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BOUNDED AND COMPACT LINEAR OPERATORS ON
GENERAL MIXED NORM SPACES

Havva NERGIZ

Ph.D. Thesis — Mathematics
April 2016

Thesis Supervisor: Prof. Eberhard MALKOWSKY

ABSTRACT

We study some topological properties of the spaces of sequences that are
strongly Cesaro bounded, convergent and convergent to zero, of order a > 0 and in-
dex p > 1. By using our software we obtain graphical representations of their surface
energy functions. Then we determine their f—duals and the shapes of corresponding
Waulft’s crystals. Furthermore we characterize some new classes of matrix transfor-
mations on them. Finally, we find out identities and estimates for the Hausdorff
measure of noncompactness of the matrix operators in those classes, and character-
ize the corresponding classes of compact matrix operators.

Keywords: Strong summability and boundedness, BK spaces, [-duals, matrix
transformations, Hausdorff measure of noncompactness, compact operators, visual-
ization, Wulffs crystals.
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GENELLESTIRILMIS BIRLESIK NORMLU UZAYLAR
UZERINDEKI SINIRLI VE KOMPAKT OPERATORLER

Havva NERGIZ

Doktora Tezi — Matematik
Nisan 2016

Tez Danmigmani: Prof. Dr. Eberhard MALKOWSKY

Y/

a > 0 mertebeli ve p > 1 indeksli kuvvetli Cesaro siirli, yakinsak ve 0’a
yakinsak dizi uzaylarinin baz topolojik o6zelliklerini belirledik. Kendi yazilimimizi
kullanarak ytizey enerji fonksiyonlarinin grafiksel gosterimlerini elde ettik. Daha
sonra, bu uzaylarin f—duallerini ve onlara karsilik gelen Wulff kristallerinin sekillerini
bulduk. Ayrica, bu dizi uzaylar: iizerinde bazi yeni matris doniigtimlerinin siniflarini
karakterize ettik. Son olarak, bu siniflar tizerindeki matris operatorlerinin Hausdorff
kompakt olmama oOl¢limleri i¢in 6zdeslikler ve hesaplamalar bulup, onlara karsilik
gelen kompakt matris operator siniflarimi karakterize ettik.

Keywords: Kuvvetli toplanabilme ve sinirlilik, BK uzaylari, g-dualleri, matris
dontigiimleri, Hausdorff kompakt olmama 6l¢iimii, kompakt operatorler, goriintiilleme,

Wulff kristalleri.
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CHAPTER 1

INTRODUCTION

Strong Cesaro summability of order « > 0 with index p > 0, denoted by
[CJP, was defined and studied by Hyslop (Hyslop, 1952), and further studied and
generalized by Borwein (Borwein, 1960). The extension of summability [C,]? to the
case a = () is referred to as strong convergence of index p; matrix transformations on
the spaces [Cp]P were characterized in (Kuttner and Thorpe, 1979). The definition
of strong convergence of index p = 1 was extended by Moricz (Moricz, 1989) to
A—strong convergence, denoted by ¢(A). Spaces of A—strongly convergent sequences
and related spaces, their dual spaces and matrix transformations on them were
studied in detail in (Malkowsky, 1995); (Malkowsky, 2013). The results of those
papers were generalized to the case p > 1 in (Malkowsky, 2002); (Malkowsky et al.,
2004).

In this thesis we establish some fundamental topological properties of the
spaces of sequences that are strongly Cesaro bounded, convergent and convergent
to zero, of order aw > 0 and index p > 1, determine their S—duals, and characterize
some classes of matrix transformations and compact matrix operators on them. We

consider these spaces as the domains of the Cesaro matrix C,_; in the spaces of

Maddox defined in (Maddox, 1968).

Our results are complementary to those in (Kuttner and Thorpe, 1979) and
no estimates of the Hausdorff measure of noncompactness and characterizations
of compact matrix operators have been established on the spaces of sequences
that are strongly Cesaro bounded, convergent and convergent to zero, of order
a > 0 and index p > 1. We use the theories of BK spaces and measures of
noncompactness, in particular, the Hausdorff measure of noncompactness, and tech-

niques from (Malkowsky and Rakocevié¢, 2007); (Malkowsky and Rakocevi¢, 2000a);



(Djolovi¢ and Malkowsky, 2008); (Bagar and Malkowsky, 2011) in the proofs.

Let A = (ank);y—o be an infinite matrix of complex entries, X and Y be
subsets of w and z € w. We write A,, = (a,)52, for the sequence in the nth row of

the matrix A and A* = (a,;)22, for the sequence in the kth column of A. If each of

oo
n=0

the A-transform of x. The sets X4 = {x € w: Az € X} and M(X,Y) = {a €

the series A,z =Y ;- anix), converges, then the sequence Az = (A,x) is called
w:a-x=(aprr)ie, € Y for all x € X} are called the matrix domain of A in X
and the multiplier space of X in Y, respectively; in particular, X? = M (X, cs)
and X7 = M (X, bs) are called the f— and y—duals of X. Also, (X,Y) is the class
of all matrices A such that X C Ya; so A € (X,Y) if and only if A, € X? for all
n € Ngand Az € Y for all z € X. Let e and e (k = 0,1,...) be the sequences
with e, = 1 for all n € Ny, and egf) =1 and e,(f) =0 for n # k.

Let § € R. Then the numbers A2 = (":5) forn =0,1,... are called the nth
Cesaro coefficients of order 6. For o > —1 the Cesaro matrix C, = (ank)gszo
of order « is defined by

A

an, =4 An - (n=0,1,...);

and the nth C, mean of a sequence = = ()72, is defined by

n

1
o5(@) = = 3 A

" k=0

Let £ be a complex number. Then the sequence x = (z)p, is said to be
summable C, to ¢ if lim, ., 08(z) = £ for a« > 0, it is said to be strongly
summable C,, to zero, strongly summable C, to £ (Hyslop, 1952), and strongly
bounded C,, with index p > 0, respectively, if

: 1 a
lim | Z o 1(1:)‘10 =0, (1.1)

> o Ha) — ¢ =0 (1.2)



and

! Sl @) < o (1.3)

k=0

We write [C,]5, [C,]F or [C, ]2, for the sets of all sequences x € w for which (1.1), (1.2)
or (1.3) are satisfied, respectively. In the special case of a = 1, we obviously obtain
[C1]5 = w, [C1]P = wP and [C4]2, = wE,, respectively, the sets of all sequences that
are strongly summable C' to zero, strongly summable C'; and strongly bounded C',
with index p (Maddox, 1968). So we have [C,]) = (wh)c,_, and [Ch2, = (Wh)c, s
and since 09 (z) =& = 027 (z—&-¢) for all n € Ny, we also obtain [C, )P = (wP)¢,_,,
that is, [Cy 5,

wP and w?, and [C, )P = [C,]; ®

[Co]P and [C,)E, are the matrix domains of the triangles C\,_; in wh,

A matrix T = (t,x)22, is called a triangle if t,,, # 0 for all n € Ny and ¢, = 0
for £ > n and also every triangle has a unique inverse S which is also a triangle,
and T'(Sz) = (T'S)z = x for all z € w (Wilansky, 1984, Theorem 1.4.8) and (Cooke,
1950, Remark 22 (a)). So the inverse matrix S*' = (s,x)0%—, of the Cesaro matrix

Cy_1 of order a > 0 is given by

A Ao 0<k<n
sp =4 " F ( ) (n=0,1,...). (1.4)

0 (k>mn)

We denote by R*™! = (rx)p—o the transpose of the matrix S~
There are six chapters in this thesis.

Chapter 2 deals with the general theory of FK, BK, and AK spaces and mea-
sures of noncompactness. Most of the results of this chapter can be found in (Wilan-

sky, 1984) and (Malkowsky and Rakocevié¢, 2000a).

In Chapter 3 we investigate some topological properties of the spaces [C,]5,
[Ca]P or [Cy]E, by using blocking technique and determine their f—duals. Also we
visualise the norm and the dual norm on these spaces as potential surface and Wulft’s

crystal for different parameters.

Chapter 4 deals with the characterization of some classes of matrix transfor-

mations and the norms of operators defined by the matrices in those classes.



In Chapter 5 we investigate Hausdorff measure of noncompactness of matrix
operators in classes we studied in chapter 4.

Chapter 6 is devoted to a conclusion.



CHAPTER 2

THE GENERAL THEORY

2.1 FK, BK, AND AK SPACES

In this section we introduce briefly the theory of F'K spaces which plays an
important role in the characterisation of matrix transformations between sequence

spaces. We start with some definitions.

Definition 1. Let X be a linear space and d a metric on X. Then (X,d), or X
for short, is said to be a linear metric space if the algebraic operations on X are

continuous functions. A complete linear metric space is called a Fréchet space.

A linear metric space has an algebraic structure by linearity, however a topo-
logical structure by the metric. The continuity of algebraic operations in a linear
metric space X means that if d(z,,x) — 0, d(y,,y) — 0 and A, — X as n — o0,

then d(z,, + yn,x +y) — 0 and d(\,x,, Az) — 0 as n — oo.

