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112,120Sn(g,g) REAKSİYONU VE Z=50 KAPALI KABUKLARINDA PYGMY
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Bu tezde S DALINAC süper iletken elektron lineer hızlandırıcısında gerçekleştirilen
112,120Sn(g,g) reaksiyonları Bremsstrahlung spektrumunun farklı son nokta enerjileri
için nötron ayrışma enerjisinin altındaki bölgelerde çalışılmıştır. 112Sn çekirdeği için 9.5
MeV ye, 120Sn çekirdeği için 7.5 ve 9.1 MeV ye kadar dipol geçiş şiddetleri dağılımı
oluşturulmuştur. Elde edilen sonuçlar hali hazırda varolan 116,124Sn (Govaert, ve ark.,
1998) verileri ile birlikte nötron fazlalığı olan çekirdeklerde bulunan pygmy dipol rezo-
nansı olarak adlandırılan yapı hakkında bilgi edinmemizi sağlamıştır. Buna ek olarak
parçalanma analizi denilen bir analiz metodu foton saçılması ile elde edilmiş olan spek-
trumlara, parçalanmadan kaynaklanan ve fonda bulunan çözülmemiş geçiş şiddetlerinin
miktarlarını tahmin edebilmek amacıyla uygulanmıştır.

Sonuçlar quasiparticle phonon modeli ve relativistik quasiparticle RPA ile
karşılaştırılmıştır.

Anahtar Kelimeler: Pygmy Dipol Rezonansı, E1 geçiş şiddeti, nükleer rezonans fluo-
resans metodu, parçalanma analizi
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In this thesis the 112,120Sn(g,g) reactions are studied at different endpoint energies of
the incident bremsstrahlung spectrum below the neutron separation energies at the super-
conducting Darmstadt electron linear accelerator S DALINAC. Dipole transition strength
distributions are extracted for 112Sn up to 9.5 MeV and for 120Sn up to 9.1 MeV. A
concentration of dipole excitations is observed between 5 and 8 MeV. Furthermore a fluc-
tuation analysis is applied to the photon scattering spectra to estimate the amount of the
unresolved strength hidden in background due to fragmentation of the strength. Together
with existing data for 116,124Sn (Govaert, et al., 1998) this provides a set of information
on the structure of the so-called pygmy dipole resonance (PDR) in the stable neutron-rich
tin nuclei.

The results are compared to microscopic quasiparticle-phonon model and relativistic
quasiparticle RPA calculations.

Key Words: Pygmy Dipole Resonance, E1 transition strength, Nuclear Resonance Fluo-
rescence, fluctuation analysis
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1. INTRODUCTION Banu ÖZEL

1. INTRODUCTION

Many experimental and theoretical studies have been performed to get detailed infor-

mation about electric dipole excitations in nuclei. In heavy nuclei we can divide this type

of excitations into three groups. A typical example of collective excitation is the isovector

Giant Dipole Resonance (GDR), a mode interpreted as oscillation of neutrons and pro-

tons against to each other, which has been extensively studied (Berman et al.,1975). The

GDR is located at energies between 14 MeV (Uranium) and 26 MeV (Lithium) (Diet-

rich et al., 1988) and it exhausts nearly 100% of the E1 isovector energy weighted sum

rule (EWSR). In neutron rich nuclei it was suggested within the hydrodynamical model

that another type of dipole resonance might exist in the energy region below the GDR.

This mode, known as the Pygmy Dipole Resonance (PDR) corresponds to the vibration

of the neutron skin against the proton-neutron core with N ≈ Z (Mohan et al., 1971). In

stable nuclei, low-lying E1 excitations have been known for a long time (Bartholomev et

al., 1972) but their nature and systematic features were poorly understood. In particular,

the results were not compatible with the predictions of (Mohan et al., 1971). Thus, the

possible existence of a PDR remained a subject of debate. Low energy electric dipole

transitions are currently a topic of high interest, caused by recent significant experimental

progress in studies of their properties in stable as well as in exotic neutron rich nuclei.

The low-energy E1 strength in stable targets has been extensively studied in (γ,γ′) scat-

tering below the neutron separation energies over the last decades (Hartmann et al., 2004;

Hartmann et al., 2000; Enders et al., 1998, 2000, 2003; Zilges et al., 2002; Volz et al.

2006; Ryezayeva et al., 2002, Govaert et al., 1998; Schwengner et al., 2007).

The aim of the present study is to establish systematics of PDR at Z=50 shell closure

in stable tin isotopes. This work establishes the existence of a cumulation of E1 strength,

typically close to the particle threshold. The tin isotopic chain is a very interesting case to

study because it allows a large variation of the neutron number. It has also been studied

in great detail by theory (Tsoneva et al., 2004; 2007; Paar et al., 2003; 2005; Piekarewicz,

2006; Terasaki et al., 2005) and can thus serve as a benchmark test for a variety of mod-

els. We report on a high resolution nuclear resonance fluorescence (NRF) study of electric

dipole strength in 112Sn and 120Sn. The experiments have been performed at Darmstadt

electron linear accelerator, S-DALINAC. For the understanding of the systematics fea-

1
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tures, the data on 116,124Sn are adopted from a previous work (Govaert et al., 1998).

Figure 1.1 shows the measured even tin isotopes from mass 112 to 132 and indicates the

112Sn

STABLE

0.97%

120Sn

STABLE

32.58%

116Sn

STABLE

14.54%

124Sn

STABLE

5.79%

112Sn

STABLE

0.97%

120Sn

STABLE

32.58%

116Sn

STABLE

14.54%

124Sn
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5.79%

Darmstadt

Gent

112Sn
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0.97%

116Sn

STABLE

14.54%

130Sn

3.72 M

b
-

132Sn

39.7 S

b
-

GSI

Figure 1.1 Measured even-even isotopes in the tin isotopic chain

available measured data. Coulomb dissociation experiments have been performed at GSI

(Gesellschaft für Schwerionenforschung) to provide data on the E1 strength in unstable

130,132Sn (Adrich et al., 2005) and neighboring odd nuclei (Klimkiewicz et al., 2007)

above neutron threshold.

Beyond the analysis of resolved transitions, in the present work a fluctuation analysis

is applied to (γ,γ′) spectra of 112Sn and 120Sn to investigate the amount of unresolved E1

strength which might be hidden in the background because of the fragmentation of the

strengths due to the high level density. The main idea of this method is to determine the

experimental background of spectra with the help of the autocorrelation function.

The results of low-lying E1 states in stable tin isotopes is compared to microscopic cal-

culations such as quasiparticle phonon model (QPM), quasiparticle random phase approx-

imation (QRPA) and relativistic quasiparticle random phase approximation (R QRPA)

which allow to draw some conclusion on the predictive power of different models as well

as the nature of the PDR mode in tin isotopes.

2
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2. PREVIOUS WORKS

The study of the photoresponse with (γ, γ′) experiments has been extended in recent

years to many other nuclei beyond the Z=50 region. In particular, the PDR has been

observed in 44,48Ca (Hartmann et al., 2004; Hartmann et al., 2000), 52Cr (Enders et al.,

1998), 56Fe and 58Ni (Bauwens et al., 2000), 88Sr (Schwengner et al., 2007; Kübler et al.,

Table 2.1 Results of 112Sn with 9.5 MeV End-point energy

Isotope ∑B(E1)(10−3 e2fm2) % IVEWSR EC (MeV)

40Ca 5.1(8) 0.02 6.8

44Ca 92.2(156) 0.39 7.1

48Ca 68.7(75) 0.33 8.4

48Ti 46(19) 0.19 7.4

52Cr 22.8(38) 0.09 7.8

56Fe 60.2(31) 0.29 7.2

58Ni 60.7(34) 0.24 5.8

70Ge 34.5(75) 0.08 5.9

72Ge 67.7(71) 0.16 6.4

74Ge 92.7(125) 0.21 6.5

76Ge 75.8(128) 0.19 6.8

88Sr 122.5 0.27 7.0

116Sn 233(28) 0.16 6.7

124Sn 379(45) 0.27 7.0

138Ba 676(118) 0.89 6.5

140Ce 307(59) 0.38 6.3

142Nd 184(35) 0.22 6.1

144Sa 207(37) 0.23 5.7

208Pb 1095(60) 0.92 6.2

130Sn 3200(1370) 10.1 6.8

132Sn 1900(1425) 9.8 6.8

3
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2004; Wienhard et al., 1981; Isoyama et al., 1980), 92,98,100Mo (Schwengner et al., 2007),

116,124Sn (Govaert et al., 1998), N=82 isotones (Herzberg et al., 1997; Herzberg et al.,

1999; Zilges et al., 2002; Volz et al. 2006) and 204,206,207,208Pb (Ryezayeva et al., 2002;

Chapuran et al., 1980; Enders et al., 2000; Enders et al., 2003). In all cases, a concentra-

tion of electric dipole strength exhausting up to 1 % of the EWSR was observed below

the neutron threshold. These results are summarized in Table 2.1. The NRF method is

restricted to stable nuclei and excitation energies roughly up to neutron separation energy.

In addition, the advent of beams of radioactive exotic nuclei allows the study of Coulomb

dissociation of neutron-rich nuclei in inverse kinematics (Aumann, 2006) for example at

the LAND setup at GSI. This method has been used already to measure dipole strength

in the exotic semi-magic 130Sn, the double magic 132Sn (Adrich et al., 2005) and their

neighboring odd-mass isotopes (Klimkiewicz et al., 2007). The extraction of E1 strength

was possible only above the neutron separation energies. The results for 130,132Sn, which

are listed in the lower part of Table 2.1, are 5-8 times higher than the results for the most

neutron-rich stable 124Sn isotope.
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3. MATERIAL and METHOD

3.1 Collective Excitations in Nuclei

3.1.1 Giant Resonances

Giant resonance is a term generally used to describe collective vibrations of nuclei,

which shows up as broad resonances at energies tens of MeV above the ground state.

The reason that these excitations are called ”giant” resonances comes from the fact that

both their total strength and their widths are much larger than typical resonances built on

single-particle (non-collective) excitations (Wong, 1990).

3.1.1.1 Classification of Giant Resonances

Giant resonances correspond to a collective motion involving many particles in the

nucleus. The occurrence of such a collective motion is a common feature of many-body

quantum systems. The term ”collective” here means that the majority of the nucleons

participate in the excitation. In quantum mechanical terms the resonance corresponds to

a transition between ground state and a collective state and the strength of the transition

will depend on the basic properties of the response and the size of the system. This

implies that the total transition strength should be limited by a sum rule which depends

only on ground state properties (Bohr and Mottelson, 1975). If the transition strength of

an observed resonance exhausts a major part, say greater than 50% of the corresponding

sum rule we call it a giant resonance. Within the liquid-drop model giant resonances ban

be classified according to their angular momentum, L, isospin, T, and spin, S, as illustrated

in Fig. 3.1.

• The Giant Monopole Resonance (GMR), L = 0, the so-called breathing mode.

• The Giant Dipole Resonance (GDR), L = 1 is a density/shape oscillation for the

isovector case

• The Giant Quadrupole Resonance (GQR) is a surface oscillation with angular mo-

mentum L = 2.
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Figure 3.1 Classification of giant resonances based on a macroscopic picture (Adrich, 2005)

• According to isospin, T, the modes are classified as:

- Isoscalar (∆T = 0) - in which neutrons oscillate in phase with protons

- Isovector (∆T = 1) - in which neutrons and protons oscillate with opposite phase

For the same multipolarity the vector modes are always higher in excitation energy

than the isoscalar ones, since the separation of proton and neutron distributions

requires additional energy. But the GDR is an exception and the isovector mode

is lower in energy because the ISGDR is a second-order mode. The fundamental

mode is spurious; it corresponds to a translative motion of the nucleus as a whole.

