
 
 

 

 

 

 

 

 

 

Ph. D. Student transferred from Fatih University which has been closed 

 

 

 

 

 

 

 

 

 

 

                       
 
 
 
 

 
 

 

 
 

  
 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

İSTANBUL 

 

Ph.D. THESIS 

ON CODES OVER AN INFINITE FAMILY OF RING EXTENSION 
OF THE BINARY FIELD 

 

 

Nesibe TÜFEKÇİ 

Mathematics Programme 

Department of Mathematics 

SUPERVISOR 
Assoc. Prof. Dr. Bahattin YILDIZ 

 
  

June, 2016 

T.C. 
İSTANBUL UNIVERSITY 

INSTITUTE OF GRADUATE STUDIES IN 
SCIENCE AND ENGINEERING 

 
  





iii

ON CODES OVER AN INFINITE FAMILY OF RING
EXTENSION OF THE BINARY FIELD

Nesibe Tüfekçi

Ph.D. Thesis – Mathematics
June 2016

Thesis Supervisor: Assoc. Prof. Bahattin YILDIZ

ABSTRACT

Codes over rings have recently been the center of interest amongst the re-
searchers. In this thesis, we focus on codes over an infinite family of ring extension
of the binary field. The rings of the form F2+uF2+· · ·+ukF2 and F2+uF2+vF2+uvF2

are generalized to a family of rings that we call Rk,m, where Rk,m is defined to be
F2[u, v]/

〈
uk, vm, uv − vu

〉
.

The structural properties of the finite-commutative and characteristic 2 ring
Rk,m are described. Linear codes over the ringRk,m are defined and a Gray map that
is distance preserving and more importantly orthogonality-preserving from Rk,m to
Fkm2 are found with the corresponding Lee weight. MacWilliams identities which
give a relation between weight enumerators of a code and its dual are proved for
codes over Rk,m for all the relevant weight enumerators.

Many binary self-dual codes as the Gray images of self-dual codes over Rk,m

are constructed by combination of methods involving circulant matrices and exten-
sion methods. Moreover, the homogeneous weight for Rk,m was characterized using
theoretical properties of the ring and an associated Gray map was found. Using
this Gray map, many optimal binary codes that are divisible and self-orthogonal
quasicyclic codes were obtained.

Keywords: extremal self-dual codes, Gray maps, codes over rings, MacWilliams

identities, quadratic double circulant codes, homogeneous weight



iv

İKİLİ CİSMİN HALKA GENİŞLEMESİNİN SONSUZ BİR
AİLESİ ÜZERİNE TANIMLI KODLAR

Nesibe Tüfekçi

Doktora Tezi – Matematik
Haziran 2016

Tez Danışmanı: Doç. Dr. Bahattin YILDIZ

ÖZ

Son zamanlarda halkalar üzerine tanımlı kodlar araştırmacılar arasında ilgi
odağı haline gelmiştir. Bu tez, ikili cismin halka genişlemesinin sonsuz bir ailesi
üzerinde tanımlı kodlar üzerine bir çalışmadır. F2+uF2+· · ·+ukF2 ve F2+uF2+vF2+
uvF2 formundaki halkalar,Rk,m olarak adlandırdığımız ve F2[u, v]/

〈
uk, vm, uv − vu

〉
şeklinde tanımladığımız bir halka ailesine genelleştirildi.

Öncelikle, sonlu, değişmeli ve karakteristiği 2 olan Rk,m halka ailesinin yapısal
özellikleri belirlendi. Ayrıca, bu halka ailesi üzerinde lineer kodlar tanımlandı ve
Rk,m den Fkm2 ’e tanımlı, uzaklığı ve daha önemlisi dikliği koruyan bir Gray eşleme
uygun bir Lee ağırlıkla birlikte bulundu.

Bir kodun ve dualinin ağırlık dağılımlarının arasındaki ilişkiyi veren MacWilliams
özdeşlikleriRk,m üzerine tanımlı kodların tüm ilgili ağırlık dağılımları için ispatlandı.

Devirsel matrisler ve genişleme metodlarıyla elde edilen Rk,m üzerinde tanımlı
self-dual kodların ikili görüntüsü alınarak yeni ikili self-dual kodlar inşa edildi.
Ayrıca, Rk,m üzerinde tanımlı kodlar için homojen ağırlık karakterize edildi ve ilişkili
bir Gray eşleme bulundu. Bu Gray eşleme kullanılarak bölünebilir, kendine dik yarı
devirli optimal ikili kodlar elde edildi.

Anahtar Kelimeler: ekstrem self-dual kodlar, Gray eşleme, halkalar üzerine

tanımlı kodlar, MacWilliams özdeşlikleri, kuadratik 2-devirsel kodlar, homojen ağırlık
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CHAPTER 1

INTRODUCTION

Coding theory, a research area that combines applications from engineering

and various branches of mathematics, is based on the problem of securely transmit-

ting data through a noisy channel. It works for efficient and accurate transfer of

information in almost all areas of communication such as compact disc recording,

telephone lines and satellite communication. The influential paper “A mathematical

theory of communication” published in 1948 (Shannon, 1948) by Claude Shannon,

points out the beginning of mathematical point of view to coding theory.

The main objective of coding theory is getting maximal detection and even

correction of errors while satisfying maximum transfer of information per unit time.

Figure 1.1 illustrates the main scheme of coding theory. Significant improvements

were observed in coding theory over the last fifty years. The focus of coding theorists

was studying error correcting codes over finite fields in early periods, till the end of

80s, especially over the binary field F2. In 1994 (Hammons et al., 1994), Hammons et

al. solved an old problem in coding theory related to non-linear binary codes through

the ring Z4. In this work, they explained the seeming duality of the nonlinear binary

Kerdock and Preparata codes by viewing them as Gray images of dual linear codes

over the ring Z4. Since then, a great deal of interest has been given to codes over

finite rings.

source −→ encoder −→ channel
↑

noise

−→ decoder −→ receiver

Figure 1.1 communication channel.
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A great deal of interest has also been given to codes over another ring of

order 4, namely F2 + uF2. F2 + uF2 is a finite chain ring like the ring Z4 but

they have different characteristics. In (Dougherty et al., 1999) a linear Gray map

was described from the ring F2 + uF2 to the binary field. Inspiring from this work

many coding theorists focused on codes over finite chain rings which have unique

forms of generating matrices. Self-dual codes over the ring F2 + uF2 were obtained

for some lengths by Karadeniz et al (Karadeniz et al., 2014b). In 2010, this ring

and its corresponding Gray map were generalized to codes over non chain and non

principal ideal ring F2 + uF2 + vF2 + uvF2 with a linear Gray map by Yıldız and

Karadeniz (Yildiz and Karadeniz, 2010a) and they have focused on self-dual codes

over this ring in (Yildiz and Karadeniz, 2010b). The ring F2 + uF2 + vF2 + uvF2

has recently been used quite successfully to construct many good binary self-dual

codes. Also cyclic codes and consta-cyclic codes over F2 + uF2 + vF2 + uvF2 have

been studied in (Karadeniz and Yildiz, 2011), (Yildiz and Karadeniz, 2011). The

ring F2 + uF2 + vF2 + uvF2 was later generalized to what is now called “Rk”, an

infinite family of rings, used to build binary codes with a rich automorphism group

in (Dougherty et al., 2011) and different types of codes over this ring were studied

in (Dougherty et al., 2012), (Karadeniz et al., 2014a), (Karadeniz and Yildiz, 2013).

This family of rings have provided an alternate method, to many existing ones, of

constructing binary self-dual codes of different automorphism groups, and in many

cases codes with new weight enumerators. The common theme in these works is the

presence of a duality and distance preserving Gray map and the intricate structure

of the ring with a high number of units that lead to large automorphism groups.

In (Wood, 1999), Wood argued that Frobenius rings are the largest class

of rings for which classical theorems of MacWilliams, the extension theorem and

MacWilliams identities, are valid. This has led to the belief among coding theo-

rists that Frobenius rings are the largest class of rings to study in coding theory.

Consequently, many different Frobenius rings were studied within that context for

different reasons and motivations, leading to many different results. Among the

oft-studied rings we can name Z4, Zpk , Galois rings, finite chain rings, F2 + vF2,

F2 + uF2 + vF2 + uvF2, Rk, etc.

In this thesis, we introduce a generalization of rings of the form F2 + uF2 +
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· · ·+ ukF2 and F2 + uF2 + vF2 + uvF2 to a family of rings that we denote by Rk,m,

where Rk,m = F2[u, v]/
〈
uk, vm, uv − vu

〉
. Note that R1,1 = F2, the binary field;

R2,1 = F2 + uF2; R2,2 = F2 + uF2 + vF2 + uvF2 and Rk,1 = F2 + uF2 + · · ·+ uk−1F2.

We establish that this is a Frobenius, characteristic 2, family of rings that is non-

chain when k and m are both greater than 1. We find a duality-preserving Gray

map from Rk,m to Fkm2 , and using some of the common construction methods of

self-dual codes we find many good binary self-dual codes as the Gray images of self-

dual codes over Rk,m for suitable k and m. Furthermore, we define an alternative

weight which is called the homogeneous weight for codes over Rk,m together with an

associated Gray map and we get some divisible optimal binary linear codes taking

homogeneous Gray images of cyclic, constacyclic and quasicyclic codes over Rk,m.

1.1 BASIC DEFINITIONS

We begin with some required definitions and basic facts about coding theory

and refer to (Huffman and Pless, 2003), (Ling and Xing, 2004) and (MacWilliams

and Sloane, 1978) for a more detailed reading.

Let F be a set of size q. The set F is said to be an alphabet. A q-ary block code

of length n over F is a nonempty set C of q-ary words of length n and an element

of C is called a codeword in C. A code over the code alphabet F2 is called a binary

code. The number of codewords in C, denoted by |C| is called the size of the code.

A code of length n and size M is called an (n,M)-code.

Let Fq be the finite field of order q for some q = pm. A linear code C over Fq
of length n is a vector subspace of Fnq . Linear codes have been studied more than

nonlinear codes because of their algebraic structure, allowing them to describe and

use more easily than nonlinear codes. On the other hand, a linear code C of length

n over a ring R is a R-submodule of Rn.

The Hamming distance is defined as

dH (x̄, ȳ) = |{i|xi 6= yi}|

where x̄ = (x1, · · · , xn) and ȳ = (y1, · · · , yn) are two words of length n over F . The

Hamming weight ωH of a vector is defined to be the number of nonzero coordinates
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and we have dH (x, y) = ωH (x− y). The minimum distance of a code C of length

n is defined as

d (C) = min {dH (x, y) |x, y ∈ C, x 6= y}

The minimum Hamming weight of C, denoted ωH (C), is the smallest of the weights

of the nonzero codewords of C and it is same with the minimum distance d (C)

for linear codes. A linear code C of length n and dimension k with the minimum

distance d is often called an [n, k, d]-code. Let C be a linear code over Fq of length

n, then the dual of C is the orthogonal complement of the subspace C of Fnq respect

to standard Euclidean inner product.

Two codes are called equivalent if one can be obtained from the other by a

permutation. A code is called isodual if it is equivalent to its dual.

A generator matrix for a [n, k]- linear code C is a k × n matrix G whose rows

form a basis for C and a parity-check matrix H of this code is a generator matrix

for the dual code C⊥.

As the focal part of this thesis, we mention self-dual codes briefly. A code

C is defined as self-orthogonal if C ⊆ C⊥, self-dual if C = C⊥. Since they have

close connection to lattices, designs and information theory, construction of self-dual

codes of different lengths received a great deal of attention among coding theorists,

especially binary ones(for example (Dougherty et al., 1997); (Betsumiya et al., 2003);

(Bouyukliev et al., 2005); (Dontcheva., 2002)). A binary self-dual code is called

doubly even or Type II if the weight of every codeword is divisible by 4, a binary

self-dual code with some codeword of weight not divisible by 4 is called singly-even

or Type I.

If C is a code of parameters [n, k, d], then it can correct up to b(d− 1)/2cerrors.

By a good code we usually mean a code whose information rate k/n is as high as

possible, with minimum distance d is also as high as possible. However, these are

conflicting parameters, and there are numerous bounds that relate these parameters.

So, finding good codes has always been one of the main questions in coding theory.
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1.2 OVERVIEW OF THE DISSERTATION

In Chapter 2, the structure of the ring Rk,m with fundamental properties and

linear codes over the ring are investigated. We introduce the Lee weight and the re-

lated distance-preserving Gray map, which we prove to be orthogonality-preserving

as well. We verify the MacWilliams identities for the complete, Hamming and also

Lee weight enumerators, for codes over Rk,m.

Chapter 3 contains our different construction methods, lift, circulant matrices

and extensions, to get binary self-dual codes as Gray images of self-dual codes over

Rk,m for suitable k and m. We tabulate many good binary self-dual codes, includ-

ing an alternate construction to the extended binary Golay code, which has many

different constructions in the literature.

In Chapter 4, a new weight on Rk,m, namely the homogeneous weight, is

formed different from Hamming and Lee weight and the Gray-homogeneous map

is constructed using first order Reed-Muller codes. We list a considerable number

of optimal binary codes that are divisible with high levels of divisibility using the

images of cyclic, constacyclic and quasicyclic codes over Rk,m of different lengths.

The last chapter concludes the thesis with possible directions for future re-

search in the related areas.



CHAPTER 2

LINEAR CODES OVER THE RING Rk,m

In this chapter, we will study linear codes over Rk,m. Primarily, we familiarize

the ring Rk,m which is an infinite family of ring extension of the binary field, by

describing some of their properties, which are substantial to study linear codes

over this ring. For the rest of the chapter, we will define the Lee weight and the

corresponding Gray map for codes over the ring Rk,m. Besides these, we will give

MacWilliams identities for codes over Rk,m for all the relevant weight enumerators.

2.1 THE STRUCTURE OF THE RING Rk,m

The ring Rk,m is a generalization of rings of the form F2 + uF2 + · · ·+ uk−1F2

and F2 + uF2 + vF2 + uvF2, which we shall denote by Rk,1 and R2,2 respectively,

from here on.

The ring Rk,1 = F2 + uF2 + · · · + uk−1F2 is defined by uk = 0 where k > 0.

It is a characteristic 2 ring and has size 2k. The following figure shows the ideal

structure of this ring

{0} ⊂ uk−1Rk,1 ⊂ . . . ⊂ uRk,1 ⊂ Rk,1

Figure 2.1 The ideal lattice of the ring Rk,1.

Thus, the ring F2 + uF2 + · · ·+ uk−1F2 is a principal ideal ring and it is also a

finite chain ring.

The other ring F2 + uF2 + vF2 + uvF2 which is a generalization of F2 + uF2 is

6
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defined in (Yildiz and Karadeniz, 2010a) as a characteristic 2 ring with 16 elements

subject to the restrictions u2 = v2 = 0 and uv = vu. The lattice of ideals of the ring

is given by the following:

R2,2 = F2 + uF2 + vF2 + uvF2

Iu,v = 〈u, v〉

Iu Iv Iu+v

Iuv

I0 = {0}

Figure 2.2 The ideal lattice of the ring R2,2.

As seen in figure the ring F2 + uF2 + vF2 + uvF2 is not a principal ideal ring

and it is not a chain ring.

Now, we introduce the ring Rk,m. The ring Rk,m is defined as follows for

k ≥ m ≥ 1:

Rk,m = F2[u, v]/
〈
uk, vm, uv − vu

〉
.

Rk,m is a characteristic 2 ring of size 2km. When k = m = 1 the ring is simply

F2. When k = 2,m = 1 the ring is F2 + uF2 and codes over this ring have been

studied quite extensively in the literature (Dougherty et al., 1999). When k = m = 2

the ring is F2 +uF2 +vF2 +uvF2 and codes over this ring were studied in from many

different angles.

Rk,m can be viewed as an F2−vector space with a basis

{uivj | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ m− 1} .

Any element of Rk,m can be represented as

∑
0≤i≤k−1
0≤j≤m−1

ciju
ivj, cij ∈ F2 (2.1)
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in a unique way where, addition can be done in a natural way coordinate-wise

addition and multiplication of any two elements can be defined as

xy=
∑

0≤r≤k−1
0≤s≤m−1

 ∑
i1+i2=r
j1+j2=s

ci1j1di2j2

urvs.

for any x =
∑

0≤i1≤k−1
0≤j1≤m−1

ci1j1u
i1vj1 and y =

∑
0≤i2≤k−1
0≤j2≤m−1

di2j2u
i2vj2 ∈ Rk,m. Note that the

sum of indices in the inner sum above is done with respect to modulus k or m where

suitable. Rk,m is a finite commutative ring of characteristic 2, of size 2km.

Example 2.1.1. The ring R4,3 has 4096 elements. Let we take the elements a =

1 + u3 + uv + u3v and b = u3 + v + uv + v2 + uv2 ∈ R4,3 then

a+ b = 1 + v + u3v + v2 + uv2

and

a× b = u3 + v + uv + v2 + uv2 + u6 + u3v + u4v + u3v2 + u4v2 + u4v + uv2

+ u2v2 + uv3 + u2v3 + u6v + u3v2 + u4v2 + u3v3 + u4v3

= u3 + v + uv + u3v + v2.

One of the important structural properties is to characterize the units and

non-units in Rk,m. The following lemma takes care of this:

Lemma 2.1.2. An element in Rk,m of the form given in (2.1) is a unit if and only

if c00 is 1.

Proof. Since the characteristic of the ring is 2 and c2
n

= c for all c ∈ F2 and n ∈ Z+,

we have ( ∑
0≤i+j≤k+m−2

ciju
ivj

)2n

=
∑

0≤i+j≤k+m−2
cij (uivj)

2n
.

If we choose n so that 2n ≥ k,m, then the above sum becomes c00. Thus, if c00 = 1,

this will make the element a unit, while when c00 = 0, it will be a zero divisor and

hence a non-unit.

Let us denote by D(Rk,m), the set of non-units of Rk,m while with U(Rk,m)

the set of units. For example, the ring R3,2 has 32 units and non-units. We can list
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all the non-units as:

D(R3,2) = {0, u, u2, u+ u2, v, v + u, v + u2, v + u+ u2, uv, uv + u, uv + u2,

uv + u+ u2, uv + v, uv + v + u, uv + v + u2, uv + v + u+ u2, u2v,

u2v + u, u2v + u2, u2v + u+ u2, u2v + v, u2v + v + u2, u2v + uv,

u2v + v + u+ u2, u2v + uv + u, u2v + uv + u2, u2v + uv + u+ u2,

u2v + uv + v, u2v + uv + v + u, u2v + uv + v + u2, u2v + uv + v + u+ u2}.

