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ABSTRACT 
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   Year: 2013, Page: 86 
 Jury : Asst. Prof. Dr. Mustafa ORAL 
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  : Assoc. Prof. Dr. Hakan YAVUZ  
 

The aim of this study is to improve the performance of Genetic Algorithm 
(GA) and extend the GA towards a more natural approach by incorporating 
“assortative &    disassortative mating (ADM)” to the selection strategies.  

In this study, a simple and efficient ADM based real-coded genetic algorithm 
(RCGA) is proposed and then employed to solve complex function optimization 
problems. The suggested DISASSORTATIVE mating approaches enhances the 
abilities of GAs in searching global optima as well as in speeding convergence by 
integrating the ASSORTATIVE mating search strategies. Eight different ADM 
strategies were proposed within this study. Using ten benchmark global optimization 
test functions, the performance of these strategies were evaluated. Results indicate 
that the disassortative based mating strategies are fast, accurate, and reliable, and 
outperform all the other GAs considered in the present study. 
 
Key Words: Genetic algorithm, diversity, disassortative mating, assortative mating. 
 

 

 

 

 

 



 

II 
  

ÖZ 
 

YÜKSEK LİSANS TEZİ 
 

GENETİK ALGORİTMALAR İÇİN ASSORTATİF- DİSASSORTATİF 
SEÇİLİM MEKANİZMALARI 

 
Serkan KARTAL 

 
ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI 
 

 Danışman :Yrd. Doç. Dr. Mustafa ORAL 
   Yıl: 2013, Sayfa: 86 
 Jüri : Yrd. Doç. Dr. Mustafa ORAL 
  : Doç. Dr. Zekeriya TÜFEKÇI 
  : Doç. Dr. Hakan YAVUZ 
 

Bu çalışmanın amacı, Genetik Algoritma (GA)’ nın performansını arttırmak 
ve seçim mekanizmasını “benzer birey - farklı birey eş seçimi (ADM)” ile 
birleştirerek daha doğal bir yaklaşım haline  getirmektir.  

Bu çalışmada, basit ve etkili bir ADM tabanlı, sürekli değerlerle kodlanmış 
genetik algoritma (RCGA) öne sürülmüş ve daha sonra karmaşık optimizasyon 
problemlerini çözmek için kullanılmıştır. Öne sürülen farklı birey eş seçim yaklaşımı 
GA’nın genel en iyiyi arama yeteneğini arttırdığı gibi  benzer birey eş seçiminin 
eklenmesi de en iyiye yakınsama hızını arttırmaktadır. Çalışmada sekiz farklı ADM 
stratejisi önerilmiştir. Öne sürülen stratejilerin performansları, on farklı genel 
optimizasyon değerlendirme fonksiyonu kullanılarak değerlendirilmiştir. Sonuçlar 
farklılık tabanlı eş seçim stratejisinin daha hızlı, tutarlı, güvenilir olduğunu ve bu 
çalışmadaki diğer tüm GA’lardan daha iyi sonuç verdiğini göstermektedir.   

  
Anahtar Kelimeler: Genetic algoritma, farklı birey eş seçimi, benzer birey eş 

seçimi. 
 

 

  

 

 



 

III 
  

ACKNOWLEDGEMENTS 

 

 I would like to express my sincere gratitude to my advisor Assist.Prof. Dr.  

Mustafa ORAL for his supervision guidance, encouragements, patience, motivation, 

useful suggestions and his valuable time for this work. 

I would like to thank members of MSc thesis jury, Assoc. Prof. Dr. Zekeriya 

TÜFEKÇİ and Assoc. Prof. Dr.Hakan YAVUZ for their suggestions and corrections. 

Special thanks to Buse Melis Özyıldırım for her endless support, patience and 

motivation. 

Finally, I would like to thank my family, who have supported me throughout 

entire process, both by their love and encouragements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV 
  

CONTENTS                PAGE 

 

ABSTRACT ............................................................................................................... I 

ÖZ ........................................................................................................................... II 

ACKNOWLEDGEMENTS ........................................................................................ III 

CONTENTS .......................................................................................................... IV 

LIST OF TABLES ................................................................................................. VIII 

LIST OF FIGURES .................................................................................................... X 

LIST OF SYMBOLS / ABBREVIATIONS................................................................ XII 

1. INTRODUCTION ................................................................................................... 1 

2. PRELIMINARY WORKS ........................................................................................ 3 

3. MATERIALS AND METHOD ................................................................................. 7 

3.1. Materials ......................................................................................................... 7 

3.1.1. Genetic Algorithm .................................................................................. 7 

3.1.2. Basic GA ............................................................................................... 8 

3.1.2.1. Binary Coded GA .................................................................... 9 

3.1.2.2. Real Coded GA ..................................................................... 10 

3.1.2.3. Binary versus Real Coding .................................................... 10 

3.1.3. Factors Influencing GA ......................................................................... 11 

3.1.3.1. Search Space ......................................................................... 11 

3.1.3.2. Population Size ...................................................................... 12 

3.1.3.3. Selective Pressure .................................................................. 12 

3.1.3.4. Diversity ................................................................................ 12 

3.1.3.4.(1). Diversity Measurement Methods ......................... 13 

3.1.3.4.(1).a. Hamming Distance ......................... 13 

3.1.3.4.(1).b. Euclidean Distance ......................... 14 

3.1.3.4.(2). Methods for Maintaining Diversity ...................... 14 

3.1.3.4.(2).a. Niching .......................................... 14 

3.1.3.4.(2).b. Crowding ....................................... 15 

3.1.3.4.(2).c. Restricted Mating ........................... 15 

3.1.3.4.(2).d. Sharing .......................................... 16 



 

V 
  

3.1.3.4.(2).e. By Multiploidy ............................... 16 

3.1.3.4.(2).f. Ranked space .................................. 16 

3.1.3.4.(2).g. DCGA............................................ 16 

3.1.3.4.(2).h. Elitist ............................................. 17 

3.1.3.4.(2).i. Injection .......................................... 17 

3.1.3.4.(2).j. Removal of Genotype or Fitness 

Duplicate   ..................................... 17 

3.1.4. GA Standard Test Functions................................................................... 18 

3.1.4.1. Detailed View to the Test Functions ...................................... 19 

3.1.4.1.(1). F1: Rosenbrock’s valley ....................................... 19 

3.1.4.1.(2). F2: Rastrigin ........................................................ 20 

3.1.4.1.(3). F3: Schwefel ........................................................ 20 

3.1.4.1.(4). F4: Ackley ........................................................... 21 

3.1.4.1.(5). F5: Langerman ..................................................... 21 

3.1.4.1.(6). F6: Fifth Function of De Jong............................... 22 

3.1.4.1.(7). F7: Drop Wave ..................................................... 22 

3.1.4.1.(8). F8: Shekel ............................................................ 23 

3.1.4.1.(9). F9: Griewangk ..................................................... 23 

3.1.4.1.(10). F10: Deceptive .................................................... 24 

3.2. Method ......................................................................................................... 25 

3.2.1. Fitness Based Selection Mechanism ........................................................ 25 

3.2.1.1. Roulette Wheel Selection Mechanism .................................... 25 

3.2.1.2. Rank Based Selection Mechanism ......................................... 25 

3.2.1.3. Tournament Selection Mechanism ......................................... 25 

3.2.1.4. Which Selection Mechanism? ................................................ 26 

3.2.2.The Proposed ADM ............................................................................... 27 

3.2.2.1. Background ........................................................................... 27 

3.2.2.2. Diversity Calculation ............................................................. 32 

3.2.2.3. Foundation of Diversity Measures: ........................................ 34 

3.2.2.4. Genotypic Diversity ............................................................... 35 

3.2.2.5. Phenotypic Diversity ............................................................. 36 



 

VI 
  

3.2.2.6. Selection Score Calculation ................................................... 37 

3.2.2.6.(1). Fitness Score (Sf) ................................................. 37 

3.2.2.6.(2). ADM Scores ........................................................ 38 

3.2.2.6.(3). Final Selection Score ........................................... 40 

4.  RESULTS AND DISCUSSIONS ........................................................................... 43 

4.1. Experimental Setup ........................................................................................ 43 

4.2. Performance comparisons of ADM-RCGA ........................................................ 46 

4.3. Comparisons of ADM Strategies ...................................................................... 46 

4.4. The proposed Component Performance Evaluation Method ................................. 47 

4.5. Detailed Evaluation of Rosenbrock Valley (F1) .................................................. 52 

4.6. Suggested ADM Strategy and Its Evaluation...................................................... 58 

5.  CONCLUSIONS and FUTURE WORKS ................................................................ 67 

REFERENCES ......................................................................................................... 69 

BIOGRAPHY .......................................................................................................... 77 

APPENDICES .......................................................................................................... 77 

  