The shape of ISGDR mode is not shown in Fig. 3.1 because it is a more complex

compressional mode which does not have a simple macroscopic illustration.

• According to the spin S, the modes are classified as:

- Electric (∆S = 0) - in which nucleons vibrate following a multipole pattern given

by L.

- Magnetic (∆S = 1) - in which nucleons with spin up vibrate against nucleons with

spin down, following a multipole pattern given by L.
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Figure 3.2 Schematic picture of E1 and E2(E0) single-particle transition between shell-model
states (Harakeh, 2001).

From a microscopic point of view, giant resonances can be described as a coherent su-

perposition of particle-hole (1p-1h) excitations resulting from the operation on the ground

state. The qualitative features of giant resonances can be understood by considering a

schematic shell-model picture in Fig. 3.2. Well-known features of this model are that

the parity of the single-particle wave functions in subsequent oscillator shells N, N + 1,

N + 2,... is alternating and that their energy difference ∆E = ∆N×1~ω = ∆N×41A−1/3

MeV (Harakeh, 2001). For the quadrupole case, the ∆ N = 0 transitions form low-energy

collective phonons while ∆N = 2 transitions correspond to the giant resonance.

According to the microscopic interpretation of the IVGDR the energy centroid is in

fact higher than 1~ω. This is a feature of the repulsive isovector residual interaction which

pushes all the E1 strength to higher energies (and very little is found at low energies

(Brown, et al.,1959).
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3.1.2 Electric Dipole Excitations in Nuclei

Throughout the last decade numerous experiments using electromagnetic probes have

provided a vast amount of data on low-lying electric dipole excitations in heavy nuclei.

Generally electric dipole excitations in these nuclei can be divided into three structurally

different groups which are shown schematically in Fig 3.3.

3

15
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GDR

(2+ x 3-)1- +

E
x

(MeV)

B(E1)

3

15

PDR

GDR

(2+ x 3-)1- +

E
x

(MeV)

B(E1)

Figure 3.3 Electric dipole excitations in nuclei

The typical example of a collective excitation is the GDR where neutrons and protons

vibrate against to each other and it is concentrated at an excitation energy well above 10

MeV. This resonance has been experimentally studied for a long time (Bothe et al., 1937;

Baldwin et al., 1947; Baldwin et al., 1948) and explained very well with theoretical mod-

els (Migdal,1944; Goldhaber, et al. 1948; Steinwedel et al., 1950). In neutron rich nuclei,

it was suggested that another type of resonance might exist the so-called Pygmy Dipole

Resonance (PDR), located close to the neutron threshold. It is reflecting the oscillation of

the neutron skin against an approximately isospin saturated core. It‘s nature is completely

different from the representation where proton and neutron fluids as whole a move against

each other.
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In addition one can observe a single strong transition at low energies in spherical

nuclei close to the magic proton or neutron shells. This is a two-phonon state which

originates from the coupling of quadrupole and octupole phonons. A coupling of these

two single phonon excitations leads to a two-phonon quintuplet (Lipas, 1966; Vogel et al.,

1971; Grinberg et al., 1994) with spins Jπ = 1−, ...,5−. A schematic representation of the

shape vibration and their assumed coupling is displayed in the lower part of the Fig. 3.3.

3.1.2.1 Giant Dipole Resonance

The GDR has been studied most extensively among all the giant resonances because

the mode is relatively easy to excite. In photonuclear reactions, i.e., in reactions in which a

nucleus is bombarded with energetic gamma rays, total cross sections for GDR excitation

are of the order of hundreds of millibarns.

A Lorentzian distribution defines very well the energy dependence of the cross

section for an excitation of the GDR in heavy nuclei in photonuclear reactions

σγ(E) =
σGDR

1+[(E2−E2
GDR)2/E2Γ2

GDR]
(3.1)

The parameters of this distribution, the resonance energy EGDR, the peak cross section

σGDR at the resonant energy EGDR and the width of the resonance ΓGDR, are functions of

the nuclear mass A.

The total cross section for the excitation of the GDR in photonuclear reactions

can be compared to the limit given by the so called Thomas-Reiche-Kuhn (TRK) or

Energy-Weighted Sum Rule (EWSR)

∫ ∞

0
σγdE =

2π2e2h
mc

NZ
A
≈ 60

NZ
A

mbMeV ≈ 14.9
NZ
A

e2 f m2MeV (3.2)

where N, Z and A are the neutron, proton and atomic mass numbers respectively.

In medium-mass nuclei the GDR exhausts about 100% of the TRK sum-rule limit.

Since the sum rule is proportional to the number of particles in a system, the conclusion

can be drawn that all the nucleons take part in the absorption, i.e., that the GDR is a

9
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collective vibration of the whole nucleus.

For heavy nuclei integrals of the experimental photonuclear section exceed the value

of the TRK sum rule, which results from exchange and velocity-dependent parts of the

nuclear potential omitted in the derivation of the TRK sum rule. In the literature those

contributions are usually included via a factor κ, introduced in the following way:

∫ ∞

0
σγdE = (1+κ)60

NZ
A

mbMeV (3.3)

For A ≥ 90 nuclei the experimental value of (1+κ) varies from about 1 for A ≈ 100 to

1.3 ± 0.2 for heavy nuclei such as actinide with an average value of 1.2 ± 0.1 (Harakeh,

2001; Adrich, 2005).

3.1.2.2 Pygmy Dipole Resonance

The PDR in neutron-rich nuclei is located usually close to the neutron threshold. Al-

though carrying only a small fraction of the full dipole strength less than 1 % of the EWSR

these states are a particular interest because they are reflecting the motion of the neutron

skin against an inert core with N≈Z. Here, approximately N - Z neutrons create the neu-

tron skin in nuclei. The skin of the nucleus is also an important subject of current nuclear

structure research. There are many different theoretical approaches for the definition of

the neutron skin (Krasznahorkay et al., 1991; Myers et al., 1985; Fukunishi et al., 1993;

Vretenar et al., 2003).

A wide range of models of the PDR has been discussed ranging from a hydrody-

namical description (Mohan et al., 1971; Suzuki et al., 1990), neutron excess surface

density oscillations (Chambers et al., 1994, Van Isacker et al., 1992; Adams et al., 1996),

fluid-dynamical approaches (Bastrukov et al., 1993; Balbutsev et al., 1994; Misicu et al.,

2002), clustering in heavy nuclei (Iachello, 1985) and sum-rule approaches to nonrela-

tivistic and relativistic RPA and QPM calculations. In a macroscopic picture there are

different explanations of producing low-lying E1 strength shown in Fig. 3.4. Especially

the hydrodynamical model by Mohan, Danos and Biedenhorn (Mohan et al., 1971) de-

scribe the PDR mode in nuclei. They use a three-fluid hydrodynamical model of nuclei,

the three fluids being the protons, the neutrons of the same orbitals as protons, and the

10
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Figure 3.4 Possible configurations with nonuniform proton-neutron distributions.(a) oscillation
of excess neutrons against to a proton-neutron core, (b) clustering with different charge to mass
ratio (Z/A), (c) octupole deformation. The plus and minus signs indicate an increase (+) or decrease
(-) of the proton density.

excess neutrons, to account for the fact that the excess neutrons interact less strongly with

the protons than do the neutrons which occupy the same space-spin states as the protons

(blocked neutrons). According to this model, the reason for considering the nucleus to be

made up of three fluids instead of two is the difference in the interaction of the protons

with the two kinds of neutrons in different shells. The blocked neutrons interact much

more strongly with the protons than the excess neutrons because of the large spatial over-

lap of protons and neutrons having the same space-spin quantum numbers. The shape of

a possible oscillation is shown in part (a) of Fig. 3.4. Two fluid dynamics, one for excess

neutrons and one for the proton-neutron core, has been proposed by Suziki, Ikeda and

Sato (Suzuki et al., 1990).

In addition Iachello predicted that two mechanisms produce E1 transitions and

local rather than global symmetries are more appropriate to describe both mechanisms

(Iachello, 1985). In nuclear physics, one usually analyzes the properties of operators

under global isospin transformations. This approach relies on the assumption of a

uniform distribution of protons and neutrons. If this is not the case, there are at least

two examples of electric dipole modes due to the different charge distribution. These

are illustrated in Fig 3.4 (b) and (c). The first example is the case which the nucleus

clusterizes into fragments with different charge to mass ratio (Z/A) in Fig 3.4 (b). The

center of mass does not coincide any more with the center of the charge, producing an

electric dipole moment, D, of magnitude
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D = e2[(N−Z)/A]R0(A
1/3
1 +41/3) (3.4)

for the example of alpha clustering. This dipole moment is not negligible and will

produce E1 transitions of considerable magnitude. The second mechanism is shown in

part (c) of Fig. 3.4. Consider the case in which the nucleus has a permanent octupole

deformation. This produces a dipole moment

D = 0.000687AZβ2β3(e f m), (3.5)

where β2 and β3 are the quadrupole and octupole deformations.

For a final understanding we need microscopic models where the low-lying E1

strength occurs naturally. There are different approaches to predict a low-lying E1 reso-

nance in nuclei like microscopic density fluctuation theory (DFT) (Chambers et al., 1994)

or describing out-of-phase motion of neutrons against to protons including the effect

of neutron thickness (Van Isacker et al., 1992). These models usually overestimate the

B(E1) strength and always expect a rather simple direct correlation between the summed

strength and the neutron excess. In recent years a number of microscopic approaches

like QRPA (Oros et al., 1998; Colò et al., 2000) and relativistic QRPA (Vretenar et al.,

2000; 2002; Paar et al., 2005) based on the relativistic Hartree-Bogoliubov model with

a density-dependent meson exchange (DD-ME) interaction, the QPM (Ryezayeva et al.,

2002) which goes beyond the RPA and includes the coupling to more complex configura-

tions. QPM calculations based on a Woods-Saxon ground state and a separable multipole

force for the residual interaction (Tsoneva et al., 2004) and the extended theory of finite

fermion systems (ETFFS) (Hartmann et al., 2004) have been used to calculate the PDR.

The predictions for the PDR differ substantially, in particular between nonrelativistic and

relativistic models.
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3.2 Nuclear Resonance Fluorescence (NRF) Method

The nuclear resonance fluorescence method has been proven to be an outstanding tool

to investigate low-lying dipole excitations in nuclei and to provide detailed spectroscopic

information. It has been used efficiently since the 60‘s (Metzger, 1959; Kneissl et al.,

1996; 2006). In this method monoenergetic electrons are delivered to a radiator target.

These produce continuous bremsstrahlung spectra of real photons extending up to the

kinetic energy E0 of the incoming electrons. Bremsstrahlung photons are used to irradiate

the target which is made of the isotope to be investigated. A simplified picture of this

process is shown in Fig. 3.5. Nuclei of the target material are excited by the photons

and emit characteristic gamma rays. The emitted gamma rays are detected with at least

two high-purity germanium (HPGe) detectors located at 90◦ and 130◦. These angles are

selected to determine the multipolarities of the transitions.

The real photon probe offers particular advantages. The low transfer of momentum

of real photons gives rise to a high selectivity in exciting low-spin states (dipole transi-

tions) for J=0 ground state targets. Furthermore, the continuous bremsstrahlung radiation

excites simultaneously all states from the ground state. The observables which can be

obtained from this pure electromagnetic excitation method are:

• the energy of the state,

• the γ-decay branching ratios to the ground state and particularly to excited states,

• the multipolaritiy of the transition which determines the spin,

• the absolute transition strength or lifetime of the state,

• the parity of the state if one uses either polarized bremsstrahlung in the entrance

channel or a Compton polarimeter in the exit channel (this is experimentally possi-

ble for even-even nuclei only).

