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OZET

YUKSEK LiSANS TEZi

TELEGRAF DENKLEMLERI’NIN FARK SEMALARI

Kadriye Tuba TURKCAN

istanbul Universitesi
Fen Bilimleri Enstittsi

Matematik Anabilim Dah

Damisman : Doc¢. Dr. Kadri Ulas AKAY

Bu tezde, asagidaki Cauchy problemi

d?u(t) du(t) B e
102 +a It +Au(t) =f(t),0<t<T, )

u(0) = ¢, u(0,x) =yY(x),0<x <,

bir H Hilbert uzayinda 6zeslenik (simetrik) pozitif tanimli A operatorlii telegraf
denklemi icin ele alinmistir. Bu problemin ¢6zimi bulunmus ve bu formiil igin
kararlilik kestirimleri gosterilmistir. Problem (1)’in yaklasik ¢6zlimiiniin birinci, ikinci
ve lglincii derece kararli fark semalar1 kurulmustur. Olusturulan fark semalarinin
¢Ozlimiiniin kararlilik kestirimleri gosterilmistir. NUmerik ¢ozumleri bulmak icin bir
ornek problem ele alinmistir.

Temmuz 2017, 83 sayfa.

Anahtar kelimeler: Telegraf Denklemleri, Fark Semalari, Kararlilik, Hilbert Uzay1
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u(0) = ¢, u(0,x) =yY(x),0<x <,

for a telegraph equation with a self adjoint (symmetric) positive definite operator A in H
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1. INTRODUCTION

Many problems in engineering and science, like fluid dynamics, elasticity, wave propagation,
materials science etc., result in hyperbolic partial differential equations. One of the most
commonly used hyperbolic PDEs for modeling real life problems is telegraph equation. In 1876,
studying on coaxial marine telegraph cables, Heaviside investigated the telegraph equation which
describes the current and voltage on an electric power transmission line. This equation describes
facts in a vast array of fields, such as excitons, the conduction of impulses inside the nerves and

muscles, the diffusion of pressure waves in blood flow.

In the literature, the solution of telegraph equation has been drawn attention in recent years. For
instance, Banasiak and Mika (1998) analyzed singularly perturbed telegraph equations and
applied the results to the random walk theory. Jordan and Puri (1999) modeled the distribution of
analog and digital signals through media, using the one dimensional telegraph equation. A
three-level implicit difference schema was developed by Mohanty (2004), on the linear
hyperbolic PDE. Shokri and Dehghan (2008) used Kansa’s Method, i.e. radial based function
method, on a numerical schema in order to solve the one-dimensional hyperbolic telegraph
equation. Biazar et al. (2009) applied VIM for approximately solving the telegraph equation.
Jiwari et al. (2012) offered a numerical method using PDQM to find the formula for
two-dimensional sine-Gordon equation. Luo and Du (2013) presented a fourth degree technique

for the result of telegraph equation, with the help of Hermite interpolation.

As to the computational analysis of telegram equalities, stability estimates of solution has drawn
a good deal of attention. Operator theory is a very important and effective approach for studying
on stability of approximate solutions of PDEs. Sobolevskii and Ashyralyev (2004) constructed
and investigated new high order difference schemes for approximating solutions of regular and
singular perturbation BVPs for PDEs. For the analysis of higher order variation charts of the
IVPs for hyperbolic PDEs, the stability estimates are established, based on the spectral
representations of symmetric positive definite operators in a Hilbert space. In this way, we will be
able to study the stability of simple difference schemes for various partial differential equations.

For approximately solving nonlocal BVPs for hyperbolic equations, Aggez and Ashyralyev



(2004) constructed first and second-level of precision variation charts; and established the
consistency conjectures. Ashyralyev and Ozdemir (2007) studied nonlocal BVP on
hyperbolic-parabolic equations and constructed consistency conjectures. They worked along with
symmetric positive definite operators in Hilbert space H. Similarly, Ashyralyev and Koksal
(2007) constructed second-level of precision variation chart for the approximate solution of the
IVP for hyperbolic equation. Also, to the result of the variation chart, they found the consistency
conjectures. Koksal and Ashyralyev (2008) developed the stable numerical schemes for the
result of wave equation within non-homogeneous cylindrical shells and presented stability

estimates.

Furthermore, Emir (2011) constructed a second-order difference scheme and calculated
numerical results of telegraph equations in transmission lines, with modified difference scheme.
Modanli and Ashyralyev (2015) developed first and second-level variation chart as to the
approximate formula of the Cauchy problem to the telegraph equations and established the
stability estimates in Hilbert space. Numerical solutions of a telegraph equation with nonlocal
boundary conditions were also calculated by these difference schemes. Finally, Ashyralyev et al.
(2016) constructed a third-level of precision difference chart for the approximate solution of the

Cauchy problem for telegraph equations.

In this study, the Cauchy problem

d?u(t) du(t) _
a2 +a ot + Au(t) = f(t),0<t<T,

(1.1)
u0) =op,u (0) =y

for a telegraph equation is considered with a self-adjoint positive definite operator A, in a

Hilbert space H.Here A>dl and 6 >0, >0 and

2
5>2%
The primary object of this reseach is to examine the difference charts on approximately solving
above problem. It is known that PDEs can be solved analytically using different methods. In this

thesis, three different methods, namely Fourier Series, Fourier Transform and Laplace Transform



methods, are used to solve three different problems for telegraph equations. However, analytic
methods can be used only with constant coefficients. In this thesis, we will use numerical
methods for solving PDEs with dependent coefficients. Therefore, here, in this work, first, second
and third level of precision variation charts of above problem are constructed. Then, using the
operator approach, the consistency conjectures are presented. To show the accuracy of the
difference schemes, a test example is solved numerically. In MATLAB implementation, the

method is illustrated by numerical experiments.

Various IVPs for telegraph equations can be converted to the IVP in a Hilbert space H with
self-adjoint positive definite operator A. This work considers the following Cauchy problem

d®u

dt

§0+adﬁ0+AMU:fa)0£tST

u@0) =p,u,(0) =y

for telegraph equations as the main problem with self-adjoint positive definite operator A in a
Hilbert space H.Here A>4dl and 6>0, >0 and
2

s>%
4

Let us briefly describe the contents of the various sections of this thesis.

First chapter gives a brief history of the methods used in the literature to solve telegraph

equations.

Second chapter, section 2.1contains the main theorem on the stability of problem (1.1). Three
different telegraph equations are solved by using Fourier Series, Laplace Transform and Fourier
Transform methods. The solution of the abstract problem (1.1) is established. Also, stability

estimates for this solution are presented.

Section 2.2consists of stable difference schemes for the approximate solutions of the problem
(1.1). First, second, and third order of accuracy difference schemes are constructed. The stability

estimates are presented.



Section 2.3is devoted to numerical results. The proposed difference schemes are applied to a test
problem. A comparison of the first, second and third-order of accuracy difference schemes is
presented based on the numerical results. A MATLAB program is given to illustrate that the third
order of accuracy difference scheme is more accurate than the second and the first ones. Figures

and tables are included.

The last chapters include results and conclusion. A brief summary and discussion of this thesis
is made. A comparison of the first, second and third order of accuracy difference schemes, based

on the numerical results, is presented.



2. MATERIALS AND METHODS

2.1.MOTIVATION OF THE PROBLEM

In this thesis, the following Cauchy problem for telegraph equations is considered as the main
problem:

2
d lgitz x)+a au(t, x)

ou(t, x)
ox’

+u(t,x)= +f(t,x)0<t<T,0<x<lI,

u(0,x)= ¢,u,(0,x)=y,0< x<l, (2.1.1)

u(t,0)=u(t,1),0<t<T.

In this chapter, three examples of Cauchy problem for telegraph equations are solved analytically
using Fourier Series, Laplace Transform and Fourier Transform Methods. Then, using operator
approach the abstract Cauchy problem for telegraph equation will be studied. The solution of this
problem is obtained, and applying the operator approach, the stability estimates for the solution

of this problem are presented.

In the following sections, numerical solutions of the abstract Cauchy problem are found. The
first, second and third order of accuracy difference schemes for the solution of the abstract
Cauchy problem are constructed and the stability estimates are presented. Using these difference
schemes, a test problem for a telegraph partial differential equation is solved numerically.
Numerical computations are done with the help of MATLAB. Finally, a comparison of the first,

second and third order of accuracy difference schemes is presented.

First, we consider the following Cauchy problem for telegraph equations

82u(t,x)+a6u(t,x)

e +u(t,x)=

+ f(t,x)0<t<T,0<x<I,

u(0,x) = o(x),u,(0,x) = w(x),0< x <1,

u(t,0)=u(t,1)0<t<T.



This can be solved analytically using different methods. Now, three examples will be illustrated
for Fourier Series, Fourier Transform and Laplace Transform Methods.

2.1.1. Examples

Example 2.1.1.Consider the IVP

a°ult, x)+ au(t, x)

2
Py = +u(t,x)=au(t’x)+f(t,x),0<t<1,0<x<7z,

f(t,x)=7exp(-2t)sin(2x),0<t<1,0< x <7,
(2.1.2)

u(0,x)=sin(2x),u,(0,x)= —2sin(2x),0 < x < 7,

u(t,0)=u(t,z)0<t<1,
for a telegraph equation. For solving the problem (2.1.2), we use the Fourier series method. We

search for a solution as

iﬁ t)sin(nx). Then

n=

0

U +U, +U—U, = z/% (Dsin(nx)+ A, (O)sin(nx)+ 3A, (t)sin(nx) + S°A, (On? sin(n)

n=1 n=1 n=1

= 7exp (—2t)sin 2x.

and

ZAn sin(nx) = sin 2x, ZAn sin(nx) = —2sin 2x.

Equating the coefficients of sin(nx) for n=1,2,..., we get

A (t)+ A (t)+5A,(t) = 7exp (—2t)sin(2x)

A0)=1,A,0)=-



when n=2, and

A1)+ A )+ (02 +1)A, ()= 00 <t <1,

A(0)=0,A,0)=0

when n = 2.

Assume n = 2.Thus

A0+ A0+ +2)A0)=0

and the characteristic equation of this differential equation is
k*+k +(n2 +1): 0

Solving the equation, we get the following roots

o = _1+.1-4(n? +1) B 1+\/—4n2—3 B 1+'\/4n2+3i
12~ B S —
' 2 2 2 2 2

Thus, we obtain the following general solution

1 2 1 A 4n?
A(t)=Ce 2 cos%(ntﬁcze 2tsin%

(nt).

