

T.C. İSTANBUL UNIVERSITY INSTITUTE OF GRADUATE STUDIES IN SCIENCE AND ENGINEERING

M.Sc. THESIS

COMPARISON OF UNIVARIATE AND HEURISTICS FORECASTING MODELS IN THE EMPLOYMENT/UNEMPLOYMENT SECTOR IN MALI

Hamadou NIANGADOU

Department of Industrial Engineering

Industrial Engineering Programme

SUPERVISOR Assist. Prof. Dr. Murat AKAD

February, 2018

İSTANBUL

This study was accepted on 8/2/2018 as a M. Sc. thesis in Department of Industrial Engineering, Industrial Engineering Programme by the following Committee.

Examining Committee Members

Assist. Prof. Dr. Murat AKAD(Supervisor) Istanbul University Faculty of Engineering

Prof. Dr. S. Alp BARAY Istanbul University Faculty of Engineering

Assoc. Prof. Dr. Dilek YILMAZ BOREKCI Istanbul University Faculty of Engineering

Assoc. Prof. Dr. Tarik KUCUKDENIZ Istanbul University Faculty of Engineering

laime Juso, Kayam

Assoc. Prof. Dr. Saime Suna KAYAM Istanbul Technical University Faculty of Business

As required by the 9/2 and 22/2 articles of the Graduate Education Regulation which was published in the Official Gazette on 20.04.2016, this graduate thesis is reported as in accordance with criteria determined by the Institute of Graduate Sttudies in Science and Engineering by using the plagiarism software to which İstanbul University is a subscriber.

TABLE OF CONTENTS

Page

FOREWORD	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	
LIST OF SYMBOLS AND ABBREVIATIONS	
OZET	xi
SUMMARRY	
1. INTRODUCTION	
2. MATERIALS AND METHODS	
2.1. MATERIALS	
2.2. THE PRINCIPLE OF PARSIMONY	
2.3. OVERVIEW OF THE METHODS	
2.3.1. Accepted forecasting methods in litterature	
2.3.1.1. Moving averages	
2.3.1.2. Exponential smoothing methods	11
2.3.1.3. Simple and multiple regressions	14
2.3.1.4. Non-seasonal ARIMA model	16
2.3.2. Heuristic models	17
2.3.2.1. Grey model GM(1,1)	
2.3.2.2. Grey prediction with rolling mechanism (GPRM)	
2.3.2.3. Grey model with optimization of background value	
2.3.2.4. Grey_ARIMA model	
2.4. APPLICATION OF THE METHODS	24
2.4.1. Forecasting with the initial dataset	24
2.4.1.1. Linear regression	25
2.4.1.2. Simple moving averages	26
2.4.1.3. Single exponential smoothing	
2.4.1.4. Original Grey GM(1,1)	

2.4.1.5. Grey prediction with rolling mechanism	. 33
2.4.1.6. Grey model with optimization of background value	. 35
2.4.2. Forecasting with the bootstrap dataset	. 37
2.4.2.1. Linear regression	. 38
2.4.2.2. Simple moving averages	. 39
2.4.2.3. Single exponential smoothing	. 39
2.4.2.4. ARIMA model	. 40
2.4.2.5. Original Grey GM(1,1)	. 42
2.4.2.6. Grey model with optimization of background value	. 45
2.4.2.7. Grey_ARIMA model	. 47
3. RESULTS	. 55
3.1. RESUTLS FROM THE UNEMPLOYMENT DATASET	. 55
3.2. RESULTS FROM THE BOOTSTRAP DATASET	. 56
4. DISCUSSION	. 58
5. CONCLUSION AND RECOMMENDATIONS	
REFERENCES	. 64
APPENDICES	.69
APPENDIX 1: Simple moving averages results with 'Sample 10'	. 69
APPENDIX 2: Single exponential smoothing results with 'Sample 10'	.72
APPENDIX 3: Excel results of the Grey model applied to 'Sample 10'	. 79
APPENDIX 4: Numerical operations of the Grey model with optimization of background value applied to ' <i>Sample 10</i> '	. 82
APPENDIX 5: Numerical operations of the Grey_Arima model applied to the Malian GDP	. 88
CURRICULUM VITAE	.93

FOREWORD

First of all, I would like to thank Istanbul University for giving me the opportunity to accomplish my master program.

I give a special thanks to Yrd. Doc. Dr. Murat Akad for taking me under his supervision, his patience and help during my research which helped me a lot.

Finally, I would like to thank my family as well for their understanding and support without which I would have never been in this position.

February 2018

Hamadou NIANGADOU

LIST OF TABLES

Page

Table 2.1:	Yearly Unemployment rates of Mali from 1990-2016
Table 2.3.1:	Simple moving average process
Table 2.3.2 :	Centered moving average process deconstructed 10
Table 2.3.3 :	Error estimation for the simple linear regression
Table 2.3.4 :	Simple movig average results
Table 2.3.5 :	Results of the Single exponential smoothing method 29
Table 2.3.6 :	Summary of the calculations performed in Excel
Table 2.3.7 :	Microsoft Excel results for parameter <i>a</i>
Table 2.3.8 :	Microsoft Excel results for the background value $Z^{(1)}(k)$
Table 2.3.9 :	Descriptive statistics of the 10 bootstrap data sets
Table 2.4.1 :	Forecast results of the GM(1,1) 44
Table 2.4.2 :	Forecast results of the optimized Grey Model 46
Table 2.4.3 :	Screenshot of the ARIMA results in Microsoft Excel 51
Table 2.4.4 :	Screenshot of the Hybrid model calculations in Microsoft Excel 54
Table 2.4.5 :	Errors from the unemployment dataset 55
Table 2.4.6 :	Errors from the bootstrap dataset

LIST OF SYMBOLS AND ABBREVIATIONS

Explanation

Symbol

α	: Alpha
β	: Beta
φ	: Teta
Abbreviation	Explanation
ACF	: Autocorrelation Function
AGO	: Accumulated Generating operations
ARIMA	: Autoregressive Integrated Moving Averages
Eq.	: Equation
Fig.	: Figure
GDP	: Gross Domestic Product
GM	: Grey Model
GPRM	: Grey Prediction with Rolling Mechanism
IAGO	: Inverse Accumulated Generating operations
MA	: Moving Averages
MAE	: Mean Average Error
MSE	: Mean Square error
OEC	: Observatory of Economic Complexity
PACF	: Partial Autocorrelation Function
RMSE	: Root Mean Square error
SES	: Single Exponential Smoothing
StDev	: Standard Deviation
UN	: United Nations
WDA	: World Data Atlas

ÖZET

YÜKSEK LİSANS TEZİ

COMPARISON OF UNIVARIATE AND HEURISTICS FORECASTING MODELS IN THE EMPLOYMENT/UNEMPLOYMENT SECTOR IN MALI

Hamadou NIANGADOU

İstanbul Üniversitesi

Fen Bilimleri Enstitüsü

Endüstri Mühendisliği Anabilim Dalı

Danışman : Yrd. Doç. Dr. Murat AKAD

Mali'de işsizlik her zaman bir problem olmuştur. Emek çok yaygın olmasına rağmen, yetenekli olan kişi yetersizdir. Güvenilir işsizlik verilerini bulmak zordur. Mali'nin hükümeti taraftan 2016'da yapılan bir anket'e göre yüzde 8,1 oranındayken, gerçek rakam muhtemelen yüzde 30'u aşıyor. Yine de, "Dünya Veri Atlası" veri kaynağındaki gerçek verileri kullanarak bu çalışma şunları amaçlamaktadır: hangisinin daha az hata yüzdesine sahip olacağını görmek için, litteratürdeki kabul edilmiş tek de- ğişkenli tahmin modellerinden bazılarını ve sezgisel tahmin modellerini kullanarak bir dizi tahmin operasyonu gerçekleştirin ve böylece gelecekteki sayıların nasıl göründüğü konusunda en iyi tahmini verilmesi.. Ayrıca, Mali'nin ekonomisi üzere bir bakış açısı verilecek, işsizlik oranlarını etkileyen bazı faktörler tartışılacak ve uygulanabilir bazı çözüm önerileri sunulacak.

Şubat 2018, 103. sayfa.

Anahtar kelimeler: Dünya Bankası veri kaynağı, İşsizlik, Tahmin, Mali

SUMMARY

M.Sc. THESIS

COMPARISON OF UNIVARIATE AND HEURISTICS FORECASTING MODELS IN THE EMPLOYMENT/UNEMPLOYMENT SECTOR IN MALI

Hamadou NIANGADOU

İstanbul University

Institute of Graduate Studies in Science and Engineering

Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Murat AKAD

Unemployment has always been a problem in Mali. Although labor is widely available, skilled one is in short supply. Reliable unemployment data is difficult to find. While a survey of the Malian government found a rate of 8,1 percent in 2016, the actual figure is likely over 30 percent. Nevertheless, using the actual data from the "World Data Atlas" data source, this study aims to perform a series of forecasting operations using some of the accepted univariate forecasting models in litterature and a set of heuristic ones, so as to see which one will hold less error percentage, and thus give the best estimate on how the future numbers might look like. Also, an insight of the economy of Mali will be given, some of the factors affecting the unemployment rates will be discussed and some feasible solutions will be presented.

February 2018, 103 pages.

Keywords: World Bank data source, Unemployment, Forecasting, Mali

1. INTRODUCTION

Mali has demographic characteristics similar to most sub-Saharan African countries. The population of Mali is very young. The population is estimated to be a little over 18 millions and almost 67% of it is between 0-24 years of age(according to 'index mundi'). This shows how big the labor force is. In Mali, just like in many developing countries, few can afford to be openly unemployed and yet the employment situation has been deteriorating since 1987. Official numbers for the unemployment are around 10% on average for the past few years, but the actual figure is probably bigger than that. The causes of this problem will be explained in this thesis and some solutions will be presented/proposed as well. But before that, future numbers will be estimated through a series of forecasting using some commonly used algorithms in litterature and a few heuristic ones.

Forecasting is an activity or process through which someone predicts or attempts to predict the future, based on previous events or on some information he/she has now. In short it is a guess, but logical and rational, about what is going to happen in the future. It's about capturing the regularities in a data and using them to make predictions. It is used in various fields such as economy, weather, supply chain, planning, manufacturing, quality management, demand, scheduling, etc. Forecasting isn't something which has been created, but rather it has always existed. It is constantly used on regular daily basis. For example a mother of a family which has a monthly limited budget tries to keep the family expenses for food, bills, etc within that budget every month. She spends it over some time, looking at the long term, trying to predict/anticipate any situation that could arise based on past experiences and act accordingly. That is a forecasting process. Predicting inflations or values of certain goods is also a forecasting process. There are two (2) types of forecasting:

Judgement Forecasting: referred to as qualitative forecasting. Here, the data is expressed by means of a natural language description. We don't really use a numerical analysis. This type of forecasting requires only the use of our intuition and experience. It is used best when there is little or no historical information/data. Examples of such forecasting are new products launches, market research, surveys and polls, etc. **Quantitative Forecasting:** based on historical/past data or information. The data is a numerical measurement expressed in terms of numbers. That data is analized in order to discern some trends or patterns which repeat more than once and use those to make some predictions. The data is usually spread over a long period of time and is usually continuous, thus it is referred to as "Time Series". Examples of such forecasting are weather forecasts, demand/sales forecasts, population growth, etc.

There are many available techniques that may be used when working with the second type of forecasting. Most of them are case specific, that is one algorithm may not perform well in every situation. There are a few accepted algorithms/techniques in the litterature. Some of them are: ARIMA models, Artificial Neural Network (ANN), Support Vector Machines (SVM), Moving averages and Exponential smoothing, K-nearest neighbor prediction method (kNN), etc.

However, because of the nature of forecasting itself, that is there will never be a perfect method for every situation, many heuristic techniques have been developed too. Those techniques are mostly case oriented, often the result of different combination of methods (these methods are referred to as 'hybrid models'). ARIMA+ANN, kNN+SVM, Grey+Evolutionary algorithms are a few examples of such methods. The following lists the different techniques which will be used in this study:

Accepted algorithms in litterature

Moving averages Simple and multiple regression methods Exponential smoothing methods ARIMA models Heuristic methods Original grey model GM(1,1) Grey prediction with Rolling mechanism (GPRM) Grey Model with Optimization of Background Value Grey_ARIMA model

These heuristic techniques deal with data samples which have a small size (usually less than 40). The reason behind chosing these specifically is that the data which will be used in this study has a size of **27**. Many algorithms usually require a larger amount of data in order to give

optimum results. ARIMA is an example of such algorithms. More on the above mentioned algorithms in the following sections.

2. MATERIALS AND METHODS

This section is divided into 4 parts: *section 2-1* discusses the materials which will be used in the study, which comprise the dataset and the software; *section 2-2* discusses a well known and very important notion in forecasting, the principle of parsimony; *section 2-3* describes the multiple forecasting methods which will be used in this study and *section 2-4* shows their application to the dataset.

2-1. Materials

The data which is going to be used in this study is from *World Data Atlas (WDA)* [17] which is under "**Knoema**". Knoema is a free resource for statisctical data. It was created through a joint venture by Russian and Indian professionals and it offers an incredibly wide range of data and information about all the countries in the world, collected from highly reliable sources such as the World Health Organisation and United Nations (UN). The data on the Knoema can always be tracked down to check their trustworthiness as every data is linked back to its original source. World Data Atlas not only comes as a stand alone website, but is also available as a Chrome application and as an application for tablets and smartphones [20].

The data taken from WDA consists of the unemployment rates of **Mali** arranged in order from 1990 to 2016, in a yearly basis, that is 27 entries in total as can be seen in *table 2.1*. The values/rates give the number of unemployed person as a percentage of the total labor force. It's very hard to find any information about the employment situation prior to the early 90s. The country, being technologically behind, nothing was really kept digitally until recently. Most data about the country is written down on papers and kept in the archives. And since its independance in 1960, Mali has seen multiple "Coups d'Etat", which lead to the loss of many documents. Therefore, one can find decent data on Mali only through international organisms or institutions such as the "World Bank" or "World Data Atlas" which have done some researches in the past years, and most of the time those do not include any information prior to the 1991 Coup d'Etat (in Mali).

Certain algorithms work best with a minimum entry of 50-55 data. ARIMA is an example of such algorithms, as mentioned before. Since we have got only 27 data, it is therefore normally inconvenient to perform a forecasting exercise with such algorithm. In order to overcome this problem, a popular technique which helps increase sample sizes will be introduced. The

technique is called "**Bootstrapping**" [21]. It's a powerful statistical technique, accepted in litterature, which involves resampling. It generates new data from an initial data sample, which usually has a sample size less than 40. It was first mentioned in 1979 by Bradley Efron [33] and since then different procedures have been developed [34][35][36].

Year	Unemployment(%)	2003	4.
1990	7	2004	8.
1991	7.2	2005	9.
1992	7.1	2006	10
1993	12.2	2007	11
1994	11.9	2008	10
1995	7.4	2009	9
1996	8	2010	7
1997	3.3	2011	6
1998	7.4	2012	6
1999	9.3	2013	7
2000	7.9	2014	8
2001	7.6	2015	8
2002	7.3	2016	8

Table 2.1: Yearly Unemployment rates of Mali from 1990-2016.

The method is sometimes referred to as "*Sampling with replacement*". This basically means that when a value is drawn from a pool/set, instead of putting that value aside, it is possible to draw it a second time, or even more than twice, and because some observations may be resampled more than one time, others might not be sampled at all. Here is how the method works: a first bootstrap sample is generated by drawing random observations from the initial data set, and the average of that sample is calculated. This process is performed **n** times so as to have at the end a "*bootstrap sample of the means*". This process is vizualized in *Fig. 2.1*.

Bootstrapping is available in many software tools nowadays, however it is also possible to perform the tasks by hand, for small data size. For this study, since we have 27 entries, a new data with a sample size of 27*4, which is 108, will be generated.

In order to perform a good forecasting, softwares are needed most of the time. In this study, we will only use 2 of them, namely Microsoft Excel and Minitab. Minitab is a software package for statistical analysis. It's one of the most popular ones and has ARIMA and linear regression as well as a few other methods already implemented in its library. It is user friendly and easy

to use. For more on Minitab, refer to this page [22] or visit the following link: https://libguides.library.kent.edu/statconsulting/minitab

Figure 2.1: Steps to generating a bootstrap data set.

There are many indicative measurement models available for evaluating the accuracy of forecasts. Those models are commonly categorised into two (2) groups: *scale-dependent* errors and *scale-independent* errors.

A comparison of forecast performance made between different data sets is referred to as *scale-independent*. An example of such model is the Mean absolute percentage error or MAPE.

$MAPE = mean(absolute value(p_i))$

where $p_i = 100^*(e_i / y_i)$ and y_i is the observed value, e_i is the difference between the observed value and the forecast value for a given time *i*. The disadvantage of this method is that some results may be undefined, when $y_i = 0$, or infinite when y_i is close to zero.

A comparison of forecast methods made on a single data set is referred to as *scale-dependent*. Some popular models are: the Mean squared error (MSE), Mean absolute error (MAE) and Root mean squared error (RMSE).

$$MAE = \frac{\sum |e|}{n}$$
, $MSE = \frac{\sum e^2}{n}$ and $RMSE = \sqrt{MSE}$

The drawback of using *MSE* is that the square puts a high weight on large deviations/errors, therefore it might return a large forecast error even if the forecast algorithm perfroms well in general. One way to overcome this issue is to use the *RMSE* instead. *RMSE* or *MSE* can be useful when large errors are undesirable. The *MAE* is steady because individual differences have equal weight.

Since only one dataset will be used in this study, it is therefore logical to use scale-dependent measurement techniques to assess the forecast accuracy. There isn't a single best measurement model. However the 3 above mentioned models are widely used in litterature, therefore these 3 will be the reference in this study as well. The lower the values of these are, the more satisfactory the forecasts will be.

It is important to note that the dataset in this study consists of only one variable, which is collected sequentially over equal time measurements, that is from 1990 to 2016. This kind of series is referred to as *univariate* time series. On the other hand, a series which has two or more variables is regarded as a *multivariate* time series. Different methods are used for each case, when forecasting, but only the models for the univariate time series will be discussed in this study.

2-2. The principle of Parsimony

A highly important principle of reasoning used in science is the principle of parsimony, often referred to as Occam's razor. The principle is named after an English philosopher of the 14th century, William of Occam (1285-1350) [68]. It states that models or explanation should be as simple as possible. His principle is used when choosing among theories, models, equations, explanations, etc. In forecasting, among a number/group of suitable models, the simplest one is always to be chosen. When building a proper time series model, one must consider the principle of parsimony and shouldn't use more parameters than needed. Using many parameters to fit the data at hand is a meaningful approach to building a model. The resulting model is usually a good fit for that particular data, however it will most likely not give good results when used for predicting other datasets.

A parsimonious model is one which has just the right number of predictors needed to describe the model. A model with many parameters is referred to as a *low parsimony* model. One with fewer parameters is referred to as *high parsimony* model. Low parsimony models usually fit better than high ones, but as mentioned earlier, they also tend to be much less effective for predicting other data sets. There are many methods available to help find the right balance between goodness of fit and parsimony. The most popular ones are:

Akaike's Information Criterion (AIC): compares a set of models and rank them from best to worst, the best model being the one which neither under-fits nor over-fits. However, it doesn't

tell much about the quality of the models, as it only compares between the given/input models [53].

Bayesian Information Criterion (BIC) often called Schwarz criterion (SBC or SBIC): developed by Gideon E. Schwarz, the method is similar to the AIC but puts more emphasizes on the number of parameters. Models with less parameters are more favored, better [54].

Minimum Description Length (MDL): used in machine learning, says that every data usually has regularities and capturing them can help compress the data. The more we compress the data, the more we learn about it and therefore the model which compresses it the most is best [56].

Bayes Factors [55] is also another method, but is not as popular as the previous ones.

2-3. Overview of the methods

The followings are the methods which will be used in this study. No judgement forecasting model is used here, only *quantitative* forecast models.

2-3-1. Accepted forecasting methods in the litterature

All the following methods are linear, that is they do not have a single parameter which is raised to any power greater than one (1).

2-3-1-1. Moving Averages

Moving averages (MA) are about taking the average of the points nearby/around an observation. Observations which are near each other in time are very likely to be close in value. That's the idea behind the technique. That average can be a reasonable estimate for the trend-cycle of that observation. Development of the moving averages goes back to 1901 by R. H. Hooker. It was later on discussed by Yule as '*instantaneous averages*' [37] in 1909, but the name "moving averages" was quickly adopted in 1912 [38]. Later works led to the development of '*exponential moving averages*' or EMAs which is referred to nowadays as Exponential smoothing methods [39]. MAs are very useful when decomposing a time series for advanced forecasting models because they smooth out irregular patterns in the time series data. This helps recognize trends easily. However, seasonality, random events and cyclical patterns may affect the accuracy of the forecasts. It is also important to notice that the more periods we use in the MA, the smoother the time series will be. Therefore, MAs might not be the best forecasting method to use. More

on moving averages in this article [23]. There are many kinds of MAs, depending on the number of data points included in the average. MAs can be simple or weighted.

Simple Moving Averages:

SMA is the simplest type of forecasting technique. Here, we are required an odd number of observations to be included in the average. Basically, the last 'n' period's values are added up and then that sum is divided by 'n'. The value obtained is referred to as moving average value and is used as the forecast for the next period.

Example: a 3-year MA \rightarrow m=3. m = number of observations in the average. The process is explained in *table 2.3.1*.

Years (t)	Variable (Y)	3-year Moving Totals	3-year Moving Averages
t_1	Y ₁	(nothing)	(nothing)
t_2	Y ₂	$Y_1 + Y_2 + Y_3$	$\frac{Y_1+Y_2+Y_3}{3} = a_1$
<i>t</i> ₃	Y ₃	$Y_2 + Y_3 + Y_4$	$\frac{Y1+Y2+Y3}{3} = a_2$
<i>t</i> 4	Y4		
<i>t</i> _{<i>n</i>-1}	Y _{n-1}	$Y_{n-2} + Y_{n-1} + Y_n$	$\frac{Y(n-2)+Y(n-1)+Y(n)}{3} = a_{n-2}$
t_n	Y _n	(nothing)	(nothing)

Table 2.3.1: Simple moving average process.

The variable *Y* represents the observed values and the variable a_i represents the forecast value for each period.

Centered Moving Averages

This is a MA with an even number of observations to be included in the average. The method is best described through examples. *Table 2.3.2* shows how a 4-year MA is calculated. The first average a_1 is calculated as follows:

$$a_1 = \frac{1}{4} \left(Y_1 + Y_2 + Y_3 + Y_4 \right)$$

and the second average a_2 as follows:

$$a_2 = \frac{1}{4} \left(Y_2 + Y_3 + Y_4 + Y_5 \right)$$

 a_1 and a_2 are further averaged to get a new value A_1 which is: $A_1 = \frac{1}{2}(a_1 + a_2)$

 A_1 is written against t_3 and this is referred to as centering the 4-year moving averages. This process continues until the end of the series.

Years (t)	Variable (Y)	4-year Moving Averages	4-year Moving Averages centered
t1	Y1	(nothing)	(nothing)
t ₂	Y ₂	$\frac{Y1+Y2+Y3+Y4}{4} = a_1$	(nothing)
t ₃	Y ₃	$\frac{Y2+Y3+Y4+Y5}{4} = a_2$	$\frac{a_{1+a_{2}}}{2} = A_{1}$
t4	Y4	$\frac{Y_3+Y_4+Y_5+Y_6}{4} = a_3$	$\frac{a2+a3}{2} = A_2$
t5	Y5		

 Table 2.3.2:
 Centered moving average process deconstructed.

Double Moving Averages

Any combination of MAs is referred to as a double moving averages or a Moving averages of another Moving averages. The previous example in the Centered MA equivalent to a 2*4MA smoother. $a_1, a_2,..., a_n$ represent the 4MA part, since they are simple averages of the variable Y over 4 periods. $A_1, A_2,..., A_n$ are simply averages of the a_n values over 2 periods. Thus the name 2*4 Moving Averages.

Weighted Moving Averages

Let us look at the previous example. In *Table 2.3.2*, the 2*4-year MA was calculated as follows: The first 4 values were averaged and a_1 was obtained as

$$a_1 = \frac{1}{4} \left(Y_1 + Y_2 + Y_3 + Y_4 \right) \tag{2.1}$$

then, 4 values were averaged again starting from the second observation Y_2 and a_2 was found to be:

$$a_2 = \frac{1}{4} \left(Y_2 + Y_3 + Y_4 + Y_5 \right) \tag{2.2}$$

Finally, in order to obtain 2 averages of the 4MAs, successive values of a_n were averaged as:

$$A_1 = \frac{1}{2} (a_1 + a_2)$$

If we replace a₁ and a₂ by their values, the following is obtained:

$$A_{1} = \frac{1}{2}(a_{1} + a_{2}) = \frac{1}{2}(\frac{Y_{1} + Y_{2} + Y_{3} + Y_{4}}{4} + \frac{Y_{2} + Y_{3} + Y_{4} + Y_{5}}{4}) = \frac{1}{8}(Y_{1} + 2Y_{2} + 2Y_{3} + 2Y_{4} + Y_{5})$$

$$A_{1} = \frac{1}{8}(Y_{1}) + \frac{1}{4}(Y_{2}) + \frac{1}{4}(Y_{3}) + \frac{1}{4}(Y_{4}) + \frac{1}{8}(Y_{5})$$
(2.3)

Eq. 1 is a weighted Moving Averages of order 5 (because 5 observations are taken into the average) with weights of $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$ and $\frac{1}{8}$ for the first, second, third, fourth and fifth terms respectively.

Moving averages have been applied in short-term load forecasting by Ariffin, Karim and Alwi [1].

2-3-1-2. Exponential Smoothing Methods

Smoothing means average (or averaging). With forecasting, the most recent observations provide the best guide as to the future. Exponential smoothing is a weighting algorithm/method that has decreasing weights as observations get older [1]. Unlike Moving Averages, all the values are included in the process. However, recent observations are given relatively more weight values than older ones. Exponential smoothing method is derrived from the moving averages principles. Historically, the method was developed by Holt and Brown. Both scientists worked independently and knew not of each other's works. During world war II, under the US navy, Brown designed a system for tracking submarines. He later on applied that technique to forecast the demand for spare parts and describes his ideas in his book on inventory control problems [39]. Holt worked independently for the Office of Naval Research and developed models for constant processes, processes with linear trends and for seasonal data [40]. 3 years later, in 1960, Peter R. Winters added seasonality to the double exponential smoothing [41]. This model became known as the Holt-Winters method. Exponential Smoothing methods are usually used to remove any randomness in a data. They are best used for short-term forecasting. When the data exhibits no trend nor seasonal pattern, the single exponential smoothing method can be applied to it.

Single Exponential Smoothing

The single exponential smoothing is expressed as follows:

$$F_{t+1} = \alpha^* Y_t + (1 - \alpha)^* F_t \tag{2.4}$$

where Y_t represents the observation (or observed value) at time t, F_t represents the recent forecast value and α is a weight (the *smoothing constant*). The value of α is always between [0, 1] and is usually chosen arbitrary, according to each case. It is subject to trial and error.

However, it requires only a few trials to figure out which value gives the minimum errors. Also, the first observed value is commonly used as the initial forecast value F_0 .

The general exponential smoothing method was applied in Christiaanse [3] for short term hourly MWH(megawatt per hour) load forecasting.

The SES or Simple Exponential Smoothing method does not perform well in long-term forecasting because it is very slow to catch up with sudden level changes in the data. In such cases, it would be best to use a double exponential smoothing method or Holt's (linear) exponential smoothing method.

Holt's Exponential Smoothing

In a SES, the forecast values fall behind when there is an increasing trend and when there is a decreasing trend, the forecast values exceed the observed ones. Holt's method takes care of these problems. To account for the trend component in the series, another *smoothing constant* is added in this method, that is β . β is the *trend* smoothing constant. Now, 3 equations are needed in order to make a forecast:

Level:
$$L_t = \alpha^* Y_t + (1 - \alpha)^* (L_{t-1} - b_{t-1})$$
 (2.5)

Trend component:
$$b_t = \beta^* (L_t - L_{t-1}) + (1 - \beta)^* b_{t-1}$$
 (2.6)

Forecast:
$$F_{t+1} = L_t + b_t$$
 (2.7)

Where α is the smoothing constant for stationary process, β is the the trend-smoothing constant and its value is also between 0 and 1.

 L_t is the smoothed constant and b_t is the (smoothed) trend value

As for the single exponential method, starting values for α , β , L_t and b_t must be selected in advance. The following is a way of doing so:

$$L_1 = Y_1$$
 and $b_1 = Y_2 - Y_1$ or $b_1 = (Y_4 - Y_1)/3$.

However, it is important to remember that all initializations are done arbitrary.

Note that when $\alpha = \beta$, Holt's method is referred to as 'Double Exponential Smoothing' [25].

When a series displays both a trend and a seasonal pattern, '*Holt-Winter*' method is best used in such cases.

Holt-Winter's Exponential Smoothing

To account for the seasonal component of the time series, another smoothing constant ' ϕ ' is added, just as in the previous method. This method has 2 variations, depending on the nature of the seasonal component [24]. If the seasonal variations are constant through the series, an *additive* method is preferred whereas a *multiplicative* method is chosen when the seasonal variations change proportionally to the level of the series.

Additive seasonality:

The following equations are used for:

Level:
$$L_t = \alpha^*(Y_t - S_{t-s}) + (1 - \alpha)^*(L_{t-1} + b_{t-1})$$
 (eq. 1)

Trend component: $b_t = \beta^* (L_t - L_{t-1}) + (1 - \beta)^* b_{t-1}$ (eq. 2)

Seasonal component:
$$S_t = \phi^*(Y_t - L_t) + (1 - \phi)^*S_{t-s}$$
 (eq. 3)

Forecast: $F_{t+m} = L_t + m^* b_t + S_{t-s+m}$ (eq. 4)

Where *s* is the length of the seasonality, that is the number of months or quarters in one season. The series is seasonally adjusted in the level equation (eq. 1) by substracting the seasonal component. The equation for the *trend component* (eq. 2) is the same as in Holt's linear method. Substractions are needed in order to initialize the seasonal indices. They work as follows:

$$S_1 = Y_1 - L_s$$
; $S_2 = Y_2 - L_s$;; $S_s = Y_s - L_s$ (2.8)

To initialize the level, the average of the *first* season is taken:

$$L_{s} = \frac{1}{s} \left(Y_{1} + Y_{2} + \dots + Y_{s} \right)$$
(2.9)

It is convenient to use 2 complete seasons when initializing the trend:

$$b_{s} = \frac{1}{s} \left(\frac{Y(s+1) - Y1}{s} + \frac{Y(s+2) - Y2}{s} + \dots + \frac{Y(s+s) - Ys}{s} \right)$$
(2.10)

Each of these elements is an estimate of the trend over one complete season.

Multiplicative seasonality:

The following equations are used:

Level:
$$L_{t} = \alpha^{*} \left[\frac{Y(t)}{S(t-s)} \right] + (1-\alpha)^{*} (L_{t-1} + b_{t-1})$$
 (2.11)

Trend component:
$$b_t = \beta^* (L_t - L_{t-1}) + (1 - \beta)^* b_{t-1}$$
 (2.12)

Seasonal component:
$$S_t = \phi^* \left[\frac{Y(t)}{L(t)} \right] + (1 - \phi)^* S_{t-s}$$
 (2.13)

Forecast:
$$F_{t+m} = (L_t + m^* b_t)^* S_{t-s+m}$$
 (2.14)

Note that in a *multiplicative seasonality*, to obtain the level, the series is divided by the seasonal component in order to remove the seasonal effects/patterns, whereas in an *additive model*, the seasonal component is substracted from the series.

The initialization process of the factors b_s and L_s is the same as in the additive model.

The seasonal indices are initialized by taking a ratio of the first data in the first season to the mean of the first year, that is:

$$S_1 = \frac{Y(1)}{L(s)}; S_2 = \frac{Y(2)}{L(s)}; \dots, S_s = \frac{Y(s)}{L(s)}$$
(2.15)

The parameter α , β and ϕ are chosen randomly.

Holt and Winter's Exponential Smoothing method was used by Bindiu and Chindriu [4] in a day-ahead load forecasting for a fittings manufacturer. More on this algorithm in the following [42].

