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ÖZET 

 TELEGRAF DENKLEMLERİ’NİN FARK ŞEMALARI 

 

Kadriye Tuba TÜRKCAN  

 

İstanbul Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

Danışman : Doç. Dr. Kadri Ulaş AKAY 

 

Bu tezde, aşağıdaki Cauchy problemi  

{
𝑑2 𝑢(𝑡)

𝑑𝑡2
+ 𝛼

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇,

𝑢(0) = 𝜑,  𝑢𝑡(0, 𝑥) = 𝜓(𝑥), 0 ≤ 𝑥 ≤ 𝑙,

             (1) 

bir H Hilbert uzayında özeşlenik (simetrik) pozitif tanımlı A operatörlü telegraf 

denklemi için ele alınmıştır. Bu problemin çözümü bulunmuş ve bu formül için 

kararlılık kestirimleri gösterilmiştir. Problem (1)’in yaklaşık çözümünün birinci, ikinci 

ve üçüncü derece kararlı fark şemaları kurulmuştur. Oluşturulan fark şemalarının 

çözümünün kararlılık kestirimleri gösterilmiştir. Nümerik çözümleri bulmak için bir 

örnek problem ele alınmıştır. 

   

Temmuz 2017, 83 sayfa. 

Anahtar kelimeler:   Telegraf Denklemleri, Fark Şemaları, Kararlılık, Hilbert Uzayı   

YÜKSEK LİSANS TEZİ 
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In this thesis, the following Cauchy Problem  

{
𝑑2 𝑢(𝑡)

𝑑𝑡2
+ 𝛼

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇,

𝑢(0) = 𝜑,  𝑢𝑡(0, 𝑥) = 𝜓(𝑥), 0 ≤ 𝑥 ≤ 𝑙,

             (1) 

for a telegraph equation with a self adjoint (symmetric) positive definite operator A in H 

is considered. The result of the above problem is obtained and the consistency 

conjectures on this formula are presented. So as to the approximate result of  problem 

(1) , first, second and third order of precision variation charts are constructed. For the 

solutions of these variation charts, stability estimates are presented. A test problem is 

considered to find the numerical results.  

July 2017, 83 pages. 

Keywords: Telegraph Equations, Difference Schemes, Stability, Hilbert Space       
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1. INTRODUCTION 

Many problems in engineering and science, like fluid dynamics, elasticity, wave propagation, 

materials science etc., result in hyperbolic partial differential equations. One of the most 

commonly used hyperbolic PDEs for modeling real life problems is telegraph equation. In 1876, 

studying on coaxial marine telegraph cables, Heaviside investigated the telegraph equation which 

describes the current and voltage on an electric power transmission line. This equation describes 

facts in a vast array of fields, such as excitons, the conduction of impulses inside the nerves and 

muscles, the diffusion of pressure waves in blood flow. 

In the literature, the solution of telegraph equation has been drawn attention in recent years. For 

instance, Banasiak and Mika (1998) analyzed singularly perturbed telegraph equations and 

applied the results to the random walk theory. Jordan and Puri (1999) modeled the distribution of 

analog and digital signals through media, using the one dimensional telegraph equation. A 

three-level implicit difference schema was developed by Mohanty (2004), on the linear 

hyperbolic PDE. Shokri and Dehghan (2008) used Kansa’s Method, i.e. radial based function 

method, on a numerical schema in order to solve the one-dimensional hyperbolic telegraph 

equation. Biazar et al. (2009) applied VIM for approximately solving the telegraph equation. 

Jiwari et al. (2012) offered a numerical method using PDQM to find the formula for 

two-dimensional sine-Gordon equation. Luo and Du (2013) presented a fourth degree technique 

for the result of telegraph equation, with the help of Hermite interpolation. 

As to the computational analysis of telegram equalities, stability estimates of solution has drawn 

a good deal of attention. Operator theory is a very important and effective approach for studying 

on stability of approximate solutions of PDEs. Sobolevskii and Ashyralyev (2004) constructed 

and investigated new high order difference schemes for approximating solutions of regular and 

singular perturbation BVPs for PDEs. For the analysis of higher order variation charts of the 

IVPs for hyperbolic PDEs, the stability estimates are established, based on the spectral 

representations of symmetric positive definite operators in a Hilbert space. In this way, we will be 

able to study the stability of simple difference schemes for various partial differential equations. 

For approximately solving nonlocal BVPs for hyperbolic equations, Aggez and Ashyralyev 
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(2004) constructed first and second-level of precision variation charts; and established the 

consistency conjectures. Ashyralyev and Ozdemir (2007) studied nonlocal BVP on 

hyperbolic-parabolic equations and constructed consistency conjectures. They worked along with 

symmetric positive definite operators in Hilbert space H. Similarly, Ashyralyev and Koksal 

(2007) constructed second-level of precision variation chart for the approximate solution of the 

IVP for hyperbolic equation. Also, to the result of the variation chart, they found the consistency 

conjectures. Koksal  and Ashyralyev (2008) developed the stable numerical schemes for the 

result of wave equation within non-homogeneous cylindrical shells and presented stability 

estimates. 

Furthermore, Emir (2011) constructed a second-order difference scheme and calculated 

numerical results of telegraph equations in transmission lines, with modified difference scheme. 

Modanli and Ashyralyev (2015) developed first and second-level variation chart as to the 

approximate formula of the Cauchy problem to the telegraph equations and established the 

stability estimates in Hilbert space. Numerical solutions of a telegraph equation with nonlocal 

boundary conditions were also calculated by these difference schemes. Finally, Ashyralyev et al. 

(2016) constructed a third-level of precision difference chart for the approximate solution of the 

Cauchy problem for telegraph equations. 

In this study, the Cauchy problem 
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for a telegraph equation is considered with a self-adjoint positive definite operator ,A  in a 

Hilbert space H . Here IA   and 0,> 0>  and 
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The primary object of this reseach is to examine the difference charts on approximately solving 

above problem. It is known that PDEs can be solved analytically using different methods. In this 

thesis, three different methods, namely Fourier Series, Fourier Transform and Laplace Transform 
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methods, are used to solve three different problems for telegraph equations. However, analytic 

methods can be used only with constant coefficients. In this thesis, we will use numerical 

methods for solving PDEs with dependent coefficients. Therefore, here, in this work, first, second 

and third level of precision variation charts of above problem are constructed. Then, using the 

operator approach, the consistency conjectures are presented. To show the accuracy of the 

difference schemes, a test example is solved numerically. In MATLAB implementation, the 

method is illustrated by numerical experiments.  