Substituting the conditions
A(0)=0,A,(0)=0

into the equation, we obtain C, =C, =0.So, A (t)=0, forall n=2.

Assume n=2. Then,

A (t)+ A (t)+5A,(t) = 7Texp(-2t).

Then the general solution is



A1) = A )+ AL (1)

Here, AS(t) is the complementary solution and AP(t) is the particular solution. AS(t) is the

solution of the homogeneous differential equation

(A ) + (A 0) +5A: ()= 0.

The characteristic equation of this differential equation is
k*+k+5=0;

and the roots of this equation are

_—1+41-20 -1 19,

So, we obtain

ooJ19 L k19

A(t)=Ce 2 cos—~t +C,e 2 sin —t
Now, for the particular solution let Azp(t):ae‘Z‘. Differentiating and putting it into the
differential equation, we get

(4a—2a+5a)™ =7¢™
Equating the coefficients of e, we get a=1.It follows that

A2 (t) = exp (-21).

Therefore,

s 19

1
A(t)=Ce 2 cosgt +C,e 2 sin Tt+e’2t.

Using conditions A,(0)=1 and A,(0)=-2,weget C,=C,=0. Then, A (t)=exp(-2t).



Therefore,
u(t, x)= A, (t)sin(2x) = exp (—2t) sin 2x.
Example 2.1.2. Now, we will apply the Laplace transformation method.

2 2
0 LéEtZ,X)+8U(t,X)+U(t,X):%+ f(t,x),0<t<1,0< X < o0,

f(t,x)=—exp—2(t+x),0<t<1,0<x<oo,

u(0,x) = exp (-2x),u,(0, x) = —2exp (—2x), 0 < x < oo,

u(t,0)=exp(-2t),u, (t,0) = —2exp (-2t),0<t <1.

We denote
L{u(t,x)}=W(t,s).
Then

LU, (80} =W (t,5), Liu, (£, )} =W, (t.9),
L{u, (t,x)}=s?W(t,s)—su(t,0)—u,(t,0)
=s'W(t,s)+exp(-2t)2-s),

exp(-2t)

Lep(- 2t x)= - 20

Using boundary conditions and these equations, we obtain

W

W(0,s)= Liexp(-2x)}= :12,wt (0,5)= L{-2exp(-2x)} = S‘+_2

To find the solution, W(t,s) will be separated into two parts

(ts)+ W, (t,5)+ (L—s? W (t,s) = exp (—2t)(2—s)—%, 0<t<l,

(2.1.3)



10

W(t,s)=W°(t,s)+W " (t,s).
Here WE(t,s) is the solution of the homogeneous equation
W, (t,5)+W, (t,5)+(1—s? W(t,s)=0.
WP (t,s)= A(s)exp(-2t) is the solution of the nonhomogeneous equation

3-
S+

W, (t,s)+W,(t,s)+(1—s? W t,s)= (2—3—:12jexp (-2t) = 32 exp (—2t).

The characteristic equation for this differential equation is
r’+ r+(1—52): 0.

The roots of this equation are

_-1x\1-40-57) _ 1 V4sP-3
% .

r,., =
L2 2 2

So, we find the following general solution

2

1, Vas?-3, 1 V4s?-3,
2

Wet,s)=ce? 2 +ce? 2

for the homogeneous problem; and for the particular solution,

W (t.)) =-2A)ep(-20) WP (1.5)] = 4AG)ep(-21)
Putting these into the differential equation, we get

3-¢°

S+2

4A(s)exp (—2t) - 2A(s)exp (- 2t)+ (157 )A(s )exp (— 2t) = exp(—2t),

Equating the coefficients of exp(—2t), we get A(s)= LZ From that, it follows
s+
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we(t,s)= 222,

s+2
Therefore,
1, V45?3, 1, V4s?-3, _9
+ce? 2 +exp( t),

W(t,s)=ce 2 2
ts)=¢ S+2

Now, using the boundary conditions (2.1.3) which are transformed to

il 2
W(0,s)= o and W, (0,s)= oy

we obtain ¢, =c, =0.So, W(t,s) = exp(—2t)i.
S+2
Finally, we will take the inverse Laplace transform to obtain

1

u(t,x)= LW (t,s)f= Ll{exp (-2t) é} = exp (—2t)L1{m} =g 22X,

Hence, the solution of (2.1.3) is u(t, x)=e>"?".

Example 2.1.3.The last example is an initial value problem solved by using Fourier transform

method.

o?u(t, x)+ ou(t,x) o°u(t,x)

e p v +u(t,x)= f(t,x)0<t<1l,-00< x<oo,

f(t,x)=(5-16x? Jexp— (t+2x*),0 <t <1,—o0 < X < o0, (2.1.4)

u(0,x)=e",u,(0,x)= -6 " ~0 < x < 0.

Let V(t,s)=F{u(t,x)}. Further, we have

Fiug (6 %)) = Vi (6 8) Flu (6 X)) = Vi (ts), Flu, (6 X)) = —sV (t.s),



12

F{(16x2 —4)exp (— 2x2)}: F exp(—2x2))' }: —sZF{exp (— 2x2)}.
Then, the Fourier transform of the differential equation in (2.1.4) is taken to obtain
Vi (t,5)+V, (t,s)+(s? +1) (t, 5) = (s? +1)exp (—t)F fexp (-2x%) |

0<t<l,-w0<X<oo,

V(0,s)= F{e-“2 }vt (0,5)= —F{e-“z }—oo < X< oo,

To solve it, V(t,s) is separated into two parts V(t,s)=V°(t,s)+V "(t,s). Here V°(t,s) is the

complementary solution and V p(t, s) is the particular solution. For the homogeneous equation

V,(t,s)+V,(t,s)+(s? +1\(t,5)=0,

V°(t,s) is the solution; and for the following nonhomogeneous equation, we write

V*(t,s)= E(s)exp(~t) as the solution of

Vo (t,5)+V,(t,5)+ (52 + 1) (t, 5) = (5 +1)exp (—t)Flexp (—2x%)}
Therefore,

VE(t,s)=Cee 2 cos (st)+C,e 2 sin

(st)

L \4s?+3 Lo N4s?+3
2 2

and for the particular solution,

(7).9)=-EG)op0. () €.5)= ES)op(-1)

So differentiating and substituting these into the differential equation, we get
Es)em(-t)- ) (1) +(s +E()em(-t)= (¢ +ep (R |

Solving it, we can write E(s)= F{e’2X2 }and VP(t,s)= F{e’2X2 }exp (-t). Therefore,
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V(t,s)=Cee 2 cos (st)+C,e 2 sin

1 2 1 2
432 +3 N, 432 +3 (st)+F {EZX?_ }exp 1.

Now, using the boundary conditions in (2.1.4) which are transformed to

V(0,5)=Fg > }v,(0,5)= —-F 2 |
we get C, =C, =0. So,

V(t,s)=exp (—t)F{e’2X2 }

Finally, the inverse Fourier transform is taken to arrive at the solution of the problem (2.1.4) as

u(t,x)= F‘l{F{e‘zxz }exp (—t)}: exp(—2x2 —t)

These were the examples for the solution of problems for telegraph partial differential equations.

2.1.2. The Main Problem

Now, we consider the main problem

ou(t, x)
ox’

62u(t,x)+aau(t,x)

e ot +f(t,x)0<t<T,0<x<],

+u(t,x)=

u(0,x)= @(x),u,(0,x)=w(x)0< x<I,

u(t,0)=uf(t,1),0<t<T.

To find the numerical solution of this problem, we reduce it to the abstract Cauchy problem for

telegraph ordinary differential equations. We will introduce the differential operator A defined

by formula

Av(X)=-v,, (X)+V(X)|x=x0 ’

with domain
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D(A) = {v(x): v, (x)eC[o,1]v(1) = v(0)},
in a Hilbert space H,where H =C([0,T]x[0,1]).

Let ¢p=¢(x) and w =w(x) be elements of D(A). Let f(t)= f(t,x) be known abstract
function defined on [0,T] with values on C[0,1] and u(t)=u(t,x) be an unknown abstract

function defined on [0,T] with values on C[0,1} Then, we denote

du(t) _ au(t,x)|
dt ot

d?u(t) _ 2u(t, x)

and
dt? ot?

u(t)= u(t,x)X:XO,

| X:XO x:xo

It is clear that problem (2.1.1) can be reduced to the following abstract Cauchy problem for the

ordinary telegraph differential equations:

d;‘t‘gt) ta dl;it) L AU(t) = f(t),0<t<T,
2.1.5)

U(O): (/)o'ul(o):'//m

with the self-adjoint positive definite operator A in a Hilbert space H . Here, A>dl ,
6>0,a>0 and

2
a
5> 2.1.6
1 (2.1.6)

A self-adjoint linear operator B on a Hilbert space H is called square root of A if B2 = A ; and if

B > 0, B is called a positive square root of A and is denoted by B = A'/2.

As it was stated by Ashyralyev and Sobolevski (2004) that:

"To call a function u(t) as a solution of problem (2.1.5), the terms below should be met:
i. u(t) istwice continuously differentiable in the segment [0,T].
ii. u(t) belongsto D(A) forall t<[0,T] and the function Au(t) is continuous on [0,T}]

iii. u(t) satisfies the equations and initial conditions (2.1.5). If the function is both continuous



15

1
and continuously differentiable on [0,T], ¢ D(A) and y e D(A2 J

Using the approach given by Fattorini (1985), Ashyralyev and Sobolevski (2004) and Modanli

(2015) we can write:

“Let {C(t),t>0} be astrongly continuous cosine operator-function defined by the formula

eitRl’2 n e—itRlIZ
C(t)=

Thus, the definition of the sine operator-function S(t) gives

and

2
In this equation R = A—aTI. The cosine operator-function theory is explained in detail by

Piskarev and Shaw (1997), and Fattorini (1985).

Under the assumption (2.1.6), the formula for the solution of the problem (2.1.5) is obtained.

Clearly, the one and only mild solution to problem (2.1.5) for telegraph equation is

u = cn0)+ Lo F's(tuo)re sl +he s(t-y)T oy @17)

As it is given by Sobolevski and Ashyralyev (2004), (2.1.5) can be written as the following I\VP:

y (t)+gu(t)+m3u(t)= y(t),(0<t <T)u(0)=u.u (0) = v,

y (t)+%y(t)+iR5y(t)= f(t).
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Integration of the above equations gives

- %4ir2 |t -
2 2

ut)=e u(O)+_t[e

L 1
- %—iRZ t . Z—iRzJ(t—s)
y(t)=e y(0)+ je f (s)ds
0
or equivalently,
I 1 1
[+iR2 ]t - 4 %HRZ ](ts) {ZiRz }
ut)=e u(0)+ je e y(0)ds
0

1
—{ ](S—p)
e f (p)dpds.

