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ABSTRACT

Mathematical models of real life phenomena often are formulated by Partial
Differential Equations. Partial Differential Equations with singular source terms
arise in many different applications of science and engineering. Singular means that
within the spatial domain the source is defined by a Dirac delta function.

In this thesis, we focus on specific type of Partial Differential Equations, Advec-
tion Diffusion Reaction Equations with singular source terms. An analytical solution
of such equations can be found very rarely. Therefore, numerical methods play a
significant role. Numerical methods for these equations require a special treatment.
Due to the lack of smoothness or presence of discontinuities in the solutions of such
equations, standard numerical methods may fail to converge.

Weighted essentially non-oscillatory (WENO) methods on non-uniform meshes
are applied as numerical methods in this study. Construction of WENO methods
and a new scheme for Advection Diffusion problems is presented.

Keywords: Advection-Diffusion-Reaction Equations, Singular source terms, Nu-

merical methods, WENO
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İrfan TÜRK
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Tez Danışmanı: Doç. Dr. Maksat ASHYRALIYEV

Eş Danışman: Yard. Doç. Dr. Okan GERÇEK

ÖZ

Gerçek hayattaki olayların matematiksel modellemeleri genellikle kısmi difer-
ansiyel denklemler tarafından formülize edilir. Tekil kaynak terimleri içeren kısmi
diferansiyel denklemler, fen ve mühendislik bilimlerinde birçok alanında karşımıza
çıkar. Buradaki tekil ifadesi, uzaysal değer kümesinde kaynak, Dirac delta fonksiy-
onu tarafından tanımlanır anlamını taşımaktadır.

Bu tezde, özel bir kısmi diferansiyel denklem çeşidi olan, tekil kaynak terim-
leri içeren Adveksiyon-Difüzyon-Reaksiyon denklemleri üzerinde yoğunlaştık. Bu tip
denklemlerin analitik çözümleri genellikle çok nadir bulunur. Bu gibi durumlarda,
sayısal metotlar çok önemli bir rol oynar. Bu gibi denklemlerin sayısal çözüm metot-
ları özel bir yaklaşım ister. Bu tip denklemlerin çözümlerinde, pürüzsüzlüklerden
yoksun olma veya süreksizliklerden dolayı standart sayısal metotlar, yakınsamayı
gerçekleştiremeyebilirler.

Bu çalışmada, düzensiz aralıklı ağlarda ağırlıklı esasen salınımsız (WENO)
metodu sayısal metot olarak uygulanmıştır. WENO metotlarının kurulumu ve
Adveksiyon-Difüzyon problemler için yeni bir şema sunulmuştur.

Anahtar Kelimeler: Adveksiyon-Difüzyon-Reaksion Denklemleri, Tekil kaynak

terimleri, Sayısal metotlar, WENO
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Advection-Diffusion-Reaction Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Delta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Weighted Essentially Non-Oscillatory Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2 AN EXAMPLE FROM GAS HYDRODYNAMICS . . . . . . . . . . . . . 10

CHAPTER 3 NUMERICAL SOLUTION OF DIFFUSION PROBLEMS WITH

SINGULAR SOURCE TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The finite volume approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 4 FINITE DIFFERENCE METHOD VERSUS FINITE VOLUME

METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



viii

CHAPTER 5 CONSTRUCTION OF WENO APPROXIMATIONS ON NON-

UNIFORM MESHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Construction of WENO3 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Construction of WENO5 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

CHAPTER 6 APPLICATION OF WENO METHODS TO ADVECTION DIF-

FUSION REACTION PROBLEMS WITH SINGULAR SOURCE

TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Advection Problems with Singular Source Terms . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Spatial discretization by using WENO methods . . . . . . . . . . . . . . . . . . . 52

6.1.2 Temporal discretization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Advection Diffusion Problems with Singular Source Terms . . . . . . . . . . . . . 63

6.2.1 Spatial discretization by using WENO methods . . . . . . . . . . . . . . . . . . . 63

6.2.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 7 NONLINEAR EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

APPENDIX A DECLARATION STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Declaration Statement for the Originality of the Thesis. . . . . . . . . . . . . . . . . 88

A.2 Publications from Thesis Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX B MATLAB CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.1 Construction of WENO5 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.2 MATLAB codes for Advection problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2.1 WENO3 code for problem (6.1.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2.2 WENO5 code for problem (6.1.20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



ix

LIST OF TABLES

TABLE

3.1 The errors between the exact solution of problem (3.3.1) and the numer-

ical solutions for different values of h = 1/M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 The errors between the exact solution of the problem (4.1.3) and the

numerical solutions computed by (4.1.4) with N = 104, ε = 0.1 and

ε = 0.01 for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 The errors between the exact solution of the problem (4.1.3) and the

numerical solutions computed by (4.2.5) withN = 104 for different values

of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1 The errors between the exact solution of the problem (6.1.17) and the

numerical solutions computed by semi-implicit WENO3 method on non-

uniform mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The errors between the exact solution of the problem (6.1.17) and the

numerical solutions computed by semi-implicit WENO5 method on non-

uniform mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 The errors between the exact solution of the problem (6.1.20) and the

numerical solutions computed by semi-implicit WENO3 method on uni-

form mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 The errors between the exact solution of the problem (6.1.20) and the

numerical solutions computed by semi-implicit WENO5 method on uni-

form mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 The errors between the exact solution of the problem (6.2.17) and the

numerical solutions computed by semi-implicit WENO3 method on non-

uniform mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



x

6.6 The errors between the exact solution of the problem (6.2.17) and the

numerical solutions computed by semi-implicit WENO5 method on non-

uniform mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.7 The errors between the exact solution of the problem (6.2.19) and the

numerical solutions computed by semi-implicit WENO3 method on uni-

form mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.8 The errors between the exact solution of the problem (6.2.19) and the

numerical solutions computed by semi-implicit WENO5 method on uni-

form mesh for different values of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.9 The errors between the exact solution of the problem (6.2.19) and the

numerical solutions computed by semi-implicit WENO3 and WENO5

methods on non-uniform mesh with 294 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.10 The errors between the exact solution of the problem (6.2.19) and the

numerical solutions computed by semi-implicit WENO3 and WENO5

methods on non-uniform mesh with 216 cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xi

LIST OF FIGURES

FIGURE

2.1 One-dimensional tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Regularization of Dirac delta function defined by (4.1.2). . . . . . . . . . . . . . . . . . . 22

5.1 Cells and cell centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Exact solution (solid lines) of problem (6.1.20) at time t = 0.25 and

corresponding numerical solutions (crosses) computed by semi-implicit

WENO3 method (left) and semi-implicit WENO5 method (right) on

non-uniform mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Exact solution (solid lines) of problem (6.1.20) at time t = 0.5 and

corresponding numerical solutions (crosses) computed by semi-implicit

WENO3 method (left) and semi-implicit WENO5 method (right) on

non-uniform mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



xii

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOL/ABBREVIATION

ODE Ordinary Differential Equation

PDE Partial Differential Equation

DDE Delay Differential Equation

ADE Algebraic Differential Equation

ADRE Advection Diffusion Reaction Equation

FDM Finite Difference Method

FEM Finite Element Method

FVM Finite Volume Method

ENO Essentially Non-Oscillatory method

WENO Weighted Essentially Non-Oscillatory method

WENO3 Third order Weighted Essentially Non-Oscillatory method

WENO5 Fifth order Weighted Essentially Non-Oscillatory method



CHAPTER 1

INTRODUCTION

To explore the nature, it’s mathematical connections need to be examined.

At that point, modelling arises. Mathematical models of real life phenomena, of-

ten are formulated by Ordinary Differential Equations (ODEs) (Ross, 1989), De-

lay Differential Equations (DDEs) (Smith, 2011), Algebraic Differential Equations

(ADEs) (Kunkel and Mehrmann, 2006), Partial Differential Equations (PDEs)

(Salso, 2008), etc. Models with PDEs are used in many areas of science and engi-

neering, such as Economics, Environment, Biology, Medicine, Drug design, Neural

Networks, Fluid Dynamics, image processing, signal processing, etc. In order to

find the analytical solution of PDE, techniques such as Laplace Transform Method,

Fourier Series Method, Power Series Method, etc. are used. Unfortunately, most

of the time, analytical solution cannot be found and therefore one has to apply

numerical methods to obtain an approximation of the solution of PDE.

1.1 ADVECTION-DIFFUSION-REACTION EQUATION

In this thesis, we focus on specific type of PDEs, Advection-Diffusion-Reaction

Equations (ADREs). Mathematical models with ADREs are widely used in ap-

plied sciences and engineering, such as modeling of chemical and biological pro-

cesses (Hundsdorfer and Verwer, 2003); (Owolabi and Patidar, 2014); (Elias and

Clairambault, 2014); (Zhang, 2012), forecasting and development of new gas reser-

voirs (Zakirov and Vasilyev, 1984); (Basniev et al., 1986); (Bedrikovetskii et al.,

1993).

1
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Most general form of one-dimensional ADRE is:

∂

∂t
u(x, t) +

∂

∂x

(
a(x, t)u(x, t)

)
=

∂

∂x

(
d(x, t)

∂

∂x
u(x, t)

)
+ f
(
x, t, u(x, t)

)
, (1.1.1)

where a, d, f are given functions and u is unknown function. Here, the term
∂

∂x

(
a(x, t)u(x, t)

)
models the advection,

∂

∂x

(
d(x, t)

∂

∂x
u(x, t)

)
models the diffu-

sion and f
(
x, t, u(x, t)

)
models the reaction. The advection term models the trans-

port of something from one region to another by a flow. An example for the advection

is the transport of pollutant or silt in a river by a flow. In meteorology and physical

oceanography, advection is the transport of some property of atmosphere or ocean,

such as heat, humidity or salinity. Diffusion term models mixing or mass trans-

port without requiring bulk motion. Reaction term can come across in chemical

and biological processes such as combining two different molecules to get different

molecules, or reception of a cell having a cut in it.

1.2 DELTA FUNCTION

In various models of real life phenomena, reactions occur at a single point

within the spatial domain. In such cases, reaction term in model equations can be

defined by a Dirac delta function expression. For example, a static singular source

term in (1.1.1) can have the following form:

f
(
x, t, u(x, t)

)
≡ g
(
x, t, u(x, t)

)
δ(x− ξ), (1.2.1)

where g is a smooth function with regard to all arguments, ξ lies in the spatial

domain where equation (1.1.1) is defined, and δ(x − ξ) is the Dirac delta function

described as a unit impulse at a position x = ξ (Olver, 2013). Because an impulse

happens at a single point, δ(x − ξ) = 0 for x 6= ξ. Besides this, because the delta

function is an impulse, the total amount of force is aimed to be equal to 1. Thus,

Dirac delta function is not a classical function but rather a distribution (Olver,

2013). It is defined as following:

δ(x− ξ) =

 0, x 6= ξ

∞, x = ξ
,

∞∫
−∞

δ(x− ξ)dx = 1. (1.2.2)
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Note that for any function f(x),

∞∫
−∞

f(x)δ(x− ξ)dx = f(ξ) (1.2.3)

holds. Alternatively, Dirac delta function can be considered as derivative of the unit

step function, called Heaviside function, i.e.

δ(x− ξ) =
d

dx
H(x− ξ). (1.2.4)

1.3 NUMERICAL METHODS

An analytical solution of ADRE (1.1.1) can be found very rarely. Quite often,

the use of analytical methods to solve (1.1.1) becomes extremely difficult or even

impossible, especially when singular source terms are present in equation. For this

reason numerical methods play a significant role.

There are various numerical methods for PDEs among which the most pop-

ular are Finite Difference methods (FDM), Finite Volume methods (FVM), Finite

Element methods (FEM), Spectral methods, Boundary Element methods, Level set

methods, etc. When reaction is defined as a singular source term, a special treat-

ment is required when numerical methods are applied. It is mainly due to the fact

that solution of ADREs with singular source terms have lack of smoothness. For

instance, Finite Difference methods based on Taylor’s formula, may fail to converge.

Numerical methods, based on integral form of (1.1.1), such as FVM, seem to be

more appropriate when reaction is singular (Ashyraliyev et al., 2008).

In the literature, related to the study of numerical solutions of Advection-

Diffusion-Reaction equations with singular source terms the following studies are

done by different authors.

“Numerical solutions of Diffusion Reaction equations with singular source

terms” have been studied under the same paper name by M. Ashyraliyev, J.G.

Bloom, and J.G. Verwer with a finite volume approach in 2006 (Ashyraliyev et al.,

2008). In this work, due to the usage of singular source term, defined as Dirac delta

function, order reduction occurred from two to one on a uniform grid with finite
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volume approach. To overcome this deficiency, the discretization is tested on spe-

cial locally refined grids. It is established that with grid refinement, second order

convergence can be restored.

Numerical solutions of Advection equations with singular source terms have

been studied in the paper titled “A convergence finite volume scheme for hyperbolic

conservation laws with source terms” by J. Santos, and P. de Oliveira (Santos and

de Oliveira, 1999). In this study, the source term is also defined by Dirac delta

function to use the fact that Dirac delta function is the derivative of Heaviside

function. Finite Volume method is used in this paper. It is shown that the results

obtained from the method converge to the weak solution of the problems.

Numerical solution of the Advection Reaction Diffusion equation at different

scales has been studied by A.D. Rubio, A. Zalts, C.D. El Hasi (Rubio et al., 2008).

A one-dimensional bimolecular model of a solute transport equation in porous media

was investigated and solved by using forward in time, centered in space Finite Dif-

ference method. Numerical simulations are shown for both slow and fast reactions.

Numerical solution of the Reaction Advection Diffusion equation on the sphere

has been studied by Janusz A. Pudykiewicz (Pudykiewicz, 2006). In this paper, an

algorithm is derived by using Finite Volume approach for a Reaction Advection

Diffusion equation on the sphere.

AMF-RungeKutta formulas and error estimates for the time integration of

Advection Diffusion Reaction PDEs has been studied by S. Gonzalez-Pinto et al.

(Gonzalez-Pinto et al., 2015). Semi discrete linear Advection Diffusion Reaction

equations in multi dimensions are investigated and convergence estimates of some

of the numerical methods are examined in the study.

A SIS Reaction Diffusion Advection model in a low-risk and high-risk domain

has been studied by Jing Ge et al. (Ge et al., 2015). In this paper, spreading domain

plays an important role for a disease in the epidemic SIS model. The claims are

proved with some simulations and examples with the effect of advection.

A Reaction Diffusion Advection model of harmful algae growth with toxin

degradation has been studied by Feng-Bin Wang et al. lately (Wang et al., 2015b).

In this paper, the dynamics of algae and algal toxins are examined in a water flow.

It is concluded that the basic reproduction number plays an important role for algae
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for surviving or extinction.

1.4 WEIGHTED ESSENTIALLY NON-OSCILLATORY METHOD

Essentially non-oscillatory (ENO) and Weighted essentially non-oscillatory

(WENO) schemes are the standard methods to approximate solutions of hyper-

bolic partial differential equations (Huang et al., 2014). ENO methods, were first

introduced by Harten et al. in 1987 (Harten et al., 1987); (Harten and Osher, 1987).

In ENO methods, some high order reconstructions are computed by using several

candidate stencils. Among these stencils, only the one that has the smoothest sten-

cil is used. For problems in hyperbolic conservation laws, the difficult part is the

treatment of the discontinuities when we construct numerical schemes. In ENO

schemes, any order of accuracy can be designed in smooth regions without spurious

oscillations near discontinuities (Liu and Osher, 2008); (Shu, 2009).

WENO methods achieve a higher order accuracy than ENO methods in smooth

regions while maintaining the same property with ENO at discontinuities (Wang

et al., 2008). The first WENO scheme was introduced by Liu et al. in 1994 (Liu

et al., 1994) with the third order accurate finite volume WENO scheme. WENO

schemes use convex combination of the stencils with weights rather than using the

smoothest stencil as in ENO method. For the problems having strong discontinuities,

WENO methods offer stable, non-oscillatory solutions (Shu, 2011). The main theme

of the WENO methods is the fact that the method is based on the approximation

by using polynomial interpolation. There is no direct relation between the method

and any PDE. Therefore, it can be used for different topics as well such as image

processing. A detailed information about WENO schemes can be found in the

lecture notes (Barth and Deconinck, 1999). In the literature, related to the study

of WENO methods, upcoming studies are done by different authors.

Essentially non-oscillatory (ENO) methods, were first introduced by Harten et

al. in 1987 (Harten et al., 1987). This classical paper has made a marvelous impact

on researchers. It has been cited more than 2280 times as of May 6, 2014. In this

paper, uniformly high order accurate schemes of numerical approximation of weak
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solutions of hyperbolic systems of conservation laws were studied. The main idea

is based on choosing interpolation polynomials from selected stencils. Among these

stencils, the smoothest stencil is selected for ENO reconstruction.

WENO method was introduced by Xu-Dong Liu, Stanley Oshery, and Tony

Chan in 1994 (Liu et al., 1994). It has been a new version of ENO method. Instead

of choosing one stencil, the smoothest one, a convex combination of all selected

stencils has been used in this new version. In this paper, the results show that

WENO is more successful than ENO method in terms of accuracy.

Efficient implementation of weighted ENO schemes was studied by Guang-

Shan Jiang, and Chi-Wang Shu in 1996 (Jiang and Shu, 1996). The WENO method

was further analyzed and improved. A fifth order WENO scheme was introduced in

this paper.

Central WENO schemes for hyperbolic systems of conservation laws was stud-

ied by Doron Levy, Gabriella Puppo, and Guivanni Russo in 1999 (Levy et al., 1999).

Centered version of WENO schemes were first presented in this paper. Third and

fourth order schemes were constructed and tested in this study.

Finite Volume WENO schemes for three-dimensional conservation laws has

been studied by V.A. Titarev and E.F. Toro in 2004 (Titarev and Toro, 2004). In

this paper, the Finite Volume WENO schemes are extended to three-dimensional

case. A set of numerical simulations are presented.

High order Weighted essentially non-oscillatory schemes for convection domi-

nated problems has been studied by Chi-Wang Shu in 2009 (Shu, 2009). The paper

basically explains all the processes of WENO scheme and is a good manual for the

method. It has the history of the method, and summarizes almost all the papers

related to WENO up to published day.

A recent paper titled “A re-averaged WENO reconstruction and a third order

CWENO scheme for hyperbolic conservation laws” has been studied by Chieh-Sen

Huang, Todd Arbogast, and Chen-Hui Hung in 2014 (Huang et al., 2014). In this

paper, a re-averaging technique is developed. It is shown that the constructed

CWENO3 scheme is a third order accurate in smooth regions while giving good

results for non-smooth problems.

The papers mentioned so far, mainly focus on the uniform grid cases. There
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are several papers for non-uniform grids as below.

The paper titled “Grid adaptation with WENO schemes for non-uniform grids

to solve convection-dominated partial differential equations” has been studied by J.

Smit, M. van Sint Annaland, and J.A.M. Kuipers in 2005 (Smit et al., 2005). In

this paper, it is shown that the number of grid cells to solve the convection domi-

nated PDE can be greatly reduced by using grid adaptation technique. A numerical

algorithm is demonstrated. A set of formulas for grid adaptation is presented.

The paper titled “Observations on the fifth order WENO method with non-

uniform meshes” has been studied by Rong Wang, Hui Feng, and Raymond J. Spiteri

in 2008 (Wang et al., 2008). In this paper, a fifth order Finite Volume explicit

formulas are presented and tested. Performance on uniform grid and non-uniform

grid cases are compared. In this paper, it is shown that the non-uniform grid case

is much better in terms of computational efficiency and memory usage.

The paper titled “Adaptive mesh refinement based on high order finite dif-

ference WENO scheme for multi-scale simulations” has been studied by Chaopeng

Shen, Jing-Mei Qui, and Adrew Christlieb in 2011 (Shen et al., 2011). A Finite Dif-

ference AMR-WENO method for hyperbolic conservation laws is proposed in this

paper. The proposed method is compared to the third order method and shown to

give better results.

There are also a few papers about implicit WENO schemes that have been

studied so far. We also summarize them as below.

The paper titled “Implicit WENO shock capturing scheme for unsteady flows.

Application to one-dimensional Euler equations” has been studied by A. Cadiou and

C. Tenaud in 2004 (Cadiou and Tenaud, 2004). Unsteady numerical simulation for

one dimensional shock waves is studied by using total variation diminishing (TVD)

schemes. Implicit resolution of Euler equation is performed and tested in this study.

The paper titled “ A fifth order flux implicit WENO method” has been studied

by Sigal Gottlieb, Julia S. Mullen, and Steven J. Ruuth in 2006 (Gottlieb et al.,

2006). In this paper, implicit schemes of first order flux-implicit Euler, as a corrector,

first order implicit Euler, second order implicit Crank-Nicolson, a third order implicit

Adams-Moulton, a third order Backward Differentiation Formula (BDF), implicit

third order Adams-Moulton are compared with different schemes. Some numerical
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outcomes are presented in this paper.

Implicit WENO scheme and high order viscous formulas for compressible flows

has been presented by Yiqing Shen, Baoyuan Wang, and Gecheng Zha in 2007 (Shen

et al., 2007). In this paper, a high order Finite Difference scheme is developed for

Navier-Stokes equations.

High order accurate semi-implicit WENO schemes for hyperbolic balance laws

has been studied by Nelida Crnjaric-Zic, and Bojan Crnkovic in 2011 (Crnjaric-

Zic and Crnkovic, 2011). In this paper, WENO spatial discretization is combined

with SSP singly diagonally implicit (SDIRK) methods. Semi-implicit Finite Volume

WENO schemes are constructed and tested.

Parallel adaptive mesh refinement method based on WENO Finite Differ-

ence scheme for the simulation of multi-dimensional detonation has been studied

by Cheng Wang et al. in 2015 (Wang et al., 2015a). In this paper, an adaptive

mesh refinement with Weighted essentially non-oscillatory (WENO) Finite Differ-

ence method is proposed (AMR&WENO). The method is tested and produced con-

vergent results for 1-dimensional smooth problems.

1.5 OUTLINE OF THESIS

The thesis is organized in the following way. In Chapter 2, a mathemati-

cal model from gaz hydrodynamics, a coupled system of Diffusion and Advection

equations with singular source terms, is examined. The analytical solution of this

problem is obtained by using Laplace Transform method. In Chapter 3, a nu-

merical study is presented for the Diffusion problem having singular source terms.

In Chapter 4, the application of Finite Difference and Finite Volume methods for

one-dimensional Advection Diffusion problem with source term is illustrated. The

difference between the methods is discussed when the source term is singular. An

example of one-dimensional heat equation with singular source term is used for nu-

merical illustration. In Chapter 5, the third order of accuracy and the fifth order

of accuracy WENO methods on non-uniform meshes are constructed. The order of

accuracy of each method in case of smooth functions is established. In Chapter 6,
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constructed WENO schemes are used for Advection equation with singular source

term and Advection Diffusion equation with singular source term. Numerical exam-

ples for both cases are provided. In Chapter 7, we extend the methodology to the

non-linear equations. We conclude the thesis in Chapter 8 with final remarks.



CHAPTER 2

AN EXAMPLE FROM GAS HYDRODYNAMICS

In this chapter, we consider a mathematical model for spatio-temporal distri-

bution of temperature and pressure in one dimensional gas pipe which has finite

number of singular source points (see Figure 2.1).

Figure 2.1 One-dimensional tube.

Denoting the temperature and pressure by v(x, t) and u(x, t), respectively, this

dynamical system can be described by initial-boundary value problem



ut = Duxx +
m∑
i=1

ciδ(x− ξi), t > 0, 0 < x < 1,

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,

u(0, t) = uL, u(1, t) = uR, t ≥ 0,

(2.0.1)

10
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where 0 < ξ1 < ξ2 < ... < ξm < 1, coupled with the initial-boundary value problem



vt + avx = bux −
m∑
i=1

kiδ(x− ξi), t > 0, 0 < x < 1,

v(x, 0) = ψ(x), 0 ≤ x ≤ 1,

v(0, t) = v0(t), t ≥ 0.

(2.0.2)

Here D, a, b, ci, ki are all given positive constants; ϕ(x), ψ(x), and v0(t) are given

smooth functions. Note that the model (2.0.1)-(2.0.2) is an example of Advection

Diffusion problem with singular source terms. We find the solution of (2.0.1)-(2.0.2)

by using known analytical methods.

The analytical solution of (2.0.1) can be written as:

u(x, t) = U(x, t) + w(x), 0 ≤ x ≤ 1, t ≥ 0, (2.0.3)

where w(x) is the solution of the boundary problem:
−Dwxx =

m∑
i=1

ciδ(x− ξi), 0 < x < 1,

w(0) = uL, w(1) = uR

(2.0.4)

and U(x, t) is the solution of the initial-boundary value problem:
Ut = D Uxx, t > 0, 0 < x < 1,

U(x, 0) = ϕ(x)− w(x), 0 ≤ x ≤ 1,

U(0, t) = 0, U(1, t) = 0, t ≥ 0.

