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ABSTRACT 
 

MSc THESIS 
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 Jury : Asst. Prof. Dr. Sami ARICA 
                                                               : Assoc. Prof. Dr. Zekeriya TÜFEKÇİ 
  : Asst. Prof. Dr. Turgay İBRİKÇİ 
   

Electrocardiography is a technique of recording bioelectric currents generated 
by the heart muscles. The graphical representation of this recording is called ECG. In 
an ECG signal, P, Q, R, S, T, U waveforms are generated in turn at every heartbeat. 
The Q, R, S waves, together, forms a QRS complex. The time of its occurrence as 
well as its shape provide rich information about the current state of the heart and the 
time occurrence of the peak value of the R wave corresponds to the time occurrence 
of the heartbeat.  

The objective of this work is to detect R-peaks in an ECG signal by using 
wavelet transform. A custom a multi-resolution system was designed that is suitable 
for detecting QRS wave. A scaling function resembling the shape of the R wave and 
its wavelet counterpart are designed. By employing this multi-resolution system, the 
approximation and detail coefficients were computed. A global threshold which is 
determent from the first 30 seconds of the ECG is applied to the approximation 
coefficients to extract the coefficients addressing the R peaks. The algorithm was 
also executed for common wavelets. The performance of the custom system was 
better than or near to the performances of the ordinary wavelets that is similar to the 
custom wavelet in shape. The results show that the custom wavelet can be alternative 
to the common wavelets in analyzing of ECG signals and for QRS detection. 
  
Key Words: ECG, multiresolution, orthogonality, wavelet, QRS  
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Elektrokardiyografi kalp kasları tarafından üretilen biyoelektriksel akımların 

kayıt tekniği olup bu kayıtların grafiksel gösterimi EKG olarak adlandırılır. EKG de 
her kalp atımının karşılığı olarak sırasıyla P,Q,R,S,T,U dalga şekilleri üretilir. QRS 
dalgaları birlikte QRS kompleksini oluşturur. Oluşma süresinin yanı sıra şekli kalbin 
o andaki durumu hakkında zengin bilgiler içerir ve R dalgasının tepe değerinin 
oluşma süresi kalp atımının oluşma süresine tekabül eder. 

Bu çalışmanın amacı,  EKG sinyallerinin analizi ve sınıflandırılması özellikle 
QRS dalgası tespit için uygun çoklu çözünürlük sistem tasarlamaktır. R dalgasının 
şekline benzeyen bir ölçekleme fonksiyonu ve onun dalgacık karşılığı tasarlanmıştır. 
Bu çoklu çözünürlüklü sistem kullanılarak yakınlık ve detay katsayıları 
hesaplanmıştır. EKG’nin ilk 30 saniyelik kısmından tanımlanan yerel bir eşik 
seviyesi yakınlık katsayılarına R tepelerinin adresleyen katsayıları ayırmak amacıyla 
uygulanmıştır. Algoritma ayrıca genel dalgacıklara da uygulanmıştır. Özel sistemin 
performansı şekil olarak özel dalgacığa benzeyen genel dalgacıklardan daha iyi veya 
yakındır. Sonuçlar göstermiştir ki, özel dalgacık EKG sinyallerinin analizi ve QRS 
tespiti için genel dalgacıklara bir alternatif olabilir. 
 
Anahtar Kelimeler: EKG, çoklu çözünürlük, diklik, dalgacık, QRS     
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1. INTRODUCTION 
 
1.1. Signal Processing in Biomedical Applications 

 

The cellular level where the voltage differences are generated is like a voltage 

generator and the human body produces some electrical signals in the nerves and 

muscles. For instance the heart produces some voltage variations that shape into a 

pattern (Portoles, 2009).These voltage variations show the heart’s electrical activity 

and the recording of them is named as the Electrocardiogram (ECG).  Recognition 

and analysis of the ECGs’ are difficult because their size and form may eventually 

change and there can be a considerably amount of noise in the signal (Nova, 2000). 

The earlier method of ECG signal analysis was based on time domain 

method. Time domain methods have advantage of simplicity and reproducibility. 

However, they are not always sufficient to study all the features of ECG signals. The 

frequency domain characteristics are investigated using Fourier transform. The 

Fourier transform is applicable to stationary signals But Fourier transform fails in 

some biomedical signal processing applications to provide the information regarding 

the exact location of frequency components in time (Gopinat et al, 1997). Because 

Fourier transform kernel extends in the whole time axis. So we need time frequency 

representation in ECG processing. One of the solutions is Short Term Fourier 

Transform (STFT). The signal is partitioned into equal time –segments and Fourier 

transform of the segments are computed. STFT has a main disadvantage in which its 

time frequency precision is not optimal and cannot get decent resolutions for both 

high and low frequencies at the same time (Karpagachelvi, 2010). 

Another solution for time-frequency representation is the wavelet transform. 

The wavelet transform is based on the set of analyzing wavelets and each of them has 

its own time duration, time location and frequency band. This makes it powerful in 

representing and analyzing medical signals. Therefore it has been used successfully 

in a large number of biomedical applications. The wavelet coefficient resulting from 

the wavelet transform corresponds to a measurement of the ECG components in this 

time segment and frequency band (Saritha et al 2008).  
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Figure 1.1.Time-frequency domain represents a combination of time-domain and  
                  frequency-domain characteristics of a signal. 
 

Time-frequency transform provides three dimensions of a signal: the time; the 

frequency; and the amplitude as seen in Figure 1.1.  

Wavelets are employed to analyze ECG signals for variety of; detection of the 

ECG characteristics, noise-filtering and compression etc.. 

In this thesis we develop a multi-resolution-system (scaling and wavelet 

function pair) to represent QRS complex efficiently in terms of small number of 

expansion coefficients.  

For compact representation of QRS complex a function resembling the R 

wave is employed as the scaling. And we employ the expansion coefficients (mainly 

the approximation coefficients) for detecting the QRS complex; namely for locating 

the R wave.  

This thesis is organized as follows. In the first chapter we describe ECG. 

Second chapter covers previous studies using multi-resolution systems in ECG 

analysis. The third chapter presents how a custom multi-resolution system is 
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generated. And we also explain the ECG detection algorithm in the third chapter. We 

later provide the results and finally we interpret the results and conclude.  

 
1.2. The Data 

 
The ‘ECG’ signals that we employed in this study were recorded by Arica et 

al. Their study was carried out at Hospital of Cukurova University, Adana, Turkey. 

In their study, sixteen subjects (7 male, 9 female) whose ages between 36 and 56 

with a mean of 49.3 and a population standard deviation of 5 were participated and 

all subjects had undergone a coronary angiography and had passed the test. They 

recorded Lead II ECG from all 16 subjects in two consecutive 5-minute phases. The 

sampling frequency of the data is 1 KHz and the length of each record is 300000 

samples. 

 

1.3. Electrocardiogram (ECG) 
 
1.3.1. ECG Recording 
 

In ECG recording, different electrodes detect the electrical activity of the 

heart and ECG recorders compare these activities. This is called “a lead”. Each lead 

gives a different view of the electrical activity of the heart, and so each ECG pattern 

will be different.  

There are two basic types of ECG leads including bipolar leads and unipolar 

leads. Bipolar leads use a single positive and a single negative electrode between 

which electrical potentials are measured. Unipolar leads have a single positive 

recording electrode and a combination of the other electrodes as a composite 

negative electrode. 

There are two types of ECG recording systems; 5-leads and 12-leads.  In the 

5-lead systems, there are two types of ECG recording systems; 5-leads and 12-leads.  

In the 5-lead systems, the electrodes are properly attached with the wires labeled 

‘LA’ and ‘RA’ connected to the left and right arms, and those labeled ‘LL’ and ‘RL’ 
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to the left and right legs, respectively as shown in Figure 1.2-a. They coarsely form 

an equilateral triangle (with the heart at the center) which is called as Einthoven's 

triangle. 

12-lead ECG system is the frequently used clinical ECG-system and it covers 

the 5-lead system. It consists of 12 leads which are called I, II, III, aVR, aVL, aVF, 

V1, V2, V3, V4, V5, V6. Particularly, I, II, III are three bipolar leads (Einthoven 

leads) . Three unipolar leads aVR, aVL, aVF are called Goldberger leads. Einthoven 

leads and Goldberger leads are positioned in the frontal plane relative to the heart. 

Using the axial reference and these six leads, defining the direction of an electrical 

vector at a given time could be simple. Additionally, Wilson leads which are denoted 

by V1 - V6 are unipolar chest leads and they are placed on the left side of the thorax 

in a nearly horizontal plane. These are shown in Figure 1.2 (Despopoulos, Silbernagl, 

2001). 

 

 
Figure 1.2. ECG leads: a) Einthoven leads;    b) Goldberger leads     c) Wilson leads  
                   (Despopoulos, 2001) 
 

The Wilson leads look at the heart from the front and left side in a horizontal 

plane. In another word, V1 and V2 leads look at the right ventricle, V3 and V4 look at 

the septum between the ventricles, and V5 and V6 look at the anterior wall of the left 

ventricle (Hampton, 2003). 

 

1.3.2. The Characteristics of ECG 
 

The length, frequency and amplitude of ECG will be different for each 

person. These factors depend on the voltage, the speed and path of the impulse 

through the heart's electrical system (Davis, 2005). 
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The human ECG signals are very weak and in the mV range. The frequency 

range is 0.05-100Hz and most of the useful information contained in the range of 

0.5-45Hz. The normal value of heart beat lies in the range of 60beats/minute to 

100beats/minute (Saritha et al, 2008). 

The ECGs’ amplitude and intervals have useful information in clinic 

applications. They are defined by the characteristic points of ECG which are defined 

as P, QRS and T waves (and sometimes a U-wave). The letters P, Q, R, S, T were 

selected in the early days of ECG history, and were chosen arbitrarily. Schematic 

representation of an ECG signal is shown in Figure 1.3.  

 

 
Figure 1.3.A schematic representation of the ECG and its characteristic waves. 

 

We recall the characteristics properties of an ECG signal as below; 

The P wave: The first ECG wave of the cardiac cycle is the P wave which represents 

activation of the atria. There is a short, relatively isoelectric segment following the P 

wave. The magnitude of the P wave is normally low (50-100μV) and 100ms in 

duration (Bronzino, 2000). 

The PR Interval: The PR interval begins with the onset of the P wave and ends at the 

onset of the Q wave. It represents the duration of the conduction through the atria to 

the ventricles. Normal duration is 120ms-200ms.  
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The PR Segment: The PR segment begins with the endpoint of the P wave and ends 

at the onset of the Q wave. It represents the duration of the conduction from 

atrioventricular node, down the bundle of its end through the bundle branches to the 

muscle. There is no deflection during PR interval. 

The QRS complex: The QRS complex corresponds to the period of ventricular 

contraction or depolarization. It is the result of ventricular depolarization through the 

Bundle Branches and Parkinje fibre. The QRS complex is a much larger signal than 

the P wave due to the volume of depolarization in the left and right sides of the heart 

move in opposite directions. If either side of the heart is not functioning properly, the 

size of the QRS complex may increase.  

The ST Segment: The ST segment represents the time between the ventricular 

depolarization and the depolarization. The ST segment begins at the end of the QRS 

complex and ends at the beginning of the T wave. Normally, the ST segment 

measures 0.12 second or less. 

The T Wave: The T wave results from the depolarization of the ventricles and is of a 

longer duration than the QRS complex because the ventricular depolarization 

happens more slowly than depolarization. Normally, the T wave has a positive 

deflection of about 0.5mV, although it may have a negative deflection.  

The QT Interval: The QT interval begins at the onset of the Q wave and ends at the 

endpoint of the T wave. It represents the duration of the ventricular 

depolarization/depolarization cycle (Dubovik, 1999). 
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2. PREVIOUS STUDIES ON QRS DETECTION 
 

A heart’s condition can be determined by extracting features which include 

the amplitudes of the waves and the intervals between them from the ECG signal. 

The typical amplitude levels and durations can be determined as follows and any 

change in these values indicates the abnormality of the heart (Saritha et al, 2008). 

Amplitude  P-wave — 0.25 mV 

  R-wave — 1.60 mV 

  Q-wave — 25% R wave 

  T-wave — 0.1 to 0.5 mV 

Duration P-R interval      : 0.12 to 0.20 sec. 

  Q-T interval      : 0.35 to 0.44 sec. 

  S-T interval       : 0.05 to 0.15 sec. 

  P-wave interval  : 0.11 sec. 

  QRS interval     : 0.09 sec. 

A heart rate smaller than 60 beats/min bradycardia (Slow heart) and a higher 

than 100 beats/min rate is called tachycardia (Fast heart). If the cycles are not evenly 

spaced, an arrhythmia may be indicated (Saritha et al, 2008). 

Therefore it is important to detect QRS wave to identify some characteristics. 

The time interval between two consecutive R peaks is named as RR interval and the 

reciprocal of the RR interval is the heart rate. The RR sequence obtained from ECG 

contains information about heart rate and its variability. 