1
The initial condition y(O):u'(O)+[%+iR2ju(O) is subtituted into the equation; and the
equation becomes

1

%+iR2 ?-iR2

%+iR% (t-s) —[2 1} 1
J e ds(u'(0)+[%+iR2Ju(O)J

u(t) = e{ ]tu(0)+

e

O —

2 _ip2
2

1
[ }(Sp)
e f(p)dpds.

By interchanging the order of integration, the equation can be written as
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1 1 1
_[02’+iR2 t 1\t —[Z-*—iRz }(I—S) —[Z—iRZ JS
u(t) = +[%+iR2jje e ds u(0)

l} 1 ) 1
| 24iR2 (t-5) —[a—iRz}s ) ) 2
012 2 ‘ t_aq o 1 4i(t-s)R2 _ 4-i(t-s)R2
+Je ° dsu (0) +[e 2R 2 E © f(s)ds
0 0 21
B 3 R
o) "’ iR L giR? _ g-itR? _a 1 ,itRZ  -itR2
= ¥ T R T o) e R i)
2 2i 2i
1 1
‘ =SR2 _ o -i(t-s)R?
—(t-s) _—- @ —e
+]e? R? f(s)ds
J . )

Eventually, from the definitions of C(t),S(t) and R2, the formula (2.1.7) is obtained.

Lemma 2.1. The inequalities (Ashyralyev and Sobolevskii, 2004)

[C@),, .., <L|R*S), , <1l

H—>

<1,

Iw0], < L, ] <N

hold, where N is a positive constant.

Let C(H) be the space of continuous H -valued functions ¢(t) defined on [0,T] and

||u||C(H) = ggta_<)T( ”(D(t)”H

be the norm.

(2.1.8)
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For the well-posedness of a problem, there should be a unique solution for each set of data and
continuous dependence of the solution on the data. Here, using the approach given by
Sobolevskii and Ashyralyev (2004), and Modanli (2015), we will illustrate that Cauchy problems
for telegraph equations are stable. Now, with this approach the following main theorem on

continuous dependence of the solution on the given data will be proved.
2.1.3. Stability Estimates

1
Theorem 2. 1.1.Let the terms (2.1.6) and (2.1.8) be satisfied; and ¢ € D(A), y € D(Azj and

f(t) be a continuously differentiable function on [0,T]. Then, problem (2.1.5) owns a unique

solution and the stability inequalities below are satisfied:

max Ju®)],, < N( M)[||¢|| Ay + e mf(t)uH} (2.0.9)
0<t<T 0<t<T
max | — = +max| A" u(t)]  <N( aé)[”A“ngH +lpl, +max||f t]H, (2.1.10)
0<t<T 0<t<T 0<t<T
d?u(t) 12

mas | O 4 max |Aut)], < N a,a)[||A¢|| | &2+ (O)], +max|f ©)], dt}
o<t<t || d Lo ossT 0<t<T

(2.1.11)

Here N(a,5) independent of ¢, and f(t), t<[0,T}

Proof. (Modanli, 2015). Using the formula (2.1.7), A>d and the estimates (2.1.8), the

inequalities below can be written:

o 112
—1A*%),

H—-H 2e2

L
Al/ZR 2

_%
s <ICON e * el +

R;S@*

H—-H

1 a
= -t
+ A?R 2 e 2 HA_MV’HH

H—->H

R;Sﬁ%

H—->H



19

t

gl

0

ARE| AR () s

H—-H

1
st(t—s)(

H—H

<N o, + A",

0<t<T

A1),

per t<[0,T]So, we get

max||U('[}|H < Nl(a,ﬁ{”(p”H +HA71/2WHH ¢ max

0<t<T 0<t<T

A ), |

Multiplying both sides of the formula (2.1.7) by AY and applying the estimates (2.1.8) in the

same way, we get

@ E -
HAl/zu(t)HH S||C(t]|H_)He ZtHAl/Z(DHH +|[R2S(t) AR 2 agt ||€0||H
H—H H-H|2@a2
1 1 -2
HR2s@) AR Z e 2y,
H—H H-H
t 1 1
] feises) o),
0 H—H H—H

<Ny(a o) [4%9],, + Iy, + max £, |

0<t<T

forany t<[0,T] So,

maXx
0<t<T

Au()] < Nz(a,d)[HAmquH +ly, +max| ()], }

0<t<T

Now, we estimate |Au(t)|,,. Multiplying the formula (2.1.7) by A and with the help of an

integration by parts, we have
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a 1 1 1 1
Au(t)e? = C(t)A(p+% AES(t)A5¢+% A2S(t)A2y

t o

+ ARl{eZt f(t)-C(t)f (0)- e?’Clt- y){% f(y)+ f'(y)}dy}.

0

Estimates (2.1.8) and this formula gives

a 112 H
P H

1
Al/2R7§
Z;

2e?

1
IAgl,, + std

[Aue), <[, .l

H—->H H—-H

+ R%S(t) AR e |y

H-H

H—H

[ar Dt +lct), .11 ©),]

t a 7 .
H|ar, fe? et- ), [%Ilf(y)llH |t MMC’Y
0

r o,

< Ny(e.5) [Agl,, +[A%],, +1O), + max

0<t<T

forany t<[0,T] So, we obtain

max |Au(t)],, < Ns(a,5)[||A(p||H +| A%y, +[ £ O, +max |t )],

0<t<T 0<t<T a

2
. S0, the proof is

This final estimate and triangle inequality leads to the estimate for max pre
0<t<T

H

completed.
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2.2. STATEMENT OF THE PROBLEM

In this section, the following abstract Cauchy problem for telegraph equations

d;‘t‘gt) ta dLéf) L AU(t) = F(t),0<t<T,
2.2.1)

u©) =g,u(0) =y,

with the self-adjoint positive definite operator A in a Hilbert space H , is taken into
consideration. Stable two-step first, second and third order of accuracy difference schemes in t

for the solution of this problem are constructed using finite difference method.

Using the approach given by Modanli (2014), the first and second order of accuracy difference
schemes in t are constructed. For the third order of accuracy difference scheme in t, Taylor’s
decomposition on three points, which was given by Yildirim (2011), is used. In addition to these,
using the operator approach constructed by Ashyralyev and Sobolevski (2004), the stability

estimates are presented.

In the next section, the proposed difference schemes are applied to a test problem to show the
accuracy and the efficiency of the numerical method. The Numerical results are obtained using
the difference schemes and the difference formulas with the help of MATLAB.

Now, the first, second and third order of accuracy difference schemes in t will be constructed.
To construct the two-step difference schemes in t for the approximate solution of this problem,

the following sample grid interval is taken on the segment [0,T |:
[0,T]={ =kz,k=01,...,N,Nc =T},
2.2.1. First-order Difference Scheme

We take the IVP (2.2.1) into consideration. Putting t =t,,, and using difference formulas

U(tk+1) —2u (tk) + u(tk—l) _
72

U (t..) = O(z),
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Ultea)=ult) i = o)
T

and
U0y )=o)
T
2
where u’ (t) = dstjgt) and u'(t) = % we obtain the first order of accuracy difference scheme.

For the rest of our work, we use the notation u, =u(t,). Substituting the approximations

u,..—2u, +u u,,—u
k+1 2k k-1 and k+1 k

T T

for u'(t) and u'(t), respectively, we have the following approximation for the telegraph
equation in (2.2.1):

U — 2Uk +U, +a U — Uy

2
T T

+Au,, = f, f, = f(t,,)1<k<N-1

The approximation of the first initial condition u(0)=¢ is u, =¢@. The approximation for the

second initial condition u (0) =y is

u@)—u@ .=
7—u (O) = O(T)

Omission of the small term O(z) gives Yl o w.Then, for the solution of problem (2.2.1),
T

we have

U — 2uk +U +a U, —U

2
T T

k —_
+Au,, = f,,

1<k<N-1,Nr=T, (2.2.2)

U, — U, =y

U, = o,
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as the first-order of approximation in t two-step difference scheme (Modanli, 2014).

Now, using the lemma below and the stability estimates given by Ashyralyev and Sobolevskii
(2004) and Modanli (2014), the stability estimates for the solution of problem (2.2.1) will be

presented.

Lemma 2.2.1. (Ashyralyev and Sobolevskii, 2004) The following estimates hold:

1

ol <

1+i;MMhﬁHﬁl+aT’

1

H—H

where

o{(sr i) (o i)

1

(2.2.3)

Theorem 2.2.1.Assume that ¢ e D(A), v e D(AZJ and the assumption (2.1.6) holds. Then, the

following stability estimates should be met for the solution of the difference scheme (2.2.2)

max|uy],, < Cler8)| max A1, +|A*], + g, | (2.2.4)
max |4, < Cla ) max [, +lwl, +|A"], | (2.25)

1
_(fk - fk—l*

T

max ||Auk||H <C(e, 5){ max
1<k<N 2<k<N-1

Here C(a,5) isindependentof ¢, , r and f,, 1<k <N-1 (Modanli, 2014).

8], +|A], + A, | (2.2.6)
H

Theorem 2.2.1 is proved by Modanli (2014) with the help of estimates (2.2.3), triangle inequality,
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and the following formula
k-1
U = 3@ -a) [0~ p + @-a) (@ - a by + Y@ -a) [ —a ke
s=1

2<k <N, (2.2.7)
which was constructed by Ashyralyev and Sobolovskii (2004).
2.2.2. Second-order Difference Scheme

Now, putting t =t, , we use the finite difference formulas

Uy — 2uk U, 4

2
T

u; =0(r?),

U —Uy R 2
== _u, =0(r
o U= 0

for the construction of second-order approximation in t two-step difference schemes for the
solution of IVP (2.2.1). Further, we have

ule)=ul0) _ ;g U (0)+0(F).
T

The approximation of the first initial condition u(O): @ IS U, = ¢@. The approximation of the

second initial condition u (0)=y is

(I + TZAJU(’)_“(O) = U (0)+2u"(0) +O(r?).
2 T 2

From the above expression, it follows that

U(T)_U(O)+Z(Au(z-)_ Au(())) = u+£ A\u1 —E AUO,
r 2 T 2 2
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where Au=-u_ +u.Here u=u(t,x). Then, the right hand side of the equation becomes
u'(0)+%u" (0)+0(r?) = l//+%(—0{l/l+ f(0)-Au,)

Cancellation and omission of the small terms O(z*) lead to

u, —U,
T

= %(f 0)- Au, —ay)+y.