 

Various IVPs for telegraph equations can be converted to the IVP in a Hilbert space H  with 

self-adjoint positive definite operator .A  This work considers the following Cauchy problem 
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for telegraph equations as the main problem with self-adjoint positive definite operator A  in a 

Hilbert space H . Here IA   and 0,> 0>  and 
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Let us briefly describe the contents of the various sections of this thesis. 

First chapter gives a brief history of the methods used in the literature to solve telegraph 

equations.  

Second chapter, section 2.1contains the main theorem on the stability of problem (1.1). Three 

different telegraph equations are solved by using Fourier Series, Laplace Transform and Fourier 

Transform methods. The solution of the abstract problem (1.1) is established. Also, stability 

estimates for this solution are presented. 

Section 2.2consists of stable difference schemes for the approximate solutions of the problem 

(1.1). First, second, and third order of accuracy difference schemes are constructed. The stability 

estimates are presented. 
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Section 2.3is devoted to numerical results. The proposed difference schemes are applied to a test 

problem. A comparison of the first, second and third-order of accuracy difference schemes is 

presented based on the numerical results. A MATLAB program is given to illustrate that the third 

order of accuracy difference scheme is more accurate than the second and the first ones. Figures 

and tables are included. 

The last chapters include results and conclusion. A brief summary and discussion of this thesis 

is made. A comparison of the first, second and third order of accuracy difference schemes, based 

on the numerical results, is presented. 

 



5 
 

2. MATERIALS AND METHODS 

2.1.MOTIVATION OF THE PROBLEM 

In this thesis, the following Cauchy problem for telegraph equations is considered as the main 

problem: 
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 (2.1.1) 

In this chapter, three examples of Cauchy problem for telegraph equations are solved analytically 

using Fourier Series, Laplace Transform and Fourier Transform Methods. Then, using operator 

approach the abstract Cauchy problem for telegraph equation will be studied. The solution of this 

problem is obtained, and applying the operator approach, the stability estimates for the solution 

of this problem are presented. 

In the following sections, numerical solutions of the abstract Cauchy problem are found. The 

first, second and third order of accuracy difference schemes for the solution of the abstract 

Cauchy problem are constructed and the stability estimates are presented. Using these difference 

schemes, a test problem for a telegraph partial differential equation is solved numerically. 

Numerical computations are done with the help of MATLAB. Finally, a comparison of the first, 

second and third order of accuracy difference schemes is presented. 

First, we consider the following Cauchy problem for telegraph equations 
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This can be solved analytically using different methods. Now, three examples will be illustrated 

for Fourier Series, Fourier Transform and Laplace Transform Methods. 

2.1.1. Examples 

Example 2.1.1.Consider the IVP 
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for a telegraph equation. For solving the problem (2.1.2), we use the Fourier series method. We 

search for a solution as 
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when 2,=n  and 
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  0=122  nkk  

Solving the equation, we get the following roots 

 
i

nnn
k

2

34

2

1
=

2

34

2

1
=

2

1411
=

222

1,2








 

Thus, we obtain the following general solution 

     .
2

34
sin

2

34
cos=

2

2

1

2

2

2

1

1 nt
n

eCnt
n

eCtA
tt

n




 

 

Substituting the conditions  
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into the equation, we obtain 0== 21 CC . So, 0,=)(tAn  for all 2.n  

Assume 2.=n  Then, 

      ).2(exp7=5 222 ttAtAtA '''   

Then the general solution is 
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     .= 222 tAtAtA pc   

Here,  tAc

2  is the complementary solution and  tAp

2  is the particular solution.  tAc

2  is the 

solution of the homogeneous differential equation 
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Therefore, 

      .2sin)2(exp=2sin=, 2 xtxtAxtu   

Example 2.1.2.  Now, we will apply the Laplace transformation method.  
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To find the solution,  stW ,  will be separated into two parts 



10 
 

     .,,=, stWstWstW pc   

Here  stW c ,  is the solution of the homogeneous equation 
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Now, using the boundary conditions (2.1.3) which are transformed to 
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Example 2.1.3.The last example is an initial value problem solved by using Fourier transform 

method. 
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Let     .,=, xtustV F  Further, we have 
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           .2exp=2exp=2exp416 22222 xsxxx
''
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Then, the Fourier transform of the differential equation in (2.1.4) is taken to obtain 
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To solve it,  stV ,  is separated into two parts      .,,=, stVstVstV pc  Here  stV c ,  is the 

complementary solution and  stV p ,  is the particular solution. For the homogeneous equation 
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 stV c ,  is the solution; and for the following nonhomogeneous equation, we write 

     tsEstV p exp=,  as the solution of 

           .)2(exp)(exp1=,1,, 222 xtsstVsstVstV ttt  F  

Therefore, 

     st
s

eCst
s

eCstV
tt

c

2

34
sin

2

34
cos=,

2

2

1

2

2

2

1

1




 

 

and for the particular solution, 
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So differentiating and substituting these into the differential equation, we get 
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Now, using the boundary conditions in (2.1.4) which are transformed to 
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Finally, the inverse Fourier transform is taken to arrive at the solution of the problem (2.1.4) as 
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These were the examples for the solution of problems for telegraph partial differential equations. 

2.1.2. The Main Problem 

Now, we consider the main problem 
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To find the numerical solution of this problem, we reduce it to the abstract Cauchy problem for 

telegraph ordinary differential equations. We will introduce the differential operator A  defined 

by formula 

      ,=
0

=xxxx xvxvxAv   

with domain 
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            ,0=,0,:= vlvlCxvxvAD xx   

in a Hilbert space ,H where     .0,0,= lTCH   

Let  x =  and  x =  be elements of  AD . Let    xtftf ,=  be known abstract 

function defined on  T0,  with values on  lC 0,  and    xtutu ,=  be an unknown abstract 

function defined on  T0,  with values on  .0, lC  Then, we denote 
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It is clear that problem (2.1.1) can be reduced to the following abstract Cauchy problem for the 

ordinary telegraph differential equations: 
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TttftAu
dt

tdu

dt

tud

  (2.1.5) 

 with the self-adjoint positive definite operator A  in a Hilbert space H . Here, IA  , 

0,> 0>  and 

.
4

>
2

   (2.1.6) 

A self-adjoint linear operator B on a Hilbert space H is called square root of A if 𝐵2 = 𝐴 ; and if 

𝐵 ≥ 0, B is called a positive square root of A and is denoted by  𝐵 = 𝐴1/2. 