2-3-1-3. Simple and Multiple Regressions

Regressions were first studied in depth in the 19th centuries by a scientist named Francis Galton. He was a self-taught statistician, astronomer, anthropologist and naturalist. Regression is a technique used to estimate the relationship between variables. The method is based on the idea that linear relationships are the simplest relationships that can be assumed between two (2) variables. He first presented the regression-line during a lecture in 1877. He later on laid down the principles of multiple regression and the correlation coefficient. However, he wasn't a great mathematician, so he couldn't develop a complete mathematical model which would capture his ideas. His work was later developed into a rigorous mathematical treatment by Karl Pearson under several publications [43]. There exists linear and non-linear regression models. However, since no non-linear model will be used in this study, only the linear ones will be discussed in the following.

Simple linear regression

Any regression of a single variable \mathbf{Y} (the forecast or dependant variable) on a single variable \mathbf{X} (the explanatory or independant variable or predictor) is referred to as Simple Regression. Basically, the variable Y is forecasted by assuming that it has a linear relationship with the variable X. The model is called 'simple' regression because it allows only one predictor variable, that is variable *X*. For example, *Y* could represent the sales of a product and *X* could be the time. The simple linear regression model is expressed as follows:

$$Y = a + b^* X + e \tag{2.16}$$

Where *a* is the intercept, *b* the slope of the line and *e* represent the error factor. *Eq. 1* is the equation of a line, thus the method is often referred to as '*fitting a line through the data*' as the data will be spread out above and below that line.

The *least squares method* [26] is used to estimate the parameters *a* and *b*. This method provides an effective way of choosing *a* and *b* by minimizing the sum of the *squared errors*, that is a and *b* are chosen to minimize

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Yi - \hat{Y}i)^2 = \sum_{i=1}^{n} (Yi - a - b * Xi)^2$$
(2.17)

Using some calculus, the values of a and b are obtained as follows:

$$b = \frac{\sum_{i=1}^{n} (Xi - \bar{X})(Yi - \bar{Y})}{\sum_{i=1}^{n} (Xi - \bar{X})^2} \quad \text{and} \quad a = \bar{Y} - b^* \bar{X}$$
(2.18)

where \overline{X} is the mean or average of the *X* observations and \overline{Y} is the mean of the *Y* observations. *Eq. 1* can therefore be rewritten as follows to forecast values for the next periods:

$$\hat{Y} = a + b^* X \tag{2.19}$$

The following page [27] gives further insights about linear regression models.

2-3-1-3-b. Multiple linear regression

In a multiple linear regression, there is one variable to be predicted (Sales for instance), but there are two or more predictors, assuming that the variable to be predicted has a linear relationship with all the predictors. The general form is as follows:

$$Y = b_0 + b_1 * X_1 + b_2 * X_2 + \dots + b_k * X_k + e$$
(2.20)

Estimating the coefficients b_k is done with the least squares method again as for the simple regression.

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Yi - \hat{Y}i)^2 =$$

$$\sum_{i=1}^{n} (Yi - b(0) - b(1) * X1 - b(2) * X2 - \dots - b(k) * X(k))^2$$
(2.21)

Estimating the values of the coefficients which minimize *eq. 2.21* is a lot harder in a multiple linear regression, thus a computer program would normally be used. More on the model in the following article [28].

2-3-1-4. Non-seasonal ARIMA models

ARIMA stands for Autoregressive (AR) Integrated (I) Moving Average (MA). ARIMA models are the most general class of models for time series forecasting. ARIMA methodologies were first introduced in 1970 by George Box and Gwilym Jenkins in their book [44]. There are seasonal and non-seasonal models[45][46]. The seasonal models are commonly noted ARIMA(p,d,q) and the non seasonal models ARIMA(p,d,q)(P,D,Q)m where m is the number of periods per season. The parameter p is the order of the non-seasonal autoregressive part, d is the degree of the non-seasonal first differencing (the number of times successive observations are differenced, needed for stationarity) involved and q is the order of the non-seasonal moving average part. P is the seasonal AR order, D the seasonal differencing and Q represents the seasonal MA order. Each of these 3 parts is an effort to make the final data stationary, that is the series will have no trend and its statistical properties are all constant over time. Only the non-seasonal models will be discussed in this study.

The term AR is a simple regression model of the previous values of the forecast variable, in other words time-lagged values of the forecast variable. It is denoted as follows:

$$Y_t = b_0 + b_1 * Y_{t-1} + b_2 * Y_{t-2} + \dots + b_p * Y_{t-p} + e_t$$
(2.22)

where e_t is the error term.

The "*I*" term is there to make the series stationary, if needed. If a series is non-stationary in the mean, differencing will usually take care of that irregularity whereas logarithmic and/or power transformations are used when a series is non-stationary in the variance.

The *MA* term does not mean a moving average of the observations, but rather one of the series errors.

$$Y_t = c_0 + c_1 * E_{t-1} + c_2 * E_{t-2} + \dots + c_p * E_{t-p} + e_t$$
(2.23)

An ARMA model would look like this:

$$Y_{t} = \mu + b_{1} * Y_{t-1} + b_{2} * Y_{t-2} + \dots + b_{p} * Y_{t-p} - c_{1} * E_{t-1} - c_{2} * E_{t-2} - \dots - c_{p} * E_{t-p}$$
(2.24)

By convention, the AR terms are positive (+) and the MA terms are negative (-).

In most cases, we don't really deal with values of p, d, q that are greater than 2, usually θ , 1 or 2. This small range can actually cover a tremendous range of practical forecasting situations. Computer softwares such as *Minitab* or '*IBM SPSS*' are used to facilitate working with this model. These programs either automatically generate values for the parameters p, d and q or let the user manually enter values and compare different results.

However, it is sometimes possible to determine the values of p and q through the ACF (autocorrelation function) plot and the PACF (partial auto-correlation function) plot. There are many rules to how to do so [29].

The ACF plot shows the relationship between y_t and y_{t-k} for different values of k for lag 1. If y_t and y_{t-1} are correlated, then y_{t-1} and y_{t-2} must also be correlated and therefore y_t and y_{t-2} should also be correlated through y_{t-1} rather than any new information which could be used in the process of forecasting y_t . The PACF is closely related to the ACF. The PACF plot shows the relationship between y_t and y_{t-k} but for lags 2, 3 and greater, which allows us to retrieve more information from the data. More on ACF and PACF in this article [30].

The following models are some of the special cases of the ARIMA model:

ARIMA(0,0,0)	a white noise
ARIMA(0,1,0) with no constant	a random walk
ARIMA(0,1,0) with a constant	a random walk with drift
ARIMA(<i>p</i> ,0,0)	an autoregression
ARIMA(0,0, <i>q</i>)	a moving average

ARIMA models follow a methodology which is detailed in the work of Box and Jenkins [5]. ARIMA and ARMA models were performed on a household electric consumption time series analysis by Chujai et al.[6] Abdel-Aal and Al-Garni used an ARIMA $(1, 1, 0)(1, 1, 0)_{12}$ model to forecast monthly electric

Abdel-Aal and Al-Garni used an ARIMA $(1, 1, 0)(1, 1, 0)_{12}$ model to forecast monthly electric consumption [7].

Note: For more information about any of the before mentioned algorithms, please refer to this book : "Forecasting methods and applications" [2].

2-3-2. Heuristic models

Forecasting is never perfect, that is there will always be some errors. The goal is to optimize the forecasts by minimizing the errors. In forecasting, there is not a single accepted method which works perfectly in every situation. This characteristic has encouraged many researchers and business practitioners to attempt to develop different forecasting algorithms and models, since the 1970s. Most of the developed techniques are case specific and often the result of the combination of different models, thus the name heuristics. The following described models are used with data sets with small sample sizes (less than 40). They are all non-linear. The data in this study has a size of 27, thus the reason for choosing such models.

2-3-2-1. Grey Model GM(1,1)

Grey system/theory is a non-traditional forecasting technique used in problems where there isn't enough information and the data is discrete. The "*grey*" in Grey theory means a mixture of *black* and *white* where *black* refers to a lack of information and *white* means complete information. The idea was introduced in the early 1980s by Deng [8]. The basic Grey prediction model is the GM(1,1), which is a time series forecasting model in the form of a differential equation. GM(1,1) does not require any prior knowledge to the system. It has the advantage that it can be used with as few as 4 observations [10]. Many variations of the model have been developed throughout the years: a Bayesian GM(1,1) was discussed in [47]; [47][48] discussed genetic algorithms associated with the grey model; the grey prediction with rolling mechanism was used in various studies [49][50]; a Grey-Markov model based on the Markov chains was also used in [51][52]; etc. These efforts are all attempts to improve the original GM(1,1). There are many steps to building a GM(1,1):

Step 1: the original data set, non negative historical sequence, is expressed as follows

$$x^{(0)} = \{x^{(0)}(k)\}, k = 1, 2, 3, ..., n$$
(2.25)

Step 2: a new sequence $x^{(1)}$ is created, by a one time accumulated generating operation (AGO) using the initial dataset $x^{(0)}$ in *step 1*. The AGO partially eliminates any fluctuation in the original discrete data

$$x^{(1)}(k) = \sum x^{(0)}(i), \, k = 1, 2, 3, ..., n$$
(2.26)

Then

$$x^{(1)} = \{ x^{(1)}(1), x^{(1)}(2), ..., x^{(1)}(k) \} = \{ \sum_{i=1}^{1} x^{(0)}(i), \sum_{i=1}^{2} x^{(0)}(i), ..., \sum_{i=1}^{n} x^{(0)}(i) \}$$

which is a first-order Accumulated Generating Operation series obtained from the initial data set $x^{(0)}$.

Step 3: the grey prediction model GM(1,1) is expressed by the following one-variable first order differential equation

$$\frac{dx^{(1)}}{dt} + a^* x^{(1)} = b \tag{2.27}$$

The whitening version of this equation is as follows

$$x^{(0)}(k) + az^{(1)}(k) = b (2.28)$$

where $z^{(1)}(k)$ is referred to as **background value** and is calculated through

$$z^{(1)}(k) = 0.5x^{(1)}(k) + 0.5x^{(1)}(k-1), \quad k = 2,3,..,n$$
(2.29)

 $z^{(1)}(k)$ is the mean generation of consecutive neighbors value of accumulating generator sequence.

The parameter *a* is referred to as the development coefficient and *b* as the grey input coefficient.

Step 4: the values of *a* and *b* are obtained by applying the least-squared method to *eq.* 4

Step 5: Through the use of '*Laplace*' [32] inversion transform, the solution to the differential equation (eq. 2.28) is as follows

$$\hat{x}^{(1)}(k) = [x^{(0)}(1) - \frac{b}{a}]^* e^{-a(k-1)} + \frac{b}{a}, \quad k = 1, 2, 3, \dots$$
(2.30)

This is called a time response sequence of the basic GM(1,1), it is a forecast result of the one time accumulated generating operation AGO.

Step 6: in order to retrieve the values used in the accumulation process prediction results in *step* 5, the one-time inverse accumulated generating operation (IAGO) is used and the following Grey model is obtained:

$$\hat{\mathbf{x}}o^{(0)}(k) = \hat{\mathbf{x}}o^{(0)}(k) - \hat{\mathbf{x}}o^{(0)}(k-1)$$

Then

$$\widehat{\mathbf{x}}_{0}^{(0)}(\mathbf{k}) = (\mathbf{x}^{(0)}(\mathbf{l}) - \frac{\mathbf{b}}{a})^{*}(\mathbf{l} - \mathbf{e}^{a})^{*}\mathbf{e}^{-a(\mathbf{k}-1)} \qquad \mathbf{k} = 1, 2, 3, \dots$$
(2.31)

Where $\hat{x}^{(0)}(1) = x^{(0)}(1)$.

This last equation (eq. 7) is the model which will be used to forecast for future periods.

It is important to note that GM(1,1) accepts only positive entries.

For more details, refer to these articles [9] [11] [12]. This method was applied in Turkey by Hamzacebi [69] in 2014.

2-3-2-2. Grey Prediction with Rolling Mechanism (GPRM)

GPRM is a variant of the original GM(1,1). Building a GPRM model is very similar to building a GM(1,1), all the steps are the same through 1 to 6. But, the GPRM adds one (1) extra step to those; recent observations are more likely to give better insight to the future, therefore including them in our model would give better forecast values. That is what GPRM tries to do. Setting up a GPRM can be summarized in 3 steps:

Step 1: here, we set up our model just like in GM(1,1) and forecast our first value

- Step 2: upon obtention of the first predicted value, the oldest data in the original data set $x^{(0)}$ (in step 1 of the GM(1,1)) is removed, that is $x^{(0)}{}_{(1)}$, and the predicted value is inserted at the end of the series. Then, a new GM(1,1) model is set up using the new data set $x^{(0)}$ and we forecast our second value.
- Step 3: the processes in step 2 are repeated for every new predicted value until we finish forecasting for a given period of time. This is the reason why the method is called 'rolling mechanism'.

GPRM was applied in Turkey by Akay and Atak for the electricity demand forecasting in 2007 in the following article [13]. This article [14] also contains an application of the method.

It is important to note that this model has a major downside. According to the principle of parsimony, the model is good since it has only 2 parameters. However, the process of repetition can be very exhausting, especially when forecasting for long periods. This makes it highly time consuming. This process could be eased down if there was a software implementation of the algorithm, but unfortunately up to date there are none. Another way around this issue would be to develop a piece of coding which could perform the repetition process for us. But again unfortunately, no codes were found during the course of this study.

2-3-2-3. Grey Model with Optimization of Background Value

It is important to notice that the prediction accuracy of GM(1,1) model is determined by the parameters a and b, and the values of a and b depend on the original data set and the background value, namely the $z^{(1)}(k)$ sequence. So, the prediction precision is directly affected by the equation of background value. At present, most people use the linear value insert method, that is :

$$z^{(1)}(k) = \alpha^* x^{(1)}(k-1) + (1+\alpha)^* x^{(1)}(k)$$
(2.32)

as the background value equation.

The method used in the above mentioned GM(1,1) model is the original mean value calculating formula:

$$z^{(1)}(k) = 0.5x^{(1)}(k) + 0.5x^{(1)}(k-1)$$
(2.33)

Figure 2.2: Area enclosed by $x^{(1)}(t)$ within [k-1,k] and the t axis.

However, it is possible to optimize this equation by calculating the area which is enclosed by $x^{(1)}(t)$ within [k-1,k] and the t axis instead of taking an average. This can be seen in *fig. 2.2*. The differential equation of the basic GM(1,1) (which is *eq. 2.27* in step 3 of the GM(1,1) model above) can be rewritten as follows:

$$\frac{dx^{(1)}}{dt} + a^* x^{(1)} = b \tag{2.34}$$

Within [k-1, k], that is

$$\int_{k-1}^{k} \frac{dx^{(1)}}{dt} dt + a^* \int_{k-1}^{k} x^{(1)} dt = b$$
(2.35)

The following equation is obtained:

$$x^{(1)}(k) - x^{(1)}(k-1) + a^* \int_{k-1}^k x^{(1)} dt = b$$
(2.36)

The parameters *a* and *b* estimated by using $\int_{k-1}^{k} x^{(1)} dt$ as background value are more adaptive to whitenization equation.

According to article [19], let's assume that $x^{(0)}(k) = g^* e^{a(k-1)}$ and $x^{(1)}(k) = G^* e^{a(k-1)} + C$,

$$z^{(1)}(k) = \int_{k-1}^{k} x^{(1)} dt = \int_{k-1}^{k} \left(G * e^{a(t-1)} + C \right) dt = \frac{1}{a} \left(G * e^{a(k-1)} - G * e^{a(k-2)} \right)$$

$$\frac{1}{a} \left(G * e^{a(k-1)} - G * e^{a(k-2)} \right) = \frac{1}{a} \left[x^{(1)}(k) - x^{(1)}(k-1) \right] + C$$

$$z^{(1)}(k) = \frac{1}{a} x^{(0)}(k) + C$$
(2.37)

Moreover, $\frac{x^{(0)}(k)}{x^{(0)}(k-1)} = \frac{g * e^{(k-1)}}{g * e^{(k-2)}} = e^a$, by applying a logarithm on both sides of the equation,

$$a = \ln x^{(0)}(k) - \ln x^{(0)}(k-1)$$
(2.38)

According to article [19] again, $C = -G^*e^{-a} = g^*(1 - e^a)^{-1}$;

For $x^{(0)}(k) = g^* e^{a(k-1)}$, $g = x^{(0)}(k)^* e^{-a(k-1)} = x^{(0)}(k)^* e^{a(1-k)}$ We know that:

$$e^{a} = \frac{x^{(0)}(k)}{x^{(0)}(k-1)}$$
; therefore $g = x^{(0)}(k) * [\frac{x^{(0)}(k)}{x^{(0)}(k-1)}]^{(1-k)}$

The value of *C* can be computed now:

$$C = g^* (1 - e^a)^{-1} = x^{(0)}(k)^* \left[\frac{x^{(0)}(k)}{x^{(0)}(k-1)} \right]^{(1-k)*} (1 - \left[\frac{x^{(0)}(k)}{x^{(0)}(k-1)} \right]^{-1}) = \frac{[x^{(0)}(k-1)]^k}{[x^{(0)}(k)]^{k-2} * [x^{(0)}(k-1) - x^{(0)}(k)]}$$

At last, putting the values of *a* and *C* in *eq 2.37*, the new background value formula $z^{(1)}(k)$ is:

$$z^{(l)}(k) = \frac{x(0)(k)}{\ln x^{(0)}(k) - \ln x^{(0)}(k-1)} + \frac{[x^{(0)}(k-1)]^k}{[x^{(0)}(k)]^{k-2} * [x^{(0)}(k-1) - x^{(0)}(k)]}$$
(2.39)

The parameter a is estimated by taking the average of the values obtained using eq 2.38. The parameter b is estimated by using the eq 2.28 in the GM(1,1) model, that is

$$x^{(0)}(k) + az^{(1)}(k) = b$$
 so $b = x^{(0)}(k) + az^{(1)}(k)$

with the new calculated value of *a* and the new background value $z^{(1)}(k)$:

$$b(k) = x^{(0)}(k) + a^{*}\left(\frac{x(0)(k)}{\ln x^{(0)}(k) - \ln x^{(0)}(k-1)} + \frac{[x^{(0)}(k-1)]^{k}}{[x^{(0)}(k)]^{k-2} \cdot [x^{(0)}(k-1) - x^{(0)}(k)]}\right)$$
(2.40)

for k = 2,3,..,n. The final value of parameter *b* is the average of the results obtained using (2.40). The values of a and b are then put in the grey prediction equation and prediction operations can be performed.

$$\widehat{\mathbf{x}}_{0}^{(0)}(k) = [\mathbf{x}^{(0)}(1) - \frac{b}{a}]^{*}(1 - e^{a})^{*}e^{-a(k-1)}$$
(2.41)

2-3-2-4. Grey_ARIMA model

This is a hybrid method based on a simple combination of the two models. Predictions are made using both algorithms separately; the errors for each method is calculated. By assigning weights to both algorithms according to their residuals (errors) and adding their results for respective values of k (k being the time), a new value is then obtained (forecast value), a value which is normally better. The model is as follows:

$$Hybrid(Grey_ARIMA) = \alpha^*GM(1,1) + \beta^*ARIMA(n, p, q)$$
(2.42)

Here, the terms GM(1,1) and ARIMA(n,p,q) represent their respective forecasts at different time values. α and β are parameters assigned to both methods according to the way their residuals corrolate with each other. Their values are between [0, 1]. Note that $\alpha + \beta = 1$. However, it isn't always easy to figure out something just through a study of corrolations. Sometimes, a few trials are needed in order to find the best values of those two parameters. Therefore, it is recommended to try different values of α and β to see which ones give minimum errors. A good example could be as follows:

$$Hybrid = 0.5*GM(1,1) + 0.5*ARIMA(n, p, q)$$

Here, 0.5 means that the residuals of the two models are mutually exclusive, that is when the error of one is positive, the error for the other one is negative, or when the value of one rises, the other one decreases. The predicted value for this model is the average of the results of both GM(1,1) and ARIMA for any given value of k.

This particular method has been implemented/used in the following article [15].

The study down here is divided into two parts: in *Section 2-4-1*, we will work with the *initial* 27 dataset and perform a series of forecasting excersise for 5 periods and get the errors. In *Section 2-4-2*, the same operations will be performed using the new dataset obtained through *bootstrapping* and the results obtained there will be compared with the ones of *Section 2-4-1* in *Section 3*.

2-4. Application of the methods

The followings are the applications of the previously mentioned methods. In *section 2-4-1*, the models are applied on the unemployment rates of Mali from (1990-2016), which is referred to as the initial dataset and *section 2-4-2* shows the application of those methods on the data obtained after bootstraping the initial dataset, which is referred to as '*Sample 10*'.

2-4-1. Forecasting with the initial dataset

Here, for every algorithm, the first **22** entries of the data will be used to set up our models, and the last **5** entries to test the model. The time series plot of the data is shown in *figure 2.3*. Looking at the graph, it can be seen that the data shows no trend or seasonal patterns. Therefore we can conclude that Moving avarages and Single exponential smoothing methods are suitable for this case.

The mean of the data is calculated as follows

$$\mu = \left(\sum_{i=1}^{22} Y_i\right) / n \tag{2.43}$$

with *Yi* being the observations at time *i* and *n* equals 22. It is found to be 8,309.

The standard deviation, which is a measure of how numbers are spread out over the mean, is expressed as follows

$$s = \sqrt{\frac{\sum_{i=1}^{n} (Yi - \bar{Y})^{2}}{n}}$$
(2.44)

with \overline{Y} being the mean of the sample and *n* equals 22 again. It is found to be 2,222. A low standard deviation indicates that the observations are not very distant from the mean whereas a high standard deviation indicates the opposite, that is, observations are quite far off from the mean.

The variance, similar and closely related to the variance, is expressed simply as the square of the standard deviation, as follows

$$v = s^{2} = \frac{\sum_{i=1}^{n} (Yi - \bar{Y})^{2}}{n}$$
(2.45)

It is found to be 4,937.

The *Pearson correlation coefficient* is used to determine the type of relationship between two

(2) variables. Its value can range between -1 and +1. A negative value indicates a negative correlation, that is if the value of one variable increases, the value of the second variable decreases, or vice versa. A positive value indicates a positive correlation, that is both variables decrease or increase together. The formula of the pearson correlation is expressed as follows :

$$r = \frac{n * \sum (x * y) - (\sum x) * (\sum y)}{\sqrt{[n * \sum x^2 - (\sum x)^2] * [n * \sum y^2 - (\sum y)^2]}}$$
(2.46)

where *x* represents the first variable which is the time in our case, and *y* represents the second variable which is the unemployment rates. The Pearson correlation coefficient of the *Year* and *Unemployment* is found to be 0.023, which is very low. This indicates that there is very little or no correlation between the time and the change of values for the unemployment. Therefore, a linear regression is not suitable for this data. Nonetheless, we will still use it, for the sake of comparison with other algorithms. Also no ARIMA model will be used in this section, that is because the size of the dataset is only 27 and as mentioned before, a minimum of 50 data are needed in order to be able to set up an ARIMA model.

Figure 2.3: Unemployment rates of Mali from World Data Atlas.

2-4-1-1. Simple Linear regression

The data consists of only two (2) variables, the time which is in year and the unemployment rates. Therefore a simple linear regression model is best suitable here. The first 22 entries of the data are inserted into *Minitab* and the method of simple linear regression is applied to them.

Again the methodology/algorithm is already implemented in Minitab. All the parameters are automatically estimated by the program. Similarly to *eq 2.16* in *Section 2-2-1-3-a*, the following linear regression equation is obtained:

Unemployment(%) = -79 + (0,0437 * year)

Using this equation, the next 5 years values are predicted as follows: Year 2012: Unemployment(%) = -79 + (0,0437 * 2012) = 8,9244; Year 2013: Unemployment(%) = -79 + (0,0437 * 2013) = 8,9681; Year 2014: Unemployment(%) = -79 + (0,0437 * 2014) = 9,0118; Year 2015: Unemployment(%) = -79 + (0,0437 * 2015) = 9,0555; Year 2016: Unemployment(%) = -79 + (0,0437 * 2016) = 9,0992;

These results are now compared with the observed ones and the MAE, MSE and RMSE are computed.

Year	2012	2013	2014	2015	2016
Observed value	6.9	7.3	8.2	8.1	8.1
Predicted value	8.9244	8.9681	9.0118	9.055	9.0992
Error (absolute)	2.0244	1.6681	0.8118	0.9555	0.9992
Error (square)	4.098195	2.782558	0.659019	0.91298	0.998401

Table 2.3.3: Error estimation for the simple linear regression.

The MAE is equal to 1.2918, the MSE is 1.89 and the RMSE is 1.37

2-4-1-2. Simple moving averages

As explained before, the more periods we use in a moving average, the worst our forecats will be. Therefore it is convenient to use a 3-period simple moving average here, that is, 3 observations will be included in each average. The following is the equation for that:

$$T_t = \frac{1}{3}(Y_{t-1} + Y_t + Y_{t+1})$$
, where $t = 1, 2, 3, 4, ..., n-1$

where Y is the observed value at time t.

The whole data set will be used here, that is all 27 entries will be needed.

For t = 1, the following is calculated:

$$T_1 = \frac{1}{3}(Y_0 + Y_1 + Y_2) = \frac{1}{3}(7 + 7, 2 + 7, 1) = \frac{1}{3}(Y_{1990} + Y_{1991} + Y_{1992}) = 7, 1.$$

This is the forecast value for the year 1991, not 1990.

For t = 2 (year 1992 now),

$$T_2 = \frac{1}{3}(Y_1 + Y_2 + Y_3) = \frac{1}{3}(Y_{1991} + Y_{1992} + Y_{1993}) = 8,83.$$

This operation is repeated over and over until the end of the data. The results obtained are shown in *table 2.3.4*.

Comparing those results with the observed ones, the errors are computed and the MAE, the MSE and the RMSE are found to be 0.8611, 1.4619 and 1.2 respectively.

Year 1991	T ₁₉₉₁	7.1	Year 2004	T ₂₀₀₄	7.63
Year 1992	T1992	8.83	Year 2005	T ₂₀₀₅	9.6
Year 1993	T ₁₉₉₃	10.4	Year 2006	T ₂₀₀₆	10.57
Year 1994	T1994	10.5	Year 2007	T ₂₀₀₇	10.9
Year 1995	T ₁₉₉₅	9.1	Year 2008	T ₂₀₀₈	10.57
Year 1996	T ₁₉₉₆	6.233	Year 2009	T ₂₀₀₉	9.1
Year 1997	T ₁₉₉₇	6.233	Year 2010	T ₂₀₁₀	7.87
Year 1998	T ₁₉₉₈	6.67	Year 2011	T ₂₀₁₁	7.03
Year 1999	T1999	8.2	Year 2012	T ₂₀₁₂	7.03
Year 2000	T ₂₀₀₀	8.266	Year 2013	T ₂₀₁₃	7.47
Year 2001	T ₂₀₀₁	7.6	Year 2014	T ₂₀₁₄	7.87
Year 2002	T ₂₀₀₂	6.466	Year 2015	T ₂₀₁₅	8.13
Year 2003	T ₂₀₀₃	6.87			

Table 2.3.4: Simple Moving average results.

2-4-1-3. Single exponential smoothing

The time series plot of the data (displayed in *fig. 2.3*) shows no sign of any trend nor seasonality. Therefore, a single exponential smoothing model is suitable for this data. The general equation for a single exponential smoothing, as seen in *section 2-3-1-2-a*, is as follows:

$$F_{t+1} = F_t + \alpha^* (Y_t - F_t)$$

where Y_t was the observed value at time *t* and F_{t+1} the predicted value. It is commonly assumed that the initial value F_0 is the first observed value (first entry in the table). For this case, the

α values	0.2		0.5	0.7	0.9
	F_{t+1}		F_{t+1}	F_{t+1}	F_{t+1}
t=0	7	F_1	7	7	7
t=1	7.04	F_2	7.1	7.14	7.18
t=2	7.072	F ₃	7.1	7.112	7.108
t=3	8.0976	F_4	9.65	10.6736	11.6908
t=4	8.85808	F_5	10.775	11.53208	11.87908
t=5	8.566464	F ₆	9.0875	8.639624	7.847908
t=6	8.453171	F ₇	8.54375	8.191887	7.984791
t=7	7.422537	F ₈	5.921875	4.767566	3.768479
t=8	7.41803	F 9	6.6609375	6.61027	7.036848
t=9	7.794424	F ₁₀	7.9804688	8.493081	9.073685
t=10	7.815539	F ₁₁	7.9402344	8.077924	8.017368
t=11	7.772431	F ₁₂	7.7701172	7.743377	7.641737
t=12	7.677945	F ₁₃	7.5350586	7.433013	7.334174
t=13	7.042356	<i>F</i> ₁₄	6.0175293	5.379904	4.783417
t=14	7.393885	F ₁₅	7.4087646	7.773971	8.398342
t=15	7.835108	F ₁₆	8.5043823	9.052191	9.479834
t=16	8.348086	F ₁₇	9.4521912	9.995657	10.30798
t=17	9.018469	F ₁₈	10.576096	11.1887	11.5608
t=18	9.334775	F 19	10.588048	10.77661	10.69608
t=19	9.34782	F ₂₀	9.9940239	9.812983	9.529608
t=20	8.938256	F ₂₁	8.6470119	8.053895	7.522961
t=21	8.530605	F ₂₂	7.773506	7.246168	6.962296
t=22	8.204484	F ₂₃	7.336753	7.003851	6.90623
t=23	8.023587	F ₂₄	7.3183765	7.211155	7.260623
t=24	8.05887	F ₂₅	7.7591882	7.903347	8.106062
t=25	8.067096	F ₂₆	7.9295941	8.041004	8.100606
t=26	8.073677	F ₂₇	8.0147971	8.082301	8.100061

Table: 2.3.5: Results of the single exponential smoothing method.

values 0.2, 0.5, 0.7 and 0.9 have been used for the parameter α . *Table 2.3.5* shows the results for every case (the calculations have been done in Microsoft Excel).

The error for each case is as follows:

For $\alpha = 0.2$, the MAE = 1.203 and MSE = 2.935

For $\alpha = 0.5$, the MAE = 0.784 and MSE = 1.152

For $\alpha = 0.7$, the MAE = 0.464 and MSE = 0.410

For $\alpha = 0.9$, the MAE = 0.146 and MSE = 0.046

The value of $\alpha = 0.9$ yields the minimum MAE and MSE, therefore that value of α is the most appropriate for this case. Its RMSE value is 0.214

2-4-1-4. Original GM(1,1)

As explained in *section 2-3-2-1*, there are 6 steps to building a grey differential equation or model. The first 22 entries of the data set will be used ,through step 1 to 6, to set up the model.

Step 1: the initial series $X^{(0)}$ is equal to the first 22 entries, that is $X^{(0)}(k) = \{7, 7.2, 7.1, 12.2, ..., 9.4, 7.3, 6.9\}$.

Step 2: the new series $X^{(1)}$ is generated using $X^{(0)}$ in *eq.* 2.26 of section 2-2-2-1. $X^{(1)}(k) = \{7, 14.2, 21.3, 33.5, 45.4, 52.8, 60.8, 64.1, 71.5, 80.8, 88.7, 96.3, 103.6, 108.1, 116.9, 126.5, 136.9, 148.6, 159.2, 168.6, 175.9, 182.8\}$

Step 3-4: the following equation (eq. 2.28) represents the basic GM(1,1)

$$X^{(0)}(k) + a^*Z^{(1)}(k) = b$$
 \rightarrow $X^{(0)}(k) = b - a^*Z^{(1)}(k).$

This equation must be solved in oder to estimate the best values for a and b, for the values of k starting from 2 to n. We can do so by applying the OLS technique and and with the help of matrice calculations. However, it is possible to make this task a bit easier. Instead of using matrices, some transformations will be introduced here.

Let's name 3 variables X, Y and A such that

$$X = Z^{(1)}(k)$$
, $Y = X^{(0)}(k)$ and $A = -a$

By substituting these variables into the previous equation, we obtain the fitted equation:

$$Y = b + A * X$$

For each observed response Y_i , with a corresponding predictor X_i , we obtain a fitted value

$$\hat{Y}_i = b + A * X_i$$

We would like to minimize the sum of squares error, that is minimize the squared distances between each observed value to its fitted/predicted value.

$$SSE = \sum (Yi - \hat{Y}i)^2 = \sum (Yi - (b + A^*Xi))^2$$
 for $i = 1,...,n$

A little bit of calculus is introduced in order to solve for this .