Theorem 2.1.1. (Maddox, 1970, Exercise2, p.86) The set w is a Fréchet space with

respect to the metric d,, defined by

1 |og — il
dy(z,y) = E _— Hx,yew. 2.1

Furthermore convergence in (w,d,,) and coordinatewise convergence are equivalent,
that is ™ — 2 as n — oo in (w,dy) if and only if x,ﬁ") — X as n — oo for every

k.

Definition 2. A topological space (X, 7)) is a pair consisting of a non-empty set

X and a class T of subsets of X satisfying the following axioms:

(71) The empty set () and X are in T,



(72) Any union (countable or uncountable) of sets in 7 isin T,

(73) The intersection of any finite number of sets in T is in 7.

The sets of T are called open sets and T is called a topology for X.

Definition 3. A topological space (X,7T) is called Hausdorff if and only if, for
any x, y in X with x # y, there exists two disjoint open sets, one containing x and

the other containing y.

Definition 4. Let H be a linear space and a Hausdorff space. An FH space is a
Fréchet space X such that X is a subspace of H and the topology of X is stronger
than the topology of H on X.

Definition 5. A subset X of w is said to be an FK space if it is a Fréchet space
with continuous coordinates P, : X — C (n =0,1,...), where P,(x) = z, for all
r = ()72, € X. In other words, an FK space is an F'H space with H = w. An
F K space is said to be a BK space if its metric is given by a norm. An F'K space
X D ¢ is said to have AK, or be an AK space, if every sequence x = (z4)72, € X
has a unique representation z =y ;- zre® (Wilansky, 1984, 4.2.13). A sequence
(b))%, in a linear metric space X is called a Schauder basis if, for every z € X

there exists a unique sequence ()%, of scalars such that z = ZZO:O Anbn.

Theorem 2.1.2. (Wilansky, 1984, Theorem 4.2.2) Let X be a Fréchet space, Y be
an F'H space and f : X —'Y be linear. Then, f : X — H is continuous if and only

if f: X =Y is continuous.

Proof. Let Tx, Ty and Ty denote the topologies on X, Y and of H on Y. First,
we assume that f : X — (Y, 7y) is continuous. Since Y is an F'H space, we have
Tu C Ty, and so f : X — (Y, Ty) is continuous. Conversely, we assume that
f: X — (Y, Ty) is continuous. Then it has closed graph by the closed graph lemma
(see appendix B.0.3). Since Y is an F'H space, we again have Ty C Ty, and so
f: X — (Y, Ty) has closed graph. Consequently f : X — (Y, 7y) is continuous by
the closed graph theorem (see appendix B.0.4). g

Corollary 2.1.3. (Wilansky, 1984, Corollary 4.2.3) Let X be a Fréchet space, Y be
an FK space, f: X — Y be linear, and the coordinates P, : X — C (n=0,1,...)



be defined by P,(x) = x, for allz € X. If P,o f: X — C is continuous for every

n, then f: X — Y is continuous.

Proof. Since convergence and coordinatewise convergence are equivalent in w by
Theorem 2.1.1, the continuity of P, o f : X — C for all n implies the continuity of
f:X — w, hence of f: X — Y by Theorem 2.1.2.

Remark 2.1.1. (Malkowsky and Rakocevi¢, 2000a, Remark 1.16) Let X D ¢ be an
FK space and a € w. If the series > ;- apzy converges for all x € X, then the

linear functional f, defined by f,(z) = > ;- axzy for all z € X is continuous.

Proof. We define linear functionals fi"] : X — C for all n € Ny by fin}(:p) =
Y r_oaxxy for all z € X. Since X is an FK space and f(gn] is a finite linear com-
bination of coordinates, we have fé"] € X' for all n. By hypothesis, the limits
fa(z) = lim,, fi"] (x) exist for all z € X, hence f, € X’ by the Banach-Steinhaus

theorem (see appendix B.0.5). B

Theorem 2.1.4. (Wilansky, 1984, Theorem 4.2.8) Any matrix map between FK

spaces is continuous.

Proof. Let X and Y be FK spaces, A € (X,Y) and fs : X — Y be defined by
fa(z) = Az for all z € X. Since the maps P, o f4 : X — C are continuous for all n

by Remark 2.1.1, f4 : X — Y is continuous by Corollary 2.1.3.

2.2 MEASURES OF NONCOMPACTNESS

In the previous section we notice that matrix transformations between FK
spaces are continuous. To characterize the classes of compact matrix transformations
we apply the Hausdorff measure of noncompactness. For this reason in this section
we will give the axiomatic introduction to measures of noncompactness on bounded
sets in complete metric spaces with their most important properties.

The first measure of noncompactness, denoted by «, defined by Kuratowski
(Kuratowski, 1930) in 1930. Then, Darbo (Darbo, 1955) used this measure to prove
a generalization of Schauder’s fixed point theorem (Darbo, 1972). In 1957, the



Hausdorff measure of noncompactnes was introduced by Goldenstein, Gohberg and
Markus (Goldenstein et al., 1957) and later studied by Goldenstein and Markus
(Goldenstein and Markus, 1965). There are also other measures of noncompact-
ness defined by several authors. They are studied in detail in the monographs
(Akhmerov et al., 1986); (Toledano et al., 1997); (Istratescu, 1981); (Kuratowski,
1958); (Malkowsky and Rakocevié¢, 2000a). Rather than to investigate each of them,
here we give the concept of a measure of noncompactness on bounded sets of a metric

space and introduce the Kuratowski and Hausdorff measures of noncompactness.
We need some standard notations.

Let (X,d) be a metric space. Then for any r > 0 and x € X, the sets
B(z,r) = {y € X : d(z,y) < r}, B(z,r) = {y € X : d(z,y) < r} and S(z,r) =
{y € X : d(z,y) = r} are the open, closed balls and sphere, with centre x
and radius r, respectively; in particular, we write By = B(0,1), Bx = B(0,1) and
Sx = 5(0,1) for the open and closed unit balls, and unit sphere in X. If S and
S’ are subsets of a metric space (X, d) and z € X, then d(z, S) = inf{d(z, s) : s € S},
d(S,S") = inf{d(s,s’) : s € S,s' € S’} and diam(S) = sup{d(s,3) : 5,5 € S} are
called the distance of x and S, distance of S and S’ and diameter of S,

respectively. We denote the set of all nonempty and bounded subsets of a metric
space (X,d) by Mx.
Now we recall some useful definitions.

Let M and S be subsets of a metric space (X, d) and € > 0, then the set S is called
e-net of M if for any x € M there exists s € S, such that d(x,s) < e. If the set S
is finite then the e-net S of M is called finite e-net of M. The set M is said to be
totally bounded if it has a finite e-net for every € > 0. A subset M of a metric
space X is compact if every sequence (x,) in M has a convergent subsequence
with its limit in M and the set M is relatively compact if the closure M of M is

compact.

If X and Y are Banach spaces and L : X — Y is a linear operator, then by
B(X,Y) we denote the set of all bounded linear operators from X to Y and L is said
to be compact or completely continuous, if its domain is all of X and, for every
bounded sequence (x,,) in X, the sequence (L(z,)) has a convergent subsequence in

Y.



First we consider the concept of a measure of noncompactness of bounded sets

in complete metric space.

Definition 6. Let (X, d) be a complete metric space. A set function

¢ Mx — [0, +00]

is called a measure of noncompactness on X if it satisfies the following conditions

e (MNC.1) ¢(M) = 0 if and only if M is a relatively compact set
(regularity)

e (MNC.2) ¢(M) = ¢(M), for all M € Mx

(invariance under closure)

o (MNC3) ¢<M1 U Mg) = max{¢(M1),¢(M2)}, for all Ml, M2 € MX
(semi-additivity).

The number ¢(M) is called the measure of noncompactness of the set M.

Any measure of noncompactness satisfies the following fundamental properties

that are immediate consequences of Definition 6.

Lemma 2.2.1. (Toledano et al., 1997, p. 19) Let ¢ be a measure of noncompactness

on a complete metric space (X,d). Then ¢ satisfies the following properties:
p 14 g prop

1. My C M implies ¢(My) < ¢(M)

(monotonicity)
2. (M N Ms) < min{p(My), p(Ms)}, for all My, My € Mx

3. If M is finite then ¢(M) = 0

(non-singularity).

4. Generalized Cantor’s intersection theorem: If {M,} is a decreasing sequence
of nonempty, closed and bounded subsets of X and lim,,_,o ¢(M,) = 0, then

the intersection M, of all M, is nonempty and compact.

Now we give the definition of the Kuratowski measure of noncompactness.
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Definition 7. Let (X, d) be metric space, and @ € Mx. Then the Kuratowski
measure of noncompactness of ), denoted by «(Q), is the infimum of the set
of all numbers € > 0 such that ) can be covered by a finite number of sets with

diameters less than €, that is,
a(@)=inf{e>0:Q C U Si, Si € X, diam(S;) <e(i=1,2,...,n;n € N)}. (2.2)
i=1

Remark 2.2.1. (a) The Kuratowski measure of noncompactness is a measure of
noncompactness in the sense of Definition 7, that is, it satisfies the axioms
of regularity, invariance under closure and semi-additivity (Malkowsky and

Rakocevi¢, 2000a, Lemma 2.6).