There are currently a number of QRS detection algorithms available which 

use a variety of signal analysis methods.  

Earlier works were mainly based on linear or non-linear filter or filter banks 

methods (Okada, 1979; Afonso, 1999). These methods use very simple models and 

require less computation power and are most suitable for in embedded real-time 

monitoring applications. The drawback is that the precision of the QRS feature 

extraction is limited as the processing involves only selected range of frequencies of 

the ECG signals. 
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Actually in most applications (methods) derivative methods with thresholding 

is employed to separate R wave from the other relatively smoother peaks.  

Fraden and Neuman (1980) developed a QRS detection scheme where a 

threshold was calculated as a fraction of the peak value of the ECG. In 1985, Pan and 

Tompkins proposed an algorithm (the so-called PT method) to recognize QRS 

complex in which they analyzed the positions and magnitudes of sharp waves and 

used a special digital band pass filter (BPF) to reduce the false detection of ECG 

signals. In their algorithm (the so-called PT method) they first filtered the signal 

employing digital band pass filter. Then they differentiated the filtered signal to get 

information about the slope of the QRS complex, squared it to amplify the output of 

derivation stage and then computed integral of each moving window to quantify 

QRS and non-QRS. A threshold level for every two second- signal is determined.  

And thresholding is done for both differentiated and squared-integrated signal to 

improve the reliability. Also in 1997 Ruha et al filtered the ECG signal with a 

matched filter to suppress the P and T waves and noise first, then the QRS complexes 

were enhanced by passing through a nonlinear transformation, at last, the QRS 

complexes’ location were determined. 

Li et al (1995) who proposed a method based on finding the modulus maxima 

larger than a threshold obtained from the pre-processing of preselected initial beats. 

In Li et al’s method, the threshold is updated during the analysis to obtain a better 

performance. This method has a post-processing phase in which redundant R waves 

or noise peaks are removed. The algorithm achieves a good performance with a 

reported sensitivity of 99.90% and positive prediction value of 99.94% when tested 

on the MIT/BIH database. 

Wavelet based QRS detection are also widely examined (1995;Li et al.,1993; 

Sahambi et al.,1997; Mahmoodabadi et al., 2005; Sasikala et al 2010; Bsoul et al., 

2009). With the wavelet based analysis, each QRS complex corresponds to a couple 

of maximum and minimum in wavelet transform. Using different scales in the 

analysis in time-and frequency-domain, the signals are divided into different 

response clusters which represent different frequency components of the ECG. 
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Kozakevicius et al (1988) utilized orthogonal wavelets to filter and analyze 

ECG signals. They used compactly supported wavelets associated to the statistical 

Stein’s Unbiased Risk Estimator in order to obtain an adaptive thresholding strategy 

to filter ECG signals and then they analyzed the filtered signals by using the Haar 

wavelet transform in order to detect the positions of the occurrence of the QRS 

complex during the period of analysis.  

Kadambe et.al (1999) described a QRS complex detector based on the dyadic 

wavelet transform (DWT) which was robust to time-varying QRS complex 

morphology and to noise. They designed a spline wavelet that was suitable for QRS 

detection. The scales of this wavelet were chosen based on the spectral 

characteristics of the ECG signal. They performed their QRS detection algorithm 

upon American Heart Association (AHA) data base and the algorithm have different 

performances with an error of 0.2% - 15.4% for different ECG records.  Szilagyi et 

al. (2001) constructed a QRS complex detection algorithm that could be applied in 

various on-line ECG processing systems. They first filtered the signal with wavelet 

transform filtering to eliminate the low pass and high pass frequency components. 

Then by wavelet transform they obtained a few maxima and minima in each period 

of the transformed signal and detected the extreme values. The peaks which came 

before a long ascent and followed by a long descent of the signal are offered R peaks. 

They tested the algorithm to MIT-BIH database and had detection ration between 

98.9% and 100%.  

Legarreta et al (2005) have extended the work of Li et al and Kadambe et al, 

utilizing the continuous wavelet transform. Their CWT-based algorithm affords high 

time–frequency resolution which provides a better definition of the QRS modulus 

maxima curves. This allows them to follow QRS wave across scales in noisy signals, 

and better define the spectral region corresponding to the QRS maxima peak. They 

tested the algorithm using patient signals recorded in the Coronary Care Unit of the 

Royal Infirmary of Edinburgh with a positive predictive value of 99.73% and with 

the MIT/BIH database obtaining a positive predictive value of 99.68%. 

In 2006, S.A.Choukari et al used second level wavelet coefficients for 

detecting QRS complex and fourth and fifth level coefficients of decomposition for 
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detecting P and T waves and by combining of them they constructed the denoised 

ECG signal. They compared the performance of their algorithm with db5, db10, 

coif5, sym6, sym8, biorth5.5 by calculating MSE and SNR. In 2007, M.Kania et al 

studied the importance of the proper selection of mother wavelet with appropriate 

number of decomposition levels for reducing the noise from the ECG signal. The 

authors claimed that they obtained good quality signal for the wavelet db1 at first and 

fourth level of decomposition and sym3 for fourth level of decomposition.  

In 2008, Rizzi et al proposed and implemented an algorithm called R-point 

detector based adaptation of fast parallelized wavelet transforms for the detection of 

R-wave in the presence of different types of noises. The algorithm gave high degree 

of noise immunity and predictivity. 

In general researchers used some known wavelet functions to detect QRS 

complexes. Ktata et al (2006) used Daubechies 1 wavelet to produce an algorithm for 

detecting not only QRS complex but P wave and R wave. They decomposes the ECG 

signal into five levels by using  continuous wavelet, to obtain the scalogram of ECG 

and the detection of R peaks is reached from level number one but the detection of T 

wave and P wave is reached from level four and five. They used a rectangular 

window centered in the maxima detected for each wave to make a truncation and 

then mark-up the ECG signal by maximum detected. Daqrouq et al (2008) used 

Symlet as a wavelet function. Their detector was based on using the CWT with sym8 

and scale 23. They calculated the wavelet approximation coefficients with applying 

the known Mallat’s algorithm and then they computed the square of coefficients to 

specify a threshold level for detecting the maximum in every window, which 

indicated the R peaks. They also computed the R-R interval and heart rate. The 

average rate of QRS detector achieved is about 99.75.  In 2008, Rizzi et al proposed 

and implemented an algorithm called R-point detector based on adaptation of fast 

parallelized wavelet transforms for the detection of R-wave in the presence of 

different types of noises. They selected the bior 3.3 wavelet as a mother wavelet 

because of its similar shape to a QRS complex. They applied soft thresholding 

technique into dyadic scales and decomposed the ECG signal. They evaluated the 

algorithm to MIT-BIH Noise Stress Test Database with a 99.6% detection success.  
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Elgendi et al (2010) used Coiflet as a wavelet function. Their algorithm using an 

adaptive threshold based on an approximation of signal-to-noise ratio was developed 

to detect QRS complexes in arrhythmia ECG Signals that suffer from non-stationary 

effects, low Signal-to-Noise ratio, negative QRS polarities, low QRS amplitudes and 

ventricular ectopic. They investigated which of the Coiflet wavelets achieves the best 

detection rates. Their method was tested on MIT/BIH Arrhythmia Database with 

98.2% average success of correctly detecting beats. Karpagachelvi et al (2010) 

developed an ECG feature extraction system based on multi resolution WT. They 

first employed Haar wavelet to denoise the ECG signal by Discrete Wavelet 

Transform and detected the R peaks which are over the threshold level. They 

examined the performance of the R-peaks detector by testing their algorithm on the 

standardized MIT_BIH database. 

In 2007 Kumari et al constructed their wavelets, used them for QRS 

detection, reconstructed the ECG signal and compared the performance with standard 

wavelets like dB4 and bior 4.4. They construct two filters that meet certain 

requirements to enable perfect reconstruction and to yield an orthogonal underlying 

wavelet basis.  

There are also methods other than derivation and wavelet techniques and is 

summarized in the following.  

Martinez et al (2004) utilize an algorithm to detect QRS based on the fact that 

QRS complexes have more energy and higher amplitude and maxima lines over a 

longer frequency interval, and P and T waves have less energy and lower amplitude 

and maxima lines over a shorter frequency interval. The QRS components also have 

a different shape from the rest of the ECG waveform; - a difference that enables 

simple QRS detection. 

Chawla et al (2006) suggested a model for ECG using Principle component 

analysis as a signal expansion method. They created eigenvectors which form a new 

orthogonal basis finding various segments of an ECG waveform and they used Fast 

Fourier Transform for the results and extracted the QRS complex portion and 

excluded P-wave and T-wave. 
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Hilbert transform method also was used. Zhou et al (1988) used Hilbert 

transform first time. In 2000 Benitez et al proposed an algorithm for detecting QRS 

using Hilbert Transform. They used a moving 1024 points rectangular window to 

subdivide the signal, differentiated them and performed the Hilbert Transform. They 

applied an adaptive threshold level to Hilbert sequence to detect the R peaks. When 

two detected R peaks are very close each other (less than 200 ms), only one of them 

is selected as the R peak. They tested their algorithm upon MIT-BIH Arrhythmia 

database with QRS detection error rate of 0.36%.  Oliveria and Cortez (2004) used 

Hilbert transform pairs of wavelet bases in order to develop pass band filter between 

5-40Hz to emphasize the R wave peaks and they determined the RR intervals from 

that signal.  

Neural network applications were also used for QRS detection. Viyaja et al 

(1997) used predictive neural network based technique. They trained the network for 

two classes; QRS and non-QRS using the back propagation algorithm predict the 

QRS from the ECG signal. Abibullaev & Hee Don Seo (2009) presented a method 

for detection and classification of QRS complexes in ECG signals using continuous 

wavelets and neural networks. They analyzed ECG by using dB5, sym4, bior 1.3 and 

bior 6.8 wavelets. They employed these wavelets as the mother wavelet, applied 

continuous wavelet transform decomposition, determined an adaptive threshold level 

and handled few wavelet coefficients after thresholding. Then they used three layer 

feed forward networks with back propagation learning algorithm.  They evaluated 

their algorithm using arrhythmic ECG data from the American Heart Association 

database with an average accuracy of 95.78%. 

 Xue et al (1992), Cohen et al(1995), Tan et al (2000) also studied neural 

Networks algorithms. 
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3. MATERIAL AND METHODS 

 

3.1. Wavelets  

 

The wavelet transform is probably the most recent solution to overcome the 

shortcomings of the Fourier transform that mentioned in Section 1.1. In wavelet 

analysis, a window is shifted along the signal and for every position of the window 

and some wavelet coefficients are calculated. Then this process is repeated many 

times with a slightly shorter (or longer) window for every new cycle. In the end the 

result is the collection of time-frequency representations of a signal with different 

resolutions (Howard, 2005). It is designed to give good time resolution and poor 

frequency resolution at high frequencies and good frequency resolution and poor 

time resolution at low frequencies. This approach makes sense especially when the 

signal has high frequency components for short durations and low frequency 

components for long durations. This is mostly seen biological signals, mainly EEG, 

EMG and ECG signals. 

 
3.1.1. The Continuous Wavelet Transform  
 

Let )()( 2 RLt ∈ψ is a continuous-time mother wavelet function and the set of 

functions, obtained by shifting and scaling the mother wavelets 

 

 
,

1
a b

t b
aa

ψ ψ
− =  

 
   

                            

are orthonormal wavelet basis in the 2( )L R . That is

( ) ( ) ( ) ( ), ', ' ' 'a b a bt t dt a a b bψ ψ δ δ
∞

−∞

= − −∫ % . In the wavelet, a and b variables are real 

and the integral value indicate the closeness of the signal to a particular basis 

function. Dividing , ( )a b tψ  by a insures the unity in the L2 norm of the set 



3.MATERIAL AND METHODS                                                  Cem SAKARYA                                           

 
 

14 
 

{ }, ( )b a tψ  (Mertins, 1999) (Grossmann, 1984). The main disadvantages of the CWT 

are computational complexity and redundancy. 

The mother wavelet has to satisfy the following properties. (Addison, 2002); 

1. A wavelet must have finite energy 

 
2

( )E t dtψ= < ∞∫  
 

2. ( )tψ integrates over time to zero (It’s Fourier transform ( )wΨ equals to 

zero at 0w = ) (Mertins,1999) 

 

( 0) ( ) 0w t dtψ
∞

−∞

Ψ = = =∫
 

 

The correlation between the signal and the wavelet is defined as the integral 

of their product. 

 

3.1.2. The Discrete Wavelet Transform  
 

The discrete wavelet transform (DWT) is obtained in general by sampling the 

corresponding continuous wavelet transform (Teolis, 1998). To discretize the CWT, 

an analyzing wavelet function that generates an orthonormal (or bi-orthonormal) 

basis for the space of interest is required. There are many possible discretization of 

the CWT, but the most common DWT uses a dyadic sampling lattice, in which 

2 ja −=  and 2 jb k−= .  Figure 3.1 shows the time-scale cells corresponding to dyadic 

sampling (Mallat, 1989).   
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Figure 3.1. Time-scale cells corresponding to dyadic sampling (Mallat, 1989). 
 