Clearly 1 + x ∈ U(R3,2) for all x ∈ D(R3,2) where U(R3,2) shows the units of the

ring. In R2,2 we have

a2 =

 0, a is non-unit,

1, a is unit.

This is not the case in Rk,m in general.

Lemma 2.1.3. The ringRk,m is a local ring with unique maximal ideal Iu,v = 〈u, v〉.

This ideal consists of all non-units and has |Iu,v| =
|Rk,m|

2
.

Proof. Iu,v = {ur1 + vr2|r1, r2 ∈ Rk,m}. Clearly, c00 = 0 for all elements of Iu,v. So,

all non-units are in Iu,v from Lemma 2.1.2. Since the number of units and non-units

same in Rk,m we have that the cardinality of the ideal Iu,v is half the cardinality of

ring.

Note that when m = 1 the ring is Rk,1 = F2 + uF2 + · · · + uk−1F2. We know

the ring Rk,1 is a finite chain and principal ideal ring. The maximal ideal Iu,v is

not generated by a single element, so the ring Rk,m is not a principal ideal ring for

m > 1. Let us consider ideals Iu = 〈u〉 and Iv = 〈v〉 which are contained in Iu,v but

they are not related via inclusion. That is, the ring is not a chain ring for m > 1.

Clearly the ideal structure of the ring Rk,m is more complex for large values of k

and m, which makes it hard to give a general ideal lattice. However, we would like

to do this for the next case of R3,2.
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Example 2.1.4. The ring R3,2 has 13 ideals. They are listed as follows:

R3,2=F2 + uF2 + u2F2 + vF2 + uvF2 + u2vF2,

Iu,v=uF2 + u2F2 + vF2 + uvF2 + u2vF2,

Iu2,v=u
2F2 + vF2 + uvF2 + u2vF2,

Iu=uF2 + u2F2 + uvF2 + u2vF2,

Iu2,uv=u
2F2 + uvF2 + u2vF2,

Iv=vF2 + uvF2 + u2vF2,

Iu2=u
2F2 + u2vF2,

Iuv=uvF2 + u2vF2,

Iu2v=u
2vF2,

I0={0} and

Iu+v={0, u2, uv, u2 + uv, u2v, u2 + u2v, uv + u2v, u2 + uv + u2v,

u+ v, u+ u2 + v, u+ v + uv, u+ u2 + v + uv, u+ v + u2v, u+ u2 + v + u2v,

u+ v + uv + u2v, u+ u2 + v + uv + u2v},

Iu2+v={0, uv, u2v, uv + u2v, u2 + v, u2 + v + uv, u2 + v + u2v, u2 + v + uv + u2v},

Iu2+uv={0, u2v, u2 + uv, u2 + uv + u2v},

Accordingly, we show the ideal lattice of the ring R3,2 in Figure 2.3:
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R3,2 = F2 + uF2 + u2F2 + vF2 + uvF2 + u2vF2

Iu,v = 〈u, v〉

Iu Iu2,v Iu+v

Iv Iu2,uv Iu2+v

Iu2 Iuv Iu2+uv

Iu2v

I0 = {0}

Figure 2.3 The ideal lattice of the ring R3,2.

Theorem 2.1.5. The ring Rk,m is a Frobenius ring.

Proof. Firstly, we give necessary definitions and following result from [Greferath and

O’Sullivan, 2004]. For a finite ring R, the Jacobson radical of R which is shown by

Rad(R) is the intersection of all maximal left ideals of R. Note that this is the same

as the intersection of all maximal right ideals of R. The left socle of R is the sum of

all minimal left ideals of R and will be denoted by soc(RR) . Accordingly the right

socle soc(RR) is defined as the sum of all minimal right ideals of R. Note that the

left and right socles of a finite ring are two-sided ideals, which do not necessarily

coincide. A finite ring is called a Frobenius ring if it satisfies any(and hence all) of

the following equivalent statements for a finite ring R:

1. R/Rad(R) is isomorphic to soc(RR) as left R -modules.

2. R/Rad(R) is isomorphic to soc(RR) as right R -modules.

3. soc(RR) is left principal.

4. soc(RR) is right principal.
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5. R̂ and R are isomorphic as left R -modules.

6. R̂ and R are isomorphic as right R -modules.

Note that R̂ is character group of R. Since Rk,m has just one maximal ideal and

just one minimal ideal Rad(Rk,m) = Iu,v and Soc(Rk,m) = Iuk−1vm−1 . Hence, one

can also observe that Rk,m/Rad(Rk,m) ' Soc(Rk,m).

2.2 LINEAR CODES OVER Rk,m

A linear code C of length n over Rk,m is defined in the usual terms as an

Rk,m-submodule of Rn
k,m. Define the standard Euclidean inner product on Rk,m,

that is for a = (a1, a2, . . . an) and b = (b1, b2, . . . bn) ∈ Rn
k,m, let

〈a, b〉 =
n∑
i=1

aibi.

where the operations are performed in the ring Rk,m. The duality for codes over

Rk,m can then be defined naturally:

Definition 2.2.1. Let C be a linear code over Rk,m of length n, then we define the

dual of C as

C⊥ :=
{
b ∈ Rn

k,m |
〈
b, a
〉

= 0,∀a ∈ C
}
.

Definition 2.2.2. Let C be a linear code over Rk,m of length n. C is said to be

self-orthogonal if C ⊆ C⊥, self-dual if C = C⊥, isodual if C is equivalent to C⊥.

Since Rk,m is a Frobenius ring, by the results in (Wood, 1999), we have the

following lemma:

Lemma 2.2.3. Any linear code C over Rn
k,m satisfies |C| .

∣∣C⊥∣∣ = |Rk,m|n

2.3 THE LEE WEIGHT AND THE GRAY MAP ON Rk,m

In (Dougherty et al., 1999) Lee weight was defined for F2 + uF2 as ω(0) = 0,

ω(1) = ω(1+u) = 1, ω(u) = 2 and a distance preserving Gray map from (F2+uF2)
n
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to (F2)
n was defined by ā+ b̄u 7→ (ā+ b̄, b̄). Later, in (Yildiz and Karadeniz, 2010a),

the Gray map for F2 + uF2 was generalized to F2 + uF2 + vF2 + uvF2 as

ϕ : (F2 + uF2 + vF2 + uvF2)
n → (F2)

4n

a+ bu+ cv + duv → (a+ b+ c+ d, c+ d, b+ d, d).
(2.2)

Then the Lee weight was defined for any element a + bu + cv + duv ∈ F2 +

uF2 + vF2 + uvF2 by ωL(a + bu + cv + duv) = ωH(a + b + c + d, b + d, c + d, d)

to preserve distance. Note that these maps also preserve duality besides distance.

The aim of this section is to define a Lee weight for codes over the ring Rk,m and a

corresponding Gray map that is distance preserving and more importantly (to study

self-dual codes over Rk,m) duality-preserving. In doing so, we will first define these

concepts on Rk,1 and then inductively extend them over to Rk,m.

We define the following linear map which takes a linear code overRk,1 of length

n to a binary linear code of length kn.

Definition 2.3.1. Take an element ā = a0 + a1u+ a2u
2 + · · ·+ ak−2u

k−2 + ak−1u
k−1

of (Rk,1)
n, where ai ∈ Fn2 . Then define the Gray map φk1 from (Rk,1)

n to (F2)
kn as

follows: when k is even let

φk1(ā) = (a0 + a1 + · · ·+ ak−2 + ak−1, a1 + · · ·+ ak−2 + ak−1,

a1 + · · ·+ ak−2, · · · , a k
2
−1 + a k

2
+ a k

2
+1, a k

2
−1 + a k

2
, a k

2
),

and when k is odd let

φk1(ā) = (a0 + a1 + · · ·+ ak−2 + ak−1, a1 + · · ·+ ak−2 + ak−1,

a1 + · · ·+ ak−2, · · · , a k−3
2

+ a k−1
2

+ a k+1
2
, a k−1

2
+ a k+1

2
, a k−1

2
).

To preserve distance, we define the Lee weight of an element a = a0 + a1u +

· · ·+ak−1u
k−1 of Rk,1 as wL(a) = wH(φk1(a)) where wH denotes the usual Hamming

weight.

With these definitions, it is obvious that φk1 is a distance preserving linear

isometry from Rn
k,1 with the Lee distance to Fkn2 with the Hamming distance. As

pointed out earlier, we also want the map to preserve duality, which is proven in the

next theorem:

Theorem 2.3.2. The Gray image of a self-dual code of length n over Rk,1 is a

binary self-dual code of length kn.
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Proof. First, we prove that Gray images of orthogonal codewords in Rk,1 are or-

thogonal in F2. That is, we shall show that

〈
a, b
〉

= 0⇒ φk1(a).φk1(b) = 0

for all a, b ∈ Rn
k,1. Let us assume that a =

k−1∑
i=0

aiu
i and b =

k−1∑
j=0

bju
j. Then we see

that 〈
a, b
〉

= 0⇔
k−1∑
i=0

aiu
i.
k−1∑
j=0

bju
j = 0⇔

k−1∑
i+j=0

aibj = 0. (2.3)

Now, since

φk1(a ) = (
k−1∑
i=0

ai ,
k−1∑
i=1

ai ,
k−2∑
i=1

ai , · · · ,
k
2
+1∑

i= k
2
−1
ai ,

k
2∑

i= k
2
−1
ai ,

k
2∑

i= k
2

ai ),

φk1(b ) = (
k−1∑
i=0

bi ,
k−1∑
i=1

bi ,
k−2∑
i=1

bi , · · · ,
k
2
+1∑

i= k
2
−1
bi ,

k
2∑

i= k
2
−1
bi ,

k
2∑

i= k
2

bi )

we get, after some cancellations because of the characteristic being 2,

φk1(a).φk1(b) =
k−1∑
i=0

ai
k−1∑
i=0

bi +
k−1∑
i=1

ai
k−1∑
i=1

bi + · · ·

+

k
2∑

i= k
2
−1
ai

k
2∑

i= k
2
−1
bi +

k
2∑

i= k
2

ai

k
2∑

i= k
2

bi

= a0
k−1∑
i=0

bi + b0
k−1∑
i=1

ai + a1
k−2∑
i=1

bi + b1
k−2∑
i=2

ai + · · ·

+a k
2
−1

k
2∑

i= k
2
−1
bi + b k

2
−1

k
2∑

i= k
2

ai.

One can see that this last sum is exactly equal to the right-most sum in (2.3) which

is equal to 0. This shows us

φk1(C
⊥) ⊂ φk1(C)⊥. (2.4)

But, by the definition of φk1, φk1(C) is a binary linear code of length kn of size |C| .

Both F2 and Rk,1 are Frobenius, so we have

∣∣φk1(C⊥)
∣∣ =

∣∣C⊥∣∣ =
|Rk,1|n
|C| = 2kn

|φk1(C)| =
∣∣φk1(C)⊥

∣∣ .
Combining this with (2.4), we get

φk1(C
⊥) = φk1(C)⊥. (2.5)
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Because of the distance-preserving property of the Gray map we get the fol-

lowing important corollary:

Corollary 2.3.3. Let C be a self-dual code over Rk,1 of length n. Then φk1(C) is

a binary self-dual code of length kn. Moreover the Lee weight distribution of C is

the same as the Hamming weight distribution of φk1(C).

Now since Rk,m can be viewed as an Rk,1−vector space with a basis

{1, v, v2, . . . , vm−1},

we can write any element of Rk,m in the form c =
∑

0≤i≤m−1
ckiv

i, where cki ∈ Rk,1.

Now we can extend the Gray map easily from Rk,1 to Rk,m:

φkm(c) = (φk1(
m−1∑
i=0

cki), φk1(
m−1∑
i=1

cki), φk1(
m−2∑
i=1

cki),

· · · , φk1(
m
2
+1∑

i=m
2
−1
cki), φk1(

m
2∑

i=m
2
−1
cki), φk1(

m
2∑

i=m
2

cki)).

We note that, defining the Lee weight in the same way as the Hamming weight of

the image, distance and duality-preserving properties of φkm can be established in

exactly the same way as was done for φk1. Thus we can extend Corollary 2.3.3 to

the following important theorem which will be used in subsequent chapters:

Theorem 2.3.4. Let C be a self-dual code over Rk,m of length n. Then φkm(C) is

a binary self-dual code of length kmn. Moreover the Lee weight distribution of C

is the same as the Hamming weight distribution of φkm(C).

Example 2.3.5. Keeping in mind that the Gray maps φ22 and φ21 are exactly same

with the Gray maps that are found before in (Dougherty et al., 1999), (Yildiz and

Karadeniz, 2010a) for F2 + uF2 and F2 + uF2 + vF2 + uvF2, we give as examples the

Gray maps φ31 and φ32.

φ31(c1) = (c00 + c10 + c20, c10 + c20, c10)

for any element c1 ∈ R3,1. Hence, we can represent all elements of R3,1 by elements
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of F3
2 as following:

φ31(0) = (000)

φ31(1) = (100)

φ31(u) = (111)

φ31(1 + u) = (011)

φ31(u
2) = (110)

φ31(1 + u2) = (010)

φ31(u+ u2) = (001)

φ31(1 + u+ u2) = (101)

Now, we can define the Gray map φ32 for any element c2 = c00 + c10u+ c20u
2 +

c01v + c11uv + c21u
2v ∈ R3,2. Firstly, we rewrite the elements of R3,2 in the form

c2 = a + bv where a = c00 + c10u + c20u
2, b = c01 + c11u + c21u

2 ∈ R3,1. Because of

φ21 and φ31,

φ32(c2) = (φ31(a+ b), φ31(b))

= (φ31(c00 + c10u+ c20u
2 + c01 + c11u+ c21), φ31(c00 + c10u+ c20u

2))

= (φ31(c00 + c01 + (c10 + c11)u+ (c20 + c21)u
2), φ31(c00 + c10u+ c20u

2))

= (c00 + c01 + c10 + c11 + c20 + c21, c10 + c11 + c20 + c21,

c10 + c11, c00 + c10 + c20, c10 + c20, c10)

Accordingly, R3,2 has an element of weight 0, 5 elements of weight 1, 16 elements

of weight 2, 20 elements of weight 3, 15 elements of weight 4, 6 elements of weight

5 and just one element of weight 6, as shown in following table:
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Table 2.1 Lee weights of elements of R3,2.

elements of R3,2 ωL elements of R3,2 ωL

0 0 u2v 4

1 1 1 + u2v 3

u 3 u+ u2v 2

1 + u 2 1 + u+ u2v 4

u2 2 u2 + u2v 2

1 + u2 1 1 + u2 + u2v 3

u+ u2 1 u+ u2 + u2v 5

1 + u+ u2 2 1 + u+ u2 + u2v 4

v 2 v + u2v 2

1 + v 1 1 + v + u2v 3

u+ v 3 u+ v + u2v 3

1 + u+ v 4 1 + u+ v + u2v 2

u2 + v 2 u2 + v + u2v 2

1 + u2 + v 3 1 + u2 + u2v 3

u+ u2 + v 3 u+ u2 + v + u2v 3

1 + u+ u2 + v 2 1 + u+ u2 + v + u2v 4

uv 6 uv + u2v 2

1 + uv 5 1 + uv + u2v 3

u+ uv 3 u+ uv + u2v 3

1 + u+ uv 4 1 + u+ uv + u2v 2

u2 + uv 4 u2 + uv + u2v 4

1 + u2 + uv 5 1 + u2 + uv + u2v 3

u+ u2 + uv 5 u+ u2 + uv + u2v 1

1 + u+ u2 + uv 4 1 + u+ u2 + uv + u2v 2

v + uv 4 v + uv + u2v 4

1 + v + uv 5 1 + v + uv + u2v 3

u+ v + uv 3 u+ v + uv + u2v 3

1 + u+ v + uv 2 1 + u+ v + uv + u2v 4

u2 + v + uv 4 u2 + v + uv + u2v 4

1 + u2 + v + uv 3 1 + u2 + v + uv + u2v 5

u+ u2 + v + uv 3 u+ u2 + v + uv + u2v 3

1 + u+ u2 + v + uv 4 1 + u+ u2 + v + uv + u2v 2
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2.4 MACWILLIAMS IDENTITIES FOR CODES OVER Rk,m

The weight enumerator of a linear code C shows the number of codewords in C

that have each possible weight. MacWilliams identities specify weight enumerators

of dual of a code respect to weight enumerator of the code. By Jay Wood’s result

(Wood, 1999), MacWilliams identities hold for codes over all Frobenius rings. Since

Rk,m is a Frobenius ring it has a generating character and using this we can prove

MacWilliams identities for the complete weight enumerator, the Hamming weight

enumerator and the Lee weight enumerator of codes over Rk,m.

We first give a generating character for the additive group ofRk,m. A character

of a group G is defined as a group homomorphism from G to complex numbers. Let

χ : (Rk,m,+) → ({−1, 1} , .)∑
0≤i≤k−1
0≤j≤m−1

ciju
ivj 7→ (−1)wH(c) ,

where c = (cij) is the vector consisting of all the coefficients cij’s. Note that, for

a =
∑

0≤i≤k−1
0≤j≤m−1

ciju
ivj, b =

∑
0≤r≤k−1
0≤s≤m−1

drsu
rvs ∈ Rk,m, we have

χ(a+ b) = (−1)wH(c+d) = (−1)wH(c).(−1)wH(d) = χ(a).χ(b),

where d = (drs) is the vector consisting of all the coefficients drs’s. Thus χ is a

character.

Theorem 2.4.1. χ is a generating character for Rk,m.

Proof. Since χ(0) = 1 and χ(uk−1vm−1) = −1, χ is non-trivial when restricted to the

minimal ideal. Since every non-zero ideal contains the minimal ideal, χ is non-trivial

when restricted to any non-zero ideal, showing that χ is a generating character.