•
$$SS_{xx} = \sum (x_i - \bar{x})^2 = \sum (x_i)^2 - [(\sum x_i)^2]/n$$

• $SS_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum (x_iy_i) - [(\sum x_i)^* (\sum y_i)]/n$
• $SS_{yy} = \sum (y_i - \bar{y})^2 = \sum (y_i)^2 - [(\sum y_i)^2]/n$
• $A = SS_{xy} / SS_{xx}$
• $b = [(\sum y_i)/n] - A^*[(\sum x_i)/n]$

 \bar{x} and \bar{y} represent the averages for the values of x_i and y_i that are included in the calculations.

$$\bar{x} = [\sum x_i]/n$$
 and $\bar{y} = [\sum y_i]/n$

All the calculations are performed in Excel. Table 2.3.6 summarizes them.

The following results are obtained:

$$\begin{split} &\sum(x_i) = 1968.6 & \sum(x_i)^2 = 237174.7 \\ &\sum(y_i) = 175.8 & \sum(y_i)^2 = 1573.58 \\ &\sum(x_i^*y_i) = 16683.42 \end{split}$$

The values of SS_{xx} , SS_{xy} , *A* and *b* can now be easily computed:

 $SS_{xx} = 237174.7 - [(1968.6)^{2}]/21 = 52632.5$ $SS_{xy} = 16683.42 - [1968.6*175.8]/21 = 203.42$ $A = SS_{xy} / SS_{xx} = 203.42 / 52632.5 = 0.00386$ b = [175.8 / 21] - 0.00386*[1968.6 / 21] = 8.009

We said earlier that A = -a, which means that a = -A. Therefore a = -0.00386. The estimate values of **a** and **b** are -0.00386 and 8.009 respectively.

Step 6: the values of a and b are put into the Grey model and the following equation is obtained

$$\hat{x}_0^{(0)}(k) = [x^{(0)}(1) - \frac{b}{a}]^*(1 - e^a)^*e^{-a(k-1)} = [x^{(0)}(1) + \frac{8.009}{0.00386}]^*(1 - e^{-0.00386})^*e^{0.00386(k-1)}$$

with the initial value of $x^{(0)}_{(1)} = 7$.

The values for the next 5 years can now be predicted.

for k = 23,
$$\hat{x}_0^{(0)}(23) = [7 + 2074.87]^*(1 - e^{-0.00386})^*e^{0.00386(23-1)} = 8.72$$

for k = 24, $\hat{x}_0^{(0)}(24) = [7 + 2074.87]^*(1 - e^{-0.00386})^*e^{0.00386(24-1)} = 8.75$
for k = 25, $\hat{x}_0^{(0)}(25) = [7 + 2074.87]^*(1 - e^{-0.00386})^*e^{0.00386(25-1)} = 8.79$
for k = 26, $\hat{x}_0^{(0)}(26) = [7 + 2074.87]^*(1 - e^{-0.00386})^*e^{0.00386(26-1)} = 8.82$
for k = 27, $\hat{x}_0^{(0)}(27) = [7 + 2074.87]^*(1 - e^{-0.00386})^*e^{0.00386(27-1)} = 8.86$

The MAE, MSE and RMSE are calculated and their values are 1.068, 1.3718 and 1.17 respectively.

k	x ⁽⁰⁾	x ⁽¹⁾ (k)	$x^{(1)}(k-1)$	Z ⁽¹⁾ (k)	Y	X	Xsquare	X*Y	Ysquare
1	7	7			7				
2	7.2	14.2	7	10.6	7.2	10.6	112.36	76.32	51.84
3	7.1	21.3	14.2	17.75	7.1	17.75	315.0625	126.025	50.41
4	12.2	33.5	21.3	27.4	12.2	27.4	750.76	334.28	148.84
5	11.9	45.4	33.5	39.45	11.9	39.45	1556.303	469.455	141.61
6	7.4	52.8	45.4	49.1	7.4	49.1	2410.81	363.34	54.76
7	8	60.8	52.8	56.8	8	56.8	3226.24	454.4	64
8	3.3	64.1	60.8	62.45	3.3	62.45	3900.003	206.085	10.89
9	7.4	71.5	64.1	67.8	7.4	67.8	4596.84	501.72	54.76
10	9.3	80.8	71.5	76.15	9.3	76.15	5798.823	708.195	86.49
11	7.9	88.7	80.8	84.75	7.9	84.75	7182.563	669.525	62.41
12	7.6	96.3	88.7	92.5	7.6	92.5	8556.25	703	57.76
13	7.3	103.6	96.3	99.95	7.3	99.95	9990.003	729.635	53.29
14	4.5	108.1	103.6	105.85	4.5	105.85	11204.22	476.325	20.25
15	8.8	116.9	108.1	112.5	8.8	112.5	12656.25	990	77.44
16	9.6	126.5	116.9	121.7	9.6	121.7	14810.89	1168.32	92.16
17	10.4	136.9	126.5	131.7	10.4	131.7	17344.89	1369.68	108.16
18	11.7	148.6	136.9	142.75	11.7	142.75	20377.56	1670.175	136.89
19	10.6	159.2	148.6	153.9	10.6	153.9	23685.21	1631.34	112.36
20	9.4	168.6	159.2	163.9	9.4	163.9	26863.21	1540.66	88.36
21	7.3	175.9	168.6	172.25	7.3	172.25	29670.06	1257.425	53.29
22	6.9	182.8	175.9	179.35	6.9	179.35	32166.42	1237.515	47.61

Table 2.3.6: Summary of the calculations performed in Excel.

2-4-1-5. Grey prediction with rolling mechanism

Since predictions for five (5) periods need to be made, five (5) different GM(1,1) models will be needed. The process of setting up one Grey model is already a bit tiring, setting up five (5) comes with much more difficulties. However, for simplicity, only the results will be shown down here, that is the final equations and the predicted values. The first step of the method is the combination of all the steps/work in a basic GM(1,1). Therefore, the final equation obtained in the above section (*section 2-4-1-d*) will be used in the first step.

Step 1: the first model is as follows

$$\hat{x}o^{(0)}(k) = [x^{(0)}(1) + \frac{8.009}{0.00386}]^*(1 - e^{-0.00386})^*e^{0.00386(k-1)}$$

with $x^{(0)}(1) = 7$.

For k = 23, the predicted value is $\hat{\mathbf{x}}_0^{(0)}(23) = 8,72$.

The first data $x^{(0)}(1) = 7$ is removed and 8,72 is the new entry added to our data.

Step 2: the new value of $x^{(0)}(1)$ is the second element of the initial series $X^{(0)}$, that is

$$x^{(0)}_{(1)new} = x^{(0)}_{(2)} = 7,2.$$

Also as mentioned before, 8.72 is added to the end of the data. The new model is generated using the new data.

Step 3: the new model is

$$\hat{x}_0^{(0)}(k) = [x^{(0)}(1) + \frac{8.21}{0.00237}]^*(1 - e^{-0.00237})^*e^{0.00237(k-1)} \qquad \text{with } x^{(0)}_{(1)} = 7,2$$

For k = 24, the following value is obtained: $x^{(0)}_{(24)} = 8,67$. This new value is added to the series/data and $x^{(0)}_{(1)} = 7,2$ is removed. Now

$$x^{(0)}_{(1)new} = x^{(0)}_{(3)} = 7.1$$

of the initial data series used in step 1. Another model is generated again.

Step 4: the new model is as follows

$$\hat{x}_0^{(0)}(k) = [x^{(0)}(1) + \frac{8.47}{0.00057}]^*(1 - e^{-0.00057})^*e^{0.00057(k-1)} \quad \text{with } \mathbf{x}^{(0)}_{(1)} = 7, 1.$$

For k = 25, the following is obtained $:x^{(0)}_{(25)} = 8,59$. Again this value is added, $x^{(0)}_{(1)} = 7,1$ is removed from the data and

$$x^{(0)}_{(1)new} = x^{(0)}_{(4)} = 12,2$$

from the original data and another model is generated.

Step 5: the new model is as follows

$$\hat{x}o^{(0)}(k) = [x^{(0)}(1) + \frac{7.68}{0.0068}]^*(1 - e^{-0.068})^*e^{0.068(k-1)} \qquad \text{with } x^{(0)}(1) = 12, 2.$$

For k = 26, the predicted value is: $x^{(0)}_{(26)} = 9.17$. Now, the last model is generated with $x^{(0)}_{(1)new} = x^{(0)}_{(5)} = 11,9$.

Step 6: the last model is as follows

$$\hat{x}o^{(0)}(k) = [x^{(0)}(1) + \frac{6.63}{0.0186}]^*(1 - e^{-0.0186})^*e^{0.0186(k-1)}$$
 and $x^{(0)}(1) = 11,9.$

For k = 27, the prediction for the last period is: $x^{(0)}_{(27)} = 11,01$. In summary, the forecast values for period 23 to 27 are:

$$\begin{split} k &= 23, \, \hat{x}_0{}^{(0)}(23) = 8,72 & k = 26, \, \hat{x}_0{}^{(0)}(26) = 9,17 \\ k &= 24, \, \hat{x}_0{}^{(0)}(24) = 8,67 & k = 27, \, \hat{x}_0{}^{(0)}(27) = 11,01 \\ k &= 25, \, \hat{x}_0{}^{(0)}(25) = 8,59 \end{split}$$

The errors for the last five periods are 1.512, 2.99 and 1.729 for the MAE, the MSE and the RMSE respectively.

2-4-1-6. Grey model with Optimization of Background Value

The first thing to do is to estimate the value of parameter a using eq. 2.38 of section 2-3-2-3

$$a(k) = \ln x^{(0)}(k) - \ln x^{(0)}(k-1)$$

For every value of k = 2,3,...,22 a new value of *a* is obtained and at the end, those values are averaged to obtain the final value of $\mathbf{a} = \frac{\sum a(k)}{21} = -0,0003$. *Table 2.3.7* displays the numerical calculations for the parameter *a*.

K value	Ln x ⁽⁰⁾ (k)	Ln x ⁽⁰⁾ (k-1)	a(k)				
1		0.84509804		14	0.653212514	0.653212514	-0.21011
2	0.857332496	0.857332496	0.0122345	15	0.944482672	0.944482672	0.2912702
3	0.851258349	0.851258349	-0.006074	16	0.982271233	0.982271233	0.0377886
4	1.086359831	1.086359831	0.2351015	17	1.017033339	1.017033339	0.0347621
5	1.075546961	1.075546961	-0.010813	18	1.068185862	1.068185862	0.0511525
6	0.86923172	0.86923172	-0.206315	19	1.025305865	1.025305865	-0.04288
7	0.903089987	0.903089987	0.0338583	20	0.973127854	0.973127854	-0.052178
8	0.51851394	0.51851394	-0.384576	21	0.86332286	0.86332286	-0.109805
9	0.86923172	0.86923172	0.3507178	22	0.838849091		-0.024474
10	0.968482949	0.968482949	0.0992512				
11	0.897627091	0.897627091	-0.070856				
12	0.880813592	0.880813592	-0.016813				
13	0.86332286	0.86332286	-0.017491				

 Table 2.3.7:
 Microsoft Excel results for parameter a.

Next, the background value needs to be estimated for every value of k between [2, 22] using eq. 2.39 of the method. The right-hand side of the equation is divided in 2 parts to make the calculations in Excel easier, thus the reason for introducing the parameters J and F.

$$z^{(l)}(k) = \frac{x^{(0)}(k)}{\ln x^{(0)}(k) - \ln x^{(0)}(k-1)} + \frac{[x^{(0)}(k-1)]^k}{[x^{(0)}(k)]^{k-2} * [x^{(0)}(k-1) - x^{(0)}(k)]} = J + F$$

Table 2.3.8 shows the numerical results of the background value $z^{(1)}(k)$ for k = 2,3,...,22 After that, the parameter *b* needs to be estimated in its turn, for every single value of $z^{(1)}(k)$, using *eq. 40* of the method (*section 2-2-2-3*).

$$b(k) = x^{(0)}(k) + a^* z^{(1)}(k)$$
 for $a = -0,0003$

which is the value calculated above and k = 2,3,...,22. The final estimate of *b* is the average of all the *b*(*k*) which is found to be $\mathbf{b} = \frac{\sum b(k)}{21} = 8,1489$.

Finally, the values of *a* and *b* are put into *eq. 2.41* of *section 2-2-2-3* and the following Grey prediction model is obtained:

$$\hat{x}o^{(0)}(k) = [x^{(0)}(1) - \frac{b}{a}]^*(1 - e^a)^*e^{-a(k-1)} = [7 + \frac{8,1489}{0,0003}]^*(1 - e^{-0,0003})^*e^{0,0003(k-1)}$$

Now, the values of year 2012 to 2016 can be predicted through *k* values of 23, 24, 25, 26 and 27 respectively. They are:

Year 2012: $k = 23 \rightarrow \hat{x}^0(23) = 8,203$ Year 2013: $k = 24 \rightarrow \hat{x}^0(24) = 8,206$ Year 2014: $k = 25 \rightarrow \hat{x}^0(25) = 8,208$ Year 2015: $k = 26 \rightarrow \hat{x}^0(26) = 8,211$ Year 2016: $k = 27 \rightarrow \hat{x}^0(27) = 8,213$

Finally, the MAE, the MSE and the RMSE are computed and their values are 0.4882, 0.5087 and 0.71 respectively.

J	$[x^{(0)}(k-1)]^k$	$[\mathbf{x}^{(0)}(\mathbf{k})]^{k-2}$	$x^{(0)}(k-1) - x^{(0)}(k)$	F	Z ⁽¹⁾ (k)
500 5040	10			2.45	242 5040
588.5018	49	1	-0.2	-245	343.5018
-1168.89	373.248	7.1	0.1	525.7014	-643.187
51.89248	2541.1681	148.84	-5.1	-3.34768	48.54481
-1100.54	270270.8163	1685.159	0.3	534.6099	-565.931
-35.8674	2839760.855	2998.6576	4.5	210.4468	174.5794
236.2791	1215128.027	32768	-0.6	-61.8046	174.4745
-8.58088	16777216	1291.46797	4.7	2764.002	2755.421
21.09959	46411.4844	1215128.03	-4.1	-0.00932	21.09027
93.70161	492399039.7	55958181	-1.9	-4.63127	89.07034
-111.494	45010354568	119851596	1.4	268.2505	156.7566
-452.018	59091511032	642888893	0.3	306.3853	-145.632
-417.364	2.82213E+11	3137266856	0.3	299.85	-117.514
-21.4173	1.22045E+12	68952523.6	2.8	6321.379	6299.962
30.2125	6283298709	1.8979E+12	-4.3	-0.00077	30.21173
254.0451	1.29337E+15	5.6467E+13	-0.8	-28.6309	225.4142
299.1763	4.99587E+16	1.8009E+15	-0.8	-34.6754	264.501
228.7277	2.02582E+18	1.233E+17	-1.3	-12.6381	216.0896
-247.202	1.97484E+20	2.6928E+17	1.1	666.7131	419.5116
-180.153	3.20714E+20	3.2832E+17	1.2	814.0193	633.8668
-66.4815	2.727E+20	2.5301E+16	2.1	5132.528	5066.046
-281.935	9.84244E+18	5.9839E+16	0.4	411.2076	129.2731

Table 2.3.8: Microsoft Excel results for the background value $z^{(1)}(k)$.

2-4-2) Forecasting with the bootstrap dataset

As explained before, a set with the sample size of 108 will be generated from the initial data set. *Minitab* is used for this purpose. In order to find a bootstrap data set which ressembles the most to the initial data set, *10* bootstrap data sets (Sample 1 through 10) were created and the one with the closest *mean* and *standard deviation* to the original/initial data set's was chosen. The following table displays the statistics for each bootstrap data set:

Variables	Mean	StDev
Unemployment	8,200	2,024
Sample 1	8,330	2,043
Sample 2	7,959	1,601
Sample 3	8,106	2,213
Sample 4	8,327	1,985
Sample 5	8,228	2,188
Sample 6	8,358	1,918
Sample 7	8,424	1,946
Sample 8	8,441	2,078
Sample 9	7,905	1,877
Sample 10	8,192	1,941
-		

Table 2.3.9: Descriptive statistics of the 10 bootstrap data sets.

Unemployment represents the original set. As it can be seen, it is a bit difficult to pick a *sample* according to both statistics. However, "*Sample 10*" has a mean which is the closest to the one of the unemployment set and its standard deviation is very close to it too. Therefore, it is chosen as the data set which will be used in this part of the thesis. Note that it has a sample size of 108. "*Sample 10*" is divided into multiple *quartiles*, that is, every year has 4 quartiles, therefore for example the first 4 entries represent the values of quartile 1, quartile 2, quartile 3 and quartile 4 of year 1990. The next 4 entries are the values of the first, second, third and fourth quartile of 1991 (an so on and so forth). The last 4 entries are the values of quartile 1 through 4 of year 2016. *Fig. 2.3.2* shows the time series plot of the data from time t = 1, which represents the first quartile of year 1990, to time t = 108, which is quartile 4 of year 2016. The table of *Sample 10* will be used to set up each model, and the remaining **20** entries will be used to test each one of them and get the errors. Since the results here will be compared with the one obtained from the initial data set (of 27 entries), it is therefore logical to predict for 5 periods with the next algorithms as well. And also since we've assumed that every year in '*Sample 10*' has 4

quartiles, 4*5 = 20 quartiles for the last 5 years. The last 20 entries therefore represent the values of the years 2012, 2013, 2014, 2015 and 2016 respectively.

Figure 2.4: Time series plot of 'Sample 10'.

2-4-2-1. Simple Linear regression

The data of '*Sample 10*' consists of only two (2) variables again, the time which is in year and the unemployment rates. Therefore a simple linear regression model is chosen to be suitable. The first 88 entries of the data are inserted into *Minitab* and the method of simple linear regression is applied to them. All the parameters are automatically estimated by the program. Similarly to *eq. 2.16* in *Section 2-2-1-3-a*, the following linear regression equation is obtained:

unemployment = 8.21 - (0,00224 * t)

Using this equation, the next 20 periods will be forecasted. Again, every period represent a quartile of a year, and therefore to get the yearly rate, we would simply average 4 periods at a time. For

t = 89: Unemployment = 8.21 - (0,00224 * 89) = 8.010

t = 90: Unemployment = 8.21 - (0,00224 * 90) = 8.008

t = 91: Unemployment = 8.21 - (0,00224 * 91) = 8.006

t = 92: Unemployment = 8.21 - (0,00224 * 92) = 8.003

These 4 values represent quartile 1, quartile 2, quartile 3 and quartile 4 values of year 2012. This process is carried on until the last 4 elements, being the different quartiles of year 2016 are forecasted.

t = 105: Unemployment = 8.21 - (0,00224 * 105) = 7.974t = 106: Unemployment = 8.21 - (0,00224 * 106) = 7.972t = 107: Unemployment = 8.21 - (0,00224 * 107) = 7.970t = 108: Unemployment = 8.21 - (0,00224 * 108) = 7.968

These results are now compared with the observed ones and the MAE, MSE and RMSE are calculated just as in *section 2-4-1-a*. They are found to be 0.99, 1.82 and 1.35 respectively.

2-4-2-2. Simple moving averages

As explained before in *section 2-3-1-1*, the more periods we use in a moving average, the worst our forecats will be. Therefore it is convenient to use a 3-period simple moving average here as well. The following is the equation for that:

$$T_t = \frac{1}{3}(Y_{t-1} + Y_t + Y_{t+1})$$
, where $t = 1, 2, 3, 4, ..., n-1$

where *Y* is the observed value at time *t* and n = 108.

The whole data set is used here, that is all 108 entries will be needed. The numerical calculations are the same as in the previous example in *section 2-4-1-b* and are performed in Excel. The file is attached in the appendices as *Appendix 1*. It also contains '*Sample 10*'.

The results obtained are compared with the observed values, the errors are computed and the MAE, the MSE and RMSE are found to be equal to 1.29, 2.83 and 1.68 respectively.

2-4-2-3. Single exponential smoothing

Fig. 2.4 shows no sign of any trend nor seasonality. Therefore, a single exponential smoothing model is suitable for this data. The general equation for a single exponential smoothing, as seen in *section 2-3-1-2-a*, is as follows:

$$F_{t+1} = F_t + \alpha^* (Y_t - F_t)$$

where Y_t was the observed value at time t (t goes from 0 to 107) and F_{t+1} the predicted value. It is commonly assumed that the initial value F_0 is the first observed value (first entry in the table). The values 0.2, 0.5, 0.7 and 0.9 have been used again for the parameter α . The calculations (predictions) have been performed using Microsoft Excel and the resulting file is attached in the appendices as *Appendix 2*. The error for each value of α is as follows:

For $\alpha = 0.2$, the MAE = 1.195 and MSE = 2.839

For $\alpha = 0.5$, the MAE = 0.831 and MSE = 1.296

For $\alpha = 0.7$, the MAE = 0.539 and MSE = 0.540

For $\alpha = 0.9$, the MAE = 0.194 and MSE = 0.072

The value of $\alpha = 0.9$ yields the minimum MAE and MSE, therefore that value of α is the most appropriate for this case. The resulting RMSE is equal to 0.268

2-4-2-4. ARIMA model

Looking at *Fig. 2.4*, we can see that the series seems to be constant in the mean. Therefore it can be assumed that it is in a state of stationarity. No differencing is needed here. Also, the graphs of the ACF(auto correlation function) and PACF(partial auto correlation function) support that deduction (see *Fig. 2.5* and *Fig. 2.6*).

Moreover, it is known that an ACF that dies out gradually and a PACF that cuts off sharply after a few lags show the presence of an AR term in a series. *Fig. 2.5* shows the example of an AR(1). On the other hand, an ACF that cuts off (usually negative at lag 1) sharply after a few lags and a PACF that dies out gradually show the presence of a MA term in a series. Fig. 2.6 shows the case for a MA(1).

Figure 2.5: an AR(1) signature.

Figure 2.6: a MA(1) signature.

Fig. 2.7 and *Fig.* 2.8 don't display any sign of such characteristics, therefore it can be concluded that there are no AR and MA terms in *Sample 10*. In addition, the observations on those repesctive graphs seem to be under the control limits. This is the characteristic of a '*White noise*' series, referred to as ARIMA(0,0,0). By definition, if a series is white noise, it cannot be forecasted, at least not with the ARIMA methodology, because its values at different times are statistically independent. It is therefore meaningless to attempt to forecast this data. The following equation is the representation of a white noise model

$$Y_t = C + e_t$$
 for t = 1, 2, ..., n

The variable *c* is a constant; it represents the level of the series, in other terms, its mean. e_t is the error term, from t = 1 to t = n, and is uncorrelated from period to period.

Figure 2.7: ACF graph of 'Sample 10'.

Figure 2.8: PACF graph of 'Sample 10'.

2-4-2-5. Original GM(1,1)

The process here will be the same as in the example in 'section 2-4-1-d', but with the data of 'Sample 10'. The first 88 entries of the data set will be used to set up the model.

Step 1: the initial series $X^{(0)}$ is equal to the first 88 entries, that is $X^{(0)}(k) = \{10.6, 4.5, 7.3, 7.6, ..., 8.8, 12.2\}$.

Step 2: the new series $X^{(1)}$ is generated using the series $X^{(0)}$ in *eq.* 2.26 of section 2-2-2-1. $X^{(1)}(k) = \{10.6, 15.1, 22.4, 30, 37, ..., 701.5, 713.7\}$

Step 3-4: as given before, the following equation represents the basic GM(1,1)

$$X^{(0)}(k) + a^* Z^{(1)}(k) = b$$
 \Rightarrow $X^{(0)}(k) = b - a^* Z^{(1)}(k)$

The parameters *a* and *b* need to be estimated using this equation, for the values of *k* between 2 and *n* (*n* being equal to 88 - 1 = 87, because the first observation will not be included in the final calculations). OLS technique with some transformations is applied again in order to do so. We name variable *X*, variable *Y* and variable *A* again such that

$$X = Z^{(1)}(k)$$
, $Y = X^{(0)}(k)$ and $A = -a$

By substituting these variables into the basic GM(1,1) equation, the following equation is obtained

$$Y = b + A * X$$

For each observed response Y_i , with a corresponding predictor X_i , we obtain a fitted value

$$\widehat{Y}_i = b + A^* X_i$$
.

We would like to minimize the sum of squares error, that is minimize the squared distances between each observed value to its fitted/predicted value.

$$SSE = \sum (Yi - \hat{Y}i)^2 = \sum (Yi - (b + A^*Xi))^2$$
 for $i = 1,...,n$

A little bit of calculus was introduced before in order to solve for this.

•
$$SS_{xx} = \sum (x_i - \bar{x})^2 = \sum (x_i)^2 - [(\sum x_i)^2]/n$$

• $SS_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum (x_iy_i) - [(\sum x_i)^* (\sum y_i)]/n$
• $SS_{yy} = \sum (y_i - \bar{y})^2 = \sum (y_i)^2 - [(\sum y_i)^2]/n$
• $A = SS_{xy} / SS_{xx}$
• $b = [(\sum y_i)/n] - A^*[(\sum x_i)/n]$

 \bar{x} and \bar{y} represent the averages for the values of x_i and y_i that are included in the calculations.

$$\bar{x} = [\sum x_i]/n$$
 and $\bar{y} = [\sum y_i]/n$; $n = 87(88-1)$

All the calculations are done in Microsoft Excel and the file is attached as *Appendix 3*. The following results are obtained:

$$\begin{split} &\sum(x_i) = 31524.75 & \sum(x_i)^2 = 15030203 \\ &\sum(y_i) = 703.1 & \sum(y_i)^2 = 6045.93 \\ &\sum(x_i^*y_i) = 254627.7 & \end{split}$$

The values of SS_{xx} , SS_{xy} , *A*, *a* and *b* can now be easily calculated: $SS_{xx} = 15030203 - [(31524.75)^2]/87 = 3607101.131$ $SS_{xy} = 254627.7 - [31524.75*703.1]/87 = -143.009$

$$A = SS_{xy} / SS_{xx} = -143.009 / 3607101.131 = -0.0000396$$

b = [703.1 / 87] + 0.0000396*[31524.75 / 87] = **8.095**

We said earlier that A = -a, which means that a = -A. Therefore a = 0.0000396. The estimate values of a and b are 0.0000396 and 8.095 respectively.

Step 6: the values of *a* and *b* are put into the Grey model (*eq. 2.31* of section 2-2-2-1) and the following equation is obtained

$$\hat{x}o^{(0)}(k) = [10.6 - \frac{8.095}{0.0000396}]^*(1 - e^{0.0000396})^*e^{-0.0000396(k-1)}$$

This equation is used to forecast the next 20 data which account for the last five (5) years, for k = 89, 90, ..., 108. The results obtained are summarized in *table 2.4.1*.

Comparing the forecast results with the observed values in '*Sample 10*', the MAE, MSE and RMSE are computed. Their values are 0.977, 1.740 and 1.319 respectively.

Observed Value	k values	Forecasts	Errors absolute
8.2	89	8.06658106	0.133419
8.1	90	8.06626163	0.033738
8.8	91	8.06594221	0.734058
7.1	92	8.0656228	0.965623
8	93	8.06530341	0.065303
7.3	94	8.06498403	0.764984
7.9	95	8.06466466	0.164665
11.7	96	8.06434531	3.635655
8.8	97	8.06402597	0.735974
9.4	98	8.06370664	1.336293
9.3	99	8.06338732	1.236613
7.6	100	8.06306802	0.463068
7.3	101	8.06274873	0.762749
10.4	102	8.06242945	2.337571
8.1	103	8.06211018	0.03789
10.4	104	8.06179093	2.338209
7.4	105	8.06147169	0.661472
7	106	8.06115246	1.061152
9.4	107	8.06083325	1.339167
8.8	108	8.06051404	0.739486

Table 2.4.1: Forecast results of the GM(1,1).

2-4-2-6. Grey method with Optimization of Background Value

The first thing to do is to estimate the value of parameter *a* using *eq. 2.38* in section 2-3-2-3.

$$a(k) = \ln x^{(0)}(k) - \ln x^{(0)}(k-1)$$

For every value of k = 2,3,...,88 a new value of *a* is obtained and at the end, those values are averaged to obtain the final value of $\mathbf{a} = \frac{\sum a(k)}{87} = 0,0016$.

The excel table file summarizing the numerical calculations for parameter *a* as well as all the calculations for this method is attached in the appendices as *Appendix 4*.

Next, the background value needs to be estimated for every value of k between [2, 88] using *eq* 2.39 of the method in *section* 2-3-2-3. The right-hand side of the equation is divided in 2 parts to make the calculations in Excel easier, thus the reason for introducing the parameters J and F.

$$z^{(1)}(k) = \frac{x(0)(k)}{\ln x^{(0)}(k) - \ln x^{(0)}(k-1)} + \frac{[x^{(0)}(k-1)]^k}{[x^{(0)}(k)]^{k-2} * [x^{(0)}(k-1) - x^{(0)}(k)]} = J + F$$

The excel table file summarizing the numerical calculations for the parameter Z(k) is found in *Appendix 4*.

After that, the parameter *b* needs to be estimated in its turn, for every single value of $z^{(1)}(k)$, using *eq.* 2.40 of the method as follows:

$$b(k) = x^{(0)}(k) + a \cdot z^{(1)}(k)$$
 for $a = 0,0016$

which is the value calculated above and k = 2,3,...87.

The excel table file summarizing the numerical calculations for the parameter b(k) is also attached in *Appendix 4*.

You would notice that there are some *undefined* numbers for the values of the parameters Z(k) and b(k), that is because some successive entries of '*Sample 10*' have the same values and the difference $x^{(0)}(k-1) - x^{(0)}(k)$ will have some results equal to *zero*, and any division by the number zero will give an undefined result. A few assumptions are made below:

- 1. Any undefined result will be ignored while averaging the values of b(k) (7 in total).
- 2. High values (values which are hundred and thousand times bigger than the maximum observation in the $x^{(0)}(k)$ series) of b(k) will also be ignored during the averaging process (21 in total).

3. In some cases, b(k) might have negative values. Those values will also be neglected.

The final estimate of *b* is the average of all the positive values of b(k) which is found to be

$$\mathbf{b} = \frac{\sum positive(b(k))}{87 - (7 + 21)} = 9.4.$$

Finally, the values of a, b and $x^{(0)}$ are put into eq. 2.41 of the method and the following Grey prediction model is obtained:

$$\widehat{\mathbf{x}}_0^{(0)}(\mathbf{k}) = [x^{(0)}(1) - \frac{b}{a}]^*(1 - e^a)^* e^{-a(k-1)} = [10.6 - \frac{9.4}{0,0016}]^*(1 - e^{0,0016})^* e^{-0.0016(k-1)}$$

Using this equation, the values for the next 20 periods, corresponding to the 4 quartiles of every successive year from 2012 through 2016, can be predicted for k values of 89, 90, 91, ..., 107, 108 respectively. *Table 2.4.2* summarizes the calculations.

k values	Observed value	Forecast value	Error absolute
<u>89</u>	8.2	8.157223967	0.042776033
90	8.1	8.144182845	0.044182845
91	8.8	8.131162571	0.668837429
92	7.1	8.118163113	1.018163113
93	8	8.105184438	0.105184438
94	7.3	8.092226512	0.792226512
<u> </u>	7.9	8.079289302	0.179289302
96	11.7	8.066372775	3.633627225
97	8.8	8.053476898	0.746523102
98	9.4	8.040601638	1.359398362
99	9.3	8.027746962	1.272253038
100	7.6	8.014912837	0.414912837
101	7.3	8.00209923	0.70209923
102	10.4	7.989306108	2.410693892
103	8.1	7.976533439	0.123466561
104	10.4	7.96378119	2.43621881
105	7.4	7.951049329	0.551049329
106	7	7.938337822	0.938337822
107	9.4	7.925646637	1.474353363
108	8.8	7.912975742	0.887024258

Table 2.4.2: Forecast results of the optimized Grey Model.

Using the error values, the MAE, MSE and RMSE can easily be calculated. Their results are found to be 0.99, 1.79 and 1.33 respectively.

2-4-2-7. Grey_ARIMA model

This particular method cannot be used here because no ARIMA model couldn't be derrived from the data ('*Sample 10*'). '*Sample 10*' being a white noise, it is therefore impossible to do any prediction through the ARIMA methodology. So instead of '*Sample 10*', a new data set will be used here in order to show how the method works. The GDP of Mali from 1967 to 2016 will be used here. The GDP, meaning gross domestic product, is the total value of everything that the people and companies in one country have produced during a year. Whether the citizens are foreigners or the companies are foreign-owned doesn't matter. As long as they are located withing the country's boundaries, their production is added to the GDP. The reason for choosing this data is that it is one of the few available data about Mali which date from 1960s. Also, the data has 50 entries, which is an acceptable sample size for using ARIMA.