 

VII 
  



 

VIII 
  

 LIST OF TABLES                                                                                           PAGE 
  

Table 3.1. Test functions with their features ........................................................... 18 

Table 4.1. Adjustable parameters and their setting counts ...................................... 44 

Table 4.2. Preliminary GA parameters used in determining GA strategies.............. 44 

Table 4.3. Mutation and crossover parameters for benchmark functions ................. 45 

Table 4.4. PS/F values of each component for each benchmark function .................. 50 

Table 4.5. Recommendation confidence labels ....................................................... 51 

Table 4.6. New and old ranks of remaining 32 strategies and SGA ........................ 56 

Table 4.7. New and old ranks of remaining 4 strategies and SGA .......................... 58  

Table 4.8.Ten benchmark test functions performance results for four different 

optimization attempt; A1, A2, A3, A4.................................................... 63 

Table 7.1.Test results for Rosenbrock Function with tuned crossover and 

mutation parameters. .............................................................................. 78 

 

  

 

 

 

 

 

 

 

 

 

 

 



 

IX 
  

 

 

  



 

X 
  

LIST OF FIGURES                                                                                           PAGE 

 

Figure 3.1.  Structure of Genetic Algorithm ............................................................. 7  

Figure 3.2.  ADM selection strategies tree ............................................................. 31  

Figure 3.3.  Plot of normal distribution .................................................................. 33  

Figure 3.4.  Joint ADM score ................................................................................. 39  

Figure 4.1.  The worst possible distribution of %P successful component .............. 48   

Figure 4.2.  The best possible distribution of %P failed component ........................ 48   

Figure 4.3.  Existence of ADM components in strategies ....................................... 52   

Figure 4.4.  Existence of PID component in the ADM strategies which are 

located underneath the window ........................................................... 54   

Figure 4.5.  Sliding window figures for  all ADMS components ............................ 55   

Figure 4.6.  Sliding window figures for  remaining ADMS components ................. 57   

Figure 4.7a. Average fitness values of four different optimization attempt with 

three different maximum number of generations; 200, 400 and 800 .... 59  

Figure 4.7b. Median fitness values of four different optimization attempt with 

three different maximum number of generations; 200, 400 and 800 ... 60   

Figure 4.7c. Best fitness values of four different optimization attempt with three 

different maximum number of generations; 200, 400 and 800 ............. 60   

Figure 4.7d. Worst fitness values of four different optimization attempt with   

                    three different maximum number of generations; 200, 400 and 800 .... 61   

Figure 4.8.  Diversity values over the generations .................................................. 64   

Figure 4.9a. Average fitness values over the generations ........................................ 64   

Figure 4.9b. Median fitness values over the generations ......................................... 65  

Figure 4.9c. Best fitness values over the generations .............................................. 65  

Figure 4.9d. Worst fitness values over the generations ........................................... 66   

  



 

XI 
  

 

 

 

  



 

XII 
  

LIST OF SYMBOLS / ABBREVIATIONS 

 

(RC)-SGA : Real Coded Standard Genetic Algorithm 

ADMS : Assortative-Dissortative Mating Strategy 

ADM : Assortative-Dissortative Mating 

BCGA : Binary-Coded Genetic Algorithm 

DCGA : Diversity Control Oriented Genetic Algorithm 

GA : Genetic Algorithm 

GID : Genotypic Individual Dissimilarity 

GIS : Genotypic Individual Similarity 

GPD : Genotypic Population Diversity 

GPS : Genotypic Population Similarity 

EA : Evolutionary Algorithm 

PID : Phenotypic Individual Dissimilarity 

PIS : Phenotypic Individual Similarity 

PPD : Phenotypic Population Dissimilarity 

PPS : Phenotypic Population Similarity 

RBSM : Rank-Based Selection Mechanism 

RCGA : Real-Coded Genetic Algorithm 

RW : Roulette Wheel 

RWSM : Roulette-Wheel Selection Mechanism 

SM : Selection Mechanisms 

SP : Selective Pressure 

SGA : Standard Genetic Algorithm 

SSM : Standard Selection Mechanism 

TSM : Tournament Selection Mechanism 

 

 

 

 



 

XIII 
  

 



1. INTRODUCTION  Serkan KARTAL 

1 
 

1. INTRODUCTION  

  

Traditional GAs perform selection process independent from individual’s 

genotypic or phenotypic similarities. In nature it is called as random mating (Russel, 

1998; Smith, 1980). However selection of the individuals according to their kinship 

or likeness is more common in natural system (Fernandes et. al., 2009). 

In random mating better individuals should be favoured more often than the 

weaker ones for recombination process. However there are better selection 

mechanisms for recombination, in nature. For instance, humans usually select their 

mate outside of their family tree (Fernandes and Rosa, 2008). This type of non-

random mating is called as outbreeding mating and it is opposite of the inbreeding 

where individuals mate preferentially with their relatives. It is reported that 

outbreeding usually increase the diversity in the population while inbreeding 

decreases (Russel, 1998).  

In non-random mating, parenthood or likeness based mating is performed 

(Fernandes and Rosa, 2008). For example, disassortative mating is a specific type of 

non-random mating that may improve EAs performance by maintaining the genetic 

diversity of the population at a higher level during the search process. Another non-

random mating mechanism is the assortative mating (AM) where the individuals 

choose their mates according to similarities (Russel, 1998). For example the 

existence of correlations between same certain aspects of couples, such as: heights, 

intelligence, behaviour, etc., can be viewed as an instance of AM among humans. 

Previous studies view that mating is very unlikely to be random in nature. 

Assortative and disassortative selection mechanisms (SMs) may produce higher 

survival rates among individuals evolving in static and dynamic environments, 

respectively. These mechanisms bring to mind two major topics: selective pressure 

and genetic diversity. Pressure and diversity are closely related with the terms of 

exploration and exploitation which are needed in order to have safe search and avoid 

from premature convergence in GAs.  

Premature convergence to local optima is one of the most frequently 

encountered difficulties that arise when applying GAs to complex problems. 
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Premature convergence is directly related with loss of diversity. When the 

individuals are in the solution space is too alike, then genetic operators can not 

generate offspring that are better than their suboptimal parents. On the other hand, 

higher population diversity can cause to a dramatic deterioration of GA's 

productivity. Therefore, an important issue in the design and application of GAs is 

the trade-off between exploitation of the best individuals and exploration of 

alternative regions of the search space. 

 In this study, we investigated the inclusion of assortative-disassortative 

selection mechanism to achieve a proper balance between exploitation and 

exploration. In addition to this, assortative-disassortative selection may overcome the 

problem of the standard GAs that usually get stuck on the local optimum rather than 

the global optimum. With disassortative mate selection, individual selects the least 

similar co-candidate for itself. In this way, individuals with rare traits are in the 

advantage of individuals without the rare trait. In addition to this, assortative mate 

selection provides advantages to similar individuals.  Promoting mating among the 

similar individuals provides narrowing down the spread of search space. That yields 

exploitation of a certain region. 

We tested GA for different selection mechanisms; standard selection 

mechanism(SM) and proposed selection mechanisms. These mechanisms were tested 

on standard GA test functions (for two dimensions). 

 Clear winner is the disassortative based SMs to attain global optimum by 

promoting genetic diversity. Using some combinations of assortative and 

disassortative approaches are also give better results than standard SM for GA. 
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2. PRELIMINARY WORKS 

 

In general, a typical RCGA involves three main operators: selection, 

crossover, and mutation to evolve the population towards global optimum. This 

method can be viewed as an evolutionary process. The crossover operation is used to 

create new offspring (solutions). Crossover is one of the key operators to increase the 

diversity of the population, hence enabling GAs to explore promising areas of the 

search space. For common diversity based crossover operations, sharing, diversity 

control oriented GA, restricted mating and assortative - disassortative mating can be 

found. 

Goldberg and Deb (1991) described the sharing method as; each individual is 

forced to share its fitness value with its neighbours. So, the rare or deviant solutions 

will have selective advantages with respect to the common solutions. The 

neighbourhoods of the solutions are evaluated with Euclidian distance between their 

locations in phenotype (fitness) space. 

 Fitness sharing and niching methods are also used by Sareni and Krahenbuhl 

(1998). Niching method maintains population diversity and permits the GA to 

investigate many peaks in parallel. It can be viewed as a subspace in the environment 

that can support different types of life.  In this way it also prevents the GA from 

being trapped in local optima. 