Then, for the solution of the problem (2.2.1), two step second order of accuracy in t difference
schemes (Mahmut, 2014)

Ui — 2uk +U

u,.,—u A
+o—4 k_l+5(uk+l+uk—1): fe,

7 27
fo=f(t)l<k<N-1, (2.2.8)
Uo :(Dvu :%(fo_Au1_0”//)+‘//’ fo = f(O),
T
U, —2U, +Uu U, —U A A
k+1 Tzk k—1+a k+lzz- k—l_'_Euk_i_z(ukH_'_uk_l): fk,
f, = f(t)1<k <N-1, (2.2.9)
u,—u
Uy = @, — 0:—(f0—Aul—aw)+1//, fo = f(O)

are attained.

Now, the theorem on the stability of these difference schemes is given based on the operator

approach (Ashyralyev and Sobolevski, 2004).

1

Theorem 2.2.2. Assume that @< D(A), weD{AZJ assumption (2.1.6) holds . Then, the

following stability estimates hold for the solution of difference schemes (2.2.8) and (2.2.9):
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maxu, = Cler, )| max A1), A%, +lol., )

1<k<N {DSkSN—l

max
1<k<N

Ko, <Clao)max |, v, A%, )

<k<N-1

: #ltl, +[2, +lad, }

1
_(fk - fk—l*
H

max ||Auk||H <Cla, 5){ max
1<k<N 1<k<N-1

Here C(a,d) is free from y,¢p,z, and f,, 1<k <N -1 (Modanli, 2015).

2.2.3. Third-order Difference Scheme

Finally, for the approximate solution of the problem (2.2.1), we apply following Taylor’s
decomposition on three points given by Yildirim (2011):

2
Uy =2y +Uy _éfzu; _% [U;;+1 + U;+1]+%T4UL(<1)1 =0(z") (2.2.10)

and

2. 1. .
Up, —Uy ;= 2r{§ u, +g[uk+1 +uk1]} =0(z°) (2.2.11)

to construct the third order of accuracy difference scheme.

First, we write the equation in (2.2.1) as the following way and taking the third and fourth

derivative, we have
u'(t) = —au (1) - Au(t)+ f (t),
u” () = (o ~ AW () + aAu(t)-of (t)+ £ (t)
u9(t)= [+ 20Ak ©) - (o - A+ (@ - A)F (1) -of )+ £ (1)

With the help of (2.2.10) and (2.2.11), substituting
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Uy — 20U, +U, and U —U,

2
T 27

for u, and u,, respectively, into the differential equation in (2.2.1), we will have the following

expression as the third order approximation of the differential equation (2.2.1):

Uy —2U, +U, iy Uy —Ues

2
T 27

2o o] -2 ot i )
+g [(—a3 + 20{A)1’1(uk+1 —U, )— (0{2 - A)Auk+1 + (a2 - A)fk+l —ocfk'+l + fk"+l]

=0(z%),1<k <N -1.

Omission of the small term and substitution of the values for the derivatives of u(t) into the

above expression result in

u,.,—2U, +U u,.,—u 2 1
k+1 2|< K-l 4 o kst k-1 +—Auk +_A(uk+1+uk—l)
T 27 3 6

(2.2.12)

From now on, we use the notation f, for the summation of all the functions with f(t,) in the

differential equation in (2.2.1). So, (2.2.12) is the third order approximation for the differential
equation in (2.2.1).

Now, we construct the third order approximations for the initial conditions in (2.2.1). The

approximation of the first initial condition u(0)=¢ is
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U = . (2.2.13)

The approximation of the second initial condition u'(0)=y is

(I +T—;A]M = (I +§AJu‘(o)+%u" (o)+§u'" (0)+0(s%).

Substituting the values of the derivatives of u(0) into the above expression and omitting the

small term O(z?), we have

2 2 2
(| +%AJM :(| +%A}//+%[—aw—A¢+ f(O)] +%[a2v,+aAgp— f(0)+ f'(O)]
T

(2.2.14)

Hence, the approximations (2.2.12), (2.2.13) and (2.2.14) lead to the following third-order of

approximation in t two-step difference scheme (Ashyralyev et al., 2016)

u,..—2u, +u u, ., —u 2 1
k+1 k k—1+a k+1 k_1+§AUk +6A(uk+1+uk—l)

2
T 2T

{(—a?’ + ZaA)M— (0!2 - A)AUM} = f
T

fi = % f(tk )"'%[f (tk+l)+ f(tk—l)]

I @? = A () of () + F ()< k <N -1, (2.2.15)

2 _ 2 2
[I +%A]u:(l +%A}//+%[—0{1//—A(p]+%[azw+aAgo—Al,//]+ fo,
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for the solution of problem (2.2.1).

The stability estimates for the solution of this difference scheme are given by the following

theorem:

1

Theorem 2.2.3. Assume that g e D(A), y € D[Azj and the assumption (2.1.6) holds. Then, the

following stability estimates hold on behalf of the formula of difference scheme (2.2.15):

N-1
j <C{Sa,
s=0

o+[at] +ldl, } k=023, N,
ful = Chrwl, +lel, +1%l, )
], <cfSinl, el +[a%], fk=02a..

W], <clevl, +|a"el, +[a=t], )

N-1
s, <C{ St~ el +18l + 4], +1dd, e =023..8

Au], <Cleav], +[Ag],, +|Af, )
where C isindependentof f,1<s<N-1,y and ¢ (Ashyralyev et al., 2016).

In this section, stable first, second and third order of accuracy difference schemes have been
constructed for the solution of problem (2.2.1). For the solutions of these difference schemes,
stability estimates have been presented. In the following section, these difference schemes will be

applied to a test problem for a telegraph equation in order to obtain the numerical results.
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2.3. NUMERICAL RESULTS

In this section, a test problem for a telegraph equation is considered. The difference schemes
proposed in section 2.2 are applied to this trial problem in order to indicate the certainty and
efficiency of numerical method. Difference equations with matrix coefficients are obtained as a
result of calculations. To solve these difference equations, iterative method is applied. Numerical
computations are carried out with the help of MATLAB. The errors are analyzed by looking at
graphs and tables. In the end, a comparison among first, second and third order of accuracy

difference schemes is made.
2.3.1. A Test Problem

For numerical results, the following IVP

2 2
0 uaitz X) au(att, X) +u(t,x)= 0 l(;)((tz’ X) +7exp (- 2t)sin(2x),

O0<t<l1l0<x<r,
(2.3.1)

u(0, x) = sin(2x),u, (0,x) = —2sin(2x),0 < x < 7,

u(t,0)=u(t,7z)=0,0<t<1
for a telegraph equation is considered. The problem has the following exact solution:
u(t, x) = exp (—2t) sin(2x).

First, second and third order of accuracy difference schemes are applied to the approximate
formulas of the IVP (2.3.1). Iterative method is applied to solve the difference equations with

matrix coefficients.

First, the set [0,1]. x[0, 7], of a group of mesh points
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t, =kz, 1<k<N-1, NT:].,}

[O,l]r X[O,ﬂ-]h = (tkaxn):{Xn — nh, 1£n£ M _11 Mh =

is considered, dependent on the small parameters z and h.
2.3.2. The First Order of Accuracy Difference Scheme

For the approximate solution of problem (2.3.1), we perform the following difference formula

U(Xn+l) & 2u|$(n) + U(Xn—l) —u (Xn) = O(hz) (2.3.2)

and the difference scheme (2.2.2). The formula (2.3.2) and the difference scheme (2.2.2) result in

k+1 k k-1 k+1 k k k k
u,” —=2u, +u, LU Uy +uk+1_un+1—2un +U,

2 T . ¥ =T7exp(-2t,)sin(2x,),

(2.3.3)
1<k<N-1,1<n<M -1

as the approximation of the equation in (2.3.1). The approximation of the first initial condition

u(0,x) =sin(2x) is
u® =sin(2x, ). (2.3.9)

The approximation of the second initial condition u, (0, x) = —2sin(2x) is obtained applying the

formula in difference scheme (2.2.2) as
ul =(1—27)sin2x,. (2.3.5)

The approximations (2.3.3), (2.3.4) and (2.3.5) give the following first-order of accuracy in t

and the second-order of accuracy in x difference scheme:
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k k k
k+1 Upg — zun +Un

ut—2uf +uft u
2 + n

. . " =T7exp(-2t,)sin(2x,),

1<k<N-1,1<n<M -1,
(2.3.6)

u® =sin(2x, ),ul = (1-27)sin2x,,0<n< M,

Ut =ust =0,-1<k <N -1.

Note that, here and in the future, u® represents u(t,x ) in the equation. We obtain

n

(N +1)x(M +1) system of linear equations in (2.3.6). Before writing these in matrix form, in

order to make the calculations easier one will write the frame again as

Nw (11 . 2) . 1)
(_F}u’fll+(r_2+;+l+ﬁ}uﬁ 1+(—Fju§+ll+
k — H — —
oy =Texp(-2t,)sin(2x,), X, = nh,tk =k, (23.7)

1<k<N-1,1<n<M -1,

u® =sin(2x, )u} = (1-27)sin(2x,),x, =nh,0<n< M,

Ut —ugt =0,~1<k <N -1
Hereby, each distinct coefficient will be denoted by letters a,b,c and d as follows

1
2'2.

_Zd=

1,1,,,2 721
h? T h T
Then, the equation in the system (2.3.3) can be written as system of second order difference

equation with matrix coefficients as
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=
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(@)
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U

u;
us=|: s=k-1,kk+1
Upis
Uy

L dmyx)

and

o =11 (t,x,)=7exp (=2t )sin(2x,),1<n<M -1,

k?n

O,n=M.

Then, (2.3.6) can be written as
AU+ BU*+CU*'=Dg*, 1<k <N -1,
U? =sin(2x, ) U} = (1-27)sin(2x, ).

The system written in matrix form results in a second order difference formula in terms of k
with matrix coefficients. Now, we will apply iterative method to get the solution of this
difference equation. Solving it, we get

Ukt =—A'BU*-ACU* '+ A'Dgp" 1<k <N -1.
2.3.3. The Second Order of Accuracy Difference Scheme

Here, the second order of accuracy difference scheme (2.2.9) is applied to problem (2.3.1).