Example 2.4.2. The ring R4,1 has 16 elements. Character values of these elements

can easily be observed as follows:

χ(0) = 1 χ(u2) = −1 χ(u3) = −1 χ(u2 + u3) = 1

χ(1) = −1 χ(1 + u2) = 1 χ(1 + u3) = 1 χ(1 + u2 + u3) = −1

χ(u) = −1 χ(u+ u2) = 1 χ(u+ u3) = 1 χ(u+ u2 + u3) = −1

χ(1 + u) = 1 χ(1 + u+ u2) = −1 χ(1 + u+ u3) = −1 χ(1 + u+ u2 + u3) = 1.
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Let Rk,m = {g1, g2, . . . , g2km} be a labeling of the elements of the ring. The

complete weight enumerator of a code C over Rn
k,m is

CWEC(X) =
∑
c∈C

2km∏
i=1

X
ni(c)
i ,

where X = (X1, X2, . . . , X2km) and ni(c) is the number of occurrences of gi in c. Let

T be the 2km × 2km matrix such that

T =


χ(g1g1) χ(g1g2) · · · χ(g1g2km)

χ(g2g1)
. . . χ(g1g2km)

...
. . .

...

χ(g2kmg1) χ(g2kmg2) · · · χ(g2kmg2km)

 .

Then we have following theorems by (Wood, 1999):

Theorem 2.4.3. Let C be linear code over Rk,m and C⊥ be its dual. Then we have

the following identity for the complete weight enumerators:

CWEC⊥(X) = 1
|C|CWEC(T.X

t
).

Here, X
t

denotes the transpose of X.

Putting X1 = x and Xi = y for all i ≥ 2, we obtain the MacWilliams identity

for the Hamming weight enumerator:

Theorem 2.4.4.

HWEC⊥(x, y) = 1
|C|HWEC(x+ (|Rk,m| − 1)y, x− y),

where HWEC(x, y) is the Hamming weight enumerator of a code C over Rn
k,m given

as a homogeneous polynomial as,

HWEC(x, y) =
∑
c∈C

xn−wH(c)ywH(c).

Now, our goal is to describe MacWilliams identities for the Lee weight enu-

merators of codes over Rk,m. Firstly, we define Lee weight enumerator of a code C

over Rn
k,m as usual to be

LWEC(z) =
∑
c∈C

zwL(c)

where wL(c) denotes the Lee weight of a codeword. Then we have the following

theorem:
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Theorem 2.4.5. Let C be a linear code over Rk,m of length n then

LWEC⊥(z) =
1

|C|
(1 + z)kmnLWEC

(
1− z
1 + z

)
.

Proof. As we know φkm is a distance preserving map. Therefore

LWEC⊥(z) = HWEφkm(C⊥)(z),

where HWEC(z) denotes the Hamming weight enumerator of a code C. Recall that

we have φkm(C⊥) = φkm(C)⊥ by Theorem 2.5. So we get

LWEC⊥(z) = HWEφkm(C)⊥(z)

= 1
|φkm(C)|(1 + z)kmnHWEφkm(C)

(
1−z
1+z

)
= 1
|C|(1 + z)kmnLWEC

(
1−z
1+z

)
,

by the usual MacWilliams identities of binary codes.

Example 2.4.6. Let us consider a linear code C over R3,2 of length 7, with the

following generator matrix:



0 u2 u2v u2v + uv u2v + uv 0 u2

u2 0 u2 u2v u2v + uv u2v + uv 0

0 u2 0 u2 u2v u2v + uv u2v + uv

uv 0 u2 0 u2 u2v u2v + uv

uv uv 0 u2 0 u2 u2v

u2v uv uv 0 u2 0 u2

u2 u2v uv uv 0 u2 0


.

The Gray image of this code under φ32 is a binary linear code of parameters

[42, 12, 8] and the weight distribution of the code and its dual can be obtained by

MAGMA as following:

HWEφ32(C)(z) = 1 + 35z8 + 196z12 + 763z16 + 1414z20 + 1197z24 + 392z28

+84z32 + 14z36

HWEφ32(C⊥)(z) = 1 + 21z2 + 322z4 + 3682z6 + 3968z7 + 36897z8 + · · ·

Clearly, the code φ32(C
⊥) is also a binary linear code of parameters [42, 30, 2].



CHAPTER 3

SELF-DUAL CODES OVER Rk,m

As we defined in the previous chapter, a linear code C over Rk,m is self or-

thogonal if C ⊆ C⊥ and self-dual if C = C⊥. Moreover, while the dimension of a

self orthogonal code of length n is at most n/2, the dimension of a self-dual code

of length n has to be n/2. Useful structure of self-dual codes, make them closely

connected to many research areas such as lattices, designs and information theory.

Therefore, many researchers make an effort to construct good binary self-dual codes

of different automorphism groups and new weight enumerators. The article (Huff-

man, 2005) is a survey of self-dual linear codes over the fields F2, F3, and F4 and

the rings Z4, F2 + uF2, and F2 + vF2.

There exist some methods used to obtain self-dual codes, such as circulant

constructions, Hadamard matrices, automorphism groups and extensions. We have

the following upper bounds on the minimum Hamming distance for binary self-dual

codes :

Theorem 3.0.1. (Conway and Sloane, 1990) Let dI(n) and dII(n) be the minimum

distance of a Type I and Type II binary code of length n, respectively. Then

dII(n) ≤ 4b n
24
c+ 4

and

dI(n) ≤

 4b n
24
c+ 4 if n 6≡ 22 (mod 24)

4b n
24
c+ 6 if n ≡ 22 (mod 24).

Self-dual codes meeting these bounds are called extremal. In this chapter, we

construct binary self-dual codes as the Gray images of self-dual codes over Rk,m by

lifts, different circulant constructions and extensions.

21
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3.1 PROJECTIONS AND LIFTS

Recall that elements of Rk,m can be represented in the form
∑

0≤i≤k−1
0≤j≤m−1

ciju
ivj.

Now define a projection from Rk,m to F2.

Definition 3.1.1. Let µ be a map from Rk,m to F2 such that

µ(
∑

0≤i≤k−1
0≤j≤m−1

ciju
ivj) = c00 (3.1)

Clearly µ is an epimorphism and it is called a natural projection of Rk,m to F2.

Consider the projections

πv : Rk,m → Rk,1 defined by v 7→ 0,

πu : Rk,1 → F2 defined by u 7→ 0,

then clearly πu ◦ πv is the projection µ.

Let C be a linear code over Rk,m and µ(C) be its projection. Then C is said

to be a lift of µ(C). Our general strategy in constructing self-dual codes over Rk,m

will be to lift from good binary self-dual codes. Now notice that if for x, y ∈ Rn
k,m,

we have 〈x, y〉 = 0, then x00 · y00 = µ(x) · µ(y) = 0. Thus we have the following

result:

Theorem 3.1.2. Let C be a self-dual code over Rk,m of length n. Then µ(C) is a

self orthogonal code over F2 of length n.

Corollary 3.1.3. If C is a free self-dual code over Rk,m of length 2n, that is if C

is generated by a matrix of the form [In|A], then µ(C) is a binary self-dual code of

length 2n.

The following theorem gives a bound between the minimum Lee weight of a

code and the minimum Hamming weight of its projection:

Theorem 3.1.4. Let C be a linear code over Rk,m of length n with minimum Lee

weight d and µ(C) be its projection to F2. If d′ denotes the minimum Hamming

weight of µ(C), we have d ≤ 2md′.
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Proof. Let x00 ∈ µ(C) with wH(x00) = d′. Then there exists

c = x00 +
∑

1≤i+j≤k+m−2
xiju

ivj ∈ C.

But then (uk−1vm−1)c = x00u
k−1vm−1 ∈ C, because C is linear code over Rk,m. Now,

wL(x00u
k−1vm−1) = wH(x00, x00, 00, x00, x00, 00, · · · , x00, x00, 00︸ ︷︷ ︸

m times x00,x00,00

)

where 00 = 0, · · · , 0︸ ︷︷ ︸
k−2 times

. That is, wL(uk−1vm−1x00) = 2md′. This proves the theorem.

3.2 DOUBLE CIRCULANT,BORDERED DOUBLE CIRCULANT AND

FOUR CIRCULANT CONSTRUCTIONS

In (MacWilliams and Sloane, 1978), two construction methods are described

using circulant matrices. The double circulant and the bordered double circulant

constructions have been used quite successfully by many researchers to obtain good

self-dual binary codes. We can easily adopt these constructions over Rk,m:

Definition 3.2.1. Let M be a circulant matrix over Rk,m of order n. Then the

matrix [In |M ] generates codes over Rk,m of length 2n. This is called the pure

double circulant or double circulant construction.

Definition 3.2.2. Let M be a circulant matrix over Rk,m of order n− 1. Then the

matrix In
∣∣∣∣∣∣∣∣∣∣∣∣

x y · · · y

z
... M

z

 (3.2)

where x, y, z ∈ Rk,m generates codes over Rk,m of length 2n. This is called bordered

double circulant construction.

A modification on these constructions was introduced later. This construction,

which is called four circulant construction in literature, was given first time in (Bet-

sumiya et al., 2003) for self-dual codes over Fp. In (Georgiou and Lappas, 2012)
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it was called as two-block circulant construction. In (Karadeniz et al., 2014b) this

construction was applied to the ring F2 + uF2 to obtain extremal binary self-dual

codes. Then following theorem can be proven in the exact same way as was done

in (Karadeniz et al., 2014b):

Theorem 3.2.3. Let A and B be circulant matrices over Rk,m of length n such

that AAt +BBt = In. Then the matrixI2n
∣∣∣∣∣∣ A B

Bt At

 (3.3)

generates self-dual codes over Rk,m of length 4n. This is called four circulant con-

struction.

Now, we can give binary self-dual codes of some lengths obtained from self-dual

codes over Rk,m by the three circulant constructions mentioned above.

3.2.1 The General idea

The projection µ, which is defined above preserves orthogonality. Also the

image of a double circulant self-dual code over Rk,m of length n under µ must be

a double circulant binary self-dual code, the image of a bordered-double circulant

self-dual code over Rk,m of length n under µ has to be a bordered-double circulant

binary self-dual code and the same is true for four circulant codes as well.

So, if we want to obtain a good self-dual code over Rk,m by one of the con-

struction methods above, we look at the projection and look for the best binary

self-dual codes of the same length obtained from the same constructions. We then

lift these codes over the ringRk,m by lifting 1 to a unit inRk,m and 0 to a non-unit in

Rk,m. Theorem 3.1.4 tells us exactly which binary codes to lift. Then an exhaustive

search using a computer algebra reveals all the self-dual codes over Rk,m that can

be obtained through these constructions. We then choose the best ones and take

the Gray images to obtain good binary self-dual codes. In what follows we apply

this idea to certain lengths and certain rings of the form Rk,m. We only list the ones

through which we have obtained extremal or near extremal binary self-dual codes.

The existence of the Type II extremal code of length 72 is still an open problem.

So the best known binary self-dual codes of length 72 for both Type I and Type II

have parameters [72, 36, 12].
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3.2.2 The extended binary Golay code

The binary Golay code is probably the most well known code in the literature.

It is a perfect 3-error correcting code of parameters [23, 12, 7]. When we extend this

code by a parity check symbol we obtain the Type II extremal self-dual code of

parameters [24, 12, 8]. This code is unique up to equivalence and is the first example

of the theoretically good self-dual codes of length 24k. Using Assmus-Mattson the-

orem, it also leads 5 designs with parameters (24, 8, 1) and (24, 12, 8). There have

been many different constructions for this code in the literature. (McLoughlin and

Hurley, 2008), (Peng and Farrell, 2006) are examples of these constructions. In (Ka-

radeniz and Yildiz, 2014), the extended Golay code was constructed from what we

now call R2,2.

We have been able to give a construction for the extended Golay code using

bordered double circulant construction over R3,1 and R3,2. Note that because of

the Gray map, these are the only ones we can use (other than R2,1 and R2,2, which

have already been used before). To construct it from R3,1, we need the binary code

to lift to be of parameters [8, 4, 4] which is also unique. Using all possible lifts of

the bordered double circulant matrix that generates the [8, 4, 4]-code, we were able

to obtain the Golay code from R3,1 quite easily. The following matrix turns out

to generate the self-dual code over R3,1 whose binary image is the extended Golay

code:

M =


1 0 0 0 u+ u2 1 + u 1 + u 1 + u

0 1 0 0 1 + u u 1 1 + u2

0 0 1 0 1 + u 1 + u2 u 1

0 0 0 1 1 + u 1 1 + u2 u

 .

Doing the same thing over bordered double circulant binary codes of length

4, which narrowed the search field rather considerably, we see that the following

matrix generates the self-dual code over R3,2 whose binary image is the extended

Golay code:

M ′ =

 1 0 u+ v 1 + u+ v

0 1 1 + u+ u2 + v + uv u+ v

 .
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3.2.3 Extremal Self-Dual Codes of Length 36

Melchor and Gaborit have classified all the 41 extremal binary [36, 18, 8] self-

dual codes in (Melchor and Gaborit, 2008). We have obtained some of these through

R3,1 and R3,2 using some of the aforementioned constructions. To be precise, we

found 6 of the 41 extremal self-dual codes from the constructions mentioned above.

Now, since the four circulant codes have to be of length divisible by 4, the four

circulant construction was applied only to the case of R3,1, whereas the double

circulant and the bordered double circulant constructions were applied to both R3,1

and R3,2. In the case of R3,1 we searched for all the good binary self-dual codes of

length 12 (in this case with the parameters [12,6,4]) and then lifted them. In the

case of R3,2 we lifted all the good binary self-dual codes of length 6.

After searching over all possible lifts that are self-dual and taking Gray images

of these lifts we have obtained 6 non-equivalent extremal self-dual codes of length 36.

Two of these codes also have been obtained taking Gray images of double circulant

self-dual codes over R3,1 and R3,2 of length 12.

There are two possible weight enumerators for extended self-dual codes of

length 36:

W36,1 = 1 + 225y8 + 2016y10 + · · · (3.4)

and

W36,2 = 1 + 289y8 + 1632y10 + · · · (3.5)

Table 3.1 Binary [36,18,8] extremal self-dual codes obtained from double circulant

constructions.

Ring First row of M |Aut(C)| W36(C)

R3,1 (u2 + u, 1, u+ 1, u2 + u+ 1, u2 + u+ 1, 1) 864 W36,1

R3,2 (u+ v, u2 + u+ v, u2v + uv + v + 1) 864 W36,1

R3,1 (u, 1, u+ 1, u2 + u+ 1, u2 + u+ 1, 1) 12960 W36,1

R3,2 (u+ v, u2v + u2 + u+ v, uv + 1) 12960 W36,1
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Table 3.2 Binary [36,18,8] extremal self-dual codes obtained from bordered double

circulant construction over R3,1.

First row of M (x, y, z) |Aut(C)| W36(C)

(u, 1, 1, u2 + 1, u2 + 1) (u, u+ 1, u+ 1) 80 W36,2

(u, 1, u+ 1, u2 + u+ 1, 1) (u2 + u, u+ 1, u+ 1) 240 W36,1

Table 3.3 Binary [36,18,8] extremal self-dual codes obtained from four circulant

construction over R3,1.

First row of A First row of B |Aut(C)| W36(C)

(u, 1, u2 + 1) (u+ 1, u+ 1, u+ 1) 96 W36,1

(u2 + u, 1, u2 + 1) (u+ 1, u+ 1, u+ 1) 288 W36,1

(u, 1, u2 + 1) (u+ 1, u+ 1, u2 + u+ 1) 864 W36,1

(u2 + u, 1, u2 + 1) (u+ 1, u+ 1, u2 + u+ 1) 12960 W36,1

3.2.4 Extremal Self-Dual Codes of Length 66

Extremal codes of length 66 have parameters [66, 33, 12] and their possible

weight enumerators are as follows:

W66,1 = 1 + (858 + 8β) y12 + (18678− 24β) y14 + · · · , 0 ≤ β ≤ 778, (3.6)

W66,2 = 1 + 1690y12 + 7990y14 + · · · (3.7)

and

W66,3 = 1 + (858 + 8β) y12 + (18166− 24β) y14 + · · · , 14 ≤ β ≤ 756. (3.8)

We have obtained 2 non-equivalent extremal binary self-dual [66, 33, 12] codes

from double circulant matrices over R3,1. Because of Theorem 3.1.4, we needed to

search for the [22, 11, 6] binary double circulant self-dual code, which we lifted to

R3,1. After taking Gray images of these lifts we have obtained the following extremal
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binary self-dual [66, 33, 12] codes, which were also obtained in (Kaya et al., 2014)

by a different construction:

Table 3.4 Binary [66,33,12] extremal self-dual codes obtained from double circulant

construction over R3,1

First row of A |Aut(C)| β in W66,1

(u, u, u, 1, u, u2 + u, 1, u, 1, 1, 1) 220 22

(u2 + u, u2 + u, u2 + u, 1, u2 + u, u, 1, u2 + u, 1, 1, 1) 660 66

3.2.5 Best known Self-dual Codes of Length 72

We know that an extremal Type I code of length 72 must have a minimum

distance 14 while a Type II one must have 16 as its minimum distance. But as

yet the existence of these codes is an open problem. However a lot of work has

gone towards classifying self-dual codes of parameters [72, 36, 12] of both types,

especially Type II ones. A number of singly even self-dual [72, 36, 12] codes have

been listed in (Kaya et al., 2014) and (Dougherty et al., 2007). In (Gulliver and

Harada, 2008), (Dougherty et al., 1997), (Dontcheva., 2002), (Bouyukliev et al.,

2005) a great number of doubly even self-dual [72, 36, 12] codes are constructed. We

have constructed a considerable number of new Type I and Type II self-dual codes of

length 72 as images of self-dual codes overR3,1 andR3,2 via the double and bordered

double circulant constructions. To do this, by using Theorem 3.1.4, we have had to

do an exhaustive search over all possible lifts of suitable binary self-dual codes of

length 24 and 12, respectively. We illustrate this method in the following example:

Example 3.2.4. Consider the binary self-dual code of the parameters [24, 12, 6]

obtained by pure double circulant construction. We lift the first row of the circulant

matrix in its generator matrix to R3,1 as follows:

x = (0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1)

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

X = (0, 0, 0, u, u+ 1, u2, u2, 1, u2 + u+ 1, u+ 1, 0, u2 + 1).
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Afterwards, we set the pure double circulant matrix of the form [I12 | X] and

we generate self-dual codes over R3,1 by MAGMA. The Gray image of this code is

a binary Type I [72, 36, 12]−self-dual code with the weight enumerator 1 + 494y12 +

8640y14 + · · · and it has an automorphism group of order 48.