All these observables are deduced from the measured γ-spectra in a totally model inde-

pendent way which makes real photon scattering a powerful and reliable method (Kneissl

et al., 1996).
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Figure 3.5 The simplified picture of NRF process

The main principle of the NRF method is based on the process of resonant excitation

of a nuclear level due to the absorption of a real photon and the subsequent decay of

this level by remission of a photon. In this case, the incoming photon excites the target

nucleus which has J0 total angular momentum to a state with total angular momentum J.

There is two possible ways to decay from this level; direct decay to the ground state with

Γ0 transition width or to any state between the ground state and the excited level which

has Ji total angular momentum with transition width Γi. Fig. 3.6 shows this excitation-

deexcitation scheme.

The quantities Γ0, Γi and Γ are the transition width to the ground state, to the

intermediate level and the total transition width, respectively. The correspondence

between the widths is

Γ = Γ0 + ∑
i>0

Γi (3.6)

with i being the sum over all intermediate levels. The total decay width is related to the

lifetime via the Heisenberg uncertainty relation

τ∗Γ = ~ (3.7)
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Figure 3.6 The excitation-deexcitation scheme in NRF experiments

The electromagnetic transitions are characterized by the multipolarity λ, where λ=1,2,...

corresponds to dipole, quadrupole transitions etc. According to selection rules allowed

electromagnetic transitions are related to the spins of the initial and final states J i and J f

by

|Ji− J f | ≤ λ≤ Ji + J f . (3.8)

The parities of these states define the type of the transition:

πi = (−1)λ ·π f for electric transitions, πi = (−1)λ+1 ·π f for magnetic transitions.

3.2.1 Integrated Cross Section

The cross section for the process of a nuclear transition from the ground state through

an excited state to a final state with J i total angular momentum is described by the

Breit-Wigner formula

σi =
π
2

(

~c
Exi

)3

·g · Γ0Γi

(Eγ−Exi)
2 + Γ2

4

, (3.9)

where Eγ is the energy of incoming photon, Exi is the excitation energy of level i and g is

a statistical factor which depends on the total angular momentum of the ground state J0
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and the angular momentum of the excited level J

g =
2J +1
2J0 +1

. (3.10)

The total cross section is given by the sum of partial cross sections of the decays all

possible final states.

σtotal
abs = ∑

i
σi

abs(Eγ) = ∑
i

π
2

(

~c
Exi

)3

·g · Γ0Γi

(Eγ−Exi)
2 + Γ2

4

. (3.11)

When a nucleus which is initially at rest and in a ground state absorbs a primary γ

quantum with the energy Eγ, a part of the energy ∆Erec is transferred to the nucleus as a

recoil because of the finite mass of the nucleus. The relation between the recoil energy

and Eγ is Eγ = Ex +∆Erec, with

∆Erec =
E2

γ

2Mc2 , (3.12)

where M is the rest mass of the nucleus. The excited nucleus is not at rest any more, but

it is moving in the direction of primary photon beam. If during the short decay time to

the ground state a secondary photon is emitted, its energy will experience a Doppler shift

in addition to the recoil correction. Thus, the emitted photon will have a different energy

dependence on the emission angle θ with respect to the incoming γ-quantum, which

excites the nucleus

Eγ = Ex−
E2

γ

2Mc2 [1−2cosθ]. (3.13)

If this energy is large compared to the width of the level, as is generally the case, then the

cross section for resonance absorption of the emitted photon by some another neighboring

nucleus becomes extremely small. This is a precondition to make the detection of emitted

photons with the NRF method possible at all.

Another important factor for NRF experiments which should be taken into account in

this formula is the thermal motion of atoms in the target. This motion causes a Doppler
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broadening of the absorption line width. If we assume that the thermal velocities of

nuclei ν can be given as a Maxwell distribution (Bethe et al., 1937)

f (v) =

(

M
2πkT

)1/2

exp

(

−Mv2

2kT

)

, (3.14)

where M is the nuclear mass, k is the Boltzmann constant, and T the absolute temperature,

then the Doppler-broadened Breit-Wigner distribution

σi
DBW (Eγ,T ) = 2π

(

~c
Ex

)2

·g · Γ0

Γ
· Γi
√

π
2∆

exp

(

−Eγ−Ex

∆

)2

, (3.15)

replaces Eq. (3.9). Here, ∆ is the Doppler width

∆ =

(

Eγ

c

)

·
(

2kT
M

)1/2

. (3.16)

We can use this Doppler-broadened distribution to extract the partial cross section Ii for

the population of level by integration of Eq. (3.15). over the complete solid angle

Ii =
∫

σi
DBW (Eγ,T )dEγ = π2 ·

(

~c
Ex

)

·g · Γ0Γi

Γ
. (3.17)

In case of the elastic transition Γ0 will be equal to Γi and Eq. (3.17) replace to

I0 = π2 ·
(

~c
Ex

)

·g · Γ2
0

Γ
. (3.18)

3.2.2 Transition Width and Transition Strength

The ground state decay width is proportional to the reduced transition probability

B(Πλ,Eγ)

Γ0 = 8π
∞

∑
Πλ=1

λ+1
λ[(2λ+1)!!]2

·
(

Eγ

~c

)2λ+1

· 2J0 +1
2J +1

B(Πλ,Eγ) ↑, (3.19)
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where Π = E for electric transitions and Π=M for magnetic transitions. The NRF tech-

nique is selective on dipole transitions and to a lesser extent on quadrupole transitions

because of the small momentum transfer of the photons. The relations between reduced

transition strengths and ground state decay width are given for even-even nuclei in the

following

B(E1) ↑
[e2 f m2]

= 9.554 ·10−4 ·g · Γ0

[meV ]
·
(

MeV
Ex

)3

, (3.20)

B(M1) ↑
[µ2

N ]
= 8.641 ·10−2 ·g · Γ0

[meV ]
·
(

MeV
Ex

)3

, (3.21)

B(E2) ↑
[e2 f m4]

= 1.245 ·103 ·g · Γ0

[meV ]
·
(

MeV
Ex

)5

. (3.22)

The reduced transition probabilities for the decay B(Πλ;J → J0) = B(Πλ) ↓ and

B(Πλ;J0 → J) = B(Πλ) ↑differ by the statistical factor introduced in Eq. (3.10)

B(Πλ) ↑= 2J +1
2J0 +1

·B(Πλ) ↓ . (3.23)

It is useful to compare the reduced transition strength to the so-called Weisskopf

units, which represent a measure of the single-particle strength. It is given for electric

transitions by

B(Eλ)W.u. = B(Eλ) ↓= 1
4π

[

3
λ+3

]2

(1.2A1/3)2λe2 f m2λ. (3.24)

3.2.3 Angular Distribution

The spins of the excited levels can be determined by measuring the angular distribu-

tions of the scattered photons with respect to the incoming photon beam. The general
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formula for the angular correlation function W(θ) of the scattered photon can be given as

a sum of even Legendre polynomials Pλ(Θ):

W (θ) = ∑
λ=0,2,4,...

Ai→ j
λ ·A j→k

λ ·Pλ(cosθ), (3.25)

where θ is the scattering angle between the direction of incident photon and the scattered

photon and Pλ(cosθ) are Legendre polynomials of order λ. The coefficient Ai→ j
λ describes

the photon in the entrance channel, and similarly A j→k
λ takes into account the resonantly

scattered photon.

Even-even nuclei always have ground state angular momentum and the parity Jπ
0=0+.

As a consequence, only levels with 1 or 2 can be excited in (γ, γ′) experiments on

even-even targets. The angular distribution of photons scattered of even-even nucleus

with ground state spin 0, representing the most favorable case, through a pure dipole

transition (spin sequence 0-1-0) is given by

W (θ)dipole =
3
4
· (1+ cos2θ) (3.26)

and through a pure quadrupole transition (spin sequence 0-2-0) is given by

W (θ)quadrupole =
5
4
· (1−3cos2θ+4cos4θ) (3.27)

These angular distributions are depicted as polar diagrams in Fig. 3.7. It is evident

that for spin assignments in even even nuclei at least two different angles is need to be

measured. The most favorable configuration is θ = 90◦ and θ = 127◦. In the case of

even-even nuclei the predicted values for the ratio of measured γ intensities at 90◦ and

127◦

W (90◦)0→1→0

W (127◦)0→1→0
= 0.73 (3.28)
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W (90◦)0→2→0

W (127◦)0→2→0
= 2.28 (3.29)

These values are slightly reduced for realistic geometries used in the experiments due to

the finite solid angles of the detectors. Unfortunately, in the case of odd-A nuclei the

angular distributions are, due to the half-integer spins involved in the cascades, nearly

isotropic. Therefore, it is difficult to extract conclusive information on the spins of the

excited levels. This can be achieved in typical NRF set-ups in only a few favorable cases

(e.g., J0 = 1/2) (Geiger et al., 1994). As can be seen in Fig. 3.7, at 90◦ the angular

distribution for dipole transitions has a minimum, whereas for quadrupole transitions it

has a maximum at 90◦ and two minima at 53◦ and 127◦. The angle θ= 127◦ is more

favorable than θ= 53◦ because of the dramatic background decrease at backward angles.

Therefore the detectors are placed at these angles and comparing the intensities of lines

one can distinguish between quadrupole and dipole transitions.

Photon beam

90°

127°

Figure 3.7 Angular distribution patterns for scattered photons of even-even nuclei for pure
dipole (0-1-0) and quadrupole (0-2-0) cascades
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3.3 Photon Scattering Experiments at the S-DALINAC

3.3.1 The S-DALINAC

The present (γ,γ′) experiments ware performed at the superconducting Darmstadt

electron linear accelerator S-DALINAC (Richter, 1996). The S-DALINAC is historically

the third superconducting electron linac. It produced its first beam (Auerhammer et al.,

1992) in 1987 and went into full operation (Auerhammer et al. 1993; Aab et al., 1988) in

1991. The layout of the superconducting recirculating electron accelerator S-DALINAC

is shown in Fig. 3.8.

Figure 3.8 Schematic layout of the S-DALINAC

The electron source is located on a high voltage terminal (top right) at 250 keV. The

electrostatically preaccelerated beam gets its time structure (necessary for succesive ac-

celeration in the superconducting rf cavities at 3 GHz) in the chopper-prebuncher section

at room temperature, where the DC current from the source is first chopped into 30 ps

long packages which are then bunched to a length of 5 ps when they enter the supercon-

ducting injector linac. Acceleration is then achieved by a 2-cell capture cavity (β=0.85)

followed by a 5-cell capture cavity (β=1) and two 20-cell accelerating cavities, all fab-
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ricated from RRR=280 niobium and operated in liquid helium at 2 K. When leaving the

injector, the beam has an energy of up to 10 MeV and can either be used for low energy

experiments (the photon scattering) or it can be bent isochronously by 180◦ for injection

into the main linac. There, eight 20-cell cavities installed in four identical cryomodules

increase the beam energy by up to 40 MeV. One of the superconducting 20-cell cavities of

the S-DALINAC is displayed in Fig 3.9 and the most important parameters are shown in

Table 3.1, where Eacc is electric field strength, Q/circ is quality factor and Pdis is dissipated

power.

Figure 3.9 20-cell 3 GHz superconducting cavity.

Table 3.1 Important parameters of 20-cell superconducting cavity.

