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ABSTRACT

We study some topological properties of the spaces of sequences that are
strongly Cesàro bounded, convergent and convergent to zero, of order α > 0 and in-
dex p ≥ 1. By using our software we obtain graphical representations of their surface
energy functions. Then we determine their β–duals and the shapes of corresponding
Wulff’s crystals. Furthermore we characterize some new classes of matrix transfor-
mations on them. Finally, we find out identities and estimates for the Hausdorff
measure of noncompactness of the matrix operators in those classes, and character-
ize the corresponding classes of compact matrix operators.
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ÖZ

α > 0 mertebeli ve p ≥ 1 indeksli kuvvetli Cesàro sınırlı, yakınsak ve 0’a
yakınsak dizi uzaylarının bazı topolojik özelliklerini belirledik. Kendi yazılımımızı
kullanarak yüzey enerji fonksiyonlarının grafiksel gösterimlerini elde ettik. Daha
sonra, bu uzayların β−duallerini ve onlara karşılık gelenWulff kristallerinin şekillerini
bulduk. Ayrıca, bu dizi uzayları üzerinde bazı yeni matris dönüşümlerinin sınıflarını
karakterize ettik. Son olarak, bu sınıflar üzerindeki matris operatörlerinin Hausdorff
kompakt olmama ölçümleri için özdeşlikler ve hesaplamalar bulup, onlara karşılık
gelen kompakt matris operatör sınıflarını karakterize ettik.

Keywords: Kuvvetli toplanabilme ve sınırlılık, BK uzayları, β-dualleri, matris
dönüşümleri, Hausdorff kompakt olmama ölçümü, kompakt operatörler, görüntüleme,
Wulff kristalleri.
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CHAPTER 1

INTRODUCTION

Strong Cesàro summability of order α > 0 with index p > 0, denoted by

[Cα]
p, was defined and studied by Hyslop (Hyslop, 1952), and further studied and

generalized by Borwein (Borwein, 1960). The extension of summability [Cα]
p to the

case α = 0 is referred to as strong convergence of index p; matrix transformations on

the spaces [C0]
p were characterized in (Kuttner and Thorpe, 1979). The definition

of strong convergence of index p = 1 was extended by Mòricz (Mòricz, 1989) to

Λ–strong convergence, denoted by c(Λ). Spaces of Λ–strongly convergent sequences

and related spaces, their dual spaces and matrix transformations on them were

studied in detail in (Malkowsky, 1995); (Malkowsky, 2013). The results of those

papers were generalized to the case p > 1 in (Malkowsky, 2002); (Malkowsky et al.,

2004).

In this thesis we establish some fundamental topological properties of the

spaces of sequences that are strongly Cesàro bounded, convergent and convergent

to zero, of order α > 0 and index p ≥ 1, determine their β–duals, and characterize

some classes of matrix transformations and compact matrix operators on them. We

consider these spaces as the domains of the Cesàro matrix Cα−1 in the spaces of

Maddox defined in (Maddox, 1968).

Our results are complementary to those in (Kuttner and Thorpe, 1979) and

no estimates of the Hausdorff measure of noncompactness and characterizations

of compact matrix operators have been established on the spaces of sequences

that are strongly Cesàro bounded, convergent and convergent to zero, of order

α > 0 and index p ≥ 1. We use the theories of BK spaces and measures of

noncompactness, in particular, the Hausdorff measure of noncompactness, and tech-

niques from (Malkowsky and Rakočević, 2007); (Malkowsky and Rakočević, 2000a);

1
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(Djolović and Malkowsky, 2008); (Başar and Malkowsky, 2011) in the proofs.

Let A = (ank)
∞
n,k=0 be an infinite matrix of complex entries, X and Y be

subsets of ω and x ∈ ω. We write An = (ank)
∞
k=0 for the sequence in the nth row of

the matrix A and Ak = (ank)
∞
n=0 for the sequence in the kth column of A. If each of

the series Anx =
∑∞

k=0 ankxk converges, then the sequence Ax = (Anx)
∞
n=0 is called

the A-transform of x. The sets XA = {x ∈ w : Ax ∈ X} and M(X, Y ) = {a ∈

w : a · x = (akxk)
∞
k=0 ∈ Y for all x ∈ X} are called the matrix domain of A in X

and the multiplier space of X in Y , respectively; in particular, Xβ = M(X, cs)

and Xγ = M(X, bs) are called the β– and γ–duals of X. Also, (X, Y ) is the class

of all matrices A such that X ⊂ YA; so A ∈ (X,Y ) if and only if An ∈ Xβ for all

n ∈ N0 and Ax ∈ Y for all x ∈ X. Let e and e(k) (k = 0, 1, ...) be the sequences

with en = 1 for all n ∈ N0, and e
(k)
k = 1 and e

(k)
n = 0 for n ̸= k.

Let δ ∈ R. Then the numbers Aδ
n =

(
n+δ
n

)
for n = 0, 1, . . . are called the nth

Cesàro coefficients of order δ. For α > −1 the Cesàro matrix Cα = (ank)
∞
n,k=0

of order α is defined by

ank =


Aα−1

n−k

Aα
n

(0 ≤ k ≤ n)

0 (k > n)

(n = 0, 1, . . . );

and the nth Cα mean of a sequence x = (xk)
∞
k=0 is defined by

σα
n(x) =

1

Aα
n

n∑
k=0

Aα−1
n−kxk.

Let ξ be a complex number. Then the sequence x = (xk)
∞
k=0 is said to be

summable Cα to ξ if limn→∞ σα
n(x) = ξ for α > 0, it is said to be strongly

summable Cα to zero, strongly summable Cα to ξ (Hyslop, 1952), and strongly

bounded Cα, with index p > 0, respectively, if

lim
n→∞

1

n+ 1

n∑
k=0

∣∣σα−1
k (x)

∣∣p = 0, (1.1)

lim
n→∞

1

n+ 1

n∑
k=0

∣∣σα−1
k (x)− ξ

∣∣p = 0 (1.2)
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and

sup
n

1

n+ 1

n∑
k=0

∣∣σα−1
k (x)

∣∣p < ∞. (1.3)

We write [Cα]
p
0, [Cα]

p or [Cα]
p
∞ for the sets of all sequences x ∈ ω for which (1.1), (1.2)

or (1.3) are satisfied, respectively. In the special case of α = 1, we obviously obtain

[C1]
p
0 = wp

0, [C1]
p = wp and [C1]

p
∞ = wp

∞, respectively, the sets of all sequences that

are strongly summable C1 to zero, strongly summable C1 and strongly bounded C1,

with index p (Maddox, 1968). So we have [Cα]
p
0 = (wp

0)Cα−1 and [Cα]
p
∞ = (wp

∞)Cα−1 ,

and since σα−1
n (x)−ξ = σα−1

n (x−ξ ·e) for all n ∈ N0, we also obtain [Cα]
p = (wp)Cα−1 ,

that is, [Cα]
p
0, [Cα]

p and [Cα]
p
∞ are the matrix domains of the triangles Cα−1 in wp

0,

wp and wp
∞ and [Cα]

p = [Cα]
p
0 ⊕ e.

A matrix T = (tnk)
∞
n=0 is called a triangle if tnn ̸= 0 for all n ∈ N0 and tnk = 0

for k > n and also every triangle has a unique inverse S which is also a triangle,

and T (Sx) = (TS)x = x for all x ∈ ω (Wilansky, 1984, Theorem 1.4.8) and (Cooke,

1950, Remark 22 (a)). So the inverse matrix Sα−1 = (snk)
∞
n,k=0 of the Cesàro matrix

Cα−1 of order α > 0 is given by

snk =

A−α
n−kA

α−1
k (0 ≤ k ≤ n)

0 (k > n)

(n = 0, 1, . . . ). (1.4)

We denote by Rα−1 = (rn,k)
∞
n,k=0 the transpose of the matrix Sα−1.

There are six chapters in this thesis.

Chapter 2 deals with the general theory of FK, BK, and AK spaces and mea-

sures of noncompactness. Most of the results of this chapter can be found in (Wilan-

sky, 1984) and (Malkowsky and Rakočević, 2000a).

In Chapter 3 we investigate some topological properties of the spaces [Cα]
p
0,

[Cα]
p or [Cα]

p
∞ by using blocking technique and determine their β–duals. Also we

visualise the norm and the dual norm on these spaces as potential surface and Wulff’s

crystal for different parameters.

Chapter 4 deals with the characterization of some classes of matrix transfor-

mations and the norms of operators defined by the matrices in those classes.
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In Chapter 5 we investigate Hausdorff measure of noncompactness of matrix

operators in classes we studied in chapter 4.

Chapter 6 is devoted to a conclusion.



CHAPTER 2

THE GENERAL THEORY

2.1 FK, BK, AND AK SPACES

In this section we introduce briefly the theory of FK spaces which plays an

important role in the characterisation of matrix transformations between sequence

spaces. We start with some definitions.

Definition 1. Let X be a linear space and d a metric on X. Then (X, d), or X

for short, is said to be a linear metric space if the algebraic operations on X are

continuous functions. A complete linear metric space is called a Fréchet space.

A linear metric space has an algebraic structure by linearity, however a topo-

logical structure by the metric. The continuity of algebraic operations in a linear

metric space X means that if d(xn, x) → 0, d(yn, y) → 0 and λn → λ as n → ∞,

then d(xn + yn, x+ y) → 0 and d(λnxn, λx) → 0 as n → ∞.

Theorem 2.1.1. (Maddox, 1970, Exercise2, p.86) The set w is a Fréchet space with

respect to the metric dw defined by

dω(x, y) =
∑ 1

2k
|xk − yk|

1 + |xk − yk|
for all x, y ∈ ω. (2.1)

Furthermore convergence in (w, dw) and coordinatewise convergence are equivalent,

that is x(n) → x as n → ∞ in (w, dw) if and only if x
(n)
k → xk as n → ∞ for every

k.

Definition 2. A topological space (X, T ) is a pair consisting of a non-empty set

X and a class T of subsets of X satisfying the following axioms:

(T 1) The empty set ∅ and X are in T ,

5
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(T 2) Any union (countable or uncountable) of sets in T is in T ,

(T 3) The intersection of any finite number of sets in T is in T .

The sets of T are called open sets and T is called a topology for X.

Definition 3. A topological space (X, T ) is called Hausdorff if and only if, for

any x, y in X with x ̸= y, there exists two disjoint open sets, one containing x and

the other containing y.

Definition 4. Let H be a linear space and a Hausdorff space. An FH space is a

Fréchet space X such that X is a subspace of H and the topology of X is stronger

than the topology of H on X.

Definition 5. A subset X of ω is said to be an FK space if it is a Fréchet space

with continuous coordinates Pn : X → C (n = 0, 1, . . . ), where Pn(x) = xn for all

x = (xk)
∞
k=0 ∈ X. In other words, an FK space is an FH space with H = w. An

FK space is said to be a BK space if its metric is given by a norm. An FK space

X ⊃ ϕ is said to have AK, or be an AK space, if every sequence x = (xk)
∞
k=0 ∈ X

has a unique representation x =
∑∞

k=0 xke
(k) (Wilansky, 1984, 4.2.13). A sequence

(bn)
∞
n=0 in a linear metric space X is called a Schauder basis if, for every x ∈ X

there exists a unique sequence (λn)
∞
n=0 of scalars such that x =

∑∞
n=0 λnbn.

