

### T.C. İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ



Yüksek Lisans Tezi

## BİR KERE İYONİZE OLMUŞ LANTAN ATOMUNUN İNCE YAPI ENERJİ SEVİYELERİNİN İNCELENMESİ

Mehdi TONKA

Fizik Anabilim Dalı

Atom ve Molekül Fiziği Programı

DANIŞMAN Doç. Dr. Feyza GÜZELÇİMEN

Temmuz, 2019

**İSTANBUL** 

Bu çalışma, 1.07.2019 tarihinde aşağıdaki jüri tarafından Fizik Anabilim Dalı, Atom ve Molekül Fiziği Programında Yüksek Lisans tezi olarak kabul edilmiştir.

Tez Jürisi

Doç. Dr. Feyza GÜZELÇİMEN(Danışman) İstanbul Üniversitesi Fen Fakültesi

Prof. Dr. Günay BAŞAR İstanbul Teknik Üniversitesi Fen-Edebiyat Fakültesi

Doç. Dr. Barış KINACI İstanbul Üniversitesi Fen Fakültesi



20.04.2016 tarihli Resmi Gazete'de yayımlanan Lisansüstü Eğitim ve Öğretim Yönetmeliğinin 9/2 ve 22/2 maddeleri gereğince; Bu Lisansüstü teze, İstanbul Üniversitesi'nin abonesi olduğu intihal yazılım programı kullanılarak Fen Bilimleri Enstitüsü'nün belirlemiş olduğu ölçütlere uygun rapor alınmıştır.

### ÖNSÖZ

Bu çalışma, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Fizik Anabilim Dalı, Atom ve Molekül Fiziği Programında, "Bir Kere İyonize Olmuş Lantan Atomunun İnce Yapı Enerji Seviyelerinin İncelenmesi" konulu yüksek lisans tezi olarak hazırlandı.

Lisansüstü öğrenimim süresince bana gösterdiği her türlü desteği için değerli danışman hocam Doç.Dr. Feyza GÜZELÇİMEN'e en içten dileklerimle teşekkür ederim.

Deneysel ve teorik bilgilerini her zaman bana aktaran, çalıştığım konuda benim en iyi şekilde yetişmemi sağlayan değerli hocalarım Prof.Dr. Gönül BAŞAR, Doç.Dr. İpek KANAT ÖZTÜRK'e çok teşekkür ederim.

Tezimin analiz sürecinde yardımlarını esirgemeyen değerli hocalarım Avusturya Graz Tenik Üniversitesi Deneysel Fizik Enstitüsü emekli öğretim üyelerinden Prof.Dr. Laurentius WİNDHOLZ'a ile Berlin Bilim ve Teknik Yüksekokulu öğretim üyelerinden Prof.Dr. Sophie KRÖGER'e teşekkür ederim.

Yaşamım boyunca bana her konuda destek olan, hep yanımda hissettiğim aileme teşekkürü bir borç bilirim.

Temmuz 2019

Mehdi TONKA

# İÇİNDEKİLER

Sayfa No

| ÖNSÖZ                                  | iv       |
|----------------------------------------|----------|
| İÇİNDEKİLER                            | <b>v</b> |
| ŞEKİL LİSTESİ                          | vi       |
| TABLO LİSTESİ                          | ix       |
| SİMGE VE KISALTMA LİSTESİ              | xi       |
| ÖZET                                   | xii      |
| SUMMARY                                | xiii     |
| 1. GİRİŞ                               | 1        |
| 2. GENEL KISIMLAR                      | 3        |
| 3. MALZEME VE YÖNTEM                   |          |
| 3.1. NÖTR VE İYONİZE LANTAN ATOMU      | 10       |
| 3.2. АТОМІ́К ҮАРІ                      | 12       |
| 3.2.1. Konfigürasyon                   | 12       |
| 3.2.2. Parite                          | 13       |
| 3.2.3. İnce Yapı                       | 14       |
| 3.2.4. Aşırı İnce Yapı                 | 16       |
| 3.2.5. Seçim Kuralları                 |          |
| 3.3. ÇİZGİ GENİŞLEMELERİ               | 19       |
| 3.4. LA-AR FOURIER TRANSFORM SPEKTRUMU | 21       |
| 3.5. DATA ANALİZİ                      | 24       |
| 3.5.1. Klasifikasyon Programı          | 24       |
| 3.5.2. Simülasyon Programı             |          |
| 3.5.3. Global-Fit Programı             | 29       |
| 4. BULGULAR                            |          |
| 5. TARTIŞMA VE SONUÇ                   | 64       |
| KAYNAKLAR                              | 69       |
| ÖZGEÇMİŞ                               | 74       |

# ŞEKİL LİSTESİ

| Şekil 3.1: Lantan.elementinin.periyodik.tablodaki.konumu [50]10                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Şekil 3.2: La-Ar FT spektrumunun 6000 cm <sup>-1</sup> -12000 cm <sup>-1</sup> aralığında örnek-kesit. y-<br>eksenindeki relatif şiddet 1'e normlanmıştır                                                                                                                 |
| Şekil 3.3: La-Ar FT spektrumunun 876.7 nm-882.8 nm aralığında örnek-kesiti23                                                                                                                                                                                              |
| Şekil 3.4: $\lambda$ =728.23355 nm dalga-boyu ve v=13728.076 cm <sup>-1</sup> dalga-sayılı La II çizgisi23                                                                                                                                                                |
| Şekil 3.5: Program için hazırlanan spektral-çizgilere ait giriş verilerinin bir kısmı25                                                                                                                                                                                   |
| Şekil 3.6: Program için hazırlanan La I ince-yapı seviyelerine ait giriş verilerinin bir<br>kısmı                                                                                                                                                                         |
| Şekil 3.7: Program için hazırlanan La II ince-yapı seviyelerine ait giriş verilerinin bir kısmı                                                                                                                                                                           |
| Şekil 3.8: Klasifikasyon programında λ=1204.42120 nm dalga-boylu çizgi için teorik<br>mümkün geçişler, sınıflandırılma ve FT-spektrumu                                                                                                                                    |
| Şekil 3.9: Simülasyon Programının ara yüz penceresi                                                                                                                                                                                                                       |
| Şekil 3.10: "Klasifikasyon Programı" menüsünde, spektral-çizgilerin ağırlık faktörünün belirlenme penceresi                                                                                                                                                               |
| Şekil 3.11: "Global-fit Programı"nda hesaplama için kullanılan spektral-çizgilerin geçiş<br>ve ağırlıklandırma listesi                                                                                                                                                    |
| Şekil 3.12: "Global-fit Programı" için hazırlanan enerji seviyelerini içeren dosyalar                                                                                                                                                                                     |
| Şekil 3.13: Her bir enerji seviyesinin literatürdeki değerleri, hesaba katılan spektral-<br>çizgi sayısı, "Global-fit Programı" sonucunda revize edilen enerji değerleri ve<br>istatistik hataları                                                                        |
| Şekil 4.1: "Global-fit Programı"nda spektral-çizgilerin iterasyon sonucu elde edilen<br>ağırlık-merkezi dalga-sayısı sapma değerlerini gösteren pencere                                                                                                                   |
| Şekil 4.2: La II enerji seviyelerinin bir kısmı, yalnızca bir veya iki geçişle diğer seviyelere bağlanan seviyeler. *: MIT dalga boyları [3] kullanılarak hesaplanan yüksek enerjiler                                                                                     |
| Şekil 4.3: wf=10 değerindeki $\lambda$ = 394.91025 nm dalgaboylu ve $\sigma$ = 25315.044 cm –<br>1 dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı<br>ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve |

| teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).                                                                                                                                                                                                                                                                                 | .53 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Şekil 4.4: wf=10 değerindeki $\lambda$ = 480.90046 nm dalgaboylu ve $\sigma$ = 20788.513 cm –<br>1 dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı<br>ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve<br>teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık<br>merkezinden olan relatif frekansı (MHz)). | .54 |
| Şekil 4.5: wf=10 değerindeki $\lambda$ = 706.62110 nm dalgaboylu ve $\sigma$ = 14147.955 cm –<br>1 dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı<br>ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve<br>teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık<br>merkezinden olan relatif frekansı (MHz)). | .55 |
| Şekil 4.6: wf=5 değerindeki $\lambda = 485.91384 nm$ dalgaboylu ve $\sigma = 20574.033 cm - 1$ dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).              | .56 |
| Şekil 4.7: wf=5 değerindeki $\lambda = 588.06395 nm$ dalgaboylu ve $\sigma = 17000.241 cm - 1$ dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).              | .57 |
| Şekil 4.8: wf=5 değerindeki $\lambda = 805.93803 nm$ dalgaboylu ve $\sigma = 12404.491 cm - 1$ dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).              | .58 |
| Şekil 4.9: wf=3 değerindeki $\lambda$ = 370.58102 nm dalgaboylu ve $\sigma$ = 33204.388 cm –<br>1 dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı<br>ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve<br>teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık<br>merkezinden olan relatif frekansı (MHz)).  | .59 |
| Şekil 4.10: wf=3 değerindeki $\lambda = 463.49538 nm$ dalgaboylu ve $\sigma = 21569.147 cm - 1$ dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).             | .60 |
| Şekil 4.11: wf=3 değerindeki $\lambda = 571.24060 \ nm$ dalgaboylu ve $\sigma = 17500.903 \ cm - 1$ dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).         | .61 |



# TABLO LÍSTESÍ

| Tablo 2.1: Lantan elementinin izotoplarının atom kütlesi, doğal bolluk oranı, yarı ömür, çekirdek spini ve çekirdek manyetik moment ve elektrik kuadropol moment değerleri                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tablo 2.2: La II'nin deneysel olarak bilinen çift pariteli ince-yapı enerji seviyelerinin konfigürasyon, spektral terim, <i>J</i> kuantum sayısı, <i>A&amp;B</i> aiy sabitleri (standart sapma, referans ve elde edildikleri deneysel yöntem ile birlikte). Enerjiler cm <sup>-1</sup> cinsinden, <i>A&amp;B</i> aiy sabitleri MHz cinsinden verilmiştir                                                                                                                                                                                                                                |
| <ul> <li>Tablo 2.3: La II'nin deneysel olarak bilinen tek pariteli ince-yapı enerji seviyelerinin konfigürasyon, spektral terim, <i>J</i> kuantum sayısı, <i>A&amp;B</i> aiy sabitleri (standart sapma, referans ve elde edildikleri deneysel yöntem ile birlikte). Enerjiler cm<sup>-1</sup> cinsinden, <i>A&amp;B</i> aiy sabitleri MHz cinsinden verilmiştir.</li> <li>7</li> </ul>                                                                                                                                                                                                  |
| Tablo 3.1: La I ve La II'nin bazı fiziksel&kimyasal özellikleri [50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tablo 3.2: Spektral çizgi genişleme türleri ve özellikleri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tablo 4.1: FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf)<br>uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava:}$<br>havadaki dalga-boyu, $v_{vakum}$ : vakumdaki dalga-sayısı, $\Delta v = v_{vakum} -  E cift - Etek $ ,<br>$E_{tek}$ : tek-pariteli seviye, $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum<br>kuantum sayısı, $E_{cift}$ : cift-pariteli seviye, $J_{cift}$ : cift-pariteli seviyenin yörüngesel<br>açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü<br>değeri) |
| Tablo 4.2: MIT dalga-boyu tablolarından [3] alınan ve FT spektrumun aralığında yer<br>almadığı için ağırlık faktörü (wf) uygulanmayan fakat global-fit programında<br>kullanılan La II spektral çizgileri                                                                                                                                                                                                                                                                                                                                                                               |
| Tablo 4.3: La-Ar FT spektrumundaki La II spektral çizgileri için Global-fit programında<br>uygulanan ağırlık faktörleri (wf), uygulanma kriterleri ve spektral çizgilerin sayısı51                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tablo 4.4: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm <sup>-1</sup> ), bu seviyelere ait konfigürasyonları, spektral terimleri, <i>J</i> değerleri, pariteleri, <i>A</i> (MHz) ve <i>B</i> (MHz) değerleri                                                                                                                                                                                                                                                                                                                                                                      |
| Tablo 4.5: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm <sup>-1</sup> ), bu seviyelere ait konfigürasyonları, spektral terimleri, <i>J</i> değerleri, pariteleri, <i>A</i> (MHz) ve <i>B</i> (MHz) değerleri                                                                                                                                                                                                                                                                                                                                                                      |

Tablo 4.6: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.7: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.8: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.9: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.10: Gecise ait alt-üst ince-yapı enerji seviyeleri  $(cm^{-1})$ , bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.11: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) değerleri......60 Tablo 4.12: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.13: Gecise ait alt-üst ince-vapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 4.14: Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) Tablo 5.1: Revize edilen çift-pariteli La II enerji seviyeleri listesi. J değeri, revize edilen enerji değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k c</sub>), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s.ç.</sub>), Tablo 5.2: Revize edilen tek-pariteli La II enerji seviyeleri listesi. J değeri, revize edilen enerji değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k c</sub>), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s.c.</sub>), 

# SİMGE VE KISALTMA LİSTESİ

Açıklama

Simgeler

| A  | : | Manyetik Dipol Aşırı İnce Yapı Sabiti         |
|----|---|-----------------------------------------------|
| В  | : | Elektrik Kuadropol Aşırı İnce Yapı Sabiti     |
| F  | : | Atomun Toplam Açısal Momentumu                |
| Η  | : | Hamiltoniyen                                  |
| Ι  | : | Çekirdek Spini                                |
| J  | : | Elektronun Toplam Açısal Momentumu            |
| L  | : | Elektronun Toplam Yörüngesel Açısal Momentumu |
| S  |   | Elektronun Toplam Spin Açısal Momentumu       |
| Z  | : | Atom Numarası                                 |
| h  | : | Planck Sabiti                                 |
| ł  | : | Yörüngesel Açısal Momentum Kuantum Sayısı     |
| S  | : | Spin Açısal Momentum Kuantum Sayısı           |
| μι | 4 | Çekirdek Manyetik Dipol Momenti               |
| λ  | : | Dalga Boyu                                    |
| ψ  | : | Dalga Fonksiyonu                              |
| ν  | : | Dalga Sayısı                                  |
| Q  | : | Çekirdek Elektrik Kuadropol Momenti           |
| ξ  | : | Spin-Yörünge Etkileşme Parametresi            |

ar Açıklama

| CLIBS | : | Collinear Laser-İyon-Işını Spektroskopisi  |
|-------|---|--------------------------------------------|
| FTS   | : | Fourier Transform Spektroskopisi           |
| LIFS  | : | Laserle Uyarılmış Floresans Spektroskopisi |
| aiy   | : | Aşırı İnce Yapı                            |

### ÖZET

## YÜKSEK LİSANS TEZİ

# BİR KERE İYONİZE OLMUŞ LANTAN ATOMUNUN İNCE YAPI ENERJİ SEVİYELERİNİN İNCELENMESİ

Mehdi TONKA

İstanbul Üniversitesi

Fen Bilimleri Enstitüsü

Fizik Anabilim Dalı

#### Danışman : Doç. Dr. Feyza GÜZELÇİMEN

Bu çalışmada; bir kere iyonize olmuş lantan (La II) atomuna ait 330 nm–1450 nm (30000 cm<sup>-1</sup>–6900 cm<sup>-1</sup>) spektral aralığında kalibre edilmiş yüksek-çözünürlüklü Fourier-Transform spektrumunda gözlenen aşırı ince yapı çizgilerinin ağırlık-merkezi dalga sayılarının doğrulukla belirlenmesi, bu çizgilere ait deneysel olarak bilinen alt-üst ince yapı enerji seviyelerinin istatistiksel belirsizlik değerleri de hesaplanarak yüksek hassasiyetle düzeltilmesi ve revize edilmesi amaçlandı.

La II spektral çizgilerinin ağırlık-merkezlerinin belirlenebilmesi için, geçişlerin alt-üst enerji seviyelerinin literatürde deneysel olarak belirlenmiş manyetik dipol *A* ve elektrik kuadrupol *B* aşırı ince yapı sabitleri kullanıldı. Bilinmeyen *A*&*B* değerleri, deneysel spektrum ile teorik spektrumların simülasyonu ile elde edildi. Analiz edilen 344 spektral çizginin ve literatürdeki dalga boyu tablolarından 81 spektral çizginin ağırlık-merkezi dalga sayıları kullanılarak, deneysel olarak bilinen 115 La II ince-yapı enerji seviyesi ilk defa bu çalışmada revize edildi. Bu seviyelerden 94'ü, 0.01 cm<sup>-1</sup>'den daha iyi hassasiyetle hesaplandı. 34 La II seviyesi için aşırı ince yapı sabitleri ilk defa bu çalışmada tahmin edildi.

Temmuz 2019, 87. sayfa.

Anahtar kelimeler: Lantan, iyonize olmuş lantan, ince yapı enerji seviyesi, fourier-transform spektrumu, aşırı ince yapı.

#### SUMMARY

#### **M.Sc. THESIS**

#### INVESTIGATION OF FINE STRUCTURE ENERGY LEVELS OF SINGLY IONIZED LANTHANUM ATOM

Mehdi TONKA

İstanbul University

**Institute of Graduate Studies in Sciences** 

**Department of Physics** 

#### Supervisor : Assoc. Prof. Dr. Feyza GÜZELÇİMEN

In this study; to determine accurately the center-of-gravity wave numbers of hyperfine structure lines observed in high-resolution Fourier-Transform spectra calibrated in the spectral range of 330 nm–1450 nm (30000 cm<sup>-1</sup>–6900 cm<sup>-1</sup>) of singly ionized lanthanum (La II), to correct with high accuracy and to revise of the experimentally known lower-upper fine structure energy levels of these lines taking into account the statistical uncertainty values are aimed.

The magnetic dipole A and electric quadrupole B hyperfine structure constants, determined experimentally in the literature, of lower-upper levels of the transitions have been used in order to obtain the center-of-gravity of La II spectral lines. The unknown A&B values have been evaluated by simulate of the theoretical spectrum with experimental one. 115 La II fine structure levels experimentally known have been revised using the center-of-gravity wave numbers of analysed 344 spectral lines and of 81 spectral lines in wavelength-tables in the literature for the first time in this study. 94 of them have been calculated with the accuracy of better than 0.01 cm<sup>-1</sup>. For 34 La II levels, hyperfine structure constants have been firstly estimated in this study.

July 2019, 87. pages.

**Keywords:** Lanthanum, ionized lanthanum, fine structure energy level, fourier-transform spectrum, hyperfine structure.

### 1. GİRİŞ

Çalışmanın ana konusunu; atom ve iyonların yapısını, onların çevre, elektromanyetik alan ve birbirleri ile olan etkileşimlerini inceleyen "atom fiziği" oluşturmaktadır. Atomik yapı hakkındaki bilgiler, optik spektrumların gözlenerek analiz edilmeye başlamasıyla gelişmiştir.

Her elementin yayınladığı/absorbladığı çizgi spektrumunun kendine has olduğunu keşfedenler G. Kirchhof ve R. Bunsen'dir. Bu spektrumlar, atomik yapı analizi için temeldir ve yüksekteknoloji spektroskopik aletlerin geliştirilmesi spektrumların çözünürlüğünün artmasına olanak sağlamaktadır. Bu sayede çizgilerin bileşenlerinin daha iyi ayrışmış olarak gözlenmesi kolaylaşır. Bu spektrumlar, atomik ve iyonik yapılar hakkında bilgi verebilecek spektroskopik yöntemlerin temelini oluşturur. Spektral çizgilerin deneysel aşırı ince yapı (aiy) bileşenleri ilk kez A. Michelson (1891), C. Fabry and A. Perot (1897) tarafından gözlenmiştir [1].

Atomların, bilhassa ağır metaller ve nadir-toprak elementlerinin, spektrumlarının aiy analizleri ve ince-yapı enerji seviyelerinin aiy sabitleri hem atom fiziği hem de astrofizik çalışmalar açısından oldukça önem taşımaktadır. Yıldızlardan alınan soğurma-spektrumlarında metallerin atomik ve iyonik hallerine ait çizgiler bol miktarda gözlenmektedir. Buna rağmen, çoğu atomun iyonik durumlarına ait ince-yapı enerji seviyeleri ve seviyelerin aiy sabitleri bilinmemektedir. Aiy sabitleri hakkında bilgi eksikliği, yıldız atmosferlerinde bu metallerin bolluklarını kesin olarak belirlemeyi zorlaştırır. Spektroskopik analizleri yapabilmek için, literatürdeki eksikliklerin doğru olarak tamamlanması gerekir.

Bu çalışmada lantan elementinin 330 nm–1450 nm spektral aralığında kaydedilen Fourier-Transform (FT) spektrumunda gözlenen bir kere iyonize olmuş lantan (La II) spektralçizgilerinin ağırlık-merkezlerinin yüksek hassasiyetle belirlendi. Tüm La II ince-yapı enerji seviyelerine ait bilgiler NIST[2] ve MIT [3] atomik veri tablolarından alındı. FT-spektrumunda 344 tane aiy gösteren geçişi La II'ye ait olduğu görüldü. Bu spektral çizgilerin aiy analizi yapılarak, toplam 115 La II enerji seviyesi yüksek doğruluk ve hassasiyetle ilk defa revize edildi. Bu seviyelerden 34 tanesi için manyetik dipol *A* ve 4 tanesi için de elektrik kuadropol *B* aiy sabitleri için yaklaşık değerler ilk defa tahmin edildi. Lantan elementinin aiy incelenmesini içeren çalışmalar ve literatür taraması genel kısımlarda anlatıldı.

Malzeme ve Yöntem bölümü; atomik yapı, kullanılan deneysel yöntem ve data analiz programları hakkında teorik bilgiler ve La atomu hakkında genel bilgi içermektedir.

Bulgular bölümünde; incelenen spektral aralıktaki her bir La II'nin aiy gösteren spektral çizgisinin ağırlık-merkezi dalga-sayısının, deneysel FT spektrumu ile Klasifikasyon programında [4-5] oluşturulan teorik spektrumun simülasyonu sonucu daha doğrulukla belirlenerek sınıflandırılması, spektrumların aiy analizleri ve ağırlık faktörlerinin belirlenmesi sürecinden oluşmaktadır.

Tartışma ve Sonuçlar bölümü; deneysel olarak bilinen La II ince-yapı enerji seviyelerinin global-fit programı [6] yardımıyla daha yüksek hassasiyet ve daha doğrulukla revize edilen değerlerini ve bazı yüksek ince-yapı seviyelerine ait literatürde bilinmeyen *A*&*B* aiy sabitlerinin simülasyon yoluyla yaklaşık olarak (tahmini) belirlenen değerlerini kapsamaktadır.

#### 2. GENEL KISIMLAR

Lantanitlerden olan Lantan (La) elementinin bir kere iyonize olmuş (La II) halinin deneysel olarak bilinen 118 ince-yapı enerji seviyesi bulunmaktadır [2-3]. Bu seviyelerden 70'i çift, 48'i tek paritelidir. Deneysel olarak bilinen çift-pariteli seviyeler 0.00 cm<sup>-1</sup> - 69505 cm<sup>-1</sup> ve tek-pariteli seviyeler 14148 cm<sup>-1</sup> - 64411 cm<sup>-1</sup> enerji aralığında dağılmaktadır.

La, doğada kararlı halde tek izotopa sahip bir geçiş metalidir. La izotoplarının doğada bulunma (bolluk) oranları, atomik kütlesi, yarı ömür değerleri, çekirdek spini ve çekirdek momentleri Tablo 2.1'de gösterildi. La doğal bolluğunda kullanıldığında, Doppler sınırlı spektroskopik yöntemlerle alınan spektrumlarda az bolluğa sahip izotoplarının (<sup>137</sup>La ve <sup>138</sup>La) spektral çizgileri gözlenmemektedir.

 Tablo 2.1: Lantan elementinin izotoplarının atom kütlesi, doğal bolluk oranı, yarı ömür, çekirdek spini ve çekirdek manyetik moment ve elektrik kuadropol moment değerleri.

| 7  | Atom Kütlesi   | Doğal Bolluk | Yarı ömür             | ,   | μ                 | Q                                   |  |
|----|----------------|--------------|-----------------------|-----|-------------------|-------------------------------------|--|
| L  | (g/mol)        | (%)          | (Yıl)                 |     | (μ <sub>N</sub> ) | (10 <sup>-28</sup> m <sup>2</sup> ) |  |
| 57 | 136.906494     | ~0.00        | 6x10 <sup>4</sup>     | 7/2 | +2.600(6) [7]     | +0.26(8) [7]                        |  |
| 57 | 137.907105 (6) | 0.09         | $1.05 \times 10^{11}$ | 5   | +3.713646(7) [8]  | +0. 45(2) [8]                       |  |
| 57 | 138.90547(7)   | 99.91        | kararlı               | 7/2 | +2.7830455(9) [8] | +0.20(1) [8]                        |  |

Bu çalışmanın konusu olan La II'nin ince-yapı enerji seviyelerinin revize edilebilmesi ve daha doğrulukla ve daha iyi hassasiyetle belirlenebilmesi için; La II'nin aiy spektral çizgilerinin literatürde bazı çalışma grupları tarafından belirli deneysel yöntemlerle incelenmesi sonucu, bu seviyelere ait aiy sabitleri önem kazanmaktadır.

Yıldızların yaşam ömrünü tahmin etmek için kritik öneme sahip elementlerden biri olan La, yıldız oluşumunun geç evrelerinde meydana gelen nötron yakalama füzyon reaksiyonlarının bir ürünüdür [9]. La ve diğer nadir-elementlerin bolluk bilgileri, astrofiziksel nesnelerin nükleosentez sürecini anlamada yardımcı olur ve çeşitli yıldızların yaşının belirlenmesini destekler [10]. Son zamanlarda bazı teleskoplarda yüksek çözünürlüklü spektrografların kullanılmasıyla, yıldızlarda La çizgileri gösteren verilerin miktarı ve kalitesi büyük ölçüde artmıştır [9]. Bu yıldızlardan alınan spektrumlardaki iyonik lantan bolluklarının daha doğrulukla ve hassasiyetle belirlenebilmesi için, La II geçiş olasılıklarının ve aiy sabitlerinin belirleneceği yeni laboratuvar çalışmalarına ihtiyaç duyulmaktadır.

Astrofizik çalışmalar için önemi açısından; hassas/yüksek çözünürlüklü atomik ve özellikle iyonik lantan data çalışmaları esas teşkil etmektedir. Bu çalışmada bahsedilen öneminden dolayı bir kere iyonize olmuş lantanın ince yapı enerji değerleri revize edilerek, iyileştirilmiş enerji seviyeleri hesaplandı.

Son yıllarda, La spektrumu birçok araştırmaya konu olmuştur. Atomik La (La I) için ve iyonik La (La II) için ince-yapı enerji seviyelerinin yaşam ömürlerinin bulunması, spektral geçişlerin geçiş olasılıkları hesabı ve aşırı-ince-yapı analizi için öncelikli deneysel datalar sağlanmıştır [3, 7, 9, 11-48]. Bu makalelerden bir kısmında La I'e ait [7, 11-30] ve bir kısmında da La II'ye ait [3, 9, 30-48] çok sayıda spektral çizgi sınıflandırılması, deneysel yeni ince-yapı enerji seviyeleri keşfedilmesi ve bazı enerji seviyelerine ait *A&B* aiy sabitlerinin hem deneysel hem de teorik metotlarla belirlenmesi amaçlanmıştır.

Höhle ve arkadaşları (1982) [31] Collinear Laser-İyon-Işını Spektroskopisi (CLIBS) yöntemi ile 11 çift-pariteli ve 4 tek-pariteli düşük La II yarı-kararlı seviyesine ait aiy sabitleri bulmuşlardır. Bu seviyeleri kullanarak, La II'nin teorik aiy analizine temel oluşturan geniş bir çalışma Bauche ve arkadaşları (1982) [40] tarafından yapılmıştır.

CLIBS yöntemi, 2000'li yıllarda da iyonize olmuş La atomu üzerine çalışan bir çok araştırmacının deneysel metodu olarak göze çarpmaktadır [33-35].

Lawler ve arkadaşları (2001) [9] astrofizik açıdan önemi yüksek olan iyonik lantanın yakın kırmızı-altından mor-üstü spektral bölgeyi kapsayan FT emisyon spektrumunu kaydetmişlerdir. Laser Uyarılmış Floresans Spektroskopisi (LIF) ile 84 spektral çizginin geçiş olasılıklarını ve çizgilerin alt-üst enerji seviyelerinin yaşam ömürlerini belirlemişlerdir. Buna ek olarak, LIF ve FTS ile 31 tek-pariteli seviyenin aiy sabitlerini elde etmişlerdir.

Furmann ve arkadaşları (2008), 22 tek-pariteli La II elektronik seviyesi için [36] ve 12 çiftpariteli La II elektronik seviyesi için [37] LIF ölçümleri yardımıyla buldukları aiy sabitlerini kullanarak, ince-yapı ve aiy radyal parametrelerinin yarı-deneysel hesaplamasını gerçekleştirdiler.

Bu çalışmaların çoğunda, incelenen spektral çizgilere ait alt-üst enerji seviyelerinden hesaplanan enerji ile ağırlık merkezi dalga-sayısı arasındaki farkın yaklaşık 0.1 cm<sup>-1</sup>'den daha yüksek olduğu görülmektedir. Bu sonuçlar, La II'nin ince-yapı enerji değerlerinde büyük bir

belirsizlik olduğuna işaret etmektedir. Bu nedenle, La II'nin enerji seviyelerinin revize edilmesi gerektiği açıktır. Bu çalışmanın amacı da budur.