(b) It is obvious that

a(Q) < diam(Q) for each bounded subset @ of X. (2.3)

It turns out that in an infinite-dimensional normed space the Kuratowski

measure of noncompactness of the unit ball is equal to its diameter, that is equality

holds in (2.2) for @ = Bx.

Theorem 2.2.2. (Furi and Vignoli, 1970) or (Nussbaum, 1971) Let X be an

infinite-dimensional normed space. Then a(Bx) = 2.

Lemma 2.2.3. (Malkowsky and Rakocevié, 2000a, Lemma 2.6) Let M, M, and M,

be bounded subsets of a complete metric space (X,d). Then,

a(M) =0 if and only if M is compact (2.4)
a(M) = a(M), (2.5)

M, C My implies a(My) < a(M,), (2.6)
a(M; U My) = max{a(M;),a(Ms)}, (2.7)
a(My N M) < min{a(M), a(M,)}. (2.8)

Lemma 2.2.4. (Darbo, 1955) Let X be a normed space, and M, My, My € My.
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Then we have
a(tM) = |tla(M) for any number t and M € Mx (homogeneity), (2.9)

a(My + M) < a(My) + a(Ms), forall My, My € Mx (subadditivity),  (2.10)

alxg+M) = a(M) for any xo € X and M € Mx (translation invariance). (2.11)

Now we give the definition of the Hausdorff measure of noncompactness.

Definition 8. Let (X,d) be metric space, and ) € Mx. Then the Hausdorff
measure of noncompactness of the set ), denoted by x(Q), is the infimum of
the set of all real numbers € > 0 such that ) can be covered by a finite number of

balls with radii less than €, that is,

X(@Q) =inf{e>0:Q C|JB(wi,ri) 2 € X,ri <e(i=1,2,...,mneN)}. (212)
i=1
The function y is called Hausdorff measure of noncompactness.
Remark 2.2.2. According to the definition of the Hausdorff measure of noncompact-

ness of a set @), the centres of the balls which cover @) need not to be in ). So,

(2.12) can equivalently be stated as follows:
x(Q) = inf{e > 0 : @ has a finite e-net in X }. (2.13)

Lemma 2.2.5. (Malkowsky and Rakocevié, 2000a, Lemma 2.11) Let M, M; and
My be bounded subsets of a complete metric space (X,d). Then,

(M) = 0 if and only if M is compact (2.14)
X(M) = x(M), (2.15)

My C My implies x (M) < x (M), (2.16)
X(My U Ms) = max x (M), x(Ma), (2.17)

X(Mi N M) < min x (M), x(Mz). (2.18)
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Lemma 2.2.6. (Malkowsky and Rakocevié, 2000a, Theorem 2.12) Let X be a
normed space, and M, My, My € Mx. Then we have

X(tM) = [t|x(M) for any number t and M € Mx (homogeneity), (2.19)

X(My 4+ M) < x(My) + x(Ms), forall My, My € My (subadditivity), — (2.20)
X(xo+M) = x(M) for any xy € X and M € Mx (translation invariance). (2.21)

It turns out that the Hausdorff measure of noncompactness of the unit ball in

an infinite dimensional normed space is equal to its radius.

Theorem 2.2.7. (Malkowsky and Rakocevié, 2000a, Theorem 2.14) Let X be an

infinite-dimensional normed space. Then x(Bx) = 1.

The next theorem shows that the Hausdorfl and Kuratowski measures are

equivalent in the sense of (2.22) below.

Theorem 2.2.8. (Toledano et al., 1997, Remark 3.2) Let (X,d) be metric space,
and Q) € Mx. Then

X(Q) < a(Q) < 2x(Q). (2.22)



CHAPTER 3

MIXED NORM SPACES

3.1 TOPOLOGICAL STRUCTURES

In this part, we establish some important topological properties of the spaces
[CLlb, [CalP, and [Ch)2, for @ > 0 and p > 1. We write S, = >,_,, maxy =

ovtl_q
maxo<k<i, and »  => ;o and max, = maxor<g<or+1_; for v > 1.

Proposition 3.1.1. Let a >0 and p > 1.
(a) The sets [C,]h, [Cu]P and [Cyl?, are BK spaces with respect to

p) 1/p

(3.1)

1/p
1 oa— o
o, = sup (§Z|ak 1<x>|"> —sup<2yz| - 12Ak 2y

[Calb is a closed subset of [Co]P and [Ca]P is a closed subset of [Cy]E,.
(b) For each n € Ny, we put ¢ = (c,(cn)) ° o =S tel™  that is,

0 0<k<n-—1)

A Ael (k > n).

k—n*"n

Then every sequence x = (zx)52 € [Calt has a unique representation

r = Z o0 Hx) ™. (3.2)
n=0

Every sequence x = ()52 € [CulP has a unique representation

x:£-e+Zag’1(x—£-e)c("), (3.3)
n=0

13
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where & is the unique complex number such that x — & - e € [C,]h.
Proof. (a) By (Malkowsky and Rakocevié¢, 2000a, Proposition 3.44), the sets w§, w?

and w? are BK spaces with respect to

1 1/p
ol = sup (2— > |xk|p> ,

v

wh is a closed subspace of w? and w? is a closed subspace of w? . Hence the sets
[Colb, [CoJP and [Cy]E, are BK spaces with respect to the norm | - [|jc, . defined in
(3.1) by (Wilansky, 1984, Theorem 4.3.12), and [C,]{) is a closed subset of [C,,|P and
[C, P is a closed subset of [C, |2, by (Wilansky, 1984, Theorem 4.3.14).

(b) Since wf has AK by (Malkowsky and Rakocevié, 2000a, Proposition 3.44),
the representation of x = (z4)72, € [Ch]f in (3.2) is an immediate consequence
of (Jarrah and Malkowsky, 2003, Corollary 2.5 (a)) and (1.4).

We observed above that [C,]P = [Calh @ e, and so every @ = (2x)72, € [Cal? has
a unique representation as in (3.3) by (Jarrah and Malkowsky, 2003, Corollary 2.5

(b))

Remark 3.1.1. (a) Since w? has no Schauder basis by (Djolovi¢ and Malkowsky,
2012, Lemma 1.1), [C,]%, has no Schauder basis by (Jarrah and Malkowsky, 2003,
Remark 2.4).

(b) We have [C,]P = (w} @ €)c,_, by definition, and so it follows from (Jarrah and
Malkowsky, 2003, Corollary 2.5 (c)) that every sequence z € [C,]P has a unique

representation
o

r=¢E-7Y 4 (00 N z) = &) ¢ (3.4)
=0

3

where the sequences ¢™ (n = 0,1,...) are defined as in Proposition 3.1.1 and the

sequence c(~Y = (c,g_l))zio is given by

k
o =D AAST = A = L for k=0,1,...,
§=0

a—1
n

in (3.4) and (3.3) are identical.

hence ¢™1) = e. Since 0% (z)—¢ = 0% Y(z—¢-¢) for all n € Ny, the representations
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Remark 3.1.2. We can visualise the norm defined by (3.1) using our software MV-
Graphics. Due to the sequences (z)72, have infinitely many dimensions which is
impossible to represent in the computer, we identify them with three—dimensional
vectors. Any three dimension can be chosen as coordinates, then all other coor-
dinates have to be zero. We represent our norm as a potential surface which is a

surface energy function in crystallography.

Example 3.1.1. For visualisation of the norm || - ||c,z. defined in (3.1) we work
out computations and successively obtain

forv =0

1 0 p 1 1 PN\ p
a—2 a—2
= ( Aafl ZAij Lj + Aafl ZAlf] Lj )
0 j=0 1 7=0
1
1 P\ v
F (|$0|p E(Atll_%fo + AS_QIEI)
1
1 P\ v
= (]:z;0|p + a((a — Do+ x1) )

for v =1,
1 221 1 k N 1 3 1 k N
a—2 a—2
(33 [ an) ) - (33| o) )
k=2l |7k j=0 k=2 |7k  j=0

1l 1 & N T\ *
a—2 a—2
et 5 Aa_l ZAQ_j ./E] + FZAS_]IJ
=0 3 =0
1 2 a—2 a—2 a—2 P

(A?iQ'TO + A§72I1 + A?72$2 + A8[72133)

i

(a+2)(a+ o

B <% { ( +21)a (O‘<O‘2_ 1)% Tla=Da+ x2> p
6 (a+ Da(a—1)
(a—|—2)(a+1)oc( 6 o
ala—1)

2

i

1+ (v — )xg + xg)
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_(L[[le=D)  20@-1) 2 P
_<2l(a+1) e+ ) T ar D™
a—1 3(a—1) 6(a—1)
et e e T ar et Da”