Material : Nb ∏ - Mod

Length : 1 m Eacc = 5 MV/m

Frequency : 3 GHz Q/circ = 3∗109

Temperature : 2 K Pdis = 4 W

When leaving the main linac the beam can either be extracted to the experimental hall

or it can be recirculated and reinjected one or two times by the appropriate beam transport

systems (lower part of Fig. 3.8). The maximum beam energy after three passes through

the main linac therefore amounts to 130 MeV delivered to different experimental facilities

shown schematically in Fig. 3.10.

A wide range of electron scattering experiments is carried out using the large solid an-

gle and momentum acceptance magnetic spectrometer QCLAM or magnetic spectrometer

Lintott, optimized for beam dispersion matching to obtain the highest possible resolution.
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Figure 3.10 Experimental facilities at the S-DALINAC.

3.3.2 NRF Setup

The NRF setup (Mohr, et al., 1999) at the S-DALINAC is located immediately behind

the injector indicated in Fig. 3.10 as section 1. A schematic layout of the NRF setup is

presented in Fig. 3.11. The monoenergetic electron beam with energies up to 10 MeV

and currents of typically 30− 50µA is stopped in a 1.5 cm thick rotating and air-cooled

copper radiator target. Copper is chosen to avoid background resulting from (γ, n) spec-

tra and subsequent (n, γ) capture in the surrounding and detector materials. Between the

bremsstrahlung source and the scattering probe a 95.5 cm thick copper collimator is in-

stalled to cut out the central part of the bremsstrahlung cone. The neutron separation

energies Sn = 9.91 MeV and Sn = 10.9 MeV of the two exist stable isotopes 63Cu and

65Cu, respectively, allow for electron energies up to 10 MeV. The collimator was made of

copper bricks with dimensions 300×300×100 mm3 and a weight of about 70 kg which

are available

commercially. The collimator hole in the center of each brick has a conical shape, starting

with a diameter of d1 = 12 mm in the first brick on the side of the bremsstrahlung target

and ending with d2 = 20 mm in the last brick on the side of the photon target. Addi-
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target

1 m
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Figure 3.11 Schematic layout of the NRF setup at the S-DALINAC

tional copper bricks are arranged around the collimator on the radiator side. Because the

bremsstrahlung is emitted mainly in forward direction, this setup avoids neutron-induced

background from the collimator.

Four detectors are located at different angles to determine the multipolarities and par-

ities of the transition. These are described in the next section.

3.3.3 Detectors

Germanium detectors are the most preferred detectors for gamma-ray spectroscopy.

High purity germanium (HPGe) detectors with a density of impurities of less than 1010

atoms/cm3 were used in the present experiments. They can supply high energy resolution

of a few keV for energie up to 10 MeV. The HPGe crystal purity is not affected by tem-

perature, allowing storage without cooling, but due to the small band gap of germanium

(0.7 eV) they must be cooled to liquid nitrogen temperature (77 K) in order to reduce

thermal noise during operation. For gamma-ray spectroscopy an active volume as large

as possible is required, so detectors are constructed with a coaxial shape which is shown

in Fig. 3.12. A part of the central core is removed from the crystal and the electrical
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contacts are attached at the center and the outside of the crystal. In a n-type detector the

inner contact is a thick n-dopped 600 mm thick and the outer contact a thin p-dopped 0.3

mm thick (the n, p convention refers to acceptor and donor doping material). This is a

usual arrangement for gamma ray spectroscopy since the thick n+ contact would produce

greater attenuation at the outside edge.

p+ contact

n+ contact

electrons

holes

(a) (b)

p+ contact

n+ contact

electrons

holes

(a) (b)

Figure 3.12 Scheme of a n-type coaxial HPGe detector: (a) perpendicular view and (b) is
through the axis of the crystal

When a γ ray enters such a detector, it must produce at least one recoil electron by one

of three processes photoelectric effect, the Compton effect, or pair production before it is

recorded as an event.

In the photoelectric process, the γ ray gives all of its energy to the recoil electron.

The recoil electron then produces electron-hole pairs in the detector that yield the output

pulse. For the photoelectric process, the output pulse from the detector is proportional to

the energy of the γ ray that produced the interaction. In the spectrum, these events will

show up as full-energy photopeaks.

In the Compton process, there is a distribution of pulse amplitudes up to some max-

imum pulse height. This maximum pulse height produces the Compton edge and there

is a statistical probability that each event can produce a pulse with any height up to this

maximum with about equal chance. Thus, Compton events will provide a distributed

low-energy area in the spectrum. In modern, large detectors with high peak-to-Compton

ratios, some Compton events also contribute to the full energy peak when the scattered

photons undergo one or more additional interactions. This results in complete absorption.
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The pair-production process can also provide a total absorption of the γ-ray energy.

The gamma enters the detector and creates an electron-positron pair. From the law of

conservation of mass and energy, it follows that the initial gamma must have an energy

of at least 1.022 MeV because it takes that much energy to create both the negative and

positive electrons with energy 0.511 MeV.

For the detection of emitted gammas, three HPGe detectors were used in the present

experiments located at 90◦, 130◦ (a little bit shifted from 127◦) and -130◦ according to

incoming photon beam. These detectors are positioned approximately 26 cm from the

target. The forth detector is the segmented HPGe detector located at 90◦ for measure-

ments with a second target to determine the parity of transitions via the Compton effect.

This detector was not used for the present experiments because parity determination with

this type of method needs extremely high statistics which could not be reached with the

available beam time.

Furthermore 25 mm lead and 30 mm copper were placed as filters between the target

the and detectors to reduce the number of photons from the target impinging on the detec-

tors. Without these filters NRF measurements would not be possible at the typical photon

fluxes because of a 10 kHz upper limit on the detectors single count rates. Because of

the energy-dependent absorption probability of photons, these filters mainly reduce the

low-energy part of the spectrum, where nonresonant process dominate, but hardly reduce

the flux in the energy region of interest.

At γ-energies higher than 3 MeV, the pair-production process is the most important

gamma interaction. As discussed before, when an incident gamma with sufficient energy

enters the crystal, it can create an electron-positron pair. When the positron annihilates,

two gammas with equal energy 0.511 MeV are produced and these leave with an angular

separation of approximately 180◦. These two gammas are indicated as γ1 and γ2 in Fig.

3.13. For small detectors, it is very probable that both γ1 and γ2 will escape from the

detector before they make any further interactions in the crystal. The energy thus absorbed

would be E - 1.02 MeV and shows up as a double-escape (DE) peak in the spectrum. As

the detector size is increased, the probability becomes larger that either γ1 or γ2 will

make a photoelectric interaction within the crystal. If one of these gammas makes a

photoelectric interaction, the energy of the event that is recorded is the single-escape (SE)
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Figure 3.13 Principle of SE and DE.

peak. For even larger detectors, the probability of photoelectric interactions is further

increased and both γ1 and γ2 could make photoelectric interactions within the crystal. If

both γ1 and γ2 make photoelectric interactions, the total energy of the incident gamma is

absorbed within the crystal.

3.3.4 BGO Suppression

Although these HPGe detectors provide very good resolution in γ-ray spectroscopy,

a major experimental problem remains; namely, that of a poor peak-to-background ratio

caused by incomplete energy collection in the Ge detector. This problem is common to

all experiments using bare Ge detectors. An improvement is achieved by the detection

of the scattered radiation in a surrounding detector (an escape suppression shield) and the

rejection of coincident events between the Ge detector and the shield. The combination of

Ge detector and shield is termed an escape suppressed spectrometer (ESS). A schematic

diagram of a modern ESS is shown in Fig. 3.14. Because of its high stopping power, Bis-

muth Germanate, Bi4Ge3O12 (BGO) is usually chosen for the surrounding material. This

allows suppression shields to be more compact and hence more ESSs can be arranged

around a target. After suppression, the peak-to-total ratio is improving distinctly (Beau-

sang et al., 1995). Besides Compton-scattered γ-quanta also events from cosmic rays
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Figure 3.14 Typical construction of HPGe detector with BGO shield
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Figure 3.15 Measured spectra with BGO and without BGO
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contribute to the background in the spectrum. These events can also be suppressed by the

BGO shield. Moreover one can reduce significantly the SE and DE lines. The improve-

ment in the spectrum quality obtained by using of an ESS is demonstrated in Fig 3.15.

The figure shows the difference between the spectra which are taken with and without a

BGO shield. The background and the SE peak at 4.5 MeV from the strong line of 11B at 5

MeV are distinctly reduced and the DE peak is completely suppressed by using the BGO

shield.
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4. ANALYSIS and RESULTS

4.1 Analysis of Resolved Transitions

4.1.1 Experimental Details

The NRF experiment for 112Sn was performed in the spring of 2003. Endpoint

energies of 5.5 MeV, 7.0 MeV and 9.5 MeV were used to generate bremsstrahlung

spectra. The maximum endpoint energy was selected according to the neutron sep-

aration energy of 10.790 MeV and the proton separation energy is 7.055 MeV for

112Sn. In the present work the data for 9.5 MeV endpoint energy have been ana-

lyzed. The data up to 5.5 MeV and 7.0 MeV have been already analyzed (Poltoratska,

2005) and these results have been used to determine the feeding effect on spec-

tra with 9.5 MeV endpoint energy. The energy-calibrated (γ,γ′) spectra of 112Sn up

to 9.5 MeV at 90◦ (upper part) and 130◦ (lower part) are displayed in Fig. 4.1.
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Figure 4.1 Measured spectra for 112Sn up to 9.5 MeV at 90◦ and 130◦
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Figure 4.2 One example of a tin target together with two 11B targets)

The target was made of highly enriched ( 99 %) 112Sn material having a weight of

1990.5 mg, sandwiched between two layers of 11B with a total weight 1017.15 mg. The

well known 11B transitions were used to calibrate the spectra and to determine the photon

flux. Fig. 4.2 shows an example of a typical target (middle of the left hand side) sand-

wiched between two layers of 11B and fixed on the target frame (right hand side). The

total measurement time at 9.5 MeV was 72 hours using an average electron beam current

of 20 µA.

The experiment for 120Sn was performed in spring of 2006. Endpoint energies of

7.5 MeV and 9.1 MeV were used to generate bremsstrahlung spectra. Both data have

been analyzed in this work. The neutron separation energy is 9.107 MeV and the proton

separation energy is 10.690 MeV for 120Sn. The target made of highly enriched 120Sn had

a weight of 1990.2 mg and the 11B layers a total weight of 1288.95 mg. The measurement

times were 35 hours at 7.5 MeV and 100 hours at 9.1 MeV using an average electron beam

current of 30 µA. The measured spectra of 120Sn with 7.5 MeV endpoint energy in Fig.

4.3 and with 9.1 MeV endpoint energy in Fig. 4.4. are displayed at 90◦ and 130◦. Counts

are multiplied by a factor of 10 for energies higher than 5 MeV for better visibility. The

experimental energy resolution is starting with 4 keV up to a maximum of 10 keV at the

highest energy in all measured spectra.