Shimodaira proposed Diversity Control Oriented Genetic Algorithm (DCGA) 

to maintain population diversity (Shimodaira, 1997). In the DCGA the population 

that needed for the next generation is created by merging the population of parents 

and their offspring by eliminating duplicate solutions based on the selection 

probability, which is calculated using the Hamming distance between the candidate 

individual and the best. In another study Mauldin used the Hamming distance 

restriction to avoid the coexistence of similar individuals (Mauldin, 1984).  

 Following the concept of Assortative-Dissortative Mating in biological 

systems, Fernandes first used directed Assortative-Dissortative (positive and negative 

assortative) Mating technique to improve standard genetic algorithms (SGAs) 

(Fernandes et. al., 2001). First, for each recombination event an individual is selected 
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as first parent by using Roulette Wheel (RW) method. Then N genomes are selected 

by the same method. Additionally, the similarity between each of N genomes and the 

first parent is computed. Statistical measure of similarity of two codebooks based on 

the magnitude of the signal and the mean, variance and correlation of the code 

words’ coordinates is used. Then individuals are selected depending on selected 

method (positive- negative assortative) and their similarity.   

De et al. introduced genotypic and phenotypic assortative mating where the 

partners are chosen based on either their genotypic similarity or their phenotypic 

similarity (De et. al., 1998). The first parent is selected according to the fitness value. 

Then candidate partner is determined by considering the Hamming distance 

(genotypic) or the fitness distance (Phenotypic) to the first one. This approach 

provides exploitation of current search space. The aim of this selection is, exchange 

information with two genomes without losing any information. In nature, it is noticed 

that individuals select their partners with similar characteristic.     

Matsui defined dissortative (disassortative) mating within the tournament 

selection strategy (Matsui, 1999). At first, one individual is selected as the first 

parent with standard tournament selection. Then N candidate individuals are selected 

for selection pool. After that correlation is measured between first parent and N 

candidate individuals. Later, the total of the fitness value and the Hamming Distance 

is used to determine second parent. 

Fernandes introduced a different version of the dissortative (disassortative) 

selection to prevent the genetic diversity (Fernandes et. al., 2009). Firstly two parents 

are selected but crossover is performed if the Hamming distance between them is 

found to be above a threshold value. Otherwise, the recombination event is 

considered as “failed” and new pair is selected until N/2 pairs have tried to 

recombine (N is the population size). After the reproduction cycle, a new population 

is created by selecting the best N members amongst the parents and newly generated 

offspring. Then, the threshold is incremented or decremented, according to the 

number of successful and failed events. Thus, the population diversity can be 

controlled depending on the threshold value.  



2. PRELIMINARY WORK  Serkan KARTAL 

5 
  

Another interesting approach is the multi-parental crossover with distance 

dependence alternation model that utilizes distance information among individuals 

(Takahashi et. al., 1999). First m+2 parents are randomly selected from population 

and selected parents generate several children. Then algorithm selects the elite 

solution from the children and finds the parent nearest to elite one. If the elite child is 

better than the parent then parent is replaced with the child. Else, the algorithm 

selects another parent randomly and processes the same procedure. The results 

showed it that the algorithm outperformed traditional GAs.  

Jassadapakorn and Chongstitvatana introduced diversity adaptation in genetic 

algorithms with preference mating (Jassadapakorn and Chongstitvatana, 2011). The 

study is based on modified restricted mating which is called as “preference mating”. 

First individual is selected by the traditional SM. The selection chance of the second 

individual, depends on the difference function and the fitness value. 

Another approach is introduced by Garcia-Martinez et al, for RCGA (2008). 

The authors indicate that the inclusion of that mating strategy increases the 

performance of the GA on a set of proposed problems. It uses the parent-centric real 

parameter crossover operators that create the offspring in the neighbourhood of the 

female parent. The other parent, the male one, defines the range of the 

neighbourhood. Before this process, a female and male differentiation determines the 

individuals in the population that may become female or/and male parents.  

 Unlike most of the previous methods, the algorithm ADM proposed in this 

thesis for RCGAs, which has the general distance functions is based on normal 

distribution and independent from the problem space. As shown above, disassortative 

mating maintains genetic diversity at a higher level. In addition, assortative mating is 

used to make more sensitive search which is based on the same distance 

measurements. 
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3. MATERIALS AND METHOD 

 

3.1. Materials 

 

3.1.1. Genetic Algorithm 

 

Genetic Algorithms (GAs) are well known heuristic search and optimization 

algorithm for solving both constrained and unconstrained function optimization 

problems. GAs are inspired from Darwin’s Theory of Evolution and aimed to find 

optimum solution by searching problem space randomly (Beasley at. al., 1993; Jaffe, 

2002).   

SGA starts with randomly creating a set of candidate solutions that is called 

initial population. Algorithm operates on the population applying the principle of 

survival of the fittest to produce better approximations for the solution. At each 

generation, a new set of chromosomes are produced by the process of selecting 

individuals depending on their fitness score in the problem domain and breeding them 

among themselves. This process leads the population evolve towards the better 

individuals by modelling natural processes, such as selection, recombination and 

mutation (Beasley at. al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Structure of Genetic Algorithm 
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3.1.2. Basic GA 

  

 Basic GA follows common steps illustrated in Figure 3.1. At the first step, 

many chromosomes which represent the solutions are randomly generated to form an 

initial population. Discrete or continuous search spaces can be used for gene 

representation. The population size depends on the nature of the problem and 

generally a predefined constant population size is used. Then the objective function 

is used to evaluate the fitness of individuals. If the desired solution is, by chance, in 

the initial population, there is no need to proceed further. The algorithm should 

terminate straight away. 

If the termination condition is not reached, the next generation should be 

generated. The reproducing of the new generation starts with selecting parents from 

the current population through a fitness-based process. Various selection methods 

can be used for this operation. Such as, rank-based selection, roulette wheel 

selection, tournament selection, etc. 

 The selected individuals (parents) undergo recombination process. 

Recombination aims to produce offspring by combining two or more individuals. 

The parents are not necessarily combined to produce offspring. The crossover 

probability    determines whether recombination will be performed or not. If the 

process should not be performed, the two offspring would be exact copy of their 

parents. The most common real valued recombination methods are, intermediate 

recombination and line recombination. 

All offspring are taken into mutation process with certain probability. The 

aim of the mutation is to alter individuals randomly.  It is applied to the individuals 

with very low probability. This value may vary in the interval of [0, 1] (Shopova and 

Vaklieva-Bancheva, 2006). However it is recommended to use low values, such as 

0.01, 0.1, etc.  The significance of mutation is to provide exploration of the search 

space. 

After the offspring have been produced, they are used to form the next 

generation. In the case of producing less offspring than the size of the original 

population, in order to preserve the size of the original population, combination of 
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the offspring and the old population is used. This process is called reinsertion. Global 

reinsertion and local reinsertion are the well-known reinsertion methods in the 

literature.  

This cycle is performed until termination criteria are met. Generally genetic 

algorithms are run over a predefined number of generations or until problem specific 

termination criteria are reached. Typical termination criteria are: stop after a fixed 

number of generations, stop when a chromosome reaches a specified fitness level, 

stop when a chromosome succeeds in solving the problem within a specified 

tolerance or stop if there is no improvement on the solution in a certain amount of 

generation. 

Previous works show that the behaviour and performance of GAs are strongly 

influenced by the representation scheme used for the problem (Goldberg, 1989; 

Liepins and Vose, 1990). So, to make the application successful, often considerable 

effort is needed to customize the GA to suit the problem. For example representation 

of the problem can be achieved by coding the chromosomes as binary, integer, real-

valued, messy or tree structure. Among of them, the binary coded and real-valued 

representations are the most important and widely used coding schemes.  

 

3.1.2.1. Binary Coded GA 

 

  Binary encodings are the most commonly used and nature-inspired 

representations for EAs, especially for GAs (Goldberg, 1989).  It was proposed based 

on some theoretical guidance and existing recommendations for designing efficient 

genetic representations. In BCGA each chromosome has one binary string. Each bit 

in this string represents the characteristic of the related solution. Two chromosomes 

with binary coding are given below as an example: 

 

Chromosome A 101100101100101011100101 

Chromosome B 111111100000110000011111 
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 When encoding real-valued problems with binary representations, different 

types of binary representations can be used. The most common binary 

representations are binary, gray and unary encodings (Liang et. al., 2007). 

 

3.1.2.2. Real Coded GA 

 

 In real-coded genetic algorithm (RCGA), a solution is directly represented 

with the real number variables. So, the use of real-parameter makes it possible to use 

large domains for variables (Herrera et. al., 1998). 