Using the double circulant construction over R3,1 we were able to obtain 117

non-equivalent Type I binary [72, 36, 12]-codes and 43 non-equivalent Type II binary

[72, 36, 12]-codes. Using the bordered double circulant construction over R3,1 we

found 27 new Type II and 36 Type I self-dual [72, 36, 12]-codes. Moreover, by using

the bordered double circulant construction over R3,2, we constructed 22 new Type

I [72, 36, 12]-codes and 35 new Type II [72, 36, 12]-codes. In (Kaya et al., 2014) two

possible weight enumerators were given for Type I [72, 36, 12]-codes as follows:

W72,1 = 1 + 2βy12 + (8640− 64γ)y14 + (124281− 24β + 384γ)y16+···

W72,2 = 1 + 2βy12 + (7616− 64γ)y14 + (134521− 24β + 384γ)y16+···
(3.9)

where β and γ are parameters.

Before proceeding with the following tables in which we list all the new Type

I and Type II binary self-dual codes of parameter [72, 36, 12], we would like to

introduce a notation to shorten the elements of R3,2, that can also be used for

R3,1 as well. Note that R3,2 is an F2-vector space with a basis that we can take as

{u2v, uv, v, u2, u, 1}. Any element in R3,2 corresponds to a 6-bit string over F2 which

we can consider as a base 2 expression of a natural number. With this notation every

element in R3,2 corresponds to a integer from 0 to 63. For example uv + v + u2 + 1

corresponds to (011101) whose numerical value can be taken as 29. Taking the basis

as {u2, u, 1} gives a numerical value from 0 to 7 to any element in R3,1.

The 76 and 41 new binary Type I [72, 36, 12] self-dual codes that were obtained

from double circulant matrices overR3,1 all have 48 and 96 respectively as the orders

of their automorphism groups and the parameters for their weight enumerators in

W72,1 were given in following tables:
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Table 3.5 New Type I [72, 36, 12] self-dual codes obtained from double circulant

matrices over R3,1,|Aut(Bi)| = 48.

code Bi first row of M β in W72,1 γ in W72,1

B1 (2,2,2,4,3,4,6,1,3,5,6,7) 185 0

B2 (0,0,0,6,3,4,4,1,7,7,0,5) 199 0

B3 (2,0,2,0,3,6,6,3,3,1,6,5) 201 0

B4 (4,2,2,6,1,6,0,3,5,7,2,7) 207 0

B5 (6,2,0,2,3,6,2,3,7,3,0,7) 225 0

B6 (0,0,2,4,3,6,4,3,3,5,6,5) 231 0

B7 (6,0,2,0,3,6,2,3,3,1,6,5) 233 0

B8 (0,0,0,2,3,4,4,1,7,3,0,5) 247 0

B9 (6,2,2,4,3,4,2,1,3,5,6,7) 249 0

B10 (6,2,2,6,3,4,2,1,3,7,6,7) 255 0

B11 (2,2,2,6,3,4,6,1,3,7,6,7) 271 0

B12 (6,2,0,4,1,4,2,1,1,5,4,7) 273 0

B13 (2,2,0,4,1,4,6,1,1,5,4,7) 281 0

B14 (0,2,0,6,3,6,4,3,7,7,0,7) 295 0

B15 (2,0,0,0,1,6,6,3,1,1,4,5) 297 0

B16 (4,2,2,2,1,6,0,3,5,3,2,7) 303 0

B17 (6,0,6,4,3,2,2,3,3,1,2,1) 317 0

B18 (0,2,2,6,1,6,4,3,5,7,2,7) 319 0

B19 (2,0,0,6,3,4,6,1,7,7,0,5) 321 0

B20 (2,2,2,2,1,6,6,3,5,3,2,7) 329 0

B21 (0,0,2,0,3,2,4,3,3,5,6,1) 339 0

B22 (2,0,6,0,3,2,6,3,3,5,2,1) 341 0

B23 (6,2,2,6,1,6,2,3,5,7,2,7) 353 0

B24 (4,0,2,4,3,2,0,3,3,1,7,1) 355 0

B25 (4,2,0,6,3,6,0,3,7,7,0,7) 375 0

B26 (2,0,0,2,3,4,6,1,7,3,0,5) 377 0

B27 (0,2,2,2,1,6,4,3,5,3,2,7) 463 0

B28 (2,0,0,3,6,1,3,3,1,4,7,5) 145 6
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Table 3.5 (continued)

B29 (0,6,4,3,6,3,3,7,5,6,5,7) 153 6

B30 (0,4,2,1,2,7,3,5,7,4,1,3) 159 6

B31 (0,4,0,3,2,3,3,7,5,2,1,7) 165 6

B32 (0,2,0,1,4,5,1,1,1,6,5,1) 169 6

B33 (0,0,6,1,6,3,3,5,7,0,5,7) 171 6

B34 (0,2,6,1,4,3,1,1,7,6,5,7) 177 6

B35 (0,0,2,1,6,1,3,5,3,0,5,5) 181 6

B36 (0,2,4,3,2,1,3,7,1,2,1,5) 183 6

B37 (0,6,6,3,2,5,3,7,3,6,1,1) 193 6

B38 (0,0,2,3,4,1,1,3,3,4,5,5) 195 6

B39 (0,2,4,3,6,3,3,7,5,2,5,7) 201 6

B40 (0,0,2,1,2,3,3,5,7,0,1,7) 207 6

B41 (0,0,0,1,2,7,3,5,5,0,1,3) 213 6

B42 (0,0,0,3,4,1,1,3,1,4,5,5) 217 6

B43 (0,4,6,1,6,3,3,5,7,4,5,7) 219 6

B44 (0,0,6,3,4,7,1,3,7,4,5,3) 225 6

B45 (0,6,4,3,2,1,3,7,1,6,1,5) 231 6

B46 (0,4,0,1,2,7,3,5,5,4,1,3) 237 6

B47 (2,0,0,1,4,1,1,5,1,0,7,5) 243 6

B48 (0,2,2,3,6,1,3,7,3,2,5,5) 253 6

B49 (0,0,4,3,2,7,1,3,5,4,5,3) 255 6

B50 (2,0,0,3,6,5,3,3,1,4,7,1) 265 6

B51 (2,0,2,3,6,1,3,3,3,4,7,5) 267 6

B52 (0,0,4,3,0,1,1,3,1,4,1,5) 277 6

B53 (0,0,6,3,0,1,1,3,3,4,1,5) 279 6

B54 (2,0,2,3,2,7,3,3,7,4,3,3) 285 6

B55 (2,0,0,3,2,7,3,3,5,4,3,3) 291 6

B56 (0,2,6,1,4,7,1,1,7,6,5,3) 297 6

B57 (0,2,2,3,2,3,3,7,7,2,1,7) 303 6

B58 (0,0,0,1,2,3,3,5,5,0,1,7) 309 6
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Table 3.5 (continued)

B59 (0,6,6,3,6,3,3,7,7,6,5,7) 315 6

B60 (0,0,4,1,6,3,3,5,5,0,5,7) 321 6

B61 (0,0,4,3,0,5,1,3,1,4,1,1) 325 6

B62 (0,0,4,1,2,1,3,5,1,0,1,5) 327 6

B63 (0,0,6,3,4,3,1,3,7,4,5,7) 345 6

B64 (2,0,4,3,2,5,3,3,1,4,3,1) 349 6

B65 (0,2,4,1,4,3,1,1,5,6,5,7) 351 6

B66 (2,0,2,3,6,5,3,3,3,4,7,1) 387 6

B67 (0,0,0,3,0,7,1,3,5,4,1,3) 411 6

B68 (0,2,4,1,4,7,1,1,5,6,5,3) 423 6

B69 (6,2,2,2,1,6,2,3,5,3,2,7) 345 24

B70 (2,2,0,6,3,6,6,3,7,7,0,7) 393 24

B71 (0,0,6,4,3,2,4,3,3,1,2,1) 411 24

B72 (4,0,6,0,3,2,0,3,3,5,2,1) 427 24

B73 (6,0,2,0,3,2,2,3,3,5,6,1) 429 24

B74 (2,0,2,4,3,6,6,3,3,5,6,5) 449 24

B75 (2,0,2,4,3,2,6,3,3,1,6,1) 453 24

B76 (6,2,2,0,3,4,2,1,3,1,6,7) 497 24

Table 3.6 New Type I [72, 36, 12] self-dual codes obtained from double circulant

matrices over R3,1,|Aut(Bi)| = 96.

code Bi first row of M β in W72,1 γ in W72,1

B77 (0,4,2,2,1,4,4,1,5,3,2,1) 235 0

B78 (0,6,2,2,1,6,4,3,5,3,2,3) 259 0

B79 (4,2,0,6,3,2,0,3,7,3,0,3) 291 0

B80 (4,0,0,6,3,0,0,1,7,3,0,1) 315 0

B81 (0,0,2,6,1,0,4,1,5,3,2,1) 331 0

B82 (4,6,0,2,3,6,0,3,7,3,0,3) 339 0

B83 (2,2,0,6,3,2,6,3,7,3,0,3) 341 0

B84 (0,2,2,6,1,2,4,3,5,3,2,3) 355 0
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Table 3.6 (continued)

B85 (2,0,2,2,1,0,6,1,5,7,2,1) 357 0

B86 (4,4,0,2,3,4,0,1,7,3,0,1) 363 0

B87 (6,4,0,2,3,4,2,1,7,3,0,1) 365 0

B88 (0,6,0,6,3,6,4,3,7,7,0,3) 379 0

B89 (6,4,0,6,3,4,2,1,7,7,0,1) 381 0

B90 (2,0,2,6,1,0,6,1,5,3,2,1) 389 0

B91 (0,4,2,6,1,4,4,1,5,7,2,1) 403 0

B92 (2,4,0,6,3,4,6,1,7,7,0,1) 413 0

B93 (0,0,0,6,3,0,4,1,7,3,0,1) 427 0

B94 (2,6,0,2,3,6,6,3,7,3,0,3) 429 0

B95 (4,0,0,2,3,0,0,1,7,7,0,1) 435 0

B96 (4,2,0,2,3,2,0,3,7,7,0,3) 459 0

B97 (6,0,0,2,3,0,2,1,7,7,0,1) 485 0

B98 (0,2,0,6,3,2,4,3,7,3,0,3) 499 0

B99 (4,2,2,2,1,2,0,3,5,7,2,3) 507 0

B100 (2,4,2,6,1,4,6,1,5,7,2,1) 509 0

B101 (0,2,2,2,1,2,4,3,5,7,2,3) 331 24

B102 (6,4,2,6,1,4,2,1,5,7,2,1) 333 24

B103 (4,4,0,6,3,4,0,1,7,7,0,1) 339 24

B104 (0,0,2,2,1,0,4,1,5,7,2,1) 355 24

B105 (2,0,0,2,3,0,6,1,7,7,0,1) 357 24

B106 (4,6,0,6,3,6,0,3,7,7,0,3) 363 24

B107 (6,6,2,6,1,6,2,3,5,7,2,3) 381 24

B108 (4,0,2,6,1,0,0,1,5,3,2,1) 411 24

B109 (0,4,0,2,3,4,4,1,7,3,0,1) 427 24

B110 (6,2,0,6,3,2,2,3,7,3,0,3) 453 24

B111 (4,2,2,6,1,2,0,3,5,3,2,3) 483 24

B112 (0,6,0,2,3,6,4,3,7,3,0,3) 499 24

B113 (6,0,0,6,3,0,2,1,7,3,0,1) 501 24

B114 (2,6,2,2,1,6,6,3,5,3,2,3) 525 24



34

Table 3.6 (continued)

B115 (2,4,2,2,1,4,6,1,5,3,2,1) 573 24

B116 (6,2,0,2,3,2,2,3,7,7,0,3) 629 48

B117 (2,6,2,6,1,6,6,3,5,7,2,3) 653 48

The order of the automorphism group of all the 36 new binary Type I [72, 36, 12]

self-dual codes that were constructed from bordered-double circulant matrices over

R3,1 is 44 and their parameters in W72,2 were given in following table:

Table 3.7 New Type I [72, 36, 12] binary self-dual codes obtained from bordered

double circulant matrices over R3,1,|Aut(Ci)| = 44.

Code Ci first row of M x, y, z β in W72,2 γ in W72,2

C1 (0,0,6,3,6,3,5,2,3,1,7) (2,3,3) 88 0

C2 (0,0,6,3,4,1,1,6,5,1,7) (4,1,1) 89 0

C3 (0,0,0,3,2,3,7,2,1,7,5) (4,1,1) 111 0

C4 (0,0,0,3,4,1,3,2,3,7,1) (2,3,3) 132 0

C5 (0,0,6,3,2,3,5,6,7,1,3) (2,3,3) 154 0

C6 (0,0,6,3,6,5,5,4,7,5,1) (4,1,1) 155 0

C7 (0,0,2,3,4,3,5,4,5,1,1) (2,3,3) 165 0

C8 (0,0,2,3,4,5,5,2,1,5,7) (4,1,1) 177 0

C9 (0,0,0,1,6,7,5,4,3,1,1) (2,3,3) 187 0

C10 (0,0,2,3,6,7,1,6,7,5,7) (2,3,3) 198 0

C11 (0,2,0,1,2,1,7,4,3,1,5) (4,1,1) 199 0

C12 (0,0,0,3,0,1,3,6,7,7,5) (2,3,3) 220 0

C13 (0,2,0,3,4,7,1,6,7,7,1) (4,1,1) 221 0

C14 (0,2,4,1,6,3,3,2,7,1,7) (2,3,3) 231 0

C15 (0,0,2,1,0,1,7,4,3,3,3) (2,3,3) 242 0

C16 (0,0,0,1,2,1,5,6,3,5,3) (4,1,1) 243 0

C17 (0,2,0,1,2,7,7,2,7,5,3) (2,3,3) 253 0

C18 (0,0,2,1,4,1,7,0,7,3,7) (2,3,3) 264 0

C19 (0,0,6,1,0,3,3,6,3,3,5) (4,1,1) 265 0
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Table 3.7 (continued)

C20 (0,0,0,1,4,3,1,6,1,5,7) (2,3,3) 275 0

C21 (0,2,0,3,6,5,5,2,1,7,1) (2,3,3) 286 0

C22 (0,2,4,1,0,1,7,2,5,1,3) (4,1,1) 287 0

C23 (0,2,0,1,4,3,3,4,1,1,1) (2,3,3) 297 0

C24 (0,2,0,3,6,3,5,4,5,3,7) (4,1,1) 309 0

C25 (0,2,2,1,2,5,1,4,1,3,3) (2,3,3) 319 0

C26 (0,0,4,3,6,1,3,4,5,7,7) (2,3,3) 330 0

C27 (0,0,2,1,4,7,7,6,3,7,1) (4,1,1) 331 0

C28 (0,2,2,1,4,7,5,4,3,3,7) (4,1,1) 353 0

C29 (0,0,4,1,0,7,5,6,1,1,3) (2,3,3) 363 0

C30 (0,0,0,3,2,5,7,4,5,3,3) (2,3,3) 374 0

C31 (0,0,4,1,6,3,1,0,7,5,1) (2,3,3) 385 0

C32 (0,2,4,3,4,3,5,2,3,3,1) (4,1,1) 397 0

C33 (0,0,4,3,4,5,7,6,7,3,1) (2,3,3) 418 0

C34 (0,2,4,3,2,1,1,2,1,3,5) (2,3,3) 462 0

C35 (0,0,2,3,0,5,5,6,5,5,3) (4,1,1) 573 0

C36 (0,0,4,3,0,3,7,4,7,7,3) (4,1,1) 617 0
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The 22 new binary Type I [72, 36, 12] self-dual codes that were obtained from

bordered-double circulant matrices over R3,2 had weight enumerator of the form

W72,1. Constructions of the codes whose automorphism groups are of order 40 and

20 have been listed in following table:

Table 3.8 New Type I [72, 36, 12] binary self-dual codes obtained from bordered

double circulant matrices over R3,2.

