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SUMMARY 
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Department of Industrial Engineering 

Supervisor : Assist. Prof. Dr. Murat AKAD 

Unemployment has always been a problem in Mali. Although labor is widely available, skilled 

one is in short supply. Reliable unemployment data is difficult to find. While a survey of the 

Malian government found a rate of 8,1 percent in 2016, the actual figure is likely over 30 

percent. Nevertheless, using the actual data from the “World Data Atlas” data source, this study 

aims to perform a series of forecasting operations using some of the accepted univariate 

forecasting models in litterature and a set of heuristic ones, so as to see which one will hold less 

error percentage, and thus give the best estimate on how the future numbers might look like. 

Also, an insight of the economy of Mali will be given, some of the factors affecting the 

unemployment rates will be discussed and some feasible solutions will be presented. 

February 2018, 103 pages. 
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1. INTRODUCTION 

Mali has demographic characteristics similar to most sub-Saharan African countries. The 

population of Mali is very young. The population is estimated to be a little over 18 millions and 

almost 67% of it is between 0-24 years of age(according to ‘index mundi’). This shows how 

big the labor force is. In Mali, just like in many developing countries, few can afford to be 

openly unemployed and yet the employment situation has been deteriorating since 1987. 

Official numbers for the unemployment are around 10% on average for the past few years, but 

the actual figure is probably bigger than that. The causes of this problem will be explained in 

this thesis and some solutions will be presented/proposed as well. But before that, future 

numbers will be estimated through a series of forecasting using some commonly used 

algorithms in litterature and a few heuristic ones. 

Forecasting is an activity or process through which someone predicts or attempts to predict the 

future, based on previous events or on some information he/she has now. In short it is a guess, 

but logical and rational, about what is going to happen in the future. It’s about capturing the 

regularities in a data and using them to make predictions. It is used in various fields such as 

economy, weather, supply chain, planning, manufacturing, quality management, demand, 

scheduling, etc. Forecasting isn’t something which has been created, but rather it has always 

existed. It is constantly used on regular daily basis. For example a mother of a family which 

has a monthly limited budget tries to keep the family expenses for food, bills, etc within that 

budget every month. She spends it over some time, looking at the long term, trying to 

predict/anticipate any situation that could arise based on past experiences and act accordingly. 

That is a forecasting process. Predicting inflations or values of certain goods is also a 

forecasting process. There are two (2) types of forecasting: 

 Judgement Forecasting: referred to as qualitative forecasting. Here, the data is expressed 

by means of a natural language description. We don’t really use a numerical analysis. This type 

of forecasting requires only the use of our intuition and experience. It is used best when there 

is little or no historical information/data. Examples of such forecasting are new products 

launches, market research, surveys and polls, etc. 
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 Quantitative Forecasting: based on historical/past data or information. The data is a 

numerical measurement expressed in terms of numbers. That data is analized in order to discern 

some trends or patterns which repeat more than once and use those to make some predictions. 

The data is usually spread over a long period of time and is usually continuous, thus it is referred 

to as “Time Series”. Examples of such forecasting are weather forecasts, demand/sales 

forecasts, population growth, etc. 

There are many available techniques that may be used when working with the second type of 

forecasting. Most of them are case specific, that is one algorithm may not perform well in every 

situation. There are a few accepted algorithms/techniques in the litterature. Some of them are: 

ARIMA models, Artificial Neural Network (ANN), Support Vector Machines (SVM), Moving 

averages and Exponential smoothing, K-nearest neighbor prediction method (kNN), etc.  

However, because of the nature of forecasting itself, that is there will never be a perfect method 

for every situation, many heuristic techniques have been developed too. Those techniques are 

mostly case oriented, often the result of different combination of methods (these methods are 

referred to as ‘hybrid models’). ARIMA+ANN, kNN+SVM, Grey+Evolutionary algorithms are 

a few examples of such methods. The following lists the different techniques which will be 

used in this study: 

Accepted algorithms in litterature 

 Moving averages 

 Simple and multiple regression methods 

 Exponential smoothing methods 

 ARIMA models 

Heuristic methods 

 Original grey model GM(1,1) 

 Grey prediction with Rolling mechanism (GPRM) 

 Grey Model with Optimization of Background Value  

 Grey_ARIMA model 

These heuristic techniques deal with data samples which have a small size (usually less than 

40). The reason behind chosing these specifically is that the data which will be used in this 

study has a size of 27. Many algorithms usually require a larger amount of data in order to give 
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optimum results. ARIMA is an example of such algorithms. More on the above mentioned 

algorithms in the following sections. 
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2. MATERIALS AND METHODS 

This section is divided into 4 parts: section 2-1 discusses the materials which will be used in 

the study, which comprise the dataset and the software; section 2-2 discusses a well known and 

very important notion in forecasting, the principle of parsimony; section 2-3 describes the 

multiple forecasting methods which will be used in this study and section 2-4 shows their 

application to the dataset. 

2-1. Materials 

The data which is going to be used in this study is from World Data Atlas (WDA) [17] which 

is under “Knoema”. Knoema is a free resource for statisctical data. It was created through a 

joint venture by Russian and Indian professionals and it offers an incredibly wide range of data 

and information about all the countries in the world, collected from highly reliable sources such 

as the World Health Organisation and United Nations (UN). The data on the Knoema can 

always be tracked down to check their trustworthiness as every data is linked back to its original 

source. World Data Atlas not only comes as a stand alone website, but is also available as a 

Chrome application and as an application for tablets and smartphones [20].  

The data taken from WDA consists of the unemployment rates of Mali arranged in order from 

1990 to 2016, in a yearly basis, that is 27 entries in total as can be seen in table 2.1. The 

values/rates give the number of unemployed person as a percentage of the total labor force. It’s 

very hard to find any information about the employment situation prior to the early 90s. The 

country, being technologically behind, nothing was really kept digitally until recently. Most 

data about the country is written down on papers and  kept in the archives. And since its 

independance in 1960, Mali has seen multiple “Coups d’Etat”, which lead to the loss of many 

documents. Therefore, one can find decent data on Mali only through international organisms 

or institutions such as the “World Bank” or “World Data Atlas” which have done some 

researches in the past years, and most of the time those do not include any information prior to 

the 1991 Coup d’Etat (in Mali).  

Certain algorithms work best with a minimum entry of  50-55 data. ARIMA is an example of 

such algorithms, as mentioned before. Since we have got only 27 data, it is therefore normally 

inconvenient to perform a forecasting exercise with such algorithm. In order to overcome this 

problem, a popular technique which helps increase sample sizes  will be introduced. The  
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technique is called “Bootstrapping” [21]. It’s a powerful statistical technique, accepted in 

litterature, which involves resampling. It generates new data from an initial data sample, which 

usually has a sample size less than 40. It was first mentioned in 1979 by Bradley Efron [33] and 

since then different procedures have been developed [34][35][36]. 

 

     Table 2.1:   Yearly Unemployment rates of Mali from 1990-2016. 

                                 

The method is sometimes referred to as “Sampling with replacement”. This basically means 

that when a value is drawn from a pool/set, instead of putting that value aside, it is possible to 

draw it a second time, or even more than twice, and because some observations may be 

resampled more than one time, others might not be sampled at all. Here is how the method 

works: a first bootstrap sample is generated by drawing random observations from the initial 

data set, and the average of that sample is calculated. This process is performed n times so as 

to have at the end a “bootstrap sample of the means”. This process is vizualized in Fig. 2.1.  

Bootstrapping is available in many software tools nowadays, however it is also possible to 

perform the tasks by hand, for small data size. For this study, since we have 27 entries, a new 

data with a sample size of 27*4 ,which is 108, will be generated. 

In order to perform a good forecasting, softwares are needed most of the time. In this study, we 

will only use 2 of them, namely Microsoft Excel and Minitab. Minitab is a software package 

for statistical analysis. It’s one of the most popular ones and has ARIMA and linear regression 

as well as a few other methods already implemented in its library. It is user friendly and easy 
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to use. For more on Minitab, refer to this page [22] or visit the following link: 

https://libguides.library.kent.edu/statconsulting/minitab  

  

       Figure 2.1:  Steps to generating a bootstrap data set.   

There are many indicative measurement models available for evaluating the accuracy of 

forecasts. Those models are commonly categorised into two (2) groups: scale-dependent errors 

and scale-independent errors.  

A comparison of forecast performance made between different data sets is referred to as scale-

independent. An example of such model is the Mean absolute percentage error or MAPE. 

          MAPE = mean(absolute value(pi))   

where pi = 100*(ei / yi) and yi is the observed value, ei is the difference between the observed 

value and the forecast value for a given time i. The disadvantage of this method is that some 

results may be undefined, when yi = 0, or infinite when yi is close to zero. 

A comparison of forecast methods made on a single data set is referred to as scale-dependent. 

Some popular models are: the Mean squared error (MSE), Mean absolute error (MAE) and 

Root mean squared error (RMSE). 

  MAE = 
∑|𝒆|

𝒏
  ,    MSE = 

∑𝒆𝟐

𝒏
    and   RMSE = √𝑴𝑺𝑬 

The drawback of using MSE is that the square puts a high weight on large deviations/errors, 

therefore it might return a large forecast error even if the forecast algorithm perfroms well in 

general. One way to overcome this issue is to use the RMSE instead. RMSE or MSE can be 

useful when large errors are undesirable. The MAE is steady because individual differences 

have equal weight.  

https://libguides.library.kent.edu/statconsulting/minitab
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Since only one dataset will be used in this study, it is therefore logical to use scale-dependent 

measurement techniques to assess the forecast accuracy. There isn’t a single best measurement 

model. However the 3 above mentioned models are widely used in litterature, therefore these 3 

will be the reference in this study as well. The lower the values of these are, the more 

satisfactory the forecasts will be. 

 

It is important to note that the dataset in this study consists of only one variable, which is 

collected sequentially over equal time measurements, that is from 1990 to 2016. This kind of 

series is referred to as univariate time series. On the other hand, a series which has two or more 

variables is regarded as a multivariate time series. Different methods are used for each case, 

when forecasting, but only the models for the univariate time series will be discussed in this 

study. 

2-2. The principle of Parsimony 

A highly important principle of reasoning used in science is the principle of parsimony, often 

referred to as Occam’s razor. The principle is named after an English philosopher of the 14th 

century, William of Occam (1285-1350) [68]. It states that models or explanation should be as 

simple as possible. His principle is used when choosing among theories, models, equations, 

explanations, etc.  In forecasting, among  a number/group of suitable models, the simplest one 

is always to be chosen. When building a proper time series model, one must consider the 

principle of parsimony and shouldn’t use more parameters than needed. Using many parameters 

to fit the data at hand is a meaningful approach to building a model. The resulting model is 

usually a good fit for that particular data, however it will most likely not give good results when 

used for predicting other datasets.  

A parsimonious model is one which has just the right number of predictors needed to describe 

the model. A model with many parameters is referred to as a low parsimony model. One with  

fewer parameters is referred to as high parsimony model. Low parsimony models usually fit 

better than high ones, but as mentioned earlier, they also tend to be much less effective for 

predicting other data sets. There are many methods available to help find the right balance 

between goodness of fit and parsimony. The most popular ones are: 

Akaike’s Information Criterion (AIC): compares a set of models and rank them from best to 

worst, the best model being the one which neither under-fits nor over-fits. However, it doesn’t 
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tell much about the quality of the models, as it only compares between the given/input models 

[53]. 

Bayesian Information Criterion (BIC) often called Schwarz criterion (SBC or SBIC): developed 

by Gideon E. Schwarz, the method is similar to the AIC but puts more emphasizes on the 

number of parameters. Models with less parameters are more favored, better [54]. 

Minimum Description Length (MDL): used in machine learning, says that every data usually 

has regularities and capturing them can help compress the data. The more we compress the data, 

the more we learn about it and therefore the model which compresses it the most is best [56]. 

Bayes Factors [55] is also another method, but is not as popular as the previous ones. 

2-3. Overview of the methods 

The followings are the methods which will be used in this study. No judgement forecasting 

model is used here, only quantitative forecast models. 

2-3-1. Accepted forecasting methods in the litterature 

All the following methods are linear, that is they do not have a single parameter which is raised 

to any power greater than one (1). 

2-3-1-1. Moving Averages 

Moving averages (MA) are about taking the average of the points nearby/around an observation. 

Observations which are near each other in time are very likely to be close in value. That’s the 

idea behind the technique. That average can be a reasonable estimate for the trend-cycle of that 

observation. Development of the moving averages goes back to 1901 by R. H. Hooker. It was 

later on discussed by Yule as ‘instantaneous averages’ [37] in 1909, but the name “moving 

averages” was quickly adopted in 1912 [38]. Later works led to the development of ‘exponential 

moving averages’ or EMAs which is referred to nowadays as Exponential smoothing methods 

[39]. MAs are very useful when decomposing a time series for advanced forecasting models 

because they smooth out irregular patterns in the time series data. This helps recognize trends 

easily. However, seasonality, random events and cyclical patterns may affect the accuracy of 

the forecasts. It is also important to notice that the more periods we use in the MA, the smoother 

the time series will be. Therefore, MAs might not be the best forecasting method to use. More 
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on moving averages in this article [23]. There are many kinds of MAs, depending on the number 

of data points included in the average. MAs can be simple or weighted. 

Simple Moving Averages:  

SMA is the simplest type of forecasting technique. Here, we are required an odd number of 

observations to be included in the average. Basically, the last ‘n’ period’s values are added up 

and then that sum is divided by ‘n’. The value obtained is referred to as moving average value 

and is used as the forecast for the next period. 

Example: a 3-year MA  m=3. m = number of observations in the average.  

The process is explained in table 2.3.1. 

          Table 2.3.1:   Simple moving average process. 

 

Years (t) Variable (Y) 3-year Moving 

Totals 

3-year Moving Averages 

t1 Y1 (nothing) (nothing) 

t2 Y2 Y1 + Y2 + Y3 
𝑌1+𝑌2+𝑌3

3
 = a1 

t3 Y3 Y2 + Y3 + Y4 𝑌1+𝑌2+𝑌3

3
 = a2 

t4 Y4 ...... ...... 

..... ...... ...... ...... 

tn-1 Yn-1 Yn-2 + Yn-1 + Yn 𝑌(𝑛−2)+𝑌(𝑛−1)+𝑌(𝑛)

3
 = an-2 

tn Yn (nothing) (nothing) 

  

The variable Y represents the observed values and the variable ai represents the forecast value 

for each period. 

 

Centered Moving Averages 

This is a MA with an even number of observations to be included in the average. The method 

is best described through examples. Table 2.3.2 shows how a 4-year MA is calculated.  

The first average a1 is calculated as follows:     

  a1 = 
1

4
 (Y1 + Y2 + Y3 + Y4) 

and the second average a2 as follows:    

  a2 = 
1

4
 (Y2 + Y3 + Y4 + Y5) 

a1 and a2 are further averaged to get a new value A1 whichs is:     A1 = 
1

2
 (a1 + a2) 
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A1 is written against t3 and this is referred to as centering the 4-year moving averages. This 

process continues until the end of the series. 

     Table 2.3.2:  Centered moving average process deconstructed. 

Years (t) Variable (Y) 4-year Moving 

Averages 

4-year Moving 

Averages centered 

t1 Y1 (nothing) (nothing) 

t2 Y2 𝑌1+𝑌2+𝑌3+𝑌4

4
 = a1 

(nothing) 

t3 Y3 𝑌2+𝑌3+𝑌4+𝑌5

4
 = a2 

𝑎1+𝑎2

2
 = A1 

t4 Y4 𝑌3+𝑌4+𝑌5+𝑌6

4
 = a3 

𝑎2+𝑎3

2
 = A2 

t5 Y5 ....... ........ 

...... ...... ...... ....... 

 

 

Double Moving Averages 

Any combination of MAs is referred to as a double moving averages or a  Moving averages of 

another Moving averages. The previous example in the Centered MA equivalent to a 2*4MA 

smoother. a1, a2,..., an represent the 4MA part, since they are simple averages of the variable Y 

over 4 periods. A1, A2,..., An are simply averages of the an values over 2 periods. Thus the name 

2*4 Moving Averages. 