As it was stated by Ashyralyev and Sobolevski (2004) that: 

"To call a function )(tu  as a solution of problem (2.1.5), the terms below should be met: 

i. )(tu  is twice continuously differentiable in the segment  T0, . 

ii. )(tu  belongs to )(AD  for all  ,0,Tt  and the function )(tAu  is continuous on  .0,T  

iii. )(tu  satisfies the equations and initial conditions (2.1.5). If the function is both continuous 
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and continuously differentiable on  ,0,T  AD  and ."2

1














 AD  

Using the approach given by Fattorini (1985), Ashyralyev and Sobolevski (2004) and Modanli 

(2015) we can write: 

"Let   0, ttC  be a strongly continuous cosine operator-function defined by the formula 

  .
2

=

1/21/2 itRitR ee
tC


 

Thus, the definition of the sine operator-function  tS  gives 
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In this equation .
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  The cosine operator-function theory is explained in detail by 

Piskarev and Shaw (1997), and Fattorini (1985). 

Under the assumption (2.1.6), the formula for the solution of the problem (2.1.5) is obtained. 

Clearly, the one and only mild solution to problem (2.1.5) for telegraph equation is 
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As it is given by Sobolevski and Ashyralyev (2004), (2.1.5) can be written as the following IVP: 
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Integration of the above equations gives  
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or equivalently, 
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 is subtituted into the equation; and the 

equation becomes 
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By interchanging the order of integration, the equation can be written as 
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Eventually, from the definitions of    tStC ,  and ,2

1

R  the formula (2.1.7) is obtained. 

Lemma 2.1. The inequalities (Ashyralyev and Sobolevskii, 2004) 
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 (2.1.8) 

hold, where N  is a positive constant. 

Let  HC  be the space of continuous H -valued functions  t  defined on  T0,  and  

  H
Tt

HC
tu )(max=

0




 

be the norm. 
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For the well-posedness of a problem, there should be a unique solution for each set of data and 

continuous dependence of the solution on the data. Here, using the approach given by 

Sobolevskii and Ashyralyev (2004), and Modanli (2015), we will illustrate that Cauchy problems 

for telegraph equations are stable. Now, with this approach the following main theorem on 

continuous dependence of the solution on the given data will be proved. 

2.1.3. Stability Estimates 

Theorem 2. 1.1.Let the terms (2.1.6) and (2.1.8) be satisfied; and  ,AD 












 2

1

AD  and 

 tf  be a continuously differentiable function on  T0, . Then, problem (2.1.5) owns a unique 

solution and the stability inequalities below are satisfied: 

H
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tu )(max
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  (2.1.11) 

Here   ,N  independent of ,   and ),(tf  .0,Tt  

Proof. (Modanli, 2015). Using the formula (2.1.7), IA   and the estimates (2.1.8), the 

inequalities below can be written: 
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Multiplying both sides of the formula (2.1.7) by 1/2A  and applying the estimates (2.1.8) in the 

same way, we get 

 
H

t

HHH
AetCtuA 


1/221/2 )(






H
t

HHHH e

RAtSR 



2

2

1

1/22

1

2

)(







  

 
H

t

HHHH

eRAtSR 


22

1

1/22

1

)(








  

     dssfstSRRA
H

HHHH

t





  2

1

2

1

1/2

0

 

    




 


H

Tt
HH

tfAN max,
0

1/2

2   

for any  .0,Tt  So, 

    .max,)(max
0

1/2

2

1/2

0 



 


H

Tt
HHHTt

tfANtuA   

Now, we estimate .)(
H

tAu  Multiplying the formula (2.1.7) by A  and with the help of an 

integration by parts, we have 
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Estimates (2.1.8) and this formula gives 
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for any  .0,Tt  So, we obtain 
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This final estimate and triangle inequality leads to the estimate for 

H
Tt dt

ud
2

2

0
max



. So, the proof is 

completed. 
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2.2. STATEMENT OF THE PROBLEM 

In this section, the following abstract Cauchy problem for telegraph equations 
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'uu

TttftAu
dt

tdu

dt

tud

  (2.2.1) 

with the self-adjoint positive definite operator A  in a Hilbert space H , is taken into 

consideration. Stable two-step first, second and third order of accuracy difference schemes in t  

for the solution of this problem are constructed using finite difference method. 

Using the approach given by Modanli (2014), the first and second order of accuracy difference 

schemes in t  are constructed. For the third order of accuracy difference scheme in t , Taylor’s 

decomposition on three points, which was given by Yildirim (2011), is used. In addition to these, 

using the operator approach constructed by Ashyralyev and Sobolevski (2004), the stability 

estimates are presented. 

In the next section, the proposed difference schemes are applied to a test problem to show the 

accuracy and the efficiency of the numerical method. The Numerical results are obtained using 

the difference schemes and the difference formulas with the help of MATLAB. 

Now, the first, second and third order of accuracy difference schemes in t  will be constructed. 

To construct the two-step difference schemes in t  for the approximate solution of this problem, 

the following sample grid interval is taken on the segment  :0,T  

   .=,0,1,...,=,==0, TNNkktT k   

2.2.1. First-order Difference Scheme 

We take the IVP (2.2.1) into consideration. Putting 1= ktt  and using difference formulas 
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where 
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2 )(
=)(

dt

tud
tu ''  and 

dt

tdu
tu' )(

=)( , we obtain the first order of accuracy difference scheme. 