The discrete wavelet which is generated by dyadic sampling from the 

continuous wavelet transform is given by 

 
/2

, 2 (2 )j j
j k t kψ ψ= −                                     (3.1.) 

 

,j kψ is known as wavelet basis and we employ linear combinations of basis 

functions which localized both in time and frequency to construct a signal function 

(f(t))  is a linear combinations of basis functions. So we can express a signal function 

as; (Ganesan, 2004); 

 

 ( ), ,( ) j k j k
j k

f t b tψ
∞ ∞

=−∞ =−∞

= ∑ ∑                  (3.2.) 

 

where   

 

 
( ) ( ), ,j k j kb f t t dtψ

∞

−∞

= ∫                 (3.3.) 

 

are the time-scale coefficients as in Figure 3.1.  

 

Time k 

j=3, k=1 

j=0, k=0 
Δk 

Δj 

Scale j 
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3.2. Multi-Resolution Analysis  
 

Wavelet transform leads to a signal decomposition technique named as 

multiresolution analysis (MRA) which analyzes the signal at different frequencies 

with different resolutions.  

The idea is; there is a scaling transformation which moves in discrete steps, 

up and down an associated scale of subspaces. One of the resolution scales refers to 

"coarse," and the other to "fine". When we compare two subspaces, we can see that 

the space of the coarse scale is contained in that of the fine resolution (Jorgensen, 

2006). 

The WT is based on the scaling function. The scaling function is a 

continuous, square integrable and, in general, real-valued function and is not equal to 

zero, but is usually normalized to unity. The basic scaling function ( )tφ  is shifted by 

discrete translation factors as; 

 

 ( ) ( )/ 2 /2
, 2 2j j

j k t t kφ φ= −                 (3.4.) 

 

where j and k dilation (scale) and translation indices respectively and can take on 

only integer values. Dilation and time parameters determine frequency and the time 

resolution of the WT. As the small values of the dilation parameter providing good 

time localization and poor frequency resolution, the large values of the dilation 

parameter provides good frequency resolution and poor time resolution. Translation 

parameter produces the time delay. 

A function ( ( )f t ) in the whole space has a piece in each subspace. Those 

pieces contain more and more of the full information in ( )f t . The piece in jV  is

( )jf t . One requirement on the sequence of subspaces is completeness: 

 

 )()( tftf j →    as ∞→j . 
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Let 0W be the space spanned by the orthonormal set of bases{ }( ),t k kψ − ∈Ν . 

Space 0W  is orthogonal to the space 1W . Then spaces spanned by wavelet function 

bases are orthogonal among themselves. Thus, ...... 2101 ⊥⊥⊥⊥− WWWW  

Any signal in 1V  space could be expressed in terms of bases of 0V  and 0W

space. If we combine the bases of 0V  and 0W  space, we can define any signal in 1V  

space as: 

 

001 WVV ⊕=  
 

0W  is the complementary of 0V  while 0V  is subset of 1V . So 0V  and 0W spaces 

are complementary. We call two spaces that satisfy this property orthogonal and use 

j jV W⊥ to denote jV   is orthogonal to jW . Their bases together can represent any 

signal in the next “higher” or finer space of 1V  (Soman, 2004). jV  denotes subspaces 

corresponding to scaling basis (approximations) and jW  denotes subspaces 

corresponding to wavelet basis (details).  

The part of the signal at resolution j  and space jV  is the approximation of the 

signal at this resolution; 

 

( ) ( ),j k j k
k

a t tα φ
∞

=−∞

= ∑                   (3.5.) 

 

and the part of the signal at resolution j  and space jW  is the detail of the signal at 

this resolution; 

 

( ) ( ),j k j k
k

d t tβ ψ
∞

=−∞

= ∑                       (3.6.) 
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The signal at the resolution j  is then 

 

 ( ) ( ) ( )j j jf t a t d t= +                  (3.7.) 

 

The relationship between scaling and wavelet function spaces is shown in 

Figure 3.2. Spaces spanned by scaling function bases are nested. Each jV  is 

contained in the next subspace 1+jV .  

 
 
 
 
 
 
 
 
 
 

Figure 3.2. Nested vector spaces spanned by scaling and wavelet basis.  
                     

We can represent the wavelet decomposition process schematically in Figure 

3.3. 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
Figure 3.3. Schematic representation of wavelet decomposition of signals  
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Below the properties multiresolution analysis is summarized. 
 

A multiresolution analysis or system should have the following properties or 

conditions. A multiresolution analysis of L2(R) is a sequence { jV } Ζ∈j   of 

subspaces of L2(R). The jV ’s model spaces of signals having resolution at most 2j. 

i.) Every signal lies in some jV ,  

ii.) No signal, except the null signal, belongs to all jV  (Jorgensen, 2006). 

iii.)  The Vj are nested within one another. 

iv.) The intersection of the Vj is the signal of zero norm (zero almost everywhere), 

which we write   }0{=I j jV  

v.) The union of the Vj is dense in L2(R): )(2 RLV
j j =U  

vi.) jV  is closed under time shifts  2 jt t k→ − and 0( )f t V∈ is equivalent to 

(2 )j
jf t V∈ . 

vii.) Elements of the spaces are dyadically scaled versions of one another:  

viii.) 00 )()( VktfVtf ∈−⇒∈  

ix.) There exists a function jVt ∈)(φ   such that the set { }( ),t k kϕ − ∈Ζ  forms a 

basis of Vo (Mallat, 1989) 

x.) ( ) 0 (2 )j
jf t W f W∈ ↔ ∈  

xi.) Shift invariance for jW ’s: ( )2 (2 )j j
j jf W f k W∈ ↔ − ∈  

xii.) Orthonormality between wavelet spaces:  ,j kW W j k⊥ ≠  

 

3.2.1. Two-Scale Relation 
 

Let ( )tφ  translates with integer step span the subspace 0V . At the next finer 

resolution the subspace 1V  is spanned by the set{ }(2 )t kφ − . The scaling function at 
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resolution index 0j =  can be decomposed as a linear combination of the scaling 

functions at the higher resolution level 1j = , as: 

 

( ) ( ) (2 )
k

t p k t kφ φ= −∑                                                        (3.8.) 

 

where the discrete decomposition coefficient sequence ( )p k is called the inter-scale 

coefficients and it is a discrete low-pass filter. This equation is also called as dilation 

equation. This decomposition may be considered as the projection of the basis 

function ( ) ot Vφ ∈  onto the finer resolution subspace 1V . The sequence ( )p k  governs 

the structure of the scaling function. We can also expand ( )tψ  onto the scaling 

function basis ( )2t kφ −  in the finer resolution subspace 1V  as: 

 

( ) ( ) (2 )
k

t q k t kψ φ= −∑                          (3.9.) 

 

where the sequence ( )q k  is the inter-scale coefficients and it is a discrete high-pass 

filter. This equation is known as two-scale equation and it defines the relations 

between ( )tφ and ( )tψ and the discrete sequences of the ( )p k and ( )q k  (Sheng, 

2000).  

 

3.3. Properties of Orthogonal Multiresolution System and Orthogonalization 

 

On the wavelet transform, orthogonal wavelet functions will have no overlap 

with each other (zero correlation), while nonorthogonal wavelets will have some 

overlap (nonzero correlation). A signal could be transformed to wavelet space and 

back with no loss of information by using an orthogonal wavelet. Because of the 

overlap, nonorthogonal wavelet functions add artificial energy to the signal and so it 

requires renormalizing the information for conserving. If an error presents in the 
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initial data, it will not grow under the transformation. When we want to preserve the 

energy of the signal in transform domain and to reconstruct a signal from the 

coefficients, orthogonality should be considered an important property (Dinh et al, 

2001). Consider the scaling function ( )tφ   and the wavelet function ( )tψ  of an 

orthogonal multi-resolution system. The following characteristics of the scaling and 

wavelet function can easily be deduced from the properties of multi-resolution spaces 

mentioned previously.  

 

( ) ( ) ( )2 2j jt t k dt kφ φ δ
∞

−∞

− =∫               (3.10.) 

 

( ) ( )2 2 0j jt t k dtφ ψ
∞

−∞

− =∫                                                                      (3.11.)   

 

( ) ( ) ( ) ( )2 2j j mt t k dt m kψ ψ δ δ
∞

+

−∞

− =∫                                            (3.12.)   

   

At scale 0j =  we rewrite orthogonality of the scaling function to its translates 

in Equation (3.10.). 

 

( ) ( ) ( )t t k dt kφ φ δ
∞

−∞

− =∫                                                                        (3.13.) 

 

The integral in the equation is the sampled version of the following 

convolution integral at kτ =  ( k ∈ Z  ). 

 

( ) ( ) ( ) ( )t t dtφ φ τ φ τ φ τ
∞

−∞

− = ∗ −∫                                                            (3.14.) 

 

Fourier transforming both sides of the Equation (3.13.) we get 
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( ) 2
2 1ω π

∞

=−∞

Φ − =∑
l

l                (3.15.) 

 

Consequently, using this condition it is possible to generate an orthogonal 

scaling function from an arbitrary function. Consider that we want to produce 

orthogonal scaling function from the function; ( )r t . Suppose ( )tφ  and ( )r t  are 

related and this relation in the frequency domain is as follows. 

 

( ) ( ) ( )K Rω ω ωΦ =                       (3.16.) 
 

Equation (3.16.) is satisfied when 

 

( )
( )

1/2
2

1

2

K

R

ω

ω π
∞

=−∞

=
 

− 
 
∑
l

l

             (3.17.) 

 

Naturally, this is true if ( ) 2
2 0R ω π

∞

=−∞

− >∑
l

l .  

 

The inter-scale coefficients of both dilation and two-scale equation contain 

characteristics of scaling and wavelet function. By using the orthogonality condition 

together with the dilation and the two-scale equation we can easily obtain properties 

of the inter-scale coefficients as it is shown in the following. 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 2

2 2 2 2 2

m

m

t t k dt

p m t m p t k dt

p m p t m t k dt p k p

k

φ φ

φ φ

φ φ

δ

∞

−∞

∞ ∞ ∞

=−∞ =−∞−∞

∞∞ ∞ ∞

=−∞ =−∞ =−∞−∞

− =

− − − =

⋅ − − − = +

=

∫

∑ ∑∫

∑ ∑ ∑∫

l

l l

l l

l l l l
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It is not difficult to see that a similar result is obtained when orthogonality of 

the translated wavelets are considered.  

 

( ) ( ) ( )2q k q kδ
∞

=−∞

+ =∑
l

l l
 

 

and similarly, 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2 2

0

m

m

t t k dt

q m t m p t k dt

q m p t m t k dt q k p

ψ φ

φ φ

φ φ

∞

−∞

∞ ∞ ∞

=−∞ =−∞−∞

∞∞ ∞ ∞

=−∞ =−∞ =−∞−∞

− =

− − − =

⋅ − − − = +

=

∫

∑ ∑∫

∑ ∑ ∑∫

l

l l

l l

l l l l

 

 
The high pass and low pass filters are not independent of each other (Strang 

et al, 1996), in time domain if  

 

( ) ( 1) (1 )kq k p k= − −                                                (3.18.) 

 

is chosen, the above  conditions are satisfied (Strang et al, 1996). The relation 

between the inter-scale coefficients of scaling and wavelet function allows to 

construct wavelet from the inter-scale coefficients of the scaling function. 

In the frequency domain Equation (3.18.)  could be expressed as; 

 
*( ) ( )jwG w e H w π−= +                         (3.19.) 

 

The low pass and high pass filters could be obtained using Equation (3.20.) 

and Equation (3.21.); 
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( ) ( ), 2 (2 )p k t t kφ φ= −                        (3.20.) 

 

and 
 

 ( ) ( ), 2 (2 )q k t t kψ φ= −                         (3.21.) 

 

3.4. Properties of Bi-orthogonal Multiresolution System and Generating a  

       Biorthogonal System 

 

Wavelets are generally orthogonal basis functions, though there have been bi-

orthogonal wavelet functions too. Orthogonality results in complicated design 

equations and prevents linear phase analysis. We can eliminate these problems by 

using bi-orthogonal wavelet bases. In bi-orthogonal MRA there are two different 

functions in which the responsibilities of analysis and synthesis are delegated and 

also two different scaling function  ( )tφ and ( )tφ


generate scaling subspaces jVand jV


respectively. And similarly there are two different wavelet function ( )tψ and ( )tψ


which generate two different wavelet spaces of jW and  jW


respectively. ( )tφ


is the 

dual scaling function and ( )tψ


is the dual wavelet function. The dual basis are bi-

orthogonal and the two MRAs are said to be bi-orthogonal to each other such that;

j jV W⊥


and j jV W⊥


. In other words, 

 

, ( ) 0 , ( ) 0k and kφ ψ φ ψ⋅− = ⋅− =
 

 
 

Moreover, the dual functions also have to satisfy the following expression; 
 

,0 ,0, ( ) , ( )k kk and kφ φ δ ψ ψ δ⋅− = ⋅− =
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The bi-orthogonal wavelets must satisfy the following requirements; the inner 

product of wavelet function and its bi-orthogonal pair is equal to; 

 

( ), ( ) ( )t t k kψ ψ δ− =


 

 

And also the inner product of wavelet function and bi-orthogonal pair of the 

scaling function and the inner product of bi-orthogonal pair of wavelet function and 

scaling function are equal to zero. 