Weighted Moving Averages 

Let us look at the previous example. In Table 2.3.2, the 2*4-year MA was calculated as follows: 

The first 4 values were averaged and a1 was obtained as  

  a1 = 
1

4
 (Y1 + Y2 + Y3 + Y4)                      (2.1) 

then, 4 values were averaged again starting from the second observation Y2 and a2 was found 

to be: 

  a2 = 
1

4
 (Y2 + Y3 + Y4 + Y5)                      (2.2) 

Finally, in order to obtain 2 averages of the 4MAs, successive values of an were averaged as: 

  A1 = 
1

2
 (a1 + a2) 

If we replace a1 and a2 by their values, the following is obtained: 

  A1 =  
1

2
 (a1 + a2)  =  

1

2
(

Y1+Y2+Y3+Y4

4
 + 

𝑌2+𝑌3+𝑌4+𝑌5

4
)  =  

1

8
 (Y1 + 2Y2 + 2Y3 + 2Y4 + Y5) 
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  A1 =   
1

8
(Y1) + 

1

4
(Y2) +  

1

4
(Y3) +  

1

4
(Y4) +  

1

8
(Y5)               (2.3) 

Eq. 1 is a weighted Moving Averages of order 5 (because 5 observations are taken into the 

average) with weights of  
1

8
 , 

1

4
 , 

1

4
 , 

1

4
 and  

1

8
 for the first, second, third, fourth and fifth terms 

respectively. 

Moving averages have been applied in short-term load forecasting by Ariffin, Karim and Alwi 

[1]. 

2-3-1-2. Exponential Smoothing Methods 

Smoothing means average (or averaging). With forecasting, the most recent observations 

provide the best guide as to the future. Exponential smoothing is a weighting algorithm/method 

that has decreasing weights as observations get older [1]. Unlike Moving Averages, all the 

values are included in the process. However, recent observations are given relatively more 

weight values than older ones. Exponential smoothing method is derrived from the moving 

averages principles. Historically, the method was developed by Holt and Brown. Both scientists 

worked independently and knew not of each other’s works. During world war II, under the US 

navy, Brown designed a system for tracking submarines. He later on applied that technique to 

forecast the demand for spare parts and describes his ideas in his book on inventory control 

problems [39]. Holt worked independently for the Office of Naval Research and developed 

models for constant processes, processes with linear trends and for seasonal data [40]. 3 years 

later, in 1960, Peter R. Winters added seasonality to the double exponential smoothing [41]. 

This model became known as the Holt-Winters method.  Exponential Smoothing methods are 

usually used to remove any randomness in a data. They are best used for short-term forecasting. 

When the data exhibits no trend nor seasonal pattern, the single exponential smoothing method 

can be applied to it. 

Single Exponential Smoothing 

 The single exponential smoothing is expressed as follows: 

  Ft+1 = α*Yt + (1 – α)*Ft                         (2.4) 

where Yt represents the observation (or observed value) at time t, Ft represents the recent 

forecast value and α is a weight (the smoothing constant). The value of α is always between [0, 

1] and is usually chosen arbitrary, according to each case. It is subject to trial and error. 
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However, it requires only a few trials to figure out which value gives the minimum  errors. 

Also, the first observed value is commonly used as the initial forecast value F0. 

The general exponential smoothing method was applied in Christiaanse [3] for short term 

hourly MWH(megawatt per hour) load forecasting. 

The SES or Simple Exponential Smoothing method does not perform well in long-term 

forecasting because it is very slow to catch up with sudden level changes in the data. In such 

cases, it would be best to use a double exponential smoothing method or Holt’s (linear) 

exponential smoothing method. 

Holt’s Exponential Smoothing 

In a SES, the forecast values fall behind when there is an increasing trend and when there is a 

decreasing trend, the forecast values exceed the observed ones. Holt’s method takes care of 

these problems. To account for the trend component in the series, another smoothing constant 

is added in this method, that is β. β is the trend smoothing constant. Now, 3 equations are needed 

in order to make a forecast: 

        Level: Lt =  α*Yt + (1 – α)*(Lt-1 – bt-1)          (2.5) 

    Trend component: bt = β*(Lt – Lt-1) + (1 – β)*bt-1          (2.6) 

       Forecast: Ft+1 = Lt + bt                 (2.7) 

Where α is the smoothing constant for stationary process, β is the the trend-smoothing constant 

and its value is also between 0 and 1. 

Lt is the smoothed constant and bt is the (smoothed) trend value 

As for the single exponential method, starting values for α , β , Lt  and bt must be selected in 

advance. The following is a way of doing so: 

  L1 = Y1  and b1 = Y2 – Y1  or b1 = (Y4 – Y1)/3.  

However, it is important to remember that all initializations are done arbitrary. 

Note that when α = β, Holt’s method is referred to as ‘Double Exponential Smoothing’ [25]. 

When a series displays both a trend and a seasonal pattern, ‘Holt-Winter’ method is best used 

in such cases.  
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Holt-Winter’s Exponential Smoothing 

To account for the seasonal component of the time series, another smoothing constant ‘ϕ’ is 

added, just as in the previous method. This method has 2 variations, depending on the nature of 

the seasonal component [24]. If the seasonal variations are constant through the series, an 

additive method is preferred whereas a multiplicative method is chosen when the seasonal 

variations change proportionally to the level of the series. 

Additive seasonality: 

The following equations are used for: 

        Level:  Lt =  α*(Yt – St-s) + (1 – α)*(Lt-1 + bt-1)  (eq. 1) 

    Trend component:  bt = β*(Lt – Lt-1) + (1 – β)*bt-1     (eq. 2) 

   Seasonal component:  St = ϕ*(Yt - Lt) + (1 - ϕ)*St-s      (eq. 3) 

       Forecast:  Ft+m = Lt + m*bt + St-s+m       (eq. 4) 

Where s is the length of the seasonality, that is the number of months or quarters in one season. 

The series is seasonally adjusted in the level equation (eq. 1) by substracting the seasonal 

component. The equation for the trend component (eq. 2) is the same as in Holt’s linear method. 

Substractions are needed in order to initialize the seasonal indices. They work as follows: 

  S1 = Y1 – Ls ; S2 = Y2 – Ls ; ...... ; Ss = Ys – Ls               (2.8) 

To initialize the level, the average of the first season is taken: 

  Ls = 
1

𝑠
 (Y1 + Y2 + ... + Ys)                      (2.9) 

It is convenient to use 2 complete seasons when initializing the trend: 

  bs = 
1

𝑠
 ( 

𝑌(𝑠+1)−𝑌1

𝑠
 + 

𝑌(𝑠+2)−𝑌2

𝑠
 + ..... + 

𝑌(𝑠+𝑠)−𝑌𝑠

𝑠
 )                   (2.10) 

Each of these elements is an estimate of the trend over one complete season. 

Multiplicative seasonality: 

The following equations are used: 

        Level:  Lt  =  α*[ 
𝑌(𝑡)

S(t−s)
 ] + (1 – α)*(Lt-1 + bt-1)         (2.11) 

    Trend component:  bt = β*(Lt – Lt-1) + (1 – β)*bt-1           (2.12) 

   Seasonal component:  St = ϕ*[ 
𝑌(𝑡)

𝐿(𝑡)
 ] + (1 - ϕ)*St-s            (2.13) 
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  Forecast:  Ft+m = (Lt + m*bt )*St-s+m                     (2.14) 

Note that in a multiplicative seasonality, to obtain the level, the series is divided by the seasonal 

component in order to remove the seasonal effects/patterns, whereas in an additive model, the 

seasonal component is substracted from the series.  

The initialization process of the factors bs and Ls is the same as in the additive model. 

The seasonal indices are initialized by taking a ratio of the first data in the first season to the 

mean of the first year, that is: 

  S1 = 
𝑌(1)

𝐿(𝑠)
 ; S2 = 

𝑌(2)

𝐿(𝑠)
 ; ...... ; Ss = 

𝑌(𝑠)

𝐿(𝑠)
                          (2.15) 

The parameter α, β and ϕ are chosen randomly. 

Holt and Winter’s Exponential Smoothing method was used by Bindiu and Chindriu [4] in a 

day-ahead load forecasting for a fittings manufacturer. More on this algorithm in the following 

[42]. 

2-3-1-3. Simple and Multiple Regressions 

Regressions were first studied in depth in the 19th centuries by a scientist named Francis Galton. 

He was a self-taught statistician, astronomer, anthropologist and naturalist. Regression is a 

technique used to estimate the relationship between variables. The method is based on the idea 

that linear relationships are the simplest relationships that can be assumed between two (2) 

variables. He first presented the regression-line during a lecture in 1877. He later on laid down 

the principles of multiple regression and the correlation coefficient. However, he wasn’t a great 

mathematician, so he couldn’t develop a complete mathematical model which would capture 

his ideas. His work was later developed into a rigorous mathematical treatment by Karl Pearson 

under several publications [43].  There exists linear and non-linear regression models. However, 

since no non-linear model will be used in this study, only the linear ones will be discussed in 

the following.  

Simple linear regression 

Any regression of a single variable Y (the forecast or dependant variable) on a single variable 

X (the explanatory or independant variable or predictor) is referred to as Simple Regression. 

Basically, the variable Y is forecasted by assuming that it has a linear relationship with the 

variable X. The model is called ‘simple’ regression because it allows only one predictor 



15 

 

 

 

variable, that is variable X. For example, Y could represent the sales of a product and X could 

be the time. The simple linear regression model is expressed as follows: 

  Y = a + b*X + e                              (2.16) 

 

Where  a is the intercept,  b the slope of the line and e represent the error factor. 

Eq. 1 is the equation of a line, thus the method is often referred to as ‘fitting a line through the 

data’ as the data will be spread out above and below that line. 

The least squares method [26] is used to estimate the parameters a and b. This method provides 

an effective way of choosing a and b by minimizing the sum of the squared errors, that is a and 

b are chosen to minimize 

  ∑ 𝑒𝑖
2𝑛

𝑖=1   =  ∑ (𝑌𝑖 −  𝑌̂𝑖)2𝑛
𝑖=1   =  ∑ (𝑌𝑖 − 𝑎 − 𝑏 ∗ 𝑋𝑖)2𝑛

𝑖=1                  (2.17) 

 

Using some calculus, the values of a and b are obtained as follows: 

 

  b = 
∑ (𝑋𝑖− 𝑋̅)(𝑌𝑖− 𝑌̅)𝑛

𝑖=1

∑ (𝑋𝑖− 𝑋̅)2𝑛
𝑖=1

    and    a = 𝑌̅ – b*𝑋̅                       (2.18) 

 

where 𝑋̅ is the mean or average of the X observations and 𝑌̅ is the mean of the Y observations. 

Eq. 1 can therefore be rewritten as follows to forecast values for the next periods: 

  𝑌̂ = a + b*X                               (2.19)

   

 

The following page [27] gives further insights about linear regression models.   

2-3-1-3-b. Multiple linear regression 

In a multiple linear regression, there is one variable to be predicted (Sales for instance), but 

there are two or more predictors, assuming that the variable to be predicted has a linear  

relationship with all the predictors. The general form is as follows:        

       Y = b0 + b1*X1 + b2*X2 + ..... + bk*Xk + e            (2.20) 

Estimating the the coefficients bk is done with the least squares method again as for the simple 

regression. 

    ∑ 𝑒𝑖
2𝑛

𝑖=1   =  ∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑛
𝑖=1   =   

    ∑ ( 𝑌𝑖 − 𝑏(0) − 𝑏(1) ∗ 𝑋1 − 𝑏(2) ∗ 𝑋2 − ⋯ − 𝑏(𝑘) ∗ 𝑋(𝑘) )2𝑛
𝑖=1        (2.21) 
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Estimating the values of the coefficients which minimize eq. 2.21 is a lot harder in a multiple 

linear regression, thus a computer program would normally be used. More on the model in the 

following article [28]. 

 

2-3-1-4. Non-seasonal ARIMA models 

ARIMA stands for Autoregressive (AR) Integrated (I) Moving Average (MA). ARIMA models 

are the most general class of models for time series forecasting. ARIMA methodologies were 

first introduced in 1970 by George Box and Gwilym Jenkins in their book [44]. There are 

seasonal and non-seasonal models[45][46]. The seasonal models are commonly noted 

ARIMA(p,d,q) and the non seasonal models ARIMA(p,d,q)(P,D,Q)m where m is the number of 

periods per season. The parameter p is the order of the non-seasonal autoregressive part, d is 

the degree of the non-seasonal first differencing (the number of times successive observations 

are differenced, needed for stationarity) involved and q is the order of the non-seasonal moving 

average part. P is the seasonal AR order, D the seasonal differencing and Q represents the 

seasonal MA order. Each of these 3 parts is an effort to make the final data stationary, that is 

the series will have no trend and its statistical properties are all constant over time. Only the 

non-seasonal models will be discussed in this study. 

The term AR is a simple regression model of the previous values of the forecast variable, in 

other words time-lagged values of the forecast variable. It is denoted as follows: 

  Yt = b0 + b1*Yt-1 + b2*Yt-2 + ...... + bp*Yt-p + et                      (2.22) 

 

where et is the error term. 

The “I” term is there to make the series stationary, if needed. If a series is non-stationary in the 

mean, differencing will usually take care of that irregularity whereas logarithmic and/or power 

transformations are used when a series is non-stationary in the variance. 

The MA term does not mean a moving average of the observations, but rather one of the series 

errors. 

  Yt = c0 + c1*Et-1 + c2*Et-2 + ...... + cp*Et-p + et                    (2.23) 

An ARMA model would look like this: 

  Yt = µ + b1*Yt-1 + b2*Yt-2 + ...... + bp*Yt-p - c1*Et-1 - c2*Et-2 - ...... - cp*Et-p               (2.24) 

 

By convention, the AR terms are positive (+) and the MA terms are negative (-). 
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In most cases, we don’t really deal with values of p, d, q that are greater than 2, usually 0, 1 or 

2. This small range can actually cover a tremendous range of practical forecasting situations. 

Computer softwares such as Minitab or ‘IBM SPSS’ are used to facilitate working with this 

model. These programs either automatically generate values for the parameters p, d and q or let 

the user manually enter values and compare different results.  

However, it is sometimes possible to determine the values of p and q through the ACF (auto-

correlation function) plot and the PACF (partial auto-correlation function) plot. There are many 

rules to how to do so [29]. 

The ACF plot shows the relationship between yt and yt-k for different values of k for lag 1. If yt 

and yt-1 are correlated, then yt-1 and yt-2 must also be correlated and therefore yt and yt-2 should 

also be correlated through yt-1 rather than any new information which could be used in the 

process of forecasting yt. The PACF is closely related to the ACF. The PACF plot shows the 

relationship between yt and yt-k but for lags 2, 3 and greater, which allows us to retrieve more 

information from the data. More on ACF and PACF in this article [30]. 

The following models are some of the special cases of the ARIMA model: 

ARIMA(0,0,0)          a white noise 

ARIMA(0,1,0) with no constant     a random walk 

ARIMA(0,1,0) with a constant      a random walk with drift 

ARIMA(p,0,0)          an autoregression 

ARIMA(0,0,q)          a moving average 

ARIMA models follow a methodology which is detailed in the work of Box and Jenkins [5]. 

ARIMA and ARMA models were performed on a household electric consumption time series 

analysis by Chujai et al.[6] 

Abdel-Aal and Al-Garni used an ARIMA (1, 1, 0)(1, 1, 0)12 model to forecast monthly electric 

consumption [7]. 

 

Note: For more information about any of the before mentioned algorithms, please refer to this 

book : “Forecasting methods and applications” [2]. 

 

2-3-2. Heuristic models 

Forecasting is never perfect, that is there will always be some errors. The goal is to optimize 

the forecasts by minimizing the errors. In forecasting, there is not a single accepted method 

which works perfectly in every situation. This characteristic has encouraged many researchers 
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and business practitioners to attempt to develop different forecasting algorithms and models, 

since the 1970s. Most of the developed techniques are case specific and often the result of the 

combination of different models, thus the name heuristics. The following described models are 

used with data sets with small sample sizes (less than 40). They are all non-linear. The data in 

this study has a size of 27, thus the reason for choosing such models. 