) 6
(o +2)(a + 1)ozx3

1

for v = 2,
k

122
(? Z A 1 ZAg:jQ‘TJ

a—
k=22 k j=0

:G

_|_

|

_|_

p

4
1
a—2
AZc—l z :A4—j 'rj
Jj=0

p

6
% > AT
6 =0

40 - (AT 2w + AT 22y + AT 229 + A9 225 + A 22y [P
ala+1)(a+2)(a+3)

5 (@ +3) (o +4) (A2 %zo + AG 2y + AS 2wy + AS 205 + ..))

ala+1)(a+2)
6! (A %0 + AL 2my + A %29 + AY P13+ ..))
ala+1)(a+2)(a+3)(a+4)(a+5)

7. (A?_on + Ag_Qﬁfl -+ A?_2£E2 —+ Az_zl'g + )
ala+1)(a+2)(a+3)(a+4)(a+5)(a+6)

1
4

g

p

p

i

Zo

+

+

-G

41 ((a +2)(a+1a(a—1)
ala+1)(a+2)(a+3) 41
a+1)a(a—1 ala—1
L )3!( - (2! )
5! <(a +3)(a+2)(a+ Da(a—1)
ala+ 1) (a+2)(a+3)(a+4) 5!
N (a+2)(a+1Da(a—1) (a+1a(a—1) N a(a—l)x3+m)

p

xo + (v — 1)xs + :c4)

Zo

p

Al Tt 31 T2 o

6!
ala+1)(a+2)(a+3)(a+4)(a+5)
((a +4)(a+3)(a+2)(a+ a(a—1)

_'_

6! o

(a+3)(a+ 2)( + V(e = 1)
+ 5!
(a+2)(a+1a(a—1) (a+Da(a—1)

x
P




7!

N (a+4)(a+3)(a+2)(a+1)a(a—1)

N (a+3)(a+2)(a+ Da(a—1)

T rDer2@r3)ard)(@t)(ato)
(a+5)(a+4)(a+3)(a+2)(a+1)ala—1)

(

7!

6!

X2

X1

Zo

5!
a+2)(a+ Dala—1 P\ 7
( )( 4!) ( )x3+...) D
:(l[a—l% o—n) 12(cr — 1)
4 ||a+3 (a+3)(a+2) (a+3)(a+2)(a+1)
24(ac — 1) P
@3 (atatDa? ™™
a—1 5(a—1) 20(a — 1)
* atd® (a—|—4)(a+3)ml (a+4)(a+3)(a+2)
N 60(c — 1) Vs P
(a+4)(a+3)(a+2)(a+1)
a—1 6(a—1) 30(av — 1)
e T e s+ )" T et s)at T3
120(ac — 1) P
@it dhardarzy
N oz—lx T(a—1) _— 2(a—1)
a+6 " (a+6)(a+5)" " (a+6)(a+5)(a+4)
210(cr — 1)

T a0 atn (@t (aty)

T3+ ...

C(la—1p 12
_( 4 {|a+3|73|x0+oz+2x1+(oz+2)(oz+1)x
24 P
Tl ar e
20

T arap

|.T0 +
(6%

T+

60

+3 (a+3)(a+2

* (a+3)(a+2)(a+1)

1

+—
la + 5P

1
la + 6P

(L‘0+

x

T2
)

P
3+ ...

30

0 T
a—|—41

120

+ (a+4)(a+3)

7
a+5

R E ) ()
42

T3+ ...

T2

p

.Z‘1+

(a+5)(a+4

)

0

X2

X2

X2

17
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210
T e )atdaty)

T3+ ...

for v = 3,

|

k

1 "
= > A

a
k =0

8
X
a—+6

Ty + 1

P\ p
Cfla—1P [ 1
> _( 8 {|a+7|p
56 336 P
@1 0)@in " Groarnary B
9 72
ot T @ ro)
504 P
T T D@t6)(ats)
10 90
a+8x1+ (a+8)(a+T7
720
(a+8)(a+7)(+6)
11 110
at 9 T @ar9@rs)
990 »
T ar9@atr)ar
12 132
a+10x1+ (a+10)(a+9
1320 P
T e T 0@+ 9)(a+3)
13 156
ar 1 T ar (@ 10)
1716 P
T ar i@t 10)(ar9)
14 182

ot R T e ey

p

1 241
L5

k=23

+

1
la + 8P

X2

T3+ ...

x0+

o+ 9P T
P

_|._

T3 -|-

Ty +

T2

la+ 10|P

T3+ ...

1
lao+ 11|P

$0+

)

T3 —|—

1

PESTI R

X2

xr3 + ...

1
| + 13|

T2

2184
T ar 2@t i)ario)
15 210
BT G r B er)

2730 pr

+
(a+13)(a+12)(a+ 11)
Now we choose three coordinates xg, x1,xs to be different than zero and the

T3+ ...

1
la + 14]P

To + T2

T3+ ...

rest is equal to zero to project the norm || - ||ic, e on (wo, 71, 72).
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Then we obtain the following figures for different values of p and a.

Hence

2\

2
N
\ @m’}%’

27/
\HH
N

o

SR\

Figure 3.1 Norm || - ||;c,jz, for p =1 and a = 0.09 as a potential surface.

Figure 3.2 Norm || - ||;c,jz, for p =1 and a = 1.05 as a potential surface.
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p=1and a = 15 as a potential surface.
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Figure 3.3 Norm || - [jc,
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Figure 3.4 Norm | - [|;c,z, for p=1.01 and a = 0.5 as a potential surface.

» for p=1.2 and o = 1.2 as a potential surface.

Figure 3.5 Norm || - [|jc,]
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= "'”/uhu\'-\\\\\\

[

e

2 and a = 0.6 as a potential surface.

» for p

Figure 3.6 Norm || - [/ic,

Figure 3.7 Norm || - [|;c,z, for p =2 and o = 1.2 as a potential surface.
Figure 3.8 Norm | - [|;c,z. for p =2 and o = 8 as a potential surface.
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Figure 3.9 Norm || - ||;c,jz. for p = 10 and o = 1.02 as a potential surface.
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0.15 as a potential surface.

p =10 and «
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1%

Figure 3.10 Norm | - ||,

Figure 3.11 Norm || - [|ic,jz. for p = 10 and o = 10 as a potential surface.
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3.2 THE BLOCKING TECHNIQUE

We recall that we observed in Chapter 1 that the sets [C,]5, [C\]? and [C,]?

o

can be considered as the domains of the Cesaro matrix C,_; in the sets

p_ p_ D _
wg, {wa T}Lr{}on+ Z|£Ek| O},w wh d e

and

1 n
b= cEw: P <
wh {x W sup kgo |z oo}

of sequences that are strongly summable to zero, strongly summable and strongly
bounded, respectively, by the Cesaro method of order 1, with index p > 1. The proof
of Proposition 3.1.1 uses the so—called block norm |||,z instead of the natural norm

- I,z with

1 n 1/p
ol = sup (?Z |xk|p> ,

the so—called section norm. It is well known that the block and section norms are
equivalent on each of the spaces wfj, w? and w?, ( (Maddox, 1968) or (Malkowsky,
1995, Theorem 1)). The block norm is used for technical reasons in the determina-

tion of the duals of the spaces wh, w? and w?,, and the characterization of matrix

507
transformations on those sequence spaces.

This approach is a special case of the so—called blocking technique which has
important applications in various parts of analysis, in particular, in the study of
sequence and function spaces, the study of operators between such spaces, and in

the classical inequalities.
In these theories, expressions of the form

q

1/p
Z (Z \xk]p> for 1 <p,qg < o0 (3.5)

n=0

and

0o 1/p
sup | a, (Z \a:k|p> for 1 <p<oo (3.6)

k=1

play an important role, and also in Hardy’s famous inequality which states that, for
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any p > 0, there is a constant K > 0 such that

N 1 n p N
> (i) vy

n=0

for all N € Ny and for all nonnegative real numbers zg, x1,...,2y.

The analysis of expressions as in (3.5) and (3.6) which are called a norm in

section form can be extremely difficult.

In many cases it is helpful to suitably renorm those expressions, by using

so—called norms in block form

0 i 0 1/p\ 1 ] o0 1/p
Z ova (Z \xk|p> and sup ova (Z |$k|p> ’ (3.7)
v=0 kel, " kel,

where the intervals I, form a partition of Ny into disjoint intervals. The most
common partition is that into dyadic blocks [2”, 2" —1]. Such renorming is referred
to as the blocking technique; it is of great practical importance, since the analysis of
norms in block form is much simpler; in many aspects they behave like the familiar

¢, norms.

The renorming of the spaces wf, w? and w?, is a simple example for the blocking

technique.

In 1974, Jagers (Jagers, 1974) studied the sequence spaces
) 1 n p
cesp:{JEEw:Zl(E;\xk\) <oo} for p > 1,

which are Banach spaces with the section norm

© (1> p\ L/p
Hchesp = (Z (EZ |$k’> ) :
n=1 k=1

We observe that Hardy’s inequality immediately implies the set inclusion £, C ces,,.

It can be found in (Grosse-Erdmann, 1998) that an equivalent norm on ces, is the
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dyadic block norm

0o ovtl_q 1/p
O )
v=0 k=2v

This is one more example of an application of the blocking technique.

