nun kafes paremeterisinin 4,207 Å'dan 4,216 Å'ya yükselmesi, kristal iyonik çapı 90 pm olan Li₂O'nun kristal iyonik çapı 86 pm olan MgO'in içerisine difüzlendiğini ve genleşmeye yol açarak kafes paremetresininde artışa yol açtığını göstermektedir.

2Mn/5Na₂WO₄/SiO₂ katalizörünün başlıca α -kristobalit, kuvars, Mn₂O₃ ve Na₂WO₄ yapısından oluştuğu tespit edilmiştir. Kalsinasyon sonrasında amorf silika jelin başlıca α -kristobalit ve kuvarsa dönüştüğü belirlenmiştir. Bu geçişin Na varlığında çok daha düşük sıcaklıklarda gerçekleştiği ve WO₄⁻² iyonlarının sodyum ve mangan silikat oluşumunu engellediği bilinmektedir [36, 43]. Sodyum ve mangan silikat oluşumunun gözlemlenmemesi bu sonucu doğrular nitelikte olmuştur.

Li esaslı tüm katalizörlerin öngürülen kristal yapısına sahip olduğu ve başarı ile sentezlendiği belirlenmiştir. Sm₂O₃ esaslı katalizörlere katkılanan Na₂WO₄, Mn₂O₃ ve CaO yapılarının Sm₂O₃ ile kuvvetli etkileşime girmediği ancak katkılanan Li₂O'nin Sm₂O₃ ile katı hal reaksiyonu vererek SmLiO₂ yapısını oluşturduğu gözlemlenmiştir. Katkılama miktarının ağırlıkça %2'den %6'ya çıkarılması ile bu oluşumun daha belirginleştiği tespit edilmiştir. Sadece SmLiO₂ yapısının oluşması için gereken teorik miktarın üstünde yükleme yapılmasına rağmen Li₂O fazının tespit edilememesi, Li₂O'in SmLiO₂ üzerinde oldukça ufak ve homojen bir şekilde dağılmış olabileceğini ortaya koymuş ve katalizörün Li₂O-SmLiO₂-Sm₂O₃ sıralaması ile çok katmanlı bir yapıda olduğu düşünülmüştür. Ayrıca katkılanan Na₂WO₄ ve Mn₂O₃ miktarının artması ile Sm₂O₃ fazlarına ait piklerdeki bozulma yeni bir faz oluşumunun gerçekleşebileceğini

OCM reaksiyonu için reaksiyon koşullarının gaz faz, 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO üzerinde etkileri incelenmiş ve sonuçlar Bölüm 4.3'te detaylı bir şekilde sunulmuştur. Oksidant olarak O₂ kullanıldığında ve CH₄/O oranının etkisi incelendiğinde gaz faz için CH₄ dönüşümü, C₂ seçimliliği ve verimi ile C₂H₄/C₂H₆ oranının azaldığı, O₂ dönüşümünün ise arttığı bulunmuştur. 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörünün varlığında yine CH₄ dönüşümü, C₂ verimi ve C₂H₄/C₂H₆ oranının azaldığı, ancak C₂ seçimliliğinin belirli bir orana kadar artıp sonrasında azaldığı tespit edilmiştir. O2 dönüşümünün ise 2Mn/5Na₂WO₄/SiO₂ için artış gösterdiği, 4Li/MgO için çok hiçbir oranda değişmediği gözlemlenmiştir. O_2 tamamen tükenmemiştir. 2Mn/5Na2WO4/SiO2 katalizörünün katalitik aktivitesinin ve C2 seçimliliğinin 4Li/MgO'dan daha yüksek olduğu belirlenmiştir.

Elde edilen sonuçlar genel olarak kabul edilen Elay-Rideal tipi OCM mekanizmasındaki reaksiyonlar göz önüne alınarak (Denklem 2.1-2.9) incelendiğinde; oksijen kısmi basıncındaki düşüş ile CH₄ dönüşümünün azalacağı net bir şekilde görülmektedir. Çünkü azalan oksijen kısmi basıncı ile katalizör yüzeyinde dissosiye olmuş oksijen türleri de azalacağından dönüşen CH₄ molekül sayısı da düşüş gösterecektir. Bu durumda oluşan metil radikali miktarı da azalacağından, etan ve etilen oluşumu da azalacaktır. Ancak katalizör yüzeyinde gerçekleşecek derin oksidasyon ürünlerinin (CO_x) oluşum hızı da azalma gösterecektir. Özellikle homojen faz oksidasyon reaksiyonları daha fazla etkilenecektir. Yapılan araştırmalar sonucunda tam indirgenmemiş O⁻, O₂⁻ veya O₂⁻² türlerinin metil radikali oluşumu için aktif olduğu ortaya konulmuştur [18]. O⁻²'nin (kafes oksijeni) ise tam yanmayı desteklediği belirtilmiştir [18]. Dolayısı ile katalizör yüzeyinde O⁻, O₂⁻ veya O₂⁻² türlerinin hızlıca oluşabileceği aktif sitelerin sayısı ne kadar yüksek olursa o kadar fazla CH3. radikali, C₂H₆ ve C₂H₄ oluşumu gerçekleşecektir. Bu bağlamda katalizörlerin dönüşüm ve seçimlilikleri karşılaştırıldığında BET yüzey alanı daha yüksek olan 2Mn/5Na₂WO₄/SiO₂ katalizörünün daha fazla aktif siteye sahip olduğu söylenebilir. C₂ seçimliliğinin belirli bir orana kadar artış gösterip sonrasında azalması ise katalitik ya da gaz faz derin oksidasyon reaksiyonlarının daha fazla düşüş gösterdiğini sonrasında ise C2 oluşumunun çok daha fazla azaldığını ortaya koymaktadır. C2H4/C2H6 oranının sürekli olarak düsmesi ise aktif sitelerdeki O türlerinin dağılımının giderek azaldığını ve etilen oluşumundan ziyade metil oluşumu için tüketildiğini göstermektedir. Zira C₂H₆ oluşumu gerçekleşmeden C₂H₄ oluşumu gerçekleşememektedir. Gaz fazda metanın dehidrojenasyonu sadece kraking veya oksidasyon ile gerçekleşebileceğinden, uygulanan şartlarda oksidatif dehidrojenasyonun baskın olduğu ve oranın artması ile dönüşüm, seçimlilik, verim ve C_2H_4/C_2H_6 oranının sürekli olarak azaldığı görülmüştür.

N₂O varlığında elde edilen sonuçlar incelendiğinde; hem gaz fazda hem de katalitik ortamda CH₄ dönüşümü, C₂ verimi ve C₂H₄/C₂H₆ oranının azalan N₂O kısmi basıncı ile düştüğü gözlemlenmiştir. C₂ seçimliliğinin ise %1-1,5 arasında değiştiği gözlemlenmiştir. CH₄ dönüşümlerinin katalitik ortamda biraz daha yüksek olduğu C₂ seçimliliğinin ise 4Li/MgO>Gaz faz>2Mn/5Na₂WO₄/SiO₂ sıralamasına sahip olduğu belirlenmiştir. C₂H₄/C₂H₆ oranlarında önemli bir farklılığın olmadığı görülmüştür. Literatürde oksidant olarak N₂O'nun kullanıldığı çok az çalışma bulunmaktadır. Yamamato ve ark. [47] yaptığı çalışmaya göre Li/MgO katalizörü için N₂O varlığında gerçekleşen reaksiyon mekanizmasının genel mekanizmaya benzediğini belirtmiştir. Elde edilen sonuçlar N₂O varlığında C₂ seçimliliğinin, katalizör yüzeyinde CO_x oluşumuna neden olan reaksiyonların azalması sonucu, O₂'ye oranla daha yüksek olduğunu ortaya koymuştur. Ancak O₂ dissosiyasyon hızının N₂O dekompozisyon hızından daha yüksek olmasından dolayı CH₄ dönüşümünün N₂O ile daha düşük olduğu ifade edilmiştir. Tez çalışması kapsamında gerçekleştirilen denemelerde benzer sonuçlar elde edilmiş olup elde edilen C₂ seçimlilikleri N₂O varlığında O₂'ye kıyasla hem gaz faz hem de katalitik ortamda daha yüksek olmuştur. CH₄ dönüşümleri ise katalitik ortamda O₂ varlığında çok daha yüksek olmuştur. Ayrıca C₂H₄/C₂H₆ oranlarının O₂ varlığında daha yüksek olması O₂'nin N₂O'ya kıyasla daha etkin bir dehidrojenasyon oksidantı olduğunu ortaya koymuştur.

Hem O_2 hem de N_2O varlığında gaz faz ve katalitik ortamda en yüksek C_2 verimleri $CH_4/O=1$ 'de elde edildiğinden besleme hızının etkisinin incelenmesi için oran ve sıcaklık sabit tutulup besleme hızı 7500-37500 L/kgsa aralığında değiştirilmiştir. Her iki oksidant varlığında da besleme hızının 7500 L/kgsa'dan 37500 L/kgsa'ya çıkarılması ile hem gaz fazda hem de katalitik olarak CH_4 dönüşümünün, O_2 dönüşümününün, C_2 veriminin ve C_2H_4/C_2H_6 oranının düştüğü belirlenmiştir. Gaz faz reaksiyonlar ile O_2 varlığında C_2 seçimliliği 22500 L/kgsa besleme hızına kadar artış gösterirken sonrasında azalmış, N_2O varlığında ise sürekli artış göstermiştir. C_2 seçimliliği katalizörler ile her iki oksidant varlığında da 22500 L/kgsa'ya kadar artış gösterirken sonrasında neredeyse değişmemiştir. Sadece 4Li/MgO katalizörü ile O_2 varlığında 30000 L/kgsa'dan sonra düşüş tespit edilmiştir.

Elde edilen katalitik sonuçlar genel olarak değerlendirildiğinde, besleme hızındaki artış ile reaktanların reaktör içerisinde kalış süresinin azalması ve daha fazla CH₄ veya O₂ molekülünün katalizör yüzeyindeki aktif merkezlere saldırması neticesinde reaktanların dönüşümü azalmıştır. Ancak artan besleme hızı ile oluşan CH₃· radikallerinin gaz faza geçiş hızının artması ve daha hızlı bir şekilde reaksiyon ortamından uzaklaşması neticesinde, C₂ seçimliliği yükselmiştir. Doğal olarak, artan besleme hızı ile oluşan C₂H₆ moleküllerinin oksidatif dehidrojenasyonu da azaldığından C₂H₄/C₂H₆ oranı da düşüş göstermiştir. Ayrıca CO seçimliliği düşük bir seviyede artış gösterirken CO₂ seçimliliği de besleme hızı ile hızla azalmıştır. Bu durum oluşan C₂H₄ ve C₂H₆'nın öncelikle CO'ya okside olduğu, sonrasında ise CO₂'ye yükseltgendiğini göstermektedir [14]. Elde edilen sonuçlar önerilen reaksiyon mekanizması ile oldukça uyumludur. CH4 dönüşümlerinin ve C₂H₄/C₂H₆ oranlarının O₂ varlığında N₂O'ya kıyasla daha yüksek olması yine O2'nin daha etkin bir oksidant olduğunu ortaya koymaktadır. Ancak C2 seçimliliklerinin N₂O varlığında çok daha yüksek olması N₂O'nun daha seçimli bir oksidant olduğunu göstermektedir. Gaz faz reaksiyon sonuçları irdelendiğinde katalitik sonuçlara benzer davranışların görüldüğü ancak O2 varlığında seçimliliğin 22500 L/kgsa'dan sonra tekrar düştüğü belirlenmiştir. Ayrıca CO2 seçimliliğinin düştüğü ve CO seçimliliğinin ise arttığı tespit edilmiştir. Bu durum besleme hızının 7500 L/kgsa'dan 22500 L/kgsa'ya arttırılması ile CO'dan CO2'ye oksidasyonun azaldığını ancak bu besleme hızından sonra oksidatif dehidrojenasyonun oldukça azalması ile C₂ seçimliliğinin düştüğünü göstermektedir. Zaten C2H4'ün 37500 L/kgsa besleme hızında oluşmaması bu görüşü desteklemektedir. N₂O varlığında ise C₂ seçimliliğindeki sürekli artış yanma reaksiyonlarının oksidatif dehidrojenasyon reaksiyonlarından daha fazla etkilendiğini ve azaldığını ortaya koymaktadır.