Tek ve çift pariteli La II ince-yapı enerji seviyelerinin konfigürasyon, terim, *J* kuantum sayısı, farklı deneysel yöntemlerle elde edilen manyetik-dipol *A* ve elektrik-kuadropol *B* aiy sabitleri referansları ile birlikte Tablo 2.2 ve Tablo 2.3'te verildi. Çift ince-yapı seviyelerinden 22'sinin terimi ve 8 yüksek iy seviyesinin konfigürasyon ve terimi literatürde mevcut değildir. Çift pariteli 40000 cm<sup>-1</sup>'den yüksek 39 seviyenin ve tek paritelilerden 13 seviyenin *A*&*B* aiy sabitleri deneysel olarak yine literatürde bulunmamaktadır.

| Tablo | 2.2: | La    | II'nin    | deneysel    | olarak   | bilinen   | çift  | pariteli  | ince-ya  | api ene  | rji sevi           | yelerinin |
|-------|------|-------|-----------|-------------|----------|-----------|-------|-----------|----------|----------|--------------------|-----------|
|       | kon  | figü  | rasyon,   | spektral t  | erim, J  | kuantun   | n say | 1151, A&B | 3 aiy sa | abitleri | (standaı           | t sapma,  |
|       | refe | erans | ve ele    | de edildik  | leri den | eysel yö  | ntem  | ile birl  | ikte). E | nerjiler | cm <sup>-1</sup> c | insinden, |
|       | A&   | B aiy | / sabitle | eri MHz cii | nsinden  | verilmişt | ir.   |           |          | -        |                    |           |

| Enerji<br>(cm <sup>-1</sup> ) | Konfig.                     | Terim                                                    | J      | A<br>(MHz)               | B<br>(MHz) | Yöntem | Ref. |
|-------------------------------|-----------------------------|----------------------------------------------------------|--------|--------------------------|------------|--------|------|
| 0.00                          | $5d^2$                      | a <sup>3</sup> F                                         | 2      | 397.6(2)                 | 19.8(1.8)  | CLIBS  | [31] |
| 1016.10                       | $5d^2$                      | a <sup>3</sup> F                                         | -      | 101.3(2)                 | 25.2(3.3)  | CLIBS  | [31] |
| 1394.46                       | $5d^2$                      | -                                                        | 2      | 949.5(1.6)               | 49.8(12.6) | CLIBS  | [31] |
| 1895.15                       | 5d6s                        | a <sup>3</sup> D                                         | - 1    | -1128.1(9)               | 49.8(6.5)  | CLIBS  | [31] |
| 1970.70                       | $5d^2$                      | a <sup>3</sup> F                                         | 4      | -18.6(1)                 | 37.5(3.0)  | CLIBS  | [31] |
| 2591.60                       | 5d6s                        | a <sup>3</sup> D                                         | 2      | -8.7(3.0)                | 56.7(6.9)  | CLIBS  | [31] |
| 3250.35                       | 5d6s                        | a <sup>3</sup> D                                         | 3      | 1066.3(3.3)              | 60.3(9.3)  | CLIBS  | [31] |
| 5249.70                       | $5d^2$                      | a <sup>3</sup> P                                         | 0      | 0                        | 0          |        | []   |
| 5718.12                       | $5d^2$                      | a <sup>3</sup> P                                         | 1      | -225.2(2)                | 25.8(9)    | CLIBS  | [31] |
| 6227.42                       | $5d^2$                      | a <sup>3</sup> P                                         | 2      | -158.2(4)                | -45(11)    | CLIBS  | [31] |
| 7394.57                       | $6s^2$                      | a <sup>1</sup> S                                         | 0      | 0                        | 0          | CLIDS  | [01] |
| 7473.32                       | $5d^2$                      | a <sup>1</sup> G                                         | 4      | 150.1(2)                 | 151.8(5.4) | CLIBS  | [31] |
| 10094.86                      | 5d6s                        | -                                                        | 2      | 48.1(1)                  | 39.9(1.8)  | CLIBS  | [31] |
| 35452.66                      | $4f({}^{2}F_{5/2})6p_{1/2}$ | (5/2.1/2)                                                | 3      | 440.9(4.0)               | 30(10)     | LIFS   | [37] |
| 35787.53                      | $4f({}^{2}F_{5/2})6p_{1/2}$ | (5/2, 1/2)                                               | 2      | 242.6(5.7)               | 0(5)       | LIFS   | [37] |
| 36954.65                      | $4f({}^{2}F_{7/2})6p_{1/2}$ | (7/2, 1/2)                                               | 3      | 177.1(4.4)               | 22(8)      | LIFS   | [37] |
| 37172.79                      | $4f({}^{2}F_{7/2})6p_{1/2}$ | (7/2, 1/2)                                               | 4      | 253.8(4.1)               | 22(0)      | LIFS   | [37] |
| 372.09.71                     | $4f({}^{2}F_{5/2})6p_{3/2}$ | (7/2, 3/2)                                               | 3      | 203.0(1.1)<br>202.2(4.0) | 25(12)     | LIFS   | [37] |
| 37790 57                      | $4f({}^{2}F_{5/2})6p_{3/2}$ | (5/2, 3/2)                                               | 4      | 232 3(3.9)               | 80(20)     | LIFS   | [37] |
| 38221 49                      | $4f({}^{2}F_{5/2})6p_{3/2}$ | (5/2, 3/2)                                               | 2      | 197.2(1.0)               | 7(5)       | LIFS   | [37] |
| 38534.11                      | $4f({}^{2}F_{5/2})6p_{3/2}$ | (5/2,3/2)                                                | 1      | 419(5)                   | 22(8)      | LIFS   | [37] |
| 39018 74                      | $4f(^{2}F_{7/2})6p_{3/2}$   | (7/2, 3/2)                                               | 5      | 169 1(1 0)               | 140(20)    | LIFS   | [37] |
| 39221.65                      | $4f(^{2}F_{7/2})6p_{3/2}$   | (7/2, 3/2)                                               | 4      | 2084(42)                 | 85(20)     | LIFS   | [37] |
| 39402 55                      | $4f(^{2}F_{7/2})6p_{3/2}$   | (7/2, 3/2)                                               | 3      | 149 9(2 0)               | 25(10)     | LIFS   | [37] |
| 40457 71                      | $4f(^{2}F_{7/2})6p_{3/2}$   | (7/2,3/2)                                                | 2      | 145.9(2.0)               | 55(10)     | LIFS   | [37] |
| 49733.13                      | $5d(^{2}D_{2}p)7s_{1}p$     | (7/2, 3/2)<br>(3/2, 1/2)                                 | 1      | -                        | -          | LIIG   | [37] |
| 49884 35                      | $5d(^{2}D_{2/2})7s_{1/2}$   | (3/2,1/2)                                                | 2      | -                        | _          |        |      |
| 51228 57                      | $5d(^{2}D_{5/2})7s_{1/2}$   | (5/2,1/2)                                                | 3      | -                        | _          |        |      |
| 51523.86                      | $5d(^{2}D_{5/2})7s_{1/2}$   | (5/2,1/2)                                                | 2      | -                        | _          |        |      |
| 52137.67                      | 5d6d                        | ( <i>J</i> / <i>2</i> ,1/ <i>2</i> )<br>f <sup>1</sup> F | 2      | -                        | _          |        |      |
| 52169.66                      | 5d6d                        | σ <sup>3</sup> D                                         | 1      | -                        | _          |        |      |
| 52734.81                      | 5d6d                        | σ <sup>3</sup> D                                         | 2      | -                        | _          |        |      |
| 52857.88                      | 5d6d                        | f <sup>3</sup> G                                         | 3      | -                        | _          |        |      |
| 53302.56                      | 5d6d                        | e lp                                                     | 1      | -                        | _          |        |      |
| 53333 37                      | 5d6d                        | f <sup>3</sup> G                                         | 1      | _                        | _          |        |      |
| 53689 56                      | 5d6d                        | α <sup>3</sup> D                                         | т<br>3 | _                        | _          |        |      |
| 53885.24                      | 5d6d                        | f <sup>3</sup> F                                         | 2      | _                        | -          |        |      |
| 54365.80                      | 5d6d                        | e <sup>3</sup> S 9                                       | 1      | -                        | -          |        |      |
| 5//3/ 65                      | 5464                        | f <sup>3</sup> G                                         | 5      | -                        | -          |        |      |
| 5/793.82                      | 5d6d 9                      |                                                          | 0      | 0                        | -          |        |      |
| 5+195.04                      | 5 d6 d                      | £3E                                                      | 3      | 0                        | 0          |        |      |

| Enerji              | Konfig.               | Terim              | J | A     | В     | Yöntem | Ref. |
|---------------------|-----------------------|--------------------|---|-------|-------|--------|------|
| (cm <sup>-1</sup> ) |                       |                    |   | (MHz) | (MHz) |        |      |
| 54964.19?           | 5 <i>d</i> 6 <i>d</i> | e <sup>3</sup> P   | 0 | 0     | 0     |        |      |
| 55107.25            | $4f^2$                | e <sup>3</sup> H   | 4 | -     | -     |        |      |
| 55184.05            | 5d6d                  | g <sup>1</sup> D   | 2 | -     | -     |        |      |
| 55230.33            | 5d6d                  | e <sup>3</sup> P ? | 1 | -     | -     |        |      |
| 55321.35            | 5d6d                  | f <sup>3</sup> F   | 4 | -     | -     |        |      |
| 55982.09            | $4f^2$                | e <sup>3</sup> H   | 5 | -     | -     |        |      |
| 56035.70            | 5 <i>d</i> 6 <i>d</i> | $f {}^1G$          | 4 | -     | -     |        |      |
| 56036.60            | 5 <i>d</i> 6 <i>d</i> | e <sup>3</sup> P   | 2 | -     | -     |        |      |
| 56837.94            | $4f^2$                | e <sup>3</sup> H   | 6 | -     | -     |        |      |
| 57399.58            | $4f^{2}$              | g <sup>3</sup> F   | 2 | -     | /     |        |      |
| 57918.50            | $4f^{2}$              | g <sup>3</sup> F   | 3 | -     | -     |        |      |
| 58259.41            | $4f^2$                | g <sup>3</sup> F   | 4 |       |       |        |      |
| 59527.60            | $4f^{2}$              | g <sup>1</sup> G   | 4 | -     | -     |        |      |
| 59900.08            | $6p^2$                | h <sup>1</sup> D   | 2 | -     |       |        |      |
| 60094.84            | $6p^{2}$              | f <sup>3</sup> P   | 0 | 0     | 0     |        |      |
| 60660.18            | 6s7s?                 | f <sup>3</sup> S   | 1 |       | -     |        |      |
| 61128.83            | $6p^{2}$              | f <sup>3</sup> P   | 1 | -     | -     |        |      |
| 62026.27            | $4f^2$                | i <sup>1</sup> D   | 2 | -     | -     |        |      |
| 62408.40            | $4f^{2}$              | e <sup>1</sup> I   | 6 | -     | -     |        |      |
| 62506.36            | $6p^{2}$              | f <sup>3</sup> P   | 2 | -     | -     |        |      |
| 63463.95            | $4f^2$                | g <sup>3</sup> P   | 0 | 0     | 0     |        |      |
| 63703.18            | $4f^{2}$              | g <sup>3</sup> P   | 1 | -     | -     |        |      |
| 64278.92            | $4f^{2}$              | g <sup>3</sup> P   | 2 | -     | -     |        |      |
| 64361.28            | 6 <i>s</i> 6 <i>d</i> | h <sup>3</sup> D   | 1 | -     | -     |        |      |
| 64529.90            | 6 <i>s</i> 6 <i>d</i> | h <sup>3</sup> D   | 2 | -     | -     |        |      |
| 64692.59            | 6 <i>s</i> 6 <i>d</i> | h <sup>3</sup> D   | 3 | -     | -     |        |      |
| 66591.91            | $6p^{2}$              | f <sup>1</sup> S   | 0 | 0     | 0     |        |      |
| 69233.90            | $6p^2$                | i <sup>3</sup> D ? | 3 | -     | -     |        |      |
| 69505.06            | $6p^{2}$              | g <sup>1</sup> S   | 0 | 0     | 0     |        |      |

**Tablo 2.2 (devam):** La II'nin deneysel olarak bilinen çift pariteli ince-yapı enerji seviyelerinin konfigürasyon, spektral terim, J kuantum sayısı, A&B aiy sabitleri (standart sapma, referans ve elde edildikleri deneysel yöntem ile birlikte). Enerjiler cm<sup>-1</sup> cinsinden, A&B aiy sabitleri MHz cinsinden verilmiştir.

Enerji seviyeleri NIST [2] ve MIT [3] atomik data tablolarından alınarak derlenmiştir.

CLIBS : Collineer Laser-iyon-Işını Spektroskopisi

LIFS: Laserle Uyarılmış Floresans Spektroskopisi

| Tablo | 2.3: | La    | II'nin    | deneysel    | olarak   | bilinen    | tek   | pariteli  | ince-yapı  | enerji     | seviye              | elerinin |
|-------|------|-------|-----------|-------------|----------|------------|-------|-----------|------------|------------|---------------------|----------|
|       | kon  | figüı | rasyon,   | spektral t  | erim, J  | kuantun    | ı say | visi, A&E | aiy sabi   | tleri (sta | ndart               | sapma,   |
|       | refe | erans | ve elo    | le edildikl | eri den  | eysel yö   | ntem  | ile birl  | ikte). Ene | rjiler cn  | n <sup>-1</sup> cin | sinden,  |
|       | A&.  | B aiy | v sabitle | ri MHz cir  | sinden v | verilmişti | r.    |           |            |            |                     |          |

| Enerji                      | Konfig.                     | Terim            | J | A                | В          | Yöntem | Ref. |
|-----------------------------|-----------------------------|------------------|---|------------------|------------|--------|------|
| ( <b>cm</b> <sup>-1</sup> ) |                             |                  |   | (MHz)            | (MHz)      |        |      |
| 14147.98                    | $4f({}^{2}F_{5/2})6s_{1/2}$ | (5/2,1/2)        | 2 | -468.8(5.5)      | 80(20)     | LIFS   | [36] |
| 14375.17                    | $4f({}^{2}F_{5/2})6s_{1/2}$ | (5/2,1/2)        | 3 | 1110.9(5.1)      | 130(15)    | LIFS   | [36] |
| 15698.74                    | $4f({}^{2}F_{7/2})6s_{1/2}$ | (7/2,1/2)        | 4 | 792.8(1.8)       | 155(20)    | LIFS   | [36] |
| 15773.77                    | $4f({}^{2}F_{7/2})6s_{1/2}$ | (7/2,1/2)        | 3 | -431.0(5.0)      | 145(15)    | LIFS   | [36] |
| 16599.17                    | 4f5d                        | z <sup>1</sup> G | 4 | 220.4(2.5)       | 116(15)    | LIFS   | [36] |
| 17211.93                    | 4f5d                        | y <sup>3</sup> F | 2 | 365.9(2)         | -3.9(1.8)  | CLIBS  | [31] |
| 17825.62                    | 4f5d                        | z <sup>3</sup> H | 3 | 267.9(2.5)       | 91(20)     | LIFS   | [36] |
| 18235.56                    | 4f5d                        | y <sup>3</sup> F | 3 | 148.7(4)         | 5.0(4.2)   | CLIBS  | [31] |
| 18580.41                    | 4f5 <i>d</i>                | z <sup>3</sup> H | 5 | -                | -          |        |      |
| 18895.41                    | 4f5d                        | z <sup>1</sup> D | 2 | 197.6(2.1)       | -16(8)     | LIFS   | [36] |
| 19214.54                    | 4f5d                        | y <sup>3</sup> F | 4 | 64.8(1)          | 8.4(4.8)   | CLIBS  | [31] |
| 19749.62                    | 4f5d                        | z <sup>3</sup> H | 6 | / <del>-</del> / | -          |        |      |
| 20402.82                    | 4f5d                        | z <sup>3</sup> G | 3 | 332.7(3.5)       | 60(15)     | LIFS   | [36] |
| 21331.60                    | 4f5d                        | z <sup>3</sup> G | 4 | 170.7(1.9)       | 180(20)    | LIFS   | [36] |
| 21441.73                    | 4f5d                        | z <sup>3</sup> D | 1 | 412.4(5)         | 8(4)       | LIFS   | [36] |
| 22106.02                    | 4f5d                        | z <sup>3</sup> D | 2 | 127.8(2.4)       | 2.6(7.5)   | CLIBS  | [35] |
| 22282.90                    | 4f5d                        | z <sup>3</sup> G | 5 | 136.1(3.0)       | 60(30)     | LIFS   | [36] |
| 22537.30                    | 4f5d                        | z <sup>3</sup> D | 3 | 100.9(1.2)       | -31.2(6.9) | CLIBS  | [35] |
| 22683.70                    | 4f5d                        | z <sup>3</sup> P | 0 | 0                | 0          |        |      |
| 22705.15                    | 4f5d                        | z <sup>3</sup> P | 1 | 72.2(7.0)        | -28(10)    | LIFS   | [36] |
| 23246.93                    | 4f5d                        | z <sup>3</sup> P | 2 | 34.5(3)          | 11.1(2.4)  | CLIBS  | [31] |
| 24462.66                    | 5 <i>d</i> 6p               | y <sup>1</sup> D | 2 | 446.5(1.8)       | 21(8)      | LIFS   | [36] |
| 24522.70                    | 4f5d                        | y <sup>1</sup> F | 3 | 161.9(2)         | 22.1(4.2)  | CLIBS  | [32] |
| 25973.37                    | 5 <i>d</i> 6p               | y <sup>3</sup> D | 1 | 547.3(3.0)       | 27(7)      | LIFS   | [36] |
| 26414.01                    | 5 <i>d</i> 6p               | x <sup>3</sup> F | 2 | 250.5(2)         | 51.9(1.8)  | CLIBS  | [31] |
| 26837.66                    | 5 <i>d</i> 6p               | x <sup>3</sup> F | 3 | 258.9(1.5)       | 114.3(7.6) | CLIBS  | [35] |
| 27388.11                    | 5 <i>d</i> 6p               | y <sup>3</sup> D | 2 | 68.8(7)          | 30(15)     | LIFS   | [36] |
| 27423.91                    | 5 <i>d</i> 6p               | -                | 1 | 886.9(1.5)       | -18.9(4.8) | CLIBS  | [35] |
| 27545.85                    | 6 <i>s</i> 6 <i>p</i>       | y <sup>3</sup> P | 0 | 0                | 0          |        |      |
| 28154.55                    | 6 <i>s</i> 6 <i>p</i>       | -                | 1 | 791.8(2.3)       | -24(10)    | LIFS   | [36] |
| 28315.25                    | 5 <i>d</i> 6p               | y <sup>3</sup> D | 3 | 82.9(5.0)        | -28(10)    | LIFS   | [36] |
| 28525.71                    | 4f5d                        | $z$ $^{1}H$      | 5 | -                | -          |        |      |
| 28565.40                    | 5 <i>d</i> 6p               | x <sup>3</sup> F | 4 | 126.1(9.5)       | 150(30)    | LIFS   | [36] |
| 29498.05                    | 6 <i>s</i> 6 <i>p</i>       | -                | 2 | 610.2(3.3)       | 88(15)     | LIFS   | [36] |
| 30353.33                    | 4f5d                        | y <sup>1</sup> P | 1 | -157.7(6)        | 33(6)      | LIFS   | [36] |
| 31785.82                    | 5 <i>d</i> 6p               | x <sup>3</sup> P | 0 | 0                | 0          |        |      |
| 32160.99                    | 5 <i>d</i> 6p               | x <sup>3</sup> P | 1 | 1383.9(9.0)      | -35(10)    | LIFS   | [36] |
| 32201.05                    | 5 <i>d</i> 6p               | x <sup>1</sup> F | 3 | 193.7(3.0)       | 143(20)    | LIFS   | [36] |
| 33204.41                    | 6 <i>s</i> 6 <i>p</i>       | -                | 2 | -                | -          |        |      |
| 45692.17                    | 6 <i>s</i> 6 <i>p</i>       | x <sup>1</sup> P | 1 | -                | -          |        |      |
| 57364.12                    | -                           | -                | 3 | -                | -          |        |      |
| 58748.90                    | -                           | -                | 4 | -                | -          |        |      |
| 59612.64                    | -                           | -                | 3 | -                | -          |        |      |

**Tablo 2.3 (devam):** La II'nin deneysel olarak bilinen tek pariteli ince-yapı enerji seviyelerinin konfigürasyon, spektral terim, J kuantum sayısı, A&B aiy sabitleri (standart sapma, referans ve elde edildikleri deneysel yöntem ile birlikte). Enerjiler cm<sup>-1</sup> cinsinden, A&B aiy sabitleri MHz cinsinden verilmiştir.

| Enerji                      | Konfig. | Terim | J  | A     | В     | Yöntem | Ref. |
|-----------------------------|---------|-------|----|-------|-------|--------|------|
| ( <b>cm</b> <sup>-1</sup> ) |         |       |    | (MHz) | (MHz) |        |      |
| 60744.17                    | -       | -     | 4  | -     | -     |        |      |
| 61017.66                    | -       | -     | 3  | -     | -     |        |      |
| 61514.46                    | -       |       | 3? | -     | -     |        |      |
| 63598.87                    | -       | -     | 4  | -     | -     |        |      |
| 64411.17                    | -       | -     | 3  | -     | -     |        |      |

Enerji seviyeleri NIST [2] ve MIT [3] atomik data tablolarından alınarak derlenmiştir.

CLIBS : Collineer Laser-iyon-Işını Spektroskopisi

LIFS: Laserle Uyarılmış Floresans Spektroskopisi

#### **3. MALZEME VE YÖNTEM**

#### 3.1. NÖTR VE İYONİZE LANTAN ATOMU

Atom numarası 57 olan lantan (La), lantanitlerin aynı adı taşıyan ve nadir-toprak metallerinin ilkidir. Genel Kısımlar bölümünde bahsedildiği üzere, doğal bolluğu %99.91 olan baskın ve kararlı izotopu <sup>139</sup>La'dır.

C.G. Mosander tarafından 1839'da oksit halde keşfedilen bir metaldir. Doğada gümüş-beyaz renkte, yumuşak yapıda ve katı olarak bulunur. Havada hızla kararma ve ateşle kolayca yanabilme özelliğine sahiptir. Lantanın periyodik tabloda 3B gurubu, 6. Periyotta yer almaktadır (Şekil 3.1).

<sup>139</sup>La kararlı izotopunun nükleer spini I=7/2, nükleer manyetik-dipol momenti  $\mu_{I}=+2.7830455(9)\mu_{N}$  [49] ve nispeten küçük nükleer elektrik-kuadrupol momenti Q=+0,20(1)b'dır [49]. Manyetik-dipol momentin nispeten büyük olması, La spektrumunda geniş aşırı ince yapıya neden olur. <sup>139</sup>La'un doldurulmamış d veya f elektronik kabuğundan dolayı, deneysel FT spektrumunda hem atomik hem de iyonik spektral çizgiler yoğundur.



Şekil 3.1: Lantan elementinin periyodik tablodaki konumu [50].

Nötr ve bir kere iyonize olmuş lantan atomunun bazı fiziksel&kimyasal özellikleri Tablo 3.1'de verildi.

| Atom Numarası                                       | 57                           |  |  |
|-----------------------------------------------------|------------------------------|--|--|
| Grup                                                | Lantanitler                  |  |  |
| Periyot                                             | 6                            |  |  |
| Blok                                                | d veya f                     |  |  |
| Kararlı İzotop Sayısı                               | 1                            |  |  |
| Kararlı İzotop ( <sup>139</sup> La) Atomik Ağırlığı | 138.90547(7) akb             |  |  |
| Kararlı İzotop ( <sup>139</sup> La) Bolluğu         | % 99.91                      |  |  |
| Nükleer Spin                                        | 7/2                          |  |  |
| Atom Yarıçapı                                       | 187 pm                       |  |  |
| Çekirdek Manyetik Dipol Momenti (µ1)                | +2.7830455(9)µ <sub>N</sub>  |  |  |
| Çekirdek Elektrik Kuadropol Momenti (Q)             | +0.20(1)b                    |  |  |
| Temel seviye elektronik dizilimi ( La I)            | [Xe] $5d^1 6s^2$             |  |  |
| Temel seviye elektronik dizilimi ( La II)           | [Xe] 5 <i>d</i> <sup>2</sup> |  |  |
| İyonizasyon Enerjisi (La I)                         | 5.5769 eV                    |  |  |
| İyonizasyon Enerjisi (La II)                        | 11.0590 eV                   |  |  |
| Fazı (20 °C'de)                                     | Katı                         |  |  |
| Erime Noktası                                       | 1193 K                       |  |  |
| Kaynama Noktası                                     | 3737 K                       |  |  |
| Yoğunluk                                            | 6.16 g/cm <sup>3</sup>       |  |  |

Tablo 3.1: La I ve La II'nin bazı fiziksel&kimyasal özellikleri [50].

#### **3.2. ATOMİK YAPI**

#### 3.2.1. Konfigürasyon

Kuantum mekaniğinin temelini oluşturan Schrödinger denklemi tek-elektron sistemleri için (H, He<sup>+</sup>, Li<sup>++</sup> vb.) dalga-fonksiyonlarını tam olarak çözülebilmektedir. Çok-elektronlu atomik sistemlere geçildiğinde, elektron-çekirdek etkileşimi ya da elektron-elektron etkileşim kuvvetlerinin büyüklükleri elektronun çekirdeğe olan konumuna göre önem kazanır. Örneğin; elektron çekirdekten uzakta ise, diğer elektronlar tarafından üzerinde oluşan net itici Coulomb kuvveti, çekirdeğin çekici Coulomb kuvvetinden güçlüdür. Dolayısıyla, elektron-çekirdek güçlü çekici Coulomb-etkileşiminin yanında elektronların kendi aralarındaki güçlü itici Coulomb-etkileşimi de göz önünde bulundurulmalıdır ve bu sayısal çözümü zorlaştırır.

Schrödinger denkleminin en gerçekçi dalga-fonksiyonu çözümü elde edilebilmek için; Hartree&Fock, merkezi alan yaklaşıklığı adı altında bir yaklaşım öne sürdü [52]. Yaklaşıklık, sistemde seçilen bir elektronun diğer elektronlarla arasındaki etkileşim ve çekirdek-elektron etkileşiminin toplamı şeklinde ifade edilebilecek küresel-simetrik bir net V(r) potansiyelinde bağımsız hareket ettiğini söyler [53]. Buradaki en önemli parametrelerden biri atomdaki elektronların yük dağılımlarıdır.

Sayısal çözüm için, belirli adımlar izlenmelidir. Başlangıçta, atomik sistemdeki *i* adet elektron için net potansiyel bir tahmini yapılır. Bu tahmini potansiyel, seçilen elektronun çekirdekten olan uzaklığına (r) bağlıdır. Zamandan-bağımsız Schrödinger denkleminde V(r) yerine konur ve denklemin öz-fonksiyonu (dalga-fonksiyonu ( $\psi$ )) bulunur.

$$\left(-\frac{\hbar^2}{2m}\nabla_i^2 + V(r)\right)\psi = E\psi \tag{3.1}$$

Öz-fonksiyonların bulunması, atomdaki yük dağılım yoğunluğunu belirlememizi sağlar ve yük yoğunluğu yardımıyla ortalama net potansiyel hesaplanabilir. Hesaplanan bu potansiyel, ilk tahmin edilenden farklıdır ve Schrödinger denkleminde tekrar kullanılır, yeni dalga-fonksiyonu oluşturulur. İterasyon işlemi, elde edilen dalga-fonksiyonlarındaki fark yeterince az oluncaya kadar tekrarlanır. Hartree-Fock yöntemi ile yapılan hesaplamalar, atomun dalga-fonksiyonlarına karşılık gelen enerji seviyelerini (özdeğerlerini) belirlememizi sağlar [52].

Çok-elektronlu bir atomun enerji seviyeleri iki önemli prensip ile anlaşılır:

- 1. Pauli-Dışarlama ilkesi
- 2. En düşük enerji prensibi (Aufbau Kuralı)

Pauli, tüm elektronların en düşük seviyeye (temel seviye) yerleşmesini yasaklar ve birden fazla elektron aynı kuantum sayıları setine  $(n, l, m_l, m_s)$  sahip olamaz. En düşük enerji prensibi ise, elektronların öncelikle çekirdeğe en yakın olan düşük enerji düzeyinden başlayarak doldurmasını söyler [54]. Bazı elementlerin elektron dizilişleri bu kurala uymamaktadır.

Elektronların atom ya da molekül orbitallerinde n ve l kuantum sayılarına bağlı olarak yerleşimine "konfigürasyon" adı verilir.

Aynı *n* ve *l*'ye sahip seviyeler bir alt-kabuk ve aynı *n*'e sahip alt-kabuklar bir kabuk oluşturur. Atomun elektronları bu seviyelere Pauli ilkesine göre yerleşirler. Bir alt-kabuktaki elektron sayısı maksimum 2(2 l + 1) olabilir ve bir kabukta ise maksimum  $2n^2$  değerini alabilir. Bu durumda kapalı (dolu) kabuk adını alır. Madelung kuralına göre, düşük (*n*+*l*) değerine sahip orbitaller daha önce doldurulur [55].

Bu çalışmada incelenen La II atomunun taban-seviyesi için elektron dizilimi, konfigürasyonu:

$$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{6}5s^{2}4d^{10}5p^{6}5d^{2}$$
 -  ${}^{3}F_{2}$ 

şeklindedir.

#### 3.2.2. Parite

Klasik fizikte olmayan fakat kuantum mekaniğinde önemli bir yeri olan parite operatörü ( $\pi$ ), bir dalga-fonksiyonunun başlangıç noktasına göre yansıması işlemini gerçekleştirir [54].

Çok-elektronlu bir atomik sistem için Hamiltoniyen, sistemdeki elektronların herhangi uzaysalspin değiş-tokuşu durumunda değişmez olarak kalmalıdır. Merkezi-alan yaklaşıklığı altında Schrödinger denkleminin çözümü olan dalga-fonksiyonlarının pariteleri belirli (kesin) olmalıdır.

Küresel koordinatlarda bir enerji seviyesini ifade eden dalga-fonksiyonunun uzaysal (r) ve açısal ( $\theta, \varphi$ ) kısımlarına  $\pi$ -operatörü uygulandığında;

 $r \rightarrow -r$ 

$$heta 
ightarrow \pi - heta$$
  
 $arphi 
ightarrow \pi + arphi$ 

değişime uğrar [56].  $\pi$ -operatörünün özdeğer denklemi:

$$\pi \Psi(r,\theta,\varphi) = (-1)^{\ell} \Psi(r,\theta,\varphi)$$
(3.2)

şeklinde verilir  $\pi$ 'nin özdeğeri  $(-1)^{\ell}$ 'dir [57]. Dalga-fonksiyonlarının pariteleri yörüngesel açısal momentum kuantum sayısına ( $\ell$ ) bağlıdır. Dolayısıyla, parite iki değer alabilir. Bir enerji seviyesi için,  $\sum \ell_i$  değeri hesaplanır (*i*: enerji seviyesinde bulunan elektron sayısı) [56].

Operatör dalga-fonksiyonunun işaretini değiştiriyorsa, enerji tek-pariteli, işaretini değiştirmiyorsa enerji çift-paritelidir [54].  $\pi$  operatörü dalga-fonksiyonuna iki kere uygulandığında, başlangıçtaki durumun aynısı oluşur ( $\pi^2$ =1).

#### 3.2.3. İnce Yapı

Çok-elektronlu bir atom içerisinde meydana gelebilecek güçlü etkileşimler; çekirdek-elektron çekici Coulomb kuvveti, elektron-elektron itici Coulomb kuvvetidir. Bunlara ek olarak, atom içinde spin-spin, spin-yörünge, dipol-dipol gibi küçük etkileşimler de söz konusudur. İnce-yapı yarılmaları yaklaşık 10 cm<sup>-1</sup> (300 GHz) mertebesindedir.

Elektronun yörünge hareketinden kaynaklanan akım ve iç manyetik alan oluşur. Akım, bir yörünge dipol-moment ( $\mu_{\ell}$ ) ortaya çıkarır. Elektronların spin hareketinden dolayı sahip olduğu spin manyetik dipol-momenti ( $\mu_s$ ) ile yörünge manyetik dipol-momentinin ( $\mu_{\ell}$ ) etkileşimi sonucu atomun enerji seviyelerinde yarılmalar gözlenir ve "ince yapı yarılmaları" olarak adlandırılır.

$$\overrightarrow{\mu_l} = \overrightarrow{\mu_\ell} + \overrightarrow{\mu_s} \tag{3.3}$$

Schrödinger denkleminde çok-elektronlu (*N*) bir atomik sistem için ince-yapı yarılmalarını da hesaba katarak Hamiltoniyeni Denklem (3.4)'deki gibi yazılır.

$$H = \sum_{i=1}^{N} -\frac{\hbar^2}{2m} \nabla_i^2 - \sum_{i=1}^{N} \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \sum_{i>j=1}^{N} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} + \sum_{i=1}^{N} \xi(r_i) \vec{L}_i \cdot \vec{S}_i$$
(3.4)

Çok-elektronlu atomik yapılarda, elektronların yörüngesel açısal momentumu ( $\ell_i$ ) ve spin açısal momentumu ( $s_i$ ) kendi aralarında vektörel olarak toplanarak, toplam yörünge açısal momentum (L) ve toplam spin açısal momentum (S) bulunur [58].

 $\vec{L} = \sum_{i=1}^{N} \vec{\ell_i}$ (3.5)

$$\vec{S} = \sum_{i=1}^{N} \vec{s_i} \tag{3.6}$$

Toplam açısal momentumu (J);

$$\vec{J} = \vec{L} + \vec{S} \tag{3.7}$$

şeklinde verilir.

Toplam açısal momentumun (J) alabileceği değer aralığı, Denklem (3.8)'deki gibidir.

$$(L+S) \ge J \ge |L-S| \tag{3.8}$$

Her *J* değeri, bir ince-yapı enerji seviyesini ifade eder. Spin-yörünge etkileşmesinde, atomun tüm elektronları değil, açık kabuktaki elektronlarının momentumlarının hesaba katılarak, enerjilerdeki yarılma sayısı belirlenir. Kapalı kabuk elektronları spin-yukarı ve spin-aşağı şekilde yöneldiklerinden, toplam spin açısal momentumu sıfırdır (S=0). Dolayısıyla, ince-yapı yarılmaları gözlenmez [52].

Atomik sistemin Hamiltoniyenindeki terimlerden (Denklem (3.4)) Coulomb etkileşimi spinyörünge etkileşiminden daha büyükse, atom içerisindeki çiftlenim türü, spin-yörünge çiftlenimidir (LS).

LS çiftleniminde, atomdaki her bir elektron için  $\ell_i$  ve  $s_i$ 'ler kendi aralarında toplanır ve toplam yörünge açısal-momentum (*L*) ve toplam spin açısal-momentum (*S*), Denklem (3.5) ve (3.6)'daki gibidir. Bu çiftlenim, hafif atomlarda gözlenir. Diğer bir çiftlenim türü de JJ çiftlenimidir. Spin-yörünge etkileşiminin, Coulomb etkileşiminden daha büyük olduğu ağır atomlarda gözlenen bir çiftlenimdir. Atom içindeki her elektronun  $\ell_i$  ve  $s_i$ 'leri vektörel olarak toplanır ve elektronun toplam açısal momentumunu  $(j_i)$  oluşturur.  $j_i$ 'ler toplanarak, toplam açısal momentum bulunur.

$$\vec{j_l} = \vec{\ell_l} + \vec{s_l} \tag{3.9}$$

$$\vec{J} = \sum_{i=1}^{N} \vec{J}_i \tag{3.10}$$

J kuantum sayısı,

L < S olduğu durumda, (2L + 1) sayıda,

L > S olduğunda ise, (2S + 1) sayıda değer alır. Her bir *J* terimi ile verilen enerji seviyelerine multiplet adı verilir. JJ çiftlenimi ağır-atomlarda gözlenir [58].