Code Di first row of M x, y, z β in W72,1 γ in W72,1 |Aut(Di)|

D1 (16,1,11,43,37) (20,49,49) 383 24 40

D2 (16,1,27,59,37) (20,49,49) 363 24 40

D3 (48,1,11,43,37) (20,17,25) 379 12 40

D4 (48,1,27,59,37) (20,17,25) 359 12 40

D5 (16,1,11,43,37) (20,17,17) 319 12 40

D6 (56,1,27,59,5) (28,17,17) 309 10 40

D7 (24,17,27,59,21) (28,17,25) 289 10 40

D8 (24,1,11,43,5) (28,17,25) 269 10 40

D9 (56,17,11,43,21) (28,17,17) 249 10 40

D10 (56,49,27,59,53) (28,17,33) 296 18 20

D11 (24,17,11,43,21) (28,17,41) 276 18 20

D12 (24,33,11,43,37) (28,17,41) 246 18 20

D13 (24,49,27,59,53) (28,17,41) 236 18 20

D14 (56,1,27,59,5) (28,17,33) 206 18 20

D15 (56,1,11,43,5) (28,17,33) 186 18 20

D16 (56,17,27,59,21) (28,17,33) 176 18 20

D17 (56,1,27,59,5) (28,17,49) 277 16 20

D18 (56,1,11,43,5) (28,17,49) 237 16 20

D19 (24,1,11,43,5) (28,17,57) 197 16 20

D20 (48,1,27,59,37) (20,17,57) 307 9 20

D21 (16,1,27,59,37) (20,17,49) 287 9 20

D22 (16,1,11,43,37) (20,17,49) 267 9 20
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The possible weight enumerators for a Type II [72, 36, 12] code are given in

(Dougherty et al., 1997) as

W72 = 1 + (4398 + α)y12 + (197073− 12α)y16+···

Constructions of the new Type II binary self-dual codes of the parameters

[72, 36, 12] obtained from circulant matrices over R3,1 and R3,2 were listed in follow-

ing tables:

Table 3.9 New Type II [72,36,12] self-dual codes obtained from double circulant

matrices over R3,1.

code Fi first row of M α in W72 |Aut(Fi)|

F1 (2, 0, 4, 3, 6, 1, 3, 3, 5, 4, 7, 5) −3996 144

F2 (0, 6, 0, 3, 6, 3, 3, 7, 1, 6, 5, 7) −3900 48

F3 (0, 0, 6, 1, 2, 3, 3, 5, 3, 0, 1, 7) −3888 48

F4 (0, 6, 4, 3, 2, 3, 3, 7, 1, 6, 1, 7) −3876 48

F5 (0, 0, 2, 1, 2, 1, 3, 5, 7, 0, 1, 5) −3852 48

F6 (2, 0, 2, 3, 6, 7, 3, 3, 3, 4, 7, 3) −3804 48

F7 (0, 0, 6, 3, 4, 5, 1, 3, 7, 4, 5, 1) −3768 48

F8 (0, 0, 0, 1, 6, 3, 3, 5, 1, 0, 5, 7) −3756 48

F9 (0, 6, 0, 3, 2, 1, 3, 7, 5, 6, 1, 5) −3744 48

F10 (0, 4, 4, 1, 2, 3, 3, 5, 1, 4, 1, 7) −3732 48

F11 (0, 6, 2, 3, 2, 1, 3, 7, 7, 6, 1, 5) −3708 48

F12 (2, 0, 0, 3, 6, 3, 3, 3, 1, 4, 7, 7) −3696 48

F13 (0, 0, 6, 3, 4, 1, 1, 3, 7, 4, 5, 5) −3672 48

F14 (0, 0, 4, 3, 4, 5, 1, 3, 5, 4, 5, 1) −3660 48

F15 (0, 0, 4, 1, 6, 1, 3, 5, 5, 0, 5, 5) −3624 48

F16 (2, 0, 2, 3, 6, 3, 3, 3, 3, 4, 7, 7) −3612 48

F17 (0, 0, 0, 3, 4, 7, 1, 3, 1, 4, 5, 3) −3600 7920

F18 (0, 0, 6, 1, 2, 7, 3, 5, 3, 0, 1, 3) −3600 48

F19 (0, 0, 4, 1, 2, 3, 3, 5, 1, 0, 1, 7) −3588 48

F20 (0, 0, 2, 1, 2, 5, 3, 5, 7, 0, 1, 1) −3564 48

F21 (0, 4, 2, 1, 2, 5, 3, 5, 7, 4, 1, 1) −3564 144
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Table 3.9 (continued)

F22 (0, 0, 2, 3, 0, 5, 1, 3, 7, 4, 1, 1) −3552 48

F23 (0, 0, 2, 3, 4, 7, 1, 3, 3, 4, 5, 3) −3516 48

F24 (0, 0, 0, 3, 0, 1, 1, 3, 5, 4, 1, 5) −3492 48

F25 (0, 0, 2, 1, 6, 3, 3, 5, 3, 0, 5, 7) −3480 48

F26 (0, 2, 2, 1, 4, 7, 1, 1, 3, 6, 5, 3) −3468 48

F27 (0, 0, 0, 1, 2, 1, 3, 5, 5, 0, 1, 5) −3456 48

F28 (0, 4, 6, 1, 6, 1, 3, 5, 7, 4, 5, 5) −3444 48

F29 (2, 0, 4, 3, 2, 7, 3, 3, 1, 4, 3, 3) −3384 48

F30 (2, 0, 4, 1, 4, 1, 1, 5, 5, 0, 7, 5) −3336 48

F31 (0, 2, 6, 3, 2, 7, 3, 7, 3, 2, 1, 3) −3312 48

F32 (0, 0, 0, 3, 0, 5, 1, 3, 5, 4, 1, 1) −3300 48

F33 (0, 0, 0, 3, 4, 3, 1, 3, 1, 4, 5, 7) −3264 48

F34 (0, 0, 6, 3, 0, 3, 1, 3, 3, 4, 1, 7) −3252 48

F35 (0, 4, 2, 1, 6, 3, 3, 5, 3, 4, 5, 7) −3192 48

F36 (0, 0, 2, 3, 4, 3, 1, 3, 3, 4, 5, 7) −3180 48

F37 (0, 4, 4, 1, 2, 7, 3, 5, 1, 4, 1, 3) −3156 48

F38 (2, 0, 2, 3, 2, 5, 3, 3, 7, 4, 3, 1) −3120 48

F39 (0, 2, 0, 3, 6, 3, 3, 7, 1, 2, 5, 7) −3036 48

F40 (0, 2, 0, 1, 4, 3, 1, 1, 1, 6, 5, 7) −3024 48

F41 (0, 2, 0, 1, 4, 7, 1, 1, 1, 6, 5, 3) −2976 48

F42 (0, 0, 4, 3, 0, 7, 1, 3, 1, 4, 1, 3) −2952 48

F43 (2, 0, 0, 3, 2, 5, 3, 3, 5, 4, 3, 1) −2868 48
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Table 3.10 New Type II [72,36,12] self-dual codes obtained from bordered double

circulant matrices over R3,1.

Code Fi first row of M x, y, z α in W72 |Aut(Fi|

F44 (0, 2, 0, 3, 2, 1, 5, 2, 5, 7, 1) (6, 3, 3) −4134 132

F45 (0, 0, 2, 3, 6, 3, 1, 2, 7, 5, 3) (6, 3, 3) −4002 44

F46 (0, 2, 4, 1, 2, 1, 3, 4, 7, 5, 1) (0, 1, 1) −3996 44

F47 (0, 0, 2, 3, 2, 3, 1, 6, 3, 5, 7) (6, 3, 3) −3870 44

F48 (0, 0, 2, 3, 6, 5, 1, 4, 3, 1, 5) (0, 1, 1) −3864 44

F49 (0, 0, 4, 1, 6, 7, 1, 4, 7, 5, 5) (6, 3, 3) −3804 44

F50 (0, 0, 0, 3, 6, 1, 7, 4, 1, 3, 3) (6, 3, 3) −3738 44

F51 (0, 0, 0, 1, 2, 5, 5, 2, 3, 5, 7) (0, 1, 1) −3732 44

F52 (0, 0, 4, 1, 4, 3, 5, 6, 5, 1, 3) (6, 3, 3) −3672 44

F53 (0, 0, 0, 3, 4, 5, 3, 6, 3, 7, 5) (6, 3, 3) −3606 44

F54 (0, 0, 2, 3, 4, 1, 5, 6, 1, 5, 3) (0, 1, 1) −3600 44

F55 (0, 0, 0, 1, 2, 3, 5, 4, 7, 1, 1) (6, 3, 3) −3540 44

F56 (0, 0, 2, 1, 4, 5, 7, 4, 7, 3, 3) (6, 3, 3) −3474 44

F57 (0, 0, 0, 1, 6, 5, 5, 6, 7, 5, 3) (0, 1, 1) −3468 44

F58 (0, 0, 0, 1, 0, 7, 1, 6, 5, 5, 7) (6, 3, 3) −3408 44

F59 (0, 2, 2, 1, 4, 5, 5, 6, 7, 7, 5) (6, 3, 3) −3342 132

F60 (0, 0, 0, 3, 0, 5, 3, 2, 7, 7, 1) (6, 3, 3) −3342 44

F61 (0, 0, 0, 3, 0, 3, 3, 4, 3, 3, 7) (0, 1, 1) −3336 44

F62 (0, 0, 6, 3, 4, 3, 1, 4, 1, 5, 5) (6, 3, 3) −3276 44

F63 (0, 2, 4, 3, 2, 5, 1, 6, 1, 3, 1) (6, 3, 3) −3210 44

F64 (0, 0, 2, 1, 0, 3, 7, 6, 7, 7, 1) (0, 1, 1) −3204 44

F65 (0, 2, 2, 1, 6, 1, 1, 4, 5, 3, 3) (6, 3, 3) −3144 44

F66 (0, 0, 4, 3, 2, 5, 3, 4, 1, 7, 7) (6, 3, 3) −3078 44

F67 (0, 0, 0, 3, 6, 7, 7, 2, 5, 7, 5) (0, 1, 1) −3072 44

F68 (0, 2, 4, 3, 0, 1, 5, 4, 3, 7, 7) (6, 3, 3) −2946 44

F69 (0, 2, 4, 1, 4, 5, 7, 2, 1, 1, 3) (0, 1, 1) −2940 44

F70 (0, 0, 4, 3, 4, 7, 7, 4, 3, 7, 3) (0, 1, 1) −2808 44
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Table 3.11 New Type II [72,36,12] self-dual codes obtained from bordered double

circulant matrices over R3,2.

Code Gi first row of M x, y, z α in W72 |Aut(Gi)|

G1 (8, 17, 27, 59, 21) (12, 17, 25) −3960 120

G2 (8, 33, 27, 59, 37) (12, 17, 25) −3960 40

G3 (8, 1, 11, 43, 5) (12, 17, 25) −3840 40

G4 (24, 1, 27, 59, 5) (28, 49, 57) −3732 40

G5 (24, 17, 27, 59, 21) (28, 33, 41) −3720 40

G6 (24, 1, 11, 43, 5) (28, 49, 57) −3612 40

G7 (8, 1, 27, 59, 5) (12, 17, 25) −3600 40

G8 (24, 17, 27, 59, 21) (28, 49, 57) −3492 40

G9 (8, 33, 11, 43, 37) (12, 17, 25) −3480 40

G10 (24, 17, 11, 43, 21) (28, 49, 57) −3372 40

G11 (8, 49, 27, 59, 53) (12, 17, 25) −3360 40

G12 (56, 17, 57, 43, 21) (28, 49, 49) −3252 40

G13 (8, 17, 11, 43, 21) (12, 17, 25) −3240 40

G14 (10, 1, 25, 29, 37) (42, 11, 11) −3120 40

G15 (10, 1, 25, 29, 37) (42, 35, 35) −3000 40

G16 (10, 1, 57, 61, 37) (42, 11, 11) −2880 40

G17 (56, 33, 27, 59, 37) (28, 33, 49) −3942 20

G18 (24, 49, 11, 43, 53) (28, 33, 57) −3882 20

G19 (24, 1, 11, 43, 5) (28, 33, 57) −3822 20

G20 (10, 9, 1, 37, 13) (10, 11, 59) −3786 20

G21 (24, 17, 27, 59, 21) (28, 33, 57) −3762 20

G22 (10, 17, 41, 45, 53) (10, 11, 59) −3726 20

G23 (56, 1, 11, 43, 5) (28, 33, 49) −3702 20

G24 (24, 49, 27, 59, 53) (28, 33, 57) −3642 20

G25 (10, 9, 49, 21, 13) (10, 11, 59) −3606 20

G26 (56, 33, 11, 43, 37) (28, 33, 49) −3582 20

G27 (10, 1, 9, 13, 37) (10, 11, 59) −3546 20

G28 (24, 17, 11, 43, 21) (28, 33, 57) −3522 20
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Table 3.11 (continued)

G29 (24, 33, 11, 43, 37) (28, 33, 57) −3462 20

G30 (10, 1, 41, 45, 37) (10, 11, 59) −3426 20

G31 (56, 49, 27, 59, 53) (28, 33, 49) −3402 20

G32 (10, 9, 17, 53, 13) (10, 11, 59) −3366 20

G33 (10, 25, 17, 53, 29) (10, 11, 59) −3306 20

G34 (10, 1, 25, 29, 37) (10, 11, 59) −3246 20

G35 (10, 9, 33, 5, 13) (10, 11, 59) −3186 20

3.3 QUADRATIC DOUBLE CIRCULANT CODES OVER Rk,m

Quadratic residue codes have been one of the interesting classes of algebraic

codes. In 2002, they were generalized into quadratic double circulant (QDC) codes

by Gaborit in (Gaborit, 2002) over finite fields. In (Kaya et al., 2014), Gaborit’s

method was extended to the rings of characteristic 2 to get extremal self-dual codes.

In this section, our goal is to give some conditions to obtain self-dual codes over

Rk,m using QDC construction and to find new constructions for binary self-dual

codes of certain lengths.

First, we recall the notions of residues and non residues for finite fields:

Definition 3.3.1. (Ling and Xing, 2004) Let p be a prime number bigger than 2

and choose a primitive element g of Fp (F∗p = 〈g〉 = {g, g2, g3, . . . , gp−2, gp−1 = 1}).

A nonzero element r of Fp is called a quadratic residue modulo p if r = g2i for some

integer i; otherwise, r is called a quadratic non residue modulo p. It is clear that r

is quadratic non residue if r = g2j−1 for some integer j.

We denote by Qp the set of quadratic residues and by Np the set of quadratic

non residues.

Example 3.3.2. Consider the finite field F11 = Z11. It is easy to check that 2 is

a primitive element of F11. Thus, the nonzero quadratic residues modulo 11 are

{22i : i = 0, 1, ...} = {1, 3, 4, 5, 9}, and the quadratic non residues modulo 11 are
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{32i−1 : i = 1, 2, ...} = {2, 6, 7, 8, 10}. So Z11 = {0} ∪ {1, 3, 4, 5, 9} ∪ {2, 6, 7, 8, 10} =

{0} ∪ Q11 ∪N11.

Let p be an odd prime and Qp (a, b, c) be the circulant matrix with first row

r based on quadratic residues modulo p defined as r [1] = a, r [i+ 1] = b if i is a

quadratic residue and r [i+ 1] = c if i is a quadratic non residue modulo p. We state

the special case of the main theorem from (Gaborit, 2002) where p is an odd prime;

Theorem 3.3.3. ( (Gaborit, 2002)) Let p be an odd prime and let Qp (a, b, c) be

the circulant matrix with a, b and c as the elements of the ring R. If p = 4k+1 then

Qp (a, b, c)Qp (a, b, c)t

= 4Qp

(
a2 + 2k (b2 + c2) , 2ab− b2 + k (b+ c)2 , 2ac− c2 + k (b+ c)2

)
.

(3.10)

If p = 4k + 3 then

Qp (a, b, c)Qp (a, b, c)t

= Qp(a
2 + (2k + 1) (b2 + c2) , ab+ ac+ k (b2 + c2) + (2k + 1) bc,

ab+ ac+ k (b2 + c2) + (2k + 1) bc).

(3.11)

Definition 3.3.4. ( (Gaborit, 2002)) The code generated by

Pp (a, b, c) = (Ip|Qp (a, b, c))

overR is called a quadratic double circulant code and is denoted byQDCp (R) (a, b, c).

Example 3.3.5. Consider the code QDC5 (R2,2) (1 + v + uv, u, v) that is generated

by 
I5

1 + v + uv u v v u

u 1 + v + uv u v v

v u 1 + v + uv u v

v v u 1 + v + uv u

u v v u 1 + v + uv


.

Self-duality of the code is easily checked by Theorem 3.3.3. Moreover, each row

of the generator matrix has Lee weight 8, which means the binary image of the

code is doubly-even. It is an extremal self-dual [40, 20, 8] code with partial weight

distribution 1 + 285z8 + 21280z12 + · · · .
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In the following, we define a special subfamily of units and non-units in Rk,m;

Definition 3.3.6. An element r of Rk,m is called a basic non-unit if r2 = 0 and a

basic unit if r2 = 1.

It is easily observed that 1+r is a basic unit if and only if r is a basic non-unit.

In the following theorems, we characterize families of self-dual QDC codes over

Rk,m:

Theorem 3.3.7. Let a be an element of Rk,m such that a3 = 0 and p be a prime

with p ≡ 3 (mod 8) then the codes

QDCp (Rk,m)
(
a, 1, a+ a2

)
and QDCp (Rk,m)

(
a, 1 + a2, a+ a2

)
are self-dual. The constructions are called I and II, respectively.

Proof. Since p = 8k + 3, a3 = 0 and char (Rk,m) = 2, by the equation 3.11 we have

Qp

(
a, 1, a+ a2

)
Qp

(
a, 1, a+ a2

)t
= Qp

(
a2 + 1 +

(
a+ a2

)2
, a+ a

(
a+ a2

)
+
(
a+ a2

)
, a+ a

(
a+ a2

)
+
(
a+ a2

))
= Qp (1, 0, 0) = Ip,

which implies that QDCp (Rk,m) (a, 1, a+ a2) is self-dual. By analogous steps

QDCp (Rk,m) (a, 1 + a2, a+ a2) is also self-dual.

The characterization of non-units given in Definition 3.3.6 can be used to

construct self-dual codes as follows;

Theorem 3.3.8. Let a and b be two basic non-units inRk,m and p be a prime. Then

the code QDCp (Rk,m) (1 + a, a, b) is self-dual whenever p ≡ 1 (mod 4). Moreover,

QDCp (Rk,m) (a, 1 + b, a) is self-dual if ab = 0 and p ≡ 3 (mod 8). The constructions

are named as III and IV , respectively.

Proof. Let p = 4k + 1 be a prime, a and b be basic non-units in Rk,m. Then by

equation 3.10, we have

Qp (1 + a, a, b)Qp (1 + a, a, b)t

=

 Qp

(
(1 + a)2 , a2, b2

)
if k is even

Qp

(
(1 + a)2 , b2, a2

)
if k is odd

= Qp (1, 0, 0) = Ip
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Hence, the code QDCp (Rk,m) (1 + a, a, b) is self-dual.

Let p = 8k + 3 be a prime, a and b be basic non-units in Rk,m with ab = 0.

Then, since char (Rk,m) = 2, by equation 3.11 we have

Qp (a, 1 + b, a)Qp (a, 1 + b, a)T

= Qp (1, a (1 + b) + (1 + b) a, a (1 + b) + (1 + b) a)

= Qp (1, 0, 0) = Ip.

Therefore, the code QDCp (Rk,m) (a, 1 + b, a) is self-dual.

We list some good QDC codes over Rk,m in Table 3.12.

Table 3.12 Some examples of self-dual QDC codes over Rk,m.

R p Construction a, (b) The binary image Comment

R2,1 5 III u, 0 [20, 10, 4] extremal

R2,2 5 III u, v [40, 20, 8] extremal sinly-even

R2,2 5 III u+ uv, v [40, 20, 8] extremal doubly-even

R2,1 11 I, II u [44, 22, 8] extremal

R3,1 11 I u [66, 33, 12] extremal

R3,1 11 II u [66, 33, 12] extremal

R2,2 11 II uv [88, 44, 12] singly-even

R2,2 11 IV u, uv [88, 44, 12] doubly-even

R4,1 11 I u3 [88, 44, 12] singly-even

R3,1 19 I u [114, 57, 16] -

R3,2 11 II v + uv [132, 66, 12] -

R4,1 19 I u3 [152, 76, 16] singly-even

3.4 EXTENSION THEOREMS

Another construction method to get self-dual codes is extension method. An

extremal self-dual codes of length 2n+ 2 can be obtained from an extremal self-dual
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codes of length 2n by extensions. Brualdi and Pless firstly used extensions for self-

dual codes in (Brualdi and Pless, 1991). Afterwards different versions of extensions

were used by researchers. In (Kaya and Yildiz, 2016), extension methods described

on the binary field were generalized to any ring of characteristic 2. We have applied

the extensions to extremal self-dual codes constructed as binary images of self dual

codes over Rk,m.