 

( ), ( ) 0t t kψ φ − =


 
 

( ), ( ) 0t t kψ φ − =


 
 

While dealing with bi-orthogonal systems, the dual basis is given in terms of 

the dual scaling and wavelet function. They generate another multiresolution analysis 

of 2( )L  (Gesztesy et al, 1999). The properties of the bi-orthogonal spaces can be 

written as; 

i.) 2 1 0 1 2V V V V V− −⋅⋅ ⋅ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⋅⋅⋅
    

 
 

ii.) 2 ( ) {0}j j
jj

V L V
∈Ζ∈Ζ

= =
 

 IU  

 

iii.) 11j jjV V W −−= ⊕
  

 
 

iv.) 2
0 , (0,1) j jj j L V V ⊥∀ ≥ = ⊕
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If we want to extract approximation and detail coefficients, bi-orthogonal 

complement of the scaling and wavelet functions should be employed. The two-scale 

equation for dual scaling and wavelet function is arranged as follows;  

 

( ) (2 )kt a t kφ φ
∞

−∞

= −∑
  

 
 

( ) (2 )kt b t kψ ψ
∞

−∞

= −∑
  

 
 

As it has been done in orthogonal case the bi-orthogonality condition for the 

dual scaling functions can be written as in the following.  

 

( ) ( )*2 2 1ω π ω π
∞

=−∞

Φ − Φ − =∑
l

%l l
 

 

Accordingly, the dual orthogonal scaling function can be obtained with this 

relation. Suppose that we want to produce dual scaling function from the function; 

( )tφ . Suppose ( )tφ  and ( )tφ%  are related and this relation in the frequency domain 

is as follows. 

 

( ) ( ) ( )K Rω ω ωΦ =%                     (3.22.) 
 

The bi-orthogonality in frequency domain (Equation 3.19.) is satisfied when 

 

( )
( ) 2

1

2
K ω

ω π
∞

=−∞

=
Φ −∑

l

l
 

 

Of course, this is valid when ( ) 2
2 0ω π

∞

=−∞

Φ − >∑
l

l .Thus, 
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( )
2

( )

( 2 )
l

l

ω
ω

ω π
∞

=−∞

Φ
Φ =

Φ −∑
%

 

 

The relationship between the inter-scale coefficients of bi-orthogonal MRA 

contains characteristics of dual scaling and wavelet functions. By using the b-

orthogonality conditions together with the dilation and the two-scale equations we 

can easily obtain properties of the inter-scale coefficients as it is shown in the 

following. 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 2

2 2 2 2 2

m

m

t t k dt

p m t m p t k dt

p m p t m t k dt p k p

k

φ φ

φ φ

φ φ

δ

∞

−∞

∞ ∞ ∞

=−∞ =−∞−∞

∞∞ ∞ ∞

=−∞ =−∞ =−∞−∞

− =

− − − =

⋅ − − − = +

=

∫

∑ ∑∫

∑ ∑ ∑∫

l

l l

%

%% l l

%% %l l l l

  

 

It is not difficult to see that a similar result is obtained for the inter-scale 

coefficients of the dual wavelet basis.  

 

( ) ( ) ( )2q k q kδ
∞

=−∞

+ =∑
l

% l l
 

 

With similar approach, 
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2 2

0

m

m

t t k dt

q m t m p t k dt

q m p t m t k dt q k p

ψ φ

φ φ

φ φ

∞

−∞

∞ ∞ ∞

=−∞ =−∞−∞

∞∞ ∞ ∞

=−∞ =−∞ =−∞−∞

− =

− − − =

⋅ − − − = +

=

∫

∑ ∑∫

∑ ∑ ∑∫

l

l l

%

%% l l

%% %l l l l

 

 

and obviously the following can be immediately written 

 

( ) ( )2 0q k p
∞

=−∞

+ =∑
l

% l l
 

 

The high pass and low pass filters are not independent of each other, in time 

domain if  

 
( ) ( 1) ( 1)kq k p k= − −%  

 

( ) ( 1) ( 1)kq k p k= − +%  
 

In the frequency domain these are 

 

( )( ) jQ e Pωω ω π−= − −%   
  

( )( ) jQ e Pωω ω π= − −%
 

 

We recall the Fourier transform of the dilation equation: 
 

( ) 1
2 22

P ω ω
ω    Φ = Φ   

   
                                                                       (3.23.) 
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We substitute ( ) ( ) ( )Kω ω ωΦ = Φ%  in Equation (3.23.) and we obtain 

 

( ) ( ) 11
2 2 22

K K Pω ω ω
ω ω −      Φ = Φ     

     
% %    

 

Then we get 

 

( ) 1 ( )
2 22

P ω ω
ω  Φ = Φ 

 
%% %   

  

with 

 

( ) ( )
( ) ( )2K

P P
K

ω
ω ω

ω
=%

 
   

The corresponding two-scale equations of the wavelets are then 

 

( ) 1
2 22

Q ω ω
ω    Ψ = Φ   

   
              (3.24.) 

 

( ) 1
2 22

Q ω ω
ω    Ψ = Φ   

   
%% %               (3.25.) 

 

where ( )Q ω  and ( )Q ω%  are defined in Equation (3.24.) and Equation (3.25.) 

respectively. In time domain, 

 

( ) 2 ( ) (2 ), ( ) ( 1) ( 1)k

k
q k t k g k pt kψ φ= − = − −∑ %    (3.26.) 

 

( ) 2 ( ) (2 ), ( ) ( 1) ( 1)k

k
t q k t k q k p kψ φ= − = − +∑ %% % %   
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The dilation equations of the scaling functions are also reproduced in the 
following. 

 

( ) ( ) ( )2 2 ,
k

t p k t kφ φ= −∑    (3.27.) 

 

( ) ( ) ( )2 2
k

t p k t kφ φ= −∑% %%    (3.28.) 

 

When we compare orthogonal and bi-orthogonal wavelets, we can figure out 

some differences. First, in orthogonal wavelets the length of scaling and wavelet 

filter have to be equal and even, but in bi-orthogonal wavelets there is not any 

restriction about this condition. Second, we can say that in bi-orthogonal wavelets, 

wavelets and scaling functions can be symmetric. As a third manner, while 

orthogonal wavelets preserve the energy in the time domain and frequency domain, 

bi-orthogonal wavelets don’t satisfy this condition. Also we can define that bi-

orthogonal wavelets don’t produce a perfect absolute magnitude response. They 

amplify or attenuate the most frequency components. We can switch the role of 

primary and dual filters in bi-orthogonal wavelets. We can compute the expansion 

coefficients simply in orthogonal systems. 

 
3.5. Wavelet Families  
 

There have been large number of known wavelet  families and  functions and  

they provide a rich space in which to search for a wavelet which will very efficiently  

represent a  signal of  interest  in a  large variety  of  applications.  We can define 

many basis functions to use as the mother wavelet for Wavelet Transformation. Since 

the mother wavelet produces all wavelet functions used in the transformation through 

translation and scaling, it determines the characteristics of the resulting WT. 

Therefore, the details of the particular application should be considered and the 

appropriate mother wavelet should be chosen in order to use the WT effectively. 



3.MATERIAL AND METHODS                                                  Cem SAKARYA                                           

 
 

31 
 

In this thesis, we employed some well-known wavelet families and in the 

following paragraph we briefly gave information about them. The other wavelet 

families that not used in this thesis could not be explained. 

The most popular wavelet family is the Daubechies wavelets. They represent 

the foundations of wavelet signal processing and are used in numerous applications. 

These are also called Maxflat wavelets as their frequency responses have maximum 

flatness at frequencies 0 and π. This is a very desirable property in some applications. 

The names of the Daubechies family wavelets are written dbN, where N is the order, 

and db is the “surname” of the wavelet. The length of the scaling and wavelet filter is 

2N. The support length of wavelet and scaling function is 2N – 1. In Figure 3.4, 

wavelet and scaling function of the dB4 wavelet are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
We can represent a signal by using any member of Daubechies family. They 

are similar in shape to QRS complex and their frequency spectrum is concentrated 

around low frequencies like ECG signal. As it is orthogonal there is a scaling 

function which generates multi resolution analysis (Nick et al, 1997).  Any  

 
Figure 3.4. Illustration of scaling (left) and wavelet (right) functions of dB4    
                  wavelet  
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Daubechies  wavelet  is defined  by  its  vanishing  moments  or  no  of  zero  

moments. 

First we found a progression { };k kα ∈ Ζ that satisfy the following four 

conditions for all integer 2;N ≥  
 

0 0 2k if k or k Nα = < >  
 

2 0k k m m
k

for all mα α δ
∞

+
=−∞

=∑
 

 

2k
k

α
∞

=−∞

=∑
 

 

0, 0 1k m

k
k m Nβ

∞

=−∞

= ≤ ≤ −∑
 

 

where  

 

1( 1)k
k kβ α− += −  
 

0 11, 1,If N then α α= = = corresponding to the Haar basis. 

We found a scaling function from the above progression. This function 

satisfies the below expression; 

( ) 1t dtφ =∫  for integer N. the support of ( )tφ is [ ]0,2 1N − . 

Similarly there is wavelet function which fulfill the following; 

( ) 0mt t dtψ =∫  for all integers  0 1m N≤ ≤ − (Daniel et al, 1994). 

When we investigate the wavelet-scaling functions of Daubechies wavelets, 

we can figure out that they are far from symmetry. Because of this situation symlet 

wavelets are developed. The symlets have other properties similar to those of the dbNs. 
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Symlet wavelets are orthogonal and near symmetric. This property ensures minimal 

phase distorsion.  Order N can be 2, 3 ... .They are orthogonal, biorthogonal and provide 

compact support. Their associated scaling filters are near linear-phase filters. Apart 

from the symmetry, the other properties of the Daubechies and Symlet families are 

similar. Symlet wavelets have p vanishing points and their scaling functions satisfy 

(Mallat, 1999) 

 

( ) 1t dtφ
∞

−∞

=∫
 

 

and 

 

( ) 0 1kt t dt for k pφ
∞

−∞

= ≤ ≤∫
 

 

In Figure 3.5 wavelet and scaling function for Symlet wavelet at order 4 is 

illustrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5.Illustration of scaling (left) and wavelet (right) functions of Sym4     
                wavelet 
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Coiflet wavelets are another most common wavelet family. Built by 

Daubechies at the request of Coifman, the wavelet function has 2N moments equal to 

0 and, the scaling function has 2N-1 moments equal to 0. The two functions have a 

support of length 6N-1. They are orthogonal like Daubechies and Symlet and they 

are more symmetric and have more vanishing moments than the Daubechies 

wavelets. These are compactly supported wavelets with highest number of vanishing 

moments for both ψ and φ  as 2N and 2N-1 respectively. This property provides 

linear phase characteristics of the Coiflet wavelet (Gao, 2011). 

The coifN wavelet and scaling function are much more symmetrical than the 

dbNs. With respect to the support length, coifN has to be compared to db3N or 

sym3N. With respect to the number of vanishing moments of wavelet function, coifN 

has to be compared to db2N or sym2N. 

 In Figure 3.6 wavelet and scaling function for Coiflet wavelet is illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
Figure 3.6.Illustration of scaling (left) and wavelet (right) functions of Coif4  
                  wavelet 
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We also employed Meyer wavelet in this thesis. Meyer wavelets are capable 

of perfect reconstruction. We defined the Fourier transform ( )ωΦ of a scaling 

function ( )tφ as: 

 

21
3

3 2 4( ) cos ( 1
2 4 3 3

0

if

v if

otherwise

ω π

π
ω ω π ω

π

 ≤

  Φ = − ≤ ≤   


  

 

where v is a smooth function which satisfy the following; 

 

 
0 0

( )
1 1

if t
v t

if t
≤

=  ≥  
 

with 
 

 ( ) (1 ) 1v t v t+ − =  
 

and wavelet function could be found from the scaling function. In Figure 3.7 wavelet 

and scaling function for Meyer wavelet is illustrated. 

 

 

 

 

 

 

 

 

 

  
Figure 3.7.Illustration of scaling and wavelet functions of Meyer wavelet 
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3.6. Two Band Filter Banks and Their Relation with Multiresolution Analysis  

 

A filter bank is set of filters. A two-channel filter bank is shown in the figure 

3.5. In a two-channel filter bank, a signal is composed into two parts by two linear 

filters; one is low-pass and the other is high-pass are followed by 2-fold down 

sampler.  This is the analysis section of the filter bank system.  Each of the two 

outputs of the analysis part is up-sampled by 2-fold up-sampler preceded by a filter 

and the outputs of these filters are summed to re-constitute the signal. This part is the 

analysis section. 