(2.0.5)

It is easy to show that the problem (2.0.4) has the following solution

w(x) = uL − (uR − uL)x+
1

D

m∑
i=1

cigi(x), (2.0.6)

where

gi(x) =


x(1− ξi), if 0 ≤ x ≤ ξi,

ξi(1− x), if ξi < x ≤ 1.
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It is well-known that the problem (2.0.5) has the following solution

U(x, t) =
∞∑
j=1

rj exp
(
−j2π2Dt

)
sin (jπx), (2.0.7)

where

rj = 2

1∫
0

(
ϕ(x)− w(x)

)
sin (jπx)dx.

So, combining (2.0.3), (2.0.6) and (2.0.7), we obtain the analytical solution of (2.0.1)

u(x, t) = uL− (uR − uL)x+
1

D

m∑
i=1

cigi(x)+
∞∑
j=1

rj exp
(
−j2π2Dt

)
sin (jπx). (2.0.8)

Remark 2.0.1. Note that the steady state solution of (2.0.1)

u∗(x) = uL − (uR − uL)x+
1

D

m∑
i=1

cigi(x)

is a continuous function.

By differentiating (2.0.8) with respect to x, we have

ux = uL − uR +
1

D

m∑
i=1

ci

(
1− ξi −H(x− ξi)

)

+
∞∑
j=1

rj exp
(
−j2π2Dt

)
πj cos (jπx)

(2.0.9)

Now, plugging (2.0.9) into the right-hand side of equation in (2.0.2) gives

vt + avx = b

(
uL − uR +

1

D

m∑
i=1

ci

(
1− ξi −H(x− ξi)

))

+ b

∞∑
j=1

rj exp
(
−j2π2Dt

)
πj cos (jπx)−

m∑
i=1

kiδ(x− ξi).

By taking the Laplace Transform with respect to t, from the last equation we obtain

sV (x, s)− ψ(x) + a
d

dx
V (x, s) =

b

s

(
uL − uR +

1

D

m∑
i=1

ci

(
1− ξi −H(x− ξi)

))

+ b
∞∑
j=1

rjπj cos (jπx)

s+ j2π2D
− 1

s

m∑
i=1

kiδ(x− ξi),
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where V (x, s) = L{v(x, t)}. Then, we have

d

dx

(
exp

(sx
a

)
V (x, s)

)
=

1

a
exp

(sx
a

)[b
s

(
uL − uR +

1

D

m∑
i=1

ci

(
1− ξi −H(x− ξi)

))

+b
∞∑
j=1

rjπj cos (jπx)

s+ j2π2D
− 1

s

m∑
i=1

kiδ(x− ξi) + ψ(x)

]
.

Integrating both sides of this equation from 0 to x, we get

exp
(sx
a

)
V (x, s)− V0(s) =

b

as
(uL − uR)

x∫
0

exp

(
sζ

a

)
dζ

+
b

aDs

m∑
i=1

ci(1− ξi)
x∫

0

exp

(
sζ

a

)
dζ

− b

aDs

m∑
i=1

ci

x∫
0

exp

(
sζ

a

)
H(ζ − ξi)dζ

+
b

a

∞∑
j=1

jπrj
s+ j2π2D

x∫
0

exp

(
sζ

a

)
cos (jπζ)dζ

− 1

as

m∑
i=1

ki

x∫
0

exp

(
sζ

a

)
δ(ζ − ξi)dζ +

1

a

x∫
0

exp

(
sζ

a

)
ψ(ζ)dζ,

where V0(s) = L{v0(t)}. Since

x∫
0

exp

(
sζ

a

)
dζ =

a

s

(
exp

(sx
a

)
− 1
)
,

x∫
0

exp

(
sζ

a

)
H(ζ − ξi)dζ =

a

s
H(x− ξi)

(
exp

(sx
a

)
− exp

(
sξi
a

))
,

x∫
0

exp

(
sζ

a

)
δ(ζ − ξi)dζ = exp

(
sξi
a

)
H(x− ξi),

x∫
0

exp

(
sζ

a

)
cos (jπζ)dζ =

as

s2 + a2j2π2
exp

(sx
a

)
cos (jπx)

− as

s2 + a2j2π2
+

a2jπ

s2 + a2j2π2
exp

(sx
a

)
sin (jπx),
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we have

V (x, s) =
b

s2
(uL − uR)

(
1− exp

(
−sx
a

))
+

b

Ds2

m∑
i=1

ci(1− ξi)
(

1− exp
(
−sx
a

))

− b

Ds2

m∑
i=1

ciH(x− ξi)
(

1− exp

(
−s(x− ξi)

a

))

+
b

a

∞∑
j=1

jπrj
s+ j2π2D

as

s2 + a2j2π2
cos (jπx)

+
b

a

∞∑
j=1

jπrj
s+ j2π2D

(
− as

s2 + a2j2π2
exp

(
−sx
a

)
+

a2jπ

s2 + a2j2π2
sin (jπx)

)

− 1

as

m∑
i=1

ki exp

(
−s(x− ξi)

a

)
H(x− ξi)

+
1

a

x∫
0

exp

(
−s(x− ζ)

a

)
ψ(ζ)dζ + V0(s) exp

(
−sx
a

)
.

By using

L−1

(
jπs

(s+ j2π2D)(s2 + a2j2π2)

)
= πj

πjD cos (πajt) + a sin (πajt)

πj(a2 + π2D2j2)

− πjD exp (−Dj2π2t)

a2 + π2D2j2
,

L−1

(
jπs

(s+ j2π2D)(s2 + (ajπ)2)
exp

(
−sx
a

))

= πjH
(
t− x

a

) πjD cos (πj(at− x)) + a sin (πj(at− x))

πj(a2 + π2D2j2)

− πjH
(
t− x

a

) D exp
(
−Dj2π2

(
t− x

a

))
a2 + π2D2j2

,

L−1

(
aj2π2

(s+ j2π2D)(s2 + (ajπ)2)

)

=
a exp (−Dj2π2t) + πjD sin (πajt)− a cos (πajt)

a2 + π2D2j2
,
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we obtain the analytical solution of (2.0.2)

v(x, t) = b(uL − uR)
(
t− (t− x

a
)H(t− x

a
)
)

+
b

D

m∑
i=1

ci(1− ξi)
(
t− (t− x

a
)H(t− x

a
)
)

− b

D

m∑
i=1

ciH(x− ξi)
(
t− (t− x− ξi

a
)H(t− x− ξi

a
)

)

+ b
∞∑
j=1

rj

[
πj

(
πjD cos (πajt) + a sin (πajt)

πj(a2 + π2D2j2)
− D exp (−Dj2π2t)

a2 + π2D2j2

)
cos (jπx)

− πjH(t− x

a
)
πjD cos (πj(at− x)) + a sin (πj(at− x))

πj(a2 + π2D2j2)

+ πjH(t− x

a
)
D exp (−Dj2π2(t− x

a
))

a2 + π2D2j2

+
a exp (−Dj2π2t) + πjD sin (πajt)− a cos (πajt)

a2 + π2D2j2
sin (jπx)

]

− 1

a

m∑
i=1

kiH(t− x− ξi
a

)H(x− ξi)

+
1

a

x∫
0

δ(t− x− ζ
a

)ψ(ζ)dζ +H(t− x

a
)v0(t− x

a
)

or

v(x, t) =
b

a

(
x− (x− at)H(x− at)

)(
uL − uR +

1

D

m∑
i=1

ci(1− ξi)

)

− b

aD

m∑
i=1

ciH(x− ξi)
(
x− ξi − (x− at− ξi)H(x− at− ξi)

)

+ b

∞∑
j=1

rj

[
πjD cos (πj(at− x)) + a sin (πj(at− x))

a2 + π2D2j2
H(x− at)

+
exp (−Dj2π2t)

a2 + π2D2j2

(
a sin (jπx)− πjD cos (jπx) + πjD exp

(
Dj2π2x

)
H(at− x)

)]

− 1

a

m∑
i=1

kiH(at− x+ ξi)H(x− ξi) +H(x− at)ψ(x− at) +H(at− x)v0(t− x

a
).
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Remark 2.0.2. The steady state solution of (2.0.2) when v0(t) = v0 ≡ const is

given by

v∗(x) =
bx

a

(
uL − uR +

1

D

m∑
i=1

ci(1− ξi)

)
− b

aD

m∑
i=1

ci(x− ξi)H(x− ξi)

− 1

a

m∑
i=1

kiH(x− ξi) + v0.

Note that this steady state solution has discontinuities at all points x = ξi. When

v0(t) 6≡ const, (2.0.2) does not have a steady state solution.



CHAPTER 3

NUMERICAL SOLUTION OF DIFFUSION PROBLEMS

WITH SINGULAR SOURCE TERMS

In this chapter, we discuss the numerical solution of initial-boundary value

problem with singular source terms


ut = D uxx + k1δ(x− a1) + k2δ(x− a2), 0 < x < 1, t > 0, 0 < a1 < a2 < 1,

u(0, t) = uL, u(1, t) = uR, t ≥ 0,

u(x, 0) = φ(x), 0 ≤ x ≤ 1,

(3.0.1)

where δ(x) is a Dirac delta function. For ease of presentation, we assume that there

are only two source terms. The presented material is extendable to the case with

more than two source terms. Additionally, this study can be readily extended to

the case with time-dependent source terms.

3.1 THE ANALYTICAL SOLUTION

Suppose that the solution of problem (3.0.1) can be written as:

u(x, t) = v(x, t) + w(x), 0 ≤ x ≤ 1, t ≥ 0, (3.1.1)

where w(x) is the solution of boundary value problem


−D wxx = k1δ(x− a1) + k2δ(x− a2), 0 < x < 1, 0 < a1 < a2 < 1,

w(0) = uL, w(1) = uR

(3.1.2)

17
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and v(x, t) is the solution of diffusion problem
vt = D vxx, 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t ≥ 0,

v(x, 0) = φ(x)− w(x), 0 ≤ x ≤ 1.

(3.1.3)

It is easy to show that problem (3.1.2) has the following formal solution

w(x) =


c1x+ c2, 0 ≤ x < a1

− k1

D
(x− a1) + c1x+ c2, a1 ≤ x < a2

− k1

D
(x− a1)− k2

D
(x− a2) + c1x+ c2, a2 ≤ x ≤ 1,

(3.1.4)

where c2 = uL and c1 = uR − uL +
k1

D
(1− a1) +

k2

D
(1− a2).

It is well-known that the problem (3.1.3) has the following solution

v(x, t) =
∞∑
k=1

bk exp
(
−k2π2Dt

)
sin (kπx), (3.1.5)

where

bk = 2

1∫
0

(
φ(x))− w(x)

)
sin (kπx)dx.

Combining (3.1.1), (3.1.4) and (3.1.5), we obtain the solution of problem (3.0.1).

3.2 THE FINITE VOLUME APPROACH

Let h = 1/M where M is the number of uniform grid cells Ωi = [(i − 1)h, ih]

for i = 1, 2, . . . ,M covering [0, 1]. Let xi = (i − 1/2)h denote the cell center of Ωi.

The finite volume method for (3.0.1) amounts to first integrating (3.0.1) over Ωi and

dividing by the cell volume, which gives

1

h

∫
Ωi

ut(x, t)dx =
D

h

∫
Ωi

uxx(x, t)dx+
k1

h

∫
Ωi

δ(x− a1)dx+
k2

h

∫
Ωi

δ(x− a2)dx (3.2.1)

for i = 1, 2, . . .M . Applying the fundamental theorem of calculus, we have

∂

∂t

1

h

∫
Ωi

u(x, t)dx

 =
D

h

(
ux(xi+1/2, t)− ux(xi−1/2, t)

)

+
k1

h

∫
Ωi

δ(x− a1)dx+
k2

h

∫
Ωi

δ(x− a2)dx, i = 1, 2, . . .M.

(3.2.2)
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Let us assume that a1 ∈ Ωj1 and a2 ∈ Ωj2 . Then (3.2.2) becomes

∂

∂t

1

h

∫
Ωi

u(x, t)dx

 =
D

h

(
ux(xi+1/2, t)− ux(xi−1/2, t)

)

+ k1
δij1
h

+ k2
δij2
h
, i = 1, 2, . . .M,

(3.2.3)

where δij is the Kronecker delta symbol. Next, let us denote

ūi(t) =
1

h

∫
Ωi

u(x, t)dx, φ̄i =
1

h

∫
Ωi

φ(x)dx, i = 1, 2, ...,M

and

Ū(t) =



ū1(t)

ū2(t)

·

·

·

ūM(t)


, Φ̄ =



φ̄1

φ̄2

·

·

·

φ̄M


.

Then, approximating ux(xi+1/2, t) and ux(xi−1/2, t) in (3.2.3) by
(
ūi+1(t)− ūi(t)

)
/h

and
(
ūi(t)− ūi−1(t)

)
/h, respectively, results in the system of linear ordinary differ-

ential equations:  Ū ′(t) = A Ū(t) + b, t > 0,

Ū(0) = Φ̄,
(3.2.4)

where

A =
D

h2



−3 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −3


, b =

1

h



0

·

k1

·

k2

·

0


.

Here vector b has zero entries except at entries j1 and j2. Note that the values −3 at

the corner entries of matrix A are due to the fact that we have chosen a cell-centered

grid and have Dirichlet boundary values (Hundsdorfer and Verwer, 2003).

Now what remains is to turn the continuous time solution Ū(t) in a fully

discrete solution by numerical time integration. We use the second order of accuracy

Crank-Nicolson scheme for this.



20

3.3 NUMERICAL EXAMPLE

We consider the initial-boundary value problem
ut = uxx + δ(x− 1

3
) + δ(x− 2

3
), 0 < x < 1, 0 < t < 5,

u(0, t) = u(1, t) = 0, 0 ≥ t ≥ 5,

u(x, 0) = sin 2πx+ z(x), 0 ≤ x ≤ 1,

(3.3.1)

where

z(x) =



x, 0 ≤ x <
1

3
1

3
,

1

3
≤ x <

2

3

1− x, 2

3
≤ x ≤ 1

The exact solution of the problem (3.3.1) is

u(x, t) = exp
(
−4π2t

)
sin 2πx+ z(x), 0 ≤ x ≤ 1, 0 ≤ t ≤ 5. (3.3.2)

We compute the error between the exact solution and the numerical solution

by:

Error = max
1≤k≤N
1≤i≤M

∣∣ūi(tk)− ūki ∣∣ ,
where ūki represents the solution of the numerical scheme at t = tk.

The numerical solutions are computed for different values of M , while the time

step in all cases is kept fixed τ = 10−3. Table 3.1 shows the errors between the exact

solution of the problem (3.3.1) and the numerical solutions. Note that with standard

Finite Volume method we obtain the first order convergence instead of expected

second order. This order reduction is due to the fact that the solution of problem

(3.3.1) is not continuously differentiable and has a lack of smoothness (Ashyraliyev

et al., 2008).

Table 3.1 The errors between the exact solution of problem (3.3.1) and the numerical
solutions for different values of h = 1/M .

M = 20 M = 40 M = 80 M = 160

Error 0.0083 0.0042 0.0021 0.0010



CHAPTER 4

FINITE DIFFERENCE METHOD VERSUS FINITE

VOLUME METHOD

In this chapter, we will compare FDM (LeVeque, 2007) and FVM (LeVeque,

2002) in case of having singular source term in a simple 1-d Advection-Diffusion

equation

ut + aux = duxx + f(x, t), 0 < x < l, 0 < t < T, (4.0.1)

where a and d are positive constants. We discuss the pitfalls in numerical integration

of (4.0.1) by using FDM and FVM when the source term is singular, i.e. expression

of f(x, t) involves Dirac delta function.

4.1 FINITE DIFFERENCE METHOD

FDM is widely used to approximate solutions of partial differential equations.

In the method, the derivatives are replaced by difference operators. For example,

Crank-Nicolson difference scheme for equation (4.0.1) has the following form:

un+1
i − uni
τ

+
a

2

(
un+1
i+1 − un+1

i−1

2h
+
uni+1 − uni−1

2h

)

=
d

2

(
un+1
i+1 − 2un+1

i + un+1
i−1

h2
+
uni+1 − 2uni + uni−1

h2

)
+
f(xi, tn) + f(xi, tn+1)

2
,

(4.1.1)

where uni represents the numerical approximation of the solution u(x, t) at t = tn,

x = xi. It is the second order method both in space and time.

We note that scheme (4.1.1) or any other Finite Difference scheme cannot be

used directly if the source term in (4.0.1) is singular, i.e. an expression of f(x, t)
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involves Dirac delta function. In order to overcome this obstacle, normally equation

(4.0.1) is regularized. For example, assume that f(x, t) = g(t)δ(x − ξ), where g(t)

is smooth function. Then f(x, t) in (4.0.1) and therefore in (4.1.1) is replaced by

function fε(x, t) = g(t)δε(x − ξ), where δε(x − ξ) is a regularization of Dirac delta

function (Tornberg and Engquist, 2003), (Jung and Don, 2009). For instance, a

piecewise linear function

δε(x− ξ) =



x− ξ + ε

ε2
, if ξ − ε ≤ x ≤ ξ,

−x+ ξ + ε

ε2
, if ξ < x ≤ ξ + ε,

0, if x > ξ + ε or x < ξ − ε

(4.1.2)

is the simplest way to regularize δ(x− ξ) (see Figure 4.1). Other smoother regular-

izations are also possible (Tornberg and Engquist, 2004).

Figure 4.1 Regularization of Dirac delta function defined by (4.1.2).

When equation (4.0.1) is regularized, the first question which should be ad-

dressed is: does the solution uε(x, t) of the regularized equation converge to the

solution u(x, t) of equation (4.0.1) as ε→ 0? If so, ε has to be chosen small enough.

Moreover, for practical reasons one has to choose mesh size h in (4.1.1) smaller than

2ε. Therefore, for small value of ε really fine mesh is required for implementation

of (4.1.1). For numerical illustration, we consider the following example.
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Example 4.1.1. Consider initial boundary value problem:
ut = uxx + δ(x− 1

3
), 0 < t < 1, 0 < x < 1,

u(x, 0) = sin(2πx) + z(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

(4.1.3)

where

z(x) =


2x

3
, 0 ≤ x <

1

3
,

1− x
3

,
1

3
≤ x < 1.

The exact solution of the problem (4.1.3) has the form

u(x, t) = exp(−4π2t) sin (2πx) + z(x).

We first replace δ(x− 1
3
) in the problem (4.1.3) with δε(x− 1

3
) given by (4.1.2). Next,

we discretize the regularized problem bu using (4.1.1)



un+1
i − uni
τ

=
un+1
i+1 − 2un+1

i + un+1
i−1

2h2
+
uni+1 − 2uni + uni−1

2h2
+ δε(xi −

1

3
),

i = 1, 2, . . . ,M − 1, n = 0, 1, . . . , N − 1, hM = 1, τN = 1,

u0
i = sin(2πxi) + z(xi), xi = ih, i = 0, 1, . . . ,M,

un0 = unM = 0, tn = nτ, n = 0, 1, . . . , N

(4.1.4)

We solve (4.1.4) with N = 104, ε = 0.1 and ε = 0.01 for different values of M .

Table 4.1 shows the errors between the exact solution of the problem (4.1.3) and the

numerical solutions computed by (4.1.4), defined by

‖E‖∞ = max
1≤i≤M−1

1≤n≤N

|u(xi, tn)− uni | .

As we can see from the Table 4.1, there is no convergence for moderate values of

ε. Normally, one has to tune up the value of ε in order to find sufficiently good

numerical approximation of solution of the problem (4.1.3).
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Table 4.1 The errors between the exact solution of the problem (4.1.3) and the
numerical solutions computed by (4.1.4) with N = 104, ε = 0.1 and ε = 0.01 for
different values of M .

ε = 0.1 ε = 0.01

M ‖E‖∞ M ‖E‖∞
250 1.60e− 02 250 3.90e− 03

500 1.63e− 02 500 1.79e− 03

1000 1.65e− 02 1000 2.10e− 03

2000 1.66e− 02 2000 2.26e− 03

4.2 FINITE VOLUME METHOD

FVM is another common numerical method successfully used for approximat-

ing the solutions of PDEs. FVM is widely used to solve models in fluid dynamics,

heat and mass transfer, Computational Biology, etc.

We illustrate here FVM for 1-dimensional Advection-Diffusion equation (4.0.1).

We define the grid, cells, cell volumes and cell centers as

0 = x 1
2
< x 3

2
< x 5

2
...... < xM− 1

2
< xM+ 1

2
= l,

Ωi =
[
xi− 1

2
, xi+ 1

2

]
, |Ωi| = hi = xi+ 1

2
− xi− 1

2
,

xi =
xi− 1

2
+ xi+ 1

2

2
, i = 1, 2, ...,M,

respectively. Let

ūi(t) =
1

hi

∫
Ωi

u(x, t)dx, i = 1, 2, ...,M

be the cell average values of function u(x, t). The finite volume approach for (4.0.1)

amounts to first integrating (4.0.1) over cell Ωi and dividing by the cell volume,

1

hi

∫
Ωi

ut(x, t)dx+
a

hi

∫
Ωi

ux(x, t)dx =
d

hi

∫
Ωi

uxx(x, t)dx+
1

hi

∫
Ωi

f(x, t)dx.

Assuming that the mesh is uniform, we have

d

dt
ūi(t) = −a

h

(
u(xi+ 1

2
, t)− u(xi− 1

2
, t)
)

+
d

h

(
ux(xi+ 1

2
, t)− ux(xi− 1

2
, t)
)

+ f̄i(t),

(4.2.1)
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where

f̄i(t) =
1

h

∫
Ωi

f(x, t)dx.

Approximating u(xi+ 1
2
, t) and ux(xi+ 1

2
, t) in (4.2.1) by

ūi(t) + ūi+1(t)

2
and

ūi+1(t)− ūi(t)
h

,

respectively, for i = 1, 2, ...,M we have

d

dt
ūi(t) = − a

2h
(ūi+1(t)− ūi−1(t)) +

d

h2
(ūi+1(t)− 2ūi(t) + ūi−1(t)) + f̄i(t). (4.2.2)

The system of ODEs (4.2.2) can be now solved by any time integrator method.

Now, assume again that the source term in (4.0.1) is singular. For example,

assume that f(x, t) = g(t)δ(x− ξ), where g(t) is smooth function and ξ ∈ Ωj. Then

(4.2.2) becomes

d

dt
ūi(t) = − a

2h
(ūi+1(t)− ūi−1(t))+

d

h2
(ūi+1(t)− 2ūi(t) + ūi−1(t))+

δij
h
g(t), (4.2.3)

where

δij =

 0, if i 6= j,

1, if i = j
(4.2.4)

is the Kronecker delta symbol.

We emphasize that the application of FVM for Advection-Diffusion equation

(4.0.1) with singular source term does not require the regularization technique.

As for numerical illustration, we consider again the problem (4.1.3). Applying

first FVM for spatial discretization, followed by trapezoidal method for resulting

system of ODE’s, we get the following scheme



ūn+1
i − ūni
τ

=
ūn+1
i+1 − 2ūn+1

i + ūn+1
i−1

2h2
+
ūni+1 − 2ūni + ūni−1

2h2
+
δij
h
,

i = 2, 3, . . . ,M − 1, n = 0, 1, . . . , N − 1, hM = 1, τN = 1,

ūn+1
1 − ūn1
τ

=
ūn+1

2 − 3ūn+1
1

2h2
+
ūn2 − 3ūn1

2h2
+
δ1j

h
,

ūn+1
M − ūnM

τ
=
ūn+1
M−1 − 3ūn+1

M

2h2
+
ūnM−1 − 3ūnM

2h2
+
δMj

h
,

ūoi =
cos(π(2xi − h))− cos(π(2xi + h))

2πh
+ z̄i, i = 1, 2, . . . ,M.

(4.2.5)
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Here

z̄i =



2xi
3
, if i = 1, . . . , j − 1,

1− xi
3

, if i = j + 1, . . . ,M,

1

h

[
1

9
− 1

3

(
xi −

h

2

)2

− 1

6

(
1− xi −

h

2

)2
]
, if i = j,

where j is the index of the cell which contains the point x = 1
3
.

We solve (4.2.5) with N = 104 for different values of M . Table 4.2 shows the

errors between the exact solution of the problem (4.1.3) and the numerical solutions

computed by (4.2.5), defined by

‖E‖∞ = max
1≤i≤M
1≤n≤N

|u(xi, tn)− ūni | .

Table 4.2 The errors between the exact solution of the problem (4.1.3) and the
numerical solutions computed by (4.2.5) with N = 104 for different values of M .

M ‖E‖∞
250 4.853974e− 04

500 2.866981e− 04

1000 1.549177e− 04

2000 8.039052e− 05

As we can see from the Table 4.2, there is a first order convergence in space. We

note that the order reduction from two to one occurs here due to lack of smoothness

in the solution of problem (4.1.3). However, FVM applied to problem (4.1.3) still

gives a better numerical approximation of solution than FDM does. It shows the

advantage of using FVM for numerical solutions of PDE’s having singular source

terms.