3.4.1 Constructions for self-dual codes over Rk,m by λ-circulant matrices

In this section, the four circulant construction is generalized to λ-circulant

matrices. Extremal singly-even binary self-dual codes of length 64 are constructed

as Gray images of four circulant codes over R2,1 and R2,2. The codes are going to

be used in Section 3.4.2 to construct new binary self-dual codes of lengths 66 and

68.

The possible weight enumerators of singly-even extremal self-dual codes of

length 64 are characterized in (Conway and Sloane, 1990) as:

W64,1 = 1 + (1312 + 16β)y12 + (22016− 64β)y14 + · · ·where 14 ≤ β ≤ 104,

W64,2 = 1 + (1312 + 16β)y12 + (23040− 64β)y14 + · · ·where 0 ≤ β ≤ 277.

Recently, codes with β =29, 39, 53 and 60 in W64,1 and codes with β =51,

58 in W64,2 are constructed in (Yankov, 2014) and a code with β = 80 in W64,2 is

constructed in (Karadeniz et al., 2014b). Together with these the existence of such

codes is now known for β =14, 18, 22, 25, 29, 32, 36, 39, 44, 46, 53, 60, 64 in W64,1

and for β =0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 28,

29, 30, 32, 33, 36, 37, 38, 40, 41, 44, 48, 51, 52, 56, 58, 64, 72, 80, 88, 96, 104, 108,

112, 114, 118, 120, 184 in W64,2.

Definition 3.4.1. Let r = (r1, r2, . . . , rn) be an element of (Rk,m)n. The λ-cyclic

shift of r is defined as σλ (r) = (λrn, r1, r2, . . . , rn−1) where λ ∈ Rk,m. A square

matrix is called λ-circulant if every row is the λ-cyclic shift of the previous one.

Since λ-circulant matrices commute with each other the four circulant con-

struction can be extended from circulant matrices to λ-circulant matrices. We have

the following result:
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Theorem 3.4.2. Let C be the linear code over Rk,m of length 4n generated by the

four circulant matrix

G :=

 I2n
A B

Bt At


where A and B are λ-circulant n×n matrices over Rk,m satisfying AAt+BBt = In.

Then the code C is called a λ-four circulant code over Rk,m. The code C and its

binary image are self-dual.

Four circulant codes of length 32 over R2,1 have been studied extensively in

(Karadeniz et al., 2014b) and the codes with weight enumerators β = 0, 16, 32, 48

and 80 in W64,2 were obtained. The code with the weight enumerator β = 80 in

W64,2 is the first such code in literature. For further reference we name this code as

C64,80 which is the four circulant code over R2,1 with

rA = (u, 0, 0, 0, u, 1, u, 1 + u) and rB = (u, u, 0, 1, 1, 1 + u, 1 + u, 1 + u) .

By considering (1 + u)-four circulant codes of length 32 over R2,1 we were

able to obtain the binary codes with weight enumerators for β = 8k in W64,2 where

0 ≤ k ≤ 9. These are listed in Table 3.13.
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Table 3.13 (1 + u)-four circulant codes over R2,1.

Li rA rB β in W64,2 |Aut (Li)|

L1 (u333uuu0) (11311010) 8 25

L2 (u111000u) (11333u1u) 24 25

L3 (u131u0uu) (31313030) 72 25

L4 (33uu3110) (113u00u3) 0 25

L5 (330u3110) (1310uuu1) 16 25

L6 (33uu3130) (331u0u01) 32 25

L7 (11u03130) (131u0003) 48 25

L8 (310u113u) (1330uu03) 64 26

L9 (u1110u3u) (30u03113) 8 25

L10 (0133uu30) (10001113) 24 25

L11 (u111001u) (3u0u1311) 40 25

L12 (0133u01u) (10001311) 56 25

In order to construct extremal binary self-dual codes of length 64 as Gray

images of λ-four circulant codes of length 16 over R2,2 we lift binary codes to codes

over R2,1 and then lift these to codes over R2,2. Theorem 3.1.4 tells us the minimum

distance of the codes to be lifted. We demonstrate this in the following example;

Example 3.4.3. Let C be the four circulant code of length 16 over F2 with rA =

(1, 0, 0, 0) and rB = (1, 1, 1, 1). Then C is a singly-even [16, 8, 4] code. The code C

is lifted to C ′, which is the (1 + u)-four circulant code of length 16 over R2,1 with

r′A = (1, 0, u, u) and r′B = (1, 1 + u, 1, 1 + u). The binary image φ21(C ′) of C ′ is a

self-dual [32, 16, 6] code. Then C ′ is lifted to the C ′′ that is the (1 + u+ v + uv)-four

circulant code of length 16 over R2,2 with

r′′A = (1, 0, u, u+ v + uv) and r′′B = (1 + v + uv, 1 + u, 1 + v, 1 + u+ v) .

The binary code φ22(C ′′) is an extremal singly-even binary self-dual code of length

64 with weight enumerator β = 0 in W64,2. Note that, πv (C ′′) = C ′, πu (C ′) = C and

µ (C ′′) = C.
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In order to fit the upcoming tables we use the hexadecimal number system. The

one-to-one correspondence between hexadecimals and binary 4 tuples is as follows:

0 ↔ 0000, 1↔ 0001, 2↔ 0010, 3↔ 0011,

4 ↔ 0100, 5↔ 0101, 6↔ 0110, 7↔ 0111,

8 ↔ 1000, 9↔ 1001, A↔ 1010, B ↔ 1011,

C ↔ 1100, D ↔ 1101, E ↔ 1110, F ↔ 1111.

To express elements of R2,2 we use the ordered basis {uv, v, u, 1}. For instance

1 + u+ uv in R2,2 is expressed as 1011 which is B.
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Table 3.14 Self-dual λ-four circulant codes over R2,2.

Mi λ rA rB β in W64,2 |Aut (Mi)|

M1 3 (F, 0, E, 2) (7, 5, 3, D) 0 25

M2 3 (7, 0, C, A) (F, F, 9, 5) 16 25

M3 3 (3, 0, D, 4) (E, 3, F, B) 48 25

M4 7 (B, 0, 1, C) (9, B, 1, 2) 5 23

M5 7 (B, 0, 1, 4) (A, 7, 5, F ) 8 24

M6 7 (3, 0, 7, A) (B,C,D, 9) 9 23

M7 7 (7, 0, 5, C) (1, 3, 2, 5) 12 24

M8 7 (D, 0, F, C) (F, 1, 7, A) 13 23

M9 7 (B, 0, 1, C) (A, 5, 5, D) 16 25

M10 7 (B, 0, F, A) (B,C,D, 7) 17 23

M11 7 (7, 0, 5, C) (2, 7, 5, F ) 24 24

M12 F (1, 0, 2, E) (D, 3, 5, 7) 0 25

M13 F (C, 0, 3, 6) (1, B, 7, 1) 16 25

M14 F (F, 0, B,A) (F,B, 4, 5) 48 25

M15 B (9, 0, F, C) (B, 6, 9, 3) 5 23

M16 B (D, 0, 3, C) (6, B, 5, 3) 8 24

M17 B (5, 0, B, 4) (7, 6, D, 9) 9 23

M18 B (5, 0, 1, E) (9, 9, C,B) 12 24

M19 B (D, 0, 1, 6) (F, 1, 7, C) 13 23

M20 B (5, 0, B, C) (E,D, F, 5) 16 23

M21 B (B, 0, 5, C) (7, E,D, 7) 17 23

M22 B (D, 0, 3, 4) (E, 9, 3, 1) 24 24

Remark 3.4.4. In order to construct the codes in Table 3.13 the binary four cir-

culant codes are lifted to R2,1. Similarly, to construct the codes in Table 3.14 the

binary four circulant codes are lifted to R2,1 and then to R2,2. This reduces the

search field remarkably from 232 = 4294967296 to 216 = 65536.
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3.4.2 New binary self-dual codes by extensions

We are able to construct new binary self-dual codes from old. Firstly, we take

the images of self-dual codes over Rk,m of length n under duality preserving Gray

map φk,m and we get binary self-dual codes of length kmn. Afterwards, applying the

extension methods to generator matrices of these codes we obtain self dual-codes of

length kmn+ 2. On the other hand, we also consider the Rk,1 extensions. The ring

Rk,m can be considered as an extension of Rk,1 and the Gray map ϕu from Rk,m

to Rk,1 can be defined rearranging φkm. So that, we apply extension methods to

ϕu-image of codes over Rk,m of length n as well as the codes over Rk,1. Then we get

codes over Rk,1 of length mn + 2. Finally, we take the Gray images of these new

codes under φk,1 and we obtain binary self-dual codes of length k(mn+ 2).

There exists different versions of extensions previously applied, for some of

these we refer to (Kim, 2001), (Dougherty et al., 2010) and (Kaya and Yildiz, 2016).

The following extension theorems hold for any commutative Frobenius ring R of

characteristic 2.

Theorem 3.4.5. (Dougherty et al., 2010)Let C be a self-dual code over R of length

n and G = (ri) be a k × n generator matrix for C, where ri is the i-th row of G,

1 ≤ i ≤ k. Let c be a unit in R such that c2 = 1 and X be a vector in Rn with

〈X,X〉 = 1. Let yi = 〈ri, X〉 for 1 ≤ i ≤ k. Then the following matrix


1 0 X

y1 cy1 r1
...

...
...

yk cyk rk

 ,

generates a self-dual code C ′ over R of length n+ 2.

A more specific extension method which can be applied to generator matrices

in standard form is as follows:

Theorem 3.4.6. (Kaya and Yildiz, 2016) Let C be a self-dual code generated by



51

G = (In|A) over R. If the sum of the elements in i-th row of A is ri then the matrix:

G∗ =


1 0 x1 . . . xn 1 . . . 1

y1 cy1
...

... In A

yn cyn

 ,

where yi = xi + ri, c is a unit with c2 = 1, X = (x1, . . . , xn) and 〈X,X〉 = 1 + n,

generates a self-dual code C∗ over R.

By applying the extensions for self-dual codes to the codes constructed in

Section 3.4.1 we were able to obtain new binary self-dual codes of lengths 66 and

68. More precisely, 11 new codes of length 66 and 34 new codes of length 68 were

constructed.

3.4.3 F2-extensions

The Gray images of the codes in tables 3.13 and 3.14 are extremal singly-even

self-dual binary codes of length 64. In this section, we search for extremal binary

self-dual codes of length 66 by applying Theorem 3.4.5. Eleven new codes were

obtained.

A self-dual [66, 33, 12]-code has a weight enumerator in one of the following

forms (Dougherty et al., 1997)

W66,1 = 1 + (858 + 8β) y12 + (18678− 24β) y14 + · · · where 0 ≤ β ≤ 778,

W66,2 = 1 + 1690y12 + 7990y14 + · · ·

and W66,3 = 1 + (858 + 8β) y12 + (18166− 24β) y14 + · · · where 14 ≤ β ≤ 756,

Recently, five new codes in W66,1 are constructed in (Karadeniz et al., 2014b). For

a list of known codes in The codes β =0, 1, 2, 3, 5, 6, 8, . . . , 11, 14, . . . , 18, 20, . . . ,

54, 56, 59, 60, 62, . . . , 69, 71, . . . , 74, 76, 77, 78, 80, 83, 84, 86, 87, 92, 94 W66,1.

For a list of known codes in W66,3 we refer to (Karadeniz and Yildiz, 2013).

We construct the codes with weight enumerators β =19, 61, 75, 79, 81, 82,

85, 88, 89, 90 and 100 in W66,1. The extension in Theorem 3.4.5 is applied to the

binary images of the codes constructed in Section 3.4.1 to obtain the new codes.

The results are given in Table 3.15 where 132 denotes 32 successive 1s in X.
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Table 3.15 New extremal binary self-dual codes with weight enumerators in W66,1

by Theorem 3.4.5. (11 codes)

Li The extension vector X β in W66,1

M17 10101010111001110010001101110010132 19

M3 11001100001011100111100101011111132 61

L8 10001011111111011011010110100100132 75

L8

00010101001111110101110111100101

01111001110010000111111001100000
79

L3

01100110100001001100000110100000

01001101100110110111110101111001
81

L8

01010110111110101100011010100111

00010101100101110100110101101001
82

L3

00111101100000000111010010101001

00100001110000111110001100010100
85

C64,80 11100000101011010111100100110110132 88

C64,80 10100100001110101110100111000001132 89

C64,80 00011111110111101111001110001011132 90

C64,80 11100001100000000001000010011011132 100

3.4.4 R2,1-extensions

In this section, we obtain new extremal binary self-dual codes by considering

R2,1-extensions of the codes constructed in the previous section. The ring R2,2 can

be considered as an extension of R2,1. Throughout this section, ϕu is the Gray map

from R2,2 to R2,1 defined as ϕu (a+ bv) = (b, a+ b) where a, b ∈ R2,1. We consider

the extensions of the codes in Table 3.13 as well as the Gray images of the codes

in Table 3.14 under ϕu. 39 new extremal binary self-dual codes of length 68 are

obtained as the binary images of the extensions.

The weight enumerator of an extremal binary self-dual code of length 68 is

characterized in (Dougherty et al., 1997) as follows:
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W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ) y14 + · · ·

where 0 ≤ γ ≤ 11 and 14γ ≤ β ≤ 1870 − 32γ. Tsai et al. constructed new

extremal self-dual binary codes of lengths 66 and 68 in (Tsai et al., 2008). Recently,

3 codes with previously unknown weight enumerators in W68,1 were constructed

in (Kaya and Yildiz, 2014). Together with the codes obtained in (Tsai et al., 2008),

(Kaya and Yildiz, 2014) the existence of codes in W68,1 are known for β =104, 117,

120, 122, 123, 125, . . . , 168, 170, . . . , 232, 234, 235, 236, 241, 255, 257, . . . , 269,

302, 328, . . . , 336, 338, 339, 345, 347, 355, 401.

We obtain a code with a weight enumerator β = 169 in W68,1.

First codes with γ = 4 and γ = 6 in W68,2 are constructed in (Karadeniz

and Yildiz, 2013b). Recently, new codes in W68,2 are obtained in (Kaya and Yildiz,

2016), (Kaya et al., 2015) and (Kaya and Yildiz, 2014) together with these, codes

exists for W68,2 when

γ = 0, β = 44, ..., 154 or β ∈ {2m|m = 19, 20, 88, 102, 119, 136 or 78 ≤ m ≤ 86} ;

γ = 1, β = 49, 57, 59, ..., 160 or β ∈ {2m|m = 27, 28, 29, 95, 96 or 81 ≤ m ≤ 89} ;

γ = 2, β = 65, 68, 69, 71, 77, 81, 159 or β ∈ {2m|37 ≤ m ≤ 68, 70 ≤ m ≤ 81} or

β ∈ {2m+ 1|42 ≤ m ≤ 69, 71 ≤ m ≤ 77} ;

γ = 3, β = 101, 117, 123, 127, 133, 137, 141, 145, 147, 149, 153, 159, 193 or

β ∈ {2m|m = 44, 45, 48, 50, 51, 52, 54, ..., 58, 61, 63, ..., 66, 68, ...,

72, 74, 77, ..., 81, 88, 94, 98};

γ = 4, β ∈ {2m|m = 51, 55, 58, 60, 61, 62, 64,65, 67, ..., 71, 75, ..., 78, 80} and

γ = 6 with β ∈ {2m|m = 69, 77, 78, 79, 81, 88} .

In this section, we construct the codes with weight enumerators in W68,2 for

γ = 0 and β = 178; γ = 1 and β = 180; γ = 2 and β =60, 62, 64, 66, 70, 72, 164,

166, 168, 170, 172, 174, 176, 178, 180, 182, 186; γ = 3 and β =94, 107, 118, 120,

156, 168, 172, 180; γ = 4 and β =98, 104, 108, 112, 174, 194.

By considering R2,1-extensions of codes in Table 3.13 with respect to Theorem
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3.4.6 we were able to obtain 14 new extremal binary self-dual codes, which are listed

in Table 3.16.

Table 3.16 New codes in W68,2 by Theorem 3.4.6 on R2,1 (14 codes).

Li X c γ β

L4 (1313uu0133130u11) 1 + u 2 60

L4 (1131uu011133u011) 1 2 62

L4 (0001u11uu3110300) 1 2 64

L4 (00u1u130u111u1u0) 1 + u 2 66

L4 (uuu30330013101uu) 1 + u 2 70

L4 (u0u1u13uu333u3u0) 1 + u 2 72

L3 (u3000uu33u31u031) 1 2 166

L3 (u1u0u0u11u31uu13) 1 + u 2 170

L3 (03u0u00330310u31) 1 + u 2 172

L3 (u1uuu0u11u31u013) 1 + u 2 174

L3 (01000u0110310013) 1 + u 2 176

L3 (011300u031111313) 1 3 156

L3 (3u131011301u0u10) 1 + u 3 172

L3 (103130333010u010) 1 + u 3 180

Example 3.4.7. Let C be the code obtained by applying Theorem 3.4.5 for ϕu (M4)

over R2,1 with

X = (u, 1 + u, 0, 0, 0, 1 + u, 0, 0, 1, u, 0, 1, u, u, 1 + u, 0, 1111111111111111)

and c = 1 +u then the binary image of the extension is an extremal binary self-dual

code of length 68 with a weight enumerator β = 169 in W68,1. The code C is the

first extremal binary self-dual code with this weight enumerator.

Theorem 3.4.5 is applied to codes in Table 3.13 and R2,1-images of codes in

Table 3.14. 24 new extremal binary self-dual codes of length 68 are obtained as

Gray images of the extensions. Similar to the Section 3.4.1 lifts can be applied to
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the extensions. If X is a possible extension vector for a free self-dual code C overR2,1

then πu (X) is an extension vector for πu (C). In order to extend C we may lift an

extension vector for πu (C). Theorem 3.1.4 gives an idea on which extension vectors

to lift. For instance, a possible extension vector for the binary code πu (ϕu (M12))

is (00010111001100110000001000110011). By considering the lifts of this vector

we were able to obtain new codes with weight enumerators corresponding to rare

parameters γ = 4 and β = 86, 96 and 98. Those are listed in Table 3.17. Considering

lifts reduces the workload remarkably from 432 to 232.
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Table 3.17 New codes in W68,2 by Theorem 3.4.5 on R2,1 (24 codes).