2-3-2-1. Grey Model GM(1,1) 

Grey system/theory is a non-traditional forecasting technique used in problems where there 

isn’t enough information and the data is discrete. The “grey” in Grey theory means a mixture 

of black and white where black refers to a lack of  information and white means complete 

information. The idea was introduced in the early 1980s by Deng [8]. The basic Grey prediction 

model is the GM(1,1), which is a time series forecasting model in the form of a differential 

equation. GM(1,1) does not require any prior knowledge to the system. It has the advantage 

that it can be used with as few as 4 observations [10]. Many variations of the model have been 

developed throughout the years: a Bayesian GM(1,1) was discussed in [47]; [47][48] discussed 

genetic algorithms associated with the grey model; the grey prediction with rolling mechanism 

was used in various studies [49][50]; a Grey-Markov model based on the Markov chains was 

also used in [51][52]; etc. These efforts are all attempts to improve the original GM(1,1). There 

are many steps to building a GM(1,1): 

Step 1: the original data set, non negative historical sequence, is expressed as follows 

  x(0) = {x(0)(k)}, k = 1,2,3,...,n                          (2.25) 

Step 2: a new sequence x(1) is created, by a one time accumulated generating operation (AGO) 

using the initial dataset x(0) in step 1. The AGO partially eliminates any fluctuation in the 

original discrete data 

  x(1)(k) = ∑ x(0)(i), k = 1,2,3,...,n                         (2.26) 

Then 

  x(1) = { x(1)(1), x(1)(2), ..., x(1)(k) } = { ∑ 𝑥(0)1
𝑖=1 (i), ∑ 𝑥(0)2

𝑖=1 (i), ..., ∑ 𝑥(0)𝑛
𝑖=1 (i) } 

which is a first-order Accumulated Generating Operation series obtained from the initial data 

set x(0). 
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Step 3: the grey prediction model GM(1,1) is expressed by the following one-variable first order 

differential equation 

  
𝑑𝑥(1)

𝑑𝑡
 + a*x(1) = b                              (2.27) 

The whitening version of this equation is as follows 

  x(0)(k) + az(1)(k) = b                               (2.28) 

where z(1)(k) is referred to as background value and is calculated through 

  z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k-1),     k = 2,3,..,n                    (2.29) 

z(1)(k) is the mean generation of consecutive neighbors value of accumulating generator 

sequence. 

The parameter a is referred to as the development coefficient and b as the grey input coefficient. 

Step 4: the values of a and b are obtained by applying the least-squared method to eq. 4 

Step 5: Through the use of ‘Laplace’ [32] inversion transform, the solution to the differential 

equation (eq. 2.28) is as follows 

   𝑥̂(1)(k) = [x(0)(1) – 
𝑏

𝑎
]* e-a(k-1) + 

𝑏

𝑎
,  k = 1,2,3,....                    (2.30) 

This is called a time response sequence of the basic GM(1,1), it is a forecast result of the one 

time accumulated generating operation AGO.  

Step 6: in order to retrieve the values used in the accumulation process prediction results in step 

5, the one-time inverse accumulated generating operation (IAGO) is used and the following 

Grey model is obtained: 

  𝑥̂0
(0)(k) = 𝑥̂0

(0)(k) - 𝑥̂0
(0)(k-1)  

Then 

   𝒙̂0
(0)(k) = ( x(0)(1) - 

𝒃

𝒂
 )*(1 - ea)*e-a(k-1)       k = 1,2,3,...                         (2.31) 

Where 𝑥̂(0)(1) = x(0)(1). 

This last equation (eq. 7) is the model which will be used to forecast for future periods.  
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It is important to note that GM(1,1) accepts only positive entries. 

For more details, refer to these articles [9] [11] [12]. 

This method was applied in Turkey by Hamzacebi [69] in 2014. 

2-3-2-2. Grey Prediction with Rolling Mechanism (GPRM) 

GPRM is a variant of the original GM(1,1). Building a GPRM model is very similar to building 

a GM(1,1), all the steps are the same through 1 to 6. But, the GPRM adds one (1) extra step to 

those; recent observations are more likely to give better insight to the future, therefore including 

them in our model would give better forecast values. That is what GPRM tries to do. 

Setting up a GPRM can be summarized in 3 steps: 

Step 1: here, we set up our model just like in GM(1,1) and forecast our first value 

Step 2: upon obtention of the first predicted value, the oldest data in the original data set x(0)   

    (in step 1 of the GM(1,1)) is removed, that is x(0)
(1) , and the predicted value is    

    inserted at the end of the series. Then, a new GM(1,1) model is set up using the    

    new data set x(0) and we forecast our second value. 

Step 3: the processes in step 2 are repeated for every new predicted value until we finish  

     forecasting for a given period of time. This is the reason why the method is called  

     ‘rolling mechanism’. 

GPRM was applied in Turkey by Akay and Atak for the electricity demand forecasting in 2007 

in the following article [13]. This article [14] also contains an application of the method. 

It is important to note that this model has a major downside. According to the principle of 

parsimony, the model is good since it has only 2 parameters. However, the process of repetition 

can be very exhausting, especially when forecasting for long periods. This makes it highly time 

consuming. This process could be eased down if there was a software implementation of the 

algorithm, but unfortunately up to date there are none. Another way around this issue would be 

to develop a piece of coding which could perform the repetition process for us. But again 

unfortunately, no codes were found during the course of this study. 
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2-3-2-3. Grey Model with Optimization of Background Value 

It is important to notice that the prediction accuracy of GM(1,1) model is determined by the 

parameters a and b, and the values of a and b depend on the original data set and the background 

value, namely the z(1)(k) sequence. So, the prediction precision is directly affected by the 

equation of background value. At present, most people use the linear value insert method, that 

is : 

  z(1)(k) = α*x(1)(k-1) + (1 + α)*x(1)(k)                   (2.32) 

as the background value equation.  

The method used in the above mentioned GM(1,1) model is the original mean value calculating 

formula:         

  z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k-1)                      (2.33) 

  

       
     Figure 2.2:  Area enclosed by x(1)(t) within [k-1,k] and the t axis. 

 

However, it is possible to optimize this equation by calculating the area which is enclosed by 

x(1)(t) within [k-1,k] and the t axis instead of taking an average.  This can be seen in fig. 2.2. 

The differential equation of the basic GM(1,1) (which is eq. 2.27 in step 3 of the GM(1,1) model 

above) can be rewritten as follows: 

   
𝑑𝑥(1)

𝑑𝑡
 + a*x(1) = b                               (2.34) 

Within [k-1, k], that is 

   ∫
𝑑𝑥(1)

𝑑𝑡
𝑑𝑡

𝑘

𝑘−1
  +  a*∫ 𝑥(1)𝑑𝑡

𝑘

𝑘−1
  =  b                       (2.35) 
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The following equation is obtained: 

  x(1)(k)  -  x(1)(k-1)  +  a*∫ 𝒙(𝟏)𝒅𝒕
𝒌

𝒌−𝟏
  =  b                      (2.36) 

The parameters a and b estimated by using ∫ 𝒙(𝟏)𝒅𝒕
𝒌

𝒌−𝟏
 as background value  are more adaptive 

to whitenization equation. 

According to article [19], let’s assume that  x(0)(k) = g*𝒆𝒂(𝒌−𝟏)  and  x(1)(k) = G*𝒆𝒂(𝒌−𝟏) + C, 

z(1)(k)  =  ∫ 𝑥(1)𝑑𝑡
𝑘

𝑘−1
  =  ∫ (𝐺 ∗ 𝑒𝑎(𝑡−1) + 𝐶)𝑑𝑡

𝑘

𝑘−1
     =  

1

𝑎
*( G*𝑒𝑎(𝑘−1) - G*𝑒𝑎(𝑘−2))  

1

𝑎
*( G*𝑒𝑎(𝑘−1) - G*𝑒𝑎(𝑘−2)) =  

1

𝑎
*[x(1)(k) – x(1)(k-1)] + C 

 

   z(1)(k)  =  
1

𝑎
*x(0)(k) + C                                             (2.37) 

 

Moreover, 
𝑥(0)(𝑘)

𝑥(0)(𝑘−1)
 = 

𝑔∗𝑒(𝑘−1)

𝑔∗𝑒(𝑘−2) = 𝑒𝑎, by applying a logarithm on both sides of the equation, 

 

  a = 𝒍𝒏 𝒙(𝟎)(𝒌) - 𝒍𝒏 𝒙(𝟎)(𝒌 − 𝟏)                                                    (2.38) 

 

According to article [19] again, C = -G*𝑒−𝑎 = g*(1 - 𝑒𝑎)-1; 

 

For x(0)(k) = g*𝑒𝑎(𝑘−1),  g  =  x(0)(k)*𝑒−𝑎(𝑘−1)  =  x(0)(k)*𝑒𝑎(1−𝑘) 

We know that: 

     𝑒𝑎 = 
𝑥(0)(𝑘)

𝑥(0)(𝑘−1)
 ;  therefore  g  =  x(0)(k)*[

𝑥(0)(𝑘)

𝑥(0)(𝑘−1)
](1−𝑘) 

The value of C can be computed now: 

 

C = g*(1 - 𝑒𝑎)-1  =   x(0)(k)*[
𝑥(0)(𝑘)

𝑥(0)(𝑘−1)
](1−𝑘)* (1 - [

𝑥(0)(𝑘)

𝑥(0)(𝑘−1)
]−1) =  

[𝑥(0)(𝑘−1)]𝑘

[𝑥(0)(𝑘)]𝑘−2 ∗ [𝑥(0)(𝑘−1) − 𝑥(0)(𝑘)]
 

 

At last, putting the values of a and C in eq 2.37, the new background value formula z(1)(k) is: 

  z(1)(k)  =  
𝒙(𝟎)(𝒌)

𝒍𝒏 𝒙(𝟎)(𝒌) − 𝒍𝒏 𝒙(𝟎)(𝒌−𝟏)
 + 

[𝒙(𝟎)(𝒌−𝟏)]𝒌

[𝒙(𝟎)(𝒌)]𝒌−𝟐 ∗ [𝒙(𝟎)(𝒌−𝟏) − 𝒙(𝟎)(𝒌)]
                              (2.39) 

The parameter a is estimated by taking the average of the values obtained using eq 2.38. 

The parameter b is estimated by using the eq 2.28 in the GM(1,1) model, that is  

    x(0)(k) + az(1)(k) = b   so    b = x(0)(k) + az(1)(k) 

with the new calculated value of a and the new background value z(1)(k): 

  b(k)  =  x(0)(k)  +  a*( 
𝒙(𝟎)(𝒌)

𝒍𝒏 𝒙(𝟎)(𝒌) − 𝒍𝒏 𝒙(𝟎)(𝒌−𝟏)
 + 

[𝒙(𝟎)(𝒌−𝟏)]𝒌

[𝒙(𝟎)(𝒌)]𝒌−𝟐 ∗ [𝒙(𝟎)(𝒌−𝟏) − 𝒙(𝟎)(𝒌)]
)             (2.40) 
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for k = 2,3,..,n .The final value of parameter b is the average of the results obtained using (2.40). 

The values of a and b are then put in the grey prediction equation and prediction operations can 

be performed. 

  𝒙̂0
(0)(k) = [x(0)(1) - 

𝒃

𝒂
]*(1 - ea)*e-a(k-1)                             (2.41) 

2-3-2-4. Grey_ARIMA model 

This is a hybrid method based on a simple combination of the two models. Predictions are made 

using both algorithms separately; the errors for each method is calculated. By assigning weights 

to both algorithms according to their residuals (errors) and adding their results for respective 

values of k (k being the time), a new value is then obtained (forecast value), a value which is 

normally better. The model is as follows: 

  Hybrid(Grey_ARIMA) = α*GM(1,1) + β*ARIMA(n, p, q)                (2.42) 

Here, the terms GM(1,1) and ARIMA(n,p,q) represent their respective forecasts at different time 

values. α and β are parameters assigned to both methods according to the way their residuals 

corrolate with each other. Their values are between [0, 1]. Note that α + β = 1. However, it isn’t 

always easy to figure out something just through a study of  corrolations. Sometimes, a few 

trials are needed in order to find the best values of those two parameters. Therefore, it is 

recommended to try different values of α and β to see which ones give minimum errors. A good 

example could be as follows: 

  Hybrid = 0.5*GM(1,1) + 0.5*ARIMA(n, p, q) 

Here, 0.5 means that the residuals of the two models are mutually exclusive, that is when the 

error of one is positive, the error for the other one is negative, or when the value of one rises, 

the other one decreases. The predicted value for this model is the average of the results of both 

GM(1,1) and ARIMA for any given value of k. 

This particular method has been implemented/used in the following article [15]. 

The study down here is divided into two parts: in Section 2-4-1, we will  work with the initial 

27 dataset and perform a series of forecasting excersise for 5 periods and get the errors. In 

Section 2-4-2, the same operations will be performed using the new dataset obtained through 

bootstrapping and the results obatined there will be compared with the ones of Section 2-4-1 in 

Section 3. 
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2-4. Application of the methods 

The followings are the applications of the previously mentioned methods. In section 2-4-1, the 

models are applied on the unemployment rates of Mali from (1990-2016), which is referred to 

as the initial dataset and section 2-4-2 shows the application of those methods on the data 

obtained after bootstraping the initial dataset, which is referred to as ‘Sample 10’. 

2-4-1. Forecasting with the initial dataset 

Here, for every algorithm, the first 22 entries of the data will be used  to set up our models, and 

the last 5 entries to test the model. The time series plot of the data is shown in figure 2.3. 

Looking at the graph, it can be seen that the data shows no trend or seasonal patterns. Therefore 

we can conclude that Moving avarages and Single exponential smoothing methods are suitable 

for this case. 

The mean of the data is calculated as follows  

  µ =  ( ∑ 𝑌𝑖22
𝑖=1  ) / n                              (2.43) 

with Yi being the observations at time i and n equals 22. It is found to be 8,309.  

The standard deviation, which is a measure of how numbers are spread out over the mean, is 

expressed as follows 

  s = √
∑ (𝑌𝑖− 𝑌̅)^2𝑛

𝑖=1

𝑛
                              (2.44) 

with 𝑌̅ being the mean of the sample and n equals 22 again. It is found to be 2,222. A low 

standard deviation indicates that the observations are not very distant from the mean whereas a 

high standard deviation indicates the opposite, that is, observations are quite far off from the 

mean. 

The variance, similar and closely related to the variance, is expressed simply as the square of 

the standard deviation, as follows 

  v =  s2  =  
∑ (𝑌𝑖− 𝑌̅)^2𝑛

𝑖=1

𝑛
                            (2.45) 

 It is found to be 4,937.  
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The Pearson correlation coefficient is used to determine the type of relationship between two 

 (2) variables. Its value can range between -1 and +1. A negative value indicates a negative 

correlation, that is if the value of one variable increases, the value of the second variable 

decreases, or vice versa. A positive value indicates a positive correlation, that is both variables 

decrease or increase together. The formula of the pearson correlation is expressed as follows : 

  r = 
𝑛∗∑(𝑥∗𝑦) − (∑ 𝑥)∗(∑ 𝑦) 

√[𝑛∗∑𝑥2 −  (∑𝑥)2]∗[𝑛∗∑ 𝑦2 −  (∑ 𝑦)2]
                        (2.46) 

where x represents the first variable which is the time in our case, and y represents the second 

variable which is the unemployment rates.  The Pearson correlation coefficient of the Year and 

Unemployment is found to be 0.023, which is very low. This indicates that there is very little or 

no correlation between the time and the change of values for the unemployment. Therefore, a 

linear regression is not suitable for this data. Nonetheless, we will still use it, for the sake of 

comparison with other algorithms. Also no ARIMA model will be used in this section, that is 

because the size of the dataset is only 27 and as mentioned before, a minimum of 50 data are 

needed in order to be able to set up an ARIMA model. 

        

       Figure 2.3:  Unemployment rates of Mali from World Data Atlas. 