For the rest of our work, we use the notation ).(= kk tuu  Substituting the approximations 

2

11 2


  kkk uuu

 and 


kk uu 1  

for )(tu ''  and )(tu' , respectively, we have the following approximation for the telegraph 

equation in (2.2.1): 
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The approximation of the first initial condition =(0)u  is .=0 u  The approximation for the 

second initial condition =(0)'u  is 
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Omission of the small term )(O  gives .=01 


uu 
Then, for the solution of problem (2.2.1), 

we have 
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as the first-order of approximation in t  two-step difference scheme (Modanli, 2014). 

Now, using the lemma below and the stability estimates given by Ashyralyev and Sobolevskii 

(2004) and Modanli (2014), the stability estimates for the solution of problem (2.2.1) will be 

presented. 

Lemma 2.2.1. (Ashyralyev and Sobolevskii, 2004) The following estimates hold: 
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Theorem 2.2.1.Assume that  ,AD 












 2

1

AD  and the assumption (2.1.6) holds .Then, the 

following stability estimates should be met for the solution of the difference scheme (2.2.2)  
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1 HHH
AAf    (2.2.6) 

Here   ,C  is independent of ,   ,   and ,kf 11  Nk  (Modanli, 2014). 

Theorem 2.2.1 is proved by Modanli (2014) with the help of estimates (2.2.3), triangle inequality, 
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and the following formula 
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 ,2 Nk    (2.2.7) 

which was constructed by Ashyralyev and Sobolovskii (2004). 

2.2.2. Second-order Difference Scheme 

Now, putting ktt = , we use the finite difference formulas 
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for the construction of second-order approximation in t  two-step difference schemes for the 

solution of IVP (2.2.1). Further, we have 
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The approximation of the first initial condition   =0u  is .=0 u  The approximation of the 
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From the above expression, it follows that 
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where .= uuAu xx  Here  .,= xtuu  Then, the right hand side of the equation becomes 
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Cancellation and omission of the small terms )( 2O  lead to 
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Then, for the solution of the problem (2.2.1), two step second order of accuracy in t  difference 

schemes (Mahmut, 2014) 
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 (2.2.9) 

are attained. 

Now, the theorem on the stability of these difference schemes is given based on the operator 

approach (Ashyralyev and Sobolevski, 2004). 

Theorem 2.2.2. Assume that  ,AD 












 2

1

AD  assumption (2.1.6) holds . Then, the 

following stability estimates hold for the solution of difference schemes (2.2.8) and (2.2.9): 
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Here   ,C  is free from ,,,   and ,kf 11  Nk  (Modanli, 2015) .  

2.2.3. Third-order Difference Scheme 

Finally, for the approximate solution of the problem (2.2.1), we apply following Taylor’s 

decomposition on three points given by Yildirim (2011): 

    )(=
12

1

63

2
2 54

1

4

11

2
2

11 


 Ouuuuuuu k

''

k

''

k

''

kkkk    (2.2.10) 

and 

   )(=
6

1

3

2
2= 5

1111  Ouuuuu '

k

'

k

'

kkk








   (2.2.11) 

to construct the third order of accuracy difference scheme. 

First, we write the equation in (2.2.1) as the following way and taking the third and fourth 

derivative, we have 

    ,)(=)( tftAututu '''   

       ,)(=)( 2 tftftAutuAtu '''''    

                 .)(2= 2234 tftftfAtAuAtuAtu ''''    

With the help of (2.2.10) and (2.2.11), substituting 
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for ''

ku  and '

ku , respectively, into the differential equation in (2.2.1), we will have the following 

expression as the third order approximation of the differential equation (2.2.1): 
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Omission of the small term and substitution of the values for the derivatives of  tu  into the 

above expression result in 
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 (2.2.12) 

From now on, we use the notation kf  for the summation of all the functions with  ktf  in the 

differential equation in (2.2.1). So, (2.2.12) is the third order approximation for the differential 

equation in (2.2.1). 

Now, we construct the third order approximations for the initial conditions in (2.2.1). The 

approximation of the first initial condition   =0u  is 
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.=0 u   (2.2.13) 

The approximation of the second initial condition   =0'u  is 
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Substituting the values of the derivatives of  0u  into the above expression and omitting the 

small term )( 3O , we have 
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Hence, the approximations (2.2.12), (2.2.13) and (2.2.14) lead to the following third-order of 

approximation in t  two-step difference scheme (Ashyralyev et al., 2016) 
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for the solution of problem (2.2.1). 

The stability estimates for the solution of this difference scheme are given by the following 

theorem: 

Theorem 2.2.3. Assume that  ,AD 












 2

1

AD  and the assumption (2.1.6) holds .Then, the 

following stability estimates hold on behalf of the formula of difference scheme (2.2.15): 
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where C  is independent of 1,,1  Nsfs  and   (Ashyralyev et al., 2016) .  

In this section, stable first, second and third order of accuracy difference schemes have been 

constructed for the solution of problem (2.2.1). For the solutions of these difference schemes, 

stability estimates have been presented. In the following section, these difference schemes will be 

applied to a test problem for a telegraph equation in order to obtain the numerical results. 
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2.3. NUMERICAL RESULTS 

In this section, a test problem for a telegraph equation is considered. The difference schemes 

proposed in section 2.2 are applied to this trial problem in order to indicate the certainty and 

efficiency of numerical method. Difference equations with matrix coefficients are obtained as a 

result of calculations. To solve these difference equations, iterative method is applied. Numerical 

computations are carried out with the help of MATLAB. The errors are analyzed by looking at 

graphs and tables. In the end, a comparison among first, second and third order of accuracy 

difference schemes is made. 

2.3.1. A Test Problem 

For numerical results, the following IVP 
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 (2.3.1) 

for a telegraph equation is considered. The problem has the following exact solution: 

  ).(2sin)2(exp=, xtxtu   

First, second and third order of accuracy difference schemes are applied to the approximate 

formulas of the IVP (2.3.1). Iterative method is applied to solve the difference equations with 

matrix coefficients. 