Code X c γ β

L3 (31u1u11133u10u113u10u33013010111) 1 + u 0 178

L3 (10u1u033uu3u00u03101010uu10u3u0u) 1 1 180

L12 (11330u11u1103101u3u3101u31uu33u) 1 2 164

L8 (0uuu0011113u13u01303113033311003) 1 2 168

L8 (00000031313033u031u3333u33311003) 1 + u 2 178

L8 (u0uuu033111033uu1301113u13331uu1) 1 2 180

L8 (u0u00011313u31u011u1113u33313u01) 1 2 182

L3 (u3uuu33uu10uu00103010u001u030u13) 1 + u 2 186

ϕu (M12) (13331031u0u1133u1111111111111111) 1 3 94

ϕu (M4) (11u301u33u0133u3u1u3u0uu010330uu) 1 3 107

ϕu (M12) (11333u3100u1133u1331133313313133) 1 + u 3 118

ϕu (M17) (1310u30u330100001111111111111111) 1 + u 3 120

L3 (uuu310u11u3u00u1uuu303u3u3u13333) 1 3 164

L3 (uu031u03103u0u01u00103u3u1u13111) 1 + u 3 166

L3 (uuu11u031u3u0u01u003u3u303u31131) 1 + u 3 168

L3 (u0031003301uuuu3u001u103u3u31331) 1 + u 3 174

ϕu (M12) (000101330011uu330u000u1u0011uu33) 1 + u 4 86

ϕu (M12) (uu01u1110u33u033uu0u003u0u31u013) 1 + u 4 96

ϕu (M12) (0001u3130u31uu1100uuuu1uu0130u31) 1 + u 4 98

ϕu (M12) (u3u3u1110u3310u31111111111111111) 1 4 104

ϕu (M12) (u3010333003110031331133333113313) 1 4 108

ϕu (M12) (u1u10313001110u33313331111331111) 1 4 112

L8 (00u00u33111u130011u31130111310u3) 1 + u 4 174

L8 (u300033003u0uuu10303000u1uu10u31) 1 4 194

Remark 3.4.8. The binary generator matrices of the new extremal binary self-dual

codes of lengths 66 and 68 that are constructed in tables 3.15, 3.16 and 3.17 are

available online at (Kaya and Tüfekçi, 2015).



CHAPTER 4

DIVISIBLE BINARY CODES FROM

GRAY-HOMOGENEOUS MAPS OF CODES OVER Rk,m

The homogeneous weight was introduced for codes over rings as an alternative

to the Hamming weight. In this chapter, we consider the homogeneous weight

on the ring family Rk,m. Using the generating character characterization of the

homogeneous weight we find a form for the homogeneous weight on Rk,m. We

then assign a value to the average weight γ, giving algebraic and combinatorial

justifications. We construct the Gray-homogeneous map using Reed-Muller codes.

Using the images of cyclic, constacyclic and quasicyclic codes over Rk,m of different

lengths with suitable k,m we are able to construct many optimal binary codes that

are divisible with high levels of divisibility. The codes we have obtained are also

quasicyclic with high indices and they are all self-orthogonal when km ≥ 4. Thus

we obtain many optimal, self-orthogonal quasicyclic binary codes, which have been

shown to be of importance in (Townsend and Weldon, 1967), for their connection

to difference sets and their near-BCH performance.

Recall that by U(Rk,m), we denote the units of Rk,m and by D(Rk,m), the set

of non-units in Rk,m. Moreover, we observe that |U(Rk,m)| = |D(Rk,m)| =
|Rk,m|

2

and that U(Rk,m) = 1 +D(Rk,m).

As a Frobenius ring, Rk,m has a generating character. It was shown in Chapter

2 that the generating character of Rk,m is given by

χ : (Rk,m,+) → ({−1, 1} , .)∑
0≤i≤k−1
0≤j≤m−1

ciju
ivj 7→ (−1)wH(c) ,

where c = (cij) is the binary vector consisting of all the coefficients cij’s of a typical

element in Rk,m, and wH(c) denotes the Hamming weight of c.

57
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4.1 THE HOMOGENEOUS WEIGHT AND CORRESPONDING GRAY

MAP ON Rk,m

Homogeneous weights were first introduced in 1997 by Heise and Constanti-

nescu in (Constantinescu and Heise, 1997). The theoretical work on the homoge-

neous weight and its form for frobenius rings can be found in such works as (Con-

stantinescu and Heise, 1997), (Greferath and OSullivan, 2004) and (Honold, 2001).

Different characterizations for the homogeneous weight on frobenius rings were given

in these works. The Mobius function or the generating character of the ring seem

to be the prevalent tools used in these constructions. The homogeneous weight is

defined with two conditions for arbitrary finite rings as follows in (Greferath and

OSullivan, 2004):

Definition 4.1.1. A real valued function ω on the finite ring R is called a (left)

homogeneous weight if ω(0) = 0 and the following is true:

(H1) For all x, y ∈ R,Rx = Ry implies ω(x) = ω(y) holds.

(H2) There exists a real number γ such that

∑
y∈Rx

ω(y) = γ |Rx| for all x ∈ R\{0}

It has been shown that all Frobenius rings are equipped with a homogeneous

weight. Different characterizations of the homogeneous weight for Frobenius rings

have been given. Some of these use the Mobius function, and some use the generating

character of Frobenius rings. We will use the following proposition from (Honold,

2001), which describes the homogeneous weight in terms of the generating character

of the ring:

Proposition 4.1.2. (Honold, 2001) The homogeneous weight function for a finite

ring R with generating character χ is of the form

ω : R → R

x 7→ γ

[
1− 1

|R×|
∑
ρ∈R×

χ(xρ)

]
,

(4.1)

where R×, represents the group of units of R.
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The γ that appears in the weight function is also called the average weight

and further satisfies the following proeprty:

Proposition 4.1.3. (Honold, 2001) Let I be either a left or a right ideal of a finite

Frobenius ring R, and let y ∈ R. Then
∑

r∈I+y
ω(r) = γ |I|.

Applying Proposition 4.1.2 to the ring Rk,m, we can obtain a form for the

homogeneous weight for codes over the ring Rk,m:

Theorem 4.1.4. The homogeneous weight for the ring Rk,m is of the form

ωhom(x)


0 x = 0,

2γ, x = uk−1vm−1,

γ, otherwise.

Proof. Firstly, we put 0 in Equation 4.1 instead of x recalling that χ(0) = 1 and

|U(Rk,m)| = 2km−1, then we have:

ωhom(0) = γ

[
1− 1

2km−1

∑
ρ∈U(Rk,m)

1

]
= 0.

Next, note that

uk−1vm−1ρ = uk−1vm−1

for all ρ ∈ U(Rk,m) and so we have χ(uk−1vm−1ρ) = (−1) for all ρ ∈ U(Rk,m).

Putting uk−1vm−1 into Equation 4.1 we see that we have

ωhom(uk−1vm−1) = γ

[
1− 1

2km−1

∑
ρ∈U(Rk,m)

(−1)

]
= 2γ.

Finally, for any element x in Rk,m such that x 6= 0, uk−1vm−1, since χ is a non-trivial

when restricted to any non-zero ideal, we have∑
α∈Rk,m

χ(αx) = 0. (4.2)

On the other hand, since 1 + α ∈ D(Rk,m) while α ∈ U(Rk,m) and χ((α + 1)x) =

χ(αx+ x) = χ(αx)χ(x), we rewrite the sum 4.2 as follows:

0 =
∑

α∈Rk,m

χ(αx)

=
∑

α∈U(Rk,m)

χ(αx) +
∑

α∈U(Rk,m)

χ(αx)χ(x)

= (1 + χ(x))
∑

α∈U(Rk,m)

χ(αx)
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Let us call the sum:

F (x) =
∑

α∈U(Rk,m)

χ(αx).

While α runs through all the units of Rk,m and αβ is also for all β ∈ U(Rk,m), we

easily have F (x) = F (βx). So, the Equation 4.1 can be written as

(1 + χ(αx))F (x) = 0,∀α ∈ U(Rk,m).

Now, assume that χ(αx) = −1 for all α ∈ U(Rk,m). But, then we must have

χ(βx) = 1 for all β ∈ D(Rk,m). Since x 6= uk−1vm−1 and αx 6= uk−1vm−1 for any

α ∈ U(Rk,m), we must have βx = uk−1vm−1 for some β ∈ D(Rk,m) because of

the ideal generated by x must contain uk−1vm−1. But this is a contradiction since

χ(uk−1vm−1) = −1. That is,

∑
α∈U(Rk,m)

χ(αx) = 0.

Thus we obtain

ωhom(x) = γ
[
1− 1

2km−1 0
]

= γ

for all x 6= 0, uk−1vm−1.

In most works related to the homogeneous weight, the average weight γ is

unassigned. Having settled the form of the homogeneous weight, we now want to

choose a specific value for γ so that we can find a distance preserving isometry from

Rk,m to Fs2 for a suitable s. We will call this map the Gray-homogeneous map. We

recall some of the work done in this direction. An inductive algebraic construction of

a distance preserving Gray map was given by Yildiz from Galois rings with the ho-

mogeneous distance to the field of prime size with the Hamming distance in (Yildiz,

2006) as well as a combinatorial construction of the Gray map for Galois rings by

using Affine geometries in (Yildiz, 2009). Later, projective geometries PGn(q) were

used to construct the Gray map for linear codes over a family of Frobenius rings

in (Pasa and Yildiz, 2014). Considering the hyperplanes and projective spaces,

the work in (Pasa and Yildiz, 2014) suggests the use of the projective geometry

PGkm−1(F2) in our work. This requires the s to be 2km−1. However, as was later

done in (Yildiz and Kelebek, 2014), the first order Reed-Muller codes seem to give

us a more constructive method of finding this map.
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We recall that the first order Reed-Muller codes RM(1,m) are a family of

binary linear codes of parameters [2m,m+ 1, 2m−1], defined for each positive integer

m. The important property of the first order Reed-Muller codes is that there is one

codeword with weight 2m and all the other non-zero codewords have weight 2m−1.

Because of the structure of the homogeneous weight, it is clear that first order

Reed-Muller codes can be used to construct the Gray map. Since |Rk,m| = 2km, we

clearly need RM(1, s) where s+1 = km. Thus, to define a distance preserving Gray

map for the homogeneous weight on Rk,m we use the first order Reed-Muller codes

RM(1, km− 1), of length 2km−1. This coincides with length of the image suggested

in (Pasa and Yildiz, 2014), which adds an added motivation for the choice of γ for

us. Thus we choose γ = 2km−2. This means that for us, the homogeneous weight

will have the following form:

ωhom(x)


0 if x = 0,

2km−1 if x = uk−1vm−1,

2km−2 otherwise.

Now, in order to define the Gray-homogeneous map on Rk,m, we first note that

Rk,m can be viewed as an F2-vector space with a basis

β = {1, u, . . . , uk−1, v, . . . , vm−1, uv, . . . , uk−1vm−1}.

RM(1, 2km − 1) has exactly km basis elements, which are binary vectors of length

2km−1, including (1, 1, . . . , 1). So, we first let φhom map elements of the minimal

ideal Iuk−1vm−1 to the two elements of RM(1, km − 1), given by (0, 0, . . . , 0) and

(1, 1, . . . , 1), respectively. The remaining elements of the basis are mapped to basic

generators of RM(1, km − 1) except (1, 1, . . . , 1). Taking all the possible linear

combinations, we extend the map φhom to Rk,m. The map is then extended in the

natural way Rn
k,m:

φhom : (Rk,m)n → F(2km−1)n
2

∑
0≤i≤k−1
0≤j≤m−1

c̄iju
ivj 7→

∑
0≤i≤k−1
0≤j≤m−1

c̄ijφhom(uivj).

(4.3)

The properties of the Reed-Muller codes then result in the following:
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Theorem 4.1.5. φhom is a distance preserving isometry from (Rn
k,m, homogeneous

distance) to (F2km−1n
2 , Hamming distance). Thus if C is a linear code over Rk,m of

length n and minimum homogeneous weight d, then φhom(C) is a binary linear code

of length 2km−1n, and minimum Hamming weight d. Moreover, the Homogeneous

weight distribution of C is the same as the Hamming weight distribution of φhom(C).

We finish this section with a few examples:

The homogeneous weight for R2,1 = F + uF2 coincides with the Lee weight defined

on F2+uF2 and the Gray-homogeneous map also coincides with the usual Gray map

for F2 + uF2, that is well-known in the literature.

Example 4.1.6. Let us consider R3,1 = F2 +uF2 +u2F2. The homogeneous weight

then is found to be

ωhom(x)


0 if x = 0,

4 if x = u2,

2 otherwise.

The Gray-homogeneous map is described on the basis elements as φhom(u2) =

(1, 1, 1, 1), φhom(u) = (1, 1, 0, 0), φhom(1) = (1, 0, 1, 0). The map is then extended to

R3,1 by taking the F2-linear combinations as follows:

φhom(0) = (0, 0, 0, 0) φhom(1 + u) = φhom(1) + φhom(u) = (0, 1, 1, 0)

φhom(1) = (1, 0, 1, 0) φhom(1 + u2) = φhom(1) + φhom(u2) = (0, 1, 0, 1)

φhom(u) = (1, 1, 0, 0) φhom(u+ u2) = φhom(u) + φhom(u2) = (0, 0, 1, 1)

φhom(u2) = (1, 1, 1, 1) φhom(1 + u+ u2) = φhom(1 + u) + φhom(u2) = (1, 0, 0, 1)

Consequently we have

φhom(a+ bu+ cu2) = (a+ b+ c, b+ c, a+ c, c), a, b, c ∈ F2.

Example 4.1.7. Let us consider R3,2 = F2 + uF2 + u2F2 + vF2 + uvF2 + u2vF2.

By the similar way, the homogeneous weight of u2v found to be 32 in the ring R3,2

and other non-zero elements of R3,2 have homogeneous weight of 16. Then the basis
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elements of R3,2 are mapped to basic generators of RM(1, 5) as follows:

φhom(u2v) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

φhom(uv) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

φhom(v) = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

φhom(u2) = (1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0)

φhom(u) = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0)

φhom(1) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0).

So, the Gray-homogenous map for the ring R3,2 is obtained by taking the F2−linear

combinations as follows:

φhom(a1 + a2u+ a3u
2 + b1v + b2uv + b3u

2v) = (a1 + a2 + a3 + b1 + b2 + b3,

a2 + a3 + b1 + b2 + b3, a1 + a3 + b1 + b2 + b3, a3 + b1 + b2 + b3,

a1 + a2 + b1 + b2 + b3, a2 + b1 + b2 + b3, a1 + b1 + b2 + b3, b1 + b2 + b3,

a1 + a2 + a3 + b2 + b3, a2 + a3 + b2 + b3, a1 + a3 + b2 + b3, a3 + b2 + b3,

a1 + a2 + b2 + b3, a2 + b2 + b3, a1 + b2 + b3, b2 + b3,

a1 + a2 + a3 + b1 + b3, a2 + a3 + b1 + b3, a1 + a3 + b1 + b3, a3 + b1 + b3,

a1 + a2 + b1 + b3, a2 + b1 + b3, a1 + b1 + b3, b1 + b3,

a1 + a2 + a3 + b3, a2 + a3 + b3, a1 + a3 + b3, a3 + b3,

a1 + a2 + b3, a2 + b3, a1 + b3, b3), ai, bi ∈ F2

The Gray-homogeneous map for the ring Rk,m when m ≥ 2 is not practical

because of large length.

4.2 DIVISIBLE CODES OVER Rk,m

Divisible codes were first introduced by Ward in 1981 in (Ward, 1981).

Definition 4.2.1. A code is divisible if the weights of all the codewords have a

common divisor ∆ > 1.

The replicated code, constructed by repeating each coordinate of a selected

code a certain number of times is the simplest divisible code. Moreover, Ward

proved that a divisible code is equivalent to a ∆-fold replicated code if the divisor

∆ of the code is relatively prime to the field characteristic in (Ward, 1981).
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Definition 4.2.2. A divisible code is said to be of “level e”, if the greatest divisor

of weights of codewords in C equals pe for some integer e ≥ 1.

Reed-Muller codes are also an example of divisible codes, by the following

theorem in (MacWilliams and Sloane, 1978):

Theorem 4.2.3. The weight of every codeword inRM(r,m) is divisible by 2[(m−1)/r].

Because of the homogeneous weight on Rk,m we can easily observe the follow-

ing:

Theorem 4.2.4. Any linear code C overRk,m is homogeneous-divisible with ∆ ≥ γ.

In particular with our choice of γ, we see that if C is a linear code over Rk,m of

length n, then φhom(C) is a divisible binary code of length 2km−1n with ∆ ≥ 2km−2.

It is well known that binary linear divisible codes with ∆ = 2k, k ≥ 2 are also

self-orthogonal. Thus we have the following corollary:

Corollary 4.2.5. Let C be any linear code over Rk,m. Then φhom(C) is a binary

self-orthogonal linear code if km ≥ 4.

In what follows, we will search for binary divisible codes with various divisors

from the Gray-homogeneous images of cyclic, constacyclic and quasicyclic codes

over Rk,m of some lengths. Because of the increased size of the rings, we will mostly

consider the rings R3,1 , R4,1 and R5,1. For these rings, the Gray homogeneous maps

are given as follows:

φhom(x) = (a1 + a2 + a3, a2 + a3, a1 + a3, a3)

for x = a1 + a2u+ a3u
2 ∈ R3,1 which is given above,

φhom(y) = (a1 + a2 + a3 + a4, a2 + a3 + a4, a1 + a3 + a4,

a3 + a4, a1 + a2 + a4, a2 + a4, a1 + a4, a4)

for y = a1 + a2u+ a3u
2 + a4u

3 ∈ R4,1 and

φhom(z) = (a1 + a2 + a3 + a4 + a5, a2 + a3 + a4 + a5, a3 + a4 + a5,

a1 + a3 + a4 + a5, a1 + a2 + a4 + a5, a2 + a4 + a5,

a1 + a4 + a5, a4 + a5, a1 + a2 + a3 + a5, a2 + a3 + a5,

a1 + a3 + a5, a3 + a5, a1 + a2 + a5, a2 + a5, a1 + a5, a5)

for z = a1 + a2u+ a3u
2 + a4u

3 + a5u
4 ∈ R5,1. The examples that we give are mainly

optimal.
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4.2.1 Divisible Cyclic Codes Over Rk,m

Recall that a linear code C of length n over Rk,m is a cyclic code if τ(c̄) =

(cn−1, c0, . . . , cn−2) ∈ C for all c̄ = (c0, c1 . . . , cn−1) ∈ C, where τ is the cyclic shift.

