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The aim of this study is to improve the performance of Genetic Algorithm
(GA) and extend the GA towards a more natural approach by incorporating
“assortative &  disassortative mating (ADM)” to the selection strategies.

In this study, a simple and efficient ADM based rea-coded genetic algorithm
(RCGA) is proposed and then employed to solve complex function optimization
problems. The suggested DISASSORTATIVE mating approaches enhances the
abilities of GAs in searching global optima as well as in speeding convergence by
integrating the ASSORTATIVE mating search strategies. Eight different ADM
strategies were proposed within this study. Using ten benchmark globa optimization
test functions, the performance of these strategies were evaluated. Results indicate
that the disassortative based mating strategies are fast, accurate, and reliable, and
outperform al the other GAs considered in the present study.

Key Words: Genetic algorithm, diversity, disassortative mating, assortative mating.
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GENETIK ALGORITMALAR iCIN ASSORTATIF- DISASSORTATIF
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Bu calismamn amaci, Genetik Algoritma (GA)' nin performansim arttirmak
ve secim mekanizmasim “benzer birey - farkli birey es secimi (ADM)” ile
birlestirerek daha dogal bir yaklasim haline getirmektir.

Bu calismada, basit ve etkili bir ADM tabanli, sirekli degerlerle kodlanmis
genetik algoritma (RCGA) 0One surilmis ve daha sonra karmasik optimizasyon
problemlerini ¢cozmek igin kullanmustir. One stirtilen farkl: birey es secim yaklasimi
GA’'nin genel en iyiyi arama yetenegini arttirchgi gibi benzer birey es segciminin
eklenmesi de en iyiye yakinsama hizini arttirmaktadir. Caligsmada sekiz farklt ADM
stratejisi Onerilmistir. One slirtlen sratejilerin performanslar;, on farkli genel
optimizasyon degerlendirme fonksiyonu kullamlarak degerlendirilmistir. Sonuclar
farklilik tabanli es segim stratgjisinin daha hizli, tutarl, guvenilir oldugunu ve bu
caligmadaki diger tim GA’lardan dahaiyi sonug verdigini gostermektedir.

Anahtar Kelimeler: Genetic algoritma, farkli birey es secimi, benzer birey es
segimi.
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1. INTRODUCTION Serkan KARTAL

1. INTRODUCTION

Traditional GAs perform selection process independent from individud’s
genotypic or phenotypic similarities. In nature it is called as random mating (Russel,
1998; Smith, 1980). However selection of the individuals according to their kinship
or likeness is more common in natural system (Fernandes et. d., 2009).

In random mating better individuals should be favoured more often than the
weaker ones for recombination process. However there are better selection
mechanisms for recombination, in nature. For instance, humans usually select their
mate outside of their family tree (Fernandes and Rosa, 2008). This type of non-
random mating is called as outbreeding mating and it is opposite of the inbreeding
where individuals mate preferentially with their relatives. It is reported that
outbreeding usudly increase the diversity in the population while inbreeding
decreases (Russel, 1998).

In non-random mating, parenthood or likeness based mating is performed
(Fernandes and Rosa, 2008). For example, disassortative mating is a specific type of
non-random mating that may improve EAs performance by maintaining the genetic
diversity of the population at a higher level during the search process. Another non-
random mating mechanism is the assortative mating (AM) where the individuas
choose their mates according to similarities (Russel, 1998). For example the
existence of correlations between same certain aspects of couples, such as. heights,
intelligence, behaviour, etc., can be viewed as an instance of AM among humans.

Previous studies view that mating is very unlikely to be random in nature.
Assortative and disassortative selection mechanisms (SMs) may produce higher
survival rates among individuals evolving in static and dynamic environments,
respectively. These mechanisms bring to mind two mgjor topics: selective pressure
and genetic diversity. Pressure and diversity are closely related with the terms of
exploration and exploitation which are needed in order to have safe search and avoid
from premature convergence in GAs.

Premature convergence to local optima is one of the most frequently

encountered difficulties that arise when applying GAs to complex problems.
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Premature convergence is directly related with loss of diversity. When the
individuals are in the solution space is too alike, then genetic operators can not
generate offspring that are better than their suboptimal parents. On the other hand,
higher population diversity can cause to a dramatic deterioration of GA's
productivity. Therefore, an important issue in the design and application of GAs is
the trade-off between exploitation of the best individuals and exploration of
alternative regions of the search space.

In this study, we investigated the incluson of assortative-disassortative
selection mechanism to achieve a proper baance between exploitation and
exploration. In addition to this, assortative-disassortative selection may overcome the
problem of the standard GAs that usually get stuck on the local optimum rather than
the global optimum. With disassortative mate selection, individual selects the least
similar co-candidate for itself. In this way, individuas with rare traits are in the
advantage of individuals without the rare trait. In addition to this, assortative mate
selection provides advantages to similar individuas. Promoting mating among the
similar individuals provides narrowing down the spread of search space. That yields
exploitation of a certain region.

We tested GA for different selection mechanisms, standard selection
mechanism(SM) and proposed selection mechanisms. These mechanisms were tested
on standard GA test functions (for two dimensions).

Clear winner is the disassortative based SMs to attain global optimum by
promoting genetic diversity. Using some combinations of assortative and

disassortative approaches are also give better results than standard SM for GA.
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2. PRELIMINARY WORKS

In general, a typical RCGA involves three main operators. selection,
crossover, and mutation to evolve the population towards global optimum. This
method can be viewed as an evolutionary process. The crossover operation is used to
create new offspring (solutions). Crossover is one of the key operators to increase the
diversity of the population, hence enabling GAs to explore promising areas of the
search space. For common diversity based crossover operations, sharing, diversity
control oriented GA, restricted mating and assortative - disassortative mating can be
found.

Goldberg and Deb (1991) described the sharing method as; each individual is
forced to share its fitness value with its neighbours. So, the rare or deviant solutions
will have selective advantages with respect to the common solutions. The
neighbourhoods of the solutions are evaluated with Euclidian distance between their
locations in phenotype (fitness) space.

Fitness sharing and niching methods are also used by Sareni and Krahenbuhl
(1998). Niching method maintains population diversity and permits the GA to
investigate many peaks in parallel. It can be viewed as a subspace in the environment
that can support different types of life. In this way it aso prevents the GA from
being trapped in local optima

Shimodaira proposed Diversity Control Oriented Genetic Algorithm (DCGA)
to maintain population diversity (Shimodaira, 1997). In the DCGA the population
that needed for the next generation is created by merging the population of parents
and their offspring by eliminating duplicate solutions based on the selection
probability, which is calculated using the Hamming distance between the candidate
individual and the best. In another study Mauldin used the Hamming distance
restriction to avoid the coexistence of similar individuals (Mauldin, 1984).

Following the concept of Assortative-Dissortative Mating in biological
systems, Fernandes first used directed Assortative-Dissortative (positive and negative
assortative) Mating technique to improve standard genetic algorithms (SGAS)
(Fernandes et. al., 2001). First, for each recombination event an individual is selected
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as first parent by using Roulette Wheel (RW) method. Then N genomes are selected
by the same method. Additionally, the similarity between each of N genomes and the
first parent is computed. Statistical measure of similarity of two codebooks based on
the magnitude of the signal and the mean, variance and correlaion of the code
words coordinates is used. Then individuals are selected depending on selected
method (positive- negative assortative) and their similarity.

De et al. introduced genotypic and phenotypic assortative mating where the
partners are chosen based on either their genotypic similarity or their phenotypic
similarity (De et. al., 1998). The first parent is selected according to the fitness value.
Then candidate partner is determined by considering the Hamming distance
(genotypic) or the fitness distance (Phenotypic) to the first one. This approach
provides exploitation of current search space. The aim of this selection is, exchange
information with two genomes without losing any information. In nature, it is noticed
that individuals select their partners with similar characteristic.

Matsui defined dissortative (disassortative) mating within the tournament
selection strategy (Matsui, 1999). At first, one individual is selected as the first
parent with standard tournament selection. Then N candidate individuals are selected
for selection pool. After that correlation is measured between first parent and N
candidate individuals. Later, the total of the fitness value and the Hamming Distance
is used to determine second parent.

Fernandes introduced a different version of the dissortative (disassortative)
selection to prevent the genetic diversity (Fernandes et. al., 2009). Firstly two parents
are selected but crossover is performed if the Hamming distance between them is
found to be above a threshold value. Otherwise, the recombination event is
considered as “failed” and new pair is selected until N/2 pars have tried to
recombine (N is the population size). After the reproduction cycle, a new population
is created by selecting the best N members amongst the parents and newly generated
offspring. Then, the threshold is incremented or decremented, according to the
number of successful and failed events. Thus, the population diversity can be
controlled depending on the threshold value.
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Another interesting approach is the multi-parental crossover with distance
dependence alternation model that utilizes distance information among individuals
(Takahashi et. al., 1999). First m+2 parents are randomly selected from population
and selected parents generate severa children. Then algorithm selects the elite
solution from the children and finds the parent nearest to elite one. If the elite child is
better than the parent then parent is replaced with the child. Else, the algorithm
selects another parent randomly and processes the same procedure. The results
showed it that the algorithm outperformed traditional GAs.

Jassadapakorn and Chongstitvatana introduced diversity adaptation in genetic
algorithms with preference mating (Jassadapakorn and Chongstitvatana, 2011). The
study is based on modified restricted mating which is called as “preference mating”.
First individua is selected by the traditional SM. The selection chance of the second
individual, depends on the difference function and the fitness value.

Another approach is introduced by Garcia-Martinez et al, for RCGA (2008).
The authors indicate that the inclusion of that mating Strategy increases the
performance of the GA on a set of proposed problems. It uses the parent-centric real
parameter crossover operators that create the offspring in the neighbourhood of the
female parent. The other parent, the male one, defines the range of the
neighbourhood. Before this process, afemale and male differentiation determines the
individuals in the population that may become female or/and male parents.

Unlike most of the previous methods, the algorithm ADM proposed in this
thess for RCGAs, which has the general distance functions is based on normal
distribution and independent from the problem space. As shown above, disassortative
mating maintains genetic diversity at a higher level. In addition, assortative mating is
used to make more sensitive search which is based on the same distance

measurements.
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3. MATERIALSAND METHOD

3.1. Materials

3.1.1. Genetic Algorithm

Genetic Algorithms (GAs) are well known heuristic search and optimization
algorithm for solving both constrained and unconstrained function optimization
problems. GAs are inspired from Darwin’'s Theory of Evolution and aimed to find
optimum solution by searching problem space randomly (Beasley at. al., 1993; Jaffe,
2002).

SGA starts with randomly creating a set of candidate solutions that is called
initial population. Algorithm operates on the population applying the principle of
survival of the fittest to produce better approximations for the solution. At each
generation, a new set of chromosomes are produced by the process of selecting
individuals depending on their fitness score in the problem domain and breeding them
among themselves. This process leads the populaion evolve towards the better
individuals by modelling natural processes, such as selection, recombination and
mutation (Beasley at. a., 1993).

)
Generate Evaluate Are M'
initial e objective termlnatlo
‘ population fqu:tiun &a y -ndnvndual —l

| Reinsertion Selection

Generatenew |
population |

v
| M utation |-— | Recambination

Start Resuli

Figure 3.1. Structure of Genetic Algorithm
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3.1.2. Basic GA

Basic GA follows common steps illustrated in Figure 3.1. At the first step,
many chromosomes which represent the solutions are randomly generated to form an
initial population. Discrete or continuous search spaces can be used for gene
representation. The population size depends on the nature of the problem and
generally a predefined constant population size is used. Then the objective function
is used to evaluate the fitness of individuals. If the desired solution is, by chance, in
the initial population, there is no need to proceed further. The agorithm should
terminate straight away.

If the termination condition is not reached, the next generation should be
generated. The reproducing of the new generation starts with selecting parents from
the current population through afitness-based process. Various selection methods
can be used for this operation. Such as, rank-based selection, roulette wheel
selection, tournament selection, etc.

The selected individuals (parents) undergo recombination process.
Recombination aims to produce offspring by combining two or more individuals.
The parents are not necessarily combined to produce offspring. The crossover
probability p. determines whether recombination will be performed or not. If the
process should not be performed, the two offspring would be exact copy of their
parents. The most common rea valued recombination methods are, intermediate
recombination and line recombination.

All offspring are taken into mutation process with certain probability. The
aim of the mutation is to alter individuals randomly. It is applied to the individuals
with very low probability. This value may vary in the interval of [0, 1] (Shopova and
Vaklieva-Bancheva, 2006). However it is recommended to use low values, such as
0.01, 0.1, etc. The significance of mutation is to provide exploration of the search
space.

After the offspring have been produced, they are used to form the next
generation. In the case of producing less offspring than the size of the original

population, in order to preserve the size of the origina population, combination of
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the offspring and the old population isused. This processis called reinsertion. Global
reinsertion and local reinsertion are the well-known reinsertion methods in the
literature.

This cycle is performed until termination criteria are met. Generally genetic
algorithms are run over a predefined number of generations or until problem specific
termination criteria are reached. Typical termination criteria are: stop after a fixed
number of generations, stop when a chromosome reaches a specified fitness level,
stop when a chromosome succeeds in solving the problem within a specified
tolerance or gtop if there is no improvement on the solution in a certain amount of
generation.

Previous works show that the behaviour and performance of GAs are strongly
influenced by the representation scheme used for the problem (Goldberg, 1989;
Liepins and Vose, 1990). So, to make the application successful, often considerable
effort is needed to customize the GA to suit the problem. For example representation
of the problem can be achieved by coding the chromosomes as binary, integer, rea-
valued, messy or tree structure. Among of them, the binary coded and rea-valued

representations are the most important and widely used coding schemes.

3.1.2.1. Binary Coded GA

Binary encodings are the most commonly used and nature-inspired
representations for EASs, especially for GAs (Goldberg, 1989). It was proposed based
on some theoretical guidance and existing recommendations for designing efficient
genetic representations. In BCGA each chromosome has one binary string. Each bit
in this string represents the characteristic of the related solution. Two chromosomes

with binary coding are given below as an example:

Chromosome A {101100101100101011100101

Chromosome B 1111111100000110000011111
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When encoding real-valued problems with binary representations, different
types of binary representations can be used. The most common binary

representations are binary, gray and unary encodings (Liang et. d., 2007).

3.1.2.2. Real Coded GA

In real-coded genetic algorithm (RCGA), a solution is directly represented
with the real number variables. So, the use of real-parameter makes it possible to use
large domains for variables (Herreraet. al., 1998).

The main purpose of the RCGA implementation is to move the genetic
algorithm closer to the problem space. The real coding is used to represent a solution

for agiven problem to decrease computing burden in most of the GA applications.