 

2-4-1-1. Simple Linear regression 

The data consists of only two (2) variables, the time which is in year and the unemployment 

rates. Therefore a simple linear regression model is best suitable here.The first 22 entries of the 

data are inserted into Minitab and the method of simple linear regression is applied to them. 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Unemployment(%)



26 

 

 

 

Again the methodology/algorithm is already implemented in Minitab. All the parameters are  

automatically estimated by the program. Similarly to eq 2.16 in Section 2-2-1-3-a, the following 

linear regression equation is obtained: 

        Unemployment(%) = -79 + (0,0437 * year) 

Using this equation, the next 5 years values are predicted as follows: 

Year 2012: Unemployment(%) = -79 + (0,0437 * 2012) = 8,9244; 

Year 2013: Unemployment(%) = -79 + (0,0437 * 2013) = 8,9681; 

Year 2014: Unemployment(%) = -79 + (0,0437 * 2014) = 9,0118; 

Year 2015: Unemployment(%) = -79 + (0,0437 * 2015) = 9,0555; 

Year 2016: Unemployment(%) = -79 + (0,0437 * 2016) = 9,0992; 

These results are now compared with the observed ones and the MAE, MSE and RMSE are 

computed. 

     Table 2.3.3:  Error estimation for the simple linear regression. 

Year 2012 2013 2014 2015 2016 

Observed 

value 

6.9 7.3 8.2 8.1 8.1 

Predicted 

value 

8.9244 8.9681 9.0118 9.055 9.0992 

Error 

(absolute) 

2.0244 1.6681 0.8118 0.9555 0.9992 

Error 

(square) 

4.098195 2.782558 0.659019 0.91298 0.998401 

 

 The MAE is equal to 1.2918, the MSE is 1.89 and the RMSE is 1.37 

 

2-4-1-2. Simple moving averages 

As explained before, the more periods we use in a moving average, the worst our forecats will 

be. Therefore it is convenient to use a 3-period simple moving average here, that is, 3 

observations will be included in each average. The following is the equation for that: 
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  Tt = 
1

3
(Yt-1 + Yt + Yt+1) ,   where  t = 1, 2, 3, 4, ..., n-1 

where Y is the observed value at time t.  

The whole data set will be used here, that is all 27 entries will be needed. 

For t = 1, the following is calculated: 

   T1 = 
1

3
(Y0 + Y1 + Y2) = 

1

3
(7 + 7,2 + 7,1) = 

1

3
(Y1990 + Y1991 + Y1992) = 7,1.  

This is the forecast value for the year 1991, not 1990. 

For t = 2 (year 1992 now),  

  T2 = 
1

3
(Y1 + Y2 + Y3) = 

1

3
(Y1991 + Y1992 + Y1993) = 8,83. 

This operation is repeated over and over until the end of the data. The results obtained are shown 

in table 2.3.4. 

Comparing those results with the observed ones, the errors are computed and the MAE, the 

MSE and the RMSE are found to be 0.8611, 1.4619 and 1.2 respectively. 
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        Table 2.3.4:  Simple Moving average results. 

Year 1991 T1991 7.1  Year 2004 T2004 
7.63 

Year 1992 T1992 8.83  Year 2005 T2005 
9.6 

Year 1993 T1993 10.4  Year 2006 T2006 
10.57 

Year 1994 T1994 10.5  Year 2007 T2007 
10.9 

Year 1995 T1995 9.1  Year 2008 T2008 
10.57 

Year 1996 T1996 6.233  Year 2009 T2009 
9.1 

Year 1997 T1997 6.233  Year 2010 T2010 
7.87 

Year 1998 T1998 6.67  Year 2011 T2011 
7.03 

 Year 1999 T1999 8.2  Year 2012 T2012 
7.03 

Year 2000 T2000 8.266  Year 2013 T2013 
7.47 

Year 2001 T2001 7.6  Year 2014 T2014 
7.87 

Year 2002 T2002 6.466  Year 2015 T2015 
8.13 

Year 2003 T2003 6.87    
 

 

2-4-1-3. Single exponential smoothing 

The time series plot of the data (displayed in fig. 2.3) shows no sign of any trend nor seasonality. 

Therefore, a single exponential smoothing model is suitable for this data. The general equation 

for a single exponential smoothing, as seen in section 2-3-1-2-a, is as follows: 

  Ft+1 = Ft + α*(Yt - Ft) 

where Yt was the observed value at time t and Ft+1 the predicted value. It is commonly assumed 

that the initial value F0 is the first oberved value (first entry in the table). For this case, the  
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   Table: 2.3.5:  Results of the single exponential smoothing method. 

α values 0.2  0.5  0.7  0.9 

 Ft+1  Ft+1  Ft+1  Ft+1 

t=0 7 F1 7  7  7 

t=1 7.04 F2 7.1  7.14  7.18 

t=2 7.072 F3 7.1  7.112  7.108 

t=3 8.0976 F4 9.65  10.6736  11.6908 

t=4 8.85808 F5 10.775  11.53208  11.87908 

t=5 8.566464 F6 9.0875  8.639624  7.847908 

t=6 8.453171 F7 8.54375  8.191887  7.984791 

t=7 7.422537 F8 5.921875  4.767566  3.768479 

t=8 7.41803 F9 6.6609375  6.61027  7.036848 

t=9 7.794424 F10 7.9804688  8.493081  9.073685 

t=10 7.815539 F11 7.9402344  8.077924  8.017368 

t=11 7.772431 F12 7.7701172  7.743377  7.641737 

t=12 7.677945 F13 7.5350586  7.433013  7.334174 

t=13 7.042356 F14 6.0175293  5.379904  4.783417 

t=14 7.393885 F15 7.4087646  7.773971  8.398342 

t=15 7.835108 F16 8.5043823  9.052191  9.479834 

t=16 8.348086 F17 9.4521912  9.995657  10.30798 

t=17 9.018469 F18 10.576096  11.1887  11.5608 

t=18 9.334775 F19 10.588048  10.77661  10.69608 

t=19 9.34782 F20 9.9940239  9.812983  9.529608 

t=20 8.938256 F21 8.6470119  8.053895  7.522961 

t=21 8.530605 F22 7.773506  7.246168  6.962296 

t=22 8.204484 F23 7.336753  7.003851  6.90623 

t=23 8.023587 F24 7.3183765  7.211155  7.260623 

t=24 8.05887 F25 7.7591882  7.903347  8.106062 

t=25 8.067096 F26 7.9295941  8.041004  8.100606 

t=26 8.073677 F27 8.0147971  8.082301  8.100061 

 

values 0.2, 0.5, 0.7 and 0.9 have been used for the parameter α. Table 2.3.5 shows the results 

for every case (the calculations have been done in Microsoft Excel). 

The error for each case is as follows: 

For α = 0.2, the MAE = 1.203 and MSE = 2.935 

For α = 0.5, the MAE = 0.784 and MSE = 1.152 

For α = 0.7, the MAE = 0.464 and MSE = 0.410 

For α = 0.9, the MAE = 0.146 and MSE = 0.046 
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The value of α = 0.9 yields the minimum MAE and MSE, therefore that value of α is the most 

appropriate for this case. Its RMSE value is 0.214 

 

2-4-1-4. Original GM(1,1) 

As explained in section 2-3-2-1, there are 6 steps to building a grey differential equation or 

model. The first 22 entries of the data set will be used ,through step 1 to 6, to set up the model. 

Step 1: the initial series X(0) is equal to the first 22 entries, that is X(0)(k) = {7, 7.2 , 7.1 , 12.2 , 

...., 9.4 , 7.3, 6.9}. 

 

Step 2: the new series X(1) is generated using X(0) in eq. 2.26 of section 2-2-2-1.  X(1)(k) = {7, 

14.2 , 21.3 , 33.5 , 45.4 , 52.8 , 60.8 , 64.1 , 71.5 , 80.8 , 88.7 , 96.3 , 103.6 , 108.1 , 116.9 , 

126.5 , 136.9 , 148.6 , 159.2, 168.6 , 175.9, 182.8}  

Step 3-4: the following equation (eq. 2.28) represents the basic GM(1,1) 

      X(0)(k) + a*Z(1)(k) = b            X(0)(k) = b – a*Z(1)(k).  

This equation must be solved in oder to estimate the best values for a and b, for the values of k 

starting from 2 to n. We can do so by applying the OLS technique and and with the help of 

matrice calculations. However, it is possible to make this task a bit easier. Instead of using 

matrices, some transformations will be introduced here. 

Let’s name 3 variables X, Y and A such that  

  X = Z(1)(k) ,    Y = X(0)(k)      and       A = -a 

By substituting these variables into the previous equation, we obtain the fitted equation:  

  Y = b + A*X 

For each observed response Yi, with a corresponding predictor Xi, we obtain a fitted value  

  𝑌̂i = b + A*Xi .  

We would like to minimize the sum of squares error, that is minimize the squared distances 

between each observed value to its fitted/predicted value.   
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  SSE = ∑(Yi - 𝑌̂i)2 = ∑(Yi – (b + A*Xi))2   for i = 1,....,n 

A little bit of calculus is introduced in order to solve for this . 

 . SSxx = ∑(xi - 𝑥̅)2 = ∑(xi)
2 – [(∑xi)

2]/n 

 . SSxy = ∑(xi - 𝑥̅)(yi - 𝑦̅) = ∑(xiyi) – [(∑xi)*( ∑yi)]/n 

 . SSyy = ∑(yi - 𝑦̅)2 = ∑(yi)
2 – [(∑yi)

2]/n  

 . A = SSxy / SSxx 

 . b = [(∑yi)/n] – A*[(∑xi)/n] 

𝑥̅ and 𝑦̅ represent the averages for the values of xi and yi that are included in the calculations. 

         𝑥̅ = [∑xi]/n   and   𝑦̅ = [∑yi]/n 

All the calculations are performed in Excel. Table 2.3.6 summarizes them. 

The following results are obtained: 

∑(xi) = 1968.6                        ∑(xi)
2 = 237174.7 

∑(yi) = 175.8                          ∑(yi)
2 = 1573.58 

∑(xi*yi) = 16683.42 

The values of SSxx , SSxy, A and b can now be easily computed: 

SSxx = 237174.7 – [(1968.6)2]/21 = 52632.5 

SSxy = 16683.42 – [1968.6*175.8]/21 = 203.42 

A = SSxy / SSxx = 203.42 / 52632.5 =  0.00386 

b = [175.8 / 21] – 0.00386*[1968.6 / 21] = 8.009 

We said earlier that A = -a, which means that a = -A. Therefore a = -0.00386. 

The estimate values of a and b are -0.00386 and 8.009 respectively. 

Step 6: the values of a and b are put into the Grey model and the following equation is obtained 

  𝑥̂0
(0)(k) = [x(0)(1) - 

𝑏

𝑎
]*(1 - ea)*e-a(k-1) = [x(0)(1) + 

8.009

0.00386
]*(1 – e-0.00386)*e0.00386(k-1)  

with the initial value of x(0)
(1) = 7. 
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The values for the next 5 years can now be predicted. 

for k = 23, x̂0
(0)(23) = [7 + 2074.87]*(1 – e-0.00386)*e0.00386(23-1) =  8.72 

for k = 24, x̂0
(0)(24) = [7 + 2074.87]*(1 – e-0.00386)*e0.00386(24-1) =  8.75 

for k = 25, x̂0
(0)(25) = [7 + 2074.87]*(1 – e-0.00386)*e0.00386(25-1) =  8.79 

for k = 26, x̂0
(0)(26) = [7 + 2074.87]*(1 – e-0.00386)*e0.00386(26-1) =  8.82 

for k = 27, x̂0
(0)(27) = [7 + 2074.87]*(1 – e-0.00386)*e0.00386(27-1) =  8.86 

The MAE, MSE and RMSE are calculated and their values are 1.068, 1.3718 and 1.17 

respectively. 

      Table 2.3.6:  Summary of the calculations performed in Excel. 

k  x(0) x(1)(k) x(1)(k-1) Z(1)(k) Y X Xsquare X*Y Ysquare 

1 7 7   7     
2 7.2 14.2 7 10.6 7.2 10.6 112.36 76.32 51.84 

3 7.1 21.3 14.2 17.75 7.1 17.75 315.0625 126.025 50.41 

4 12.2 33.5 21.3 27.4 12.2 27.4 750.76 334.28 148.84 

5 11.9 45.4 33.5 39.45 11.9 39.45 1556.303 469.455 141.61 

6 7.4 52.8 45.4 49.1 7.4 49.1 2410.81 363.34 54.76 

7 8 60.8 52.8 56.8 8 56.8 3226.24 454.4 64 

8 3.3 64.1 60.8 62.45 3.3 62.45 3900.003 206.085 10.89 

9 7.4 71.5 64.1 67.8 7.4 67.8 4596.84 501.72 54.76 

10 9.3 80.8 71.5 76.15 9.3 76.15 5798.823 708.195 86.49 

11 7.9 88.7 80.8 84.75 7.9 84.75 7182.563 669.525 62.41 

12 7.6 96.3 88.7 92.5 7.6 92.5 8556.25 703 57.76 

13 7.3 103.6 96.3 99.95 7.3 99.95 9990.003 729.635 53.29 

14 4.5 108.1 103.6 105.85 4.5 105.85 11204.22 476.325 20.25 

15 8.8 116.9 108.1 112.5 8.8 112.5 12656.25 990 77.44 

16 9.6 126.5 116.9 121.7 9.6 121.7 14810.89 1168.32 92.16 

17 10.4 136.9 126.5 131.7 10.4 131.7 17344.89 1369.68 108.16 

18 11.7 148.6 136.9 142.75 11.7 142.75 20377.56 1670.175 136.89 

19 10.6 159.2 148.6 153.9 10.6 153.9 23685.21 1631.34 112.36 

20 9.4 168.6 159.2 163.9 9.4 163.9 26863.21 1540.66 88.36 

21 7.3 175.9 168.6 172.25 7.3 172.25 29670.06 1257.425 53.29 

22 6.9 182.8 175.9 179.35 6.9 179.35 32166.42 1237.515 47.61 
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2-4-1-5. Grey prediction with rolling mechanism 

Since predictions for five (5) periods need to be made, five (5) different GM(1,1) models will 

be needed. The process of setting up one Grey model is already a bit tiring, setting up five (5) 

comes with much more difficulties. However, for simplicity, only the results will be shown 

down here, that is the final equations and the predicted values. The first step of the method is 

the combination of all the steps/work in a basic GM(1,1). Therefore, the final equation obtained 

in the above section (section 2-4-1-d) will be used in the first step.  

Step 1: the first model is as follows 

   𝑥̂0
(0)(k) = [x(0)(1) + 

8.009

0.00386
]*(1 – e-0.00386)*e0.00386(k-1)      

with x(0)
(1) = 7.  

For k = 23, the predicted value is x̂0
(0)(23) = 8,72.  

The first data x(0)
(1) = 7 is removed and 8,72 is the new entry added to our data. 

Step 2: the new value of x(0)
(1) is the second element of the initial series X(0), that is  

            x(0)
(1)new = x(0)

(2) = 7,2. 

Also as mentioned before, 8.72 is added to the end of the data. The new model is generated 

using the new data. 

Step 3: the new model is    

  𝑥̂0
(0)(k) = [x(0)(1) + 

8.21

0.00237
]*(1 – e-0.00237)*e0.00237(k-1)          with x(0)

(1) = 7,2.   

For k = 24, the following value is obtained: x(0)
(24) = 8,67.  

This new value is added to the series/data and x(0)
(1) = 7,2 is removed. Now 

             x(0)
(1)new = x(0)

(3) = 7.1  

of the initial data series used in step 1. Another model is generated again.  

Step 4: the new model is as follows 

    𝑥̂0
(0)(k) = [x(0)(1) + 

8.47

0.00057
]*(1 – e-0.00057)*e0.00057(k-1)        with x(0)

(1) = 7,1. 
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For k = 25, the following is obtained :x(0)
(25) = 8,59.  

Again this value is added, x(0)
(1) = 7,1 is removed from the data and   

            x(0)
(1)new = x(0)

(4) = 12,2  

from the original data and another model is generated. 