All the data set will be used here to set up both GM(1,1) and ARIMA models. Later on, with the models obtained, the data will be forecasted from t = 1 to t = n (*n* is the sample size, which is 50 here) and the errors will be calculated. Those errors are called '*residuals*'. For both models, a graph of the residuals will be plotted and an analysis of both graphs will determine the values of the parameters α and β of *eq. 2.42* of the method in *section 2-3-2-4. Fig. 2.9* shows the time series plot of the data set.

Figure 2.9: Time series plot of the GDP of Mali from 1967 to 2016.

Setting up the ARIMA model:

It is clear that the data in Fig. 2.3.2.e has an up-going trend, therefore it can be concluded that it is not stationary. The data needs to be made stationary. There are 2 ways of doing so

1. through the method of differencing, which is in the form

 $Y'_t = Y_t - Y_{t-1}$

This method usually removes any non-stationarity in the mean.

2. through logarithmic or power transformations

 $Y'_t = \ln Y_t$

This usually takes care of any non-stationarity in the variance.

Fig 3.1 and *fig. 3.2* display the new series obtained after the first and second differencing operations made on the GDP data. A first differencing operation was performed, but the resulted series didn't seem to be stationary, so a second differencing operation was performed on the resulted series, which is often referred to as the differences of the first-differences. The obtained series still doesn't seem to be stationary. We would logically try to do a third differencing operation, hoping that the non-stationarity will be completely removed, but differencing a series too much can result in inaccurate forecasts. Thus, it is not recommended to difference more than 2 times.

Figure 3.1: 1st differencing operation.

Figure 3.2: 2nd differencing operation.

On the other hand, *fig. 3.3* displays the result obtained after performing a natural logarithm operation on the GDP data. The resulted series seems to be stationary. Therefore, this differencing method is assumed to be best in this case.

Figure 3.3: Result of the logarithmic operation on the GDP.

Furthermore, the ACF graph of the GDP shows a slowly decreasing pattern and the PACF graph shows a spike at lag 1. These are the characteristics of a AR term. Since there is only one spike, the parameter n will be assigned the value 1 (AR(1)).

49

Figure 3.4: ACF graph of the GDP.

Figure 3.5: PACF graph of the GDP.

There are no signs of a MA term in the ACF and PAFC graphs, therefore the final ARIMA model is ARIMA(1,1,0) with the differencing operation being the natural logarithm.

The logarithmic difference isn't supported in *Minitab*, that is the program does not perform a logarithm difference on the series if the value 1 is given to the *Integrated* (I) term. Therefore it is better to apply an ARIMA(1,0,0) to the *differenced series* and retrieve the final forecasts by taking the exponential of each of the results of the ARIMA(1,0,0). The model for an ARIMA(1,0,0) or AR(1) is as follows:

$$Y_t = C + \phi_1 * Y_{t-1} + e_t \tag{2.47}$$

Where *C* is a constant, ϕ_1 is a parameter and e_t is the error term.

After performing AR(1) in Minitab, the following values are found:

$$\phi_1 = 1.0256$$
 and $c = -0.4981$

The final equation is therefore:

$$Y_t = -0.4981 + 1.0256 * Y_{t-1} \tag{2.48}$$

And $Y_1 = Y_0$.

The values of *Y* which will be used here are the ones of the differenced series (the logarithm values). For each value of Y_t calculated using *eq.* 2, the actual forecast value is retrieved through

$$F_t = e^{Y_t} \tag{2.49}$$

where F_t is the real forecast value at time t.

The steps in eq. 2.48 and eq. 2.49 account for the ARIMA(1,1,0).

The calculations are performed in Microsoft Excel and the results are saved there. The file is attached in the appendices as *Appendix 5*. Here is a small screenshot of the file:

Table 2.4.3: Screenshot of the ARIMA results in Microsoft Excel.

Year	t values	GDP	Logarithm	AR(1) results	Ft values	Errors
1967	1	2.75E+08	19.4340783	19.4340783	275494520.1	0
1968	2	3.44E+08	19.6554891	19.4334907	275332688.3	-68439276.35
1969	3	3.4E+08	19.64420271	19.66056962	345522949.5	5609116.448
1970	4	3.6E+08	19.70098207	19.6489943	341546469	-18225894.31
1971	5	4.3E+08	19.87952071	19.70722721	362026222.9	-68070515.51
1972	6	4.87E+08	20.00298861	19.89033644	434773796	-51843536.4
1973	7	5.64E+08	20.15000377	20.01696512	493466294.4	-70217365.92
1974	8	5.39E+08	20.10475713	20.16774386	573772688.4	35025420.03
1975	9	8.31E+08	20.53779206	20.12133891	547755135.2	-282955480
1976	10	9.39E+08	20.66056881	20.56545953	854015184.4	-85212809.25
1977	11	1.05E+09	20.77190217	20.69137937	968616549.8	-81221942.8
1978	12	1.22E+09	20.92432929	20.80556287	1085778272	-136924084
1979	13	1.6E+09	21.19040492	20.96189212	1269504015	-325919270.4
1980	14	1.76E+09	21.28840396	21.23477929	1667813438	-91877373.78
1981	15	1.54E+09	21.1543806	21.3352871	1844155151	305182992.4

Setting up the grey model GM(1,1)

Similarly to the examples in *section 2.4.1.d* and *section 2.4.2.b*, the model is set up using the GDP data. All the calculations are performed in Microsoft Excel and the file is attached in the appendices. The resulting grey equation is as follows:

$$\hat{x}_0^{(0)}(k) = (275494520.1 + \frac{240880408.2}{0.078})^* (1 - e^{-0.078})^* e^{0.078(k-1)}$$
(2.50)

where the parameter a = -0.078 and parameter b = 240880408.2

Using eq. 2.50, forecasts are made for the values of k from 1 to 50 and the errors are calculated. The errors for both algorithms (ARIMA and Grey model) are called residuals. Some of those errors have positive values and the others have negative values. The residuals for both algorithms are plotted in *fig. 3.6*

The first remark that can be made is that the ARIMA(1,1,0) model performs better than the GM(1,1) model, that is the residuals of the ARIMA(1,1,0) are much closer to the zero axis.

The second remark that is made from *fig.* 3.6 is that the graph of the residuals of the GM(1,1) is, for the most time, below the one of the ARIMA(1,1,0).

Recall that the equation of a Grey_ARIMA model is as follows:

Hybrid(Grey_ARIMA) =
$$\alpha$$
*GM(1,1) + β *ARIMA(n,p,q)

According to the second remark, it would be logical to take the average of the forecats of the two algorithms at different periods, and this would give a better result. That is, α and β would both be equal to 0,5. But the first remark states that the ARIMA model greatly outperforms the Grey one. Therefore it would be reasonable to assign a bigger weight to the ARIMA term, resulting in the grey term having a lower weight. The values of 0.2, 0.1 and 0.05 for the parameter α are chosen here while the parameter β has values 0.8, 0.9 and 0.95, for trial.

Recall that $\alpha + \beta = 1$.

The MAE for the ARIMA(1,1,0) was equal to 360931525.1

The MAE for the GM(1,1) was equal to 1128039365

Both of these errors are very huge because the GDP is expressed in terms of 'billions', therefore the errors should be in the 'millions' or in the 'thousands' (the best case would be in the hundreds). Neither of these two (2) algorithms performs particularly well with the GDP data. Nonetheless, after computing the hybrid forecasting with the different values of α and β above,

Figure 3.6: Residual plots of the ARIMA(1,1,0) and GM(1,1).

the lowest value of the MAE was 324379042.3 for the corresponding values of $\alpha = 0.1$ and $\beta = 0.9$. Again this error is very big, but it is less than the MAEs of both the ARIMA and the grey models. All the calculations were done in Microsoft Excel. The file is attached in the appendices as *Appendix 6*. However, below (*table 2.4.4*) is a small screenshot of it.

t values	Forecasts (Grey)	Forecasts (Arima)		Hybrid	errors
1	252397524.8	275494520.1		270875121	4619399.077
2	272872683	275332688.3	alpha 0.2	274840687	68931277.41
3	295008840.5	345522949.5	beta 0.8	335420128	4493705.354
4	318940742	341546469		337025324	22747039.7
5	344814063	362026222.9		358583791	71512947.49
6	372786296.5	434773796		422376296	64241036.3
7	403027712	493466294.4		475378578	88305082.41
8	435722391.5	573772688.4		546162629	7415360.657
9	471069350.3	547755135.2		532417978	298292636.9
10	509283748.5	854015184.4		785068897	154159096.4
11	550598200.1	968616549.8	_	885012880	164825612.7
12	595264190	1085778272		987675456	235026900.4
13	643553603.7	1269504015		1144313933	451109352.7
14	695760383	1667813438		1473402827	286287984.7
15	752202315.1	1844155151		1625764583	86792425.3
16	813222966.8	1607317929		1448498936	114744902.3
17	879193775.9	1387891780		1286152179	11613269.01
18	950516312.5	1349497079		1269700926	36768917.58
19	1027624723	1280398297		1229843582	162352351.6

Table 2.4.4: Screenshot of the Hybrid model calculations in Microsoft Excel.

3. RESULTS

This section is divided into two (2) parts: *section 3.1* contains the results and errors from the forecasting operations performed on the initial data (which is the unemployment rates of Mali from 1990 to 2016) and *section 3.2* shows the results and errors of the ones performed on the bootstrap data (referred to as '*Sample 10*').

3.1 Results from the unemployment dataset

Table 2.4.3 summarizes the different methods which have been used with the unemployment dataset, which was referred to as the initial dataset. A total of six algorithms were used. The dataset had a sample size of 27. Recall that the first twenty-two (22) entries were used to set up the models for each of the six algorithms, and the last five (5) entries were used to test the models and compute the errors. The estimators used for the error were the MAE, the MSE and the MRSE.

Methods	MAE	MSE	RMSE
Simple linear regression	1.2918	1.89	1.37
Simple moving averages	0.8611	1,4619	1,20
Single exponential smoothing	0,146	0,046	0,214
ARIMA	-	-	-
GM(1,1)	1,068	1,3718	1,17
Grey prediction with rolling mechanism	1,512	2,99	1,729
Grey model with optimization of background value	0,4882	0,5087	0,71

 Table 2.4.5:
 Errors from the unemployment dataset.

The row of the ARIMA method has blank entries because no ARIMA model has been performed on this data since it has a size of only 27 and in order to set up an ARIMA model, at least 50-54 data are needed. The Grey_ARIMA model couldn't be applied as well because of the same reasons. Surprisingly, the single exponential smoothing method has the lowest errors, this is because SES methods work very well with series which do not exhibits any trend or seasonal pattern. The data used in the experiment is a good example of such series. However, the Grey model with optimization of the background value has the second lowest errors. It outperforms both the original grey model GM(1,1) and the grey model with rolling mechanism.

3.2 Results from the bootstrap dataset

A total of eight (8) methods was supposed to be used on the bootstrap data or '*Sample 10*', but due to some unexpected issues, only five (5) have been applied successfully. Recall that the dataset had a sample size of 108: the first 88 entries were used to set up each model and the last 20 entries to evaluate them and compute the errors. The method of Grey prediction with rolling mechanism is very exhaustive with long-term forecasting. It is best used in short-term forecasting. In order to use it for long periods predictions, it is best to have it implemented in a software or develop a piece of coding and let a computer do the calculations if possible. Unfortunately, as explained in the previous sections, there is no code available for this method yet, therefore it hasn't been used with the bootstrap dataset. In addition, '*Sample 10*' turned out to be a white noise series and such series cannot be predicted through ARIMA models. Since it wasn't possible to get any ARIMA model, it was therefore impossible to perform a Grey_ARIMA model on this data. However this particular method was applied on the Malian GDP data, to show how the method works, but its results are not going to be taken into consideration during the comparison process of all the methods. *Table 2.4.4* summarizes the errors obtained after the prediction operations of each of the five (5) models.

Here again the SES performed better than all the other algorithms. It is so because the bootstrap series also doesn't exhibit any trend nor seasonal pattern. The GM(1,1) and the Grey model with optimization of the background value have the second and third lowest errors. This time around, the GM(1,1) performed slightly better than the Grey model with optimization of the background value, with a difference of only 0.02 in the MAE and 0.01 in the RMSE.

Methods	MAE	MSE	RMSE
Simple linear regression	0.99	1.82	1.35
Simple moving averages	1.29	2.83	1.68
Single exponential smoothing	0.194	0.072	0.268
ARIMA	-	-	-
GM(1,1)	0.977	1.74	1.32
Grey prediction with rolling mechanism			-
Grey model with optimization of the background value	0.99	1.79	1.33
Grey_ARIMA	-	-	-

 Table 2.4.6:
 Errors from the bootstrap dataset.

4. DISCUSSION

The original grey method and the optimized model have proven to be good forecasting models for both datasets. Apart from the SES method, they performed better than every other algorithms. However, it is important to notice that since the grey equation has exponential factors, the values of the powers of each exponential term have a high impact in the prediction operations. Negative values of the parameter a will cause the predicted values to follow an upward trend, meaning that their values will increase over time, whereas positive values of the same parameter will cause the opposite effect. For long-term predictions, this situation can result in significant deviations of the predicted values from the observed ones. Therefore it can be concluded that the grey models are more suitable for short-term predictions. The grey prediction with rolling mechanism GPRM is also best used in short-term predictions since its methodology hasn't been implemented in any software program yet. Furthermore, when working with the optimized grey model (the grey model with optimization of the background value) on the bootstrap data, another interesting thing was discovered. It was observed that successive entries of 'Sample 10' had sometimes the same value, for example quartile 1 and 2 of year 1997 both have an unemployment rate of 10,6. One aspect of the optimized model is that it has some division operations. The dividends are often the result of the substraction of two (2) successive entries, and since some of those entries have equal values, that result can be equal to zero (0) sometimes. Therefore, any division by zero will give an undefined result. Such results were observed a few times during the application of the method. They have been discarded, meaning that they haven't been considered in the final averaging operation. Despite this issue, the method still gave great results.

On another hand, as explained above, the series in both data sets used in this study turned out to be white noise. Due to this unexpected situation, it wasn't possible to set up any ARIMA model, and therefore no Grey_ARIMA model could be set up either dataset. Although the later was applied on a different dataset (Malian GDP), it is not really possible to make a good comparison with the other models because of that same reason. Furthermore, there is no correlation between the unemployment rates and the GDP. Looking at the graph of the unemployment rates, it could be seen that their values were not really changing that much over time, while the GDP kept increasing. It can be deducted that even though the GDP was better every year, this didn't affect the unemployment rates. The Pearson correlation of the GDP (values from 1990 to 2016) and the unemployment rates (the original/initial set) is equal to 0.024 which is very low and thus confirms the previously made conclusion. There are many theories/reasons as to why this is the case.

The GDP was pretty much steady until 2001, showing no large or sudden increase nor decrease. In 2002, Mali hosted the African Nations Cup football tournament. This event boosted the economy, infrastructures improved and there was a lot of encouragemnt for the private sector. Furthermore, in the same year was held a presidential and parliament elections. Since its independance in 1960, every change of power has happened through violent Coups d'Etat. 2002 was the first time that the power was peacefully transferred from one governemnt to the other one. Furthermore, prior to the year 2000, Mali relied heavily on agricultural export, mainly on cotton production. It still does nowadays. The country was the second largest producer in Africa in 2016, according to Bloomberg Markets [57], and 12th in the world in 2017, according to 'index mundi' [58]. However, after the opening of the Sadiola gold mine in 1997, Gold became the second biggest export product of the country and the country rapidly became the thrid largest producer in Africa. Also since 2001, there was a speedy discovery of many new gold mines and their exploitation was just as fast. Fig. 3.7 shows the gold production of the country in the thousands of kilogrammes, according to CEIC [59] (a Euromoney Institutional Investor company that provides data used for busineses decisions, economic analysis, etc), from 1990 to 2014.

Figure 3.7: Mali Gold production in kg from 1990-2014.

Notice that, on one hand, the GDP started rising exponentially from 2000 (see *fig. 2.9*) and on the other one, the gold production increased since 1996. Thus it can be deducted that there is a strong positive correlation between the GDP and the production of gold. As of today, gold represents **72%** of the total exports of the country, according to OEC [63] and Trading Economics [60]. Furthermore, *fig. 3.8* shows the price of the kilo of gold in US dollars since 1998, from the 'Gold Price' [61] where the gold price history for the past 1 day up to the past 43 years can be found. Their content is updated on daily basis.

Figure 3.8: Price of the kilo of gold in US dollars since 1998.

It can be seen that from 2002, the price of the gold just ketp increasing exponentially, until 2012, when it showed a small decrease. A similar decrease was observed in the GDP as well (see *fig. 2.9*). From 2013 to 2016, the price went down again but started increasing shortly afterwards. A similar pattern can be observed in *fig. 2.9* (of the GDP). These observations shows what triggered the change in the GDP. Although it was rising, the discovery and exploitation of many gold mines hasn't impacted much the unemployment rates, because they didn't create many new jobs. Only a very little proportion of the population works in the mines. According to 'index mundi [58]', the total labor force of the country was over 4 million in 2008 and well over 5 million in 2013, whereas a study from the 'World Bank' [62], of Mali and Tanzania, shows that only about 3000 to 3900 people were working in the mining sector, from 2008 to

2013 in Mali. *Fig. 4.1* shows the number of employees of the study in Tanzania and Mali, from 2005 to 2013.

Figure 3.9: Employment in Mining in Mali and Tanzania.

These are extremely small numbers, considering that gold has always represented more than half of all the exports of the country (72% as of 2016).

So if jobs don't come from the mines, then where do they come from? The answer is very simple for someone who grew up in the country and has been exposed to the realities. The vast majority of the population is self-employed, meaning that most people work for themselves. Mali being a third world country, there aren't many public and privates institutions in the country, therefore not many official jobs available. Most people are entrepreneurs. They all have their own small businesses which goes from selling food and clothes on the streets, to being a self-owned taxi driver. Many people's lives revolve around fishing and raising cattles. The fish and part of the livestock are used to feed the people, the milk extracted from the cattle is usually consumed in the country, by its population. Some of the cattle is sold abroad and used as meat. All these small businesses are not registered officially in the government and they are not regulated by any laws, to some extent. In 2016, sheep, goats and bovine accounted for 7.9% of total exports of the country, according to OEC [63]. In addition, 63% of the workforce worked in the farming sector in 2010, according to the 'African Department of the International

Monetary Fund' [64], but only about 6% worked in the modern formal sector (which has only a few private companies and public administration). Most farmers work for themselves, and their harvest is either sold to the government, or to private companies within or outside the country. Only the cotton and the rice farming are really monitored by the government. In 2016, cotton accounted for 9.2% of the total exports of the country, according to OEC [63].

5. CONCLUSION AND RECOMMENDATIONS

The new methods discussed in this study have given good, if not great results. However, they are not very easy to implement. The principle of parsimony [68] states that amongst a set of models, the one which is the simplest (simple in the number of parameters as well as in the application) should be chosen to work with. Although the new ones performed well, it is best to choose methods such as the Simple Exponential Smoothing or the ARIMA or the Regression models which are easier to implement, unless being advised to. These heuristics can be used if time and complexity are no issues for the forecaster. Further work needs to be done on the GPRM model because it has the potential to give great forecasts, if its algorithm is implemented in a software. The same should be done with all the other heuristic methods discussed in this study as this will greatly help facilitate their use and thus raised them to a desired level of parsimony. It is also important to recall that they are mostly used with small size datasets (because of their complexity) and for short-term predictions. It would be interesting to use them with big datasets and see how they behave. This could reveal more about their potential and perhaps help increase their performances.

As for the unemployment in Mali, this study has shown that even though the government isn't creating many new jobs, the rates are very low every year compared with other countries in the world. According to the Central Intelligence Agency (CIA) bureau [65], Mali had the 106th lowest unemployment rates in the world in 2016, showing better numbers than countries such as France, Turkey and Saudi Arabia which are considered to be 'developed' while Mali is still regarded as a 'third world country'. Furthermore, the poverty rates in those countries, according to the CIA World Factbook [66], were 7.9% and 16.9% in 2014 for France and Turkey respectively, whereas it was 36.1% in Mali during that same year. These numbers are quite contradictory. Some sources, such as index mundi [67], suggest that the actual unemployment rates could be above 30% in Mali, which is most likely to be true. This is characteristic of third world countries, that is numbers don't add up most of the time. So as for the malian government, they need to redefine what they mean by or accept as work, and also make a better effort in assessing their future statistics. This could perhaps help solve some of the problems they're faced with.

REFERENCES

- [1]. Ariffin S, Karim A, Alwi S.A., 2013, Electricity load forecasting in UTP using moving averages and exponential smoothing techniques. *Appl Math Sci.*
- [2]. Steven, C. Wheelwright, Spyros, G. Rob, J. H., Dec 1997, Forecasting methods and applications, 3rd Edition.
- [3]. Christiaanse, W. R., 1971, Short-term load forecasting using general exponential smoothing, *Trans Power Appar Syst*, IEEE.
- [4]. Bindiu, PDSR. Chindriu, EM. Pop PDSG, V., 2009, Day-ahead load forecasting using exponential smoothing.
- [5]. Box, GEP. Jenkins, GM., 2008, Time series analysis: forecasting and control, *Hoboken*, NJ, USA, John Wiley and Sons.
- [6]. Chujai, P. Kerdprasop, N. Kerdprasop, K., 2013, Time series analysis of household electric consumption with ARIMA and ARMA models.
- [7]. Abdel-Aal, RE. Al-Garni, Z., 1997, Forecasting monthly electric energy consumption in eastern, *Saudi Arabia using univariate time series analysis*, Energy.
- [8]. Deng, J-L., 1982, Control problems of grey systems. Syst Control, Lett.
- [9]. Deng, J-L., 1989, Introduction to grey system theorem, J Grey Syst.
- [10]. Chen, H. S. Chang, W.C., 1998, A study of optimal grey model GM(1,1), *Journal of the chinese grey system association*.
- [11]. Wang, C.-H. Hsu, L.-C., 2008, Using genetic algorithms grey theory to forecats high technology industrial output.
- [12]. Lin, C. T. Yang, S. Y., 2003, Forecast of the output value of Taiwan's opto-electronics industry using the grey forecasting model.
- [13]. Akay D., Atak M., 2007, Grey prediction with rolling mechanism for electricity demand forecasting of Turkey.
- [14]. Ujjwal Kumar, V. K. Jain, 2010, Time series models (grey-markov, grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India.
- [15]. Chaoqing Y., Sifeng L., Zhigeng F., 2016, Comparison of China's energy consumption forecasting by using ARIMA model and GM(1,1) model.

- [16]. Sang-Bing T., Youzhi X., Jianyu Z., Quan C., Yubin L., Jie Z., Weiwei D., 2016, Models for forecasting growth trends in renewable enegry.
- [17]. Unemployment rates of Mali, https://knoema.com/atlas/Mali/Unemployment-rate.
- [18]. Ordinary least square method for parameter estimation http://www.stat.ufl.edu/~winner/ qmb3250/notespart2.pdf.
- [19]. Wang Z., Dang Y., Liu S., 2008, Optimization of Background Value in GM(1,1) model, *Systems Engineering*
- [20]. The Ed Tech Round Up, *World Data Atlas: Country Statistics and Information* http:// www.edtechroundup.org/reviews/world-data-atlas-country-statistics-and information .
- [21]. Bootstrapping (statistics) Wikipedia https://en.wikipedia.org/wiki/Bootstrapping_(statistics).
- [22]. Minitab Wikipedia https://en.wikipedia.org/wiki/Minitab.
- [23]. Moving Averages explained https://analysights.wordpress.com/2010/05/06/forecast-friday-topic-moving-average methods-2/.
- [24]. Double Exponential Smoothing Method https://analysights.wordpress.com/2010/05/20/ forecast-friday-topic-doubleexponential-smoothing/.
- [25]. Holt-Winter's Exponential Smoothing method https://www.otexts.org/fpp/7/5.
- [26]. Least Squares Method https://www.otexts.org/fpp/4/2.
- [27]. PennState Eberly College of Science, *Regression Methods* https://onlinecourses.science. psu.edu/stat501/node/250
- [28]. Multiple Linear Regression model https://www.otexts.org/fpp/5/1.
- [29]. Introduction to ARIMA models, *Lecture notes on forecasting*, Duke university http:// people.duke.edu/~rnau/forecasting.htm .
- [30]. Non-seasonal ARIMA models https://www.otexts.org/fpp/8/5.
- [31]. Forecasting accuracy analysis based on two new heuristic methods and Holt-Winters method. *Big Data Analysis* (ICBDA), IEEE, July 2016.
- [32]. Teng, Z. S., 2008, The Laplace Transform https://www.math.psu.edu/tseng/class/ Math251/Notes-LT1.pdf.
- [33]. Efron, B., 1979, Bootstrap methods: Another look at the jacknife, *The annals of Statistics*.
- [34]. Sing K., 1981, On the asymptotic accuracy of Efron's bootstrap, Ann Statist.

- [35]. Bradley E., 1981, Better bootstrap confidence intervals, *Journal of the American Statistical Association*.
- [36]. Diciccio TJ., Bradley E., 1992, More accurate confidence intervals in exponential families, *Biometrika*.
- [37]. Yule G. U., 1909, Journal of the Royal Statistical Society, 72, 721-730.
- [38]. King W. I., 1912, Elements of Statistical Method.
- [39]. Holt, C., 1957, Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages.
- [40]. Brown R. G., written in 1959, published in 2004, Smoothing, Forecasting and Prediction of Discrete Time Series.
- [41]. Winters, P. R., 1960, Forecasting sales by exponentially weighted moving averages, *Management Science*, 6, 324-342.
- [42]. Holt-Winters Forecasting for Dummies or developers https://grisha.org/blog/2016/ 01/29/triple-exponential-smoothing-forecasting/.
- [43]. Stanton J. M., Galton, Pearson and the Peas, 2001, A brief history of Linear regression for Statistics Instructors, *Journal of Statistics Education*, Volume 9, Number 3.
- [44]. Box G. E. P., Jenkins G. M., 2016, Time series analysis: forecasting and control, 5th *Edition*.
- [45]. Seasonal ARIMA Models, PennState Eberly College of Science, Applied time series aalysis, https://onlinecourses.science.psu.edu/stat510/node/67.
- [46]. Seasonal ARIMA models https://www.otexts.org/fpp/8/9.
- [47]. Wang C. H., Hsu L. C., 2008, Using genetic algorithms grey theory to forecast high technology industrial output, *Applied Mathematics and Computation*.
- [48]. Lee Y.-S., Tong L.-I., 2011, Forecasting energy consumption using a grey model improved by incorporating genetic programming, *Energy convers Manag*.
- [49]. Akay, D. Atak M., 2007, Grey prediction with rolling mechanismfor electricity demand forecasting in Turkey, *Energy*
- [50]. Ujjwal K., Jain V. K., 2010, Time series models (Grey-Markov, grey with rolling mecha nism and singular spectrum analysis) to forecats energy consumption in India, *Flemish Institute for Technological Research* (VITO)

- [51]. Kang J., Zhao H., 2012, Application of improved grey model in long-term load forecasti ng of power engineering, *Syst Eng Procedia*
- [52]. Jing, Yaoguo, D. Bingjun, L., 2017, Grey-Markov prediction model based on background value optimization and central point triangular whitenization weight function, *College of information and management science*
- [53]. Akaike, H., 1974, A new look at the statistical model identification", *IEEE Trans. Autom. Control* 19
- [54]. The bayesian information criterion https://www.immagic.com/eLibrary/ARCHIVES/ GENERAL/WIKIPEDI/W120607B.pdf
- [55]. Robert, E. K. Adrian, E. R., 1994, Bayes Factors
- [56]. Singh, A., 2012, Lecture 13: Minimum Description Length, *Information Processing and Learning*
- [57]. Bloomberg Markets https://www.bloomberg.com/markets
- [58]. Index Mundi, *Country statistics, charts and maps compiled from multiple sources* https://www.indexmundi.com/facts/mali/labor-force
- [59]. CEIC, A Euromoney Institutional Investor Company https://www.ceicdata.com/en/ indicator/mali/gold-production
- [60]. Trading Economics, *Country statistics, charts and maps*https://tradingeconomics.com/ mali/exports
- [61]. Gold Price, established in 2002, history of the gold price up to the past 43 years https:// goldprice.org/gold-price-chart.html
- [62]. World Bank, an analysis and visualization tool that contains a collection of time series data on various topics http://databank.worldbank.org/data/home.aspx
- [63]. OEC tool, Observatory of Economic Complexity, MIT Media Lab https://atlas.media.mit. edu/en/profile/country/mli/
- [64]. Mali: Poverty reduction strategy paper, by the International Monetary Fund African Dept.
- [65]. CIA (central intelligence agency) on the unemployment rates in the world https://www. cia.gov/library/publications/the-world-factbook/rankorder/2129rank.html

- [66]. Poverty rates in the world from 'Index Mundi', source: CIA World Factbook https:// www.indexmundi.com/g/r.aspx?v=69
- [67]. Unemployment rates from 'Index Mundi' https://www.indexmundi.com/g/r.aspx?v=74
- [68]. William of Ockham (1280-1349) http://www.iep.utm.edu/ockham/
- [69]. Hamzacebi, C. Es, Ha., 2014, Forecasting the annual electricity consumption of Turkey using an optimized grey model, *Energy*

APPENDICES

Year	Time t	Sample 10	3-period MA	errors	errors square
1990	1	10.6			
	2	4.5	7.466666667	2.966667	8.801111111
	3	7.3	6.466666667	0.833333	0.69444444
	4	7.6	7.3	0.3	0.09
1991	5	7	7.566666667	0.566667	0.321111111
	6	8.1	9.1	1	1
	7	12.2	8.266666667	3.933333	15.47111111
	8	4.5	8.666666667	4.166667	17.36111111
1992	9	9.3	7.266666667	2.033333	4.13444444
	10	8	9.733333333	1.733333	3.004444444
	11	11.9	9.266666667	2.633333	6.934444444
	12	7.9	9.8	1.9	3.61
1993	13	9.6	8.566666667	1.033333	1.067777778
	14	8.2	9.033333333	0.833333	0.69444444
	15	9.3	9.366666667	0.066667	0.004444444
	16	10.6	9.166666667	1.433333	2.054444444
1994	17	7.6	8.533333333	0.933333	0.871111111
	18	7.4	6.1	1.3	1.69
	19	3.3	6.1	2.8	7.84
	20	7.6	6.066666667	1.533333	2.351111111
1995	21	7.3	7.7	0.4	0.16
	22	8.2	7.7	0.5	0.25
	23	7.6	7.8	0.2	0.04
	24	7.6	8.966666667	1.366667	1.867777778
1996	25	11.7	8.966666667	2.733333	7.471111111
	26	7.6	8.833333333	1.233333	1.521111111
	27	7.2	8.4	1.2	1.44
	28	10.4	9.4	1	1
1997	29	10.6	10.53333333	0.066667	0.004444444
	30	10.6	9.466666667	1.133333	1.284444444
	31	7.2	8.466666667	1.266667	1.604444444
	32	7.6	7.233333333	0.366667	0.13444444
1998	33	6.9	7.266666667	0.366667	0.13444444
	34	7.3	7.666666667	0.366667	0.13444444
	35	8.8	7.8	1	1
	36	7.3	8	0.7	0.49
1999	37	7.9	7.766666667	0.133333	0.01777778

APPENDIX 1: Simple Moving Averages results with '*Sample 10*'

	38	8.1	6.833333333	1.266667	1.604444444
	39	4.5	6.666666667	2.166667	4.694444444
	40	7.4	6.366666667	1.033333	1.067777778
2000	41	7.2	8.8333333333	1.633333	2.667777778
	42	11.9	7.466666667	4.433333	19.65444444
	43	3.3	8.2	4.9	24.01
	44	9.4	7.166666667	2.233333	4.987777778
2001	45	8.8	8.5	0.3	0.09
	46	7.3	9.266666667	1.966667	3.867777778
	47	11.7	7.833333333	3.866667	14.95111111
	48	4.5	9.466666667	4.966667	24.66777778
2002	49	12.2	8.7	3.5	12.25
	50	9.4	10.33333333	0.933333	0.871111111
	51	9.4	8.7	0.7	0.49
	52	7.3	7.066666667	0.233333	0.054444444
2003	53	4.5	6.366666667	1.866667	3.48444444
	54	7.3	6.4	0.9	0.81
	55	7.4	7.6	0.2	0.04
	56	8.1	7.866666667	0.233333	0.054444444
2004	57	8.1	8.333333333	0.233333	0.054444444
	58	8.8	8.166666667	0.633333	0.401111111
	59	7.6	7.866666667	0.266667	0.071111111
	60	7.2	7.866666667	0.666667	0.444444444
2005	61	8.8	8.066666667	0.733333	0.53777778
	62	8.2	8.4	0.2	0.04
	63	8.2	7.766666667	0.433333	0.187777778
	64	6.9	8.166666667	1.266667	1.604444444
2006	65	9.4	7.866666667	1.533333	2.351111111
	66	7.3	7.966666667	0.666667	0.444444444
	67	7.2	7.3	0.1	0.01
	68	7.4	8.933333333	1.533333	2.351111111
2007	69	12.2	10.6	1.6	2.56
	70	12.2	11.06666667	1.133333	1.284444444
	71	8.8	10.1	1.3	1.69
	72	9.3	8.3333333333	0.966667	0.934444444
2008	73	6.9	8.133333333	1.233333	1.521111111
	74	8.2	7.366666667	0.833333	0.694444444
	75	7	8	1	1
	76	8.8	8.4	0.4	0.16
2009	77	9.4	7.1666666667	2.233333	4.987777778
	78	3.3	6.7	3.4	11.56
	79	7.4	5.966666667	1.433333	2.054444444
	80	7.2	7.3	0.1	0.01