The main purpose of the RCGA implementation is to move the genetic 

algorithm closer to the problem space. The real coding is used to represent a solution 

for a given problem to decrease computing burden in most of the GA applications.   

 

3.1.2.3. Binary versus Real Coding 

 

Perhaps, the most basic decision for the GA designer is whether to use, binary 

or real coding. The traditional GA uses binary coding (Holland, 1975). On the other 

hand, in many applications real coding is used (Michalewicz, 1996). Various 

arguments are given as to whether binary or real coding should be used, but it is not 

exactly clear which coding method should be adopted.  

Binary coded representation has been demonstrated as the most appropriate 

one and is easy to implement (Goldberg, 1991). However, the GA’s good properties 

do not stem from the use of bit strings (Antonisse, 1989; Radcliffe, 1992).  The 

binary representation encounters with certain difficulties when dealing with 

continuous search space and numerical precision is required.  

On the other hand, real coding would seem more natural to represent the 

genes directly as real numbers for optimization problems in continuous search space. 

Each gene represents a variable of the problem. The use of real parameters makes it 

possible to use large domains for the variables, which is difficult to achieve in binary 

representation. One of the other advantages of the real coding is a slight change in 

variable corresponds to a slight changes in the function. In this way, it is possible to 
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make local tuning on the solutions.  There is no difference between the genotype 

(coding) and the phenotype (search space). Therefore, the coding and decoding 

processes that are needed in the BCGAs are avoided, and that enhances the GA’s 

speed. For these reasons, in this study the use of real coded representations is 

preferred for optimization problems.  

 
3.1.3. Factors Influencing GA 

 

Traditional genetic algorithms use random solutions to create initial 

population. If the population is not spread to search space, it can be difficult to find 

the desired solution for the problem. Therefore, some factors should be considered 

while generating the new population. These factors are: size of the search space, and 

the population size, the selection pressure, the diversity, etc. (Diaz-Gomez and 

Hougen, 2007). However, in this thesis just the diversity factor will be taken into 

account. 

 

3.1.3.1. Search Space 

 

The size of the search space is an important aspect to reach optimum solution. 

If the space is too large, EA may not be able to come close to optimum point. It is 

likely that it will get stuck on a local minimum. Therefore, if it is possible, one 

should try to decrease the number of parameters affecting the problem. If this is not 

possible it may be a good idea to narrow down the range of each dimension. This 

would result in a smaller search space.  

Furthermore the landscape of the search space plays an effective role in the 

success of EA. If the space contains numerous local minimums a good EA should be 

able to avoid such traps.  

In most of the cases, one cannot choose the landscape of the search space. 

Therefore while developing an EA, one should select challenging search spaces in 

order to show the algorithm’s superiority.  
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3.1.3.2. Population Size  

 

Population size is another aspect that affects the performance of an EA. In 

order to explore search space a large amount of candidate solutions should be 

generated. However this comes with the price of decreased speed of convergence. 

Inevitably, the amount of time to evaluate large number of solutions 

(population) will slow down the algorithm. On the other hand having a small sized 

population most probably would result with early convergence on a local minimum. 

Since the search space may not be well explored with such number of solutions. 

Therefore the population size should be selected carefully while optimizing 

the speed and the exploration power.  

 

3.1.3.3. Selective Pressure 

 

Selective Pressure (SP) is the tendency to select the best individuals of the 

population for the recombination to direct the GA better solutions. Too much 

selective pressure cause to premature convergence. However, low selective pressure 

inhibits GA to converge optimum solution in a reasonable time.   

 

3.1.3.4. Diversity 

 

Diversity is the major topic that affects the GA’s performance (Guptai and 

Ghafir, 2012). The maintenance of diversity of the population is essential to ensure 

that all solution space is efficiently searched. Loosing population diversity may be a 

major reason for the premature convergence. Not being capable of producing distinct 

individuals will result in almost identical chromosomes that exploit only a limited 

portion of the search space. So the genetic operators can no longer produce offspring 

that outperform their parents. Generally, this situation cause to stuck on a local 

optimum and to scarify exploration that a good search algorithm should never give 

up (DeJong, 1975; Guptai and Ghafir, 2012). 
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3.1.3.4.(1). Diversity Measurement Methods 

 

Measures to evaluate the diversity of a set of solutions in search space play an 

important role in EAs. Measurement methods can be classified according to 

representation scheme of the solution. Hamming distance and Euclidean distance are 

the most common techniques for the binary and real coded GAs.  

 

3.1.3.4.(1).a. Hamming Distance 

 
Hamming distance is the most widely used technique for measuring the 

similarity of two binary strings (Hamming, 1980). It is used to measure distance 

between two genotypes by counting the number of different bits (Banzhaf et. al., 

1998). In other words, Hamming distance describes how many bits are different in 

two binary strings. The below illustration shows how to calculate Hamming distance 

as an example. 

 

A 1 1 1 1 0 0 1 0 0 1 

B 
 

1 0 1 1 0 0 0 0 1 1 

 

Hamming distance is equal to 3.Total Hamming distance can be computed by 

the following formula: 

  ( ) =   hd(  ,  ) 
     

   
    

hd(  ,   ) =   C , − C ,       
    

 

where tgens is total gene count in a chromosome   ,and   , ,   ,    correspond to     

genes in     and      chromosomes respectively, and  hd(  ,  ) is the Hamming 

distance between two chromosomes c  and c  of a population P= {  ,   , … . ,   },    ( ) is the total hamming distance between all chromosomes. 
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3.1.3.4.(1).b. Euclidean Distance  

 

One of the most frequently used technique for measuring the similarity for the 

RCGA individuals is based on summing (averaging) the Euclidean distances from 

every point (gen) to the center-point (average gen value) (Ursem, 2002; Wineberg 

and Oppacher, 2003a; Barker and Martin, 1999; Barker and Martin, 2000; Wineberg 

and Oppacher, 2003b,). 

    ( , ) =   ‖  −    ‖ 
    

where     is the centroid of the population in each dimension. Another popular 

measure is based on summing (averaging) the Euclidean distances between all pairs 

of points: 

    ( , ) =      −     
     

   
    

For example,    and    are arbitrary individuals and     −      is the 

Euclidean distance between    and   .   
 

3.1.3.4.2. Methods for Maintaining Diversity 

 

Maintaining population diversity is important factor in enhancing the 

performance of the Genetic Algorithms. Diversity-preserving mechanisms can 

enhance global exploration of the problem domain and favour dissimilar individuals 

for recombination. These methods can help to the performance of the algorithm by 

supporting global exploration and escaping from local extreme (Friedrich et. al., 

2009). Methods for preserving diversity are mentioned below. 

 

 3.1.3.4.(2).a. Niching  

 

“Niching” method was described by DeJong (DeJong, 1975). A niche can be 

considered as a subspace in the search space that can support different types of life. 
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Each species is formed by a group of individuals with similar biological features 

which are capable of interbreeding among them but that are unable to breed with 

individuals outside their group. For each group the physical resources are finite and 

must be shared among the individuals of that niche. Niching methods have been 

developed to permit the GA to investigate many peaks parallel and prevent GAs to 

stuck on local optima (Sareni and Krahenbuhl, 1998).  

 

 3.1.3.4.(2).b. Crowding 

 

Later, DeJong presented another approach called “crowding”. This 

mechanism eliminates the most similar individuals when a new one enters to the 

subpopulation. Crowding has some restrictions on the selection methods. There are 

various types of crowding: 

In standard crowding, in each generation only a specified percentage of the 

population is used for replacement. In order to insert an offspring into the population, 

first, randomly select a group of individuals and then calculate the similarities. Then 

identify the most similar individuals and replace the offspring with one of these. The 

size of this subpopulation is called crowding factor. 

 Another type of crowding approach assumes that offspring compete directly 

with their parents. In each generation population is divided into pairs for 

recombination. After recombination, each offspring compares with its parent and if 

the offspring is better it   replaces with one of its parent.   

 

 3.1.3.4.(2).c. Restricted Mating  

 

Another approach is proposed to maintain the genetic diversity is called 

“restricted mating”. While selecting an individual as a mate for another one, some 

restrictions, such as hamming distance are used. If the candidate mate satisfies the 

conditions it will be granted for the mating (Guptai and Ghafir, 2012). 
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 3.1.3.4.(2).d. Sharing 

 

In “sharing method”, each individual receives a fitness value by dividing its 

fitness by the number of similar individuals. Thus the rare individuals get more 

change to reproduce and it tends to encourage search in unexplored area of the search 

space. However, high computational cost of sharing is considered as its most 

important drawback (Snijders, 2005). 