O2 ve N2O varlığında en yüksek C2 verimleri katalitik veya katalitik olmayan ortamda 7500 L/kgsa'da elde edildiğinden, CH₄/O oranı 1'de, GHSV ise bahsedilen besleme hızında sabit tutularak 740-820°C arasında sıcaklığın etkisi incelenmiştir. Gaz fazda gerçekleştirilen reaksiyonlar göz önüne alındığında; oksidant olarak O2 veya N2O kullanılması durumunda CH4 dönüşümü, O2 veya N2O dönüşümü, C2 verimi ve C₂H₄/C₂H₆ oranı sıcaklık ile artış göstermiştir. C₂ seçimliliği O₂ kullanılması durumunda 760°C'ye kadar artarken sonrasında düşüş göstermiş, N₂O kullanılması durumunda ise 780°C'ye kadar artış gerçekleşirken, sonrasında azalma meydana Yüksek sıcaklıkta gaz fazda gerçekleşebilecek olan reaksiyonlar gelmistir. hidrokarbonların (CH₄, C₂ ve C₃ hidrokarbonları) krakingi ve oksidasyon reaksiyonları olduğundan her iki reaksiyon tipinde de sıcaklık artışı ile reaksiyon hızları artış gösterecektir. Endotermik olan kraking reaksiyonları sıcaklık artışı ile çok daha fazla etkilenecek olup, oksidasyon reaksiyonları ekzotermik olmalarına rağmen tek yönlü kabul edebileceklerinden negatif etkilenmeyecek ve hızları artmış olacaktır. Etkilenme dereceleri ise her bir reaksiyonun aktivasyon enerjisine (Ea) bağlı olarak değişecektir. Bu bağlamda CH4 dönüşümleri, oksidant dönüşümleri, C2 verimleri ve C2H4/C2H6 oranları artış göstermiştir. C₂ seçimlilikleri ise oksijen varlığında oksidatif dehidrojenasyon hızının yanma reaksiyonlarına kıyasla belirli bir sıcaklığa kadar daha fazla artması sebebiyle yükseliş gösterirken, sıcaklığın daha da yükselmesi ile yanma reaksiyonları etkin hale gelmeye başlamış ve düşüş göstermiştir. Etilen ve etan arasındaki oranın giderek artması sıcaklık artışı ile oksidatif dehidrojenasyon hızının artış gösterdiğini ortaya koymaktadır. N₂O varlığında ise 780°C'ye kadar CO_x seçimliliği %4 seviyelerinde azalırken, bu sıcaklıkta C₃ hidrokarbonları oluşmaya başlamış ve artan sıcaklık ile hem CO_x seçimliliği artmaya başladığından hem de C₃ hidrokarbon oluşumu gerçekleştiğinden C₂ seçimliliği hızlıca düşüş kaydetmiştir.

Katalitik sonuçlar incelendiğinde, 2Mn/5Na₂WO₄/SiO₂ katalizörü ile O₂ varlığında CH₄ dönüşümünün 780°C'den sonra değişmediği belirlenmiştir. Bu nedenle C2 veriminin 780°C'ye kadar arttığı sonrasında ise azalmaya başladığı görülmüştür. Bunun dışında hem O2 hem de N2O varlığında CH4 dönüşümü, oksidant dönüşümü, C2 verimi ve C2H4/C2H6 oranı sıcaklık ile artış göstermiştir. C2 seçimlilikleri ise artan sıcaklık ile düşmüştür. CO_x türlerinin seçimliliği 780°C'ye kadar neredeyse değişmezken, bu sıcaklıktan sonra artış göstermiştir. C3 oluşumu 740°C'lerde de mevcut iken 780°C'ye kadar artmış sonrasında sabit kalmıştır. Bu sonuçlar göz önüne alındığında düşük sıcaklıklarda (<780°C) C₃ oluşumu nedeniyle C₂ seçimliliğinin düştüğü ancak 780°C'den sonra gaz faz ve katalitik yanma reaksiyonlarının etkin hale gelmeye başlaması ile C₂ seçimliliğinin daha da düştüğü söylenebilir. N₂O varlığında C₃ oluşumu 2Mn/5Na₂WO₄/SiO₂ katalizörü ile 760°C'de, 4Li/MgO ile 740°C'de başlarken sıcaklığın yükselmesi ile C₃ seçimliliği artış göstermiştir. Benzer şekilde CO_x seçimliliği de sürekli artmıştır. Bu artış özellikle 780°C'den sonra belirgin olmuştur. Bu nedenle N₂O varlığında 740°C'den itibaren yanma reaksiyonlarının etkinleşmesi sebebiyle C₂ seçimliliğinin artan sıcaklıkla düşüş gösterdiği söylenebilir. C₂H₄/C₂H₆ oranlarındaki artış oksidatif dehidrojenasyon hızının sıcaklık ile yükseldiğini göstermektedir.

Elde edilen sonuçlar, $2Mn/5Na_2WO_4/SiO_2$ katalizörünün O_2 varlığında ve her sıcaklıkta katalitik aktivitesi, seçimliliği, C_2 ve C_2H_4 verimi 4Li/MgO'dan yüksek olmuştur. $2Mn/5Na_2WO_4/SiO_2$ ile maksimum C_2 verimi %16,4 ile 780°C'de elde edilmiştir. 4Li/MgO ile en yüksek C_2 verimine %9,7 ile 820°C'de ulaşılmıştır. N₂O varlığında ise

4Li/MgO katalizörünün akitivitesi, C_2 ve C_2H_4 verimi her sıcaklıkta 2Mn/5Na₂WO₄/SiO₂ katalizörüne kıyasla daha yüksek olmuştur. Ancak C_2 seçimliliği biraz daha düşük bulunmuştur. Elde edilen sonuçlar katalizörlerin OCM performansının gaz faza kıyasla daha üstün olduğunu açıkça ortaya koymuştur.

Literatürde yapılan çalışmalara göre, Mn/Na₂WO₄/SiO₂ içerikli katalizörlerin aktif site yapısının başlangıçta yüzeyde W=O ve W-O-Si bağlarını içeren tunsten türlerinden oluştuğu ileri sürülmüş [76], sonrasında farklı destekler ile yapılan çalışmalar sonucunda aktif fazın Mn-Na-O türlerinden oluşabileceği belirlenmiştir [43]. Oldukça iyi dağılmış Mn türlerinin aktif komponent olduğu belirtilmiş ve Na iyonlarının yüksek seçimlilik için gerekli olduğu ifade edilmiştir. Tungstat iyonlarının ise katalizörü kararlı hale getirdiği düşünülmüştür. Bir başka çalışmada ise Na-O-Mn ve Na-O-W türlerinin aktif siteleri oluşturduğu bildirilmiştir [37]. Sodyumun mangan ve tungsten türlerinin yüzeye göçünü kolaylaştırdığını, böylelikle aktiviteyi ve seçimliliği arttırdığını ortaya koymuşlardır. Li/MgO içerikli katalizörlerde ise birçok araştırmacı aktif sitelerin [Li⁺O⁻] yapısına sahip olduğunu öne sürmüşlerdir [9, 56, 77, 78]. Tez kapsamında elde edilen sonuçlar O₂ varlığında CH₄ dönüşümlerinin 2Mn/5Na₂WO₄/SiO₂ katalizörü ile daha yüksek olduğunu ortaya koymuştur. N₂O varlığında ise CH₄ dönüşümlerinin 4Li/MgO katalizörü ile daha yüksek olduğu belirlenmiştir. Bu sonuçlar Na-O-Mn ve sitelerinin oksijen dissosiyasyonunda, [Li⁺O⁻] sitelerinin ise N₂O Na-O-W dekompozisyonunda daha aktif olduğunu göstermektedir.

OCM reaksiyonunu etkileyebilecek tüm parametrelerin belirli aralıklarda incelenmesi sonucunda, en yüksek C₂ veriminin elde edildiği şartlar; CH₄/O=1 ve GHSV=7500 L/kgsa olarak tespit edilmiştir. Bu şartların oksidanta bağımlı olmaksızın hem gaz faz hem de katalitik ortamda sağlandığı görülmüştür. Ancak katalitik performansların sıcaklığa bağlı olarak değişebileceği belirlenmiştir. Bu nedenle OCM performansları incelenecek olan Li ve Sm₂O₃ esaslı katalizörlerin katalitik testleri hidrokarbon/oksijen oranı ve besleme hızı sabit olacak şekilde 740-820°C arasında gerçekleştirilmiştir.

Literatürde yüksek yüzey bazikliğinin OCM reaksiyonunu pozitif yönde etkilediği ve Li₂O içeren katalizörlerin yüksek performans gösterdiği belirlendiğinden, yüksek Li içeriğine sahip bir seri yeni katalizör hazırlanmıştır. Hazırlanan bu katalizörler literatürde yüksek sıcaklık CO₂ absorbsiyonu için incelenmiş olup, 700°C'ye kadar CO₂ salınımını gerçekleştirmektedir [79]. Stabil -CO₃⁻² türlerinin oluşumu OCM reaksiyonunu negatif yönde etkilediğinden [22] sentezlenen bu katalizörlerin incelenecek reaksiyon sıcaklıklarında aktif olacağı düşünülmüştür. Bu amaçla LiAlO₂, LiMn₂O₄, LiCoO₂, Li₄SiO₄, Li₂ZrO₃, Li₂TiO₃ yapısına sahip katalizörler sentezlenmiş ve OCM reaksiyonu için performansları incelenmiştir. Katalizörlerin stokiyometrik ve oldukça homojen bir şekilde hazırlanabilmesi için üre-nitrat yakma ve katı hal sentez yöntemi tercih edilmiştir. Silisyum, zirkonyum ve titanyumun nitrat tuzlarının var olmaması neticesinde Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃'ün hazırlanması için katı hal sentez yöntemi kullanılmıştır. Katalizörlere ait performans sonuçları Bölüm 4.4'te detaylı olarak sunulmuştur.

Li esaslı katalizörlere ait sonuçlar incelendiğinde, her iki oksidant varlığında sıcaklık artışı ile CH₄ ve oksidant dönüşümü, C₂ verimi ve C₂H₄/C₂H₆ oranı genel olarak (LiCoO₂ katalizörü hariç) yükselmiştir. C₂ seçimliliği ise O₂ varlığında LiAlO₂, LiMn₂O₄, LiCoO₂ ve Li₂ZrO₃ katalizörleri ile sıcaklık artşına bağlı olarak yükseliş göstermiştir. C₂ seçimliliğindeki artış Li₄SiO₄ ile 780°C'ye, Li₂TiO₃ ile 800°C'ye kadar gerçekleşmiş ve sonrasında azalmaya başlamıştır. N₂O varlığında ise sıcaklığa bağlı olarak çok değişkenlik gösterdiği belirlenmiştir.

 O_2 varlığında Li esaslı katalizörler ile elde edilen C_2 verimi sonuçları gaz faz, 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO ile gaz faz etkisinin en düşük olduğu 740°C'de karşılaştırıldığında (Tablo 4.11);

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Li_2ZrO_3 > LiMn_2O_4 \ge$ Gaz Faz > LiAlO₂ > Li₂TiO₃ ≥ LiCoO₂

N₂O varlığında ise;

% C₂ verimi: $4Li/MgO > Li_2ZrO_3 > Li_4SiO_4 > 2Mn/5Na_2WO_4/SiO_2 > LiAlO_2 > Gaz Faz > Li_2TiO_3 > LiMn_2O_4 > LiCoO_2$ sıralaması ile azalma göstermiştir.

Yine O₂ varlığında 2Mn/5Na₂WO₄/SiO₂ katalizörü ile en yüksek C₂ veriminin (%16,4) elde edildiği 780°C'de (Tablo 4.12);

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > Li_4SiO_4 > Li_2ZrO_3 > LiMn_2O_4$ > Gaz Faz > LiAlO₂ > Li₂TiO₃ ≥ LiCoO₂ N₂O varlığında ise;

% C₂ verimi: $Li_2ZrO_3 > 4Li/MgO > Li_4SiO_4 > 2Mn/5Na_2WO_4/SiO_2 > LiAlO_2 > Gaz Faz > Li_2TiO_3 > LiMn_2O_4 > LiCoO_2$ sıralaması bulunmuştur.

Gaz faz reaksiyonların etkisinin en yüksek olduğu 820°C'de ise (Tablo 4.13);

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 4Li/MgO > LiMn_2O_4 > Li_4SiO_4 > Li_2ZrO_3$ Li₂TiO₃ > Gaz Faz > LiAlO₂ > LiCoO₂

N₂O varlığında ise;

% C₂ verimi: $Li_2ZrO_3 > 4Li/MgO > Li_4SiO_4 > 2Mn/5Na_2WO_4/SiO_2 > Gaz Faz \ge Li_2TiO_3 > LiAlO_2 > LiMn_2O_4 > LiCoO_2$ sıralaması ile düşüş gerçekleşmiştir.