#### 3.2.4. Aşırı İnce Yapı

Atom içerisindeki zayıf etkileşmelerde, ince-yapının yanısıra aşırı ince yapı (aiy) etkileşmesi de mevcuttur.

Elektronların spin&yörünge hareketinden kaynaklanan ve çekirdek üzerinde oluşan manyetik alan ile çekirdeğin manyetik dipol-momenti ( $\mu_I$ ) etkileşir. Buna manyetik dipol aiy etkileşimi denir.

Elektronların çekirdek üzerinde oluşturduğu elektrik alan ile çekirdeğin elektrik kuadropolmomenti (Q) etkileşir. Bu da elektrostatik aiy etkileşimi adını alır.

Diğer çekirdek moment değerleri ihmal edilebilecek kadar küçüktür. Çekirdeğin kütlesi, elektronun kütlesinin yaklaşık 2000 katı olduğundan, çekirdek manyetik momenti elektronların manyetik momenti yanında çok zayıftır. Dolayısıyla, aiy etkileşiminden enerji seviyelerindeki yarılmalar ve kaymalar ince-yapı yarılmalarının 10<sup>3</sup>-10<sup>4</sup> kat daha küçüktür. Aiy yarılmaları yaklaşık 10<sup>-2</sup> cm<sup>-1</sup> civarındadır.

Aiy etkileşmeleri sonucunda hamiltoniyene yeni bir ek terim eklenir.

$$H = \sum_{i=1}^{N} -\frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{i=1}^{N} \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{i}} + \sum_{i>j=1}^{N} \frac{e^{2}}{4\pi\varepsilon_{0}r_{ij}} + \sum_{i=1}^{N} \xi(r_{i})\vec{L}_{i} \cdot \vec{S}_{i} + \sum_{i=1}^{N} a\vec{\mu}_{j} \cdot \vec{\mu}_{i} \quad (3.11)$$

Denklem (3.11)'deki son terim, çekirdek-elektron dipol-dipol etkileşmesini ifade eder.

Aiy etkileşmesi sonucu, toplam açısal momentum kuantum sayısına (*F*) göre enerjilerde yeni yarılmalar oluşur.

$$\vec{F} = \vec{J} + \vec{I} \tag{3.12}$$

olarak verilir. Alabileceği değer aralığı aşağıdaki gibidir.

$$(I+J) \ge F \ge |I-J| \tag{3.13}$$

Atomun toplam açısal momentumunun kuantum mekaniksel büyüklüğü ise;

$$\overline{|F|} = \sqrt{F(F+1)}\hbar\tag{3.13}$$

şekildedir.

Manyetik dipol etkileşmesinde; enerji seviyelerine ek aiy manyetik-etkileşim terimi,

$$H_{manyetik} = -\mu_I B_J \frac{F(F+1) - I(I+1) - J(J+1)}{2\sqrt{I(I+1))J(J+1)}}$$
(3.14)

şeklinde yazılır. Denklemde,

$$A = \frac{\mu_I B_J}{\sqrt{I(I+1))J(J+1)}}$$
(3.15)

manyetik-dipol aiy sabiti olarak bilinir. Enerji seviyelerinin manyetik dipol aiy yarılması, manyetik-alan şiddetine( $B_1$ ), atom numarasına, konfigürasyonuna bağlıdır [60].

Elektrostatik etkileşimde; enerji seviyelerine ek aiy elektrik-kuadropol etkileşim terimi,

$$H_{elektrostatik} = \frac{eQ^1 \overline{\varphi_{ZZ}(0)}}{4} \tag{3.16}$$

 $Q^{i} = Q$  momentinin z bileşeni, eQ= Elektrik kuadropol momenti,  $\overline{\varphi_{zz}(0)}$ =Yörünge elektronlarının çekirdek üzerinde oluşturduğu elektrik alan vektörünün gradyentidir.

Burada, enerji seviyelerinin elektrik-kuadropol moment değeri;

$$B = eQ\overline{\varphi_{JJ}(0)} \tag{3.17}$$

olarak verilir. Elektrik kuadropol etkileşmesi çekirdek-spininin yönelimine bağlıdır. Çekirdek spini 0 ya da 1/2 değerine sahip ise, *B* aiy sabiti sıfır olur, enerjide elektrostatik etkileşmeden kaynaklı kayma gözlenmez.

F kuantum sayısına sahip bir aiy enerji seviyesinin toplam enerjisi;

$$W_F = W_J + A\frac{c}{2} + \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$
(3.18)

ile verilir. Bu denklemde,  $W_J$ =ince-yapı enerji seviyesidir. C değeri ise aşağıdaki gibi hesaplanır [59].

$$C = (F+1) - (I+1) - (J+1)$$
(3.19)

#### 3.2.5. Seçim Kuralları

Eğer atomlar farklı yollarla enerji alarak ile yüksek enerji seviyelerine çıkarlarsa, bu enerjilerini belirli süreler içerisinde arka arkaya diğer alt enerji seviyelerine geçerek salarlar ve temel (taban) seviyeye geri dönerler. Açığa çıkan frekanslar, atomun çizgi spektrumunu verir. Fakat fotonlar sadece seçim kurallarına uygun seviyeler arasındaki geçişlerde gözlenmektedir [60].

Atomlarda optik geçişler, elektrik-dipol momentin ya da manyetik dipol momentin ya da elektrik kuadropol momentin titreşiminin farklı geçiş olasılıkları ile gerçekleşebilir [61]. Elektrik-dipol geçişine oranla, manyetik-dipol geçişi 10<sup>-4</sup> olasılıkla, elektrik-kuadropol geçişi ise 10<sup>-6</sup> olasılıkla oluşur. Eğer bir atom uyarılmış bir enerji seviyesinden taban seviyeye dönerken sadece yasak geçişlerle dönebiliyorsa, uyarılmış seviyede saniye mertebesinde uzun süre kalabilir [52].

Atomlarda elektrik-dipol geçişlerinde, seçim kurallarının temelini oluşturan kavramlardan ilki paritedir. Bir izinli elektrik-dipol geçişi için, enerji seviyelerinin pariteleri farklı olmalıdır ve  $tek \leftrightarrow cift$  kuralı geçerlidir [54].

Çok-elektronlu atomik sistemler için ince-yapı seviyeleri arasındaki elektrik-dipol geçişler için seçim kuralları:

- Enerjilerin konfigürasyonlarının pariteleri farklı olmalıdır.
- $\Delta S = 0$  (Spin çokluğunun değişimi yasaktır.)

- $\Delta L = 0, \pm 1$
- $\Delta J = 0, \mp 1 \quad (J = 0 \rightarrow J = 0 \text{ yasaktır.})$

olarak yazılır.

Çok-elektronlu atomik sistemler için aiy seviyeleri arasındaki elektrik-dipol geçişleri için seçim kuralları:

- İnce-yapı enerji seviyelerinin konfigürasyonlarının pariteleri farklı olmalıdır.
- $\Delta S = 0$  (Spin çokluğunun değişimi yasaktır.)
- $\Delta L = 0, \pm 1$
- $\Delta J = 0, \pm 1 \ (J = 0 \rightarrow J = 0 \text{ yasaktır.})$
- $\Delta F = 0, \mp 1 \ (F = 0 \rightarrow F = 0 \text{ yasaktır.})$

olarak yazılır [60].

#### 3.3. ÇİZGİ GENİŞLEMELERİ

Atomik sistemlerde, hiçbir optik geçiş monokromatik değildir ve gözlenen spektral-çizgi frekansları belirli bir aralıkta dağılım gösterir. Bu dağılım, çizginin alt-üst enerji seviyeleri arasındaki enerjiye karşılık gelen frekans etrafında oluşur ve soğurulan/yayınlanan ışığın dağılma fonksiyonuna "çizgi profili" veya "çizgi genişlemesi" denir. Bu genişlemeler, atomik sistemin bazı fiziksel özelliklerine istinaden farklı profile sahiptir.

Atomik sistemde bir enerji soğurma/yayınlama durumunda; geçişin soğurulma/yayınlanma olasılığı ortamdaki tüm atomlar için eşit ise, bu çizgi homojen çizgi profiline sahiptir. Eğer bu olasılık ortamdaki atomların hepsi için farklılık gösterirse, çizgi profili homojen olmayan (inhomojen) adını alır.

Çizgi genişleme türleri; doğal genişleme, Doppler genişlemesi, çarpışma&basınç genişlemesi ve saturasyon genişlemesi olarak sınıflandırılır [62]. Tablo 3.2'de, genişlemelerin dağılım çeşitleri, dağılım fonksiyonları ve bazı özelliklerinden bahsedildi.

| Çizgi Genişleme Türü           | Dağılım Çeşidi | Dağılım Fonksiyonu | Özellikleri                                                                                                 |  |
|--------------------------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------|--|
| Doğal Çizgi Genişlemesi        | Homojen        | Lorentz Profili    | Enerji seviyelerinin yaşam<br>ömrüne bağlıdır.                                                              |  |
| Doppler Genişlemesi            | İnhomojen      | Gauss Profili      | Atomların hızına, çizginin<br>frekansına, ortamın<br>sıcaklığına ve efektif<br>kütleye bağlıdır.            |  |
| Çarpışma&Basınç<br>Genişlemesi | Homojen        | Lorentz Profili    | Ortamdaki atomların<br>etkileşiminin kayda değer<br>uzaklığa ulaştığında oluşan<br>çarpışmalarına bağlıdır. |  |
|                                | Homojen        | Lorentz Profili    | Atom şiddetli bir laser<br>ışığı ile uyarıldığında,<br>birbirine yokun                                      |  |
| Saturasyon Genişlemesi         | İnhomojen      | Gauss Profili      | seviyelerdeki nüfus<br>yoğunluklarının<br>değişmesine<br>(terslenmesine) bağlıdır.                          |  |

Tablo 3.2: Spektral çizgi genişleme türleri ve özellikleri.

Atom uyarıldığında alt enerji seviyesinden üst seviyelere geçer ve bir süre sonra (sonlu bir yaşam ömrü) emisyon yolu ile enerjisinin fazlasını verir. "Doğal genişleme"; sisteme dış bir etki olmadan meydana gelen bu kendiliğinden emisyon sonucu çizginin merkez frekansından olan genişleme olup homojendir. Bir spektral geçişin alt-üst enerji seviyelerinin yaşam ömürleri daima sonludur ve geçiş olasılığına bağlıdır. Bu sebeple, Heisenberg belirsizlik-ilkesi bu enerjilerin kesin olarak belirlenemediğini söyler.

Çizgi genişliğine katkı sağlayan; eğer çizginin alt enerji seviyesi taban seviye değilse, her iki seviyenin de enerjisindeki belirsizliktir ve belirsizliğin değeri seviyelerin yaşam ömrü ile ters orantılıdır. Doğal genişleme frekansı 0.1 MHz-100 MHz aralığında değişir ve şiddet dağılımı Lorentz fonksiyonuna uyar. Doğal genişleme, herhangi bir ileri-teknoloji spektroskopik yöntemle de olsa yok edilemez.

Gaz halinde, atomların termal hareketlerinden dolayı sahip oldukları farklı hızları Maxwell-Boltzmann hız dağılımına uyar. Atomların hızına bağlı olarak, spektral çizgilerde ek genişlemeler oluşur ve bu genişlemelere "Doppler genişlemesi" denir. Atomların her biri için aynı genişleme gerçekleşmeyeceğinden, bu tür inhomojen olarak gözlenir. Doppler genişlemesi, çizgi merkez-frekansı ile doğru orantılı, ortamın sıcaklığının karekökü ile doğru orantılı ve atomun efektif kütlesinin karekökü ile ters orantılı olarak değişir. Doppler genişleme frekansı doğal genişlemeden büyüktür ve şiddet dağılımı Gauss fonksiyonuna uyar.

Atomik sistem içerisinde, bir atom diğer bir atom ile aralarında birbirlerini etkileyecek kadar mesafede bulunduklarında meydana gelen çarpışma sonucu, enerji seviyeleri bir miktar değişir. Basınç artışıyla, ortamda atomlar daha net çarpışma yaparlar. Enejilerdeki kayma değerleri, atomun elektronik yapısına, ortamın sıcaklığına ve çarpışmanın gerçekleştiği mesafeye ve ortamın basıncına bağlıdır. Bu şekilde çizgilerde oluşan genişlemelere, "çarpışma&basınç genişlemesi" adı verilir. Bu genişleme türü, Lorentz profiline uyar ve homojen dağılım gösterir.

Bir diğer genişleme türü olan saturasyon genişlemesidir. Atom şiddetli bir laser ışını ile uyarıldığında, spektral çizginin enerji seviyelerinden birbirine çok yakın olanlar arasında nüfus yoğunluğu değişir ve nüfus terslenmesi gerçekleşir. Işığın şiddeti, absorbsiyon katsayısına bağlıdır ve şiddet arttıkça saturasyon gerçekleşir. Bu genişleme, homojen veya inhomojen olarak gözlenebilir [59].

Deneysel olarak gözlenen tüm spektral çizgilerde, bütün genişlemeler farklı katkılarla bir arada gözlenir ve bu profile "birleşik çizgi genişlemesi" denir. Çizginin toplam genişlemesi, Lorentz ve Gauss dağılım fonksiyonlarının birleşimi olan Voigt profili şiddet dağılımına uyar.

#### 3.4. LA-AR FOURIER TRANSFORM SPEKTRUMU

Bu çalışmada kullanılan deneysel veri, daha önceki çalışmalar için [27-29] ölçülmüş olan 330 nm-1450 nm (30000 cm<sup>-1</sup> -6900 cm<sup>-1</sup>) spektral aralığında kalibre edilmiş La-Ar plazmasının Fourier-Transform (FT) spektrumudur. Bu spektrum Letonya Üniversitesi'nde bulunan Lazer Merkezi'nde 0.025 cm<sup>-1</sup> spektral çözünürlükle elde edilmiştir.

Fourier-Transform (FT) Spektroskopi yönteminde; optik salınımların sinyal-zaman ilişkisini kaybetmeden, ölçülebilir frekansa dönüştürme yani modüle edilmesi için Michelson-Morley interferometresi kullanılır. FT-Spektrometre ışık şiddeti zaman fonksiyonu olarak kaydedilir ve bir Fourier-dönüşümü ile frekans ya da dalga-sayısına bağlı değişimi elde edilir. Ayırma gücü yüksek olan spektrometre ile tüm spektrum bir kerede ve kısa sürede kaydedilir. Detektöre gelen ışık şiddeti ne kadar yüksekse, sinyal/gürültü oranı da büyüktür. Bu durumda önemli bir faktör gürültünün zayıf sinyalli spektral-çizgilere karışmasıdır.

Bunu etkiyi azaltabilmek için, dar-bantlı filtreler kullanılır [59].

Spektrum, içi boş bir silindir-katod boşalım lambası tarafından üretilir ve yüksek çözünürlüklü Bruker IFS 125 HR FT-spektrometresi ile kaydedilmiştir. Katot içerisine yerleştirilen lantan elementi, %99.9 saflığa sahip doğal bollukla kullanıldı. İçi boş katod boşalımı, yaklaşık 1.0 mbar'lık bir basınçtaki argon taşıyıcı gaz atmosferinde, 50 mA-100 mA arasında bir deşarj akımıyla üretildi. Katot lambasının içinde bulunduğu cam tüp 10<sup>-7</sup> mbar basınç altında vakumlandı. Deney süresince; katot lambası, Doppler çizgi genişlemesini azaltmak için sıvı azot ile soğutuldu.

Silindir-katot lambası içerisindeki basınçla birlikte asal gaz atomları çarpışmaları sonucu iyonize olurlar. Silindir lambaya uygulanan elektrik-potansiyel ile pozitif argon iyonları, negatif yüklü lantan metalini içeren katottan lantan atomlarını koparır. Böylece ortamda lantan atom&iyonları, argon atom&iyonları ile elektronların olduğu bir plazma oluşur. Enerjileri ile plazma ortamındaki çarpışmalarla lantan atomlarını uyarır ve oluşan La-Ar plazmasında lantan atomları&iyonları yüksek ince-yapı enerji seviyelerine çıkarlar. Kaydedilen FT-spektrumu, uyarılmış atomik veya iyonik ince-yapı enerji seviyelerinden gerçekleşen emisyon spektrumudur.

Önceki çalışmalarda [27-29]; FT spektrumunun kalibrasyonu, FT spektrumunda gözlenen yüksek sinyal/gürültü oranına sahip iyonik Ar çizgileri (neredeyse boşalım koşullarından bağımsız olan) ile Learner&Thorne [63] tarafından verilen Ar dalga-boyları karşılaştırılarak yapıldı. Dalga-boyu doğruluğunun, tüm 330 nm-1450 nm dalga-boyu aralığında 0.003 cm<sup>-1</sup>'den daha iyi olduğu tahmin edildi.



Şekil 3.2: La-Ar FT spektrumunun 6000 cm<sup>-1</sup>-12000 cm<sup>-1</sup> aralığında örnek-kesit. y-eksenindeki relatif şiddet 1'e normlanmıştır.



Şekil 3.3: La-Ar FT spektrumunun 876.7 nm-882.8 nm aralığında örnek-kesiti.



Şekil 3.4:  $\lambda$ =728.23355 nm dalga-boyu ve v=13728.076 cm<sup>-1</sup> dalga-sayılı La II çizgisi.
FT Spektroskopisinin, diğer laser spektroskopik metodlara oranla çözünürlüğü daha düşüktür, fakat çok geniş bir spektral aralıkta kaydedilen spektrumun analiz edilerek çizgilerin ağırlıkmerkezlerinin yüksek doğrulukla belirlenebilmesini sağlamaktadır.

Çizgilerin ağırlık-merkezinin belirlenmesinde kullanılan sınıflandırma programı "Klasifikasyon" [4-5], hava ortamındaki dalga-boyu formunu kullanır. Bu nedenle, veriler için Peck&Reeder [64]'un dağılım formülü kullanarak dönüşüm sağlanır.

La-Ar plazma FT-spektrumunun 6000 cm<sup>-1</sup>-12000 cm<sup>-1</sup> aralığında örnek-kesiti, Şekil 3.2'de gösterildi. Bu spektrum kesitinde şiddet 1'e normlanmıştır. FT-spektrumu dalga sayısına bağlı sinyal/gürültü oranı olarak kaydedildi. FT-Spetrumunda gürültüler 1'e normlandığında ise, y ekseni Sinyal/Gürültü oranını vermektedir. Buna bir örnek-kesit Şekil 3.3'te verildi. Şekil 3.4'te ise,  $\lambda$ =728.23355 nm dalga-boyu ve v=13728.076 cm<sup>-1</sup> dalga-sayılı La II çizgisi örnek çizgi olarak gösterildi.

FT spektrumumuzda gözlenmeyen fakat MIT dalga-boyu tablolarında [3] yer alan La II çizgileri bulunmaktadır. Çalışmada analizin ikinci aşamasını oluşturan teorik hesaplama kısmında, MIT tablolarından [3] alınan bu çizgilerden yararlanıldı.

# 3.5. DATA ANALİZİ

## 3.5.1. Klasifikasyon Programi

"Klasifikasyon Programı"nın amaçları;

- Literatürde dalga-boyu tanımlanmış fakat spektral-geçişin gerçekleştiği enerji seviyeleri belirlenmemiş çizgilerin sınıflandırılması,
- Literatürde bulunmayan çizgilerin simülasyon yöntemiyle hem tanımlanması hem de program tarafından seçim kurallarına göre önerilen tüm mümkün geçişlerden yararlanılarak doğru olarak alt-üst enerji seviyeleri belirlenerek sınıflandırılması,
- Literatürde sınıflandırılmış/sınıflandırılmamış çizgilerin alt-üst enerji seviyelerine ait A&B aiy sabitlerinin tahmin edilmesi,
- Çizgilerin ağırlık-merkezi dalga-boyu/dalga-sayısının tam olarak belirlenebilmesidir.

Spektral-çizgilerin tanımlanması; literatürde spektroskopik yöntemlerle elde edilen spektrumlarda gözlenmiş ve ağırlık-merkezi dalga-boyu/dalga-sayısı belirlenmiş çizgilerdir. Spektral-çizgilerin sınıflandırılması; daha önce tanımlanmış veya tanımlanmamış geçişlerin altüst enerji seviyelerinin belirlenmesidir. "Klasifikasyon Programı"nda çizgi tanımlamaları/sınıflandırmalarını yapabilmek için, incelenecek elemente ait FT-spektrumuna, atomik/iyonik ince-yapı enerji değerine ait *J* değeri, paritesi, eğer literatürden biliniyorsa *A*&*B* sabitlerine ve literatürde deneysel yöntemlerle tanımlanan ve/veya sınıflandırılan çizgilerin dalga-boyu bilgilerine ihtiyaç vardır.

Bu verilerden La II deneysel ince-yapı seviyeleri NIST [2] ve MIT [3] atomik tablolarından, bu seviyelere ait *A&B* değerleri literatürdeki çalışmalardan [3, 7, 9, 11-48] ve tanımlanmış La II çizgileri MIT [3] tablosundan alınarak giriş dosyaları hazırlandı.

Şekil 3.5'te, hem literatürden tanımlanan hem de ölçülen deneysel spektrumda gözlenen tüm spektral-çizgilerin ağırlık-merkezi dalga-boyu, Sinyal/Gürültü oranı, alt-üst seviyelerine ait gerekli bilgiler ve dalga-boyu/enerji seviyesi/*A*&*B* değerleri için literatürden alındıkları referansları içeren "wLa.dat" dosyasının bir kısmı verildi.

| 🗅 Wla.dat           |        |       |      |               |      |      |            |             |          |             |      |                   |             |              |                  |
|---------------------|--------|-------|------|---------------|------|------|------------|-------------|----------|-------------|------|-------------------|-------------|--------------|------------------|
| 8628.3547 , nl 4    | 1      | 1     | 1    | 1             | ,    | , ,  |            | ,           | , ,      |             | ,    | <i>, ,</i>        |             | ,            | , , <sup>1</sup> |
| 8629.3767 , nl 17   | 1      | 1     | 1    | , 32348.346   | ,2.5 | ,e,  | 217 (1)    | ,           | ,MZH78 , | 20763.214   | ,3.5 | ,٥,               | 194.5(1.6   | ,            | ,MZH78 ,         |
| 8629.8467 , nl 8    | ,      | ,     | ,    | ,             |      |      |            | ,           |          |             |      |                   |             | ,            | 1 1              |
| 8633.8787 , nl 5    | ,      | ,     | 1    | , 29894.913   | ,3.5 | , o, | 467.9(2.2  | , 6(10)     | ,MZH78 , | 18315.822   | ,4.5 | ,e,               | 111.6(2.6   | ,            | ,MZH78 ,         |
| 8635.3357 , nl 14   | ,      | ,     | 1    | , 204134.0653 | ,2.5 | ,٥,  | 0          | , 0         | ,Ar II , | 192556.9179 | ,2.5 | ,e,               | 0           | , 0          | ,Ar II ,         |
| 8636.7977 , nl 3    | ,      | ,     | 1    | , 206397.3699 | ,4.5 | ,e,  | 0          | , 0         | ,Ar II , | 194822.1833 | ,3.5 | <mark>, ٥,</mark> | 0           | , 0          | ,Ar II ,         |
| 8638.4812 ,         | ,      | , 1.4 | 1    | , 20018.977   | ,1.5 | , o, | -38.7(5.2  | ,           | ,MZH78 , | 8446.039    | ,1.5 | ,e,               | -422.40     | , -6.01      | ,MZH78 ,         |
| 8642.9077 , nl 4    | ,      | ,     | 1    | , 123385.0440 | ,0   | ,٥,  | 0          | , 0         | ,Ar I N, | 111818.0280 | ,1   | ,e,               | 0           | , 0          | ,Ar I N,         |
| 8644.5457 , nl 5    | ,      | ,     | 1    | , 34369.050   | ,1.5 | ,e,  | 731.55     | -4.88       | ,MZH78 , | 22804.250   | ,2.5 | ,٥,               | 45.4(6.5)   | , 0(20)      | ,MZH78 ,         |
| 8650.8798 , 4       | ,      | ,     | , 1h | , 14147.954   | ,2   | ,٥,  | -489s      | , 80(20)    | ,MZH78 , | 2591.609    | ,2   | ,e,               | 8.7(3.0)    | , 56.7(6.5)  | ,MZH78 ,         |
| 8654.7017 , nl 4    | ,      | ,     | 1    | , 39006.544   | ,4.5 | ,e,  | 204.2(25)  | ,           | ,Furman, | 27455.312   | ,3.5 | <mark>, ٥,</mark> | 358.0(1.6   | , 50(13)     | ,MZH78 ,         |
| 8657.3797 , nl 4    | ,      | ,     | 1    | , 206347.9267 | ,5.5 | ,e,  | 0          | , 0         | ,Ar II , | 194800.2662 | ,4.5 | ,٥,               | 0           | , 0          | ,Ar II ,         |
| 8660.9767 , nl 4    | ,      | ,     | ,    | ,             |      |      |            | ,           | , ,      |             |      |                   |             | ,            | , ,1             |
| 8667.9427 , nl17800 | ,      | ,     | 1    | , 106087.2598 | ,1   | ,°,  | 0          | , 0         | ,Ar I N, | 94553.6652  | ,0   | ,e,               | 0           | , 0          | ,Ar I N,         |
| 8672.1272 , 294     | , B25w | , 1.8 | 1    | , 21447.854   | ,3.5 | ,٥,  | 121.5(2)   | , -35.7(13) | ,MZH78 , | 9919.826    | ,4.5 | ,e,               | 560.3(2)    | , 200(6)     | ,MZH78 ,         |
| 8674.4287 , 4454    | , B50w | , 4   | ,    | , 15019.496   | ,3.5 | ,٥,  | 673.9(3)   | , 72(3)     | ,MZH78 , | 3494.525    | ,3.5 | ,e,               | 462.868(1)  | , 17.925(24) | ,MZH78 ,         |
| 8678.4082 , nl 237  | ,      | ,     | ,    | , 118651.3950 | ,1   | ,e,  | 0          | , 0         | ,Ar I N, | 107131.7086 | ,1   | <mark>, ٥,</mark> | 0           | , 0          | ,Ar I N,         |
| 8681.0104 , nl 4    | ,      | ,     | 1    | ,             |      |      |            | ,           |          |             |      |                   |             | ,            | , ,1             |
| 8682.7637 , nl 3    | ,      | ,     | 1    | , 39183.299   | ,2.5 | ,e,  | 240(4)     | ,           | ,*LwSq1, | 27669.363   | ,2.5 | ,٥,               | 226.8(2.3)  | ,            | ,MZH78 ,         |
| 8690.1107 , nl 4    | ,      | ,     | ,    | , 123171.9200 | ,1   | ,٥,  | 0          | , 0         | ,Ar I N, | 111667.7660 | ,0   | ,e,               | 0           | , 0          | ,Ar I N,         |
| 8692.6167 , nl 3    | ,      | ,     | ,    | , 39679.910   | ,5.5 | ,e,  | 124.9(20)  | ,           | ,Furman, | 28179.043   | ,5.5 | ,٥,               | 17.3(0.4)   | ,            | ,MZH78 ,         |
| 8693.0897 , nl 4    | ,      | ,     | ,    | , 195297.6798 | ,1.5 | ,٥,  | 0          | , 0         | ,Ar II , | 183797.4473 | ,2.5 | ,e,               | 0           | , 0          | ,Ar II ,         |
| 8695.2367 , nl 3    | ,      | ,     | ,    | , 34758.552   | ,1.5 | ,e,  | -29.06     | 69.43       | ,MZH78 , | 23260.912   | ,0.5 | ,٥,               | -408        | , 0.00       | ,MZH78 ,         |
| 8703.1391 , 63      | ,      | ,     | , 5  | , 21447.854   | ,3.5 | ,٥,  | 121.5(2)   | , -35.7(13) | ,MZH78 , | 9960.904    | ,3.5 | ,e,               | -292.4      | , 66.2       | ,MZH78 ,         |
| 8706.0736 , nl 3    | ,      | ,     | ,    | , 28506.411   | ,2.5 | ,٥,  | 344.3(5.0) | , -71(40)   | ,MZH78 , | 17023.342   | ,3.5 | ,e,               | 162.3(2.5   | ,            | ,MZH78 ,         |
| 8713.7566 , nl 5    | ,      | ,     | 1    | ,             |      |      |            | ,           |          |             |      |                   |             | ,            | 1 1              |
| 8719.3766 , nl 5    | ,      | ,     | ,    | , 200880.5857 | ,3.5 | ,e,  | 0          | , 0         | ,Ar II , | 189415.0280 | ,3.5 | ,٥,               | 0           | , 0          | ,Ar II ,         |
| 8720.4366 , 122     | , B12w | , 1.2 | ,    | , 21383.994   | ,4.5 | ,٥,  | 94.9(1.0   | , -20(15)   | ,MZH78 , | 9919.826    | ,4.5 | ,e,               | 560.3(2)    | , 200(6)     | ,MZH78 ,         |
| 8721.2466 , nl 4    | ,      | ,     | 1    | , 25558.770   | ,1.5 | ,e,  | 250        | ,           | ,*LW120, | 14095.677   | ,0.5 | <mark>, ٥,</mark> | -581.4(1.3) | ,            | ,MZH78 ,         |
| 8723.5176 , nl 14   | ,      | ,     | ,    | , 36543.480   | ,2.5 | ,e,  | 261 (5)    | -89.98      | ,*Fy10 , | 25083.356   | ,3.5 | ,٥,               | 70.8(0.5)   | , 25(15)     | ,MZH78 ,         |
| 8726.0966 , nl 9    | ,      | ,     | ,    | ,             |      |      |            | ,           | , ,      |             |      |                   |             | ,            | , ,              |
| 8727.0606 , nl 14   | ,      | ,     | ,    | , 32492.762   | ,2.5 | ,٥,  | -151.3(4.4 | 0(20)       | ,MZH78 , | 21037.296   | ,1.5 | ,e,               | -88.8(3.0   | ,            | ,MZH78 ,         |
| 8730.3726 , nl 4    | ,      | ,     | ,    | , 30055.037   | ,3.5 | ,e,  | 374.46     | 56.24       | ,MZH78 , | 18603.922   | ,3.5 | , o,              | 223.96      | , 0.00       | ,MZH78 ,         |
| 8735.4986 , nl 8    | ,      | ,     | ,    | ,             |      |      |            | ,           | , ,      |             |      |                   |             | ,            |                  |
| 8736.2196 , nl 5    | ,      | ,     | ,    | ,             | ,    |      |            | ,           | , ,      |             | ,    |                   |             | ,            | , ,              |
| <u>ه</u>            |        |       |      |               |      |      |            |             |          |             |      |                   |             |              |                  |

Şekil 3.5: Program için hazırlanan spektral-çizgilere ait giriş verilerinin bir kısmı.

La I ve La II'nin bilinen deneysel ince-yapı seviyeleri ve bunlara ait J değeri, parite, enerji değeri (cm<sup>-1</sup>), hata-değerleri ile birlikte A (MHz) ve B (MHz) aiy sabitleri ve referansların bulunduğu dosya örnekleri sırasıyla Şekil 3.6 ve Şekil 3.7'de verildi.