3.1.2.3. Binary versus Real Coding

Perhaps, the most basic decision for the GA designer is whether to use, binary
or real coding. The traditional GA uses binary coding (Holland, 1975). On the other
hand, in many applications real coding is used (Michalewicz, 1996). Various
arguments are given as to whether binary or real coding should be used, but it is not
exactly clear which coding method should be adopted.

Binary coded representation has been demonsirated as the most appropriate
one and is easy to implement (Goldberg, 1991). However, the GA’s good properties
do not stem from the use of bit strings (Antonisse, 1989; Radcliffe, 1992). The
binary representation encounters with certain difficulties when dealing with
continuous search space and numerica precision is required.

On the other hand, rea coding would seem more natural to represent the
genes directly as real numbers for optimization problems in continuous search space.
Each gene represents a variable of the problem. The use of real parameters makes it
possible to use large domains for the variables, which is difficult to achieve in binary
representation. One of the other advantages of the real coding is a slight change in
variable corresponds to a slight changes in the function. In this way, it is possible to

10
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make local tuning on the solutions. There is no difference between the genotype
(coding) and the phenotype (search space). Therefore, the coding and decoding
processes that are needed in the BCGASs are avoided, and that enhances the GA’s
speed. For these reasons, in this study the use of real coded representations is
preferred for optimization problems.

3.1.3. FactorsInfluencing GA

Traditional genetic agorithms use random solutions to create initia
population. If the population is not spread to search space, it can be difficult to find
the desired solution for the problem. Therefore, some factors should be considered
while generating the new population. These factors are: size of the search space, and
the population sze, the selection pressure, the diversity, etc. (Diaz-Gomez and
Hougen, 2007). However, in this thesis just the diversity factor will be taken into

account.

3.1.3.1. Search Space

The size of the search space is an important aspect to reach optimum solution.
If the space is too large, EA may not be able to come close to optimum point. It is
likely that it will get stuck on a local minimum. Therefore, if it is possble, one
should try to decrease the number of parameters affecting the problem. If this is not
possible it may be a good idea to narrow down the range of each dimension. This
would result in a smaller search space.

Furthermore the landscape of the search space plays an effective role in the
success of EA. If the space contains numerous local minimums a good EA should be
able to avoid such traps.

In most of the cases, one cannot choose the landscape of the search space.
Therefore while developing an EA, one should select challenging search spaces in

order to show the agorithm’s superiority.

11
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3.1.3.2. Population Size

Population size is another aspect that affects the performance of an EA. In
order to explore search space a large amount of candidate solutions should be
generated. However this comes with the price of decreased speed of convergence.

Inevitably, the amount of time to evaluate large number of solutions
(population) will slow down the algorithm. On the other hand having a small sized
population most probably would result with early convergence on alocal minimum.
Since the search space may not be well explored with such number of solutions.

Therefore the population size should be selected carefully while optimizing
the speed and the exploration power.

3.1.3.3. Sdective Pressure

Sdlective Pressure (SP) is the tendency to select the best individuals of the
population for the recombination to direct the GA better solutions. Too much
selective pressure cause to premature convergence. However, low selective pressure

inhibits GA to converge optimum solution in a reasonable time.

3.1.3.4. Diversity

Diversity is the maor topic that affects the GA’s performance (Guptai and
Ghafir, 2012). The maintenance of diversity of the population is essential to ensure
that al solution space is efficiently searched. Loosing population diversity may be a
major reason for the premature convergence. Not being capable of producing distinct
individuals will result in almost identical chromosomes that exploit only a limited
portion of the search space. So the genetic operators can no longer produce offspring
that outperform their parents. Generally, this situation cause to stuck on a local
optimum and to scarify exploration that a good search algorithm should never give
up (Dedong, 1975; Guptai and Ghafir, 2012).

12
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3.1.3.4.(1). Diversity Measurement Methods

Measures to evaluate the diversity of a set of solutions in search space play an
important role in EAs. Measurement methods can be classified according to
representation scheme of the solution. Hamming distance and Euclidean distance are

the most common techniques for the binary and real coded GAs.

3.1.3.4.(1).a. Hamming Distance

Hamming distance is the most widdy used technique for measuring the
similarity of two binary strings (Hamming, 1980). It is used to measure distance
between two genotypes by counting the number of different bits (Banzhaf et. al.,
1998). In other words, Hamming distance describes how many bits are different in
two binary strings. The below illustration shows how to calculate Hamming distance

as an example.

A 1/1]0]o0 ﬂ
B 1[1]/0]0 ﬂ

Hamming distance is equa to 3.Total Hamming distance can be computed by

the following formula:
N-1 N

Dy(P)= )" > hd(C,C)

i=1 j=it1

tgens

hd(C;, ¢;) = Z |Cia = Cjal
a=0

where tgensis total gene count in a chromosome Cj,and C; 4, C; ; correspond to ath
genes in i*" and j™* chromosomes respectively, and hd(C;,C;) is the Hamming
distance between two chromosomes ¢; and ¢; of a population P={C,,C,,....,Cy},

D, (P) isthe total hamming distance between all chromosomes.

13
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3.1.3.4.(1).b. Euclidean Distance

One of the most frequently used technique for measuring the similarity for the
RCGA individuas is based on summing (averaging) the Euclidean distances from
every point (gen) to the center-point (average gen value) (Ursem, 2002; Wineberg
and Oppacher, 2003a; Barker and Martin, 1999; Barker and Martin, 2000; Wineberg
and Oppacher, 2003Db,).

D,(PX.M) = > lIG; = G

where C, is the centroid of the population in each dimension. Another popular
measure is based on summing (averaging) the Euclidean distances between all pairs

of points:
N-1 N
PPN = > > llci— g
i=1 j=it1
For example, C; and C; are arbitrary individuals and ||C; — Cj|| is the

Euclidean distance between C; and C;.

3.1.3.4.2. Methodsfor Maintaining Diver sity

Maintaining population diversity is important factor in enhancing the
performance of the Genetic Algorithms. Diversity-preserving mechanisms can
enhance global exploration of the problem domain and favour dissimilar individuas
for recombination. These methods can help to the performance of the algorithm by
supporting globa exploration and escaping from local extreme (Friedrich et. al.,
2009). Methods for preserving diversity are mentioned below.

3.1.3.4.(2).a. Niching

“Niching” method was described by DeJong (DeJong, 1975). A niche can be

considered as a subspace in the search space that can support different types of life.

14



3. MATERIALS AND METHOD Serkan KARTAL

Each species is formed by a group of individuals with similar biological features
which are capable of interbreeding among them but that are unable to breed with
individuals outside their group. For each group the physical resources are finite and
must be shared among the individuals of that niche. Niching methods have been
developed to permit the GA to investigate many peaks paralel and prevent GAs to
stuck on loca optima (Sareni and Krahenbuhl, 1998).

3.1.3.4.(2).b. Crowding

Later, DeJong presented another approach caled “crowding”. This
mechanism eliminates the most smilar individuals when a new one enters to the
subpopulation. Crowding has some restrictions on the selection methods. There are
various types of crowding:

In standard crowding, in each generation only a specified percentage of the
population is used for replacement. In order to insert an offspring into the population,
first, randomly select a group of individuals and then calculate the smilarities. Then
identify the most similar individuals and replace the offspring with one of these. The
size of this subpopulation is called crowding factor.

Another type of crowding approach assumes that offspring compete directly
with their parents. In each generation population is divided into pairs for
recombination. After recombination, each offspring compares with its parent and if

the offspring is better it replaces with one of its parent.

3.1.3.4.(2).c. Restricted Mating

Another approach is proposed to maintain the genetic diversity is called
“redricted mating”. While selecting an individua as a mate for another one, some
restrictions, such as hamming distance are used. If the candidate mate satisfies the
conditions it will be granted for the mating (Guptai and Ghafir, 2012).

15
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3.1.3.4.(2).d. Sharing

In “sharing method”, each individual receives a fitness value by dividing its
fitness by the number of smilar individuals. Thus the rare individuals get more
change to reproduce and it tends to encourage search in unexplored area of the search
space. However, high computational cost of sharing is considered as its most
important drawback (Snijders, 2005).

3.1.3.4.(2).e. By Multiploidy

Traditional GAs are based on haploid genotypes. However in nature many
organism uses “multiploid” genotypes (poly-poid) which is formed from a set of
chromosomes. This mechanism provides a number of advantages on the nature,
mainly by enhancing population diversity. So the multiploidy method can be used in
GAs for maintaining diversity and avoid premature convergence. The results from
the set of experiments demonstrated that multiploid GAs more capable of finding the
optimum than a haploid GA (Collingwood and Ross, 1996).

3.1.3.4.(2).f. Ranked space

“Ranked space” uses the two ranks in selection phase, first one is the quality
and the second one is the diversity rank. The combination of these two ranks is used
to change selection probability of the individuas in the population. In this
mechanism, the fitter individua is selected by the first rank and population diversity
is preserved and getting rid of the identical chromosomes (Jassadapakorn and
Chongstitvatana, 2011).

3.1.3.4.(2).9. DCGA

“DCGA” (Diversity control oriented GA) is based on elimination of the
duplicated individuals from merged population of the parents and their offspring.

16



3. MATERIALS AND METHOD Serkan KARTAL

The eimination operation is performed according the Hamming distance between the
candidate individual and the best individual. The idea is to use even the worse
solutions instead of discarding them (Shimodaira, 1997).

3.1.3.4.(2).h. Elitist

In the “Elitist” method the best two individuals, from the group of parent and
their offspring, are selected for the next generation. No additional selection or
recombination phase is performed. So the diversity is maintained and the best
solution is never lost unless even better solutions are created. However, each family

competes within themselves.

3.1.3.4.(2).i. Injection

“Injection” strategy is based on injection of the randomly created individuas
to the population for maintaining the population diversity. The injection is used for
certain number of generations. But the new individual can overlap the current one so
an appropriate sorting strategy should be used together (Sultan et. a., 2006).

3.1.3.4.(2).j. Removal of Genotypeor Fitness Duplicate

Another way to prevent population diversity is using a “restrictive method”
which does not alow to genotype duplicates within the population. The population
diversity is maintained by preventing identical copies from entering within the
population. In addition, another restriction mechanism called fitness duplicate can be
used as genotype duplicate to avoid from multiple individuas with the same fitness
(Friedrich et. d., 2009).

17
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3.1.4. GA Standard Test Functions

To invedtigate the performance of the ADM, ten real valued, well known
benchmark test functions were employed (Tang et. a., 2009). These globa
optimization test problems consis of different levels of complexity and
multimodality including unimodal and multimodal functions. The corresponding test
function and its features are listed in Table 3.1.

Table 3.1. Test functions with their features

Function | Definition Multimodal Separable
f1 Rosenbrock no no
f2 Rastrigin yes yes
f3 Schwefel yes yes
fa Ackley yes no
fs Langerman yes no
fe Fifth function of De Jong yes no
f7 Drop wave yes no
fs Shekel yes no
fo Griewangk yes no
f10 Deceptive yes no

The separability is closely related to the concept of interrelation among the
variables of the function. In the GA, the interrdation measures how much the
contribution of a gene to the fitness of the individual depends on the values of other
genes. The non-separable functions are more difficult to optimize as the accurate
search direction. On the other hand, separable functions can be optimized for each
variable one by one.

A function is called multimoda if it has two or more local optima. The
problem is even more difficult if the function is also multimodal. In order to come
close to the global optimum, the search process must be able to avoid the regions

around local minima. The most complex situation appears when the local optima are
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randomly digtributed in the search space. All the test functions except Rosenbrock’s

function are multimodal.

In the following section, the detailed view of each test function is given. The
section isdivided into sub sections that include a plot of each function in the range of

the problem space.

Furthermore optimum point(s) is/are also pointed out. It should be mentioned
here that the range of functions are not always the ones defined in the literature. They

have been changed to make the functions more challenging.

3.1.4.1. Detailed View to the Test Functions

3.1.4.1.(1). F1: Rosenbrock’svalley
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Test area is usually restricted to -2.048< x;<2.048, i = 1....,, n. Its global

minimum equal f(x) = 0 isobtainable at (x*) = (1, 1).
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3.14.1.(2). F2: Rastrigin

Y

dibiln

fo =10n + Y™, [x? — 10cos(2mx;)]
Test area is usualy restricted to -5.12< x;< 5.12, i = 1..., n. Its globd
minimum equal f(x) = 0 is obtainable for (x*) = (0, 0).

3.1.4.1.(3). F3: Schwefel
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fz = Zisal—xisin(y |x)]
Test area is usualy restricted to -500< x ;< 500, i = 1,.., n. Its global
minimum equal f(x) = -418.9829n is obtainable for (x*) = (420.9687, 420.9687).
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3.1.4.1.(4). F4: Ackley

fa = —a xexp <—b * /%Z’f xf) —exp (% ) cos(cxi)) +a +exp(l)

Test area is usually restricted to -32.768< x ;< 32.768, i = 1,..., n. Its globa
minimum equal f(x) = 0 is obtainable for (x*) = (0, 0).

3.1.4.1.(5). Fs: Langerman

fs = 2Xic exp[—% L1 (x; — ay)?] cos[m X7, (x; — a;)?]
Where m=5, &=[3,5,2,1,7], b=[5,2,1,4,9], c=[1,2,5,2,3]. Test area is usualy
restricted to 0< x ;< 10, i = 1,.., n. Its globa minimum equal f(x) = -4.15 is

obtainable for (x*) = (2.8, 1.6).
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3.1.4.1.(6). Fe: Fifth Function of De Jong

fe ={0.002 + 2?51[1' + (x1 - a1j)6 + (x2 - az;’)6]_1}_1

_ (-32-16 0 16 32 -32..0 16 32
Where (aij) = (—32 —32-32-32-32-16... 32 32 32

Test areaisredricted to -40< x ;< 40, i = 1....n. Its global minimum equal f(x)
= 0.998 is obtainable for (x*) = (-32, 32).

3.1.4.1.(7). Fz: Drop Wave

1+cos(12 /x%+x§>

%(xf +x2)+2

fr= -

Test area is restricted to -5.12< x ;< 5.12, i = 1,..., n. Its global minimum
equal f(x) = -1 isobtainable for (x*) = (0,0).
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3.1.4.1.(8). Fg: Shekel
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Where (aii) — \-32-32-32-32-32-16.. 32 32 32

Test areais usualy restricted to -10< x ;< 30, i = 1,..., n. Its global minimum
equal f(x) = -3.43 is obtainable for (x*) = (O, 0).