Bu sonuçlara göre O₂ varlığında LiAlO₂ ve LiCoO₂ katalizörlerinin C₂ verimi gaz faz ile elde edilebilen verimin altında kalmıştır. Yani bahsi geçen katalizörlerin O₂ varlığında OCM reaksiyonu için aktif olmadığı görülmüştür. Li₂TiO₃'ün ise 800°C'den sonra daha yüksek verim verdiği gözlemlenmiştir. N₂O varlığında Li₂TiO₃, LiMn₂O₄ ve LiCoO₂ katalizörleri ile elde edilen C₂ verimi her sıcaklıkta gaz fazda elde edilen verimin altında kalırken 800°C'den sonra Li₂TiO₃ ile elde edilen verim de gaz fazın altında kalmıştır. Li₄SiO₄ ve Li₂ZrO₃ katalizörlerinin her iki oksidant varlığında da gaz fazdan daha yüksek performans gösterdiği ve OCM reaksiyonu için aktif olduğu belirlenmiştir. Ancak O₂ varlığında performansları 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO'nun altında kalmıştır. N₂O varlığında ise Li₂ZrO₃ ile 780°C'den sonra 2Mn/5Na₂WO₄/SiO₂ ve 4Li/MgO katalizörlerinden daha yüksek C₂ verimi elde edilebilmiştir (820°C'de %13,3). Li esaslı katalizörlerin performansları kendi aralarında değerlendirildiğinde 780°C'de ve O₂ varlığında Li₄SiO₄ (%5), N₂O varlığında ise Li₂ZrO₃ (%9,6) en yüksek performansı göstermiştir.

Literatürde Li₂ZrO₃ gibi metal oksitlerin CO₂ ile reaksiyonları sıcaklığa bağlı olarak tersinir bir şekilde gerçekleştiği bildirilmiştir [79];

$$Li_2ZrO_3 + CO_2 \leftrightarrow Li_2CO_3 + ZrO_2 (<720^{\circ}C)$$
(5.1)

$$\text{Li}_2\text{CO}_3 \leftrightarrow \text{Li}_2\text{O} + \text{CO}_2 (> 720^{\circ}\text{C}) \tag{5.2}$$

Li₄SiO₄'ün de 720°C'lerde CO₂ desorpsiyonu verdiği, diğer metal oksitlerin ise çok daha düşük sıcaklıklarda (<400°C) benzer reaksiyonları verebildiği ifade edilmiştir. Bu bağlamda reaksiyon sıcaklığının en az 720°C'nin üzerine çıkarılması ile katalizörlerin yüzeyinde Li₂O ve metal oksit yapısının oluştuğu söylenebilir. Böylelikle OCM reaksiyonunun Li/MgO katalizörü ile benzer mekanizmada yürüdüğü ve açığa çıkan metal oksitlerin indirgenebilirliğinin, CH₄ ve O₂'ye karşı aktivitesinin, yüzey oksijen türlerinin yapısı ve miktarının reaksiyonun performansını etkileyen önemli parametreler olduğu ifade edilebilir.

LiCoO₂ katalizörüne ait katalitik sonuçlar incelendiğinde, her iki oksidant varlığında da oluşan başlıca reaksiyon ürünleri CO₂ ve H₂O olmuştur. CO oluşumu gözlemlenmemiştir. Dönüşümlerin %23 ve üzerinde olması, ayrıca oksidantların tamamının tükenmesi teorik olarak tam yanma reaksiyonunun gerçekleştiğini göstermektedir. Yani LiCoO₂'nin reaksiyon sıcaklığında Li₂O ve Co₃O₄ yapısına ayrışması ile oldukça aktif bir oksidasyon katalizörü olduğu bilinen kobalt oksitin tam yanmayı desteklediği söylenebilir. Co₃O₄ indirgenebilir bir metal oksit olmasına rağmen yüksek sıcaklıklarda oksidasyon hızının çok yüksek olması sebebiyle oksit yapısını korumuştur. Yüzeyde bulunan oksijen türlerinin kafes oksijeni (O⁻²) olması sebebiyle de oluşan reaksiyon ürünleri başlıca CO₂ ve H₂O olmuştur. Katalizör yüzeyinde bulunan Li₂O ise oluşan etan ve etilenin CO_x ürünlerine gidişini neredeyse engelleyememiştir.

LiMn₂O₄ katalizörünün ayrışması ile Li₂O ve indirgenebilir Mn_xO_y yapılarının oluştuğu düşünülmüştür. Mn_xO_y'nin iyi bir oksidasyon katalizörü olduğu bilinmektedir [80]. Nitekim elde edilen sonuçlar her iki oksidantın %90 üzerinde dönüştüğünü göstermektedir. Ancak ortamdaki oksidant kısmi basıncının yüksek olması farklı mangan türlerinin bulunduğunu işaret etmektedir. Düşük sıcaklıklarda C₂ seçimliliği düşük olurken, CO₂ seçimliliği yüksek olmuş ve artan sıcaklıklar ile C₂ seçimliliği artış göstermiştir. Bu durum yüzeydeki mangan türlerinin Mn₂O₃ ve MnO₂ yapısında olabileceğini ve özellikle düşük sıcaklıklarda oksidasyonun indirgemeden daha hızlı olması sebebiyle yüzeyde MnO₂ yapısının daha fazla bulunduğu düşünülmüştür. Artan sıcaklık ile indirgenme hızının da artması ile OCM reaksiyonu için aktif olduğu bilinen Mn₂O₃ yapısının yüzey konsantrasyonunun arttığı tahmin edilmiştir. Bu sebeple yükselen sıcaklık ile C₂ seçimliliğinin artış göstermiş, CO₂ seçimliliği ise düşmüştür. Ancak CH₄ dönüşümleri %20'nin üzerinde ve gaz fazdan yüksek olmasına rağmen yüzeydeki kafes oksijeni (O⁻²) türlerinin oldukça fazla olması sebebiyle C₂ seçimlilikleri oldukça düşük kalmış ve C₂ verimleri N₂O varlığında gaz fazdan daha düşük olmuştur. O₂ varlığında elde edilen C₂ seçimliliklerinin N₂O'dan daha yüksek olması mangan oksit türlerinin O₂ varlığında N₂O'ya kıyasla daha seçimli O türleri oluşturduğunu ortaya koymaktadır. Bu nedenle elde edilen C₂ verimi gaz fazdan daha yüksek olmuştur. Li₂O'in varlığının da tam oksidasyon ürünlerine gidişi baskıladığı düşünülmüştür.

LiAlO₂, Li₄SiO₄, Li₂ZrO₃ ve Li₂TiO₃ katalizörlerinde mevcut olan metal oksitler redoks özelliği göstermemektedir. Bununla beraber oksijeni aktive edebilen yüzey kusurları (oksijen boşlukları) bulunmaktadır. Bu kusurların miktarı ve bu kusurlarda oluşabilecek oksijen türlerinin niteliği OCM performansını etkileyecektir. Ayrıca bahsedilen metal oksitlerin yüzey asiditesi ve bazisitesi de performans üzerinde etkili olacaktır.

LiAlO₂ ile elde edilen sonuçlar incelendiğinde, her iki oksidant varlığında da CH₄ dönüşümlerinin gaz fazdan yüksek olduğu ancak C₂ seçimliliklerinin daha düşük olduğu görülmüştür. Bu durum katalizörün Li₂O ve Al₂O₃ fazına ayrılması sonucu Al₂O₃ yüzeyinin oldukça asidik olması neticesinde CH₄ dissosiyasyonunun desteklendiğini ve akabinde oluşan karbon türlerinin oksidasyonu sonucu CO_x türlerine dönüşümün gerçekleştiğini göstermektedir. Ayrıca katalizörün BET yüzey alanının oldukça yüksek olması neticesinde (50 m²/g) gaz faz oksidasyon reaksiyonları desteklenmiş ve C₂ seçimliliği gaz fazdan daha düşük olmuştur. Ancak oksidant dönüşümünün gaz fazdan oldukça yüksek olması ve C₂ oluşumunun gerçekleşmesi, katalizörün oksijen dissosiyasyonu için oldukça aktif olduğunu fakat oluşan oksijen türlerinin OCM reaksiyonu için az sayıda olduğunu ortaya koymuştur. O₂ varlığında CH₄ dönüşümü yüksek olmasına rağmen C₂ seçimliliğinin oldukça düşük olması nedeniyle C₂ verimi gaz fazın altında kalmıştır. N₂O varlığında ise dönüşümün gaz faza ve O₂ varlığına göre daha yüksek olması sebebiyle C₂ verimi 780°C'ye kadar gaz fazdan daha yüksek olmuş ancak bu sıcaklıktan sonra daha düşük olmuştur.

 Li_2TiO_3 katalizöründeki fazların ayrışması sonucu yüzeyde Li_2O ve amfoterik TiO_x yapılarının oluşmuştur. Amfoterik özellik gösteren TiO_x yapısı, yüzeyindeki asidik sitelerin az olması sonucu CH₄ dissosiyasyonunu desteklemediğinden CH₄ dönüşümleri düşük kalmış ancak gaz faza kıyasla pek değişmemiştir. C₂ seçimlilikleri ise O₂

varlığında 780°C'den sonra gaz fazdan daha yüksek olmuştur. N₂O varlığında ise her zaman daha düşük olmuş fakat 820°C'de oldukça yaklaşmıştır. Elde edilen sonuçlar, TiO_x yüzeyinde bulunan oksijen boşluklarının miktarının Al₂O₃ gibi indirgenemeyen bir metal oksit içeren katalizörden daha yüksek olduğunu ve ayrıca Li₂O içeriğinin daha fazla olması neticesinde C₂ seçimliliğinin daha yüksek olduğunu ortaya koymuştur. Ancak oksijen dissosiyasyon hızının düşük sıcaklıklarda yavaş olduğu ve artan sıcaklık ile yükseldiği görülmüştür. Düşük dönüşüm ve yüksek C₂ seçimliliği nedeniyle C₂ verimi her iki oksidant varlığında da 780°C'den sonra gaz fazdan yüksek olmuştur.

 Li_2ZrO_3 katalizörüne ait sonuçlara göre her iki oksidant varlığında da CH₄ dönüşümleri gaz fazdan çok daha yüksek olmuştur. C₂ seçimlilikleri ise sadece O₂ varlığında ve 820°C'de gaz fazdan daha yüksek bulunmuştur. Buna rağmen Li₂ZrO₃ ile elde edilen C₂ verimleri her iki oksidant varlığında da gaz fazdan yüksek olmuştur. Katalizör yapısının reaksiyon esnasında Li₂O ve ZrO₂ fazlarına ayrılması neticesinde, Al₂O₃'ten daha fazla Li₂O içeriği ve oksijen boşluğu bulunan ZrO₂'nin C₂ oluşumunu desteklediği düşünülmüştür. Ancak C₂ seçimlilikleri kıyaslandığında, ZrO₂ yüzeyinde bulunan oksijen boşluk miktarını TiO_x'ten daha az olduğu tahmin edilmiştir. Oksidant dönüşümlerinin Al₂O₃ ile daha yüksek, TiO_x ile daha düşük olması neticesinde Li₂ZrO₃ ile elde edilen CH₄ dönüşümleri her ikisinin arasında kalmıştır. Bu durumun ZrO₂'nin yüzey asiditesi ile alakalı olduğu düşünülmüştür.

Son olarak Li₄SiO₄ katalizörüne ait sonuçlar incelendiğinde, CH₄ dönüşümlerinin her iki oksidant varlığında da gaz fazdan daha yüksek olduğu görülmüştür. C₂ seçimlilikleri ise O₂ varlığında gaz fazdan daha yüksek olurken, N₂O varlığında gaz faza oldukça yakın fakat düşük olduğu belirlenmiştir. Bu sebeble C₂ verimleri her sıcaklıkta gaz fazdan daha yüksek bulunmuştur. Yapının reaksiyon esnasında Li₂O ve SiO₂'ye ayrıldığı göz önünde bulundurulduğunda, SiO₂'nin yüzey asiditesinin yüksek Li₂O içeriğinin de yardımıyla ZrO₂ ve Al₂O₃'ten daha zayıf olması sebebiyle CH₄ dönüşümlerinin daha düşük olduğu düşünülmüştür. Ancak Li₂O içeriğinin oldukça yüksek olması ve belirli konsantrasyondaki oksijen boşlukları neticesinde C₂ seçimliliğinin Li₂ZrO₃ ve LiAlO₂'den daha yüksek olabileceği tahmin edilmiştir.

Metal oksit içeriğine bağlı olarak O₂ varlığında ve 740°C'deki sonuçlar göz önüne alınarak CH₄ dönüşümü Co₂O₃>Mn₂O₃>Al₂O₃>ZrO₂>SiO₂>TiO₂ sıralaması ile C₂

seçimlilikleri ise SiO₂>TiO₂>ZrO₂>Al₂O₃>Mn₂O₃>Co₂O₃ sıralaması ile azalmıştır. Yıldız ve arkadaşlarının [8] yaptığı bir çalışmada, CH₄/O₂/N₂:4/1/4 oranı ve 72000 L/kgsa besleme hızı altında OCM reaksiyonu için çeşitli metal oksitlerin performansları incelenmiş ve 16 saat sonunda CH₄ dönüşümünün ZrO₂>Al₂O₃>TiO₂>SiO₂ sıralaması ile C₂ seçimliliğinin ise SiO₂>TiO₂>ZrO₂>Al₂O₃ sıralaması ile azaldığını tespit edilmiştir. Tez çalışaması kapsamında elde edilen sonuçlar C₂ seçimliliği açısından benzerlik gösterirken, 16 saat sonunda performanslardaki düşüşün farklılaşmasından dolayı CH₄ dönüşümleri açısından farklılık göstermektedir. Zira 16 saat sonunda CH₄ dönüşümleri ZrO₂ için hiç değişmezken, Al₂O₃ %18 azalmış ve bu düşüş TiO₂ için maksimum %46 olurken SiO₂ için %78 olmuştur. Tez kapsamındaki ölçümler 3 saatin sonunda gerçekleştirildiğinden sıralamanın farklı olduğu düşünülmektedir. Elde edilen sonuçlar ve literatür verileri göz önüne alındığında sentezlenen Li esaslı katalizörlerin OCM performansının, kullanılan metal oksitlerin yapısına bağlı olduğu ve Li₂O katkısının hem aktiviteyi hem de seçimliliği yüzeyde yeni kusurlar oluşturması ve yüzey bazisitesini arttırmasına bağlı olarak yükselttiği ifade edilebilir.