"Klasifikasyon Programı"nın menüsünde yer alan kısımlar "üst pencere" ve "alt pencere" olmak üzere Şekil 3.8'de gösterildi. Alt pencerede, La-Ar FT-Spektrumu gözlenmektedir. Spektrumun x-ekseni dalga-boyu (Å), y-ekseni Sinyal/Gürültü oranını (gürültü 1'e normlandı) verir. Üst pencerede, menünün sağ kısmında; seçilen bir çizgi için seçim kurallarına göre olası geçişler hesaplanarak listelenir. Menünün sol kısmında ise, listelenen geçişlerden biri deneysel spektrum ile örtüşüyorsa kaydedilir ve bu kaydedilen çizgi dalga-boyu listesine (wLa.dat) eklenir.

| 🔁 Level_la.dat |             |             |                 |               |
|----------------|-------------|-------------|-----------------|---------------|
| 1.5, e,        | ο,          | 141.1959(1  | .6) , 44.781(14 | ) , MZH78 NIS |
| 2.5, e,        | 1053.161(3) | , 182.1706( | (6) , 54.213(14 | ) , MZH78 NIS |
| 1.5 , e ,      | 2668.176 ,  | -480.292    | , 15.188 ,      | MZH78 NIST    |
| 2.5, e,        | 3009.993 ,  | 300.563(1)  | , 10.873(25) ,  | MZH78 NIST    |
| 3.5, e,        | 3494.525 ,  | 462.868(1)  | , 17.925(24) ,  | MZH78 NIST    |
| 4.5, e,        | 4121.572 ,  | 489.534(1)  | , 32.180(34) ,  | MZH78 NIST    |
| 2.5, e,        | 7011.904 ,  | 304.372(2)  | , 28.091(30) ,  | MZH78         |
| 3.5, e,        | 8052.163 ,  | -197.064    | , 40.754 ,      | MZH78 NIST    |
| 0.5, e,        | 7231.416 ,  | 2460.161    | , 0.00 ,        | MZH78         |
| 1.5 , e ,      | 7490.521 ,  | 939.618     | , 37.221 ,      | MZH78         |
| 2.5, e,        | 7679.945 ,  | 802.172     | , -34.186 ,     | MZH78         |
| 1.5, e,        | 8446.039 ,  | -422.399    | , -6.753 ,      | MZH78         |
| 2.5, e,        | 9183.806 ,  | 876.319     | , -2.777 ,      | MZH78         |
| 0.5, e,        | 9044.212 ,  | 226.892     | , 0.00 ,        | MZH78         |
| 1.5, e,        | 9719.429 ,  | -655.138    | , -33.249 ,     | MZH78         |
| 4.5, e,        | 9919.826 ,  | 559.812     | , 202.638 ,     | MZH78 NIST    |
| 3.5, e,        | 9960.904 ,  | -292.267    | , 67.537 ,      | MZH78 NIST    |
| 1.5, e,        | 12430.605 , | 445.086     | , -16.068 ,     | MZH78         |
| 2.5, e,        | 12787.399 , | 97.510      | , -16.521 ,     | MZH78         |

Şekil 3.6: Program için hazırlanan La I ince-yapı seviyelerine ait giriş verilerinin bir kısmı.

| e Le | ×_ | laii. | dat |           |   |              |   |            |   |       |      |       |         |
|------|----|-------|-----|-----------|---|--------------|---|------------|---|-------|------|-------|---------|
| 2    | ,  | e     | ,   | 0         | , | 397.6(0.2)   | , | 19.8(1.8)  | , | MZH78 | A/B  | from  | HHW82   |
| 3    | ,  | e     | ,   | 1016.087  | , | 101.4(0.2)   | , | 25.7(3.3)  | , | MZH78 | A/B  | from  | HHW82 F |
| 4    | ,  | e     | ,   | 1970.705  | , | -18.6(0.1)   | , | 37.5(3.0)  | , | MZH78 | A/B  | from  | HHW82   |
| 2    | ,  | e     | ,   | 1394.470  | , | 949.5(1.6)   | , | 49.8(12.6) | , | MZH78 | A/B  | from  | HHW82 - |
| 1    | ,  | e     | ,   | 1895.128  | , | -1128.1(0.9) | , | 49.8(6.5)  | , | MZH78 | A/B  | from  | HHW82   |
| 2    | ,  | e     | ,   | 2591.609  | , | 8.7(3.0)     | , | 56.7(6.5)  | , | MZH78 | A/B  | from  | HHW82   |
| 3    | ,  | e     | ,   | 3250.380  | , | 1067.0(0.4)  | , | 60.3(9.3)  | , | MZH78 | A/B  | from  | HHW82   |
| 0    | ,  | e     | ,   | 5249.679  |   | 0.00         | , | 0.00       | , | MZH78 | A/B  | from  | NYMR09  |
| 1    | ,  | e     | ,   | 5718.109  |   | -225.2(0.2)  | , | 25.8(0.9)  | , | MZH78 | A/B  | from  | HHW82   |
| 2    | ,  | e     | ,   | 6227.409  |   | -158.2(0.4)  | , | 45.0(11.0) | , | MZH78 | A/B  | from  | HHW82   |
| 0    | ,  | e     | ,   | 7394.537  |   | 0.00         | , | 0.00       | , | MZH78 | A/B  | from  | NYMR09  |
| 4    | ,  | e     | ,   | 7473.347  |   | 150.1(0.2)   | , | 151.8(5.4) | , | MZH78 | A/B  | from  | HHW82   |
| 2    | ,  | e     | ,   | 10094.887 |   | 48.1(0.2)    | , | 9.6(1.8)   | , | MZH78 | A/B  | from  | HHW82   |
| 2    | ,  | 0     | ,   | 14147.954 | , | -489s        | , | 80 (20)    | , | MZH78 | A (- | 468.8 | (5.5))/ |
| 3    | ,  | 0     | ,   | 14375.201 | , | 1110.9(5.1)  | , | 130.(15)   | , | MZH78 | A/B  | from  | FRSEDC  |
| 4    | ,  | 0     | ,   | 15698.781 | , | 792.8(1.8)   | , | 155 (20)   | , | MZH78 | A/B  | from  | FRSEDC  |

Şekil 3.7: Program için hazırlanan La II ince-yapı seviyelerine ait giriş verilerinin bir kısmı.



Şekil 3.8: Klasifikasyon programında  $\lambda$ =1204.42120 nm dalga-boylu çizgi için teorik mümkün geçişler, sınıflandırılma ve FT-spektrumu.

Tez çalışmasında, "Klasifikasyon Programı"na bağlı "Global-fit" programında La II ince-yapı seviyelerinin revize edilmesi amaçlandı. Buna istinaden, literatürden hem tanımlanmış hem de sınıflandırılmış La II spektral-çizgileri ve enerji seviyelerinin programa girişi yapıldı. Enerji seviyelerinin daha yüksek hassasiyetle belirlenebilmesi için, çizgilerin ağırlık-merkezi dalgaboyu/dalga-sayısının tam olarak hesaplanması gerekir. Bu amaçla, program içindeki "Simülasyon Programı" kullanıldı. Çizgilerin Sinyal/Gürültü oranına ve ayrışmışlık durumlarına bakılarak, "Global-fit Programı"nda ağırlıklandırma yapıldı.

#### 3.5.2. Simülasyon Programı

Klasifikasyon programının içerisinde bir alt program olan "Simülasyon Programı"; seçilen bir spektral-çizginin deneysel spektrumu (FT) ile programın hesapladığı mümkün tüm geçişlerin içinden bu aiy gösteren çizginin sınıflandırılması ve alt-üst ince-yapı enerji seviyelerinin aiy sabitlerinin kullanılması sonucunda oluşan teorik spektrumu üst üste çakıştırma yöntemi yardımıyla, ağırlık-merkezinin yüksek doğrulukla belirlenmesini sağlar.

Şekil 3.9'da, "Simülasyon Programı"nın ara yüz penceresinde  $\lambda = 706.6211 nm$  dalga-boylu La II spektrumu örnek olarak verilmiştir. Kırmızı renk ile gösterilen spektrum, "deneysel spektrum"; mavi renk ile gösterilen ise "teorik spektrum"dur. Spektrumun üzerinde incelenen spektral-çizginin  $F_{ust}$ - $F_{alt}$  geçişleri gösterilmektedir. Pencerenin sağ tarafında, alt-üst ince-yapı seviyelerine ait A&B aiy sabitlerinin değerleri, J değerleri, lantanın çekirdek spini (I), simülasyon sırasında ayarlanan çizgiye ait yarı-genişlik değeri ve kullanılan çizgi profili yer alır. FT-Spektrumunda Doppler genişlemesinin yüksek olmasından dolayı, çizgi profili olarak Gauss seçildi.



Şekil 3.9: Simülasyon Programının ara yüz penceresi.

Eğer alt ve üst ince-yapı seviyelerinin *A&B* aiy sabiti değerlerinin literatürde yüksek çözünürlüklü spektroskopik yöntemler kullanılarak belirlenmişse, simülasyon programı penceresinde çizginin aiy sabitlerini sabit tutulur ve sadece yarı-genişlik değeri (Doppler genişliği) değiştirilir. Uygun yarı-genişlik belirlendiğinde, deneysel ve teorik spektrum eşleşir.

Eğer alt-üst ince-yapı seviyelerinden birinin *A&B* aiy sabiti bilinmiyorsa; program penceresinde deneysel spektrum ile teorik spektrumun eşleştirilmesi için, Şekil 3.9'daki pencerede sağ tarafta bulunan aiy sabiti değerleri değiştirilerek en iyi fit değerleri bulunur.

## 3.5.3. Global-Fit Programı

"Global-fit Programı" [6], "Klasifikasyon Programı"nın alt programı olup aiy spektralçizgilerinin analizi ile ince-yapı enerji seviyelerinin daha doğrulukla belirlenebilmesi ve revize edilmesini sağlayan bir programdır.

Programın çalışması için gerekli dosyalar aşağıdaki gibidir:

- Taban seviye paritesine sahip olan seviyelerin listesi,
- Diğer pariteye sahip seviyelerin listesi,

• Kullanılan geçişlerin sınıflandırma ve ağırlıklandırma listesi.

İlk aşamada, tüm spektral-çizgileri "Simülasyon Programı"nda simüle ederek ağırlıkmerkezlerini hassas bir şekilde belirledikten sonra, "Global-fit Programı" yardımıyla her bir çizgi için, Şekil 3.10'da gösterildiği gibi belirli ağırlık-faktör (0, 1, 3, 5, 10 ve 50) değeri tanımlanır.



**Şekil 3.10:** "Klasifikasyon Programı" menüsünde, spektral-çizgilerin ağırlık faktörünün belirlenme penceresi.

Ağırlıklandırma yapılan çizgiler, "Global-fit Programı"nın [6] çalışması için gerekli olan dosyalardan birine kaydedilir (Şekil 3.11). Sütunlarda sırasıyla geçişlerin ağırlık-merkezi dalga-boyları (Å), üst-enerji değeri (cm<sup>-1</sup>), alt-enerji değeri (cm<sup>-1</sup>), "Global-fit Programı"nda belirlenen ağırlık faktörü değerleri (wf) verilmiştir.



**Şekil 3.11:** "Global-fit Programı"nda hesaplama için kullanılan spektral-çizgilerin geçiş ve ağırlıklandırma listesi.

İkinci aşamada; atomun taban-seviyesi ve aynı pariteli tüm seviyelerinin (xx\_GLP\_levels.dat) ve diğer pariteye ait seviyelerin (xx\_CP\_levels.dat) birer listesi Şekil 3.12'deki gibi hazırlanır.

| 🗅 La-gip-levels.dat                          |                                             |
|----------------------------------------------|---------------------------------------------|
| 🐮 C:\elemente\La\Global-fit\La-CP-levels.dat | C:\elemente\La\Global-fit\La-GLP-levels.dat |
| 14147.954                                    | 0                                           |
| 14375.201                                    | 1016.087                                    |
| 15698.781                                    | 1394.470                                    |
| 15773.812                                    | 1895.128                                    |
| 16599.256                                    | 1970.705                                    |
| 17211.918                                    | 2591.609                                    |
| 17825.603                                    | 3250.380                                    |
| 18235.558                                    | 5249.679                                    |
| 18580.480                                    | 5718.109                                    |
| 18895.375                                    | 6227.409                                    |
| 19214.527                                    | 7394.537                                    |
| 19749.642                                    | 7473.347                                    |
| 20402.811                                    | 10094.887                                   |
| 21331.597                                    | 35452.601                                   |
| 21441.690                                    | 35787.523                                   |
| 22106.016                                    | 36954.643                                   |
| 22282.806                                    | 37172.790                                   |
| 22537.291                                    | 37209.732                                   |
| 22683.644                                    | 37790.608                                   |
| 22705.126                                    | 38221.490                                   |
| 23246.900                                    | 38534.080                                   |
| 24462.684                                    | 39018.740                                   |
| 24522.701                                    | 39221.691                                   |
| 25973.360                                    | 39402.523                                   |
| 26414.028                                    | 40457.728                                   |
| 26837.647                                    | 49733.138                                   |
| 27388.127                                    | 49884.437                                   |
| 27423.911                                    | 51228.640                                   |

Şekil 3.12: "Global-fit Programı" için hazırlanan enerji seviyelerini içeren dosyalar.

La II taban seviyesi 0.000 cm<sup>-1</sup> çift pariteye sahiptir. Literatürden yüksek-çözünürlüklü spektroskopik yöntemlerle yüksek hassasiyetle bulunan enerji seviyeleri genellikle düşük seviyelerdir. Dolayısıyla, program öncelikle en düşük enerji seviyesi (taban seviye) ile o seviyeye olan tüm geçişlerin ağırlıklandırma listesini kullanarak, bir sütuna çift-pariteli ve bir satıra da tek-pariteli enerji değerlerini yazarak bir geçiş-matrisi oluşturulur. Matris elemanları, çizgilerin ağırlık-merkezi dalga-sayıları ve ağırlık-faktörleridir. "Global-fit Programı" [6], en küçük kareler yöntemi ile en az 50 iterasyon yaparak denklemi çözer. Taban seviyesi, tüm seviyelerin enerji değerleri ile birlikte iterasyon sırasında değiştirilir. Sonuçta, taban seviye enerji değerleri sıfıra sabitlenir ve oluşan sapma hesaplanan enerjilere eklenir. Program, hem enerji değerleri hem de bu değerlerin sapma aralıklarını daha doğrulukla hesaplar.

Şekil 3.13'te "Global-fit Programı"nın sonuç penceresi görülmektedir. İncelenen atomik/iyonik atomun taban seviyesi ve aynı pariteye sahip olan enerji değerleri (sol kısımda) ve diğer pariteleri enerji değerleri (sağ kısmında) ile ilgili revize işlemi için iterasyon bu ekranda yapılır. Öncelikle hazırlanan enerji seviyelerin ve kullanılan spektral geçişlerin (sağ ve sol kısımda 2. sütunda) listeleri programa okutulur. Sonraki aşamada, program çalıştırılır (Calculate). Yukarıda bahsedilen matris elemanlarından oluşan lineer-denklem sisteminin çözümü için birden fazla (en az 50) iterasyon yapılır. Enerji seviyelerinin istatistik sapma değerlerine (sağ ve sol kısımda 5. sütunda) bakılır. İterasyon sayısı arttırıldıkça, literatürden alınan ince-yapı enerji değerleri (sağ ve sol kısımda 3. sütunda) ile programın hesapladığı değerler (sağ ve sol kısımda 4. sütunda) arasındaki fark değişir. Değişim gözlenmediği durumda, programda iterasyon durdurulur. Revize edilen enerji değerleri paritelerine göre farklı listelere kaydedilir.