Theorem 2.1.2. (Wilansky, 1984, Theorem 4.2.2) Let X be a Fréchet space, Y be

an FH space and f : X → Y be linear. Then, f : X → H is continuous if and only

if f : X → Y is continuous.

Proof. Let TX , TY and TH denote the topologies on X, Y and of H on Y . First,

we assume that f : X → (Y, TY ) is continuous. Since Y is an FH space, we have

TH ⊂ TY , and so f : X → (Y, TH) is continuous. Conversely, we assume that

f : X → (Y, TH) is continuous. Then it has closed graph by the closed graph lemma

(see appendix B.0.3). Since Y is an FH space, we again have TH ⊂ TY , and so

f : X → (Y, TY ) has closed graph. Consequently f : X → (Y, TY ) is continuous by

the closed graph theorem (see appendix B.0.4).

Corollary 2.1.3. (Wilansky, 1984, Corollary 4.2.3) Let X be a Fréchet space, Y be

an FK space, f : X → Y be linear, and the coordinates Pn : X → C (n = 0, 1, . . . )
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be defined by Pn(x) = xn for all x ∈ X. If Pn ◦ f : X → C is continuous for every

n, then f : X → Y is continuous.

Proof. Since convergence and coordinatewise convergence are equivalent in ω by

Theorem 2.1.1, the continuity of Pn ◦ f : X → C for all n implies the continuity of

f : X → ω, hence of f : X → Y by Theorem 2.1.2.

Remark 2.1.1. (Malkowsky and Rakočević, 2000a, Remark 1.16) Let X ⊃ ϕ be an

FK space and a ∈ w. If the series
∑∞

k=0 akxk converges for all x ∈ X, then the

linear functional fa defined by fa(x) =
∑∞

k=0 akxk for all x ∈ X is continuous.

Proof. We define linear functionals f
[n]
a : X → C for all n ∈ N0 by f

[n]
a (x) =∑n

k=0 akxk for all x ∈ X. Since X is an FK space and f
[n]
a is a finite linear com-

bination of coordinates, we have f
[n]
a ∈ X ′ for all n. By hypothesis, the limits

fa(x) = limn→∞ f
[n]
a (x) exist for all x ∈ X, hence fa ∈ X ′ by the Banach-Steinhaus

theorem (see appendix B.0.5).

Theorem 2.1.4. (Wilansky, 1984, Theorem 4.2.8) Any matrix map between FK

spaces is continuous.

Proof. Let X and Y be FK spaces, A ∈ (X, Y ) and fA : X → Y be defined by

fA(x) = Ax for all x ∈ X. Since the maps Pn ◦ fA : X → C are continuous for all n

by Remark 2.1.1, fA : X → Y is continuous by Corollary 2.1.3.

2.2 MEASURES OF NONCOMPACTNESS

In the previous section we notice that matrix transformations between FK

spaces are continuous. To characterize the classes of compact matrix transformations

we apply the Hausdorff measure of noncompactness. For this reason in this section

we will give the axiomatic introduction to measures of noncompactness on bounded

sets in complete metric spaces with their most important properties.

The first measure of noncompactness, denoted by α, defined by Kuratowski

(Kuratowski, 1930) in 1930. Then, Darbo (Darbo, 1955) used this measure to prove

a generalization of Schauder’s fixed point theorem (Darbo, 1972). In 1957, the



8

Hausdorff measure of noncompactnes was introduced by Goldenstein, Gohberg and

Markus (Goldenstein et al., 1957) and later studied by Goldenstein and Markus

(Goldenstein and Markus, 1965). There are also other measures of noncompact-

ness defined by several authors. They are studied in detail in the monographs

(Akhmerov et al., 1986); (Toledano et al., 1997); (Istrǎtescu, 1981); (Kuratowski,

1958); (Malkowsky and Rakočević, 2000a). Rather than to investigate each of them,

here we give the concept of a measure of noncompactness on bounded sets of a metric

space and introduce the Kuratowski and Hausdorff measures of noncompactness.

We need some standard notations.

Let (X, d) be a metric space. Then for any r > 0 and x ∈ X, the sets

B(x, r) = {y ∈ X : d(x, y) < r}, B(x, r) = {y ∈ X : d(x, y) ≤ r} and S(x, r) =

{y ∈ X : d(x, y) = r} are the open, closed balls and sphere, with centre x

and radius r, respectively; in particular, we write BX = B(0, 1), BX = B(0, 1) and

SX = S(0, 1) for the open and closed unit balls, and unit sphere in X. If S and

S ′ are subsets of a metric space (X, d) and x ∈ X, then d(x, S) = inf{d(x, s) : s ∈ S},

d(S, S ′) = inf{d(s, s′) : s ∈ S, s′ ∈ S ′} and diam(S) = sup{d(s, s̃) : s, s̃ ∈ S} are

called the distance of x and S, distance of S and S’ and diameter of S,

respectively. We denote the set of all nonempty and bounded subsets of a metric

space (X, d) by MX .

Now we recall some useful definitions.

Let M and S be subsets of a metric space (X, d) and ϵ > 0, then the set S is called

ϵ-net of M if for any x ∈ M there exists s ∈ S, such that d(x, s) < ϵ. If the set S

is finite then the ϵ-net S of M is called finite ϵ-net of M. The set M is said to be

totally bounded if it has a finite ϵ-net for every ϵ > 0. A subset M of a metric

space X is compact if every sequence (xn) in M has a convergent subsequence

with its limit in M and the set M is relatively compact if the closure M̄ of M is

compact.

If X and Y are Banach spaces and L : X → Y is a linear operator, then by

B(X,Y ) we denote the set of all bounded linear operators from X to Y and L is said

to be compact or completely continuous, if its domain is all of X and, for every

bounded sequence (xn) in X, the sequence (L(xn)) has a convergent subsequence in

Y .
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First we consider the concept of a measure of noncompactness of bounded sets

in complete metric space.

Definition 6. Let (X, d) be a complete metric space. A set function

ϕ : MX → [0,+∞]

is called ameasure of noncompactness on X if it satisfies the following conditions

• (MNC.1) ϕ(M) = 0 if and only if M is a relatively compact set

(regularity)

• (MNC.2) ϕ(M) = ϕ(M), for all M ∈ MX

(invariance under closure)

• (MNC.3) ϕ(M1 ∪M2) = max{ϕ(M1), ϕ(M2)}, for all M1,M2 ∈ MX

(semi-additivity).

The number ϕ(M) is called the measure of noncompactness of the set M.

Any measure of noncompactness satisfies the following fundamental properties

that are immediate consequences of Definition 6.

Lemma 2.2.1. (Toledano et al., 1997, p. 19) Let ϕ be a measure of noncompactness

on a complete metric space (X, d). Then ϕ satisfies the following properties:

1. M1 ⊂ M implies ϕ(M1) ≤ ϕ(M)

(monotonicity)

2. ϕ(M1 ∩M2) ≤ min{ϕ(M1), ϕ(M2)}, for all M1,M2 ∈ MX

3. If M is finite then ϕ(M) = 0

(non-singularity).

4. Generalized Cantor’s intersection theorem: If {Mn} is a decreasing sequence

of nonempty, closed and bounded subsets of X and limn→∞ ϕ(Mn) = 0, then

the intersection M∞ of all Mn is nonempty and compact.

Now we give the definition of the Kuratowski measure of noncompactness.
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Definition 7. Let (X, d) be metric space, and Q ∈ MX . Then the Kuratowski

measure of noncompactness of Q, denoted by α(Q), is the infimum of the set

of all numbers ϵ > 0 such that Q can be covered by a finite number of sets with

diameters less than ϵ, that is,

α(Q) = inf{ϵ > 0 : Q ⊂
n∪

i=1

Si, Si ⊂ X, diam(Si) < ϵ (i = 1, 2, ..., n;n ∈ N)}. (2.2)

Remark 2.2.1. (a) The Kuratowski measure of noncompactness is a measure of

noncompactness in the sense of Definition 7, that is, it satisfies the axioms

of regularity, invariance under closure and semi–additivity (Malkowsky and

Rakočević, 2000a, Lemma 2.6).

(b) It is obvious that

α(Q) ≤ diam(Q) for each bounded subset Q of X. (2.3)

It turns out that in an infinite–dimensional normed space the Kuratowski

measure of noncompactness of the unit ball is equal to its diameter, that is equality

holds in (2.2) for Q = BX .

Theorem 2.2.2. (Furi and Vignoli, 1970) or (Nussbaum, 1971) Let X be an

infinite–dimensional normed space. Then α(BX) = 2.

Lemma 2.2.3. (Malkowsky and Rakočević, 2000a, Lemma 2.6) Let M,M1 and M2

be bounded subsets of a complete metric space (X, d). Then,

α(M) = 0 if and only if M is compact , (2.4)

α(M) = α(M), (2.5)

M1 ⊂ M2 implies α(M1) ≤ α(M2), (2.6)

α(M1 ∪M2) = max{α(M1), α(M2)}, (2.7)

α(M1 ∩M2) ≤ min{α(M1), α(M2)}. (2.8)

Lemma 2.2.4. (Darbo, 1955) Let X be a normed space, and M,M1,M2 ∈ MX .
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Then we have

α(tM) = |t|α(M) for any number t and M ∈ MX (homogeneity), (2.9)

α(M1 +M2) ≤ α(M1) + α(M2), forall M1,M2 ∈ MX (subadditivity), (2.10)

α(x0+M) = α(M) for any x0 ∈ X and M ∈ MX (translation invariance). (2.11)

Now we give the definition of the Hausdorff measure of noncompactness.

Definition 8. Let (X, d) be metric space, and Q ∈ MX . Then the Hausdorff

measure of noncompactness of the set Q, denoted by χ(Q), is the infimum of

the set of all real numbers ϵ > 0 such that Q can be covered by a finite number of

balls with radii less than ϵ, that is,

χ(Q) = inf{ϵ > 0 : Q ⊂
n∪

i=1

B(xi, ri), xi ∈ X, ri < ϵ (i = 1, 2, ..., n;n ∈ N)}. (2.12)

The function χ is called Hausdorff measure of noncompactness.

Remark 2.2.2. According to the definition of the Hausdorff measure of noncompact-

ness of a set Q, the centres of the balls which cover Q need not to be in Q. So,

(2.12) can equivalently be stated as follows:

χ(Q) = inf{ϵ > 0 : Q has a finite ϵ-net in X}. (2.13)

Lemma 2.2.5. (Malkowsky and Rakočević, 2000a, Lemma 2.11) Let M,M1 and

M2 be bounded subsets of a complete metric space (X, d). Then,

χ(M) = 0 if and only if M is compact , (2.14)

χ(M) = χ(M), (2.15)

M1 ⊂ M2 implies χ(M1) ≤ χ(M2), (2.16)

χ(M1 ∪M2) = maxχ(M1), χ(M2), (2.17)

χ(M1 ∩M2) ≤ minχ(M1), χ(M2). (2.18)
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Lemma 2.2.6. (Malkowsky and Rakočević, 2000a, Theorem 2.12) Let X be a

normed space, and M,M1,M2 ∈ MX . Then we have

χ(tM) = |t|χ(M) for any number t and M ∈ MX (homogeneity), (2.19)

χ(M1 +M2) ≤ χ(M1) + χ(M2), forall M1,M2 ∈ MX (subadditivity), (2.20)

χ(x0+M) = χ(M) for any x0 ∈ X and M ∈ MX (translation invariance). (2.21)

It turns out that the Hausdorff measure of noncompactness of the unit ball in

an infinite dimensional normed space is equal to its radius.