Literatürde lantanit serisi nadir toprak metal oksitlerin (La₂O₃, Sm₂O₃, Gd₂O₃, Eu₂O₃ gibi) OCM reaksiyonu için iyi performans gösterdikleri tespit edilmiştir [81-83]. Bunlar içerisinde Sm₂O₃ ve La₂O₃ performansları ile bir adım öne çıkmışlardır [83, 84]. Bu katalizörlerin performanslarının iyileştirilmesi için yapılan çalışmalarda, alkali ve toprak alkali metal oksit ilavesinin C₂ veriminin yükseltilmesi için yararlı olduğu belirlenmiştir [83]. Tez çalışması kapsamında bu veriler göz önünde bulundurularak Sm₂O₃ katalizörünün üzerine farklı oranlarda Mn/Na₂WO₄, Li ve CaO katkılanarak katalizörün performansı üzerinde etkileri incelenmiş ve performans arttırılmaya çalışılmıştır. Denemeler, O₂ ve N₂O varlığında CH₄/O=1 oranında ve 740-820°C arasında gerçekleştirilmiş ve sonuçlar detaylı bir şekilde Bölüm 4.5'te sunulmuştur.

Elde edilen sonuçlara göre, Sm_2O_3 katalizörünün O_2 varlığında CH_4 dönüşümü sıcaklıkla neredeyse değişmezken, N_2O varlığında 780°C'ye kadar artmış sonrasında çok az bir düşüş göstermiştir. Oksidantlar her sıcaklıkta neredeyse tamamen tükenmiştir. C_2 seçimlilikleri O_2 varlığında 800°C'ye kadar artmış sonrasında düşüş göstermiştir. N_2O varlığında ise sıcaklık artışı ile C_2 seçimliliği azalmıştır. C_2 verimleri O_2 varlığında 800°C'ye kadar artmış ve sonrasında düşüş göstermiştir. N_2O varlığında ise 760°C'ye kadar yükselmiş ve sonrasında azalmıştır. N₂O ile çok daha yüksek C₂ verimleri elde edilirken, CH₄ dönüşümleri, C₂ seçimlilikleri ve C₂H₄/C₂H₆ oranları da daha yüksek olmuştur. Her iki oksidant varlığında da Sm₂O₃ ile elde edilen CH₄ dönüşümleri gaz fazdan çok daha yüksek olurken, C₂ seçimlilikleri düşük kalmıştır. Ancak C₂ verimleri her sıcaklıkta daha yüksek olmuştur.

Yapılan çalışmalarda nadir toprak metal oksitlerinin yüzeyindeki düşük koordinasyon sayılı asit-baz çiftlerinin aktivite ve seçimlilik üzerinde etkili olduğu ve orta kuvvette asidik siteler ile kuvvetli bazik sitelerin dönüşüm, seçimlilik ve verimi arttırdığı belirlenmiştir [83]. Metan ve oksijen aktivasyonunun Şekil 5.1'de verilen mekanizma ile yürüdüğü öne sürülmüştür [83].

 $o_2^- + \Box_{LC}^{2-} \longrightarrow o_{LC}^{2-} + o^-$

Şekil 5.1: Nadir toprak metal oksitler için önerilen OCM reaksiyon mekanizması [83]

Mekanizmaya göre düşük koordinasyon sayılı asit-baz çifti, metanın C-H bağını heterolitik olarak kırarak CH_3^- ve H^+ iyolarının sırası ile asidik (M_{LC}^{+n}) ve bazik siteler $(O_{LC}^{2^-})$ üzerinde tutunmasını sağlamaktadır. O₂ varlığında, karbanyondan (CH_3^-) elektron transferinin sağlanması ile O₂⁻ oluşumu sonucu, karbanyon O₂⁻ iyonu ile yer değiştirerek CH_3 · radikali gaz faza salınmakta veya yüzeyde oksidasyona uğramaktadır. $O_{LC}^{2^-}$ nin (kuvvetli bazik site) görevi metandan bir hidrojen kopararak OH_{LC}^- yapısını oluşturmaktır. Bu yapı yüksek sıcaklıkta dehidroksile olarak rejenere olmaktadır. Ayrıca oluşan veya boş olan anyon boşlukları (oksijen boşluğu) ile O₂⁻ türleri etkileşime girerek O⁻ türlerinin oluşma ihtimali de mevcuttur. Böylece oldukça aktif olan O⁻ türleri ile genel olarak öngörülen OCM reaksiyon mekanizması üzerinen metil radikali oluşumu desteklenmiş olacaktır.

Bu mekanizmaya göre, O_2 yerine N_2O kullanılması durumunda O_2^- türlerinden ziyade oldukça aktif olan O^- türleri oluşacağı tahmin edilmektedir. Bu durumda dönüşüm, seçimlilik, verim ve dehidrojene olan ürünlerin artış göstermesi gerekmektedir. Elde edilen sonuçlar bu olasılığı doğrular niteliktedir.

Ağırlıkça %1Mn/%2,5Na₂WO₄, %2Mn/%5Na₂WO₄ ve %4Mn/%10Na₂WO₄ katkılanan Sm₂O₃ esaslı katalizörlerin performansları incelendiğinde Sm₂O₃'e kıyasla dönüşüm, seçimlilik ve verimin genel olarak düştüğü belirlenmiştir. C2 verimlerinin 780°C'den sonra gaz faz ile elde edilen verimlerden düşük olduğu gözlemlenmiştir. O2 varlığında katkılama miktarının artması ile dönüşüm ve seçimlilik düşüş gösterirken, N2O varlığında dönüşümün azaldığı C₂ seçimliliğinin ise arttığı tespit edilmiştir. Ancak O₂ varlığındaki CH4 dönüşümündeki düşüşün %1-2 civarında olduğu belirlenmiştir. Her iki oksidant varlığında ve yüksek sıcaklıklarda CH₄ dönüşümleri oldukça yakın olurken, C₂ seçimlilikleri N₂O varlığında daha yüksek olmuştur. Ayrıca O₂ dönüşümleri katkılama miktarı ve sıcaklık ile değişmezken, N₂O dönüşümlerinin katkılama miktarındaki artış ile azaldığı tespit edilmiştir. XRD sonuçlarına göre, katkılama miktarının artması ile Sm₂O₃ yapısında gözlemlenen bozulma yeni bir yapının oluştuğunu belirtmektedir. Tüm bu sonuçlar Sm₂O₃'ün Mn₂O₃ ile reaksiyon vererek [85, 86] perovskit yapısındaki Sm_{2-x}Mn_xO₃'in oluşabileceğini ve bu yapının tam yanma reaksiyonunu desteklemesi neticesinde dönüşüm ve seçimliliklerin düştüğünü göstermektedir. Ancak XRD sonuçları Mn₂O₃ ve Na₂WO₄ fazlarının varlığını gösterdiğinden tüm Mn₂O₃'ün reaksiyona girmediği söylenebilir. Bu nedenle yüzeyde pek çok farklı aktif sitenin oluşması muhtemeldir. Yüzeyde oluşabilecek Na-O-Mn ve Na-O-W sitelerinin O2 dissosiyasyonu için daha aktif olduğu 2Mn/5Na2WO4/SiO2 katalizörüne ait sonuçlar ile tespit edilmiştir. Dolayısı ile yüzeyde Na-O-Mn ve Na-O-W sitelerinin katkılama miktarı ile artması sonucu; N₂O ve dolaylı olarak CH₄ dönüşümü azalmış ancak daha seçimli oksijen türlerinin oluşması ile C₂ seçimliliği artış göstermiştir.

Ağırlıkça %2, %4 ve %6 Li emdirilen Sm_2O_3 katalizörlere ait sonuçlar incelendiğinde, gerçekleştirilen katkılama sonucu Sm_2O_3 'e kıyasla CH_4 dönüşümlerinin düştüğü, C_2 seçimliliklerinin ise neredeyse 2 kat arttığı belirlenmiştir. Her iki oksidant varlığında ve

her sıcaklıkta elde edilen C₂ verimleri gaz fazdan yüksek olmuştur. Artan sıcaklık ile CH₄ dönüşümleri ve C₂ verimi artmış, C₂ seçimlilikleri ise azalma göstermiştir. Katkılama miktarının %2'den %4'e yükseltilmesi ile performanslarda çok ciddi bir değişiklik gözlemlenmemiştir. Lakin Li içeriğinin %6'ya çıkarılması ile CH4 dönüşümleri her iki oksidant varlığında da oldukça artış göstermiştir. C₂ seçimliliği ise O₂ varlığında bir miktar azalırken, N₂O varlığında 760°C'ye kadar daha yüksek sonrasında ise daha düşük olmuştur. Genel olarak katkılama miktarının artması ile C2 verimleri ve C₂H₄/C₂H₆ oranları artış göstermiş ve bu artış 6Li/Sm₂O₃ ile daha belirgin olmuştur. O2 varlığında ağırlıkça %2 ve %4 Li içeren katalizörlerin C2 verimi 760°C'ye, N₂O varlığında ise 800°C'ye kadar Sm₂O₃'ten daha düşük olurken, sonrasında yükselmiştir. 6Li/Sm₂O₃'ün O₂ varlığında ve her sıcaklıkta Sm₂O₃'ten daha yüksek C₂ verimi gösterdiği, N₂O varlığında ise 780°C'den sonra daha üstün olduğu gözlemlenmiştir. Yapılan katkılama ile oksidant dönüşümlerinin oldukça düştüğü ve tamamen tükenmediği belirlenmiştir. %2 ve %4 Li içeren katalizörlerde 780°C'nin altındaki sıcaklıklarda O₂ dönüşümü N₂O'dan daha düşük olurken, sıcaklık artışı ile bu davranış terse dönmüştür. Ancak %6 Li içeren katalizörü ile O2 dönüşümlerinin her sıcaklıkta N2O'dan yüksek olduğu belirlenmiştir. Ayrıca oksidant dönüşümleri açısından %2Li ve %4Li içerikli katalizör arasında ciddi farklar bulunmazken, 6Li/Sm2O3 katalizörünün diğerlerinden çok daha yüksek dönüşüm sergilediği gözlemlenmiştir.

Korf ve ark. [81], kübik yapıdaki Sm₂O₃ üzerine alkali ve toprak alkali metal katkısının etkisini incelemiş ve Li ilavesinin C₂ verimini düşürdüğünü, Otsuka ve ark. [87] ise yükselttiğini tespit etmişlerdir. Bu duruma 850°C'deki kalsinasyon sonucu Sm₂O₃'ün kübik yapıdan monoklinik yapıya dönüşmesinin yol açtığı belirlenmiştir. Lityumun dönüşümü kolaylaştırdığı ve 775°C'ye kadar kübik olan yapının bu sıcaklıktan sonra monokliniğe döndüğü ifade edilmiştir. Tez kapsamında monoklinik yapıda Sm₂O₃'in reaksiyona girerek SmLiO₂ yapısını oluşturduğu belirlenmiştir. Bu oluşumun ağırlıkça %6Li ilavesi ile başlıca faz haline geldiği tespit edilmiştir. Li ilavesi ile katalizörün yüzeyden itibaren Li₂O-SmLiO₂-Sm₂O₃ fazlarına sahip olduğu tahmin edilmiştir. SmLiO₂ yapısının oluşmaya başlaması ile katalizörlerin C₂ verimleri O₂ kullanıldığında

gelmesi ile O_2 varlığında her sıcaklıkta, N_2O varlığında 780°C'den sonra artış gerçekleşmiştir. Bu sonuçlara göre; Li₂O'nun yüzeydeki miktarının artması ile düşük sıcaklıklarda oksidant dissosiyasyon hızının azaldığı ve artan sıcaklık ile yükselebildiği söylenebilir. Yüzey bazisitesindeki artış ile de oksidasyon reaksiyonlarının bastırılması sonucu C_2 seçimliliğinin yükseldiği düşünülmüştür. Oksidant dönüşümleri kıyaslandığında SmLiO₂ yapısının dissosiyasyonu arttırdığı belirlenmiştir. Ancak bu yapının O_2 'ye karşı N_2O 'dan daha aktif olduğu belirlenmiştir. Ayrıca elde edilen C_2H_4/C_2H_6 oranları bu yapının oksidatif dehidrojenasyon için oldukça aktif olduğunu ortaya koymuştur. Zira en yüksek C_2H_4/C_2H_6 oranı (4.48) bu yapının varlığında 820°C'de elde edilmiştir.