First, the set  h 0,[0,1]   of a group of mesh points 
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is considered, dependent on the small parameters   and .h  

2.3.2. The First Order of Accuracy Difference Scheme 

For the approximate solution of problem (2.3.1), we perform the following difference formula 
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and the difference scheme (2.2.2). The formula (2.3.2) and the difference scheme (2.2.2) result in  
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 (2.3.3) 

as the approximation of the equation in (2.3.1). The approximation of the first initial condition 

 xxu 2sin=)(0,  is 

 .2sin=0

nn xu   (2.3.4) 

The approximation of the second initial condition  xxut 2sin2=)(0,   is obtained applying the 

formula in difference scheme (2.2.2) as 

  .2sin21=1

nn xu    (2.3.5) 

The approximations (2.3.3), (2.3.4) and (2.3.5) give the following first-order of accuracy in t  

and the second-order of accuracy in x  difference scheme: 
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 (2.3.6) 

Note that, here and in the future, k

nu  represents ),( nk xtu  in the equation. We obtain 

1)(1)(  MN  system of linear equations in (2.3.6). Before writing these in matrix form, in 

order to make the calculations easier one will write the frame again as 
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 (2.3.7) 

Hereby, each distinct coefficient will be denoted by letters cba ,,  and d  as follows 
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Then, the equation in the system (2.3.3) can be written as system of second order difference 

equation with matrix coefficients as 
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Then, (2.3.6) can be written as 
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The system written in matrix form results in a second order difference formula in terms of k  

with matrix coefficients. Now, we will apply iterative method to get the solution of this 

difference equation. Solving it, we get 

1.,1= 11111   NkDACUABUAU kkkk   

2.3.3. The Second Order of Accuracy Difference Scheme 

Here, the second order of accuracy difference scheme (2.2.9) is applied to problem (2.3.1).  

Using the difference formula 
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2
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and the difference scheme (2.2.9), we get 
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 (2.3.8) 

for the approximation of the differential equation in (2.3.1). The approximation of the first initial 

condition  xxu 2sin=)(0,  is 

)(2sin=0

nn xu   (2.3.9) 

and the approximation of the second initial condition  xxut 2sin2=)(0,   is 
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 (2.3.10) 

as a result of the application of difference scheme (2.2.9) into the initial conditions in (2.3.1). The 

approximations (2.3.8), (2.3.9) and (2.3.10) result in the second order of accuracy difference 

chart with respect to t  
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 (2.3.11) 
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There are 1)(1)(  MN  system of linear equations in (2.3.11). Hereby, one may type this  

frame as follows: 
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 (2.3.12) 

Now, we denote each specific coefficient with dcba ,,,  and e  as follows 
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Writing the system in (2.3.12) as a second order difference equation with matrix coefficients of 

1,,1,=,  kkksU s  we get 

1,,1=11   NkDUCUBUA kkkk   

where 
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Then, (2.3.12) can be written as 
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To solve this difference equation in terms of k  with matrix coefficients, we use iterative method. 
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Solving it, we get 
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For the initial conditions 
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 (2.3.13) 

in (2.3.12), again, this 1)(1)(  MN  frame of linear equations may be rewritten in the form 
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Now, the distinct coefficients of this equation are represented as  
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Writing the system in (2.3.14) as a difference equation with matrix coefficients, we get 

.~= 01 VUEU  

Here, 
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Then, (2.3.13) can be written as 
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Solving it, we get 

.~= 1011  EVUEU  
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Therefore, to solve the system in (2.3.12), the procedure 
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will be applied. 

2.3.4. The Third Order of Accuracy Difference Scheme 

Now, we apply the difference scheme (2.2.15) on the problem (2.3.1). To do that, we use the 

following difference formulas (Özgür, 2011): 
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First, we need to consider the following approximation of the differential equation in the 

difference scheme (2.2.15): 
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Since 1=  for problem (2.3.1), writing this equation in a proper way, we obtain 
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To find the approximation of this equation, we need to substitute Au  and uA2  into it .  We 

know that A  has the form 

 .= uuAu xx   

Calculating ,2uA  we obtain 

 AuAuA =2  uuA xx =    uuuu xxxxxx = .2= uuu xxxxxx   

Substituting the values for Au  and uA2  into (2.3.16), the equation becomes 
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Now, we need to use the approximation for kf , which was given in the difference scheme 

(2.2.15) as 

                .
126

1

3

2
= 111

2
2

11   k

''

k

'

kkkkk tftftfAtftftff 


 

Writing 1=  and ffAf xx =  in the equation, we get 
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Here, taking derivatives of f  with respect to t  and x , we get 
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Applying the difference formulas in (2.3.15) to this equation, we get 
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  (2.3.19) 
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as the approximation for the differential equation in (2.3.1). 

Now, using the difference scheme (2.2.15), we will obtain the approximations for the initial 

conditions in problem (2.3.1).The approximation for the first initial condition  xxu 2sin=)(0,  is 

).(2sin=0

nn xu   (2.3.20) 

For the second initial condition  ,2sin2=)(0, xxut   we will use the following approximation 
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which was given in (2.2.15). Substituting 1=  and 
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Simplifying the difference formula in (2.3.15) and using 

x2sin= , xxx sin4=  , x2sin2=  , ,2sin8= xxx  

 0f  and  0'f  into the above equation result in the approximation for the second initial 

condition: 

 .2sin
6

38

2

9
2=

2

2

2

2
1

2

1

1

11

1

01

nn
nnnnn xu

h

uuuuu













  


 (2.3.21) 

The approximations (2.3.19), (2.3.20), (2.3.21) and also (2.3.15) lead to the following third-order 
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of accuracy difference scheme with respect to :t  
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  (2.3.22) 

Using the same approach as the previous difference schemes, we will write the 1)(1)(  MN  

frame of linear equations in (2.3.22), in the matrix form. Before that, we denote 
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Then, we will write the system again as the coefficients of kk uu ,1  and :1ku  
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Here, we denote each distinct coefficient of the differential equation in (2.3.23) with 

,a ,b ,c ,d ,e ,f g  as follows: 
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Then, we will write the system as the difference equation 
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Then, (2.3.23) can be written as 
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Iterative method is applied to solve this second order difference equation in terms of k  with 

matrix coefficients. Solving it, we get 

1.,1= 11111   NkDACUABUAU kkkk   

Hereby, the 1)(1)(  MN  frame of linear equations, for initial conditions 
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in (2.3.23) will be written again as 
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So, (2.3.24) becomes 
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Solving it, we get 
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Therefore, the difference equation is solved by the application of 
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So far, we have found the solutions of the systems of equations obtained by the application of 

first, second and third order difference schemes in section 2.2 on problem (2.3.1). In the next 

section, we analyze these results. 