Theorem 2.2.7. (Malkowsky and Rakočević, 2000a, Theorem 2.14) Let X be an

infinite–dimensional normed space. Then χ(BX) = 1.

The next theorem shows that the Hausdorff and Kuratowski measures are

equivalent in the sense of (2.22) below.

Theorem 2.2.8. (Toledano et al., 1997, Remark 3.2) Let (X, d) be metric space,

and Q ∈ MX . Then

χ(Q) ≤ α(Q) ≤ 2χ(Q). (2.22)



CHAPTER 3

MIXED NORM SPACES

3.1 TOPOLOGICAL STRUCTURES

In this part, we establish some important topological properties of the spaces

[Cα]
p
0, [Cα]

p, and [Cα]
p
∞ for α > 0 and p ≥ 1. We write

∑
0 =

∑1
k=0, max0 =

max0≤k≤1, and
∑

ν =
∑2ν+1−1

k=2ν and maxν = max2ν≤k≤2ν+1−1 for ν ≥ 1.

Proposition 3.1.1. Let α > 0 and p ≥ 1.

(a) The sets [Cα]
p
0, [Cα]

p and [Cα]
p
∞ are BK spaces with respect to

∥x∥[Cα]
p
∞ = sup

ν

(
1

2ν

∑
v

|σα−1
k (x)|p

)1/p

= sup
ν

(
1

2ν

∑
v

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xk

∣∣∣∣∣
p)1/p

,

(3.1)

[Cα]
p
0 is a closed subset of [Cα]

p and [Cα]
p is a closed subset of [Cα]

p
∞.

(b) For each n ∈ N0, we put c(n) = (c
(n)
k )∞k=0 = Sα−1e(n), that is,

c
(n)
k =

0 (0 ≤ k ≤ n− 1)

A−α
k−nA

α−1
n (k ≥ n).

Then every sequence x = (xk)
∞
k=0 ∈ [Cα]

p
0 has a unique representation

x =
∞∑
n=0

σα−1
n (x)c(n). (3.2)

Every sequence x = (xk)
∞
k=0 ∈ [Cα]

p has a unique representation

x = ξ · e+
∞∑
n=0

σα−1
n (x− ξ · e)c(n), (3.3)

13
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where ξ is the unique complex number such that x− ξ · e ∈ [Cα]
p
0.

Proof. (a) By (Malkowsky and Rakočević, 2000a, Proposition 3.44), the sets wp
0, w

p

and wp
∞ are BK spaces with respect to

∥x∥wp
∞ = sup

ν

(
1

2ν

∑
v

|xk|p
)1/p

,

wp
0 is a closed subspace of wp and wp is a closed subspace of wp

∞. Hence the sets

[Cα]
p
0, [Cα]

p and [Cα]
p
∞ are BK spaces with respect to the norm ∥ · ∥[Cα]

p
∞ defined in

(3.1) by (Wilansky, 1984, Theorem 4.3.12), and [Cα]
p
0 is a closed subset of [Cα]

p and

[Cα]
p is a closed subset of [Cα]

p
∞ by (Wilansky, 1984, Theorem 4.3.14).

(b) Since wp
0 has AK by (Malkowsky and Rakočević, 2000a, Proposition 3.44),

the representation of x = (xk)
∞
k=0 ∈ [Cα]

p
0 in (3.2) is an immediate consequence

of (Jarrah and Malkowsky, 2003, Corollary 2.5 (a)) and (1.4).

We observed above that [Cα]
p = [Cα]

p
0 ⊕ e, and so every x = (xk)

∞
k=0 ∈ [Cα]

p has

a unique representation as in (3.3) by (Jarrah and Malkowsky, 2003, Corollary 2.5

(b)).

Remark 3.1.1. (a) Since wp
∞ has no Schauder basis by (Djolović and Malkowsky,

2012, Lemma 1.1), [Cα]
p
∞ has no Schauder basis by (Jarrah and Malkowsky, 2003,

Remark 2.4).

(b) We have [Cα]
p = (wp

0 ⊕ e)Cα−1 by definition, and so it follows from (Jarrah and

Malkowsky, 2003, Corollary 2.5 (c)) that every sequence x ∈ [Cα]
p has a unique

representation

x = ξ · c(−1) +
∞∑
n=0

(
σα−1
n (x)− ξ

)
c(n) (3.4)

where the sequences c(n) (n = 0, 1, . . . ) are defined as in Proposition 3.1.1 and the

sequence c(−1) = (c
(−1)
k )∞k=0 is given by

c
(−1)
k =

k∑
j=0

A−α
k−jA

α−1
j = A0

k = 1 for k = 0, 1, . . . ,

hence c(−1) = e. Since σα−1
n (x)−ξ = σα−1

n (x−ξ ·e) for all n ∈ N0, the representations

in (3.4) and (3.3) are identical.
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Remark 3.1.2. We can visualise the norm defined by (3.1) using our software MV-

Graphics. Due to the sequences (xk)
∞
k=0 have infinitely many dimensions which is

impossible to represent in the computer, we identify them with three–dimensional

vectors. Any three dimension can be chosen as coordinates, then all other coor-

dinates have to be zero. We represent our norm as a potential surface which is a

surface energy function in crystallography.

Example 3.1.1. For visualisation of the norm ∥ · ∥[Cα]
p
∞ defined in (3.1) we work

out computations and successively obtain

for ν = 0

(
1

20

∑
0

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
1

20

1∑
k=0

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(∣∣∣∣∣ 1

Aα−1
0

0∑
j=0

Aα−2
0−j xj

∣∣∣∣∣
p

+

∣∣∣∣∣ 1

Aα−1
1

1∑
j=0

Aα−2
1−j xj

∣∣∣∣∣
p) 1

p

=

(
|x0|p +

∣∣∣∣ 1α(Aα−2
1 x0 + Aα−2

0 x1)

∣∣∣∣p) 1
p

=

(
|x0|p +

∣∣∣∣ 1α((α− 1)x0 + x1)

∣∣∣∣p) 1
p

for ν = 1,

(
1

21

22−1∑
k=21

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
1

2

3∑
k=2

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
1

2

[∣∣∣∣∣ 1

Aα−1
2

2∑
j=0

Aα−2
2−j xj

∣∣∣∣∣
p

+

∣∣∣∣∣ 1

Aα−1
3

3∑
j=0

Aα−2
3−j xj

∣∣∣∣∣
p]) 1

p

=

(
1

2

[∣∣∣∣ 2

(α + 1)α
(Aα−2

2 x0 + Aα−2
1 x1 + Aα−2

0 x2)

∣∣∣∣p
+

∣∣∣∣ 6

(α + 2)(α + 1)α
(Aα−2

3 x0 + Aα−2
2 x1 + Aα−2

1 x2 + Aα−2
0 x3)

∣∣∣∣p]) 1
p

=

(
1

2

[∣∣∣∣ 2

(α + 1)α

(
α(α− 1)

2
x0 + (α− 1)x1 + x2

)∣∣∣∣p
+

∣∣∣∣ 6

(α + 2)(α + 1)α

(
(α + 1)α(α− 1)

6
x0

+
α(α− 1)

2
x1 + (α− 1)x2 + x3

)∣∣∣∣p]) 1
p
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=

(
1

2

[∣∣∣∣(α− 1)

(α + 1)
x0 +

2(α− 1)

α(α + 1)
x1 +

2

(α + 1)α
x2

∣∣∣∣p
+

∣∣∣∣α− 1

α + 2
x0 +

3(α− 1)

(α + 2)(α + 1)
x1 +

6(α− 1)

(α + 2)(α+ 1)α
x2

+
6

(α + 2)(α + 1)α
x3

∣∣∣∣p]) 1
p

;

for ν = 2,

(
1

22

23−1∑
k=22

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
1

4

7∑
k=4

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
1

4

[∣∣∣∣∣ 1

Aα−1
4

4∑
j=0

Aα−2
4−j xj

∣∣∣∣∣
p

+

∣∣∣∣∣ 1

Aα−1
5

5∑
j=0

Aα−2
5−j xj

∣∣∣∣∣
p

+

∣∣∣∣∣ 1

Aα−1
6

6∑
j=0

Aα−2
6−j xj

∣∣∣∣∣
p

+

∣∣∣∣∣ 1

Aα−1
7

7∑
j=0

Aα−2
7−j xj

∣∣∣∣∣
p]) 1

p

=

(
1

4

[∣∣∣∣4! · (Aα−2
4 x0 + Aα−2

3 x1 + Aα−2
2 x2 + Aα−2

1 x3 + Aα−2
0 x4)

α(α+ 1)(α + 2)(α + 3)

∣∣∣∣p
+

∣∣∣∣5! · (α + 3)(α + 4)(Aα−2
5 x0 + Aα−2

4 x1 + Aα−2
3 x2 + Aα−2

2 x3 + ...)

α(α + 1)(α + 2)

∣∣∣∣p
+

∣∣∣∣6! · (Aα−2
6 x0 + Aα−2

5 x1 + Aα−2
4 x2 + Aα−2

3 x3 + ...)

α(α + 1)(α+ 2)(α + 3)(α + 4)(α + 5)

∣∣∣∣p
+

∣∣∣∣7! · (Aα−2
7 x0 + Aα−2

6 x1 + Aα−2
5 x2 + Aα−2

4 x3 + ...)

α(α + 1)(α + 2)(α+ 3)(α + 4)(α + 5)(α + 6)

∣∣∣∣p])
1
p

=

(
1

4

[∣∣∣∣ 4!

α(α + 1)(α + 2)(α+ 3)

(
(α+ 2)(α + 1)α(α− 1)

4!
x0

+
(α + 1)α(α− 1)

3!
x1 +

α(α− 1)

2!
x2 + (α− 1)x3 + x4

)∣∣∣∣p
+

∣∣∣∣ 5!

α(α + 1)(α + 2)(α + 3)(α + 4)

(
(α + 3)(α + 2)(α + 1)α(α− 1)

5!
x0

+
(α + 2)(α + 1)α(α− 1)

4!
x1 +

(α+ 1)α(α− 1)

3!
x2 +

α(α− 1)

2!
x3 + ...

)∣∣∣∣p
+

∣∣∣∣ 6!

α(α + 1)(α + 2)(α + 3)(α + 4)(α + 5)(
(α+ 4)(α + 3)(α + 2)(α + 1)α(α− 1)

6!
x0

+
(α + 3)(α + 2)(α + 1)α(α− 1)

5!
x1

+
(α + 2)(α + 1)α(α− 1)

4!
x2 +

(α + 1)α(α− 1)

3!
x3 + ...