| Save Calculate Energies           Calculate         Repeat Reading         Iteration no.         75         Save Calculate Energies           Calculate         Repeat Reading         Iteration no.         75         Save Calculate         Show will deviation           Calculate         Calculate         Calculate         Save Calculate         Save Calculate           Calculate         Calculate         Calculate         Calculate           Calculate         Calculate         Calculate         Calculate           No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed Glo | obalFit                               |                        |                        |                         |       |        |           |                    |                      |                      |       | x |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|------------------------|------------------------|-------------------------|-------|--------|-----------|--------------------|----------------------|----------------------|-------|---|
| No.         No.         Repeat Reading         Iteration no.         75         Save GLP Levels         Save CP Levels         Show will deviation           Calculate         Repeat Reading         Iteration no.         75         Save GLP Levels         Save CP Levels         Show will deviation           Calculate         GLP Levels Fixed         C D Levels Fixed         C P Levels         C P Levels         C P Levels           No.         No. of         Image (cm-1)         No.         No. of         Image (cm-1)         Repeat Reading         Iteration no.         Teration Reading         Iteration Reading         Teration Reading         Iteration Reading         Teration Reading         Iteration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration Reading         Teration R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Eitofla                               |                        | a fram                 |                         |       |        |           |                    |                      |                      |       |   |
| Calculate         Repeat Reading         Netation no.         75         Save GLP Levels         Save CP Levels         Save CP Levels         Save CP Levels           C         Fit of Even and Odd Levels         C GLP Levels         C P Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         CP Levels           C         Fit of Even         CP Levels         CP Levels         CP Levels         CP Levels         CP Levels         CP Levels         CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels         Save CP Levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | Air Wav                               | elengths               | 35 110111              |                         |       |        | Sava Calo | ulated Energies    |                      |                      |       |   |
| Calculate         Repeat Reading         Iteration no.         75         Save GLP Levels         Save CP Levels         Show wL deviation           • Ft of Even and Odd Levels         • GLP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels           GLP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels           No.         No. of incest old         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         • CP Levels         •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | · · · · · · · · · · · · · · · · · · · |                        |                        | 1                       |       |        | Jave Cale | i                  |                      |                      | -     |   |
| •• Fr of Even and 0.dd Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels             •• GLP Levels                                                                                 |        | Calc                                  | ulate                  | Repeat Reading         | Iteration no. 75        | 9     | Gave G | LP Levels | Save CP Le         | vels                 | Show wl. deviation   |       |   |
| CPLevels           No.         No. of<br>lness         CPLevels         CPLevels           1         16         .000         .000         0.0005         2         1         1.0         14147.954         0.0006         1           2         17         1016.087         1016.090         0.0005         2         1.4         14375.201         14375.198         0.0006         1           3         19         1384.471         1384.471         0.0006         5         7         15599.266         16598.262         0.0006         6           5         11         1977.073         0.0006         6         8         17211.918         0.0008         7         6         17256.03         17625.664         0.0013           7         14         3255.03         0.0006         7         6         17256.564         0.0013           8         5         5243.679         5243.687         0.0014         12         1         1978.642         19745.664         0.0013           10         14         733.477         7473.342         0.0004         12         1         19745.642         0.0013           11         44         3.9752.33.57775.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Fit of Ev                             | en and Odd Lev         | vels C GLP Lev         | els Fixed 🛛 🔿 CP Levels | Fixed | Ы      | LP (      | Ground Level Parit | y CP Com             | bining Parity        |       |   |
| No. of<br>ines         Energy (cm-1)<br>old         stat.unc. (cm-1)         No. of<br>ines         Energy (cm-1)<br>old         stat.unc. (cm-1)           1         16         .000         .0005         1         1         14147.954         14147.954         0.0006           3         19         1394.470         1394.471         0.0005         1         1         14147.954         14147.954         0.0006           4         13         1985.128         1885.130         0.0007         4         10         15773.812         15773.814         0.0008           5         11         197.075         1970.709         0.0005         5         7         16569.258         0.001           6         21         2591.613         0.0005         6         8         17211.918         17211.915         0.0008           9         15         578.1169         578.164         0.0004         9         3         1856.042         0.0013           10         14         6227.419         0.0007         13         1985.375         1885.372         0.0007           11         47.43.947         7473.342         0.0007         13         1974.642         1974.649         0.           12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                                       | GLF                    | <sup>o</sup> Levels    |                         |       |        |           | CPLe               | vels                 |                      |       |   |
| Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc.         Inc. <thinc.< th="">         Inc.         Inc.         <thi< th=""><th>No</th><th>No. of</th><th>Ene</th><th>rgy (cm-1)</th><th>statiune (cm-1)</th><th></th><th>No</th><th>No. of</th><th>Energy</th><th>(cm-1)</th><th>stat unc. fr</th><th>:m-1)</th><th></th></thi<></thinc.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No     | No. of                                | Ene                    | rgy (cm-1)             | statiune (cm-1)         |       | No     | No. of    | Energy             | (cm-1)               | stat unc. fr         | :m-1) |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | lines                                 | DID                    | new                    | oracianies (orin 1)     | _     |        | lines     | old                | new                  |                      |       | _ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      | 16<br>17                              | .000                   | .000                   | 0.0005                  | ~     | 1      | 10        | 14147.954          | 14147.95             | 4 0.0006<br>P 0.0006 |       | * |
| 4         13         1885/128         1985/130         0.0007         4         10         15773/812         15773/814         0.0008           5         11         1970/705         1970/709         0.0006         5         7         16599/258         1559/258         0.001           6         21         2581/609         2520/381         0.0006         6         8         1721/318         1721/1915         0.0008           7         14         3250/381         0.0006         7         6         17825/603         17825/604         0.001           8         5         5246/573         5224/617         0.0006         10         9         18850/352         0.0007           10         14         6227/414         0.0006         10         9         18950/375         18950/375         18950/375         0.0007           11         4         7394/550         0.0014         12         1         19746/42         19746/49         0.           12         8         747347         774342         0.0007         13         5         20402.811         20402.810         0.0001           13         9         10094/887         10934/842         0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3      | 19                                    | 1394 470               | 1394 471               | 0.0003                  |       | 3      | 9         | 15698 781          | 15698.78             | 2 0.0006             |       |   |
| $ \begin{bmatrix} 5 & 11 & 1970.705 & 1970.709 & 0.006 & 5 & 7 & 16592.256 & 16592.258 & 0.001 \\ 6 & 21 & 2591.809 & 2591.613 & 0.0005 & 7 & 6 & 1721.918 & 1721.915 & 0.0008 \\ 7 & 14 & 3250.380 & 3250.381 & 0.0012 & 8 & 8 & 18235.558 & 0.0203 \\ 8 & 5 & 5249.673 & 5249.667 & 0.0012 & 8 & 8 & 18235.558 & 0.0008 \\ 9 & 11 & 5718.109 & 5718.116 & 0.0006 & 10 & 9 & 18896.375 & 18895.372 & 0.0007 \\ 11 & 4 & 6227.409 & 6227.414 & 0.0006 & 10 & 9 & 18895.375 & 18895.372 & 0.0007 \\ 11 & 4 & 7345.457 & 7473.342 & 0.0004 & 11 & 9 & 19214.527 & 19214.527 & 0.0007 \\ 12 & 8 & 7473.347 & 7473.342 & 0.0004 & 12 & 1 & 19749.642 & 19749.649 & 0. \\ 13 & 9 & 10094.888 & 0.0007 & 13 & 5 & 20402.811 & 20402.810 & 0.0003 \\ 14 & 8 & 3545.2601 & 3545.2600 & 0.0012 & 14 & 3 & 21331.597 & 21331.594 & 0.0018 \\ 15 & 6 & 35787.523 & 35787.523 & 0.0007 & 16 & 9 & 22106.016 & 20100.016 \\ 16 & 10 & 36954.643 & 36954.633 & 0.0007 & 16 & 9 & 22208.016 & 22106.016 & 0.0008 \\ 17 & 10 & 37172.730 & 37172.788 & 0.0006 & 17 & 3 & 22282.905 & 22282.808 & 0.0015 \\ 18 & 10 & 37209.732 & 37208.727 & 0.001 & 18 & 8 & 22537.291 & 22537.291 & 0.0005 \\ 19 & 8 & 37790.608 & 37790.609 & 0.0006 & 19 & 2 & 22883.644 & 22683.643 & 0.0012 \\ 20 & 5 & 38221.480 & 3823.488 & 0.0006 & 19 & 2 & 2288.364 & 22683.643 & 0.0012 \\ 21 & 4 & 3953.080 & 3853.074 & 0.0017 & 22 & 11 & 2462.681 & 0.0008 \\ 24 & 8 & 39402.523 & 39402.522 & 0.0017 & 22 & 11 & 2462.684 & 24462.881 & 0.0006 \\ 24 & 8 & 39402.523 & 39402.522 & 0.0007 & 24 & 12 & 25973.360 & 25473.367 & 0.0008 \\ 25 & 6 & 49733.138 & 49733.141 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0005 \\ 27 & 5 & 4984.437 & 4984.446 & 0.0011 & 27 & 16 & 2738.157 & 0.0008 \\ 26 & 6 & 49733.138 & 49733.141 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0006 \\ 27 & 4 & 5844.437 & 4984.446 & 0.0011 & 27 & 16 & 2738.152 & 20.0001 \\ 26 & 6 & 49733.138 & 49733.141 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0006 \\ 27 & 5 & 4984.437 & 4984.446 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0006 \\ 27 & 5 & 4984.437 & 4984.446 & 0.0011 & 26 & 12 & 276$ | ă.     | 13                                    | 1895.128               | 1895.130               | 0.0007                  |       | Ă.     | Ĭ0        | 15773.812          | 15773.81             | 4 0.0008             |       |   |
| 6         21         2591.609         2591.613         0.0006         6         8         17211.918         17211.915         0.0008           7         14         3250.381         0.0005         7         6         17825.603         17825.604         0.001           8         5         5249.673         5249.687         0.0012         8         8         18235.558         0.0001           9         11         5718.116         0.0006         10         9         18899.375         18895.372         0.0007           110         4         72344.550         0.0014         11         9         1921.4527         0.0005           12         8         7473.347         743.3450         0.0007         13         5         20402.811         20402.810         0.0003           14         8         36452.601         36452.600         0.0012         14         3         2133.1594         0.0018           15         6         3778.523         0.0007         16         9         22160.016         0.0008           17         10         3772.789         3772.788         0.0006         17         3         22282.06         22282.808         0.0012 <td>5</td> <td>11</td> <td>1970.705</td> <td>1970.709</td> <td>0.0006</td> <td></td> <td>5</td> <td>7</td> <td>16599.256</td> <td>16599.25</td> <td>B 0.001</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5      | 11                                    | 1970.705               | 1970.709               | 0.0006                  |       | 5      | 7         | 16599.256          | 16599.25             | B 0.001              |       |   |
| $ \begin{bmatrix} 7 & 14 & 3250.380 & 3250.381 & 0.0005 & 7 & 6 & 17825.603 & 17825.604 & 0.001 \\ 8 & 5 & 5249.679 & 5249.687 & 0.0012 & 8 & 8 & 1825558 & 1823558 & 0.0008 \\ 9 & 11 & 5718.109 & 5718.116 & 0.0004 & 9 & 3 & 18580.482 & 0.0017 \\ 10 & 14 & 6227.409 & 6227.414 & 0.0006 & 10 & 9 & 1895.375 & 18895.372 & 0.0007 \\ 11 & 4 & 7334.537 & 7394.550 & 0.0114 & 11 & 9 & 19214.527 & 19214.527 & 0.0005 \\ 12 & 8 & 7473.347 & 7473.342 & 0.0004 & 12 & 1 & 19749.642 & 19749.649 & 0. \\ 13 & 9 & 10094.887 & 10094.889 & 0.0007 & 13 & 5 & 20402.811 & 20402.810 & 0.0003 \\ 14 & 8 & 35452.601 & 35452.600 & 0.0012 & 14 & 3 & 21331.597 & 21331.594 & 0.0018 \\ 15 & 6 & 35787.523 & 35787.523 & 0.001 & 15 & 6 & 21441.680 & 21441.685 & 0.0011 \\ 16 & 10 & 3854.643 & 38954.639 & 0.0007 & 16 & 9 & 22206.016 & 22006.016 & 0.0008 \\ 17 & 10 & 37709.732 & 37172.788 & 0.0006 & 17 & 3 & 22282.806 & 22282.808 & 0.0015 \\ 18 & 10 & 37709.532 & 37209.727 & 0.001 & 18 & 8 & 22537.291 & 2.2537.291 & 0.0005 \\ 19 & 8 & 37790.608 & 37790.609 & 0.0006 & 19 & 2 & 22683.644 & 22683.643 & 0.0012 \\ 20 & 5 & 38221.490 & 38221.480 & 0.0006 & 12 & 6 & 22705.126 & 22705.127 & 0.001 \\ 21 & 4 & 38534.080 & 38534.074 & 0.0017 & 21 & 7 & 23246.900 & 23246.892 & 0.0011 \\ 22 & 7 & 39018.740 & 39018.744 & 0.0017 & 21 & 7 & 23246.900 & 23246.892 & 0.0011 \\ 22 & 8 & 39402.523 & 33402.522 & 0.0007 & 24 & 12 & 22587.361 & 2.0765.127 & 0.0008 \\ 24 & 8 & 39402.523 & 33402.522 & 0.0007 & 24 & 12 & 22587.365 & 0.0008 \\ 25 & 6 & 40457.728 & 40487.735 & 0.0011 & 25 & 10 & 26414.028 & 26414.022 & 0.0009 \\ 26 & 6 & 49733.138 & 4733.144 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0006 \\ 27 & 5 & 4984.437 & 43894.446 & 0.0011 & 27 & 16 & 27388.135 & 0.0007 \\ 28 & 6 & 51228.640 & 51228.648 & 0.0012 & 28 & 12 & 2742.311 & 2742.3191 & 0.0008 \\ 26 & 6 & 49733.138 & 4733.141 & 0.0011 & 26 & 12 & 26837.647 & 26837.656 & 0.0008 \\ 27 & 5 & 4984.437 & 43894.446 & 0.0011 & 27 & 16 & 27388.135 & 0.0007 \\ 28 & 6 & 51228.640 & 51228.648 & 0.0016 & 32 & 22 & 28255.725 & 0.8557.70 & 0.0007 \\ 29 & 4 & $ | 6      | 21                                    | 2591.609               | 2591.613               | 0.0006                  |       | 6      | 8         | 17211.918          | 17211.91             | 5 0.0008             |       |   |
| 8         5         5243 679         5243 687         0.0012         8         8         18235 558         18235 558         0.0008           9         11         5718 116         0.0004         9         3         18690.480         18580.482         0.0017           11         4         7394.537         7394.537         7394.500         0.0014         11         9         19214.527         19214.527         0.0005           12         8         7473.347         7473.342         0.0004         12         1         19749.642         19749.649         0.003           14         8         5452.601         0.5452.600         0.0012         14         3         2131.594         0.0008           15         6         35787.523         35977.523         0.0007         16         9         22106.016         2010.016         0.0008           16         10         36954.643         36954.639         0.0007         16         9         22106.016         20.0016         20.0016         120.0016         120.0016         120.0016         120.0016         120.0017         18         10         3770.609         37790.609         37790.609         37790.609         17         322268.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7      | 14                                    | 3250.380               | 3250.381               | 0.0005                  |       | 7      | 6         | 17825.603          | 17825.60             | 4 0.001              |       |   |
| 9         11         5/18.119         5/18.116         0.0004         9         3         1858.480         1880.482         0.0013           10         14         6227.409         6227.414         0.006         10         9         1885.375         18995.372         0.0007           11         4         7394.537         7394.557         7473.342         0.0004         12         1.974.642         1974.9642         0         0.0003           13         9         10034.887         10094.889         0.0007         13         5         20402.811         20402.810         0.0003           14         8         3545.601         35452.600         0.0012         14         3         2131.597         2133.1594         0.0018           15         6         35787.523         0.001         15         6         21441.650         0.001           16         10         36954.643         36954.639         0.0006         17         3         2228.060         2228.00         2228.00         2228.00         2228.00         224.015         16         0.0008           17         10         37727.72         37209.727         0.001         18         8         2228.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8      | 5                                     | 5249.679               | 5249.687               | 0.0012                  |       | 8      | 8         | 18235.558          | 18235.55             | B 0.0008             |       |   |
| 10         14         6227,419         6227,414         0.0006         10         9         18859,372         18895,372         0.0007           11         4         7394,550         0.0014         11         9         13214,527         19214,527         0.0005           13         9         10094,887         10094,889         0.0007         13         5         2040,2811         2040,2810         0.0003           14         8         35452,601         35452,600         0.0012         14         3         2131,597         2131,594         0.0018           15         6         35787,523         35787,523         0.001         15         6         21441,680         21441,685         0.001           16         10         3654,643         3654,633         0.0007         16         9         22106,016         22080         0.0005           18         10         3720,972         0.001         18         8         22537,291         22537,291         0.0005           19         8         37790,608         37790,609         0.0006         19         2         22683,644         22683,643         0.0012           21         4         385400         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9      | 11                                    | 5/18.109               | 5/18.116               | 0.0004                  |       | 9      | 3         | 18580.480          | 18580.48             | 2 0.0013             |       |   |
| 11         4         734,337         734,342         0.0001         11         5         132,43,27         132,43,27         0.0003           13         9         10034,887         10094,889         0.0007         13         5         20402,811         20402,810         0.0003           14         8         35452,600         0.0012         14         3         2133,1597         2133,1594         0.001           15         6         35787,523         35787,523         0.001         15         6         21441,680         21441,685         0.001           16         10         36954,643         36954,633         0.0006         17         3         22282,806         22282,808         0.0015           18         10         3720,732         3720,727         0.001         18         8         22537,291         22582,808         0.0012           20         5         38221,490         38221,488         0.0006         19         2         2268,644         2462,681         0.0008           21         4         3854,074         0.0013         21         7         2346,900         2246,892         0.0011           22         7         39018,744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11     | 14                                    | 5227.409<br>7204 E27   | 5227.414<br>7394 EE0   | 0.0006                  |       | 11     | 9         | 18895.375          | 18895.37             | 2 0.0007             |       |   |
| 13         9         10134,887         10094,887         0.0007         13         5         2040,2811         2040,2810         0.0003           14         8         3545,2601         35452,600         0.0012         14         3         2133,1597         2133,1594         0.0003           16         10         36595,643         36595,633         0.0007         16         9         22106,016         21441,850         0.001           17         10         37172,788         0.0006         17         3         22282,806         22282,800         0.0015           18         10         37209,732         37209,727         0.001         18         8         22537,291         22583,644         22683,644         22683,643         0.0012           20         5         38221,480         3823,074         0.0013         21         7         32346,800         23246,802         0.0011           21         4         3853,074         0.0013         21         7         3246,800         23246,802         0.0011           22         7         39018,744         0.0007         22         11         24452,861         0.0008           23         9         39221,681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12     | 4                                     | 7334.037               | 7354.000               | 0.0014                  |       | 12     | 1         | 19214.027          | 19214.02             | 7 0.0000<br>9 0      |       |   |
| 14         8         35452.601         35452.600         0.00012         14         3         21331.597         21331.593         0.0018           15         6         35787.523         35787.523         0.001         15         6         21441.680         21441.685         0.001           16         10         36594.643         36594.633         36594.533         0.0007         16         9         22106.016         0.0008           17         10         37127.790         37172.788         0.0006         17         3         22282.806         22282.808         0.0015           18         10         37209.722         0.001         18         8         22537.291         22057.21         0.0005           19         8         37790.608         37790.609         0.0006         19         2         22683.644         22883.243         0.0012           20         5         38221.490         38221.488         0.0007         22         11         24452.684         24462.684         0.0008           21         4         39402.523         39402.522         0.0007         24         12         25973.367         0.0008           24         8         39402.523 <td>13</td> <td>ğ</td> <td>10094 887</td> <td>10094 889</td> <td>0.0004</td> <td></td> <td>13</td> <td>5</td> <td>20402 811</td> <td>20402.81</td> <td>0.0003</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13     | ğ                                     | 10094 887              | 10094 889              | 0.0004                  |       | 13     | 5         | 20402 811          | 20402.81             | 0.0003               |       |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14     | 8<br>8                                | 35452.601              | 35452.600              | 0.0012                  |       | 14     | 3         | 21331.597          | 21331.59             | 4 0.0018             |       |   |
| 16         10         38954.633         3954.633         0.0007         16         9         22106.016         22106.016         0.0008           17         10         37127.90         37127.98         0.0006         17         3         22282.806         22228.208         0.2228.208         0.0005           18         10         37209.732         3720.609         0.0006         19         2         2263.644         22282.806         0.0015           20         5         38221.480         38221.480         0.0006         20         6         22705.126         22705.127         0.0011           21         4         38534.074         0.0013         21         7         23246.900         23246.892         0.0011           22         7         39018.744         0.0007         22         11         24452.661         0.0008           23         9         39221.681         0.9017         24         12         25973.360         25973.37         0.0008           24         8         39402.523         0.9007         24         12         25973.360         25973.357         0.0008           25         6         44957.728         40457.735         0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15     | 6                                     | 35787.523              | 35787.523              | 0.001                   |       | 15     | 6         | 21441.690          | 21441.68             | 5 0.001              |       |   |
| 17         10         37172.790         37172.788         0.0006         17         3         22282.806         22282.808         0.0015           18         10         37209.732         37209.727         0.001         18         8         22537.291         22537.291         20507           19         8         37790.608         37790.609         0.0006         19         2         22683.644         22683.643         0.0012           20         5         38221.490         38221.488         0.0006         20         6         22705.126         22705.127         0.001           21         4         38534.080         38534.074         0.0017         22         11         24452.684         24452.681         0.0008           23         9         39221.691         39221.688         0.001         23         10         24522.701         24522.650         0.0006           24         8         39402.522         0.0007         24         12         25973.367         0.0008           25         6         40457.738         40457.735         0.0011         26         12         2687.647         26837.656         0.0007           26         6         51228.640 <td>16</td> <td>10</td> <td>36954.643</td> <td>36954.639</td> <td>0.0007</td> <td></td> <td>16</td> <td>9</td> <td>22106.016</td> <td>22106.01</td> <td>5 0.0008</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16     | 10                                    | 36954.643              | 36954.639              | 0.0007                  |       | 16     | 9         | 22106.016          | 22106.01             | 5 0.0008             |       |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17     | 10                                    | 37172.790              | 37172.788              | 0.0006                  |       | 17     | 3         | 22282.806          | 22282.80             | B 0.0015             |       |   |
| 19         8         37790.608         37790.609         0.0006         19         2         22683.644         22683.644         22683.643         0.0012           20         5         38221.480         0.8221.480         0.0006         20         6         22705.126         22705.127         0.0011           21         4         38534.080         38534.074         0.0013         21         7         23246.900         23246.892         0.0011           22         7         39018.740         39018.744         0.0007         22         11         24452.684         24452.681         0.0008           23         9         39221.681         39221.681         0.0011         23         10         2452.701         2452.265         0.0006           24         8         39402.523         39402.52         0.0007         24         12         25973.360         25973.367         0.0008           25         6         40457.728         40457.735         0.0011         26         12         26837.647         26837.656         0.0005           27         5         49884.447         49884.446         0.0011         27         16         27388.127         27388.127         2743.819 <td>18</td> <td>10</td> <td>37209.732</td> <td>37209.727</td> <td>0.001</td> <td></td> <td>18</td> <td>8</td> <td>22537.291</td> <td>22537.29</td> <td>1 0.0005</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18     | 10                                    | 37209.732              | 37209.727              | 0.001                   |       | 18     | 8         | 22537.291          | 22537.29             | 1 0.0005             |       |   |
| 20         5         38221,490         38221,488         0.0006         20         6         22745,125         22705,127         0.001           21         4         38534,080         38534,074         0.0013         21         7         23246,892         0.0011           22         7         39018,740         39018,744         0.0007         22         11         24452,684         24462,681         0.0008           23         9         39221,691         39221,688         0.001         23         10         24522,701         24522,635         0.0006           24         8         39402,523         39402,522         0.0007         24         12         29973,360         25973,367         0.0008           25         6         40457,728         40457,735         0.0011         26         12         26837,647         26837,656         0.0005           26         6         4973,114         0.0011         27         16         2788,127         2788,135         0.0007           28         6         5122,4005         5124,005         0.0013         29         3         2764,814         27645,814         0.0014           30         3         51324,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19     | 8                                     | 37790.608              | 37790.609              | 0.0006                  |       | 19     | 2         | 22683.644          | 22683.64             | 3 0.0012             |       |   |
| 21         4         3834,080         38934,074         0.0013         21         7         22246,500         23446,892         0.0011           22         7         38018,740         39018,744         0.0007         22         11         24462,864         2346,892         0.0008           23         9         39221,681         39218,284         0.001         23         10         2452,201         24462,864         0.0008           24         8         39402,523         3940,252         0.0007         24         12         25973,367         0.0008           25         6         40457,728         40457,738         0.0011         26         12         26837,647         26837,656         0.0005           26         6         49733,138         4973,141         0.0011         27         16         27388,127         27388,135         0.0007           28         6         5122,405         51524,005         51524,005         51524,005         51524,005         51524,005         2744         301         3         27548,814         2743,813         0.0006           30         3         52137,778         52137,777         0.0015         33         10         28454,540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20     | 5                                     | 38221.490              | 38221.488              | 0.0006                  |       | 20     | 5         | 22705.126          | 22705.12             | 7 0.001              |       |   |
| 22         7         33010,144         0.0007         22         11         2442,264         2442,265         0.0006           24         8         33221,631         39221,632         39402,522         0.0007         24         12         2452,654         24452,655         0.0006           24         8         39402,523         39402,522         0.0007         24         12         25973,360         25973,367         0.0008           25         6         49457,728         40457,735         0.0011         25         10         26414,022         0.0009           26         6         49733,138         49733,141         0.0011         27         16         27388,127         27388,135         0.0007           28         6         51228,640         51228,640         5122,405         0.0013         29         3         2745,814         2745,818         0.0014           30         3         52137,778         5213,777         0.0015         30         9         2815,526         28315,299         0.0006           32         4         5273,498         5273,498         0.0016         32         2         2855,423         0.0007           33         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21     | 4                                     | 38534.080              | 38534.074              | 0.0013                  |       | 21     | 11        | 23246.900          | 23246.83             | 2 0.0011             |       |   |
| 23         3         3221,103         33402,523         39402,522         0.0007         24         15         245,103         245,235         0.0008           25         6         40457,728         40457,735         0.0011         25         10         264,14,028         26414,022         0.0009           26         6         49733,138         49733,114         0.0011         26         12         26837,667         20897,667         0.0005           27         5         49894,497         4988,446         0.0011         27         16         27388,127         27388,135         0.0007           28         6         51228,640         51228,640         0.0012         28         12         27423,911         27423,919         0.0008           29         4         51524,005         51224,005         0.0013         29         3         27545,814         27545,818         0.0014           30         3         52137,778         52137,777         0.0015         30         9         28154,536         28154,540         0.0017           31         4         52734,998         0.0016         32         2         2855,725         2855,720         0.0006           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22     | 4                                     | 30010.740              | 33010.744              | 0.0007                  |       | 22     | 10        | 24402.004          | 24402.00             | 0.0006               |       |   |
| 25         6         40457.728         40457.735         0.0011         25         10         26414.028         26414.022         0.0009           26         6         49733.138         49733.141         0.0011         26         12         26837.647         26837.656         0.0005           27         5         4984.437         4984.446         0.0011         27         16         27388.137         27398.135         0.0007           28         6         51228.640         51228.648         0.0012         29         12         27423.911         27423.913         0.0008           29         4         51524.005         51524.005         51524.005         0.0013         29         3         2754.814         2745.818         0.0014           30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.540         0.0016           31         4         52734.988         52734.998         0.0016         32         2         2855.725         2855.720         0.0006           32         4         52734.988         52734.988         0.0016         32         2         2855.725         2855.720         0.0006 <td>24</td> <td>8</td> <td>39402 523</td> <td>39402 522</td> <td>0.001</td> <td></td> <td>24</td> <td>12</td> <td>25973.360</td> <td>25973.36</td> <td>7 0.0008</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24     | 8                                     | 39402 523              | 39402 522              | 0.001                   |       | 24     | 12        | 25973.360          | 25973.36             | 7 0.0008             |       |   |
| 26         6         49733.138         49733.141         0.0011         26         12         26837.647         26837.656         0.0005           27         5         49884.437         49884.446         0.0011         27         16         27388.127         27388.135         0.0007           28         6         51228.640         0.0012         28         12         2742.3911         27423.919         0.0008           29         4         51524.005         51524.005         0.0013         29         3         27545.814         27423.919         0.0008           30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.540         0.001           31         4         52169.790         52163.784         0.0018         31         15         28315.285         28315.299         0.0006           32         4         52734.398         52734.998         0.0015         33         10         28554.572         0.0007           33         4         52850.057         52850.664         0.0015         33         10         29456.5407         28554.23         0.0008           34         5         53302.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25     | ĕ                                     | 40457.728              | 40457.735              | 0.0011                  |       | 25     | 10        | 26414.028          | 26414.02             | 2 0.0009             |       |   |
| 27         5         49894.497         49894.446         0.0011         27         16         27388.127         27388.135         0.0007           28         6         51228.640         51228.648         0.0012         28         12         27423.911         27423.919         0.0008           29         4         51524.005         51524.005         0.0013         29         3         27545.814         27455.818         0.0014           30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.540         0.001           31         4         52759.790         52163.744         0.0018         31         15         2815.295         28055.725         2855.423         0.0006           32         4         52734.988         52734.989         0.0015         33         10         28565.407         28565.423         0.0008           34         5         53302.773         53302.781         0.0018         34         10         28498.079         0.0006           35         3         53333.471         53333.486         0.0015         36         5         23768.5275         53885.375         0.0008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26     | 6                                     | 49733.138              | 49733.141              | 0.0011                  |       | 26     | 12        | 26837.647          | 26837.65             | 6 0.0005             |       |   |
| 28         6         51228.640         51228.640         0.0012         28         12         2742.3911         2742.3919         0.0008           29         4         51524.005         0.0013         29         3         2754.5814         2745.818         0.0014           30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.536         0.0014           31         4         52163.790         52163.784         0.0018         31         15         28315.285         28155.299         0.0006           32         4         52734.988         52734.988         0.0016         32         2         2855.725         2855.720         0.0007           33         4         52858.057         52858.064         0.0015         33         10         2898.079         29498.079         0.0006           34         5         53302.773         53302.781         0.0018         34         10         29498.079         0.0006           35         3         53333.471         53333.475         0.0008         36         5         5689.759         53889.775         0.0015         36         2         31765.808         31765.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27     | 5                                     | 49884.437              | 49884.446              | 0.0011                  |       | 27     | 16        | 27388.127          | 27388.13             | 5 0.0007             |       |   |
| 29         4         51524.005         51524.005         0.0013         29         3         27545.814         27545.818         0.0014           30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.540         0.001           31         4         52163.790         52169.784         0.0018         31         15         28315.285         28154.540         0.001           32         4         52734.988         52734.998         0.0016         32         2         28555.425         2855.725         0.0007           33         4         52688.057         52856.064         0.0015         33         10         28565.407         28565.423         0.0008           34         5         53302.773         53302.781         0.0018         34         10         29498.078         29498.079         0.0006           35         3         53333.471         53382.775         0.0015         36         2         37785.808         31785.814         0.0037           36         5         53683.775         53885.375         0.0015         36         2         31785.808         31785.814         0.0037 <td< td=""><td>28</td><td>6</td><td>51228.640</td><td>51228.648</td><td>0.0012</td><td></td><td>28</td><td>12</td><td>27423.911</td><td>27423.91</td><td>9 0.0008</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28     | 6                                     | 51228.640              | 51228.648              | 0.0012                  |       | 28     | 12        | 27423.911          | 27423.91             | 9 0.0008             |       |   |
| 30         3         52137.778         52137.777         0.0015         30         9         28154.536         28154.540         0.001           31         4         52159.790         52169.784         0.0018         31         15         2815.295         2815.299         0.0006           32         4         52734.988         52734.988         52734.988         0.0016         32         2         28555.725         28555.720         0.0007           33         4         52858.057         52858.064         0.0015         33         10         28565.407         28565.423         0.0008           34         5         53302.773         53302.781         0.0018         34         10         28498.079         29498.079         0.0006           35         3         53333.471         53333.486         0.0015         36         2         31765.808         31785.808         31785.808         0.0008           36         5         53689.755         53685.375         53685.375         0.0015         36         2         31765.808         31785.804         0.0037           37         4         53685.375         53885.394         0.0013         37         6         32160.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29     | 4                                     | 51524.005              | 51524.005              | 0.0013                  |       | 29     | 3         | 27545.814          | 27545.81             | B 0.0014             |       |   |
| 31         4         52183.730         52183.784         0.0018         31         15         23315.285         28315.295         0.0006           32         4         52734.988         52734.998         0.0016         32         2         28557.255         28557.250         0.0007           33         4         52858.057         52858.064         0.0015         33         10         28565.407         28565.423         0.0008           34         5         53302.773         53302.781         0.0016         35         12         30353.357         0.0008           35         53333.471         53333.460         0.0016         35         12         30353.357         0.0008           36         5         53689.769         53689.775         0.0015         36         2         31785.808         31785.814         0.0037           37         4         53885.375         53885.394         0.0013         37         6         32160.952         32160.956         0.0009           38         2         54366.224         54366.231         0.0009         38         7         33204.375         33204.389         0.0009           39         1         54434.900         54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30     | 3                                     | 52137.778              | 52137.777              | 0.0015                  |       | 30     | 9         | 28154.536          | 28154.54             | U U.UU1              |       |   |
| 32         4         52/34,398         52/34,398         0.0016         32         2         2052,729         2865,720         0.0007           33         4         5268,057         5268,064         0.0015         33         10         2856,5407         2865,423         0.0008           34         5         53302,773         53302,781         0.0016         34         10         2865,423         0.0008           35         3         53333,471         53333,486         0.0016         35         12         30353,363         30353,375         0.0008           36         5         53683,775         53683,775         0.0015         36         2         31785,808         31785,814         0.0037           37         4         53895,375         53885,375         53885,374         0.0009         38         7         32201,058         32201,058         0.0009           38         2         54366,231         0.0009         38         7         32201,058         32201,058         0.0009           39         2         54434,900         54434,325         0.0019         39         7         33204,375         33204,389         0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31     | 4                                     | 52169.790              | 52159.784              | 0.0018                  |       | 31     | 15        | 28315.285          | 28315.29             | 9 0.0005             |       |   |
| 34         5         5300,2773         5300,773         0.0018         34         10         29498,078         29498,079         0.0006           35         3         5333,371         5330,773         0.0018         34         10         29498,079         0.0006           35         3         5333,375         0.0016         35         12         3035,363         30253,375         0.0008           36         5         5369,755         5368,775         0.0015         36         2         31765,808         31765,804         0.0037           37         4         5366,224         54366,231         0.0009         37         6         32160,952         32160,955         0.0008           38         2         54366,224         54366,231         0.0009         38         7         32201,975         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375         33204,375 <td>32</td> <td>4</td> <td>92734.388<br/>52959.057</td> <td>52734.338<br/>52959.064</td> <td>0.0016</td> <td></td> <td>32</td> <td>2<br/>10</td> <td>26020.720</td> <td>28020.72<br/>29565-42</td> <td>0.000/<br/>3 0.0009</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32     | 4                                     | 92734.388<br>52959.057 | 52734.338<br>52959.064 | 0.0016                  |       | 32     | 2<br>10   | 26020.720          | 28020.72<br>29565-42 | 0.000/<br>3 0.0009   |       |   |
| 35         53333.471         53333.471         53333.476         0.0016         35         12         20353.363         20353.375         0.0008           36         5         55689.769         53889.775         0.0015         36         2         31765.808         31785.814         0.0037           37         4         53885.375         53885.394         0.0013         37         6         32160.952         32160.965         0.0008           38         2         54366.224         54366.231         0.0009         38         7         32201.058         0.0009           39         1         54434.900         54434.925         0.0009         39         7         33204.375         33204.389         0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34     | 5                                     | 53302 773              | 53302 781              | 0.0018                  |       | 34     | 10        | 29498 078          | 29498.07             | 3000.0               |       |   |
| 36         5         53689,769         53689,775         0.0015         36         2         31785,808         31785,814         0.0037           37         4         53885,375         53885,394         0.0013         37         6         32160,952         32160,955         0.0009           38         2         54366,224         54362,321         0.0009         38         7         33201,058         0.20009           39         1         54434,900         54434,925         0.0009         39         7         33204,375         33204,389         0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35     | 3<br>3                                | 53333.471              | 53333,486              | 0.0016                  |       | 35     | 12        | 30353.363          | 30353.37             | 5 0.0008             |       |   |
| 37         4         53885.375         53885.394         0.0013         37         6         32160.952         32160.955         0.0008           38         2         54366.224         54366.231         0.0009         38         7         32201.068         32201.058         0.0009           39         1         54434.300         54434.325         0         39         7         33204.375         33204.389         0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36     | 5                                     | 53689.769              | 53689.775              | 0.0015                  |       | 36     | 2         | 31785.808          | 31785.81             | 4 0.0037             |       |   |
| 38         2         54366.224         54366.231         0.0009         38         7         32201.068         32201.058         0.0009           39         1         54434.900         54434.925         0         39         7         33204.375         33204.389         0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37     | 4                                     | 53885.375              | 53885.394              | 0.0013                  |       | 37     | 6         | 32160.952          | 32160.96             | 5 0.0008             |       |   |
| 39 1 54434.900 54434.925 0. 39 7 33204.375 33204.389 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38     | 2                                     | 54366.224              | 54366.231              | 0.0009                  |       | 38     | 7         | 32201.068          | 32201.05             | B 0.0009             |       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39     | 1                                     | 54434.900              | 54434.925              | 0.                      |       | 39     |           | 33204.375          | 33204.38             | 9 0.0006             |       |   |

Şekil 3.13: Her bir enerji seviyesinin literatürdeki değerleri, hesaba katılan spektral-çizgi sayısı, "Global-fit Programı" sonucunda revize edilen enerji değerleri ve istatistik hataları.

## 4. BULGULAR

Bu çalışmada, FT Spektroskopisi yöntemi ile silindir katotunda Lantan elementi bulunan oluşturulan La-Ar plazmasının 330 nm–1450 nm (30000 cm<sup>-1</sup>–6900 cm<sup>-1</sup>) spektral-bölgede ölçülen FT-Spektrumu incelenerek, ilk kez sistematik olarak tüm La II aiy gösteren çizgiler analiz edildi.

Literatürde sınıflandırılmış toplam 344 La II çizgisinin ağırlık-merkezi dalgaboyları FT spektrumunda gözlenen spektrumların Klasifikasyon programı [4-5] yardımıyla, teorik spektrum ile simüle edilerek doğrulandı. Global-fit programı [6] ile bu çizgiler temel alınarak, her bir çift-pariteli ince-yapı enerji seviyesinin bir sütuna ve her bir tek-pariteli seviyenin de bir satıra tekabül ettiği bir geçiş matrisi oluşturuldu. Matris elemanları, çizgilerin deneysel ağırlık-merkezi dalgasayılarını ve ağırlıklandırma faktörlerini (wf) içerir. Bu geçiş matrisi ile kararlı bir lineer denklem sistemi hazırlandı. Daha sonra elde edilen sistem, en küçük kareler yöntemi kullanılarak çözüldü ve hem enerji değerleri hem de bu değerlerin sapma aralıkları iyileştirildi.

La II'nin taban seviyesinin ağırlık-merkezi, tüm seviyelerin ağırlık-merkezi değerleri ile birlikte fit sırasında değiştirildi. Sonuç kısmında, temel durum enerjisi sıfıra ayarlandı ve bu sapma hesaplanan tüm enerjilere eklendi. Tüm seviye enerjilerinin istatistiksel belirsizliği, seviyeleri birbirine bağlayan çizgilerin sayısına ve ağırlık faktörü ile tanımladığımız kalitesine bağlıdır.

Revize edilen enerji seviyelerinin belirlenmesi için, FT spektrumunda gözlenen ve sınıflandırılan 344 La II spektral geçiş Tablo 4.1'de verildi. Bu geçişlerin ayrışmışlık durumuna ve Sinyal/Gürültü oranına göre belirlenen ağırlık faktörü (wf) değerleri, "Global-fit Programı"nın [6] oluşturduğu lineer denklem sisteminde kullanıldı.

İlk aşamada; daha önce belirtilen 344 satır değerlendirilmiş ve 92 revize edilmiş enerji değeri belirlenmiştir. FT spektrumundan belirlenen ağırlık-merkezi dalga-sayıları ve revize edilmiş enerji değerlerinden hesaplanan dalga sayıları arasındaki fark Denklem (4.1)'deki şekilde hesaplandı ve tüm bu çizgiler için  $\Delta v \leq 0.005$  cm<sup>-1</sup> olarak bulundu. Şekil 4.1'de "Global-fit Programı"nda sonuç çıktılarından biri olan enerji seviyeleri arasındaki geçişleri noktalar halinde görülmektedir. Şekil 4.1'de satırlar çift-pariteli, sütunlar ise tek-pariteli ince-yapı seviyelerini göstermektedir. Kutular içerisindeki noktalar, alt-üst enerji seviyeleri arasındaki çalışmada kullanılan her bir geçişi ifade eder ve spektral çizgilerin standart sapma değerlerinin ne mertebede olduğunu gösterir. "Global-fit Programı"nda bu noktalar kırmızı, mavi ve yeşil renkte ayarlanmıştır. Enerji seviyelerinin revize edilmesi işlemleri süresince, spektral-çizgilerin ağırlık-merkezlerini ne kadar doğrulukla bulunduğu, bu pencereden görüldü. Sol üst köşede bulunan standart sapma değeri, spektral-çizgiler için elde edilen ağırlık-merkezi dalga-sayısı değerlerinin maksimum standart sapmasını belirleyen kutudur. İncelenen çizgilerin ağırlıkmerkezi dalga-sayılarının standart sapma değerleri, Şekil 4.1'de görüldüğü gibi,  $\Delta v \leq$ 0.005 cm<sup>-1</sup> (yeşil renkli noktalar) olarak hesaplandı.

$$\Delta v = v_{\text{vakum}} - |E_{\text{cift}} - E_{tek}|$$
(4.1)



Şekil 4.1: "Global-fit Programı"nda spektral-çizgilerin iterasyon sonucu elde edilen ağırlıkmerkezi dalga-sayısı sapma değerlerini gösteren pencere.

İkinci aşama olarak; yüksek La II ince-yapı enerji seviyelerinin daha yüksek hassasiyetle tayini için, MIT dalga-boyu tablolarından [3] 81 çizgi kullanıldı. Ancak bu kez ilk aşamada revize edilen 94 alt enerji seviyesi, en küçük kareler fit metodunda sabit alındı. 81 çizginin tümü için ağırlık faktörü uygulanmamıştır. Bu prosedürle, 20 çift-pariteli ve bir tek-pariteli yüksek ince-yapı seviyesinin enerji düzeltmeleri belirlendi.

Tablo 4.2'de ise, MIT dalga-boyu tablolarından [3] alınan ve FT spektrumun aralığında yer almadığı için ağırlık faktörü (wf) uygulanmayan fakat global-fit programında kullanılan La II spektral çizgileri gösterildi. Bu 81 geçişin MIT [3]'de belirtilen ağırlık merkezi dalgasayıları ve sınıflandırmaları yardımıyla, yüksek seviyelerdeki ince-yapı seviyelerinin de revize edilmesi sağlandı.

**Tablo 4.1:** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çiftpariteli seviyenin yörüngesel açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü değeri).