2.3.5. Error Examination 

The numerical results of the exact solution and difference schemes are analyzed in this section. 

To get the solutions for the difference schemes (2.3.6), (2.3.11) and (2.3.22), MATLAB is used. 

The following RMS formula is applied to calculate the errors: 
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Here, the exact solution is represented by ),( nk xtu  and the numerical solution at ),( nk xt  is 

represented by ,k

nu  and N  is the number of steps with respect to time and M  is the number of 

steps with respect to space. In Figure 2.1, the graph of the exact solution is given from different 

perspectives. The space-time graphs of numerical solutions for the first, second and third degree 

of accuracy difference schemes are given in Figures 2.2, 2.3 and 2.4, respectively. 



52 
 

 
 

 

Figure 2.1: The Exact Solution 

 

 
Figure 2.2: First-Order Difference Scheme 
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 Figure 2.2 (continued): First-Order Difference Scheme 

 

 
 

 

Figure 2.3: Second-Order Difference Scheme 
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 Figure 2.4: Third-Order Difference Scheme 

 

By looking at the graphs, it is almost impossible to see the difference between the definite 

solution and the numeric results of given problem although the graphs are given from different 

perspectives. Therefore, as to the precise analogy of exact and numerical solutions; and further as 

to the analogy of three different difference schemes, errors are to be calculated. Error analysis is 

illustrated in Table 2.1, for 50== MN  and 100;  and in Table 2.2, for various values of N  
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Table 2.1: Error Examination 

 

Table 2.2: Analogy of errors 

 

It can be seen from Tables 2.1 and 2.2 that, the accuracy of  the numerical results by the 

third-order of accuracy difference scheme is greater than those obtained by the second-order. 

Also, the accuracy of the second-order difference scheme is greater compared to the first. 

Moreover, it is observed from Table 2.2 that if the amount of N  is multiplied by two for the 

first-degree, second-degree and third-degree difference charts, the errors of the numerical results 

decreased by 2, 4 and 8 times, respectively (Ashyralyev et al., 2016). 



56 
 

3. RESULTS 

In the first chapter, a brief history is given on the solution of Telegraph equations. Three different 

problems are solved analytically using Fourier Series, Laplace Transform and Fourier Transform 

Methods. 

In the second chapter, the following Cauchy Problem 
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  (3.1) 

for a telegraph equation is considered. It is in a Hilbert space H, with a given self-adjoint positive 

definite operator A. Main theorem on stability of (3.1) is given. 

Section 2.2 is devoted to the study of first, second and third order difference charts as to the 

approximate formula of the Cauchy problem (3.1). Difference schemes are obtained by using 

Taylor’s decomposition on three points, which was given by Ashyralyev and Sobolevski (2004). 

In section 2.3, computational results are given. The proposed difference schemes are applied to a 

test problem. The difference schemes are converted to difference equation systems with matrix 

coefficients. Iterative method is applied to solve these systems. Numerical computations are done 

with the help of MATLAB. Computed results are given in Error Analysis. The errors are 

computed by the RMS formula for the accurate comparison of the difference schemes. Tables and 

figures are included. 

Finally, a comparison of the difference schemes is presented on the basis of numerical analysis. 

One can deduce from graphs and tables that, the numerical outcomes by the third level of 

precision difference chart is clearer than the second or the first order.  
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4. DISCUSSION 

In this thesis, the investigation of the numerical solutions of a Cauchy problem for the 

second-order telegraph PDEs is performed. Abstract Cauchy problem 
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for the telegraph equation was considered. 

For approximate solution of problem (4.1), first level of precision difference chart 
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is constructed. 

The second-level of precision difference charts 
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are constructed for the approximate formula of the problem ( 4.1 ). 

The third-level of precision difference chart 
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is constructed for approximately solving the problem (4.1). 

Proposed difference schemes are applied to a test problem. For numerical results, an IVP over 

telegraph PDE is considered. MATLAB is used for obtaining the numerical results. The 

comparison of the difference schemes demonstrates that third-order of accuracy difference 

scheme gives more precise results than second-order or the first-order of accuracy difference 

schemes. 
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5. CONCLUSION AND RECOMMENDATIONS 

This thesis is primarily dedicated to computational analysis of a Cauchy problem for the 

second-order telegraph equations. Our main goal in this work is deriving an approximation for 

the solution of telegraph equations with Dirichlet conditions. The abstract Cauchy problem 
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for telegraph equations is taken into consideration. The following original results are obtained. 

• Following first-level of precision difference scheme was constructed for approximately solving 

the problem (5.1): 
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For the solution of this difference scheme, the stability estimates were presented. 

• The following second-order of accuracy difference schemes were constructed for approximately 

solving the problem (5.1): 
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For the solution of the foregoing difference schemes, the stability estimates were presented. 

• The third-level of precision difference chart below was constructed for the approximate solution 

of the problem (5.1): 
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So as to the result of the above difference chart, consistency conjectures were presented. 

• Proposed difference schemes were applied to a trial problem in order to demonstrate the 

consistency and efficiency of numerical method. For numerical results, the following IVP 
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was considered. The exact and numerical solutions were analyzed. It can be observed from the 

analogy that third-order of approximation difference scheme gives more certain results than 

second-order or the first order of accuracy difference schemes. 

• MATLAB is used to attain the numerical outcomes. The MATLAB implementation used for the 

computations is given in Appendix.  
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APPENDICES 

APPENDIX 1.Programming for the first-order of accuracy difference scheme. 