3.1.4.1.(9). Fo: Griewangk
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Test area is usualy restricted to -600< x ;< 600, i = 1,.., n. Its globa
minimum equal f(x) = 0 is obtainable for (x*) = (0,0).
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3.1.4.1.(10). F10: Deceptive

x 4

—a—i'l'g if —0< x; < —q
5x
— = if ;< x; <

— a;

9:0x) =4 5(x — a;) ] 1+ 4q;

Tq-1 r Hesris—g
x—1 4 1+ 4q;

kl—ai g ! 5 _xlS:L

Test areais usualy restricted to 0< x ;<1, i = 1,..., nwhere a; = 0.3, a,= 0.7
and p = 25. Its global minimum equal f(x) = O is obtainable for (x*) =

(0.44,0.76).
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3.2. Method

3.2.1. Fitness Based Sdection Mechanism

Fitness Based Selection aims to identify better individuals of the population
that might be suitable for recombination. In SGA, selection is carried out in
compliance with a fitness value. Fitness function is used to assign a selection
probability to each individual. Tournament, Ranking and Roulette Wheel are the
most common selection methods employed in many GA applications.

3.2.1.1. Roulette Wheel Selection Mechanism

The simplest selection scheme is Roulette-Wheel Selection Mechanism
(RWSM). Each individual gets a selection probability proportiond to its fitness
value. RWSM emphasizes the better individuals in the population. This mechanism
Speeds up convergence to better solutions. On the other hand, this could cause loss
of genetic diversity and may lead getting stuck on local optima.

3.2.1.2. Rank Based Sdlection Mechanism

In Rank-Based Selection Mechanism (RBSM), an individua’s rank score
(instead of the fitness value) is used to calculate selection probability. Firstly,
individuals are arranged according to their fitness values. Then, a selection
probability is assigned to each individual proportional to its rank in the population.
This mechanism relatively protects the population diversity when compared to
RWSM.

3.2.1.3. Tour nament Selection M echanism

In Tournament Selection Mechanism (TSM), a number of individuals, that is

called tournament size, are chosen randomly from the population and the one which
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has the highest fitness value is selected as one of the parents. The tournament size

can vary from two to up any reasonable number.

3.2.1.4. Which Selection Mechanism?

Based on the selection schemes mentioned above, several researchers have
attempted to derive good techniques to build better selection schemes for solving
constrained problems. Jadaan et a. compared the results of GA between RWSM and
RBSM using severa optimization functions and reported that rank-based selection
outperformed roulette based in number of generations to find the optimum solution
(Jadaan et. al., 2005). The study demonstrated that RBSM is faster and more robust
in the direction of the optimum solutions than fitness proportional RWSM.

Furthermore, Zhong et al. compared TSM with RWSM at seven genera test
functions and concluded tournament selection dtrategy is more efficient in
converging to optimum solution than that of RWSM (Zhong et. al., 2005).

However, Julstrom analyzed the computing time efficiency of two types of
rank-based selection probabilities; linear ranking and exponential ranking
probabilities and compared them with TSM (Julstrom, 1999). The study revealed that
TSM should be preferred to RBSM, because repeated tournament selection is a lot
faster than sorting the whole population to assign rank-based probabilities.

The fitness value of an individual does not entirely depend on the basic
fitness value that is how good a solution is, in the proposed selection mechanisms.
This might sound a little bit confusing. When one talks about the fitness value of an
individual in SGA, it means how good the solution for the problem is. The
individuals that have better basic fithess values have more probability for
reproducing. However, if we are talking about Assortitative-Dissortitative Mating,
one hasto have some other qualities besides having better basic fitness value in order
to be advantageous for reproducing. This can be easily observed in human
population. If the basic goal is to survive and pass one€'s own DNAs to next
generations, one should select a mate that is strong and healthy. However, human

society demands more than that. The quadlities like beauty, wedlth, reputation,
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religion, race, etc., have importance while selecting a mate. When we talk about
basic fitness value, we talk about satisfying the basc goa, heath and survival,
respectively. However, if we talk about a proper mate for an individual, the fitness
value of a candidate partner should be weighted sum of higher health, wealth,
beauty, reputation, religion, etc.

Evaluation of the qualities mentioned above is critical. They can be evaluated
either locally or globally. If we are talking about SGA, then we should satisfy the
whole population’s needs, globa needs, in this case. However calculation of such
extra information, similarity/dissimilarity for example, requires extra work and
computational time. ldentification process of each individua’s similarity and
dissimilarity to every other individua in a population has O(N? complexity.
However, if we use TSM, as Julstrom suggested (Julstrom, 1999), for selecting a
partner for an individual, computation time will be substantially reduced. All those
measurements have to be carried out with O(N) complexity.

As a conclusion, to show the advantages and disadvantages of ADM against
pure fitness based selection mechanisms, TSM will be preferred as default selection
mechanism. While time complexity of RWSM and RBSM is O(N?), TSM outstands
with O(N) complexity.

3.2.2. TheProposed ADM

3.2.2.1. Background

The objective of the present study is to introduce a new selection
methodology for (RC)-SGA, namely ADM and to evaluate its performance. Despite
of the discussions in the preceding section, ADM is also applicable to RWSM and
RBSM aswell asTSM.

The fundamental motivation that led us to investigate ADM is that do the
common phrase “ opposites attract each other” and the adage “Birds of afeather flock
together” really hold in the sense of genetic algorithms? There are numerous reported

studies in relationship research area that supports the principle “similar attract” since
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1961 (Newcomb 1961; Byrne 1971). Byrne, for example, reported strong linear
relationship between degree of similarity and liking. Tests of the idea that “ opposites
attract” have been reported unsuccessful in general, despite similarity-attraction
effect is now well established (Berscheid and Reis, 1998; Byrne, 1997) and widely
accepted. It hasto be reminded that al these efforts are made in relationship research
field. Are there such relationships in genotypic characteristics?

Hardy and Weinberg Principle states that the gene pool of a population, that
is mating randomly and is not subject to any other evolutionary process, will remain
in equilibrium. However, in evolutionary agorithms, it is strongly desired to evolve
from a randomly generated gene pool to the best possible gene that is optimum
solution for the problem at hand. SGA does not contradict with Hardy and Weinberg
Principle, because it incorporates other evolutionary processes such as, mutation,
selection (favouring one to another through phenotypic traits).

On the other hand, in all human populations, people usualy select mates non-
randomly. Assortative Mating is a non-random mating pattern in which individuals
with similar genotypic and/or phenotypic traits mate with each other more frequently
than in random mating pattern. The term "assortative" designates classifying and
selecting characteristics. For example, it is common for individuas of similar body
Size to mate with one another. Less commonly, in disassortative mating, also
referred as negative assortative mating, individuals with dissimilar qualities mate
more frequently than what would be expected in random mating. Both mating
strategies cause the frequency of certain genotypes to differ from the frequencies
anticipated by the Hardy-Weinberg Principle. Plant and animal breeders usualy
employ controlled positive assortative mating to increase the frequency of certain
characteristics of the species and to reduce genetic variation in a population. By
contrast, disassortative mating results in a greater number of heterozygote that is an
organism possessing two dissimilar forms of a gene for a heritable characteristic,
which may therefore produce offspring differing from the parents and each other in
that characteristic.

Assortative and Dissortative mating strategies may enhance the exploitation

and exploration abilities of SGA, respectively. Assortative mating promotes
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reproduction among similar alleles resulting with increased numbers of offspring that
strongly resembles to their parents. This process is analogous to exploitation
characteristic of a good search algorithm. Plant and animal breeders usualy employ
controlled assortative mating to increase the prevalence of certain traits and to reduce
genetic variation in a population. This, however, suggest that if assortative mating is
not supervised carefully, it may result with loss of genetic diversity that is the main
reason for premature convergence. Dennis O'Neil
(http://anthro.palomar.edu/synthetic/Default.htm, 2013) states that “If brothers and

sisters are mated together every generation, it will only take 20 generations for all
individuals in a family line to share 98+% of the same alleles—they essentially will
be clones, and breeding results will be close to those resulting from self-
fertilization.” This exemplifies how catastrophic the results of assortative mating can
be.

Dissortative mating, on the other hand, is analogous to exploration
characteristic of a search agorithm. The offspring will be diverging from their
parents and allowing exploration for SGA. If carefully devised Assortative and
Dissortative Mating Strategy (ADMS) may enhance the search capabilities of
Evolutionary Algorithms.

ADMS is devised to be based on smilarity/dissimilarity of
Phenotypic/Genotypic traits between individual-individual/individua-population. An
individual that is selected somehow for reproduction seeks a mating partner through
TSM. A number of candidates that is equal to tournament size are evaluated
according to their Attraction Scores. Attraction Score of a candidate is calculated

from mixture of the following:

Similarity and/or Dissmilarity
Based on Phenotypic and/or Genotypic traits.
Targeted to Population and/or Individual

Genotypic similarity/dissimilarity is a measure derived from structure of genes.

In section 3.1.3.4.1, it has been indicated that the measure of similarity and
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dissimilarity for binary chromosomes are calculated from Hamming Distance
(Banzhaf et. a., 1998; Hamming, 1980). However, quantifying
similarity/dissimilarity measure of rea coded genes is harder than binary
counterparts. Details of calculations can be found in section 3.1.3.4.1.2. While
selecting a suitable mate, two different strategies can be chosen; similar/dissimilar
individuals to sef or similar/dissimilar individuals to the population. Both strategies
promise to reproduce offspring that differ from their parents and the normal of the
population.

The above discussion is valid for phenotypic characteristics as well. Therefore
eight different ADM drategy can be constructed from three main features;
similarity/dissimilarity, phenotype/genotype and population/individual. Figure 3.2
displays tree structure of these characteristics. Eight ADM strategies for selection
can be listed as;

Genotypic, Population based Similarity (GPS)
Genotypic, Population based Dissimilarity (GPD)
Genotypic, Individual based Similarity (GIS)
Genotypic, Individual based Dissmilarity (GID)
Phenotypic, Population based Similarity (PPS)
Phenotypic, Population based Dissimilarity (PPD)
Phenotypic, Individual based Similarity (PIS)
Phenotypic, Individual based Dissmilarity (PID)

While genotypic measurement can be done in one method, phenotypic
measurements can be varied by future researchers. For example; sexuality, kinship,
neighbourhood, lifetime etc., can be considered as phenotypic traits of an individual.
In this thesis, the strategies are limited only to eight. However, by combining one or
more of these strategies, we can expand the possbilities to 256 different ADM
strategies. By switching on and off each strategy, 2°=256 different strategies can be
obtained. It may be a good idea to consider an individual’s, similarity to one’s self

and dissimilarity to the population, while selecting a mate. On the other hand, it may
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be just waste of time to employ all of them together for mate selection. For the sake
of completeness, all the combinations will be experimented and discussed in this
study.

Similarity
Population
Dissimilarity GPD
Genotypic
Similarity GIS
Individual
Dissimilarity GID
ADM
Selection
Strategy
Similarity PPS
Population
Dissimilarity PPD
Phenotypic
Similarity PIS
Individual
Dissimilarity PID
S L8 b .

Figure 3.2 ADM selection strategy tree
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3.2.2.2. Diversity Calculation

Diversity of two binary chromosomes can be calculated as the average
dispersion of genes. It can be easly calculated from Hamming distance that is the
sum of absolute difference of corresponding binary genes. However, for real coded
genes, Hamming Distance is not applicable. In such cases Euclidian Distance, the
most commonly used distance metric in the literature, can be used to measure the
distance between two solutions points (chromosomes) in the search space. However,
real coded genes may vary in extremely different ranges. While some of the genes
may have values spanning in a narrow range with extremely small magnitudes, some
others may have extremely large values with large dispersion. In such cases, the
sum/average of Euclidian distances between corresponding genes may not reflect
true diversity of chromosomes. Solution to this problem is the normalization of data
prior to its usage.

In order to adjust values measured on different scales to a notionally common
scale, often prior to averaging, is called normaization. Min-Max normalization, for
example, is the process of taking data measured in its units and transforming it to a
new value between 0.0 and 1.0. The lowest value in the data set is set to 0.0 and the
highest value is set to 1.0. By this way, the values that are measured using different
scales (for example degrees Celsius and degrees Fahrenheit) or different units of
measure (speed and distance) can be comparable.

However, if there is a small number of data that substantially differ from the
rest, normalization range [0-1] would not be used efficiently. For example, if the data
set A={1,1000,1001,1002,1000,2000,90000} is Min-Max normalized, apart from
minimum and maximum values, the remaining data will have new values in the
range of (0.01-0.02). This displays that the full range would not be used.
Considering GA problem, there is a strong possibility that some of the offspring or
mutated individuals will be extremely differing from the population, especially after
few generations. Existence of such extreme values in a data set makes the Min-Max

minimization unsuitable for the purpose.
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Standard score that measures the sigma distance of actua data from the
average can be used instead of Min-Max normalization. It is, as desired, a
dimensionless quantity derived by subtracting the population mean from an
individual data and then dividing the difference by the population standard deviation.
Itisgivenas

_d—u
N o

V4

where; disadata, p isthe mean of the population, ¢ isthe standard deviation of the
population and z is the standard score that can have negative and positive value.

Figure 3.3 illustrates the normal distribution of the population around the mean value

and z scores.
68, 26%
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Figure 3.3. Plot of normal distribution

As it can be seen from the Fig. 3.3, one standard deviation around the mean
covers 68.26% of whole population. Two and three standard deviations around the
mean include 95.44% and 99.74% of the population, respectively.

Representing real valued genes with z scores allow us to use dimensionless
values proportional to dispersion of population. Furthermore, regardless of how
diverse are the range of the genes, we can confidently use arithmetical operations on
the z scores. In the meantime, we desire to calculate a diversity score that is limited
in the range of [0-1]. Depending on the value of agene it may have such z scores that

as big as tens, hundreds, thousands, even in extreme cases billions. This may sound
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preposterous but that is possible if do not prevent such cases. Clipping-off the genes
after a certain z score can guarantee not to face such cases. Then, a threshold z value
(zt) should be determined.

Since 99.74% of the population lay within z=+3, it may be plausible to set
maximum and minimum values of a gene to +3 and -3 respectively. On the other
hand, selecting zn=+2 will still cover most of the population (as much as 95.44%). In
case of z»==3 one third of whole z score range will be reserved for only 4.3% of the
population. That means the whole range will not be used effectively. Selecting
zn=+1.65, however, covers 90% of the population and upper and lower halves of the
whole range covers 31% and 59% of the population. The remaining 10% is rounded

to the upper boundary as the extreme values.

3.2.2.3. Foundation of Diversity Measures:

Genotypic or phenotypic diversity of a chromosome can be calculated as the
sum of the distances between the genes of an individual and some reference points. If
the desired diversity measure is individual based then calculations are carried out
between two individuals. In this case the reference point, pointed out previously, is
another chromosome. However if we want to measure an individua’s diversity from
the whole population, then the reference point is the mean traits of whole population.