  

 3.1.3.4.(2).e. By Multiploidy  

 

Traditional GAs are based on haploid genotypes. However in nature many 

organism uses “multiploid” genotypes (poly-poid) which is formed from a set of 

chromosomes. This mechanism provides a number of advantages on the nature, 

mainly by enhancing population diversity. So the multiploidy method can be used in 

GAs for maintaining diversity and avoid premature convergence.  The results from 

the set of experiments demonstrated that multiploid GAs more capable of finding the 

optimum than a haploid GA (Collingwood and Ross, 1996). 

  

 3.1.3.4.(2).f. Ranked space  

 

“Ranked space” uses the two ranks in selection phase, first one is the quality 

and the second one is the diversity rank. The combination of these two ranks is used 

to change selection probability of the individuals in the population. In this 

mechanism, the fitter individual is selected by the first rank and population diversity 

is preserved and getting rid of the identical chromosomes (Jassadapakorn and 

Chongstitvatana, 2011). 

 

 3.1.3.4.(2).g. DCGA   

 

“DCGA” (Diversity control oriented GA) is based on elimination of the 

duplicated individuals from merged population of the parents and their offspring. 
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The elimination operation is performed according the Hamming distance between the 

candidate individual and the best individual. The idea is to use even the worse 

solutions instead of discarding them (Shimodaira, 1997). 

 

 3.1.3.4.(2).h. Elitist  
 

In the “Elitist” method the best two individuals, from the group of parent and 

their offspring, are selected for the next generation. No additional selection or 

recombination phase is performed. So the diversity is maintained and the best 

solution is never lost unless even better solutions are created.  However, each family 

competes within themselves. 

 

 3.1.3.4.(2).i. Injection  

 

“Injection” strategy is based on injection of the randomly created individuals 

to the population for maintaining the population diversity. The injection is used for 

certain number of generations. But the new individual can overlap the current one so 

an appropriate sorting strategy should be used together (Sultan et. al., 2006). 

 

 3.1.3.4.(2).j. Removal of Genotype or Fitness Duplicate  

 

Another way to prevent population diversity is using a “restrictive method” 

which does not allow to genotype duplicates within the population.  The population 

diversity is maintained by preventing identical copies from entering within the 

population. In addition, another restriction mechanism called fitness duplicate can be 

used as genotype duplicate to avoid from multiple individuals with the same fitness 

(Friedrich et. al., 2009).  
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3.1.4. GA Standard Test Functions 

 

To investigate the performance of the ADM, ten real valued, well known 

benchmark test functions were employed (Tang et. al., 2009). These global 

optimization test problems consist of different levels of complexity and 

multimodality including unimodal and multimodal functions. The corresponding test 

function and its features are listed in Table 3.1. 

 

Table 3.1. Test functions with their features 
Function Definition Multimodal Separable    Rosenbrock no no    Rastrigin yes yes    Schwefel yes yes    Ackley yes no    Langerman yes no    Fifth function of De Jong yes no    Drop wave yes no    Shekel yes no    Griewangk yes no     Deceptive yes no 

 

 The separability is closely related to the concept of interrelation among the 

variables of the function. In the GA, the interrelation measures how much the 

contribution of a gene to the fitness of the individual depends on the values of other 

genes. The non-separable functions are more difficult to optimize as the accurate 

search direction. On the other hand, separable functions can be optimized for each 

variable one by one. 

A function is called multimodal if it has two or more local optima. The 

problem is even more difficult if the function is also multimodal. In order to come 

close to the global optimum, the search process must be able to avoid the regions 

around local minima. The most complex situation appears when the local optima are 
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randomly distributed in the search space.  All the test functions except Rosenbrock’s 

function are multimodal.   

In the following section, the detailed view of each test function is given. The 

section is divided into sub sections that include a plot of each function in the range of 

the problem space.  

Furthermore optimum point(s) is/are also pointed out. It should be mentioned 

here that the range of functions are not always the ones defined in the literature. They 

have been changed to make the functions more challenging. 

   

 3.1.4.1. Detailed View to the Test Functions 

 

3.1.4.1.(1). F1: Rosenbrock’s valley 

 
   = ∑ [100(    −    ) +  (1 −   ) ]       

 

Test area is usually restricted to -2.048≤   ≤2.048, i = 1...., n. Its global 

minimum equal f(x) = 0 is obtainable at ( ∗) = (1, 1).  
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3.1.4.1.(2). F2: Rastrigin 

   = 10  +  ∑ [   − 10 cos(2   )]      

Test area is usually restricted to -5.12≤   ≤ 5.12, i = 1...., n. Its global 

minimum equal f(x) = 0 is obtainable for ( ∗) = (0, 0).  

 

3.1.4.1.(3). F3: Schwefel 

    = ∑ [−      ( |  |)]      

Test area is usually restricted to -500≤    ≤ 500, i = 1,..., n. Its global 

minimum equal f(x) = -418.9829n is obtainable for ( ∗) = (420.9687, 420.9687).   
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3.1.4.1.(4). F4: Ackley 

 

   = − ∗ exp − ∗    ∑       − exp    ∑ cos(   )     +  + exp (1) 

Test area is usually restricted to -32.768≤    ≤ 32.768, i = 1,..., n. Its global 

minimum equal f(x) = 0 is obtainable for ( ∗) = (0, 0).  

 

3.1.4.1.(5). F5: Langerman 

 

   = ∑       exp[−   ∑ (x − a  )     ]  cos [ ∑ (x − a  )     ] 
Where m=5, a=[3,5,2,1,7], b=[5,2,1,4,9], c=[1,2,5,2,3]. Test area is usually 

restricted to 0≤    ≤ 10, i = 1,..., n. Its global minimum equal f(x) = -4.15 is 

obtainable for ( ∗) = (2.8, 1.6). 
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3.1.4.1.(6). F6: Fifth Function of De Jong  

 

   = {0.002 +  ∑ [ +     −      +      −      ]       }   

Where       =                                    …                                    …              

Test area is restricted to -40≤    ≤ 40, i = 1....n. Its global minimum equal f(x) 

= 0.998 is obtainable for ( ∗) = (-32, 32).  

 

3.1.4.1.(7). F7: Drop Wave 

 

   =  −                                

Test area is restricted to -5.12≤    ≤ 5.12, i = 1,..., n. Its global minimum 

equal f(x) = -1 is obtainable for ( ∗)  = (0, 0).  
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3.1.4.1.(8). F8: Shekel 

 

   = −∑ (∑ [ x − a    +     ]    )       

Where       =                                    …                                    …               

Test area is usually restricted to -10≤    ≤ 30, i = 1,..., n. Its global minimum 

equal f(x) = -3.43 is obtainable for ( ∗) = (0, 0).  

 

3.1.4.1.(9). F9: Griewangk 

 

   =      ∑        −∏ cos    √  + 1      
Test area is usually restricted to -600≤    ≤ 600, i = 1,..., n. Its global 

minimum equal f(x) = 0 is obtainable for ( ∗)  = (0, 0).  
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3.1.4.1.(10). F10: Deceptive 

 

    = −    ∑   (  )        

  

  (  ) =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ −    + 45                  − 0 ≤     ≤  45   5   − 4                45  ≤     ≤    5( −   )  − 1 + 1            ≤     ≤  1 + 4  5 − 11 −   + 45               1 + 4  5 ≤     ≤  1

 

 

Test area is usually restricted to 0≤    ≤1, i = 1,..., n where    = 0.3,   = 0.7 

and  β = 2.5. Its global minimum equal f(x) = 0 is obtainable for ( ∗)  =(0.44, 0.76). 
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3.2. Method 

 
3.2.1. Fitness Based Selection Mechanism 

 

Fitness Based Selection aims to identify better individuals of the population 

that might be suitable for recombination. In SGA, selection is carried out in 

compliance with a fitness value. Fitness function is used to assign a selection 

probability to each individual. Tournament, Ranking and Roulette Wheel are the 

most common selection methods employed in many GA applications.  

 

3.2.1.1. Roulette Wheel Selection Mechanism   

 

The simplest selection scheme is Roulette-Wheel Selection Mechanism 

(RWSM).  Each individual gets a selection probability proportional to its fitness 

value. RWSM emphasizes the better individuals in the population. This mechanism 

speeds up convergence to better solutions.  On the other hand, this could cause loss 

of genetic diversity and may lead getting stuck on local optima.  

 

3.2.1.2. Rank Based Selection Mechanism 

 

In Rank-Based Selection Mechanism (RBSM), an individual’s rank score 

(instead of the fitness value) is used to calculate selection probability. Firstly, 

individuals are arranged according to their fitness values. Then, a selection 

probability is assigned to each individual proportional to its rank in the population. 