Well known transitions in 11B (see Table 4.1.) were used for an energy calibration of

the measured spectra and determination of the absolute value of photon flux.
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Figure 4.3 Measured spectra for 112Sn up to 7.5 MeV at 90◦ and 130◦
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4.1.2 Detector Efficiency

For the extraction of the cross section one has to determine the absolute efficiency of

the detectors defined as

εabs =
number o f detected events in the photopeak

number o f quanta emitted by source
. (4.1)

To determine the absolute detector efficiency different sources with known activity should

be measured with the same setup and placed exactly at the target position. 56Co and 60Co

sources were used in the present measurements. The 56Co radioactive source provides 19

gamma transitions with known relative gamma intensities (NNDC, 2007). Since the max-

imum energy of known transitions in 56Co reaches to 3.6 MeV only, GEANT4 simulation

(Volz, private com.) and a fit function derived from the GEANT4 simulations are used

for the higher energy region. Figure 4.5 shows the measured values of 56Co normalized

to the GEANT4 simulation for the absolute efficiency of the detectors at 130◦ and 90◦.
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Figure 4.5 Absolute efficiency at 90◦ (left hand side) and at 130◦ (right hand side) for the setup
used for the measurement of 112Sn

4.1.3 Spin Determination

Since the aim of this work is to extract the dipole strength distribution, one needs to

distinguish the multipolarities of the measured transitions. Using the ratio of the peak in-
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tensities at different scattering angles one can extract the multipolarities of the observed

transitions. Figure 4.6 shows the intensity ratios of the transitions at 90◦ and 130◦ for

the 112Sn and 120Sn isotopes. In the Fig. 4.6 the blue and green lines are the predicted

values for dipole transitions and quadrupole transitions, respectively. The red line at 1

indicates an isotropic distribution. The red squares correspond to 11B transitions. These

transitions should be close to the isotropic line because of their half-integer spin. The

blue squares correspond to known (NNDC, 2007) quadrupole transitions. Because of

strong interaction in (γ, γ′) reaction, some 2+ states are also observed in the low energy

parts of the spectra. These transitions are closer to the isotropic line than expected for a

quadrupole transition because of the feeding effect from higher-energy levels discussed

below. The green points are dipole transitions for 112Sn (upper part of the figure) and

120Sn (lower part of the figure). Most of the dipole transitions are observed the first time.

One can see that all observed ground state transitions above 5 MeV have dipole character.

4.1.4 Photon Flux and Integrated Cross Section

For a calculation of the B(E1) transition strength, one needs to know the photon flux

and the integrated cross section. The relation between photon flux and integrated cross

section is given by

Nγ(Ex,Eo) · εabs(Ex) =
Ai

NTarget · Ii
s ·W i

e f f (θ)
(4.2)

where Nγ(Ex,Eo) is the number of photons at an energy Ex for a bremsstrahlungs spec-

trum with endpoint energy E0, εabs is the absolute efficiency at a given excitation energy,

Ai is the peak area of the i-th line in NRF spectrum and W i
e f f (θ) is the effective angular

correlation function. The product of the bremsstrahlung spectrum and the detector effi-

ciency was simulated using the program GEANT4 (Hasper, private com.) for the endpoint

energies of spectra. Since the GEANT4 simulations provide only the energy dependencie

of the flux but no absolute values, one has to normalize these to the experimental values

of 11B transitions using Eq. (4.2). In the calculation the branching ratios of boron lines

are taken to be account. The corresponding excitation energies, spin values of the excited

levels and integrated cross sections are given in Table 4.1 and the branching ratios of the
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Table 4.1 The transitions of 11B, their spin values and integrated cross sections (NNDC, 2007)

Ex keV Jπ I0
S (103eVfm2)

2124.69 1
2
− 5.1(4)

4444.89 5
2
− 16.3(6)

5020.31 3
2
− 21.9(8)

7285.51 5
2
+ 9.4(7)

8920.20 5
2
− 28.6(14)

11B transitions are shown in Fig. 4.7.

Figure 4.8 shows the fit functions to the simulations of Nγ · εabs normalized with re-

spect to the 11B lines for 112Sn (upper part) and 120Sn (lower part). The upturned grey

triangles and the black triangles are the measured yields of Nγ ·εabs for the 11B lines at 90◦

and 130◦, respectively. The grey lines show the fit functions of GEANT4 simulations for

the detector at 90◦ and the black lines this for the detector at 130◦. Once the photon flux is
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Figure 4.7 Energies of 11B transitions with branching ratios (NNDC, 2007)

known, one can calculate the integrated cross section for every transition. As mentioned

before the integrated cross section is proportional to the branching ratio Γ0/Γ, see Eq.

(3.18). Here it is assumed that all measured transitions exclusively decay to the ground

state, i.e, the quantity of Γ0/Γ will be equal to 1. Usually this can be experimentally

checked for the branchings to the first excited 2+ state, but not for higher-lying states.
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Figure 4.8 Fit functions to the GEANT4 simulations for Nγ · εabs normalized with respect to
the 11B lines for 112Sn (upper part) and 120Sn (lower part)
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Furthermore a second assumption is that all excited states have Jπ=1−. This is justi-

fied because M1 transitions in spherical nuclei are of spin-flip nature and appear at higher

energies only (A. Richter, 1991). There is also an experimental test for the PDR in 140Ce

where all the parities have been measured (N. Pietralla et al, 2002) and shown to be neg-

ative. Using the Eqs. (3.20)-(3.22), the B(E1), B(M1) and B(E2) transition probabilities

can be calculated.

4.1.5 Estimation of the Feeding Effect

The possibility of an indirect population of levels by feeding via inelastic transitions

from higher-lying states should be taken into account in the calculation of transition

strengths. A level can be populated directly by photoabsorption from the ground state

and also indirectly by decay from higher-lying states. This can cause an overestimation

on the real strength. As already mentioned in case of quadrupole transitions, strong feed-

ing can affect the spin assignment of transitions since the angular distributions of the

scattered photons become more isotropic. In this case one has to estimate the feeding

effect on the transition strengths. A possible way to investigate the amount of the feeding

is to compare the measured transition strengths at different endpoint energies.

The ratio of the measured transition strengths at 9.5 and 7 MeV endpoint energies for

112Sn is displayed in Fig. 4.9. Values larger than 1 indicate a feeding of the transitions.

This is the case for a number of transitions especially around 3 and 6.5 MeV. Therefore,

the transition strengths are corrected in the results of 9.5 MeV spectrum up to an energy

of 6.5 MeV. For ratios exceeding 1, the final values are taken from the measurement at

the lower endpoint energy. A spectrum for 112Sn with 5.0 MeV endpoint energy is also

available. The comparison between the results of 7 MeV and 5 MeV was made in the

diploma thesis of Iryna Poltoratska (Poltoratska, 2005) and it was reported that there is

no feeding effect on 7 MeV spectrum.

The same calculations have also been performed for 120Sn isotope. Fig. 4.10 shows

the ratio of the measured transition strengths at 9.1 and 7.5 MeV endpoint energies. As

seen from the figure obviously the case is different to the previous isotope. The feeding

is not observed on the measurement of 120Sn up to 9.1 MeV. The differences between the

transition strengths for measurements up to 9.1 and 7.5 MeV are inside of error bars.
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Figure 4.10 Ratio of the B(E1) transition strengths of endpoint energies of 9.1 and 7.5 MeV
for 120Sn
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Therefore no correction was necessary for the final results of 120Sn and the final results

are averaged over both measurements where possible.

4.1.6 Reduced Transition Strengths

The extracted B(E1) transition strengths for 112Sn and 120Sn are shown in Tables 4.2

and 4.3, respectively. The excitation energy Ex and the assigned spin J, the branching

ratio Γ0 and the corresponding reduced transition probabilities of each dipole transition

are given. Using the relation between Eq. (3.18) and Eq. (4.2) the elastic transition width

Γ0 of excited levels in the Sn isotopes can be calculated from the measured peak area,

the angular correlation, the number of Sn nuclei and the photon flux. Thus, since the

energy resolution is very good in these experiments, the main source of systematics errors

come from the uncertainties of peak areas. In Table 4.2 and 4.3 the errors are calculated

systematically only. One can also add 10 % of error which comes from the normalization

of the photon flux.

In total 91 dipole transitions are observed for 112Sn up to 9.5 MeV endpoint energy

with as summed of B(E1) transition strength of 0.187(25) e2fm2 corresponding to 0.25 %

of the EWSR. The number of observed transitions is 72 and the summed B(E1) transition

strength is 0.163(31) e2fm2 for 120Sn up to 9.1 MeV endpoint energy. The centroid ener-

gies of the observed low-lying transitions up to the neutron separation energies are 6.74

MeV and 6.60 MeV for 112Sn and 120Sn, respectively. The two-phonon states are ob-

served in 112Sn at 3434 keV and in 120Sn at 3279 keV which have been already discussed

in (Pysmenetska et al., 2005; Bryssinck et al., 1999).

Table 4.2: Transitions observed in 112Sn

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

3433.9 1− 162(15) 11.5(8)

4141.3 1 17(4) 0.7(1)

4162.3 1 44(4) 1.8(2)

4330.4 1 15(3) 0.5(1)

4726.5 1 12(3) 0.3(1)

Continued on next page
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Table 4.2 – continued from previous page

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

4837.4 1 28(5) 0.7(1)

5057.1 1 134(13) 3.0(3)

5128.2 1 198(20) 4.2(1)

5246.2 1 166(14) 3.3(3)

5480.5 1 66(11) 1.2(2)

5502.6 1 86(10) 1.5(2)

5593.7 1 43(7) 0.7(1)

5617.6 1 39(7) 0.6(1)

5649.1 1 43(7) 0.7(2)

5666.4 1 23(6) 0.4(1)

5699.9 1 33(7) 0.5(1)

5748.6 1 66(7) 1.0(2)

5812.7 1 34(8) 0.5(1)

5860.7 1 159(27) 2.3(4)

5884.0 1 100(16) 1.4(2)

5924.1 1 112(12) 1.5(2)

5976.6 1 128(14) 1.7(2)

6005.0 1 244(21) 3.2(3)

6059.8 1 470(44) 6.1(6)

6080.9 1 73(15) 0.9(2)

6096.9 1 385(23) 3.6(3)

6129.0 1 115(13) 1.4(2)

6150.4 1 273(28) 3.4(4)

6168.3 1 98(17) 1.2(2)

6198.7 1 179(18) 2.2(2)

6224.3 1 315(26) 3.7(3)

6246.4 1 152(20) 1.8(2)

6259.1 1 130(17) 1.5(2)

6272.6 1 220(21) 2.5(3)

Continued on next page
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Table 4.2 – continued from previous page

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

6313.3 1 251(23) 2.9(4)

6348.7 1 134(17) 1.5(2)

6388.1 1 663(47) 7.3(6)

6404.1 1 1686(120) 18.4(13)

6428.6 1 114(18) 1.2(2)

6450.0 1 109(15) 1.2(2)

6520.7 1 309(33) 3.2(4)

6550.1 1 54(11) 0.6(1)

6601.0 1 173(23) 1.7(2)

6679.9 1 74(14) 0.7(1)

6706.7 1 187(24) 1.8(2)

6715.0 1 156(67) 1.5(3)

6731.9 1 289(51) 2.7(6)

6795.5 1 185(25) 1.7(2)

6818.7 1 139(23) 1.3(2)

6824.2 1 194(32) 1.7(3)

6855.9 1 170(25) 1.5(2)

6871.2 1 189(19) 1.7(2)

6941.2 1 367(41) 3.1(4)

6961.5 1 362(53) 3.1(5)

6982.7 1 246(30) 2.1(3)

7009.8 1 62(15) 0.5(1)

7018.7 1 82(16) 0.7(1)

7025.8 1 86(17) 0.7(1)

7043.1 1 245(42) 2.0(4)

7092.8 1 524(48) 4.2(4)

7167.2 1 363(42) 2.8(3)

7198.2 1 578(75) 4.4(6)

7228.1 1 164(27) 1.2(2)

Continued on next page
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Table 4.2 – continued from previous page

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

7311.1 1 138(28) 1.0(2)

7389.9 1 183(30) 1.3(2)

7438.6 1 275(42) 1.9(3)

7444.1 1 233(37) 1.6(3)

7468.3 1 186(45) 1.3(3)

7531.3 1 429(62) 2.9(4)