 

 
Figure 3.8.Structure of Two-channel Filter  

 

Investigating the two-band filter bank in z  -domain we see that the following 

equations should be satisfied for perfect reconstruction in the syntheses part.  

 

( ) ( )G z zH z= − −


                         (3.29.) 
 

1( ) ( )G z z H z−= − −


  (3.30.) 

 

These chooses lead to  
 

( ) ( ) ( ) ( ) 2H z H z H z H z+ − − =% %              (3.31.) 

 

 

2 

( )h n%   

( )g n%   

2 2 

( )h n   

( )g n  

2 

x’(n) x(n) 
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( ) ( ) ( ) ( ) 2G z G z G z G z+ − − =% %      (3.32.) 

 

Note that if the term 1z−  was not absent in Equations (3.31.), we would reach 

to; 

 

( ) ( ) ( ) ( ) 2H z H z H z H z− − − =% % . 

 

which is not the desired result. The Equations (3.31.) and (3.32.) in time domain 

becomes; 

 

( ) ( )2 ( )
n

h n h k n kδ
∞

=−∞

− =∑ %               (3.33.) 

 

( ) ( )2 ( )
n

g n g k n kδ
∞

=−∞

− =∑ %                (3.34.) 

 

Consequently, if Equation (3.33.) and Equation (3.34.) are satisfied the filter 

bank reconstructs perfectly the analyzed signal at the syntheses part.  

The results obtained here can be easily adapted to multi-resolution analysis. 

Here, the role of ( )h n%  and ( )h n are replaced by ( )p n%  and ( )p n  respectively and the 

role of ( )g n%  and ( )g n are replaced by ( )q n%  and ( )q n  respectively. The frequency 

domain correspondence of the Equation (3.29.) and Equation (3.30.) can be written 

by replacing the variable z  by je ω  ; 
 

( ) ( )jG e Hωω ω π= − −


              (3.35.) 

 

( ) ( )jG e Hωω ω π−= − +


              (3.36.) 
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which is in parallel with Equations (3.35.) and (3.36.) as expected.  

These choices are equivalent to the selection ( ) ( )1G z zH z −= − −% % .  In 

frequency domain this is ( ) ( )jG e Hωω π ω= − −


% which is the quadrature mirror of

( )H ω% . And in the time domain we have ( ) ( ) ( )1 1ng n h n= − − − −%% . This 

requirement provides that all the filters in the orthogonal filter bank depend on the 

low-pass analysis filter ( )h n% .  

The DWT is computed by successive low-pass and high-pass filtering as 

shown in Figure 3.9. This is called the Mallat algorithm or Mallat-tree 

decomposition. It connects the continuous-time multiresolution to discrete-time 

filters. In the figure, the signal is denoted by the sequence x(n) (Addison, 2002). The 

low-pass and high-pass filtering branches of the filter bank retrieve respectively the 

approximations and details of the signal x(n). We can expand the filter bank to an 

arbitrary level, depending on the desired resolution. 

 

 

 

 
 
 
 

 
 

The inverse discrete wavelet transform (IDWT) reconstructs a signal from the 

approximation and detail coefficients derived. At each decomposition level, the half 

band filters produce signals which span only half the frequency band. With this 

method, the time resolution becomes good at high frequencies, while the frequency 

resolution becomes good at low frequencies. The filtering and decimation process is 

continued until the desired level is reached. The maximum number of levels depends 

on the length of the signal. The DWT of the original signal is then obtained by 

starting from the last level of decomposition. 

 

 
Figure 3.9.Two-level wavelet decomposition tree (Semmlov, 2004) 
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Figure 3.10.Two-level wavelet reconstruction tree (Semmlov, 2004) 
 

In Figure 3.10, we can see the reconstruction process of the original signal 

from wavelet coefficients. The reconstruction process is the reverse of decomposition 

process. At each level approximation and detail coefficients are upsampled by two, 

passed through low pass and high pass filters and then added. Till obtaining the 

original signal this process is continued (Addison, 2002). 
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4. FINDINGS AND DISCUSSIONS 

 

4.1. Custom Multiresolution System 

 

This chapter presents the results and discussions which are obtained during 

the project. 

The algorithm was realized by using Matlab (Mathworks Inc.), and Matlab’s 

wavelet, signal processing, optimization and statistical toolboxes.  

A QRS signal looks like as in Figure 4.1. This QRS signal has been obtained 

by ensemble averaging the detected QRS complexes in the database used in this 

study. 

 

Figure 4.1.QRS signal of an ECG signal 
 

The power spectrum of the QRS signal shown in Figure 4.1 is shown in 

Figure 4.2. We can easily notice from this figure that the most concentrated part of 

the spectrum lies between 1Hz and 40Hz.  
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Figure 4.2.Half cycle (0 Hz-500 Hz) of the Power Spectrum of the QRS signal 
 

Since the sampling frequency is 1000 Hz and the cut-off frequency of the low 

pass filter that employed is 50 Hz, the depth of the wavelet is computed as; 

 

2log (500/50) 3.32=   

 

So we took J=3. We determined a function which resembles to an R peak to 

construct a scaling function.  We express this function as below and Figure 4.3 

shows it’s graphic on time domain. 

 

( )2 ( )( ) t atr t a e u t−=                                                                                  (4.1.) 

 

where  2a = and the function ( )u t is chosen to have unit area. 
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Figure 4.3.Plot of the r(t) Function for a=2 

 

The Fourier transform of our function ( )Rw  could be expressed as in 

Equation (4.2.). 

 

2
2

1( )
( )

R w a
jw a

=
+

                                            (4.2.) 

 

 

Figure 4.4.Fourier Transform of the r(t) for a=2 
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We can determine the magnitude function of the ( )Rw  as in Equation (4.3.) 

and the plot of it as in Figure 4.5. 

 

2
2 2

1( ) ( )
( )

M w R w a
w a

= =
+

                                                     (4.3.) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We orthogonalized this function with following the steps given in Section 3. 

In Figure 4.6 graphical representation of K(w) and b(w) of Equation (3.14.) are given. 

b(w) is the denominator of Equation (3.17.). 

 
Figure 4.5.Magnitude function of the R(w) for a=2 
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Figure 4.6.Grapfh of b(omega) and K(omega) 
 

 
Figure 4.7.Fourier Series Coefficients of the orthogonalized scaling function 

 

From Equation (3.17.) we computed many interscale coefficients pk which is 

necessary to compute discrete wavelet transform. The graphical representation of this 

sequence is given in Figure 4.7. The corresponding orthogonal scaling function is 

extracted by Equation (3.24.) and it is shown in Figure 4.8.  
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Figure 4.8.Orthogonalized Scaling Function 

 

As described in Chapter 3, the interscale coefficients of the orthogonal system 

provide low pass filter coefficients  kp and high pass filter coefficients qk. However 

these sequences are infinite length and need to be cropped with a rectangular window 

for practical use. As k   increases the values of the sequence kp decreases (Figure 

4.8). It looks reasonable to keep the coefficients with indexes 15 16k = − K  and 

abandon the others because they are relatively small. The computational errors and 

the cropping violate the orthogonality. So we apply fine tuning to the filter 

coefficients kp ; we employ non-linear constrained optimization to hold the 

orthogonality. The fine tuning is done with using the Optimization Toolbox of 

Matlab. The optimization does not change the coefficients of much since the 

removed coefficients do not contribute much energy in the sequence. Mean square 

error of the coefficients before and after fine tuning is computed as 2.22e-005. The 

low pass filter coefficients obtained from the tuned kp  via Equation 3.20 and high 

pass filter coefficients obtained from kq  via Equation 3.21 are shown in Figure 4.9.  
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Figure 4.9.Low Pass and High Pass Filters of custom multirate system 
 

The frequency response of the low pass and high pass filters are also shown 

in Figure 4.10 and Figure 4.11 respectively. 

 

 
Figure 4.10.Frequency Response of the Low Pass Filter 
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Figure 4.11.Frequency Response of the High Pass Filter 
 

Since we have the high pass filter coefficients, we can compute the 

corresponding wavelet of the orthogonal scaling function from Equation (3.23.). The 

plots of  kq  and the orthogonal wavelet are in Figure 4.12 and Figure 4.13 

respectively.  

 

Figure 4.12.Coefficients for Constructing Wavelet from Desired Scaling Function 
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Figure 4.13. Wavelet Function corresponding to the orthogonalized scaling function 
 

4.2. QRS Detection Algorithm 

 

The scheme of QRS detection (actually R peak detection) algorithm is 

sketched in Figure 4.14.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14.The QRS Detection Procedure 
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The first stage of the QRS detection procedure is digital FIR filter. In this 

stage a FIR low pass filter with order 20 (length is 21) and cutoff frequency of 50 Hz 

is employed. The graphical representation of the FIR filter’s frequency response is 

shown in Figure 4.15. 

 

 
Figure 4.15.Frequency Response of the FIR Filter 

 

The bandwidth of the filter is chosen by investigating the power spectrum of 

the averaged QRS complex. The power spectrum of the averaged QRS is given in the 

Figure 4.2. The low pass filter for the QRS detection algorithm reduces noise in the 

ECG signal. The filter attenuates muscular noise which resides in the high 

frequencies and 50 Hz power line interference and its harmonics. A raw ECG signal 

and filtered ECG signal before and after filtering are shown in Figure4.16 and Figure 

4.17 respectively. 
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Figure 4.16.Unfiltered ECG signal 
 

 
Figure 4.17.Filtered ECG signal 
  

In the windowing stage, we specified a window which is wide enough to 

cover an R peak in the ECG signal. Its width is chosen as 100 samples which 

correspond to 0.1 second. This is also nearly equal to QRS interval. It is shifted by 10 
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samples to cover all R peaks. If the size of the window is too large, it will merge the 

QRS and T complexes together. On the  other  hand,  if  the  size  of  the  window  is  

too  small,  a  QRS  complex  could produce several peaks at  the output of  the stage. 

The data from each window is stored. Then at the end we have the ECG data set as a 

matrix that includes a part of ECG signal at one column. Illustration of the 

windowing procedure is shown in Figure 4.18. 

 

Figure 4.18.Illustration of windowing for an ECG signal.  
 

We computed the approximation and detail coefficients of each window by 

using Equation (4.4.) and Equation (4.5.) respectively. For each window the wavelet 

coefficients;.  

 

( ), (2 0.01 2 ),
j ja x t tj φ= − ⋅ lll

               (4.4.) 

 

( ) , (2 0.012 ),
j jb x t tj ψ= − ⋅ lll

               (4.5.) 

 

where x(t) is the ECG signal. And the magnitude measure from these coefficients are 

computed by   
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2 2mag , , ,a bj j j= +
l l l                                                                  (4.6.) 

 

 Here, ( ) ( ) ,      0.01 0.01 0.1x t x t t= ≤ < +l ll
 is the  thl  segment of ECG 

signal x(t).Note that a signal segment obtained by windowing is represented by only 

one approximation or detail or magnitude coefficient. These coefficients are 

computed for each window for the first 30 second part of the ECG signal. As the 

shift size decreases, the resolution and the total wavelet coefficients will increase and 

also the computation time will increase but a segment is still represented by a single 

feature or value. These features are then used for detecting R peak (correspondingly 

QRS complex). We have three approaches for constructing features. These 

approaches are listed in the following: 

1: Approximation coefficients are computed for each segment. 

2: Detail coefficients are computed for each segment. 

3: Magnitude coefficients are computed from approximation and detail coefficients 

as in Equation (4.6.) for each segment. 

R peaks detection is the key for QRS detection because Q and S peaks occur 

around the R peak within 0.1second. Since R peaks are sharper than from Q and S 

peaks, the features related to R peaks will be higher in magnitude than the features 

related to Q and S peaks. Therefore, in order to extract the R peaks, thresholding is 

done after computing the features. A threshold level is determined and the features 

higher than this threshold assigned as the features corresponding to the R peaks. The 

threshold level is determined from the first 30 seconds data. We used soft 

thresholding method, so threshold level would be different for each ECG signal. First 

we excluded the 1/3 part of the least values of the coefficients because we assume 

that they are related to the noise component of the signal and they do not contribute 

much to the signal energy. Then, we computed the mean of remained 2/3 part for 

determining the threshold level.  The obtained threshold level may not be sufficient 

to eliminate P and T peaks so it should be updated. First, the reference data is 

thresholded and then from the remaining features we obtain updated threshold level; 

we again exclude the lowest 1/3 features and compute the mean of other features. 
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This new threshold level is applied to whole signal and the features that do not 

represent R peaks are eliminated. 