| λ <sub>hava</sub><br>(nm) | Vvakum<br>(cm <sup>-1</sup> ) | Δν<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{cift}}$<br>(cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|---------------------------|-------------------------------|---------------------------|-----------------------------------------|--------------|------------------------------------------|---------------|----|
| 333.74918                 | 29954.006                     | -0.001                    | 33204.388                               | 2            | 3250.381                                 | 3             | 3  |
| 337.63305                 | 29609.449                     | 0.004                     | 32201.058                               | 3            | 2591.613                                 | 2             | 1  |
| 338.09094                 | 29569.349                     | -0.003                    | 32160.965                               | 1            | 2591.613                                 | 2             | 5  |
| 345.21806                 | 28958.901                     | -0.003                    | 30353.375                               | 1            | 1394.471                                 | 2             | 3  |
| 350.99866                 | 28481.990                     | 0.001                     | 29498.079                               | 2            | 1016.090                                 | 3             | 1  |
| 351.29153                 | 28458.246                     | 0.001                     | 30353.375                               | 1            | 1895.130                                 | 1             | 3  |
| 353.36256                 | 28291.459                     | 0.004                     | 21441.685                               | 1            | 49733.140                                | 1             | 1  |
| 355.08105                 | 28154.540                     | 0.000                     | 28154.540                               | 1            | 0.000                                    | 2             | 1  |
| 355.72458                 | 28103.608                     | 0.000                     | 29498.079                               | 2            | 1394.471                                 | 2             | 1  |
| 357.00580                 | 28002.753                     | 0.000                     | 26837.656                               | 3            | 54840.409                                | 3             | 1  |
| 358.16628                 | 27912.025                     | -0.002                    | 25973.367                               | 1            | 53885.394                                | 2             | 1  |
| 358.54873                 | 27882.253                     | 0.005                     | 28154.540                               | 1            | 56036.788                                | 2             | 1  |
| 359.06204                 | 27842.394                     | 0.001                     | 27388.135                               | 2            | 55230.528                                | 1             | 1  |
| 359.65977                 | 27796.123                     | 0.004                     | 27388.135                               | 2            | 55184.254                                | 2             | 1  |
| 360.10495                 | 27761.761                     | -0.001                    | 30353.375                               | 1            | 2591.613                                 | 2             | 1  |
| 360.12343                 | 27760.337                     | 0.002                     | 27423.919                               | 1            | 55184.254                                | 2             | 3  |
| 360.63956                 | 27720.609                     | -0.001                    | 28315.299                               | 3            | 56035.909                                | 4             | 1  |
| 360.81531                 | 27707.106                     | 0.003                     | 24462.681                               | 2            | 52169.784                                | 1             | 1  |
| 360.91858                 | 27699.179                     | 0.001                     | 32201.058                               | 3            | 59900.236                                | 2             | 1  |
| 361.23265                 | 27675.097                     | 0.001                     | 24462.681                               | 2            | 52137.777                                | 3             | 1  |
| 361.85986                 | 27627.129                     | 0.005                     | 22106.016                               | 2            | 49733.140                                | 1             | 1  |
| 362.88178                 | 27549.330                     | -0.003                    | 28565.423                               | 4            | 1016.090                                 | 3             | 3  |
| 363.71429                 | 27486.273                     | 0.000                     | 33204.388                               | 2            | 5718.115                                 | 1             | 3  |
| 363.91157                 | 27471.373                     | 0.001                     | 26414.022                               | 2            | 53885.394                                | 2             | 1  |
| 364.10611                 | 27456.696                     | 0.004                     | 64411.332                               | 3            | 36954.640                                | 3             | 1  |
| 364.16476                 | 27452.274                     | 0.000                     | 27388.135                               | 2            | 54840.409                                | 3             | 1  |
| 364.54132                 | 27423.917                     | -0.002                    | 27423.919                               | 1            | 0.000                                    | 2             | 3  |
| 365.01757                 | 27388.137                     | 0.002                     | 27388.135                               | 2            | 0.000                                    | 2             | 1  |
| 366.20667                 | 27299.208                     | -0.001                    | 28315.299                               | 3            | 1016.090                                 | 3             | 1  |
| 366.52164                 | 27275.749                     | -0.004                    | 26414.022                               | 2            | 53689.775                                | 3             | 1  |
| 367.02232                 | 27238.542                     | -0.001                    | 64411.332                               | 3            | 37172.789                                | 4             | 1  |
| 369.42596                 | 27061.321                     | -0.003                    | 24462.681                               | 2            | 51524.005                                | 2             | 3  |
| 369.61148                 | 27047.738                     | 0.000                     | 26837.656                               | 3            | 53885.394                                | 2             | 1  |
| 370.17995                 | 27006.203                     | 0.000                     | 28315.299                               | 3            | 55321.502                                | 4             | 1  |
| 370.58102                 | 26976.976                     | 0.002                     | 33204.388                               | 2            | 6227.414                                 | 2             | 3  |
| 371.35394                 | 26920.829                     | 0.001                     | 28315.299                               | 3            | 1394.471                                 | 2             | 3  |
| 371.48572                 | 26911.279                     | 0.001                     | 32160.965                               | 1            | 5249.687                                 | 0             | 3  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : gift-pariteli seviye,  $M_{cift}$ : Global-fit programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{ m cift}$ $({ m cm}^{-1})$ | $J_{ m cift}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|--------------------------------|---------------|----|
| 371.55216 | 26906.467                | 0.001                     | 29498.079                               | 2            | 2591.613                       | 2             | 3  |
| 371.79690 | 26888.756                | -0.003                    | 26414.022                               | 2            | 53302.781                      | 1             | 1  |
| 372.07093 | 26868.953                | -0.002                    | 28315.299                               | 3            | 55184.254                      | 2             | 1  |
| 372.50486 | 26837.654                | -0.002                    | 26837.656                               | 3            | 0.000                          | 2             | 1  |
| 373.14172 | 26791.850                | -0.003                    | 28315.299                               | 3            | 55107.152                      | 4             | 1  |
| 373.50249 | 26765.972                | 0.005                     | 24462.681                               | 2            | 51228.648                      | 3             | 1  |
| 373.58492 | 26760.066                | -0.003                    | 28154.540                               | 1            | 1394.471                       | 2             | 1  |
| 373.64058 | 26756.080                | 0.001                     | 28565.423                               | 4            | 55321.502                      | 4             | 1  |
| 375.90774 | 26594.714                | -0.001                    | 28565.423                               | 4            | 1970.708                       | 4             | 3  |
| 376.65813 | 26541.733                | 0.004                     | 28565.423                               | 4            | 55107.152                      | 4             | 1  |
| 376.70106 | 26538.708                | -0.001                    | 29498.079                               | 2            | 56036.788                      | 2             | 1  |
| 376.89413 | 26525.113                | 0.003                     | 28315.299                               | 3            | 54840.409                      | 3             | 1  |
| 377.31064 | 26495.833                | 0.004                     | 26837.656                               | 3            | 53333.485                      | 4             | 1  |
| 378.04964 | 26444.041                | -0.001                    | 26414.022                               | 2            | 52858.064                      | 3             | 1  |
| 379.08170 | 26372.048                | 0.003                     | 27388.135                               | 2            | 1016.090                       | 3             | 3  |
| 379.47681 | 26344.590                | -0.001                    | 28315.299                               | 3            | 1970.708                       | 4             | 3  |
| 384.07123 | 26029.453                | 0.005                     | 27423.919                               | 1            | 1394.471                       | 2             | 1  |
| 384.90059 | 25973.368                | 0.001                     | 25973.367                               | 1            | 0.000                          | 2             | 1  |
| 386.30614 | 25878.867                | 0.005                     | 27423.919                               | 1            | 53302.781                      | 1             | 1  |
| 386.44599 | 25869.502                | 0.000                     | 28565.423                               | 4            | 54434.925                      | 5             | 1  |
| 387.16340 | 25821.568                | 0.002                     | 26837.656                               | 3            | 1016.090                       | 3             | 1  |
| 388.50434 | 25732.445                | -0.004                    | 29498.079                               | 2            | 55230.528                      | 1             | 1  |
| 388.63663 | 25723.686                | 0.000                     | 28315.299                               | 3            | 2591.613                       | 2             | 3  |
| 389.24611 | 25683.409                | -0.004                    | 30353.375                               | 1            | 56036.788                      | 2             | 1  |
| 391.08066 | 25562.932                | 0.005                     | 28154.540                               | 1            | 2591.613                       | 2             | 1  |
| 391.60366 | 25528.792                | 0.003                     | 27423.919                               | 1            | 1895.130                       | 1             | 5  |
| 392.15333 | 25493.010                | 0.005                     | 27388.135                               | 2            | 1895.130                       | 1             | 5  |
| 392.50876 | 25469.926                | -0.003                    | 27388.135                               | 2            | 52858.064                      | 3             | 1  |
| 392.92125 | 25443.188                | 0.003                     | 26837.656                               | 3            | 1394.471                       | 2             | 3  |
| 393.62132 | 25397.937                | 0.005                     | 26414.022                               | 2            | 1016.090                       | 3             | 1  |
| 393.98520 | 25374.481                | 0.005                     | 28315.299                               | 3            | 53689.775                      | 3             | 1  |
| 394.41443 | 25346.867                | 0.004                     | 27388.135                               | 2            | 52734.998                      | 2             | 1  |
| 394.91025 | 25315.044                | 0.002                     | 28565.423                               | 4            | 3250.381                       | 3             | 10 |
| 394.97205 | 25311.083                | 0.004                     | 27423.919                               | 1            | 52734.998                      | 2             | 3  |
| 395.14314 | 25300.124                | 0.003                     | 26837.656                               | 3            | 52137.777                      | 3             | 1  |
| 395.60703 | 25270.458                | -0.001                    | 24462.681                               | 2            | 49733.140                      | 1             | 3  |
| 397.90768 | 25124.351                | -0.001                    | 28565.423                               | 4            | 53689.775                      | 3             | 1  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{cift}}$<br>(cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|------------------------------------------|---------------|----|
| 398.13533 | 25109.985                | 0.002                     | 26414.022                               | 2            | 51524.005                                | 2             | 3  |
| 398.85117 | 25064.920                | 0.002                     | 28315.299                               | 3            | 3250.381                                 | 3             | 5  |
| 399.45030 | 25027.326                | 0.002                     | 14375.198                               | 3            | 39402.522                                | 3             | 3  |
| 399.57446 | 25019.549                | -0.002                    | 26414.022                               | 2            | 1394.471                                 | 2             | 3  |
| 399.59626 | 25018.185                | -0.001                    | 28315.299                               | 3            | 53333.485                                | 4             | 1  |
| 401.86161 | 24877.157                | 0.004                     | 30353.375                               | 1            | 55230.528                                | 1             | 1  |
| 402.35768 | 24846.486                | -0.004                    | 14375.198                               | 3            | 39221.688                                | 4             | 3  |
| 402.58744 | 24832.306                | 0.000                     | 27423.919                               | 1            | 2591.613                                 | 2             | 3  |
| 402.61061 | 24830.877                | -0.002                    | 30353.375                               | 1            | 55184.254                                | 2             | 3  |
| 403.16845 | 24796.521                | -0.001                    | 27388.135                               | 2            | 2591.613                                 | 2             | 3  |
| 403.63169 | 24768.063                | 0.001                     | 28565.423                               | 4            | 53333.485                                | 4             | 1  |
| 403.65854 | 24766.415                | 0.000                     | 32160.965                               | 1            | 7394.550                                 | 0             | 3  |
| 404.29026 | 24727.718                | 0.002                     | 32201.058                               | 3            | 7473.342                                 | 4             | 3  |
| 404.96774 | 24686.351                | 0.002                     | 26837.656                               | 3            | 51524.005                                | 2             | 3  |
| 405.00761 | 24683.921                | 0.002                     | 15773.814                               | 3            | 40457.733                                | 2             | 5  |
| 405.80759 | 24635.262                | 0.002                     | 30353.375                               | 1            | 5718.115                                 | 1             | 1  |
| 405.99370 | 24623.969                | 0.003                     | 27545.818                               | 0            | 52169.784                                | 1             | 1  |
| 406.71241 | 24580.456                | -0.002                    | 28154.540                               | 1            | 52734.998                                | 2             | 3  |
| 406.73820 | 24578.898                | 0.002                     | 25973.367                               | 1            | 1394.471                                 | 2             | 3  |
| 407.67046 | 24522.692                | -0.002                    | 24522.694                               | 3            | 0.000                                    | 2             | 1  |
| 407.73368 | 24518.890                | -0.002                    | 26414.022                               | 2            | 1895.130                                 | 1             | 5  |
| 408.67055 | 24462.682                | 0.001                     | 24462.681                               | 2            | 0.000                                    | 2             | 1  |
| 409.87176 | 24390.991                | -0.001                    | 26837.656                               | 3            | 51228.648                                | 3             | 1  |
| 409.95364 | 24386.119                | -0.001                    | 14147.954                               | 2            | 38534.074                                | 1             | 5  |
| 411.32733 | 24304.680                | -0.004                    | 61514.413                               | 2, 3, 4      | 37209.729                                | 3             | 3  |
| 411.53110 | 24292.645                | 0.004                     | 28565.423                               | 4            | 52858.064                                | 3             | 1  |
| 412.32211 | 24246.043                | 0.000                     | 26837.656                               | 3            | 2591.613                                 | 2             | 1  |
| 413.18965 | 24195.136                | 0.000                     | 33204.388                               | 2            | 57399.524                                | 2             | 1  |
| 413.24838 | 24191.698                | 0.002                     | 29498.079                               | 2            | 53689.775                                | 3             | 5  |
| 413.79210 | 24159.911                | 0.001                     | 59612.512                               | 3            | 35452.602                                | 3             | 1  |
| 414.17196 | 24137.753                | -0.001                    | 27388.135                               | 2            | 3250.381                                 | 3             | 5  |
| 414.20423 | 24135.872                | 0.002                     | 27388.135                               | 2            | 51524.005                                | 2             | 1  |
| 414.37444 | 24125.958                | -0.003                    | 30353.375                               | 1            | 6227.414                                 | 2             | 1  |
| 415.19578 | 24078.233                | -0.004                    | 25973.367                               | 1            | 1895.130                                 | 1             | 3  |
| 415.27683 | 24073.534                | 0.000                     | 14147.954                               | 2            | 38221.488                                | 2             | 3  |
| 415.45964 | 24062.941                | 0.000                     | 36954.640                               | 3            | 61017.580                                | 4             | 3  |
| 418.09837 | 23911.077                | -0.002                    | 25973.367                               | 1            | 49884.446                                | 2             | 3  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | $\Delta v$ (cm <sup>-1</sup> ) | $E_{\text{tek}}$ | $J_{ m tek}$ | $E_{\text{cift}}$ | $J_{ m cift}$ | wf |
|-----------|--------------------------|--------------------------------|------------------|--------------|-------------------|---------------|----|
| 419.23428 | 23846.291                | 0.001                          | 14375.198        | 3            | 38221.488         | 2             | 5  |
| 419.33583 | 23840.517                | 0.004                          | 27388.135        | 2            | 51228.648         | 3             | 1  |
| 419.43550 | 23834.852                | 0.001                          | 32201.058        | 3            | 56035.909         | 4             | 3  |
| 419.60907 | 23824.992                | 0.002                          | 59612.512        | 3            | 35787.522         | 2             | 1  |
| 419.65451 | 23822.413                | 0.004                          | 26414.022        | 2            | 2591.613          | 2             | 3  |
| 420.23503 | 23789.505                | 0.003                          | 60744.142        | 4            | 36954.640         | 3             | 1  |
| 420.40364 | 23779.964                | 0.000                          | 29498.079        | 2            | 5718.115          | 1             | 3  |
| 420.76090 | 23759.773                | 0.000                          | 25973.367        | 1            | 49733.140         | 1             | 3  |
| 421.75554 | 23703.741                | 0.001                          | 15698.782        | 4            | 39402.522         | 3             | 5  |
| 423.09484 | 23628.708                | 0.000                          | 15773.814        | 3            | 39402.522         | 3             | 3  |
| 423.83805 | 23587.276                | 0.001                          | 26837.656        | 3            | 3250.381          | 3             | 1  |
| 424.12433 | 23571.355                | 0.002                          | 60744.142        | 4            | 37172.789         | 4             | 1  |
| 424.83323 | 23532.023                | 0.004                          | 30353.375        | 1            | 53885.394         | 2             | 1  |
| 424.99782 | 23522.910                | 0.004                          | 15698.782        | 4            | 39221.688         | 4             | 3  |
| 426.35794 | 23447.871                | -0.003                         | 15773.814        | 3            | 39221.688         | 4             | 3  |
| 426.94897 | 23415.412                | 0.001                          | 14375.198        | 3            | 37790.609         | 4             | 3  |
| 427.56365 | 23381.750                | -0.004                         | 25973.367        | 1            | 2591.613          | 2             | 1  |
| 428.69650 | 23319.964                | 0.002                          | 15698.782        | 4            | 39018.744         | 5             | 3  |
| 429.60471 | 23270.665                | 0.000                          | 29498.079        | 2            | 6227.414          | 2             | 3  |
| 430.04396 | 23246.897                | 0.005                          | 23246.892        | 2            | 0.000             | 2             | 1  |
| 432.25058 | 23128.225                | 0.002                          | 24522.694        | 3            | 1394.471          | 2             | 3  |
| 433.37516 | 23068.209                | -0.001                         | 24462.681        | 2            | 1394.471          | 2             | 5  |
| 433.49611 | 23061.773                | -0.002                         | 14147.954        | 2            | 37209.729         | 3             | 3  |
| 433.77795 | 23046.790                | 0.000                          | 26837.656        | 3            | 49884.446         | 2             | 1  |
| 435.43987 | 22958.830                | 0.005                          | 30353.375        | 1            | 7394.550          | 0             | 1  |
| 435.54034 | 22953.534                | 0.001                          | 60744.142        | 4            | 37790.609         | 4             | 3  |
| 435.61871 | 22949.404                | -0.002                         | 30353.375        | 1            | 53302.781         | 1             | 1  |
| 436.30421 | 22913.348                | -0.001                         | 28315.299        | 3            | 51228.648         | 3             | 1  |
| 436.44237 | 22906.095                | 0.001                          | 32201.058        | 3            | 55107.152         | 4             | 1  |
| 436.46606 | 22904.851                | -0.002                         | 28154.540        | 1            | 5249.687          | 0             | 5  |
| 437.81031 | 22834.526                | -0.005                         | 14375.198        | 3            | 37209.729         | 3             | 3  |
| 438.34479 | 22806.684                | -0.002                         | 14147.954        | 2            | 36954.640         | 3             | 3  |
| 438.51969 | 22797.588                | -0.003                         | 14375.198        | 3            | 37172.789         | 4             | 1  |
| 441.11956 | 22663.226                | 0.001                          | 28565.423        | 4            | 51228.648         | 3             | 1  |
| 441.22380 | 22657.871                | -0.001                         | 59612.512        | 3            | 36954.640         | 3             | 1  |
| 441.91500 | 22622.433                | 0.003                          | 16599.258        | 4            | 39221.688         | 4             | 1  |
| 442.75640 | 22579.443                | 0.001                          | 14375.198        | 3            | 36954.640         | 3             | 3  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{cift}}$<br>(cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|------------------------------------------|---------------|----|
| 442.98972 | 22567.550                | -0.001                    | 24462.681                               | 2            | 1895.130                                 | 1             | 5  |
| 443.29542 | 22551.988                | 0.002                     | 24522.694                               | 3            | 1970.708                                 | 4             | 1  |
| 443.58451 | 22537.291                | 0.000                     | 22537.291                               | 3            | 0.000                                    | 2             | 1  |
| 444.39249 | 22496.315                | 0.004                     | 27388.135                               | 2            | 49884.446                                | 2             | 3  |
| 445.51324 | 22439.723                | 0.000                     | 59612.512                               | 3            | 37172.789                                | 4             | 1  |
| 445.57874 | 22436.425                | 0.000                     | 28154.540                               | 1            | 5718.115                                 | 1             | 5  |
| 447.40168 | 22345.009                | 0.004                     | 27388.135                               | 2            | 49733.140                                | 1             | 1  |
| 449.87463 | 22222.181                | 0.006                     | 18235.558                               | 3            | 40457.733                                | 2             | 1  |
| 450.21731 | 22205.267                | 0.001                     | 32160.965                               | 1            | 54366.231                                | 1             | 3  |
| 450.58138 | 22187.325                | 0.003                     | 27545.818                               | 0            | 49733.140                                | 1             | 1  |
| 450.84735 | 22174.236                | 0.004                     | 27423.919                               | 1            | 5249.687                                 | 0             | 1  |
| 452.23563 | 22106.167                | -0.002                    | 32201.058                               | 3            | 10094.889                                | 2             | 3  |
| 452.52915 | 22091.829                | 0.002                     | 15698.782                               | 4            | 37790.609                                | 4             | 3  |
| 452.60999 | 22087.883                | -0.002                    | 28315.299                               | 3            | 6227.414                                 | 2             | 3  |
| 455.84608 | 21931.082                | 0.001                     | 24522.694                               | 3            | 2591.613                                 | 2             | 1  |
| 455.92831 | 21927.126                | 0.000                     | 28154.540                               | 1            | 6227.414                                 | 2             | 5  |
| 456.25138 | 21911.600                | 0.002                     | 57364.200                               | 3            | 35452.602                                | 3             | 3  |
| 457.09700 | 21871.065                | -0.003                    | 24462.681                               | 2            | 2591.613                                 | 2             | 1  |
| 457.48696 | 21852.422                | 0.001                     | 23246.892                               | 2            | 1394.471                                 | 2             | 5  |
| 458.00503 | 21827.704                | 0.001                     | 27545.818                               | 0            | 5718.115                                 | 1             | 3  |
| 458.12680 | 21821.902                | -0.001                    | 59612.512                               | 3            | 37790.609                                | 4             | 1  |
| 458.70964 | 21794.176                | 0.003                     | 58748.813                               | 4            | 36954.640                                | 3             | 1  |
| 460.05240 | 21730.566                | -0.003                    | 29498.079                               | 2            | 51228.648                                | 3             | 1  |
| 460.16182 | 21725.399                | 0.001                     | 60744.142                               | 4            | 39018.744                                | 5             | 3  |
| 460.57726 | 21705.803                | -0.001                    | 27423.919                               | 1            | 5718.115                                 | 1             | 3  |
| 461.33780 | 21670.020                | 0.000                     | 27388.135                               | 2            | 5718.115                                 | 1             | 3  |
| 461.98700 | 21639.569                | 0.001                     | 14147.954                               | 2            | 35787.522                                | 2             | 5  |
| 463.33363 | 21576.677                | -0.001                    | 57364.200                               | 3            | 35787.522                                | 2             | 1  |
| 463.34760 | 21576.027                | 0.003                     | 58748.813                               | 4            | 37172.789                                | 4             | 3  |
| 463.49538 | 21569.147                | 0.000                     | 28315.299                               | 3            | 49884.446                                | 2             | 3  |
| 463.64119 | 21562.364                | 0.003                     | 18895.372                               | 2            | 40457.733                                | 2             | 1  |
| 464.14239 | 21539.081                | -0.003                    | 58748.813                               | 4            | 37209.729                                | 3             | 1  |
| 464.50100 | 21522.452                | -0.002                    | 60744.142                               | 4            | 39221.688                                | 4             | 1  |
| 464.52798 | 21521.202                | 0.001                     | 22537.291                               | 3            | 1016.090                                 | 3             | 1  |
| 464.61948 | 21516.964                | -0.003                    | 31785.814                               | 0            | 53302.781                                | 1             | 1  |
| 464.74952 | 21510.943                | -0.004                    | 15698.782                               | 4            | 37209.729                                | 3             | 3  |
| 465.54892 | 21474.007                | 0.000                     | 15698.782                               | 4            | 37172.789                                | 4             | 3  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{ m cift}$ (cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|-----------------------------------|---------------|----|
| 466.25068 | 21441.687                | 0.002                     | 21441.685                               | 1            | 0.000                             | 2             | 1  |
| 466.37620 | 21435.916                | 0.001                     | 15773.814                               | 3            | 37209.729                         | 3             | 3  |
| 466.89005 | 21412.325                | 0.001                     | 14375.198                               | 3            | 35787.522                         | 2             | 5  |
| 467.18125 | 21398.978                | 0.003                     | 15773.814                               | 3            | 37172.789                         | 4             | 3  |
| 467.24441 | 21396.086                | 0.002                     | 17825.604                               | 3            | 39221.688                         | 4             | 1  |
| 467.35497 | 21391.024                | 0.000                     | 59612.512                               | 3            | 38221.488                         | 2             | 1  |
| 468.43693 | 21341.618                | -0.002                    | 60744.142                               | 4            | 39402.522                         | 3             | 1  |
| 468.86443 | 21322.159                | 0.000                     | 17211.915                               | 2            | 38534.074                         | 1             | 3  |
| 469.11751 | 21310.656                | 0.001                     | 22705.126                               | 1            | 1394.471                          | 2             | 3  |
| 469.24975 | 21304.651                | 0.003                     | 14147.954                               | 2            | 35452.602                         | 3             | 3  |
| 469.96307 | 21272.315                | 0.002                     | 24522.694                               | 3            | 3250.381                          | 3             | 3  |
| 470.32697 | 21255.856                | -0.002                    | 15698.782                               | 4            | 36954.640                         | 3             | 3  |
| 471.29265 | 21212.304                | 0.004                     | 24462.681                               | 2            | 3250.381                          | 3             | 1  |
| 471.64390 | 21196.506                | 0.001                     | 27423.919                               | 1            | 6227.414                          | 2             | 3  |
| 471.75869 | 21191.349                | -0.002                    | 16599.258                               | 4            | 37790.609                         | 4             | 1  |
| 471.99300 | 21180.829                | 0.003                     | 15773.814                               | 3            | 36954.640                         | 3             | 3  |
| 472.41649 | 21161.842                | -0.001                    | 33204.388                               | 2            | 54366.231                         | 1             | 1  |
| 472.44156 | 21160.719                | -0.002                    | 27388.135                               | 2            | 6227.414                          | 2             | 1  |
| 472.84151 | 21142.821                | 0.001                     | 22537.291                               | 3            | 1394.471                          | 2             | 3  |
| 474.02738 | 21089.929                | 0.003                     | 22106.016                               | 2            | 1016.090                          | 3             | 1  |
| 474.30903 | 21077.405                | 0.001                     | 14375.198                               | 3            | 35452.602                         | 3             | 3  |
| 474.87289 | 21052.379                | 0.001                     | 28525.720                               | 5            | 7473.342                          | 4             | 3  |
| 480.40399 | 20809.997                | 0.001                     | 22705.126                               | 1            | 1895.130                          | 1             | 5  |
| 480.90046 | 20788.513                | 0.000                     | 22683.643                               | 0            | 1895.130                          | 1             | 10 |
| 482.40493 | 20723.682                | 0.002                     | 25973.367                               | 1            | 5249.687                          | 0             | 3  |
| 482.68764 | 20711.544                | -0.001                    | 22106.016                               | 2            | 1394.471                          | 2             | 1  |
| 483.96203 | 20657.006                | 0.000                     | 32201.058                               | 3            | 52858.064                         | 3             | 1  |
| 484.00245 | 20655.281                | 0.002                     | 23246.892                               | 2            | 2591.613                          | 2             | 1  |
| 485.05476 | 20610.471                | 0.000                     | 16599.258                               | 4            | 37209.729                         | 3             | 1  |
| 485.91384 | 20574.033                | 0.000                     | 32160.965                               | 1            | 52734.998                         | 2             | 5  |
| 486.08982 | 20566.584                | 0.001                     | 22537.291                               | 3            | 1970.708                          | 4             | 1  |
| 488.01659 | 20485.385                | -0.002                    | 33204.388                               | 2            | 53689.775                         | 3             | 5  |
| 489.14171 | 20438.265                | 0.003                     | 18580.482                               | 5            | 39018.744                         | 5             | 1  |
| 489.82972 | 20409.558                | -0.002                    | 57364.200                               | 3            | 36954.640                         | 3             | 1  |
| 489.99172 | 20402.811                | 0.001                     | 20402.810                               | 3            | 0.000                             | 2             | 1  |
| 490.27974 | 20390.825                | 0.001                     | 59612.512                               | 3            | 39221.688                         | 4             | 1  |
| 490.38701 | 20386.365                | -0.002                    | 29498.079                               | 2            | 49884.446                         | 2             | 1  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı, wf: Global-fit programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{cift}}$<br>(cm <sup>-1</sup> ) | $m{J}_{	ext{cift}}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|------------------------------------------|---------------------|----|
| 490.44453 | 20383.974                | 0.004                     | 31785.814                               | 0            | 52169.784                                | 1                   | 1  |
| 492.09742 | 20315.508                | 0.004                     | 21331.594                               | 4            | 1016.090                                 | 3                   | 1  |
| 492.18003 | 20312.098                | -0.002                    | 22282.808                               | 5            | 1970.708                                 | 4                   | 1  |
| 493.48249 | 20258.488                | 0.002                     | 30353.375                               | 1            | 10094.889                                | 2                   | 3  |
| 493.56127 | 20255.255                | 0.003                     | 25973.367                               | 1            | 5718.115                                 | 1                   | 1  |
| 494.64476 | 20210.888                | 0.002                     | 22106.016                               | 2            | 1895.130                                 | 1                   | 1  |
| 494.66663 | 20209.994                | 0.004                     | 59612.512                               | 3            | 39402.522                                | 3                   | 1  |
| 495.12187 | 20191.412                | 0.001                     | 57364.200                               | 3            | 37172.789                                | 4                   | 3  |
| 495.20570 | 20187.994                | -0.001                    | 19214.527                               | 4            | 39402.522                                | 3                   | 1  |
| 496.02942 | 20154.470                | -0.001                    | 57364.200                               | 3            | 37209.729                                | 3                   | 1  |
| 497.03948 | 20113.513                | 0.000                     | 22705.126                               | 1            | 2591.613                                 | 2                   | 1  |
| 497.41336 | 20098.395                | 0.002                     | 33204.388                               | 2            | 53302.781                                | 1                   | 3  |
| 498.68326 | 20047.215                | 0.001                     | 21441.685                               | 1            | 1394.471                                 | 2                   | 1  |
| 499.12755 | 20029.371                | 0.002                     | 27423.919                               | 1            | 7394.550                                 | 0                   | 5  |
| 499.64030 | 20008.816                | -0.003                    | 32160.965                               | 1            | 52169.784                                | 1                   | 3  |
| 499.68159 | 20007.163                | 0.002                     | 19214.527                               | 4            | 39221.688                                | 4                   | 1  |
| 499.94782 | 19996.509                | -0.002                    | 23246.892                               | 2            | 3250.381                                 | 3                   | 5  |
| 500.21249 | 19985.929                | -0.001                    | 18235.558                               | 3            | 38221.488                                | 2                   | 1  |
| 501.44723 | 19936.717                | -0.002                    | 32201.058                               | 3            | 52137.777                                | 3                   | 1  |
| 504.80227 | 19804.214                | -0.003                    | 19214.527                               | 4            | 39018.744                                | 5                   | 1  |
| 506.29176 | 19745.952                | -0.001                    | 25973.367                               | 1            | 6227.414                                 | 2                   | 1  |
| 506.69932 | 19730.069                | 0.000                     | 58748.813                               | 4            | 39018.744                                | 5                   | 3  |
| 508.01990 | 19678.782                | -0.006                    | 15773.814                               | 3            | 35452.602                                | 3                   | 3  |
| 509.05671 | 19638.703                | 0.001                     | 18895.372                               | 2            | 38534.074                                | 1                   | 1  |
| 510.75008 | 19573.592                | 0.001                     | 57364.200                               | 3            | 37790.609                                | 4                   | 3  |
| 511.45654 | 19546.556                | 0.001                     | 21441.685                               | 1            | 1895.130                                 | 1                   | 5  |
| 511.96558 | 19527.121                | -0.004                    | 58748.813                               | 4            | 39221.688                                | 4                   | 1  |
| 512.29923 | 19514.404                | 0.001                     | 22106.016                               | 2            | 2591.613                                 | 2                   | 1  |
| 515.67336 | 19386.720                | 0.000                     | 20402.810                               | 3            | 1016.090                                 | 3                   | 1  |
| 515.74243 | 19384.124                | -0.001                    | 17825.604                               | 3            | 37209.729                                | 3                   | 1  |
| 516.36144 | 19360.886                | 0.000                     | 21331.594                               | 4            | 1970.708                                 | 4                   | 1  |
| 516.72714 | 19347.184                | -0.001                    | 17825.604                               | 3            | 37172.789                                | 4                   | 1  |
| 516.75099 | 19346.291                | 0.000                     | 58748.813                               | 4            | 39402.522                                | 3                   | 3  |
| 517.29049 | 19326.115                | -0.001                    | 18895.372                               | 2            | 38221.488                                | 2                   | 1  |
| 518.34203 | 19286.909                | -0.001                    | 22537.291                               | 3            | 3250.381                                 | 3                   | 5  |
| 518.82121 | 19269.096                | 0.001                     | 19749.649                               | 6            | 39018.744                                | 5                   | 1  |
| 520.41385 | 19210.127                | 0.000                     | 18580.482                               | 5            | 37790.609                                | 4                   | 1  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | $\Delta v$<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{ciff}}$<br>(cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|-----------|--------------------------|-----------------------------------|-----------------------------------------|--------------|------------------------------------------|---------------|----|
| 522.24662 | 19142.712                | 0.000                             | 57364.200                               | 3            | 38221.488                                | 2             | 3  |
| 522.61998 | 19129.036                | 0.000                             | 17825.604                               | 3            | 36954.640                                | 3             | 1  |
| 525.93851 | 19008.339                | 0.000                             | 20402.810                               | 3            | 1394.471                                 | 2             | 1  |
| 529.08281 | 18895.375                | 0.003                             | 18895.372                               | 2            | 0.000                                    | 2             | 1  |
| 530.19798 | 18855.633                | -0.002                            | 22106.016                               | 2            | 3250.381                                 | 3             | 1  |
| 530.26246 | 18853.340                | -0.004                            | 16599.258                               | 4            | 35452.602                                | 3             | 1  |
| 530.35440 | 18850.071                | -0.001                            | 21441.685                               | 1            | 2591.613                                 | 2             | 3  |
| 537.70739 | 18592.305                | -0.002                            | 18580.482                               | 5            | 37172.789                                | 4             | 1  |
| 538.09783 | 18578.815                | -0.002                            | 25973.367                               | 1            | 7394.550                                 | 0             | 5  |
| 538.17701 | 18576.082                | 0.000                             | 19214.527                               | 4            | 37790.609                                | 4             | 1  |
| 538.19086 | 18575.603                | -0.004                            | 17211.915                               | 2            | 35787.522                                | 2             | 1  |
| 544.75677 | 18351.716                | -0.001                            | 22106.016                               | 2            | 40457.733                                | 2             | 1  |
| 545.86795 | 18314.359                | 0.002                             | 18895.372                               | 2            | 37209.729                                | 3             | 1  |
| 546.43721 | 18295.280                | 0.000                             | 24522.694                               | 3            | 6227.414                                 | 2             | 1  |
| 548.07276 | 18240.684                | -0.003                            | 17211.915                               | 2            | 35452.602                                | 3             | 1  |
| 548.22685 | 18235.557                | -0.001                            | 18235.558                               | 3            | 0.000                                    | 2             | 1  |
| 549.34510 | 18198.437                | 0.000                             | 19214.527                               | 4            | 1016.090                                 | 3             | 1  |
| 553.56675 | 18059.652                | 0.001                             | 28154.540                               | 1            | 10094.889                                | 2             | 3  |
| 556.69217 | 17958.262                | 0.000                             | 19214.527                               | 4            | 37172.789                                | 4             | 1  |
| 567.15435 | 17626.993                | -0.005                            | 17825.604                               | 3            | 35452.602                                | 3             | 1  |
| 570.33223 | 17528.776                | -0.001                            | 23246.892                               | 2            | 5718.115                                 | 1             | 1  |
| 571.24060 | 17500.903                | 0.002                             | 18895.372                               | 2            | 1394.471                                 | 2             | 3  |
| 572.72850 | 17455.438                | -0.001                            | 22705.126                               | 1            | 5249.687                                 | 0             | 1  |
| 576.90632 | 17329.031                | 0.001                             | 27423.919                               | 1            | 10094.889                                | 2             | 3  |
| 579.75724 | 17243.817                | -0.002                            | 19214.527                               | 4            | 1970.708                                 | 4             | 1  |
| 580.57706 | 17219.468                | 0.000                             | 18235.558                               | 3            | 1016.090                                 | 3             | 1  |
| 580.83175 | 17211.917                | 0.002                             | 17211.915                               | 2            | 0.000                                    | 2             | 1  |
| 580.86789 | 17210.846                | 0.005                             | 23246.892                               | 2            | 40457.733                                | 2             | 1  |
| 584.89342 | 17092.394                | 0.005                             | 21441.685                               | 1            | 38534.074                                | 1             | 1  |
| 586.37006 | 17049.351                | -0.001                            | 24522.694                               | 3            | 7473.342                                 | 4             | 1  |
| 587.39916 | 17019.481                | 0.003                             | 23246.892                               | 2            | 6227.414                                 | 2             | 1  |
| 588.06395 | 17000.241                | -0.001                            | 18895.372                               | 2            | 1895.130                                 | 1             | 5  |
| 589.26727 | 16965.526                | -0.002                            | 22683.643                               | 0            | 5718.115                                 | 1             | 1  |
| 592.77167 | 16865.229                | -0.002                            | 22537.291                               | 3            | 39402.522                                | 3             | 1  |
| 593.62145 | 16841.086                | -0.001                            | 18235.558                               | 3            | 1394.471                                 | 2             | 3  |
| 597.35108 | 16735.938                | 0.002                             | 22282.808                               | 5            | 39018.744                                | 5             | 1  |
| 606.71223 | 16477.716                | 0.004                             | 22705.126                               | 1            | 6227.414                                 | 2             | 1  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : cift-pariteli seviye,  $J_{cift}$ : cift-pariteli seviye,  $J_{cift}$ : programındaki ağırlık-faktörü değeri).