7537.2 1 770(82) 5.2(6)

7559.1 1 323(43) 2.1(3)

7594.5 1 205(31) 1.3(2)

7615.3 1 257(41) 1.7(3)

7859.5 1 207(35) 1.2(2)

7904.7 1 196(40) 1.1(2)

7936.7 1 272(39) 1.6(2)

7988.2 1 606(62) 3.4(3)

8020.7 1 412(67) 2.3(4)

8051.6 1 396(60) 2.2(3)

8069.6 1 482(65) 2.6(4)

8194.5 1 518(75) 2.7(6)

8218.2 1 262(48) 1.4(2)

8253.6 1 177(38) 0.9(2)

8448.6 1 147(41) 0.7(2)

8568.9 1 166(43) 0.8(2)

8600.4 1 118(35) 0.5(2)

8750.2 1 249(56) 1.1(2)

8823.4 1 278(64) 1.2(3)

9050.5 1 413(108) 1.6(4)

9095.3 1 268(65) 1.0(2)

9150.1 1 240(75) 0.9(3)

9329.8 1 599(138) 2.1(5)
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Table 4.3: Transitions observed in 120Sn

Ex (keV) Jπ Γo (meV) B(E1)↑ (10−3e2 f m2)

3279.4 1− 137(14) 8.6(9)

4251.0 1 73(10) 2.7(4)

4564.8 1 36(8) 1.0(2)

4679.7 1 52(10) 1.5(3)

4939.0 1 36(8) 0.9(2)

5245.4 1 22(7) 0.4(1)

5354.4 1 37(13) 0.7(2)

5408.2 1 54(13) 1.0(2)

5447.2 1 126(21) 2.2(4)

5638.0 1 109(18) 1.8(3)

5647.8 1 172(23) 2.7(4)

5685.2 1 78(20) 1.2(3)

5697.3 1 67(17) 1.0(3)

5753.0 1 35(13) 0.5(2)

5758.0 1 42(15) 0.6(2)

5818.0 1 127(25) 1.8(4)

5882.1 1 280(40) 3.9(6)

5895.4 1 198(26) 2.8(4)

5927.7 1 165(25) 2.3(3)

5940.7 1 230(44) 3.1(6)

5950.2 1 139(35) 1.9(5)

5989.8 1 203(38) 2.7(6)

6001.7 1 168(48) 2.2(6)

6076.2 1 82(21) 1.1(3)

6093.5 1 110(24) 1.4(3)

6127.1 1 248(35) 3.1(4)

6152.5 1 127(23) 1.6(3)

6252.4 1 255(48) 3.0(6)

Continued on next page
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Table 4.3 – continued from previous page

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

6267.0 1 350(44) 4.1(5)

6285.8 1 160(31) 1.8(4)

6305.9 1 270(37) 3.1(4)

6332.6 1 363(54) 4.1(6)

6344.9 1 370(50) 4.2(6)

6353.7 1 259(38) 2.9(4)

6375.0 1 118(23) 1.3(3)

6397.0 1 240(40) 2.6(4)

6408.3 1 456(55) 5.0(6)

6432.3 1 142(28) 1.5(3)

6443.7 1 299(52) 3.2(6)

6469.7 1 375(62) 4.0(7)

6485.8 1 409(67) 4.3(7)

6520.7 1 186(32) 1.9(3)

6539.5 1 219(40) 2.2(4)

6644.3 1 438(68) 4.3(7)

6691.0 1 206(41) 2.0(4)

6727.3 1 238(55) 2.2(5)

6898.9 1 508(163) 4.6(15)

6914.8 1 374(58) 3.2(5)

6990.4 1 376(68) 3.2(6)

7009.9 1 480(98) 4.0(8)

7025.0 1 216(41) 1.8(3)

7031.5 1 176(35) 1.5(3)

7038.9 1 160(38) 1.3(3)

7061.9 1 164(48) 1.3(4)

7095.6 1 242(65) 1.9(5)

7144.5 1 259(58) 2.0(5)

7235.1 1 495(64) 3.7(5)

Continued on next page
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Table 4.3 – continued from previous page

Ex (keV) Jπ Γ0 (meV) B(E1)↑ (10−3e2 f m2)

7255.1 1 465(88) 3.5(7)

7460.1 1 175(33) 1.2(2)

7543.1 1 172(49) 1.1(3)

7569.2 1 309(140) 2.0(9)

7624.9 1 190(40) 1.2(3)

7701.2 1 229(57) 1.4(4)

7889.0 1 312(62) 1.8(4)

7958.6 1 523(93) 3.0(5)

7975.6 1 606(98) 3.4(6)

7994.5 1 237(48) 1.3(3)

8044.3 1 120(30) 0.7(2)

8079.7 1 258(100) 1.4(5)

8318.3 1 498(96) 2.5(5)

8399.5 1 450(100) 2.2(5)

8478.3 1 304(80) 1.4(4)

8554.9 1 447(139) 2.0(6)

4.1.7 Systematics of the E1 Strength in Stable Tin Isotopes

Systematics studies of electric dipole (E1) response are very important to understand

a possible collective character of the low-energy E1 strength. Thus, the present results are

compared with previous measurements in the even-even tin isotopes 116,124Sn (Govaert

et al., 1998) obtained with the NRF method up to 10 MeV endpoint energy. Figure 4.11

shows the distribution of the B(E1) strengths in 112,116,120,124Sn. A resonance-like struc-

ture shape is observable in the distributions of the transition strengths for every isotope

and the maximum transition strengths are located approximately in the same energy re-

gion. Major differences appear above 7 MeV, eventually because of different neutron

separation energies of the isotopes. The summed B(E1) transition strengths and centroid
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Figure 4.11 Comparison of the B(E1) strength in 112,116,120,124Sn
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energies are summarized for the stable 112,116,120,124Sn isotopes in Table 4.4.

Table 4.4 The sum of B(E1) transition strengths for 112,116,120,124Sn

Isotope ∑B(E1) e2fm2 EC (MeV) E0 (MeV)

112Sn 0.187(25) 6.7 9.5

116Sn 0.233(28) 6.7 10.0

120Sn 0.163(31) 6.6 9.1

124Sn 0.379(45) 7.0 10.0

4.2 Fluctuation Analysis

According to theoretical predictions discussed in the next section, the summed B(E1)

strengths should increase with the number of neutrons. But the experimental results show

that 120Sn has the lowest summed strength and transitions are more fragmented compared

to other even stable tin isotopes. The fragmentation is visible even from the spectra of

120Sn. This made us to think about unresolved strength which could be hidden in the

background. The extraction of this type of strength is not possible with usual analysis

method. To determine unresolved strength, a fluctuation analysis was applied for first

time on (γ, γ′) spectra to investigate B(M1) scissors mode strength in odd-mass nuclei

(Enders et al., 1997; Huxel et al, 1999). In the following section the fluctuation analysis

is explained and applied to the (γ, γ′) spectra of 112,120Sn.

4.2.1 Theoretical Models

An essential ingredient to the fluctuation analysis is the level density which has to be

taken from models. In the present work, two different types are considered, namely an

empirical and a microscopic approach.
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4.2.1.1 Back-Shifted Fermi Gas Model

Nuclear Level Densities (NLD) are important quantities in nuclear physics. For ex-

ample predicting the distribution of all the excited levels in nuclei helps to understand

this complicated quantum system. Besides, the NLD represent very important ingredients

in statistical model calculation of nuclear reactions cross sections which are needed for

many application in astrophysics and also fission or fusion reactor designs.In the present

work NLD are needed to determine the nonresonant background in (γ, γ′) spectra.

Most of the calculations of NLD are modifications and extensions of the Fermi gas

model including pairing and shell effects in a semi-empirical way (Gilbert, 1965), the

so-called back-shifted Fermi gas model (BSFG). The NLD dependence on energy Ex and

spin J is given in a separable form

ρ(Ex,J,π) =
1
2

ρ(Ex) f (J) (4.3)

f (J) = exp[− J2

2σ2 ]− exp[−(J +1)2

2σ2 ]. (4.4)

The factor 1/2 in Eq. (4.3) results from the assumption of parity independence.

In the BSFG model (Gilbert, 1965) the energy part is given by

ρ(Ex) =
exp[2

√

a(Ex−E1)]

12
√

2σa1/4(Ex−E1)5/4
. (4.5)

Here σ is the spin cut-off parameter which depends on the rigid-body moment of inertia

of the nucleus. The formula is given by (Zhongfu, 1991)

σ2 = 0.0146A5/3 1+
√

1+4a(Ex−E1)

2a
(4.6)

where E1 is the energy backshift and a is the NLD parameter in MeV−1. The quantity

a represents the shell effect taken to be independent of the energy. It means that the

shell effect plays a role at higher energies in the same way as at low energies. However,

49



4. ANALYSIS and RESULTS Banu ÖZEL

microscopic calculations of the NLD show that the shell effects are stronger at low

energies. Thus, an energy dependent description was needed to define for a parameter

which includes the quenching of the shell effect (Ignatyuk et al.,1975; 1979),

a(Ex,Z,N) = ã[1+
S(Z,N)−∆

Ex−E2 f (Ex−E2)
]. (4.7)

Here, ã is the asymptotic value of the a parameter

ã = αA+βA2/3 (4.8)

The function f has been proposed (Ignatyuk et al.,1975; Rauscher et al.,1997) to have the

following term

f (Ex−E2) = 1− exp[−γ(Ex−E2)]. (4.9)

In these calculations α, γ, β are the free parameters which can be determined by fitting to

experimental data. In Eq.(4.7), S(Z, N) is given as a shell correction and is defined by

S(Z,N) = Mexp−MLD, (4.10)

where Mexp is the experimental mass and MLD is the mass calculated with a macroscopic

liquid-drop formula.

The following equation gives the total number of levels as a function of excitation

energy Ex,

N0(Ex,J) =
∫ Ex

0
ρ(E,J)dE. (4.11)

Finally, the mean level spacing 〈D〉=1/ρ in an energy interval [Ea
x , Eb

x ] can be expressed

as (Kalmykov, 2004)
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〈D〈= Eb
x −Ea

x

N0(Eb
x ,J)−N0(Ea

x ,J)
. (4.12)

Two different parameterizations of the BSFG model are selected for the present analy-

sis. The first approach called BSFG1 (Rauscher et al., 1997) has much higher predictive

power in nuclei near the valley of stability and is used in astrophysical nucleosynthesis

calculations. The second approach called BSFG2 (Egidy et al., 2005) is more reliable for

an extrapolation towards exotic nuclei since the model parameters are derived only from

precise mass data (Audi et al., 2003; Möller et al., 1995).

4.2.1.2 Hartree-Fock-BCS Model

Alternatively, a microscopic statistical model is used to obtain the NLD. This model

is based on the ground-state structure properties predicted within the Hartree-Fock-BCS

(HF-BCS) approach (Demetriou et al., 2001). The microscopic model includes a con-

sistent treatment of the shell effects, pairing correlations, deformation and collective ex-

citations. The model can predict the experimental neutron resonance spacing with an

accuracy comparable to that of the phenomenological BSFG type of models. The micro-

scopic NLD also gives reliable extrapolations to low energies where experimental data on

the cumulative number of levels are available.