Post-processing stage makes sure that T waves or Q waves and S spikes have 

not been wrongly labeled as R peaks. Before the post processing stage we sorted the 

indexes which point out the place of the data on the ECG signal above the threshold 

level sequentially. These indexes also hold the magnitude levels of each sample. A 

QRS wave interval is approximately 60 ms which correspond to 60 samples because 

our sampling frequency is 1 KHz. At third level of the wavelet tree the samples are 

reduced to 60/8=7.5 samples. Therefore about 8 samples represent QRS and distance 

between Q and R and S and R peaks is about 8/2=4.We calculated the differences 

between adjacent indices of the coefficients. If the difference is less than or equal to 

5, we expect that there could be a QRS complex in there and the index which points 

the highest value in that group is the R peak potentially. The one coefficient with 

high absolute value is kept and the other is eliminated, this repeated until the 

difference of neighborhood peaks are higher than 5. Otherwise a new QRS group 

would be pointed. Let two consecutive coefficients passed the threshold are , 1
a j l  

and , 2
aj l  with 2 1>l l  . If >2 1l l , obtain ( )argmax ,, ,1 2a ak k=l l l  then keep 

the coefficient with indice l and remove the other. This repeated until the difference 

of indices of neighborhood coefficients are higher than 5. We took the value of the 

difference as 5 but this value is dependent to the sampling frequency of the ECG 

signal.  

We tested proposed detector for 10 different ECG signals. Each signal has 

300000 samples with sampling frequency of 1000 Hz. And also for comparison we 

used dB3, dB4, dB5, dB6, dB7, dB8, Sym3, Sym4, Sym5, Coif3, Coif4, Coif5 and 

Meyer wavelet functions. 

 

4.3. Experimental Results 

 

In this Section the QRS detection results are presented. We tested R peak 

detection performances of our scaling and wavelet function upon some different 
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recorded ECG signals offline by using the custom and the common wavelets like 

Daubechies, Symlet, Coiflet and Meyer wavelets individually and compared the 

results. 

The results are grouped into two. The first group contains results obtained 

with custom wavelet and some well-known wavelets. The second result group 

contains the results obtained via Discrete Wavelet Transform. Two measures are 

employed for quantifying the performances; R1 and R2. R1 and R2 are formulated as 

follows; 

 

# detected R peaks1   x 100
# total R peaks

R =                           (4.7) 

 

# R peaks after post processingR2 =  x 100
# R peaks before post processing

               (4.8) 

 

As the value of R2 decreases, the number of the detected false R peak number 

increases. R1 indicates the success of the whole algorithm while R2 provides the 

performance of our post processing stage. 

As it can be seen from Table 4.1, the ratios of the successfully detected R 

peaks obtained with the custom wavelet are nearly the same for all approaches. But 

we can say that the success of detecting R peaks is not much without post-

processing.  

 

Table 4.1.Experimental results with custom wavelet.  
 Ratio of Detected R Peaks 
         ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

C
us

to
m

 W
av

el
et

 1 
 

R1 1 1 1 1 1 0,991 0,942 1 0,992 1 0,993 

R2 0,197 0,132 0,187 0,208 0,218 0,236 0,090 0,211 0,225 0,203 0,191 
2 
 

R1 1 1 1 1 1 0,991 0,921 1 0,992 0,978 0,988 
R2 0,213 0,264 0,205 0,218 0,241 0,275 0,103 0,211 0,254 0,190 0,217 

3 
 

R1 1 1 1 1 0,982 0,991 0,993 1 0,992 0,942 0,990 
R2 0,094 0,247 0,089 0,112 0,241 0,115 0,241 0,102 0,111 0,202 0,155 
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Table 4.2.Experimental results with Daubechies wavelet. 
 Ratio of Detected R Peaks 
             ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

dB
3 

1 
 

R1 0,917 1 0,939 0,829 0,789 0,981 0,847 0,979 1 0,971 0,846 
R2 0,223 0,264 0,219 0,241 0,075 0,164 0,149 0,213 0,262 0,200 0,201 

2 
 

R1 1 1 1 1 1 1 0,869 1 1 0,964 0,983 
R2 0,225 0,272 0,218 0,254 0,256 0,294 0,146 0,226 0,274 0,206 0,237 

3 
 

R1 0,935 1 0,980 1 0,890 1 0,861 0,958 0,968 0,820 0,941 
R2 0,224 0,272 0,218 0,144 0,196 0,206 0,070 0,183 0,177 0,152 0,184 

dB
4 

1 
 

R1 1 1 1 1 0,963 0,990 0,854 1 0,984 0,899 0,969 
R2 0,188 0,249 0,178 0,193 0,222 0,237 0,081 0,211 0,218 0,190 0,197 

2 
 

R1 1 1 1 1 1 1 1 1 1 0,964 0,996 
R2 0,225 0,280 0,232 0,238 0,234 0,301 0,209 0,222 0,241 0,250 0,243 

3 
 

R1 0,944 1 1 1 1 1 0,993 1 1 0,964 0,990 
R2 0,208 0,295 0,210 0,213 0,257 0,353 0,198 0,229 0,250 0,253 0,247 

dB
5 

1 
 

R1 1 1 1 1 1 0,991 0,861 1 0,992 0,958 0,987 
R2 0,194 0,259 0,185 0,202 0,207 0,265 0,128 0,064 0,216 0,202 0,192 

2 
 

R1 0,981 0,991 1 1 0,927 0,991 0,876 1 0,976 0,892 0,963 
R2 0,166 0,234 0,159 0,161 0,199 0,210 0,071 0,198 0,189 0,155 0,174 

3 
 

R1 0,981 0,991 1 1 1 0,991 0,891 1 0,976 0,942 0,977 
R2 0,164 0,230 0,157 0,160 0,187 0,211 0,065 0,197 0,188 0,130 0,169 

dB
6 

1 
 

R1 1 1 1 1 1 1 0,898 1 1 0,957 0,986 
R2 0,227 0,268 0,220 0,257 0,248 0,296 0,151 0,221 0,269 0,216 0,237 

2 
 

R1 0,953 0,991 1 1 0,872 0,991 0,876 1 0,976 0,871 0,953 
R2 0,159 0,255 0,150 0,171 0,206 0,210 0,068 0,191 0,183 0,144 0,171 

3 
 

R1 0,944 0,981 1 0,904 ,0963 0,972 0,876 0,947 0,952 0,914 0,945 
R2 0,134 0,269 0,123 0,124 0,172 0,219 0,062 0,185 0,122 0,158 0,140 

dB
7 

1 
 

R1 0,963 1 1 1 0,950 0,991 0,861 1 0,968 0,914 0,965 
R2 0,213 0,259 0,182 0,184 0,225 0,237 0,083 0,203 0,224 0,189 0,200 

2 
 

R1 0,958 0,991 1 1 0,908 0,991 0,836 1 0,968 0,827 0,948 
R2 0,173 0,239 0,164 0,204 0,224 0,225 0,079 0,204 0,209 0,184 0,191 

3 
 

R1 0,963 1 1 1 1 0,991 0,869 1 0,976 0,950 0,975 
R2 0,185 0,257 0,176 0,178 0,206 0,233 0,069 0,200 0,218 0,154 0,188 

dB
8 

1 
 

R1 0,981 0,991 1 1 0,890 0,991 0,854 0958 0,968 0,827 0,946 
R2 0,159 0,219 0,150 0,145 0,196 0,206 0,072 0,183 0,178 0,152 0,166 

2 
 

R1 0,958 0,991 1 1 0,917 0,991 0,869 1 0,992 0,799 0,954 
R2 0,190 0,252 0,205 0,218 0,245 0,259 0,089 0,212 0,224 0,208 0,210 

3 
 

R1 0,981 0,991 1 1 0,890 0,991 0,876 0,958 0,976 0,899 0,956 
R2 0,128 0,219 0,150 ,0144 0,196 0,206 0,068 0,183 0,177 0,114 0,162 

 

In Table 4.2 some of the Daubechies wavelets from dB3 to dB8 were used. 

Our wavelet has more performance than Daubechies wavelet except dB4 wavelet. Its 

performance is 99,6% where our wavelet has a 99,3% performance. 
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Table 4.3.Experimental results with Symlet wavelets.  
 Ratio of Detected R Peaks 
               ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

S
Y

M
3 

1 
 

R1 1 1 1 1 1 1 0,854 1 1 0,992 0,984 
R2 0,223 0,263 0,218 0,241 0,243 0,287 0,149 0,213 0,262 0,200 0,230 

2 
 

R1 1 1 1 1 1 1 0,905 1 1 0,992 0,990 
R2 0,225 0,262 0,217 0,254 0,256 0,294 0,112 0,226 0,274 0,206 0,233 

3 
 

R1 1 1 1 1 1 1 0,905 1 1 0,971 0,988 
R2 0,224 0,272 0,217 0,254 0,256 0,294 0,112 0,226 0,274 0,206 0,234 

S
Y

M
4 

1 
 

R1 1 1 1 0,981 0,982 0,981 0,883 1 0,976 0,978 0,978 
R2 0,154 0,150 0,175 0,222 0,231 0,248 0,071 0,213 0,224 0,166 0,185 

2 
 

R1 1 1 1 1 1 0,990 0,890 1 0,984 0,986 0,986 
R2 0,198 0,220 0,191 0,211 0,223 0,256 0,078 0,215 0,232 0,182 0,200 

3 
 

R1 0,981 1 1 1 1 0,990 0,890 1 0,984 0,986 0,983 
R2 0,184 0,256 0,174 0,183 0,205 0,241 0,073 0,200 0,214 0,155 0,189 

S
Y

M
5 

1 
 

R1 0,981 0,981 1 1 1 0,990 0,839 0,978 0,986 0,986 0,990 
R2 0,154 0,210 0,147 0,148 0,173 0,194 0,061 0,179 0,171 0,124 0,156 

2 
 

R1 0,981 1 1 1 1 0,990 0,905 1 1 0,985 0,986 
R2 0,199 0,254 0,187 0,226 0,228 0,252 0,083 0,213 0,230 0,190 0,206 

3 
 

R1 0,981 1 1 1 1 0,990 0,883 1 0,984 0,978 0,981 
R2 0,179 0,246 0,173 0,205 0,215 0,196 0,071 0,207 0,218 0,163 0,187 

 

In Table 4.3 results obtained by using some Symlet wavelets are shown. 

Symlets wavelets provide close but lower success than our wavelet. 
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Table 4.4.Experimental results with Coiflet wavelets.  
 Ratio of Detected R Peaks 
              ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

C
O

IF
3 

1 
 

R1 0,981 0,991 1 1 0,992 0,991 0,883 1 0,976 0,978 0,979 
R2 0,181 0,245 0,171 0,214 0,221 0,239 0,071 0,211 0,215 0,165 0,193 

2 
 

R1 1 1 1 1 1 1 0,891 1 0,984 0,986 0,986 
R2 0,196 0,252 0,181 0,223 0,229 0,254 0,076 0,213 0,230 0,182 0,203 

3 
 

R1 0,981 0,991 1 1 0,992 0,991 0,883 1 0,976 0,978 0,979 
R2 0,181 0,245 0,171 0,214 0,221 0,239 0,071 0,211 0,215 0,165 0,193 

C
O

IF
 4

 

1 
 

R1 1 1 1 1 1 0,992 0,898 1 0,992 0,986 0,987 
R2 0,202 0,255 0,189 0,230 0,233 0,265 0,084 0,211 0,241 0,190 0,210 

2 
 

R1 1 1 1 1 1 1 0,905 1 0,992 0,986 0,988 
R2 0,202 0,255 0,188 0,230 0,233 0,265 0,084 0,211 0,241 0,190 0,215 

3 
 

R1 1 1 1 1 1 0,992 0,898 1 0,992 0,986 0,987 
R2 0,202 0,255 0,189 0,230 0,233 0,265 0,084 0,211 0,241 0,190 0,210 

C
O

IF
 5

 

1 
 

R1 1 1 1 1 1 1 0,891 1 0,982 0,987 0,987 
R2 0,199 0,255 0,189 0,230 0,230 0,258 0,080 0,207 0,237 0,188 0,184 

2 
 

R1 0,981 1 1 1 1 1 0,891 1 0,988 0,978 0,984 
R2 0,187 0,246 0,174 0,236 0,242 0,268 0,075 0,216 0,229 0,175 0,205 

3 
 

R1 1 1 1 1 1 1 0,891 1 0,982 0,987 0,987 
R2 0,199 0,255 0,189 0,230 0,230 0,258 0,080 0,207 0,237 0,188 0,184 

 

Table 4.5.Experimental results with Meyer wavelet.  
 Ratio of Detected R Peaks 
           ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

M
E

Y
E

R
 

1 
 

R1 0,944 0,925 1 1 0,800 0,990 0,846 0,915 0,952 0,719 0,909 
R2 0,134 0,185 0,129 0,128 0,166 0,175 0,065 0,157 0,142 0,124 0,141 

2 
 

R1 0,944 0,953 1 1 0,780 0,935 0,832 0,915 0,952 0,748 0,906 
R2 0,135 0,197 0,129 0,147 0,196 0,197 0,067 0,168 0,151 0,139 0,153 

3 
 

R1 0,944 0,925 1 1 0,770 0,935 0,839 0,915 0,952 0,777 0,906 
R2 0,133 0,185 0,129 0,190 0,169 0,178 0,065 0,158 0,143 0,124 0,147 

 

In Table 4.4 and Table 4.5, results obtained by using some of the Coiflet 

wavelets and Meyer wavelet are shown. We can easily comment that coiflet wavelets 

have lower but close performance to our wavelet. The performance of Meyer wavelet 

is the worst. 
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Figure 4.19.QRS detection before and after post-processing. Approximations  
                    coefficients of custom wavelet are used for determining threshold level. 
 