 

function df 

N=input (‘N gir’); M=input (‘M gir’); 

val=100; 

for tt=1:20; 

time1=cputime; 

x=linspace (0,pi,M+1); 

t=linspace (0,1,N+1); 

h=pi/M;   tau=1/N; 

d=-2/ (tau^2)-1/ (tau); 

e=1/ (tau^2); 

U (:,1)=sin(2*x); 

U (:,2) = (1-2*tau)*sin(2*x); 

for  k=2:N; 

for n=2:M; 

A (n,n-1)=-1/(h^2) ; 

A (n,n)=1/ (tau^2) +2/ (h^2) +1/ (tau)+1 ; 

A (n,n+1)=-1/ (h^2) ; 

B (n,n)=d;  C (n,n)=e; 

fii (n,k-1)=ff (t(k), x(n)) ; 

end; 

A (1,1) =1;   A(M+1,M+1) = 1; 

B(M+1,M+1)=0;   C(M+1,M+1)=0; 

fii (1,k-1) =0 ;  fii (M+1,k-1)=0; 

U( :,k+1) = inv (A) * (-B*U(:,k)-C*U(:,k-1)+fii (:,k-1)) ; 

end; 

U; 

p=transpose (U) ; 

%%%%%%%%%%’E. S. OF PDE’ %%%%%%%%%%% 

for n=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(n-1)*h; 

%est (n, k:k) =(1-t+t^2) * (sin (2*x)) ; 

est (n, k:k)=exp (-2*t)*(sin(2*x)); 

%es (n, k:k) = exp (-t^3+t) * (sin (2*x)) ; 

%est (n, k:k) = exp (-t^3) * (sin (2*x)); 

end; 

end; 

es=transpose (est) ; 

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%% 

%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%% 
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APPENDIX 1 (continued). 

 

for i=1:N-1; 

for j=1:M-1; 

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1); 

end; 

end; 

fmat1=abs(ftf); 

fmat2=fmat1.*fmat1*h; 

fmat3=sum(fmat2, 2); 

fmat4=fmat3.^(1/2); 

sumerror=max(fmat4); 

time2=cputime; 

if (val> (time2-time1)) 

val=time2-time1; 

end; 

end; 

sumerror 

val 

%%%%%%%%%%%%%%%%%% END OF ERROR ANALYSIS %%%%%%% 

%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%% 

U; 

est; 

[xler,tler]=meshgrid(0:tau:1, 0:h:pi); 

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U; 

q=min(min(table)); 

w=max(max(table)); 

figure; 

surf(tler,xler,est); 

%title(’EXACT SOLUTION’); set(gca,’ZLim’,[q w]); 

rotate3d; 

%X Label (’x’); YLabel (’t’); ZLabel (‘u’) ; 

figure; surf(tler,xler,U); 

%title(’First-Order Difference Scheme’); set(gca,’ZLim’,[q w]); 

rotate3d ; 

%X Label (’x’); Y Label (’t’); Z Label (‘u’); 

%%%%%%%%%%% END GRAPH %%%%%%%%%%%%%%% 

function u=g(t,x); %u=1; 

u= (1+0*t+0*x) ; 

function u=ff (t,x) ; 

%u= (2+ 5* (t^2+t+1))*sin (2*x) ; 

%u=6*exp (-t) *sin (2*x); 

%u=(-6*t+9*t^4+4*(t+x))*exp(-t^3)*sin(2*x) ; 

%u=(-2*t+3)*exp(-t^2)*sin(2*x); 

u= (2+5* (1+0*t+0*x))*exp (-2*t)*sin (2*x) ; 

%u= (2+4* (t+x) * (1-t+t^2)) *sin (2*x) ; 
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APPENDIX 2.Programming for the second order of accuracy difference scheme. 

 

function ds 

N=input (‘N gir’) ; M=input (‘M gir’) ; 

%N=40; M=40; 

val=100; 

for tt=1:20; 

time1=cputime; 

x=linspace (0,pi,M+1); 

t=linspace (0,1,N+1); 

h=pi/M; tau=1/N; 

U (:,1)=sin (2*x) ; 

for k=2:N; 

for n=2:M; 

A(n,n-1)=-g(t(k),x(n)) / (4*(h^2)) ; 

A(n,n)=1/ (2*tau) +1/ (tau^2) +g(t(k), x(n)) / (2*(h^2)) +g (t(k), x(n)) /4; 

A(n,n+1)=-g (t(k),x(n)) / (4* (h^2) ); 

B(n,n-1)=-g (t(k), x(n)) / (2*(h^2)) ; 

B(n,n)=-2/ (tau^2) +g (t(k), x(n)) / (h^2)+g(t(k), x(n)) / 2; 

B(n,n+1)=-g(t(k),x(n)) / (2* (h^2)); 

C(n,n-1)=-g (t(k) ,x(n)) / (4* (h^2)); 

C(n,n)=-1/ (2*tau) +1/ (tau^2) +g (t (k), x(n) ) / (2* (h^2)) +g(t(k), x(n) ) / 4; 

C(n,n+1)=-g(t (k),x(n)) / (4* (h^2)) ; 

D(n,n-1)=-tau/ (2* (h^2) ); 

D(n,n) =1/tau+tau/ (h^2) +tau/2; 

D(n,n+1)=-tau/ (2* (h^2) ) ; 

fii (n,k-1) =ff (t(k), x(n)) ; 

ro (n,1)= (-2+ (9/2) *tau)*sin (2*x(n) ) ; 

end; 

A (1,1) =1 ; A(M+1,M+1) =1 ; 

B (M+1 ,M+1) =0; 

C (1, :) =0 ; C (M+1, :) =0; 

D (1,1)=1; D (M+1,M+1) = 1; 

fii (1,k-1) =0;  fii (M+1,k-1) =0; 

ro (1,1) =0 ; ro (M+1,1) =0; 

U( : , 1); 

U( : , 2)=inv(D) * (1/tau) *U(: , 1) +inv (D) *ro( : , 1) ; 

U( : , k+1 )=inv (A) * (-B*U (: , k) -C*U ( : , k-1 ) +fii (:, k-1)) ; 

end; 

U; 

p=transpose (U) ; 

%%%%%%%%%%’EXCT SOL OF THIS PDE’ %%%%%%%%%%% 

for n=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(n-1)*h; 
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APPENDIX 2 (continued).  