Step 5: the new model is as follows   

  𝑥̂0
(0)(k) = [x(0)(1) + 

7.68

0.0068
]*(1 – e-0.068)*e0.068(k-1)        with x(0)

(1) = 12,2. 

For k = 26, the predicted value is: x(0)
(26) = 9.17.  

Now, the last model is generated with x(0)
(1)new = x(0)

(5) = 11,9. 

Step 6: the last model is as follows  

  𝑥̂0
(0)(k) = [x(0)(1) + 

6.63

0.0186
]*(1 – e-0.0186)*e0.0186(k-1)       and x(0)

(1) = 11,9. 

For k = 27, the prediction for the last period is: x(0)
(27) = 11,01. 

In summary, the forecast values for period 23 to 27 are: 

k = 23, x̂0
(0)(23) = 8,72     k = 26, x̂0

(0)(26) = 9,17 

k = 24, x̂0
(0)(24) = 8,67     k = 27, x̂0

(0)(27) = 11,01 

k = 25, x̂0
(0)(25) = 8,59 

The errors for the last five periods are 1.512, 2.99 and 1.729 for the MAE, the MSE and the 

RMSE respectively. 

2-4-1-6. Grey model with Optimization of Background Value 

The first thing to do is to estimate the value of parameter a using eq. 2.38 of section 2-3-2-3 

  a(k) = 𝑙𝑛 𝑥(0)(𝑘) - 𝑙𝑛 𝑥(0)(𝑘 − 1) 

For every value of k = 2,3,...,22 a new value of a is obtained and at the end, those values are 

averaged to obtain the final value of  a = 
∑ 𝒂(𝒌)

𝟐𝟏
 = -0,0003. Table 2.3.7 displays the numerical 

calculations for the parameter a. 
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      Table 2.3.7:   Microsoft Excel results for parameter a. 

1  0.84509804   14 0.653212514 0.653212514 -0.21011 

2 0.857332496 0.857332496 0.0122345  15 0.944482672 0.944482672 0.2912702 

3 0.851258349 0.851258349 -0.006074  16 0.982271233 0.982271233 0.0377886 

4 1.086359831 1.086359831 0.2351015  17 1.017033339 1.017033339 0.0347621 

5 1.075546961 1.075546961 -0.010813  18 1.068185862 1.068185862 0.0511525 

6 0.86923172 0.86923172 -0.206315  19 1.025305865 1.025305865 -0.04288 

7 0.903089987 0.903089987 0.0338583  20 0.973127854 0.973127854 -0.052178 

8 0.51851394 0.51851394 -0.384576  21 0.86332286 0.86332286 -0.109805 

9 0.86923172 0.86923172 0.3507178  22 0.838849091  -0.024474 

10 0.968482949 0.968482949 0.0992512      

11 0.897627091 0.897627091 -0.070856      

12 0.880813592 0.880813592 -0.016813      

13 0.86332286 0.86332286 -0.017491      

 

Next, the background value needs to be estimated for every value of k between [2, 22] using 

eq. 2.39 of the method. The right-hand side of the equation is divided in 2 parts to make the 

calculations in Excel easier, thus the reason for introducing the parameters J and F. 

  z(1)(k)  =  
𝑥(0)(𝑘)

𝑙𝑛 𝑥(0)(𝑘) − 𝑙𝑛 𝑥(0)(𝑘−1)
 + 

[𝑥(0)(𝑘−1)]𝑘

[𝑥(0)(𝑘)]𝑘−2 ∗ [𝑥(0)(𝑘−1) − 𝑥(0)(𝑘)]
 = J + F 

Table 2.3.8 shows the numerical results of the background value z(1)(k) for k = 2,3,....,22 

After that, the parameter b needs to be estimated in its turn, for every single value of z(1)(k), 

using eq. 40 of the method (section 2-2-2-3). 

  b(k) = x(0)(k) + a* z(1)(k)         for a = -0,0003  

which is the the value calculated above and k = 2,3,...,22. The final estimate of b is the average 

of all the b(k) which is found to be b = 
∑ 𝒃(𝒌)

𝟐𝟏
 = 8,1489. 

Finally, the values of a and b are put into eq. 2.41 of section 2-2-2-3 and the following Grey 

prediction model is obtained: 

  𝑥̂0
(0)(k) = [x(0)(1) - 

𝑏

𝑎
]*(1 - ea)*e-a(k-1)  = [7 +  

𝟖,𝟏𝟒𝟖𝟗

𝟎,𝟎𝟎𝟎𝟑
]*(1 – e-0,0003)*e0,0003(k-1)  
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Now, the values of year 2012 to 2016 can be predicted through k values of 23, 24, 25, 26 and 

27 respectively. They are: 

Year 2012: k = 23   𝑥̂0(23) = 8,203 

Year 2013: k = 24   𝑥̂0(24) = 8,206 

Year 2014: k = 25   𝑥̂0(25) = 8,208 

Year 2015: k = 26   𝑥̂0(26) = 8,211 

Year 2016: k = 27   𝑥̂0(27) = 8,213 

Finally, the MAE, the MSE and the RMSE are computed and their values are 0.4882, 0.5087 

and 0.71 respectively. 

      Table 2.3.8:  Microsoft Excel results for the background value z(1)(k). 

     

588.5018 49 1 -0.2 -245 343.5018 

-1168.89 373.248 7.1 0.1 525.7014 -643.187 

51.89248 2541.1681 148.84 -5.1 -3.34768 48.54481 

-1100.54 270270.8163 1685.159 0.3 534.6099 -565.931 

-35.8674 2839760.855 2998.6576 4.5 210.4468 174.5794 

236.2791 1215128.027 32768 -0.6 -61.8046 174.4745 

-8.58088 16777216 1291.46797 4.7 2764.002 2755.421 

21.09959 46411.4844 1215128.03 -4.1 -0.00932 21.09027 

93.70161 492399039.7 55958181 -1.9 -4.63127 89.07034 

-111.494 45010354568 119851596 1.4 268.2505 156.7566 

-452.018 59091511032 642888893 0.3 306.3853 -145.632 

-417.364 2.82213E+11 3137266856 0.3 299.85 -117.514 

-21.4173 1.22045E+12 68952523.6 2.8 6321.379 6299.962 

30.2125 6283298709 1.8979E+12 -4.3 -0.00077 30.21173 

254.0451 1.29337E+15 5.6467E+13 -0.8 -28.6309 225.4142 

299.1763 4.99587E+16 1.8009E+15 -0.8 -34.6754 264.501 

228.7277 2.02582E+18 1.233E+17 -1.3 -12.6381 216.0896 

-247.202 1.97484E+20 2.6928E+17 1.1 666.7131 419.5116 

-180.153 3.20714E+20 3.2832E+17 1.2 814.0193 633.8668 

-66.4815 2.727E+20 2.5301E+16 2.1 5132.528 5066.046 

-281.935 9.84244E+18 5.9839E+16 0.4 411.2076 129.2731 
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2-4-2) Forecasting with the bootstrap dataset 

As explained before, a set with the sample size of 108 will be generated from the initial data 

set. Minitab is used for this purpose. In order to find a bootstrap data set which ressembles the 

most to the initial data set, 10 bootstrap data sets (Sample 1 through 10) were created and the 

one with the closest mean and standard deviation to the original/initial data set’s was chosen. 

The following table displays the statistics for each bootstrap data set: 

      Table 2.3.9:  Descriptive statistics of the 10 bootstrap data sets. 

Variables              Mean      StDev 
 

Unemployment    8,200     2,024 

Sample 1             8,330      2,043 

Sample 2             7,959      1,601 

Sample 3             8,106      2,213 

Sample 4             8,327      1,985 

Sample 5             8,228      2,188 

Sample 6             8,358      1,918 

Sample 7             8,424      1,946 

Sample 8             8,441      2,078 

Sample 9             7,905      1,877 

Sample 10            8,192      1,941 

 

Unemployment represents the original set. As it can be seen, it is a bit difficult to pick a sample 

according to both statistics. However, “Sample 10” has a mean which is the closest to the one 

of the unemployment set and its standard deviation is very close to it too. Therefore, it is chosen 

as the data set which will be used in this part of the thesis. Note that it has a sample size of 108. 

“Sample 10” is divided into multiple quartiles, that is, every year has 4 quartiles, therefore for 

example the first 4 entries represent the values of quartile 1, quartile 2, quartile 3 and quartile 

4 of year 1990. The next 4 entries are the values of the first, second, third and fourth quartile of 

1991 (an so on and so forth). The last 4 entries are the values of quartile 1 through 4 of year 

2016.  Fig. 2.3.2 shows the time series plot of the data from time t = 1, which represents the 

first quartile of year 1990, to time t = 108, which is quartile 4 of year 2016. The table of Sample 

10 is attached in the appendices. For every algorithm used next, the first 88 entries of ‘Sample 

10’ will be used to set up each model, and the remaining 20 entries will be used to test each one 

of them and get the errors. Since the results here will be compared with the one obtained from 

the initial data set (of 27 entries), it is therefore logical to predict for 5 periods with the next 

algorithms as well. And also since we’ve assumed that every year in ‘Sample 10’ has 4 
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quartiles, 4*5 = 20 quartiles for the last 5 years. The last 20 entries therefore represent the values 

of the years 2012, 2013, 2014, 2015 and 2016 respectively. 

  

    

         Figure 2.4:  Time series plot of ‘Sample 10’. 

 

2-4-2-1. Simple Linear regression  

The data of ‘Sample 10’ consists of only two (2) variables again, the time which is in year and 

the unemployment rates. Therefore a simple linear regression model is chosen to be 

suitable.The first 88 entries of the data are inserted into Minitab and the method of simple linear 

regression is applied to them. All the parameters are automatically estimated by the program. 

Similarly to eq. 2.16 in Section 2-2-1-3-a, the following linear regression equation is obtained: 

  unemployment = 8.21 - (0,00224 * t) 

Using this equation, the next 20 periods will be forecasted. Again, every period represent a 

quartile of a year, and therefore to get the yearly rate, we would simply average 4 periods at a 

time. For  

t = 89: Unemployment = 8.21 - (0,00224 * 89) = 8.010 

t = 90: Unemployment = 8.21 - (0,00224 * 90) = 8.008 

t = 91: Unemployment = 8.21 - (0,00224 * 91) = 8.006 

t = 92: Unemployment = 8.21 - (0,00224 * 92) = 8.003 
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These 4 values represent quartile 1, quartile 2, quartile 3 and quartile 4 values of year 2012. 

This process is carried on until the last 4 elements, being the different quartiles of year 2016 

are forecasted. 

t = 105: Unemployment = 8.21 - (0,00224 * 105) = 7.974 

t = 106: Unemployment = 8.21 - (0,00224 * 106) = 7.972 

t = 107: Unemployment = 8.21 - (0,00224 * 107) = 7.970 

t = 108: Unemployment = 8.21 - (0,00224 * 108) = 7.968 

These results are now compared with the observed ones and the MAE, MSE and RMSE are 

calculated just as in section 2-4-1-a. They are found to be 0.99, 1.82 and 1.35 respectively. 

2-4-2-2. Simple moving averages 

As explained before in section 2-3-1-1, the more periods we use in a moving average, the worst 

our forecats will be. Therefore it is convenient to use a 3-period simple moving average here as 

well. The following is the equation for that: 

  Tt = 
1

3
(Yt-1 + Yt + Yt+1) ,    where  t = 1, 2, 3, 4, ..., n-1 

where Y is the observed value at time t and n = 108. 

The whole data set is used here, that is all 108 entries will be needed. The numerical calculations 

are the same as in the previous example in section 2-4-1-b and are performed in Excel. The file 

is attached in the appendices as Appendix 1. It also contains ‘Sample 10’. 

The results obtained are compared with the observed values, the errors are computed and the 

MAE, the MSE and RMSE are found to be equal to 1.29, 2.83 and 1.68  respectively. 

2-4-2-3. Single exponential smoothing 

Fig. 2.4 shows no sign of any trend nor seasonality. Therefore, a single exponential smoothing 

model is suitable for this data. The general equation for a single exponential smoothing, as seen 

in section 2-3-1-2-a, is as follows: 

  Ft+1 = Ft + α*(Yt - Ft) 

where Yt was the observed value at time t (t goes from 0 to 107) and Ft+1 the predicted value. It 

is commonly assumed that the initial value F0 is the first oberved value (first entry in the table). 

The values 0.2, 0.5, 0.7 and 0.9 have been used again for the parameter α. The calculations 
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(predictions) have been performed using Microsoft Excel and the resulting file is attached in 

the appendices as Appendix 2. The error for each value of α is as follows: 

For α = 0.2, the MAE = 1.195 and MSE = 2.839 

For α = 0.5, the MAE = 0.831 and MSE = 1.296 

For α = 0.7, the MAE = 0.539 and MSE = 0.540 

For α = 0.9, the MAE = 0.194 and MSE = 0.072 

The value of α = 0.9 yields the minimum MAE and MSE, therefore that value of α is the most 

appropriate for this case. The resulting RMSE is equal to 0.268 

2-4-2-4. ARIMA model 

Looking at Fig. 2.4, we can see that the series seems to be constant in the mean. Therefore it 

can be assumed that it is in a state of stationarity. No differencing is needed here. Also, the 

graphs of the ACF(auto correlation function) and PACF(partial auto correlation function) 

support that deduction (see Fig. 2.5 and Fig. 2.6).  

Moreover, it is known that an ACF that dies out gradually and a PACF that cuts off sharply 

after a few lags show the presence of an AR term in a series. Fig. 2.5 shows the example of an 

AR(1). On the other hand, an ACF that cuts off (usually negative at lag 1) sharply after a few 

lags and a PACF that dies out gradually show the presence of a MA term in a series. Fig. 2.6 

shows the case for a MA(1). 

 

      

    Figure 2.5:  an AR(1) signature.      Figure 2.6:  a MA(1) signature.  
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Fig. 2.7 and Fig. 2.8 don’t display any sign of such characteristics, therefore it can be concluded 

that there are no AR and MA terms in Sample 10. In addition, the observations on those 

repesctive graphs seem to be under the control limits. This is the characteristic of a ‘White 

noise’ series, referred to as ARIMA(0,0,0). By definition, if a series is white noise, it cannot be 

forecasted, at least not with the ARIMA methodology, because its values at different times are 

statistically independent. It is therefore meaningless to attempt to forecast this data. The 

following equation is the representation of a white noise model 

  Yt = C + et     for t = 1, 2, ..., n 

The variable c is a constant; it represents the level of the series, in other terms, its mean. et is 

the error term, from t = 1 to t = n, and is uncorrelated from period to period.   

               

         Figure 2.7: ACF graph of ‘Sample 10’. 
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          Figure 2.8:  PACF graph of ‘Sample 10’. 

2-4-2-5. Original GM(1,1) 

The process here will be the same as in the example in ‘section 2-4-1-d’, but with the data of 

‘Sample 10’. The first 88 entries of the data set will be used to set up the model. 

Step 1: the initial series X(0) is equal to the first 88 entries, that is X(0)(k) = {10.6 , 4.5 , 7.3 , 7.6 

, .... , 8.8 , 12.2}. 

Step 2: the new series X(1) is generated using the series X(0) in eq. 2.26 of section 2-2-2-1. X(1)(k) 

= {10.6, 15.1, 22.4, 30, 37, ..., 701.5, 713.7 }  

Step 3-4: as given before, the following equation represents the basic GM(1,1) 

  X(0)(k) + a*Z(1)(k) = b            X(0)(k) = b – a*Z(1)(k)  

The parameters a and b need to be estimated using this equation, for the values of k between 2 

and n (n being equal to 88 – 1 = 87, because the first obrservation will not be included in the 

final calculations). OLS technique with some transformations is applied again in order to do so. 

We name variable X, variable Y and variable A again such that  

  X = Z(1)(k) ,    Y = X(0)(k)      and       A = -a 
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By substituting these variables into the basic GM(1,1) equation, the following equation is 

obtained 

  Y = b + A*X 

For each observed response Yi, with a corresponding predictor Xi, we obtain a fitted value  

  𝑌̂i = b + A*Xi .  

We would like to minimize the sum of squares error, that is minimize the squared distances 

between each observed value to its fitted/predicted value.   