APPENDIX 1 (cont.): Simple Moving Averages results with 'Sample 10'

2010	81	7.3	7.266666667	0.033333	0.001111111
	82	7.3	7.566666667	0.266667	0.071111111
	83	8.1	6.233333333	1.866667	3.48444444
	84	3.3	6.233333333	2.933333	8.604444444
2011	85	7.3	6.733333333	0.566667	0.321111111
	86	9.6	8.566666667	1.033333	1.067777778
	87	8.8	10.2	1.4	1.96
	88	12.2	9.733333333	2.466667	6.084444444
2012	89	8.2	9.5	1.3	1.69
	90	8.1	8.366666667	0.266667	0.071111111
	91	8.8	8	0.8	0.64
	92	7.1	7.966666667	0.866667	0.751111111
2013	93	8	7.466666667	0.533333	0.284444444
	94	7.3	7.733333333	0.433333	0.187777778
	95	7.9	8.966666667	1.066667	1.137777778
	96	11.7	9.466666667	2.233333	4.987777778
2014	97	8.8	9.966666667	1.166667	1.361111111
	98	9.4	9.166666667	0.233333	0.054444444
	99	9.3	8.766666667	0.533333	0.284444444
	100	7.6	8.066666667	0.466667	0.21777778
2015	101	7.3	8.4333333333	1.133333	1.284444444
	102	10.4	8.6	1.8	3.24
	103	8.1	9.633333333	1.533333	2.351111111
	104	10.4	8.633333333	1.766667	3.12111111
2016	105	7.4	8.266666667	0.866667	0.751111111
	106	7	7.933333333	0.933333	0.871111111
	107	9.4	8.4	1	1
	108	8.8			

APPENDIX 1 (cont.): Simple Moving Averages results with 'Sample 10'

	Sam ple	alp													
t	10	ha	0.2				0.5			0.7			0.9		
			F (1)			erro			erro			erro			erro
			F(t+		erro	ŕs		erro	rs		erro	ŕs		erro	rs
			1)		ŕs	sq.		ŕs	sq.		rs	sq.		rs	sq.
	10.0	t =	10.0	F 4			10.0			100			10.0		
1	10.6	 0	10.6	F1	0		10.6	0		10.6	0	0	10.6	0	0
2	4 5	t =	0.20	53	1 00	23.8	7.55	3.05	9.30	6.33	1 02	3.34	F 11	0.61	0.37
2	4.5	 1	9.38	F2	4.88	144 2.76	7.55	3.05	25 0.01	0.33	1.83	89 0.08	5.11	0.61	21 0.04
		t =	8.96		1.66	889	7.42	0.12	562	7.00	0.29	468	7.08	0.21	0.04 796
3	7.3	2	o.90 4	F3	1.00	6	7.42	5	502	7.00	0.29	408	1	9	190
5	7.5	2	4	гэ	4	1.19	5	5	0.00	9	1	0.03		9	0.00
		t =	8.69		1.09	071	7.51	0.08	765	7.42	0.17	143	7.54	0.05	269
4	7.6	3	12	F4	1.09	7	25	75	6	27	73	5	81	19	209
	7.0	5	12	14	12	1.83	25	15	0.06	21	/5	0.01	01	15	0.00
		t =	8.35		1.35	050	7.25	0.25	566	7.12	0.12	608	7.05	0.05	300
5	7	4	296	F5	296	1	625	625	4	681	681	1	481	481	4
			8.30		0.20	0.04	7.67	0.42	0.17	7.80	0.29	0.08	7.99	0.10	0.01
		t =	236		236	095	812	187	797	804	195	523	548	451	092
6	8.1	5	8	F6	8	3	5	5	9	3	7	9_0	1	9	4
-		-	9.08		3.11	9.72	9.93	2.26		10.8	1.31	1.73	11.7	0.42	
		t =	189		810	258	906	093	183	824	758	603	795	045	0.17
7	12.2	6	4	F7	6	3	3	8	8	1	7	6	5	2	678
			8.16		3.66		7.21	2.71		6.41	1.91	3.66	5.22	0.72	0.52
		t =	551		551	13.4	953	953	7.39	472	472	616	795	795	991
8	4.5	7	6	F8	6	36	1	1	585	4	4	7	5	5	8
			8.39		0.90	0.82	8.25	1.04	1.08	8.43	0.86	0.74	8.89	0.40	0.16
		t =	241		758	371	976	023	208	441	558	923	279	720	581
9	9.3	8	2	F9	8	5	6	4	8	7	3	4	5	5	6
						0.09	8.12	0.12		8.13	0.13	0.01			0.00
		t =	8.31		0.31	855	988	988	0.01	032	032	698	8.08	0.08	797
10	8	9	393	F10	393	2	3	3	687	5	5	5	928	928	1
			9.03		2.86	8.23		1.88			1.13		11.5	0.38	
		t =	114		885	033		505	344	10.7		1.27	189	107	521
11	11.9	10	4	F11	6	5		9	6	691	2	894	3	2	6
			8.80		0.90	0.81		1.05	1.11	8.76	0.86	0.74		0.36	
		t =	491		491	887		747	824	072	072	085	189	189	096
12	7.9	11	5	F12	5	1	1	1	4	9	9	5	3	3	6
			8.96		0.63	0.40		0.32		9.34	0.25	0.06		0.13	0.01
		t =	393		606	458		126	321	821	178	339	618	381	790
13	9.6	12	2	F13	8	2		5	1	9	1	4	9	1	5
			8.81		0.61	0.37		0.53	0.29	8.54	0.34	0.11	8.32	0.12	0.01
		t =	114	F 4 4	114	349	936	936	091	446	446	865	661	661	603
14	8.2	13	6	F14	6	9	8	8	7	6	6	7	9	9	2

APPENDIX 2: Single Exponential Smoothing results with 'Sample 10'

1 1 </th <th></th> <th>endi.</th> <th>A 4 (1</th> <th>cont.)</th> <th>• 51118</th> <th></th> <th>pone</th> <th></th> <th>moor</th> <th>.inng .</th> <th>lesun</th> <th>5 WILL</th> <th>San</th> <th>ipic i</th> <th>0</th> <th></th> <th></th>		endi.	A 4 (1	cont.)	• 51118		pone		moor	.inng .	lesun	5 WILL	San	ipic i	0		
15 9.3 14 7 F15 3 6 4 6 7 334 66 5 2 8.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 952 16 10.6 15 3 F16 7 8 2 8 435 42 8 0.6 0.6 7 952 16 15 7 7 7 1 1 0.8 1.4 1.56 7 7 1 17 7.6 16 7 F17 7 1 1 0.42 1.4 1.56 7 7.6 7 7 1 1 1.56 7 7.65 7 7.6 7 7 1 1.5 7 7.3 7.57 7.5 7.57 7.57 7.57 7.57 7.57 7.57 7.5 7.5 7.5 7.5 7.5 7.5 7.					8.90		0.39	0.15	9.01	0.28	0.07			0.05	9.20	0.09	0.00
15 9.3 14 7 F15 3 6 4 6 7 334 66 5 2 8.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 952 16 10.6 15 3 F16 7 8 2 8 435 42 8 0.6 0.6 7 952 16 15 7 7 7 1 1 0.8 1.4 1.56 7 7 1 17 7.6 16 7 F17 7 1 1 0.42 1.4 1.56 7 7.6 7 7 1 1 1.56 7 7.65 7 7.6 7 7 1 1.5 7 7.3 7.57 7.5 7.57 7.57 7.57 7.57 7.57 7.57 7.5 7.5 7.5 7.5 7.5 7.5 7.				t =								9.07	0.22				947
1 9,24 1,35 1,83 9,80 0,79 0,45 0,20 1,04 0,13 0,01 16 10.6 15 3 F16 7 8 2 8 435 42 8 2 7 4 6 17 7.6 16 7 17 1 1 1085 1 1 156 7 7 1 17 7.6 16 7 1 1 1085 1 1.15 7 1 1 0.85 1 1.15 8 0.28 0.80 0.60 8 7 1 1 0.85 1 1.15 8 0.75 1 1 0.85 1.21 1.13 1.33 2.2 0.00 8 0.41 4.31 1.31 1.33 2.2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01	15	9.3				F15											
16 1		5.0				1 10											
16 15 3 F10 7 8 2 8 35 4.2 8.7 0.4 6.0 1 1 7 1 1.0 1.0 1.0 1.00 <td< td=""><td></td><td></td><td></td><td>+ -</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.62</td><td>10 1</td><td></td><td></td><td></td><td></td><td></td></td<>				+ -							0.62	10 1					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	10.6				E16											
1 1	10	10.0		12		F10					455			2			
17 7.6 16 7 7 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 22</td> <td></td> <td></td> <td>0 - 0</td> <td></td> <td></td> <td></td>											1 22			0 - 0			
1 1	47	7.0				F4 7											
1 1 1 5 1 1 5 1 1 2 2 2 2 5 7 2 4 5 7 2 4 5 7 2 6 5 7 8 7 5 7 2 6 7 7 5 7 7 5 7 7 5 7 7 5 7 7 5 7 7 6 7	1/	/.6		16		F17			1	1		1	1				
11 17 15 18 5 7 246 26 5 878 878 4 4 3 3 2 18 18 7.55 133 738 5.67 2.37 5.64 63 63 35.7 3.71 0.41 210 19 3.3 18 2 19 68 893 151 811 188 522 6.70 0.89 7.21 0.38 0.15 20 7.6 19 6 F20 4 6 5 5 3 499 501 3 68 7.8 21 7.7 20 3 F21 3 90 950 94 952 149 8.30 160 17.3 14 855 180 161 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
1 1 1 1 3 7 8 6 2 7 5 6 1	18	7.4		17		F18			246	246	5				3	3	
19 3.3 18 2 F19 2 3 623 623 647 4 4 4 5 486 486 9 10 1 106 893 151 811 188 522 6.70 0.89 501 3 486 43 200 7.6 106 620 4 66 5 5 3 499 501 3 7.2 0.0 7.2 0.00 7.8 6.95 33 0.01 7.12 0.17 0.10 1.4 885 681 33 0.00 7.20 1.4 880 681 33 0.3 7.21 0.32 1.0																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				t =	133					2.37	5.64	663	663				210
t= 106 K= 893 151 811 188 522 6.70 0.89 104 148 851 094 20 7.6 19 6 F20 4 6 5 5 3 499 501 3 6 4 3 21 7.3 200 3 F21 3 9 8 2 3 7 3 3 9 18 14 885 7 21 7.3 200 3 F21 3 9 8 2 3 7 3 33 9 1 5	19	3.3		18	2	F19	2	3	623	623	647	4	4	5	486	486	9
20 7.6 19 6 F20 4 6 5 5 3 499 501 3 6 4 3 1 1 1 7.50 10 0.00 0.04 0.90 952 149 850 186 114 885 10 7.3 20 3 720 7.3 200 3 10 0.55 0.30 7.58 0.61 0.37 7.87 0.32 0.10 8.0 0.00 1.00					7.56		0.03	0.00	6.63	0.96	0.92			0.80	7.21	0.38	0.15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				t =	106		893	151	811	188	522	6.70	0.89	104	148	851	094
1 t 885 1 9 95 94 952 149 850 186 114 885 Fe- 21 7.3 20 3 721 3 9 1 05 21 7.3 20 3 7.64 0.55 0.30 7.58 0.61 0.37 7.87 0.32 0.10 8.00 0.00 22 8.2 21 7.6 0.03 0.00 7.59 0.00 5.8 7.68 0.80 0.01 5.9 9 1 5 9 1 5	20	7.6		19	6	F20	4	6	5	5	3	499	501	3	6	4	3
1 7.3 20 3 F21 3 9 8 2 3 7 3 3 9 1 05 1 7.64 7.64 201 571 452 547 880 644 355 468 911 088 0.00 22 8.2 21 2 F22 8 8 9 1 5 9 1 55 55 56 56 28.2 21 7.63 2 66 14 26 773 2 9 1.6 9.0 0.00 7.69 0.00 1.6 1.1 <					7.50		0.20	0.04	6.96	0.33	0.10	7.12	0.17	0.03	7.29	0.00	7.83
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				t =	885		885	361	905	094	952	149	850	186	114	885	E-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	7.3		20	3	F21		9	8	2	3	7	3	3	9	1	05
11112578664354.68910.880.00228.2217891591558228.277.630.030.007.590.005.987.680.080.007.650.050.010.010.010.01237.6226F23694605558112237.6226F236946055.57.58.80.007.59237.6226F236946055.57.58.8112247.6237.63200.030.007.590.001.580.580.505.57.580.011.590.010.100.100.10 <td></td> <td></td> <td></td> <td></td> <td>7.64</td> <td></td> <td>0.55</td> <td>0.30</td> <td></td> <td>0.61</td> <td>0.37</td> <td>7.87</td> <td>0.32</td> <td>0.10</td> <td>8.10</td> <td></td> <td></td>					7.64		0.55	0.30		0.61	0.37	7.87	0.32	0.10	8.10		
228.22122288911591151515826117.631.00.030.007.590.005.987.680.080.007.550.090.007.550.070.070.090.070.090.070.090.070.090.070.090.07 <t< td=""><td></td><td></td><td></td><td>t =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td></t<>				t =													0.00
1 7.63 1 0.03 0.00 7.59 0.00 5.98 7.68 0.08 0.00 7.65 0.01 23 7.6 22 6 F23 6 9 4 6 05 5 5 8 1 1 22 23 7.6 22 6 F23 6 9 4 6 05 5 5 8 1 1 2 24 7.6 23 3 F24 3 8 2 8 -05 488 488 9 1 1 05 24 7.6 23 3 F24 3 8 2 8 -05 488 488 9 1 1 05 24 7.6 23 3 F24 3 6 6 4 13 14 14 23 44 1 1 30 16 16 16	22	8.2				F22											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													_				
237.62266F236694660555881111247.67.630.030.007.590.001.57.620.020.61509509E-247.62333F24388288105F.620.020.61509509E-247.62333F2438281054.8848891111005247.6238.441.510.69.642.054.2110.41.221.491.220.490.612511.72466F2545643664111332511.72466F254564366411133267.62556643666411133267.6255F2660133334992111<			-	t =													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	76				F23											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7.0				123					0.5		5				
247.6233F243828-0548848891.11.105kkkk3.2510.69.642.054.2110.41.221.4911.20.400.162511.7246F254564366641132511.7246F254564366664113261.7246F25456013864323323518905905619267.6255F265601334992119267.6255F265601334992119267.6255F2660137.910.507.570.371.4600600591277.2268F278277822362554277.2268F27827788.40.46878.40.4687765454277.2268F27827782 <t< td=""><td></td><td></td><td></td><td>+ =</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 5F</td><td>7 62</td><td>0 02</td><td></td><td></td><td></td><td></td></t<>				+ =							1 5F	7 62	0 02				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	76				F2/											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	7.0		25		124											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+ _											1		
1 1 8.27 0.67 8.62 1.02 1.04 8.46 0.86 0.74 7.96 0.36 0.13 26 7.6 25 5 F26 5 601 3 3 4 9 9 2 1 1 9 26 7.6 25 5 F26 5 601 3 3 4 9 9 2 1 1 9 26 7.6 25 5 F26 5 601 3 3 4 9 9 2 1 1 9 26 7 602 022 999 201 201 696 897 897 0.14 690 690 591 27 7.2 26 8 F27 8 2 7 7 8 2 362 5 5 4 27 7.2 26 8 1.87 3.50 </td <td>25</td> <td>11 7</td> <td></td> <td></td> <td></td> <td>525</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	25	11 7				525											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	11./		24		FZJ		5									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				+ _				0 45							1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		70				FAC											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	7.6		25		FZD								2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														0.4.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						F2-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	7.2		26		F27											
28 10.4 27 2 F28 8 2 8 2 5 2 8 8 9 9 7 4 4 8.94 4 1.65 2.74 9.87 0.72 0.52 10.2 0.31 0.09 10.5 0.05 0.00 4 4 745 715 800 199 127 861 389 852 487 123 262 29 10.6 28 6 F29 4 4 46 8 1 39 7 1 55 29 10.6 28 6 F29 4 4 46 8 1 39 7 1 55 40 1.32 1.75 0.36 0.36 10.5 0.09 0.00 10.5 0.00 10.5 0.00 2.62 41 403 596 817 10.2 0.99 0.13 058 416 886 948 512 E-																	
k = 8.94 1.65 2.74 9.87 0.72 0.52 10.2 0.31 0.09 10.5 0.05 0.00 k = 254 745 715 800 199 127 861 389 852 487 123 262 29 10.6 28 6 F29 4 4 46 8 1 3 9 7 1 5 10.6 9.27 1.32 1.75 0.36 10.5 0.09 0.00 10.5 0.00 2.62 11.12 1.75 596 817 10.2 099 0.13 058 416 886 948 512 E-																	
k = 254 745 715 800 199 127 861 389 852 487 123 262 29 10.6 28 6 F29 4 4 4 6 8 1 3 9 7 1 5 29 10.6 9.27 1.32 1.75 0.36 10.5 0.09 0.00 10.5 0.00 2.62 1 1 403 596 817 10.2 0.99 0.13 058 416 886 948 512 E	28	10.4		27		F28											
29 10.6 28 6 F29 4 4 4 6 8 1 3 9 7 1 5 4 4 4 4 6 8 1 3 9 7 1 5 4 4 4 4 6 8 1 3 9 7 1 5 4 4 4 4 6 8 1 3 9 7 1 5 4 5 4 5 1.32 1.75 0.36 10.5 0.09 0.00 10.5 0.00 2.62 4 4 5 5 5 5 6 10.2 0 0 0.58 416 886 948 512 E-																	0.00
9.27 1.32 1.75 0.36 10.5 0.09 0.00 10.5 0.00 2.62 t = 403 596 817 10.2 099 0.13 058 416 886 948 512 E-				t =	254		745	715	800		127	861		852		123	262
t = 403 596 817 10.2 099 0.13 058 416 886 948 512 E-	29	10.6		28	6	F29	4	4	4	6	8	1	3	9	7	1	5
					9.27		1.32	1.75		0.36		10.5	0.09	0.00	10.5	0.00	2.62
30 10.6 29 7 F30 3 9 39 8 032 3 8 8 8 3 05				t =	403		596	817	10.2	099	0.13	058	416	886	948	512	E-
	30	10.6		29	7	F30	3	9	39	8	032	3	8	8	8	3	05

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

		`	,			1					-		1			
				8.85		1.65	2.75	8.71	1.51	2.30			0.98	7.53	0.33	0.11
			t =	922		922	304	950	950	888	8.19	0.99	356	948	948	525
31	7.2		30	9	F31	9	2	1	1	3	175	175	7	8	8	2
				8.60		1.00	1.01	8.15	0.55	0.31	7.77	0.17	0.03	7.59	0.00	3.66
			t =	738		738	482	975	975	332	752	752	151	394	605	E-
32	7.6		31	3	F32	3	1	1	1	1	5	5	5	9	1	05
				8.26		1.36	1.86	7.52	0.62	0.39	7.16	0.26	0.06	6.96	0.06	0.00
			t =	590		590	570	987	987	674	325	325	930	939	939	481
33	6.9		32	7	F33	7	1	50,	507	3	7	7	4	555	555	6
	0.5		52	, 8.07	133	, 0.77	0.59	7.41	0.11		, 7.25	, 0.04	0.00	7.26	0.03	0.00
			t =	272		272	710	493	493	321	897	102	168	693	306	109
34	7.3		33	5	F34	5	5	493	493	1	7	3	3	9	1	3
54	7.5		55	5	134	5	0.33	8.10	0.69	0.47	8.33	0.46	0.21	8.64	0.15	0.02
			t =	0 21			851									
25				8.21	FOF	0.58		746	253	959	769	230	372	669	330	350
35	8.8		34	818	F35	182	4	9	1	9	3	7	8	4	6	3
				8.03		0.73	0.53	7.70	0.40	0.16	7.61	0.31	0.09	7.43	0.13	0.01
	7.0		t =	454	526	454	955	373	373	300	130	130	691	466	466	813
36	7.3		35	4	F36	4	5	4	4	1	8	8	3	9	9	6
				8.00		0.10	0.01	7.80	0.09		7.81	0.08	0.00	7.85	0.04	0.00
			t =	763		763	158	186	813	0.00	339	660	750	346	653	216
37	7.9		36	5	F37	5	5	7	3	963	2	8	1	7	3	5
				8.02		0.07		7.95	0.14	0.02	8.01	0.08	0.00	8.07	0.02	0.00
			t =	610		389	0.00	093	906	222	401	598	739	534	465	060
38	8.1		37	8	F38	2	546	4	6	1	8	2	3	7	3	8
				7.32		2.82	7.95	6.22	1.72	2.97	5.55	1.05	1.11	4.85	0.35	0.12
			t =	088		088	740	546	546	723	420	420	134	753	753	783
39	4.5		38	7	F39	7	2	7	7	6	5	5	9	5	5	1
				7.33		0.06	0.00	6.81	0.58	0.34	6.84	0.55	0.30	7.14	0.25	0.06
			t =	670		329	400	273	726	488	626	373	662	575	424	464
40	7.4		39	9	F40	1	6	3	7	2	2	8	6	3	7	1
				7.30		0.10	0.01	7.00	0.19	0.03	7.09	0.10	0.01	7.19	0.00	2.94
			t =	936		936	196	636	363	749	387	612	126	457	542	E-
41	7.2		40	7	F41	7	1	7	3	4	8	2	2	5	5	05
				8.22		3.67		9.45	2.44	5.98	10.4	1.44	2.07	11.4	0.47	
			t =	749		250	13.4	318	681		581	183	889	294	054	0.22
42	11.9		41	4	F42	6	873	3	7	2	6	6	2	6	2	141
				7.24		3.94	15.5	6.37	3.07	9.46	5.44	2.14	4.61		0.81	
			t =	199		199	393	659	659	541	744	744	153	294	294	088
43	3.3		42	5	F43	5	3	2	2	6	9	9	7	6	6	1
				7.67		1.72		7.88	1.51		8.21	1.18	1.40	8.87	0.52	0.27
			t =	359		640	2.98	829	170	524	423	576	603	129	870	952
44	9.4		43	6	F44	4	047	6	4	9	5	5	9	5	5	9
			-	7.89		0.90	0.81	8.34	0.45	0.20	-	-	0.03		0.00	5.08
			t =	887		112	202	414	585	780	8.62	0.17	088	712	712	E-
45	8.8		44	7	F45	3	3	8	2	1	427	573	1	9	9	05
	0.0			, 7.77		0.47	0.22	7.82	0.52	0.27	7.69	0.39	0.15	7.45	0.15	0.02
			t =	910		910	953	207	207	256	728	728	783	071	0.15	271
46	7.3		τ – 45	2	F46	2	8	4	4	230	1	1	2	3	3	4
40	1.5		40	2	140		0	4	4	L 1	L I	T		3	3	4

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

1 1	1111		(contr	,• =	5 2.	-pone		011100		100011	5 1111		-pr o 1			
44 11.7 46 1 F47 9 5 7.7 5 3.25 1.0 3 8 8 9 7.7 5 3.25 1.0 7.3 2.63 6.91 6.29 7.9 7.9 7.0					8.56		3.13	9.83	9.76	1.93	3.75	10.4	1.20	1.44	11.2	0.42	0.18
				t =	328		671	900	103	896	957	991	081	195	750	492	056
48 4.5 4.7 5 642 653 651 962 975 911 750 750 911 48 4.5 4.5 6.4 8 8 5 5 9 7 6 49 12.2 4.8 0.5 5.25 4.4 491 299 0.7 1.31 977 2.24 315 49 12.2 4.8 0.5 7.0 0.35 1.1 3<3	47	11.7		46	1	F47	9	5	7	3	8	8	6	8	7	9	4
48 4.5 4.7 5.7 6.8 7.8 7.8 7.5 7.0					7.75		3.25	10.5	7.13	2.63	6.91	6.29	1.79	3.23	5.17	0.67	0.45
				t =	062		062	665	051	051	962	975	975	911	750	750	901
49 12.2 48 0.5 7.00 5.25 474 9.91 2.99 0.70 3.13 9.77 2.42 3.15 49 1.2 48 0.5 49 0.50 0.70	48	4.5		47	5	F48	5	6	8	8	8	5	5	9	7	7	6
14.2 48 05 F49 95 4 9 1 1 3 3 15 5 9 1 1 1 1 3 3 15 5 9 0 0.0 0.10 9.70 0.20 0.00 9.70 0.70 0.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12.6</td><td>9.66</td><td>2.53</td><td>6.42</td><td>10.4</td><td>1.77</td><td></td><td>11.4</td><td>0.70</td><td>0.49</td></th<>								12.6	9.66	2.53	6.42	10.4	1.77		11.4	0.70	0.49
14.2 48 05 F49 95 4 9 1 1 3 3 15 5 9 1 1 1 1 3 3 15 5 9 0 0.0 0.10 9.70 0.20 0.00 9.70 0.70 0.00 <th< td=""><td></td><td></td><td></td><td>t =</td><td>8.64</td><td></td><td>3.55</td><td>700</td><td>525</td><td>474</td><td>491</td><td>299</td><td>007</td><td>3.13</td><td>977</td><td>224</td><td>315</td></th<>				t =	8.64		3.55	700	525	474	491	299	007	3.13	977	224	315
1 1 8 7 2 2 7 4 0	49	12.2		48	05	F49	95	4	9	1	1	3	3	316	5	9	4
1 1 8 7 2 2 7 4 0								0.36			0.01	9.70	0.30	0.09	9.60	0.20	0.04
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				t =	8.79		0.60	917	9.53	0.13	759	897	897	546	977	977	400
1 1 1 1 0	50	9.4		49	24	F50	76	8	263	263	1	8	8	7	5	5	6
1 9.4 50 302 F51 608 4 5 5 8 3 3 2 8 9 4.4 1 1 113 703 315 315 1.17 780								0.23	9.46	0.06	0.00	9.49	0.09	0.00	9.42	0.02	
1 9.4 5.0 3.92 F51 6.03 1.4 5 5.8 7.8 7.3 7.5 1.61 1.04 2 7.3 5.1 1.13 703 315 315 1.77 780				t =	8.91		0.48	627	631	631	439	269	269	859	097	097	0.00
1 1	51	9.4		50	392	F51	608	4	5	5		3	3	2	8	8	044
t= 113 113 703 315 1.17 780 780 271 209 209 498 52 7.3 51 6 F52 6 2 7 7 323 88 8 1 88 8 1 88 8 1 88 8 107 1.0 1.07 1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.03 1.01 1.03 1																	
52 7.3 51 6 F52 6 2 7 7 323 8 8 1 8 8 5 1 1 7.77 1 3.27 10.7 6.44 1.94 3.76 5.53 1.03 1.07 1.07 0.09 53 4.5 52 9 73 29 157 157 972 734 734 607 4.80 0.00 53 4.5 52 9 757 20 191 157 157 972 734 734 607 4.80 0.00 53 4.5 52 9 753 0.7 10 107 107 102 108 0.7 121 121 121 121 121 54 7.3 53 7 754 7 1 9 10 121 121 131 0.20 107 103 104 121 55 7 54 75 12 0.48 0.13 123 138 0.30 131 0.20 131 0.31 131 0.21 131 0.31 131 0.31 131 0.31 131 0.31<				t =							1.17						
1 1 7.77 3.27 10.7 6.44 1.94 3.76 5.33 1.03 1.07 4.80 0.30 53 4.5 52 9 F53 9 3 9 9 8 2 2 9 121 121 7 53 4.5 52 9 F53 9 3 9 9 8 2 2 9 121 121 7 54 7.3 53 7 F54 7 19 122 123 7 1 9 1 2 3 7 1 9 2 54 7.3 53 7 F54 7 1 9 1 2 3 7 1 9 2 8 3 3 3 103 7.3 108 0.33 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.04 123 123 <td>52</td> <td>7.3</td> <td></td> <td>51</td> <td></td> <td>F52</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td>	52	7.3		51		F52									8		
1 1							3.27	10.7	6.44	1.94		5.53	1.03				
53 4.5 52 9 F53 9 9 9 8 2 2 9 121 121 171 1 1 7.67 1.63 7.67 1.63 3.73 0.42 1.01 6.77 1.52 0.21 120 879 962 0.12 987 0.66 54 7.3 53 7 F54 7 1 9 1 2 3 7 7 1 9 244 55 7.4 53 7.7 F54 2 0.26 9.75 53 6 1 1.83 0.26 0.77 1.8 0.83 1.44 1.43 1.43 1.43 1.43 1.43 <t< td=""><td></td><td></td><td></td><td>t =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.80</td><td>0.30</td><td></td></t<>				t =											4.80	0.30	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53	4.5				F53											
1 1							0.37										
547.3537F547191123.377192441117.620.07.620.047.130.260.077.210.180.037.360.030.00557.4542F552855611952840557.4542F552870.480.237.830.260.078.020.078.02567.4559F5615736821192568.1559F5615736821192578.1559F5615736821192578.1567.798.030.097.850.241058.020.071.005.43335335.53335335.5335.5335.5335.5335.5335.5335.5335.5335.5335.5335.5335.5335.5335.533				t =													0.06
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54	7.3				F54											
1112262697539400136863558501498122557.4542F55285566195284557.4547.7180.380.147.610.480.237.830.260.078.020.078.020.078.020.078.020.078.020.078.020.076.008.020.076.503.495.0095.0095.001.00<					7.62		0.22			0.26	0.07		0.18	0.03	7.36		
557.4.5128566195284447.447.4 <t< td=""><td></td><td></td><td></td><td>t =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				t =													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55	7.4		54		F55											
111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.23</td><td></td><td>0.26</td><td></td><td></td><td></td><td></td></th<>											0.23		0.26				
568.1559F561				t =													
k k k 7.79 k 0.30 0.09 7.85 0.24 0.05 8.02 0.07 0.00 k k 57 8.1 56 3 F57 7 8 9 1 4 2 8 6 265 735 .05 57 8.1 7.99 0.80 0.64 8.32 0.47 0.22 8.56 0.23 0.05 8.72 0.07 0.00 58 8.8 57 3 F58 7 5 4 6 1 7 3 3 5 5 3 58 8.8 57 3 F58 7 5 4 6 1 7 3 3 5 5 3 58 8.8 57 3 F58 7 5 4 6 1.1 7 3 2 22 25 3 33 11 0.01 <td< td=""><td>56</td><td>8.1</td><td></td><td></td><td></td><td>F56</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	56	8.1				F56											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					7.79				7.85	0.24	0.05	8.02	0.07				
578.1563F5778914286265735 $\cdot \cdot \cdot \cdot$ 4454 $\cdot \cdot \cdot \cdot \cdot$ 7.994 $\cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $				t =											8.09	0.00	5.4E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	8.1		56		F57									1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.99		0.80	0.64	8.32	0.47	0.22	8.56	0.23	0.05	8.72	0.07	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				t =	560					057	144						500
1 1 7.91 0.31 0.10 7.96 0.36 0.13 7.88 0.28 0.08 7.71 0.11 0.01 59 7.6 58 2 F59 2 1 2 2 5 2 2 5 7 7 2 59 7.6 58 2 F59 2 1 2 2 5 2 2 5 7 7 2 59 7.6 7.77 0.57 0.32 7.58 0.38 0.14 7.40 0.20 0.04 7.25 0.05 0.00 60 7.2 59 6 F60 6 235 235 619 694 694 282 129 129 263 60 7.2 59 6 F60 6 26 6 6 1 1 4 3 3 1 60 7.2 59 6 F60 6 28.19 0.60 0.37 8.38 0.41 0.17 8.64 0.15	58	8.8		57		F58											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.91		0.31	0.10	7.96	0.36	0.13	7.88	0.28	0.08	7.71		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				t =	648		648	016	471	471	301		980		292	292	275
1 1 7.77 0.57 0.32 7.58 0.38 0.14 7.40 0.20 0.04 7.25 0.05 0.00 1 1 1 318 318 854 235 235 619 694 694 282 129 129 263 60 7.2 59 6 F60 6 2 6 6 6 1 1 4 3 3 1 60 7.2 7.97 0.82 0.67 8.19 0.60 0.37 8.38 0.41 0.17 8.64 0.15 0.02 61 8.8 60 9 F61 1 882 066 208 791 465 512 487 398 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1	59	7.6		58		F59		1									
k = 318 k = 318 854 235 235 619 694 694 282 129 129 263 60 7.2 59 6 F60 6 2 6 6 6 1 1 4 3 3 1 60 7.2 7.97 6 0.82 0.67 8.19 0.60 0.37 8.38 0.41 0.17 8.64 0.15 0.02 161 8.8 1 854 145 478 117 882 066 208 791 465 512 487 398 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 61 8.8 60 9 F61 1 2 8 1.95 8.25 0.05 0.00 8.					7.77		0.57	0.32		0.38	0.14	7.40	0.20	0.04	7.25	0.05	
60 7.2 59 6 F60 6 2 6 6 6 1 1 4 3 3 1 60 7.2 7.97 0.82 0.67 8.19 0.037 8.38 0.41 0.17 8.64 0.15 0.02 61 8.8 1 145 478 117 882 066 208 791 465 512 487 398 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 55 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 55 61 8.8 60 9 F61 1 2 8 2 8 5 9 1 55 61 8.9 60 9 61.1 1 8 1 1 8 1 5 1 1 <				t =	318		318									129	
61 8.8 - 7.97 0.82 0.67 8.19 0.60 0.37 8.38 0.41 0.17 8.64 0.15 0.02 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 61 8.8 8.02 0.17 0.03 8.19 0.00 1.95 8.25 0.05 0.00 8.24 0.04 0.00 1 283 716 138 558 441 E- 462 462 298 451 451 198	60	7.2		59		F60								4			
145 145 478 117 882 066 208 791 465 512 487 398 161 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 161 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 161 1 2 8 1.9 0.00 1.95 8.25 0.05 0.00 8.24 0.04 0.00 17 18 558 441 E- 462 462 298 451 451 198					7.97		0.82				0.37	8.38		0.17	8.64	0.15	
61 8.8 60 9 F61 1 2 8 2 4 2 8 5 9 1 5 k				t =													
t = 8.02 0.17 0.03 8.19 0.00 1.95 8.25 0.05 0.00 8.24 0.04 0.00 t = 283 716 138 558 441 E- 462 462 298 451 451 198	61	8.8		60		F61	1	2						5		1	
t = 283 716 138 558 441 E- 462 462 298 451 451 198					8.02		0.17	0.03		0.00	1.95	8.25	0.05	0.00		0.04	
				t =													
	62	8.2		61		F62											