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{cift}$ (cm <sup>-1</sup> ) | $J_{ m cift}$ | wf |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|--------------------------------|---------------|----|
| 610.03742 | 16387.900                | -0.001                    | 22106.016                               | 2            | 5718.115                       | 1             | 3  |
| 612.60807 | 16319.133                | 0.000                     | 26414.022                               | 2            | 10094.889                      | 2             | 1  |
| 612.95580 | 16309.876                | -0.001                    | 22537.291                               | 3            | 6227.414                       | 2             | 1  |
| 614.65271 | 16264.848                | -0.002                    | 18235.558                               | 3            | 1970.708                       | 4             | 1  |
| 617.27223 | 16195.826                | 0.001                     | 17211.915                               | 2            | 1016.090                       | 3             | 1  |
| 618.80834 | 16155.622                | -0.008                    | 23246.892                               | 2            | 39402.522                      | 3             | 1  |
| 626.23047 | 15964.146                | 0.000                     | 19214.527                               | 4            | 3250.381                       | 3             | 5  |
| 627.37428 | 15935.041                | 0.002                     | 24522.694                               | 3            | 40457.733                      | 2             | 1  |
| 629.60422 | 15878.602                | 0.000                     | 22106.016                               | 2            | 6227.414                       | 2             | 1  |
| 639.04815 | 15643.948                | 0.003                     | 18235.558                               | 3            | 2591.613                       | 2             | 1  |
| 639.90302 | 15623.049                | 0.003                     | 21331.594                               | 4            | 36954.640                      | 3             | 1  |
| 644.65870 | 15507.798                | -0.003                    | 22282.808                               | 5            | 37790.609                      | 4             | 1  |
| 649.81632 | 15384.713                | 0.001                     | 20402.810                               | 3            | 35787.522                      | 2             | 3  |
| 652.69827 | 15316.783                | -0.002                    | 17211.915                               | 2            | 1895.130                       | 1             | 5  |
| 663.65329 | 15063.949                | 0.000                     | 22537.291                               | 3            | 7473.342                       | 4             | 1  |
| 664.27758 | 15049.792                | 0.000                     | 20402.810                               | 3            | 35452.602                      | 3             | 1  |
| 667.14184 | 14985.178                | 0.001                     | 18235.558                               | 3            | 3250.381                       | 3             | 3  |
| 671.86543 | 14879.825                | -0.003                    | 24522.694                               | 3            | 39402.522                      | 3             | 1  |
| 677.42425 | 14757.725                | 0.001                     | 15773.814                               | 3            | 1016.090                       | 3             | 3  |
| 680.88608 | 14682.692                | 0.000                     | 15698.782                               | 4            | 1016.090                       | 3             | 3  |
| 683.40638 | 14628.545                | -0.005                    | 16599.258                               | 4            | 1970.708                       | 4             | 1  |
| 683.79160 | 14620.304                | 0.002                     | 17211.915                               | 2            | 2591.613                       | 2             | 1  |
| 685.90675 | 14575.219                | -0.004                    | 17825.604                               | 3            | 3250.381                       | 3             | 1  |
| 695.25025 | 14379.344                | 0.001                     | 15773.814                               | 3            | 1394.471                       | 2             | 3  |
| 695.45072 | 14375.199                | 0.001                     | 14375.198                               | 3            | 0.000                          | 2             | 5  |
| 695.80927 | 14367.791                | -0.001                    | 24462.681                               | 2            | 10094.889                      | 2             | 1  |
| 706.62110 | 14147.955                | 0.001                     | 14147.954                               | 2            | 0.000                          | 2             | 10 |
| 728.23355 | 13728.076                | 0.002                     | 15698.782                               | 4            | 1970.708                       | 4             | 5  |
| 748.34680 | 13359.109                | 0.001                     | 14375.198                               | 3            | 1016.090                       | 3             | 5  |
| 748.92045 | 13348.877                | 0.000                     | 16599.258                               | 4            | 3250.381                       | 3             | 1  |
| 761.29691 | 13131.864                | 0.000                     | 14147.954                               | 2            | 1016.090                       | 3             | 3  |
| 787.98936 | 12687.036                | 0.001                     | 24522.694                               | 3            | 37209.729                      | 3             | 1  |
| 789.17592 | 12667.961                | 0.003                     | 18895.372                               | 2            | 6227.414                       | 2             | 1  |
| 792.78857 | 12610.235                | -0.002                    | 22705.126                               | 1            | 10094.889                      | 2             | 1  |
| 805.93803 | 12404.491                | 0.001                     | 14375.198                               | 3            | 1970.708                       | 4             | 5  |
| 815.91419 | 12252.822                | -0.002                    | 14147.954                               | 2            | 1895.130                       | 1             | 1  |

**Tablo 4.1 (devam):** FT spektrumunda gözlenen, sınıflandırılan ve ağırlık faktörü (wf) uygulanarak global-fit programında kullanılan La II spektral çizgileri. ( $\lambda_{hava}$ : havadaki dalga-boyu,  $v_{vakum}$ : vakumdaki dalga-sayısı,  $\Delta v = v_{vakum} - |E_{cift} - E_{tek}|$ ,  $E_{tek}$ : tek-pariteli seviye,  $J_{tek}$ : tek-pariteli seviyenin yörüngesel açısal momentum kuantum sayısı,  $E_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : çift-pariteli seviye,  $J_{cift}$ : programındaki ağırlık-faktörü değeri).

| λ<br>(nm)  | v<br>(cm <sup>-1</sup> ) | Δν<br>(cm <sup>-1</sup> ) | Etek<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{ m cift} \ ( m cm^{-1})$ | $J_{ m cift}$ | wf |
|------------|--------------------------|---------------------------|-----------------------------|--------------|------------------------------|---------------|----|
| 848.40534  | 11783.581                | -0.004                    | 14375.198                   | 3            | 2591.613                     | 2             | 1  |
| 851.46880  | 11741.186                | 0.001                     | 19214.527                   | 4            | 7473.342                     | 4             | 1  |
| 865.08798  | 11556.343                | 0.002                     | 14147.954                   | 2            | 2591.613                     | 2             | 1  |
| 934.67520  | 10695.969                | 0.001                     | 28525.720                   | 5            | 39221.688                    | 4             | 1  |
| 1018.65670 | 9814.160                 | 0.005                     | 25973.367                   | 1            | 35787.522                    | 2             | 1  |
| 1027.67200 | 9728.065                 | -0.001                    | 59612.512                   | 3            | 49884.446                    | 2             | 1  |
| 1095.48030 | 9125.916                 | 0.000                     | 16599.258                   | 4            | 7473.342                     | 4             | 1  |
| 1135.98980 | 8800.486                 | 0.003                     | 18895.372                   | 2            | 10094.889                    | 2             | 1  |
| 1192.44070 | 8383.867                 | 0.003                     | 59612.512                   | 3            | 51228.648                    | 3             | 1  |
| 1204.42120 | 8300.472                 | 0.000                     | 15773.814                   | 3            | 7473.342                     | 4             | 5  |
| 1404.69690 | 7117.028                 | 0.002                     | 17211.915                   | 2            | 10094.889                    | 2             | 1  |
| 1448.48980 | 6901.855                 | -0.001                    | 14375.198                   | 3            | 7473.342                     | 4             | 5  |
|            |                          |                           |                             |              |                              |               |    |

| $\lambda$ (nm) | ۷<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$ | $J_{ m tek}$ | $E_{\text{cift}}$ | $J_{ m cift}$ |
|----------------|--------------------------|---------------------------|------------------|--------------|-------------------|---------------|
| 216.136        | 46252.64                 | 0.21                      | 15773.814        | 3            | 62026.24          | 2             |
| 218.787        | 45692.26                 | 0.07                      | 45692.19         | 1            | 0.000             | 2             |
| 223.074        | 44814.24                 | -0.08                     | 17211.915        | 2            | 62026.24          | 2             |
| 225.676        | 44297.59                 | -0.13                     | 45692.19         | 1            | 1394.471          | 2             |
| 228.094        | 43828.04                 | 0.02                      | 18580.482        | 5            | 62408.50          | 6             |
| 231.782        | 43130.73                 | -0.13                     | 18895.372        | 2            | 62026.24          | 2             |
| 231.9441       | 43100.59                 | 0.02                      | 45692.19         | 1            | 2591.613          | 2             |
| 232.8753       | 42928.26                 | -0.06                     | 16599.258        | 4            | 59527.58          | 4             |
| 236.550        | 42261.44                 | -0.06                     | 21441.685        | 1            | 63703.19          | 1             |
| 239.7237       | 41701.99                 | 0.01                      | 17825.604        | 4            | 59527.58          | 4             |
| 240.328        | 41597.14                 | -0.03                     | 22106.016        | 2            | 63703.19          | 1             |
| 241.761        | 41350.60                 | 0.01                      | 28154.540        | 1            | 69505.13          | 0             |
| 243.713        | 41019.43                 | -0.12                     | 22683.643        | 0            | 63703.19          | 1             |
| 243.839        | 40998.23                 | 0.17                      | 22705.126        | _1           | 63703.19          | 1             |
| 245.815        | 40668.69                 | 0.00                      | 28565.423        | 4            | 69234.11          | 3             |
| 247.106        | 40456.23                 | -0.06                     | 23246.892        | 2            | 63703.19          | 1             |
| 247.1900       | 40442.49                 | -0.02                     | 45692.19         | 1            | 5249.687          | 0             |
| 247.243        | 40433.82                 | -0.11                     | 17825.604        | 4            | 58259.53          | 4             |
| 247.984        | 40313.01                 | -0.05                     | 19214.527        | 4            | 59527.58          | 4             |
| 250.118        | 39969.08                 | 0.07                      | 22537.291        | 3            | 62506.30          | 2             |
| 251.456        | 39756.42                 | 0.15                      | 24522.694        | 3            | 64278.96          | 2             |
| 251.9215       | 39682.96                 | 0.03                      | 18235.558        | 3            | 57918.49          | 3             |
| 253.160        | 39488.84                 | -0.11                     | 22537.291        | 3            | 62026.24          | 2             |
| 253.314        | 39464.83                 | 0.06                      | 45692.19         | 1            | 6227.414          | 2             |
| 254.24         | 39321.10                 | -0.01                     | 22705.126        | 1            | 62026.24          | 2             |
| 254.64         | 39259.34                 | -0.07                     | 23246.892        | 2            | 62506.30          | 2             |
| 255.3398       | 39151.75                 | 0.00                      | 30353.375        | 1            | 69505.13          | 0             |
| 256.0374       | 39045.08                 | 0.08                      | 19214.527        | 4            | 58259.53          | 4             |
| 256.1848       | 39022.62                 | -0.23                     | 22106.016        | 2            | 61128.87          | 1             |
| 257.7921       | 38779.34                 | -0.01                     | 23246.892        | 2            | 62026.24          | 2             |
| 260.0869       | 38437.20                 | 0.00                      | 28154.540        | 1            | 66591.74          | 0             |
| 260.1777       | 38423.79                 | 0.04                      | 22705.126        | 1            | 61128.87          | 1             |
| 261.0335       | 38297.82                 | 0.18                      | 45692.19         | 1            | 7394.55           | 0             |
| 262.003        | 38156.11                 | -0.12                     | 17825.604        | 4            | 55981.84          | 5             |
| 263.193        | 37983.61                 | 0.00                      | 24522.694        | 3            | 62506.30          | 2             |
| 263.8988       | 37882.02                 | 0.05                      | 23246.892        | 2            | 61128.87          | 1             |
| 266.136        | 37563.60                 | 0.04                      | 24462.681        | 2            | 62026.24          | 2             |
| 266.475        | 37515.81                 | 0.13                      | 20402.810        | 3            | 57918.49          | 3             |
| 266.562        | 37503.57                 | 0.02                      | 24522.694        | 3            | 62026.24          | 2             |

**Tablo 4.2:** MIT dalga- boyu tablolarından [3] alınan ve FT spektrumun aralığında yer almadığı için ağırlık faktörü (wf) uygulanmayan fakat global-fit programında kullanılan La II spektral çizgileri.

| λ<br>(nm) | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | $E_{\text{cift}}$ | $J_{ m cift}$ |
|-----------|--------------------------|---------------------------|-----------------------------------------|--------------|-------------------|---------------|
| 266.654   | 37490.63                 | 0.00                      | 25973.367                               | 1            | 63464.00          | 0             |
| 267.2906  | 37401.35                 | -0.01                     | 18580.482                               | 5            | 55981.84          | 5             |
| 267.3743  | 37389.64                 | 0.00                      | 22705.126                               | 1            | 60094.76          | 0             |
| 267.986   | 37304.30                 | -0.16                     | 27388.135                               | 2            | 64692.59          | 3             |
| 268.4142  | 37244.79                 | 0.02                      | 22282.808                               | 5            | 59527.58          | 4             |
| 269.5458  | 37088.44                 | 0.03                      | 19749.649                               | 6            | 56838.06          | 6             |
| 270.649   | 36937.27                 | -0.07                     | 27423.919                               | 1            | 64361.26          | 1             |
| 273.2415  | 36586.83                 | -0.07                     | 21331.594                               | 4            | 57918.49          | 3             |
| 275.2858  | 36315.15                 | 0.09                      | 27388.135                               | 2            | 63703.19          | 1             |
| 275.9156  | 36232.26                 | 0.07                      | 19749.649                               | 6            | 55981.84          | 5             |
| 276.0504  | 36214.57                 | 0.05                      | 28315.299                               | 3            | 64529.82          | 2             |
| 276.1111  | 36206.61                 | -0.11                     | 28154.540                               | 1            | 64361.26          | 1             |
| 277.8757  | 35976.69                 | -0.03                     | 22282.808                               | 5            | 58259.53          | 4             |
| 277.9778  | 35963.48                 | -0.18                     | 28315.299                               | 3            | 64278.96          | 2             |
| 279.1513  | 35812.31                 | -0.17                     | 22106.016                               | 2            | 57918.49          | 3             |
| 279.8546  | 35722.31                 | 0.07                      | 22537.291                               | 3            | 58259.53          | 4             |
| 280.839   | 35597.10                 | -0.20                     | 45692.19                                | 1            | 10094.889         | 2             |
| 284.050   | 35194.72                 | 0.21                      | 29498.079                               | 2            | 64692.59          | 3             |
| 284.3659  | 35155.62                 | 0.12                      | 25973.367                               | 1            | 61128.87          | 1             |
| 284.669   | 35118.19                 | 0.03                      | 27388.135                               | 2            | 62506.30          | 2             |
| 285.372   | 35031.69                 | -0.05                     | 29498.079                               | 2            | 64529.82          | 2             |
| 285.5902  | 35004.92                 | 0.04                      | 24522.694                               | 3            | 59527.58          | 4             |
| 288.5141  | 34650.19                 | -0.06                     | 21331.594                               | 4            | 55981.84          | 5             |
| 289.3071  | 34555.21                 | -0.04                     | 22282.808                               | 5            | 56838.06          | 6             |
| 292.390   | 34190.89                 | -0.11                     | 28315.299                               | 3            | 62506.30          | 2             |
| 293.9618  | 34008.08                 | 0.19                      | 30353.375                               | 1            | 64361.26          | 1             |
| 295.0492  | 33882.75                 | -0.03                     | 28525.720                               | 5            | 62408.50          | 6             |
| 295.145   | 33871.75                 | 0.05                      | 28154.540                               | 1            | 62026.24          | 2             |
| 296.2910  | 33740.75                 | 0.01                      | 27388.135                               | 2            | 61128.87          | 1             |
| 296.605   | 33705.03                 | 0.08                      | 27423.919                               | 1            | 61128.87          | 1             |
| 296.657   | 33699.12                 | 0.09                      | 22282.808                               | 5            | 55981.84          | 5             |
| 297.683   | 33582.98                 | -0.07                     | 27545.818                               | 0            | 61128.87          | 1             |
| 301.895   | 33114.45                 | 0.12                      | 27545.818                               | 0            | 60660.15          | 1             |
| 307.551   | 32505.49                 | -0.12                     | 28154.540                               | 1            | 60660.15          | 1             |
| 311.263   | 32117.86                 | -0.14                     | 32160.965                               | 1            | 64278.96          | 2             |
| 316.056   | 31630.81                 | 0.01                      | 29498.079                               | 2            | 61128.87          | 1             |
| 317.488   | 31488.14                 | -0.06                     | 33204.388                               | 2            | 64692.59          | 3             |
| 321.712   | 31074.73                 | 0.15                      | 33204.388                               | 2            | 64278.96          | 2             |
| 329.444   | 30345.43                 | 0.10                      | 32160.965                               | 1            | 62506.30          | 2             |

**Tablo 4.2 (devam):** MIT dalga-boyu tablolarından [3] alınan ve FT spektrumun aralığında yeralmadığı için ağırlık faktörü (wf) uygulanmayan fakat global-fit programındakullanılan La II spektral çizgileri.

| almadığı için ağırlık faktörü (wf) uygulanmayan fakat global-fit programında<br>kullanılan La II spektral çizgileri. |
|----------------------------------------------------------------------------------------------------------------------|

| λ<br>(nm)  | v<br>(cm <sup>-1</sup> ) | Δv<br>(cm <sup>-1</sup> ) | $E_{\text{tek}}$<br>(cm <sup>-1</sup> ) | $J_{ m tek}$ | E <sub>çift</sub><br>(cm <sup>-1</sup> ) | $J_{ m cift}$ |  |
|------------|--------------------------|---------------------------|-----------------------------------------|--------------|------------------------------------------|---------------|--|
| 357.8871*  | 27933.80                 | 0.00                      | 32160.965                               | 1            | 60094.76                                 | 0             |  |
| 358.00685* | 27924.45                 | -0.03                     | 33204.388                               | 2            | 61128.87                                 | 1             |  |
| 365.83989* | 27326.58                 | 0.05                      | 32201.058                               | 3            | 59527.58                                 | 4             |  |

\* Bu spektral çizgiler (MIT'de sırasıyla 357.889, 358.0099 ve 365.841 nm) FT spektrumunda gözlenmektedir, fakat Sinyal/Gürültü oranı simülasyon için yeterli değildi.

**48** 

Birçok La II ince-yapı enerji seviyesi, çok sayıda spektral çizginin alt ve üst seviyesidir ve bu da ortalama olarak bu çalışmada her seviyenin diğer seviyeler ile yaklaşık yedi çizgi ile bağlandığı anlamına gelir. Bunun yanında, birkaç yüksek uyarılmış ince-yapı seviyesinin düzeltilmesi, FT-spektrumundan gözlenen sadece bir ya da iki spektral çizginin analizi aracılığıyla gerçekleştirildi. Şekil 4.2'de, sadece bir veya iki çizgi ile diğer seviyelere bağlanan ince-yapı enerjileri için bir seviye şeması gösterilmiştir. Enerji değerinin, sadece MIT dalga-boylarından [3] belirlenebildiği seviyeler yıldızla işaretlenmiştir.



Şekil 4.2: La II enerji seviyelerinin bir kısmı, yalnızca bir veya iki geçişle diğer seviyelere bağlanan seviyeler. \*: MIT dalga boyları [3] kullanılarak hesaplanan yüksek enerjiler.

Ritz kombinasyon prensibine göre; bir spektral çizginin vakum içindeki dalga-boyunun ( $\lambda_{vakum}$ ) karşılık gelen ağırlık-merkezi dalga-sayısı değeri, geçişin alt-üst ince-yapı seviyelerinin enerji değerleri (cm<sup>-1</sup>) arasındaki farka esittir. Bu  $\nu$  dalga-sayısı:

$$\nu = \frac{1}{\lambda_{vakum}} = E_{\ddot{u}st} - E_{alt} \tag{4.2}$$

şeklinde verilir.

İnce-yapı seviyeleri aiy alt seviyelerine ayrıldığında, bu kural aşırı ince-yapının tek bir F<sub>üst</sub>-F<sub>alt</sub> bileşeninin dalga-sayısının hesabı için de geçerlidir. Bu kural, birçok spektral çizgi çok geniş aşırı ince-yapı gösterdiği için, bu spektral çizgilerin ağırlık-merkezi dalga-sayısının belirlenmesinde de dikkate alınmalıdır.

İncelenen spektral çizgilerin ağırlık-merkezini belirleyebilmek için, Klasifikasyon [4-5] programı kullanılmıştır. Program, atomik ve tek başına iyonize edilmiş lantanın bilinen tüm deneysel ince-yapı seviyelerinin listesine [2-3] dayanarak, belirli bir dalga-boyu aralığında optik dipol geçişleri için seçim kurallarına uyan tüm olası geçişleri hesaplar. Program için, ince-yapı seviyeleri ve bu seviyelere ait bilinen aiy sabitlerinden oluşan giriş datası Genel Kısımlar bölümünde belirtilen yayınlardan alındı.

Klasifikasyon programında, aiy çizgileri yarı genişliği ayarlanabilen Gauss profiliyle simüle edildi. Simüle edilen teorik spektrumun, deneysel spektrum ile en iyi şekilde eşleşmesi için simülasyon programında dalga-boyu ekseni boyunca kaydırılarak ayarlandı. Spektral geçişin alt-üst seviyesinin aiy sabitleri biliniyorsa, ağırlık-merkezi değeri yüksek doğrulukla belirlenebildi. FT-spektrumunda gözlenen çizgilerin sinyal-gürültü oranı (S/N) 10'dan yüksek olduğu sürece, ağırlık-merkezinin doğruluğu S/N'den neredeyse bağımsızdır.

Bir geçişte, bir seviye için deneysel aiy sabitleri şimdiye kadar bilinmiyorsa, deneysel spektrum ile simülasyon programında aiy sabitlerine değerler vererek, teorik spektrumu örnek profile göre ayarlayarak, simüle ederek çizginin ağırlık-merkezi dalga-sayısı ve alt/üst seviyelerin aiy sabitleri tahmin edildi. Program, FT Spektroskopisi yöntemi ile kaydedilen spektrumlara ait altüst enerji seviyelerinin aiy sabitlerinin tahmini için uygun değerler vermektedir. Bu yöntem kullanılarak 34 seviye için yeni yarı-deneysel aiy sabitleri yaklaşık olarak belirlendi.

Literatürde 21 La II seviye için aiy sabitleri bilinmemektedir. FT spektrumunda bu seviyeleri içeren hiçbir çizgi tespit edilemedi. Buna karşın, MIT dalga-boyu tablolarının [3] listelediği spektral çizgilerden bir kısmı bu seviyeleri içermektedir. Bu seviyeler için tüm sınıflandırılmış çizgiler, FT spektral dalga-boyu aralığının dışındaki mor-üstü (UV) bölgededir. Aiy analizi yapılırken, bu çizgiler ikinci aşamada kullanıldı.

La II için ince-yapı seviyesi enerjileri için revize edilmiş değerlerini belirlemek için, "Globalfit Programı" [6] uygulandı. Bu amaçla, spektral çizginin  $F_{ust}$ – $F_{alt}$  geçiş bileşenlerinin ayrışmışlık durumuna ve sinyal-gürültü oranına (S/N) bağlı olarak; her bir çizgiye 1, 3, 5, 10 ve 50 derecelendirme olacak şekilde bir ağırlık faktörü (wf) belirlendi. Spektral çizgilerin wf değerlerini belirleyebilmek için, bazı kriterler kullanıldı (Tablo 4.3).

| Ağırlık Faktörü<br>(wf) | Kriterler                                                      | FT-Spektrumunda bu<br>faktörün uygulandığı<br>spektral-çizgi sayısı |
|-------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|
| 10                      | İyi ayrışmış, S/N ≥ 20 olan güçlü spektral-çizgiler            | 3                                                                   |
| 5                       | Kısmen ayrışmış, S/N ≥ 20 olan güçlü spektral-çizgiler veya    | 36                                                                  |
|                         | İyi ayrışmış, 20 ≥ S/N ≥ 10                                    |                                                                     |
| 3                       | Pek ayrışmamış, S/N ≥ 20 olan güçlü spektral-çizgiler<br>veya  | 100                                                                 |
|                         | İyi ayrışmış, S/N < 10 olan zayıf spektral-çizgiler            |                                                                     |
| 1                       | Kısmen ayrışmış, S/N < 10 olan zayıf spektral-çizgiler<br>veya | 205                                                                 |
|                         | Ayrışmamış spektral-çizgiler (S/N oranından bağımsız)          |                                                                     |

**Tablo 4.3:** La-Ar FT spektrumundaki La II spektral çizgileri için Global-fit programında uygulanan ağırlık faktörleri (wf), uygulanma kriterleri ve spektral çizgilerin sayısı.

İyi-ayrışmış bir spektral çizgi, en az üç güçlü aşırı ince-yapı tepe noktasının iyi ayrıldığı ve en az iki ya da üç F<sub>ü</sub>-F<sub>a</sub> geçişinin diğerlerinden ayrıldığı anlamına gelir. S/N değerinin 100'den büyük olduğu iyi ayrışmış çizgiler için, 50 ağırlık faktörü atanabilir, ancak incelenen La-Ar plazmasının FT-spektrumunda bu özelliklere sahip iyonik bir çizgi yoktur, sadece atomik çizgiler böyle yüksek S/N'ye sahip olduğu görülmektedir. Farklı ağırlıklandırma faktörlerine sahip çizgi analiz örnekleri Şekil 4.3–4.13 aralığında gösterildi.

Enerji belirlemek için seçilen spektral çizgilerin ihtiyaç duyulan tüm verilerinin kolayca çıkarılması için (FT spektrumundan ağırlık-merkezi dalga-boyu ve sınıflandırma) Klasifikasyon sınıflandırma programında [4-5] ve ayrıca Global-Fit programı uygulandı [6]. Programlar, Avusturya Graz Teknik Üniversitesi emekli öğretim üyelerinden Laurentius Windholz tarafından yazılmıştır.

Analiz sırasında, incelenen La II çizgilerinin simülasyon sonucu yaklaşık yarı genişlik değerleri:

1400 nm civarında: 1700 MHz

1000 nm civarında: 2000 MHz

800 nm civarında: 2400 MHz

400 nm civarında: 2600 MHz

olarak bulundu. Bu yarı genişlik Doppler genişlemesinden ve FT spektrometresinin genişliğinden kaynaklanmaktadır.





- Şekil 4.3: wf=10 değerindeki  $\lambda = 394.91025 nm$  dalgaboylu ve  $\sigma = 25315.044 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.4:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)     | B (MHz)   | Ref. |
|----------------------------|---------------|------------------|---|--------|-------------|-----------|------|
| 3250.381                   | 5d6s          | a <sup>3</sup> D | 3 | çift   | 1066.3(3.3) | 60.3(9.3) | [31] |
| 28565.423                  | 5d6p          | x <sup>3</sup> F | 4 | tek    | 126.1(9.5)  | 150(30)   | [36] |

53



- Şekil 4.4: wf=10 değerindeki  $\lambda = 480.90046 nm$  dalgaboylu ve  $\sigma = 20788.513 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.5:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)    | B (MHz)   | Ref. |
|----------------------------|---------------|------------------|---|--------|------------|-----------|------|
| 1895.130                   | 5d6s          | a <sup>3</sup> D | 1 | çift   | -1128.1(9) | 49.8(6.5) | [31] |
| 22683.643                  | 4f5d          | z <sup>3</sup> P | 0 | tek    | 0          | 0         |      |

54



Şekil 4.5: wf=10 değerindeki  $\lambda = 706.62110 nm$  dalgaboylu ve  $\sigma = 14147.955 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).

**Tablo 4.6:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon         | Terim            | J | Parite | A (MHz)     | B (MHz)   | Ref. |
|----------------------------|-----------------------|------------------|---|--------|-------------|-----------|------|
| 0.000                      | $5d^{2}$              | a <sup>3</sup> F | 2 | çift   | 397.6(2)    | 19.8(1.8) | [31] |
| 14147.954                  | 4 <i>f</i> 6 <i>s</i> | (5/2,1/2)        | 2 | tek    | -468.8(5.5) | 80(20)    | [36] |



- Şekil 4.6: wf=5 değerindeki  $\lambda = 485.91384 nm$  dalgaboylu ve  $\sigma = 20574.033 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.7:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon         | Terim            | J | Parite | A (MHz)     | B (MHz) | Ref.       |
|----------------------------|-----------------------|------------------|---|--------|-------------|---------|------------|
| 32160.965                  | 5 <i>d</i> 6p         | x <sup>3</sup> P | 1 | tek    | 1383.9(9.0) | -35(10) | [36]       |
| 52734.998                  | 5 <i>d</i> 6 <i>d</i> | g <sup>3</sup> D | 2 | çift   | 50(10)      | -       | Bu çalışma |



- Şekil 4.7: wf=5 değerindeki  $\lambda = 588.06395 nm$  dalgaboylu ve  $\sigma = 17000.241 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.8:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, J değerleri, pariteleri, A (MHz) ve B (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)    | B (MHz)   | Ref. |
|----------------------------|---------------|------------------|---|--------|------------|-----------|------|
| 1895.130                   | 5d6s          | a <sup>3</sup> D | 1 | çift   | -1128.1(9) | 49.8(6.5) | [31] |
| 18895.372                  | 4f5d          | z <sup>1</sup> D | 2 | tek    | 197.6(2.1) | -16(8)    | [36] |



- Şekil 4.8: wf=5 değerindeki  $\lambda = 805.93803 nm$  dalgaboylu ve  $\sigma = 12404.491 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.9:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon         | Terim            | J | Parite | A (MHz)     | B (MHz)  | Ref. |
|----------------------------|-----------------------|------------------|---|--------|-------------|----------|------|
| 1970.708                   | $5d^{2}$              | a <sup>3</sup> F | 4 | çift   | -18.6(1)    | 37.5(15) | [31] |
| 14375.198                  | 4 <i>f</i> 6 <i>s</i> | (5/2,1/2)        | 3 | tek    | 1110.9(5.1) | 130(15)  | [36] |



Şekil 4.9: wf=3 değerindeki  $\lambda = 370.58102 nm$  dalgaboylu ve  $\sigma = 33204.388 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).

**Tablo 4.10:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon         | Terim                | J | Parite | A (MHz)   | B (MHz) | Ref.       |
|----------------------------|-----------------------|----------------------|---|--------|-----------|---------|------------|
| 6227.414                   | $5d^{2}$              | a <sup>3</sup> P     | 2 | çift   | -158.2(4) | -45(11) | [31]       |
| 33204.388                  | 6 <i>s</i> 6 <i>p</i> | x <sup>3</sup> P (?) | 2 | tek    | 1230(100) | -       | Bu çalışma |


Şekil 4.10: wf=3 değerindeki  $\lambda = 463.49538 nm$  dalgaboylu ve  $\sigma = 21569.147 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).

**Tablo 4.11:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)    | B (MHz) | Ref.       |
|----------------------------|---------------|------------------|---|--------|------------|---------|------------|
| 28315.299                  | 5 <i>d</i> 6p | y <sup>3</sup> D | 3 | tek    | 82.9(5.0)  | -28(10) | [36]       |
| 49884.446                  | 5d7s          | (3/2,1/2)        | 2 | çift   | 177.1(4.4) | -       | Bu çalışma |



- Şekil 4.11: wf=3 değerindeki  $\lambda = 571.24060 nm$  dalgaboylu ve  $\sigma = 17500.903 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.12:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| <br>Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)    | B (MHz)    | Ref. |
|--------------------------------|---------------|------------------|---|--------|------------|------------|------|
| <br>1394.471                   | $5d^{2}$      | -                | 2 | çift   | 949.5(1.6) | 49.8(12.6) | [31] |
| 18895.372                      | 4f5d          | z <sup>1</sup> D | 2 | tek    | 197.6(2.1) | -16(8)     | [36] |





- Şekil 4.12: wf=1 değerindeki  $\lambda = 373.58492 nm$  dalgaboylu ve  $\sigma = 26760.066 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. a) Deneysel (FT) spektrumu, b) Aşırı ince-yapı geçişleri, c) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).
- **Tablo 4.13:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon         | Terim | J | Parite | A (MHz)    | B (MHz)    | Ref. |
|----------------------------|-----------------------|-------|---|--------|------------|------------|------|
| 1394.471                   | $5d^{2}$              | -     | 2 | çift   | 949.5(1.6) | 49.8(12.6) | [31] |
| 18235.558                  | 6 <i>s</i> 6 <i>p</i> | -     | 1 | tek    | 791.8(2.3) | -24(10)    | [36] |



Şekil 4.13: wf=1 değerindeki  $\lambda = 1404.6969 nm$  dalgaboylu ve  $\sigma = 7117.028 cm^{-1}$  dalga sayılı örnek La II spektral çizgisi. **a**) Deneysel (FT) spektrumu, **b**) Aşırı ince-yapı geçişleri, **c**) Klasifikasyon-simülasyon programı ile deneysel (kırmızı) ve teorik (mavi) spektrumun simüle edilmiş hali (x-ekseni, çizginin ağırlık merkezinden olan relatif frekansı (MHz)).

**Tablo 4.14:** Geçişe ait alt-üst ince-yapı enerji seviyeleri (cm<sup>-1</sup>), bu seviyelere ait konfigürasyonları, spektral terimleri, *J* değerleri, pariteleri, *A* (MHz) ve *B* (MHz) değerleri.

| Enerji (cm <sup>-1</sup> ) | Konfigürasyon | Terim            | J | Parite | A (MHz)  | B (MHz)   | Ref. |
|----------------------------|---------------|------------------|---|--------|----------|-----------|------|
| 10094.889                  | 5d6s          | -                | 2 | çift   | 48.1(1)  | 39.9(1.8) | [31] |
| 17211.918                  | 4f5d          | y <sup>3</sup> F | 2 | tek    | 365.9(2) | -3.9(1.8) | [31] |

## 5. TARTIŞMA VE SONUÇ

Global-fit programı sonucunda, daha hassas ve daha doğrulukla hesaplanarak revize edilen çiftpariteli 68 La II seviyeleri için Tablo 5.1'de ve tek-pariteli 47 La II seviyeler için Tablo 5.2'de verildi. Bu iki tabloda; ilk iki sütunda, elektronlarının *J* toplam açısal momentumu ve enerji değerleri verildi. Sonraki dört sütunda, enerji hesaplamasına ilişkin aşağıdaki bilgiler sırasıyla listelendi:

- Nok.ç.: Enerjiyi belirlemek için kullanılan spektral-çizgilerin sayısı,
- $\Delta E_{ist.}$ : Simülasyon sonuçlarından kaynaklanan istatistiksel belirsizlik,
- $\Delta E_{top.}$ : FT-spektrumunun kalibrasyon belirsizliğini de dikkate alarak hesaplanan toplam belirsizlik, ve
- No<sub>s.ç.</sub>: Enerji seviyesini içeren sınıflandırılmış (klasifike edilmiş) spektral-çizgilerin sayısı.