This mechanism relatively protects the population diversity when compared to 

RWSM. 

 

3.2.1.3. Tournament Selection Mechanism 

 

  In Tournament Selection Mechanism (TSM), a number of individuals, that is 

called tournament size, are chosen randomly from the population and the one which 
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has the highest fitness value is selected as one of the parents. The tournament size 

can vary from two to up any reasonable number.  

 

3.2.1.4. Which Selection Mechanism? 

  

  Based on the selection schemes mentioned above, several researchers have 

attempted to derive good techniques to build better selection schemes for solving 

constrained problems. Jadaan et al. compared the results of GA between RWSM and 

RBSM using several optimization functions and reported that rank-based selection 

outperformed roulette based in number of generations to find the optimum solution 

(Jadaan et. al., 2005). The study demonstrated that RBSM is faster and more robust 

in the direction of the optimum solutions than fitness proportional RWSM.   

Furthermore, Zhong et al. compared TSM with RWSM at seven general test 

functions and concluded tournament selection strategy is more efficient in 

converging to optimum solution than that of RWSM (Zhong et. al., 2005).  

However, Julstrom analyzed the computing time efficiency of two types of 

rank-based selection probabilities; linear ranking and exponential ranking 

probabilities and compared them with TSM (Julstrom, 1999). The study revealed that 

TSM should be preferred to RBSM, because repeated tournament selection is a lot 

faster than sorting the whole population to assign rank-based probabilities.  

The fitness value of an individual does not entirely depend on the basic 

fitness value that is how good a solution is, in the proposed selection mechanisms. 

This might sound a little bit confusing. When one talks about the fitness value of an 

individual in SGA, it means how good the solution for the problem is. The 

individuals that have better basic fitness values have more probability for 

reproducing. However, if we are talking about Assortitative-Dissortitative Mating, 

one has to have some other qualities besides having better basic fitness value in order 

to be advantageous for reproducing. This can be easily observed in human 

population. If the basic goal is to survive and pass one’s own DNAs to next 

generations, one should select a mate that is strong and healthy. However, human 

society demands more than that. The qualities like beauty, wealth, reputation, 
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religion, race, etc., have importance while selecting a mate. When we talk about 

basic fitness value, we talk about satisfying the basic goal, health and survival, 

respectively. However, if we talk about a proper mate for an individual, the fitness 

value of a candidate partner should be weighted sum of his/her health, wealth, 

beauty, reputation, religion, etc. 

Evaluation of the qualities mentioned above is critical. They can be evaluated 

either locally or globally. If we are talking about SGA, then we should satisfy the 

whole population’s needs, global needs, in this case.  However calculation of such 

extra information, similarity/dissimilarity for example, requires extra work and 

computational time. Identification process of each individual’s similarity and 

dissimilarity to every other individual in a population has O(N2) complexity. 

However, if we use TSM, as Julstrom suggested (Julstrom, 1999), for selecting a 

partner for an individual, computation time will be substantially reduced. All those 

measurements have to be carried out with O(N) complexity.               

As a conclusion, to show the advantages and disadvantages of ADM against 

pure fitness based selection mechanisms, TSM will be preferred as default selection 

mechanism. While time complexity of RWSM and RBSM is O(N2), TSM outstands 

with O(N) complexity.   

 

3.2.2. The Proposed ADM 

 
3.2.2.1. Background 

 

The objective of the present study is to introduce a new selection 

methodology for (RC)-SGA, namely ADM and to evaluate its performance. Despite 

of the discussions in the preceding section, ADM is also applicable to RWSM and 

RBSM as well as TSM.  

 The fundamental motivation that led us to investigate ADM is that do the 

common phrase “opposites attract each other” and the adage “Birds of a feather flock 

together” really hold in the sense of genetic algorithms? There are numerous reported 

studies in relationship research area that supports the principle “similar attract” since 



3. MATERIALS AND METHOD  Serkan KARTAL 

28 
  

1961 (Newcomb 1961; Byrne 1971). Byrne, for example, reported strong linear 

relationship between degree of similarity and liking. Tests of the idea that “opposites 

attract” have been reported unsuccessful in general, despite similarity-attraction 

effect is now well established (Berscheid and Reis, 1998; Byrne, 1997) and widely 

accepted. It has to be reminded that all these efforts are made in relationship research 

field. Are there such relationships in genotypic characteristics?  

Hardy and Weinberg Principle states that the gene pool of a population, that 

is mating randomly and is not subject to any other evolutionary process, will remain 

in equilibrium. However, in evolutionary algorithms, it is strongly desired to evolve 

from a randomly generated gene pool to the best possible gene that is optimum 

solution for the problem at hand. SGA does not contradict with Hardy and Weinberg 

Principle, because it incorporates other evolutionary processes such as, mutation, 

selection (favouring one to another through phenotypic traits).  

On the other hand, in all human populations, people usually select mates non-

randomly. Assortative Mating is a non-random mating pattern in which individuals 

with similar genotypic and/or phenotypic traits mate with each other more frequently 

than in random mating pattern. The term "assortative" designates classifying and 

selecting characteristics. For example, it is common for individuals of similar body 

size to mate with one another.  Less commonly, in disassortative mating, also 

referred as negative assortative mating, individuals with dissimilar qualities mate 

more frequently than what would be expected in random mating. Both mating 

strategies cause the frequency of certain genotypes to differ from the frequencies 

anticipated by the Hardy-Weinberg Principle. Plant and animal breeders usually 

employ controlled positive assortative mating to increase the frequency of certain 

characteristics of the species and to reduce genetic variation in a population. By 

contrast, disassortative mating results in a greater number of heterozygote that is an 

organism possessing two dissimilar forms of a gene for a heritable characteristic, 

which may therefore produce offspring differing from the parents and each other in 

that characteristic.  

Assortative and Dissortative mating strategies may enhance the exploitation 

and exploration abilities of SGA, respectively. Assortative mating promotes 
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reproduction among similar alleles resulting with increased numbers of offspring that 

strongly resembles to their parents. This process is analogous to exploitation 

characteristic of a good search algorithm. Plant and animal breeders usually employ 

controlled assortative mating to increase the prevalence of certain traits and to reduce 

genetic variation in a population. This, however, suggest that if assortative mating is 

not supervised carefully, it may result with loss of genetic diversity that is the main 

reason for premature convergence. Dennis O'Neil 

(http://anthro.palomar.edu/synthetic/Default.htm, 2013) states that “If brothers and 

sisters are mated together every generation, it will only take 20 generations for all 

individuals in a family line to share 98+% of the same alleles—they essentially will 

be clones, and breeding results will be close to those resulting from self-

fertilization.” This exemplifies how catastrophic the results of assortative mating can 

be.  

Dissortative mating, on the other hand, is analogous to exploration 

characteristic of a search algorithm. The offspring will be diverging from their 

parents and allowing exploration for SGA. If carefully devised Assortative and 

Dissortative Mating Strategy (ADMS) may enhance the search capabilities of 

Evolutionary Algorithms.  

  ADMS is devised to be based on similarity/dissimilarity of 

Phenotypic/Genotypic traits between individual-individual/individual-population. An 

individual that is selected somehow for reproduction seeks a mating partner through 

TSM. A number of candidates that is equal to tournament size are evaluated 

according to their Attraction Scores. Attraction Score of a candidate is calculated 

from mixture of the following:  

• Similarity and/or Dissimilarity  

• Based on Phenotypic and/or Genotypic traits.  

• Targeted to Population and/or Individual  

Genotypic similarity/dissimilarity is a measure derived from structure of genes. 

In section 3.1.3.4.1, it has been indicated that the measure of similarity and 

http://anthro.palomar.edu/synthetic/Default.htm
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dissimilarity for binary chromosomes are calculated from Hamming Distance 

(Banzhaf et. al., 1998; Hamming, 1980). However, quantifying 

similarity/dissimilarity measure of real coded genes is harder than binary 

counterparts. Details of calculations can be found in section 3.1.3.4.1.2. While 

selecting a suitable mate, two different strategies can be chosen; similar/dissimilar 

individuals to self or similar/dissimilar individuals to the population. Both strategies 

promise to reproduce offspring that differ from their parents and the normal of the 

population.  