 Sm_2O_3 katalizörüne ağırlıkça %5, %10 ve %15 CaO ilave edilmesi ile elde edilen sonuçlar oldukça ümit vaat etmiştir. Farklı miktarlarda CaO katkılaması ile CH₄ dönüşümünün Sm_2O_3 'e kıyasla çok değişmediği ve C₂ seçimliliklerinin her sıcaklıkta arttığı belirlenmiştir. Bu sebeple C₂ verimleri de her sıcaklıkta daha yüksek olmuştur. Her iki oksidant varlığında da en yüksek C₂ verimi %15CaO katkılama ile elde edilmiştir. Denemelerde O₂'nin tamamen tükendiği, N₂O'nun ise düşük sıcaklıklarda (<760°C) %5-10 arasında düştüğü gözlemlenmiştir. N₂O varlığında seçimlilikler daha yüksek olmuştur. XRD sonuçları CaO'nun Sm_2O_3 ile herhangi bir reaksiyon göstermediğini ve yapıya katılmadığını göstermiştir [24]. Performanslardaki bu yükseliş CaO ilavesi ile CaO-Sm₂O₃ etkileşiminin gerçekleşmesi ve yüzey bazikliğinin artışına bağlanmıştır [24, 83].

 O_2 varlığında gaz faz reaksiyonların katalitik performanslara etkisinin en düşük seviyede olduğu 740°C'de, Sm₂O₃ esaslı katalizörler ile elde edilen sonuçlar karşılaştırıldığında (Tablo 4.24);

N₂O varlığında sonuçlar karşılaştırıldığında (Tablo 4.24);

% C₂ verimi: $15CaO/Sm_2O_3 > Sm_2O_3 > 10CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 6Li/Sm_2O_3 > 4Li/MgO > 4Li/Sm_2O_3 > 2Mn/5Na_2WO_4/SiO_2 > 2Li/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3 > Gaz faz$

O₂ varlığında 2Mn/5Na₂WO₄/SiO₂ ile en yüksek C₂ veriminin elde edildiği 780°C'de katalizörlerin performansları Tablo 4.25'te verilmiştir. Bu sonuçlara göre;

N₂O varlığında ise (Tablo 4.25);

% C₂ verimi: $15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 10CaO/Sm_2O_3 = Sm_2O_3 > 6Li/Sm_2O_3 > 4Li/MgO > 2Mn/5Na_2WO_4/SiO_2 > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > Gaz faz > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_$

Gaz faz reaksiyonların katalitik sonuçlara etkisinin en yüksek olduğu 820°C'deki sonuçlar Tablo 4.26'da verilmiştir. O₂ varlığındaki sonuçlara göre;

% C₂ verimi: $2Mn/5Na_2WO_4/SiO_2 > 6Li/Sm_2O_3 > 4Li/MgO > 4Li/Sm_2O_3 > 15CaO/Sm_2O_3 > 5CaO/Sm_2O_3 > 2Li/Sm_2O_3 > 10CaO/Sm_2O_3 > Sm_2O_3 > Gaz faz > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 4Mn/10Na_2WO_4/Sm_2O_3$

N₂O varlığında ise (Tablo 4.25);

% C₂ verimi: $6Li/Sm_2O_3 > 15CaO/Sm_2O_3 = 4Li/MgO > 5CaO/Sm_2O_3 > 2Mn/5Na_2WO_4/SiO_2 > 10CaO/Sm_2O_3 > 4Li/Sm_2O_3 > 2Li/Sm_2O_3 > Sm_2O_3 > Gaz faz > 4Mn/10Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 > 1Mn/2,5Na_2WO_4/Sm_2O_3 > 2Mn/5Na_2WO_4/Sm_2O_3 >$

Bu sonuçlara göre O_2 varlığında Sm_2O_3 katalizörlerin hiçbiri gaz faz ile elde edilebilen C_2 veriminin altında kalmamıştır. N_2O varlığında ise 780°C itibari ile Mn/Na₂WO₄ esaslı katalizörler gaz faz performansın altında kalmıştır. Yine O_2 varlığında en yüksek C_2 verimi (%16,4) 780°C'de 2Mn/5Na₂WO₄/SiO₂'ye ait olmuştur. N_2O varlığında ise en yüksek verim (%13,4) 15CaO/Sm₂O₃ katalizörü ile 780°C'de elde edilebilmiştir. Sm₂O₃ esaslı katalizörlerin performansları kendi aralarında değerlendirildiğinde;

780°C'de ve O_2 varlığında 6Li/Sm₂O₃ (%9,2), N₂O varlığında ise 15CaO/Sm₂O₃ (%13,4) katalizörü en yüksek performansı göstermiştir.

Yapılan tüm incelemeler sonucunda gaz faz etkisinin en düşük olduğu 740°C'de en yüksek C2 verimi %13,2 olup 15CaO/Sm2O3 katalizörü ile N2O kullanılarak elde edilmiştir. Yapılan ek çalışmalar katalizörün bu performansını daha düşük sıcaklıklarda da gösterebildiğini ortaya koymuştur (>650°C). Endüstriyel açıdan enerji maliyetleri ve reaksiyonun ekzotermik olması nedeniyle kontrol edilebilirliği göz önünde bulundurulduğunda 15CaO/Sm₂O₃'nun 2Mn/5Na₂WO₄/SiO₂'den daha etkin bir katalizör olduğu söylenebilir. İki katalizör ile elde edilen C₂H₄ verimleri sırasıyla %8,2 ve %5,3 olduğu belirlenmiştir. En yüksek C2 veriminin elde edildiği 780°C'deki C2H4 verimleri 2Mn/5Na2WO4/SiO2 ile O2 varlığında %10,8 iken 15CaO/Sm2O3 ile N2O varlığında %9,5 olmuştur. Bu sonuç 15CaO/Sm₂O₃ katalizörünün iyi bir alternatif olabileceğini göstermektedir. Oksidant olarak N2O'nun üretim maliyeti ve ayırma problemleri göz önünde bulundurulduğunda O2 varlığında yüksek performans gösteren SmLiO₂ yapısını içeren 6Li/Sm₂O₃ katalizörü iyi bir alternatif olabilir. Zira bu katalizör ile O₂ varlığında 740°C'de %4,2, 780°C'de %6,6, 820°C'de %8 C₂H₄ verimi elde edilebilmiştir. Ayrıca katalizörün SmLiO₂ şeklinde hazırlanması ile daha yüksek performans gösterebileceği düşünülmüştür.

Tez çalışması kapsamında sentezlenen tüm katalizörler üzerinde gerçekleştirilen denemeler sonucunda her iki oksidant varlığında da en yüksek C2 veriminin 780°C'de elde edildiği belirlenmiştir. Bu nedenle literatürde yüksek performans gösterdiği bilinen 2Mn/5Na2WO4/SiO2 ve 4Li/MgO katalizörleri ile Li ve Sm2O3 esaslı katalizörler içerisinde O2 ve N2O ortamında en yüksek C2 verimi elde edilen katalizörlerin kararlılıklarının incelenebilmesi için 8 süreyle OCM saat reaksiyonu gerçekleştirilmiştir. Katalizör miktarı 400 mg'a çıkarılmış ve kuvars cips ile seyreltme uygulanmamıştır. Çalışma şartları CH₄/O=1, GHSV=7500 L/kgsa ve 780°C olacak şekilde ayarlanmıştır. Testler öncesi ve sonrasında XPS analizleri gerçekleştirilerek yüzeydeki değişimler incelenmiştir.

2Mn/5Na₂WO₄/SiO₂ katalizörüne ait kararlılık testleri sonuçları Şekil 4.37 ve Şekil 4.38'de verilmiştir. O₂ kullanılarak gerçekleştirilen deneme de CH₄ dönüşümünün 2,5 saat içerisinde sabitlendiği ve sonrasında değişmediği ancak C₂ seçimliliğinin 1 saatten

sonra düşmeye başladığı görülmüştür. C₂ seçimliliğindeki düşüşün deneme sonunda başlangıca göre %2 seviyesinde olduğu belirlenmiştir. Bu nedenle başlangıçta %17 seviyelerinde olan C₂ verimliliği az bir düşüşle deneme sonunda %16,5 olmuştur. Elde eilen sonuç performans testleri ile uyumlu olmuştur. O₂ dönüşümünün %99,2'den %98'e düştüğü görülmüştür. C₂H₄/C₂H₆ oranı süre ile az bir değişiklik göstermiş, başlangıçta ve deneme sonunda 1,8 civarında olmuştur. Yapılan deneme katalizörün O₂ varlığında oldukça kararlı olduğunu ortaya koymuştur.

N₂O kullanılarak gerçekleştirilen denemelerde, CH₄ dönüşümünün %13,6'dan %11,4'e düştüğü belirlenmiştir. C₂ seçimliliği ise sürekli artış göstererek %70'den %74,5'e yükselmiştir. C₂ verimi ilk 1,5 saat içinde %9,6'dan %8,5'e düşmüş ve sonrasında az bir değişim göstermiştir. C₂H₄/C₂H₆ oranı da 1,5 saat sonunda 1'den 0,85'e düşmüş ve sonrasında oldukça kararlı olmuştur. Başlangıçta %57 olan N₂O dönüşümü zamanla azalarak deneme sonunda %50 civarına düşmüştür. Elde edilen sonuçlar 2Mn/5Na₂WO₄/SiO₂ katalizörünün N₂O ortamında da oldukça kararlı olduğunu ortaya koymuştur. Deneme sonunda elde edilen C₂ verimi (%8,5), performans denemelerinde elde edilen verime (%7,8) yakın olmuştur.

Denemeler öncesi ve sonrasında gerçekleştirilen XPS analizlerine ait sonuçlar Şekil 4.45 ve Tablo 4.27'de verilmiştir. Sonuçlardan görüldüğü üzere denemeler sonrasında yüzeydeki Na, Mn ve W türlerinin miktarı reaksiyon öncesine göre yükselirken Si ve O miktarı azalmıştır. Na/W oranı reaksiyon öncesi 5,96 olurken O2 ve N2O ile gerçekleştirilen kararlılık testleri sonrası sırası ile 2,83 ve 2,13 olmuştur. Bu durum reaksiyon öncesinde yüzeyde Na2WO4'e ek olarak Na2O, Na2O2 ve Na2CO3 oluşumunun gerçekleşmiş olabileceğini göstermiştir [43]. Reaksiyon sonrasında Na/W oranındaki düşüş hem Na⁺ hem de WO₄⁻² iyonlarını yüzeye göç ettiğini işaret etmiştir. Bu sayede Na⁺ iyonlarının reaksiyon ortamında stabilizasyonu sağlanmıştır [43]. Reaksiyon öncesinde Mn/W oranının sırasıyla 0,91'den 0,24 ve 0,37'ye düştüğü gözlemlenmiştir. Bu sonuç reaksiyon öncesinde katalizör yüzeyinde bir miktar MnWO₄'ın var olabileceğini, reaksiyon esnasında ise bu yapının bozunduğunu ve mangan oksit türlerinin oluştuğunu göstermektedir. Zira Mn_{2p3/2} bağ enerjisinin 641 eV'den 642 eV'ye yükselmesi manganın +2 ya da +3'ten +4'e yükseltgendiğini belirtmektedir [13]. Bu durum, mangan türlerinin reaksiyon esnasında Mn+3/Mn+4

redoks döngüsüne uğradığını göstermektedir. XPS ile elde edilen sonuçlar Na, Mn ve W'nin reaksiyonlarda aktif görev aldığını ve bu türlerin yüzeyde zenginleşmesi ile performansın kararlı hale geldiğini ortaya koymaktadır.