)∣∣∣∣p



17

+

∣∣∣∣ 7!

α(α + 1)(α + 2)(α + 3)(α + 4)(α + 5)(α+ 6)(
(α+ 5)(α + 4)(α + 3)(α + 2)(α+ 1)α(α− 1)

7!
x0

+
(α + 4)(α + 3)(α + 2)(α + 1)α(α− 1)

6!
x1

+
(α + 3)(α + 2)(α + 1)α(α− 1)

5!
x2

+
(α + 2)(α + 1)α(α− 1)

4!
x3 + ...

)∣∣∣∣p]) 1
p

=

(
1

4

[∣∣∣∣α− 1

α + 3
x0 +

4(α− 1)

(α + 3)(α+ 2)
x1 +

12(α− 1)

(α + 3)(α + 2)(α + 1)
x2

+
24(α− 1)

(α + 3)(α + 2)(α+ 1)α
x3 + x4

∣∣∣∣p
+

∣∣∣∣α− 1

α + 4
x0 +

5(α− 1)

(α + 4)(α + 3)
x1 +

20(α− 1)

(α + 4)(α + 3)(α + 2)
x2

+
60(α− 1)

(α + 4)(α + 3)(α+ 2)(α + 1)
x3 + ...

∣∣∣∣p
+

∣∣∣∣α− 1

α + 5
x0 +

6(α− 1)

(α + 5)(α + 4)
x1 +

30(α− 1)

(α + 5)(α + 4)(α + 3)
x2

+
120(α− 1)

(α + 5)(α + 4)(α+ 3)(α + 2)
x3 + ...

∣∣∣∣p
+

∣∣∣∣α− 1

α + 6
x0 +

7(α− 1)

(α + 6)(α + 5)
x1 +

42(α− 1)

(α + 6)(α + 5)(α + 4)
x2

+
210(α− 1)

(α + 6)(α + 5)(α+ 4)(α + 3)
x3 + ...

∣∣∣∣p]) 1
p

=

(
|α− 1|p

4

[
1

|α + 3|p
|x0 +

4

α + 2
x1 +

12

(α+ 2)(α + 1)
x2

+
24

(α+ 2)(α + 1)α
x3 + x4

∣∣∣∣p
+

1

|α+ 4|p
|x0 +

5

α + 3
x1 +

20

(α + 3)(α + 2)
x2

+
60

(α+ 3)(α + 2)(α + 1)
x3 + ...

∣∣∣∣p
+

1

|α + 5|p

∣∣∣∣x0 +
6

α+ 4
x1 +

30

(α + 4)(α + 3)
x2

+
120

(α+ 4)(α + 3)(α + 2)
x3 + ...

∣∣∣∣p
1

|α + 6|p

∣∣∣∣x0 +
7

α+ 5
x1 +

42

(α + 5)(α + 4)
x2
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+
210

(α + 5)(α + 4)(α+ 3)
x3 + ...

∣∣∣∣p]) 1
p

;

for ν = 3,

(
1

23

24−1∑
k=23

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xj

∣∣∣∣∣
p) 1

p

=

(
|α− 1|p

8

[
1

|α + 7|p

∣∣∣∣x0 +
8

α + 6
x1

+
56

(α + 6)(α + 5)
x2 +

336

(α + 6)(α + 5)(α + 4)
x3 + ...

∣∣∣∣p
+

1

|α + 8|p

∣∣∣∣x0 +
9

α+ 7
x1 +

72

(α + 7)(α + 6)
x2

+
504

(α + 7)(α + 6)(α + 5)
x3 + ...

∣∣∣∣p
+

1

|α + 9|p

∣∣∣∣x0 +
10

α+ 8
x1 +

90

(α + 8)(α + 7)
x2

+
720

(α + 8)(α + 7)(α + 6)
x3 + ...

∣∣∣∣p
+

1

|α + 10|p

∣∣∣∣x0 +
11

α + 9
x1 +

110

(α + 9)(α+ 8)
x2

+
990

(α + 9)(α + 8)(α + 7)
x3 + ...

∣∣∣∣p
+

1

|α + 11|p

∣∣∣∣x0 +
12

α + 10
x1 +

132

(α + 10)(α + 9)
x2

+
1320

(α + 10)(α + 9)(α + 8)
x3 + ...

∣∣∣∣p
+

1

|α + 12|p

∣∣∣∣x0 +
13

α + 11
x1 +

156

(α + 11)(α + 10)
x2

+
1716

(α + 11)(α + 10)(α + 9)
x3 + ...

∣∣∣∣p
+

1

|α + 13|p

∣∣∣∣x0 +
14

α + 12
x1 +

182

(α + 12)(α + 11)
x2

+
2184

(α + 12)(α + 11)(α + 10)
x3 + ...

∣∣∣∣p
+

1

|α + 14|p

∣∣∣∣x0 +
15

α + 13
x1 +

210

(α + 13)(α + 12)
x2

+
2730

(α + 13)(α + 12)(α + 11)
x3 + ...

∣∣∣∣p]) 1
p

Now we choose three coordinates x0, x1, x2 to be different than zero and the

rest is equal to zero to project the norm ∥ · ∥[Cα]
p
∞ on (x0, x1, x2).
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Hence

∥x∥[Cα]
p
∞ = sup


(

1

20

∑
0

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xk

∣∣∣∣∣
p)1/p

,

(
1

21

∑
1

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xk

∣∣∣∣∣
p)1/p

,

(
1

22

∑
2

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xk

∣∣∣∣∣
p)1/p

,

(
1

23

∑
3

∣∣∣∣∣ 1

Aα−1
k

k∑
j=0

Aα−2
k−j xk

∣∣∣∣∣
p)1/p

, ...

 .

Then we obtain the following figures for different values of p and α.

Figure 3.1 Norm ∥ · ∥[Cα]
p
∞ for p = 1 and α = 0.09 as a potential surface.

Figure 3.2 Norm ∥ · ∥[Cα]
p
∞ for p = 1 and α = 1.05 as a potential surface.
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Figure 3.3 Norm ∥ · ∥[Cα]
p
∞ for p = 1 and α = 15 as a potential surface.

Figure 3.4 Norm ∥ · ∥[Cα]
p
∞ for p = 1.01 and α = 0.5 as a potential surface.

Figure 3.5 Norm ∥ · ∥[Cα]
p
∞ for p = 1.2 and α = 1.2 as a potential surface.
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Figure 3.6 Norm ∥ · ∥[Cα]
p
∞ for p = 2 and α = 0.6 as a potential surface.

Figure 3.7 Norm ∥ · ∥[Cα]
p
∞ for p = 2 and α = 1.2 as a potential surface.

Figure 3.8 Norm ∥ · ∥[Cα]
p
∞ for p = 2 and α = 8 as a potential surface.
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Figure 3.9 Norm ∥ · ∥[Cα]
p
∞ for p = 10 and α = 1.02 as a potential surface.

Figure 3.10 Norm ∥ · ∥[Cα]
p
∞ for p = 10 and α = 0.15 as a potential surface.

Figure 3.11 Norm ∥ · ∥[Cα]
p
∞ for p = 10 and α = 10 as a potential surface.
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3.2 THE BLOCKING TECHNIQUE

We recall that we observed in Chapter 1 that the sets [Cα]
p
0, [Cα]

p and [Cα]
p
∞

can be considered as the domains of the Cesàro matrix Cα−1 in the sets

wp
0 =

{
x ∈ w : lim

n→∞

1

n+ 1

n∑
k=0

|xk|p = 0

}
, wp = wp

0 ⊕ e

and

wp
∞ =

{
x ∈ w : sup

n

1

n+ 1

n∑
k=0

|xk|p < ∞

}
of sequences that are strongly summable to zero, strongly summable and strongly

bounded, respectively, by the Cesáro method of order 1, with index p ≥ 1. The proof

of Proposition 3.1.1 uses the so–called block norm ∥·∥wp
∞ instead of the natural norm

∥ · ∥′

wp
∞

with

∥x∥′

wp
∞
= sup

n

(
1

n+ 1

n∑
k=0

|xk|p
)1/p

,

the so–called section norm. It is well known that the block and section norms are

equivalent on each of the spaces wp
0, w

p and wp
∞ ( (Maddox, 1968) or (Malkowsky,

1995, Theorem 1)). The block norm is used for technical reasons in the determina-

tion of the duals of the spaces wp
0, w

p and wp
∞, and the characterization of matrix

transformations on those sequence spaces.

This approach is a special case of the so–called blocking technique which has

important applications in various parts of analysis, in particular, in the study of

sequence and function spaces, the study of operators between such spaces, and in

the classical inequalities.

In these theories, expressions of the form

∞∑
n=0

an

(
∞∑
k=1

|xk|p
)1/p

q

for 1 ≤ p, q < ∞ (3.5)

and

sup
n

an

(
∞∑
k=1

|xk|p
)1/p

 for 1 ≤ p < ∞ (3.6)

play an important role, and also in Hardy’s famous inequality which states that, for
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any p > 0, there is a constant K > 0 such that

N∑
n=0

(
1

n+ 1

n∑
k=0

xk

)p

≤ K
N∑

n=0

xp
n

for all N ∈ N0 and for all nonnegative real numbers x0, x1, . . . , xN .

The analysis of expressions as in (3.5) and (3.6) which are called a norm in

section form can be extremely difficult.

In many cases it is helpful to suitably renorm those expressions, by using

so–called norms in block form

∞∑
ν=0

 1

2να

(
∞∑

k∈Iν

|xk|p
)1/p

q

and sup
n

 1

2να

(
∞∑

k∈Iν

|xk|p
)1/p

 , (3.7)

where the intervals Iν form a partition of N0 into disjoint intervals. The most

common partition is that into dyadic blocks [2ν , 2ν+1−1]. Such renorming is referred

to as the blocking technique; it is of great practical importance, since the analysis of

norms in block form is much simpler; in many aspects they behave like the familiar

ℓp norms.

The renorming of the spaces wp
0, w

p and wp
∞ is a simple example for the blocking

technique.

In 1974, Jagers (Jagers, 1974) studied the sequence spaces

cesp =

{
x ∈ w :

∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p

< ∞

}
for p ≥ 1,

which are Banach spaces with the section norm

∥x∥′

cesp =

(
∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p)1/p

.

We observe that Hardy’s inequality immediately implies the set inclusion ℓp ⊂ cesp.

It can be found in (Grosse-Erdmann, 1998) that an equivalent norm on cesp is the
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dyadic block norm

∥x∥cesp =

 ∞∑
ν=0

1

2ν(p−1)

(
2ν+1−1∑
k=2ν

|xk|

)p
1/p

.

This is one more example of an application of the blocking technique.

In 1969, Hedlund (Hedlund, 1969) introduced the mixed norm spaces

ℓ(p, q) =

x ∈ w :
∞∑
ν=0

(
2ν+1−1∑
k=2ν

|xk|p
)q/p

< ∞


which in many aspects behave like the classical ℓp spaces. It is clear that the Cesàro

sequence space cesp is a weighted ℓ(1, p) space.

A comprehensive study of the blocking technique and its applications to the

theory of sequence spaces can be found in the monograph (Grosse-Erdmann, 1998).