Using the difference formula

u(Xn+l) — ZUéi(n) + U(Xn—l) _ u" (Xn) — O(hZ)

and the difference scheme (2.2.9), we get
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Uyt —2uy +up™ Ut -ul™ lug, —2up+usy Tugt 20t +upt
rz 2r 2 h? 4 h?
k-1 o k-1 k-1
Ll 2un2 g 2 1 uk 4= 1 (uk+1+u )_ £t x,) (2.3.8)
4 h 2" 4
f(t,,x,)=7exp(=2t,)sin(2x,),x, = nh,t, =kz

for the approximation of the differential equation in (2.3.1). The approximation of the first initial
condition u(0,x) =sin(2x) is
u’ =sin(2x,) (2.3.9)

and the approximation of the second initial condition u, (0, x) = —2sin(2x) is

_4sin(2xn Jl<n<M -1 (2.3.10)

as a result of the application of difference scheme (2.2.9) into the initial conditions in (2.3.1). The

approximations (2.3.8), (2.3.9) and (2.3.10) result in the second order of accuracy difference
chart with respect to t

A N NS VN W UNPEDI T 1ufT—2u +ukt
7’ 27 2 h2 4 h?
k-1 k-1 k-1
JLUpgm2U AUy L, (uk+1+u ) f(t,,x,)
4 h? 2" ©o

f(t,,x,)=7exp(=2t,)sin(2x,),x, = nh,t, =k,
1<k<N-1,1<n<M -1, (2.3.11)

u? =sin(2x,), x, = nh,

Up—Up 7 Up, —2Up+U,

2 +£i 97—
T 2 h 2

4sin(2xn), x, =nh,1<n<M -1,

ust =ust=0,-1<k <N -1.
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There are (N +1)x(M +1) system of linear equations in (2.3.11). Hereby, one may type this

frame as follows:

S Y Y R IS SR YT —Ljuk”+(—ijuk
4h2 )"\ 22 20 4 2n? ) 4h? )7t T 2n2 )

B RIS SO L N W B uk_1+(i_i+1+ijm_1
22 h2)" L 2n? )™ an? )"\ 20 4 20t

= e o = 160, Fx)= Tow (21 sin(ax,)

(2.3.12)
X, =nht =kz,1<k<N-1,1<n<M -1,

u’ =sin(2x_),x, = nh,

1 0 1
c—Uy  TU,—

n _~ “n+l

T 2 h? 2"

u 2uﬁ+ur1]_1+r . _9r-4

sin(2x,)1<n<M -1,

Ut =ust =0,-1<k <N -1.
Now, we denote each specific coefficient with a,b,c,d and e as follows

1 1 1 1 1 1 2 1
———,b==+—+-+—— . c=——5 d=-—+-+
4h ° 2t 4 2h 2h o 2

1 1 1 1 1

a= — .= ——+—+—.
h? 2 2t 4 2n?

Writing the system in (2.3.12) as a second order difference equation with matrix coefficients of

U®,s=k-1,k,k+1, we get
AU +BU*+CU*'=Dgp" 1<k <N -1,

where
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0 0 O 1_(M +1)x(M +1)

0 00O
0 00O
0 00O
0 00O
a 0 0o
b a 00
a b ao
0 a b a

1 00 00
ab aoOa@ o0
0O ab alodo
0 0 ab a
0 00 0O
0 00 O0O
0 00 O0O
0 00 0O
0 00 0O

7 -
= =
X X
¥ =
3 s
[ 1 ~
o O O o o O O o O _O o o o o o o «© O_
o O O o o O o T O o o o o OO0 © o O
o O O o 0O T O O o o O O O @ o © O O
o O O o o O O O o O O O © O O O O o
o O o ©T o O O o o O O ® o o O O O O
o o T © o O O o o O ®© o © O O O o o
o T o O o O O O O O o © O o O ©o o o
_O o O O - O O O O O_ _O c O O o O o o O_
1 1
m @)
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D= : :
0 0 0 - 1 0
0 0O
_0 00 -0 dM 1M +1)
2
¢k b (olk ,
k
4V (M+1)x1
'ug
u;
us=|: ,S=k-1,k,k+1
Uy
_U lfll dm+x@)
and
0,n=0,

Then, (2.3.12) can be written as
AU +BU*+CU*'=Dg* 1<k <N -1,
U? =sin(2x,)

To solve this difference equation in terms of k with matrix coefficients, we use iterative method.
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Solving it, we get
UKt =—A'BU* —A'CU*' + A'Dg* 1<k <N -1.

For the initial conditions

1 0 1
S—Us  TU,,—

n__ " “n+l

u
T 2 h? 2"

u 2u+u, v, 9r-4

sin(2x,)1<n<M -1

(2.3.13)
u? =sin(2x,)

in (2.3.12), again, this (N +1)x(M +1) frame of linear equations may be rewritten in the form

[—#ju L +(%+%+%)U}] +(—#ju;+l = Gjuﬁ +y., (2.3.14)
0,n=0,
where y, = 972_4sin(2xn),1£ n<M -1,
0,n=M

Now, the distinct coefficients of this equation are represented as

j=— % p=iiT.T
PR S

Writing the system in (2.3.14) as a difference equation with matrix coefficients, we get

EU=VU° +77.

Here,
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1 0 0 0 O 0 0 0 O
i pjoo 0 000
0 j pijo 0000
00 j pj 0 0 00
E= O i T
0O 0 0 0O j 0 0 O
00 00O p j 00
00 00O i pijo
00 00O 0 j p j
00 0 0O 0 0 0 1
100 0 O
T
OEO 0 0
Tl
v=0 0 = .. 00 Us =
0 0 0 1o
T
000...01
L T (M +1)x(M +1)
Vo
andz,;:l//:l
l//M(M+l)><l

Then, (2.3.13) can be written as
EU'=VU°+y
U2 =sin(2x, ).

Solving it, we get

U'=EWU°+EY.

_Ug

u;

S
UMl

Uy

d(M+1)x(M+1)

(M+1)x(1)

,$=0,1
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Therefore, to solve the system in (2.3.12), the procedure
Ukt =—A'BU*-A'CU*' + A'Dp* 1<k <N -1,
U2 =sin(2x, ) U'=E™VU°+E"w,x, =nh,1<n<M -1
will be applied.

2.3.4. The Third Order of Accuracy Difference Scheme

Now, we apply the difference scheme (2.2.15) on the problem (2.3.1). To do that, we use the

following difference formulas (Ozgiir, 2011):

U(Xn+1) - 2U(Xn) i u(Xn—l)

h2 -u (Xn) :O(h2)1

U(Xn+2)_ 4u(xn+l)+ 6U(Xn )_ 4u(xn—l)+ U(Xn—Z) _ u(iV)(X ) = O(hz) (2 3 ]_5)
o | , ..

2u(0)—5u(h) + 4u(2h) —u(3h)

" u'(0) =0(h*),

2u(1)-5u(1-h)+4u(1-2h)—u(1-3h)
h2

u' (1) = O(h?).

First, we need to consider the following approximation of the differential equation in the
difference scheme (2.2.15):
uk+1_2uk+uk—l+auk+l_uk—l 2

1
~ » +§ Au, +6 AU, +Uu,_, )+

2

E[( o+ 2an) b~V _(g - A)Aum} -1,

Since a =1 for problem (2.3.1), writing this equation in a proper way, we obtain
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Uies — Zuzk s Yea =y 2 Au, o1 AU, +U, ) (2.3.16)
T 2t 6

? —u,  2A
T _M"‘_(uku_uk)_p‘um"'Azuk+1 = f,.
12 T T

To find the approximation of this equation, we need to substitute Au and A’u into it. We

know that A has the form

Au =-u, +u.
Calculating A’u, we obtain

Au=A(Au) = A(=u, +u) =—(-ug, +u) +(-uy +U) =u, —2u, +u.
Substituting the values for Au and A’u into (2.3.16), the equation becomes

U,.,—2U, +U u,.,—Uu 7?
k+1 k k—1+ k+1 k—1+

72 2T E

(U e + =2 (0, (2.3.17)

1 2427 1 8-71 T+2 1 _
- 6"‘ 12 (uxx)k+1_€(uxx)k—1+ 12 uk+?uk+1+guk—l_ fk'

Now, we need to use the approximation for f, , which was given in the difference scheme

(2.2.15) as
_2 1 1 : .
fk - 5 f(tk)"'g[f (tk+l)+ f(tkl)]_ﬁ[(a —A)f(tk+1)—af (tk+1)+ f (tk+1)]
Writing =1 and Af =—f_+ f inthe equation, we get
1 2

2
fk = 5 f(tk)"'g[f (tk+l)+ f(tkfl)]_]z:_z(fxx N 1:t + ftt )k+1' (23.18)

Here, taking derivatives of f with respectto t and X, we get
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f =7e? sin2x
f, =—28e ' sin2x
f. = —14e*'sin 2x

f. = 28e™ sin 2x.

Substitution of these into (2.3.18) leads to

2 1-7° 1 ;
f =l =+—e % +=e¥ [Texp(-2t,)sin(2x ).
K [3 5 5 } Xp (—2t, ) sin(2x,)

Therefore, (2.3.17) becomes

2

Uy =20 +Uy Uy —Uy 7 -4
+ —(u +—(u
T2 22_ 12( xxxx)k+1 6 ( xx)k
1 7°+2¢ 1 8- T+2 1 _
- E+ 12 (uxx)k+l_g(uxx)k—l+ 12 Uy +Yuk+l+guk—1 - fk’

2 1-7° 1 )
f ==+ e %" +=e% |Texp (-2t )sin(2x
K {3 5 5 } Xp (=2t ) sin(2x,)

Applying the difference formulas in (2.3.15) to this equation, we get

k+1 k k-1 k+1 k-1 2, k+l k+1 k+1 k+1 k+1
n T —2u) U +un —u, r_un+2—4un+l+6un —4u T +u

u

k k k
r—4u,,,—2u, +U

7? 27 12 h*

6 h?

+
h? 6 h? 12

6

X, =nh,t, =kz,1<k<N-12<n<M -2

1 420 \ust—2u 't 1ufT 20 Ut 8- T2
|5t -= uf + u

_ 2
+%u§‘1: f(tk,xn),f(tk,xn):E+1 d e‘z’+%e27}7exp(—2tk)sin(2xn),

(2.3.19)
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as the approximation for the differential equation in (2.3.1).