 

%est(n,k:k)=(1-t+t^2) * (sin (2*x) ) ; 

est (n, k:k) =exp (-2*t)) * (sin(2*x)) ; 

%es (n, k:k) =exp (-t^3+t) * (sin (2*x)) ; 

%est(n, k:k) =exp (-t^3) * (sin (2*x)) ; 

end; 

end; 

es=transpose (est) ; 

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%% 

%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%% 

for i=1:N-1; 

for j=1:M-1; 

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1); 

end; 

end; 

fmat1=abs(ftf); 

fmat2=fmat1.*fmat1*h; 

fmat3=sum(fmat2, 2); 

fmat4=fmat3.^(1/2); 

sumerror=max(fmat4); 

time2=cputime; 

if (val> (time2-time1)) 

val=time2-time1; 

end; 

end; 

sumerror 

val 

%%%%%%%%%%%%%% END OF ERROR ANALYSIS %%%%%%%%% 

%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%% 

U; 

est; 

[xler,tler]=meshgrid(0:tau:1, 0:h:pi); 

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U; 

q=min(min(table)); 

w=max(max(table)); 

figure; 

surf(tler,xler,est); 

%title(’EXACT SOLUTION’); set(gca,’ZLim’,[q w]); 

rotate3d; 

X Label (’x’); Y Label (’t’); Z Label ( ‘u’); 

figure; surf(tler,xler,U); 

%title(’Second-order Difference Scheme’); set(gca,’ZLim’,[q w]); 

rotate3d ; 

%X Label (’x’); Y Label (’t’);Z Label (‘u’); 

%%%%%%%%%%% END GRAPH %%%%%%%%%%%% 
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APPENDIX 2 (continued). 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function uu=g(t,x); 

uu=1+0*t+0*x; 

function u=ff (t,x) ; 

u=7*exp (-2*t) *sin (2*x) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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APPENDIX 3.Programming for the third-order of accuracy difference scheme. 

 

function dt 

N=input (‘N gir’) ; M=input (‘M gir’) ; 

%N=40; M=40; 

val=100; 

for tt=1:20; 

time1=cputime; 

x=linspace (0,pi,M+1); 

t=linspace (0,1,N+1); 

h=pi/M; tau=1/N; 

U (:,1)=sin (2*x) ; 

AA=(tau-4) /6; 

BB= (1/6) + ((tau^2) + 2*tau) /12; 

CC= (8-tau) /12; 

DD= (2+tau) /12; 

for k=2:N; 

for n=3:M-1; 

A(n,n-2)=(tau^2) / (12*(h^4)); 

A(n,n-1)=- (tau^2) / (3*(h^4)) - BB / (h^2); 

A(n,n)=1 / (tau^2) + 1/ (2 * tau) + (tau^2) / (2 * (h^4) +2* BB / (h^2) +DD; 

A(n, n+1)= -(tau^2) / (3* (h^4))-BB/ (h^2) ; 

A(n,n+2)= (tau^2) / (12 * (h^4)); 

B(n,n-1)=AA / (h^2) ; 

B(n,n)=-2/ (tau^2) -2 * AA / (h^2)+ CC; 

B(n,n+1)=AA / (h^2); 

C(n,n-1)=-1 / (6* (h^2)); 

C(n,n)=1/ (tau^2) - 1 / (2* tau) + 1 / (3 * (h^2))+1/6; 

C(n,n+1)=-1 / (6* (h^2)) ; 

end; 

for i=2:M; 

D(i,i-1)=-tau/ (2* (h^2) ); 

D(i,i) =1/tau+tau/ (h^2) +tau/2; 

D(i,i+1)=-tau/ (2* (h^2) ) ; 

end; 

for q=3:M-1; 

fii (q,k-1) =ff (t(k), x(q)) ; 

end; 

for w=2:M; 

ro (w,1)= (-2+ (9/2) * tau-(38/6) * (tau^2)) *sin (2*x(w) ) ; 

end; 

A (1,1) =1 ; A(M+1,M+1) =1 ; 

A (2,1)=2; A (2,2)=-5; A(2,3) = 4; A(2,4) = -1; 

A(M,M-2) =-1; A (M,M-1) =4, A(M,M) =-5; A (M,M+1) =2; 

B (M+1 ,M+1) =0; 

C (M+1, M+1) =0; 
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APPENDIX 3 (continued). 

 

D (1,1)=1; D (M+1,M+1) = 1; 

fii (1,k-1) =0;  fii (M+1,k-1) =0; 

ro (1,1) =0 ; ro (M+1,1) =0; 

ro; 

U( : , 1); 

U( : , 2)=inv(D) * (1/tau) *U(: , 1) +inv (D) *ro( : , 1) ; 

U( : , k+1 )=inv (A) * (-B*U (: , k) -C*U ( : , k-1 ) +fii (:, k-1)) ; 

end; 

U; 

p=transpose (U) ; 

%%%%%%%%%%’EXCT SOL OF THIS PDE’ %%%%%%%%%%% 

for n=1:M+1; 

for k=1:N+1; 

t=(k-1)*tau; 

x=(n-1)*h; 

%est(n,k:k)=(1-t+t942) * (sin (2*x) ) ; 

est (n, k:k) =exp (-2*t)) * (sin(2*x)) ; 

%es (n, k:k) =exp (-t943+t) * (sin (2*x)) ; 

%est(n, k:k) =exp (-t943) * (sin (2*x)) ; 

end; 

end; 

es=transpose (est) ; 

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%% 

%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%% 

for i=1:N-1; 

for j=1:M-1; 

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1); 

end; 

end; 

fmat1=abs(ftf); 

fmat2=fmat1.*fmat1*h; 

fmat3=sum(fmat2, 2); 

fmat4=fmat3.94(1/2); 

sumerror=max(fmat4); 

time2=cputime; 

if (val> (time2-time1)) 

val=time2-time1; 

end; 

end; 

sumerror 

val 

%%%%%%%%%%%%%%%%%% END OF ERROR ANALYSIS %%%%%%%% 

%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%%% 

U; 
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APPENDIX 3 (continued). 

 

est; 

[xler,tler]=meshgrid(0:tau:1, 0:h:pi); 

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U; 

q=min(min(table)); 

w=max(max(table)); 

figure; 

surf(tler,xler,est); 

rotate3d; 

figure; surf(tler,xler,U); 

rotate3d ; 

%%%%%%%%%%% END GRAPH %%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

tau=1/N; 

function u=ff(t,x); 

u=((2/3)+(1/6) * ((2499/2500) *exp (-2*50)+exp(2/50))*7 *exp (-2*t)*sin (2*x) ; 

%u=((2/3)+(1/6) * ((9999/10000) *exp (-2*100)+exp(2/100))*7 *exp (-2*t)*sin (2*x) ; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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