In 1969, Hedlund (Hedlund, 1969) introduced the mixed norm spaces
00 2u+1_1 Q/p
Up,q) = wa:Z(Z \:c,#’) < 00
v=0 k=2v

which in many aspects behave like the classical ¢, spaces. It is clear that the Cesaro

sequence space ces,, is a weighted ¢(1, p) space.

A comprehensive study of the blocking technique and its applications to the

theory of sequence spaces can be found in the monograph (Grosse-Erdmann, 1998).

3.3 DUAL SPACES

Here, we determine the S—duals of the spaces [C,]}, [Co]F and [C, ]2, and make

use of the blocking technique. We write
M, ={a€w:|al|m, < oo}, where

oo
> 2Y - max, |ag|
=0

S 91 (3 [ag|) 0 (1<p<oo,q——p )

v=0 P — 1

T

lallm, =
Let a € w and X C w be a linear metric space. Then we write

Hﬂ&ﬁme{

provided the right hand side is defined and finite which is the case whenever X is an

FK space and a € X? (Wilansky, 1984, Theorem 7.2.9); if X is a BK space then

oo
E ATy

k=0

:;EEE(O,(S)} for 6 >0
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we write

o0
E ApT

k=0

lall* = llals = sup {

ZIGE)(}.

The following results are known for 1 < p < oo (Malkowsky and Rakocevi¢,

2000b, Lemma 1)
(wh)” = (w?)? = (wh,)? = M, and |Ja|* = [lall s, on M,. (3.8)

Lemma 3.3.1. (Malkowsky and Rakocevi¢, 2007, Lemma 3.1) Let X be an FK
space with AK and 7 = Xp. We write R = S* for the transpose of S. Then we

have

(X71)? C (XP)g.

The following result involves (Malkowsky and Rakocevié, 2007, Theorem 3.2)

and an improvement of it.

Proposition 3.3.2. a) Let X be an FK space with AK, T be a triangle, S be
its inverse and R = S* be the transpose of S. Then a € (X1)? if and only if

a€ (XM and W = (Wink ) k=0 € (X, c0) (3.9)

where
0

>oajsiy (0<k<m)
j=m

Wmk = (m:(),l,...);
0 (k> m)
moreover, if a € (Xr)? then we have
Zakxk = Z(Rka)(Tka:) for all x € Xrp. (3.10)
k=0 k=0

b) The statement in part a) also holds when W € (X, ly).

Proof.  a) First we show that a € Z° implies that the conditions in (3.9) hold.
We write Z = X7 and assume that a € Z°. Then it follows by Lemma 3.3.1

that Ra € X?, hence the series Z]o’;n a;sj converge for all n and k, that is,
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the matrix W is defined. Furthermore, we have

n

iRka TkZ ankaz = Z(Rka—wnk)Tkz
k=0 =

k=0
n n—1
Z Zajsjk Zajsjk )Tz = Z( a;s;k) iz
k=0 j=k k=0 j=k
n—1 J+1 n—1 n—1
Z(aj Zsjkaz) = Zaij(Tz) = Zajzj,
j=k k=0 =0 =0
that is,
Zajzj Z Rya)(Typz) — Wyo(T'z) for all n and all z € Z. (3.11)
k=0

Let x € X be given. Then we have z = Sz € Z, and so a € Z° and a € (XP)p.
This implies Wz = W (T'z) € ¢ by (3.11). Since x € X was arbitrary, we have
W e (X,c) C (X,lx). Furthermore, since Rya = 377, a;s;; exists for each
k, we have

lim wy, = lim Zajsjk = 0 for each k. (3.12)

n—o0 n—00
=n

Now W € (X, /) and (3.12) imply W € (X, ¢y) by (Wilansky, 1984, 8.3.6,
p 123). Now we show that if a € Z” then (3.10) holds. Let a € Z°. Then
the conditions (3.9) hold, and so (3.10) follows from (3.11). Finally, we show
that the conditions in (3.9) are satisfied. If z € Z then x = Tz € X, and so
a.z € cs by (3.11), that is, a € Z°.

Since (X, cp) C (X, ls), it remains to show that a € (X?)p and W € (X, £y,)
imply a € (X7)?. We assume a € (X?)g and W € (X, /). It follows from
Ra € X? that w,,, exists for each m and k, and lim,, oo wmr = 0 for each
k. Since X has AK, this and W € (X, /) together imply W € (X, )
by (Wilansky, 1984, 8.3.6). Finally a € (X?)gr and W € (X, co) together
imply a € (X7)? by (Malkowsky and Rakocevié¢, 2007, Theorem 3.2).

Now we determine the y—duals. The following general result holds.
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Proposition 3.3.3. Let X be an FK space. Then we have a € (Xr)7 if and only
if
sup ||Cp(a; T)|x 5 < 0o for some § > 0, (3.13)

where the matriz C(a;T) = (cuk )= 1 given by

0 (k>mn)

Proof. We write Z = Xr, and define the matrix B = B(a;T) = (buk)p—o bY
buk = anspk for (0 < k < n) and by, =0 for k >n (n=0,1,...). Since z € X if

and only if z = Sx € Z, and

n

Apzn = p(Spx) = ay, Z Skl = Zn: bprxyr = Byx for all n,
k=0 k=0
we obtain a € Z7 if and only if B € (X, bs), and this is the case by (Malkowsky
and Rakocevié, 2000a, Theorem 3.8) if and only if C'(a;7T) € (X, (), that is, by
(Malkowsky and Rakocevié¢, 2000a, Theorem 1.23 (b)), if and only if the condition
in (3.13) is satisfied. n

Now we determine the S—duals of the spaces [C,]f, [Ca]? and [C,JE,.
Theorem 3.3.4. Let p > 1 and o > 0. Then we have

(a) a € ([Colh)? if and only if a € (M) ga— and W € (wh, ls);

(b) a € ([C.]P)? if and only if a € (M,)ga—1 and W € (wP, c);

(c) a € ([Cu2)? if and only if a € (M,)ga—r and W € (wt,, cp).

(d) If X =wl or X =wP, and a € (X¢,_,)", then

Zakzk = Z(Rgfla)(ag’l(x)) forallz € Xe,_;
k=0 k=0

also ||allx,, =B allm,. (3.14)

If a € ([CoJP)? then

o0 [e.9]

Zakzk = Z(Rg_la)(ag_l(x)) —&p with € from (1.2) and p = lim W,e; (3.15)
k=0 k=0
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also

lallic,p = 1ol + 1R alla, for all a € ([C]7)". (3.16)

(e) We have a € ([Co]5)Y if and only if

sup || Cy(a; Coz1)||m, < 00 (3.17)

Proof. (a) This is an immediate consequence of Proposition 3.3.3.

(b), (c) Parts (b) and (c) follow from (Basar et al., 2008, Lemma 3.1 (b), (c)).

),
(d) The identities in (3.14), (3.15) and (3.16) follow from (Bagar et al., 2008,
(3.11), (3.12), (3.9) and (3.13)).

(
(e) Since wf is a BK space, we have by (3.13) and (3.8) that a € ([C,]f)” if
and only if (3.17) holds; also, by (3.8) || - [|Xx = || - [lm, for X = w{, w?, w?,, hence
([Calt)” = ([Ca]?)” = (ICal)- B

Remark 3.3.1. It is useful to state the explicit formulas in the previous theorem. We

obtain from (1.4) that

Ry7la =) A% Ay a; for k=0,1,...,

j=k

hence a € (M,,)ga—1 if and only if

2302” max, Z ATGAY a;| < o0 (p=1)

HRQ_IGHM,, - a\ 1/q
S [ ;f‘kAg_laj < 00 p>1lqg= % .
v=0 j=k p—1

(3.18)

Furthermore, we have

ZAJ * A la; (0<k<m)
Wik = 77" (m=0,1,...),

0 (k> m)
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and, by (Bagar et al., 2008, Theorem 2.4 1.), W € (wh, {) if and only if
sup [ Wi, < o0. (3.19)
If m € Ny is given, let v(m) denote the uniquely defined integer with v(m) < m <

ov(m)+1 _ 1 Then it follows that

( v(m)—1
> 2Ymax,
v=0 j=

00 00
—a pa—1 —a pa—1
Aj—kAk a; > ATSAY

m

+2v(m)  max i

v(m) <k<m
q) 1/q

4ov(m)/p ( Z

j=m

(p=1);

v(m)—1
Wl =9 2 277 (ZU

v=0

- 1

o pa
Z A AT ay
j=m

= 1
o ja—
> ASAY

k=2v(m) |j=m

q> 1/q
(p > lig= L) :
\ p—1
We have by (Basar et al., 2008, Theorem 2.4 7.) that W € (w?,¢) if and only if
(3.19) holds,

m—0o0 m—00

p= lim W,e= lim Z Wik = TrILl_I}lOOZ Z A;_’lkAg_laj exists (3.20)
k=0 k=0 j=m
and 1im,, oo Wk = 7, exists for each k, which is redundant since the convergence
of Rgfla for each £k implies lim,, o Wik = v, = 0 for each k.
Finally, it follows from (Basar et al., 2008, Theorem 2.4 2.) that W € (w%,, o) if

and only if limy, oo ||Wi||am, = 0.
There is an alternative way to determine the S-duals.