Regardless of whether diversity measure is population or individual based,
the basic statistical properties of the population have to be calculated. Mean and
standard deviation of a certain gene can be calculated from Equation 3.1 and 3.2,

respectively.

1) = %Z kG (31)
a(yy) = %Z(”Ci — ()’ (32)

=0
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where: u(y,) and a(y,)is population mean and standard deviation of gene yy,
respectively. The letter y is used for symbolizing gene and the letter k is used to
indicate the index of a particular gene in achromosome C. N is the population size.

In order to diminate the chromosomes range effect, discussed earlier, z
scores should be used for calculations. Throughout the calculations we need to use
absolute z scores that is given in Equation 3.3:

#(Q,R,0) = @ (33)

where; R is areference point (usually mean), ¢ isthe standard deviation and Q is the
data to be evaluated for diversity. As it can be expected, absolute z score (z) may
have values in unlimited ranges. Since we are dealing with diversity, any z value that
is larger than a threshold value (zn) can be confidently clipped off to an upper
boundary. Any absolute z score(z) larger than this threshold z score will be
evaluated highly differing from reference point. Normalized Absolute z Score (%)

will limit the scores to bein the range of 0 and 1, and given as

z2(Q,R,0)

th

#(Q,R,0) = (3.4)

3.2.2.4. Genotypic Diversity

Genotypic diversity can be measured in two ways, between two
chromosomes or between chromosome and population mean. In either case,
Normalized Absolute z Score (Z) (Equation 3.4) provides us the power of
dimensionless and normalized difference measuring capability. Genotypic diversity

between two chromosomes (i"ZS) can be calculated from Equation 3.5.
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Yc
. 1
nd§(Cy, Cp) = 2 Z #(7*Cq, T Cy, 0% (35)
k=1

where, i";}S (C,,Cp) isgenetic individual diversity (""26) between two chromosomes
C, ad Cy , ¥, is the number of genes in a chromosome and Z("*C,, "*C,, 0;.) is

Normalized Absolute z Score for k™ gene of chromosomes C, and Cy. gy is the

population standard deviation of kK™ gene.

Yc

P28 (Carnri)) = iz #("*Cq u(yi). o1) (36.)

Yoo

Genotypic diversity between a chromosome and the population mean (7} 5)
can be calculated using Equation 3.6. It is measured in a similar fashion with
Equation 3.5. The first difference is in the reference point for caculation of
normalized absolute z score. It is, naturally, the population mean (u(y;)) rather than
being another chromosome. Secondly, the absence of coefficient 2 a the
denominator. The distance between two chromosomes that are located at the lower
and upper ends of the range is double of the distance between a chromosome located
at the lower or upper end of the range and the mean of the population. Therefore,

while calculating individual diversity the range should be divided by two.

3.2.2.5. Phenotypic Diversity

Phenotypic diversity calculations, as in genotypic diversity calculations, are
made between two chromosomes or chromosome and population mean. Phenotypic
measure of a chromosome has been chosen as its fitness value. Even though, fitness
of a chromosome is related to its genes, same fitness values can be obtained from
different chromosome structures. Fitness of a chromosome can be thought as a

measure of how wealthy, healthy, or handsome, isthe individual.
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Phenotypic diversity between a chromosome and the population mean (*,76)

is equal to normalized absolute z score (Z'(fca, Ug, af)) and given in Equation 3.7 as;

Pon8 (feur ttr) = 2(fey 1y 07) (3.7)

where, fc., wuy and oy are fitness of chromosome ‘a, mean fitness of whole
population and standard deviation of population fitness, respectively.

Phenotypic diversity between two chromosomes (“;ﬁS) is equal to half of

normalized absolute z score (£(f, . fc,. o7 )) and given in Equation 3.8. as;

a8(fep fe,) = %z(fca, fe, 07) (38)

where, fc . fc,, and oy arefitness of chromosomes‘a, ‘b’ and standard deviation

of population fitness, respectively.
3.2.2.6. Selection Score Calculation

Traditional selection mechanisms are built on the principle of “survival of
the fittest” to converge to optimum solution. Like the most of GAs, proposed
selection mechanisms also, employ fitness value in conjunction with the ADM
strategies for selection procedure. Each mechanism (Fitness + ADM) affects the
mate selection strategy relatively through their selection scores; Fitness Score (FS)
and ADM score.

3.2.2.6.(1). Fitness Score ()

Each individud’s Fitness Score (S) is directly linked to normalized absolute z
score (Z'(fca,uf, af)) of itsfitness. If the objective is minimization, in order to assign

greater probabilities to individuals having smaller fitness values, fitness scores are
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assigned in inverse proportion to the original fitness. In order to assign greater
probabilities to individuals with less fitness values, the fitness values are reversed as
in Equation 3.9.:

Sf(Ca) =1- Sf(Ca) (39)

3.2.2.6.(2). ADM Scores

The ADM based mechanisms define a selection score of individuas
depending on some measure of distance of the candidate solutions which are based
on three subjects: similarity/dissimilarity,  individua/population  and
phenotypic/genotypic. Depending on a selected strategy, it may favour the
production of additional diversity (Dissortative Mating) or the refinement of the
solutions (convergence, Assortative Mating). These strategies are: PPS, PPD, PIS,
PID, GPS, GPD, GIS and GID. Thefirst letters of each strategy indicates whether the
strategy is based on (P)henotypic or (G)enotypic traits. The second letters indicate
whether the reference point for the measurements is (P)opulation mean or another

(Dndividual. The third letter indicates the measurement type (S)imilarity or

(D)issimilarity.
PPS(Ca,R) =1—"206(fc, fr) (3.10.)
PPD(Ca,R) = P006(feo fr) (3.11)
PIS(C,, R) =1 —"5(fc,. fr) (3.12)
PID(C4,R) = 328 (fe, fr) (313)
GPS(Cq,R) =1—"76(C,, R) (3.14))
GPD(Cq,R) =""06(Ca R) (3.15))
GIS(C4 R) =1—45(C,,R) (3.16.)
GID(C, R) = !48(C,,R) (3.17.)
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The ADM scores of a chromosome (C,) are calculated from Equations 3.10.-
3.17. However, a careful eye will easily spot that if any strategy pair that share same
letters for the first two letters always result with a sub tota score of 1 (the other
terms will cancel out each other). In order to prevent this, only one score is
calculated for the strategies that are complementary of each other (PPS-PPD for
example). The joint strategies ADM score can be calculated from Equation 3.18.

KLM(C,,R) = |1 —2x 15(C,, R)| (3.18.)

where K, L and M are substitutes of the first, second and third letters of the ADM
strategies, respectively. Figure 3.4 illustrates the Equation 3.18 in graphical terms. It
has to stress out that only one joint score will be calculated rather than two separate
scores. As it can be observed from the Figure 3.4, if diversity score of strategy
KL(D) is £6(C,,R) =0.1, it means chromosome C, closely resembles to the
reference point. In this case if KL(S) is aso to be calculated then modified joint
ADM score will be 0.8. For an individual that has £5(C,, R) = 0.5, that is neither so

diverse, nor so similar, joint ADM score will be O, as expected.

1
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Figure 3.4. Joint ADM score.

One more point that has to be mentioned is, if the selection strategy is based
on population, then both of the individuals are selected by the help of diversity
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measurement. However if the selection strategy is based on individuals, then only
selection of second person employs diversity measurement, since the reference point
isthefirst individual. Finally total ADM score of an individua for selection is
calculated from Equation 3.19;

ADMS(C,,R)=
B[ PPS(C,,R)+PPD(C,,R)+PIS(C,,R)+PID(C,,R)]+ (3.19.)
A [GPS(C,,R)+GPD(C,,R)+GIS(C,,R)+GID(C4,R)]

where, coefficients, 3 and A, are used as scaling factor to adjust the effects of
phenotypic and genotypic features and ADMS(C,, R) is the Assortative/Dissortative

Mating selection score of a chromosome C,.

3.2.2.6.(3). Final Selection Score

In this thesis, two scoring mechanisms; Fitness Score (Equation 3.9) and
ADM Score (Equation 3.19) have been discussed for mate selection. Equation 3.20
fuses these two scoring mechanisms together to obtain a total selection score of a

candidate mate;

SS(Cq, R) =0S;(Cq, R) + ADMS(C,, R) (3.20.)

As shown in Figure 3.2, the mating scheme is divided into eight operation
modes depending on the drategies to choose Parent A and Parent B. Then this
operation mode is combined with traditional fitness based method. In addition to this
combination, the scaling factors o, p and A are added to equation to adjust the
influence of each mechanism. The operation modes with a =1, =0 and A=0 is the
same as the standard fitness-based tournament selection. Also the case o =0, =1,
A=1 is aso actually the opposite of the case of as o =1, f=0 and A=0 is, because two

candidates will be evaluated with only their similarity or dissimilarity. In those
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studies, the values of «, B and A were fixed throughout the 1. All the strategies are

examined in section “Result and Discussions’ while some of them are recommended.

41



3. MATERIALS AND METHOD Serkan KARTAL

42



4. RESULTS AND DISCUSSION Serkan KARTAL

4. RESULTS AND DISCUSSIONS

To investigate the performance of ADM strategies ten real valued, well
known benchmark test functions were employed. These global optimization test
problems consist of different levels of complexity and multimodality including
unimodal and multimodal functions. Several quantities are used to measure and
compare the performances of the suggested strategies. The primary ones are the
average fitness, median fitness and best fitness.

4.1. Experimental Setup

In order to evaluate the performance of a suggested strategy, various
parameters have to be taken into consideration. Population size, maximum number of
generations, mutation and crossing over rates has to be tuned up for best
performances. Idedly all of these parameters should be defined from an experimental
setup that each parameter should gradualy incremented or decremented from a base
line with a predefined step size. For example, changing population size from 10 to
200 with step size 10 will result testing 20 different settings. Without giving too
much detail let’s say we test 10 different values for mutation rate, 50 different values
for crossing over rate. May be, 10 different maximum numbers of generations
settings, 5 different tournament size settings etc. should be tested for each one of 256
ADM drategies. Table 4.1 displays hypothetic setup possibilities for adjustable
parameters,
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Table 4.1. Adjustable parameters and their setting counts

Parameters Count
Number of ADM Strategies 256
Number of test functions 10
Number of Population size settings 20
Number of mutation settings 10
Number of Cross over settings 50
Number of generation settings 10
Number of Tournament size setting 5
Number of Elitism settings 10
Number of child number settings 5

Such hypothetical setup requires 64 trillion combinations. In order to
decrease the effect of randomness on the results (Hamzacebi, 2008), if we repeat the
tests with 15 different random seed values, we will come across with 960 trillion
settings. This value is just for experimental setups. In each experimental setup the
algorithm needs to execute huge numbers of operations. Within the limited time of
this study, it is almost impossible to complete the tests.

Table4.2. Preliminary GA parameters used in determining GA strategies

GA Parameter Preliminary Value
Population Size 30
Tournament Size 3
Maximum Number of Generations 200
Elitism 10(%)

Therefore we need to decide as much parameter as possible with commonly
accepted practices without testing. Commonly it is accepted the population size to be
at least 10 times greater than the variable number (Shopova and Vaklieva-Bancheva,

2006). Since the problem domain is in two dimension 30 will be sufficient enough
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for population size. Similarly, 10% ditism iswidely practiced vaue in the literature.
We can confidently set the maximum number of generations to 200, since
preliminary experiments showed that all the strategies have converged to a certain
solution well before 200 generations. Tournament Size is also can be set to 3, since it
is the most common setting in the literature. All these parameters are listed in Table
4.2.

Having all these, crossover and mutation rates that produce the best
optimization results individually for each test function have been determined by
testing 500 different combinations for each benchmark test function. Deciding the
remaining parameters beforehand, the number of tests required to set the optimum
parameters was reduced to 7500. Table 4.3 lists optimum crossover and mutation

rates for each benchmark functions after tuning up.

Table 4.3. Mutation and crossover parameters for benchmark functions

Function Mutation Rate (%) Crossover Rate (%)
Rosenbrock 0 75
Rastrigin 3 91
Schwefel 9 88
Ackley 8 94
Langerman 0 78
Fifth function of De Jong 4 71
Drop wave 3 93
Shekel 9 71
Griewangk 6 96
Deceptive 9 93

It has to be emphasized that mutation and crossover rates are optimized just
and only for (RC)-SGA. The suggested ADM strategies have been thought as

enhancer(s) of any GA type reported in the literature. So in order to increase
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population diversity and enhance the searching capacity of a genetic algorithm, the
suggested gtrateg(y)ies can be easily add on into the any existing algorithm.

Test results that include minimum, maximum, average, best and worst fitness
values that are obtained from fifteen independent run for Rosenbrock function is
given in Appendices. Also, the results for each test function can be found in
http://bmb.cu.edu.tr/skartal/thesisy GA_ADM _Selection.html.

4.2. Performance comparisons of ADM-RCGA

In GA literature, the performance of the GA is usually measured on two basic
criterig; reliability and efficiency. Reliability evaluates how much of the search space
is scanned, in other words, it measures level of dispersion. Efficiency, on the other
hand, measures the rate of convergence. In the present study, standard deviation is
employed to compare the reliability of algorithms. It points out the level of scattering
in obtained solutions. Bigger standard deviation denotes more scattered and reliable
solutions. However, smaller standard deviation means lower level dispersion which
can cause to premature convergence. The average fitness of the population is used to

present the efficiency of solutions.

4.3. Comparisonsof ADM Strategies

In this thesis, 255 different ADM strategies examined to observe their effects
on (RC)-SGA. It has been observed that while some of the strategies have positive
effect on the performance of RC-SGA, a large portion of the devised strategies have
negative impact. This may be the result of experimental setup. Because, in this study,
we intended to suggest an enhancer add on to a standard GA. In order to observe the
enhancer’s performance, all the parameters are tuned up for the standard GA. This
has been done just for research purposes. Of course, in practice we should tune up
the whole algorithm (SGA+ADM) to obtain the best performance. It has to be
pointed out that if we had enough time to tune up every strategy for every function
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there may be a chance to improve the results. However as stated earlier on, time
limits of this study prevents us to investigate further more.

Even though 255 ADM strategies are suggested, most of them are in the list
just for the sake of completeness. Some of the ADM components, for example,
promise to provide exploration (GPD, GID, etc.), some others hint to provide
exploitation (GPS, GIS, etc.). Combination of different components will have
varying effects on the algorithm. If there is enough time, one can always test all of
ADM sdtrategies, and identify the best one accordingly. However this may not be
possible in every case. So, we feel obliged to suggest better performing components
for any type of problem.