  SSE = ∑(Yi - 𝑌̂i)2 = ∑(Yi – (b + A*Xi))2   for i = 1,....,n 

A little bit of calculus was introduced before in order to solve for this. 

 . SSxx = ∑(xi - 𝑥̅)2 = ∑(xi)
2 – [(∑xi)

2]/n 

 . SSxy = ∑(xi - 𝑥̅)(yi - 𝑦̅) = ∑(xiyi) – [(∑xi)*( ∑yi)]/n 

 . SSyy = ∑(yi - 𝑦̅)2 = ∑(yi)
2 – [(∑yi)

2]/n  

 . A = SSxy / SSxx 

 . b = [(∑yi)/n] – A*[(∑xi)/n] 

𝑥̅ and 𝑦̅ represent the averages for the values of xi and yi that are included in the calculations. 

  𝑥̅ = [∑xi]/n   and   𝑦̅ = [∑yi]/n   ;    n=87(88-1) 

All the calculations are done in Microsoft Excel and the file is attached as Appendix 3. 

The following results are obtained: 

 ∑(xi) = 31524.75                        ∑(xi)
2 = 15030203 

 ∑(yi) = 703.1                             ∑(yi)
2 = 6045.93 

 ∑(xi*yi) = 254627.7 

The values of SSxx , SSxy, A, a and b can now be easily calculated: 

SSxx = 15030203 – [(31524.75)2]/87 = 3607101.131 

SSxy = 254627.7 – [31524.75*703.1]/87 = -143.009 
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A = SSxy / SSxx = -143.009 / 3607101.131 =  -0.0000396 

b = [703.1 / 87] + 0.0000396*[31524.75 / 87] = 8.095 

We said earlier that A = -a, which means that a = -A. Therefore a = 0.0000396. 

The estimate values of a and b are 0.0000396 and 8.095 respectively. 

Step 6: the values of a and b are put into the Grey model (eq. 2.31 of section 2-2-2-1) and the 

following equation is obtained 

  𝑥̂0
(0)(k) = [10.6 - 

8.095

0.0000396
]*(1 – e0.0000396)*e-0.0000396(k-1)   

This equation is used to forecast the next 20 data which account for the last five (5) years, for 

k = 89, 90, ..., 108. The results obtained are summarized in table 2.4.1. 

Comparing the forecast results with the observed values in ‘Sample 10’, the MAE, MSE and 

RMSE are computed. Their values are 0.977, 1.740 and 1.319 respectively. 

        Table 2.4.1:  Forecast results of the GM(1,1). 

8.2 89 8.06658106 0.133419 

8.1 90 8.06626163 0.033738 

8.8 91 8.06594221 0.734058 

7.1 92 8.0656228 0.965623 

8 93 8.06530341 0.065303 

7.3 94 8.06498403 0.764984 

7.9 95 8.06466466 0.164665 

11.7 96 8.06434531 3.635655 

8.8 97 8.06402597 0.735974 

9.4 98 8.06370664 1.336293 

9.3 99 8.06338732 1.236613 

7.6 100 8.06306802 0.463068 

7.3 101 8.06274873 0.762749 

10.4 102 8.06242945 2.337571 

8.1 103 8.06211018 0.03789 

10.4 104 8.06179093 2.338209 

7.4 105 8.06147169 0.661472 

7 106 8.06115246 1.061152 

9.4 107 8.06083325 1.339167 

8.8 108 8.06051404 0.739486 
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2-4-2-6. Grey method with Optimization of Background Value 

The first thing to do is to estimate the value of parameter a using eq. 2.38 in section 2-3-2-3.  

  a(k) = 𝑙𝑛 𝑥(0)(𝑘) - 𝑙𝑛 𝑥(0)(𝑘 − 1) 

For every value of k = 2,3,...,88 a new value of a is obtained and at the end, those values are 

averaged to obtain the final value of a = 
∑ 𝒂(𝒌)

𝟖𝟕
 = 0,0016. 

The excel table file summarizing the numerical calculations for parameter a as well as all the 

calculations for this method is attached in the appendices as Appendix 4. 

Next, the background value needs to be estimated for every value of k between [2, 88] using eq 

2.39 of the method in section 2-3-2-3. The right-hand side of the equation is divided in 2 parts 

to make the calculations in Excel easier, thus the reason for introducing the parameters J and F. 

  z(1)(k)  =  
𝑥(0)(𝑘)

𝑙𝑛 𝑥(0)(𝑘) − 𝑙𝑛 𝑥(0)(𝑘−1)
 + 

[𝑥(0)(𝑘−1)]𝑘

[𝑥(0)(𝑘)]𝑘−2 ∗ [𝑥(0)(𝑘−1) − 𝑥(0)(𝑘)]
 = J + F 

The excel table file summarizing the numerical calculations for the parameter Z(k) is found in 

Appendix 4. 

After that, the parameter b needs to be estimated in its turn, for every single value of z(1)(k), 

using eq. 2.40 of the method as follows: 

  b(k) = x(0)(k) + a* z(1)(k)    for  a = 0,0016 

which is the the value calculated above and k = 2,3,...87.  

The excel table file summarizing the numerical calculations for the parameter b(k) is also 

attached in Appendix 4. 

You would notice that there are some undefined numbers for the values of the parameters Z(k) 

and b(k), that is because some successive entries of ‘Sample 10’ have the same values and the 

difference x(0)(k-1) – x(0)(k) will have some results equal to zero, and any division by the number 

zero will give an undefined result. A few assumptions are made below: 

  1. Any undefined result will be ignored while averaging the values of b(k) (7 in total). 

  2. High values (values which are hundred and thousand times bigger than the maximum   

 observation in the x(0)(k) series) of b(k) will also be ignored during the averaging process  

 (21 in total). 
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  3. In some cases, b(k) might have negative values. Those values will also be neglected. 

The final estimate of b is the average of all the positive values of b(k) which is found to be 

           b = 
∑ 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆(𝒃(𝒌))

𝟖𝟕−(𝟕+𝟐𝟏)
 = 9.4. 

Finally, the values of a, b and x(0) are put into eq. 2.41 of the method and the following Grey 

prediction model is obtained: 

  𝒙̂0
(0)(k) = [x(0)(1) - 

𝑏

𝑎
]*(1 - ea)*e-a(k-1)  = [10.6 -  

𝟗.𝟒

𝟎,𝟎𝟎𝟏𝟔
]*(1 – e0,0016)*e-0.0016(k-1) 

Using this equation, the values for the next 20 periods, corresponding to the 4 quartiles of every 

successive year from 2012 through 2016, can be predicted for k values of 89, 90, 91, ..., 107, 

108 respectively. Table 2.4.2 summarizes the calculations. 

      Table 2.4.2:  Forecast results of the optimized Grey Model. 

89 8.2 8.157223967 0.042776033 

90 8.1 8.144182845 0.044182845 

91 8.8 8.131162571 0.668837429 

92 7.1 8.118163113 1.018163113 

93 8 8.105184438 0.105184438 

94 7.3 8.092226512 0.792226512 

95 7.9 8.079289302 0.179289302 

96 11.7 8.066372775 3.633627225 

97 8.8 8.053476898 0.746523102 

98 9.4 8.040601638 1.359398362 

99 9.3 8.027746962 1.272253038 

100 7.6 8.014912837 0.414912837 

101 7.3 8.00209923 0.70209923 

102 10.4 7.989306108 2.410693892 

103 8.1 7.976533439 0.123466561 

104 10.4 7.96378119 2.43621881 

105 7.4 7.951049329 0.551049329 

106 7 7.938337822 0.938337822 

107 9.4 7.925646637 1.474353363 

108 8.8 7.912975742 0.887024258 
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Using the error values, the MAE, MSE and RMSE can easily be calculated. Their results are 

found to be 0.99, 1.79 and 1.33 respectively. 

2-4-2-7. Grey_ARIMA model 

This particular method cannot be used here because no ARIMA model couldn’t be derrived 

from the data (‘Sample 10’). ‘Sample 10’ being a white noise, it is therefore impossible to do 

any prediction through the ARIMA methodology. So instead of ‘Sample 10’, a new data set 

will be used here in order to show how the method works. The GDP of Mali from 1967 to 2016 

will be used here. The GDP, meaning gross domestic product, is the total value of everything 

that the people and companies in one country have produced during a year. Whether the citizens 

are foreigners or the companies are foreign-owned doesn’t matter. As long as they are located 

withing the country’s boundaries, their production is added to the GDP. The reason for choosing 

this data is that it is one of the few available data about Mali which date from 1960s. Also, the 

data has 50 entries, which is an acceptable sample size for using ARIMA.  

All the data set will be used here to set up both GM(1,1) and ARIMA models. Later on, with 

the models obtained, the data will be forecasted from t = 1 to t = n (n is the sample size, which 

is 50 here) and the errors will be calculated. Those errors are called ’residuals’. For both models, 

a graph of the residuals will be plotted and an analysis of both graphs will determine the values 

of the parameters α and β of eq. 2.42 of the method in section 2-3-2-4. Fig. 2.9 shows the time 

series plot of the data set. 

     

     Figure 2.9:  Time series plot of the GDP of Mali from 1967 to 2016. 
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Setting up the ARIMA model: 

It is clear that the data in Fig. 2.3.2.e has an up-going trend, therefore it can be concluded that 

it is not stationary. The data needs to be made stationary. There are 2 ways of doing so 

 1. through the method of differencing, which is in the form 

  Y’t = Yt – Yt-1 

    This method usually removes any non-stationarity in the mean. 

 2. through logarithmic or power transformations  

  Y’t = ln 𝑌𝑡 

    This usually takes care of any non-stationarity in the variance. 

 Fig 3.1  and fig. 3.2 display the new series obtained after the first and second differencing 

operations made on the GDP data. A first differencing operation was performed, but the resulted 

series didn’t seem to be  stationary, so a second differencing operation was performed on the 

resulted series, which is often referred to as the differences of the first-differences. The obtained 

series still doesn’t seem to be stationary. We would logically try to do a third differencing 

operation, hoping that the non-stationarity will be completely removed, but differencing a series 

too much can result in inaccurate forecasts. Thus, it is not recommended to difference more 

than 2 times.  

 

        Figure 3.1:  1st differencing operation. 
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        Figure 3.2:  2nd differencing operation. 

On the other hand, fig. 3.3 displays the result obtained after performing a natural logarithm 

operation on the GDP data. The resulted series seems to be stationary. Therefore, this 

differencing method is assumed to be best in this case. 

 

 

           Figure 3.3:  Result of the logarithmic operation on the GDP. 

Furthermore, the ACF graph of the GDP shows a slowly decreasing pattern and the PACF graph 

shows a spike at lag 1. These are the characteristics of a AR term. Since there is only one spike, 

the parameter n will be assigned the value 1 (AR(1)).  
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         Figure 3.4:  ACF graph of the GDP. 

     

         Figure 3.5:  PACF graph of the GDP. 

There are no signs of a MA term in the ACF and PAFC graphs, therefore the final ARIMA 

model is ARIMA(1,1,0) with the differencing operation being the natural logarithm. 

The logarithmic difference isn’t supported in Minitab, that is the program does not perform a 

logartihm difference on the series if the value 1 is given to the Integrated (I) term. Therefore it 

is better to apply an ARIMA(1,0,0) to the differenced series and retrieve the final forecasts by 

taking the exponential of each of the results of the ARIMA(1,0,0). The model for an 

ARIMA(1,0,0) or AR(1) is as follows: 

  Yt = C + ϕ1*Yt-1 + et               (2.47) 
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Where C is a constant, ϕ1 is a parameter and et is the error term. 

After performing AR(1) in Minitab, the following values are found: 

           ϕ1 = 1.0256     and     c = -0.4981 

The final equation is therefore: 

  Yt = -0.4981 + 1.0256*Yt-1                           (2.48) 

And Y1 = Y0. 

The values of Y which will be used here are the ones of the differenced series (the logarithm 

values). For each value of Yt calculated using eq. 2, the actual forecast value is retrieved through 

  Ft = 𝑒𝑌𝑡                                   (2.49) 

where Ft is the real forecast value at time t. 

The steps in eq. 2.48 and eq. 2.49 account for the ARIMA(1,1,0). 

The calculations are performed in Microsoft Excel and the results are saved there. The file is 

attached in the appendices as Appendix 5. Here is a small screenshot of the file: 

   Table 2.4.3:  Screenshot of the ARIMA results in Microsoft Excel. 

1967 1 2.75E+08 19.4340783 19.4340783 275494520.1 0 

1968 2 3.44E+08 19.6554891 19.4334907 275332688.3 -68439276.35 

1969 3 3.4E+08 19.64420271 19.66056962 345522949.5 5609116.448 

1970 4 3.6E+08 19.70098207 19.6489943 341546469 -18225894.31 

1971 5 4.3E+08 19.87952071 19.70722721 362026222.9 -68070515.51 

1972 6 4.87E+08 20.00298861 19.89033644 434773796 -51843536.4 

1973 7 5.64E+08 20.15000377 20.01696512 493466294.4 -70217365.92 

1974 8 5.39E+08 20.10475713 20.16774386 573772688.4 35025420.03 

1975 9 8.31E+08 20.53779206 20.12133891 547755135.2 -282955480 

1976 10 9.39E+08 20.66056881 20.56545953 854015184.4 -85212809.25 

1977 11 1.05E+09 20.77190217 20.69137937 968616549.8 -81221942.8 

1978 12 1.22E+09 20.92432929 20.80556287 1085778272 -136924084 

1979 13 1.6E+09 21.19040492 20.96189212 1269504015 -325919270.4 

1980 14 1.76E+09 21.28840396 21.23477929 1667813438 -91877373.78 

1981 15 1.54E+09 21.1543806 21.3352871 1844155151 305182992.4 
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Setting up the grey model GM(1,1) 

Similarly to the examples in section 2.4.1.d and section 2.4.2.b, the model is set up using the 

GDP data. All the calculations are performed in Microsoft Excel and the file is attached in the 

appendices. The resulting grey equation is as follows: 

  𝑥̂0
(0)(k) = ( 275494520.1 + 

240880408.2

0.078
 )*(1 – e-0.078)*e0.078(k-1)                (2.50) 

where the parameter a = -0.078 and parameter b = 240880408.2 

Using eq. 2.50, forecasts are made for the values of k from 1 to 50 and the errors are calculated.  

The errors for both algorithms (ARIMA and Grey model) are called residuals. Some of those 

errors have positive values and the others have negative values. The residuals for both 

algorithms are plotted in fig. 3.6 

The first remark that can be made is that the ARIMA(1,1,0) model performs better than the 

GM(1,1) model, that is the residuals of the ARIMA(1,1,0) are much closer to the zero axis. 

The second remark that is made from fig. 3.6 is that the graph of the residuals of the GM(1,1) 

is, for the most time, below the one of the ARIMA(1,1,0). 

Recall that the eqaution of a Grey_ARIMA model is as follows: 

      Hybrid(Grey_ARIMA) = α*GM(1,1) + β*ARIMA(n,p,q) 

According to the second remark, it would be logical to take the average of the forecats of the 

two algorithms at different periods, and this would give a better result. That is, α and β would 

both be equal to 0,5. But the first remark states that the ARIMA model greatly outperforms the 

Grey one. Therefore it would be reasonable to assign a bigger weight to the ARIMA term, 

resulting in the grey term having a lower weight. The values of 0.2, 0.1 and 0.05 for the 

parameter α are chosen here while the parameter β has values 0.8, 0.9 and 0.95, for trial. 

 Recall that α + β = 1. 

The MAE for the ARIMA(1,1,0) was equal to 360931525.1 

The MAE for the GM(1,1) was equal to 1128039365 

Both of these errors are very huge because the GDP is expressed in terms of ‘billions’, therefore 

the errors should be in the ‘millions’ or in the ‘thousands’ (the best case would be in the 
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hundreds). Neither of these two (2) algorithms performs particularly well with the GDP data. 