CHAPTER 5

CONSTRUCTION OF WENO APPROXIMATIONS ON

NON-UNIFORM MESHES

WENO approximations can be applied both in the Finite Difference and the

Finite Volume Methods. In this work, we consider only the WENO approaches

suitable for Finite Volume Methods. The core of the WENO method is based on

the polynomial interpolation. First, interpolations by using lower order polynomials

are constructed on different stencils. Then, convex combination of these approxi-

mations is used to get the higher order approximation. In this chapter, we present

the construction of third and fifth order WENO methods (WENO3 and WENO5,

respectively) on non-uniform meshes.

We define the grid, cells, cell volumes and cell centers as

0 = x 1
2
< x 3

2
< x 5

2
< . . . < xM− 1

2
< xM+ 1

2
= l,

Ωi =
[
xi− 1

2
, xi+ 1

2

]
, |Ωi| = hi = xi+ 1

2
− xi− 1

2
,

xi =
xi− 1

2
+ xi+ 1

2

2
, i = 1, 2, . . . ,M,

respectively (see Figure 5.1).

Figure 5.1 Cells and cell centers.
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Assume that cell average values of some function u(x), defined as

ūi =
1

hi

∫
Ωi

u(x)dx, i = 1, 2, . . . ,M,

are given. The aim of the WENO methods is to find the approximation formulas

for u(x) at the cell boundary x = xi+ 1
2

(see Figure 5.1). The order of approximation

formula defines the order of the WENO method.

5.1 CONSTRUCTION OF WENO3 METHOD

WENO3 method is based on approximation by using linear polynomials. Firstly,

we consider the stencil S0 = {Ωi−1,Ωi} (see Figure 5.1). It is obvious that there is

a unique linear polynomial whose cell average values on stencil S0 agree with corre-

sponding cell average values of function u(x) on S0. We search this polynomial in

the following form:

p
(i)
0 (x) = a

(i)
0 (x− xi) + b

(i)
0 . (5.1.1)

Then, 

1

hi−1

∫
Ωi−1

p
(i)
0 (x)dx = ūi−1,

1

hi

∫
Ωi

p
(i)
0 (x)dx = ūi.

(5.1.2)

Plugging (5.1.1) into (5.1.2) and evaluating integrals, we obtain:
−hi−1 + hi

2
a

(i)
0 + b

(i)
0 = ūi−1,

b
(i)
0 = ūi.

Solving this system, we get

a
(i)
0 =

2

hi−1 + hi
(ūi − ūi−1), b

(i)
0 = ūi. (5.1.3)

Then, the approximation u
(0)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

p
(i)
0 (x) has the form:

u
(0)

i+ 1
2

= p
(i)
0 (xi+ 1

2
) =

hi
2
a

(i)
0 + b

(i)
0
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or

u
(0)

i+ 1
2

= − hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi. (5.1.4)

Remark 5.1.1. In case of uniform grid, i.e. when hi = hi−1 = h, from (5.1.4) we

have

u
(0)

i+ 1
2

= − ūi−1

2
+

3ūi
2

as in (Barth and Deconinck, 1999).

Theorem 5.1.2. If u(x) is sufficiently smooth on stencil S0 then for approximation

(5.1.4) we have

u
(0)

i+ 1
2

= u(xi+ 1
2
) +O

(
hi(hi−1 + hi)

)
. (5.1.5)

Proof Using the Taylor’s formula, we have

u
(0)

i+ 1
2

= − hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

= − hi
hi−1(hi−1 + hi)

∫
Ωi−1

u(x)dx +
hi−1 + 2hi
hi(hi−1 + hi)

∫
Ωi

u(x)dx

=
−hi

hi−1(hi−1 + hi)

∫
Ωi−1

(
u(xi+ 1

2
) + (x− xi+ 1

2
)u′(xi+ 1

2
) +

(x− xi+ 1
2
)2

2
u′′(xi+ 1

2
) + . . .

)
dx

+
hi−1 + 2hi
hi(hi−1 + hi)

∫
Ωi

(
u(xi+ 1

2
) + (x− xi+ 1

2
)u′(xi+ 1

2
) +

(x− xi+ 1
2
)2

2
u′′(xi+ 1

2
) + . . .

)
dx

= u(xi+ 1
2
) − hi (hi−1 + hi)

6
u′′(xi+ 1

2
) + h.o.t.

Corollary 5.1.3. Formula (5.1.5) implies that (5.1.4) is the second order approxi-

mation for u(x) at x = xi+ 1
2
.

Remark 5.1.4. In case of uniform grid, i.e. when hi = hi−1 = h, we have

u
(0)

i+ 1
2

= u(xi+ 1
2
) +O

(
h2
)

as in (Barth and Deconinck, 1999).
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Now, we consider the stencil S1 = {Ωi,Ωi+1} (see Figure 5.1). Obviously, there

is a unique linear polynomial whose cell average values on stencil S1 agree with

corresponding cell average values of function u(x) on S1. We search this polynomial

in the following form:

p
(i)
1 (x) = a

(i)
1 (x− xi) + b

(i)
1 . (5.1.6)

Then, 

1

hi

∫
Ωi

p
(i)
1 (x)dx = ūi,

1

hi+1

∫
Ωi+1

p
(i)
1 (x)dx = ūi+1.

(5.1.7)

Plugging (5.1.6) into (5.1.7) and evaluating integrals, we obtain:
b

(i)
1 = ūi,

hi + hi+1

2
a

(i)
1 + b

(i)
1 = ūi+1.

Solving this system, we get

a
(i)
1 =

2

hi + hi+1

(ūi+1 − ūi), b
(i)
1 = ūi. (5.1.8)

Then, the approximation u
(1)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

p
(i)
1 (x) has the form:

u
(1)

i+ 1
2

= p
(i)
1 (xi+ 1

2
) =

hi
2
a

(i)
1 + b

(i)
1

or

u
(1)

i+ 1
2

=
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1. (5.1.9)

Remark 5.1.5. In case of uniform grid, i.e. when hi = hi+1 = h, we have

u
(1)

i+ 1
2

=
ūi
2

+
ūi+1

2

as in (Barth and Deconinck, 1999).

Theorem 5.1.6. If u(x) is sufficiently smooth on stencil S1 then for approximation

(5.1.9) we have

u
(1)

i+ 1
2

= u(xi+ 1
2
) +O

(
hihi+1

)
. (5.1.10)
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Proof Using the Taylor’s formula, we have

u
(1)

i+ 1
2

=
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

=
hi+1

hi(hi + hi+1)

∫
Ωi

u(x)dx +
hi

hi+1(hi + hi+1)

∫
Ωi+1

u(x)dx

=
hi+1

hi(hi + hi+1)

∫
Ωi

(
u(xi+ 1

2
) + (x− xi+ 1

2
)u′(xi+ 1

2
) +

(x− xi+ 1
2
)2

2
u′′(xi+ 1

2
) + . . .

)
dx

+
hi

hi+1(hi + hi+1)

∫
Ωi+1

(
u(xi+ 1

2
) + (x− xi+ 1

2
)u′(xi+ 1

2
) +

(x− xi+ 1
2
)2

2
u′′(xi+ 1

2
) + . . .

)
dx

= u(xi+ 1
2
) +

hihi+1

6
u′′(xi+ 1

2
) + h.o.t.

Corollary 5.1.7. Formula (5.1.10) implies that (5.1.9) is the second order approx-

imation for function u(x) at x = xi+ 1
2
.

Remark 5.1.8. In case of uniform grid, i.e. when hi = hi+1 = h, we have

u
(1)

i+ 1
2

= u(xi+ 1
2
) +O

(
h2
)

as in (Barth and Deconinck, 1999).

Finally, we consider extended stencil S = S0 ∪ S1 = {Ωi−1,Ωi,Ωi+1}. There

is a unique quadratic polynomial whose cell average values on stencil S agree with

corresponding cell average values of function u(x) on S. We search this polynomial

in the following form:

P (i)(x) = a(i)(x− xi)2 + b(i)(x− xi) + c(i). (5.1.11)

Then, 

1

hi−1

∫
Ωi−1

P (i)(x)dx = ūi−1,

1

hi

∫
Ωi

P (i)(x)dx = ūi,

1

hi+1

∫
Ωi+1

P (i)(x)dx = ūi+1.

(5.1.12)
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Plugging (5.1.11) into (5.1.12) and evaluating integrals, we obtain:



(
h2
i−1

3
+
hi−1hi

2
+
h2
i

4

)
a(i) − hi−1 + hi

2
b(i) + c(i) = ūi−1,

h2
i

12
a(i) + c(i) = ūi,(
h2
i

4
+
hihi+1

2
+
h2
i+1

3

)
a(i) +

hi + hi+1

2
b(i) + c(i) = ūi+1.

Solving this system, we get

a(i) =
3

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

− 3(hi−1 + 2hi + hi+1)

(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)
ūi

+
3

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1,

b(i) = − hi + 2hi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+
(hi+1 − hi−1)(2hi−1 + 3hi + 2hi+1)

(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)
ūi

+
2hi−1 + hi

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1,

c(i) = − h2
i

4(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+

(
1 +

h2
i (hi−1 + 2hi + hi+1)

4(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

− h2
i

4(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1.

Then, the approximation ui+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

P (i)(x) has the form:

ui+ 1
2

= P (i)(xi+ 1
2
) =

h2
i

4
a(i) +

hi
2
b(i) + c(i)
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or

ui+ 1
2

= − hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+

(
1 +

hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
− hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

+
hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1.

(5.1.13)

Remark 5.1.9. In case of uniform grid, i.e. when hi−1 = hi = hi+1 = h, we have

ui+ 1
2

= − ūi−1

6
+

5ūi
6

+
ūi+1

3

as in (Barth and Deconinck, 1999).

Theorem 5.1.10. If u(x) is sufficiently smooth on stencil S then for approximation

(5.1.13) we have

ui+ 1
2

= u(xi+ 1
2
) +O

(
hihi+1(hi−1 + hi)

)
. (5.1.14)

Proof Using the Taylor’s formula

u(x) = u(xi+ 1
2
)+(x−xi+ 1

2
)u′(xi+ 1

2
)+

(x− xi+ 1
2
)2

2
u′′(xi+ 1

2
)+

(x− xi+ 1
2
)3

6
u′′′(xi+ 1

2
)+. . .

we have

ūi−1 =
1

hi−1

∫
Ωi−1

u(x)dx = u(xi+ 1
2
)− hi−1 + 2hi

2
u′(xi+ 1

2
)

+
3h2

i + 3hihi−1 + h2
i−1

6
u′′(xi+ 1

2
)−

4h3
i + 6h2

ihi−1 + 4hih
2
i−1 + h3

i−1

24
u′′′(xi+ 1

2
) + h.o.t.,

ūi =
1

hi

∫
Ωi

u(x)dx = u(xi+ 1
2
)− hi

2
u′(xi+ 1

2
) +

h2
i

6
u′′(xi+ 1

2
)− h3

i

24
u′′′(xi+ 1

2
) + h.o.t.,

ūi+1 =
1

hi+1

∫
Ωi+1

u(x)dx = u(xi+ 1
2
) +

hi+1

2
u′(xi+ 1

2
) +

h2
i+1

6
u′′(xi+ 1

2
)

+
h3i+1

24
u′′′(xi+ 1

2
) + h.o.t.

Putting all these in (5.1.13) and making simplifications, we obtain

ui+ 1
2

= u(xi+ 1
2
) +

hihi+1(hi−1 + hi)

24
u′′′(xi+ 1

2
) + h.o.t.
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Corollary 5.1.11. Formula (5.1.14) implies that (5.1.13) is the third order approx-

imation for function u(x) at x = xi+ 1
2
.

Remark 5.1.12. In case of uniform grid, i.e. when hi−1 = hi = hi+1 = h, we have

ui+ 1
2

= u(xi+ 1
2
) +O

(
h3
)

as in (Barth and Deconinck, 1999).

The following result states that third order approximation ui+ 1
2

given by (5.1.13)

can be written as a linear combination of second order approximations u
(0)

i+ 1
2

and u
(1)

i+ 1
2

given by (5.1.4) and (5.1.9), respectively.

Theorem 5.1.13. There exist unique γ
(i)
0 and γ

(i)
1 values such that

ui+ 1
2

= γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

(5.1.15)

holds.

Proof Using (5.1.4), (5.1.9) and (5.1.13), equality (5.1.15) can be rewritten as

− hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

(
1 +

hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
− hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

+
hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1

= γ
(i)
0

(
− hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

)
+ γ

(i)
1

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)
It is easy to verify that last equality and therefore (5.1.15) holds if and only if

γ
(i)
0 =

hi+1

hi−1 + hi + hi+1

, γ
(i)
1 =

hi−1 + hi
hi−1 + hi + hi+1

(5.1.16)

In WENO literature, γ
(i)
0 and γ

(i)
1 are called linear weights. Note that in case

of uniform grid, i.e. when hi−1 = hi = hi+1 = h, from (5.1.16) we have γ
(i)
0 =

1

3
and

γ
(i)
1 =

2

3
. So, in case of uniform grid the linear weights are independent of index i.
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To summarize, if u(x) is sufficiently smooth on the extended stencil S then the

linear combination γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

, where linear weights γ
(i)
0 and γ

(i)
1 are defined

by (5.1.16), results in a third order approximation for u(x) at x = xi+ 1
2
. Moreover,

if u(x) is sufficiently smooth on stencil S, then

γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

= u(xi+ 1
2
) +O

(
hihi+1(hi−1 + hi)

)
(5.1.17)

holds.

Now, suppose that u(x) is smooth everywhere on the extended stencil S except

one point of cell Ωi−1, where u(x) or derivative of u(x) is discontinuous. Then

(5.1.17) obviously does not hold, i.e. (5.1.15) is not the third order approximation

for u(x) at x = xi+ 1
2
. However, since u(x) is smooth in Ωi and Ωi+1, (5.1.15) gives

the second order approximation if one chooses γ
(i)
0 = 0 and γ

(i)
1 = 1.

Similarly, assume that u(x) is smooth everywhere on the extended stencil S

except one point of cell Ωi+1, where u(x) or derivative of u(x) is discontinuous. Then

(5.1.17) does not hold and therefore (5.1.15) is not the third order approximation

for u(x) at x = xi+ 1
2
. However, since u(x) is smooth in Ωi−1 and Ωi, (5.1.15) gives

the second order approximation if one chooses γ
(i)
0 = 1 and γ

(i)
1 = 0.

We note that when u(x) is smooth everywhere on the extended stencil S ex-

cept one point of cell Ωi, approximation (5.1.15) is not consistent. It is due to the

fact that u(x) is not smooth on both stencils S0 and S1, and therefore both ap-

proximation formulas (5.1.4) and (5.1.9) are inconsistent. Unfortunately, this kind

of local inconsistency cannot be eliminated and therefore one has to anticipate the

order reduction when WENO approximations are used for solving problems with

non-smooth solutions.

Linear weights γ
(i)
0 and γ

(i)
1 defined by (5.1.16) are independent of u(x). There-

fore, these weights cannot be used when u(x) is non-smooth. The purpose of the

WENO3 method is to find the approximation of u(xi+ 1
2
) by using a convex combi-

nation of approximations u
(0)

i+ 1
2

and u
(1)

i+ 1
2

defined by (5.1.4) and (5.1.9), respectively.

In other words, (5.1.15) is replaced with:

ui+ 1
2

= ω
(i)
0 u

(0)

i+ 1
2

+ ω
(i)
1 u

(1)

i+ 1
2

(5.1.18)

where ω
(i)
0 ≥ 0 and ω

(i)
1 ≥ 0 are called nonlinear weights and ω

(i)
0 + ω

(i)
1 = 1.
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Lemma 5.1.14. Assume that u(x) is sufficiently smooth on the extended stencil S.

If

ω
(i)
0 = γ

(i)
0 +O

(
hi−1 + hi + hi+1

)
, ω

(i)
1 = γ

(i)
1 +O

(
hi−1 + hi + hi+1

)
, (5.1.19)

then (5.1.18) is the third order approximation for u(x) at x = xi+ 1
2
.

Proof Using (5.1.5), (5.1.10), (5.1.17) and (5.1.19), for (5.1.18) we have

ui+ 1
2

= ω
(i)
0 u

(0)

i+ 1
2

+ ω
(i)
1 u

(1)

i+ 1
2

=
(
ω

(i)
0 − γ

(i)
0

)
u

(0)

i+ 1
2

+
(
ω

(i)
1 − γ

(i)
1

)
u

(1)

i+ 1
2

+ γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

=
(
ω

(i)
0 − γ

(i)
0

)(
u

(0)

i+ 1
2

− u(xi+ 1
2
)
)

+
(
ω

(i)
1 − γ

(i)
1

)(
u

(1)

i+ 1
2

− u(xi+ 1
2
)
)

+ γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

= u(xi+ 1
2
) +

(
ω

(i)
0 − γ

(i)
0

)
·O
(
hi(hi−1 + hi)

)
+
(
ω

(i)
1 − γ

(i)
1

)
·O
(
hihi+1

)
+ O

(
hihi+1(hi−1 + hi)

)
= u(xi+ 1

2
) + O

(
hi (hi−1 + hi + hi+1)2

)
In order to define the nonlinear weights ω

(i)
0 and ω

(i)
1 in (5.1.18), we first intro-

duce so-called smoothness indicators β
(i)
0 and β

(i)
1 to measure the smoothness of u(x)

in stencils S0 and S1, respectively. Interpolating polynomials (5.1.1) and (5.1.6) are

used to define the smoothness indicators in the following way:

β
(i)
0 = hi

∫
Ωi

(
d

dx
p

(i)
0 (x)

)2

dx = hi

∫
Ωi

(
a

(i)
0

)2

dx =
(
hia

(i)
0

)2

=
4h2

i (ūi − ūi−1)2

(hi−1 + hi)2
,

β
(i)
1 = hi

∫
Ωi

(
d

dx
p

(i)
1 (x)

)2

dx = hi

∫
Ωi

(
a

(i)
1

)2

dx =
(
hia

(i)
1

)2

=
4h2

i (ūi+1 − ūi)2

(hi + hi+1)2
.

(5.1.20)

Now, normalized nonlinear weights in (5.1.18) are defined as following:

ω
(i)
0 =

ω̃
(i)
0

ω̃
(i)
0 + ω̃

(i)
1

, ω
(i)
1 =

ω̃
(i)
1

ω̃
(i)
0 + ω̃

(i)
1

, (5.1.21)

where

ω̃
(i)
0 =

γ
(i)
0(

ε+ β
(i)
0

)2 , ω̃
(i)
1 =

γ
(i)
1(

ε+ β
(i)
1

)2 . (5.1.22)
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Here, ε = 10−6 is taken to prevent the denominators becoming zero.

Lemma 5.1.15. Assume that u(x) is sufficiently smooth on the extended stencil S.

If there is non-zero constant D such that

β
(i)
0 = D

(
1 +O (hi−1 + hi)

)
, β

(i)
1 = D

(
1 +O (hi + hi+1)

)
(5.1.23)

then the nonlinear weights ω
(i)
0 and ω

(i)
1 , defined by (5.1.21)-(5.1.22), satisfy (5.1.19)

and therefore (5.1.18) results in the third order approximation for u(x) at x = xi+ 1
2
.

Proof Putting (5.1.23) in (5.1.22) and using the Taylor expansion, we first obtain

ω̃
(i)
0 =

γ
(i)
0

(ε+D)2 + O
(
hi−1 + hi

)
, ω̃

(i)
1 =

γ
(i)
1

(ε+D)2 + O
(
hi + hi+1

)
.

Then, putting these in (5.1.21) and using again the Taylor expansion gives (5.1.19).

Theorem 5.1.16. Assume that u(x) is sufficiently smooth on the extended stencil

S. Then the smoothness indicators β
(i)
0 and β

(i)
1 , defined by (5.1.20), satisfy (5.1.23)

and therefore (5.1.18) results in the third order approximation for u(x) at x = xi+ 1
2

when the nonlinear weights ω
(i)
0 and ω

(i)
1 are defined by (5.1.21)-(5.1.22).

Proof By using Taylor’s formula in (5.1.20), we can easily verify that (5.1.23) holds

with D =
(
hiu
′(xi)

)2

.

Summary

• If u(x) is smooth everywhere on the extended stencil S then (5.1.18) gives the

third order approximation for u(x) at x = xi+ 1
2
.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi−1, where u(x) is discontinuous. Then, it is easy to verify that

β
(i)
0 = O(1) and β

(i)
1 = O(h2

i ). Therefore, in this case we have ω̃
(i)
0 << ω̃

(i)
1 ,

which results in ω
(i)
0 ≈ 0 and ω

(i)
1 ≈ 1. Thus, (5.1.18) gives the second order

approximation for u(x) at x = xi+ 1
2

as it was expected to be.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi+1, where u(x) is discontinuous. Then, it is easy to verify that

β
(i)
0 = O(h2

i ) and β
(i)
1 = O(1). Therefore, in this case we have ω̃

(i)
0 >> ω̃

(i)
1 ,

which results in ω
(i)
0 ≈ 1 and ω

(i)
1 ≈ 0. Thus, (5.1.18) gives again the second

order approximation for u(x) at x = xi+ 1
2
.
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5.2 CONSTRUCTION OF WENO5 METHOD

WENO5 method is based on approximation by using quadratic polynomials.

Firstly, we consider the stencil S0 = {Ωi−2,Ωi−1,Ωi} (see Figure 5.1). It is obvious

that there is a unique quadratic polynomial whose cell average values on the stencil

S0 agree with corresponding cell average values of function u(x) on S0. We search

this polynomial in the following form:

p
(i)
0 (x) = a

(i)
0 (x− xi)2 + b

(i)
0 (x− xi) + c

(i)
0 . (5.2.1)

Then, 

1

hi−2

∫
Ωi−2

p
(i)
0 (x)dx = ūi−2,

1

hi−1

∫
Ωi−1

p
(i)
0 (x)dx = ūi−1,

1

hi

∫
Ωi

p
(i)
0 (x)dx = ūi.

(5.2.2)

Plugging (5.2.1) into (5.2.2) and evaluating integrals, we get:



(
h2
i−2

3
+ hi−2

(
hi−1 +

hi
2

)
+

(
hi−1 +

hi
2

)2
)
a

(i)
0 −

hi−2 + 2hi−1 + hi
2

b
(i)
0 + c

(i)
0

= ūi−2,(
h2
i−1

3
+
hi−1hi

2
+
h2
i

4

)
a

(i)
0 −

hi−1 + hi
2

b
(i)
0 + c

(i)
0 = ūi−1,

h2
i

12
a

(i)
0 + c

(i)
0 = ūi.

Solving this system, we obtain the coefficients of polynomial (5.2.1)

a
(i)
0 =

3

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
ūi−2

− 3(hi−2 + 2hi−1 + hi)

(hi−2 + hi−1)(hi−1 + hi)(hi−2 + hi−1 + hi)
ūi−1

+
3

(hi−1 + hi)(hi−2 + hi−1 + hi)
ūi,

(5.2.3)
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b
(i)
0 =

2hi−1 + hi
(hi−2 + hi−1)(hi−2 + hi−1 + hi)

ūi−2

−
(

2hi−1 + hi
(hi−2 + hi−1)(hi−2 + hi−1 + hi)

+
2hi−2 + 4hi−1 + 3hi

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi−1

+
2hi−2 + 4hi−1 + 3hi

(hi−1 + hi)(hi−2 + hi−1 + hi)
ūi,

(5.2.4)

c
(i)
0 = − h2

i

4(hi−2 + hi−1)(hi−2 + hi−1 + hi)
ūi−2

+
h2
i (hi−2 + 2hi−1 + hi)

4(hi−2 + hi−1)(hi−1 + hi)(hi−2 + hi−1 + hi)
ūi−1

+

(
1− h2

i

4(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi.

(5.2.5)

Then, the approximation u
(0)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

p
(i)
0 (x) has the form:

u
(0)

i+ 1
2

= p
(i)
0 (xi+ 1

2
) =

h2
i

4
a

(i)
0 +

hi
2
b

(i)
0 + c

(i)
0

or

u
(0)

i+ 1
2

=
hi(hi−1 + hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
ūi−2

−
(

hi(hi−1 + hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
+

hi(hi−2 + 2hi−1 + 2hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi−1

+

(
1 +

hi(hi−2 + 2hi−1 + 2hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi.

(5.2.6)

Remark 5.2.1. In case of uniform grid, i.e. when hi−2 = hi−1 = hi = h, from

(5.2.6) we have

u
(0)

i+ 1
2

=
ūi−2

3
− 7ūi−1

6
+

11ūi
6

as in (Barth and Deconinck, 1999).

Theorem 5.2.2. If u(x) is sufficiently smooth on stencil S0, then for approximation

(5.2.6) we have

u
(0)

i+ 1
2

= u(xi+ 1
2
) + O

(
hi(hi−1 + hi)(hi−2 + hi−1 + hi)

)
. (5.2.7)
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The proof of this theorem is based on Taylor’s formula similar to the proof of

the Theorem 5.1.10.