The above discussion is valid for phenotypic characteristics as well. Therefore 

eight different ADM strategy can be constructed from three main features; 

similarity/dissimilarity, phenotype/genotype and population/individual. Figure 3.2 

displays tree structure of these characteristics. Eight ADM strategies for selection 

can be listed as; 

 

• Genotypic, Population based Similarity (GPS) 

• Genotypic, Population based Dissimilarity (GPD) 

• Genotypic, Individual based Similarity (GIS) 

• Genotypic, Individual based Dissimilarity (GID) 

• Phenotypic, Population based Similarity (PPS) 

• Phenotypic, Population based Dissimilarity (PPD) 

• Phenotypic, Individual based Similarity (PIS) 

• Phenotypic, Individual based Dissimilarity (PID) 

  

While genotypic measurement can be done in one method, phenotypic 

measurements can be varied by future researchers. For example; sexuality, kinship, 

neighbourhood, lifetime etc., can be considered as phenotypic traits of an individual. 

In this thesis, the strategies are limited only to eight. However, by combining one or 

more of these strategies, we can expand the possibilities to 256 different ADM 

strategies. By switching on and off each strategy, 28=256 different strategies can be 

obtained. It may be a good idea to consider an individual’s, similarity to one’s self 

and dissimilarity to the population, while selecting a mate. On the other hand, it may 
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be just waste of time to employ all of them together for mate selection. For the sake 

of completeness, all the combinations will be experimented and discussed in this 

study.    

 
Figure 3.2 ADM selection strategy tree 

ADM
Selection 
Strategy

Genotypic

Population

Similarity GPS

Dissimilarity GPD

Individual

Similarity GIS

Dissimilarity GID

Phenotypic

Population

Similarity PPS

Dissimilarity PPD

Individual

Similarity PIS

Dissimilarity PID
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3.2.2.2. Diversity Calculation  

 

Diversity of two binary chromosomes can be calculated as the average 

dispersion of genes. It can be easily calculated from Hamming distance that is the 

sum of absolute difference of corresponding binary genes. However, for real coded 

genes, Hamming Distance is not applicable. In such cases Euclidian Distance, the 

most commonly used distance metric in the literature, can be used to measure the 

distance between two solutions points (chromosomes) in the search space. However, 

real coded genes may vary in extremely different ranges. While some of the genes 

may have values spanning in a narrow range with extremely small magnitudes, some 

others may have extremely large values with large dispersion. In such cases, the 

sum/average of Euclidian distances between corresponding genes may not reflect 

true diversity of chromosomes. Solution to this problem is the normalization of data 

prior to its usage. 

In order to adjust values measured on different scales to a notionally common 

scale, often prior to averaging, is called normalization.  Min-Max normalization, for 

example, is the process of taking data measured in its units and transforming it to a 

new value between 0.0 and 1.0. The lowest value in the data set is set to 0.0 and the 

highest value is set to 1.0. By this way, the values that are measured using different 

scales (for example degrees Celsius and degrees Fahrenheit) or different units of 

measure (speed and distance) can be comparable.  

However, if there is a small number of data that substantially differ from the 

rest, normalization range [0-1] would not be used efficiently. For example, if the data 

set A={1,1000,1001,1002,1000,2000,90000} is Min-Max normalized, apart from 

minimum and maximum values, the remaining data will have new values in the 

range of  (0.01-0.02). This displays that the full range would not be used. 

Considering GA problem, there is a strong possibility that some of the offspring or 

mutated individuals will be extremely differing from the population, especially after 

few generations. Existence of such extreme values in a data set makes the Min-Max 

minimization unsuitable for the purpose.   
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 Standard score that measures the sigma distance of actual data from the 

average can be used instead of Min-Max normalization. It is, as desired, a 

dimensionless quantity derived by subtracting the population mean from an 

individual data and then dividing the difference by the population standard deviation. 

It is given as   =  −    

where;  d is a data, μ is the mean of the population,  σ is the standard deviation of the 

population  and z is the standard score that can have negative and positive value. 

Figure 3.3 illustrates the normal distribution of the population around the mean value 

and z scores. 

 

 
Figure 3.3. Plot of normal distribution 
 

As it can be seen from the Fig. 3.3, one standard deviation around the mean 

covers 68.26% of whole population. Two and three standard deviations around the 

mean include 95.44% and 99.74% of the population, respectively.  

Representing real valued genes with z scores allow us to use dimensionless 

values proportional to dispersion of population. Furthermore, regardless of how 

diverse are the range of the genes, we can confidently use arithmetical operations on 

the z scores. In the meantime, we desire to calculate a diversity score that is limited 

in the range of [0-1]. Depending on the value of a gene it may have such z scores that 

as big as tens, hundreds, thousands, even in extreme cases billions. This may sound 
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preposterous but that is possible if do not prevent such cases. Clipping-off the genes 

after a certain z score can guarantee not to face such cases. Then, a threshold z value 

(zth) should be determined. 

Since 99.74% of the population lay within z=±3, it may be plausible to set 

maximum and minimum values of a gene to +3 and -3 respectively. On the other 

hand, selecting zth=±2 will still cover most of the population (as much as 95.44%). In 

case of zth=±3 one third of whole z score range will be reserved for only 4.3% of the 

population. That means the whole range will not be used effectively. Selecting 

zth=±1.65, however, covers 90% of the population and upper and lower halves of the 

whole range covers 31% and 59% of the population. The remaining 10% is rounded 

to the upper boundary as the extreme values.  

 

3.2.2.3. Foundation of Diversity Measures:  

 

Genotypic or phenotypic diversity of a chromosome can be calculated as the 

sum of the distances between the genes of an individual and some reference points. If 

the desired diversity measure is individual based then calculations are carried out 

between two individuals. In this case the reference point, pointed out previously, is 

another chromosome. However if we want to measure an individual’s diversity from 

the whole population, then the reference point is the mean traits of whole population. 

Regardless of whether diversity measure is population or individual based, 

the basic statistical properties of the population have to be calculated. Mean and 

standard deviation of a certain gene can be calculated from Equation 3.1 and 3.2, 

respectively.                     

 (  ) = 1       
    (3.1.) 

 (  ) =  1     −  (  )     
    (3.2.) 
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where:  (  ) and  (  )is population mean and standard deviation of gene   , 

respectively. The letter  is used for symbolizing gene and the letter k is used to 

indicate the index of a particular gene in a chromosome C. N is the population size. 

In order to eliminate the chromosomes’ range effect, discussed earlier, z 

scores should be used for calculations. Throughout the calculations we need to use 

absolute z scores that is given in Equation 3.3:  

  ̇( , ,  ) = | −  |  (3.3.) 

 

where; R is a reference point (usually mean),   is the standard deviation and Q is the 

data to be evaluated for diversity. As it can be expected, absolute z score ( ̇) may 

have values in unlimited ranges. Since we are dealing with diversity, any  ̇ value that 

is larger than a threshold value (zth) can be confidently clipped off to an upper 

boundary. Any absolute z score ( )̇   larger than this threshold z score will be 

evaluated highly differing from reference point. Normalized Absolute z Score (  ̈ ) 

will limit the scores to be in the range of 0 and 1, and given as   

  ̈( , ,  ) =  ̇( , , )    (3.4.) 

 

3.2.2.4. Genotypic Diversity 

 

 Genotypic diversity can be measured in two ways; between two 

chromosomes or between chromosome and population mean. In either case, 

Normalized Absolute z Score (  ̈ ) (Equation 3.4) provides us the power of 

dimensionless and normalized difference measuring capability. Genotypic diversity 

between two chromosomes (      ) can be calculated from Equation 3.5. 
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 (  ,  )    = 12    ̈     ,     ,     
    (3.5.) 

where,  (  ,  )     is genetic individual diversity (  )     between two chromosomes    and    ,     is the number of genes in a chromosome and  ̈     ,     ,     is 

Normalized  Absolute z Score for kth gene of chromosomes Ca and Cb.     is the 

population standard deviation of kth gene.  

 

        ,  (  ) = 1    ̈     , (  ),     
    (3.6.) 

 

Genotypic diversity between a chromosome and the population mean (      ) 

can be calculated using Equation 3.6. It is measured in a similar fashion with 

Equation 3.5. The first difference is in the reference point for calculation of 

normalized absolute z score. It is, naturally, the population mean ( (  )) rather than 

being another chromosome. Secondly, the absence of coefficient 2 at the 

denominator. The distance between two chromosomes that are located at the lower 

and upper ends of the range is double of the distance between a chromosome located 

at the lower or upper end of the range and the mean of the population.  Therefore, 

while calculating individual diversity the range should be divided by two.          

 

3.2.2.5. Phenotypic Diversity  

 

Phenotypic diversity calculations, as in genotypic diversity calculations, are 

made between two chromosomes or chromosome and population mean. Phenotypic 

measure of a chromosome has been chosen as its fitness value. Even though, fitness 

of a chromosome is related to its genes, same fitness values can be obtained from 

different chromosome structures. Fitness of a chromosome can be thought as a 

measure of how wealthy, healthy, or handsome, is the individual.  
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Phenotypic diversity between a chromosome and the population mean (       ) 

is equal to normalized absolute z score ( ̈    ,   ,   ) and given in Equation 3.7 as; 

      ,         =  ̈    ,   ,    (3.7.) 