Nonetheless, after computing the hybrid forecasting with the different values of α and β above, 

    

     Figure 3.6:  Residual plots of the ARIMA(1,1,0) and GM(1,1). 

the lowest value of the MAE was 324379042.3 for the corresponding values of α = 0.1 and β =  

0,9. Again this error is very big, but it is less than the MAEs of both the ARIMA and the grey 

models. All the calculations were done in Microsoft Excel. The file is attached in the appendices 

as Appendix 6. However, below (table 2.4.4) is a small screenshot of it. 
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  Table 2.4.4:  Screenshot of the Hybrid model calculations in Microsoft Excel. 

1 252397524.8 275494520.1  270875121 4619399.077 

2 272872683 275332688.3 alpha 0.2 274840687 68931277.41 

3 295008840.5 345522949.5 beta 0.8 335420128 4493705.354 

4 318940742 341546469  337025324 22747039.7 

5 344814063 362026222.9  358583791 71512947.49 

6 372786296.5 434773796  422376296 64241036.3 

7 403027712 493466294.4  475378578 88305082.41 

8 435722391.5 573772688.4  546162629 7415360.657 

9 471069350.3 547755135.2  532417978 298292636.9 

10 509283748.5 854015184.4  785068897 154159096.4 

11 550598200.1 968616549.8  885012880 164825612.7 

12 595264190 1085778272  987675456 235026900.4 

13 643553603.7 1269504015  1144313933 451109352.7 

14 695760383 1667813438  1473402827 286287984.7 

15 752202315.1 1844155151  1625764583 86792425.3 

16 813222966.8 1607317929  1448498936 114744902.3 

17 879193775.9 1387891780  1286152179 11613269.01 

18 950516312.5 1349497079  1269700926 36768917.58 

19 1027624723 1280398297  1229843582 162352351.6 
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3. RESULTS 

This section is divided into two (2) parts: section 3.1 contains the results and errors from the 

forecasting operations performed on the initial data (which is the unemployment rates of Mali 

from 1990 to 2016) and section 3.2 shows the results and errors of the ones performed on the 

bootstrap data (referred to as ‘Sample 10’). 

3.1 Results from the unemployment dataset 

Table 2.4.3 summarizes the different methods which have been used with the unemployment 

dataset, which was referred to as the initial dataset. A total of six algorithms were used. The 

dataset had a sample size of 27. Recall that the first twenty-two (22) entries were used to set up 

the models for each of the six algorithms, and the last five (5) entries were used to test the 

models and compute the errors. The estimators used for the error were the MAE, the MSE and 

the MRSE.  

       Table 2.4.5:  Errors from the unemployment dataset. 

Methods MAE MSE RMSE 

Simple linear regression 1.2918 1.89 1.37 

Simple moving averages 0.8611 1,4619 1,20 

Single exponential smoothing 0,146 0,046 0,214 

ARIMA - - - 

GM(1,1) 1,068 1,3718 1,17 

Grey prediction with rolling 

mechanism 

1,512 2,99 1,729 

Grey model with optimization 

of background value 

0,4882 0,5087 0,71 
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The row of the ARIMA method has blank entries because no ARIMA model has been 

performed on this data since it has a size of only 27 and in order to set up an ARIMA model, at 

least 50-54 data are needed. The Grey_ARIMA model couldn’t be applied as well because of 

the same reasons. Surprisingly, the single exponential smoothing method has the lowest errors, 

this is because SES methods work very well with series which do not exhibits any trend or 

seasonal pattern. The data used in the experiment is a good example of such series. However, 

the Grey model with optimization of the background value has the second lowest errors. It 

outperforms both the original grey model GM(1,1) and the grey model with rolling mechanism. 

3.2 Results from the bootstrap dataset 

A total of eight (8) methods was supposed to be used on the bootstrap data or ‘Sample 10’, but 

due to some unexpected issues, only five (5) have been applied successfully. Recall that the 

dataset had a sample size of 108: the first 88 entries were used to set up each model and the last 

20 entries to evaluate them and compute the errors. The method of Grey prediction with rolling 

mechanism is very exhaustive with long-term forecasting. It is best used in short-term 

forecasting. In order to use it for long periods predictions, it is best to have it implemented in a 

software or develop a piece of coding and let a computer do the calculations if possible. 

Unfortunately, as explained in the previous sections, there is no code available for this method 

yet, therefore it hasn’t been used with the bootstrap dataset. In addition, ‘Sample 10’ turned out 

to be a white noise series and such series cannot be predicted through ARIMA models. Since it 

wasn’t possible to get any ARIMA model, it was therefore impossible to perform a 

Grey_ARIMA model on this data. However this particular method was applied on the Malian 

GDP data, to show how the method works, but its results are not going to be taken into 

consideration during the comparison process of all the methods. Table 2.4.4 summarizes the 

errors obtained after the prediction operations of each of the five (5) models. 

Here again the SES performed better than all the other algorithms. It is so because the bootstrap 

series also doesn’t exhibit any trend nor seasonal pattern. The GM(1,1) and the Grey model 

with optimization of the background value have the second and third lowest errors. This time 

around, the GM(1,1) performed slightly better than the Grey model with optimization of the 

background value, with a difference of only 0.02 in the MAE and 0.01 in the RMSE. 
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       Table 2.4.6:  Errors from the bootstrap dataset. 

Methods MAE MSE RMSE 

Simple linear regression 0.99 1.82 1.35 

Simple moving averages 1.29 2.83 1.68 

Single exponential smoothing 0.194 0.072 0.268 

ARIMA - - - 

GM(1,1) 0.977 1.74 1.32 

Grey prediction with rolling 

mechanism 

- - - 

Grey model with optimization 

of the background value 

0.99 1.79 1.33 

Grey_ARIMA - - - 
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4. DISCUSSION 

The original grey method and the optimized model have proven to be good forecasting models 

for both datasets. Apart from the SES method, they performed better than every other 

algorithms. However, it is important to notice that since the grey equation has exponential 

factors, the values of the powers of each exponential term have a high impact in the prediction 

operations. Negative values of the parameter a will cause the predicted values to follow an 

upward trend, meaning that their values will increase over time, whereas positive values of the 

same parameter will cause the opposite effect. For long-term predictions, this situation can 

result in significant deviations of the predicted values from the observed ones. Therefore it can 

be concluded that the grey models are more suitable for short-term predictions. The grey 

prediction with rolling mechanism GPRM is also best used in short-term predictions since its 

methodology hasn’t been implemented in any software program yet. Furthermore, when 

working with the optimized grey model (the grey model with optimization of the background 

value) on the bootstrap data, another interesting thing was discovered. It was observed that 

successive entries of ‘Sample 10’ had sometimes the same value, for example quartile 1 and 2 

of year 1997 both have an unemployment rate of 10,6. One aspect of the optimized model is 

that it has some division operations. The dividends are often the result of the substraction of 

two (2) successive entries, and since some of those entries have equal values, that result can be 

equal to zero (0) sometimes. Therefore, any division by zero will give an undefined result. Such 

results were observed a few times during the application of the method. They have been 

discarded, meaning that they haven’t been considered in the final averaging operation. Despite 

this issue, the method still gave great results. 

On another hand, as explained above, the series in both data sets used in this study turned out 

to be white noise. Due to this unexpected situation, it wasn’t possible to set up any ARIMA 

model, and therefore no Grey_ARIMA model could be set up either dataset. Although the later 

was applied on a different dataset (Malian GDP), it is not really possible to make a good 

comparison with the other models because of that same reason. Furthermore, there is no 

correlation between the unemployment rates and the GDP. Looking at the graph of the 

unemployment rates, it could be seen that their values were not really changing that much over 

time, while the GDP kept increasing. It can be deducted that  even though the GDP was better 

every year, this didn’t affect the unemployment rates. The Pearson correlation of the GDP 
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(values from 1990 to 2016) and the unemployment rates (the original/initial set) is equal to 

0.024 which is very low and thus confirms the previously made conclusion. There are many 

theories/reasons as to why this is the case.  

The GDP was pretty much steady until 2001, showing no large or sudden increase nor decrease. 

In 2002, Mali hosted the African Nations Cup football tournament. This event boosted the 

economy, infrastructures improved and there was a lot of encouragemnt for the private sector. 

Furthermore, in the same year was held a presidential and parliament elections. Since its 

independance in 1960, every change of power has happened through violent Coups d’Etat. 2002 

was the first time that the power was peacefully transferred from one governemnt to the other 

one. Furthermore, prior to the year 2000, Mali relied heavily on agricultural export, mainly on 

cotton production. It still does nowadays. The country was the second largest producer in Africa 

in 2016, according to Bloomberg Markets [57], and 12th in the world in 2017, according to 

‘index mundi’ [58].  However, after the opening of the Sadiola gold mine in 1997, Gold became 

the second biggest export product of the country and the country rapidly became the thrid 

largest producer in Africa. Also since 2001, there was a speedy discovery of many new gold 

mines and their exploitation was just as fast. Fig. 3.7 shows the gold production of the country 

in the thousands of kilogrammes, according to CEIC [59] (a Euromoney Institutional Investor 

company that provides data used for busineses decisions, economic analysis, etc), from 1990 to 

2014. 

 

     Figure 3.7:  Mali Gold production in kg from 1990-2014. 
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Notice that, on one hand, the GDP started rising exponentially from 2000 (see  fig. 2.9) and on 

the other one, the gold production increased since 1996. Thus it can be deducted that there is a 

strong positive correlation between the GDP and the production of gold. As of today, gold 

represents 72% of the total exports of the country, according to OEC [63] and Trading 

Economics [60]. Furthermore, fig. 3.8 shows the price of the kilo of gold in US dollars since 

1998, from the ‘Gold Price’ [61] where the gold price history for the past 1 day up to the past 

43 years can be found.  Their content is updated on daily basis. 

 

        Figure 3.8:  Price of the kilo of gold in US dollars since 1998. 

It can be seen that from 2002, the price of the gold just ketp increasing exponentially, until 

2012, when it showed a small decrease. A similar decrease was observed in the GDP as well 

(see fig. 2.9). From 2013 to 2016, the price went down again but started increasing shortly 

afterwards. A similar pattern can be observed in fig. 2.9 (of the GDP). These observations shows 

what triggered the change in the GDP. Although it was rising, the discovery and exploitation 

of many gold mines hasn’t impacted much the unemployment rates, because  they didn’t create 

many new jobs. Only a very little proportion of the population works in the mines. According 

to ‘index mundi [58]’, the total labor force of the country was over 4 million in 2008 and well 

over 5 million in 2013, whereas a study from the ‘World Bank’ [62], of Mali and Tanzania, 

shows that only about 3000 to 3900 people were working in the mining sector, from 2008 to 
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2013 in Mali. Fig. 4.1 shows the number of employees of the study in Tanzania and Mali, from 

2005 to 2013. 

     

      Figure 3.9: Employment in Mining in Mali and Tanzania. 

These are extremely small numbers, considering that gold has always represented more than 

half of all the exports of the country (72% as of 2016).  

So if jobs don’t come from the mines, then where do they come from? The answer is very 

simple for someone who grew up in the country and has been exposed to the realities. The vast 

majority of the population is self-employed, meaning that most people work for themselves. 

Mali being a third world country, there aren’t many public and privates institutions in the 

country, therefore not many official jobs available. Most people are entrepreneurs. They all 

have their own small businesses which goes from selling food and clothes on the streets, to 

being a self-owned taxi driver. Many people’s lives revolve around fishing and raising cattles. 

The fish and part of the livestock are used to feed the people, the milk extracted from the cattle 

is usually consumed in the country, by its population. Some of the cattle is sold abroad and used 

as meat. All these small businesses are not registered officially in the government and they are 

not regulated by any laws, to some extent. In 2016, sheep, goats and bovine accounted for 7.9% 

of total exports of the country, according to OEC [63]. In addition, 63% of the workforce 

worked in the farming sector in 2010, according to the ‘African Department of the International 
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Monetary Fund’ [64], but only about 6% worked in the modern formal sector (which has only 

a few private companies and public administration). Most farmers work for themselves, and 

their harvest is either sold to the government, or to private companies within or outside the 

country. Only the cotton and the rice farming are really monitored by the government. In 2016, 

cotton accounted for 9.2% of the total exports of the country, according to OEC [63]. 
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5. CONCLUSION AND RECOMMENDATIONS 

The new methods discussed in this study have given good, if not great results. However, they 

are not very easy to implement. The principle of parsimony [68] states that amongst a set of 

models, the one which is the simplest (simple in the number of parameters as well as in the 

application) should be chosen to work with. Although the new ones performed well, it is best 

to choose methods such as the Simple Exponential Smoothing or the ARIMA or the Regression 

models which are easier to implement, unless being advised to. These heuristics can be used if 

time and complexity are no issues for the forecaster.  Further work needs to be done on the 

GPRM model because it has the potential to give great forecasts, if its algorithm is implemented 

in a software. The same should be done with all the other heuristic methods discussed in this 

study as this will greatly help facilitate their use and thus raised them to a desired level of 

parsimony. It is also important to recall that they are mostly used with small size datasets 

(because of their complexity) and for short-term predictions. It would be interesting to use them 

with big datasets and see how they behave. This could reveal more about their potential and 

perhaps help increase their performances. 

As for the unemployment in Mali, this study has shown that even though the government isn’t 

creating many new jobs, the rates are very low every year compared with other countries in the 

world. According to the Central Intelligence Agency (CIA) bureau [65], Mali had the 106th 

lowest unemployment rates in the world in 2016, showing better numbers than countries such 

as France, Turkey and Saudi Arabia which are considered to be ‘developed’ while Mali is still 

regarded as a ‘third world country’. Furthermore, the poverty rates in those countries, according 

to the CIA World Factbook [66], were 7.9% and 16.9% in 2014 for France and Turkey 

respectively, whereas it was 36.1% in Mali during that same year. These numbers are quite 

contradictory. Some sources, such as index mundi [67], suggest that the actual unemployment 

rates could be above 30% in Mali, which is most likely to be true. This is characteristic of third 

world countries, that is numbers don’t add up most of the time. So as for the malian government, 

they need to redefine what they mean by or accept as work, and also make a better effort in 

assessing their future statistics. This could perhaps help solve some of the problems they’re 

faced with. 
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APPENDICES 

APPENDIX 1: Sample 10

1990 1 10.6 
2 4.5 7.466666667 2.966667 8.801111111 
3 7.3 6.466666667 0.833333 0.694444444 
4 7.6 7.3 0.3 0.09 

1991 5 7 7.566666667 0.566667 0.321111111 
6 8.1 9.1 1 1 
7 12.2 8.266666667 3.933333 15.47111111 
8 4.5 8.666666667 4.166667 17.36111111 

1992 9 9.3 7.266666667 2.033333 4.134444444 
10 8 9.733333333 1.733333 3.004444444 
11 11.9 9.266666667 2.633333 6.934444444 
12 7.9 9.8 1.9 3.61 

1993 13 9.6 8.566666667 1.033333 1.067777778 
14 8.2 9.033333333 0.833333 0.694444444 
15 9.3 9.366666667 0.066667 0.004444444 
16 10.6 9.166666667 1.433333 2.054444444 

1994 17 7.6 8.533333333 0.933333 0.871111111 
18 7.4 6.1 1.3 1.69 
19 3.3 6.1 2.8 7.84 
20 7.6 6.066666667 1.533333 2.351111111 

1995 21 7.3 7.7 0.4 0.16 
22 8.2 7.7 0.5 0.25 
23 7.6 7.8 0.2 0.04 
24 7.6 8.966666667 1.366667 1.867777778 

1996 25 11.7 8.966666667 2.733333 7.471111111 
26 7.6 8.833333333 1.233333 1.521111111 
27 7.2 8.4 1.2 1.44 
28 10.4 9.4 1 1 

1997 29 10.6 10.53333333 0.066667 0.004444444 
30 10.6 9.466666667 1.133333 1.284444444 
31 7.2 8.466666667 1.266667 1.604444444 
32 7.6 7.233333333 0.366667 0.134444444 

1998 33 6.9 7.266666667 0.366667 0.134444444 
34 7.3 7.666666667 0.366667 0.134444444 
35 8.8 7.8 1 1 
36 7.3 8 0.7 0.49 