Corollary 5.2.3. Formula (5.2.7) implies that (5.2.6) is the third order approxima-

tion for u(x) at x = xi+ 1
2
.

Remark 5.2.4. In case of uniform grid, i.e. when hi−2 = hi−1 = hi = h, from

(5.2.7) we have

u
(0)

i+ 1
2

= u(xi+ 1
2
) +O

(
h3
)

as in (Barth and Deconinck, 1999).

Now, we consider the stencil S1 = {Ωi−1,Ωi,Ωi+1} (see Figure 5.1). Obviously,

there is a unique quadratic polynomial whose cell average values on the stencil S1

agree with corresponding cell average values of function u(x) on S1. We search this

polynomial in the following form:

p
(i)
1 (x) = a

(i)
1 (x− xi)2 + b

(i)
1 (x− xi) + c

(i)
1 . (5.2.8)

Then, 

1

hi−1

∫
Ωi−1

p
(i)
1 (x)dx = ūi−1,

1

hi

∫
Ωi

p
(i)
1 (x)dx = ūi,

1

hi+1

∫
Ωi+1

p
(i)
1 (x)dx = ūi+1.

(5.2.9)

Plugging (5.2.8) into (5.2.9) and evaluating integrals, we obtain

(
h2
i−1

3
+
hi−1hi

2
+
h2
i

4

)
a

(i)
1 −

hi−1 + hi
2

b
(i)
1 + c

(i)
1 = ūi−1,

h2
i

12
a

(i)
1 + c

(i)
1 = ūi,(

h2
i

4
+
hihi+1

2
+
h2
i+1

3

)
a

(i)
1 +

hi + hi+1

2
b

(i)
1 + c

(i)
1 = ūi+1.



41

Solving this system, we obtain the coefficients of polynomial (5.2.8)

a
(i)
1 =

3

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

− 3(hi−1 + 2hi + hi+1)

(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)
ūi

+
3

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1,

b
(i)
1 = − hi + 2hi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+
(hi+1 − hi−1)(2hi−1 + 3hi + 2hi+1)

(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)
ūi

+
2hi−1 + hi

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1,

c
(i)
1 = − h2

i

4(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+

(
1 +

h2
i (hi−1 + 2hi + hi+1)

4(hi−1 + hi)(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

− h2
i

4(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1.

(5.2.10)

Then, the approximation u
(1)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

p
(i)
1 (x) has the form:

u
(1)

i+ 1
2

= p
(i)
1 (xi+ 1

2
) =

h2
i

4
a

(i)
1 +

hi
2
b

(i)
1 + c

(i)
1

or

u
(1)

i+ 1
2

= − hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+

(
1 +

hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
− hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

+
hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1.

(5.2.11)

Remark 5.2.5. In case of uniform grid, i.e. when hi−1 = hi = hi+1 = h, from

(5.2.11) we have

u
(1)

i+ 1
2

= − ūi−1

6
+

5ūi
6

+
ūi+1

3
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as in (Barth and Deconinck, 1999).

Theorem 5.2.6. If u(x) is sufficiently smooth on stencil S1, then for approximation

(5.2.11) we have

u
(1)

i+ 1
2

= u(xi+ 1
2
) + O

(
hihi+1(hi−1 + hi)

)
. (5.2.12)

The proof of this theorem is based on Taylor’s formula similar to the proof of

the Theorem 5.1.10.

Corollary 5.2.7. Formula (5.2.12) implies that (5.2.11) is the third order approxi-

mation for u(x) at x = xi+ 1
2
.

Remark 5.2.8. In case of uniform grid, i.e. when hi−1 = hi = hi+1 = h, from

(5.2.12) we have

u
(1)

i+ 1
2

= u(xi+ 1
2
) +O

(
h3
)

as in (Barth and Deconinck, 1999).

Next, we consider the stencil S2 = {Ωi,Ωi+1,Ωi+2}. Obviously, there is a

unique quadratic polynomial whose cell average values on the stencil S2 agree with

corresponding cell average values of function u(x) on S2. We search this polynomial

in the following form:

p
(i)
2 (x) = a

(i)
2 (x− xi)2 + b

(i)
2 (x− xi) + c

(i)
2 . (5.2.13)

Then, 

1

hi

∫
Ωi

p
(i)
2 (x)dx = ūi,

1

hi+1

∫
Ωi+1

p
(i)
2 (x)dx = ūi+1,

1

hi+2

∫
Ωi+2

p
(i)
2 (x)dx = ūi+2.

(5.2.14)



43

Plugging (5.2.13) into (5.2.14) and evaluating integrals, we obtain



h2
i

12
a

(i)
2 + c

(i)
2 = ūi,(

h2
i

4
+
hihi+1

2
+
h2
i+1

3

)
a

(i)
2 +

hi + hi+1

2
b

(i)
2 + c

(i)
2 = ūi+1,((

hi
2

+ hi+1

)2

+ hi+2

(
hi
2

+ hi+1

)
+
h2
i+2

3

)
a

(i)
2 +

hi + 2hi+1 + hi+2

2
b

(i)
2 + c

(i)
2

= ūi+2.

Solving this system, we obtain the coefficients of polynomial (5.2.13)

a
(i)
2 =

3

(hi + hi+1)(hi + hi+1 + hi+2)
ūi

− 3(hi + 2hi+1 + hi+2)

(hi + hi+1)(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+1

+
3

(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+2,

b
(i)
2 = − 3hi + 4hi+1 + 2hi+2

(hi + hi+1)(hi + hi+1 + hi+2)
ūi

+

(
3hi + 4hi+1 + 2hi+2

(hi + hi+1)(hi + hi+1 + hi+2)
+

hi + 2hi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)

)
ūi+1

− hi + 2hi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+2,

c
(i)
2 =

(
1− h2

i

4(hi + hi+1)(hi + hi+1 + hi+2)

)
ūi

+
h2
i (hi + 2hi+1 + hi+2)

4(hi + hi+1)(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+1

− h2
i

4(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+2.

(5.2.15)

Then, the approximation u
(2)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

p
(i)
2 (x) has the form:

u
(2)

i+ 1
2

= p
(i)
2 (xi+ 1

2
) =

h2
i

4
a

(i)
2 +

hi
2
b

(i)
2 + c

(i)
2
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or

u
(2)

i+ 1
2

=
hi+1(hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)
ūi

+

(
1 +

hihi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)
− hi+1(hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)

)
ūi+1

− hihi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+2.

(5.2.16)

Remark 5.2.9. In case of uniform grid, i.e. when hi = hi+1 = hi+2 = h, from

(5.2.16) we have

u
(2)

i+ 1
2

=
ūi
3

+
5ūi+1

6
− ūi+2

6

as in (Barth and Deconinck, 1999).

Theorem 5.2.10. If u(x) is sufficiently smooth on stencil S2, then for approximation

(5.2.16) we have

u
(2)

i+ 1
2

= u(xi+ 1
2
) + O

(
hihi+1(hi+1 + hi+2)

)
. (5.2.17)

The proof of this theorem is based on Taylor’s formula similar to the proof of

the Theorem 5.1.10.

Corollary 5.2.11. Formula (5.2.17) implies that (5.2.16) is the third order approx-

imation for u(x) at x = xi+ 1
2
.

Remark 5.2.12. In case of uniform grid, i.e. when hi = hi+1 = hi+2 = h, from

(5.2.17) we have

u
(2)

i+ 1
2

= u(xi+ 1
2
) +O

(
h3
)

as in (Barth and Deconinck, 1999).

Finally, we consider the extended stencil

S = S0 ∪ S1 ∪ S2 = {Ωi−2,Ωi−1,Ωi,Ωi+1,Ωi+2}.
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There is a unique fourth order polynomial whose cell average values on the extended

stencil S agree with corresponding cell average values of function u(x) on S. We

search this polynomial in the following form:

P (i)(x) = a(i)(x− xi)4 + b(i)(x− xi)3 + c(i)(x− xi)2 + d(i)(x− xi) + e(i). (5.2.18)

Then, 

1

hi−2

∫
Ωi−2

P (i)(x)dx = ūi−2,

1

hi−1

∫
Ωi−1

P (i)(x)dx = ūi−1,

1

hi

∫
Ωi

P (i)(x)dx = ūi,

1

hi+1

∫
Ωi+1

P (i)(x)dx = ūi+1,

1

hi+2

∫
Ωi+2

P (i)(x)dx = ūi+2.

(5.2.19)

Plugging (5.2.18) into (5.2.19), evaluating integrals and solving the resulting

system, we obtain the coefficients a(i), b(i), c(i), d(i), e(i) of the polynomial P (i)(x)

(we do not give formulas here due to their large sizes).

Now, the approximation ui+ 1
2

for function u(x) at x = xi+ 1
2

using the polyno-

mial P (i)(x) has the form:

ui+ 1
2

= P (i)(xi+ 1
2
) =

h4
i

16
a(i) +

h3
i

8
b(i) +

h2
i

4
c(i) +

hi
2
d(i) + e(i)

or

ui+ 1
2

= αi−2ūi−2 + αi−1ūi−1 + αiūi + αi+1ūi+1 + αi+2ūi+2 (5.2.20)

where coefficients αi−2, αi−1, αi, αi+1, αi+2 depend only on h values (we do not give

formulas here due to their large sizes).

Remark 5.2.13. In case of uniform grid, i.e. when hi−2 = hi−1 = hi = hi+1 = hi+2,

(5.2.20) results in

ui+ 1
2

=
1

30
ūi−2 −

13

60
ūi−1 +

47

60
ūi +

9

20
ūi+1 −

1

20
ūi+2

as in (Barth and Deconinck, 1999).
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Theorem 5.2.14. If u(x) is sufficiently smooth on stencil S, then for approximation

(5.2.20) we have

ui+ 1
2

= u(xi+ 1
2
) + O

(
hihi+1(hi−1 + hi)(hi+1 + hi+2)(hi−2 + hi−1 + hi)

)
. (5.2.21)

The proof of this theorem is based on Taylor’s formula similar to the proof of

the Theorem 5.1.10.

Corollary 5.2.15. Formula (5.2.21) implies that (5.2.20) is the fifth order approx-

imation for u(x) at x = xi+ 1
2
.

Remark 5.2.16. In case of uniform grid, i.e. when hi−2 = hi−1 = hi = hi+1 =

hi+2 = h, from (5.2.21) we have

ui+ 1
2

= u(xi+ 1
2
) +O

(
h5
)

as in (Barth and Deconinck, 1999).

The following result states that the fifth order approximation ui+ 1
2

given by

(5.2.20) can be written as a linear combination of third order approximations u
(0)

i+ 1
2

,

u
(1)

i+ 1
2

and u
(2)

i+ 1
2

given by (5.2.6), (5.2.11) and (5.2.16), respectively.

Theorem 5.2.17. There exist unique γ
(i)
0 , γ

(i)
1 and γ

(i)
2 values such that

ui+ 1
2

= γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

+ γ
(i)
2 u

(2)

i+ 1
2

(5.2.22)

holds.

Proof Using (5.2.6), (5.2.11) and (5.2.16), one can verify that (5.2.22) holds if and

only if

γ
(i)
0 =

hi+1(hi+1 + hi+2)

(hi−2 + hi−1 + hi + hi+1)(hi−2 + hi−1 + hi + hi+1 + hi+2)
,

γ
(i)
1 =

(hi−2 + hi−1 + hi)(hi+1 + hi+2)(hi−2 + 2hi−1 + 2hi + 2hi+1 + hi+2)

(hi−2 + hi−1 + hi + hi+1)(hi−1 + hi + hi+1 + hi+2)(hi−2 + hi−1 + hi + hi+1 + hi+2)
,

γ
(i)
2 =

(hi−1 + hi)(hi−2 + hi−1 + hi)

(hi−1 + hi + hi+1 + hi+2)(hi−2 + hi−1 + hi + hi+1 + hi+2)
.

(5.2.23)
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In WENO literature, γ
(i)
0 , γ

(i)
1 and γ

(i)
2 are called linear weights. Note that

in case of uniform grid, i.e. when hi−2 = hi−1 = hi = hi+1 = hi+2, from (5.2.23) we

have γ
(i)
0 =

1

10
, γ

(i)
1 =

3

5
and γ

(i)
2 =

3

10
as in (Barth and Deconinck, 1999).

To summarize, if u(x) is sufficiently smooth on the extended stencil S, the

linear combination γ
(i)
0 u

(0)

i+ 1
2

+γ
(i)
1 u

(1)

i+ 1
2

+γ
(i)
2 u

(2)

i+ 1
2

, where linear weights γ
(i)
0 , γ

(i)
1 and γ

(i)
2

are given by (5.2.23), results in the fifth order approximation for u(x) at x = xi+ 1
2
.

Moreover, if u(x) is sufficiently smooth on the extended stencil S, then

γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

+ γ
(i)
2 u

(2)

i+ 1
2

= u(xi+ 1
2
) + O

(
hihi+1(hi−1 + hi)(hi+1 + hi+2)(hi−2 + hi−1 + hi)

) (5.2.24)

holds.

Let us discuss now a few different scenarios when u(x) is not smooth on the

extended stencil S.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi−2, where u(x) or derivative of u(x) is discontinuous. Then

(5.2.24) obviously does not hold, i.e. (5.2.22) is not the fifth order approxi-

mation for u(x) at x = xi+ 1
2
. However, since u(x) is still smooth in stencils

S1 and S2, (5.2.22) gives the third order approximation if one chooses γ
(i)
0 = 0

and γ
(i)
1 + γ

(i)
2 = 1.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi−1, where u(x) or derivative of u(x) is discontinuous. Then

(5.2.24) obviously does not hold, i.e. (5.2.22) is not the fifth order approxi-

mation for u(x) at x = xi+ 1
2
. However, since u(x) is still smooth in stencil S2,

(5.2.22) gives the third order approximation if one chooses γ
(i)
0 = γ

(i)
1 = 0 and

γ
(i)
2 = 1.

• Assume that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi+1, where u(x) or derivative of u(x) is discontinuous. Then

(5.2.24) obviously does not hold, i.e. (5.2.22) is not the fifth order approxi-

mation for u(x) at x = xi+ 1
2
. However, since u(x) is still smooth in stencil S0,

(5.2.22) gives the third order approximation if one chooses γ
(i)
1 = γ

(i)
2 = 0 and

γ
(i)
0 = 1.
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• Assume that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi+2, where u(x) or derivative of u(x) is discontinuous. Then

(5.2.24) does not hold and therefore (5.2.22) is not the fifth order approxima-

tion for u(x) at x = xi+ 1
2
. However, since u(x) is smooth in stencils S0 and

S1, (5.2.22) gives the third order approximation if one chooses γ
(i)
0 + γ

(i)
1 = 1

and γ
(i)
2 = 0.

• Finally, we note that when u(x) is smooth everywhere on the extended stencil

S except one point of cell Ωi, approximation (5.2.22) is not consistent. It is

due to the fact that u(x) is not smooth on all stencils S0, S1 and S2, and there-

fore all approximation formulas (5.2.6), (5.2.11) and (5.2.16) are inconsistent.

Unfortunately, this kind of local inconsistency cannot be eliminated and there-

fore one has to anticipate the order reduction when WENO approximations

are used for solving problems with non-smooth solutions.

Linear weights γ
(i)
0 , γ

(i)
1 and γ

(i)
2 defined by (5.2.23) are independent of u(x).

Therefore, these weights cannot be used when u(x) is non-smooth. The purpose

of the WENO5 method is to find the approximation of u(xi+ 1
2
) by using a convex

combination of approximations u
(0)

i+ 1
2

, u
(1)

i+ 1
2

and u
(2)

i+ 1
2

defined by (5.2.6), (5.2.11) and

(5.2.16), respectively. In other words, (5.2.22) is replaced with:

ui+ 1
2

= ω
(i)
0 u

(0)

i+ 1
2

+ ω
(i)
1 u

(1)

i+ 1
2

+ ω
(i)
2 u

(2)

i+ 1
2

(5.2.25)

where ω
(i)
0 ≥ 0, ω

(i)
1 ≥ 0, ω

(i)
2 ≥ 0 are called nonlinear weights and

ω
(i)
0 + ω

(i)
1 + ω

(i)
2 = 1.

Lemma 5.2.18. Assume that u(x) is sufficiently smooth on the extended stencil S.

If

ω
(i)
0 = γ

(i)
0 + O

(
(hi−1 + hi + hi+1)(hi−2 + hi−1 + hi + hi+1 + hi+2)

)
,

ω
(i)
1 = γ

(i)
1 + O

(
(hi−1 + hi + hi+1)(hi−2 + hi−1 + hi + hi+1 + hi+2)

)
,

ω
(i)
2 = γ

(i)
2 +O

(
(hi−1 + hi + hi+1)(hi−2 + hi−1 + hi + hi+1 + hi+2)

)
,

(5.2.26)

then (5.2.25) is a fifth order approximation for u(x) at x = xi+ 1
2
.
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Proof Using (5.2.7), (5.2.12), (5.2.17) and (5.2.21), we have

ui+ 1
2

= ω
(i)
0 u

(0)

i+ 1
2

+ ω
(i)
1 u

(1)

i+ 1
2

+ ω
(i)
2 u

(2)

i+ 1
2

=
(
ω

(i)
0 − γ

(i)
0

)
u

(0)

i+ 1
2

+
(
ω

(i)
1 − γ

(i)
1

)
u

(1)

i+ 1
2

+
(
ω

(i)
2 − γ

(i)
2

)
u

(2)

i+ 1
2

+ γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

+ γ
(i)
2 u

(2)

i+ 1
2

=
(
ω

(i)
0 − γ

(i)
0

)(
u

(0)

i+ 1
2

− u(xi+ 1
2
)
)

+
(
ω

(i)
1 − γ

(i)
1

)(
u

(1)

i+ 1
2

− u(xi+ 1
2
)
)

+
(
ω

(i)
2 − γ

(i)
2

)(
u

(2)

i+ 1
2

− u(xi+ 1
2
)
)

+ γ
(i)
0 u

(0)

i+ 1
2

+ γ
(i)
1 u

(1)

i+ 1
2

+ γ
(i)
2 u

(2)

i+ 1
2

= u(xi+ 1
2
) +

(
ω

(i)
0 − γ

(i)
0

)
·O
(
hi(hi−1 + hi)(hi−2 + hi−1 + hi)

)
+
(
ω

(i)
1 − γ

(i)
1

)
·O
(
hihi+1(hi−1 + hi)

)
+
(
ω

(i)
2 − γ

(i)
2

)
·O
(
hihi+1(hi+1 + hi+2)

)
+ O

(
hihi+1(hi−1 + hi)(hi+1 + hi+2)(hi−2 + hi−1 + hi)

)
.

Now, using (5.2.26), we obtain

ui+ 1
2

= u(xi+ 1
2
) + O

(
hi (hi−1 + hi + hi+1)2 (hi−2 + hi−1 + hi + hi+1 + hi+2)2

)
.

In order to define nonlinear weights ω
(i)
0 , ω

(i)
1 and ω

(i)
2 , we first introduce

smoothness indicators β
(i)
0 , β

(i)
1 , and β

(i)
2 to measure the smoothness of u(x) in sten-

cils S0, S1 and S2, respectively. Interpolating polynomials (), () and () are used to

define the smoothness indicators in the following way:

β
(i)
0 = hi

∫
Ωi

(
d

dx
p

(i)
0 (x)

)2

dx+ h3
i

∫
Ωi

(
d2

dx2
p
(i)

0 (x)

)2

dx =
13

3

(
a

(i)
0 h

2
i

)2

+
(
b

(i)
0 hi

)2

,

β
(i)
1 = hi

∫
Ωi

(
d

dx
p

(i)
1 (x)

)2

dx+ h3
i

∫
Ωi

(
d2

dx2
p
(i)

1 (x)

)2

dx =
13

3

(
a

(i)
1 h

2
i

)2

+
(
b

(i)
1 hi

)2

,

β
(i)
2 = hi

∫
Ωi

(
d

dx
p

(i)
2 (x)

)2

dx+ h3
i

∫
Ωi

(
d2

dx2
p
(i)

2 (x)

)2

dx =
13

3

(
a

(i)
2 h

2
i

)2

+
(
b

(i)
2 hi

)2

,

(5.2.27)
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where a
(i)
r , b

(i)
r , and c

(i)
r , r = 0, 1, 2, are coefficients that can be used from the previous

found approximations in u
(0)

i+ 1
2

, u
(1)

i+ 1
2

and u
(2)

i+ 1
2

.

Now, normalized nonlinear weights in (5.2.25) are defined as following:

ω
(i)
0 =

ω̃
(i)
0

ω̃
(i)
0 + ω̃

(i)
1 + ω̃

(i)
2

, ω
(i)
1 =

ω̃
(i)
1

ω̃
(i)
0 + ω̃

(i)
1 + ω̃

(i)
2

, ω
(i)
2 =

ω̃
(i)
2

ω̃
(i)
0 + ω̃

(i)
1 + ω̃

(i)
2

,

(5.2.28)

where

ω̃
(i)
0 =

γ
(i)
0(

ε+ β
(i)
0

)2 , ω̃
(i)
1 =

γ
(i)
1(

ε+ β
(i)
1

)2 , ω̃
(i)
2 =

γ
(i)
2(

ε+ β
(i)
2

)2 . (5.2.29)

Here, ε = 10−6 is taken to prevent the denominators to become zero.

Lemma 5.2.19. Assume that u(x) is sufficiently smooth on the extended stencil S.

If there is non-zero constant D such that

β
(i)
0 = D

(
1 +O

(
(hi−1 + hi)(hi−2 + hi−1 + hi)

))
,

β
(i)
1 = D

(
1 +O

(
(hi−1 + hi)(hi + hi+1)

))
,

β
(i)
2 = D

(
1 +O

(
(hi + hi+1)(hi + hi+1 + hi+2)

))
,

(5.2.30)

then (5.2.26) are satisfied and therefore (5.2.25) results in a fifth order approximation

for u(x) at x = xi+ 1
2
.

Proof Putting (5.2.30) in (5.2.29) and using Taylor expansion we first obtain

ω̃
(i)
0 =

γ
(i)
0

(ε+D)2 + O
(

(hi−1 + hi)(hi−2 + hi−1 + hi)
)
,

ω̃
(i)
1 =

γ
(i)
1

(ε+D)2 + O
(

(hi−1 + hi)(hi + hi+1)
)
,

ω̃
(i)
2 =

γ
(i)
2

(ε+D)2 + O
(

(hi + hi+1)(hi + hi+1 + hi+2)
)
.

Then putting these in (5.2.28) gives (5.2.26).

Theorem 5.2.20. Assume that u(x) is sufficiently smooth on the extended stencil

S. Then smoothness indicators defined by (5.2.27) satisfy (5.2.30) and therefore

(5.2.25) results in a fifth order approximation for u(x) at x = xi+ 1
2

when nonlinear

weights are defined by (5.2.28)-(5.2.29).
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Proof By using Taylor’s formula in (5.2.27), we can easily verify that (5.2.30) holds

with D =
(
hiu
′(xi)

)2

.

Summary

• If u(x) is smooth everywhere on the extended stencil S then (5.2.25) gives the

fifth order approximation for u(x) at x = xi+ 1
2
.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi−2, where u(x) or derivative of u(x) is discontinuous. Then, it

is easy to verify that β
(i)
0 = O(1), β

(i)
1 = O(h2

i ) and β
(i)
2 = O(h2

i ). Therefore, in

this case we have ω̃
(i)
0 << ω̃

(i)
1 and ω̃

(i)
0 << ω̃

(i)
2 , which results in ω

(i)
0 ≈ 0 and

ω
(i)
1 + ω

(i)
2 ≈ 1. Thus, (5.2.25) gives the third order approximation for u(x) at

x = xi+ 1
2

as it was expected to be.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi−1, where u(x) is discontinuous. Then, it is easy to verify that

β
(i)
0 = O(1), β

(i)
1 = O(1) and β

(i)
2 = O(h2

i ). Therefore, in this case we have

ω̃
(i)
0 << ω̃

(i)
2 and ω̃

(i)
1 << ω̃

(i)
2 , which results in ω

(i)
0 ≈ 0, ω

(i)
1 ≈ 0 and ω

(i)
2 ≈ 1.

Thus, (5.2.25) gives the third order approximation for u(x) at x = xi+ 1
2

as it

was expected to be.

• Suppose that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi+1, where u(x) is discontinuous. Then, it is easy to verify that

β
(i)
0 = O(h2

i ), β
(i)
1 = O(1) and β

(i)
2 = O(1). Therefore, in this case we have

ω̃
(i)
0 >> ω̃

(i)
1 and ω̃

(i)
0 >> ω̃

(i)
2 , which results in ω

(i)
0 ≈ 1, ω

(i)
1 ≈ 0 and ω

(i)
2 ≈ 0.

Thus, (5.2.25) gives the third order approximation for u(x) at x = xi+ 1
2

as it

was expected to be.