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

			8.05		0.14	0.02	8.19	0.00	4.86	8.21	0.01	0.00	8.20	0.00	1.98
		t =	827		172	008	779	220	E-	638	638	026	445	445	E-
63	8.2	62	1	F63	9	7	5	5	06	7	7	9	1	1	05
			7.82		0.92	0.85	7.54	0.64	0.42	7.29	0.39	0.15	7.03	0.13	0.01
		t =	661		661	861	889	889	106	491	491	595	044	044	701
64	6.9	63	7	F64	7	9	7	7	8	6	6	9	5	5	6
04	0.5	05	, 8.14	104	, 1.25	1.58	, 8.47	, 0.92	0.85	8.76	0.63	0.39	9.16	0.23	0.05
		t =	129		870	434	444	555	664	847	152	882	304	695	614
65	0.4			ГСГ	6	434		1	5	5	152		504	5	
65	9.4	64	4	F65			9					4			8
			7.97		0.67	0.45	7.88	0.58	0.34	7.74	0.44	0.19	7.48	0.18	0.03
		t =	303		303	297	722	722	483	054	054	407	630	630	470
66	7.3	65	5	F66	5	6	4	4	2	2	2	8	4	4	9
			7.81		0.61	0.38	7.54	0.34	0.11	7.36	0.16	0.02			
		t =	842		842	245	361	361	806	216	216	629	7.22	0.02	0.00
67	7.2	66	8	F67	8	3	2	2	9	3	3	7	863	863	082
			7.73		0.33	0.11	7.47	0.07	0.00	7.38	0.01	0.00	7.38	0.01	0.00
		t =	474		474	205	180	180	515	864	135	012	286	713	029
68	7.4	67	2	F68	2	2	6	6	6	9	1	9	3	7	4
			8.62		3.57	12.7	9.83	2.36	5.58	10.7	1.44	2.08	11.7	0.48	0.23
		t =	779		220	606	590	409	895	565	340	341	182	171	204
69	12.2	68	4	F69	6	6	3	7	4	9	5	9	9	4	8
			9.34		2.85		11.0	1.18	1.39	11.7	0.43	0.18	12.1	0.04	
		t =	223		776	8.16	179	204	723	669	302	750	518	817	0.00
70	12.2	69	5	F70	5	682	5	8	9	8	2	8	3	1	232
	12.2	 0.5	9.23		0.43	0.18	9.90	1.10	1.22	9.69	0.89	0.79	9.13	0.33	0.11
		t =	378		378	817	897	897	982	009	009	226	518	518	234
71	8.8	70	8	F71	8	2	6	6	7	4	4	6	3	3	8
, 1	0.0	70	Ŭ	171		0.00	9.60	0.30	0.09	9.41	0.11	0.01	9.28	0.01	0.00
		t =	9.24		0.05	280	448	448	271	702	702	369	351	648	027
72	9.3	71	703	F72	297	6	8	8	3	8	8	6	8	2	2
/2	9.5	/1		172	1.87	3.52	8.25		1.82	7.65	0.75		7.13	0.23	0.05
		±	8.77					1.35				0.57			
72	6.0	t =	762	672	762	547	224	224	856	510	510	018	835	835	681
73	6.9	72		F73	4	3	4	4		8	8	9	2	2	
		Ι.	8.66		0.46	0.21	8.22	0.02		8.03	0.16	0.02		0.10	
		t =	209		209	353	612	612	068	653	346	672	383	616	127
74	8.2	73	9	F74	9	6	2	2	2	3	7	2	5	5	1
						1.76	7.61	0.61				0.09		0.10	0.01
		t =	8.32		1.32	804	306	306	584	7.31	0.31	669	938	938	196
75	7	74	968	F75	968	8	1	1	4	096	096	6	4	4	5
			8.42		0.37	0.14			0.35	8.35	0.44	0.19	8.63	0.16	0.02
		t =	374		625	156	8.20	0.59	220	328	671	955	093	906	858
76	8.8	75	4	F76	6	9	653	347	6	8	2	2	8	2	2
			8.61		0.78	0.60	8.80	0.59	0.35	9.08	0.31	0.09	9.32	0.07	0.00
		t =	899		100	996	326	673	609	598	401	860	309	690	591
77	9.4	76	5	F77	5	9	5	5	2	6	4	5	4	6	5
			7.55		4.25	18.1	6.05	2.75	7.57	5.03	1.73	3.01	3.90	0.60	0.36
		t =	519		519	066	163	163	148	579	579	298	230	230	277
78	3.3	77	6	F78	6	9	3	3	2	6	6	7	9	9	7
,0	5.5	,,	U	170	U	5	5	5	2	U	U	/	9	5	/

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

ALL			.011.)	• Onig		pone		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ining i	court	5 11 11	Sun		0		
				7.52		0.12	0.01	6.72	0.67	0.45	6.69	0.70	0.50	7.05	0.34	0.12
			t =	415		415	541	581	418	452	073	926	305	023	976	233
79	7.4		78	7	F79	7	5	6	4	4	9	1	1	1	9	8
				7.45		0.25		6.96	0.23	0.05	7.04	0.15	0.02	7.18	0.01	0.00
			t =	932		932	0.06	290	709	621	722	277	334	502	497	022
80	7.2		- 79	5	F80	5	725	8	2	3	2	8	1	3	7	4
00	7.2		75		100		0.01	7.13	0.16		7.22	0.07	0.00	7.28	, 0.01	0.00
			t =	7.42		0.12	624	145	854	840	416	583	575	850	149	0.00
81	7.3		80	746	F81	746	6	4	6	840	6	- 383 - 4	1	2	8	
01	7.5		80		LOT		0.01	7.21	0.08		0	4	0.00	<u> </u>	0	2 1.32
			+ _	7.40		0.10					7 77	0.02		7 20	0.00	
0.2	7 2		t =	196	500	196	039	572	427	710	7.27	0.02	051	1	0.00	E-
82	7.3		81	8	F82	8	8	7	3	2	725	275	8	885	115	06
				7.54		0.55	0.31	7.65	0.44	0.19	7.85	0.24	0.06		0.08	0.00
			t =	157		842	183	786	213	548	317	682	092	988	011	641
83	8.1	_	82	5	F83	5	9	4	6	5	5	5	3	5	5	8
							11.5	5.47	2.17	4.74	4.66	1.36	1.86	3.77	0.47	0.22
			t =	6.69		3.39	142	893	893	774	595	595	582	198	198	277
84	3.3		83	326	F84	326	1	2	2	4	2	2	6	9	9	3
				6.81		0.48	0.23	6.38	0.91		6.50	0.79	0.62	6.94	0.35	0.12
			t =	460		539	560	946	053	907	978	021	443	719	280	446
85	7.3		84	8	F85	2	6	6	4	2	6	4	9	9	1	9
				7.37		2.22	4.96	7.99	1.60	2.57	8.67	0.92	0.85			0.07
			t =	168		831	538	473	526	688	293	706	944	9.33	0.26	037
86	9.6		85	6	F86	4	2	3	7	2	6	4	8	472	528	4
				7.65		1.14	1.30	8.39	0.40	0.16	8.76	0.03	0.00	8.85	0.05	0.00
			t =	734		265	565	736	263	211	188	811	145	347	347	285
87	8.8		86	9	F87	1	1	6	4	4	1	9	3	2	2	9
				8.56		3.63	13.2	10.2	1.90	3.61	11.1	1.03		11.8	0.33	0.11
			t =	587		412	068	986	131	500	685	143	1.06	653	465	199
88	12.2		87	9	F88	1	3	8	7	5	6	6	386	5	3	2
				8.49		0.29	0.08	9.24	1.04	1.10	9.09	0.89	0.79	8.56	0.36	0.13
			t =	270		270	567	934	934	111	056	056	311	653	653	434
89	8.2		88	3	F89	3	5	2	2	8	9	9	4	5	5	8
				8.41		0.31	0.09	8.67	0.57	0.33	8.39	0.29		8.14	0.04	0.00
			t =	416		416	869	467	467	024	717	717	0.08	665	665	217
90	8.1		89	3	F90	3	8	1	1	7	1	1	831	3	3	7
							0.09	8.73	0.06	0.00	8.67	0.12	0.01	8.73	0.06	0.00
			t =	8.49		0.30	527	733	266	392	915	084	460	466	533	426
91	8.8		90	133	F91	867	7	5	5	7	1	9	4	5	5	9
				8.21		1.11	1.23	7.91	0.81		7.57	0.47	0.22	7.26	0.16	0.02
			t =	306		306	891	866	866	021	374	374	443	346	346	672
92	7.1		91	4	F92	4	2	8	8	7	5/4	5,4	5	7	7	1
52	··-		<u> </u>	8.17	1.52	0.17	0.02	7.95	0.04		7.87	0.12	0.01	7.92	0.07	0.00
			t =	045		0.17	905	933	0.04	165	212	787	635	634	365	542
93	8		ι_ 92	045	F93	045	905	955 4	6	4	4	6	2	054	305	542
95	0		52	7.99	1 23	0.69	0.48	7.62	0.32	4	7.47	0.17	0.02	7.36	0.06	
			t =	636		636	0.48 491	7.62 966	966	0.10	163	163	0.02 945	263	263	0.00
04	7 2				E0.4							103				392 2
94	7.3		93	1	F94	1	9	7	7	868	7	/	9	5	5	3

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

		 	• 2 1112		-poner			<u>8</u>			Juii	-p	• 		
			7.97		0.07	0.00	7.76	0.13		7.77	0.12	0.01	7.84	0.05	0.00
		t =	708		708	594	483	516	0.01	149	850	651	626	373	288
95	7.9	94	9	F95	9	3	3	7	827	1	9	5	3	7	8
			8.72		2.97	8.87	9.73	1.96	3.87	10.5	1.17	1.38	11.3	0.38	0.14
		t =	167		832	044	241	758	138	214	855	898	146	537	851
96	11.7	95	1	F96	9	3	7	3	4	5	3	6	3	4	3
			8.73		0.06	0.00	9.26	0.46		9.31	0.51	0.26	9.05	0.25	0.06
		t =	733		266	392	620	620	0.21	643	643	670	146	146	323
97	8.8	96	7	F97	3	7	8	8	735	4	4	4	3	3	3
			8.86		0.53	0.28	9.33	0.06	0.00			0.00	9.36	0.03	0.00
		t =	986		013	103	310	689	447	9.37	0.02	062	514	485	121
98	9.4	97	9	F98	1	8	4	6	5	493	507	8	6	4	5
			8.95		0.34	0.11	9.31	0.01	0.00	9.32	0.02	0.00	9.30	0.00	4.24
		t =	589		410	840	655	655	027	247	247	050	651	651	E-
99	9.3	98	6	F99	4	8	2	2	4	9	9	5	5	5	05
			8.68	54.0	1.08		8.45	0.85	0.73	8.11	0.51	0.26	7.77	0.17	0.02
100	7.0	t =	471	F10	471	1.17	827	827	663	674	674	702	065	065	912
100	7.6	99	6	0	6	661	6	6	8	4	4	4	1	1	2
			8.40	F10	1.10	1.22	7.87	0.57	0.33	7.54	0.24	0.06	7.34	0.04	0.00
101	7 2	t =	777	F10	777	716	913	913	540 1	502	502	003	706	706	221
101	7.3	 100	3 8.80	1	1.59	1 2.54	8 9.13	8 1.26	1.58	3 9.54	3 0.85	6	5 10.0	5 0.30	5 0.09
		t =	621	F10	378	013	9.15	043	868	9.54 350	649	0.73	947	529	320
102	10.4	101	9	2	1	9	930	1	6	550	3	358	1	329	520 4
102	10.4	101	8.66	2	0.56	0.31	8.61	0.51	0.27	8.53	0.43	0.18	8.29	0.19	0.03
		t =	497	F10	497	919	978	978	0.27	305	305	753	947	947	978
103	8.1	102	5	3	5	7	5,0	5,0	6	2	2	4	1	1	9
105	0.1	 102		5		,	9.50	0.89	0.79	9.83	0.56	0.31	10.1	0.21	0.04
		t =	9.01	F10	1.38	1.92	989	010	229	991	008	369	899	005	412
104	10.4	103	198	4	802	66	2	8	2	6	4	5	5	3	2
			8.68		1.28	1.66	8.45	1.05	1.11	8.13	0.73	0.53	7.67	0.27	0.07
		t =	958	F10	958	302	494	494	291	197	197	578	899	899	783
105	7.4	104	4	5	4	7	6	6	1	5	5	7	5	5	8
			8.35		1.35	1.82	7.72	0.72	0.52	7.33	0.33	0.11	7.06	0.06	
		t =	166	F10	166	700	747	747	921	959	959	532	789	789	0.00
106	7	105	7	6	7	4	3	3	7	2	2	3	9	9	461
			8.56		0.83	0.70	8.56	0.83	0.69	8.78	0.61	0.38			0.05
		t =	133	F10	866	336	373	626	933	187	812	207	9.16	0.23	438
107	9.4	106	4	7	6	1	7	3	7	8	2	5	679	321	7
			8.60		0.19	0.03		0.11		8.79	0.00	2.96	8.83	0.03	0.00
		t =	906		093	645	186	813	395	456	543	E-	667	667	134
108	8.8	107	7	8	3	5	8	2	5	3	7	05	9	9	5

APPENDIX 2 (cont.): Single Exponential Smoothing results with 'Sample 10'

t	Sample 10	x(0)	x^1(k)	x^1(k-1)	Z^1(k)	Y	X	Xsquare	Ysquare	X*Y
1	10.6	10.6	10.6			10.6				
2	4.5	4.5	15.1	10.6	12.85	4.5	12.85	165.1225	20.25	57.825
3	7.3	7.3	22.4	15.1	18.75	7.3	18.75	351.5625	53.29	136.875
4	7.6	7.6	30	22.4	26.2	7.6	26.2	686.44	57.76	199.12
5	7	7	37	30	33.5	7	33.5	1122.25	49	234.5
6	8.1	8.1	45.1	37	41.05	8.1	41.05	1685.103	65.61	332.505
7	12.2	12.2	57.3	45.1	51.2	12.2	51.2	2621.44	148.84	624.64
8	4.5	4.5	61.8	57.3	59.55	4.5	59.55	3546.203	20.25	267.975
9	9.3	9.3	71.1	61.8	66.45	9.3	66.45	4415.603	86.49	617.985
10	8	8	79.1	71.1	75.1	8	75.1	5640.01	64	600.8
11	11.9	11.9	91	79.1	85.05	11.9	85.05	7233.503	141.61	1012.095
12	7.9	7.9	98.9	91	94.95	7.9	94.95	9015.503	62.41	750.105
13	9.6	9.6	108.5	98.9	103.7	9.6	103.7	10753.69	92.16	995.52
14	8.2	8.2	116.7	108.5	112.6	8.2	112.6	12678.76	67.24	923.32
15	9.3	9.3	126	116.7	121.35	9.3	121.35	14725.82	86.49	1128.555
16	10.6	10.6	136.6	126	131.3	10.6	131.3	17239.69	112.36	1391.78
17	7.6	7.6	144.2	136.6	140.4	7.6	140.4	19712.16	57.76	1067.04
18	7.4	7.4	151.6	144.2	147.9	7.4	147.9	21874.41	54.76	1094.46
19	3.3	3.3	154.9	151.6	153.25	3.3	153.25	23485.56	10.89	505.725
20	7.6	7.6	162.5	154.9	158.7	7.6	158.7	25185.69	57.76	1206.12
21	7.3	7.3	169.8	162.5	166.15	7.3	166.15	27605.82	53.29	1212.895
22	8.2	8.2	178	169.8	173.9	8.2	173.9	30241.21	67.24	1425.98
23	7.6	7.6	185.6	178	181.8	7.6	181.8	33051.24	57.76	1381.68
24	7.6	7.6	193.2	185.6	189.4	7.6	189.4	35872.36	57.76	1439.44
25	11.7	11.7	204.9	193.2	199.05	11.7	199.05	39620.9	136.89	2328.885
26	7.6	7.6	212.5	204.9	208.7	7.6	208.7	43555.69	57.76	1586.12
27	7.2	7.2	219.7	212.5	216.1	7.2	216.1	46699.21	51.84	1555.92
28	10.4	10.4	230.1	219.7	224.9	10.4	224.9	50580.01	108.16	2338.96
29	10.6	10.6	240.7	230.1	235.4	10.6	235.4	55413.16	112.36	2495.24
30	10.6	10.6	251.3	240.7	246	10.6	246	60516	112.36	2607.6
31	7.2	7.2	258.5	251.3	254.9	7.2	254.9	64974.01	51.84	1835.28
32	7.6	7.6	266.1	258.5	262.3	7.6	262.3	68801.29	57.76	1993.48
33	6.9	6.9	273	266.1	269.55	6.9	269.55	72657.2	47.61	1859.895
34	7.3	7.3	280.3	273	276.65	7.3	276.65	76535.22	53.29	2019.545
35	8.8	8.8	289.1	280.3	284.7	8.8	284.7	81054.09	77.44	2505.36
36	7.3	7.3	296.4	289.1	292.75	7.3	292.75	85702.56	53.29	2137.075
37	7.9	7.9	304.3	296.4	300.35	7.9	300.35	90210.12	62.41	2372.765
38	8.1	8.1	312.4	304.3	308.35	8.1	308.35	95079.72	65.61	2497.635
		I				I				I

39

40

4.5

7.4

4.5

7.4

316.9

324.3

312.4 314.65

320.6

7.4

316.9

4.5 314.65 99004.62

320.6 102784.4

20.25 1415.925

2372.44

54.76

APPENDIX 3: Excel results of the Grey model applied to '*Sample 10*'