4Li/MgO katalizörüne ait kararlılık testi sonuçları Şekil 4.38 ve Şekil 4.39'da verilmiştir. CH₄ dönüşümü ilk 2 saat içerisinde oldukça değişim gösterirken sonrasında artışa geçmiş ve 8 saat sonunda %33,7 olarak bulunmuştur. C2 seçimliliğinin ise %43,3'ten %41,3'e düştüğü belirlenmiştir. C2 veriminin zamanla değiştiği ancak deneme başlangıcında elde edilen değere oldukça yakın olmuştur (%13,9). C₂H₄/C₂H₆ oranı başlangıçta artış gösterirken sonrasında 1,54'e düşmüştür. O2 dönüşümü başlangıçta %68 civarında olurken ilk 3 saat içinde %65'e düşmüş ve sonrasında yükselerek 8 saat sonunda %73,5 olmuştur. Elde edilen sonuçlar 4Li/MgO katalizörünün O2 ortamında çok kararlı olmadığını ve performansında sürekli bir değişim olduğunu ortaya koymuştur. Deneme sonunda elde edilen C₂ veriminin (%13,9) ise performans testlerinde elde edilen C2 veriminden (%9,1) çok daha yüksek olduğu belirlenmiştir. Performans testlerinde katalizörler kuvars ile seyreltildiklerinden, yüksek sıcaklıklarda Li₂O yapıya difüze olurken, kararlılık testlerinde sadece reaktör duvarına difüzyon gerçekleşebilecektir. Korf ve ark. [12] yaptığı araştırmaya göre, Li/MgO katalizörünün kuvars ile seyreltilmesi sonucunda C2 veriminin 10 saat içerisinde hızla düştüğü, seyreltme uygulanmaması durumunda bu düşüşün 25 saat sonra başladığı gözlemlenmiştir. C2 seçimlilikleri ise neredeyse aynı kalmıştır. Reaksiyon sonrasında yaptıkları analiz sonucu ağırlıkça %3,1 Li içeren katalizörün Li içeriğinin %0,1'e düştüğünü tespit etmişlerdir. Li miktarındaki artışla dönüşümün yükseldiği bilindiğinden, benzer durumun tez kapsamında uygulanan performans testlerinde gerçekleşme ihtimali oldukça yüksek olmuştur.

 N_2O ortamında katalizör çok daha kararlı bir performans ortaya koymuştur. CH₄ dönüşümü ilk 2 saat içinde hızla azalırken, sonrasında yavaş bir şekilde azalmıştır. Dönüşümdeki azalmanın %1,6 seviyelerinde olduğu belirlenmiştir. C₂ seçimliliği zamanla artış gösterirken %74,7'den %78,5'e yükseldiği tespit edilmiştir. C₂ verimi metan dönüşümüne benzer şekilde ilk 2 saat hızla azalırken sonrasında nispeten kararlı hale gelmiş ve verim %10,5 olmuştur. C₂H₄/C₂H₆ oranı benzer bir trendi ile azalma gösterirken deneme sonunda 0,88'e düşmüştür. N₂O dönüşümünün 3 saat sonunda %53'ten %50'ye düştüğü ve pek değişmediği gözlemlenmiştir. Deneme sonunda elde edilen C_2 verimi (%8,5), performans denemelerinde elde edilen verime (%7,8) yakın olmuştur.

XPS analizi sonuçları Şekil 4.45 ve Tablo 4.28'de verilmiştir. Elementlerin yüzey komposizyonları incelendiğinde O₂ ve N₂O ortamında gerçekleştirilen denemelerden sonra Li ve O yüzdelerinin reaksiyon öncesine göre arttığı ve Mg'nin ise azaldığı görülmüştür. Bu artışın N₂O varlığında daha yüksek olduğu tespit edilmiştir. Li/Mg oranlarındaki artış ile O₂ varlığında CH₄ dönüşümünün arttığı, C₂ seçimliliğinin ise azaldığı görülmüştür. N₂O varlığında tam tersi bir durum söz konusu olmuştur. Yüzeyde tespit edilen oksijen yüzdesinin oldukça yüksek olması sadece metal oksit kaynaklı olmadığını yüzeyde CO₃⁻² oluşumunun da var olduğunu göstermektedir. CO₃⁻² türlerinden kaynaklanan O-1s bağ enerjisinin ~531,3 eV [43] olması ve analizler ile elde edilen değerin oldukça yakın bulunması (531 eV) bu sonucu desteklemiştir. Kararlılık testleri sonrasında katalizör yüzeyinde meydana gelen Li ve O miktarındaki artış bu komponentlerin aktif siteleri oluşturduğunu göstermektedir.

Li esaslı katalizörler içerisinde, oksidant olarak O2 kullanılması durumunda en yüksek C₂ veriminin elde edildiği Li₄SiO₄ katalizörüne ait kararlılık testi sonuçları Şekil 4.41'de sunulmuştur. Bu sonuçlara göre CH4 dönüşümü, C2 seçimlilik ve verimi ile C_2H_4/C_2H_6 oranının 2 saat içinde hızla düştüğü ve sonrasında yavaş bir şekilde azaldığı görülmüştür. CH₄ dönüşümü %21,5'den %11,1'e düşerken, seçimlilik %45'ten %23'e gerilemiştir. C2 verimi ise başlangıçta %9,5 olurken, hızla %3,5'e düşmüş ve son olarak %2,6 bulunmuştur. Elde edilen C₂H₄/C₂H₆ oranı ise 1 seviyelerinden 0,45'e kadar düşmüştür. O2 dönüşümü başlangıçta %49 olurken 8 saat sonunda %10,6 olarak bulunmuştur. Deneme sonunda elde edilen C2 veriminin (%2,6) performans testlerinden (%5) çok daha düşük olduğu tespit edilmiştir. Bu durum katalizör yapısından Li'nin uzaklaşması ile açıklanabilir. Yukarıda bahsedildiği üzere katalizörün kuvarsla seyreltilmesi durumunda, Li2O kuvarsla reaksiyon vererek Li2SiO3 yapısını oluşturabilmektedir. Bu nedenle performans testlerinde Li₄SiO₄ yüzeyinden uzaklaşan Li, kuvarsla reaksiyon verdiğinden C2 verimi sıcaklık ile artış göstermeye devam etmiştir. Ancak kararlılık testlerinde kuvarsın eksikliği dolayısı ile Li, LiOH olarak buharlaşmış ve katalizördeki Li miktarı sürekli düşüş göstermiştir. Bu nedenle yapısında önemli miktarda Li içeriği bulunan Li₄SiO₄ katalizörünün performansı, Li'nin hızla uzaklaşması neticesinde 2 saat içerisinde oldukça azalmış sonrasında yavaşça düşmeye başlamıştır.

Li₂ZrO₃ katalizörüne ait kararlılık testi sonuçları Li₄SiO₄'e benzerlik göstermiştir. Ancak CH₄ dönüşümü 3 saat sonunda kararlı hale gelmeye başlarken, C₂ seçimliliği ve verimi ile C₂H₄/C₂H₆ oranı lineer bir şekilde azalma göstermiştir. Ayrıca düşüş seviyeleri Li₄SiO₄'e kıyasla çok daha az olmuştur. Bu nedenle başlangıçta %12,1 olan C₂ verimi deneme sonunda %9,8 olarak bulunmuştur. Bu değerin (%9,8) performans testlerinde elde edilen C₂ verimine (%9,6) oldukça yakın olduğu belirlenmiştir. Bu sonuçlar deneme esnasında yine Li kaybının gerçekleştiğini ancak N₂O varlığında bu kaybın daha düşük olduğunu ortaya koymaktadır. Muhtemelen, O₂ varlığında gerçekleşen reaksiyonlarda sıcak nokta oluşumları N₂O'ya kıyasla daha fazla olurken, yüzey sıcaklıkları deneme sıcaklıklarının oldukça üstünde kalmaktadır. Bu da katalizör yüzeyinden daha fazla Li'nin uzaklaşmasına sebebiyet vermektedir.

Li₄SiO₄ ve Li₂ZrO₃ katalizörlerine ait XPS sonuçları incelendiğinde (Tablo 4.29 ve Tablo 4.30) her iki katalizörde de yüzeydeki Li yüzdesinin bir miktar azaldığı Si ve Zr'nin ise arttığı görülmüştür. Ayrıca Li/Si ve Li/Zr oranlarına bakıldığında; deneme öncesi 200 civarında olan Li/Si oranının deneme sonrası 17'lere düştüğü, Li/Zr oranının ise 6,43'ten 1,88'e düştüğü belirlenmiştir. Bu sonuçlar Li₄SiO₄ katalizöründeki Li kaybının Li₂ZrO₃'e göre oldukça fazla olduğunu ve bu nedenle Li₂ZrO₃'ün daha kararlı olduğunu ortaya koymaktadır. Elde edilen sonuçlar Li esaslı katalizörlerin yüksek performans gösterebileceğini fakat performans kayıplarının önüne geçilebilmesi için stokiyometrik oranlardan çok daha düşük miktarda Li'nin kullanılması gerektiğini göstermiştir.

 $6Li/Sm_2O_3$ ve $15CaO/Sm_2O_3$ katalizörlerine ait kararlılık denemeleri, $6Li/Sm_2O_3$ katalizörünün C_2 verimini zamana bağlı olarak arttırdığını, $15CaO/Sm_2O_3$ 'ün ise deneme süresince oldukça kararlı olduğunu ortaya koymuştur. $6Li/Sm_2O_3$ katalizörü ile deneme süresince C_2 seçimliliği sabit kalırken, CH_4 dönüşümü ile buna bağlı olarak C_2 verimi ve C_2H_4/C_2H_6 oranı sürekli artış göstermiştir. O_2 dönüşümü başlangıçta %57 olurken %50'ye düşmüştür. C_2 verimi deneme sonunda %12,8 olarak bulunmuştur. $15CaO/Sm_2O_3$ katalizörü ile N_2O 'nun tamamen tükendiği ve elde edilen C_2 veriminin

%15,2 olduğu tespit edilmiştir. Bu değerler performans testleri ile elde edilen değerlerin üstünde olmuştur.

XPS sonuçları incelendiğinde (Tablo 4.31 ve Tablo 4.32), Li yüzdesinin deneme öncesinde göre oldukça azaldığı, Ca yüzdesinin ise arttığı görülmüştür. Bu sonuçlar Li'nin yine yüzeyden buharlaşarak uzaklaştığını göstermektedir. Ca'nın ise reaksiyonda aktif rol oynadığını ve katalizörün performansını kararlı hale getirdiğini göstermektedir. Li miktarındaki düşüşe rağmen 6Li/Sm₂O₃ katalizöründeki C₂ verimi artışı katalizör yüzeyinde kalsinasyon sonrası oluşan SmLiO₂ fazının OCM için aktif ve seçimli olduğunu göstermektedir. XRD sonuçlarından görüldüğü üzere 6Li/Sm₂O₃ katalizörü başlıca SmLiO₂ ve Sm₂O₃ fazlarını içermektedir. Bu sonuçtan yola çıkarak katalizörü yüzeyden itibaren Li₂O-SmLiO₂-Sm₂O₃ şeklinde yapılandığı düşünülmüştür. Bu nedenle performanstaki artış, SmLiO₂ fazının üzerinde olduğu düşünülmüştür.

780°C'de 8 saat boyunca O₂ veya N₂O ile gerçekleştirilen kararlılık testleri sonucunda en yüksek C₂ veriminin literatürde yüksek performans gösterdiği bilinen 2Mn/5Na₂WO₄/SiO₂ katalizörü ile elde edildiği bulunmuştur (%16,5). Bu sonuca en yakın performansın N₂O varlığında 15CaO/Sm₂O₃ katalizörü ile (%15,2) elde edilebildiği görülmüştür. Yine yüksek performans gösterdiği bilinen 4Li/MgO katalizörünün performansının bahsedilen katalizörlerden daha düşük performans (O₂ varlığında %13,9) gösterdiği belirlenmiştir. 6Li/Sm₂O₃ katalizörü ile O₂ varlığında %12,8 C₂ verimi elde edilebilmiştir. Li esaslı katalizörlerin (Li₄SiO₄ ve Li₂ZrO₃) performansının hızla düştüğü buna rağmen Li₂ZrO₃'ün N₂O varlığında yüksek performans gösterebildiği belirlenmiştir (%9,8). C₂H₄ verimleri göz önüne alındığında;

$$2Mn/5Na_2WO_4/SiO_2 > 15CaO/Sm_2O_3 > 4Li/MgO > 6Li/Sm_2O_3 > Li_2ZrO_3 >> Li_4SiO_4$$

sıralamasının elde edildiği görülmüştür. Özellikle 740°C'de performans testleri ile elde edilen sonuçlar kıyaslandığında daha düşük sıcaklıklarda da performansını koruyabilen 15CaO/Sm₂O₃ katalizörü ile 2Mn/5Na₂WO₄/SiO₂ katalizöründen daha yüksek C₂H₄ verimi elde edilebildiği düşünüldüğünde (sırasıyla %8,2 ve %5,3), 15CaO/Sm₂O₃'ün oldukça etkin bir katalizör olduğu söylenebilir. Bunun yanında 6Li/Sm₂O₃ ile elde edilen performansın 4Li/MgO'ya oldukça yakın olması ve katalizörün yapısında tespit

edilen SmLiO₂ fazının, Li₂O'yu kararlı hale getirerek daha yüksek performans elde edilebileceğini ortaya koymuştur.

Sonuç olarak, tez kapsamında sentezlenen Li ve Sm₂O₃ esaslı katalizörler içerisinde OCM reaksiyonu için en etkin katalizörlerin 15CaO/Sm₂O₃ ve 6Li/Sm₂O₃ olduğu bulunmuştur. Katalizörlerin performansları 2Mn/5Na₂WO₄/SiO₂, 4Li/MgO ve literatürle karşılaştırıldığında (Tablo 5.2), OCM reaksiyonu için iyi birer alternatif olabilecekleri düşünülmüştür.