• Assume that u(x) is smooth everywhere on the extended stencil S except one

point of cell Ωi+2, where u(x) or derivative of u(x) is discontinuous. Then, it

is easy to verify that β
(i)
0 = O(h2

i ), β
(i)
1 = O(h2

i ) and β
(i)
2 = O(1). Therefore, in

this case we have ω̃
(i)
0 >> ω̃

(i)
2 and ω̃

(i)
1 >> ω̃

(i)
2 , which results in ω

(i)
0 +ω

(i)
1 ≈ 0

and ω
(i)
2 ≈ 0. Thus, (5.2.25) gives the third order approximation for u(x) at

x = xi+ 1
2

as it was expected to be.



CHAPTER 6

APPLICATION OF WENO METHODS TO ADVECTION

DIFFUSION REACTION PROBLEMS WITH SINGULAR

SOURCE TERMS

In this chapter, we will apply constructed WENO approximations for numerical

solutions of Advection equations with singular source terms and Advection Diffusion

equations with singular source terms.

6.1 ADVECTION PROBLEMS WITH SINGULAR SOURCE TERMS

In this section, we will construct the numerical scheme for approximate solution

of the Advection equation

ut + aux = g(t)δ(x− ξ), 0 < x < l, t > 0 (6.1.1)

with dynamic singular point source term, where a is a positive constant and g is a

smooth function.

6.1.1 Spatial discretization by using WENO methods

We define our grid, cells and cell centers as

0 = x 1
2
< x 3

2
< x 5

2
< . . . < xM− 1

2
< xM+ 1

2
= l, (6.1.2)

Ωi =
[
xi− 1

2
, xi+ 1

2

]
, i = 1, 2, . . . ,M, (6.1.3)

xi =
xi− 1

2
+ xi+ 1

2

2
, i = 1, 2, . . . ,M, (6.1.4)

respectively (see Figure 5.1). We also define the mesh sizes as

hi = xi+ 1
2
− xi− 1

2
, i = 1, 2, . . . ,M (6.1.5)
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Let the cell average value of function u(x, t) be defined as

ūi(t) =
1

hi

∫
Ωi

u(x, t)dx, i = 1, 2, . . . ,M. (6.1.6)

The Finite Volume approach for (6.1.1) amounts for first integrating (6.1.1) over

each cell Ωi and dividing by the cell volume |Ωi| = hi, which gives us:

1

hi

∫
Ωi

utdx+
a

hi

∫
Ωi

uxdx =
1

hi

∫
Ωi

g(t)δ(x− ξ)dx, i = 1, . . . ,M. (6.1.7)

Assuming that ξ ∈ Ωj, we obtain

∂

∂t

 1

hi

∫
Ωi

u(x, t)dx

+
a

hi

∫
Ωi

∂

∂x
u(x, t)dx = g(t)

δij
hi
, i = 1, . . . ,M,

where δij is the Kronecker delta symbol defined by (4.2.4). Then, applying the

fundamental theorem of calculus, we have

dūi(t)

dt
+
a

hi

(
u(xi+ 1

2
, t)− u(xi− 1

2
, t)
)

= g(t)
δij
hi
, i = 1, 2, . . . ,M (6.1.8)

Now, to finish the Finite Volume method for spatial discretization of equation (6.1.1),

we have to express the terms u(xi+ 1
2
, t) and u(xi− 1

2
, t) in (6.1.8) in terms of cell

averages.

Firstly, we apply the WENO3 approximation (5.1.18), i.e.

ui+ 1
2

= ω
(i)
0

(
− hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

)

+ ω
(i)
1

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)
,

(6.1.9)

ui− 1
2

= ω
(i−1)
0

(
− hi−1

hi−2 + hi−1

ūi−2 +
hi−2 + 2hi−1

hi−2 + hi−1

ūi−1

)

+ ω
(i−1)
1

(
hi

hi−1 + hi
ūi−1 +

hi−1

hi−1 + hi
ūi

)
,

(6.1.10)

where the weights ω
(i)
0 , ω

(i)
1 are defined by (5.1.21)-(5.1.22) and the weights ω

(i−1)
0 ,

ω
(i−1)
1 are obtained from (5.1.21)-(5.1.22) by shifting the index accordingly. Re-

placing u(xi+ 1
2
, t) and u(xi− 1

2
, t) in (6.1.8) by (6.1.9) and (6.1.10), respectively, we
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obtain

dūi(t)

dt
=

a

hi

[
ω

(i−1)
0

(
− hi−1

hi−2 + hi−1

ūi−2 +
hi−2 + 2hi−1

hi−2 + hi−1

ūi−1

)

+ ω
(i−1)
1

(
hi

hi−1 + hi
ūi−1 +

hi−1

hi−1 + hi
ūi

)

− ω(i)
0

(
− hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

)

− ω(i)
1

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)]
+ g(t)

δij
hi
,

(6.1.11)

which completes the Finite Volume WENO3 spatial discretization of equation (6.1.1).

Secondly, we apply the WENO5 approximation (5.2.25), i.e.

ui+ 1
2

= ω
(i)
0

[
hi(hi−1 + hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
ūi−2

−
(

hi(hi−1 + hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
+

hi(hi−2 + 2hi−1 + 2hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi−1

+

(
1 +

hi(hi−2 + 2hi−1 + 2hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi

]

+ ω
(i)
1

[
− hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

+

(
1 +

hihi+1

(hi−1 + hi)(hi−1 + hi + hi+1)
− hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

+
hi(hi−1 + hi)

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1

]

+ ω
(i)
2

[
hi+1(hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)
ūi

+

(
1 +

hihi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)
− hi+1(hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)

)
ūi+1

− hihi+1

(hi+1 + hi+2)(hi + hi+1 + hi+2)
ūi+2

]
,

(6.1.12)
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where the weights ω
(i)
0 , ω

(i)
1 , ω

(i)
2 are defined by (5.2.28)-(5.2.29). By shifting the

index in (6.1.12), we can obtain the WENO5 approximation ui− 1
2

in the similar way.

Now, replacing u(xi+ 1
2
, t) and u(xi− 1

2
, t) in (6.1.8) by WENO5 approximations

ui+ 1
2

and ui− 1
2
, respectively, we complete the Finite Volume WENO5 spatial dis-

cretization of equation (6.1.1).

Remark 6.1.1. Obviously, WENO3 approximations (6.1.9)-(6.1.10) and WENO5

approximations (6.1.12) have to be adjusted for cells at the left and at the right

boundaries of the spatial domain where equation (6.1.1) is defined. One way is to

fix the weights manually to 1 or 0, depending on whether the stencil is entirely inside

of the interval [0, l]. In our numerical examples though we consider the problems

with periodic solutions, so that WENO approximation formulas can be readily used

without making any changes.

6.1.2 Temporal discretization

Spatial discretization by using Finite Volume WENO methods, introduced in

Section 5, results in the system of ODEs

dŪ(t)

dt
= W

(
Ū(t)

)
Ū(t) +G(t). (6.1.13)

Here, W is the matrix containing all nonlinear WENO weights and

Ū(t) =


ū1(t)

ū2(t)
...

ūM(t)

 , G(t) =



0
...

g(t)

hj
...

0


,

where vector G has zero entries except at entry j . Note that (6.1.13) is the system

of nonlinear ODEs. For discretization of (6.1.13) we apply two different approaches,

known in WENO literature, one being an explicit method and the other one being

a semi-implicit method.

The most common way to discretize (6.1.13) is the strong-stability-preserving
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(SSP) explicit third order Runge-Kutta method (Gottlieb et al., 2001).

Ū (1) = Ūn + τ
(
W
(
Ūn
)
Ūn +G(t)

)
,

Ū (2) =
3

4
Ūn +

1

4
Ū (1) +

τ

4

(
W
(
Ū (1)

)
Ū (1) +G(tn + τ)

)
,

Ūn+1 =
1

3
Ūn +

2

3
Ū (2) +

2τ

3

(
W
(
Ū (2)

)
Ū (2) +G(tn +

τ

2
)
)
,

(6.1.14)

where Ūn is the numerical approximation of Ū(t) at t = tn = nτ and τ > 0 is the

time step.

The other way to discretize (6.1.13) is the semi-implicit method introduced

in (Gottlieb et al., 2006). On each time step, first the predictor Ũn+1 is computed

by using (6.1.14), i.e.

Ū (1) = Ūn + τ
(
W
(
Ūn
)
Ūn +G(tn)

)
,

Ū (2) =
3

4
Ūn +

1

4
Ū (1) +

τ

4

(
W
(
Ū (1)

)
Ū (1) +G(tn + τ)

)
,

Ũn+1 =
1

3
Ūn +

2

3
Ū (2) +

2τ

3

(
W
(
Ū (2)

)
Ū (2) +G(tn +

τ

2
)
)
.

(6.1.15)

Then, the Crank-Nicolson scheme is used to find the corrector:

Ūn+1 = Ūn +
τ

2

(
W
(
Ūn
)
Ūn +G(tn) +W

(
Ũn+1

)
Un+1 +G(tn+1)

)
. (6.1.16)

Assume that the solution of the Advection equation (6.1.1) has to satisfy initial

conditions u(x, 0) = φ(x), 0 ≤ x ≤ l. Then, setting up Ū0 in (6.1.14) or in (6.1.15)-

(6.1.16) completes the temporal discretization of (6.1.1).

6.1.3 Numerical Examples

In this section, we shall validate our findings by numerical illustrations for two

simple test problems. Firstly, we consider the Advection problem without singular

source terms. Obviously, such a problem has a smooth solution. We shall use this

example to illustrate the correct orders of WENO methods. Secondly, we consider

the Advection problem with singular source term, which has discontinuous solution.
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Example 6.1.2. We consider the problem:
ut + ux = 0, 0 < t < 1, 0 < x < 2,

u(x, 0) = sin (πx), 0 ≤ x ≤ 1,

u(0, t) = 0, 0 ≤ t ≤ 1.

(6.1.17)

The analytical solution of problem (6.1.17) is given by:

u(x, t) = sin(π(x− t)).

We set the non-uniform mesh in the following way. The mesh points are

uniformly located in intervals 0 ≤ x ≤ 1 and 1 ≤ x ≤ 2. Spacing in the first interval

is twice the spacing in the second interval, so that

hi =


3

M
, if 1 ≤ i ≤ M

3
,

3

2M
, if

M

3
< i ≤M,

where M is the number of cells.

WENO3 and WENO5 methods are used for spatial discretization of problem

(6.1.17) and semi-implicit scheme (6.1.15)-(6.1.16) is used for temporal discretiza-

tion. To show the convergence rates of WENO methods and therefore to exclude

the temporal errors, in all simulations we use τ =
1

N
= 5× 10−5 for time step. The

errors are computed in two different norms. Firstly, accuracy is measured by means

of the maximum norm:

‖Error‖∞ = max
1≤i≤M
1≤n≤N

|ũi(tn)− ūni | , (6.1.18)

where ũi(tn) is the exact cell average value in cell Ωi at time point t = tn and ūni is

the corresponding numerical solution. Secondly, accuracy is measured by means of

the L1 norm:

‖Error‖L1 =
1

xM+ 1
2
− x 1

2

[
M−1∑
i=1

∣∣∣u(xi+ 1
2
, tN)− uN

i+ 1
2

∣∣∣ hi + hi+1

2

+
∣∣∣u(x 1

2
, tN)− uN1

2

∣∣∣ h1

2
+
∣∣∣u(xM+ 1

2
, tN)− uN

M+ 1
2

∣∣∣ hM
2

]
,

(6.1.19)

where u(xi+ 1
2
, tN) is the exact solution at x = xi+ 1

2
and t = tN , uN

i+ 1
2

is the corre-

sponding numerical solution.
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Table 6.1 shows the errors between the exact solution of problem (6.1.17) and

the numerical solutions computed by semi-implicit WENO3 method for different

values of M , as well as the convergence rates. We observe that the WENO3 scheme

approaches the third order convergence for a high number of grid cells.

Table 6.1 The errors between the exact solution of the problem (6.1.17) and the
numerical solutions computed by semi-implicit WENO3 method on non-uniform
mesh for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

30 1.03e− 01 − 4.59e− 02 −

60 4.22e− 02 1.2854 1.32e− 02 1.8008

120 1.60e− 02 1.4036 3.18e− 03 2.0500

240 5.03e− 03 1.6655 6.22e− 04 2.3545

480 9.21e− 04 2.4503 6.92e− 05 3.1685

Table 6.2 shows the errors between the exact solution of problem (6.1.17) and

the numerical solutions computed by semi-implicit WENO5 method for different

values of M , as well as the convergence rates. We observe overall the fifth order

convergence of the method, as it is expected. Obviously, the WENO5 method

gives significant improvement in comparison with the WENO3 method (compare

the results in Table 6.1 and Table 6.2).

Table 6.2 The errors between the exact solution of the problem (6.1.17) and the
numerical solutions computed by semi-implicit WENO5 method on non-uniform
mesh for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

M = 30 1.19e− 03 − 3.90e− 04 −

M = 60 3.41e− 05 5.1255 1.27e− 05 4.9377

M = 120 9.41e− 07 5.1795 4.04e− 07 4.9766

M = 240 3.05e− 08 4.9465 1.24e− 08 5.0308
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Example 6.1.3. We consider the problem:
ut + ux = sin(πt)δ(x− 1

3
), 0 < x < 1, 0 < t < 0.5,

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, 0 ≤ t ≤ 0.5.

(6.1.20)

Let us first find the exact solution of problem (6.1.20). By taking the Laplace

Transform with respect to t, from the first equality in (6.1.20) we obtain

sU(x, s)− u(x, 0) +
d

dx
U(x, s) =

π

s2 + π2
δ(x− 1

3
),

where U(x, s) = L{u(x, t)}. Since u(x, 0) = 0, we have

d

dx
U(x, s) + sU(x, s) =

π

s2 + π2
δ(x− 1

3
)

or
d

dx

(
esxU(x, s)

)
=

π

s2 + π2
esxδ(x− 1

3
).

Integrating both sides of this equation from 0 to x, we get

esxU(x, s) =
π

s2 + π2

x∫
0

esξδ(ξ − 1

3
)dξ + C.

Since u(0, t) = 0, we have C = U(0, s) = L{u(0, t)} = 0. Then,

U(x, s) =
π

s2 + π2
e−sx

x∫
0

esξδ(ξ − 1

3
)dξ.

Using (1.2.3), we get

U(x, s) =


0, x <

1

3
π

s2 + π2
e−sxes/3, x ≥ 1

3
.

Since

L−1

{
π

s2 + π2
e−(x− 1

3
)s

}
= H(t− x+

1

3
) sin

(
π(t− x+

1

3
)
)
,

the analytical solution of problem (6.1.20) has the form

u(x, t) =


0, if x <

1

3
,

H(t− x+
1

3
) sin

(
π(t− x+

1

3
)
)
, if x ≥ 1

3
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or

u(x, t) =


0, if x <

1

3
or x ≥ 1

3
+ t,

sin

(
π(t− x+

1

3
)

)
, if

1

3
≤ x <

1

3
+ t.

(6.1.21)

Note that solution (6.1.21) has a jump discontinuity at x =
1

3
.

We first set the uniform mesh with mesh sizes h =
1

M
, where M is the number

of cells. We apply the WENO3 and WENO5 methods on this uniform mesh for

spatial discretization of problem (6.1.20) and semi-implicit scheme (6.1.15)-(6.1.16)

for temporal discretization. In all simulations, we use τ =
1

N
= 5 × 10−4 for time

step.

Table 6.3 shows the errors in L1 norm between the exact solution of problem

(6.1.20) and the numerical solutions computed by semi-implicit WENO3 method on

uniform mesh for different values of M , as well as the convergence rates. We observe

that the WENO3 scheme has only the first order convergence. This order reduction

from three to one obviously occurs here due to the discontinuity in the solution of

problem (6.1.20).

Table 6.3 The errors between the exact solution of the problem (6.1.20) and the
numerical solutions computed by semi-implicit WENO3 method on uniform mesh
for different values of M .

M ‖Error‖L1 Order in ‖ · ‖L1

20 3.74e− 02 −

80 9.12e− 03 1.0185

320 2.22e− 03 1.0186

Table 6.4 shows the errors in L1 norm between the exact solution of problem

(6.1.20) and the numerical solutions computed by semi-implicit WENO5 method on

uniform mesh for different values of M , as well as the convergence rates. We observe

that the WENO5 scheme has also the first order convergence. Moreover, there is

no significant difference in the results compared to corresponding WENO3 results

given in Table 6.3. This might look at first glance rather surprising. One would
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expect better results from higher order of accuracy method. However, it is the case

only for smooth functions. Recall that WENO5 method is based on approximations

by using quadratic polynomials, while WENO3 method uses linear polynomials.

For discontinuous functions higher order polynomials do not necessarily give better

approximations.

Table 6.4 The errors between the exact solution of the problem (6.1.20) and the
numerical solutions computed by semi-implicit WENO5 method on uniform mesh
for different values of M .

M ‖Error‖L1 Order in ‖ · ‖L1

20 3.54e− 02 −

80 8.56e− 03 1.0237

320 2.10e− 03 1.0124

Next, we set the non-uniform mesh in the following way. We first place 100

fine uniform cells in the interval [0.3, 0.4] with cell size 0.001 each. Then, we place 15

coarse uniform cells in the interval [0, 0.228] with cell size 0.0152 each and 35 coarse

uniform cells in the interval [0.472, 1] with cell size 0.0151 each. Two remaining

intervals [0.228, 0.3] and [0.4, 0.472] are intermediate regions. In each intermediate

region we place 15 cells such that cells sizes are increased by 20% from one cell to

the next in the direction from the fine-mesh region to the coarse-mesh region. Thus,

in total we have 180 cells and mesh sizes are defined as

hi =



0.0152, if 1 ≤ i ≤ 15,

0.001 · (1.2)30−i, if 16 ≤ i ≤ 30,

0.001, if 31 ≤ i ≤ 130,

0.001 · (1.2)i−131, if 131 ≤ i ≤ 145,

0.0151, if 146 ≤ i ≤ 180.

Note that with this mesh choice, the discontinuity point x =
1

3
∈ Ω64. We apply

the WENO3 and WENO5 methods on this non-uniform mesh for spatial discretiza-

tion of problem (6.1.20) and semi-implicit scheme (6.1.15)-(6.1.16) for temporal
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discretization. In both simulations, we use τ =
1

N
= 5× 10−4 for time step.

Figure 6.1 shows the exact solution (solid lines) of problem (6.1.20) at t = 0.25

along with the numerical solutions (crosses) computed by semi-implicit WENO3

(left) and WENO5 (right) methods on non-uniform mesh.

Figure 6.1 Exact solution (solid lines) of problem (6.1.20) at time t = 0.25 and corre-
sponding numerical solutions (crosses) computed by semi-implicit WENO3 method
(left) and semi-implicit WENO5 method (right) on non-uniform mesh.

Figure 6.2 shows the exact solution (solid lines) of problem (6.1.20) at t = 0.5

along with the numerical solutions (crosses) computed by semi-implicit WENO3

(left) and WENO5 (right) methods on non-uniform mesh.

Figure 6.2 Exact solution (solid lines) of problem (6.1.20) at time t = 0.5 and corre-
sponding numerical solutions (crosses) computed by semi-implicit WENO3 method
(left) and semi-implicit WENO5 method (right) on non-uniform mesh.
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The error in L1 norm between the exact solution of the problem (6.1.20) and

the numerical solution computed by semi-implicit WENO3 method on non-uniform

mesh with 180 cells is

‖Error‖L1 = 1.88e− 03.

Note that this numerical solution is more accurate than the one obtained on uniform

mesh with 320 cells (see Table 6.3). This illustrates the advantage of using locally

refined grids for numerical solution of problems with non-smooth solutions.

The error in L1 norm between the exact solution of the problem (6.1.20) and

the numerical solution computed by semi-implicit WENO5 method on non-uniform

mesh with 180 cells is

‖Error‖L1 = 9.91e− 04.

Although the accuracy of WENO5 method in this simulation is twice smaller than

the accuracy of WENO3 method, the difference is not that drastic as it was in

the case of problem with smooth solution (Example 6.1.2). Finally, note that this

numerical solution is more accurate than the one obtained on uniform mesh with

320 cells (see Table 6.4).

6.2 ADVECTION DIFFUSION PROBLEMS WITH SINGULAR SOURCE

TERMS

In this section, we will construct the numerical scheme for approximate solution

of the Advection Diffusion equation

ut + aux = duxx + g(t)δ(x− ξ), (6.2.1)

with dynamic singular point source term, where a and d are positive constants, g

is a smooth function. We consider the problem (6.2.1) under the condition d � a,

which means low diffusion.

6.2.1 Spatial discretization by using WENO methods

Let the grid, cells, cell centers and mesh sizes be defined by (6.1.2), (6.1.3),

(6.1.4) and (6.1.5), respectively. Let the cell average values of function u(x, t) be
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defined by (6.1.6).

The Finite Volume approach for (6.2.1) amounts for first integrating (6.2.1)

over each cell Ωi and dividing by the cell volume |Ωi| = hi, which gives us:

1

hi

∫
Ωi

utdx+
a

hi

∫
Ωi

uxdx =
d

hi

∫
Ωi

uxxdx+
1

hi

∫
Ωi

g(t)δ(x− ξ)dx, i = 1, . . . ,M.

Assuming that ξ ∈ Ωj, we obtain

∂

∂t

 1

hi

∫
Ωi

u(x, t)dx

+
a

hi

∫
Ωi

∂

∂x
u(x, t)dx

=
d

hi

∫
Ωi

∂2

∂x2
u(x, t)dx+ g(t)

δij
hi
, i = 1, . . . ,M,

where δij is the Kronecker delta symbol defined by (4.2.4). Then, applying the

fundamental theorem of calculus, we have

dūi(t)

dt
+
a

hi

(
u(xi+ 1

2
, t)− u(xi− 1

2
, t)
)

=
d

hi

(
ux(xi+ 1

2
, t)− ux(xi− 1

2
, t)
)

+ g(t)
δij
hi
, i = 1, . . . ,M.

(6.2.2)

Now, to finish the Finite Volume method for spatial discretization of equation

(6.2.1), we have to express the terms u(xi+ 1
2
, t), u(xi− 1

2
, t), ux(xi+ 1

2
, t) and ux(xi− 1

2
, t)

in (6.2.2) in terms of cell averages.

We denote

ϕ = ux. (6.2.3)

Then, (6.2.2) can be written as

dūi(t)

dt
=

a

hi
(u(xi− 1

2
, t)− u(xi+ 1

2
, t))

+
d

hi

(
ϕ(xi+ 1

2
, t)− ϕ(xi− 1

2
, t)
)

+ g(t)
δij
hi
, i = 1, . . . ,M.

(6.2.4)

Let us first describe the application of WENO3 method in (6.2.4). We can

readily use the WENO3 approximations (6.1.9) and (6.1.10) for u(xi+ 1
2
, t) and

u(xi− 1
2
, t) in (6.2.4), respectively. Next, we will obtain the WENO3 approxima-

tion for ϕ(xi+ 1
2
, t) in (6.2.4). We use linear polynomials (5.1.1) and (5.1.6) to find

two approximations on stencils S0 = {Ωi−1,Ωi} and S1 = {Ωi,Ωi+1}, respectively

(see Figure 5.1).
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From (5.1.1) and (5.1.3) we have

d

dx
p

(i)
0 (x) = a

(i)
0 =

2

hi−1 + hi

(
ūi − ūi−1

)
.

Then, the approximation of ϕ(xi+ 1
2
, t) on stencil S0 = {Ωi−1,Ωi} is given by

ϕ
(0)

i+ 1
2

=
2

hi−1 + hi

(
ūi − ūi−1

)
. (6.2.5)

Similarly, from (5.1.6) and (5.1.8) we have

d

dx
p

(i)
1 (x) = a

(i)
1 =

2

hi + hi+1

(
ūi+1 − ūi

)
.

Then, the approximation of ϕ(xi+ 1
2
, t) on stencil S1 = {Ωi,Ωi+1} is given by

ϕ
(1)

i+ 1
2

=
2

hi + hi+1

(
ūi+1 − ūi

)
. (6.2.6)

Now, taking the convex combination of approximations ϕ
(0)

i+ 1
2

and ϕ
(1)

i+ 1
2

results

in the WENO3 approximation for ϕ(xi+ 1
2
, t). Namely,

ϕi+ 1
2

= ω
(i)
0 ϕ

(0)

i+ 1
2

+ ω
(i)
1 ϕ

(1)

i+ 1
2

=
2ω

(i)
0

hi−1 + hi

(
ūi − ūi−1

)
+

2ω
(i)
1

hi + hi+1

(
ūi+1 − ūi

)
, (6.2.7)

where the weights ω
(i)
0 and ω

(i)
1 are defined by (5.1.21)-(5.1.22). Note that in (6.2.7)

we use the same weights as in WENO3 approximation (6.1.9) for u(xi+ 1
2
, t). It is

due to (6.2.3), i.e. if u is non-smooth in one of the stencils then so is ϕ.