Remark 3.3.2. Tt follows from (Malkowsky and Rakocevié, 2007, Lemmas 3.7 and
3.8) that if X is an FK space with AK then a € (X7)? if and only if C'(a; T) € (X, ¢)
where C(a; T) is the matrix defined in Proposition 3.3.3. We also have a € ((w?,)r)”
or a € ((wP)r)? if and only if C(a;C,—1) € (X,c) by (Malkowsky and Rakocevic,
2007, Lemma 3.7) and (Basar et al., 2008, Lemma 3.1 (c) or (b)), respectively.

Remark 3.3.3. We apply our results to crystallography. We use Wulft’s principle

(Wulff, 1901) which allows us to determine the shape of crystals from our norms.
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Theorem 3.3.5 (Wulff’s principle). Let dB™ denote the unit sphere in R™™ and
F : OB™ — R be a surface energy function. The set PM = {Z = F(¢)¢ € R :
€ € OB"} can be considered as a natural representation of F. For every € € 0B",
let Ez denote the hyperplane orthogonal to € and through the point P with position
vector p = F(€)e, and Hz be the half space which contains the origin 0 and has the
boundary Ez = OHg. Then, the crystal C'r which has F' as its surface energy function
is uniquely determined and given by Cp = (acopn He = Nacopn1Z : To € < F(€)}.

The principles of Wulff’s construction of crystals were studied in (Malkowsky
and Velickovié¢, 2012) and it was proved that if surface energy function is equal to
a norm then the boundary of the corresponding Wulft’s crystal is given by the dual

norm. Also, we have

Corollary 3.3.6. (Malkowsky and Velickovié, 2012, Corollary 5.5) Let || - || be a
norm on R"™™ and, for each & € OB™, let ¢z : R™™ — R be defined by ¢z(r) =
weT = Zzg wpzy (T € R™M).  Then, the boundary OCy. of Wulff’s crystal

corresponding to || - || is given by

6CH.|| = {{f: eeR" . ec 8Bn} , (3.21)

[@el*

where ||¢g||* is the norm of the functional ¢z, that is, the dual norm of || - ||.

Example 3.3.1. Finally, we visualise f—duals of [C,]%,. We consider the dual norm

| - ||a, defined by (3.18) and obtain

for k=0

00
a—1_, —« a—1_,
Ry 'z = E A SGAY

J=0

:Aaaﬂfo—i—Al_a.%l +A2_Q$Q+A§a$3+...

:x0+(1—a)x1+<2_a)2(1_&)x2
R R N
:xo—(a—l)x1+(a_2)2(a_1)x2
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for k=1

00
a—1 _2 —a pa—1
7=1

A ZL‘l—I—A 112—|-A T3 + }

2 — 1-—
:a{xl—l— 1—ax2+( a)2< Oé):cg,—i—...}
-2 -1
a{wl a—1x2+(& )2<& )x3+...};
for k=2
Rylw =" A;%GAS
a(a+1 —a —a
:¥[AO I‘Q+A1 1'34*}
ala+1
:¥[x2+(1—a)x3+...]
ala+1
:¥[$2_<Q_1)$3+...];
for k=3

RS~ lx—ZA] QA

7j=3

Now we choose three dimensions xg, 21, 2 to project the norm || - ||az, on (2o, 21, 2).

If p =1, then we have

o for v =0,

2Y maX|RO‘ | = 20max|Ra Lo| = max |RY |

=max {R{ 'z, R} 'z}
—2)(a—1
—max{xo—(a—l)x1+(a )2(a )xg ,

[z — (o = 1)aa]|};



o forv=1,

2"max |R x| =2' max |RY 'z
v 21<k<2?1

= 2max {|Ry " 'z|, |R§ x|}

1
_ Qmax{fwxg\,()} — a(a + 1)z

2
o for v =2,
2" max |RY x| =2° max |RY 'z|=0.
v 22<k<23—1
Hence

o0
IR ]y, =Y 2" max |Ry 'z
v
v=0

:max{

(v —2)(a—1)
2

o — (OZ — 1)1‘1 + )

+ lalzy = (o = Dao]| + |afa + 1)} .

Ifp>1,

o for v =0,

20 (Z \Rz”rc\") o (Z |Rzlx|Q> - (Z |R2:1x|q) q
v 0 0

(1Rs™a|" + |Rg~a]")"

:( (a—2)2(a—1)

q
xo— (v — 1)xy +

X2

S

+ lafry — (@ = D)ay]|?)

o forv=1,

% 221 %
o (Shm) =2 (Xl
v k=21
— 25 (| Ry~ )?| + |RS )] ¥
ala+1)

1
= 27|
2

Ta| = 2%_1|a(a + 1)y

33
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Hence
o0 % 1 %
| R |, = Z 2 (Z |Rg_1x|q> = Z 2 (Z |Rg_1x|q>
v=0 v v=0 v

:( '

1
+ lafz — (o — Das]|9)7 + 20 Ya(a + D).

xo— (v — 1)xg + e 2)2(a — l)xg

Then we obtain the following figures for different values of p and a.

TN\
’/I,;‘llm\\\\}\“\\‘

Figure 3.12 Norm || - [/ jz, and the appropriate crystal for p = 1 and o = 0.09 as a
potential surface.

Figure 3.13 Norm || - [/, jz, and the appropriate crystal for p = 1 and o = 1.05 as a
potential surface.
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Figure 3.14 Norm || - [|j¢,jz, and the appropriate crystal for p = 1 and a = 15 as a

potential surface.

=1.01 and o = 0.5 as

Figure 3.15 Norm || - ||z, and the appropriate crystal for p

surface.

a potential

/
&
L5

Ll

0

N\

i

o»&o«_.“mn.”
0
8!

SIS

== >
77530

“0“V0¢

X

9,
000“”4-/

9

=12and a=1.2 as

Figure 3.16 Norm | - [/, 2, and the appropriate crystal for p

a potential surface.
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2and a = 0.6 as a

“ |lic.z. and the appropriate crystal for p

Figure 3.17 Norm ||
potential surface.

Figure 3.18 Norm ||
potential surface.

* |lic.jz. and the appropriate crystal for p =2 and o = 1.2 as a

TN

=2and a =8 as a

Figure 3.19 Norm || - /¢, jz. and the appropriate crystal for p

potential surface.
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Figure 3.20 Norm || - ||z, and the appropriate crystal for p = 10 and a = 1.02 as
a potential surface.

Figure 3.21 Norm || - ||;c,jz, and the appropriate crystal for p = 10 and a = 0.15 as
a potential surface.

Figure 3.22 Norm || - ||;c,jz. and the appropriate crystal for p = 10 and o = 10 as a
potential surface.



CHAPTER 4

CHARACTERISATIONS OF BOUNDED LINEAR
OPERATORS ON SOME GENERAL MIXED NORM
SPACES

In this chapter, we characterize the classes (X, Y') where X is any of the spaces
[Calf, [CalP or [Cy]E, and Y is any of the spaces (o, ¢ or ¢g. We also determine the

norms of the operators defined by the matrices in those classes.

Let A = (ank);k—o be an infinite matrix. We define the matrices A= (Qnk)p=0
and WM = (w(n))o"’kzo forn=0,1,... by

mk/m

nk, = Rﬁ_lAn = ZAj_kag_lanj forn,k=0,1,...

j=k

and

3 AAY a0k <m)
Jj=m

wl?) —

m

(m=0,1,...).
0 (k> m)

The following result is an immediate consequence of (Bagar et al., 2008, The-

orem 4.2) with T'= C,_;.

Theorem 4.0.7. The necessary and sufficient conditions for the entries of A €
(Xe,_,,Y) when X € wh, wP,wt, andY = {lw, co, ¢} can be read from the following

table

38



Table 4.1

From »
N | (Gl | [Cal?
U 1. 2. 3.
Co 4. 5. 6.
c 7 8. 9.

where

1. (1.1%) SuanAnHMp < 00 and (1.2%) lim,soo W ||, = 0 for all n
2. (1.1%) and (2.1%) sup,,|[W.D||lp, < 0o for all n

3. (1.17), (2.17), (3.1%) p™ = lim,,_ e Wie exists for each n and
Aye— o

(3.2%) sup,, < 00

4. (1.2%) and (4.1%) limp oo || Al p, = 0

5. (1.27), (2.17) and (5.17) lim, 00 @px = 0 for all k

6. (1.11), (2.1%), (3.17), (5.1%) and (6.1%) Lm0 (Ane—p<">) —0
7. (1.11), (7.17) ay = lim,, o Qi exists for all k

(7.2%) (éw), A, € M,, for all n and
(7.3%) limy, o0 || Ay, — (é)|lag, = 0

8. (1.1%), (2.1%) and (7.1%)

9. (1.1%), (2.1%), (3.17), (7.1%) and (9.17) lim, o (Ane - p<">> = B exists.