Tablo 5.2: Kararlılık testleri sonrasında elde edilen sonuçlar ve literatürle karşılaştırılması

Katalizör	Sıcaklık (°C)	GHSV (l/kgsa) *(sa ⁻¹)	CH ₄ /O ₂ *CH ₄ /N ₂ O	Metan dönüşümü (%)	C ₂ Seçimlilik (%)	C ₂ Verim (%)	C ₂ H ₄ Verim (%)	Ref.
2Mn/5Na ₂ WO ₄ /SiO ₂	780	7500	2	41,5	39,8	16,5	10,6	Tez
2Mn/5Na ₂ WO ₄ /SiO ₂	780	7500	1*	11,4	74,5	8,5	3,9	Tez
4Li/MgO	780	7500	2	33,7	41,3	13,9	8,4	Tez
4Li/MgO	780	7500	1*	13,3	78,5	10,5	4,9	Tez
Li ₄ SiO ₄	780	7500	2	11,1	23	2,6	0,81	Tez
Li ₂ ZrO ₃	780	7500	1*	14,2	68,9	9,8	4,2	Tez
6Li/Sm ₂ O ₃	780	7500	2	28,1	45,4	12,8	7,2	Tez
15CaO/Sm ₂ O ₃	780	7500	1*	38,4	39,6	15,2	9,7	Tez
5Li/MgO	700	1319*	3	11,8	53	6,3	1,9	88
4,1Li/MgO	680	4104	0,44*	6,8	79	5,4	2,4	47
4,1Li/MgO	680	4104	5,36	10,7	58	6,2	2,4	47
%5La- %10Na2WO4- %5Mn/SiO2	800	3000	2	-	-	27	21,1	8
La _{9,33} (SiO ₄) ₆ O ₂	600	7500	3	33,4	50,4	16,8	8,3	42
%2Mn- %5Na ₂ WO ₄ /SiO ₂	750	72000	4	6	58	3,5	-	8
$\begin{array}{l} Ba_{0,5}Sr_{0,5}Fe_{0,2}\\ Co_{0,8}O_{3-x}Cl_{0,04} \end{array}$	850	21600	0,4*	66,8	46	30,7	-	5
2,5Li/20Sm ₂ O ₃ / n-MgO	700	24000	4	22,7	57,3	11,2	7,4	46
CaO-Sm ₂ O ₃ (Sm/Ca:0,5)	775	14400	5	25	57,2	14,3	-	24
SrO-Sm ₂ O ₃ (Sm/Sr:0,5)	775	14400	5	25,9	59,8	15,5	-	24
CaTiO ₃	800	1800	2	37	36	13	-	29
KAYNAKLAR

- [1]. Lunsford, J.H., 2000, Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century, *Catalysis Today*, 63, 165-174.
- [2]. Holmen, A., 2009, Direct conversion of methane to fuels and chemicals, *Catalysis Today*, 142, 2-8.
- [3]. Jiang, Y., Yentakakis, I.V., Vatenas, C.G., 1994, Methane to Ethylene with 85 Percent Yield in a Gas Recycle Electrocatalytic Reactor-Separator, *Science*, 264, 1563-1566.
- [4]. Ghose, R., Hwang, H.T., Varma, A., 2014, Oxidative coupling of methane using catalysts synthesized by solution combustion method: Catalyst optimization and kinetic studies, *Applied Catalysis A: General*, 472, 39-46.
- [5]. Liu, H., Wei, Y., Caro, J., Wang, H., 2010, Oxidative Coupling of Methane with High C₂ Yield by using Chlorinated Perovskite Ba_{0.5}Sr_{0.5}Fe_{0.2}Co_{0.8}O_{3-δ} as Catalyst and N₂O as Oxidant, *ChemCatChem*, 2, 1539-1542.
- [6]. Takanabe, K., Iglesia, E., 2008, Rate and Selectivity Enhancements Mediated by OH Radicals in the Oxidative Coupling of Methane Catalyzed by Mn/Na₂WO₄/SiO₂, Angewandte Chemie, 47, 7689 –7693.
- [7]. Langfeld, K., Frank, B., Strempel, V.E., Berger-Karin, C., Weinberg, G., Kondratenko, E.V., Schomäcker, R., 2012, Comparison of oxidizing agents for the oxidative coupling of methane over state-of-the-art catalysts, *Applied Catalysis A: General*, 417–418, 145-152.
- [8]. Yildiz, M., Simon, U., Otremba, T., Aksu, Y., Kailasam, K., Thomas, A., Schomäcker, R., Arndt, S., 2014, Support material variation for the Mn_xO_y-Na₂WO₄/SiO₂ catalyst, *Catalysis Today*, 228, 5-14.
- [9]. Ito, T., Lunsford, J.H., 1985, Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide, *Nature*, 314, 721-722.
- [10]. Tang, L., Yamaguchi, D., Wong, L., Burke, N., Chiang, K., 2011, The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane, *Catalysis Today*, 178, 172-180.
- [11]. Mallens, E.P.J., Hoebink, J.H.B.J., Marin, G.B., 1995, An Investigation of the Oxygen Pathways in the Oxidative Coupling of Methane over MgO-Based Catalysis, *Journal of Catalysis*, 160, 222-234.
- [12]. Korf, S.J., Roos, J.A., De Bruijn, N.A., Van Ommen, J.G., Ross, J.R.H., 1988, Oxidative Coupling of Methane over Lithium Doped Magnesium Oxide Catalysts. *Catalysis Today*, 2, 535–545.
- [13]. Zhang, H., Wu, J., Qin, S., Hu, C., 2006, Study of the Effect of Gas Space Time on the Combination of Methane Gas-Phase Oxidation and Catalytic Oxidative

Coupling over Mn/Na₂WO₄/SiO₂ Catalyst, *Industrial&Engineering Chemistry Research*, 45, 7090-7095.

- [14]. Amin, N.A.S., Pheng, S.E., 2006, Influence of process variables and optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst, *Chemical Engineering Journal*, 116, 187-195.
- [15]. Keller, G.E., Bhasin, M.M., 1982, Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts, *Journal of Catalysis*, 73, 9-19.
- [16]. Hinsen, W., Baerns, M., 1983, Oxidative Coupling of Methane to C2-Hydrocarbons in the Presence of Different Catalysts, *Chemiker-Zeitung*, 107, 223-226.
- [17]. Choudhary, V.R., Uphade, B.S., 2004, Oxidative conversion of methane/natural gas into higher hydrocarbons, *Catalysis Surveys from Asia*, 8, 15-25.
- [18]. Kondratenko, E.V., Baerns, M., 2008, Oxidative Coupling of Methane, In: Ertl G., Knözinger H., Schüth F., Weitkamp J., (eds.), Chapter 13.17, Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim, Germany, 3010-3023.
- [19]. Su, Y.S., Ying, J.Y., Green, W.H., 2003, Upper bound on the yield for oxidative coupling of methane, *Journal of Catalysis*, 218, 321-333.
- [20]. Jones, A.C., Leonardo, J.J., Sofranko, A.J., US Patent 4 443 644, assigned to Atlantic Richfield, 1984.
- [21]. Bostan, A.I., Pyatnitskii, Y.I., Raevskaya, L.N., Pryanikova, V.G., Nedil'ko, S.A., Dzyaz'ko, A.G., Zen'kovich, E.G., 2005, Influence of the composition of perovskites based on SrMnO₃ on their catalytic properties in the oxidative coupling of methane, *Theoretical and Experimental Chemistry*, 41, 32-36.
- [22]. Xu, Y., Yu, L., Cai, C., Huang, J., Guo, X., 1995, A study of the oxidative coupling of methane over SrO-La₂O₃/CaO catalysts by using CO₂ as a probe, *Catalysis Letters*, 35, 215-231.
- [23]. Carreiro, J.A.S.P., Baerns, M.J., 1989, Oxidative coupling of methane: I. Alkaline earth compound catalysts, *Journal of Catalysis*, 117, 258-265.
- [24]. Papa, F., Luminita, P., Osiceanu, P., Birjega, R., Akane, M., Balint, I., Acid–base properties of the active sites responsible for C₂⁺ and CO₂ formation over MO–Sm₂O₃ (M=Zn, Mg, Ca and Sr) mixed oxides in OCM reaction, 2011, *Journal of Molecular Catalysis A: Chemical*, 346, 46-54.
- [25]. Zhou, X.P., Chao, Z.S., Weng, W.Z., Zhang, W.D., Wang, S.J., Wan, H.L., Tsai, K.R., 1994, The oxidative coupling of methane and the activation of molecular O₂ on CeO₂/BaF₂, *Catalysis Letters*, 29, 177-188.
- [26]. Miao, Q., Xiong, G., Sheng, S., Guo, X., 1997, Control of the Directions of Oxidative Transformation of Methane oer Nickel-Based Catalysts by Acid-Base Properties, *Reaction Kinetics and Catalysis Letters*, 62, 363-370.
- [27]. Ovenston, A., Walls, J.R., 1997, Application of In-situ Temperature Programmed Techniques to Catalytic Oxidation Reactions on Conducting Mixed Oxides, *Ionics*, 3, 56-66.

- [28]. Kim, S.H., Cho, S.M., Yoon, K.J., 1997, Oxidative Coupling of Methane over Na⁺-ZrO₂-Cl⁻/Al₂O₃, *Korean Journal of Chemical Engineering*, 14, 69-73.
- [29]. Yu, C.Y., Li, W.Z., Martin, G.A., Mirodatos, C., 1997, Studies of CaTiO₃ based catalysts for the oxidative coupling of methane, *Applied Catalysis A: General*, 158, 201-214.
- [30]. Murata, K., Hayakawa, T., Hamakawa, S., Suzuki, K., 1998, Lithium-doped sulfated-zirconia catalysts for oxidative coupling of methane to give ethylene and ethane, *Catalysis Today*, 45, 41-45.
- [31]. Au, C.T., Chen, K.D., Ng, C.F., 1998, Characterization of BaX₂/Gd₂O₃ (X=F, Cl, Br) catalysts for the oxidative coupling of methane, *Applied Catalysis A: General*, 171, 283-291.
- [32]. Au, C.T., Zhou, X.P., Liu, Y.W., Ji, W.J., Ng, C.F., 1998, The Characterization of BaF₂/Y₂O₃ Catalysts for the OCM Reaction, *Journal of Catalysis*, 174, 153-163.
- [33]. Liu, Y., Liu, X., Hou, R., Xue, J., Li, S., Shen, S., 1999, The accelerating effect of NH₄Cl on gas phase reaction of oxidative coupling of methane at elevated pressures, *Applied Catalysis A: General*, 179, L1-L4.
- [34]. Kong, S.J., Bae, Y.K., Yoon, K.J., 1999, Oxidative Coupling of Methane over Sodium-Chloride-Added Sodium Zirconium Phosphates, *Korean Journal of Chemical Engineering*, 16, 234-240.
- [35]. Kondratenko, E.V., Wolf, D., Baerns, M., 1999, Influence of electronic properties of Na₂O/CaO catalysyts on their catalytic characteristics for the oxidative coupling of methane, *Catalysis Letters*, 58, 217-223.
- [36]. Palermo, A., Vazquez, J.P.H., Lambert, R.M., 2000, New efficient catalysts for the oxidative coupling of methane, *Catalysis Letters*, 68, 191-196.
- [37]. Ji, S-F., Xiao, T-C., Li, S-B., Xu, C-Z., Hou, R-L., Coleman, K.S., Green, M.L.H., 2002, The relationship between the structure and the performance of Na-W-Mn/SiO₂ catalysts for the oxidative coupling of methane, *Applied Catalysis A: General*, 225, 271-284.
- [38]. Dedov, A.G., Loktev, A.S., Moiseev, I.I., Aboukais, A., Lamonier, J.F., Filiminov, I.N., 2003, Oxidative coupling of methane catalyzed by rare earth oxides-Unexpected synergistic effect of the oxide mixtures, *Applied Catalysis A: General*, 245, 209-220.
- [39]. Chen, F., Zheng, W., Zhu, N., Cheng, D-G., Zhan, X., 2008, Oxidative Coupling of Methane over Na-W-Mn-Zr-S-P/SiO₂ Catalyst: Effect of S, P Addition on the Catalytic Performance, *Catalysis Letters*, 125, 348-351.
- [40]. Ahari, J.S., Ahmadi, R., Mikami, H., Inazu, K., Zarrinpashne, S., Suzuki, S., Aika, K-I., 2009, Application of a simple kinetic model for the oxidative coupling of methane to the design of effective catalysts, *Catalysis Today*, 145, 45-54.
- [41]. Goncalves, R.L.P., Muniz, F.C., Passos, F.B., Schmal, M., 2010, Promoting Effect of Ce on the Oxidative Coupling of Methane Catalysts, *Catalysis Letters*, 135, 26-32.