Now, by shifting the index in (6.2.7), we obtain the WENO3 approximation

for ϕ(xi− 1
2
, t). Namely,

ϕi− 1
2

=
2ω

(i−1)
0

hi−2 + hi−1

(
ūi−1 − ūi−2

)
+

2ω
(i−1)
1

hi−1 + hi

(
ūi − ūi−1

)
, (6.2.8)

where the weights ω
(i−1)
0 and ω

(i−1)
1 are obtained from (5.1.21)-(5.1.22) by shifting

the index accordingly.

Replacing u(xi+ 1
2
, t), u(xi− 1

2
, t), ϕ(xi+ 1

2
, t) and ϕ(xi− 1

2
, t) in (6.1.8) by (6.1.9),
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(6.1.10), (6.2.7) and (6.2.8), respectively, we obtain

dūi(t)

dt
=

a

hi

[
ω

(i−1)
0

(
− hi−1

hi−2 + hi−1

ūi−2 +
hi−2 + 2hi−1

hi−2 + hi−1

ūi−1

)

+ ω
(i−1)
1

(
hi

hi−1 + hi
ūi−1 +

hi−1

hi−1 + hi
ūi

)

− ω(i)
0

(
− hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

)

− ω(i)
1

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)]

+
d

hi

[
2ω

(i)
0

hi−1 + hi

(
ūi − ūi−1

)
+

2ω
(i)
1

hi + hi+1

(
ūi+1 − ūi

)

− 2ω
(i−1)
0

hi−2 + hi−1

(
ūi−1 − ūi−2

)
− 2ω

(i−1)
1

hi−1 + hi

(
ūi − ūi−1

)]
+ g(t)

δij
hi
,

(6.2.9)

which completes the Finite Volume WENO3 spatial discretization of equation (6.2.1).

Remark 6.2.1. Another way to approximate ϕ(xi+ 1
2
, t) and ϕ(xi− 1

2
, t) in (6.2.4) is

to use the WENO3 approximation formulas (6.1.9)-(6.1.9) to function ϕ. Namely,

ϕi+ 1
2

= ω
(i)
0

(
− hi
hi−1 + hi

ϕ̄i−1 +
hi−1 + 2hi
hi−1 + hi

ϕ̄i

)

+ ω
(i)
1

(
hi+1

hi + hi+1

ϕ̄i +
hi

hi + hi+1

ϕ̄i+1

)
,

(6.2.10)

ϕi− 1
2

= ω
(i−1)
0

(
− hi−1

hi−2 + hi−1

ϕ̄i−2 +
hi−2 + 2hi−1

hi−2 + hi−1

ϕ̄i−1

)

+ ω
(i−1)
1

(
hi

hi−1 + hi
ϕ̄i−1 +

hi−1

hi−1 + hi
ϕ̄i

)
,

(6.2.11)

where

ϕ̄i(t) =
1

hi

∫
Ωi

ϕ(x, t)dx =
1

hi

∫
Ωi

ux(x, t)dx =
u(xi+ 1

2
, t)− u(xi− 1

2
, t)

hi
, i = 1, . . . ,M.

However, we did not use this approach in our numerical experiments.

Let us now describe the application of WENO5 method in (6.2.4). We can

readily use the WENO5 approximation (6.1.12) for u(xi+ 1
2
, t) in (6.2.4). By shifting
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the index in (6.1.12), we can also obtain the WENO5 approximation for u(xi− 1
2
, t).

Now, we will obtain the WENO5 approximation for ϕ(xi+ 1
2
, t) in (6.2.4). We use

quadratic polynomials (5.2.1), (5.2.8) and (5.2.13) to find three approximations on

stencils S0 = {Ωi−2,Ωi−1,Ωi}, S1 = {Ωi−1,Ωi,Ωi+1} and S2 = {Ωi,Ωi+1,Ωi+2},

respectively (see Figure 5.1).

From (5.2.1) we have

d

dx
p

(i)
0 (x)

∣∣∣∣
x=x

i+1
2

= a
(i)
0 hi + b

(i)
0 ,

where a
(i)
0 and b

(i)
0 are defined by (5.2.3) and (5.2.4), respectively. Then, using (5.2.3)-

(5.2.4) we find the approximation of ϕ(xi+ 1
2
, t) on stencil S0 = {Ωi−2,Ωi−1,Ωi} as

following

ϕ
(0)

i+ 1
2

=
d

dx
p

(i)
0 (x)

∣∣∣∣
x=x

i+1
2

=
2 (hi−1 + 2hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
ūi−2

−
(

2 (hi−1 + 2hi)

(hi−2 + hi−1)(hi−2 + hi−1 + hi)
+

2 (hi−2 + 2hi−1 + 3hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)

)
ūi−1

+
2 (hi−2 + 2hi−1 + 3hi)

(hi−1 + hi)(hi−2 + hi−1 + hi)
ūi.

(6.2.12)

Similarly, from (5.2.8) we have

d

dx
p

(i)
1 (x)

∣∣∣∣
x=x

i+1
2

= a
(i)
1 hi + b

(i)
1 ,

where a
(i)
1 and b

(i)
1 are defined by (5.2.10). Then, using (5.2.10) we find the approx-

imation of ϕ(xi+ 1
2
, t) on stencil S1 = {Ωi−1,Ωi,Ωi+1} as following

ϕ
(1)

i+ 1
2

=
2 (hi − hi+1)

(hi−1 + hi)(hi−1 + hi + hi+1)
ūi−1

−
(

2 (hi − hi+1)

(hi−1 + hi)(hi−1 + hi + hi+1)
+

2 (hi−1 + 2hi)

(hi + hi+1)(hi−1 + hi + hi+1)

)
ūi

+
2 (hi−1 + 2hi)

(hi + hi+1)(hi−1 + hi + hi+1)
ūi+1.

(6.2.13)
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Finally, from (5.2.13) we have

d

dx
p

(i)
2 (x)

∣∣∣∣
x=x

i+1
2

= a
(i)
2 hi + b

(i)
2 ,

where a
(i)
2 and b

(i)
2 are defined by (5.2.15). Then, using (5.2.15) we find the approx-

imation of ϕ(xi+ 1
2
, t) on stencil S2 = {Ωi,Ωi+1,Ωi+2} as following

ϕ
(2)

i+ 1
2

= − 2 (2hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)
ūi

+

(
2 (2hi+1 + hi+2)

(hi + hi+1)(hi + hi+1 + hi+2)
+

2 (hi+1 − hi)
(hi+1 + hi+2)(hi + hi+1 + hi+2)

)
ūi+1

− 2 (hi+1 − hi)
(hi+1 + hi+2)(hi + hi+1 + hi+2)

ūi+2.

(6.2.14)

Now, taking the convex combination of approximations ϕ
(0)

i+ 1
2

, ϕ
(1)

i+ 1
2

and ϕ
(2)

i+ 1
2

results in the WENO5 approximation for ϕ(xi+ 1
2
, t). Namely,

ϕi+ 1
2

= ω
(i)
0 ϕ

(0)

i+ 1
2

+ ω
(i)
1 ϕ

(1)

i+ 1
2

+ ω
(i)
2 ϕ

(2)

i+ 1
2

, (6.2.15)

where the weights ω
(i)
0 , ω

(i)
1 and ω

(i)
2 are defined by (5.2.28)-(5.2.29). Note that in

(6.2.15) we use the same weights as in WENO5 approximation (6.1.12) for u(xi+ 1
2
, t).

It is due to (6.2.3), i.e. if u is non-smooth in one of the stencils then so is ϕ.

By shifting the index in (6.2.15), we obtain the WENO5 approximation for

ϕ(xi− 1
2
, t) as following

ϕi− 1
2

= ω
(i−1)
0 ϕ

(0)

i− 1
2

+ ω
(i−1)
1 ϕ

(1)

i− 1
2

+ ω
(i−1)
2 ϕ

(2)

i− 1
2

, (6.2.16)

where the weights ω
(i−1)
0 , ω

(i−1)
1 , ω

(i−1)
2 are obtained from (5.2.28)-(5.2.29) and ap-

proximations ϕ
(0)

i− 1
2

, ϕ
(1)

i− 1
2

, ϕ
(2)

i− 1
2

are obtained from (6.2.12)-(6.2.14) by shifting the

index accordingly.

Now, replacing u(xi+ 1
2
, t), u(xi− 1

2
, t), ϕ(xi+ 1

2
, t) and ϕ(xi− 1

2
, t) in (6.2.4) by

WENO5 approximations ui+ 1
2
, ui− 1

2
, ϕi+ 1

2
and ϕi− 1

2
respectively, we complete the

Finite Volume WENO5 spatial discretization of equation (6.2.1).

6.2.2 Numerical Examples

In this section, we shall validate our findings by numerical illustrations for two

simple test problems. Firstly, we consider the Advection Diffusion problem without
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singular source terms. Obviously, such a problem has a smooth solution. We shall

use this example to illustrate the correct orders of WENO methods. Secondly, we

consider the Advection Diffusion problem with singular source terms, which has

non-smooth solution.

Example 6.2.2. We consider the problem:
ut + ux = 0.001uxx, 0 < t < 1, 0 < x < 1,

u(x, 0) = sin(2πx), 0 ≤ x ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1.

(6.2.17)

The analytical solution of problem (6.2.17) is given by:

u(x, t) = exp

(
−π

2t

250

)
sin
(
2π(x− t)

)
(6.2.18)

We set the non-uniform mesh in the following way. The mesh points are

uniformly located in intervals 0 ≤ x ≤ 1

2
and

1

2
≤ x ≤ 1. Spacing in the first

interval is twice the spacing in the second interval, so that

hi =


3

M
, if 1 ≤ i ≤ M

3
,

3

2M
, if

M

3
< i ≤M,

where M is the number of cells.

WENO3 and WENO5 methods are used for spatial discretization of problem

(6.2.17) and semi-implicit scheme (6.1.15)-(6.1.16) is used for temporal discretiza-

tion. To show the convergence rates of WENO methods and therefore to exclude

the temporal errors, in all simulations we use τ =
1

N
= 10−5 for time step. The

errors are computed in two different norms, in maximum norm defined by (6.1.18)

and L1 norm defined by (6.1.19).

Table 6.5 shows the errors between the exact solution of problem (6.2.17) and

the numerical solutions computed by semi-implicit WENO3 method for different

values of M , as well as the convergence rates. We observe on average the second

order convergence of the method in both norms.

Table 6.6 shows the errors between the exact solution of problem (6.2.17) and

the numerical solutions computed by semi-implicit WENO5 method for different
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Table 6.5 The errors between the exact solution of the problem (6.2.17) and the
numerical solutions computed by semi-implicit WENO3 method on non-uniform
mesh for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

15 3.50e− 01 − 1.81e− 01 −

30 1.38e− 01 1.3424 6.26e− 02 1.5326

60 5.03e− 02 1.4579 1.66e− 02 1.9171

120 1.51e− 02 1.7314 2.80e− 03 2.5689

240 2.82e− 03 2.4245 4.06e− 04 2.7819

480 1.91e− 04 3.8856 1.21e− 04 1.7519

values of M , as well as the convergence rates. We observe on average the fourth

order convergence of the method. Obviously, the WENO5 method gives significant

improvement in comparison with the WENO3 method (compare the results in Ta-

ble 6.5 and Table 6.6). Finally, we note that for both methods one degree order

reduction occurs although the solution (6.2.18) is the smooth function. Similar con-

vergence results are obtained by both methods when uniform mesh is used (results

are not given here).

Table 6.6 The errors between the exact solution of the problem (6.2.17) and the
numerical solutions computed by semi-implicit WENO5 method on non-uniform
mesh for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

15 2.76e− 02 − 1.29e− 02 −

30 1.17e− 03 4.5543 6.33e− 04 4.3497

60 4.61e− 05 4.6724 2.58e− 05 4.6144

120 3.56e− 06 3.6937 2.21e− 06 3.5496

240 6.46e− 07 2.4635 4.11e− 07 2.4254
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Example 6.2.3. We consider the problem:

ut + ux = 0.001uxx + 0.001

(
δ(x− 1

3
)− δ(x− 2

3
)

)
+

1

3
+H(x− 2

3
)−H(x− 1

3
), 0 < t < 1, 0 < x < 1,

u(x, 0) = sin(2πx) + z(x), 0 ≤ x ≤ 1,

u(0, t) = u(1, t), 0 ≤ t ≤ 1,

(6.2.19)

where

z(x) =



x

3
, 0 ≤ x ≤ 1

3
,

1− 2x

3
,

1

3
< x ≤ 2

3
,

x− 1

3
,

2

3
< x ≤ 1.

The analytical solution of problem (6.2.19) is given by:

u(x, t) = exp

(
−π

2t

250

)
sin
(
2π(x− t)

)
+ z(x). (6.2.20)

Note that solution (6.2.20) is continuous function but is has discontinuous first

derivative.

We first set the uniform mesh with mesh sizes h =
1

M
, where M is the number

of cells. We apply the WENO3 and WENO5 methods on this uniform mesh for

spatial discretization of problem (6.2.19) and semi-implicit scheme (6.1.15)-(6.1.16)

for temporal discretization. In all simulations, we use τ =
1

N
= 10−5 for time step.

The errors are computed in maximum norm defined by (6.1.18) and L1 norm defined

by (6.1.19).

Table 6.7 shows the errors between the exact solution of problem (6.2.19) and

the numerical solutions computed by semi-implicit WENO3 method on uniform

mesh for different values of M , as well as the convergence rates. We observe that

the WENO3 scheme has on average the second order convergence in both norms.

Table 6.8 shows the errors between the exact solution of problem (6.2.19) and

the numerical solutions computed by semi-implicit WENO5 method on uniform

mesh for different values of M , as well as the convergence rates. We observe that

the WENO5 scheme has only the first order convergence in the maximum norm

and the second order convergence in L1 norm. Although the WENO5 method gives
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Table 6.7 The errors between the exact solution of the problem (6.2.19) and the
numerical solutions computed by semi-implicit WENO3 method on uniform mesh
for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

10 4.97e− 01 − 2.80e− 01 −

20 1.87e− 01 1.4110 8.12e− 02 1.7872

40 6.84e− 02 1.4506 2.71e− 02 1.5847

80 2.00e− 02 1.7743 4.65e− 03 2.5406

160 3.58e− 03 2.4810 6.47e− 04 2.8466

320 7.36e− 04 2.2838 1.67e− 04 1.9511

much more accurate results in L1 norm than the WENO3 method does, there is no

significant difference in results in maximum norm (compare the results in Table 6.7

and Table 6.8). Finally, we note that the order reduction for both WENO methods

occurs here due to the non-smoothness of the solution of problem (6.2.19).

Table 6.8 The errors between the exact solution of the problem (6.2.19) and the
numerical solutions computed by semi-implicit WENO5 method on uniform mesh
for different values of M .

M ‖Error‖∞ Order in ‖ · ‖∞ ‖Error‖L1 Order in ‖ · ‖L1

10 5.00e− 02 − 2.91e− 02 −

20 7.14e− 03 2.8088 1.54e− 03 4.2388

40 5.86e− 03 0.2851 5.46e− 04 1.4985

80 3.04e− 03 0.9468 1.44e− 04 1.9226

160 1.39e− 03 1.1264 3.54e− 05 2.0239

320 6.88e− 04 1.0178 8.73e− 06 2.0206

Next, we set the non-uniform mesh in the following way. We first place 100

fine uniform cells in the interval [0.3, 0.4] and 100 fine uniform cells in the interval
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[0.6, 0.7] with cell size 0.001 each. Then, we place 15 coarse uniform cells in the inter-

val [0, 0.228] and 15 coarse uniform cells in the interval [0.772, 1] with cell size 0.0152

each. Additionally, we place 4 coarse uniform cells in the interval [0.472, 0.528] with

cell size 0.014 each. Four remaining intervals [0.228, 0.3], [0.4, 0.472], [0.528, 0.6] and

[0.7, 0.772] are intermediate regions. In each intermediate region we place 15 cells

such that cells sizes are increased by 20% from one cell to the next in the direction

from the fine-mesh region to the coarse-mesh region. Thus, in total we have 294

cells and mesh sizes are defined as:

hi =



0.0152, if 1 ≤ i ≤ 15,

0.001 · (1.2)30−i, if 16 ≤ i ≤ 30,

0.001, if 31 ≤ i ≤ 130,

0.001 · (1.2)i−131, if 131 ≤ i ≤ 145,

0.014, if 146 ≤ i ≤ 149,

0.001 · (1.2)164−i, if 150 ≤ i ≤ 164,

0.001, if 165 ≤ i ≤ 264,

0.001 · (1.2)i−265, if 265 ≤ i ≤ 279,

0.0152, if 280 ≤ i ≤ 294.

With this mesh choice, we have x =
1

3
∈ Ω64 and x =

2

3
∈ Ω231. Note that this

mesh is similar to the one used in Example 6.1.3.

We apply the WENO3 and WENO5 methods on this non-uniform mesh for

spatial discretization of problem (6.2.19) and semi-implicit scheme (6.1.15)-(6.1.16)

for temporal discretization. In both simulations, we use τ =
1

N
= 10−5 for time

step. The errors are computed in maximum norm defined by (6.1.18) and L1 norm

defined by (6.1.19).

Table 6.9 shows the errors between the errors between the exact solution of the

problem (6.2.19) and the numerical solutions computed by semi-implicit WENO3

and WENO5 methods on non-uniform mesh with 294 cells. We observe that with

WENO3 method the numerical solution is as accurate as the one obtained on uniform

mesh with 80 cells (see Table 6.7), which is rather poor. With WENO5 method the
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numerical solution is more accurate in L1 norm than the one obtained on uniform

mesh with 320 cells (see Table 6.8). However, the accuracy in maximum norm is

still poor in comparison with the corresponding results on uniform mesh. So, we

conclude that overall WENO methods on constructed non-uniform mesh with 294

cells do not yield better results than the ones on uniform mesh.

Table 6.9 The errors between the exact solution of the problem (6.2.19) and the
numerical solutions computed by semi-implicit WENO3 and WENO5 methods on
non-uniform mesh with 294 cells.

Method ‖Error‖∞ ‖Error‖L1

WENO3 2.17e− 02 4.56e− 03

WENO5 1.35e− 03 7.96e− 06

Finally, we set different non-uniform mesh in the following way. We first place

10 fine uniform cells in the interval [0.33, 0.34] and 10 fine uniform cells in the interval

[0.66, 0.67] with cell size 0.001 each. Then, we place 66 coarse uniform cells in the

interval [0, 0.33], 64 coarse uniform cells in the interval [0.34, 0.66] and 66 coarse

uniform cells in the interval [0.67, 1] with cell size 0.005. Thus, in total we have 216

cells and the mesh sizes are defined as:

hi =



0.005, if 1 ≤ i ≤ 66,

0.001, if 67 ≤ i ≤ 76,

0.005, if 77 ≤ i ≤ 140,

0.001, if 141 ≤ i ≤ 150,

0.005, if 151 ≤ i ≤ 216.

With this mesh choice, we have x =
1

3
∈ Ω70 and x =

2

3
∈ Ω147.

We apply the WENO3 and WENO5 methods on this non-uniform mesh for

spatial discretization of problem (6.2.19) and semi-implicit scheme (6.1.15)-(6.1.16)

for temporal discretization. In both simulations, we use τ =
1

N
= 10−5 for time

step. The errors are computed in maximum norm defined by (6.1.18) and L1 norm
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defined by (6.1.19).

Table 6.10 shows the errors between the errors between the exact solution of the

problem (6.2.19) and the numerical solutions computed by semi-implicit WENO3

and WENO5 methods on non-uniform mesh with 216 cells. First of all, we note

that these numerical solutions are more accurate than the ones obtained on non-

uniform mesh with 294 cells, especially for WENO3 method (compare the results in

Table 6.9 and Table 6.10). Additionally, with both WENO methods on non-uniform

mesh with 216 cells the numerical solutions in L1 norm are as accurate as the ones

obtained on uniform mesh with 320 cells, which illustrates again the advantage

of using locally refined grids for numerical solution of problems with non-smooth

solutions.

Table 6.10 The errors between the exact solution of the problem (6.2.19) and the
numerical solutions computed by semi-implicit WENO3 and WENO5 methods on
non-uniform mesh with 216 cells.

Method ‖Error‖∞ ‖Error‖L1

WENO3 1.90e− 03 3.43e− 04

WENO5 1.36e− 03 5.56e− 06

Remark 6.2.4. We have presented here only the results of simulations for Advec-

tion Diffusion problems with low diffusion coefficient. Both WENO schemes give

unsatisfactory results when larger values of diffusion coefficient are used (results are

not presented here).



CHAPTER 7

NONLINEAR EQUATIONS

The Advection Diffusion problems, we have discussed so far, are all linear.

In this chapter, we illustrate that presented material can be readily extended to

nonlinear cases. As an example, we illustrate the construction of WENO3 method

for non-homogeneous scalar hyperbolic conservation laws of the type:

ut + f(u)x = g(t)δ(x− ξ), (7.0.1)

where f and g are smooth functions.

Let the grid, cells, cell centers and mesh sizes be defined by (6.1.2), (6.1.3),

(6.1.4) and (6.1.5), respectively. Let the cell average values of function u(x, t) be

defined by (6.1.6).

The Finite Volume approach for (7.0.1) amounts for first integrating (7.0.1)

over each cell Ωi and dividing by the cell volume |Ωi| = hi, which gives us:

1

hi

∫
Ωi

utdx+
1

hi

∫
Ωi

f(u)xdx =
1

hi

∫
Ωi

g(t)δ(x− ξ)dx, i = 1, . . . ,M.

Assuming that ξ ∈ Ωj, we obtain

∂

∂t

 1

hi

∫
Ωi

u(x, t)dx

+
1

hi

∫
Ωi

∂

∂x
f
(
u(x, t)

)
dx = g(t)

δij
hi
, i = 1, . . . ,M,

where δij is the Kronecker delta symbol defined by (4.2.4). Then, applying the

fundamental theorem of calculus, we have

dūi(t)

dt
+

1

hi

(
f
(
u(xi+ 1

2
, t)
)
− f

(
u(xi− 1

2
, t)
))

= g(t)
δij
hi
, i = 1, . . . ,M. (7.0.2)

To have a stable numerical scheme, the physical fluxes f
(
u(xi+ 1

2
, t)
)

and f
(
u(xi− 1

2
, t)
)

in (7.0.2) are usually replaced by monotone numerical fluxes f̂
(
u−
i+ 1

2

(t), u+
i+ 1

2

(t)
)

and

f̂
(
u−
i− 1

2

(t), u+
i− 1

2

(t)
)
, respectively.
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There is a number of known monotone numerical fluxes used in the literature

as listed below (Barth and Deconinck, 1999).

1. Godunov flux

f̂(a, b) =


min
a≤u≤b

f(u), if a ≤ b,

max
b≤u≤a

f(u), if a > b.
(7.0.3)

2. Engquist-Osher flux

f̂(a, b) =

a∫
0

max
(
f ′(u), 0

)
du+

b∫
0

min
(
f ′(u), 0

)
du+ f(0). (7.0.4)

3. Lax-Friedrichs flux

f̂(a, b) =
1

2

(
f(a) + f(b)− α(b− a)

)
, (7.0.5)

where α = max
u
|f ′(u)|.

Replacing the physical fluxes in (7.0.2) by monotone numerical fluxes, gives us

dūi(t)

dt
+

1

hi

(
f̂
(
u−
i+ 1

2

, u+
i+ 1

2

)
− f̂

(
u−
i− 1

2

, u+
i− 1

2

))
= g(t)

δij
hi
, i = 1, . . . ,M. (7.0.6)

The approximation u−
i+ 1

2

in (7.0.6) is the WENO3 reconstruction which uses

the three-cell stencil {Ωi−1,Ωi,Ωi+1} (see Figure 5.1) and therefore it is the same as

the approximation (6.1.9). Namely,

u−
i+ 1

2

= ω
(i)
0

(
− hi
hi−1 + hi

ūi−1 +
hi−1 + 2hi
hi−1 + hi

ūi

)

+ ω
(i)
1

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)
,

(7.0.7)

where the weights ω
(i)
0 and ω

(i)
1 are defined by (5.1.21)-(5.1.22). The WENO3 ap-

proximation u−
i− 1

2

in (7.0.6) can be obtained from (7.0.7) by shifting the index:

u−
i− 1

2

= ω
(i−1)
0

(
− hi−1

hi−2 + hi−1

ūi−2 +
hi−2 + 2hi−1

hi−2 + hi−1

ūi−1

)

+ ω
(i−1)
1

(
hi

hi−1 + hi
ūi−1 +

hi−1

hi−1 + hi
ūi

)
,

(7.0.8)

where the weights ω
(i−1)
0 and ω

(i−1)
1 are obtained from (5.1.21)-(5.1.22) by shifting

the index accordingly.
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The WENO3 approximation u+
i+ 1

2

in (7.0.6) is constructed by using the three-

cell stencil {Ωi,Ωi+1,Ωi+2} (see Figure 5.1). We follow the same line as in Section 5.1.