Now, using the difference scheme (2.2.15), we will obtain the approximations for the initial

conditions in problem (2.3.1).The approximation for the first initial condition u(0,x) = sin(2x) IS
u’ =sin(2x,). (2.3.20)

For the second initial condition u, (0, x) = —25in(2x), we will use the following approximation

2 _ 2 2
[| +%AJM :(| +%AJ1//+%[—05(//—A(/)+ f(O)] +%[a21//+aAgp— f(0)+ f'(O)],
T

which was given in (2.2.15). Substituting « =1 and
Ap ==+, Ay =y, +Vv,

we have

2 2
U—-u, 7 T _ T T 2, T T
——+—Au,——AU, = | | ——+3— |l —— | ——+— (o, +
2120(2 G]WGTWXX( j(coxxco)

Simplifying the difference formula in (2.3.15) and using

@ =sin2x, ¢, =-4sinx, v =-2sin2x, y,, =8sin2x,

f(0) and '(0) into the above equation result in the approximation for the second initial

condition:

l —_—

1 1,1 2
u, —u, _% Upi Zhuzn +Uny +%Ui - {_2+9—27— 38GT }sin(an ). (2.3.21)
T

The approximations (2.3.19), (2.3.20), (2.3.21) and also (2.3.15) lead to the following third-order
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of accuracy difference scheme with respectto t:

ut—2uf Fudt ut Ukt 22k —4uk v eut —4uf T v ufT -4 uf, —2uf
2 + PP 4 + 2
T 2t 12 h 6 h
1 22+20 Ut =20 +uft 1uft -2t vl 8-7 o 742 4.
| =+ ! -= ! + ul + h
6 12 h 6 h 12 12
2
+1u,ﬁ T=f(t,x, ) ft,x,)= 2,157 g Lo 7exp (-2t )sin(2x,),
6 3 6 6
X, =nht, =k7,1<k<N-12<n<M -2,
ul =sin(2x,), X, = nh,
1.0 1 1,1
Uy —U, 7l 2u2n +U- +£Uﬁ _|_o 9z 38 S|n(2x )
T 2 h 2 2
X, =nh1<n<M -1,
ut =ust =0,-1<k <N -1,
2u k+1 5 k+l +4u k+l k+1 = 0 2u k+1 5 k+l +4u k+l k+1 —_ O
0 ! M
—1<k<N-1
(2.3.22)

Using the same approach as the previous difference schemes, we will write the (N +1)x(M +1)
frame of linear equations in (2.3.22), in the matrix form. Before that, we denote
-4 1 %+2¢ 8— 2+7

,B=—+ ,C= D—
6 12 12 12

A=

»

Then, we will write the system again as the coefficients of u**,u* and u*?
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2 2r 2h?

2 B . r° N A
+(_3W_F Uniy + 1on° U§+§+(F)Unk1+(—

_ 22
f(tk,xn):EJr1 GT e‘2’+%e2’}7exp(—2tk)sin(

1<k<N-12<n<M -2,

u’ =sin(2x.),x, = nh,

1 0 1 1 1
u, —Uu, _zunﬂ 2un+un—1+£ul ={_2
2 n
T 2 h 2

Ut =ust =0,-1<k <N -L1.

-1<k<N-1

Here, we denote each distinct coefficient of the differenti

a,b,cd,e f,g asfollows:

2 h?

2 2
+[—T——Ejur'j*ll+(i2+i+r—+2—8+ D]u,’j+l

h2

2 2A

+Cju§

A« 1 )\ ka (1 1 1 134, ( 1 j k1
= Ui+ —— U G+ S ——+—+= U+ ——— U= F(t,Xx ),
(hzj n+l ( Gth n-1 (2_2 22_ 3h2 6} n 6h2 n+l (k n)

2x,), X, = nh,t, =kr,

k+1 k+1 k+1 k+1 — k+1 k+1 k+1 k+1 _—
2U," =5U, "~ +4u,” —uy;" =0,2uy,” —5uy, S, +4uy, S, —Uy 5 =0,

al equation in (2.3.23) with

a= v b=- al _B C—i+i+T—Z+E+D
12h*’ 3t h®' 72 2¢ 2h* h?
A 2 2A 1 1 1 1 1
d=—,e=——-——+4C,f=—— =" ——+—+-.
h? 2 h? 6h? g 2 2r 3h* 6

Then, we will write the system as the difference equation

(2.3.23)
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AU +BU* +CU*' = Dg* 1<k <N -1,

where

o

-1

-5 4

2

-5 2

—1 4

o

1_(M +1)<(M +1)

- S
= T
T s
s X
X 3
¥ =
(M\_ 1
' - o o o o o o o o o
o o o o o o o o o
o o o o O o+« o o
o o o o o o ot o o
o o o o O - oo o
o o o o o - v o o
o o o o o o
o o o o - © T O O = o
o o o o oo o oo ©°©ow © o o oo
o o - w ©o o o o o © O v+ D' O O O O o
o o o o O O O O o o O O w o O o o o
o o - o === == - o o o o o
O 0000000 o0o ©OO0Ooo © © o © o
T T
m (@)
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1 0 ... 0 O]
1 .00
001 ..00
D= : ) )
0 0O 1
_0 0 0 1_(M+l)><(M+1)
2
wz @ ,
k
Pm (M+1)x1
_US
u;
us=|: ,S=k-1,k,k+1
Un
_U& d(M+1)x(1)
and
0,n=0,
0,n=1,
_ 2
o = 2,57 g Lo 7exp(-2t,)sin(2x,),2<n<M -2,
3 6 6
O,n=M -1,
0,n=M.

Then, (2.3.23) can be written as
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AU +BU*+CU"" = Dp 1<k <N -1,
U® =sin(2x, ).

Iterative method is applied to solve this second order difference equation in terms of k with

matrix coefficients. Solving it, we get
Ukt =—A'BU*-ACU* '+ A'Dgp* 1<k <N -1.

Hereby, the (N +1)x(M +1) frame of linear equations, for initial conditions

1,0 1 ol ol 2
n 7ty 2u2” RS BT B g 38 sin(2x,),1<n<M -1,
T 2 h 2 6
(2.3.24)

u? =sin(2x, ), x, = nh

in (2.3.23) will be written again as

T 1 = ¢ T 1
U ] T U = UL = S ULy,
[ 2h2j n_l+[’[+h2+2j n+( 2h2) n+l (Tj n+l//n

We denote

v, = {—2+9—;—3—:rz}sin(2xn),lg n<M -1,
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dM+1)x(M+1)

O 0o o0 -0 o0 o —d

O o0 oo -0 o0 =mao

o o o o o — o —=o0

O o0 oo ma -0 o

o o o - o o o o o

oo Q... 00 o0 o o

M o = o = O o o o o

_|_,M\ o o —o o o o o o

_%%“Wm_ — — o o © © © o o
I I
N L

S
+
s
X
S
+
=
1
o o o O |
o o o --H| &k O
o O | k- O o
o «H|l e o o o
| & O o o o
L ]
1
>

,$=0,1.

dM+1x(@)

M

So, (2.3.24) becomes
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EU'=VU°+y
u? =sin(2x,).
Solving it, we get
U'=E'VU°+E'y.
Therefore, the difference equation is solved by the application of
Ut =—A'BU* - A'CU*" + A™Dp"* 1<k <N -1,
U? =sin(2x,)U' =E™VU° +E™"%,x, =nh,1<n<M -1,

So far, we have found the solutions of the systems of equations obtained by the application of
first, second and third order difference schemes in section 2.2 on problem (2.3.1). In the next

section, we analyze these results.
2.3.5. Error Examination

The numerical results of the exact solution and difference schemes are analyzed in this section.
To get the solutions for the difference schemes (2.3.6), (2.3.11) and (2.3.22), MATLAB is used.

The following RMS formula is applied to calculate the errors:

v R
E, = max Z‘u(tk,xn)—un hi.
0

O<k<N \ p=

Here, the exact solution is represented by uf(t,,x,) and the numerical solution at (t,,x,) is
represented by uf, and N is the number of steps with respect to time and M is the number of

steps with respect to space. In Figure 2.1, the graph of the exact solution is given from different
perspectives. The space-time graphs of numerical solutions for the first, second and third degree

of accuracy difference schemes are given in Figures 2.2, 2.3 and 2.4, respectively.
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First-order Difference Scheme
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By looking at the graphs, it is almost impossible to see the difference between the definite
solution and the numeric results of given problem although the graphs are given from different
perspectives. Therefore, as to the precise analogy of exact and numerical solutions; and further as
to the analogy of three different difference schemes, errors are to be calculated. Error analysis is
illustrated in Table 2.1, for N =M =50 and 100; and in Table 2.2, for various values of N

and M.
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Table 2.1: Error Examination

N=M 50 100

First Order Errors 0.0109829013 0.0057957026
CPU 0 0.09375

Second Order FErrors 0.0014344666 0.0003586775
CPU 0 0.265625

Third Order  Errors 0.0007630991 0.0001931353
CPU 0 0.265625

Table 2.2: Analogy of errors

N. M (NzI\-‘I2) 100, 10 200,14 400, 20
First-order

Error 0.0242 0.0126 0.0063

N, M (N=M) 30, 30 60, 60 120, 120
Second-order

Error 0.004 0.000996 0.000249

N. M (Ngzh{z) 10, 35 20, 90 40, 253
Third-order

Error 0.0011 0.000129 0.0000159

It can be seen from Tables 2.1 and 2.2 that, the accuracy of the numerical results by the
third-order of accuracy difference scheme is greater than those obtained by the second-order.
Also, the accuracy of the second-order difference scheme is greater compared to the first.
Moreover, it is observed from Table 2.2 that if the amount of N is multiplied by two for the
first-degree, second-degree and third-degree difference charts, the errors of the numerical results

decreased by 2, 4 and 8 times, respectively (Ashyralyev et al., 2016).
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3. RESULTS

In the first chapter, a brief history is given on the solution of Telegraph equations. Three different
problems are solved analytically using Fourier Series, Laplace Transform and Fourier Transform
Methods.

In the second chapter, the following Cauchy Problem

du® |, MO | auwy = £, 0<t<T,
dt dt o

u@=gp.u )=y

for a telegraph equation is considered. It is in a Hilbert space H, with a given self-adjoint positive

definite operator A. Main theorem on stability of (3.1) is given.

Section 2.2 is devoted to the study of first, second and third order difference charts as to the
approximate formula of the Cauchy problem (3.1). Difference schemes are obtained by using
Taylor’s decomposition on three points, which was given by Ashyralyev and Sobolevski (2004).

In section 2.3, computational results are given. The proposed difference schemes are applied to a
test problem. The difference schemes are converted to difference equation systems with matrix
coefficients. Iterative method is applied to solve these systems. Numerical computations are done
with the help of MATLAB. Computed results are given in Error Analysis. The errors are
computed by the RMS formula for the accurate comparison of the difference schemes. Tables and

figures are included.