41 7.2 7.2 331.5 332.43 327.9 7.2 327.9 10751.84 51.84 236088 42 11.9 343.4 331.5 337.45 1139 1337.45 11395.55 10.89 1138.665 43 3.3.3 346.7 343.4 345.05 3.3 345.05 1039.55 10.89 1138.665 44 9.44 9.4 356.1 346.7 351.4 9.4 11.24 122960.3 7.7.4 3172.4 46 7.3 7.3 372.2 366.5 7.3 368.55 138.55 138.55 132.91 102.55 132.92 423.185 47 11.7 11.7 38.9 372.2 376.5 11.7 376.5 14292.18 136.88 142.9 12.2 12.2 40.4 438.9 38.55 14.2 149.4 43.05 142.7 144.7 147.4 88.36 3898.18 50 9.4 9.4 410 414.7	Arr	ENDIA 5 (cont.):	Excerte	suns of the	e Gley II	liouer a	ipplied i	o Sample	10	
43 3.3 3.46.7 343.4 345.05 3.3 345.05 119059.5 10.89 1138.665 44 9.4 9.4 356.1 346.7 351.4 9.4 351.4 123482 88.63 3303.16 45 8.8 8.8 364.9 365.5 7.3 356.5 13529.1 5.2.9 2004.15 47 11.7 11.7 383.9 372.2 378.05 11.7 378.05 14911.8 20.25 173.757 49 12.2 12.4 40.06 388.4 394.5 12.2 394.5 15563.3 148.44 481.2 50 9.4 41.9 40.06 40.3 34.30 182.5 133.93 382.8 51 9.4 41.9 40.14 41.7 71.74 83.8 389.8 52 7.3 7.3 42.6 43.8 43.9 43.8 13.9 32.2 133.2 53 4.5 4.31 44.5 <td>41</td> <td>7.2</td> <td>7.2</td> <td>331.5</td> <td>324.3</td> <td>327.9</td> <td>7.2</td> <td>327.9</td> <td>107518.4</td> <td>51.84</td> <td>2360.88</td>	41	7.2	7.2	331.5	324.3	327.9	7.2	327.9	107518.4	51.84	2360.88
44 9.4 356.1 346.7 351.4 9.4 351.4 123482 88.36 3303.16 45 8.8 8.8 364.9 356.1 360.5 8.8 360.5 129960.3 77.44 3172.4 46 7.3 7.3 372.2 366.55 1.7 78.05 14221.85 143.89 2690.415 48 4.5 4.5 388.4 383.9 386.15 4.5 386.15 149111.8 2025 173.7675 49 12.2 12.2 400.6 388.4 394.5 12.2 394.5 155630.3 148.84 481.29 50 9.4 9.4 410.4 410.7 179.71 188.36 389.88 51 9.4 9.4 419.4 413.05 173.43.05 173.43.05 173.43.05 173.43.05 173.43.05 173.43.05 173.43.05 173.43.05 173.43.05 174.44.05 389.85 52 7.3 7.3 435.5 431.2	42	11.9	11.9	343.4	331.5	337.45	11.9	337.45	113872.5	141.61	4015.655
45 8.8 8.8 364.9 356.1 360.5 8.8 360.5 12990.3 77.4 317.4 46 7.3 7.3 372.2 364.9 368.55 7.3 368.55 135829.1 53.29 690.415 47 11.7 11.7 383.9 372.2 378.05 11.7 378.05 142921.8 136.49 4423.18 48 4.5 386.15 4.51.18 14021.8 12.2 304.5 12.2 304.5 12.2 304.5 12.2 304.5 12.2 304.5 12.2 304.5 12.2 304.5 388.18 389.81 51 9.4 9.4 410.4 410.4 414.7 71.71.6 88.3 389.81 392.75 388.75 389.81 392.75 388.76 389.81 392.75 388.76 389.75 434.85 189.99.8 120.55 398.76 388.76 392.75 388.76 389.75 388.76 389.75 388.75 392.75 374.74 <td>43</td> <td>3.3</td> <td>3.3</td> <td>346.7</td> <td>343.4</td> <td>345.05</td> <td>3.3</td> <td>345.05</td> <td>119059.5</td> <td>10.89</td> <td>1138.665</td>	43	3.3	3.3	346.7	343.4	345.05	3.3	345.05	119059.5	10.89	1138.665
46 7.3 37.2 364.9 368.55 7.3 368.55 135829.1 53.29 2690.415 47 11.7 11.7 38.9 372.2 378.05 11.7 378.05 14291.8 136.89 4423.185 48 4.5 4.5 388.4 383.9 386.15 4.5 1491.18 20.25 173.7575 49 12.2 400.6 308.4 394.5 15563.3 148.44 481.29 50 9.4 410 400.6 405.3 9.4 41.47 171976.1 88.36 3809.82 51 9.4 4.4 410.4 41.07 9.4 41.47 171976.1 88.36 3809.82 53 7.3 342.5 431.2 434.85 7.3 343.5 18094.5 137.272.8 54 7.3 343.5 441.2 1954.08 137.22 137.44 4105.2 55 7.4 7.4 445.9 443.85 42.1 12	44	9.4	9.4	356.1	346.7	351.4	9.4	351.4	123482	88.36	3303.16
47 11.7 138.9 372.2 378.05 11.7 378.05 142921.8 136.89 4423.185 48 44.5 4.5 388.4 383.9 386.15 4.5 386.15 1451 14911.8 20.25 1737.675 49 12.2 12.2 400.6 388.4 394.5 12.2 394.5 15563.3 148.48 481.9 50 9.4 41.9 410.0 41.7 9.4 41.47 171761.88.36 389.81 51 9.4 41.9 410.4 423.05 7.3 423.05 178.971.3 53.29 308.265 53 4.5 431.2 426.7 428.95 42.5 183.998.1 20.25 1930.275 54 7.3 43.5 431.2 434.85 7.3 434.85 120.25 56.61 3174.405 55 7.4 445.9 449.9 98 81 442.9 1204.2 1954.5 56.61 364.595 57 8.1 8.1 445.1 445.9 499.5 81 449.2	45	8.8	8.8	364.9	356.1	360.5	8.8	360.5	129960.3	77.44	3172.4
48 4.5 4.5 38.4.4 38.3.9 38.6.15 4.5. 38.6.15 14.9111.8 20.25 1737.675 49 12.2 12.2 400.6 388.4 394.5 12.2 394.5 15563.3 148.84 4812.9 50 9.4 9.4 410 400.6 405.3 9.4 405.3 154268.1 88.36 389.81 51 9.4 9.4 410.2 428.95 7.3 432.5 18991.3 53.29 308.826 53 4.5.5 431.2 428.95 4.5 428.95 183998.1 20.25 1930.275 54 7.3 7.3 438.5 441.2 7.4 442.9 1950.40 53.29 3174.605 55 7.4 7.4 445.9 449.95 84.1 442.9 1950.40 53.29 3174.605 56 8.1 8.1 445.9 449.25 7.4 442.9 1950.40 53.29 3174.512 53.29	46	7.3	7.3	372.2	364.9	368.55	7.3	368.55	135829.1	53.29	2690.415
49 12.2 12.2 400.6 388.4 394.5 12.2 394.5 155630.3 148.44 4812.9 50 9.4 9.4 410 400.6 405.3 9.4 405.1 164268.1 88.36 3899.82 51 9.4 9.4 419.4 410.7 9.4 413.7 177.1 177.1 83.8 888.8 52 7.3 7.3 426.7 426.7 859 43.28 17.8 183.9 190.275 54 7.3 7.3 438.5 441.2 43.85 7.3 43.85 1899.5 15.2 1930.755 54 7.7 7.4 445.9 443.5 7.4 442.5 1930.755 176.7 6.6.1 370.4 410.52 55 7.4 7.4 445.9 449.95 8.1 449.5 202455 65.61 370.4 4105.7 56 8.8 8.4 470.9 474.7 7.6 476.4 350.7 <td>47</td> <td>11.7</td> <td>11.7</td> <td>383.9</td> <td>372.2</td> <td>378.05</td> <td>11.7</td> <td>378.05</td> <td>142921.8</td> <td>136.89</td> <td>4423.185</td>	47	11.7	11.7	383.9	372.2	378.05	11.7	378.05	142921.8	136.89	4423.185
50 9.4 9.4 9.4 410 400.6 405.3 9.4 405.3 164268.1 88.36 3809.82 51 9.4 9.4 419.4 410.7 9.4 414.7 171976.1 88.36 3898.18 52 7.3 7.3 426.7 419.4 423.05 7.3 423.05 178971.3 53.29 3082.75 53 4.5 431.2 448.5 442.2 7.4 442.5 343.85 1393.93 53.29 3174.05 54 7.4 7.4 445.9 443.2 7.4 442.2 155.0 56.61 370.25 55 7.4 7.4 445.9 449.55 8.1 450.5 2030.8 65.61 370.25 58 8.8 470.9 442.1 7.4 442.2 3240.4 51.84 341.5 59 7.6 7.6 478.5 470.1 8.8 490.1 8.8 490.1 50.4 201.998 7.4<	48	4.5	4.5	388.4	383.9	386.15	4.5	386.15	149111.8	20.25	1737.675
519.49.4419.4410.9.4414.771976.188.363898.18527.37.3426.7419.4423.057.3423.05178971.353.293088.265534.54.5431.2426.7428.954.5428.95183998.120.251930.275547.37.3438.5431.2434.857.3434.85189094.553.293174.405557.47.4445.9438.5442.27.4442.2195540.856.613644.595578.18.1462.1445.4485.058.1450.520980.865.613710.205588.88.8470.9462.1466.58.8466.51762.377.444105.2597.67.6478.5470.9474.77.6474.725340.157.63607.72607.27.2485.7490.18.8490.12019877.444312.88618.88.8494.5485.7490.18.8490.12019877.444312.88628.2502.7494.5498.68.2498.62486067.244085.76638.2502.7503.87.354.352455.947.613549.15646.96.9517.8527.2504.851.4524761.254.744155.76657.27.2541.7	49	12.2	12.2	400.6	388.4	394.5	12.2	394.5	155630.3	148.84	4812.9
52 7.3 426.7 419.4 423.05 7.3 423.05 178971.3 53.29 3088.265 53 4.5 4.5 431.2 426.7 428.95 4.5 428.95 183998.1 20.25 53.29 3174.405 54 7.3 7.3 438.5 441.2 7.4 442.2 195540.8 53.29 3174.405 55 7.4 7.4 445.9 448.9 449.95 8.1 449.2 195540.8 55.6 364.5 56 8.1 8.1 462.1 4454 458.05 8.1 458.05 202455 65.61 364.752 58 8.8.8 470.9 462.1 466.5 8.8 466.5 1762.3 7.74 4105.2 59 7.6 7.6 478.5 470.9 471.7 263.41 22420.4 51.84 3471.12 61 8.8 8.99.5 495.7 490.1 8.8 490.1 240198 7.744 4312.8	50	9.4	9.4	410	400.6	405.3	9.4	405.3	164268.1	88.36	3809.82
53 4.5 4.31 442.7 428.95 4.5 428.95 183998.1 20.25 1930.275 54 7.3 7.3 438.5 431.2 434.85 7.3 434.55 189094.5 53.29 3174.405 55 7.4 7.4 445.9 449.95 8.1 449.95 202455 65.61 3644.595 57 8.1 8.1 462.1 445 458.05 8.1 458.05 20809.8 65.61 3710.205 58 8.8.8 48.45 478.5 478.7 7.6 47.7 225340.1 57.6 3607.2 60 7.2 7.2 485.7 478.5 482.1 7.2 482.1 23242.4 51.44 471.12 61 8.8 494.5 495.7 490.1 8.8 490.1 23242.4 51.4 3471.2 63 8.2 50.2 7.02 431.5 50.5 51.5 248.60 248.02 67.2 408.52	51	9.4	9.4	419.4	410	414.7	9.4	414.7	171976.1	88.36	3898.18
54 7.3 7.3 438.5 431.2 438.85 7.3 438.85 189094.5 53.29 3174.405 55 7.4 7.4 445.9 438.5 442.2 7.4 442.2 195540.8 54.6 3272.28 56 8.1 8.1 454. 445.9 449.95 8.1 449.95 202455 65.61 3710.205 58 8.8 8.8 470.9 476.1 7.6 477.7 22540.1 57.6 3607.72 59 7.6 7.2 485.7 478.5 482.1 7.2 482.1 232420.4 51.44 431.28 61 8.8 8.49 50.7 494.5 498.6 8.2 498.6 248602 67.24 432.88 62 8.2 50.2 510.9 50.27 50.8 8.2 50.8 24860 248602 67.24 435.76 63 8.2 50.7 494.5 510.9 514.5 53.8 5	52	7.3	7.3	426.7	419.4	423.05	7.3	423.05	178971.3	53.29	3088.265
S57.47.4445.9443.5442.27.4442.2195540.854.763272.28568.18.1454445.9449.958.1449.9520245565.613644.595578.18.8400.9462.1466.58.8466.521762.377.444105.2597.67.6478.5470.9474.77.6474.725340.157.763607.72607.27.2485.7478.5482.17.2482.1232420.451.843471.12618.88.8490.5448.7490.18.8490.12019877.444312.88628.28.250.7494.5498.68.2498.62860267.2408.52638.28.250.9564.826686267.44155.76565646.96.9517.8520.554.35455.947.611549.15659.49.4527.2530.857.3530.85281801.753.293875.20667.37.3534.5527.2530.857.3530.85281801.753.293875.20677.27.2541.7545.47.4545.4297461.254.74403.56687.47.4549.1555.212.2538.53451.386.95548.66912.2573.5561.3567.412.2	53	4.5	4.5	431.2	426.7	428.95	4.5	428.95	183998.1	20.25	1930.275
568.18.14.45.44.49.98.14.49.952.024556.5.613.644.595578.18.14.62.14.58.058.1458.052.0980.986.5.613.710.205588.8.88.84.70.94.62.14.66.58.84.66.52.1762.37.7.444.105.2597.67.64.78.54.70.94.74.77.64.74.72.5340.15.7.63.607.72607.27.24.85.74.78.54.82.17.24.82.12.2420.45.1.843.471.12618.88.84.94.54.85.74.90.18.84.90.12.401987.7.444.312.88628.28.250.74.94.54.98.68.24.98.62.866.06.7.24.088.52638.28.250.951.435.645.5.94.7.613.549.015646.96.951.7852.55.452.55.7.638.22.7306.38.8.64.91.57.6659.49.452.753.1553.817.253.855.1.843.87.323.87.205677.27.254.1754.547.454.542.97461.254.764.035.9687.47.454.9155.751.85.7.53.86.953.44510.386.495.85.579.39.359.1655.2557.7.98.857.793.3368.47.445085.52<	54	7.3	7.3	438.5	431.2	434.85	7.3	434.85	189094.5	53.29	3174.405
578.8.18.8.1462.14454458.058.8.1458.05209809.865.613710.205588.8.88.8.8470.9462.1466.58.8.8466.521762.2.377.444105.2597.7.67.7.2485.7470.9474.77.6474.7225340.157.763607.72607.7.27.7.2485.7478.5482.17.2.2482.1232420.451.843471.12618.8.8494.5485.7490.18.8490.124019877.444312.88628.2.250.2.7494.5498.68.2498.624860267.24408.52638.2.251.950.7.7506.88.2506.824860267.24405.76646.96.9517.8510.9514.356.9514.3526455.947.613549.015659.49.4527.2530.857.3530.85281801.753.29387.205667.37.3534.5527.2530.857.3530.85281801.753.29387.205677.2.2541.7534.5538.17.2538.128951.651.84387.32687.47.4549.1545.77.4545.4297461.254.64403.286912.2561.3549.1555.212.2555.230824714.846922.84718.8	55	7.4	7.4	445.9	438.5	442.2	7.4	442.2	195540.8	54.76	3272.28
588.8.8.70.9462.1466.58.8.466.5217622.377.444105.2597.67.6478.5470.9474.77.6474.7225340.157.63607.72607.27.2485.7478.5482.17.2482.1232420.451.843471.12618.8.88.94.5485.7490.18.8490.124019877.444312.88628.28.2502.7494.5498.68.2498.624860267.244085.2638.2510.9502.7506.88.2564.826455.947.613549.015646.96.9517.8510.9514.3554.55547.63549.015659.49.4527.2531.8522.573.06.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.20677.27.2541.7534.5538.17.2538.12951.651.483874.32687.47.4549.1541.7545.477.4545.4297461.254.764035.966912.212.2573.5561.3567.412.2567.432194.8448.46922.887118.88.8582.3573.5577.98.8577.93396.477.445085.52729.39.3591.6595.	56	8.1	8.1	454	445.9	449.95	8.1	449.95	202455	65.61	3644.595
597.67.6478.5470.9474.77.6474.7225340.157.763607.72607.27.2485.7478.5482.17.2482.123420.451.843471.12618.88.8494.5485.7490.18.8490.124019877.444312.88628.28.2502.7494.5498.68.2498.624860267.244088.52638.28.2510.9502.7506.88.2506.826455.947.613549.015646.96.9517.8510.9514.356.9514.3526455.947.613549.015659.49.4527.2517.8522.59.4525.227306.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.128951.651.843874.32687.47.4549.1541.7545.47.4545.230827448.46922.826912.212.2561.3549.1555.212.2555.2308247148.846922.82718.88.8582.3573.5577.98.8577.93396.477.445085.52729.39.3591.6595.056.9550.0554084.547.614105.84	57	8.1	8.1	462.1	454	458.05	8.1	458.05	209809.8	65.61	3710.205
607.27.2485.7478.5482.17.2482.123242.451.843471.12618.88.8494.5485.7490.18.8490.124019877.444312.88628.28.2502.7494.5498.68.2498.624860267.244088.52638.28.2510.9502.7506.88.2506.825684.267.244155.76646.99.4527.2517.8522.59.4522.527306.388.36911.5659.49.4527.2517.8522.59.4522.527306.388.36911.5667.37.3534.5527.250.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.1297461.251.843874.32687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2557.2308247148.846972.487012.212.2573.5561.3567.412.2567.431942.8148.846922.88718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6595.056.9595.05354084.547.614105.	58	8.8	8.8	470.9	462.1	466.5	8.8	466.5	217622.3	77.44	4105.2
618.88.8494.5448.7490.18.8490.124019877.444312.88628.28.250.7494.5498.68.2498.624860267.244088.52638.28.2510.9502.7506.88.2506.8256846.267.244155.76646.96.9517.8510.9514.3569.4525.5273006.388.364911.5659.49.4527.2537.8522.59.4522.5273006.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.1297461.254.764035.966912.212.2561.3547.1545.47.4545.4297461.254.764035.966912.212.2561.3561.3567.412.2567.432194.28148.486922.28718.88.8582.3573.5577.98.8577.933968.477.445085.52729.39.3591.6595.05546.9595.0535404.547.614105.845736.99.3586.9595.05545.4567.244941.324271.4743.86.2613.7613.7613.7610.277.44543.95895.6736	59	7.6	7.6	478.5	470.9	474.7	7.6	474.7	225340.1	57.76	3607.72
628.28.2502.7494.5498.68.2498.624860267.244088.52638.2510.9502.7506.88.2566.8256846.267.244155.76646.96.9517.8510.9514.356.9514.35264555.947.613549.015659.49.4527.2517.8522.59.4522.527306.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2555.2308247148.846922.287012.212.2573.5561.3567.412.2557.4321942.8148.846922.88718.88.8582.3573.5577.98.8577.933396.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495456.35736.959.8591.6595.056.9595.05354084.547.614105.845748.88.8622.5613.7618.18.8612.24941.327577613.7606.7610.27610.23723444944271.4768.88.8<	60	7.2	7.2	485.7	478.5	482.1	7.2	482.1	232420.4	51.84	3471.12
638.8.28.9.3510.9502.7.3506.88.2.3506.8256846.267.244155.76646.9.96.9.9517.8510.9514.356.9.9514.35264555.947.613549.015659.4.49.4527.2517.8522.59.4.4522.5273006.388.364911.5667.3.37.3534.5527.2530.857.3530.85281801.753.293875.205677.2.7.2541.7534.5538.17.2538.1289551.651.843874.32687.4.47.4.4549.1549.1545.212.2555.2308247148.846922.286912.212.2573.5561.3567.412.2567.4321942.8148.846922.287112.88.8582.3573.5577.98.8577.933968.477.445085.52729.39.3591.6595.5561.5567.93451.534451.0386.495456.35736.696.9598.5591.6595.5586.9534451.0386.495458.63744.828.8622.5513.7610.2773144.54015.45757777613.7606.7595.5561.35451.53540.534451.386.494271.4757777613.7606.7610.27610.237234.4	61	8.8	8.8	494.5	485.7	490.1	8.8	490.1	240198	77.44	4312.88
646.696.9517.8510.9514.356.9514.3526455.947.613549.015659.49.4527.2517.8522.59.4522.5273006.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.1289551.651.843874.32687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2573.5561.3567.412.2557.4321942.8148.846922.287112.88.8582.3573.5577.98.8577.933968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.88.8622.5613.7610.27610.2372344494271.475777613.7606.7610.27610.2372344494271.475777613.7666.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.44543	62	8.2	8.2	502.7	494.5	498.6	8.2	498.6	248602	67.24	4088.52
659.49.4527.2557.8522.59.4522.527306.388.364911.5667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.1289551.651.843874.32687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2555.2308247148.846922.287012.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.86.2606.7598.5602.68.2602.636312.667.244941.32757777613.7606.7610.27610.2372344494271.475779.4631.9622.5627.29.4627.239337.888.365895.68769.4631.9622.5613.7618.18.8618.1382047.67.44	63	8.2	8.2	510.9	502.7	506.8	8.2	506.8	256846.2	67.24	4155.76
667.37.3534.5527.2530.857.3530.85281801.753.293875.205677.27.2541.7534.5538.17.2538.1289551.651.843874.32687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2555.2308247148.846922.287012.212.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.933368.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9554.0886.495458.635744.8.28.2606.7598.5591.6595.05354084.547.614105.845748.86.2.5613.7610.27610.2372344494271.475779.4631.9622.5627.29.4627.239379.888.365895.68759.4631.9622.5613.7618.18.8618.1382047.677.445439.28769.49.4631.9622.5627.29.4627.239379.888.365895.68 <tr< td=""><td>64</td><td>6.9</td><td>6.9</td><td>517.8</td><td>510.9</td><td>514.35</td><td>6.9</td><td>514.35</td><td>264555.9</td><td>47.61</td><td>3549.015</td></tr<>	64	6.9	6.9	517.8	510.9	514.35	6.9	514.35	264555.9	47.61	3549.015
677.27.2541.7534.5538.17.2538.1289551.651.843874.32687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2555.2308247148.846773.447012.212.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.327577613.7606.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.2 <td< td=""><td>65</td><td>9.4</td><td>9.4</td><td>527.2</td><td>517.8</td><td>522.5</td><td>9.4</td><td>522.5</td><td>273006.3</td><td>88.36</td><td>4911.5</td></td<>	65	9.4	9.4	527.2	517.8	522.5	9.4	522.5	273006.3	88.36	4911.5
687.47.4549.1541.7545.47.4545.4297461.254.764035.966912.212.2561.3549.1555.212.2555.2308247148.846773.447012.212.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.327577613.7606.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86797.47.4642.6635.2638.97.3633.55401385.6 <t< td=""><td>66</td><td>7.3</td><td>7.3</td><td>534.5</td><td>527.2</td><td>530.85</td><td>7.3</td><td>530.85</td><td>281801.7</td><td>53.29</td><td>3875.205</td></t<>	66	7.3	7.3	534.5	527.2	530.85	7.3	530.85	281801.7	53.29	3875.205
6912.212.2561.3549.1555.212.2555.2308247148.846773.447012.212.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.32757777613.7606.7610.277610.23723444.944271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.239337.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.241757.4451.844652.64817.37.3657.1649.8653.457.3660.75436590.6 </td <td>67</td> <td>7.2</td> <td>7.2</td> <td>541.7</td> <td>534.5</td> <td>538.1</td> <td>7.2</td> <td>538.1</td> <td>289551.6</td> <td>51.84</td> <td>3874.32</td>	67	7.2	7.2	541.7	534.5	538.1	7.2	538.1	289551.6	51.84	3874.32
7012.212.2573.5561.3567.412.2567.4321942.8148.846922.28718.88.8582.3573.5577.98.8577.9333968.477.445085.52729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.3275777613.7606.7610.27610.23723444.94271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.241757.4451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.6 <td>68</td> <td>7.4</td> <td>7.4</td> <td>549.1</td> <td>541.7</td> <td>545.4</td> <td>7.4</td> <td>545.4</td> <td>297461.2</td> <td>54.76</td> <td>4035.96</td>	68	7.4	7.4	549.1	541.7	545.4	7.4	545.4	297461.2	54.76	4035.96
71 8.8 8.8 582.3 573.5 577.9 8.8 577.9 333968.4 77.44 5085.52 72 9.3 9.3 591.6 582.3 586.95 9.3 586.95 344510.3 86.49 5458.635 73 6.9 6.9 598.5 591.6 595.05 6.9 595.05 354084.5 47.61 4105.845 74 8.2 8.2 606.7 598.5 602.6 8.2 602.6 363126.8 67.24 4941.32 75 77 7 613.7 606.7 610.2 7 610.2 372344 49 4271.4 76 8.8 8.8 622.5 613.7 618.1 8.8 618.1 382047.6 77.44 5439.28 77 9.4 9.4 631.9 622.5 627.2 9.4 627.2 393379.8 88.36 5895.68 78 3.3 3.3 635.2 635.9 7.4 638.9 408193.2 54.76 4727.86 79 7.4 7.4 642.6	69	12.2	12.2	561.3	549.1	555.2	12.2	555.2	308247	148.84	6773.44
729.39.3591.6582.3586.959.3586.95344510.386.495458.635736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.32757777613.7606.7610.27610.23723444494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	70	12.2	12.2	573.5	561.3	567.4	12.2	567.4	321942.8	148.84	6922.28
736.96.9598.5591.6595.056.9595.05354084.547.614105.845748.28.2606.7598.5602.68.2602.6363126.867.244941.327577613.7606.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	71	8.8	8.8	582.3	573.5	577.9	8.8	577.9	333968.4	77.44	5085.52
748.28.2606.7598.5602.68.2602.6363126.867.244941.327577613.7606.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	72	9.3	9.3	591.6	582.3	586.95	9.3	586.95	344510.3	86.49	5458.635
7577613.7606.7610.27610.2372344494271.4768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	73	6.9	6.9	598.5	591.6	595.05	6.9	595.05	354084.5	47.61	4105.845
768.88.8622.5613.7618.18.8618.1382047.677.445439.28779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	74	8.2	8.2	606.7	598.5	602.6	8.2	602.6	363126.8	67.24	4941.32
779.49.4631.9622.5627.29.4627.2393379.888.365895.68783.33.3635.2631.9633.553.3633.55401385.610.892090.715797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	75	7	7	613.7	606.7	610.2	7	610.2	372344	49	4271.4
78 3.3 635.2 631.9 633.55 3.3 633.55 401385.6 10.89 2090.715 79 7.4 7.4 642.6 635.2 638.9 7.4 638.9 408193.2 54.76 4727.86 80 7.2 7.2 649.8 642.6 646.2 7.2 646.2 417574.4 51.84 4652.64 81 7.3 7.3 657.1 649.8 653.45 7.3 653.45 426996.9 53.29 4770.185 82 7.3 7.3 664.4 657.1 660.75 7.3 660.75 436590.6 53.29 4823.475	76	8.8	8.8	622.5	613.7	618.1	8.8	618.1	382047.6	77.44	5439.28
797.47.4642.6635.2638.97.4638.9408193.254.764727.86807.27.2649.8642.6646.27.2646.2417574.451.844652.64817.37.3657.1649.8653.457.3653.45426996.953.294770.185827.37.3664.4657.1660.757.3660.75436590.653.294823.475	77	9.4	9.4	631.9	622.5	627.2	9.4	627.2	393379.8	88.36	5895.68
80 7.2 7.2 649.8 642.6 646.2 7.2 646.2 417574.4 51.84 4652.64 81 7.3 7.3 657.1 649.8 653.45 7.3 653.45 426996.9 53.29 4770.185 82 7.3 7.3 664.4 657.1 660.75 7.3 660.75 436590.6 53.29 4823.475	78	3.3	3.3	635.2	631.9	633.55	3.3	633.55	401385.6	10.89	2090.715
81 7.3 7.3 657.1 649.8 653.45 7.3 653.45 426996.9 53.29 4770.185 82 7.3 7.3 664.4 657.1 660.75 7.3 660.75 436590.6 53.29 4823.475	79	7.4	7.4	642.6	635.2	638.9	7.4	638.9	408193.2	54.76	4727.86
82 7.3 7.3 664.4 657.1 660.75 7.3 660.75 436590.6 53.29 4823.475	80	7.2	7.2	649.8	642.6	646.2	7.2	646.2	417574.4	51.84	4652.64
	81	7.3	7.3	657.1	649.8	653.45	7.3	653.45	426996.9	53.29	4770.185
83 8.1 8.1 672.5 664.4 668.45 8.1 668.45 446825.4 65.61 5414.445	82	7.3	7.3	664.4	657.1	660.75	7.3	660.75	436590.6	53.29	4823.475
	83	8.1	8.1	672.5	664.4	668.45	8.1	668.45	446825.4	65.61	5414.445

APPENDIX 3 (cont.): Excel results of the Grey model applied to 'Sample 10'

84	3.3	3.3	675.8	672.5	674.15	3.3	674.15	454478.2	10.89	2224.695
85	7.3	7.3	683.1	675.8	679.45	7.3	679.45	461652.3	53.29	4959.985
86	9.6	9.6	692.7	683.1	687.9	9.6	687.9	473206.4	92.16	6603.84
87	8.8	8.8	701.5	692.7	697.1	8.8	697.1	485948.4	77.44	6134.48
88	12.2	12.2	713.7	701.5	707.6	12.2	707.6	500697.8	148.84	8632.72

APPENDIX 3 (cont.): Excel results of the Grey model applied to 'Sample 10'

The followings are the forecasts

Observed Value	k values	forecasts	errors	errors sq.
8.2	89	8.06658106	0.133419	0.017801
8.1	90	8.06626163	0.033738	0.001138
8.8	91	8.06594221	0.734058	0.538841
7.1	92	8.0656228	0.965623	0.932427
8	93	8.06530341	0.065303	0.004265
7.3	94	8.06498403	0.764984	0.585201
7.9	95	8.06466466	0.164665	0.027114
11.7	96	8.06434531	3.635655	13.21799
8.8	97	8.06402597	0.735974	0.541658
9.4	98	8.06370664	1.336293	1.78568
9.3	99	8.06338732	1.236613	1.529211
7.6	100	8.06306802	0.463068	0.214432
7.3	101	8.06274873	0.762749	0.581786
10.4	102	8.06242945	2.337571	5.464236
8.1	103	8.06211018	0.03789	0.001436
10.4	104	8.06179093	2.338209	5.467222
7.4	105	8.06147169	0.661472	0.437545
7	106	8.06115246	1.061152	1.126045
9.4	107	8.06083325	1.339167	1.793368
8.8	108	8.06051404	0.739486	0.546839

	Sam												
t	ple 10	k	Ln X _k	Ln x _{k-1}	ak	a	J	(x _{k-1}) ^k	$(\mathbf{x}_k)^{k \cdot 2}$	X_{k-1} - X_k	F	Z=J+F	b հ
						0.001							
1	10.6	1				616							
			1.504	2.360	- 0.85677		- 5.252	112.3			18.41	13.16	4.521
2	4.5	2	077	854	6604		24	6	1	6.1	967	743	068
			1.987	1.504	0.48379		15.08	91.12			- 4.458	10.63	7.317
3	7.3	3	874	0774	6951		897	51.12	7.3	-2.8	4.438	08	009
											-		
	7.0	4	2.028	1.987	0.04027		188.7	2839.	57.70	0.2	163.8	24.82	7.639
4	7.6	4	148	8743	3899		078	824	57.76	-0.3	86	139	714
			1.945	2.028	0.08223		85.11	2535			123.2	38.08	7.060
5	7	5	91	1482	8098		87	5.25	343	0.6	034	467	935
			2.091	1.945	0.14595		55.49	1176	4304.		- 24.84	30.65	8.149
6	8.1	6	864	9101	3913		697	49	672	-1.1	59	103	042
											-		
_	12.2	_	2.501	2.091	0.40957		29.78	2287	27027		2.064	27.72	12.24
7	12.2	7	436	8641	189		72	679	0.8	-4.1	49	271	436
			1.504	2.501	0.99735		4.511	4.91E	8303.		7675.	7671.	16.77
8	4.5	8	077	436	8555		92	+08	766	7.7	609	097	376
			2.230	1.504	0.72593		12.81	7566	60170		- 0.026	12.78	9.320
9	9.3	9	014	0774	7003		12.81	80.6	00170	-4.8	2	483	456
					-		-						
1		10	2.079	2.230	0.15057		53.13	4.84E	16777	1.2	221.9	168.7	8.270
0	8	10	442	0144	2858		04	+09	216	1.3	046	741	039
1			2.476	2.079	0.39709		29.96	8.59E	4.79E		0.460	29.50	11.94
1	11.9	11	538	4415	6858		75	+09	+09	-3.9	26	724	721
1			2.066	2.476	- 0.40967		- 19.28	8.06E	9.47E		2129.	2109.	11.27
2	7.9	12	2.000	5384	0.40967 5641		19.28 35	+12	9.47E +08	4	2129.	996	599
											-		
1		12	2.261	2.066	0.19490		49.25	4.67E	6.38E	4 7	4.302	44.95	9.671
3	9.6	13	763	8628	0339		594 -	+11	+10	-1.7	49	345	926
1			2.104	2.261	0.15762		52.02	5.65E	9.24E		436.4	384.3	8.815
4	8.2	14	134	7631	8944		09	+13	+10	1.4	183	974	036

APPENDIX 4: Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

2.104 2.230 1 0.12588 73.87 5.1E+ 3.89E 11.89 61.98 9.399 5 9.3 15 014 1342 0246 +12 002 974 13 -1.1 97 168 1 2.360 2.230 0.13083 81.01 3.13E 2.26E 10.65 70.36 10.71 6 10.6 16 854 0144 9601 523 +15 +14 -1.3 15 258 37 2.028 2.360 0.33270 2.69E 5506. 5483. 1 22.84 1.63E 16.37 7 7.6 17 148 854 5754 3 +17 +13 3 486 643 383 2.001 2.028 0.02666 277.4 7.16E 8.09E 442.4 165.0 7.664 1 8 7.4 +13 18 48 1482 8247 84 +15 0.2 938 102 016 1.193 2.001 0.80755 3.28E 6.53E 12242 12242 19591 4.086 1 9 3.3 19 922 48 7532 4 +16 +08 4.1 831 827 .82 2 2.028 1.193 0.83422 9.110 2.35E 7.16E -7.6E-9.110 7.614 7.6 +15 0 20 148 9225 5779 244 -4.3 07 243 576 +10 2.53E 2 1.987 2.028 0.04027 181.2 3.14E 413.8 232.5 7.672 7.3 0.3 1 874 1482 3899 +18 +16 375 787 126 21 59 0.11625 9.84E 1.89E 2.104 1.987 70.53 5.788 64.74 8.303 2 2 8.2 22 134 8743 9806 +18 +18 -0.9 295 589 168 73 2.028 2.104 0.07598 100.0 1.04E 3.14E 552.6 452.6 2 8.324 3 7.6 23 148 1342 5907 19 +21 +18 0.6 904 718 275 2 2.028 2.028 1.38E 2.39E #DIV/ #DIV/ #DIV/ #DIV/ 4 7.6 24 1482 0 0! 0! 0! 148 0 0! +21 +19 2.459 0.43144 27.11 1.05E 3.7E+ 0.000 11.74 2.028 27.11 2 5 11.7 25 589 1482 0595 845 +22 24 -4.1 69 776 339 2 2.028 2.459 0.43144 17.61 5.93E 1.38E 10483 10483 1684. 6 7.6 26 148 5888 0595 54 +27 +21 89 994 4.1 71 1.974 2.028 0.05406 133.1 6.05E 2.71E 557.9 424.7 7.879 2 7 7.2 27 081 1482 7221 68 +23 +21 0.4 491 815 65 2 2.341 1.974 0.36772 28.28 1.01E 2.77E 0.001 28.28 10.44 10.4 8 28 806 081 478 202 +24 +26 -3.2 14 088 525 2.360 2.341 0.01904 3.12E 4.82E 10.97 2 556.4 323.3 233.1 9 10.6 29 854 8058 8195 832 +29 +27 -0.2 54 29 301 3 2.360 2.360 #DIV/ 5.74E 5.11E #DIV/ #DIV/ #DIV/ 0 10.6 30 854 0! 0 0! 0! 0! 854 0 +30 +28 1.974 2.360 0.38677 6.09E 7.29E 24567 3937. 3 18.61 24567 1 7.2 31 081 854 2975 56 +31 +24 3.4 47 29 966

APPENDIX 4 (cont.): Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

	0			TT	1							
										-		
3			2.028	1.974	0.05406	140.5	2.72E	2.66E		25.59	114.9	7.783
2	7.6	32	148	081	7221	658	+27	+26	-0.4	6	698	952
					-	-						
3			1.931	2.028	0.09662	71.40	1.17E	1.01E		1649.	1578.	9.425
3	6.9	33	521	1482	6836	87	+29	+26	0.7	79	381	41
3			1.987	1.931	0.05635	129.5	3.32E	4.23E			109.9	7.475
4	7.3	34	874	5214	2937	407	+28	+27	-0.4	-19.61		889
<u> </u>	, 10	<u> </u>	0,1	5211	2307		- 20	,	0			
3			2.174	1.987	0.18687	47.08	1.65E	1.47E		0.074	47.01	8.875
5	8.8	35	752	8743		97	+30		-1.5		518	224
5	0.0	55	752	0/45	7373	- 57	+30	+31	-1.5	52	510	224
			4 0 0 7	2 4 7 4	-	-	45.2	2 255		20000	20020	F 4 70
3			1.987		0.18687	39.06	1E+3	2.25E		29669		54.70
6	7.3	36	874	7517	7373	3	4	+29	1.5	.33	.26	842
			_			_	_		_	-		
3			2.066	1.987	0.07898	100.0	8.77E	2.61E		5.595	94.41	8.051
7	7.9	37	863	8743	8411	147	+31	+31	-0.6	6	908	071
										-		
3			2.091	2.066	0.02500	323.9	1.29E	5.08E		126.8	197.1	8.415
8	8.1	38	864	8628	1302	831	+34	+32	-0.2	64	19	39
				~ 7		-						
3			1.504	2.091	0.58778	7.655	2.7E+	1.48E		5.08E	5.08E	81258
9	4.5	39		8641	6665	84	35	+24	3.6		+10	768
4	4.J	35	2.001	1.504	0.49740	14.87	1.34E	1.07E		-4.3E-	14.87	7.423
	7 /	40	48			728						
0	7.4	40	48	0774	2603	/28	+26	+33	-2.9	08	728	804
					-	-						
4			1.974	2.001	0.02739	262.7		2.73E		797.0	534.2	8.054
1	7.2	41		48	8974	 84	+35	+33	0.2	823	987	878
4			2.476	1.974	0.50245	23.68	1.02E	1.05E		-2.1E-	23.68	11.93
2	11.9	42	538	081	7374	36	+36	+43	-4.7	08	36	789
					-	-						
4			1.193	2.476	1.28261	2.572	1.77E	1.82E		1.13E	1.13E	1.82E
3	3.3	43	922	5384	5932	87	+46	+21	8.6	+24	+24	+21
4			2.240	1.193	1.04678	8.979	6.53E	7.44E		-1.4E-	8.979	9.414
4	9.4	44	71	9225	7221	857	+22	+40	-6.1	19	857	368
-	-				-	-			-			
4			2.174	2.240	0.06595	133.4	6.18E	4.1E+		2511.	2377.	12.60
5	8.8	45	752	7097	7968	135.4	+43	4.12	0.6	003	585	414
	0.0	7,7	1,52	1051	7 508	10	-+3	40	0.0	003	505	714
			1 007	2 1 7 4	-	-	2 705	0.000		10220	10222	2110
4			1.987	2.174	0.18687	39.06	2.79E	9.69E	4 -	19226	19222	314.8
6	7.3	46	874	7517	7373	3	+43	+37	1.5	7.5	8.4	655
4			2.459	1.987	0.47171	24.80	3.77E	1.17E		-7.3E-	24.80	11.73
7	11.7	47	589	8743	4494	314	+40	+48	-4.4	09	314	969
					-	-						
4			1.504	2.459	0.95551	4.709	1.87E	1.12E		2.33E	2.33E	3.73E
8	4.5	48	077	5888	1445	52	+51	+30	7.2	+20	+20	+17
4			2.501	1.504	0.99735	12.23	1.02E	1.15E		-1.2E-	12.23	12.21
9	12.2	49	436	0774	8555	231	+32	+51	-7.7	20	231	957
L											l	

APPENDIX 4 (cont.): Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

2.240 5 2.501 0.26072 36.05 2.08E 5.13E 14477 14477 23173 0 9.4 50 +46 599 71 436 6262 31 +54 2.8 562 .5 #DIV/ 5 2.240 2.240 4.26E 4.82E #DIV/ #DIV/ #DIV/ 1 9.4 51 71 7097 0 0! +49 +47 0 0! 0! 0.25283 20823 5 1.987 2.240 28.87 4.01E 1.47E 13010 13010 2 7097 7.3 52 874 5341 25 +50 +43 2.1 263 234 .68 5 1.504 1.987 0.48379 9.301 5.7E+ 2.06E 9.89E 9.89E 1.58E 3 4.5 53 077 8743 6951 42 45 +33 2.8 +11 +11 +09 5 -8.6E-15.08 7.324 1.987 1.504 0.48379 15.08 1.88E 7.81E 4 7.3 54 874 0774 6951 897 +35 +44 -2.8 11 897 142 2.001 1.987 0.01360 543.8 3.04E 259.1 284.7 7.855 5 1.17E 5 7.4 55 48 8743 5652 916 +47 +46 -0.1 05 864 658 _ 5 2.091 2.001 0.09038 89.61 4.75E 1.14E 0.593 89.02 8.242 6 8.1 56 864 48 4061 757 +48 +49 -0.7 86 371 438 5 2.091 #DIV/ 2.091 6.08E 9.26E #DIV/ #DIV/ #DIV/ 7 8.1 57 864 8641 0 +49 0 0! 0! 0! +51 5 2.174 2.091 0.08288 106.1 4.92E 7.78E 0.903 105.2 8.968 8 8.8 58 752 8641 766 678 +52 +52 -0.7 66 641 423 5 2.028 5.3E+ 1.61E 27468 447.1 2.174 0.14660 51.84 27473 9 59 008 7.6 148 7517 3474 05 55 +50 1.2 9.8 8 1.974 2.028 7.06E 3189. 6 0.05406 133.1 5.31E 3322. 12.30 7.2 0 60 081 1482 7221 68 +52 +49 0.4 544 377 3 6 2.174 1.974 0.20067 43.85 1.98E 5.3E+ 0.000 43.85 8.870 8.8 61 752 081 0695 294 +52 -1.6 1 55 23 271 164 6 2.104 2.174 0.07061 116.1 3.61E 6.74E 8931. 8815. 22.30 2 8.2 62 134 7517 7567 18 +58 +54 0.6 888 77 523 2.104 6 2.104 #DIV/ 3.72E 5.53E #DIV/ #DIV/ #DIV/ 3 8.2 63 134 1342 0 0! +57 +55 0 0! 0! 0! 6 1.931 2.104 0.17261 39.97 3.05E 1.02E 22987 22987 3684. 4 6.9 521 1342 2743 39 +58 +52 902 64 1.3 91 51 6 2.240 1.931 0.30918 30.40 3.35E 2.03E -6.6E-30.40 9.448 5 9.4 65 71 5214 8278 219 +54 +61 -2.5 08 219 643 6 1.987 2.240 0.25283 28.87 1.68E 1.79E 4.48E 4.48E 71726 6 7097 +08 +08 7.3 66 874 5341 25 +64 +55 2.1 6.2 1.974 1.987 521.9 6.96E 1306. 784.2 8.454 0.01379 5.33E 6 7 7.2 081 8743 92 +57 +55 229 374 67 3322 0.1 78