The spin-independent level density is determined by the partition method

ρ(Ex) =
exp[S(Ex)]

(2π)3/2
√

D(Ex)
. (4.13)

The entropy S and excitation energy Ex at a temperature T are derived from the sum-

mation on the degenerate single-particle levels εk
q (where q= n, p stands for neutrons or

protons). For details see (Demetriou et al., 2001). In the case of spherical nuclei, the

spin-dependent level density can be given as a function of the total level density ρ(Ex) by

ρ(Ex,J) =
2J +1

2
√

2πσ3
exp[

−J(J +1)

(2σ2)
]ρ(Ex) (4.14)
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and spin cut-off parameter for the spherical nuclei is given by

σ2(T ) =
1
2 ∑

q=n,p
∑
k

mk2

q sech2(
Ek

q

2T
) (4.15)

which is obtained from the summation on the angular momentum projection mk
q. Here,

Ek
q is the quasiparticle energy which depends on the single particle levels, the BCS gap

parameter and the chemical potential as a function of the pairing strength. The HF calcu-

lations are fit to the full set of measured masses (Tondeur et al., 2000; Goriely et al., 2001)

for the determination of the nucleon interaction. This should make the corresponding HF

predictions particularly reliable (Demetriou et al., 2001).

4.2.2 Fluctuation Analysis Method

The fluctuation analysis method was originally established for β-delayed particle

emission spectra (Hansen, 1979), subsequently used for the giant resonant spectra from

electron scattering (Müller et al., 1982; Kilgus et al., 1987) and also applied success-

fully to γ-ray spectra to search for unresolved M1 strength in deformed odd-mass nuclei

(Enders et al., 1997; Huxel et al., 1999).

The method is applicable in the region where the mean level spacing 〈D〉 is smaller

than the experimental energy resolution ∆E and at the same time the mean level width

〈Γ〉 is smaller than 〈D〉 and ∆E, i.e.

〈Γ〉 ≤ 〈D〉< ∆E (4.16)

The case of 〈Γ〉 > 〈D〉 is called Ericson fluctuations (Ericson, 1960) which stem from the

coherent overlap of excitations whose line widths 〈Γ〉 exceed the average level spacing.

Two assumptions are used for the calculation of experimental level densities. Because

of strong configuration mixing of levels with same spin and parity in a highly excited

nucleus, the probability for a certain spacing between neighboring states is assumed to

follow the Wigner distribution (Wigner, 1965)
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Pw(s) =
πs
2

exp(−πs2

4
), (4.17)

where

s =
D
〈D〉 . (4.18)

This distribution has a maximum around the mean value and shows so-called level

repulsion, i.e. a suppression of small distances between close neighboring levels. The

transition strengths obey a Porter-Thomas distribution (Porter et al., 1956)

PPT (r) =
1√
2πr

exp(
−r
2

), (4.19)

r =
Γ0

〈Γ0〉
. (4.20)

This equation predicts that weak transitions are more likely.

For the application of the fluctuation analysis technique one has to assure that the spec-

trum contains only the information directly related to the ground state transition widths

Γ0 (Enders et al., 1998). One can extract the unresolved strength from the fluctuations

of this measured spectrum with the following steps shown in Fig. 4.12. In the upper-

most part (a) the spectrum is shown with an energy resolution maximum ∆(E)≈10 keV

and the selected background. Firstly the background subtracted spectrum is smoothed by

convolution with a Gaussian function σ> to remove gross structure in the spectrum. This

value should be selected bigger than the experimental energy resolution. This new spec-

trum is called as g>(x) and shown with by red line in Fig. 4.12 (b). In order to diminish

the contribution of counting statistics to the fluctuations, the spectrum is also folded with

a Gaussian function with width σ< smaller than experimental energy resolution which

produces the g<(x) spectrum shown in Fig. 4.12 (b) by the black line. The so-called

stationary spectrum is defined as the ratio of the g<(x) and g>(x) spectra.
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Figure 4.12 (a) Spectrum of the 120Sn(γ,γ′) reaction and selected background, (b) smoothed
spectra with 16 keV and 50 keV FWHM, (c) stationary spectrum d(Ex) which conforms the local
fluctuations only, (d) theoretical and experimental autocorrelation functions
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d(Ex) =
g<(x)
g>(x)

. (4.21)

The stationary spectrum d(Ex) shows local fluctuations in a given energy interval

displayed in Fig. 4.12 (c). A measure of the fluctuations is given by the autocorrelation

function of the stationary spectrum

C(ε) = 〈d(Ex)d(Ex + ε)〉 (4.22)

where the brackets indicate averaging over the interval for which the analysis is

performed, and ε is the shift parameter in the autocorrelation. The experimental autocor-

relation function can be well approximated (Jonson et al., 1976; Hansen, 1979) by the

analytical expression

C(ε)−1 =
α · 〈D〉
2σα

√
π
× f (ε,σ>,σ<) (4.23)

where 〈D〉 is the average level spacing and the function f depends on experimental

parameters only. The background is now varied until the theoretical and experimental

autocorrelations agree at ε = 0, where there is a simple linear relation between C(0)

and the product α〈D〉 since the function f is normalized f(ε = 0)=1. The experimental

and theoretical autocorrelation functions are plotted in Fig. 4.12 (d). The differences

between the experimental and theoretical autocorrelation functions for finite ε may be

due to errors induced by the finite range of the energy interval. The quantity α =αD+αI

represents the sum of the variances for the level spacing αD and the strength distribution

αI , respectively. For a single class of states with given spin and parity, alphaD and alphaI

are known (Guhr et al., 1998), and α = 0.273 + 2.0. If there are levels of n mixed spin and

parities the variance from the overlap of the distributions for each Jπ has to be defined.

The variance αI is given by (Huxel, 1997)

αI = 3 ·
∑n

i=1
(Ni〈Γ0〉i)

2

Ni
·∑n

i=1 Ni

∑n
i=1 Ni〈Γ0〉i

(4.24)

55



4. ANALYSIS and RESULTS Banu ÖZEL

where Ni and 〈Γ0〉i the average number of states and ground-state transition widths of

type i in the energy interval under consideration.

4.2.3 Application to Photon Scattering Spectra

There are two different approaches in the fluctuation analysis. The first one is a de-

termination of experimental level densities assuming a certain shape of the non-resonant

background. It is not always possible to know exactly the background sources and shape.

In this case a discrete wavelet analysis provides a method for a model-independent ex-

traction of the background (Kalmykov et al., 2006; 2007). The second approach assumes

that the level densities are known for a nucleus with reasonable accuracy which to allow

an ”inverse” application of the fluctuation analysis. If the level density is assumed to be

defined, e.g. calculated by a theoretical model, one can determine the background by

varying its shape and magnitude in such a way that the experimental value C(ε = 0) be-

comes equal to the theoretical one. However, it should be taken into account that the value

of the autocorrelation function is much more sensitive to the area under the background

than to its shape.

After the extraction of B(E1) transition strengths from the spectra of 112,120Sn, the

question arises if there is unresolved strength hidden in the background due to fragmen-

tation of the transitions. Therefore the fluctuation analysis is applied to the (γ, γ′) spectra

of 112,120Sn. Firstly the discrete wavelet transform method, which is the model inde-

pendent way, was tried. However, it was not possible to extract the real background be-

cause the method requires a certain signal-to-background ratio which cannot be reached

in this type of experiment. However, the level densities can be determined for 112,120Sn

by the BSFG1, BSFG2 and HF-BCS theoretical models therefore the second approach

an ”inverse” application of fluctuation analysis which is explained above is selected to

determine the backgrounds of 112Sn and 120Sn spectra at different angles.

For the application of the fluctuation analysis technique one has to assure that the spec-

trum contains only the information directly related to the ground state transition widths

of the nucleus under investigation (Enders et al., 1998). Therefore 11B lines and escape

peaks have to be removed from the spectrum. These removed photopeaks are determined

by fitting agaussian with linear background, low and high exponential functions (Longo-
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Figure 4.13 Calculated level spacing, <D> for 112Sn from models of BSFG1, BSFG2 and
HF-BCS. The dashed lines indicate the interval of application the fluctuation analysis.

3 4 5 6 7 8 9 10

120
Sn

BSFG1
BSFG2
HF-BCS

Energy  (MeV)

10
-4

10
-3

10
-2

10
-1

1

<
D

>
(M

e
V

)

Figure 4.14 Calculated level spacing, <D> for 120Sn from models of BSFG1, BSFG2 and
HF-BCS. The dashed lines indicate the interval of application the fluctuation analysis.
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ria, 1990) and are subtracted from spectra.

As pointed out before, the analysis is restricted to the energy region where the mean

level spacing is smaller than the experimental energy resolution. This necessary condition

is fulfilled for 112,120Sn spectra approximately above 5.5 MeV where also E1 transitions

start to increase in numbers. The level spacings are calculated from three different theo-

retical models BSFG1, BSFG2 and HF-BCS which can be seen in Fig. 4.13 for 112Sn and

in Fig. 4.14 for 120Sn.

Considering an inverse application of the fluctuation analysis, the region is divided in

200 keV intervals, where the background is assumed to be constant. These intervals are

individually fitted and then a smooth curve is drawn through the points defined by the

center of the intervals and the result curves are shown in Figs. 4.15 - 4.18. This process

is applied on the spectra at 90◦ and 130◦ for both isotope. The analysis is performed in

an energy region of 5.5 to 7.8 MeV. At higher energies the extraction of experimental

level densities are no longer reliable because of an overlapping in the widths and a lack

of statistics. The final backgrounds are plotted for 112Sn in Fig. 4.15, Fig. 4.16 and for

120Sn in Fig. 4.17, Fig. 4.18 at 90◦ and 130◦ respectively. In these figures red lines, blue

lines and green lines correspond to the determined backgrounds assuming the NLD from

the BSFG1, BSFG2 and HF-BCS models, respectively. Although the three backgrounds

from the models are calculated independently, they show almost the same results. To

determine the strength from the spectrum, the area above the background is integrated

as B(E1) transition strength. In order to calculate the total strength for one NLD model,

an average is taken over results from 90◦ and 130◦. Extracted strengths from different

angles have similar amounts. The consistency of the results at 90◦ and 130◦ is also very

important proof to show the reliability of this analysis method. In this case three different

total strengths from the BSFG1, BSFG2 and HF-BCS have been extracted for one isotope.

For the final result an average is taken over these results.

In the integrated region SE peaks should be taken to be account. The contribution of

SE peaks is estimated by a GEANT4 simulation (Hasper, private com.) which calculates

the escapes from germanium detectors used in the present experiments. The results for

the ratio of SE to photopeak with BGO and a fit function are displayed in Fig. 4.19 in
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Figure 4.15 112Sn spectrum at 90◦ and calculated backgrounds according to the BSFG1,
BSFG2 and HF-BCS level density models
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Figure 4.16 112Sn spectrum at 130◦ and calculated backgrounds according to the BSFG1,
BSFG2 and HF-BCS level density models
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Figure 4.17 120Sn spectrum at 90◦ and calculated backgrounds according to the BSFG1,
BSFG2 and HF-BCS level density models
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Figure 4.18 120Sn spectrum at 130◦ and calculated backgrounds according to the BSFG1,
BSFG2 and HF-BCS level density models
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Figure 4.19 GEANT4 simulation of the ratio of SE to photopeak as a function of the gamma
energy, a fit function (dashed line) and a comparison to experimentally measured ratios in 11B
(grey squares).