3.3 DUAL SPACES

Here, we determine the β–duals of the spaces [Cα]
p
0, [Cα]

p and [Cα]
p
∞ and make

use of the blocking technique. We write

Mp = {a ∈ w : ∥a∥Mp < ∞}, where

∥a∥Mp =


∞∑
ν=0

2ν ·maxv |ak| (p = 1)

∞∑
ν=0

2ν/p (
∑

v |ak|q)
1/q

(
1 < p < ∞; q =

p

p− 1

)
.

Let a ∈ ω and X ⊂ ω be a linear metric space. Then we write

∥a∥∗X,δ = sup

{∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣ : x ∈ B(0, δ)

}
for δ > 0

provided the right hand side is defined and finite which is the case whenever X is an

FK space and a ∈ Xβ (Wilansky, 1984, Theorem 7.2.9); if X is a BK space then
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we write

∥a∥∗ = ∥a∥∗X = sup

{∣∣∣∣∣
∞∑
k=0

akxk

∣∣∣∣∣ : x ∈ BX

}
.

The following results are known for 1 ≤ p < ∞ (Malkowsky and Rakočević,

2000b, Lemma 1)

(wp
0)

β = (wp)β = (wp
∞)β = Mp and ∥a∥∗ = ∥a∥Mp on Mp. (3.8)

Lemma 3.3.1. (Malkowsky and Rakočević, 2007, Lemma 3.1) Let X be an FK

space with AK and Z = XT . We write R = St for the transpose of S. Then we

have

(XT )
β ⊂ (Xβ)R.

The following result involves (Malkowsky and Rakočević, 2007, Theorem 3.2)

and an improvement of it.

Proposition 3.3.2. a) Let X be an FK space with AK, T be a triangle, S be

its inverse and R = St be the transpose of S. Then a ∈ (XT )
β if and only if

a ∈ (Xβ)R and W = (wmk)
∞
m,k=0 ∈ (X, c0) (3.9)

where

wmk =


∞∑

j=m

ajsjk (0 ≤ k ≤ m)

0 (k > m)

(m = 0, 1, . . . );

moreover, if a ∈ (XT )
β then we have

∞∑
k=0

akxk =
∞∑
k=0

(Rka)(Tkx) for all x ∈ XT . (3.10)

b) The statement in part a) also holds when W ∈ (X, ℓ∞).

Proof. a) First we show that a ∈ Zβ implies that the conditions in (3.9) hold.

We write Z = XT and assume that a ∈ Zβ. Then it follows by Lemma 3.3.1

that Ra ∈ Xβ, hence the series
∑∞

j=n ajsjk converge for all n and k, that is,
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the matrix W is defined. Furthermore, we have

n∑
k=0

(Rka)(Tkz)−
n∑

k=0

ωnkTkz =
n∑

k=0

(Rka− ωnk)Tkz

n∑
k=0

(
∞∑
j=k

ajsjk −
∞∑
j=n

ajsjk)Tkz =
n∑

k=0

(
n−1∑
j=k

ajsjk)Tkz

n−1∑
j=k

(aj

j+1∑
k=0

sjkTkz) =
n−1∑
j=0

ajSj(Tz) =
n−1∑
j=0

ajzj,

that is,

n−1∑
j=0

ajzj =
n∑

k=0

(Rka)(Tkz)−Wn(Tz) for all n and all z ∈ Z. (3.11)

Let x ∈ X be given. Then we have z = Sx ∈ Z, and so a ∈ Zβ and a ∈ (Xβ)R.

This implies Wx = W (Tz) ∈ c by (3.11). Since x ∈ X was arbitrary, we have

W ∈ (X, c) ⊂ (X, ℓ∞). Furthermore, since Rka =
∑∞

j=ℓ ajsjk exists for each

k, we have

lim
n→∞

ωnk = lim
n→∞

∞∑
j=n

ajsjk = 0 for each k. (3.12)

Now W ∈ (X, ℓ∞) and (3.12) imply W ∈ (X, c0) by (Wilansky, 1984, 8.3.6,

p 123). Now we show that if a ∈ Zβ then (3.10) holds. Let a ∈ Zβ. Then

the conditions (3.9) hold, and so (3.10) follows from (3.11). Finally, we show

that the conditions in (3.9) are satisfied. If z ∈ Z then x = Tz ∈ X, and so

a.z ∈ cs by (3.11), that is, a ∈ Zβ.

b) Since (X, c0) ⊂ (X, ℓ∞), it remains to show that a ∈ (Xβ)R and W ∈ (X, ℓ∞)

imply a ∈ (XT )
β. We assume a ∈ (Xβ)R and W ∈ (X, ℓ∞). It follows from

Ra ∈ Xβ that wmk exists for each m and k, and limm→∞ wmk = 0 for each

k. Since X has AK, this and W ∈ (X, ℓ∞) together imply W ∈ (X, c0)

by (Wilansky, 1984, 8.3.6). Finally a ∈ (Xβ)R and W ∈ (X, c0) together

imply a ∈ (XT )
β by (Malkowsky and Rakočević, 2007, Theorem 3.2).

Now we determine the γ–duals. The following general result holds.
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Proposition 3.3.3. Let X be an FK space. Then we have a ∈ (XT )
γ if and only

if

sup
n

∥Cn(a;T )∥∗X,δ < ∞ for some δ > 0, (3.13)

where the matrix C(a;T ) = (cnk)
∞
n,k=0 is given by

cnk =


n∑

j=k

ajsjk (0 ≤ k ≤ n)

0 (k > n)

(n = 0, 1, . . . ) :

Proof. We write Z = XT , and define the matrix B = B(a;T ) = (bnk)
∞
n,k=0 by

bnk = ansnk for (0 ≤ k ≤ n) and bnk = 0 for k > n (n = 0, 1, . . . ). Since x ∈ X if

and only if z = Sx ∈ Z, and

anzn = an(Snx) = an

n∑
k=0

snkxk =
n∑

k=0

bnkxk = Bnx for all n,

we obtain a ∈ Zγ if and only if B ∈ (X, bs), and this is the case by (Malkowsky

and Rakočević, 2000a, Theorem 3.8) if and only if C(a;T ) ∈ (X, ℓ∞), that is, by

(Malkowsky and Rakočević, 2000a, Theorem 1.23 (b)), if and only if the condition

in (3.13) is satisfied.

Now we determine the β–duals of the spaces [Cα]
p
0, [Cα]

p and [Cα]
p
∞.

Theorem 3.3.4. Let p ≥ 1 and α > 0. Then we have

(a) a ∈ ([Cα]
p
0)

β if and only if a ∈ (Mp)Rα−1 and W ∈ (wp
0, ℓ∞);

(b) a ∈ ([Cα]
p)β if and only if a ∈ (Mp)Rα−1 and W ∈ (wp, c);

(c) a ∈ ([Cα]
p
∞)β if and only if a ∈ (Mp)Rα−1 and W ∈ (wp

∞, c0).

(d) If X = wp
0 or X = wp

∞ and a ∈ (XCα−1)
β, then

∞∑
k=0

akzk =
∞∑
k=0

(Rα−1
k a)(σα−1

k (x)) for all x ∈ XCα−1 ;

also ∥a∥∗XCα−1
= ∥Rα−1

k a∥Mp . (3.14)

If a ∈ ([Cα]
p)β then

∞∑
k=0

akzk =
∞∑
k=0

(Rα−1
k a)(σα−1

k (x))− ξρ with ξ from (1.2) and ρ = lim
m→∞

Wme; (3.15)
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also

∥a∥∗[Cα]p = |ρ|+ ∥Rα−1a∥Mp for all a ∈ ([Cα]
p)β. (3.16)

(e) We have a ∈ ([Cα]
p
0)

γ if and only if

sup
n

∥Cn(a;Cα−1)∥Mp < ∞ (3.17)

and ([Cα]
p
0)

γ = ([Cα]
p)γ = ([Cα]

p
∞)γ.

Proof. (a) This is an immediate consequence of Proposition 3.3.3.

(b), (c) Parts (b) and (c) follow from (Başar et al., 2008, Lemma 3.1 (b), (c)).

(d) The identities in (3.14), (3.15) and (3.16) follow from (Başar et al., 2008,

(3.11), (3.12), (3.9) and (3.13)).

(e) Since wp
0 is a BK space, we have by (3.13) and (3.8) that a ∈ ([Cα]

p
0)

γ if

and only if (3.17) holds; also, by (3.8) ∥ · ∥∗X = ∥ · ∥Mp for X = wp
0, w

p, wp
∞, hence

([Cα]
p
0)

γ = ([Cα]
p)γ = ([Cα]

p
∞)γ.

Remark 3.3.1. It is useful to state the explicit formulas in the previous theorem. We

obtain from (1.4) that

Rα−1
k a =

∞∑
j=k

A−α
j−kA

α−1
k aj for k = 0, 1, . . . ,

hence a ∈ (Mp)Rα−1 if and only if

∥∥Rα−1a
∥∥
Mp

=


∞∑
ν=0

2ν maxv

∣∣∣∣∣ ∞∑j=k

A−α
j−kA

α−1
k aj

∣∣∣∣∣ < ∞ (p = 1)

∞∑
ν=0

2ν/p

(∑
v

∣∣∣∣∣ ∞∑j=k

A−α
j−kA

α−1
k aj

∣∣∣∣∣
q)1/q

< ∞
(
p > 1; q =

p

p− 1

)
.

(3.18)

Furthermore, we have

wmk =


∞∑

j=m

A−α
j−kA

α−1
k aj (0 ≤ k ≤ m)

0 (k > m)

(m = 0, 1, . . . ),
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and, by (Başar et al., 2008, Theorem 2.4 1.), W ∈ (wp
0, ℓ∞) if and only if

sup
m

∥Wm∥Mp < ∞. (3.19)

If m ∈ N0 is given, let ν(m) denote the uniquely defined integer with 2ν(m) ≤ m ≤

2ν(m)+1 − 1. Then it follows that

∥Wm∥Mp =



ν(m)−1∑
ν=0

2ν maxv

∣∣∣∣∣ ∞∑
j=m

A−α
j−kA

α−1
k aj

∣∣∣∣∣+ 2ν(m) max
2ν(m)≤k≤m

∣∣∣∣∣ ∞∑
j=m

A−α
j−kA

α−1
k aj

∣∣∣∣∣
(p = 1);

ν(m)−1∑
ν=0

2ν/p

(∑
v

∣∣∣∣∣ ∞∑
j=m

A−α
j−kA

α−1
k aj

∣∣∣∣∣
q)1/q

+2ν(m)/p

(
m∑

k=2ν(m)

∣∣∣∣∣ ∞∑
j=m

A−α
j−kA

α−1
k aj

∣∣∣∣∣
q)1/q

(
p > 1; q =

p

p− 1

)
.

We have by (Başar et al., 2008, Theorem 2.4 7.) that W ∈ (wp, c) if and only if

(3.19) holds,

ρ = lim
m→∞

Wme = lim
m→∞

m∑
k=0

wmk = lim
m→∞

m∑
k=0

∞∑
j=m

A−α
j−kA

α−1
k aj exists (3.20)

and limm→∞ wmk = γk exists for each k, which is redundant since the convergence

of Rα−1
k a for each k implies limm→∞wmk = γk = 0 for each k.