In order to identify the components that have strong positive or negative
effect on overal performance of SGA, some numerical methods should be employed.
In datistics, factor analysis or principal component analysis are such methods that
can identify the major e ements effecting the problem. However both of the methods
rely on gatistical measures like standard deviation and mean. In our case, however,
an ADM strategy component (PPD, GIS, etc.) is either exist or not exist in a strategy.
Therefore it is in binary form. Mean of any component in 255 strategies is 0.5 and
standard deviation is also equa to 0.5. Therefore factor analysis and principal
component analysi s cannot be used since all the components have the same statistical
measures. We need to devise a method to evaluate each components performance.

Following sections are dedicated to introduce these methods.

4.4. The proposed Component Performance Evaluation M ethod

This section describes a method to identify the common components of ADM
strategies that have strong positive or negétive effect on overall performance of GA.
In order to achieve this, for each benchmark function, average fitness values of 255
ADM strategies and (RC)-SGA are caculated and arranged in descending order from
the best one to the worst. The best performing strategy has the rank score of 256 and
the worst has 1. If a component is frequently exist/non-exist in the good/bad
solutions, it is assumed that this component has positive/negative effect on the
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performance. The simplest way to caculate the observation frequency of a
component among the successful/failed strategies is to caculate its percentage in a
certain portion of sorted list. That portion can be located in either sides of (successful
or failed strategies) sorted list. However, to be more precise, we suggest the use of a
total rank score gathered from the whole strategies for each component.

Total rank score of a component can be minimum =8,256 or maximum

=24,640. According to the distribution of a component’s existence in sorted
list, its rank score will have a value within the range of [8,256-24,640]. If a
component gathers 8,256 tota rank score we can say that this component has 100%
negative effect on the performance. If it scores 24,640 then we can claim that it has
100% positive effect.

UuU2 <
i 0, L y
UUL < —2(100-P) UB2 «}—=2100-B) _
, Successful . . Successful
UB1 < : BU2« e
%P | Failed %P . Failed_
BUL < strategies BB2¢ strategies
P %(100-P) %(100-P) J
BB1 < ’
Figure 4.1. The worst possible Figure 4.2. The best possible
distribution of %P successful distribution of %P failed
component component

We have divided the sorted list in two halves. The strategies located at the
upper half of this list are called successful ADM drategies (Figure 4.1.) and the ones
at the lower half are called failed ADM strategies (Figure 4.2.). Let’'s assume that
component C is observed in P% of the successful ADM strategies. The component C
could be observed in any distribution as long as it satisfies P% of it, is in the upper
half. Since, digtribution can vary, athreshold value for being P% of the observations
in the upper half ( ) hasto be calculated (Equation 4.1). This can be achieved by
considering P% of the observations are located at the bottom of upper half (as
illustrated in Figure 4.1.) and the remaining (100-P)% of the observations are at the
bottom of bottom half.
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UU1x(UU1+1 UB1+x(UB1+1 BU1+x(BU1 +1 BB1+x(BB1+1
SRy, = WLUULHD) | UBLUBLHY) | BUL ) _ BELBBLEY)
2 2 2 2
UuUu2+x(UU2+1 UB2*x(UB2+1 BU2x(BU2 +1 BB2+x(BB2+1
PR, = WUZUUZHY) | UB2UB2+1) | BU2( ) _ BB2BEZEY) o

2 2 2 2

UU1, UB1, BU1, BB1, UU2, UB2, BU2 and, BB2 denote the top and bottom
indexes used in calculation of success and failure limit values. Similarly, a threshold
value for being P% of all observations in the bottom half (ERy) (in failed ADM
strategies) can be calculated from Equation 4.2.

In order to calculate whether component C is P% successful or not, an
iterative process has been applied. P has been changed from 100 to 71 and SRy, and
PRy, are calculated and checked for every component whether their total rank scores
exceeds these threshold values. If a component’s total rank score is higher than 3Ry,
it has been noted that this component has P% success rate (Ps=P and P==0) and it has
P% positive effect on overall performance. If acomponent’stotal rank scoreis lower
than R, it has been noted that this component has P% failure (P<=0 and P-=P) and
it has P% negative effect on overall performance. If neither of the cases are satisfied
then P is reduced and the test is repeated with the new P value. Ps or Pr are nothing
different than P value but has sub-indices stating whether this P value for (S)uccess
or (Failure.

Once a component’s effect is identified, it is excluded from the remaining
tests. For example, let's assume that we identified component GPD has positive
effect with P% success. All the strategies that do not include component GPD are
removed from the sorted list and al the calculations for the remaining components
restarted with the reduced list. Since the remaining components could not achieve
more success than GPD, success rate P will not be reset. The remaining calculations
are carried out with the reduced list, since the component’s effect is known. If a
component is identified as having negative effect on performance, removing any
ADM strategy containing this component from the list will prevent its interference to

the remaining components.

* SRy, and ER,,, overlapwhen P value reaches 71.
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Table 4.4 shows the corresponding Success (Ps) or Failure (Pg) values,

achieved by 8 diffeeent ADM methods for

benchmark

Recommendation confidence labels are arranged asin Table 4.5.

Table 4.5. Recommendation confidence labels.

Labd Lower Boundary P% | Upper Boundary P%
Very Strong 90 100
Strong 80 89.99
Mild 75 79.99
Weak 71.99 74.99
- 71 71

test functions.

It shown in Table 4.4 that the GPD exhibits very strong relationship with
average 90.30% and median 89.5% Ps value. We can confidently suggest that the
ADM strategy you select for your problem should include GPD component. On the
other hand, GPS and GIS have strong negative effect on the performance with
average 87.50% - 80.40% and median 88% - 81% Pr values, respectively. Therefore
it is strongly not recommended to use GPS and GIS components in any ADM
strategy. Deciding on three components with high confidence, the number of
appropriate ADM strategies for a problem decreases to 32. Furthermore, with milder
confidence level, we can recommend to include PPD component and not to include
PPS component inan ADM strategy.

If “Status’ row of Table 4.4 is closely inspected, we can clearly observe that
any component that has similarity measure embodied into, has negative effect on the
overall performance. Similarly, it can be seen that dissimilarity has the opposte
effect. GID component, however, has weak positive effect among the dissimilarity
based components. Since the bottom level for success rate Ps is 73.8%, 73.5% is

dlightly over the critical value.
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As aresult, we can conclude the ADM strategies that work on the concept of
diversity, especially genetic-based approaches, provide higher efficiency when added
on to SGA. The similarity based components cause SGA to demonstrate poor-
performance. Also, the population based approaches provide higher efficiency than
individual based methods.

4.5. Detailed Evaluation of Rosenbrock Valley (F;)

Previous section was dedicated to identify performance effect of ADM
strategy components. Can we rely on the proposed performance evaluation method?
In this section we intend to evaluate the performance test results in another way.
Figure 4.3 is arranged to display the relationship between the components and their
performance visually. Each ADM grategy corresponds a column in the image. If a
component is active (ON) in a strategy it is painted with a color rather than white.
Because white means the component is not used (OFF) within the strategy. ADM
strategies are sorted from the best (Left hand side) to the worst (Right hand side)

performance.

GPS I
eo [ 11 .
o5 1iml | | HINN
GID
es ||| L WLRN L
PPD
PIS
P |00 0 AV OV RO A R B
| | | L,
25|6(Be5t) 1SSESGA) 12|8 6|4 o

Figure 4.3. Existence of ADM components in strategies.
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Visual inspection of Figure 4.3 strongly agrees with the findings of proposed
performance evaluation method. Left hand side of GPD row is heavily painted with
green, because the most successful strategies are those consist of GPD. Furthermore,
we can easily observe that failed ADM strategies (located at right hand side) rarely
employ GPD component.

The same discussion can be made for GPS, but in opposite way. GPS is
heavily distributed in failed ADM strategies. It can be occasionally observed in
successful ADM strategies too (at least more often than what GPD does in failed
ADM dtrategies). This is also in agreement with the recommendation confidence
levelsfor GPD (Very Strong) and GPS (Strong).

GIS component is also quite distinguishable, mostly distributed in failed
ADM strategies region but it can be observed throughout the scale. If we recall its
average 80.40% and median 81% P values, we should set a recommendation
confidence level of * Strong'.

It is quite obvious from the visual inspection of Figure 4.3, the status of three
components GPS, GPD, GIS should be set as OFF, ON and OFF, respectively. This
isintotal agreement with the findings of Table 4.4.

Additional to above discussion, the components GID and PIS displays a
behavior that evenly distributed throughout the scale. This can be interpreted as the
components may have no direct effect on the performance. That is in agreement with
Table 4.4 where they are labelled as ‘Weak'. We should also consider the effect of
components on each other. Rankings are made in the existence of all ADM strategies
which most of them are there just for the sake of completeness of experiments. As
soon as a component’ s effect on the performance is identified, it should be excluded
from the following discussons, since it may affect the performance of the other

components.
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o JLEEAA TSRO 1 T A

\4

1
Figure 4.4. Existence of PID component in the ADM strategies which are located

underneath the window.

In order to quantify the visual data presented in Figure 4.3, the following
operations have been gpplied to each component. A sliding window with the size of
16 has been used to find the number of existence of a component in the ADM
strategies which are located underneath the window (Figure 4.4.). The graphs that
are obtained from diding windows for each component are given in Figure 4.5. The
effects of GPS and GPD components are clearly displayed. The slope of regression
line fitted for the GPS count is 0.059 and positive. That means it has negative effect
on the performance of ADM strategies. If we rescale GPS count axis to 256 rather
than 16, the slope will be 16*0.059=0.94 which is amost 1. That shows strong
negative correlation. If we look at the graph that is drawn for GPD component, the
slope is 0.075 and negative (0.075*16=1.2). In this case we can say that GPD has
very strong positive effect on the performance.  We can conclude on GIS as it has
milder negative effect than GPS and it should not be used on ADM strategies.

Remaining five components, on the other hand, have slopes that almost flat.
This can be resulted from the oppressing effect of dominant component GPS and GIS
that are already decided having strong negative effect on the performance. Keeping
component GPD ‘ON’ and omitting the components GPS and GIS, we will have 32
different ADM dtrategies. In all of the remaining strategies, there will be GPD
component but no GPS and GIS components. Table 4.6 documents the new ranks
and old ranks of each ADM strategy. (Note that ‘1" means that component exists in
the ADM strategy.)

SGA is located at the bottom third row in Table 4.6. The remaining ADM
strategies are the ones with ranks 256 through 229 and 198,199,186,187. Average
old rank scores is calculated as 236. That means discarding GIS and GPS
components from the ADM strategies resulted with higher performing strategies.
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Figure 4.5. Sliding window figuresfor ADMS components.
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Table 4.6. New and old ranks of remaining 32 strategies and SGA.

GPS | GPD | GIS | GID | PPS | PPD | PIS | PID | Avg. Fitness | Rank | General
Score | Rank
Score

0,000222349 | 33 256

0,000222349 | 32 255

0,000256406 | 31 254

0,00032208 30 253

0,000360695 | 29 252

0,000360695 | 28 251

0,000399104 | 27 250

0,00042613 26 249

0,00042613 25 248

0,000457137 | 24 247

0,000457137 | 23 246

0,000556395 | 22 245

0,000732431| 21 244

0,000755561 | 20 243

0,000793567 | 19 242

0,000908037 | 18 241

0,001009142 | 17 240

0,001069168 | 16 239

0,001072654 | 15 238

0,0011572 14 237

0,001918676 | 13 236

0,001918676 | 12 235

0,002889884 | 11 234

o|lo|o|lo|o|lo|lo|o|lo|lo|o|o|o|lo|o|o|lo|o|o|lo|o|lo|o|o|o|o|o|ojo|lo|o|o|o
RPlrRrlolrkrlkrRr R RRRRRRPRRRPRRRER R R R R RRPR R R R PR R -
o|lo|o|lo|o|lo|lo|o|lo|lo|o|o|o|lo|o|o|lo|o|o|lo|o|lo|o|o|o|o|o|ojo|lo|o|o|o
o|lo|o|lo|o|lo|lo|o|o|r | r|lr rlo|lrlolkrrolooolkrkrkrkrkRrlookrkrkek
Rl RloloolrkrkrkrRrRRROIR OO R oOlOR R R R oo oo o olo oo
Rl ROk rloolooor ooolkroookr krkrerkrkroooloorkrkrek
Pl Rlolkrkrloolkrkroolrkrrlolooooooookr krkrkrolkr kR olokrlek
Rlololrlolor rlolor rolookrlkrkrolkrorkrolrloolroolkrkrlo

0,003093539 | 10 233
0,003378354 | 9 232
0,003378354 | 8 231
0,004089242 7 230
0,005081286 6 229
0,032119402 5 199
0,032119402 | 4 198
0,042001999 3 188
0,048009078 2 187
0,048009078 1 186
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If we cary out diding window process with undecided components, the
graphsin Figure 4.6 will be obtained. However, sliding window size has been chosen
as 8, snce the number of ADM strategies is reduced to 32. The dope of regression
line for PPS is quite steep. PPS can be confidently considered as having negative
effect on performance. Therefore it should not be used as ADM strategy component.
Contrary to PPD, GID has positive effect on performance and a successful ADM
strategy should employ GID and PPD as components.
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The effect of undecided two components; PID, and PIS can be observed from
Table 4.7. The average old rank score is calculated as 254.5. Finally, it is
recommended that an ADM strategy performswell if it contains GPD, GID and PPD
components and does not contain GPS, GIS and PPS components. The common
characteristic of the components that have positive effect on performance is all of
them are based on dissimilarity. Contrary to this, all the components that have
negative effect on performance are based on similarity.

Table4.7. New and old ranks of remaining 4 strategies and SGA.

GPS | GPD |GIS| GID | PPS | PPD | PIS| PID | Avg. Fitness Rank General
Score Rank

Score
0 1 0 1 0 1 1 0 0,000222349 5 256
0 1 0 1 0 1 1 1 0,000222349 4 255
0 1 0 1 0 1 0 1 0,000256406 3 254
0 1 0 1 0 1 0 0 0,00032208 2 253
0 0 0 0 0 0 0 0 0,042001999 1 188

4.6. Suggested ADM Strategy and Its Evaluation

Previous sections are dedicated to identify the effects of ADM strategy
components on performance. The components GPD, GID and PPD are identified as
those causing positive effect, and GPS, GIS and PPS are identified as those causing
negative effect. The effect of components PID and PIS could not be decided. Even
though, one is free to employ any component in hisher ADM strategy, a
generalization has been made and the ADM strategy (RC)-SGA+GPD+GID+PPD
has been suggested in this study.