Table 4.5 Results of the fluctuation analysis and the NRF analysis

total (e2fm2) unresolved (e2fm2) resolved (e2fm2)

∑B(E1) for 112Sn 0.255(16) 0.113(16) 0.142(18)

∑B(E1) for 120Sn 0.253(33) 0.120(33) 0.133(25)

comparison with experimentally determined ratios for 11B transitions. The fit function

is used for an energy-dependent correction of the integrated cross sections per energy

interval. The calculated total strengths, the sum of unresolved strengths from fluctuation

analysis and the sum of resolved strengths from the first analysis (explained in Chapter

3) are listed in Table 4.5. Errors of unresolved and total strengths are determined by the

differences between the results from the three NLD models. In the energy region Ex=

5.5-7.8 MeV, the unresolved strengths amount to 44 % and 47 % of the total strength are

observed in the NRF spectra of 112Sn and 120Sn, respectively. The amount of unresolved
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strengths are very similar because, as seen from Fig. 4.13 and Fig. 4.14 the level spacings

of 112Sn and 120Sn show similar value with energy.
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5. DISCUSSION and CONCLUSION

5.1 Comparison with Theoretical Models

5.1.1 Quasiparticle Phonon Model (QPM)

The measured B(E1) transition strengths below the neutron threshold in stable tin iso-

topes are compared with theoretical models in this section. In particular, the QPM and R

QRPA are used for the comparison. The tin isotopic chain has been studied systematically

in both approaches.

The present QPM model approach is described in (Tsoneva et al., 2004a; 2004b;

2007). The model Hamiltonian is written as

H = HMF +H ph
M +H ph

SM +H pp
M (5.1)

Here, HMF=Hsp+Hpair is the mean field part consisting of a single-particle (Hsp) and a

pairing (Hpair) part which has to be identified with the Hartree-Fock Bogoliubov (HFB)

Hamiltonian. The calculation uses single-particle energies, wave functions obtained self-

consistently and a reparameterization of the HFB mean field in terms of a Woods-Saxon

potential as described in (Tsoneva at al., 2004b).

The QPM calculations in 110−132Sn contain a sequence of low-lying one-phonon 1-

states at excitation energies Ex = 6 - 7.5 MeV which shows almost pure neutron structure

with proton contributions of less than 1%. The main part of the PDR comes from one-,

two- and three quasiparticle states in this type of nonrelativistic calculations. The pre-

dicted excitation energies of these states also define the energy region of the PDR. The

results for 120Sn are displayed in Fig 5.1. The quantity R is an amplitude which is entering

in the definition of the multi-phonon wave function. The square of it is a probability to

have a certain one-phonon contribution to the structure of an excited state. As seen from

the figure the PDR is concentrated in the energy region 6.5 - 7.5 MeV for this isotope.

Calculations for other even tin isotopes show almost the same energy region for the PDR

(Tsoneva, et al., private com.).

The results of a calculation with 240 one-, two- and three phonon configurations
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Figure 5.1 Distriution of the strength of pure neutron one-phonon transitions in QPM calcula-
tions with up to 3 phonon configurations for120Sn

Table 5.1 Results of QPM calculations up to 3 phonon configurations for the summed B(E1)

strength and the centroid energy of the PDR

Isotope ∑B(E1)(e2fm2) EC (MeV)

112Sn 0.145 7.90

114Sn 0.165 7.70

116Sn 0.209 7.20

118Sn 0.229 7.10

120Sn 0.259 6.88

122Sn 0.270 6.70

124Sn 0.310 6.68

(Tsoneva, et al., 2007) are given in Table 5.1 for the stable tin isotopes.

Another QPM calculation has been performed (Ponomarev, private com.) allowing for

a very large model space. It slightly differs in the treatment of the mean field, since the

single-particle states are determined in a Woods-Saxon potential obtained from a global

fit to spherical nuclei over a wide mass range (Ponomarev et al., 1979). This calculation
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Figure 5.2 Upper part: E1 strength distribution measured in the 112Sn (γ,γ′) reaction. Lower
part: QPM calculation using a large multiphonon configuration space. The solid line is the sensi-
tivity limit of experiment.
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Figure 5.3 Upper part: E1 strength distribution measured in the 120Sn (γ,γ′) reaction. Lower
part: QPM calculation using a large multiphonon configuration space. The solid line is the sensi-
tivity limit of experiment.
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includes all possible transitions up to three phonons. This allows to test the experimentally

observed strong fragmentation. The measured and predicted transitions are displayed for

112Sn in Fig. 5.2 and for 120Sn in Fig. 5.3. As seen in Fig. 5.2, the QPM calculation

shows good agreement with the experimental results of 112Sn(γ,γ′) except a small shift of

the centroid. The solid line in the figures show the experimental sensitivity limit. The

QPM calculation predicts a lot of transitions smaller than this limit which correspond to

approximately 15 % of total predicted strength in both isotopes. The rest of predicted

strengths are still more than observed experimentally. The stronger experimental frag-

mentation is especially visible in the comparison for 120Sn shown in Fig. 5.3.

5.1.2 Relativistic Quasiparticle Random Phase Approximation (R QRPA)

The R QRPA calculation is based on the single-particle basis obtained in a self-

consistent relativistic Hartree-Bogoliubov (RHB) approach and uses an interaction with

density-dependent meson-nucleon couplings, called DD-ME2 (Paar et al., 2005). The

RHB model provides a unified describtion of parcticle-hole (ph) and particle-particle (pp)

correlations. The results of the R QRPA calculation for the summed B(E1) strengths and

the centroid energies of the PDR in stable tin isotopes are listed in Table 5.2.

Table 5.2 Results of R QRPA calculations for stable even tin isotopes

Isotope ∑B(E1)(e2fm2) EC (MeV)

112Sn 0.285 9.33

114Sn 0.548 9.22

116Sn 0.917 9.11

118Sn 1.483 9.07

120Sn 1.822 8.92

122Sn 2.085 8.79

124Sn 2.393 8.75

66



5. DISCUSSION and CONCLUSION Banu ÖZEL

5.1.3 Discussion

The experimental summed B(E1) strengths and centroid energies for 112,116,120,124Sn

are compared to the theoretical QPM and R QRPA calculations (Tsoneva et al., 2007; Paar

et al., 2005) summed over an energy region Ex= 5.5-7.8 MeV in Fig 5.4. In this figure

the open triangles are R QRPA calculations, the upturned triangles are QPM calculations,

the full circles are the experimental results for 112,120Sn from the analysis of discrete

transitions, the full squares are total strengths of 112,120Sn which consists of measured

B(E1) strength and unresolved strength from the fluctuation analysis and the stars are the

sum of measured B(E1) strengths of 116,124Sn (Govaert, et al., 1997).

The upper part of the Fig. 5.4 shows the comparison of centroid energies as a func-

tion of mass number. The results of the R QRPA calculation are much higher than the

experimental results and the QPM values. Both models predict that the centroid energies

decreases with the number of neutrons. Although the experimental results are closer to the

QPM calculation, they do not exhibit such a smooth dependence on the neutron number.

On the contrary, the experimental results show almost constant values in every isotope.

Including the unresolved strength has little effect on the centroid energies.

The lower part of Fig. 5.4 displays the sum of B(E1) transition strengths as a function

of mass number in two different scales because R QRPA predicts much higher strengths

compared to the results of experiments and QPM calculations. The R QRPA calculations

do not show agreement with experimental results except the corrected total strength of

112Sn. There is another R QRPA calculation is not shown in Fig. 5.4, but predicts almost

the same amount of E1 strength in tin isotopes (Piekarewicz, 2006) with that from Paar

(Paar et al., 2005). The much larger strength and higher centroid energy in these calcu-

lations indicate that the effective mass used in this model, which scale the single-particle

spectrum, are not correct.

Both theoretical calculations (QPM and R QRPA) predict that the sum of B(E1)

strengths should increase with the number of neutrons. The QPM calculations are

relatively close the experimental results. Without unresolved strength correction the

112,116,124Sn isotopes show good agreement with QPM predictions but 120Sn would be

too small. After the correction, the sum of strengths of 112Sn and 120Sn are increasing by

almost 50 %. Now, 120Sn is in good agreement but 112Sn would be underpredicted by the
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112 116 120 124

Mass Number

6

8

10

1

2

0.0

0.2

0.4

B
(E

1
) 

  
(e

fm
)

2
2

C
e

n
tr

o
id

E
n

e
rg

y
 (

M
e

V
)

Figure 5.4 Comparison of R QRPA (triangles) and QPM (upturned triangles) calculations of
the PDR centroid energies (upper part) and summed B(E1) strength (lower part) to the experi-
mental results in 112,116,120,124Sn. Circles: Resolved transitions in 112,120Sn from present work.
Stars: Resolved transitions in 116,124Sn (Govaert et al., 1997). Squares: Total strength including
unrsolved transitions from present work.
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QPM. For a realistic comparison one should also know the unresolved strength of

116,124Sn isotopes. As mentioned before in the fluctuation analysis method the selection

of background in (γ, γ′) spectrum depends on the mean level spacing of nucleus under

consideration. In this case the amount of unresolved strengths of 116,124Sn isotopes can

be expected to be similar to that of 112,120Sn. In such a case, the total strength of 120Sn

would still be lower than other experimental corrected values. Thus, the present work

indicates that the PDR does not depend directly on the neutron excess.

However, there is an experimental problem since the present measurements are not

sensitive over the full energy region where the PDR is predicted, and omitted inelastic

branchings might become important at higher energies. On the other hand the QPM re-

sults support that the PDR is confirmed to the energy region, where strength is observed

in the (γ,γ′) For a final conclusion one needs a consistent set of data of the E1 response

from low to high energies as a real test of the models.

5.2 Conclusion and Outlook

In summary, the thesis presents high-resolution nuclear resonance fluorescence exper-

iments on 112Sn and 120Sn stable isotopes to investigate the E1 response below the neutron

threshold. The strongest transitions have been observed around the energy region of 6-7

MeV and the distributions of extracted B(E1) transitions have a resonance-like structure,

but in the case of 120Sn the dipole strengths are more fragmented. The sum of B(E1)

strengths are 187 (24) e2fm2 and 164 (29) e2fm2 with centroid energies 6.7 MeV and 6.6

MeV for 112Sn and 120Sn, respectively.

A fluctuation analysis was applied to the (γ,γ′) spectra to estimate the unresolved

strength which might be hidden in the background due to the finite energy resolution. This

analysis have been performed with the help of an autocorrelation function which provides

the information about the mean level spacing in the defined energy intervals. These can be

compared to model prediction of the NLD, which allows to adjust the background. Three

different theoretical models explained in Chapter 4 have been used: BSFG1, BSFG2

and HF-BSC (Egidy et al., 2005; Rauscher, et al., 1997; Demetriou et al., 2001). The

backgrounds determined from these models produce a very similar amount of unresolved

strength in the spectra and the differences between the models have been used to deter-
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mine the uncertainties of this procedure. The fluctuation analysis shows that the amount

of unresolved strength on (γ,γ′) spectra is obviously not negligible and should be applied

to other data which are taken with the NRF method, i.e. the spectra of 116Sn and 124Sn.

Together with the so determined unresolved part, the measured B(E1) strength distribu-

tions below the neutron threshold in 112Sn and 120Sn was compared to microscopic model

to understand their nature. QPM calculations with a very large multiphonon configura-

tion (Ponamarev, private com.) reasonably reproduce the fragmentation of the transition

strengths for 112Sn and 120Sn. The QPM and the R QRPA calculations predict a smooth

increase of the summed B(E1) strength and a decrease of the centroid energy with neutron

number in stable tin isotopes. However, the experimental results do not show a simple de-

pendence on neutron excess. This indicates that the low-energy E1 strength retains much

of its single-particle character rather than developing into a true collective mode. This is

in agreement with the picture deduced from the QPM results but contradicts the R QRPA

results.

For an improved understanding measurements of the complete E1 response below

and above the neutron threshold would be important. This is possible with high reso-

lution (p,p′) experiment at 0◦ at RCNP Osaka university (Tamii et al., 2007) and also

in near future in photon scattering experiments with new NEPTUN tagger facility at the

S-DALINAC (Lindenberg, 2007).
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