Finally, it follows from (Başar et al., 2008, Theorem 2.4 2.) that W ∈ (wp
∞, c0) if

and only if limm→∞ ∥Wm∥Mp = 0.

There is an alternative way to determine the β–duals.

Remark 3.3.2. It follows from (Malkowsky and Rakočević, 2007, Lemmas 3.7 and

3.8) that ifX is an FK space with AK then a ∈ (XT )
β if and only if C(a;T ) ∈ (X, c)

where C(a;T ) is the matrix defined in Proposition 3.3.3. We also have a ∈ ((wp
∞)T )

β

or a ∈ ((wp)T )
β if and only if C(a;Cα−1) ∈ (X, c) by (Malkowsky and Rakočević,

2007, Lemma 3.7) and (Başar et al., 2008, Lemma 3.1 (c) or (b)), respectively.

Remark 3.3.3. We apply our results to crystallography. We use Wulff’s principle

(Wulff, 1901) which allows us to determine the shape of crystals from our norms.
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Theorem 3.3.5 (Wulff’s principle). Let ∂Bn denote the unit sphere in Rn+1, and

F : ∂Bn → R be a surface energy function. The set PM = {x⃗ = F (e⃗)e⃗ ∈ Rn+1 :

e⃗ ∈ ∂Bn} can be considered as a natural representation of F . For every e⃗ ∈ ∂Bn,

let Ee⃗ denote the hyperplane orthogonal to e⃗ and through the point P with position

vector p⃗ = F (e⃗)e⃗, and He⃗ be the half space which contains the origin 0 and has the

boundary Ee⃗ = ∂He⃗. Then, the crystal CF which has F as its surface energy function

is uniquely determined and given by CF =
∩

e⃗∈∂Bn He⃗ =
∩

e⃗∈∂Bn{x⃗ : x⃗ • e⃗ ≤ F (e⃗)}.

The principles of Wulff’s construction of crystals were studied in (Malkowsky

and Veličković, 2012) and it was proved that if surface energy function is equal to

a norm then the boundary of the corresponding Wulff’s crystal is given by the dual

norm. Also, we have

Corollary 3.3.6. (Malkowsky and Veličković, 2012, Corollary 5.5) Let ∥ · ∥ be a

norm on Rn+1 and, for each w⃗ ∈ ∂Bn, let ϕw⃗ : Rn+1 → R be defined by ϕw⃗(x) =

w⃗ • x⃗ =
∑n+1

k=1 wkxk (x⃗ ∈ Rn+1). Then, the boundary ∂C∥·∥ of Wulff’s crystal

corresponding to ∥ · ∥ is given by

∂C∥·∥ =

{
x⃗ =

1

∥ϕe∥∗
· e⃗ ∈ Rn+1 : e⃗ ∈ ∂Bn

}
, (3.21)

where ∥ϕe⃗∥∗ is the norm of the functional ϕe⃗, that is, the dual norm of ∥ · ∥.

Example 3.3.1. Finally, we visualise β–duals of [Cα]
p
∞. We consider the dual norm

∥ · ∥Mp defined by (3.18) and obtain

for k = 0

Rα−1
0 x =

∞∑
j=0

A−α
j−0A

α−1
0 xj

= A−α
0 x0 + A−α

1 x1 + A−α
2 x2 + A−α

3 x3 + . . .

= x0 + (1− α)x1 +
(2− α)(1− α)

2
x2

+
(3− α)(2− α)(1− α)

6
x3 + . . .

= x0 − (α− 1)x1 +
(α− 2)(α− 1)

2
x2

− (α− 3)(α− 2)(α− 1)

6
x3 + . . . ;
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for k = 1

Rα−1
1 x =

∞∑
j=1

A−α
j−1A

α−1
1 xj

= α
[
A−α

0 x1 + A−α
1 x2 + A−α

2 x3 + . . .
]

= α

[
x1 + (1− α)x2 +

(2− α)(1− α)

2
x3 + . . .

]
= α

[
x1 − (α− 1)x2 +

(α− 2)(α− 1)

2
x3 + . . .

]
;

for k = 2

Rα−1
2 x =

∞∑
j=2

A−α
j−2A

α−1
2 xj

=
α(α + 1)

2

[
A−α

0 x2 + A−α
1 x3 + . . .

]
=

α(α + 1)

2
[x2 + (1− α)x3 + . . . ]

=
α(α + 1)

2
[x2 − (α− 1)x3 + . . . ] ;

for k = 3

Rα−1
3 x =

∞∑
j=3

A−α
j−3A

α−1
3 xj

=
(α + 2)(α + 1)α

6

[
A−α

0 x3 + . . .
]

=
(α + 2)(α + 1)α

6
[x3 + . . . ].

Now we choose three dimensions x0, x1, x2 to project the norm ∥·∥Mp on (x0, x1, x2).

If p = 1, then we have

• for ν = 0,

2ν max
ν

|Rα−1
k x| = 20max

0
|Rα−1

k x| = max
0≤k≤1

|Rα−1
k x|

= max
{
Rα−1

0 x,Rα−1
1 x

}
= max

{∣∣∣∣x0 − (α− 1)x1 +
(α− 2)(α− 1)

2
x2

∣∣∣∣ ,
|α [x1 − (α− 1)x2]|} ;
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• for ν = 1,

2ν max
ν

|Rα−1
k x| = 21 max

21≤k≤22−1
|Rα−1

k x|

= 2max
{
|Rα−1

2 x|, |Rα−1
3 x|

}
= 2max

{
|α(α + 1)

2
x2|, 0

}
= |α(α + 1)x2|

• for ν = 2,

2ν max
ν

|Rα−1
k x| = 22 max

22≤k≤23−1
|Rα−1

k x| = 0.

Hence

∥Rα−1x∥M1 =
∞∑
ν=0

2ν max
ν

|Rα−1
k x|

= max

{∣∣∣∣x0 − (α− 1)x1 +
(α− 2)(α− 1)

2
x2

∣∣∣∣
+ |α[x1 − (α− 1)x2]|+ |α(α + 1)x2|} .

If p > 1,

• for ν = 0,

2
ν
p

(∑
ν

∣∣Rα−1
k x

∣∣q) 1
q

= 2
0
p

(∑
0

|Rα−1
k x|q

) 1
q

=

(∑
0

|Rα−1
k x|q

) 1
q

=
(∣∣Rα−1

0 x
∣∣q + ∣∣Rα−1

1 x
∣∣q) 1

q

=

(∣∣∣∣x0 − (α− 1)x1 +
(α− 2)(α− 1)

2
x2

∣∣∣∣q
+ |α [x1 − (α− 1)x2]|q)

1
q

• for ν = 1,

2
ν
p

(∑
ν

∣∣Rα−1
k

∣∣q) 1
q

= 2
1
p

(
22−1∑
k=21

∣∣Rα−1
k x

∣∣q) 1
q

= 2
1
p
(∣∣Rα−1

2 x|q
∣∣+ |Rα−1

3 x|q|
) 1

q

= 2
1
p |α(α + 1)

2
x2| = 2

1
p
−1|α(α + 1)x2|.
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Hence

∥Rα−1x∥Mp =
∞∑
ν=0

2
ν
p

(∑
ν

|Rα−1
k x|q

) 1
q

=
1∑

ν=0

2
ν
p

(∑
ν

|Rα−1
k x|q

) 1
q

=

(∣∣∣∣x0 − (α− 1)x1 +
(α− 2)(α− 1)

2
x2

∣∣∣∣q
+ |α [x1 − (α− 1)x2]|q)

1
q + 2

1
p
−1|α(α + 1)x2|.

Then we obtain the following figures for different values of p and α.

Figure 3.12 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 1 and α = 0.09 as a

potential surface.

Figure 3.13 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 1 and α = 1.05 as a

potential surface.
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Figure 3.14 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 1 and α = 15 as a

potential surface.

Figure 3.15 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 1.01 and α = 0.5 as

a potential surface.

Figure 3.16 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 1.2 and α = 1.2 as

a potential surface.
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Figure 3.17 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 2 and α = 0.6 as a

potential surface.

Figure 3.18 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 2 and α = 1.2 as a

potential surface.

Figure 3.19 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 2 and α = 8 as a

potential surface.
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Figure 3.20 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 10 and α = 1.02 as

a potential surface.

Figure 3.21 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 10 and α = 0.15 as

a potential surface.

Figure 3.22 Norm ∥ · ∥[Cα]
p
∞ and the appropriate crystal for p = 10 and α = 10 as a

potential surface.



CHAPTER 4

CHARACTERISATIONS OF BOUNDED LINEAR

OPERATORS ON SOME GENERAL MIXED NORM

SPACES

In this chapter, we characterize the classes (X, Y ) where X is any of the spaces

[Cα]
p
0, [Cα]

p or [Cα]
p
∞ and Y is any of the spaces ℓ∞, c or c0. We also determine the

norms of the operators defined by the matrices in those classes.

Let A = (ank)
∞
n,k=0 be an infinite matrix. We define the matrices Â = (ânk)

∞
n,k=0

and W (n) = (w
(n)
mk)

∞
m,k=0 for n = 0, 1, . . . by

ânk = Rα−1
k An =

∞∑
j=k

A−α
j−kA

α−1
k anj for n, k = 0, 1, . . .

and

w
(n)
mk =


∞∑

j=m

A−α
j−kA

α−1
k anj (0 ≤ k ≤ m)

0 (k > m)

(m = 0, 1, . . . ).

The following result is an immediate consequence of (Başar et al., 2008, The-

orem 4.2) with T = Cα−1.

Theorem 4.0.7. The necessary and sufficient conditions for the entries of A ∈

(XCα−1 , Y ) when X ∈ wp
0, w

p, wp
∞ and Y = {ℓ∞, c0, c} can be read from the following

table

38
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Table 4.1

PPPPPPPPPTo
From

[Cα]
p
∞ [Cα]

p
0 [Cα]

p

ℓ∞ 1. 2. 3.
c0 4. 5. 6.
c 7. 8. 9.

where

1. (1.1+) supn∥Ân∥Mp < ∞ and (1.2+) limm→∞∥W (n)
m ∥Mp = 0 for all n

2. (1.1+) and (2.1+) supm∥W (n)
m ∥Mp < ∞ for all n

3. (1.1+), (2.1+), (3.1+) ρ(n) = limm→∞ W
(n)
m e exists for each n and

(3.2+) supn

∣∣∣Âne− ρ(n)
∣∣∣ < ∞

4. (1.2+) and (4.1+) limn→∞∥Ân∥Mp = 0

5. (1.2+), (2.1+) and (5.1+) limn→∞ ânk = 0 for all k

6. (1.1+), (2.1+), (3.1+), (5.1+) and (6.1+) limn→∞

(
Âne− ρ(n)

)
= 0

7. (1.1+), (7.1+) α̂k = limn→∞ ânk exists for all k

(7.2+) (α̂k), Ân ∈ Mp for all n and

(7.3+) limn→∞∥Ân − (α̂k)∥Mp = 0

8. (1.1+), (2.1+) and (7.1+)

9. (1.1+), (2.1+), (3.1+), (7.1+) and (9.1+) limn→∞

(
Âne− ρ(n)

)
= β exists.