In this section, the effect of suggested ADM strategy on performance will be
examined for Rosenbrock function. Similar discussion methodology can be extended
to the remaining nine benchmark functions. Figure 4.7ad displays the performance
results of four different optimization attempt with (RC)-SGA. In the first attempt
(A1), (RC)-SGA has been used for optimization. The parameters crossover and
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mutation rate have been set to 0.75 and 0.01, respectively, as suggested in the
literature (Shopova and Vaklieva-Bancheva, 2006). In the second attempt (A2), the
parameters for RC-SGA have been tuned up for the best performance. Crossover rate
is determined as 0.75 and mutation rate is, surprisingly, set to 0. In the third attempt
(A3) the suggested ADM strategy (RC)-SGA+GPD+GID+PPD has been used. The
parameters were exactly the same of A2. As suggested earlier, ADM strategy is an
add-on to SGA. By using the same parameters, it is intended to show direct effect on
the standard algorithm. Fourth, and the last, attempt (A4) has been made to display
full performance of suggested ADM strategy on (RC)-SGA by tuning up the strategy
for best performance. In this case, crossover and mutation rate are set to 0.98 and

0.09, respectively.

: o enereton (RO)-SGAwith  (RC)-SGA with
Gener i GPD, GID and GPD, GID and
800 Gemraﬁllon (RC)-SGA (1/75)  (RC)-SGA (0/75) PPD (0/75) PPD (9/98)

. NN B
001 0078 00780 042001999  0,0420019
0,001 0,078 0,04200199
o 0,0001 0,00032208
T 000001 6,13E-0
@ 0,000001
£ 0,0000001 2,59E-07
% 1E-08
) 1E-09
<
1E-10
11 7,39E-1
1E-12 1,136-13
1E-13 1,13E-13

Figure 4.7a Average fitness values of four different optimization attempt with
three different maximum number of generations; 200, 400 and 800.
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Figure 4.7b. Median fitness values of four different optimization attempt with three
different maximum number of generations; 200, 400 and 800.
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Figure 4.7c. Best fitness values of four different optimization attempt with three
different maximum number of generations; 200, 400 and 800.
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Figure 4.7d. Worst fitness values of four different optimization attempt with three
different maximum number of generations; 200, 400 and 800.

The results that are displayed in Figure 4.7a-d are obtained from three
different maximum number of generations;, 200, 400 and 800. If we recall, in the
previous sections, all the discussions were made on the results obtained from the
tests in which maximum number of generations were set to 200. By selecting it as
400 and 800, we had a chance to investigate the algorithms’ behaviors further more.

A1, (RC)-SGA with general parameters, converges to a solution earlier than
150 generations. Therefore all the results of A1, displayed in Figure 4.7a-d, are same
for the selected maximum number of generations. The algorithm's early
convergence can be seen from Figure 4.9a-d, aso. The best and the worst fitness
values of Al are 8.55*10° and 6.72* 10, respectively, for all generations. Average
and Median fitness values are 7.8¥102 and 7.9%10°°, respectively. Median fitness
values are more reliable than average fitness vaues, since extreme large or small
values do not affect median of values.

The discussion made for A1 holds for A2 too. Furthermore, even though A2

isimprovised verson of Al, theincrease in performance is not so significant.
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Significant performance increase in A3 displays the effectiveness of the
suggested ADM strategy (RC)-SGA+GPD+GID+PPD. Considering vertical axis is
in logarithmic scale, the improvement is overwhelmingly high. Furthermore, as the
number of generations are increased, the suggested ADM strategy maintains its
diversity and keep searching for better solution (Figure 4.8). On the other hand,
(RC)-SGA quickly loses diversity after 200 generations.

Not surprisingly, the performance of A4 is tremendously better than those of
Al and A2, even A3. When the maximum number of generations are extended to
800, A3 converges to O which is the optimum point for Rosenbrock function. It
should be noted that a double variable has a precision of 10°*, When the optimum
point found as O, it means, the precision barrier has been reached and the result is
rounded to 0. While, median fitness vale of A1 for 800 generations is calculated as
7.9%10°3, It has been calculated as <10°%* for A4.

Also, the obtained results for A1, A2, A3 and A4 with 200 generations are
given for each test function in Table 4.8. The results are in total agreement for all test

functions.
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In addition to this, Figure 4.9a-d display the relationships between the
maximum number of generations and fitness values of A2 and A3. It can be observed
from Figure 4.8 that A2 quickly loses its diversity and converges to some point in
early generations (as early as 100 generations). However A3 maintain the diversity

for along time and this pay off as better searching capacity.
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Figure 4.8. Diversity values over the generations.
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Figure 4.9a Average fitness values over the generations.
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5. CONCLUSIONS AND FUTURE WORKS

The current study has presented new strategies to selection process that
focuses on reliability and efficiency within the context of RCGAs. 255 unique
selection strategies that differs from choosing individuals randomly, have been
proposed. The criteria of selecting mating pairs is based either on their genotypic
similarity/dissimilarity or on their phenotypic similarity/dissimilarity. The similarity
based strategies enable individuals to exploit the current search region extensively
before exploring new ones. On the other hand, dissmilarity based strategies provide
more reliable and efficient search mechanism and prevent the GA from being trapped
inlocal optima.

To evaluate the performance of the proposed algorithm, a series of
experiments are conducted on a set of 10 well known real-valued benchmark global
optimization test functions. When compared with (RC)-SGA, the proposed ADM
strategies, show a significant improvements in the quality of the globa optimum
solution found under the same simulation conditions.

The present study also compares the performance of the proposed strategies
with tuned crossing over and mutation parameters, along with the conventional
parameters. On the contrary to (RC)-SGA, the proposed GPD, PPD and GID
combination shows superior performance. Furthermore, this combination also
exhibits better performance with tuned parameters. Finally, we can conclude that the
proposed ADM based strategies provide more accuracy, greater reliability, and
higher efficiency than the other GAs considered in the present study.

The experiment outcome for the proposed strategies is excellent in most
cases, but it still performed worse in some strategies due to the critical balance
between exploitation of the best individuals and exploration of alternative regions of
the search space and increasing the risks of local optima traps. As our future
perspective, we plan to further improve the evolutionary efficiency by integrating the
approach of design of experiment with the proposed ADM-RCGA agorithm.
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Table7.1. Test results for Rosenbrock Function with tuned crossover and mutation parameters