Remark 4.0.4. We note that by (3.20) and the definition of A and W

oo o m o
A n —a fga—1 : —a ga—1
Ane — pt ) = g E Aj_kAk ay; — lim g E Aj_kAk Ay,
m—0o0
k=0 j=k k=0 j=m

n—oo -

o
& = lim E Aj__o‘kAz‘_lanj for each &
j=k

and, forn=0,1,...,



40

A > 2V max, |ane — Al (p=1)
An - (d/k)HM = Vo:OO ) p
C S e an (peua=20)
v=0 -

Now we determine the norms of the operators associated with the matrices in

the classes of Theorem 4.0.7.
Lemma 4.0.8. a) The statement of Proposition 3.3.2 also holds when X = w}

— WP
or X = wh_.

b) (Basar et al., 2008, Theorem 8.2) If a € {(wP)r}? then we have for all

z € wP(T)
D apz =) ((Rea)(Tiz) —&p (4.1)

where £ = lim,,_,o, n+r1 Y reo lzkl? and p = limy, o ||W ||, -

Proof.  a) Since X = w} is an FK space with AK, we only prove the statement
for X = w?,. Let X = wP. We have to show that W € (w%,¢) implies
W e (Wb, c). If W e (wh, c) then it follows

|Whlla, converges uniformly in n. (4.2)

But, in Part a) of the proof of Proposition 3.3.2, we also have lim,, o wpr =0

for each k. This and (4.2) imply
lim ||[W, ||, = 0.
n—oo

From this we obtain W € (w?,, co).

b) Let a € {(wP)r}? and 2z € (wP)r be given. Then we have v = Tz € wP
and £ = lim, n%l > o lwk|P exists. Hence there is (¥ € wf such that
r =20 4+ fe. We put 29 = Sz, Then it follows that 2% € (wh)r and
z =Sz =952 + e) = 29 4 ¢Se and we obtain

n—1 n

Z agzr = Z(Rka)(Tkz) — W (T(2© 4 £Se))

k=0 k=0
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= Y (Rea)(Tyz) — Wy (T2 — EW,e for all n.
k=0
The first term in the last equality converges as n — oo since Ra € M, by
Corollary 3.3.4. The second term in the last equality tends to zero as n — oo
since a € {(w?)r}’ C {(wh)(m}? implies W € (wh,cy) by Corollary 3.3.4.
Finally we also have W € (wP,¢) by Corollary 3.3.4 and this implies p =
lim,, o Wpe exists. Now the identity in (4.1) follows.

Remark 4.0.5. a) If a € X? where X = [C,]} or X = [C,]E, then we have for all

ze X i, .
D arzm = ((R)ra)((Cazr)i2). (4.3)
k=0 k=0

b) If a € {[C,]P}® then we have for all z € [C,]P

D arze =Y ((Rka)((Ca1)rz) = €p (4.4)

where € = lim,,_,o %H Y oreo lzeP and p = lim, oo D) Wik

Now we determine the norms |(allic,jz., llallic,z and [lal[ic,p»-

Proposition 4.0.9. We have
@) llallipp = lalie, s = B allus, for all a € {[CJ Y. {[Cal5}.

b) llallic.pr = I1R* allas, + 1ol for all a € {[Ca]?}’

where p = liMy, o0 Y p_g Wnk-

Proof.  a) Let a € {[C,]5}?. Then it follows from part a) of Remark 4.0.5 that
R,_1a € M, and (3.10) holds. Since z € [C,]§ if and only if = Ch_12 €
wo, and |[z[[jc, 2 = [|]la, by (Wilansky, 1984, Theorem 4.3.12, p.63), the

right-hand side of (3.10) defines a functional f € wh" with its norm ||f| =

|R*"'a||pr, and lallfs, 2 = [If]l by the definition of the norm | - [|F; .

b) Let a € {[C,]P}”. Then it follows from part b) of Remark 4.0.5 that R*~ta €
M, and (4.1) holds. Since z € [C,]P if and only if x = Ch_12 € WP, and
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| zllicar = ll2|laz, by (Wilansky, 1984, Theorem 4.3.12, p.63), the right-hand
side of (4.1) defines a functional f € w?* with its norm || f|| = [|[R* *al| s, + |p|

and |[al|jz » = [|f]| by the definition of the norm | - ||

P

Lemma 4.0.10. (Malkowsky and Rakocevié, 2007, Theorem 3.6) Let X and 'Y be
BK spaces and X have AK or X ={l. If A€ (Xr,Y), then we have

[Lall = 1L 4l (4.5)

where A is the matriz with the rows A, = R(A,) forn=0,1, ...

Lemma 4.0.11. (Malkowsky and Rakocevié, 2000a, Theorem 1.23) Let X be a BK
space and Y be any of the spaces loy, ¢, co. If A € (X,Y) then

[Lall = 1 Allx.00) = sup [ An][5 < oo (4.6)

Theorem 4.0.12. Let Y be any of the spaces Lo, ¢ or cg.
(a) If A € (X7,Y), where X = wf or X = wP,, then we have

1Zall = [1All(xp,00) = sup | A% = sup [[RA | a, (4.7)
(b) If (A € (wP)r,Y), then we have
IZall = [|Allomyr.oc) = sup ([ RAGllag, + 10™]) (4.8)

where p™ is defined in (3.17) in 3. of Theorem 4.0.7.

Proof. (a) Let X = w}h or X = wk_.

If A€ (Xr,Y) then it follows from (Malkowsky and Rakocevi¢, 2007, Theorem 3.4
and Remark 3.5(b)) that A € (X,Y) and Az = A(Tz) for all z € Xy. For X = wf,
it follows from Lemma 4.0.10 that

1L all = NIZall- (4.9)

Since the norms on wj and w®,, and on (w§)r and (w?, ) are the same, the identity
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in (4.9) also holds for X = w?_. Furthermore, A € (X, {,,) implies by Lemma 4.0.11,
(3.8) and the definition of the matrix A

1L All = sup [| A% = sup [[An[lag, = sup | R A, -

Thus we have shown the identity in (4.7) for Y = /. The identity in (4.7) for
Y = ¢ or Y = ¢ now follows, since (X7,Y) C (X7, /ls).

(b) Let A € ((wP)r,Y) where Y € {lw,c,co}. Then it follows by (1.17) in
Theorem 4.0.7 3., 6. and 9. that sup, HAnHMp < 00. Together with (3.27) in
Theorem 4.0.7 3. for Y = {, (6.17) in Theorem 4.0.7 6. for Y = ¢ and (9.17)
in Theorem 4.0.7 9. for Y = ¢, we obtain p™ € £, for each n. Therefore the right

hand side in (4.8) is defined and finite. Since w” is a BK space, we have as in Part

(a)
| Lall = sup || Anllic,p (4.10)

and A, € ([C,]P)? for all n implies by Lemma 4.0.8 b)
[ Anllicuy = IRARI A, + 1p™)] for all n. (4.11)

Now (4.8) follows from (4.10) and (4.11). n
Corollary 4.0.13. Let Y = (¢, co.

a) If A € ([Cu],Y), then we have
IZall = sup || Ra1Anl|as, (4.12)

b) If A e ([Cul?,Y), then we have
[ Lall = Sup ([[Raz1Anllaz, + Ipl) (4.13)

where p = {P(n)}io:l = {limyn 00 D4y Z]Oim anjAj_—akAg_l}?:l'



CHAPTER 5

COMPACT OPERATORS ON SOME GENERAL MIXED
NORM SPACES

5.1 HAUSDORFF MEASURE OF NONCOMPACTNESS OF THESE
OPERATORS

In this section we investigate Hausdorff measure of noncompactness of opera-

tors between Banach spaces.

Definition 9. (Malkowsky and Rakocevi¢, 2000a, Definition 2.24) Let X and Y be
Banach spaces and y; and x, be measures of noncompactness on X and Y. Then the
operator L : X — Y is called (x;, xo)—bounded if L(Q) € My for every Q € My

and there exist a constant C' > 0 such that

Xo(L(Q)) < - x;(Q) for all @ € Mx; (5.1)

if L is (xy, xo)-bounded then the number

| L] = inf{C > 0: (5.1) holds }

X17X2)

is called the (x;,x,)—measure of noncompactness of L; we also write ||L||, =
| Ll (x.x)» for short, and call ||L||, the Hausdorff measure of noncompactness

of L.

If X and Y are Banach spaces and L € B(X,Y) then the following facts are

well known:

ILlly = x(L(Sx)) (Malkowsky and Rakocevi¢, 2000a, Theorem 2.25)  (5.2)

44
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and

L is compact if and only if || L]|, =0

(Malkowsky and Rakocevi¢, 2000a, Corollary 2.26 (2.58)). (5.3)

Lemma 5.1.1. [Goldenstein, Gohberg, Markus] (Malkowsky and Rakocevié, 2000a,
Theorem 2.23) Let X be a Banach space with a Schauder basis (b,)22,, @ € Mx,
Pn : X — X be the projector onto the linear span of by, by, ... b, and R, =1 —"P,

where I is the identity on X. Then we have

n—oo x n—o0 S

L tmmsup (supuvzn(wu) < (@) < limsup (supHRn(a:)H), (5.4
€Q Q

where a = limsup,, || R,|| denotes the basis constant of (by,).