Remark 4.0.4. We note that by (3.20) and the definition of Â and W (n)

Âne− ρ(n) =
∞∑
k=0

∞∑
j=k

A−α
j−kA

α−1
k anj − lim

m→∞

m∑
k=0

∞∑
j=m

A−α
j−kA

α−1
k anj,

α̂k = lim
n→∞

∞∑
j=k

A−α
j−kA

α−1
k anj for each k

and, for n = 0, 1, . . . ,
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∥∥∥Ân − (α̂k)
∥∥∥
Mp

=


∞∑
ν=0

2ν maxv |ânk − α̂k| (p = 1)

∞∑
ν=0

2ν/p (
∑

v |ânk − α̂k|p)1/p
(
p > 1; q =

p

p− 1

)
.

Now we determine the norms of the operators associated with the matrices in

the classes of Theorem 4.0.7.

Lemma 4.0.8. a) The statement of Proposition 3.3.2 also holds when X = ωp
0

or X = ωp
∞.

b) (Başar et al., 2008, Theorem 3.2) If a ∈ {(ωp)T}β then we have for all

z ∈ ωp(T )
∞∑
k=0

akzk =
∞∑
k=0

((Rka)(Tkz)− ξρ (4.1)

where ξ = limn→∞
1

n+1

∑n
k=0 |xk|p and ρ = limn→∞ ∥Wn∥Mp.

Proof. a) Since X = ωp
0 is an FK space with AK, we only prove the statement

for X = ωp
∞. Let X = ωp

∞. We have to show that W ∈ (ωp
∞, c) implies

W ∈ (ωp
∞, c0). If W ∈ (ωp

∞, c) then it follows

∥Wn∥Mp converges uniformly in n. (4.2)

But, in Part a) of the proof of Proposition 3.3.2, we also have limn→∞ ωnk = 0

for each k. This and (4.2) imply

lim
n→∞

∥Wn∥Mp = 0.

From this we obtain W ∈ (ωp
∞, c0).

b) Let a ∈ {(ωp)T}β and z ∈ (ωp)T be given. Then we have x = Tz ∈ ωp

and ξ = limn→∞
1

n+1

∑n
k=0 |xk|p exists. Hence there is x(0) ∈ ωp

0 such that

x = x(0) + ξe. We put z(0) = Sx(0). Then it follows that z(0) ∈ (ωp
0)T and

z = Sx = S(x(0) + ξe) = z(0) + ξSe and we obtain

n−1∑
k=0

akzk =
n∑

k=0

(Rka)(Tkz)−Wn(T (z
(0) + ξSe))
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=
n∑

k=0

(Rka)(Tkz)−Wn(Tz
(0))− ξWne for all n.

The first term in the last equality converges as n → ∞ since Ra ∈ Mp by

Corollary 3.3.4. The second term in the last equality tends to zero as n → ∞

since a ∈ {(ωp)T}β ⊂ {(ωp
0)(T )}β implies W ∈ (ωp

0, c0) by Corollary 3.3.4.

Finally we also have W ∈ (ωp, c) by Corollary 3.3.4 and this implies ρ =

limn→∞ Wne exists. Now the identity in (4.1) follows.

Remark 4.0.5. a) If a ∈ Xβ where X = [Cα]
p
0 or X = [Cα]

p
∞ then we have for all

z ∈ X
∞∑
k=0

akzk =
∞∑
k=0

((Rα−1)ka)((Cα−1)kz). (4.3)

b) If a ∈ {[Cα]
p}β then we have for all z ∈ [Cα]

p

∞∑
k=0

akzk =
∞∑
k=0

((Rα−1)ka)((Cα−1)kz)− ξρ (4.4)

where ξ = limn→∞
1

n+1

∑n
k=0 |xk|p and ρ = limn→∞

∑n
k=0 ωnk.

Now we determine the norms ∥a∥[Cα]
p
∞ , ∥a∥[Cα]

p
0
and ∥a∥[Cα]p .

Proposition 4.0.9. We have

a) ∥a∥∗
[Cα]

p
∞
= ∥a∥∗

[Cα]
p
0
= ∥Rα−1a∥Mp for all a ∈ {[Cα]

p
∞}β, {[Cα]

p
0}β.

b) ∥a∥∗[Cα]p
= ∥Rα−1a∥Mp + |ρ| for all a ∈ {[Cα]

p}β

where ρ = limn→∞
∑n

k=0 ωnk.

Proof. a) Let a ∈ {[Cα]
p
0}β. Then it follows from part a) of Remark 4.0.5 that

Rα−1a ∈ Mp and (3.10) holds. Since z ∈ [Cα]
p
0 if and only if x = Cα−1z ∈

ωp
0, and ∥z∥[Cα]

p
0
= ∥x∥Mp by (Wilansky, 1984, Theorem 4.3.12, p.63), the

right-hand side of (3.10) defines a functional f ∈ ωp
0
∗ with its norm ∥f∥ =

∥Rα−1a∥Mp and ∥a∥∗
[Cα]

p
0
= ∥f∥ by the definition of the norm ∥ · ∥∗

[Cα]
p
0
.

b) Let a ∈ {[Cα]
p}β. Then it follows from part b) of Remark 4.0.5 that Rα−1a ∈

Mp and (4.1) holds. Since z ∈ [Cα]
p if and only if x = Cα−1z ∈ ωp, and
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∥z∥[Cα]p = ∥x∥Mp by (Wilansky, 1984, Theorem 4.3.12, p.63), the right-hand

side of (4.1) defines a functional f ∈ ωp∗ with its norm ∥f∥ = ∥Rα−1a∥Mp + |ρ|

and ∥a∥∗[Cα]p
= ∥f∥ by the definition of the norm ∥ · ∥∗[Cα]p

.

Lemma 4.0.10. (Malkowsky and Rakočević, 2007, Theorem 3.6) Let X and Y be

BK spaces and X have AK or X = ℓ∞. If A ∈ (XT , Y ), then we have

∥LA∥ = ∥LÂ∥ (4.5)

where Â is the matrix with the rows Ân = R(An) for n = 0, 1, ...

Lemma 4.0.11. (Malkowsky and Rakočević, 2000a, Theorem 1.23) Let X be a BK

space and Y be any of the spaces ℓ∞, c, c0. If A ∈ (X, Y ) then

∥LA∥ = ∥A∥(X,∞) = sup
n

∥An∥∗X < ∞. (4.6)

Theorem 4.0.12. Let Y be any of the spaces ℓ∞, c or c0.

(a) If A ∈ (XT , Y ), where X = wp
0 or X = wp

∞, then we have

∥LA∥ = ∥A∥(XT ,∞) = sup
n

∥Ân∥∗X = sup
n

∥RAn∥Mp (4.7)

(b) If (A ∈ (wp)T , Y ), then we have

∥LA∥ = ∥A∥((wp)T ,∞) = sup
n

(
∥RAn∥Mp + |ρ(n)|

)
, (4.8)

where ρ(n) is defined in (3.1+) in 3. of Theorem 4.0.7.

Proof. (a) Let X = wp
0 or X = wp

∞.

If A ∈ (XT , Y ) then it follows from (Malkowsky and Rakočević, 2007, Theorem 3.4

and Remark 3.5(b)) that Â ∈ (X,Y ) and Ax = Â(Tx) for all x ∈ XT . For X = wp
0,

it follows from Lemma 4.0.10 that

∥LÂ∥ = ∥LA∥. (4.9)

Since the norms on wp
0 and wp

∞, and on (wp
0)T and (wp

∞)T are the same, the identity
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in (4.9) also holds for X = wp
∞. Furthermore, Â ∈ (X, ℓ∞) implies by Lemma 4.0.11,

(3.8) and the definition of the matrix Â

∥LÂ∥ = sup
n

∥Ân∥∗X = sup
n

∥Ân∥Mp = sup
n

∥RAn∥Mp .

Thus we have shown the identity in (4.7) for Y = ℓ∞. The identity in (4.7) for

Y = c0 or Y = c now follows, since (XT , Y ) ⊂ (XT , ℓ∞).

(b) Let A ∈ ((wp)T , Y ) where Y ∈ {ℓ∞, c, c0}. Then it follows by (1.1+) in

Theorem 4.0.7 3., 6. and 9. that supn ∥Ân∥Mp < ∞. Together with (3.2+) in

Theorem 4.0.7 3. for Y = ℓ∞, (6.1+) in Theorem 4.0.7 6. for Y = c0 and (9.1+)

in Theorem 4.0.7 9. for Y = c, we obtain ρ(n) ∈ ℓ∞ for each n. Therefore the right

hand side in (4.8) is defined and finite. Since wp is a BK space, we have as in Part

(a)

∥LA∥ = sup
n

∥An∥∗[Cα]p , (4.10)

and An ∈ ([Cα]
p)β for all n implies by Lemma 4.0.8 b)

∥An∥∗[Cα]p = ∥RAn∥Mp + |ρ(n)| for all n. (4.11)

Now (4.8) follows from (4.10) and (4.11).

Corollary 4.0.13. Let Y = ℓ∞, c, c0.

a) If A ∈ ([Cα]
p
0, Y ), then we have

∥LA∥ = sup
n

∥Rα−1An∥Mp . (4.12)

b) If A ∈ ([Cα]
p, Y ), then we have

∥LA∥ = sup
n

(
∥Rα−1An∥Mp + |ρ|

)
(4.13)

where ρ = {ρ(n)}∞n=1 = {limm→∞
∑m

k=1

∑∞
j=m anjA

−α
j−kA

α−1
k }∞n=1.



CHAPTER 5

COMPACT OPERATORS ON SOME GENERAL MIXED

NORM SPACES

5.1 HAUSDORFF MEASURE OF NONCOMPACTNESS OF THESE

OPERATORS

In this section we investigate Hausdorff measure of noncompactness of opera-

tors between Banach spaces.

Definition 9. (Malkowsky and Rakočević, 2000a, Definition 2.24) Let X and Y be

Banach spaces and χ1 and χ2 be measures of noncompactness onX and Y . Then the

operator L : X → Y is called (χ1, χ2)–bounded if L(Q) ∈ MY for every Q ∈ MX

and there exist a constant C > 0 such that

χ2(L(Q)) ≤ C · χ1(Q) for all Q ∈ MX ; (5.1)

if L is (χ1, χ2)–bounded then the number

∥L∥(χ1,χ2) = inf{C > 0 : (5.1) holds }

is called the (χ1, χ2)–measure of noncompactness of L; we also write ∥L∥χ =

∥L∥(χ,χ), for short, and call ∥L∥χ the Hausdorff measure of noncompactness

of L.