Finally, a comparison of the difference schemes is presented on the basis of numerical analysis.
One can deduce from graphs and tables that, the numerical outcomes by the third level of

precision difference chart is clearer than the second or the first order.
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4. DISCUSSION

In this thesis, the investigation of the numerical solutions of a Cauchy problem

second-order telegraph PDEs is performed. Abstract Cauchy problem

d?u
dt

§I)+Ofdl;?)+'°‘“(t): f(1),0<t<T,

u@) =p,u(0)=y

for the telegraph equation was considered.

For approximate solution of problem (4.1), first level of precision difference chart

U — 2uk +U +a U, —U

2
T T

k —
+Au, , = f,,

fo=f(t,,)l<k<N-1,Nr=T,

— ul_uo —
U, = o, - =y

is constructed.

The second-level of precision difference charts

Ui — 2uk +U, +a U U,

A
2 o7 +E(uk+l+uk—1): fes

u, — U,
T

Uy = @, =%(fo_Au1_aW)+‘//: fo = f(O),

for the

(4.1)
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ul_uo
T

Up = @, =%(fo_Au1_aW)+l/f’ fo = f(O)

are constructed for the approximate formula of the problem (4.1).

The third-level of precision difference chart

u,,—2U, +U u,.,—u 2 1
K+1 2k k-1 +a k+1 k-1 +_Auk +_A(uk+1 +uk71)
T 27 3 6

+§{(—a3 + &W@—(az » A)Auk_l} = f,,

fo=2 1)< (1) 16

- ( ’ _A)f (tk+l)_afl(tk+l)+ f (tl<+1)]’1S k<N-1,

2

2 _ 2
(I +%A]M:(I +%Ajt//+%[—0u//—Ag0]+%[a21//+aAgo—Al//]+ fo.

r

z
2

is constructed for approximately solving the problem (4.1).

Proposed difference schemes are applied to a test problem. For numerical results, an IVP over
telegraph PDE is considered. MATLAB is used for obtaining the numerical results. The
comparison of the difference schemes demonstrates that third-order of accuracy difference

scheme gives more precise results than second-order or the first-order of accuracy difference

schemes.
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5. CONCLUSION AND RECOMMENDATIONS

This thesis is primarily dedicated to computational analysis of a Cauchy problem for the
second-order telegraph equations. Our main goal in this work is deriving an approximation for

the solution of telegraph equations with Dirichlet conditions. The abstract Cauchy problem

d?u
dt

gt)+adZEt)+Au(t)= f(t),0<t<T,
(5.1)
u(0) =g,u (0) =y

for telegraph equations is taken into consideration. The following original results are obtained.

* Following first-level of precision difference scheme was constructed for approximately solving
the problem (5.1):

U — 2uk +U +a U, — Uy

2
T T

+Au,,, = f,

fo=f(t,)1<k<N-1,Nz=T,

- U, —U, _
Up = =—— =y

For the solution of this difference scheme, the stability estimates were presented.

* The following second-order of accuracy difference schemes were constructed for approximately

solving the problem (5.1):

u,,—2U, +U u,..,—u A
k+1 k k—l+a k+1 k-1 +E(uk+l+ukfl): fk’

2
T 27

S =2 (fy - A —ap) 4y, 1 = 1(0),

U, = o,

T
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U, = o,

ul_uO
T

= %(f0 — AU —ay)+y, T, = £(0)

For the solution of the foregoing difference schemes, the stability estimates were presented.

* The third-level of precision difference chart below was constructed for the approximate solution

of the problem

(5.1):

Uga _Zuk +U +a U — Uy 2

T
f=_
° 2

2
T 27

1
= +3 Au, 3 AU, +U, )

Ajul Y :(I+%Aj{//+%[—0ﬂ//—Ag0]+%[0!21//+05A§0_AW]+ o,
T

(0= [10)- 1 0)

So as to the result of the above difference chart, consistency conjectures were presented.

* Proposed difference schemes were applied to a trial problem in order to demonstrate the

consistency and efficiency of numerical method. For numerical results, the following IVP
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2 2
0 1(;?2 X) N 8U((att, X) N u(t, x) - %Jr?exp (— 2t)sin(2x),

0<t<10<x<umr,

u(0, x) = sin(2x),u, (0,x) = —2sin(2x),0 < x < 7,

u(t,0)=u(t,7z)=0,0<t<1

was considered. The exact and numerical solutions were analyzed. It can be observed from the
analogy that third-order of approximation difference scheme gives more certain results than
second-order or the first order of accuracy difference schemes.

* MATLAB is used to attain the numerical outcomes. The MATLAB implementation used for the
computations is given in Appendix.



62

REFERENCES

Ashyralyev, A. and Aggez, N., 2004, A note on the difference schemes of the nonlocal
boundary value problems for hyperbolic equations, Numerical Functional Analysis and
Optimization, 25 (5-6), 439-462 .

Ashyralyev, A. and Koksal, M. E., 2004, A numerical solution of wave equation arising in
non-homogeneous cylindrical shells, Turkish Journal of Mathematics, 32 (4), 407-462.

Ashyralyev, A. and Koksal, M. E. , 2007, On the second order of accuracy difference scheme for
hyperbolic equations in a Hilbert Space, Numerical Functional Analysis and Optimization,
26 (7-8), 739-772.

Ashyralyev, A., Koksal, M. E. , Turkcan, K.T., 2016, Numerical solutions of telegraph equations
with the Dirichlet boundary condition , AIP Conference Proceedings1759, 020055.

Ashyralyev, A. and Modanli, M., 2014, A numerical solution for a telegraph equation, AIP
Conference Proceedings 1611, 300-304.

Ashyralyev, A. and Ozdemir, Y., 2007, On nonlocal boundary value problems for
hyperbolic-parabolic equations, Taiwanese Journal of Mathematics, 11 (4), 1075-1089.

Ashyralyev, A. and Sobolevskii, P. E., 2004, New Difference Schemes for Partial Differential
Equations, Birkhauser Verlag, Basel, Boston, Berlin, ISBN: 978-3-0348-9622-1.

Banasiak, J. and Mika, J., 1998, Singularly perturbed telegraph equations with applications in the
random walk theory, J. Appl. Math. Stoch. Anal., 11, 9-28.

Biazar, J., Ebrahimi, H., and Ayati, Z., 2009, An approximation to the solution of telegraph
equation by variational iteration method, Numer. Meth. Part. D. E., 25, 797-801.

Dehghan, M. and Shokri, A., A numerical method for solving the hyperbolic telegraph equation,
2008, Numer. Meth. Part. D. E., 24, 1080-1093.

Fattorini, H.O., 1985, Second Order Linear Differential Equations in Banach Spaces, Elsevier
Science Publishing Company, North-Holland, ISBN: 0 444 87698 7.

Jiwari, R., Pandit, S. and Mittal, R.C., 2012, A differential quadrature algorithm for the numerical
solution of the second-order one dimensional hyperbolic telegraph equation, International
Journal of Nonlinear Science, 13 (3), 259-266.

Jordan, P. and Puri, A., 1999, Digital signal propagation in dispersive media, J. Appl. Phys., 85,
1273-1282.

Koksal, M. E., 2011, An operator-difference method for telegraph equations arising in
transmission lines, Discrete Dynamics in Nature and Society, 2011, 1-17 .



63

Luo, X. and Du, Q., 2013, An unconditionally stable fourth-order method for telegraph equation
based on Hermite interpolation, Applied Mathematics and Computation219, 8237-8346.

Modanli, M., 2015, Well-posedness of Telegraph Differential and Difference Equations, Thesis
(PhD), Fatih University.

Mohanty R.K., 2004, An unconditionally stable difference scheme for the one-space dimensional
linear hyperbolic equation, Applied Mathematics Letters, 17,101-105.

Piskarev, S. and Shaw, Y., 1997, On certain operator families related to cosine operator
functions, Taiwanese Journal of Mathematics, 1 (4), 527-546.

Sobolevskii, P., 1975, Difference Methods for the Approximate Solution of Differential
Equations, Thesis (PhD), lzdat. Voronezh. Gosud. Univ., in Russian.

Yildirim, O., 2011, Stable Difference Schemes for the Nonlocal Hyperbolic Problems, Thesis
(PhD), Uludag University.



64

APPENDICES

APPENDIX 1.Programming for the first-order of accuracy difference scheme.

function df

N=input (‘N gir’); M=input (‘M gir’);
val=100;

for tt=1:20;

timel=cputime;

x=linspace (0,pi,M+1);

t=linspace (0,1,N+1);

h=pi/M; tau=1/N;

d=-2/ (tau"2)-1/ (tau);

e=1/ (tau"2);

U (:,1)=sin(2*x);

U (:,2) = (1-2*tau)*sin(2*x);

for k=2:N;

for n=2:M;

A (n,n-1)=-1/(h"2) ;

A (n,n)=1/ (taun2) +2/ (h"2) +1/ (tau)+1 ;
A (n,n+1)=-1/ (h"2) ;

B (n,n)=d; C (n,n)=¢;

fii (n,k-1)=ff (t(k), x(n)) ;

end;

A(11) =1, AM+1L,M+1)=1;
B(M+1,M+1)=0; C(M+1,M+1)=0;
fii (1,k-1) =0; fii (M+1,k-1)=0;

U( :,k+1) =inv (A) * (-B*U(:,k)-C*U(:,k-1)+fii (:,k-1)) ;
end;

U;

p=transpose (U) ;
%%%%%%%%%%’E. S. OF PDE’ %%%%%%%%%%%
for n=1:M+1;

for k=1:N+1,;

t=(k-1)*tau;

x=(n-1)*h;

%est (n, k:k) =(1-t+t"2) * (sin (2*x)) ;
est (n, k:k)=exp (-2*t)*(sin(2*x));

%es (n, k:k) = exp (-t"3+t) * (sin (2*x)) ;
%est (n, k:k) = exp (-t"3) * (sin (2*x));
end;

end,

es=transpose (est) ;

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%%
%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%%
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APPENDIX 1 (continued).

for i=1:N-1;

for j=1:M-1,

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1);

end;

end;

fmat1=abs(ftf);

fmat2=fmatl.*fmat1*h;

fmat3=sum(fmat2, 2);

fmat4=fmat3.7(1/2);

sumerror=max(fmat4);

time2=cputime;

it (val> (time2-timel))

val=time2-timel,

end;

end;

sumerror

val

%%%%%%%%%%%%%%%%%% END OF ERROR ANALYSIS %%%%%%%
%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%
U;

est;

[xler,tler]=meshgrid(0:tau:1, O:h:pi);

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U;
g=min(min(table));

w=max(max(table));

figure;

surf(tler,xler,est);

%titleCEXACT SOLUTION”); set(gca,”ZLim’,[q W]);
rotate3d;