Function | GPS | GPD | GIS | GID | PPS | PPD | PIS | PID Average M edian Best Fitness Worst Standard Rank
Number Fitness Fithess Fithess Deviation | Score
1 0 1 0 1 0 1 1 0 | 0,000222349 | 3,42887E-05 | 1,24757E-07 | 0,0022516 | 0,000575029 | 256
1 0 1 0 1 0 1 1 1 | 0,000222349 | 3,42887E-05 | 1,24757E-07 | 0,0022516 | 0,000575029 | 255
1 0 1 0 1 0 1 0 1 | 0,000256406 | 2,45975E-05 | 8,89603E-08 | 0,0017933 | 0,000475115 | 254
1 0 1 0 1 0 1 0 0 | 0,00032208 | 6,25775E-05 | 4,39959E-06 | 0,002354682 | 0,000665016 | 253
1 0 1 0 0 0 0 1 0 | 0,000360695 | 0,000100496 | 4,64627E-08 | 0,002097147 | 0,000625548 | 252
1 0 1 0 0 0 0 1 1 | 0,000360695 | 0,000100496 | 4,64627E-08 | 0,002097147 | 0,000625548 | 251
1 0 1 0 1 0 0 0 0 | 0,000399104 | 0,000145085 | 8,25246E-06 | 0,001483349 | 0,000458129 | 250
1 0 1 0 1 0 0 1 0 | 0,00042613 | 0,000112858 | 2,70513E-07 | 0,002906873 | 0,000779858 | 249
1 0 1 0 1 0 0 1 1 | 0,00042613 | 0,000112858 | 2,70513E-07 | 0,002906873 | 0,000779858 | 248
1 0 1 0 1 1 1 1 0 | 0,000457137 | 8,17928E-05 | 2,79477E-07 | 0,002510972 | 0,000748805 | 247
1 0 1 0 1 1 1 1 1 | 0,000457137 | 8,17928E-05 | 2,79477E-07 | 0,002510972 | 0,000748805 | 246
1 0 1 0 0 1 1 0 1 | 0,000556395 | 8,70235E-05 | 7,21577E-07 | 0,005106238 | 0,001298186 | 245
1 0 1 0 0 1 1 0 0 | 0,000732431 | 3,06366E-05 | 5,88328E-07 | 0,00665134 | 0,001760438 | 244
1 0 1 0 0 0 1 0 1 | 0,000755561 | 0,00052513 | 5,67031E-05 | 0,00453724 | 0,001107979 | 243
1 0 1 0 0 0 1 0 0 | 0,000793567 | 0,000122745 | 4,85116E-07 | 0,004220182 | 0,001245137 | 242
1 0 1 0 1 1 0 0 1 | 0,000908037 | 0,000190122 | 7,85652E-08 | 0,003720326 | 0,001165062 | 241
1 0 1 0 1 0 0 0 1 | 0,001009142 | 0,00048863 | 9,95755E-06 | 0,003718745 | 0,000983169 | 240
1 0 1 0 0 0 0 0 1 | 0,001069168 | 0,000561439 | 1,24556E-05 | 0,004696372 | 0,001493637 | 239
1 0 1 0 1 1 1 0 0 | 0,001072654 | 6,88421E-05 | 3,3439E-08 | 0,012243802 | 0,003139863 | 238
1 0 1 0 0 0 0 0 0 0,0011572 | 0,000415621 | 2,2834E-08 | 0,005070898 | 0,001500989 | 237
1 0 1 0 1 1 0 1 0 | 0,001918676 | 0,000220027 | 2,69019E-06 | 0,013950899 | 0,00397519 | 236
1 0 1 0 1 1 0 1 1 | 0,001918676 | 0,000220027 | 2,69019E-06 | 0,013950899 | 0,00397519 | 235
1 0 1 0 1 1 1 0 1 | 0,002889884 | 0,000110307 | 5,44272E-08 | 0,029672076 | 0,007988087 | 234
1 0 1 0 1 1 0 0 0 | 0,003093539 | 0,000303472 | 6,8552E-08 | 0,03191701 | 0,008383941 | 233
1 0 1 0 0 1 0 1 0 | 0,003378354 | 0,000283899 | 6,16438E-09 | 0,020576252 | 0,006224718 | 232
1 0 1 0 0 1 0 1 1 | 0,003378354 | 0,000283899 | 6,16438E-09 | 0,020576252 | 0,006224718 | 231
1 0 1 0 0 1 0 0 1 | 0,004089242 | 0,000886137 | 3,51132E-05 | 0,024974328 | 0,006912521 | 230
1 0 1 0 0 1 0 0 0 | 0,005081286 | 0,000260963 | 5,19296E-06 | 0,034131092 | 0,010083098 | 229
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1 0 1 1 0 1 0 0 1 | 0,009238309 | 0,000784088 | 5,28968E-08 | 0,076723068 | 0,021095137 | 228
1 0 1 1 1 1 0 0 1 | 0,009238309 | 0,000784088 | 5,28968E-08 | 0,076723068 | 0,021095137 | 227
1 1 1 0 1 0 0 1 0 | 0,00984364 | 0,00069422 | 2,98059E-12 | 0,043055049 | 0,015077477 | 226
1 1 1 0 1 0 0 1 1 | 0,00984364 | 0,00069422 | 2,98059E-12 | 0,043055049 | 0,015077477 | 225
1 0 1 1 0 1 1 0 1 | 0,010571487 | 0,001931095 | 1,66153E-07 | 0,041622207 | 0,016074754 | 224
1 0 1 1 1 1 1 0 1 | 0,010571487 | 0,001931095 | 1,66153E-07 | 0,041622207 | 0,016074754 | 223
1 1 1 0 0 0 1 0 1 | 0,010689666 | 0,000224868 | 3,43373E-11 | 0,066788235 | 0,020422239 | 222
1 0 1 1 0 0 1 0 1 ]0,011434916 | 0,000239715 | 2,20141E-08 | 0,129686189 | 0,03313442 | 221
1 0 1 1 1 0 1 0 1 | 0,011434916 | 0,000239715 | 2,20141E-08 | 0,129686189 | 0,03313442 | 220
1 0 1 1 0 0 1 1 0 | 0,014461534 | 0,004200468 | 2,01669E-08 | 0,08039103 | 0,025849225 | 219
1 0 1 1 0 0 1 1 1 | 0,014461534 | 0,004200468 | 2,01669E-08 | 0,08039103 | 0,025849225 | 218
1 0 1 1 1 0 1 1 0 | 0,014461534 | 0,004200468 | 2,01669E-08 | 0,08039103 | 0,025849225 | 217
1 0 1 1 1 0 1 1 1 |0,014461534 | 0,004200468 | 2,01669E-08 | 0,08039103 | 0,025849225 | 216
1 0 1 1 0 0 1 0 0 | 0,01496786 | 0,000950649 | 3,15252E-10 | 0,085902671 | 0,023653073 | 215
1 0 1 1 1 0 1 0 0 | 0,01496786 | 0,000950649 | 3,15252E-10 | 0,085902671 | 0,023653073 | 214
1 1 1 0 1 1 0 1 0 | 0,016373257 | 0,00060083 | 2,76255E-10 | 0,004455452 | 0,027954149 | 213
1 1 1 0 1 1 0 1 1 ]0,016373257 | 0,00060083 | 2,76255E-10 | 0,094455452 | 0,027954149 | 212
1 0 1 1 0 1 1 0 0 |0,020731962 | 0,003095754 | 8,7761E-09 | 0,203498258 | 0,052276344 | 211
1 0 1 1 1 1 1 0 0 |0,020731962 | 0,003095754 | 8,7761E-09 | 0,203498258 | 0,052276344 | 210
1 0 1 1 0 1 1 1 0 | 0,021995431 | 0,004643587 | 9,34976E-07 | 0,141387513 | 0,038385162 | 209
1 0 1 1 0 1 1 1 1 ] 0,021995431 | 0,004643587 | 9,34976E-07 | 0,141387513 | 0,038385162 | 208
1 0 1 1 1 1 1 1 0 | 0,021995431 | 0,004643587 | 9,34976E-07 | 0,141387513 | 0,038385162 | 207
1 0 1 1 1 1 1 1 1 | 0,021995431 | 0,004643587 | 9,34976E-07 | 0,141387513 | 0,038385162 | 206
1 1 1 0 1 1 1 0 0 | 0,024222878 | 0,004179698 | 1,92488E-15 | 0,172610175 | 0,045646616 | 205
1 0 1 1 0 1 0 0 0 | 0,025246789 | 0,004982418 | 9,50574E-05 | 0,229032506 | 0,058101326 | 204
1 0 1 1 1 1 0 0 0 | 0,025246789 | 0,004982418 | 9,50574E-05 | 0,229032506 | 0,058101326 | 203
1 0 0 0 1 1 0 0 0 | 0,025353896 | 0,004425047 | 0,000164941 | 0,133671421 | 0,043364831 | 202
1 1 1 0 0 1 1 0 1 ]0,027481135 | 2,90823E-06 | 2,37892E-14 | 0,299811874 | 0,077503824 | 201
1 1 1 0 1 1 1 0 1 |0,028842099 | 0,004499299 | 3,92032E-11 | 0,136313795 | 0,046223826 | 200
1 0 1 0 0 0 1 1 0 | 0,032119402 | 2,28451E-05 | 1,77487E-07 | 0,374249421 | 0,098148681 | 199
1 0 1 0 0 0 1 1 1 ]0,032119402 | 2,28451E-05 | 1,77487E-07 | 0,374249421 | 0,098148681 | 198
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1 1 1 0 1 0 1 0 1 |0,034164811 | 0,001989553 | 7,53067E-09 | 0,324040203 | 0,082145322 | 197
1 1 1 0 1 0 0 0 0 | 0,036639336 | 0,001453172 | 1,54599E-15 | 0,312053843 | 0,082989373 | 196
1 0 1 1 0 1 0 1 0 | 0,037850132 | 0,000473495 | 2,60912E-08 | 0,323632521 | 0,090374802 | 195
1 0 1 1 0 1 0 1 1 | 0,037850132 | 0,000473495 | 2,60912E-08 | 0,323632521 | 0,090374802 | 194
1 0 1 1 1 1 0 1 0 | 0,037850132 | 0,000473495 | 2,60912E-08 | 0,323632521 | 0,090374802 | 193
1 0 1 1 1 1 0 1 1 | 0,037850132 | 0,000473495 | 2,60912E-08 | 0,323632521 | 0,090374802 | 192
1 0 1 1 0 0 0 0 1 ] 0,038962237 | 0,013909983 | 1,48871E-05 | 0,229384679 | 0,065781328 | 191
1 0 1 1 1 0 0 0 1 ]0,038962237 | 0,013909983 | 1,48871E-05 | 0,229384679 | 0,065781328 | 190
1 1 1 0 1 0 0 0 1 | 0,041368943 | 0,003551891 | 3,0295E-13 | 0,279169308 | 0,078388768 | 189
1 0 0 0 0 0 0 0 0 | 0,042001999 | 0,014891517 | 1,15106E-08 | 0,178332788 | 0,054896613 | 188
1 0 1 0 0 1 1 1 0 | 0,048009078 | 0,000250614 | 3,89849E-06 | 0,363159395 | 0,124011751 | 187
1 0 1 0 0 1 1 1 1 | 0,048009078 | 0,000250614 | 3,89849E-06 | 0,363159395 | 0,124011751 | 186
1 0 0 0 1 1 0 0 1 ] 0,052981429 | 0,024576792 | 6,02671E-06 | 0,214157974 | 0,064853909 | 185
1 1 1 0 0 1 0 0 0 | 0,053148799 | 0,002424077 | 5,21708E-07 | 0,308230332 | 0,100681466 | 184
1 0 0 0 1 1 1 1 0 | 0,053693631 | 0,003669718 | 4,86276E-11 | 0,32283424 | 0,089912206 | 183
1 0 0 0 1 1 1 1 1 | 0,053693631 | 0,003669718 | 4,86276E-11 | 0,32283424 | 0,089912206 | 182
1 0 0 0 1 0 0 0 1 |0,058487074 | 0,030072429 | 9,26626E-08 | 0,177745051 | 0,0651878 181
1 1 1 1 0 1 1 1 0 | 0,05915072 | 0,007890796 | 5,07218E-07 | 0,400807428 | 0,123129251 | 180
1 1 1 1 0 1 1 1 1 | 0,05915072 | 0,007890796 | 5,07218E-07 | 0,400807428 | 0,123129251 | 179
1 1 1 1 1 1 1 1 0 | 0,05915072 | 0,007890796 | 5,07218E-07 | 0,400807428 | 0,123129251 | 178
1 1 1 1 1 1 1 1 1 | 0,05915072 | 0,007890796 | 5,07218E-07 | 0,400807428 | 0,123129251 | 177
1 0 0 0 1 0 0 1 0 | 0,060581511 | 0,024849324 | 1,35926E-06 | 0,209780167 | 0,070971756 | 176
1 0 0 0 1 0 0 1 1 | 0,060581511 | 0,024849324 | 1,35926E-06 | 0,209780167 | 0,070971756 | 175
1 0 1 1 0 0 0 0 0 | 0,060915907 | 0,002478383 | 8,03887E-11 | 0,428163453 | 0,113446558 | 174
1 0 1 1 1 0 0 0 0 | 0,060915907 | 0,002478383 | 8,03887E-11 | 0,428163453 | 0,113446558 | 173
1 1 1 0 0 1 1 1 0 | 0,06448931 | 0,004038013 | 3,21263E-05 | 0,396366367 | 0,1185017 172
1 1 1 0 0 1 1 1 1 | 0,06448931 | 0,004038013 | 3,21263E-05 | 0,396366367 | 0,1185017 171
1 1 1 0 1 1 0 0 1 |0,064898787 | 0,006842245 | 1,75072E-10 | 0,420993915 | 0,129331904 | 170
1 1 1 0 1 0 1 0 0 | 0,067610068 | 0,027055934 | 2,84104E-11 | 0,59153542 | 0,15151457 | 169
1 1 1 0 0 1 0 0 1 | 0,067614397 | 0,003983237 | 1,38126E-08 | 0,4672059 | 0,155487085 | 168
1 0 0 0 1 1 1 0 0 0,0701169 | 0,002378417 | 1,55902E-09 | 0,569139359 | 0,145911496 | 167
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1 0 0 0 1 1 1 0 1 | 0,073080737 | 0,047972307 | 3,87021E-07 | 0,24388114 | 0,080958282 | 166
1 0 0 0 0 1 1 1 0 | 0,079562165 | 0,019622884 | 6,59438E-08 | 0,596814451 | 0,156657396 | 165
1 0 0 0 0 1 1 1 1 ]0,079562165 | 0,019622884 | 6,59438E-08 | 0,596814451 | 0,156657396 | 164
1 0 0 0 1 0 0 0 0 | 0,081317058 | 0,088806287 | 2,9154E-06 | 0,205359718 | 0,054730251 | 163
1 1 1 0 1 1 1 1 0 | 0,08331362 | 0,000523667 | 2,6233E-11 | 0,559114588 | 0,171068577 | 162
1 1 1 0 1 1 1 1 1 | 0,08331362 | 0,000523667 | 2,6233E-11 | 0,559114588 | 0,171068577 | 161
1 1 1 1 0 1 1 0 0 | 0,085530482 | 0,007035366 | 8,79765E-12 | 0,892596802 | 0,232841513 | 160
1 1 1 1 1 1 1 0 0 | 0,085530482 | 0,007035366 | 8,79765E-12 | 0,892596802 | 0,232841513 | 159
1 1 1 1 0 1 1 0 1 | 0,089296048 | 0,034452763 | 1,48706E-11 | 0,465416179 | 0,134582563 | 158
1 1 1 1 1 1 1 0 1 |0,089296048 | 0,034452763 | 1,48706E-11 | 0,465416179 | 0,134582563 | 157
1 0 1 1 0 0 0 1 0 | 0,090731429 | 0,038569549 | 2,6297E-05 | 0,617194805 | 0,162398247 | 156
1 0 1 1 0 0 0 1 1 | 0,090731429 | 0,038569549 | 2,6297E-05 | 0,617194805 | 0,162398247 | 155
1 0 1 1 1 0 0 1 0 | 0,090731429 | 0,038569549 | 2,6297E-05 | 0,617194805 | 0,162398247 | 154
1 0 1 1 1 0 0 1 1 ]0,090731429 | 0,038569549 | 2,6297E-05 | 0,617194805 | 0,162398247 | 153
1 1 1 0 0 0 0 1 0 | 0,093409523 | 0,000671476 | 4,55714E-15 | 0,866229798 | 0,224306308 | 152
1 1 1 0 0 0 0 1 1 | 0,093409523 | 0,000671476 | 4,55714E-15 | 0,866229798 | 0,224306308 | 151
1 0 0 0 0 0 0 1 0 | 0,098517764 | 0,025920641 | 9,53842E-06 | 0,449648995 | 0,14235747 | 150
1 0 0 0 0 0 0 1 1 ]0,098517764 | 0,025920641 | 9,53842E-06 | 0,449648995 | 0,14235747 | 149
1 1 1 0 0 0 1 0 0 | 0,09976503 | 0,000410198 | 9,62888E-14 | 1,018454602 | 0,276144298 | 148
1 0 0 0 0 1 1 0 1 |0,102449989 | 0,041871541 | 0,000302257 | 0,776731388 | 0,196132062 | 147
1 0 0 0 0 1 1 0 0 | 0,10750472 | 0,039196683 | 4,97919E-05 | 0,713353134 | 0,183276562 | 146
1 0 0 1 0 1 1 1 0 | 0,110124008 | 0,052188839 | 5,74405E-05 | 0,462625765 | 0,127656753 | 145
1 0 0 1 0 1 1 1 1 | 0,110124008 | 0,052188839 | 5,74405E-05 | 0,462625765 | 0,127656753 | 144
1 0 0 1 1 1 1 1 0 | 0,110124008 | 0,052188839 | 5,74405E-05 | 0,462625765 | 0,127656753 | 143
1 0 0 1 1 1 1 1 1 | 0,110124008 | 0,052188839 | 5,74405E-05 | 0,462625765 | 0,127656753 | 142
1 0 0 0 0 0 1 0 1 | 0,115608788 | 0,036709132 | 1,2671E-07 | 0,572944839 | 0,172239668 | 141
1 1 1 1 0 0 0 1 0 | 0,11684557 | 0,026235723 | 5,97194E-07 | 0,663780732 | 0,191283625 | 140
1 1 1 1 0 0 0 1 1 | 0,11684557 | 0,026235723 | 5,97194E-07 | 0,663780732 | 0,191283625 | 139
1 1 1 1 1 0 0 1 0 | 0,11684557 | 0,026235723 | 5,97194E-07 | 0,663780732 | 0,191283625 | 138
1 1 1 1 1 0 0 1 1 | 0,11684557 | 0,026235723 | 5,97194E-07 | 0,663780732 | 0,191283625 | 137
1 0 0 0 1 1 0 1 0 | 0,12259726 | 0,083861965 | 0,009890883 | 0,384234161 | 0,113763851 | 136