If X and Y are Banach spaces and L ∈ B(X, Y ) then the following facts are

well known:

∥L∥χ = χ(L(SX)) (Malkowsky and Rakočević, 2000a, Theorem 2.25) (5.2)

44
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and

L is compact if and only if ∥L∥χ = 0

(Malkowsky and Rakočević, 2000a, Corollary 2.26 (2.58)). (5.3)

Lemma 5.1.1. [Goldenstein, Gohberg, Markus] (Malkowsky and Rakočević, 2000a,

Theorem 2.23) Let X be a Banach space with a Schauder basis (bn)
∞
n=1, Q ∈ MX ,

Pn : X → X be the projector onto the linear span of b1, b2, . . . , bn and Rn = I − Pn

where I is the identity on X. Then we have

1

a
lim sup
n→∞

(
sup
x∈Q

∥Rn(x)∥
)

≤ χ(Q) ≤ lim sup
n→∞

(
sup
x∈Q

∥Rn(x)∥
)
, (5.4)

where a = lim supn ∥Rn∥ denotes the basis constant of (bn).

Example 5.1.1. (Malkowsky, 2008, p. 26) Let us consider the basis constant a

for the space c. Since every sequence x = (xk)
∞
k=0 ∈ c has a unique representation

x = ξe +
∞∑
k=0

(xk − ξ)e(k) with ξ = limk→∞ xk, we define the projector Pn : c → c

by Pn(x) = ξe +
n∑

k=0

(xk − ξ)e(k) and the sequence x̃ = Rn(x) given by x̃k = 0 for

0 ≤ k ≤ n and x̃k = xk − ξ for k ≥ n + 1. Hence we have |x̃| ≤ |xk| + |ξ| ≤ 2∥x∥∞
for all k and ∥Rn∥ ≤ 2.

Now let x be the sequence with xn+1 = −1 and xk = 1 for k ̸= n + 1. Then

ξ = 1 ,∥x∥∞ = 1, and ∥Rn(x)∥∞ = 2, hence ∥Rn∥ = 2. Therefore limn→∞ ∥Rn∥ = 2.

Lemma 5.1.2. (Malkowsky and Rakočević, 2000a, Theorem 2.15) Let Q ∈ MX

where X = ℓp (1 ≤ p < ∞) or X = c0. If Pn : X → X is defined by Pn(x) = x[n] =∑n
k=0 xke

(k) (n = 0, 1, . . . ) for all x = (xk)
∞
k=0 ∈ X, then we have

χ(Q) = lim
n→∞

(
sup
x∈Q

∥Rn(x)∥
)
. (5.5)
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5.2 CHARACTERISATIONS OF COMPACT OPERATORS ON GEN-

ERAL MIXED NORM SPACES

In this section, we characterise the classes of compact operators LA when

A ∈ (XT , Y ) where X is any of the spaces [Cα]
p
0, [Cα]

p, and [Cα]
p
∞ and Y is any of

the spaces c0 or c. This is achieved by applying the Hausdorff measure of noncom-

pactness. We also find out identities and inequalities for the Hausdorff measure of

noncompactness of the operators LA in the cases just mentioned.

Now we establish some inequalities or identities for the Hausdorff measures of

noncompactness of operators.

Theorem 5.2.1. Let X be any of the spaces wp
0, w

p and wp
∞, and Y = c0 or Y = c.

Then estimates for ∥LA∥χ when A ∈ (XT , Y ) can be read from the following table

Table 5.1

PPPPPPPPPTo
From

(wp
0)T (wp)T (wp

∞)T

c0 1. 2. 3.
c 4. 5. 6.

where

1. and 3.(1.1∗) ∥LA∥χ = lim
r→∞

(
sup
n≥r

∥Ân∥Mp

)
2. (2.1∗) ∥LA∥χ = lim

r→∞

(
sup
n≥r

(
∥Ân∥Mp + |ρ(n)|

))
where ρ(n) = lim

m→∞
W (n)

m e for all n

4. and 6.(4.1∗)
1

2
· lim
r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

)
≤ ∥LA∥χ ≤ lim

r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

)
where α̂k = lim

n→∞
ânk for each k

5. (5.1∗)


1

2
· lim
r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

+
∣∣∑∞

k=0 α̂k − β − ρ(n)
∣∣) ≤ ∥LA∥χ

≤ lim
r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

+
∣∣∑∞

k=0 α̂k − β − ρ(n)
∣∣)
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where β = lim
n→∞

(Âne− ρ(n))

Proof. 1. Since wp
0 is a BK space with AK, it follows from (Malkowsky and

Rakočević, 2007, Lemma 4.1) that ∥LA∥χ = ∥LÂ∥χ, where Â ∈ (wp
0, ℓ∞). Now (Başar

and Malkowsky, 2011, Corollary 3.8) yields the identity in (1.1∗).

4. Similarly the identity in (4.1∗) follows from (Malkowsky and Rakočević,

2007, Lemma 4.1) and (Başar and Malkowsky, 2011, Corollary 3.6).

5. First A ∈ ((wp)T , c) implies Â ∈ (wp
0, c) and W (n) ∈ (wp, c) for all n

by (Başar et al., 2008, Lemma 4.1 (b)). So α̂k = limn→∞ ânk exists for all k by (Başar

et al., 2008, Theorem 4.2 7. (7.1)), and (α̂k) ∈ Mp by (Djolović and Malkowsky,

2008, (3.7)). Also W (n) ∈ (wp, c) for all n implies by (Başar et al., 2008, Theorem

4.2 9. (3.1) and (9.2)) that the limits

ρ(n) = lim
n→∞

W (n)
m e and β = lim

n→∞

(
Âne− ρ(n)

)
exist for all n. (5.6)

Now let x ∈ (wp)T be given and ξ be the unique complex number such that Tx−ξ·e ∈

wp
0. Then we have by (Başar et al., 2008, (4.5)) Ax = Â(Tx)− ξ(ρ(n)), that is,

yn = Anx = Ân(Tx)− ξρ(n) = Ân(Tx− ξe) + ξ
(
Âne− ρ(n)

)
for all n (5.7)

We observe that Â ∈ (wp
0, c) implies Ân ∈ (wp

0)
β = (wp)β for all n, so Âe and ÂTx

are defined for all x ∈ (wp)T . It follows from Â ∈ (wp
0, c) and Tx − ξ · e ∈ wp

0

from (Djolović and Malkowsky, 2008, (3.9)) and (α̂k) ∈ Mp that

η0 = lim
n→∞

Ân(Tx− ξ · e) =
∞∑
k=0

α̂k(Tkx− ξ) =
∞∑
k=0

α̂kTkx− ξ

∞∑
k=0

α̂k, (5.8)

hence by (5.6) and (5.8)

η = lim
n→∞

yn = η0 + ξβ. (5.9)

Thus we have by (5.7) and (5.9)

yn−η =
∞∑
k=0

ânkTkx−ξρ(n)−(η0+ξβ) =
∞∑
k=0

(ânk − α̂k)Tkx+ξ

(
∞∑
k=0

α̂k − β − ρ(n)

)
.
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Since ∥x∥(wp
∞)T = ∥Tx∥wp

∞ for all x ∈ (wp)T , we obtain by (4.7) for all r

sup
x∈S(wp)T

∥Rr−1(Ax)∥ = ∥Rr−1(Ax)∥∗wp = sup
n≥r

(∥∥∥Ân − (α̂k)
∥∥∥
Mp

+

∣∣∣∣∣
∞∑
k=0

α̂k − β − ρ(n)

∣∣∣∣∣
)

and the estimate in (5.1∗) follows from (5.2) and (5.4) since a = 2 and the limit

exists in (5.4).

2. Let A ∈ ((wp
0)T , c0). Then we obtain as in the proof of 5., α̂k = 0 for all k,

β = 0 and

sup
x∈S(wp)T

∥Rr−1(Ax)∥ = sup
n≥r

(∥∥∥Ân

∥∥∥
Mp

+
∣∣ρ(n)∣∣)

and the identity in (2.1∗) follows from (5.2) and (5.5).

3. and 6. It follows from (Başar et al., 2008, (4.1)) that A ∈ ((wp
∞)T , Y )

implies Ax = Â(Tx) for all x ∈ (wp
∞)T , and it follows that ∥LA∥ = ∥LÂ∥. Since

((wp
∞)T , Y ) ⊂ ((wp

0)T , Y ), we obtain (1.1∗) in 3. and (4.1∗) in 6..

We obtain the following characterizations of compact operators from Theorem

5.2.1.

Corollary 5.2.2. Let X and Y be any of the spaces of Theorem 5.2.1. Then if

A ∈ (XT , Y ) then the conditions for LA to be compact can be read from the following

table

Table 5.2

PPPPPPPPPTo
From

(wp
0)T , (w

p
∞)T (wp)T

c0 1. 2.
c 3. 4.

where

1. (1.1∗∗) lim
r→∞

(
sup
n≥r

∥Ân∥Mp

)
= 0

2. (2.1∗∗) lim
r→∞

(
sup
n≥r

(
∥Ân∥Mp + |ρ(n)|

))
= 0

3. (3.1∗∗) lim
r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

)
= 0
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4. (4.1∗∗) lim
r→∞

(
sup
n≥r

∥∥∥Ân − (α̂k)
∥∥∥
Mp

+

∣∣∣∣∣
∞∑
k=0

α̂k − β − ρ(n)

∣∣∣∣∣
)

= 0.

Remark 5.2.1. The estimates and identities for the Hausdorff measure of noncom-

pactness of LA when A ∈ ([Cα]
p
0, Y ), ([Cα]

p, Y ), ([Cα]
p
∞, Y ), and the characterizations

of the corresponding compact operators are obtained from Theorem 5.2.1 and Corol-

lary 5.2.2 with T = Cα−1.



CHAPTER 6

CONCLUSION

This thesis is focused on the spaces of sequences that are strongly Cesàro

bounded, convergent and convergent to zero, of order α > 0 and index p ≥ 1,

denoted by [Cα]
p
∞, [Cα]

p and [Cα]
p
0 respectively. The following original results are

obtained:

• These spaces are considered as the domains of the Cesàro matrix Cα−1 in the

spaces wp
∞, wp and wp

0.

• Some topological properties of these spaces are investigated and the norm

∥ · ∥[Cα]
p
∞ is visualised for some parameters p and α by using our software

MVGraphics.

• β– duals of these spaces are determined and visualised by using Wulff’s prin-

ciple.

• The classes of matrix transformations from the spaces [Cα]
p
0, [Cα]

p and [Cα]
p
∞

to ℓ∞, c or c0 are characterized and the norms of the operators defined by the

matrices in these classes are determined.

• Some identities and estimates for the Hausdorff measure of noncompactness

of the matrix operators in those classes are established and the corresponding

classes of compact matrix operators are characterized.
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APPENDIX B

FUNCTIONAL ANALYSIS

The following results are well known from functional analysis.

Theorem B.0.3. [Closed graph lemma] (Wilansky, 1964)[Theorem 11.1.1] Any con-

tinuous map into a Hausdorff space has closed graph.

Theorem B.0.4. [Closed graph theorem] (Wilansky, 1964)[Theorem 11.2.2] If X

and Y are Fréchet spaces and f : X → Y is a closed linear map, then f is continu-

ous.

Theorem B.0.5. [Banach–Steinhaus theorem] (Wilansky, 1964)[Corollary 11.2.4]

Let (fn) be a pointwise convergent sequence of linear functionals on a Fréchet space

X. Then f is defined by f(x) = limn→∞ f(x) is continuous.
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