Considering the polynomial correspondence

π : (Rk,m)n → Rk,m[x]

c̄ = (c0, c1 . . . , cn−1) 7→ c0 + c1x+ . . .+ cn−1x
n−1

The cyclic shift corresponds to multiplying by x modulo xn − 1. Thus it is clear

that a code C of length n over Rk,m is cyclic if and only if π(C) is an ideal in the

ring Rk,m[x]/(xn−1). There are a lot of results concerning the structural properties

of cyclic codes over rings, in particular over finite chain rings. The rings that we

consider for the purposes in this section, R3,1, R4,1 being finite chain, we are not

going to go into the theoretical aspects of cyclic codes. Instead we will demonstrate

how some one-generator cyclic codes over these rings lead to optimal divisible binary

linear codes under the Gray-homogeneous map.

Theorem 4.2.6. The Gray-homogeneous image of a cyclic code over Rk,m is a

2km−1-quasicyclic binary code.

Proof. Let c̄ ∈ Rn
k,m. Then

φhom ◦ τ(c̄) = (φhom(cn−1), φhom(c0), . . . , φhom(cn−2)) (4.4)

on the other hand

φhom(c̄) = (φhom(c0), . . . , φhom(cn−2), φhom(cn−1)) (4.5)

where each φhom(ci) is of length 2km−1. Hence we obtain equation 4.4 applying the

cyclic shift 2km−1 times to equation 4.5. That is,

τ 2
km−1 ◦ φhom(c̄) = (φhom(cn−1), φhom(c0), . . . , φhom(cn−2)).

Hence we obtain:

φhom ◦ τ(c̄) = τ 2
km−1 ◦ φhom(c̄). (4.6)

Let C be a cyclic code over Rk,m, then we know τ(C) = C. Thus,

φhom(τ(C)) = φhom(C). (4.7)
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Applying the Equation 4.6 to 4.7 we get:

φhom(C) = φhom(τ(C)) = τ 2
km−1 ◦ φhom(C).

The binary codes that we have constructed have the additional property that

they are 4-quasicyclic or 8-quasicyclic according as we are on the ring R3,1 or R4,1.

Table 4.1 Divisible cyclic codes over R3,1 of length n and the binary images.

n g(x) φhom(〈g(x)〉) ∆ level

3 u2x+ u2x2 [12, 2, 8] 8 3

3 1 + x2 [12, 3, 6] 6 1

4 ux+ u2x2 + ux3 [16, 4, 8] 8 3

4 1 + x+ x2 + (1 + u2)x3 [16, 5, 8] 8 3

4 x+ ux2 + (u+ 1)x3 [16, 6, 6] 2 1

4 x2 + x3 [16, 9, 4] 2 1

4 x3 [16, 12, 2] 2 1

5 x3 + x4 [20, 12, 4] 2 1

5 x3 + (1 + u2)x4 [20, 13, 4] 2 1

6 ux+ ux2 + u2x3 + ux4 + (u+ u2)x5 [24, 4, 12] 4 2

6 x4 + x5 [24, 15, 4] 2 1

6 x4 + (1 + u)x5 [24, 16, 4] 2 1

7 u2x2 + u2x4 + u2x5 + u2x6 [28, 3, 16] 16 4

7 1 + x+ x2 + (1 + u2)x3 + x4 + (1 + u2)x5 + (1 + u2)x6 [28, 6, 12] 2 1

7 x2 + x4 + (1 + u2)x5 + (1 + u2)x6 [28, 12, 8] 4 2

7 x5 + (1 + u2)x6 [28, 19, 4] 2 1

8 x3 + ux5 + ux6 + x7 [32, 14, 8] 2 1

8 x4 + x5 + (1 + u)x6 + (1 + u+ u2)x7 [32, 15, 8] 2 1
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Table 4.2 Divisible cyclic codes over R4,1 of length n and the binary images.

n g(x) φhom(〈g(x)〉) ∆ level

2 u+ ux [16, 3, 8] 8 3

3 u3x+ u3x2 [24, 2, 16] 16 4

3 x+ x2 [24, 8, 8] 4 2

3 x+ (1 + u3)x2 [24, 9, 8] 4 2

4 u2x+ u3x2 + u2x3 [32, 4, 16] 16 4

4 1 + x+ (1 + u3)x2 + (1 + u3)x3 [32, 5, 16] 16 4

4 1 + x+ x2 + (1 + u3)x3 [32, 6, 16] 16 4

6 u3x+ u3x2 + u3x4 + u3x5 [48, 2, 32] 32 5

6 u2x+ u2x2 + u3x3 + u2x4 + (u2 + u3)x5 [48, 4, 24] 8 3

Remark 4.2.7. All the binary codes given in the above tables are optimal or best

known codes, meaning that they either attain upper bounds or have the best known

minimum distance according to (Grassl, 2007). The codes given in Table 4.2 have

the additional property that they are all self-orthogonal quasicyclic codes of the best

possible parameters.

4.2.2 Divisible constacyclic codes over Rk,m

Constacyclic codes are a natural generalization of cyclic codes. For a unit α ∈

R, a constacyclic shift onRn is given by τα(c0, c1, . . . , cn−1) = (αcn−1, c0, c1, . . . , cn−2).

A code C over R is said to be α-constacyclic if it is invariant under the α-constacyclic

shift, i.e., τα(C) = C. In exactly the same way as the cyclic codes, constacylic codes

are also endowed with an algebraic structure. More precisely, α−constacyclic codes

over R are in one-to-one correspondence with ideals in the quoient ring R[x]/(xn−α).

Structural properties of constacyclic codes over different alphabets have been stud-

ied quite extensively in the literature. In (Karadeniz and Yildiz, 2011), Karadeniz

and Yildiz studied (1 + v)-constacyclic codes over R2,2 = F2 + uF2 + vF2 + uvF2. It

is well known that if R is a ring of characteristic 2, and α ∈ R satisfies α2 = 1, then

α-constacyclic codes over R of odd lengths are also cyclic. In R2,2 as well as in the
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latter generalizations Rk, (Yildiz and Kelebek, 2014), every unit in the ring satisfies

this property. So, constacyclic codes over these rings of odd lengths are just cyclic.

However, the cases that we look at, namely in R3,1, R4,1 and R5,1 this is not true.

If we take α = 1 + u, then (1 + u)2 6= 1 in the rings mentioned above. Thus, the

constacyclic codes we study are in general different than cyclic codes.

In what follows, we have listed some examples of one-generator (1+u)-constacyclic

codes over Rk,m and their homogeneous Gray images, which turn out to be divisible,

optimal and in some cases self-orthogonal:

Table 4.3 Divisible (1 + u)-constacyclic codes over Rk,1 of length n and the binary

images.

Rk,1 n generator of the code φhom(〈g(x)〉) ∆ level

R3,1 6 (0, u2, u2, 0, u2, u2) [24, 2, 16] 16 4

R3,1 6 (0, 0, 0, 1, u, 1) [24, 15, 4] 2 1

R3,1 7 (0, 0, u2, 0, u2, u2, u2) [28, 3, 16] 16 4

R3,1 7 (1, u+ 1, 1, u+ 1, 1, u2 + u+ 1, u2 + 1) [28, 6, 12] 2 1

R3,1 7 (0, 0, 1, 0, 1, u+ 1, 1) [28, 12, 8] 4 2

R3,1 7 (0, 0, 0, 0, 0, 1, u2 + u+ 1) [28, 19, 4] 2 1

R3,1 9 (0, u2, u2, 0, u2, u2, 0, u2, u2) [36, 2, 24] 24

R4,1 2 (u2, u2) [16, 3, 8] 8 3

R4,1 3 (0, 1, u+ 1) [24, 8, 8] 4 2

R4,1 3 (0, 1, u3 + u+ 1) [24, 9, 8] 4 2

R4,1 5 (1, u3 + u2 + u+ 1, u2 + 1, u+ 1, 1) [40, 4, 20] 20

R4,1 7 (0, 0, u3, 0, u3, u3, u3) [56, 3, 32] 32 5

R5,1 3 (0, u4, u4) [48, 2, 32] 32 5

R5,1 3 (u, u2 + u, u3 + u) [48, 4, 24] 24

R5,1 3 (1, 1 + u+ u4, 1 + u2) [48, 5, 24] 24

R5,1 5 (1, u3 + u2 + u+ 1, u4 + u2 + 1, u+ 1, u4 + 1) [80, 5, 40] 40
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Remark 4.2.8. If C is an α-constacyclic code over Rk,m, then φhom(C) might not

be a 2km−1-quasicyclic binary code, however it can easily be shown that φhom(C) is

equivalent to a 2km−1-quasicyclic binary code. Thus all the codes given in the above

table are equivalent to binary quasicyclic codes and they are also self-orthogonal

when ∆ ≥ 4.

4.2.3 Some results on divisible quasicyclic codes over Rk,m

Quasicyclic codes are another generalization of cyclic codes and have generated

a lot of interest. They have algebraic structure and they also satisfy a modified

version of the Gilbert-Varshamov bound. Many optimal good binary codes are

quasicyclic. A lot of good codes have been constructed using quasicyclic codes over

different alphabets, such as (Aydin et al., 2013) and (Chen, 1994). A definition can

be given from (MacWilliams and Sloane, 1978):

Definition 4.2.9. A code C of length n is called `−quasicyclic if `|n and τ `(C) = C.

Note that when ` = 1, 1-quasicyclic codes are just cyclic codes. Structurally,

the generator matrix of a t generator `−quasicyclic code can be shown to be of the

following form: 
C11 C12 . . . C1,`

C21 C22 . . . C2,`

...
...

...
...

Ct,1 Ct,2 . . . Ct,`


where Cij are m × m circulant matrices. In such a case, the length n of the

`−quasicyclic code C is m×`. We refer to (Townsend and Weldon, 1967) and (Chen,

1994) for more information on quasicyclic codes.

We have searched through one generator `-quasicyclic codes over Rk,m to get

divisible codes of various lengths. We have listed in the following table, divisible,

optimal binary codes obtained as the φhom-images of quasi cyclic codes over Rk,m:
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Table 4.4 Divisible `-quasicyclic codes over Rk,1 and the binary images.

Rk,1 ` generator of the code φhom(〈g(x)〉) ∆ level

R3,1

3 (0, 1, 1, 0, 1, 1 + u2, u, u, u2) [36, 2, 24] 24

3 (0, u, u, 0, u, u2 + u, u, u, u2) [36, 5, 16] 4 2

3 (0, 1, 1, 0, u, u, 1, u2, u2 + 1) [36, 6, 16] 4 2

3 (0, 1, 1, 0, 1, u2 + 1, u, u, u2) [36, 7, 16] 4 2

3 (1, 1, u2 + 1, u2 + 1, 1, 1, u2 + 1, u2 + 1, 1, 1, u2 + 1, u2 + 1) [48, 4, 24] 24

3 (0, u, u2, u2 + u, 1, 1, u2 + 1, u2 + 1, 1, u+ 1, 1, u+ 1) [48, 5, 24] 8 3

2 (0, 1, 1, u2, 1, u2 + 1, u2 + u, 1, u2 + u+ 1, u, 1, u+ 1) [48, 6, 24] 8 3

2 (0, 0, 0, u, u, 0, u2, u, u, u2) [40, 8, 16] 8 3

3 (1, 1, 1, 1, u2 + 1, 1, 1, 1, u2 + 1, u2 + 1, 1, 1, u2 + 1, 1, u2 + 1) [60, 7, 28] 2 1

3 (0, 0, 0, 1, 1, 0, u, 1, u, 1, 1, u+ 1, u2, 1, u2 + u+ 1) [60, 12, 24] 4 2

R4,1

2 (1, 1, u3 + 1, u3 + 1, 1, 1, u3 + 1, u3 + 1) [64, 5, 32] 32 5

2 (1, 1, 1, u3 + 1, 1, 1, 1, u3 + 1) [64, 6, 32] 32 5

2 (1, 1, u2 + 1, u3 + u2 + 1, 1, 1, u3 + u2 + 1, u2 + 1) [64, 7, 32] 32 5

3 (1, 1, u3 + 1, 1, 1, u3 + 1, 1, 1, u3 + 1) [72, 5, 36] 12

3 (1, 1, 1, u3 + 1, 1, 1, 1, u3 + 1, 1, 1, 1, u3 + 1) [96, 6, 48] 48

Remark 4.2.10. It can easily be shown that the Gray-homogeneous image of an

`-quasicyclic code is a (2km−1`)-quasicyclic binary code. So, the binary codes con-

structed above are all (2km−1`)-quasicyclic for the appropriate values of `, k,m. In

all but one of the cases they are self-orthogonal as well. Thus almost all the codes

given in the above table are optimal self-orthogonal quasicyclic codes.

4.2.4 Griesmer Codes

The Griesmer bound, introduced in (Griesmer, 1960) is one of the many bounds

that exist for codes, and can be stated as follows: For a linear [n, k, d]-code over Fq,

we have

n ≥
k−1∑
i=0

d d
qi
e, (4.8)

where dxe denotes the smallest integer greater than or equal to x. Linear codes

meeting this bound are called Griesmer Codes.

Let us consider a one generator cyclic code Ckm of length n over Rk,m with

the generator vector (1, 1, . . . , 1). This is actually the repetition code. It is clear
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to see that the Gray-homogeneous image of this code is a binary linear code of

the parameters [2km−1n, km, 2km−2n]. Thus, the images of this code are binary

divisible codes with divisor 2km−2n. We may construct many optimal linear codes,

which otherwise may have complicated constructions, in a relatively easier way from

Ckm. As an illustration of this idea, consider, the Gray-homogeneous images of C51

and C32 of length n. These will be binary codes of parameters [16n, 5, 8n] and

[32n, 6, 16n], respectively. According to (Grassl, 2007), these codes are all optimal

when 1 ≤ n ≤ 8.

We finish this section by noticing that φhom(Ckm)s are Griesmer codes, when

n = 1, for all k and m.

Theorem 4.2.11. The binary linear code φhom(Ckm) is a Griesmer code for n = 1,

and for all k,m.

Proof. When n = 1, φhom(Ckm) is a km-dimensional linear code with minimum

distance 2km−2. Calculating the Griesmer lower bound according to 4.8, we see that

the lower bound must be

km−1∑
i=0

d d
2i
e = d2

km−2

20
e+ d2

km−2

21
e+ · · ·+ d2

km−2

2km−2
e+ d2

km−2

2km−1
e

= 2km−2 + 2km−3 + · · ·+ 1 + 1

= (2km−1 − 1) + 1 = 2km−1,

which is precisely the length of φhom(Ckm), when n = 1.
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CONCLUSION

Codes over rings have been an integral part of Algebraic Coding Theory over

the recent years. The increased activity around this topic is justified by many

interesting results obtained through codes over rings as well as many applications.

With an intricate algebraic structure compared to fields, they sometimes fill the gaps

caused by the restrictive nature of fields. Recent years have shown for example, that

many new extremal binary self-dual codes have been found through codes over rings

of characteristic 2. These codes were not found using the classical construction

methods over the fields oft-applied previously. What started with an Z4-duality of

certain non-linear binary codes has now led to an avalanche of works in this area.

The many different applications suggest that this interest in this area will continue

to be one of the focal parts for coding theorists in the future. Because of Wood’s

studies in this field, Frobenius rings have been the center of attention in codes over

rings. In fact, looking over the literature, we see that many of the works consider

finite, commutative Frobenius rings, and in some cases, local Frobenius rings are

considered. This choice is justified because of many nice properties of these rings.

The existence of a generating character, which can be found without much difficulty,

allows one to consider MacWilliams identities and in our case for example, allows

one to characterize the homogeneous weights.

The Hamming weight is not a focal weight for codes over rings. Instead many

different weights have been suggested. The Lee weight, the Euclidean weight and

the homogeneous weight are amongst these. The common theme in working with

codes over rings has been as follows: describe the ring explicitly through its units,

non units and ideals. Define a weight (Lee, Homogeneous etc.) with associated Gray

maps that map codes over the ring to codes over the ambient residue field of the

72
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ring. Thus consider different aspects of coding theory within this context.

In this thesis, we followed the some script for the ring that we described as

Rk,m. Rk,m is a generalization of some oft-studied rings in the literature over the

recent years. The characteristic is 2, and it is a family of finite-commutative, local

Frobenius rings but are not (usually) finite chain or principal ideal rings. These

rings are endowed with an orthogonality-preserving, linear bijective Gray map to

the binary field, which allows us to work on self-dual codes. Defining the Lee weight

in terms of this Gray map and using the construction methods such as the double

circulant, bordered double circulant, four circulant constructions and also using

extension methods we obtained extremal binary self-dual codes of lengths 36, 64,

66, 68 and 72, and gave a different construction for Golay code. We also used

quadratic circulant matrices to obtain extremal binary self-dual codes of lengths 20,

40, 44 and 66.

The first main part of the thesis being the applications to self-dual codes. We

focused on the homogeneous weight in the second main part. After a characterization

of the homogeneous weight using the generating character, we were able to find a

linear, distance preserving Gray map using first order Reed-Muller codes. The binary

images of codes over Rk,m under the Gray-homogeneous map have many interesting

desirable properties, such as being divisible with high levels of divisibility and being

self-orthogonal. Considering cyclic and quasicyclic codes over Rk,m, we were able to

get many optimal binary codes that are divisible, self-orthogonal quasicyclic codes.

self-orthogonal quasicyclic codes, being of importance in communications, we find a

further justification of working on codes over Rk,m with respect to the homogeneous

weight. The results of the thesis show that, the ring familyRk,m is a relevant ambient

space for codes over rings. The fruitful results obtained in extremal binary self-dual

codes as well as self-orthogonal quasicyclic codes suggest that further explorations

are possible. Possible connections to such recently introduced subjects as skew cyclic

codes DNA codes can be explored as part of future work on the subject.

Another comment that we would like to make is about Frobenius rings. The

main attraction of Frobenius rings for coding theorists is that they possess a generat-

ing character and consequently the MacWilliams identities hold for codes over such

rings. It is our belief that non-Frobenius rings may also be considered for different
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aspects of coding theory as long as the concept of duality, generating character and

MacWilliams identities do not come into the picture. With almost nothing in the

literature about codes over such rings, the end results and the justification must

be well described before such work can be undertaken. But we suggest this as a

possible direction for future research.
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