%X Label (’x’); YLabel (’t’); ZLabel (‘u’) ;

figure; surf(tler,xler,U);

%title(’First-Order Difference Scheme’); set(gca,”ZLim’,[q W]);
rotate3d ;

%X Label (’x’); Y Label (’t’); Z Label (‘u’);
%%%%%%%%%%% END GRAPH %%%%%%%%%%%%%%%
function u=g(t,x); %u=1,

u= (1+0*t+0*x) ;

function u=ff (t,x) ;

%u= (2+ 5* (t"2+t+1))*sin (2*X) ;

%u=6*exp (-t) *sin (2*x);
%u=(-6*t+9*t"4+4*(t+x))*exp(-t*3)*sin(2*x) ;
%u=(-2*t+3)*exp(-t"2)*sin(2*x);

u= (2+5* (1+0*t+0*x))*exp (-2*t)*sin (2*x) ;

%u= (2+4* (t+x) * (1-t+t"2)) *sin (2*X) ;
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APPENDIX 2.Programming for the second order of accuracy difference scheme.

function ds

N=input (‘N gir’) ; M=input (‘M gir’) ;

%N=40; M=40;

val=100;

for tt=1:20;

timel=cputime;

x=linspace (0,pi,M+1);

t=linspace (0,1,N+1);

h=pi/M; tau=1/N;

U (:,1)=sin (2*x) ;

for k=2:N;

for n=2:M;

A(n,n-1)=-g(t(k),x(n)) / (4*(h"2)) ;

A(n,n)=1/ (2*tau) +1/ (tau*2) +g(t(k), x(n)) / (2*(h"2)) +g (t(k), x(n)) /4;
A(n,n+1)=-g (t(k).x(n)) / (4* (h"2) );

B(n,n-1)=-g (t(k), x(n)) / (2*(h"2)) ;

B(n,n)=-2/ (tau"2) +g (t(k), x(n)) / (h"2)+g(t(k), x(n)) / 2;
B(n,n+1)=-g(t(k).x(n)) / (2* (h"2));

C(n,n-1)=-g (t(k) ,x(n)) / (4* (h"2));

C(n,n)=-1/ (2*tau) +1/ (tau"2) +g (t (k), x(n) ) / (2* (h"2)) +g(t(k), x(n) ) / 4;
C(n,n+1)=-g(t (k).x(n)) / (4* (h"2)) ;

D(n,n-1)=-tau/ (2* (h"2) );

D(n,n) =1/tau+tau/ (h"2) +tau/2;

D(n,n+1)=-tau/ (2* (h"2) ) ;

fii (n,k-1) =ff (t(k), x(n)) ;

ro (n,1)= (-2+ (9/2) *tau)*sin (2*x(n) ) ;

end;

A(11)=1; AM+1,M+1)=1;

B (M+1 ,M+1) =0;

C(1,:)=0;C (M+1,:) =0;

D (1,1)=1; D (M+1,M+1) = 1;

fii (1,k-1) =0; fii (M+1,k-1) =0;

ro (1,1) =0 ; ro (M+1,1) =0;

u(:,1);

U(:, 2)=inv(D) * (1/tau) *U(:, 1) +inv (D) *ro( :, 1) ;
U(:, k+1)=inv (A) * (-B*U (:, k) -C*U (:, k-1) +fii (:, k-1)) ;
end;

U;

p=transpose (U) ;

%%%%%%%%%% EXCT SOL OF THIS PDE’ %%%%%%%%%%%
for n=1:M+1;

for k=1:N+1,

t=(k-1)*tau;

x=(n-1)*h;
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APPENDIX 2 (continued).

%est(n,k:K)=(1-t+t"2) * (sin (2*x) ) ;

est (n, kik) =exp (-2*t)) * (sin(2*x)) ;

%es (n, k:k) =exp (-t"3+t) * (sin (2*x)) ;

%est(n, k:k) =exp (-t*3) * (sin (2*X)) ;

end;

end;

es=transpose (est) ;

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%%
%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%%
for i=1:N-1;

for j=1:M-1;

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1);

end;

end;

fmatl=abs(ftf);

fmat2=fmatl.*fmatl1*h;

fmat3=sum(fmat2, 2);

fmat4=fmat3."(1/2);

sumerror=max(fmat4);

time2=cputime;

if (val> (time2-timel))

val=time2-timel;

end;

end;

sumerror

val

%%%%%%%%%%%%%% END OF ERROR ANALY SIS %%%%%%%%%
%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%
U;

est;

[xler,tler]=meshgrid(0:tau:1, O:h:pi);

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U;
g=min(min(table));

w=max(max(table));

figure;

surf(tler,xler,est);

Y%titleCEXACT SOLUTION”); set(gca,”ZLim’,[q W]);

rotate3d;

X Label (’x’); Y Label (’t’); Z Label ( ‘u’);

figure; surf(tler,xler,U);

%title(’Second-order Difference Scheme’); set(gca,”ZLim’,[q W]);
rotate3d ;

%X Label (°’x’); Y Label (’t’);Z Label (‘u’);
%%%%%%%%%%% END GRAPH %%%%%%%%%%%%
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APPENDIX 2 (continued).

%%%%%%%% %% %% %% %% %%%% %% %% %% %% %%
function uu=g(t,x);

uu=1+0*t+0*x;

function u=ff (t,x) ;

u=7*exp (-2*t) *sin (2*x) ;
%%%%%%%% %% %% %% %% %%%% %% %% %% %% %%
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APPENDIX 3.Programming for the third-order of accuracy difference scheme.

function dt

N=input (‘N gir’) ; M=input (‘M gir’) ;
%N=40; M=40;

val=100;

for tt=1:20;

timel=cputime;

x=linspace (0,pi,M+1);

t=linspace (0,1,N+1);

h=pi/M; tau=1/N;

U (:,1)=sin (2*x) ;

AA=(tau-4) /6;

BB= (1/6) + ((tau"2) + 2*tau) /12;

CC= (8-tau) /12;

DD= (2+tau) /12;

for k=2:N;

for n=3:M-1;

A(n,n-2)=(tau"2) / (12*(h"4));

A(n,n-1)=- (tau™2) / (3*(h"4)) - BB / (h"2);
A(n,n)=1/ (tau"2) + 1/ (2 * tau) + (tau"2) / (2 * (h"4) +2* BB / (h"2) +DD;
A(n, n+1)= -(tau"2) / (3* (h"4))-BB/ (h"2) ;
A(n,n+2)= (tau"2) / (12 * (h"4));
B(n,n-1)=AA / (h"2) ;

B(n,n)=-2/ (tau"2) -2 * AA/ (h"2)+ CC;
B(n,n+1)=AA [ (h"2);

C(n,n-1)=-1/ (6* (h"2));

C(n,n)=1/ (taun2) - 1/ (2* tau) + 1/ (3 * (h"2))+1/6;
C(n,n+1)=-1/ (6* (h"2)) ;

end;

for i=2:M;

D(i,i-1)=-tau/ (2* (h"2) );

D(i,i) =1/tau+tau/ (h"2) +tau/2;

D(i,i+1)=-tau/ (2* (h"2) ) ;

end;

for g=3:M-1;

fii (,k-1) =ff (t(k), x(a)) ;

end,

for w=2:M;

ro (w,1)= (-2+ (9/2) * tau-(38/6) * (tau”2)) *sin (2*x(w) ) ;
end;

A((11)=1; AM+1,M+1)=1;

A (2,1)=2; A (2,2)=-5; A(2,3) =4; A(2,4) =-1,
AMM-2) =-1; A (M,M-1) =4, A(M,M) =-5; A (M,M+1) =2;
B (M+1 ,M+1) =0;

C (M+1, M+1) =0;
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APPENDIX 3 (continued).

D (1,1)=1; D (M+1,M+1) = 1,

fii (1,k-1) =0; fii (M+1,k-1) =0;

ro (1,1) =0 ; ro (M+1,1) =0;

ro;

u(:,1);

U(:, 2)=inv(D) * (1/tau) *U(:, 1) +inv (D) *ro(:, 1) ;

U(:, k+l)=inv (A) * (-B*U (:, k) -C*U (:, k-1) +fii (3, k-1)) ;

end;

U;

p=transpose (U) ;

%%%%%%%%%%’EXCT SOL OF THIS PDE’ %%%%%%%%%%%
for n=1:M+1;

for k=1:N+1,;

t=(k-1)*tau;

x=(n-1)*h;

%est(n,k:K)=(1-t+t942) * (sin (2*X) ) ;

est (n, k:k) =exp (-2*t)) * (sin(2*x)) ;

%es (n, k:k) =exp (-t943+t) * (sin (2*x)) ;

%est(n, k:k) =exp (-t943) * (sin (2*X)) ;

end;

end;

es=transpose (est) ;

%%%%%%%%%% END EXACT SOLUTION %%%%%%%%%%%%%%%%
%%%%%%% ERR ANAL OF GEN SOL OF THE DIFF SCHEME %%%%%%%
for i=1:N-1;

for j=1:M-1,;

ftf(i, j)=p(i+1, j+1)-es(i+1, j+1);

end;

end;

fmatl=abs(ftf);

fmat2=fmatl.*fmatl*h;

fmat3=sum(fmat2, 2);

fmat4=fmat3.94(1/2);

sumerror=max(fmat4);

time2=cputime;

if (val> (time2-timel))

val=time2-timel;

end,

end;

sumerror

val

%%%%%%%%%%%%%%%%%% END OF ERROR ANALYSIS %%%%%%%%
%%%%%%%%%%%%%%%GRAPH OF THE SOLUTION %%%%%%%%%%%%
U;
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APPENDIX 3 (continued).

est;

[xler,tler]J=meshgrid(0:tau:1, O:h:pi);

table=[est;U]; table(1:2:end,:)=est; table(2:2:end,:)=U;

g=min(min(table));

w=max(max(table));

figure;

surf(tler,xler,est);

rotate3d;

figure; surf(tler,xler,U);

rotate3d ;

%%%%%%%%%%% END GRAPH %%%%%%%%%%%%%%%%%%
%9%6%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
tau=1/N;

function u=ff(t,x);

u=((2/3)+(1/6) * ((2499/2500) *exp (-2*50)+exp(2/50))*7 *exp (-2*t)*sin (2*X) ;
%u=((2/3)+(1/6) * ((9999/10000) *exp (-2*100)+exp(2/100))*7 *exp (-2*t)*sin (2*X) ;
%%%%%%%% % %% % %% %% %%%% %% %% %% %% %% %% %% % % %% % %
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