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1 0 0 0 1 1 0 1 1 | 0,12259726 | 0,083861965 | 0,009890883 | 0,384234161 | 0,113763851 | 135
1 1 1 0 0 0 0 0 0 | 0,126826887 | 0,015212148 | 4,22789E-17 | 0,680439754 | 0,213417823 | 134
1 0 0 0 1 0 1 0 0 | 0,126904348 | 0,023958426 | 4,42716E-07 | 0,657836113 | 0,190545563 | 133
1 0 0 0 0 1 0 0 1 ]0,128144071 | 0,0560316 | 0,000324018 | 0,521007975 | 0,162728184 | 132
1 0 0 1 0 0 0 0 0 |0,136826478 | 0,011585711 | 0,002820215 | 0,720567013 | 0,243991152 | 131
1 0 0 1 1 0 0 0 0 |0,136826478 | 0,011585711 | 0,002820215 | 0,720567013 | 0,243991152 | 130
1 1 1 0 1 1 0 0 0 | 0,137039525 | 0,005440952 | 4,96422E-11 | 0,910457807 | 0,260503528 | 129
1 0 0 0 0 0 0 0 1 ]0,139969463 | 0,044678106 | 0,001516034 | 0,654266678 | 0,193303848 | 128
1 1 1 1 0 0 0 0 0 | 0,144103635 | 0,035610229 | 0,00071197 | 0,627577858 | 0,191348742 | 127
1 1 1 1 1 0 0 0 0 |0,144103635 | 0,035610229 | 0,00071197 | 0,627577858 | 0,191348742 | 126
1 1 1 0 1 0 1 1 0 | 0,146404204 | 0,020791526 | 2,30668E-09 | 0,482252826 | 0,174534465 | 125
1 1 1 0 1 0 1 1 1 | 0,146404204 | 0,020791526 | 2,30668E-09 | 0,482252826 | 0,174534465 | 124
1 0 0 1 0 0 0 1 0 | 0,150274296 | 0,022351139 | 7,98611E-06 | 0,797260684 | 0,233187579 | 123
1 0 0 1 0 0 0 1 1 |0,150274296 | 0,022351139 | 7,98611E-06 | 0,797260684 | 0,233187579 | 122
1 0 0 1 1 0 0 1 0 | 0,150274296 | 0,022351139 | 7,98611E-06 | 0,797260684 | 0,233187579 | 121
1 0 0 1 1 0 0 1 1 | 0,150274296 | 0,022351139 | 7,98611E-06 | 0,797260684 | 0,233187579 | 120
1 1 1 1 0 0 0 0 1 ]0,151263098 | 0,015448897 | 2,13731E-07 | 0,561819042 | 0,198047183 | 119
1 1 1 1 1 0 0 0 1 ]0,151263098 | 0,015448897 | 2,13731E-07 | 0,561819042 | 0,198047183 | 118
1 1 1 0 0 1 1 0 0 | 0,151315045 | 0,001129274 | 5,5589E-13 | 0,962373119 | 0,258956112 | 117
1 0 0 0 1 0 1 1 0 | 0,156177122 | 0,077839722 | 4,58866E-05 | 1,125925913 | 0,277343051 | 116
1 0 0 0 1 0 1 1 1 ]0,156177122 | 0,077839722 | 4,58866E-05 | 1,125925913 | 0,277343051 | 115
1 0 0 0 1 0 1 0 1 ]0,157146082 | 0,030256565 | 3,02868E-07 | 0,882150688 | 0,251822474 | 114
1 1 1 0 0 0 0 0 1 | 0,16894688 | 0,000553211 | 4,26502E-14 | 1,46408243 | 0,403179349 | 113
1 1 1 0 0 1 0 1 0 | 0,175890445 | 0,017348306 | 1,28616E-07 | 0,81158727 | 0,264835559 | 112
1 1 1 0 0 1 0 1 1 ]0,175890445 | 0,017348306 | 1,28616E-07 | 0,81158727 | 0,264835559 | 111
1 1 0 0 1 0 1 0 0 | 0,176940054 | 0,122828986 | 0,001961196 | 0,546197702 | 0,171971208 | 110
1 1 1 1 0 0 1 0 1 ]0,179874026 | 0,051856912 | 1,05718E-07 | 1,447879222 | 0,367087969 | 109
1 1 1 1 1 0 1 0 1 ]0,179874026 | 0,051856912 | 1,05718E-07 | 1,447879222 | 0,367087969 | 108
1 0 0 1 0 0 1 0 1 ]0,195144901 | 0,049362554 | 0,001101142 | 1,008771276 | 0,297536042 | 107
1 0 0 1 1 0 1 0 1 | 0,195144901 | 0,049362554 | 0,001101142 | 1,008771276 | 0,297536042 | 106
1 1 1 0 0 0 1 1 0 | 0,196088761 | 0,003425925 | 5,56419E-10 | 1,379503525 | 0,39467255 | 105
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1 1 1 0 0 0 1 1 1 ]0,196088761 | 0,003425925 | 5,56419E-10 | 1,379503525 | 0,39467255 | 104
1 0 0 0 0 0 1 0 0 | 0,211529628 | 0,03434032 | 4,92891E-07 | 0,884263633 | 0,271254101 | 103
1 0 0 0 0 0 1 1 0 | 0,214699405 | 0,027712425 | 0,000181966 | 0,879730005 | 0,274549035 | 102
1 0 0 0 0 0 1 1 1 | 0,214699405 | 0,027712425 | 0,000181966 | 0,879730005 | 0,274549035 | 101
1 1 0 0 0 0 1 1 0 |0,214745738 | 0,115635158 | 1,15745E-05 | 0,839265993 | 0,235944163 | 100
1 1 0 0 0 0 1 1 1 |0,214745738 | 0,115635158 | 1,15745E-05 | 0,839265993 | 0,235944163 | 99
1 0 0 1 0 1 1 0 1 | 0,21495018 | 0,151922646 | 4,14446E-05 | 0,906812207 | 0,252297964 | 98
1 0 0 1 1 1 1 0 1 | 0,21495018 | 0,151922646 | 4,14446E-05 | 0,906812207 | 0,252297964 | 97
1 1 1 1 0 1 0 0 0 | 0,220040742 | 0,078304407 | 4,82374E-07 | 1,226743047 | 0,328735748 | 96
1 1 1 1 1 1 0 0 0 | 0,220040742 | 0,078304407 | 4,82374E-07 | 1,226743047 | 0,328735748 | 95
1 0 0 1 0 1 1 0 0 | 0,220329054 | 0,007809061 | 4,16508E-05 | 1,892878793 | 0,493743375| 94
1 0 0 1 1 1 1 0 0 | 0,220329054 | 0,007809061 | 4,16508E-05 | 1,892878793 | 0,493743375 | 93
1 1 0 0 1 0 1 1 0 | 0,24568055 | 0,107680523 | 7,56726E-07 | 1,283934922 | 0,351530108 | 92
1 1 0 0 1 0 1 1 1 | 0,24568055 | 0,107680523 | 7,56726E-07 | 1,283934922 | 0,351530108 | 91
1 0 0 1 0 0 1 0 0 |0,248130921 | 0,041511348 | 0,002181131 | 1,428879236 | 0,424649267 | 90
1 0 0 1 1 0 1 0 0 | 0,248130921 | 0,041511348 | 0,002181131 | 1,428879236 | 0,424649267 | 89
1 1 0 0 0 0 1 0 0 | 0,265504123 | 0,174093369 | 0,031628176 | 0,856247755 | 0,240837107 | 88
1 1 1 1 0 1 0 0 1 |0,268501339 | 0,052805403 | 0,000151093 | 2,935332956 | 0,741917886 | 87
1 1 1 1 1 1 0 0 1 | 0,268501339 | 0,052805403 | 0,000151093 | 2,935332956 | 0,741917886 | 86
1 0 0 0 0 1 0 0 0 | 0,282844785 | 0,234487898 | 0,008505374 | 0,893815179 | 0,265506455 | 85
1 0 0 1 0 0 1 1 0 | 0,295135143 | 0,019055517 | 0,001846107 | 1,992304598 | 0,540836453 | 84
1 0 0 1 0 0 1 1 1 ]0,295135143 | 0,019055517 | 0,001846107 | 1,992304598 | 0,540836453 | 83
1 0 0 1 1 0 1 1 0 | 0,295135143 | 0,019055517 | 0,001846107 | 1,992304598 | 0,540836453 | 82
1 0 0 1 1 0 1 1 1 |0,295135143 | 0,019055517 | 0,001846107 | 1,992304598 | 0,540836453 | 81
1 1 1 1 0 1 0 1 0 |0,297322175 | 0,095692861 | 0,000251564 | 1,463437315 | 0,429147038 | 80
1 1 1 1 0 1 0 1 1 | 0,297322175 | 0,095692861 | 0,000251564 | 1,463437315 | 0,429147038 | 79
1 1 1 1 1 1 0 1 0 |0,297322175 | 0,095692861 | 0,000251564 | 1,463437315 | 0,429147038 | 78
1 1 1 1 1 1 0 1 1 |0,297322175 | 0,095692861 | 0,000251564 | 1,463437315 | 0,429147038 | 77
1 1 1 1 0 0 1 0 0 |0,297544214 | 0,04348226 | 1,44319E-08 | 1,937440731 | 0,500209778 | 76
1 1 1 1 1 0 1 0 0 | 0,297544214 | 0,04348226 | 1,44319E-08 | 1,937440731 | 0,500209778 | 75
1 1 0 0 1 1 0 0 1 ]0,298626979 | 0,247846601 | 0,002815939 | 0,78538827 | 0,243860687 | 74
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1 1 0 0 1 1 1 0 1 |0,303421092 | 0,250467017 | 0,006951909 | 0,837482332 | 0,257612189 | 73
1 1 0 0 1 0 1 0 1 | 0,32064563 | 0,193554389 | 0,000703391 | 1,521805458 | 0,392982713 | 72
1 0 0 1 0 1 0 0 1 ]0,321331054 | 0,184855226 | 0,000895214 | 2,175652924 | 0,52837166 71
1 0 0 1 1 1 0 0 1 ]0,321331054 | 0,184855226 | 0,000895214 | 2,175652924 | 0,52837166 70
1 0 0 1 0 1 0 0 0 |0,324797447 | 0,196676103 | 0,00016472 | 1,808153724 | 0,449016495 | 69
1 0 0 1 1 1 0 0 0 | 0,324797447 | 0,196676103 | 0,00016472 | 1,808153724 | 0,449016495 | 68
1 0 0 1 0 0 0 0 1 ]0,327675081 | 0,017193935 | 0,00071536 | 2,792632714 | 0,780918394 | 67
1 0 0 1 1 0 0 0 1 ]0,327675081 | 0,017193935 | 0,00071536 | 2,792632714 | 0,780918394 | 66
1 1 0 0 1 0 0 1 0 | 0,382472417 | 0,333647622 | 0,04325442 | 0,822505748 | 0,256149315 | 65
1 1 0 0 1 0 0 1 1 ]0,382472417 | 0,333647622 | 0,04325442 | 0,822505748 | 0,256149315 | 64
1 1 0 0 1 1 1 0 0 | 0,383496909 | 0,183782312 | 0,000339515 | 1,754477758 | 0,469320924 | 63
1 0 0 0 0 1 0 1 0 | 0,38939061 | 0,144088845 | 0,015804234 | 3,146989625 | 0,780532351 | 62
1 0 0 0 0 1 0 1 1 | 0,38939061 | 0,144088845 | 0,015804234 | 3,146989625 | 0,780532351 | 61
1 1 0 0 1 0 0 0 1 ]0,395054791 | 0,320995563 | 0,001881049 | 1,032110545 | 0,342255521 | 60
1 1 0 0 0 1 1 0 0 | 0,403689501 | 0,356129325 | 0,011596635 | 1,401618077 | 0,353827132 | 59
1 1 0 1 0 0 1 0 0 | 0,406081668 | 0,400862197 | 0,0005169 | 1,475299783 | 0,410044862 | 58
1 1 0 1 1 0 1 0 0 | 0,406081668 | 0,400862197 | 0,0005169 | 1,475299783 | 0,410044862 | 57
1 1 0 0 0 0 0 1 0 | 0,406928243 | 0,257733836 | 0,056637348 | 1,434675658 | 0,390475637 | 56
1 1 0 0 0 0 0 1 1 |0,406928243 | 0,257733836 | 0,056637348 | 1,434675658 | 0,390475637 | 55
1 1 0 0 0 0 1 0 1 | 0,410695876 | 0,219074819 | 0,022523409 | 1,950909779 | 0,50376318 54
1 1 0 0 1 1 1 1 0 | 0,412159947 | 0,236813505 | 0,00504834 | 1,525506216 | 0,48890518 53
1 1 0 0 1 1 1 1 1 ]0,412159947 | 0,236813505 | 0,00504834 | 1,525506216 | 0,48890518 52
1 1 0 0 0 1 0 0 0 | 0,413620832 | 0,277847983 | 0,081932633 | 0,928714375 | 0,276612923 | 51
1 1 0 0 0 1 0 0 1 |0,423311931 | 0,329382099 | 0,063107167 | 0,911201941 | 0,295507812 | 50
1 1 0 0 1 0 0 0 0 |0,427706046 | 0,429336179 | 0,000520843 | 0,928379924 | 0,310965477 | 49
1 1 0 1 0 1 0 0 1 | 0,440916046 | 0,384540133 | 0,005404768 | 1,467720267 | 0,360947568 | 48
1 1 0 1 1 1 0 0 1 | 0,440916046 | 0,384540133 | 0,005404768 | 1,467720267 | 0,360947568 | 47
1 1 0 0 0 1 1 1 0 |0,442351092 | 0,248064348 | 0,007541843 | 2,168496143 | 0,531714382 | 46
1 1 0 0 0 1 1 1 1 |0,442351092 | 0,248064348 | 0,007541843 | 2,168496143 | 0,531714382 | 45
1 1 0 0 0 0 0 0 1 | 0,457074298 | 0,303911896 | 0,006725799 | 1,437931019 | 0,420319851 | 44
1 1 0 0 0 0 0 0 0 |0,468881982 | 0,373036848 | 0,056637348 | 1,613588543 | 0,449725499 | 43
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1 1 0 0 1 1 0 1 0 | 047112733 | 0,407148183 | 0,081932633 | 1,423149039 | 0,347166798 | 42
1 1 0 0 1 1 0 1 1 | 0,47112733 | 0,407148183 | 0,081932633 | 1,423149039 | 0,347166798 | 41
1 1 1 1 0 0 1 1 0 | 0,474985444 | 0,311075604 | 7,81478E-08 | 2,556589592 | 0,676761584 | 40
1 1 1 1 0 0 1 1 1 |0,474985444 | 0,311075604 | 7,81478E-08 | 2,556589592 | 0,676761584 | 39
1 1 1 1 1 0 1 1 0 | 0,474985444 | 0,311075604 | 7,81478E-08 | 2,556589592 | 0,676761584 | 38
1 1 1 1 1 0 1 1 1 |0,474985444 | 0,311075604 | 7,81478E-08 | 2,556589592 | 0,676761584 | 37
1 1 0 1 0 1 1 1 0 | 047505104 | 0,28345491 | 0,036811509 | 2,584795171 | 0,620819761 | 36
1 1 0 1 0 1 1 1 1 | 0,47505104 | 0,28345491 | 0,036811509 | 2,584795171 | 0,620819761 | 35
1 1 0 1 1 1 1 1 0 | 0,47505104 | 0,28345491 | 0,036811509 | 2,584795171 | 0,620819761 | 34
1 1 0 1 1 1 1 1 1 | 047505104 | 0,28345491 | 0,036811509 | 2,584795171 | 0,620819761 | 33
1 1 0 1 0 0 1 0 1 ]0,481052731 | 0,213758532 | 0,010733632 | 2,190641271 | 0,576488902 | 32
1 1 0 1 1 0 1 0 1 | 0,481052731 | 0,213758532 | 0,010733632 | 2,190641271 | 0,576488902 | 31
1 1 0 0 0 1 0 1 0 | 0,486207145 | 0,400019065 | 0,059230277 | 1,467720267 | 0,404344502 | 30
1 1 0 0 0 1 0 1 1 |0,486207145 | 0,400019065 | 0,059230277 | 1,467720267 | 0,404344502 | 29
1 1 0 1 0 1 1 0 0 | 0,511401287 | 0,288899946 | 0,068496141 | 1,978061564 | 0,57464101 28
1 1 0 1 1 1 1 0 0 | 0,511401287 | 0,288899946 | 0,068496141 | 1,978061564 | 0,57464101 27
1 1 0 1 0 1 0 0 0 |0,512160644 | 0,384540133 | 0,012382531 | 1,239070306 | 0,424836589 | 26
1 1 0 1 1 1 0 0 0 |0,512160644 | 0,384540133 | 0,012382531 | 1,239070306 | 0,424836589 | 25
1 1 0 1 0 1 1 0 1 ]0,531623964 | 0,384540133 | 0,110645166 | 1,41106286 | 0,369010261 | 24
1 1 0 1 1 1 1 0 1 |0,531623964 | 0,384540133 | 0,110645166 | 1,41106286 | 0,369010261 | 23
1 1 0 0 0 1 1 0 1 ]0,534520764 | 0,42033313 | 0,008161161 | 2,268469612 | 0,563511028 | 22
1 1 0 1 0 0 0 0 1 ]0,539203914 | 0,46350311 | 0,027789796 | 2,030738587 | 0,531984114 | 21
1 1 0 1 1 0 0 0 1 | 0,539203914 | 0,46350311 | 0,027789796 | 2,030738587 | 0,531984114 | 20
1 1 0 1 0 0 1 1 0 | 0,554524322 | 0,453336867 | 1,83253E-07 | 2,030804208 | 0,644342408 | 19
1 1 0 1 0 0 1 1 1 ]0,554524322 | 0,453336867 | 1,83253E-07 | 2,030804208 | 0,644342408 | 18
1 1 0 1 1 0 1 1 0 | 0,554524322 | 0,453336867 | 1,83253E-07 | 2,030804208 | 0,644342408 | 17
1 1 0 1 1 0 1 1 1 ]0,554524322 | 0,453336867 | 1,83253E-07 | 2,030804208 | 0,644342408 | 16
1 1 0 1 0 1 0 1 0 |0,554831804 | 0,421659992 | 0,081932633 | 1,548477464 | 0,438940267 | 15
1 1 0 1 0 1 0 1 1 |0,554831804 | 0,421659992 | 0,081932633 | 1,548477464 | 0,438940267 | 14
1 1 0 1 1 1 0 1 0 | 0,554831804 | 0,421659992 | 0,081932633 | 1,548477464 | 0,438940267 | 13
1 1 0 1 1 1 0 1 1 ]0,554831804 | 0,421659992 | 0,081932633 | 1,548477464 | 0,438940267 | 12
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