No<sub>s.ç.</sub>, FT-Spektrumunda gözlenen ve "Klasifikasyon Programi"nda sınıflandırılan tüm çizgilerin sayısıdır. Fakat, bu çizgilerden bazıları "Global-fit Programi"nda hesaplama sırasında kullanılmamıştır. Bunun nedeni, bu çizgilerin deneysel spektrumda birbirine karışmış (blend) birden fazla atomik/iyonik çizgi bulundurması ve ağırlık-merkezinin tam olarak belirlenememesidir.

Tablo 5.1 ve Tablo 5.2'de 6. ve 7. sütunlarda, seviyelere ait *A*&*B* aiy sabitleri ve standart sapma değerleri, bilinenler için referansları ile birlikte, bilinmeyenler için bu çalışmada simülasyon sonucu elde edilen değerler verildi. Son sütun ise, sadece MIT tablolarından [3] kullanılan çizgiler yardımıyla revize edilen seviyeleri vurgulamak için yazıldı. Revize edilen seviyelerin *A*&*B* değerleri literatürde belirlenmemiş olanlar için hata hesabı; "Simülasyon Programı" yardımıyla deneysel ve teorik spektrum eşleştirilmesi sırasında, *A* ve *B*'ye değerler verilerek ve belirli uygun aralıklarda değiştirilerek standart sapma tahmini olarak verildi.

**Tablo 5.1:** Revize edilen çift-pariteli La II enerji seviyeleri listesi. *J* değeri, revize edilen enerji değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k,ç</sub>.), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s,ç</sub>.), seviyelerin *A*&*B* (MHz) değerleri, referanslar.

| ns Not<br>3) |
|--------------|
| 10           |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
|              |
| ma           |
| ma           |
| ma           |
| ma           |
| ma           |
| ma           |
| ma           |
| ***          |
|              |

| J | E<br>(cm <sup>-1</sup> ) | Nok.ç | $\frac{\Delta E_{ist.}}{(cm^{-1})}$ | $\Delta E_{top.}$ (cm <sup>-1</sup> ) | Nos.ç | A<br>(MHz) | B<br>(MHz) | Referans<br>(A&B) | Not |
|---|--------------------------|-------|-------------------------------------|---------------------------------------|-------|------------|------------|-------------------|-----|
| 4 | 56035.909                | 2     | 0.0012                              | 0.005                                 | 6     | 80(20)     |            | Bu Çalışma        |     |
| 2 | 56036.788                | 3     | 0.0025                              | 0.006                                 | 4     | 30(15)     |            | Bu Çalışma        |     |
| 6 | 56838.06                 | 2     | 0.0346                              | 0.07                                  | 2     | -          | -          |                   | *** |
| 2 | 57399.524                | 1     | -                                   | 0.006*                                | 4     | 350(50)    |            | Bu Çalışma        |     |
| 3 | 57918.49                 | 4     | 0.063                               | 0.10                                  | 4     | -          | -          |                   | *** |
| 4 | 58259.53                 | 4     | 0.045                               | 0.08                                  | 4     | -          | -          |                   | *** |
| 4 | 59527.58                 | 5     | 0.019                               | 0.05                                  | 6     | -          | -          |                   | *** |
| 2 | 59900.236                | 1     | -                                   | 0.006*                                | 6     | 250(50)    |            | Bu Çalışma        |     |
| 0 | 60094.76                 | 2     | 0.019                               | 0.05*                                 | 2     | 0          | 0          |                   | *** |
| 1 | 60660.15                 | 2     | 0.121                               | 0.15**                                | 2     |            | 14         |                   | *** |
| 1 | 61128.87                 | 9     | 0.035                               | 0.07                                  | 9     | -          | -          |                   | *** |
| 2 | 62026.24                 | 9     | 0.035                               | 0.07                                  | 9     | -          | -          |                   | *** |
| 6 | 62408.50                 | 2     | 0.029                               | 0.06                                  | 2     |            | -          |                   | *** |
| 2 | 62506.30                 | 6     | 0.033                               | 0.07                                  | 6     | - · · /    | -          |                   | *** |
| 0 | 63464.00                 | 1     | -                                   | 0.07*                                 | 1     | 0          | 0          |                   | *** |
| 1 | 63703.19                 | 6     | 0.050                               | 0.08                                  | 6     | - 6        | -          |                   | *** |
| 2 | 64278.96                 | 4     | 0.091                               | 0.13                                  | 4     | _          | -          |                   | *** |
| 1 | 64361.26                 | 3     | 0.097                               | 0.13                                  | 3     | -          | -          |                   | *** |
| 2 | 64529.82                 | 2     | 0.051                               | 0.08                                  | 2     | -          | -          |                   | *** |
| 3 | 64692.59                 | 3     | 0.111                               | 0.15                                  | 3     | -          | -          |                   | *** |
| 0 | 66591.74                 | 1     | -                                   | 0.07*                                 | 1     | 0          | 0          |                   | *** |
| 3 | 69234.11                 | 1     | -                                   | 0.07*                                 | 1     | -          | -          |                   | *** |
| 0 | 69505.13                 | 2     | 0.029                               | 0.07                                  | 2     | 0          | 0          |                   | *** |

**Tablo 5.1 (devam):** Revize edilen çift-pariteli La II enerji seviyeleri listesi. *J* değeri, revize edilen değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k,ç.</sub>), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s,ç.</sub>), seviyelerin *A&B* (MHz) değerleri, referanslar.

\*Bu seviyeler için sadece birer çizgi tespit edilebildiği için, istatistiksel bir belirsizlik mevcut değildir.

\*\* Sadece MIT tablosundaki [3] çizgiler için, toplam belirsizliğin 0,07 cm<sup>-1</sup> olduğu varsayılmıştır.

\*\*\* Bu enerji seviyesini içeren geçişler, MIT tablosunda [3] doğru olarak verilmemiş olma ihtimali yüksektir.

**Tablo 5.2:** Revize edilen tek-pariteli La II enerji seviyeleri listesi. *J* değeri, revize edilen enerji değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k.ç.</sub>), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s.ç.</sub>), seviyelerin *A&B* (MHz) değerleri, referanslar.

|          |                          | Ene               | rji Hesap                           | laması                                    |                   |             |                          |                   |     |
|----------|--------------------------|-------------------|-------------------------------------|-------------------------------------------|-------------------|-------------|--------------------------|-------------------|-----|
| <i>J</i> | E<br>(cm <sup>-1</sup> ) | No <sub>k.ç</sub> | $\frac{\Delta E_{ist.}}{(cm^{-1})}$ | ΔE <sub>top.</sub><br>(cm <sup>-1</sup> ) | No <sub>s.ç</sub> | A<br>(MHz)  | B<br>(MHz)               | Referans<br>(A&B) | Not |
| 2        | <u> </u>                 | 10                | 4                                   | 0.004                                     | 24                | 1           | <u> </u>                 | 9                 | 10  |
| 2        | 1414/.934                | 10                | 0.0007                              | 0.004                                     | 54<br>16          | -408.8(3.3) | $\frac{80(20)}{120(15)}$ | [30]              |     |
| 3        | 14373.190                | 14                | 0.0000                              | 0.004                                     | 10                | 702.8(1.8)  | 150(13)<br>155(20)       | [30]              |     |
| 4        | 15090.702                | 9                 | 0.0007                              | 0.004                                     | 12                | /92.0(1.0)  | 133(20)<br>145(15)       | [30]              |     |
| 3        | 15//5.014                | 10                | 0.0008                              | 0.004                                     | 14                | -431.0(3.0) | 143(13)<br>116(15)       | [30]              |     |
| 4        | 10399.238                | /                 | 0.0010                              | 0.005                                     | 12                | 220.4(2.5)  | 110(15)                  | [30]              |     |
| 2        | 17211.913                | 0                 | 0.0008                              | 0.004                                     | 14                | 303.9(2)    | -3.9(1.8)                | [31]              |     |
| 2        | 1/823.004                | 0                 | 0.0011                              | 0.003                                     | 15                | 207.9(2.3)  | 91(20)                   | [30]              |     |
| 5        | 18233.338                | 8                 | 0.0008                              | 0.004                                     | 14                | 148.7(4)    | 5.0(4.2)                 | [31]<br>Du Caluma |     |
| 5        | 18580.482                | 3                 | 0.0013                              | 0.005                                     | 5                 | 1/3(5)      | 1((0))                   | Bu Çalışma        |     |
| 2        | 18895.372                | 9                 | 0.0006                              | 0.004                                     | 20                | 197.6(2.1)  | -16(8)                   | [30]              |     |
| 4        | 19214.527                | 9                 | 0.0005                              | 0.004                                     | 12                | 64.8(1)     | 8.4(4.8)                 | [31]              |     |
| 6        | 19/49.649                | 1                 | -                                   | 0.006*                                    | 3                 | 190(10)     | 450(100)                 | Bu Çalışma        |     |
| 3        | 20402.810                | 5                 | 0.0002                              | 0.004                                     | 14                | 332.7(3.5)  | 60(15)                   | [36]              |     |
| 4        | 21331.594                | 3                 | 0.0018                              | 0.006                                     | 9                 | 170.7(1.9)  | 180(20)                  | [36]              |     |
| 1        | 21441.685                | 6                 | 0.0010                              | 0.005                                     | 15                | 412.4(5)    | 8(4)                     | [36]              |     |
| 2        | 22106.016                | 9                 | 0.0008                              | 0.004                                     | 20                | 127.8(2.4)  | 2.6(7.5)                 | [35]              |     |
| 5        | 22282.808                | 3                 | 0.0016                              | 0.005                                     | 15                | 136.1(3.0)  | 60(30)                   | [36]              |     |
| 3        | 22537.291                | 8                 | 0.0004                              | 0.004                                     | 19                | 100.9(1.2)  | -31.2(6.9)               | [35]              |     |
| 0        | 22683.643                | 2                 | 0.0012                              | 0.005                                     | 4                 | 0           | 0                        |                   |     |
| 1        | 22705.126                | 6                 | 0.0010                              | 0.005                                     | 15                | 72.2(7.0)   | -28(10)                  | [36]              |     |
| 2        | 23246.892                | 8                 | 0.0013                              | 0.005                                     | 12                | 34.5(3)     | 11.1(2.4)                | [31]              |     |
| 2        | 24462.681                | 11                | 0.0008                              | 0.004                                     | 16                | 446.5(1.8)  | 21(8)                    | [36]              |     |
| 3        | 24522.694                | 10                | 0.0005                              | 0.004                                     | 15                | 161.9(2)    | 22.1(4.2)                | [32]              |     |
| 1        | 25973.367                | 12                | 0.0008                              | 0.004                                     | 19                | 547.3(3.0)  | 27(7)                    | [36]              |     |
| 2        | 26414.022                | 10                | 0.0009                              | 0.004                                     | 17                | 250.5(2)    | 51.9(1.8)                | [31]              |     |
| 3        | 26837.656                | 12                | 0.0005                              | 0.004                                     | 14                | 258.9(1.5)  | 114.3(7.6)               | [35]              |     |
| 2        | 27388.135                | 16                | 0.0007                              | 0.004                                     | 24                | 68.8(7)     | 30(15)                   | [36]              |     |
| 1        | 27423.919                | 12                | 0.0008                              | 0.004                                     | 16                | 886.9(1.5)  | -18.9(4.8)               | [35]              |     |
| 0        | 27545.818                | 3                 | 0.0014                              | 0.005                                     | 6                 | 0           | 0                        |                   |     |
| 1        | 28154.540                | 9                 | 0.0010                              | 0.005                                     | 17                | 791.8(2.3)  | -24(10)                  | [36]              |     |
| 3        | 28315.299                | 15                | 0.0006                              | 0.004                                     | 21                | 82.9(5.0)   | -28(10)                  | [36]              |     |
| 5        | 28525.720                | 2                 | 0.0007                              | 0.004                                     | 5                 | 175(5)      | 250(30)                  | Bu Çalışma        |     |
| 4        | 28565.423                | 10                | 0.0008                              | 0.004                                     | 13                | 126.1(9.5)  | 150(30)                  | [36]              |     |
| 2        | 29498.079                | 10                | 0.0006                              | 0.004                                     | 16                | 610.2(3.3)  | 88(15)                   | [36]              |     |
| 1        | 30353.375                | 12                | 0.0008                              | 0.004                                     | 17                | -157.7(6)   | 33(6)                    | [36]              |     |
| 0        | 31785.814                | 2                 | 0.0038                              | 0.007                                     | 5                 | 0           | 0                        |                   |     |
| 1        | 32160.965                | 6                 | 0.0008                              | 0.004                                     | 14                | 1383.9(9.0) | -35(10)                  | [36]              |     |
| 3        | 32201.058                | 8                 | 0.0008                              | 0.004                                     | 17                | 193.7(3.0)  | 143(20)                  | [36]              |     |
| 2        | 33204.388                | 7                 | 0.0006                              | 0.004                                     | 23                | 1230(10)    |                          | Bu Çalısma        |     |
| 1        | 45692.19                 | 7                 | 0.048                               | 0.08                                      | 7                 | -           | -                        | 3 3               | **  |
| 3        | 57364.200                | 7                 | 0.0005                              | 0.004                                     | 8                 | 360(20)     |                          | Bu Calısma        |     |
| 4        | 58748.813                | 6                 | 0.0011                              | 0.005                                     | 6                 | 170(15)     |                          | Bu Calisma        |     |
| 3        | 59612 512                | 10                | 0.0005                              | 0.004                                     | 10                | 240(20)     |                          | Bu Calisma        |     |
| 4        | 60744 142                | 6                 | 0.0008                              | 0.004                                     | 6                 | 220(20)     |                          | Bu Calisma        |     |
| 3        | 61017.580                | 1                 | -                                   | 0.006*                                    | 1                 | 20(20)      |                          | Bu Çalışma        |     |

**Tablo 5.2 (devam):** Revize edilen tek-pariteli La II enerji seviyeleri listesi. *J* değeri, revize edilen enerji değeri E (cm<sup>-1</sup>), programda kullanılan geçiş sayısı (No<sub>k,ç</sub>.), enerjinin istastistik hatası  $\Delta E_{ist.}$  (cm<sup>-1</sup>), toplam hata  $\Delta E_{top.}$  (cm<sup>-1</sup>), sınıflandırılan geçiş sayısı (No<sub>s,ç</sub>.), seviyelerin *A&B* (MHz) değerleri, referanslar.

| J    | E<br>(cm <sup>-1</sup> ) | No <sub>k.ç</sub> | $\frac{\Delta E_{ist.}}{(cm^{-1})}$ | $\Delta E_{top.}$ (cm <sup>-1</sup> ) | No <sub>s.ç</sub> | A<br>(MHz) | B<br>(MHz) | Referans<br>(A&B) | Not |
|------|--------------------------|-------------------|-------------------------------------|---------------------------------------|-------------------|------------|------------|-------------------|-----|
| 3+   | 61514.413                | 1                 | -                                   | 0.006*                                | 1                 | 60(10)     |            | Bu Çalışma        |     |
| 3    | 64411.332                | 2                 | 0.0025                              | 0.006                                 | 3                 | 180(20)    |            | Bu Çalışma        |     |
| 1.00 |                          |                   |                                     |                                       |                   |            |            |                   |     |

<sup>+</sup> Bu seviyesinin J değeri ref. [3]'te 3 veya 4 olarak verilmiştir. A için verilen değer J = 3 olduğu varsayılarak belirlenir.

\*Bu seviyeler için sadece birer çizgi tespit edilebildiği için, istatistiksel bir belirsizlik mevcut değildir.

\*\* Bu enerji seviyesini içeren geçişler, MIT tablosunda [3] doğru olarak verilmemiş olma ihtimali yüksektir.

59.900.236 cm<sup>-1</sup> çift seviyesi için FT spektrumumuzun dalga-boyu aralığında sadece bir çizgi vardır, ancak toplamda 6 çizgi bu seviyeyi kapsayan geçişler olarak sınıflandırılır. Bu seviye için verilen enerji değeri bu tek FT çizgisine (360.91858 nm) dayanmaktadır.

Sadece bir çizgi 61514.413 cm<sup>-1</sup> seviyesine göre sınıflandırılabilir (J = 2, 3 veya 4). Bu çizgi FT spektrumunda oldukça güçlüdür (S/N=165). Ancak sınıflandırmanın yanlış olması ve daha düşük enerjiye sahip henüz keşfedilmemiş bir seviyenin bu çizginin oluşumunda yer alması mümkündür. Dolayısıyla bu seviyenin varlığı kesin değildir.

NIST tablolarında [2] sıralanan üç seviye, lantan spektrumunun analizi üzerine yıllarca yapılan araştırmalar sırasında henüz doğrulanamamıştır: 54793.82 cm<sup>-1</sup> (J = 0), 54964.19 cm<sup>-1</sup> (J = 0), ve 63598.87 cm<sup>-1</sup> (J = 4).

Bu çalışmada, deneysel olarak bilinen 118 La II ince-yapı seviyesinden üç tane (54793.82 cm<sup>-1</sup>, 54964.19 cm<sup>-1</sup> ve 63598.87 cm<sup>-1</sup>) dışındaki tüm seviyeler ilk defa revize edildi. Bu seviyelerin 94'ü, dalga-boyu kalibre edilmiş FT-spektrumunda gözlenen spektral çizgiler aracılığıyla belirlendi. Bu 94 seviye için enerji değerlerinin belirsizliği 0.01 cm<sup>-1</sup>'in altında bulundu ve bunun anlamı 94 seviyenin enerji değerlerinin daha doğru belirlenebilmiş demektir. Kalan 21 seviyenin enerji değerlerinin belirlenebilmesi için, MIT dalga-boyu tablolarından [3] yararlanıldı, bu da ortalama 0,07 cm<sup>-1</sup> bir belirsizlikle daha doğru enerji değerleri elde edilmesine neden oldu. 34 La II seviyesi için aiy sabitleri ilk defa bu çalışmada tahmin edildi.

## KAYNAKLAR

- Yang, F., Hamilton, J.H., 2010, *Hyperfine Interactions*, Modern Atomic and Nuc. Phys., World Scientific, Chapter 13, Publish. Co. Pte. Ltd., ISBN: 978-981-283-678-6, 623.
- [2]. NIST Atomic Spectra Database, https://www.nist.gov/pml/atomic-spectra-database, [Ziyaret Tarihi: 17.09.2018]
- [3]. Martin, W.C, Zalubas, R., Hagan, L., 1978, *Atomic energy levels-The rare-earth elements*, Circular of the National Bureau of Standards 60, Washington DC.
- [4]. Windholz, L., 2015, Class-LW bilgisayar program, private communication.
- [5]. Windholz, L., 2016, Finding of previously unknown energy levels using Fourier-transform and laser spectroscopy, *Phys Scr.*, 91, 114003.
- [6]. Windholz, L., 2016, Global-Fit bilgisayar program, private communication.
- [7]. Fischer, W., Hühnermann, H., Mandrek, K., Ihle, H., 1972, Optical determination of the quadrupole moment of 138La, *Phys. Lett. B*, 40, 87.
- [8]. Stone, N.J., 2003, Table of nuclear magnetic dipole and electric quadrupole moments, *Atom. Data Nucl. Data*, 90, 75–176.
- [9]. Lawler, J.E., Bonvallet, G., Sneden, C., 2001, Experimental Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for La II and a New Determination of the Solar Lanthanum Abundance, *Astrophys J.*, 556, 452.
- [10]. Giora, S., 2012, The Synthesis of the Elements: The Astrophysical Quest for Nucleosynthesis and what it can tells us about the Universe, Springer-Verlag, Berlin, ISBN: 978-3-642-28384-0.
- [11]. Childs, W.J. and Goodman, L.S., 1971, Hyperfine and Zeeman Studies of Low-Lying Atomic Levels of La139 and the Nuclear Electric-Quadrupole Moment, *Phys. Rev. A*, 3, 25.
- [12]. Wilson, M., 1971, LS-Term Dependence of Hyperfine-Interaction Parameters in d2s Configurations, *Phys. Rev. A*, 3, 45.
- [13]. Ben Ahmed., Z., Bauche-Arnoult, C., Wyart, J.F., 1974, Energy levels and hyperfine structures in the (5d + 6s)3 configurations of La I, *Physica*, 77, 148.
- [14]. Childs, W.J. and Goodman, L.S., 1977, Complete resolution of hyperfine structure in the close doublet λ5930.6 of 139La by laser-atomic-beam spectroscopy, J. Optical Soc. Am., 67, 1230.
- [15]. Childs, W.J. and Goodman, L.S., 1978, Hyperfine structure of excited, odd-parity levels in 139La by laser–atomic-beam fluorescence, *J. Optical Soc. Am.*, 68, 1348.

- [16]. Childs, W.J. and Nielsen. U., 1988, Hyperfine structure of the (5d+6s)3 configuration of 139i: New measurements and ab initio multiconfigurational Dirac-Fock calculations, *Phys. Rev. A*, 37, 6.
- [17]. Govindarajan, J. and Pramila, T., 1989, Laser optogalvanic spectroscopy for hyperfine structure studies of La I, *J. Opt. Soc. Am. B*, 6, 1275.
- [18]. Caiyan, L., Fucheng, L., Jianan, C., Lizhou, Z., 1990, Studies on the hyperfine structure of La I in a hollow-cathode discharge tube, *Phys. D Appl. Phys.*, 23, 1327.
- [19]. Shaw, R.W., Young, J.P., Smith, D.H., Bonanno, A.S., Dale, J.M., 1990, Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonanceionization mass spectroscopy, *Phys. Rev. A*, 41, 2566.
- [20]. Jia, L., Jing, C., Lin, F., 1992, Hyperfine structure of odd-parity levels in 139LaI by laser optogalvanic spectroscopy, *Opt. Commun.*, 94, 331.
- [21]. Jin, W.G., Endo, T., Uematsu, H., Minowa, T., Katsuragawa, H., 2001, Diode-laser hyperfine-structure spectroscopy of 138,139La, *Phys. Rev. A*, 63, 064501.
- [22]. Başar, Gö., Başar, Gü., Er, A., Kröger, S., 2007, Experimental hyperfine structure investigation of atomic La, *Phys. Scr.*, 75, 572.
- [23]. Furmann, B., Stefańska, D., Dembczyński, J., 2007, Hyperfine structure analysis odd configurations levels in neutral lanthanum: I. Experimental, *Phys. Scr.*, 76, 264.
- [24]. Başar, Gü., Başar, Gö., Kröger, S., 2009, High resolution measurements of the hyperfine structure of atomic Lanthanum for energetically low lying levels of odd parity, *Opt. Commun.*, 282, 562.
- [25]. Furmann, B., Stefańska, D., Dembczyński, J., 2009, Experimental investigations of the hyperfine structure in neutral La: I. Odd parity levels, J. Phys. B, 42, 175005.
- [26]. Nighat, Y., Raith, M., Hussain, M., Windholz, L., 2010, Investigation of the hyperfine structure of lanthanum lines by a laser-induced fluorescence technique, *J. Phys. B*, 43, 125001.
- [27]. Güzelçimen, F., Siddiqui, I., Başar, G., Kröger, S., Windholz, L., 2012, New energy levels and hyperfine structure measurements of neutral lanthanum by laser-induced fluorescence spectroscopy, *J. Phys. B*, 45, 135005.
- [28]. Gamper, B., Głowacki, P., Siddiqui, I., Dembczyński, J., Windholz, L., 2014, New even-parity fine structure levels of the Lanthanum atom discovered by means of optogalvanic spectroscopy, J. Phys. B, 47, 16.
- [29]. Güzelçimen, F., Başar, Gö., Tamanis, M., Kruzins, A., Ferber, R., Windholz, L., Kröger, S., 2013, High-resolution Fourier Transform Spectroscopy of lanthanum in Ar discharge in the near-infrared, *Astrophys. J. Suppl. Ser.*, 208, 18.

- [30]. Shang, X., Tian, Y., Wang, Q., Fan, S., Bai, W., Dai, Z., 2014, Radiative lifetime measurements of some La i and La ii levels by time-resolved laser spectroscopy, *Monthly Notices of the Royal Astronomical Soc.*, 442, 138.
- [31]. Höhle, C., Hühnermann, H., Wagner, H., 1982, Measurements of the hyperfine structure constants of all the 5 d2 and 5 d6 s levels in139La II using the high-resolution spectroscopy on collinear laser-ion-beams, *Z. Phys. A*, 304, 279.
- [32]. Li, G., Ma, H., Li, M., Chen, Z., Chen, M., Lu, F., Peng, X., Yang, F., 2000, Hyperfine structure measurement in La II 5d2 1G4 → 4f5d 1F3, *Acta Physica Sinica*, 49, 1256.
- [33]. Li, M., Ma, H., Chen, M., Chen, Z., Lu, F., Tang, J., Yang, F., 2000, Development of the fully digital dc speed regulation system in 8-mX6-m wind tunnel, *Phys. Scr.*, 61, 449.
- [34]. Li, G., Zhang, X., Lu, F., Peng, X., Yang, F., 2001, Hyperfine Structure Measurement of La II by Collinear Fast Ion-Beam-Laser Spectroscopy, *Jpn. J. of Appl. Phys.*, 40, 2508.
- [35]. Ma, H., 2002, Hyperfine structure of singly ionized lanthanum and praseodymium, *Chinese Phys.*, 11, 905.
- [36]. Furmann, B., Ruczkowski, J., Stefańska, D., Elantkowska, M., Dembczyński, J., 2008, Hyper-fine structure in La II odd configuration levels, *J. Phys. B*, 41, 215004.
- [37]. Furmann, B., Elantkowska, M., Stefańska, D., Ruczkowski, J., Dembczyński, J., 2008, Hyper- fine structure in La II even configuration levels, *J. Phys. B*, 41, 235002.
- [38]. Andersen, T., Poulsen, O., Ramanujam, P.S., Petko, A.P., 1975, Lifetimes of some excited states in the rare earths: La ii, Ce ii, Pr ii, Nd ii, Sm ii, Yb i, Yb ii, and Lu ii, *Solar Phys.*, 44, 257.
- [39]. Arnesen, A., Bengtsson, A., Hallin, R., Lindslog, J., Nordling, C., Noreland, T., 1977, Lifetime Measurements in La II with the Beam-Laser Method, *Phys Scr.*, 16, 31.
- [40]. Bauche, J., Wyart, J.F., Ben Ahmed ,Z., Guidara, K., 1982, Interpretation of the hyperfine structures in the low even configurations of lanthanum II, *Z Physik A*, 304, 285.
- [41]. Bord, D.J., Barisciano, L.P., Cowley, C.R., 1996, gf-values for singly ionized lanthanum based on a new calibration of NBS Monograph 145 intensities, *Jr. Mon. Not. R. Astron. Soc.*, 278, 997.
- [42]. Zhiguo, Z., Zhongshan, L., Zhankui, J., 1999, Experimental investigations of oscillator strengths for ultraviolet transitions in LaII, *European Phys. J.* D, 77, 499.
- [43]. Derkatch, A., Ilyinsky, L., Mannervik, S., Norlin, L.O., Rostohar, D., Royen, P., Schef, P., Biémond, E., 2002, Experimental and theoretical investigation of radiative decay rates of metastable levels in La II, *Phys. Rev. A*, 65, 062508.

- [44]. Schef, P., Björkhage, M., Lundin, P., Mannervik, S., 2006, Precise hyperfine structure measurements of La II utilizing the laser and rf double resonance technique, *Physica Scripta*, 73, 217.
- [45]. Furmann, B., Stefańska, D., Dembczyński, J., 2010, Critical analysis of the methods of interpretation in the hyperfine structure of free atoms and ions: case of the model space (5d+ 6s) 3 of the lanthanum atom, *J. Phys. B*, 43, 1.
- [46]. Karaçoban, B., Özdemir, L., 2013, Energy levels and the Lande g-factors for singly ionized lanthanum, *Hindawi Publishing Corporation-Journal of Atomic and Molecular Physics*, 2013-674242.
- [47]. Werbowy, S., Güney, C., Windholz, L., 2016, Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy, *JQS&RT*, 179, 33.
- [48]. Siddiqui, I., Khan, S., Gamper, B., Dembczyński, J., Windholz, L., 2013, Optogalvanic spectroscopy of the hyperfine structure of weak La I lines: discovery of new even parity fine structure levels, *J. Phys. B*, 46, 065002.
- [49]. Raghavan, P., 1989, Table of nuclear moments, At. Data Nucl. Data Tables, 42, 189.
- [50]. Ptable, https://www.ptable.com/?lang=tr, [Ziyaret Tarihi: 06.06.2019]
- [51]. Rsc, http://www.rsc.org/periodic-table/element/57/lanthanum, [Ziyaret Tarihi: 06.06.2019]
- [52]. Eisberg, R, Resnick, R., 1985, *Quantum physics of atoms, molecules, solids, nuclei and particles*, John Wiley&Sons; 2nd Edition, ISBN: 0-471-87373-X.
- [53]. Bransden, B. H., Joachain, C., J. 1999, *Atom ve molekül fiziği*, Bilim Yayıncılık, Ankara, ISBN: 975-7636-03-7.
- [54]. Ewart, P., 2014, *Atomic Physics*, CreateSpace Independent Publishing Platform, ISBN: 978-1502517272.
- [55]. Siddiqui, I., 2010, Hyperfine Structure Studies of Praseodymium Atoms and Ions, Doktora Tezi (PhD), Avusturya Graz Teknik Üniversitesi-Deneysel Fizik Enstitüsü.
- [56]. Aygün, E., Zengin, D.M., 2000, Kuantum Fiziği, Bilim Yayınları, Ankara, ISBN: 975-556-005-x.
- [57]. Aygün, E., Zengin, D.M., 1988, Atom ve Molekül Fiziği, Bilim Yayınları, Ankara, ISBN: 975-95625-0-2.
- [58]. Haken, H. and Wolf, H.C., 1993, *The physics of atoms and quanta*, Springer-Verlag, Berlin and Heidelberg GmbH & Co. K, ISBN: 978-3540208075.
- [59]. Demtröder, W., 2006, Atoms, Molecules and Photons, an Introduction to Atomic, Molecular and Quantum Physics, Springer, Berlin, ISBN: 978-3-540-20631-6.

- [60]. Kopfermann, H., Schneider, E.E., 1958, *Nuclear moments*, Academic Press Inc, Catalog, ISBN: 56-6607.
- [61]. Thorne, A., Litzen, U., Johansson, S., 1999, *Spectrophysics*, Springer-Verlag, Berlin, ISBN: 3-540-65117-9.
- [62]. Demtröder, W., 1998, Laser Spectroscopy Basic Concepts and Instrumentation, Springer, Germany, 3-540-57171-X.
- [63]. Learner, R.C.M., Thorne, A.P., 1988, Wavelength calibration of Fourier-transform emission spectra with applications to Fe I, *J. Opt. Soc. Am. B*, 5, 2045.
- [64]. Peck, R., Reader, K., 1972, Dispersion of Air, JOSA, 62, 958.

## ÖZGEÇMİŞ

| Kişisel Bilgiler |                      |  |  |  |  |  |  |
|------------------|----------------------|--|--|--|--|--|--|
| Adı Soyadı       | Mehdi TONKA          |  |  |  |  |  |  |
| Doğum Yeri       | ULUDERE              |  |  |  |  |  |  |
| Doğum Tarihi     | 06.11.1986           |  |  |  |  |  |  |
| Uyruğu           | ☑ T.C. 	□ Diğer:     |  |  |  |  |  |  |
| Telefon          | 0506 687 9880        |  |  |  |  |  |  |
| E-Posta Adresi   | mehditonka@gmail.com |  |  |  |  |  |  |
| Web Adresi       |                      |  |  |  |  |  |  |



| Eğitim Bilgileri |                             |  |  |  |  |  |
|------------------|-----------------------------|--|--|--|--|--|
| Lisans           |                             |  |  |  |  |  |
| Üniversite       | KİLİS 7 ARALIK ÜNİVERSİTESİ |  |  |  |  |  |
| Fakülte          | FEN-EDEBİYAT FAKÜLTESİ      |  |  |  |  |  |
| Bölümü           | FİZİK BÖLÜMÜ                |  |  |  |  |  |
| Mezuniyet Yılı   | 18.06.2012                  |  |  |  |  |  |

| Yüksek Lisans |                                 |  |  |  |  |  |
|---------------|---------------------------------|--|--|--|--|--|
| Üniversite    | İSTANBUL ÜNİVERSİTESİ           |  |  |  |  |  |
| Enstitü Adı   | FEN BİLİMLERİ ENSTİTÜSÜ         |  |  |  |  |  |
| Anabilim Dalı | FİZİK ANABİLİM DALI             |  |  |  |  |  |
| Programi      | ATOM VE MOLEKÜL FİZİĞİ PROGRAMI |  |  |  |  |  |

## Makale ve Bildiriler

"Revised energy levels of singly ionized lanthanum", Feyza Güzelçimen, Mehdi Tonka, Zaheer Uddin, Naveed Anjum Bhatti, Laurentius Windholz, Sophie Kröger, Gönül Başar, Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 211, 188–199