Firstly, we consider the stencil S0 = {Ωi,Ωi+1} (see Figure 5.1). It is obvious

that there is a unique linear polynomial whose cell average values on stencil S0

agree with corresponding cell average values of function u(x) on S0. We search this

polynomial in the following form:

p̂
(i)
0 (x) = â

(i)
0 (x− xi) + b̂

(i)
0 . (7.0.9)

Then, 

1

hi

∫
Ωi

p̂
(i)
0 (x)dx = ūi,

1

hi+1

∫
Ωi+1

p̂
(i)
0 (x)dx = ūi+1.

(7.0.10)

Plugging (7.0.9) into (7.0.10) and evaluating integrals, we obtain:
b̂

(i)
0 = ūi,

hi + hi+1

2
â

(i)
0 + b̂

(i)
0 = ūi+1,

Solving this system, we get

â
(i)
0 =

2

hi + hi+1

(ūi+1 − ūi), b̂
(i)
0 = ūi. (7.0.11)

Then, the approximation û
(0)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

(7.0.9) has the form:

û
(0)

i+ 1
2

= p̂
(i)
0 (xi+ 1

2
) =

hi
2
â

(i)
0 + b̂

(i)
0

or

û
(0)

i+ 1
2

=
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1. (7.0.12)

Secondly, we consider the stencil S1 = {Ωi+1,Ωi} (see Figure 5.1). Obviously,

there is a unique linear polynomial whose cell average values on stencil S1 agree with

corresponding cell average values of function u(x) on S1. We search this polynomial

in the following form:

p̂
(i)
1 (x) = â

(i)
1 (x− xi) + b̂

(i)
1 . (7.0.13)
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Then, 

1

hi+1

∫
Ωi+1

p̂
(i)
1 (x)dx = ūi+1,

1

hi+2

∫
Ωi+2

p̂
(i)
1 (x)dx = ūi+2.

(7.0.14)

Plugging (7.0.13) into (7.0.14) and evaluating integrals, we obtain:
hi + hi+1

2
â

(i)
1 + b̂

(i)
1 = ūi+1,

hi + 2hi+1 + hi+2

2
â

(i)
1 + b̂

(i)
1 = ūi+2.

Solving this system, we get

â
(i)
1 =

2

hi+1 + hi+2

(ūi+2 − ūi+1), b̂
(i)
1 = ūi+1 −

hi + hi+1

hi+1 + hi+2

(ūi+2 − ūi+1). (7.0.15)

Then, the approximation û
(1)

i+ 1
2

for function u(x) at x = xi+ 1
2

using the polynomial

(7.0.13) has the form:

û
(1)

i+ 1
2

= p̂
(i)
1 (xi+ 1

2
) =

hi
2
â

(i)
1 + b̂

(i)
1

or

û
(1)

i+ 1
2

=
2hi+1 + hi+2

hi+1 + hi+2

ūi+1 −
hi+1

hi+1 + hi+2

ūi+2. (7.0.16)

Theorem 7.0.1.

• If u(x) is sufficiently smooth on stencil S0 = {Ωi,Ωi+1} then (7.0.12) is the

second order approximation for u(x) at x = xi+ 1
2
.

• If u(x) is sufficiently smooth on stencil S1 = {Ωi+1,Ωi+2} then (7.0.16) is the

second order approximation for u(x) at x = xi+ 1
2
.

• If u(x) is sufficiently smooth on extended stencil S = {Ωi,Ωi+1,Ωi+2} then

there exist unique γ̂
(i)
0 and γ̂

(i)
1 values such that

ûi+ 1
2

= γ̂
(i)
0 û

(0)

i+ 1
2

+ γ̂
(i)
1 û

(1)

i+ 1
2

(7.0.17)

is the third order approximation for u(x) at x = xi+ 1
2
.
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The proof of this theorem is similar to the proofs given in Section 5.1, so we

skip it here. Note that (7.0.17) holds if and only if

γ̂
(i)
0 =

hi+1 + hi+2

hi + hi+1 + hi+2

, γ̂
(i)
1 =

hi
hi + hi+1 + hi+2

. (7.0.18)

Now, the WENO3 approximation u+
i+ 1

2

is defined as a convex combination of

approximations û
(0)

i+ 1
2

and û
(1)

i+ 1
2

defined by (7.0.12) and (7.0.16), respectively. In other

words, (7.0.18) is replaced with:

u+
i+ 1

2

= ω̂
(i)
0 û

(0)

i+ 1
2

+ ω̂
(i)
1 û

(1)

i+ 1
2

or

u+
i+ 1

2

= ω̂
(i)
0

(
hi+1

hi + hi+1

ūi +
hi

hi + hi+1

ūi+1

)

+ ω̂
(i)
1

(
2hi+1 + hi+2

hi+1 + hi+2

ūi+1 −
hi+1

hi+1 + hi+2

ūi+2

)
.

(7.0.19)

Similar to (5.1.21)-(5.1.22), we define the nonlinear weights ω̂
(i)
0 and ω̂

(i)
1 in (7.0.19)

in following way:

ω̂
(i)
0 =

ω̃
(i)
0

ω̃
(i)
0 + ω̃

(i)
1

, ω̂
(i)
1 =

ω̃
(i)
1

ω̃
(i)
0 + ω̃

(i)
1

, (7.0.20)

where

ω̃
(i)
0 =

γ̂
(i)
0(

ε+ β̂
(i)
0

)2 , ω̃
(i)
1 =

γ̂
(i)
1(

ε+ β̂
(i)
1

)2 . (7.0.21)

Here, ε = 10−6 is taken to prevent the denominators becoming zero and smoothness

indicators β̂
(i)
0 and β̂

(i)
1 are defined as following:

β̂
(i)
0 = hi

∫
Ωi

(
d

dx
p̂

(i)
0 (x)

)2

dx = hi

∫
Ωi

(
â

(i)
0

)2

dx =
(
hiâ

(i)
0

)2

=
4h2

i (ūi+1 − ūi)2

(hi + hi+1)2
,

β̂
(i)
1 = hi

∫
Ωi

(
d

dx
p̂

(i)
1 (x)

)2

dx = hi

∫
Ωi

(
â

(i)
1

)2

dx =
(
hiâ

(i)
1

)2

=
4h2

i (ūi+2 − ūi+1)2

(hi+1 + hi+2)2
.

Finally, the WENO3 approximation u+
i− 1

2

in (7.0.6) can be obtained from

(7.0.19) by shifting the index:

u+
i− 1

2

= ω̂
(i−1)
0

(
hi

hi−1 + hi
ūi−1 +

hi−1

hi−1 + hi
ūi

)

+ ω̂
(i−1)
1

(
2hi + hi+1

hi + hi+1

ūi −
hi

hi + hi+1

ūi+1

)
,

(7.0.22)
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where the weights ω̂
(i−1)
0 and ω̂

(i−1)
1 are obtained from (7.0.20)-(7.0.21) by shifting

the index accordingly.

By putting (7.0.7), (7.0.8), (7.0.19) and (7.0.22) in (7.0.6), we complete the

Finite Volume WENO3 spatial discretization of equation (7.0.1).

Remark 7.0.2. In the similar way, the Finite Volume WENO5 spatial discretization

of equation (7.0.1) can be constructed as well.



CHAPTER 8

CONCLUSION

The research described in this thesis is devoted to the numerical methods for

Advection Diffusion problems with singular source terms. Singular in the sense that

within the spatial domain the source is defined by a Dirac delta function. Solutions

of such problems have discontinuities or discontinuous derivatives which forms an

obstacle for standard numerical methods.

We have shown that for simple mathematical model from gaz hydrodynamics,

a coupled system of Diffusion and Advection equations with singular source terms,

the analytical solution can be obtained by using known theoretical methods.

We have applied the Finite Difference and Finite Volume methods for one-

dimensional Advection Diffusion problem with source term. The difference between

the methods is discussed when the source term is singular. On the base of simple

Diffusion problem with singular source term, we illustrated how and why the Finite

Volume approach has advantage over the Finite Difference methods.

We have constructed and analyzed the third order of accuracy and the fifth or-

der of accuracy Finite Volume Weighted essentially non-oscillatory (WENO) schemes

on non-uniform meshes. The order of accuracy of each method in case of smooth

functions has been established.

We have applied constructed Finite Volume WENO schemes for Advection

equation with singular source term and Advection Diffusion equation with singular

source terms. We have validated our theoretical findings by numerical illustrations

for two types of test problems. Firstly, we considered the Advection problem and the

Advection Diffusion problem without singular source terms. We observed the correct

orders of WENO methods for these problems having smooth solutions. Secondly,
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we considered the Advection problem and the Advection Diffusion problem with

singular source terms. For Advection problem with singular source term, which has

a discontinuous solution, we observed the first order convergence of both WENO

schemes. Moreover, we illustrated a drastic improvement in the accuracy, as well

as efficiency, when appropriate non-uniform mesh is used instead of uniform mesh.

For Advection Diffusion problem with singular source terms, which has non-smooth

solution, we observed the second order convergence of both WENO schemes. We

have shown that more accurate numerical solutions in more efficient way can be

obtained on specially designed non-uniform meshes.

Finally, we have discussed the possible extension of the WENO approximations

which can be used for non-linear problems.
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APPENDIX B

MATLAB CODES

B.1 CONSTRUCTION OF WENO5 METHOD

In this part, we give the code which is used to obtain the formulas for con-

struction of WENO5 method by using the symbolic toolbox of MATLAB.

syms h1 h2 h3 h4 h5

syms u1 u2 u3 u4 u5

syms a b c d e x xi

pol2 = a*(x-xi)^2 + b*(x-xi) + c;

I1 = int(pol2,’x’,’(xi-h1-h2-h3/2)’,’(xi-h2-h3/2)’);

I2 = int(pol2,’x’,’(xi-h2-h3/2)’,’(xi-h3/2)’);

I3 = int(pol2,’x’,’(xi-h3/2)’,’(xi+h3/2)’);

I4 = int(pol2,’x’,’(xi+h3/2)’,’(xi+h3/2+h4)’);

I5 = int(pol2,’x’,’(xi+h3/2+h4)’,’(xi+h3/2+h4+h5)’);

% Constructing p0

a11=(1/h1)*diff(I1,’a’);

a12=(1/h1)*diff(I1,’b’);

a13=(1/h1)*diff(I1,’c’);

a21=(1/h2)*diff(I2,’a’);

a22=(1/h2)*diff(I2,’b’);

a23=(1/h2)*diff(I2,’c’);

a31=(1/h3)*diff(I3,’a’);

a32=(1/h3)*diff(I3,’b’);

a33=(1/h3)*diff(I3,’c’);

90
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p0AA = [a11 a12 a13; a21 a22 a23; a31 a32 a33];

p0BB = [u1;u2;u3];

p0Cevap = inv(p0AA)*p0BB;

p0Ce = simplify(p0Cevap);

p0A=p0Ce(1); p0B=p0Ce(2); p0C=p0Ce(3);

p0_A_u_im2 = diff(p0A,’u1’); p0_A_u_im2 = simplify(p0_A_u_im2)

p0_A_u_im1 = diff(p0A,’u2’); p0_A_u_im1 = simplify(p0_A_u_im1)

p0_A_u_i = diff(p0A,’u3’); p0_A_u_i = simplify(p0_A_u_i)

p0_B_u_im2 = diff(p0B,’u1’); p0_B_u_im2 = simplify(p0_B_u_im2)

p0_B_u_im1 = diff(p0B,’u2’); p0_B_u_im1 = simplify(p0_B_u_im1)

p0_B_u_i = diff(p0B,’u3’); p0_B_u_i = simplify(p0_B_u_i)

p0_C_u_im2 = diff(p0C,’u1’); p0_C_u_im2 = simplify(p0_C_u_im2)

p0_C_u_im1 = diff(p0C,’u2’); p0_C_u_im1 = simplify(p0_C_u_im1)

p0_C_u_i = diff(p0C,’u3’); p0_C_u_i = simplify(p0_C_u_i)

p0 = p0A*((h3^2)/4)+p0B*(h3/2)+p0C;

SadeHali0 = simplify(p0);

p0 = collect(SadeHali0);

p0_Uim2 = diff(p0,’u1’); p0_Uim2 = simplify(p0_Uim2)

p0_Uim1 = diff(p0,’u2’); p0_Uim1 = simplify(p0_Uim1)

p0_Ui = diff(p0,’u3’); p0_Ui = simplify(p0_Ui)

% Constructing p1

a11=(1/h2)*diff(I2,’a’);

a12=(1/h2)*diff(I2,’b’);

a13=(1/h2)*diff(I2,’c’);

a21=(1/h3)*diff(I3,’a’);

a22=(1/h3)*diff(I3,’b’);

a23=(1/h3)*diff(I3,’c’);

a31=(1/h4)*diff(I4,’a’);

a32=(1/h4)*diff(I4,’b’);

a33=(1/h4)*diff(I4,’c’);

p1AA=[a11 a12 a13; a21 a22 a23; a31 a32 a33];

p1BB = [u2;u3;u4];

p1Cevap = inv(p1AA)*p1BB;
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p1Ce = simplify(p1Cevap);

p1A=p1Ce(1); p1B=p1Ce(2); p1C=p1Ce(3);

p1_A_u_im1 = diff(p1A,’u2’); p1_A_u_im1 = simplify(p1_A_u_im1);

p1_A_u_i = diff(p1A,’u3’); p1_A_u_i = simplify(p1_A_u_i);

p1_A_u_ip1 = diff(p1A,’u4’); p1_A_u_ip1 = simplify(p1_A_u_ip1);

p1_B_u_im1 = diff(p1B,’u2’); p1_B_u_im1 = simplify(p1_B_u_im1);

p1_B_u_i = diff(p1B,’u3’); p1_B_u_i = simplify(p1_B_u_i);

p1_B_u_ip1 = diff(p1B,’u4’); p1_B_u_ip1 = simplify(p1_B_u_ip1);

p1_C_u_im1 = diff(p1C,’u2’); p1_C_u_im1 = simplify(p1_C_u_im1);

p1_C_u_i = diff(p1C,’u3’); p1_C_u_i = simplify(p1_C_u_i);

p1_C_u_ip1 = diff(p1C,’u4’); p1_C_u_ip1 = simplify(p1_C_u_ip1);

p1 = p1A*((h3^2)/4)+p1B*(h3/2)+p1C;

SadeHali1 = simplify(p1);

p1 = collect(SadeHali1);

p1_Uim1 = diff(p1,’u2’); p1_Uim1 = simplify(p1_Uim1)

p1_Ui = diff(p1,’u3’); p1_Ui = simplify(p1_Ui)

p1_Uip1 = diff(p1,’u4’); p1_Uip1 = simplify(p1_Uip1)

% Constructing p2

a11=(1/h3)*diff(I3,’a’);

a12=(1/h3)*diff(I3,’b’);

a13=(1/h3)*diff(I3,’c’);

a21=(1/h4)*diff(I4,’a’);

a22=(1/h4)*diff(I4,’b’);

a23=(1/h4)*diff(I4,’c’);

a31=(1/h5)*diff(I5,’a’);

a32=(1/h5)*diff(I5,’b’);

a33=(1/h5)*diff(I5,’c’);

p2AA=[a11 a12 a13; a21 a22 a23; a31 a32 a33];

p2BB = [u3;u4;u5];

p2Cevap = inv(p2AA)*p2BB;

p2Ce = simplify(p2Cevap);

p2A=p2Ce(1); p2B=p2Ce(2); p2C=p2Ce(3);

p2_A_u_i = diff(p2A,’u3’); p2_A_u_i = simplify(p2_A_u_i)
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p2_A_u_ip1 = diff(p2A,’u4’); p2_A_u_ip1 = simplify(p2_A_u_ip1)

p2_A_u_ip2 = diff(p2A,’u5’); p2_A_u_ip2 = simplify(p2_A_u_ip2)

p2_B_u_i = diff(p2B,’u3’); p2_B_u_i = simplify(p2_B_u_i)

p2_B_u_ip1 = diff(p2B,’u4’); p2_B_u_ip1 = simplify(p2_B_u_ip1)

p2_B_u_ip2 = diff(p2B,’u5’); p2_B_u_ip2 = simplify(p2_B_u_ip2)

p2_C_u_i = diff(p2C,’u3’); p2_C_u_i = simplify(p2_C_u_i)

p2_C_u_ip1 = diff(p2C,’u4’); p2_C_u_ip1 = simplify(p2_C_u_ip1)

p2_C_u_ip2 = diff(p2C,’u5’); p2_C_u_ip2 = simplify(p2_C_u_ip2)

p2 = p2A*((h3^2)/4)+p2B*(h3/2)+p2C;

SadeHali2 = simplify(p2);

p2 = collect(SadeHali2);

p2_Ui = diff(p2,’u3’); p2_Ui = simplify(p2_Ui)

p2_Uip1 = diff(p2,’u4’); p2_Uip1 = simplify(p2_Uip1)

p2_Uip2 = diff(p2,’u5’); p2_Uip2 = simplify(p2_Uip2)

% Construction of big polynomial

pol4 = a*(x-xi)^4 + b*(x-xi)^3 + c*(x-xi)^2 + d*(x-xi) + e;

I1=int(pol4,’x’,’(xi-h1-h2-h3/2)’,’(xi-h2-h3/2)’);

I2=int(pol4,’x’,’(xi-h2-h3/2)’,’(xi-h3/2)’);

I3=int(pol4,’x’,’(xi-h3/2)’,’(xi+h3/2)’);

I4=int(pol4,’x’,’(xi+h3/2)’,’(xi+h3/2+h4)’);

I5=int(pol4,’x’,’(xi+h3/2+h4)’,’(xi+h3/2+h4+h5)’);

a11=(1/h1)*diff(I1,’a’);

a12=(1/h1)*diff(I1,’b’);

a13=(1/h1)*diff(I1,’c’);

a14=(1/h1)*diff(I1,’d’);

a15=(1/h1)*diff(I1,’e’);

a21=(1/h2)*diff(I2,’a’);

a22=(1/h2)*diff(I2,’b’);

a23=(1/h2)*diff(I2,’c’);

a24=(1/h2)*diff(I2,’d’);

a25=(1/h2)*diff(I2,’e’);

a31=(1/h3)*diff(I3,’a’);

a32=(1/h3)*diff(I3,’b’);
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a33=(1/h3)*diff(I3,’c’);

a34=(1/h3)*diff(I3,’d’);

a35=(1/h3)*diff(I3,’e’);

a41=(1/h4)*diff(I4,’a’);

a42=(1/h4)*diff(I4,’b’);

a43=(1/h4)*diff(I4,’c’);

a44=(1/h4)*diff(I4,’d’);

a45=(1/h4)*diff(I4,’e’);

a51=(1/h5)*diff(I5,’a’);

a52=(1/h5)*diff(I5,’b’);

a53=(1/h5)*diff(I5,’c’);

a54=(1/h5)*diff(I5,’d’);

a55=(1/h5)*diff(I5,’e’);

p4AA=[a11 a12 a13 a14 a15; a21 a22 a23 a24 a25; a31 a32 a33 a34 a35; ...

a41 a42 a43 a44 a45; a51 a52 a53 a54 a55];

p4BB=[u1;u2;u3;u4;u5];

p4Ce=inv(p4AA)*p4BB;

p4A=p4Ce(1); p4B=p4Ce(2); p4C=p4Ce(3); p4D=p4Ce(4); p4E=p4Ce(5);

p4_A_u_im2 = diff(p4A,’u1’); p4_A_u_im2 = simplify(p4_A_u_im2)

p4_A_u_im1 = diff(p4A,’u2’); p4_A_u_im1 = simplify(p4_A_u_im1)

p4_A_u_i = diff(p4A,’u3’); p4_A_u_i = simplify(p4_A_u_i)

p4_A_u_ip1 = diff(p4A,’u4’); p4_A_u_ip1 = simplify(p4_A_u_ip1)

p4_A_u_ip2 = diff(p4A,’u5’); p4_A_u_ip2 = simplify(p4_A_u_ip2)

p4_B_u_im2 = diff(p4B,’u1’); p4_B_u_im2 = simplify(p4_B_u_im2)

p4_B_u_im1 = diff(p4B,’u2’); p4_B_u_im1 = simplify(p4_B_u_im1)

p4_B_u_i = diff(p4B,’u3’); p4_B_u_i = simplify(p4_B_u_i)

p4_B_u_ip1 = diff(p4B,’u4’); p4_B_u_ip1 = simplify(p4_B_u_ip1)

p4_B_u_ip2 = diff(p4B,’u5’); p4_B_u_ip2 = simplify(p4_B_u_ip2)

p4_C_u_im2 = diff(p4C,’u1’); p4_C_u_im2 = simplify(p4_C_u_im2)

p4_C_u_im1 = diff(p4C,’u2’); p4_C_u_im1 = simplify(p4_C_u_im1)

p4_C_u_i = diff(p4C,’u3’); p4_C_u_i = simplify(p4_C_u_i)

p4_C_u_ip1 = diff(p4C,’u4’); p4_C_u_ip1 = simplify(p4_C_u_ip1)

p4_C_u_ip2 = diff(p4C,’u5’); p4_C_u_ip2 = simplify(p4_C_u_ip2)

p4_D_u_im2 = diff(p4D,’u1’); p4_D_u_im2 = simplify(p4_D_u_im2)
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p4_D_u_im1 = diff(p4D,’u2’); p4_D_u_im1 = simplify(p4_D_u_im1)

p4_D_u_i = diff(p4D,’u3’); p4_D_u_i = simplify(p4_D_u_i)

p4_D_u_ip1 = diff(p4D,’u4’); p4_D_u_ip1 = simplify(p4_D_u_ip1)

p4_D_u_ip2 = diff(p4D,’u5’); p4_D_u_ip2 = simplify(p4_D_u_ip2)

p4_E_u_im2 = diff(p4E,’u1’); p4_E_u_im2 = simplify(p4_E_u_im2)

p4_E_u_im1 = diff(p4E,’u2’); p4_E_u_im1 = simplify(p4_E_u_im1)

p4_E_u_i = diff(p4E,’u3’); p4_E_u_i = simplify(p4_E_u_i)

p4_E_u_ip1 = diff(p4E,’u4’); p4_E_u_ip1 = simplify(p4_E_u_ip1)

p4_E_u_ip2 = diff(p4E,’u5’); p4_E_u_ip2 = simplify(p4_E_u_ip2)

p4 = p4A*((h3^4)/16)+p4B*(h3^3/8)+p4C*(h3^2/4)+p4D*(h3/2)+p4E;

SadeHali4 = simplify(p4);

p4 = collect(SadeHali4);

p4_Uim2 = diff(p4,’u1’); p4_Uim2 = simplify(p4_Uim2)

p4_Uim1 = diff(p4,’u2’); p4_Uim1 = simplify(p4_Uim1)

p4_Ui = diff(p4,’u3’); p4_Ui = simplify(p4_Ui)

p4_Uip1 = diff(p4,’u4’); p4_Uip1 = simplify(p4_Uip1)

p4_Uip2 = diff(p4,’u5’); p4_Uip2 = simplify(p4_Uip2)

Gama0 = p4_Uim2 / p0_Uim2; Gama0 = simplify(Gama0)

Gama2 = p4_Uip2 / p2_Uip2; Gama2 = simplify(Gama2)

Gama1 = (p4_Uim1 - p0_Uim1*Gama0)/p1_Uim1; Gama1 = simplify(Gama1)

Beta_0 = (13/3)*(h3^4)*(p0A^2)+(h3*p0B)^2

Beta_1 = (13/3)*(h3^4)*(p1A^2)+(h3*p1B)^2

Beta_2 = (13/3)*(h3^4)*(p2A^2)+(h3*p2B)^2

B.2 MATLAB CODES FOR ADVECTION PROBLEMS

In this part, we give the Matlab codes which are used to obtain the numerical

solutions of problems (6.1.17) and (6.1.20) by using the semi-implicit WENO3 and

WENO5 methods, respectively.