- [42]. Zhang, X-H., Yi, X., Zhang, J., Xie, Z., Kang, J., Zheng, L., 2010, Fabrication of Apatite-Type La_{9.33}(SiO₄)₆O₂ Hollow Nanoshells as Energy-Saving Oxidative Catalysts, *Inorganic Chemistry*, 49, 10244-10246.
- [43]. Wang, D., Rosynek, M.P., Lunsford, J.H., 1995, Oxidative Coupling of Methane over Oxide-Supported Sodium-Manganese Catalysts, *Journal of Catalysis*, 155, 390-402.
- [44]. Baidya, T., Vegten, N.V., Jiang, Y., Krumeich, F., Baiker, A., 2011, Oxidative coupling of methane over Ca- and alkali metal-doped ThO₂, *Applied Catalysis A: General*, 391, 205-214.
- [45]. Elkins, T.W., Hagelin-Weaver, H.E., 2013, Oxidative coupling of methane over unsupported and alumina-supported samaria catalysts, *Applied Catalysis A: General*, 454, 100-114.
- [46]. Elkins, T.W., Neumann, B., Bäumer, M., Hagelin-Weaver, H.E., 2014, Effects of Li Doping on MgO-Supported Sm₂O₃ and TbO_x Catalysts in the Oxidative Coupling of Methane, ACS Catalysis, 4, 1972-1990.
- [47]. Yamamoto, H., Chu, H.Y., Xu, M., Shi, C., Lunsford, J.H., 1993, Oxidative Coupling of Methane over a Li⁺/MgO Catalyst Using N₂O as an Oxidant, *Journal* of Catalysis, 142, 325-336.
- [48]. Voskresenskaya, E.N., Roguleva, V.G., Anshits, A.G., 1995, Oxidant Activation Over Structural Defects of Oxide Catalysts in Oxidative Methane Coupling, *Catalysis Reviews*, 37, 101-143.
- [49]. Sinev, M.Y., Korchak, N.V., Krylov, O.V., 1986, Highly selective ethane formation by reduction of BaO₂ with methane, *Kinetika i Kataliz*, 27, 1164-1169.
- [50]. Otsuka, K., Murakami, Y., Wada, Y., Said, A.A., Morikawa, A., 1990, Oxidative couplings of methane, ethane, and propane with sodium peroxide at low temperatures, *Journal of Catalysis*, 121, 122-130.
- [51]. Mestl, G., Knozinger, H., Lunsford, J.H., 1993, High Temperature in Situ Raman Spectroscopy of Working Oxidative Coupling Catalysts, *Berichte der Bunsengesellschaft für Physikalische Chemie*, 97, 319-321.
- [52]. Lunsford, J.H., Yang, X., Haller, K., Laane, J., Mestl, G., Knozinger, H., 1993, In situ Raman spectroscopy of peroxide ions on barium/magnesium oxide catalysts, *The Journal of Physical Chemistry*, 97, 13810-13813.
- [53]. Zhang, H.B., Lin, G.D., Wan, H.L., Liu, Y.D., Weng, W.Z., Cai, J.X., Shen, Y.F., Tsai, K.R., 2001, Active-oxygen species on non-reducible rare-earth-oxide-based catalysts in oxidative coupling of methane, *Catalysis Letters*, 73, 141-147.
- [54]. Wan, H.L., Zhou, X.P., Weng, W.Z., Long, R.Q., Chao, Z.S., Zhang, W.D., Chen, M.S., Luo, J.Z., Zhou, S.Q., 1999, Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes, *Catalysis Today*, 51, 161-175.
- [55]. Pacheco, J.G.A., Eon, J.G., Schmal, M., 2000, Oxidative coupling of methane on Ce/Na/CaO catalysts, *Catalysis Letters*, 68, 197-202.

- [56]. Driscoll, D.J., Martir, W., Wang, J.X., Lunsford, J.H., 1985, Formation of gasphase methyl radicals over magnesium oxide, *Journal of the American Chemical Society*, 107, 58-63.
- [57]. Tong, Y., Rosynek, M.P., Lunsford, J.H., 1989, Secondary reactions of methyl radicals with lanthanide oxides: their role in the selective oxidation of methane, *The Journal of Physical Chemistry*, 93, 2896-2898.
- [58]. Gayko, G., Wolf, D., Kondratenko, E.V., Baerns, M., 1998, Interaction of Oxygen with Pure and SrO-Doped Nd₂O₃Catalysts for the Oxidative Coupling of Methane: Study of Work Function Changes, *Journal of Catalysis*, 178, 441-449.
- [59]. Kondratenko, E.V., Buyevskaya, O.V., Soick, M., Baerns, M., 1999, Transient kinetics and mechanism of oxygen adsorption over oxide catalysts from the TAPreactor system, *Catalysis Letters*, 63, 153-159.
- [60]. Kondratenko, E.V., Buyevskaya, O.V., Baerns, M., 2000, Mechanistic insights in the activation of oxygen on oxide catalysts for the oxidative dehydrogenation of ethane from pulse experiments and contact potential difference measurements, *Journal of Molecular Catalysis A: Chemical*, 158, 199-208.
- [61]. Wolf, D., Slinko, M., Kurkina, E., Baerns, M., 1998, Kinetic simulations of surface processes of the oxidative coupling of methane over a basic oxide catalyst, *Applied Catalysis A: General*, 166, 47-54.
- [62]. Anshits, A.G., Kondratenko, E.V., Voskresenskaya, E.N., Kurteeva, L.I., Pavlenko, N.I., 1998, The influence of O₂ on oxidative coupling of methane over oxide catalysts using N₂O as oxidant, *Catalysis Today*, 46, 211-216.
- [63]. Zhang, Z., Verykios, X.E., Baerns, M., 1994, Effect of Electronic Properties of Catalysts for the Oxidative Coupling of Methane on Their Selectivity and Activity, *Catalysis Reviews*, 36, 507-556.
- [64]. Borchert, H., Baerns, M., 1997, The Effect of Oxygen-Anion Conductivity of Metal–Oxide Doped Lanthanum Oxide Catalysts on Hydrocarbon Selectivity in the Oxidative Coupling of Methane, *Journal of Catalysis*, 168, 315-320.
- [65]. Palermo, A., Vazquez, J.P.H, Lee, A.F., Tikhov, M.S., Lambert, R.M., 1998, Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na₂WO₄/SiO₂ catalysts for the oxidative coupling of methane, *Journal of Catalysis*, 177, 259-266.
- [66]. Chen, H.S., Niu, J.Z., Zhang, B., Li, S.B., 2001, DFT Study on the Active Sites in Mn-Na₂WO₄/SiO₂ Catalyst, Acta Physico-Chimica Sinica, 17, 111.
- [67]. Kruglov, A.V., Bjorklund, M.C., Carr, R.W., 1996, Optimization of the simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane, *Chemical Engineering Science.*, 51, 2945-2950.
- [68]. Yentakakis, I.V., Jiang, Y., Makri, M, Vayenas, C.G., 1995, Ethylene Production from Methane in a Gas Recycle Electrocatalytic Separator, *Ionics*, 1, 286-291.
- [69]. Zhang, H., Wu, J., Xu, B., Hu, C., 2005, Simultaneous production of syngas and ethylene from methane by combining its catalytic oxidative coupling over Mn/Na₂WO₄/SiO₂ with gas phase partial oxidation, *Catalysis Letters*, 106, 161-165.

- [70]. Sinev, M.Y., 2006, Free radicals as intermediates in catalytic oxidation of light alkanes: new opportunities, *Research on Chemical Intermediates*, 32, 205-215.
- [71]. Liu, Y., Liu, X., Hou, R., Xue, J., Li, S., Shen, S., 1999, The accelerating effect of NH₄Cl on gas phase reaction of oxidative coupling of methane at elevated pressures, *Applied Catalysis A: General*, 179, 1-4.
- [72]. Thybaut, J.W., Sun, J., Olivier, L., Van Veen, A.C., Mirodatos, C., Marin, G.B., 2011, Catalyst design based on microkinetic models: Oxidative coupling of methane, *Catalysis Today*, 159, 29-36.
- [73]. Jain, S.R., Adiga, K.C., Verneker, V.R.P., 1981, A New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures, *Combustion* and Flame, 40, 71-79.
- [74]. Aritani, H., Yamada, H., Nishio, T., Shiono, T., Imamura, S., Kudo, M., Hasegawa, S., Tanaka, T., Yoshida, S., 2000, Characterization of Li-Doped MgO Catalysts for Oxidative Coupling of Methane by Means of Mg K-Edge XANES, *The Journal of Physical Chemistry B*, 104, 10133-10143.
- [75]. Chua, Y.T., Mohamed, A.R., Bhatia, S., 2008, Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO₂), *Applied Catalysis A: General*, 343, 142-148.
- [76]. Xueping, F., Li, S., Jingzhu, L., Jingfang, G., Dexin, Y., 1992, Oxidative Coupling of Methane on W-Mn Catalysts, *Journal of Molecular Catalysis (China)*, 6, 427.
- [77]. Ito, T., Wang, J., Lin, C.H., Lunsford, J.H., 1985, Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst, *Journal of the American Ceramic Society*, 107, 5062-5068.
- [78]. Lin, C.H., Ito, T., Wang, J., Lunsford, J.H., 1987, Oxidative dimerization of methane over magnesium and calcium oxide catalysts promoted with Group IA ions: the role of [M⁺O⁻] centers, *Journal of the American Ceramic Society*, 109, 4808-4810.
- [79]. Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., Hagiwara, Y., 2005, Novel CO₂ Absorbents Using Lithium-Containing Oxide, *International Journal of Applied Ceramic Technology*, 2, 467-475.
- [80]. Boreskov, G.K., 1982, Catalytic Activity of Dioxygen, In: Anderson J.R., Boudart M., (eds.), Chapter 2, Springer, Berlin, 39-137.
- [81] Korf, S.J., Roos, J.A., Diphoorn, J.M., Veehof, R.H.J., van Ommen, J.G., Ross, J.R.H., 1989, The Selective Oxidation of Methane to Ethane and Ethylene over Doped and Un-doped Rare Earth Oxides, *Catalysis Today*, 4, 279-292.
- [82]. DeBoy, J.M., Hicks, R.F., 1988, The Oxidative Coupling of Methane over Alkali, Alkaline Earth, and Rare Earth Oxides, *Industrial&Engineering Chemistry Research.*, 27, 1577-1582.
- [83]. Choudhary, V.R., Rane, V.H., 1991, Acidity/Basicity of Rare-Earth Oxides and Their Catalytic Activity in Oxidative Coupling of Methane to C₂-Hydrocarbons, *Journal of Catalysis*, 130, 411-422.

- [84]. Otsuka, K., Jinno, K., Morkawa, A., 1986, Active and selective catalysts for the synthesis of C₂H₄ and C₂H₆ via oxidative coupling of methane, *Journal of Catalysis*, 100, 353–359.
- [85]. Sugunan, S., Meera, V., 1997, Acid-Base Properties and Catalytic Activity of ABO₃ (Perovskite-Type) Oxides Consisting of Rare Earth and 3d Transition Metals, *Reaction Kinetics and Catalysis Letters*, 62, 327-332.
- [86]. Heiba, Z.K., Mohamed, M.B., Fuess, H., 2013, Structural and magnetic properties of Sm_{2-x}Mn_xO₃ nanoparticles, *Materials Research Bulletin*, 48, 3750-3755.
- [87]. Otsuka, K., Liu, Q., Morikawa, A., 1986, Selective Synthesis of Ethylene by Partial Oxidation of Methane over LiCl-Sm₂O₃, *Journal of the Chemical Society Chemical Communications*, 8, 586-587.
- [88]. Hutchings, G.J., Scurrell, M.S., Woodhouse, J., 1990, Oxidative Coupling of Methane Using Li/MgO Catalyst: Re-appraisal of the Optimum Loading of Li, *Catalysis Letters*, 5, 301-308.

ÖZGEÇMİŞ

Kişisel Bilgiler

Adı Soyadı	Hasan Özdemir
Uyruğu	T.C.
Doğum tarihi, Yeri	21.03.1985, Tekirdağ
Telefon	0555 245 12 71
E-mail	hasan.ozdemir@istanbul.edu.tr
Web adres	http://aves.istanbul.edu.tr/3628/

Eğitim

Derece	Kurum/Anabilim Dalı/Programı	
Doktora	İ.Ü. Fen Bilimleri Enstitüsü/Kimya Mühendisliği/Proses ve Reaktör Tasarımı	2015
Yüksek Lisans	İ.Ü. Fen Bilimleri Enstitüsü/Kimya Mühendisliği/Proses ve Reaktör Tasarımı	2009
Lisans	İ.Ü. Mühendislik Fak. Kimya Müh. Bölümü	
Lise	Tekirdağ Anadolu Lisesi	

Makaleler / Bildiriler

1- Özdemir H., Öksüzömer M.A.F., Gürkaynak M.A., "Li/Mgo Katalizörünün Metanın Oksidatif Birleşme Reaksiyonu Için İncelenmesi: Operasyon Şartlarının Etkisi", 11. Ulusal Kimya Mühendisliği Kongresi, ESKİŞEHİR, TÜRKIYE, 2-5 Eylül 2014, ss.550-551