In Figures 4.21 a sample ECG signal before and after the post processing 

stage are shown. The detected R peaks marked on the graphics. As mentioned before, 

the R2 coefficients in Tables 4.1, 4.2, 4.3, 4.4, 4.5 show that our post processing 

procedure eliminates the false R peaks effectively. 
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Figure 4.20. QRS detection before and after post-processing. Approximations                       
                   coefficients of dB4 wavelet are used for determining threshold level. 

 
Figure 4.21. QRS detection before and after post-processing. Approximations                       
                   coefficients of Sym3 wavelet are used for determining threshold  
                   level. 
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Figure 4.22. QRS detection before and after post-processing. Approximations  
                     coefficients of Coiflet4 wavelet are used for determining threshold  
                     level. 
 

In Figures 4.22, 4.23 and 4.24 the graphical representation of QRS detection 

before and after post processing are shown with using dB4, Sym3 and Coif5 

wavelets respectively. 

 

Table 4.6. Experimental results obtained by employing DWT. 
 Ratio of Detected R Peaks 
            ECGs 
Approaches 

1 2 3 4 5 6 7 8 9 10 Success 

D
W

T 

1 
 

R1 1 1 1 1 1 1 0,949 1 1 0,914 0,986 
R2 0,183 0,236 0,197 0,264 0,263 0,275 0,123 0,210 0,255 0,210 0,224 

2 
 

R1 1 0,981 1 1 1 1 1 1 0,872 1 0,985 
R2 0,207 0,391 0,209 0,236 0,218 0,214 0,323 0,178 0,334 0,336 0,264 

3 
 

R1 1 1 1 1 0,991 1 0,950 1 1 0,921 0,986 
R2 0,207 0,237 0,195 0,266 0,262 0,278 0,115 0,210 0,255 0,239 0,226 

 

We also used DWT for QRS detection. As it is well known DWT is a fast 

wavelet transform. The computation of the wavelet-transform coefficients is faster 

with DWT.  The tree depth of the wavelet-tree is chosen as J = 3. As it is seen from 



4.FINDINGS AND DISCUSSIONS                                                  Cem SAKARYA                                           

 
 

62 
 

Table 4.6, our wavelet provides a fairly good performance with 98.6% of R-peak 

detection. 

 
Figure 4.23.QRS Detection before and after post-processing with using custom filter  
                    by DWT method  
 

In Figure 4.24 approximation coefficients and detail coefficients of the ECG 

signal with DWT with J=3 is shown. We used the custom filters  for filtering. These 

wavelet coefficients were used for QRS detection and as it is seen from Table 4.6, a 

satisfactory performance is obtained. 
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Figure 4.24. a) Approximation coefficients of an ECG signal at level 3 with                      
                       using custom filter by DWT method     
                   b) Detail coefficients of an ECG signal at level 3 with using custom  
                       filter by DWT method     
 

The relation between custom filters and the filters of the wavelets that used 

in this thesis is analyzed statistically by using correlation coefficients. First we 

compared the filter length of our wavelet with the filter length of common wavelet 

that we used separately. Then we extended the short filter by adding zeros. The cross 

correlation coefficients were computed by estimating the cross correlation sequences 

of the custom wavelet with some common wavelets. The highest value of this 

sequence is used to compute the standard deviation. This process gave us the 

closeness relation. Table 4.7 shows the correlation coefficients between custom 

wavelet and other wavelets. As the correlation coefficient come closer to 1, the 

correlation level increases and this means that the filters are more similar to each 

other. When we investigate this table we find that custom wavelet is more similar to 

dB5, dB4 and Symlet5 wavelets. The correlation for  Coiflet3, Coiflet4, Coiflet5, 

Symlet4 and Meyer are nearly at same level and have a lower correlation coefficient 

than dB4, dB5 and Sym5 wavelets.  



4.FINDINGS AND DISCUSSIONS                                                  Cem SAKARYA                                           

 
 

64 
 

Table 4.7.Correlation coefficients between custom wavelet and some knowing  
                 wavelets. 

Low Pass Filters  High Pass Filters 
  Coefficients Lags   Coefficients Lags 

W
av

el
et

s 

dB3 0.8288 11 

W
av

el
et

s 

dB3 0.8621 14 
dB4 0.9273 10 dB4 0.9516 14 
dB5 0.9474 8 dB5 0.9516 14 
dB6 0.9059 6 dB6 0.9236 14 
dB7 0.8232 5 dB7 0.8442 13 
dB8 0.8962 3 dB8 0.9086 13 
Sym3 0.8288 11 Sym3 0.8621 14 
Sym4 0.8535 13 Sym4 0.8884 11 
Sym5 0.9263 11 Sym5 0.9527 11 
Coif3 0.8644 4 Coif3 0.8807 10 
Coif4 0.8689 0 Coif4 0.8771 8 
Coif5 0.8573 -4 Coif5 0.8742 6 
Meyer 0.8515 -36 Meyer 0.8613 -34 

 

The highest correlations are in term obtained with  db5, db4 and Sym5 (Table 

4.7). These outcomes coincide with the R-peak detection performances. For visual 

comparision, the most similar low pass and high pass filters are shown in Figure 4.25 

and Figure 4.26. 

 

 

Figure 4.25.Low Pass Filters of some known wavelets and custom wavelet 
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Figure 4.26.High Pass Filters of some known wavelets and custom wavelet 
 

When we compare visually the Figure 4.25 and 4.26, the similarity between 

custom wavelet and dB4, dB5 and Sym5 wavelets can be easily seen and that 

supports the results in Table 4.7. 
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5. RESULTS AND SUGGESTIONS 
 

In this thesis, we detected R-peaks in an ECG signal by using wavelet 

decomposition. We also constructed an orthogonal multi-resolution system with a 

scaling function resembling the shape of the R-wave which promises a good 

performance in detecting R-peaks and hence QRS wave. To obtain the custom 

system we first determined a function resembling an R peak to construct the scaling 

function. The advantage of our system is based on this scaling function because it 

contains the characteristic properties of the QRS complex. This function has been 

orthogonalized and its wavelet counterpart has been obtained. The low pass and high 

pass FIR filters are obtained from dilation and two-scale equations respectively. The 

low pass and high pass filters are tuned to present the orthogonality. 

ECG signal lies between 1 Hz and 40 Hz and since the sampling frequency is 

1000 Hz, this band is covered at the third scale of wavelet decomposition. Hence, 

approximation and detail coefficients of third scale are computed. Besides these 

coefficients, square root of sum of the squares of the coefficients is also employed 

for R-peak identification. By using overlapping windows, the ECG is segmented and 

each segment is decomposed by the discrete wavelet transform up to level three.  

A threshold was decided from the wavelet coefficient of the initial 30 seconds 

data eliminate the coefficients which are related to QRS complexes. Overlapping 

windows causes many false R-peak detection and this problem is solved by post 

processing the results; the neighbor R-peaks are compared if there time indices are 

less than 6 the one with lower absolute value is eliminated. 

The computer used for implementing the algorithm was equipped with an i5 

microprocessor with a 2.8GHz clock frequency and 4 GB DDR3 RAM. The 

algorithm took approximately 3 minutes to detect R-peaks by using continuous 

wavelet transform. The time needed to run algorithm was about 3 seconds when 

discrete wavelet transform is chosen. Due to its fast implementation, the DWT 

method is preferred in clinical medicine. 

Beside the custom wavelet, the algorithm is also run for well-known wavelet 

families; Daubechies, Symlet, Coiflet and Meyer. The result obtained by wavelet is 



5.RESULTS AND SUGGESTIONS                                                  Cem SAKARYA                                           

 
 

68 
 

satisfactory; 99% of the R-peaks are detected accurately as shown in the Table 4.1. 

very close results are obtained especially with dB4, dB5 and Sym5 wavelets; they are 

given in Table 4.2, 4.3 and 4.4.  As one expected the outcomes do not change when 

DWT is employed. In general magnitude coefficients provided better results than 

using approximation and detail coefficients. 

The correlation between custom wavelet and the common wavelets was 

computed to find reasoning about performances of the wavelets. When the computed 

correlation-coefficients are investigated it is seen that custom wavelet is quite similar 

to dB4, dB5 and Sym5 wavelets in terms of shape. This explains why the success of 

these wavelets is very close to the success of the custom wavelet.  

Kumari et al (2007) in their study design orthogonal low pass and high pass 

filters directly by using parameterized perfectly reconstruction They design many 

filters by changing the parameter use the designed filters to remove noise from ECG. 

Apart from this approach, in this study our algorithm is based on specifying the basis 

function. Our basis function is derived from a function that resembling the R-wave. 

So it contains the characteristics of the R peaks and it provides strong resemblance 

index. Scaling function and its complementary wavelet are specified and 

corresponding low pass and high pass filters are extracted. This index is the compact 

wavelet coefficients of the ECG signal and the R-peaks are determined from these 

wavelet coefficients. 

When the results of the study are compared with other QRS detectors in the 

literature, it is impossible to reach an accurate conclusion because ECG signals used 

in these studies are different.  

The performance of the algorithm shows that it is reliable and successfully 

used for R-peak and/or QRS detection provided that the algorithm have been tested 

with much bigger and different databases to support and improve the credibility of 

the results of this study. 
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Matlab Code 

 
clear all 

close all 

ecg = load('ECG_1.dat'); 

% 30 SECOND OF THE ECG SIGNAL 

M = 30000; 

fs = 1000; 

x = ecg(1:M); 

h = fir1(20, 0.1); 

x = conv(x, h); 

x = x(11:M+10); 

ts = 0.001; % sampling interval 

t = (0 : M-1) * ts; 

% ECG signal 

plot(t, x); 

%D is drift 

D=10; 

%W is the length of the window 

W=100; 

y= extractseg(x, D, W, []); 

%phio is orthogonolized scaling function 

[L, N] = size(y); 

%finding approximation coefficients  

ak = akcoeff(y);  

% threshold level 

aksort=sort(abs(ak)); 

lak=length(aksort); 

aksort=aksort(1/3*lak:end); 

th=mean(aksort); 

akn=find(abs(ak)>th); 
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ak2=ak(akn); 

%eliminating 1/3 of the lowest part of approximation coefficients 

%calculating the new threshold level by feedback 

aksort=sort(abs(ak2)); 

lak=length(aksort); 

aksort=aksort(1/3*lak:end); 

th=mean(abs(aksort)); 

%c is the class 

clear y ak 

y= extractseg(ecg, D, W, []); 

%phio is orthogonolized scaling function 

ak = akcoeff(y);  

c=abs(ak)>th; 

q=find(c==1);%qrs 

k=(q-1)*D+floor(W/2);%time index 

x=ecg; 

n = length(x); 

t = (0 : n-1) * ts; 

figure(2);title('QRS DETECTION BEFORE POST PROCESSING') 

subplot(2,1,1);plot(t, x, t(k), x(k), 'o');axis tight 

%POST PROCESSING 

qn = postprocess(ecg, q, W, D); 

n = length(ecg); 

t = (0 : n-1) * ts; 

%figure(3); title('QRS DETECTION AFTER POST PROCESSING') 

subplot(2,1,2);plot(t, ecg, t(qn), ecg(qn), 'o')   

g = ((qn-1)*D)+round(W/2); 

plot(g,ecg(g),'s') 

hold on 

plot(ecg) 

%Windowing Stage 
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function yi = extractseg(x, D, W, m) 

% x is the signal. It is a column vector. 