Example 5.1.1. (Malkowsky, 2008, p. 26) Let us consider the basis constant a
for the space c. Since every sequence x = (z;)p>, € ¢ has a unique representation

v =Ete+ S (zp — &)e® with € = limy_,o 7%, we define the projector P, : ¢ — ¢
k=0
by Pu(z) = €e + > (21 — €)e® and the sequence ¥ = R, (x) given by & = 0 for
k=0

0<k<nand T =z — & for k > n+ 1. Hence we have |Z| < |zx| + |£] < 2||7|
for all k and ||R,|| < 2.

Now let = be the sequence with x,,; = —1 and z;, = 1 for k # n + 1. Then
E=1,||7|lo =1, and [|Rp(2)|lco = 2, hence ||R,|| = 2. Therefore lim,,_, [|Rn,|| = 2.

Lemma 5.1.2. (Malkowsky and Rakocevié, 2000a, Theorem 2.15) Let Q € Mx
where X =€, (1<p<o0) or X =co. If Py : X — X is defined by P,(z) = 2" =
S orre® (n=0,1,...) for all x = (x3)32, € X, then we have

«(Q) = tim (sup R, (2)1). (5.5
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5.2 CHARACTERISATIONS OF COMPACT OPERATORS ON GEN-
ERAL MIXED NORM SPACES

In this section, we characterise the classes of compact operators L, when
A € (Xr,Y) where X is any of the spaces [C,]f, [Cal?, and [C,]E, and Y is any of
the spaces ¢y or ¢. This is achieved by applying the Hausdorff measure of noncom-
pactness. We also find out identities and inequalities for the Hausdorff measure of

noncompactness of the operators L, in the cases just mentioned.

Now we establish some inequalities or identities for the Hausdorff measures of
noncompactness of operators.

Theorem 5.2.1. Let X be any of the spaces wf, wP and w?

o0

andY =c¢y orY =c.

Then estimates for ||Lally when A € (Xr1,Y) can be read from the following table

Table 5.1
From
To (wo)r | (wP)r | (wh)r
co 1 2. 3
c 4 5. 6

where
1. and 3.(1.1%) | La|y = lim <sup!|/1nHMp)
T—=00 \ p>r

2. (209 Ll = Jim (sup (Il +11) )

where p™ = lim W,(,{L)e for alln

m—o0

1
4. and 6.(4.1%) 5 lim (sup

r—00 TLZ’I‘

Au= (@), ) <zl < i (s

n>r

A - <&k)“MP>

where &y, = lim a,y for each k
n—oo

Au= (@), +ISoae =6 9] ) < IiLaly

5. (5.1%) A
Ay — (é‘k>HM + [k — B — P(n){)

1 I

— - 11m | su
2 T—00 nZI:
<

lim ( sup
T—00 nzr
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where § = lim (A,e — p™)
n—oo

Proof. 1. Since wh is a BK space with AK, it follows from (Malkowsky and
Rakocevi¢, 2007, Lemma 4.1) that || Lal|y = || L ]|y, where A € (w}, £x). Now (Basar
and Malkowsky, 2011, Corollary 3.8) yields the identity in (1.1%).

4. Similarly the identity in (4.1*) follows from (Malkowsky and Rakocevi¢,
2007, Lemma 4.1) and (Bagar and Malkowsky, 2011, Corollary 3.6).

5. First A € ((wP)r,c) implies A € (wf,c) and W™ € (w? ¢) for all n
by (Basgar et al., 2008, Lemma 4.1 (b)). So &y = lim,,_,o Gy exists for all £ by (Basar
et al., 2008, Theorem 4.2 7. (7.1)), and (&) € M, by (Djolovi¢ and Malkowsky,
2008, (3.7)). Also W™ € (w?,c) for all n implies by (Basgar et al., 2008, Theorem
4.29. (3.1) and (9.2)) that the limits

= lim W(We and 8 = lim <Ane - p(")> exist for all n. (5.6)

n—oo n—o0

Now let € (wP)r be given and & be the unique complex number such that Tz—¢-e €
wt. Then we have by (Basar et al., 2008, (4.5)) Az = A(Txz) — £(p™), that is,

Yo = Apx = Ay (Tx) — Ep™ = A, (T — €e) + € (Ane - p(")) for all n (5.7)

We observe that A € (w?, ¢) implies A, € (w)? = (w?)? for all n, so Ae and ATz
are defined for all z € (w”)r. It follows from A € (wf,c) and Tz — € - e € wb
from (Djolovi¢ and Malkowsky, 2008, (3.9)) and (&) € M, that

o :g&ﬁn(h—g-e) = ay(Thx — ) Zakax—é’Zak, (5.8)
k=0
hence by (5.6) and (5.8)
n= lim y, =1+ &5 (5.9)

Thus we have by (5.7) and (5.9)

o0 o0

Yp—1 = Z&nkaZE—é.p( T]O—I—fﬁ Z (lnk — ak TkCL’—l—f (Z é‘k _ 6 _ p(n)> .
k=

k=0 k=0
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Since ||| (wr, ), = |T2||,z, for all z € (wP)r, we obtain by (4.7) for all r

Sp - [[Ry-1(A0)]| = [[Ry-a(A)] [ = sup (HAn — @), +

:EGS(U,;D)T

Z g — 5 — p™
k=0

)

and the estimate in (5.1%) follows from (5.2) and (5.4) since a = 2 and the limit
exists in (5.4).

2. Let A € ((wh)r,co). Then we obtain as in the proof of 5., &, = 0 for all k,

£ =0 and
)
Mp

and the identity in (2.1*) follows from (5.2) and (5.5).

up R+ (A2)] = sup (HAn

TES(wp)

3. and 6. It follows from (Basar et al., 2008, (4.1)) that A € ((w®)r,Y)

implies Az = A(Tx) for all x € (w?)r, and it follows that | L4| = ||L4]|. Since
((wk)r,Y) C ((w)r,Y), we obtain (1.1*) in 3. and (4.1*) in 6.. B

We obtain the following characterizations of compact operators from Theorem

5.2.1.

Corollary 5.2.2. Let X and Y be any of the spaces of Theorem 5.2.1. Then if
A € (X1,Y) then the conditions for L4 to be compact can be read from the following

table
Table 5.2
From
To (wo)r, (Wh)r | (wP)r
Co 1. 2.
c 3. 4
where

1. (1.1*) lim (Sup”/lnHMp) =0
r—00 \ n>r

2. (2.1"*) lim (Sup (HAnHM,, + Ip(”)l)> =0
r—00 \ n>r

3. (3.1") lim (sup

T—00 n>r

An - (@k)HMJ =0
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):o.

Remark 5.2.1. The estimates and identities for the Hausdorfl measure of noncom-

pactness of Ly when A € ([CL]},Y), ([Cu]?,Y), ([Calt,,Y), and the characterizations

00

4. (4.1") lim (sup

r—00 n>r

o0
Z b — B — p™
k=0

+
Mp

of the corresponding compact operators are obtained from Theorem 5.2.1 and Corol-

lary 5.2.2 with T'= C,_1.



CHAPTER 6

CONCLUSION

This thesis is focused on the spaces of sequences that are strongly Cesaro
bounded, convergent and convergent to zero, of order &« > 0 and index p > 1,
denoted by [C,]E,, [Ch]? and [C,]f respectively. The following original results are

obtained:

e These spaces are considered as the domains of the Cesaro matrix C,_; in the

p
spaces wh_, wP and wy.

e Some topological properties of these spaces are investigated and the norm

| - llicagz. is visualised for some parameters p and a by using our software

MVGraphics.

e - duals of these spaces are determined and visualised by using Wulft’s prin-

ciple.

e The classes of matrix transformations from the spaces [C,]5, [C,]? and [C,]2,
to {4, ¢ or ¢ are characterized and the norms of the operators defined by the

matrices in these classes are determined.

e Some identities and estimates for the Hausdorff measure of noncompactness
of the matrix operators in those classes are established and the corresponding

classes of compact matrix operators are characterized.

20
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APPENDIX B

FUNCTIONAL ANALYSIS

The following results are well known from functional analysis.

Theorem B.0.3. [Closed graph lemma] (Wilansky, 1964)[Theorem 11.1.1] Any con-

tinuous map into a Hausdorff space has closed graph.

Theorem B.0.4. [Closed graph theorem] (Wilansky, 1964)[Theorem 11.2.2] If X
and 'Y are Fréchet spaces and f: X — Y is a closed linear map, then f is continu-

ous.

Theorem B.0.5. [Banach—Steinhaus theorem] (Wilansky, 1964 )[Corollary 11.2.4]
Let (f,) be a pointwise convergent sequence of linear functionals on a Fréchet space

X. Then f is defined by f(x) = lim,_, f(x) is continuous.
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