1999 37 7.9 7.766666667 0.133333 0.017777778 
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38 8.1 6.833333333 1.266667 1.604444444 
39 4.5 6.666666667 2.166667 4.694444444 
40 7.4 6.366666667 1.033333 1.067777778 

2000 41 7.2 8.833333333 1.633333 2.667777778 
42 11.9 7.466666667 4.433333 19.65444444 
43 3.3 8.2 4.9 24.01 
44 9.4 7.166666667 2.233333 4.987777778 

2001 45 8.8 8.5 0.3 0.09 
46 7.3 9.266666667 1.966667 3.867777778 
47 11.7 7.833333333 3.866667 14.95111111 
48 4.5 9.466666667 4.966667 24.66777778 

2002 49 12.2 8.7 3.5 12.25 
50 9.4 10.33333333 0.933333 0.871111111 
51 9.4 8.7 0.7 0.49 
52 7.3 7.066666667 0.233333 0.054444444 

2003 53 4.5 6.366666667 1.866667 3.484444444 
54 7.3 6.4 0.9 0.81 
55 7.4 7.6 0.2 0.04 
56 8.1 7.866666667 0.233333 0.054444444 

2004 57 8.1 8.333333333 0.233333 0.054444444 
58 8.8 8.166666667 0.633333 0.401111111 
59 7.6 7.866666667 0.266667 0.071111111 
60 7.2 7.866666667 0.666667 0.444444444 

2005 61 8.8 8.066666667 0.733333 0.537777778 
62 8.2 8.4 0.2 0.04 
63 8.2 7.766666667 0.433333 0.187777778 
64 6.9 8.166666667 1.266667 1.604444444 

2006 65 9.4 7.866666667 1.533333 2.351111111 
66 7.3 7.966666667 0.666667 0.444444444 
67 7.2 7.3 0.1 0.01 
68 7.4 8.933333333 1.533333 2.351111111 

2007 69 12.2 10.6 1.6 2.56 
70 12.2 11.06666667 1.133333 1.284444444 
71 8.8 10.1 1.3 1.69 
72 9.3 8.333333333 0.966667 0.934444444 

2008 73 6.9 8.133333333 1.233333 1.521111111 
74 8.2 7.366666667 0.833333 0.694444444 
75 7 8 1 1 
76 8.8 8.4 0.4 0.16 

2009 77 9.4 7.166666667 2.233333 4.987777778 
78 3.3 6.7 3.4 11.56 
79 7.4 5.966666667 1.433333 2.054444444 
80 7.2 7.3 0.1 0.01 
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2010 81 7.3 7.266666667 0.033333 0.001111111 
82 7.3 7.566666667 0.266667 0.071111111 
83 8.1 6.233333333 1.866667 3.484444444 
84 3.3 6.233333333 2.933333 8.604444444 

2011 85 7.3 6.733333333 0.566667 0.321111111 
86 9.6 8.566666667 1.033333 1.067777778 
87 8.8 10.2 1.4 1.96 
88 12.2 9.733333333 2.466667 6.084444444 

2012 89 8.2 9.5 1.3 1.69 
90 8.1 8.366666667 0.266667 0.071111111 
91 8.8 8 0.8 0.64 
92 7.1 7.966666667 0.866667 0.751111111 

2013 93 8 7.466666667 0.533333 0.284444444 
94 7.3 7.733333333 0.433333 0.187777778 
95 7.9 8.966666667 1.066667 1.137777778 
96 11.7 9.466666667 2.233333 4.987777778 

2014 97 8.8 9.966666667 1.166667 1.361111111 
98 9.4 9.166666667 0.233333 0.054444444 
99 9.3 8.766666667 0.533333 0.284444444 

100 7.6 8.066666667 0.466667 0.217777778 
2015 101 7.3 8.433333333 1.133333 1.284444444 

102 10.4 8.6 1.8 3.24 
103 8.1 9.633333333 1.533333 2.351111111 
104 10.4 8.633333333 1.766667 3.121111111 

2016 105 7.4 8.266666667 0.866667 0.751111111 
106 7 7.933333333 0.933333 0.871111111 
107 9.4 8.4 1 1 
108 8.8 
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APPENDIX 2: Single Exponential Smoothing results with Sample 10
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APPENDIX 3: Sample 10

1 10.6 10.6 10.6 10.6 
2 4.5 4.5 15.1 10.6 12.85 4.5 12.85 165.1225 20.25 57.825 
3 7.3 7.3 22.4 15.1 18.75 7.3 18.75 351.5625 53.29 136.875 
4 7.6 7.6 30 22.4 26.2 7.6 26.2 686.44 57.76 199.12 
5 7 7 37 30 33.5 7 33.5 1122.25 49 234.5 
6 8.1 8.1 45.1 37 41.05 8.1 41.05 1685.103 65.61 332.505 
7 12.2 12.2 57.3 45.1 51.2 12.2 51.2 2621.44 148.84 624.64 
8 4.5 4.5 61.8 57.3 59.55 4.5 59.55 3546.203 20.25 267.975 
9 9.3 9.3 71.1 61.8 66.45 9.3 66.45 4415.603 86.49 617.985 

10 8 8 79.1 71.1 75.1 8 75.1 5640.01 64 600.8 
11 11.9 11.9 91 79.1 85.05 11.9 85.05 7233.503 141.61 1012.095 
12 7.9 7.9 98.9 91 94.95 7.9 94.95 9015.503 62.41 750.105 
13 9.6 9.6 108.5 98.9 103.7 9.6 103.7 10753.69 92.16 995.52 
14 8.2 8.2 116.7 108.5 112.6 8.2 112.6 12678.76 67.24 923.32 
15 9.3 9.3 126 116.7 121.35 9.3 121.35 14725.82 86.49 1128.555 
16 10.6 10.6 136.6 126 131.3 10.6 131.3 17239.69 112.36 1391.78 
17 7.6 7.6 144.2 136.6 140.4 7.6 140.4 19712.16 57.76 1067.04 
18 7.4 7.4 151.6 144.2 147.9 7.4 147.9 21874.41 54.76 1094.46 
19 3.3 3.3 154.9 151.6 153.25 3.3 153.25 23485.56 10.89 505.725 
20 7.6 7.6 162.5 154.9 158.7 7.6 158.7 25185.69 57.76 1206.12 
21 7.3 7.3 169.8 162.5 166.15 7.3 166.15 27605.82 53.29 1212.895 
22 8.2 8.2 178 169.8 173.9 8.2 173.9 30241.21 67.24 1425.98 
23 7.6 7.6 185.6 178 181.8 7.6 181.8 33051.24 57.76 1381.68 
24 7.6 7.6 193.2 185.6 189.4 7.6 189.4 35872.36 57.76 1439.44 
25 11.7 11.7 204.9 193.2 199.05 11.7 199.05 39620.9 136.89 2328.885 
26 7.6 7.6 212.5 204.9 208.7 7.6 208.7 43555.69 57.76 1586.12 
27 7.2 7.2 219.7 212.5 216.1 7.2 216.1 46699.21 51.84 1555.92 
28 10.4 10.4 230.1 219.7 224.9 10.4 224.9 50580.01 108.16 2338.96 
29 10.6 10.6 240.7 230.1 235.4 10.6 235.4 55413.16 112.36 2495.24 
30 10.6 10.6 251.3 240.7 246 10.6 246 60516 112.36 2607.6 
31 7.2 7.2 258.5 251.3 254.9 7.2 254.9 64974.01 51.84 1835.28 
32 7.6 7.6 266.1 258.5 262.3 7.6 262.3 68801.29 57.76 1993.48 
33 6.9 6.9 273 266.1 269.55 6.9 269.55 72657.2 47.61 1859.895 
34 7.3 7.3 280.3 273 276.65 7.3 276.65 76535.22 53.29 2019.545 
35 8.8 8.8 289.1 280.3 284.7 8.8 284.7 81054.09 77.44 2505.36 
36 7.3 7.3 296.4 289.1 292.75 7.3 292.75 85702.56 53.29 2137.075 
37 7.9 7.9 304.3 296.4 300.35 7.9 300.35 90210.12 62.41 2372.765 
38 8.1 8.1 312.4 304.3 308.35 8.1 308.35 95079.72 65.61 2497.635 
39 4.5 4.5 316.9 312.4 314.65 4.5 314.65 99004.62 20.25 1415.925 
40 7.4 7.4 324.3 316.9 320.6 7.4 320.6 102784.4 54.76 2372.44 
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41 7.2 7.2 331.5 324.3 327.9 7.2 327.9 107518.4 51.84 2360.88 
42 11.9 11.9 343.4 331.5 337.45 11.9 337.45 113872.5 141.61 4015.655 
43 3.3 3.3 346.7 343.4 345.05 3.3 345.05 119059.5 10.89 1138.665 
44 9.4 9.4 356.1 346.7 351.4 9.4 351.4 123482 88.36 3303.16 
45 8.8 8.8 364.9 356.1 360.5 8.8 360.5 129960.3 77.44 3172.4 
46 7.3 7.3 372.2 364.9 368.55 7.3 368.55 135829.1 53.29 2690.415 
47 11.7 11.7 383.9 372.2 378.05 11.7 378.05 142921.8 136.89 4423.185 
48 4.5 4.5 388.4 383.9 386.15 4.5 386.15 149111.8 20.25 1737.675 
49 12.2 12.2 400.6 388.4 394.5 12.2 394.5 155630.3 148.84 4812.9 
50 9.4 9.4 410 400.6 405.3 9.4 405.3 164268.1 88.36 3809.82 
51 9.4 9.4 419.4 410 414.7 9.4 414.7 171976.1 88.36 3898.18 
52 7.3 7.3 426.7 419.4 423.05 7.3 423.05 178971.3 53.29 3088.265 
53 4.5 4.5 431.2 426.7 428.95 4.5 428.95 183998.1 20.25 1930.275 
54 7.3 7.3 438.5 431.2 434.85 7.3 434.85 189094.5 53.29 3174.405 
55 7.4 7.4 445.9 438.5 442.2 7.4 442.2 195540.8 54.76 3272.28 
56 8.1 8.1 454 445.9 449.95 8.1 449.95 202455 65.61 3644.595 
57 8.1 8.1 462.1 454 458.05 8.1 458.05 209809.8 65.61 3710.205 
58 8.8 8.8 470.9 462.1 466.5 8.8 466.5 217622.3 77.44 4105.2 
59 7.6 7.6 478.5 470.9 474.7 7.6 474.7 225340.1 57.76 3607.72 
60 7.2 7.2 485.7 478.5 482.1 7.2 482.1 232420.4 51.84 3471.12 
61 8.8 8.8 494.5 485.7 490.1 8.8 490.1 240198 77.44 4312.88 
62 8.2 8.2 502.7 494.5 498.6 8.2 498.6 248602 67.24 4088.52 
63 8.2 8.2 510.9 502.7 506.8 8.2 506.8 256846.2 67.24 4155.76 
64 6.9 6.9 517.8 510.9 514.35 6.9 514.35 264555.9 47.61 3549.015 
65 9.4 9.4 527.2 517.8 522.5 9.4 522.5 273006.3 88.36 4911.5 
66 7.3 7.3 534.5 527.2 530.85 7.3 530.85 281801.7 53.29 3875.205 
67 7.2 7.2 541.7 534.5 538.1 7.2 538.1 289551.6 51.84 3874.32 
68 7.4 7.4 549.1 541.7 545.4 7.4 545.4 297461.2 54.76 4035.96 
69 12.2 12.2 561.3 549.1 555.2 12.2 555.2 308247 148.84 6773.44 
70 12.2 12.2 573.5 561.3 567.4 12.2 567.4 321942.8 148.84 6922.28 
71 8.8 8.8 582.3 573.5 577.9 8.8 577.9 333968.4 77.44 5085.52 
72 9.3 9.3 591.6 582.3 586.95 9.3 586.95 344510.3 86.49 5458.635 
73 6.9 6.9 598.5 591.6 595.05 6.9 595.05 354084.5 47.61 4105.845 
74 8.2 8.2 606.7 598.5 602.6 8.2 602.6 363126.8 67.24 4941.32 
75 7 7 613.7 606.7 610.2 7 610.2 372344 49 4271.4 
76 8.8 8.8 622.5 613.7 618.1 8.8 618.1 382047.6 77.44 5439.28 
77 9.4 9.4 631.9 622.5 627.2 9.4 627.2 393379.8 88.36 5895.68 
78 3.3 3.3 635.2 631.9 633.55 3.3 633.55 401385.6 10.89 2090.715 
79 7.4 7.4 642.6 635.2 638.9 7.4 638.9 408193.2 54.76 4727.86 
80 7.2 7.2 649.8 642.6 646.2 7.2 646.2 417574.4 51.84 4652.64 
81 7.3 7.3 657.1 649.8 653.45 7.3 653.45 426996.9 53.29 4770.185 
82 7.3 7.3 664.4 657.1 660.75 7.3 660.75 436590.6 53.29 4823.475 
83 8.1 8.1 672.5 664.4 668.45 8.1 668.45 446825.4 65.61 5414.445 
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84 3.3 3.3 675.8 672.5 674.15 3.3 674.15 454478.2 10.89 2224.695 
85 7.3 7.3 683.1 675.8 679.45 7.3 679.45 461652.3 53.29 4959.985 
86 9.6 9.6 692.7 683.1 687.9 9.6 687.9 473206.4 92.16 6603.84 
87 8.8 8.8 701.5 692.7 697.1 8.8 697.1 485948.4 77.44 6134.48 
88 12.2 12.2 713.7 701.5 707.6 12.2 707.6 500697.8 148.84 8632.72 

The followings are the forecasts 

8.2 89 8.06658106 0.133419 0.017801 
8.1 90 8.06626163 0.033738 0.001138 
8.8 91 8.06594221 0.734058 0.538841 
7.1 92 8.0656228 0.965623 0.932427 

8 93 8.06530341 0.065303 0.004265 
7.3 94 8.06498403 0.764984 0.585201 
7.9 95 8.06466466 0.164665 0.027114 

11.7 96 8.06434531 3.635655 13.21799 
8.8 97 8.06402597 0.735974 0.541658 
9.4 98 8.06370664 1.336293 1.78568 
9.3 99 8.06338732 1.236613 1.529211 
7.6 100 8.06306802 0.463068 0.214432 
7.3 101 8.06274873 0.762749 0.581786 

10.4 102 8.06242945 2.337571 5.464236 
8.1 103 8.06211018 0.03789 0.001436 

10.4 104 8.06179093 2.338209 5.467222 
7.4 105 8.06147169 0.661472 0.437545 

7 106 8.06115246 1.061152 1.126045 
9.4 107 8.06083325 1.339167 1.793368 
8.8 108 8.06051404 0.739486 0.546839 

APPENDIX 3 (cont.): Excel results of the Grey model applied to ‘Sample 10’
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APPENDIX 4: Numerical operations of the Grey model with Optimization of Background 
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The followings are the forecasts 

89 8.2 8.157223967 0.042776033 0.00183 
90 8.1 8.144182845 0.044182845 0.001952 
91 8.8 8.131162571 0.668837429 0.447344 
92 7.1 8.118163113 1.018163113 1.036656 
93 8 8.105184438 0.105184438 0.011064 
94 7.3 8.092226512 0.792226512 0.627623 
95 7.9 8.079289302 0.179289302 0.032145 
96 11.7 8.066372775 3.633627225 13.20325 
97 8.8 8.053476898 0.746523102 0.557297 
98 9.4 8.040601638 1.359398362 1.847964 
99 9.3 8.027746962 1.272253038 1.618628 

100 7.6 8.014912837 0.414912837 0.172153 
101 7.3 8.00209923 0.70209923 0.492943 
102 10.4 7.989306108 2.410693892 5.811445 
103 8.1 7.976533439 0.123466561 0.015244 
104 10.4 7.96378119 2.43621881 5.935162 
105 7.4 7.951049329 0.551049329 0.303655 
106 7 7.938337822 0.938337822 0.880478 
107 9.4 7.925646637 1.474353363 2.173718 
108 8.8 7.912975742 0.887024258 0.786812 
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APPENDIX 5: Numerical operations of the Grey_Arima model applied on the Malian GDP 
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