APPENDIX 4 (cont.): Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

APPENDIX 4 (cont.): Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

6 2.001 1.974 0.02739 270.0 1.995 2.34E 227.7 7.764 8 7.4 68 64 0.81 8974 831 +58 +57 -0.2 42.49 932 149 9 12.2 69 436 648 5952 215 +59 +72 -4.8 14 215 904 0 12.2 70 436 436 0 600 111 7.46 800 00 00 01 01 01 01 01 01 01 01 01 01 00 01 03 01 01 01 01 01 01 01 01 01 01 01														
6 2.501 2.001 0.49995 24.40 9.48E 6.11E -3.2E 24.40 12.23 9 12.2 70 436 436 0 01 +77 -4.8 14 215 904 0 12.2 70 436 436 0 01 +76 +73 0 01	6			2.001				270.0	1.99E	2.34E			227.5	7.764
9 12.2 69 436 48 5952 215 +599 +72 4.8 14 215 904 7 2.501 2.501 2.501 2.501 2.501 1.11 7.46E HDUY	8	7.4	68		081	8974		831	+58	+57	-0.2	-42.49	932	149
9 12.2 69 436 48 5952 215 +59 +72 4.8 14 215 904 7 2.501 2.501 2.501 2.501 1.11 7.46E HDW	6			2.501	2.001	0.49995		24.40	9.48E	6.11E		-3.2E-	24.40	12.23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	12.2	69			5952			+59		-4.8		215	904
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.2	70			_					0			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	12.2	70	436	430	0		0!	+76	+/3	0	0!	0!	0!
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-		-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			2.174	2.501	0.32668		26.93	1.35E	1.48E		2.7E+	2.7E+	4.31E
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	8.8	71	752	436	423		73	+77	+65	3.4	11	11	+08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			2 2 3 0	2 174	0 05526		168.2	1 01F	6 22F		3 2 3 5	165.0	9 564
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2	72								-05			
36.97352101442989610 $+59$ 2.4 $+10$ $+10$ 35272.1041.9310.1726147.501.19E6.23E0.00047.508.27648.27413452142743518 $+62$ $+65$ -1.3 1550400871.9452.1040.1582244.243.44E4.92E58170581699314.5775911342400511 $+68$ $+61$ 1.2237916672.1741.9450.2288438.451.69E7.79E $-1.2E$ 38.458.86168.87675291011572455 $+64$ $+69$ -1.8 0.62552772.2402.1740.06595142.55.31E9.65E0.917141.59.62679.477717517796815 $+72$ $+72$ -0.6 1297955771.1932.2401.046783.1528.02E2.55E5.15E5.15E5.15E8.24E83.378922709772215 $+75$ $+39$ 6.1 $+35$ $+35$ $+32$ 72.0011.1930.807559.1639.17E8.53E $-2.6E$ 9.1637.14497.4794.88974443 $+40$ $+66$ -2.1 222057.	2	9.5	12	014	/51/	2079		072	+00	+07	-0.5	70	514	082
36.97352101442989610 $+59$ 2.4 $+10$ $+10$ 35272.1041.9310.1726147.501.19E6.23E0.00047.508.27648.27413452142743518 $+62$ $+65$ -1.3 1550400871.9452.1040.1582244.243.44E4.92E58170581699314.5775911342400511 $+68$ $+61$ 1.2237916672.1741.9450.2288438.451.69E7.79E $-1.2E$ 38.458.86168.87675291011572455 $+64$ $+69$ -1.8 0.62552772.2402.1740.06595142.55.31E9.65E0.917141.59.62679.477717517796815 $+72$ $+72$ -0.6 1297955771.1932.2401.046783.1528.02E2.55E5.15E5.15E5.15E8.24E83.378922709772215 $+75$ $+39$ 6.1 $+35$ $+35$ $+32$ 72.0011.1930.807559.1639.17E8.53E $-2.6E$ 9.1637.14497.4794.88974443 $+40$ $+66$ -2.1 222057.						-		-						
72.1041.9310.1726147.501.19E6.23E0.00047.508.27648.27413452142743518+62+65-1.31550400871.9452.1040.1582244.243.44E4.92E58170581699314.5775911342400511+68+611.2237916672.1741.9450.2288438.451.69E7.79E-1.2E38.458.86168.87675291011572455+64+69-1.80645552772.2402.1740.06595142.55.31E9.65E0.917141.59.62679.477717517796815+72+72-0.61297955771.1932.2401.046783.1528.02E2.55E5.15E5.15E8.24E83.378922709772215434+40+66-4.12743466181.9742.0010.0273926.73.46E7.45E2320.2057.10.4907.28008148897484+69+660.24536722781.9871.9740.01379529.22.78E1.59E174.3354.87.86717.3<									5E+7					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6.9	73	521	0144	2989		61	0	+59	2.4	+10	+10	352
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									·					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			2.104	1.931	0.17261		47.50	1.19E	6.23E		0.000	47.50	8.276
71.9452.1040.1582244.243.44E4.92E58170581699314.72.1741.9450.2288438.451.69E7.79E-1.2E-38.458.86168.87675291011572455+64+69-1.80645552772.2402.1740.06595142.55.31E9.65E0.917141.59.62679.477717517796815+72+72-0.61297955771.1932.2401.046783.1528.02E2.55E5.15E5.15E5.15E8.24E83.378922709772215+75+396.1+35+32+3272.0011.1930.807559.1639.17E8.53E-2.6E-9.1637.41497.4794892257532434+40+66-4.12743466181.9742.0010.02739262.73.46E7.45E2320.2057.10.4907.28008148897484+69+660.24536722781.9871.9740.01379529.22.78E1.59E174.3354.87.86717.3818740813322416+69+68-0.1528998248		8.2	74								-1.3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>			101	5211	27.10		010	.02	. 05	1.0			000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			1.045	2 1 0 4	0 15022		44.24	2 4 4 5	4 0 2 5		F0170	F01C0	0214
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_												
68.87675291011572455+64+69-1.80645552779.4777175177968142.55.31E9.65E0.917141.59.62679.477717517796815+72+72-0.61297955771.1932.2401.046783.1528.02E2.55E5.15E5.15E5.15E8.24E83.37892270972215+75+396.1+35+3272.0011.1930.807559.1639.17E8.53E-2.6E-9.1637.41497.4794892257532434+40+664.12743466181.9742.0010.02739262.73.46E7.45E2320.2057.10.4907.28008148897484+69+660.24536722781.9871.9740.01379529.22.78E1.59E1.74.3354.87.86717.3818740813322416+69+68-0.15289982482.0911.9871.9870.1039877.894.53E3.87E0.01477.878.22438.18386487439714232+71+73-0.864768 <t< td=""><td></td><td>7</td><td>75</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>1.2</td><td></td><td></td><td></td></t<>		7	75				-				1.2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			2.174	1.945	0.22884		38.45	1.69E	7.79E		-1.2E-	38.45	8.861
7 9.4 77 71 7517 7968 15 +72 +72 -0.6 12 979 557 7 1.193 2.240 1.04678 3.152 8.02E 2.55E 5.15E 5.15E 8.24E 8 3.3 78 922 7097 7221 5 +75 +39 6.1 +35 +35 +32 7 2.001 1.193 0.80755 9.163 9.17E 8.53E -2.6E- 9.163 7.414 9 7.4 79 48 9225 7532 434 +40 +66 -4.1 27 434 661 8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 8	6	8.8	76	752	9101	1572		455	+64	+69	-1.8	06	455	527
7 9.4 77 71 7517 7968 15 +72 +72 -0.6 12 979 557 7 1.193 2.240 1.04678 3.152 8.02E 2.55E 5.15E 5.15E 8.24E 8 3.3 78 922 7097 7221 5 +75 +39 6.1 +35 +35 +32 7 2.001 1.193 0.80755 9.163 9.17E 8.53E -2.6E- 9.163 7.414 9 7.4 79 48 9225 7532 434 +40 +66 -4.1 27 434 661 8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 8												-		
7 9.4 77 71 7517 7968 15 +72 +72 -0.6 12 979 557 7 1.193 2.240 1.04678 3.152 8.02E 2.55E 5.15E 5.15E 8.24E 8 3.3 78 922 7097 7221 5 +75 +39 6.1 +35 +35 +32 7 2.001 1.193 0.80755 9.163 9.17E 8.53E -2.6E- 9.163 7.414 9 7.4 79 48 9225 7532 434 +40 +66 -4.1 27 434 661 8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 8	7			2 240	2 1 7 4	0.06595		142 5	5 31F	9.65F		0 917	141 5	9 626
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.4	77								0.6			
83.378922709772215 $+75$ $+39$ 6.1 $+35$ $+35$ $+32$ 72.0011.1930.807559.1639.17E8.53E $-2.6E$ 9.1637.41497.4794892257532434 $+40$ $+66$ -4.1 27434 661 81.9742.0010.02739262.73.46E7.45E2320.2057. 10.49 07.28008148897484 $+69$ $+66$ 0.24536722781.9742.0010.01379529.22.78E $1.59E$ 174.3354.87.86717.3818740813322416 $+69$ $+68$ -0.1 5289982481.9871.9871.9871.987 322 416 $+69$ 468 -0.1 52 89982482.0911.9870.10398 77.89 $4.53E$ $3.87E$ 0.014 77.87 8.224 38.183864 8743 9714 232 -7	/	9.4	//		/31/	7900		13	772	772	-0.0	12	979	557
83.378922709772215 $+75$ $+39$ 6.1 $+35$ $+35$ $+32$ 72.0011.1930.807559.1639.17E8.53E $-2.6E$ 9.1637.41497.4794892257532434 $+40$ $+66$ -4.1 27434 661 81.9742.0010.02739262.73.46E7.45E2320.2057. 10.49 07.28008148897484 $+69$ $+66$ 0.24536722781.9742.0010.01379529.22.78E $1.59E$ 174.3354.87.86717.3818740813322416 $+69$ $+68$ -0.1 5289982481.9871.9871.9871.987 322 416 $+69$ 468 -0.1 52 89982482.0911.9870.10398 77.89 $4.53E$ $3.87E$ 0.014 77.87 8.224 38.183864 8743 9714 232 -7						-		-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
9 7.4 79 48 9225 7532 434 +40 +66 -4.1 27 434 661 8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 0.10398 77.89 4.53E 3.87E 0.014 77.87 8.224 8 2.091 1.987 0.10398 77.89 4.53E 3.87E 0.014 77.87 8.224 3 8.1 83 864 8743		3.3	78	922	7097	7221		5	+75	+39	6.1	+35	+35	+32
8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 1.987 1.987 #DIV/ 6.2E+ 1.16E #DIV/	7			2.001	1.193	0.80755		9.163	9.17E	8.53E		-2.6E-	9.163	7.414
8 1.974 2.001 0.02739 262.7 3.46E 7.45E 2320. 2057. 10.49 0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 1.987 1.987 #DIV/ 6.2E+ 1.16E #DIV/	9	7.4	79	48	9225	7532		434	+40	+66	-4.1	27	434	661
0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 1.987 6.2E+ 1.16E #DIV/ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						-		-						
0 7.2 80 081 48 8974 84 +69 +66 0.2 453 67 227 8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 1.987 6.2E+ 1.16E #DIV/ </td <td>Q</td> <td></td> <td></td> <td>1 07/</td> <td>2 001</td> <td>0 02720</td> <td></td> <td>262.7</td> <td>2 16E</td> <td>7 /55</td> <td></td> <td>2220</td> <td>2057</td> <td>10/0</td>	Q			1 07/	2 001	0 02720		262.7	2 16E	7 /55		2220	2057	10/0
8 1.987 1.974 0.01379 529.2 2.78E 1.59E 174.3 354.8 7.867 1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 1.987 0.01379 6.2E+ 1.16E #DIV/			~~								0.2			
1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 416 +69 +68 -0.1 52 899 824 2 7.3 82 874 8743 0 0! 70 +69 0 0! <td>0</td> <td>1.2</td> <td>80</td> <td>180</td> <td>48</td> <td>8974</td> <td></td> <td>84</td> <td>+69</td> <td>+66</td> <td>0.2</td> <td>453</td> <td>67</td> <td>227</td>	0	1.2	80	180	48	8974		84	+69	+66	0.2	453	67	227
1 7.3 81 874 081 3322 416 +69 +68 -0.1 52 899 824 8 1.987 1.987 1.987 416 +69 +68 -0.1 52 899 824 2 7.3 82 874 8743 0 0! 70 +69 0 0! <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>												-		
8 1.987 1.987 1.987 0 #DIV/ 0! 6.2E+ 70 1.16E #DIV/ 0! #	8			1.987	1.974	0.01379		529.2	2.78E	1.59E		174.3	354.8	7.867
2 7.3 82 874 8743 0 0! 70 +69 0 0! 0! 0! 0! 8 - 2.091 1.987 0.10398 77.89 4.53E 3.87E 0.014 77.87 8.224 3 8.1 83 864 8743 9714 232 +71 +73 -0.8 64 768 604 4 3.3 84 922 8641 1593 0.77395 2.05E 3.3E+ 1.3E+ 1.3E+ 2.08E 4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656 <td>1</td> <td>7.3</td> <td>81</td> <td>874</td> <td>081</td> <td>3322</td> <td></td> <td>416</td> <td>+69</td> <td>+68</td> <td>-0.1</td> <td>52</td> <td>899</td> <td>824</td>	1	7.3	81	874	081	3322		416	+69	+68	-0.1	52	899	824
2 7.3 82 874 8743 0 0! 70 +69 0 0! 0! 0! 0! 8 - 2.091 1.987 0.10398 77.89 4.53E 3.87E 0.014 77.87 8.224 3 8.1 83 864 8743 9714 232 +71 +73 -0.8 64 768 604 4 3.3 84 922 8641 1593 0.77395 2.05E 3.3E+ 1.3E+ 1.3E+ 2.08E 4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656 <td>8</td> <td></td> <td></td> <td>1.987</td> <td>1.987</td> <td></td> <td></td> <td>#DIV/</td> <td>6.2E+</td> <td>1.16E</td> <td></td> <td>#DIV/</td> <td>#DIV/</td> <td>#DIV/</td>	8			1.987	1.987			#DIV/	6.2E+	1.16E		#DIV/	#DIV/	#DIV/
8 2.091 1.987 0.10398 77.89 4.53E 3.87E 0.014 77.87 8.224 3 8.1 83 864 8743 9714 232 +71 +73 -0.8 64 768 604 8 1.193 2.091 0.89794 3.675 2.05E 3.3E+ 1.3E+ 1.3E+ 2.08E 4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656		7.3	82			0					0			
3 8.1 83 864 8743 9714 232 +71 +73 -0.8 64 768 604 8 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>-</td><td></td><td></td></td<>											•	-		
3 8.1 83 864 8743 9714 232 +71 +73 -0.8 64 768 604 8 - <td< td=""><td>0</td><td></td><td></td><td>2 001</td><td>1 007</td><td>0 10200</td><td></td><td>00 77</td><td>1 5 2 5</td><td>2 075</td><td></td><td>-</td><td>77 07</td><td>0 224</td></td<>	0			2 001	1 007	0 10200		00 77	1 5 2 5	2 075		-	77 07	0 224
8 1.193 2.091 0.89794 3.675 2.05E 3.3E+ 1.3E+ 1.3E+ 2.08E 4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656											~ ~			
4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656	3	8.1	83	864	8/43	9/14		232	+/1	+/3	-0.8	64	768	604
4 3.3 84 922 8641 1593 07 +76 42 4.8 33 33 +30 8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656						-		-						
8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656	8			1.193	2.091	0.89794		3.675	2.05E	3.3E+		1.3E+	1.3E+	2.08E
8 1.987 1.193 0.79395 9.194 1.18E 4.53E -6.5E- 9.194 7.314 5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656	4	3.3	84	922	8641	1593		07	+76	42	4.8	33	33	+30
5 7.3 85 874 9225 188 512 +44 +71 -4 29 512 711 8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656	8			1.987	1.193	0.79395		9.194	1.18E	4.53E		-6.5E-	9.194	7.314
8 2.261 1.987 0.27388 35.05 1.76E 3.24E -2.4E- 35.05 9.656		73	85								-4			
	-	,.5	55								T			
0 9.0 86 763 8743 875 073 773 881		~ ~									~ ~			
	6	9.6	86	763	8743	8/5		0/3	+/4	+82	-2.3	09	0/3	081

					-	-						
8			2.174	2.261	0.08701	101.1	2.87E	1.91E		18770	18760	308.9
7	8.8	87	752	7631	1377	36	+85	+80	0.8	6.9	5.7	692
8			2.501	2.174	0.32668	37.34	1.3E+	2.67E		-1.4E-	37.34	12.25
8	12.2	88	436	7517	423	493	83	+93	-3.4	11	493	975

APPENDIX 4 (cont.): Numerical operations of the Grey model with Optimization of Background Value applied to 'Sample 10'

The followings are the forecasts

k values	Observed value	Forecast value	Error absolute	Error sq.
89	8.2	8.157223967	0.042776033	0.00183
90	8.1	8.144182845	0.044182845	0.001952
91	8.8	8.131162571	0.668837429	0.447344
92	7.1	8.118163113	1.018163113	1.036656
93	8	8.105184438	0.105184438	0.011064
94	7.3	8.092226512	0.792226512	0.627623
95	7.9	8.079289302	0.179289302	0.032145
96	11.7	8.066372775	3.633627225	13.20325
97	8.8	8.053476898	0.746523102	0.557297
98	9.4	8.040601638	1.359398362	1.847964
99	9.3	8.027746962	1.272253038	1.618628
100	7.6	8.014912837	0.414912837	0.172153
101	7.3	8.00209923	0.70209923	0.492943
102	10.4	7.989306108	2.410693892	5.811445
103	8.1	7.976533439	0.123466561	0.015244
104	10.4	7.96378119	2.43621881	5.935162
105	7.4	7.951049329	0.551049329	0.303655
106	7	7.938337822	0.938337822	0.880478
107	9.4	7.925646637	1.474353363	2.173718
108	8.8	7.912975742	0.887024258	0.786812

	Error	Error		Forec	Forec									
	S	s		asts	asts									
	(Grey	(ARI		(Grey	(ARI		Hybr			Hybri			Hybri	
GDP)	MA)	t)	MA)		id	errors		d	errors		d	errors
	-													
2754	2309			25239	27549		2708	4619		27318	2309		27433	1154
9452	6995.			7524.	4520.		7512	399.0		4820.	699.5		9670.	849.7
0	38	0	1	8	1		1	77		6	38		4	69
						al			al			al		
3437	- 7089	6843			27533	p ha	2748	6893	p ha	27508	6868	p ha	27520	6856
7196	9281.	9276.		27287	2688.	0.	4068	1277.	0.	6687.	5276.	0.	9688.	2276.
5	65	35	2	2683	3	2	7	41	0. 1	8	88	05	1	61
	-					be			be	-		be		
3399	4490	5609		29500	34552	ta	3354	4493	ta	34047	5577	ta	34299	3083
1383	4992.	116.4		8840.	2949.	0.	2012	705.3	0.	1538.	05.54	0.	7244.	410.9
3	56	48	3	5	5	8	8	54	9	6	67	95	1	97
	-	-												
3597	4083	1822					3370	2274		33928			34041	1935
7236	1621.	5894.		31894			2532	7039.		5896.	2048		6182.	6180.
3	25	31	4	0742	6469		4	7		3	6467		6	65
4200	-	-			26202		2505	71 - 1		2020	6070		20110	6902
4300 9673	8528 2675.	6807 0515.	_	34481	36202 6222.	_	3585 8379	7151 2947.		36030 5006.	6979 1731.		36116 5614.	6893 1123.
8	2073. 41	51	5	4063	9		1	49		9	5		9	5
0	- 41			4005				45						
4866	1138	5184		37278			4223	6424			5804			5494
1733	3103	3536.		6296.	43477		7629	1036.		42857	2286.		43167	2911.
2	5.9	4	6	5	3796		6	3		5046	35		4421	37
	-	-												
5636	1606	7021			49346		4753	8830		48442	7926		48894	7473
8366	5594	7365.		40302	6294.		7857	5082.		2436.	1224.		4365.	9295.
0	8.3	92	7	7712	4		8	41		1	16		3	04
F 207	-	25.02		42572				7445		FF000	2422		F.C.C.07	2012
5387	1030	3502		43572			5461	7415		55996	2122		56687	2812
4726	2487 6.8	5420. 03	8	2391. 5	2688. 4		6262 9	360.6 57		7658. 7	0390. 34		0173. 5	2905. 19
0	0.0		<u> </u>	5	4		9	57		/	54		3	19
8307	3596	2829		47106	54775		5324	2982		54008	2906			2867
1061	4126	5548		9350.	5135.		1797	9263		6556.	2405		54392	8976
5	4.8	0	9	3	2		8	6.9		7	8.5		0846	9.2
	-	-												
9392	4299	8521		50928	85401		7850	1541		81954	1196		83677	1024
2799	4424	2809.		3748.	5184.		6889	5909		2040.	8595		8612.	4938
4	5.2	25	10	5	4		7	6.4		8	2.8		6	1

APPENDIX 5: Numerical operations of the Grey_Arima model applied on the Malian GDP

						 					 -	
	-	-										
1049		8122		55059	96861	8850	1648		92681	1230	94771	1021
8384		1942.		8200.	6549.	1288	2561		4714.	2377	5632.	2286
93	3 2.4	8	11	1	8	0	2.7		8	7.8	3	0.3
	-	-										
1222		1369				9876	2350			1859		1614
7023		2408		59526	10857	7545	2690		10367	7549	10612	4978
56	6.1	4	12	4190	78272	6	0.4		26864	2.2	52568	8.1
	-	-										0.5.7.0
1595		3259		64355		1144	4511			3885		3572
4232		1927		3603.	12695	3139	0935		12069	1431	12382	1679
86	5 1.9	0.4	13	7	04015	33	2.7		08974	1.6	06495	1
	-	-										
1759		9187				1473	2862			1890		1404
6908		7373.		69576	16678	4028	8798		15706	8267	16192	8002
12	2 29	78	14	0383	13438	27	4.7		08132	9.3	10785	6.5
	-											
1538		3051		75220		1625	8679			1959		2505
9721		8299		2315.	18441	7645	2425.		17349	8770	17895	8535
58	3 3.1	2.4	15	1	55151	83	3		59867	8.8	57509	0.6
	-							× .				
1333		2735		81322		1448	1147			1941		2338
7540		6389		2966.	16073	4989	4490		15279	5439	15676	5914
34	1 7.5	4.7	16	8	17929	36	2.3		08433	8.5	13181	6.6
	-											
1297		9012		87919		1286	1161			3925		6469
7654		6331.		3775.	13878	1521	3269.		13370	6531.	13624	1431.
49	2.6	88	17	9	91780	79	01		21980	43	56880	66
	-											
1232		1165		95051		1269	3676			7666		9661
9320		6507		6312.	13494	7009	8917.		13095	6994.	13295	6032.
08	3 5.6	0.9	18	5	97079	26	58		99002	23	48041	56
	-	-										
1392		1117				1229	1623			1370		1244
1959		9763		10276		8435	5235		12551	7499	12677	3631
33	3 0.5	6.8	19	24723	98297	82	1.6		20939	4.2	59618	5.5
	-	-										
1852		4018				1382	4697			4357		4188
1634		6627		11109		4354	2803		14163	9715	14333	3171
75	5 2	4.1	20	88373	97200	35	9.7		66318	6.9	31759	5.5
	-	-										
2090		1470				1795	2955			2212		1841
6297		1659		12011	19436	1134	1627		18693	6643	19064	4151
23	3 9.6	1.5	21	14703	13131	46	7.1		63288	4.3	88210	2.9
	-					_						
2169		3162				2020	1487			5858		1348
0407		5256.		12985	22006	2432	9747		21104	6111.	21555	0427.
42	2 0.4	61	22	52321	65998	63	8.8		54630	09	60314	24

APPENDIX 5 (cont.): Numerical operations of the Grey_Arima model applied on the Malian GDP

					1	-							
	-												
2181	7779	1035					2109	7275			1538		5946
8219	2756	3525		14038	22853		0645	7309.		21972	8972.	22412	2113.
02	4.6	4.3	23	94338	57157		93	48		10875	41	84016	36
				3 .000	0,10,			.0		100/0		0.010	
2001	1101	-					2142	F 200			4000		4240
2681	1164	3827					2142	5390			4608		4218
9120	1300	4253		15177	22991		8919	2003		22210	8128	22601	1190
30	51	0	24	81979	69500		96	4.3		30748	2.1	00124	6.1
	-												
2724	1083	1169					2601	1230			3026		5698
1315	2230	9532		16409	28411		0831	4835		27211	516.6	27811	4402.
45	57	1.1	25	08488	26866		91	4.4		05029	61	15947	23
	57	1.1	25	00+00	20000		51			03025	01	13347	25
2020	-						2664	1660			F 40 C		
2830	1056	5633					2664	1662			5496		6844
6733	6500	3582.		17740	28870		4102	6314		27757	4779.	28313	01.54
89	41	74	26	23348	06972		47	2		08609	65	57790	2
2818	9003	1845					2785	3240			7609		1303
2808	4403	8585		19179	30028		8807	0122.	1	28943	2866.	29486	3936
76	7.9	6.4	27	36838	66732		54	47		73743	96	20238	1.7
70	7.9	0.4	27	30636	00732		54	47		73743	90	20230	1.7
	-			×									
2081	8321	9075					2806	7243			8159		8617
8464	509.1	3809	×	20735	29893		2126	6617		28977	5213	29435	4511
83	26	4.9	28	24974	84578		57	4.1		98617	4.5	91597	4.7
	-	-											
2706	4646	5152	_			_	2201	5051			5101		5127
4252	9046	4100		22417	21911		2944	3089		21962	8595	21937	1347
98	6.1	4	29	34832	84294		02	6.4		39348	0.2	11821	7.1
50	0.1	4	25	54052	04234		02	0.4		33340	0.2	11021	/.1
2700	-	0724					2770	1 100			4202		6540
2780	3568	8734					2778	1493			4292		6513
4222	3189	1081.		24235	28677		9287	512.7		28233	3784.	28455	2433.
12	0.3	67	30	90322	63294		00	31		45997	47	54645	07
	-												
2697	7690	2511					2882	1854			2183		2347
1056	7281.	0083		26201	29482		6049	9920		29154	0002	29318	0042
94	71	1.3	31	98412	06525		03	8.7		05714	0	06120	5.6
		1.5	51	55,12	00025			0.7		55717	5	00120	5.0
2020	0760	6272					2052	6760			6524		6206
2920	8760	6272		2022-	20555		2852	6769		20554	6521	205.55	6396
3585	2712.	2823.		28327			6597	8801.		28551	0812.	28563	6818.
87	92	73	32	55874	35763		85	57		47774	65	91769	19
	-	-											
3439	3769	3389					3092	3465			3427		3408
4631	0657	8077		30625	31004		8972	6593		30966	7335	30985	7706
40	8.7	2.2	33	56562	82368		07	3.5		89787	2.9	86078	2.6
2954	3568	7128		30302	02000		3595	6416		55707	6772		6950
				22100	26600					26212		26401	
1295	6972	0144	~ ~	33109	36669		7446	1509		36313	0827	36491	0485
66	6.5	3.2	34	99292	31009		66	9.8		37837	1.5	34423	7.4

APPENDIX 5 (cont.): Numerical operations of the Grey_Arima model applied on the Malian GDP

APPENDIX 5 (cont.): Numerical operations of the Grey_Arima model applied on the Malian GDP

Ivialiali				1	1	-				1		1		
		-												
3465	1142	3280					3225	2395			2838			3059
3059	9036	4641		35795	31372		7269	7905		31814	1273		31593	2957
93	4.3	4.7	35	96358	59579		35	8.9		93257	6.8		76418	5.7
	5	4.7	- 55	50550	33373			0.5		55257	0.0		70410	5.7
2000	-	-						4500			4770			1050
3889	1977	1945					3730	1596			1770			1858
7580	5292.	6701		38699	36951		1493	0866		37126	8783		37039	2742
24	5	0.9	36	82731	91013		56	7.3		70185	9.1		30599	5
	-	-												
4703	5195	5434					4164	5386			5410			5422
5044	7844	1642		41839	41600		8556	4882		41624	3262		41612	2452
67	7.1	2.9	37	26019	88044		39	7.8		71841	5.4		79942	4.2
07	/.1	2.9	57	20019	00044		59	7.0		/1041	5.4		79942	4.2
	-	-												
5444	9211	3895					4948	4958			4427			4161
4742	3704	6376		45233	50549		5958	7841		50017	2108		50283	4242
68	6.7	0	38	37222	10508		51	7.3		53180	8.7		31844	4.3
	-	-						-	1					
6245	1354	3718					5676	5684			4701			4209
0245	7493			48902	58731		6116	2008		57740	2892		58240	8334
		3777								57749				
90	27	1	39	82363	93919		08	2.1		02764	6.5		48341	8.7
	-	-												
6899	1612	1393					6465	4340			2866			2129
7997	8047	0858		52869	67604		7919	0780		66131	5819		66868	8338
86	16	2.4	40	95070	91203		77	9.1		41590	5.7		16397	9.1
					0 == 0 0			0.1						0.1
8145	2429	6573					7133	1011			8345			7459
				57450	74000					72444			72007	
6946	8044	0175		57158	74883		8923	8022		73111	5202		73997	2689
32	65	4.7	41	90167	92877		35	97		42606	5.8		67742	0.3
	-	-												
9750	3571	8726					8338	1412			1142			1007
8225	2441	0453		61795	88782		4900	3324		86083	4684		87432	5365
11	38	2.5	42	78374	17979		58	54		54018	93		85999	13
		2.0		/ 00/ 1				5.		0.010	55		00000	
1 010	2500	4057			10070		0077	2024		10277	0012		10470	2050
1.018	3500	4957			10676		9877	3034		10277	9613		10476	2959
1E+1	1395	1722		66808	73899		5676	5413		15331	1542.		94615	2438
0	70	1.3	43	82201	2		34	6.9		3	21		2	1.8
	-													
1.067	3455	4813			11160		1.037	3060		10766	8764		10963	2845
9E+1	8963	6742		72228	11689		3E+1	8532		39052	1052.		25370	0424
0	40	9.4	44	53127	7		0	4.6		0	4		8	0.9
	+0	5.4	-+4	55127	/			4.0			4		0	0.9
	-	-												
1.297	5169	1258			11720		1.093	2040		11328	1649		11524	1453
8E+1	3173	0852		78087	02231		8E+1	3316		89909	2084		46070	6468
0	85	49	45	90176	2		0	76		8	62		5	56
	-													
1.244	4000	1872			14314			6976		13727	1284		14021	1578
3E+1	4879	1250		84422	87298		1.314	0248		61168	8637		24233	4944
0	4879	85	10	59996	2		E+10	7.7		4	86		24255	4944 36
				nuuun				//		4	xn		- ≺	

1						1						
	-											
1.324	4119	4631			13709		1.279	4533	13251	4919	13480	2340
6E+1	2934	6568		91271	57771		3E+1	2614	33180	771.6	45476	4272
0	59	6.2	47	18572	8		0	2.9	3	65	0	8.9
	-											
1.438	4520	2301			14618		1.366	7200	14143	2449	14380	7437
8E+1	8253	0902		98675	46908		8E+1	7785	37564	8441	92236	695.8
0	67	3.7	48	34697	8		0	4.5	9	5.4	8	49
	-											
	2432	2812		10668	15912		1.486	1763	15387	2287	15650	2550
1.31E	0427	2912		01534	34935		3E+1	4244	91595	8578	13265	0745
+10	54	55	49	6	5		0	53	4	54	5	55
	-											
1.403	2501	4178		11533	14452		1.386	1660	14160	1259	14306	2718
5E+1	5472	6432		43311	84465		9E+1	1798	90350	2317	87408	9374
0	20	4.7	50	4	8		0	4.3	4	0.2	1	7.5

APPENDIX 5 (cont.): Numerical operations of the Grey_Arima model applied on the Malian GDP

CURRICULUM VITAE

	Personal Information
Name Surname	Hamadou NIANGADOU
Place of Birth	Bamako-Mali
Date of Birth	08.05 1992
Nationality	□ T.C. ☑ Other:
Phone Number	0 531 917 07 65
Email	doudoun92@live.fr
Web Page	

Educational Information		
B. Sc.		
University	Fatih University	
Faculty	Institute of Science and Engineering	
Department	Computer Engineering	
Graduation Year	22.07.2014	

M. Sc.		
University	Istanbul University	
Institute	Institute of Science and Engineering	
Department	Department of Industrial Engineering	
Programme	Industrial Engineering Programme	
Graduation Year	08.02.2018	