% yi is LxN matrix. L segment length and N is segment index 

L = length(x); 

K = floor((L - W)/D); 

x = x(1:K* D + W); 

if isempty(m) 

    samples = zeros(K* W, 1); 

    for  k = 0 : K-1; 

        samples(k*W+1: k*W + W) = x(k*D+1: k*D + W ); 

        yi = reshape(samples, W, K); 

    end 

elseif m > -1 

    yi = x(m*D+1: m*D + W ); 

else 

    yi = []; 

    disp('m must be a positive integer.'); 

end 

 

%Computing the approximation coefficients 

function ak = akcoeff(y) 

% y is AxB matrix. A segment length and B is segment index 

J = 3; % 2^3 is a higher resolution from 2^0=1 

[A, B] = size(y); 

ts = 0.001; % sampling interval 

to = 0.5; 

tm = (-floor((A-1)/2):ceil((A-1)/2))*ts + to; 

 p = 2^(J/2)*phio3(2^J*tm); 

z = y.'; 

ak = zeros(1, B); 

for k = 1 : B 
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    ak(k) = sum(z(k, :) .* p)*ts; 

end 

%Constructing the scaling function and wavelet function pair 

function swpaira 

close all 

clear all 

clc 

a = 3; 

u = @(t) (1 + sign(t))/2; 

phi = @(t) a^2*t.*exp(-a*t).*u(t); 

Phi = @(omega) a^(2) * 1./(1i*omega + a).^2; 

M = @(omega) a^(4)*1./(omega.^2 + a.^2).^2; 

b = @(omega) M(omega + 8*pi) + M(omega + 6*pi) + M(omega + 4*pi) + 

M(omega + 2*pi) + ... 

    M(omega) + M(omega - 2*pi) + M(omega - 4*pi) + M(omega - 6*pi) + M(omega 

- 8*pi); 

K = @(omega) b(omega).^(-1); 

t = linspace(-6, 6, 1000); 

omega  =  linspace(-5*pi, 5*pi, 1000); 

figure(1); plot(t, phi(t)); title('scaling fuction'); 

figure(2); plot(omega, abs(Phi(omega))); title('Phi(omega)');axis tight 

figure(3); plot(omega, M(omega));title('M(omega)'); axis tight 

figure(4); plot(omega, b(omega).^(-1/2));title('b(omega) ^ (-1/2)'); axis tight; 

figure(5); plot(omega, b(omega).^(-1));title(('1/b(omega)')); axis tight; 

% Orthogonalization 

po = zeros(25,1);       % -12 ... 12 (25). 

for k = -12:12 

    f = @(omega) (b(omega)).^(-1/2).*cos(omega*k); 

    po(k+13) = 1/pi*quad(f, 0, pi); 

end 



 
 

83 
 

phio = @(t) po(1)*phi(t+12) + po(2)*phi(t+11) + po(3)*phi(t+10) + po(4)*phi(t+9) 

+ ... 

    po(5)*phi(t+8) + po(6)*phi(t+7) + po(7)*phi(t+6) + po(8)*phi(t+5) + 

po(9)*phi(t+4) + ... 

    po(10)*phi(t+3) + po(11)*phi(t+2) + po(12)*phi(t+1) + po(13)*phi(t) + ... 

    po(14)*phi(t-1) + po(15)*phi(t-2) + po(16)*phi(t-3) + po(17)*phi(t-4) + 

po(18)*phi(t-5) + ... 

    po(19)*phi(t-6) + po(20)*phi(t-7) + po(21)*phi(t-8) + po(22)*phi(t-9) + 

po(23)*phi(t-10) + ... 

    po(24)*phi(t-11) + po(25)*phi(t-12); 

t = linspace(-6, 6, 1000); 

n = -12:12; 

figure; plot(t, phi(t)); set(gcf, 'NumberTitle', 'off', 'Name', 'Scaling Function'); axis 

tight 

figure; plot(t, phio(t)); set(gcf, 'NumberTitle', 'off', 'Name', 'Orthogonalized Scaling 

Function'); axis tight 

figure; stem(n, po, 'fill'); 

% Filters 

omega = linspace(-2*pi, 2*pi, 1000); 

figure; plot(omega, M(omega)); set(gcf, 'NumberTitle', 'off', 'Name', 'M(omega)'); 

axis tight 

figure; plot(omega, b(omega)); set(gcf, 'NumberTitle', 'off', 'Name', 'b(omega)'); axis 

tight 

figure; plot(omega, b(omega)./b(2*omega)); set(gcf, 'NumberTitle', 'off', 'Name', 

'b(omega)/b(2*omega)'); axis tight 

clear omega  

m = 12; 

p = zeros(2*m+1,1);     % -m ... m (2*m+1) -> -12 ... 12 (25)    

for k = -m:m 

    f = @(omega) (b(omega)./b(2*omega)).^(1/2).*cos(omega*k); 

    p(k+m+1) = 1/pi*quad(f, 0, pi); 
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end 

clear t omega 

n = 12; 

s = quad(phi, 0, 7); 

y = zeros(n+2, 1); 

for k = 0:n-1 

    f = @(t) phi(t) .* phi(2*t-k); 

    y(k+1) = 2*quad(f, 0, 7); 

end 

y(n+1) = 2; 

b = zeros(n, 1); 

for k = 0:n-1 

    f = @(t) phi(2*t) .* phi(2*t-k); 

    b(k+1) = 2*quad(f, 0, 7); 

end 

  

A = [b(1)  b(2)  b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(10) b(11) b(12) 1  1; b(2)  b(1)  

b(2)  b(3) b(4) b(5) b(6) b(7) b(8) b(9) b(10) b(11) 1  -1; 

     b(3)  b(2)  b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8)  b(9)  b(10) 1  1; b(4)  b(3)  b(2)  

b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8)  b(9)  1  -1; 

     b(5)  b(4)  b(3) b(2) b(1) b(2) b(3) b(4) b(5) b(6)  b(7)  b(8)  1  1; b(6)  b(5)  b(4)  

b(3) b(2) b(1) b(2) b(3) b(4) b(5) b(6)  b(7)  1  -1; 

     b(7)  b(6)  b(5) b(4) b(3) b(2) b(1) b(2) b(3) b(4)  b(5)  b(6)  1  1; b(8)  b(7)  b(6)  

b(5) b(4) b(3) b(2) b(1) b(2) b(3) b(4)  b(5)  1  -1; 

     b(9)  b(8)  b(7) b(6) b(5) b(4) b(3) b(2) b(1) b(2)  b(3)  b(4)  1  1; b(10) b(9)  b(8)  

b(7) b(6) b(5) b(4) b(3) b(2) b(1) b(2)  b(3)  1  -1; 

     b(11) b(10) b(9) b(8) b(7) b(6) b(5) b(4) b(3) b(2)  b(1)  b(2)  1  1; b(12) b(11) 

b(10) b(9) b(8) b(7) b(6) b(5) b(4) b(3) b(2)  b(1)  1  -1; 

     1      1     1    1    1    1    1    1    1    1     1     1    0  0;  1    -1     1    -1    1   -1    1    

-1   1   -1    1    -1    0   0]; 

B = inv(A); 



 
 

85 
 

h = B*y; 

h = h(1:n); 

h = h / sqrt(2);                % h scaled by 1/sqrt(2) to make sum(h) = sqrt(2) 

h = [zeros(12,1); h ; 0];       % -12 ... 12 (25)  

ho = conv(h, p);                % -24 ... 24 (49) 

ho = [ho; 0];                   % -24 ... 25 (50) 

kb = -24; 

ke = 25; 

k = (kb:ke).'; 

go = (-1).^k .* ho((1-k) + ke); 

ho = ho(10:41);                 % -15 ... 16 (32) 

go = go(10:41); 

% Wavelet function of the orthogonal system 

kb = -15; 

ke = 16; 

k = (kb:ke).'; 

go = (-1).^k .* ho((1-k) + ke); 

go = [0; go];                       % -16 ... 16 (33) 

po = [zeros(4,1); po; zeros(4, 1)]; % -16 ... 16 (33)  

r = sqrt(2)*conv(po, go);           % -32 ... 32 (65). r is scaled by sqrt(2) since go was 

%derived by from h scaled by 1/sqrt(2). 

figure; 

stem((-15:15), r); axis tight 

set(gcf, 'NumberTitle', 'off', 'Name', 'Coefficients for constructing orthogonal wavelet 

from desired scaling function'); axis tight 

r = r(18:48);                       % -15 ... 15 (31) 

s = 16; 

% The orthogonal wavelet  

psio = @(t) r(s-15)*phi(2*t+15)+r(s-14)*phi(2*t+14)+r(s-13)*phi(2*t+13)+r(s-

12)*phi(2*t+12)+r(s-11)*phi(2*t+11)+... 
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            r(s-10)*phi(2*t+10)+r(s-9)*phi(2*t+9)+r(s-8)*phi(2*t+8)+r(s-

7)*phi(2*t+7)+r(s-6)*phi(2*t+6)+... 

            r(s-5)*phi(2*t+5)+r(s-4)*phi(2*t+4)+r(s-3)*phi(2*t+3)+r(s-

2)*phi(2*t+2)+r(s-1)*phi(2*t+1)+... 

            r(s)*phi(2*t)+r(s+1)*phi(2*t-1)+r(s+2)*phi(2*t-2)+r(s+3)*phi(2*t-

3)+r(s+4)*phi(2*t-4)+... 

            r(s+5)*phi(2*t-5)+r(s+6)*phi(2*t-6)+r(s+7)*phi(2*t-7)+r(s+8)*phi(2*t-

8)+r(s+9)*phi(2*t-9)+... 

            r(s+10)*phi(2*t-10)+r(s+11)*phi(2*t-11)+r(s+12)*phi(2*t-

12)+r(s+13)*phi(2*t-13)+r(s+14)*phi(2*t-14)+... 

            r(s+15)*phi(2*t-15); 

 

% fine tuning 

options = optimset('Display','iter'); 

[y, fval] = fsolve( @(x) pr(x), ho, options); 

figure; 

plot((-15:16), y, 'r', (-15:16), ho, 'b'); axis tight 

set(gcf, 'NumberTitle', 'off', 'Name', 'Low pass filter'); axis tight 

legend('Fine tuned','Designed'); 

ho = y; 

kb = -15; 

ke = 16; 

k = (kb:ke).'; 

go = (-1).^k .* ho((1-k) + ke); 

save ho.txt ho -ascii -double 

save go.txt go -ascii -double 

 

%Post-Processing Stage 

function qn = postprocess(x, q, W, D)  

q = q(:).'; 

dq = diff(q); 



 
 

87 
 

k = find(dq >5) + 1; 

K = numel(k) + 1; 

k = [1, k, numel(q)+1]; 

qn = zeros(1, K); 

for m = 1:K 

    disp(m) 

    g = q(k(m):k(m+1)-1); 

    g = ((g-1)*D)+round(W/2); 

    [mx, t] = max(x(g)); 

    qn(m) = q(k(m)+t-1); 

end 

 
%DWT Application 

clear all 

close all 

ecg = load('ECG_1.dat'); 

M = 30000; 

fs = 1000; 

x = ecg(1:M); 

%Digital LPF 

h = fir1(20, 0.1); 

x = conv(x, h); 

x = x(11:M+10); 

ts = 0.001; % sampling interval 

t = (0 : M-1) * ts; 

% ECG signal 

plot(t, x); 

load ho.txt % Low pass filter 

load go.txt % High pass filter 

h = ho(end:-1:1); 

g = go(end:-1:1); 
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N = 3; 

[C,L] = wavedec(x, N, h, g); 

L = L(:).'; 

Indx = [0, cumsum(L(1:end-1))]; 

app = C(Indx(1)+1:Indx(2)); 

deta = C(Indx(2)+1:Indx(3)); 

tsa = ts * 2^(N); 

fsa = fs * 2^(-N); 

banda = fs/2 * 2^(-N); 

Delay = 14; 

app = app(Delay + 1:end); 

deta = deta(Delay + 1:end); 

La = length(app); 

ta = (0 : La - 1) * tsa; 

% eliminating 1/3 of the lowest part of apps 

appsort=sort(app); 

lapp=length(appsort); 

appsort=appsort(1/3*lapp:end); 

th=mean(abs(appsort)); 

%calculating the new threshold level by feedback 

appn=find(app>th); 

app2=app(appn); 

appsort=sort(app2); 

lapp=length(appsort); 

appsort=appsort(1/3*lapp:end); 

th=mean(abs(appsort)); 

clear x app deta C L 

x=ecg; 

[C,L] = wavedec(x, N, h, g); 

L = L(:).'; 

Indx = [0, cumsum(L(1:end-1))]; 
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app = C(Indx(1)+1:Indx(2)); 

deta = C(Indx(2)+1:Indx(3)); 

tsa = ts * 2^(N); 

fsa = fs * 2^(-N); 

banda = fs/2 * 2^(-N); 

Delay = 14; 

app = app(Delay + 1:end); 

deta = deta(Delay + 1:end); 

La = length(app); 

ta = (0 : La - 1) * tsa; 

% c is the class 

c=app>th; 

q=find(c==1);%qrs 

M=length(x); 

ts = 0.001; % sampling interval 

t = (0 : M-1) * ts; 

k=(q)*2^N; 

figure(3);title('QRS DETECTION BEFORE POST PROCESSING') 

subplot(2,1,1);plot(t, x, t(k), x(k), 'o') 

 

%POST-PROCESSING 

qn = pprocess(x, q, N) 

k=qn*2^N;%time index 

n = length(x); 

t = (0 : n-1) * ts; 

%figure(4); title('POST PROCESSING') 

subplot(2,1,2);plot(t, x, t(k), x(k), 'o')   

 