B.2.1 WENO3 code for problem (6.1.17)



96

function weno3_ex_6_1_2

clear all; close all;

format long

global epsiln h n k1 k2 k3 k4 gama0 gama1

T0=0.0; Tfinal=1.0;

N=20001; M=321; n=3*(M-1)/2;

tau=(Tfinal-T0)/(N-1); % time step

tvalues = linspace(T0,Tfinal,N);

rk21=3.0/4.0; rk22=1.0/4.0;

rk31=1.0/3.0; rk32=2.0/3.0;

% Non-uniform mesh

hh=2.0/(M-1); hr=0.5*hh;

h(1:(M-1)/2)=hh;

h((M+1)/2:n)=hr;

for m=1:((M+1)/2)

xb(m)=(m-1)*hh;

end

for m=1:M-1

xb((M+1)/2+m)=1.0+m*hr;

end

for m=1:n

xvalues(m)=0.5*(xb(m)+xb(m+1));

u(m)=(cos(pi*xb(m))-cos(pi*xb(m+1)))/(pi*h(m));

end

epsiln=0.000001; time=0.0; error_max=0.0;

exactsol_u=zeros(1,n); Iden=eye(n);

% Calculating Gammas and k coefficients

for i=1:n
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hi=h(i);

if i==1

him1=h(n); hip1=h(i+1);

elseif i==n

him1=h(i-1); hip1=h(1);

else

him1=h(i-1); hip1=h(i+1);

end

gama0(i)=hip1/(him1+hi+hip1);

gama1(i)=(him1+hi)/(him1+hi+hip1);

k1(i) = -hi/(him1+hi);

k2(i) = (him1+2.0*hi)/(him1+hi);

k3(i) = hip1/(hi+hip1);

k4(i) = hi/(hi+hip1);

end

for jj=1:N-1

% First Runge-Kutta for predictor

% First step

[L_u_main,Vhalf]=My_func(u);

L_u = L_u_main*u’;

L_u_copy=L_u_main;

u_1 = u’ + tau*L_u;

% Second step

[L_u_main,Vhalf]=My_func(u_1);

L_u_1 = L_u_main*u_1;

u_2 = rk21*u’ + rk22*(u_1+tau*L_u_1);

% Third step

[L_u_main,Vhalf]=My_func(u_2);

L_u_2 = L_u_main*u_2;

u_3 = rk31*u’ + rk32*(u_2+tau*L_u_2);

% Second Crank-Nicolson for corrector

[L_u_main,Vhalf]=My_func(u_3);
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AA=(Iden - (tau/2.0)*L_u_main);

BB=(Iden + (tau/2.0)*L_u_copy)*u’;

u_np1=AA\BB;

u=u_np1’;

for i=1:n

exactsol_u(i)=(cos(pi*(xb(i)-tvalues(jj+1)))- ...

cos(pi*(xb(i+1)-tvalues(jj+1))))/(pi*h(i));

end

temp=norm(abs(u-exactsol_u),inf);

if temp>error_max

error_max=temp;

end

time=jj*tau;

end

disp(error_max)

error_L1=0.0;

time=tvalues(N);

[L_u_main,Vhalf]=My_func(u);

exactsol_u(n)=sin(pi*(xb(n+1)-time));

error_L1=abs(Vhalf(n)-exactsol_u(n))*(h(1)+h(n))*0.5;

for i=1:n-1

exactsol_u(i)=sin(pi*(xb(i+1)-time));

error_L1=error_L1+(abs(Vhalf(i)-exactsol_u(i))*(h(i)+h(i+1))*0.5);

end

error_L1=error_L1/2;

disp(error_L1)

end

function [L_u_main,Vhalf]=My_func(u)

global epsiln h n k1 k2 k3 k4 gama0 gama1
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for i=1:n

hi=h(i); ui=u(i);

if i==1

him1=h(n); hip1=h(i+1); uim1=u(n); uip1=u(i+1);

elseif i==n

him1=h(i-1); hip1=h(1); uim1=u(i-1); uip1=u(1);

else

him1=h(i-1); hip1=h(i+1); uim1=u(i-1); uip1=u(i+1);

end

a0=2.0*(ui-uim1)/(him1+hi);

a1=2.0*(uip1-ui)/(hi+hip1);

beta0=(hi*a0)^2;

beta1=(hi*a1)^2;

omega0_bar = gama0(i)/((epsiln + beta0)^2);

omega1_bar = gama1(i)/((epsiln + beta1)^2);

sum_omega_bar=omega0_bar + omega1_bar;

omega0(i) = omega0_bar/sum_omega_bar;

omega1(i) = omega1_bar/sum_omega_bar;

Vhalf(i) = omega0(i)*(k1(i)*uim1+k2(i)*ui) + ...

omega1(i)*(k3(i)*ui+k4(i)*uip1);

end

% Constructing L matrix

% First row

L_u_main(1,n-1)=k1(n)*omega0(n)/h(1);

L_u_main(1,n)=(k2(n)*omega0(n)+k3(n)*omega1(n)-k1(1)*omega0(1))/h(1);

L_u_main(1,1)=(k4(n)*omega1(n)-k2(1)*omega0(1)-k3(1)*omega1(1))/h(1);

L_u_main(1,2)=-k4(1)*omega1(1)/h(1);

% Second row

L_u_main(2,n)=k1(1)*omega0(1)/h(2);
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L_u_main(2,1)=(k2(1)*omega0(1)+k3(1)*omega1(1)-k1(2)*omega0(2))/h(2);

L_u_main(2,2)=(k4(1)*omega1(1)-k2(2)*omega0(2)-k3(2)*omega1(2))/h(2);

L_u_main(2,3)=-k4(2)*omega1(2)/h(2);

% n-th row

L_u_main(n,n-2)=k1(n-1)*omega0(n-1)/h(n);

L_u_main(n,n-1)=(k2(n-1)*omega0(n-1)+k3(n-1)*omega1(n-1)- ...

k1(n)*omega0(n))/h(n);

L_u_main(n,n)=(k4(n-1)*omega1(n-1)-k2(n)*omega0(n)-k3(n)*omega1(n))/h(n);

L_u_main(n,1)=-k4(n)*omega1(n)/h(n);

% 3,4,...,n-1 th rows

for i=3:(n-1)

L_u_main(i,i-2)=k1(i-1)*omega0(i-1)/h(i);

L_u_main(i,i-1)=(k2(i-1)*omega0(i-1)+k3(i-1)*omega1(i-1)- ...

k1(i)*omega0(i))/h(i);

L_u_main(i,i)=(k4(i-1)*omega1(i-1)-k2(i)*omega0(i)-k3(i)*omega1(i))/h(i);

L_u_main(i,i+1)=-k4(i)*omega1(i)/h(i);

end

end

B.2.2 WENO5 code for problem (6.1.20)

function weno5_ex_6_1_3

format long

global epsiln c1 h n gama0 gama1 gama2

global k1 k2 k3 k4 k5 k6 k7 k8 k9

T0=0.0; Tfinal=0.5;

N=1001; M=181; n=M-1;

xi=1.0/3.0;

tau=(Tfinal-T0)/(N-1); % time step

tvalues = linspace(T0,Tfinal,N);

rk21=3.0/4.0; rk22=1.0/4.0;

rk31=1.0/3.0; rk32=2.0/3.0; c1=13.0/3.0;
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% Non-uniform mesh

h(31:130)=0.001;

for i=16:30

h(i)=0.001*(1.2)^(30-i);

end

for i=131:145

h(i)=0.001*(1.2)^(i-131);

end

sizeinterm=sum(h(16:30));

h(1:15)=(0.3-sizeinterm)/15;

h(146:n)=(0.6-sizeinterm)/35;

xb(1)=0.0;

for m=1:n

xb(m+1)=xb(m)+h(m);

end

indeks1=64;

for m=1:n

xvalues(m)=0.5*(xb(m)+xb(m+1));

end

u0 = zeros(1,n); u=u0; % initial condition

epsiln=0.000001; time=0.0; maxerror_u=0.0;

exactsol_u=zeros(1,n); Iden=eye(n);

% Calculating Gammas and k coefficients

for i=1:n

hi=h(i);

if i==1
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him1=h(n); him2=h(n-1); hip1=h(i+1); hip2=h(i+2);

elseif i==2

him1=h(i-1); him2=h(n); hip1=h(i+1); hip2=h(i+2);

elseif i==n

him1=h(i-1); him2=h(i-2); hip1=h(1); hip2=h(2);

elseif i==(n-1)

him1=h(i-1); him2=h(i-2); hip1=h(i+1); hip2=h(1);

else

him1=h(i-1); him2=h(i-2); hip1=h(i+1); hip2=h(i+2);

end

sum_h12=him2+him1; sum_h23=him1+hi; sum_h34=hi+hip1; sum_h45=hip1+hip2;

sum_h123=sum_h12+hi; sum_h234=sum_h23+hip1; sum_h345=sum_h34+hip2;

sum_h1234=sum_h123+hip1; sum_h2345=sum_h23+sum_h45;

sum_h12345=sum_h1234+hip2;

gama0(i)=(hip1*sum_h45)/(sum_h1234*sum_h12345);

gama1(i)=(sum_h123*sum_h45*(sum_h12345+sum_h234))/ ...

(sum_h2345*sum_h1234*sum_h12345);

gama2(i)=(sum_h23*sum_h123)/(sum_h2345*sum_h12345);

temp = (hi*(sum_h123+sum_h23))/(sum_h23*sum_h123);

k1(i) = (hi*sum_h23)/(sum_h12*sum_h123);

k2(i) = -(k1(i) + temp);

k3(i) = 1.0 + temp;

k4(i) = -(hi*hip1)/(sum_h23*sum_h234);

k6(i) = (hi*sum_h23)/(sum_h34*sum_h234);

k5(i) = 1.0 - (k4(i) + k6(i));

k7(i) = (hip1*sum_h45)/(sum_h34*sum_h345);

k9(i) = -(hi*hip1)/(sum_h45*sum_h345);

k8(i) = 1.0 - (k7(i) + k9(i));

end
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for jj=1:N-1

% First Runge-Kutta for predictor

% First step

[L_u_main,Vhalf]=My_func(u);

L_u = L_u_main*u’;

L_u_copy=L_u_main; %% this is for implicit step

L_u(indeks1)=L_u(indeks1)+(1.0/h(indeks1))*sin(pi*time);

u_1 = u’ + tau*L_u;

% Second step

[L_u_main,Vhalf]=My_func(u_1);

L_u_1 = L_u_main*u_1;

L_u_1(indeks1)=L_u_1(indeks1)+(1.0/h(indeks1))*sin(pi*(time+tau));

u_2 = rk21*u’ + rk22*(u_1+tau*L_u_1);

% Third step

[L_u_main,Vhalf]=My_func(u_2);

L_u_2 = L_u_main*u_2;

L_u_2(indeks1)=L_u_2(indeks1)+(1.0/h(indeks1))*sin(pi*(time+0.5*tau));

u_3 = rk31*u’ + rk32*(u_2+tau*L_u_2);

% Second Crank-Nicolson for corrector

[L_u_main,Vhalf]=My_func(u_3);

AA=(Iden - (tau/2.0)*L_u_main);

BB=(Iden + (tau/2.0)*L_u_copy)*u’;

BB(indeks1)=BB(indeks1)+(tau/(2.0*h(indeks1)))* ...

(sin(pi*time)+sin(pi*(time+tau)));

u_np1=AA\BB;

u=u_np1’;

for i=1:n

if((xb(i)>xi)&&(xb(i+1)<(xi+tvalues(jj+1))))

exactsol_u(i)=(cos(pi*(xi+tvalues(jj+1)-xb(i+1)))- ...

cos(pi*(xi+tvalues(jj+1)-xb(i))))/(pi*h(i));

elseif((xb(i)<xi)&&((xb(i+1))>xi))

exactsol_u(i)=(cos(pi*(xi+tvalues(jj+1)-xb(i+1)))-...
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cos(pi*tvalues(jj+1)))/(pi*h(i));

elseif((xb(i)<(xi+tvalues(jj+1)))&&(xb(i+1)>(xi+tvalues(jj+1))))

exactsol_u(i)=(1.0-cos(pi*(xi+tvalues(jj+1)-xb(i))))/(pi*h(i));

else

exactsol_u(i)=0.0;

end

end

temp=norm(abs(u-exactsol_u),inf);

if temp>maxerror_u

maxerror_u=temp;

end

time=jj*tau;

end

disp(maxerror_u)

l1_error=0.0;

time=tvalues(N);

[L_u_main,Vhalf]=My_func(u);

exactsol_u(n)=0;

l1_error=abs(Vhalf(n)-exactsol_u(n))*(h(1)+h(n))*0.5;

for i=1:n-1

if((xb(i+1)<xi)||(xb(i+1)>=xi+time))

exactsol_u(i)=0.0;

else

exactsol_u(i)=sin(pi*(xi+time-xb(i+1)));

end

l1_error=l1_error+(abs(Vhalf(i)-exactsol_u(i))*(h(i)+h(i+1))*0.5);

end

disp(l1_error)

end

function [L_u_main,Vhalf]=My_func(u)

global epsiln c1 h n gama0 gama1 gama2
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global k1 k2 k3 k4 k5 k6 k7 k8 k9

for i=1:n

if i==1

him1=h(n); him2=h(n-1); hip1=h(i+1); hip2=h(i+2);

uim1=u(n); uim2=u(n-1); uip1=u(i+1); uip2=u(i+2);

elseif i==2

him1=h(i-1); him2=h(n); hip1=h(i+1); hip2=h(i+2);

uim1=u(i-1); uim2=u(n); uip1=u(i+1); uip2=u(i+2);

elseif i==n

him1=h(i-1); him2=h(i-2); hip1=h(1); hip2=h(2);

uim1=u(i-1); uim2=u(i-2); uip1=u(1); uip2=u(2);

elseif i==(n-1)

him1=h(i-1); him2=h(i-2); hip1=h(i+1); hip2=h(1);

uim1=u(i-1); uim2=u(i-2); uip1=u(i+1); uip2=u(1);

else

him1=h(i-1); him2=h(i-2); hip1=h(i+1); hip2=h(i+2);

uim1=u(i-1); uim2=u(i-2); uip1=u(i+1); uip2=u(i+2);

end

hi=h(i); ui=u(i);

hi2=hi^2;

sum_h12=him2+him1; sum_h23=him1+hi; sum_h34=hi+hip1; sum_h45=hip1+hip2;

sum_h123=sum_h12+hi; sum_h234=sum_h23+hip1; sum_h345=sum_h34+hip2;

a0=3.0*(uim2/sum_h12-((sum_h123+him1)/(sum_h12*sum_h23))*uim1 + ...

ui/sum_h23)/sum_h123;

a1=3.0*(uim1/sum_h23 - ((sum_h234+hi)/(sum_h23*sum_h34))*ui + ...

uip1/sum_h34)/sum_h234;

a2=3.0*(ui/sum_h34 - ((sum_h345+hip1)/(sum_h34*sum_h45))*uip1 + ...

uip2/sum_h45)/sum_h345;

b0=(((sum_h23+him1)/sum_h12)*uim2 - ...

((3.0*him2*hi+6.0*him1*(him2+hi) + ...
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2.0*(him2)^2+6.0*(him1)^2+hi2)/(sum_h12*sum_h23))*uim1 +...

((2.0*(sum_h123+him1)+hi)/sum_h23)*ui)/sum_h123;

b1=(-((sum_h34+hip1)/sum_h23)*uim1 +...

((hip1-him1)*(2.0*sum_h234+hi)/(sum_h23*sum_h34))*ui +...

((sum_h23+him1)/sum_h34)*uip1)/sum_h234;

b2=(-((2.0*(sum_h345+hip1)+hi)/sum_h34)*ui +...

((3.0*hip2*hi+6.0*hip1*(hip2+hi)+ ...

2.0*(hip2)^2+6.0*(hip1)^2+hi2)/(sum_h34*sum_h45))*uip1-...

((sum_h34+hip1)/sum_h45)*uip2)/sum_h345;

beta0=hi2*(c1*hi2*(a0)^2+(b0)^2);

beta1=hi2*(c1*hi2*(a1)^2+(b1)^2);

beta2=hi2*(c1*hi2*(a2)^2+(b2)^2);

omega0_bar = gama0(i)/((epsiln + beta0)^2);

omega1_bar = gama1(i)/((epsiln + beta1)^2);

omega2_bar = gama2(i)/((epsiln + beta2)^2);

sum_omega_bar=omega0_bar + omega1_bar + omega2_bar;

omega0(i) = omega0_bar/sum_omega_bar;

omega1(i) = omega1_bar/sum_omega_bar;

omega2(i) = omega2_bar/sum_omega_bar;

Vhalf(i) = omega0(i)*(k1(i)*uim2+k2(i)*uim1+k3(i)*ui) + ...

omega1(i)*(k4(i)*uim1+k5(i)*ui+k6(i)*uip1) + ...

omega2(i)*(k7(i)*ui+k8(i)*uip1+k9(i)*uip2);

end

% Construction of L matrix

% First row

L_u_main(1,1) = (k6(n)*omega1(n)+k8(n)*omega2(n)-k3(1)*omega0(1)- ...

k5(1)*omega1(1)-k7(1)*omega2(1))/h(1);

L_u_main(1,2) = (k9(n)*omega2(n)-k6(1)*omega1(1)-k8(1)*omega2(1))/h(1);

L_u_main(1,3) = -k9(1)*omega2(1)/h(1);

L_u_main(1,n-2) = k1(n)*omega0(n)/h(1);
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L_u_main(1,n-1) = (k2(n)*omega0(n)+k4(n)*omega1(n)-k1(1)*omega0(1))/h(1);

L_u_main(1,n) = (k3(n)*omega0(n)+k5(n)*omega1(n)+k7(n)*omega2(n)-...

k2(1)*omega0(1)-k4(1)*omega1(1))/h(1);

% Second row

L_u_main(2,1) = (k3(1)*omega0(1)+k5(1)*omega1(1)+k7(1)*omega2(1)-...

k2(2)*omega0(2)-k4(2)*omega1(2))/h(2);

L_u_main(2,2) = (k6(1)*omega1(1)+k8(1)*omega2(1)-k3(2)*omega0(2)-...

k5(2)*omega1(2)-k7(2)*omega2(2))/h(2);

L_u_main(2,3) = (k9(1)*omega2(1)-k6(2)*omega1(2)-k8(2)*omega2(2))/h(2);

L_u_main(2,4) = -k9(2)*omega2(2)/h(2);

L_u_main(2,n-1) = k1(1)*omega0(1)/h(2);

L_u_main(2,n) = (k2(1)*omega0(1)+k4(1)*omega1(1)-k1(2)*omega0(2))/h(2);

% Third row

L_u_main(3,1) = (k2(2)*omega0(2)+k4(2)*omega1(2)-k1(3)*omega0(3))/h(3);

L_u_main(3,2) = (k3(2)*omega0(2)+k5(2)*omega1(2)+k7(2)*omega2(2)-...

k2(3)*omega0(3)-k4(3)*omega1(3))/h(3);

L_u_main(3,3) = (k6(2)*omega1(2)+k8(2)*omega2(2)-k3(3)*omega0(3)-...

k5(3)*omega1(3)-k7(3)*omega2(3))/h(3);

L_u_main(3,4) = (k9(2)*omega2(2)-k6(3)*omega1(3)-k8(3)*omega2(3))/h(3);

L_u_main(3,5) = -k9(3)*omega2(3)/h(3);

L_u_main(3,n) = k1(2)*omega0(2)/h(3);

% ’n-1’-th row

L_u_main(n-1,n-4) = k1(n-2)*omega0(n-2)/h(n-1);

L_u_main(n-1,n-3) = (k2(n-2)*omega0(n-2)+k4(n-2)*omega1(n-2)-...

k1(n-1)*omega0(n-1))/h(n-1);

L_u_main(n-1,n-2) = (k3(n-2)*omega0(n-2)+k5(n-2)*omega1(n-2)+...

k7(n-2)*omega2(n-2)-k2(n-1)*omega0(n-1)-...

k4(n-1)*omega1(n-1))/h(n-1);

L_u_main(n-1,n-1) = (k6(n-2)*omega1(n-2)+k8(n-2)*omega2(n-2)-...

k3(n-1)*omega0(n-1)-k5(n-1)*omega1(n-1)-...

k7(n-1)*omega2(n-1))/h(n-1);

L_u_main(n-1,n) = (k9(n-2)*omega2(n-2)-k6(n-1)*omega1(n-1)-...

k8(n-1)*omega2(n-1))/h(n-1);

L_u_main(n-1,1) = -k9(n-1)*omega2(n-1)/h(n-1);
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% n-th row

L_u_main(n,n-3) = k1(n-1)*omega0(n-1)/h(n);

L_u_main(n,n-2) = (k2(n-1)*omega0(n-1)+k4(n-1)*omega1(n-1)-...

k1(n)*omega0(n))/h(n);

L_u_main(n,n-1) = (k3(n-1)*omega0(n-1)+k5(n-1)*omega1(n-1)+...

k7(n-1)*omega2(n-1)-k2(n)*omega0(n)-...

k4(n)*omega1(n))/h(n);

L_u_main(n,n) = (k6(n-1)*omega1(n-1)+k8(n-1)*omega2(n-1)-...

k3(n)*omega0(n)-k5(n)*omega1(n)-k7(n)*omega2(n))/h(n);

L_u_main(n,1) = (k9(n-1)*omega2(n-1)-k6(n)*omega1(n)-k8(n)*omega2(n))/h(n);

L_u_main(n,2) = -k9(n)*omega2(n)/h(n);

% 4,5,...,n-2 th rows

for i=4:(n-2)

L_u_main(i,i-3) = k1(i-1)*omega0(i-1)/h(i);

L_u_main(i,i-2) = (k2(i-1)*omega0(i-1)+k4(i-1)*omega1(i-1)-...

k1(i)*omega0(i))/h(i);

L_u_main(i,i-1) = (k3(i-1)*omega0(i-1)+k5(i-1)*omega1(i-1)+...

k7(i-1)*omega2(i-1)-k2(i)*omega0(i)-...

k4(i)*omega1(i))/h(i);

L_u_main(i,i) = (k6(i-1)*omega1(i-1)+k8(i-1)*omega2(i-1)-...

k3(i)*omega0(i)-k5(i)*omega1(i)-k7(i)*omega2(i))/h(i);

L_u_main(i,i+1) = (k9(i-1)*omega2(i-1)-k6(i)*omega1(i)-...

k8(i)*omega2(i))/h(i);

L_u_main(i,i+2) = -k9(i)*omega2(i)/h(i);

end

end
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İstanbul, Turkey
Doctor of Philosophy in Mathematics
June 2016
Thesis Title: On Numerical Solution of Advection-Diffusion-Reaction Equations
with Singular Source Terms
Supervisors: Maksat Ashyraliyev, Okan Gerek

The University Texas at Arlington, Graduate School, Arlington, TX, U.S.A.
Master of Science in Mathematics
August 2011
Thesis Title: A Mathematical Model for Swine Flu 2009 with Vaccination
Supervisor: Hristo Kojouharov

Fatih University, Istanbul, Turkey
Bachelor of Science in Mathematics
August 2002

PROFESSIONAL EXPERIENCE

• Lecturer, Fatih University, Civil Eng. Dept., September 2013 - January 2014

109



110

• Lecturer, Bursa Orhangazi University, Civil Eng. Dept.,, September 2014 -

July 2016

PUBLICATIONS

Books/Book Chapters

1. A Mathematical Model for Swine Flu 2009 with Vaccination, by Irfan Turk,
ProQuest, UMI Dissertation Publishing. July 17, 2012

Conference Proceedings

1. Irfan Turk, Maksat Ashyraliyev, ”On the numerical solution of diffusion prob-
lem with singular source terms”, AIP Conference Proceedings, Vol. 1470, Aug.
2012, pp.176-178

2. Irfan Turk, Maksat Ashyraliyev, ”On the numerical solution of hyperbolic
equations with singular source terms”, AIP Conference Proceedings, Vol. 1611,
Aug. 2014, pp.374-379

SEMINARS

Seminars/Presentations

1. On the numerical solution of Advection-Diffusion-Reaction Equations with
Singular Source Terms, by Irfan Turk, Analysis and Applied Mathematics
Seminar Series, Istanbul, Turkey, 06/06/2016

2. On the numerical solution of hyperbolic equations with singular source terms,
by Irfan Turk and Maksat Ashyraliyev, ICAAM 2014, Shymkent, Kazakhstan
9/11/2014− 9/13/2014

3. A Mathematical Model of Swine Flu 2009 with Vaccination, by Irfan Turk and
Hristo Kojouharov, ATIM 2013, Istanbul, Turkey 9/12/2013− 9/14/2013

4. On the numerical solution of Advection-Diffusion-Reaction Equations with
Singular Source Terms, by Irfan Turk and Maksat Ashyraliyev, ICAAMM
2013, Istanbul, Turkey, 6/03/2013

5. On the numerical solution of diffusion problem with singular source terms,
by Irfan Turk and Maksat Ashyraliyev, ICAAM 2012, Gumushane, Turkey
10/18/2012− 10/21/2012



111

6. The SIR Model for Swine Flu, by Irfan Turk and Krishna Acharya, Project
Presentation, Arlington, Texas, December 12, 2010

7. ode23s as MATLAB ODE Solver, by Irfan Turk and Krishna Acharya, Project
Presentation, Arlington, Texas, November 1, 2010

8. Comparison of Dijstra?s and Floyd-Warshall Algorithms for Shortest Path, by
Irfan Turk, Project Presentation, Arlington, Texas, May 7, 2010

AFFILIATIONS

• American Mathematical Society

• Society for Industrial and Applied Mathematics

• International Association of Engineers

SKILLS/INTERESTS

Numerical Solution of Ordinary and Partial Differential Equations, Scientific Com-
puting, Numerical Analysis, Mathematical Modeling, Mathematical Biology, Pro-
gramming in MATLAB and Python, Cryptography