 

where,      ,       and    are fitness of chromosome ‘a’, mean fitness of whole 

population and standard deviation of population fitness, respectively.  

Phenotypic diversity between two chromosomes (       ) is equal to half of 

normalized absolute z score ( ̈    ,    ,   ) and given in Equation 3.8. as; 

      ,          = 12  ̈    ,    ,     (3.8.) 

 

where,      ,     ,         are fitness of chromosomes ‘a’, ‘b’ and standard deviation 

of population fitness, respectively.  

 

3.2.2.6. Selection Score Calculation 

 

  Traditional selection mechanisms are built on the principle of “survival of 

the fittest” to converge to optimum solution. Like the most of GAs, proposed 

selection mechanisms also, employ fitness value in conjunction with the ADM 

strategies for selection procedure. Each mechanism (Fitness + ADM) affects the 

mate selection strategy relatively through their selection scores; Fitness Score (FS) 

and ADM score. 

  

3.2.2.6.(1).  Fitness Score (Sf) 

 

Each individual’s Fitness Score (Sf) is directly linked to normalized absolute z 

score ( ̈    ,  ,    ) of its fitness. If the objective is minimization, in order to assign 

greater probabilities to individuals having smaller fitness values, fitness scores are 
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assigned in inverse proportion to the original fitness. In order to assign greater 

probabilities to individuals with less fitness values, the fitness values are reversed as 

in Equation 3.9.: 

   (  ) = 1 −   (  ) (3.9.) 

 

3.2.2.6.(2).  ADM Scores 

 

The ADM based mechanisms define a selection score of individuals 

depending on some measure of distance of the candidate solutions which are based 

on three subjects: similarity/dissimilarity, individual/population and 

phenotypic/genotypic. Depending on a selected strategy, it may favour the 

production of additional diversity (Dissortative Mating) or the refinement of the 

solutions (convergence, Assortative Mating). These strategies are: PPS, PPD, PIS, 

PID, GPS, GPD, GIS and GID. The first letters of each strategy indicates whether the 

strategy is based on (P)henotypic or (G)enotypic traits. The second letters indicate 

whether the reference point for the measurements is (P)opulation mean or another 

(I)ndividual. The third letter indicates the measurement type (S)imilarity or 

(D)issimilarity.   

 PPS(  , )  = 1 −      ,          (3.10.) PPD(  , )  =      ,          (3.11.) PIS(  , )  = 1 −      ,          (3.12.) PID(  , )  =      ,          (3.13.) GPS(  , )  = 1 −  (  , )     (3.14.) GPD(  , )  =  (  , )     (3.15.) GIS(  , )  = 1 −  (  , )     (3.16.) GID(  , )  =  (  , )     (3.17.) 
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The ADM scores of a chromosome (Ca) are calculated from Equations 3.10.-

3.17. However, a careful eye will easily spot that if any strategy pair that share same 

letters for the first two letters always result with a sub total score of 1 (the other 

terms will cancel out each other). In order to prevent this, only one score is 

calculated for the strategies that are complementary of each other (PPS-PPD for 

example). The joint strategies ADM score can be calculated from Equation 3.18. 

 KLM(  , )  = |1 − 2 ∗  (  , )  | (3.18.) 

  

where K, L and M are substitutes of the first, second and third letters of the ADM 

strategies, respectively. Figure 3.4 illustrates the Equation 3.18 in graphical terms. It 

has to stress out that only one joint score will be calculated rather than two separate 

scores. As it can be observed from the Figure 3.4, if diversity score of strategy 

KL(D) is  (  , )  = 0.1, it means chromosome Ca closely resembles to the 

reference point. In this case if KL(S) is also to be calculated then modified joint 

ADM score will be 0.8. For an individual that has  (  , )  = 0.5, that is neither so 

diverse, nor so similar, joint ADM score will be 0, as expected. 

 
 
 Figure 3.4. Joint ADM score. 
 

One more point that has to be mentioned is, if the selection strategy is based 

on population, then both of the individuals are selected by the help of diversity 

0
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measurement. However if the selection strategy is based on individuals,  then  only 

selection of second person employs diversity measurement, since the reference point 

is the first individual. Finally total ADM score of an individual for selection is 

calculated  from Equation 3.19; 

 

ADMS(  ,R)= 

 β[ PPS(  ,R)+PPD(  ,R)+PIS(  ,R)+PID(  ,R)]+ 

λ [GPS(  ,R)+GPD(  ,R)+GIS(  ,R)+GID(  ,R)]    

(3.19.) 

 

where, coefficients, β and λ, are used as scaling factor to adjust the effects of 

phenotypic and genotypic features and ADMS(  , ) is the Assortative/Dissortative 

Mating selection score of a chromosome Ca. 

 

3.2.2.6.(3).  Final Selection Score 

 

In this thesis, two scoring mechanisms; Fitness Score (Equation 3.9) and 

ADM Score (Equation 3.19) have been discussed for mate selection. Equation 3.20 

fuses these two scoring mechanisms together to obtain a total selection score of a 

candidate mate;  

 

SS(  , ) =α  (  , ) + ADMS(  , )     (3.20.) 

 

As shown in Figure 3.2, the mating scheme is divided into eight operation 

modes depending on the strategies to choose Parent A and Parent B. Then this 

operation mode is combined with traditional fitness based method. In addition to this 

combination, the scaling factors α, β and λ are added to equation to adjust the 

influence of each mechanism. The operation modes with α =1, β=0 and λ=0 is the 

same as the standard fitness-based tournament selection. Also the case α =0, β=1, 

λ=1 is also actually the opposite of the case of as α =1, β=0 and λ=0 is, because two 

candidates will be evaluated with only their similarity or dissimilarity. In those 
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studies, the values of α, β and λ were fixed throughout the 1.  All the strategies are 

examined in section “Result and Discussions” while some of them are recommended.  
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4.  RESULTS AND DISCUSSIONS 

 

To investigate the performance of ADM strategies ten real valued, well 

known benchmark test functions were employed. These global optimization test 

problems consist of different levels of complexity and multimodality including 

unimodal and multimodal functions. Several quantities are used to measure and 

compare the performances of the suggested strategies. The primary ones are the 

average fitness, median fitness and best fitness.   

 

4.1. Experimental Setup 

 

In order to evaluate the performance of a suggested strategy, various 

parameters have to be taken into consideration. Population size, maximum number of 

generations, mutation and crossing over rates has to be tuned up for best 

performances. Ideally all of these parameters should be defined from an experimental 

setup that each parameter should gradually incremented or decremented from a base 

line with a predefined step size.  For example, changing population size from 10 to 

200 with step size 10 will result testing 20 different settings. Without giving too 

much detail let’s say we test 10 different values for mutation rate, 50 different values 

for crossing over rate. May be, 10 different maximum numbers of generations 

settings, 5 different tournament size settings etc. should be tested for each one of 256 

ADM strategies. Table 4.1 displays hypothetic setup possibilities for adjustable 

parameters; 
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Table 4.1. Adjustable parameters and their setting counts  
Parameters Count 

Number of ADM Strategies 256 

Number of test functions 10 

Number of Population size settings 20 

Number of mutation settings 10 

Number of Cross over settings 50 

Number of generation settings 10 

Number of Tournament size setting 5 

Number of Elitism settings 10 

Number of child number settings 5 

  

Such hypothetical setup requires 64 trillion combinations. In order to 

decrease the effect of randomness on the results (Hamzacebi, 2008), if we repeat the 

tests with 15 different random seed values, we will come across with 960 trillion 

settings. This value is just for experimental setups. In each experimental setup the 

algorithm needs to execute huge numbers of operations. Within the limited time of 

this study, it is almost impossible to complete the tests.  

 

Table 4.2. Preliminary GA parameters used in determining GA strategies 
GA Parameter Preliminary Value 

Population Size 30 

Tournament Size 3 

Maximum Number of Generations 200 

Elitism 10(%) 

  

Therefore we need to decide as much parameter as possible with commonly 

accepted practices without testing. Commonly it is accepted the population size to be 

at least 10 times greater than the variable number (Shopova and Vaklieva-Bancheva, 

2006). Since the problem domain is in two dimension 30 will be sufficient enough 
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for population size. Similarly, 10% elitism is widely practiced value in the literature. 

We can confidently set the maximum number of generations to 200, since 

preliminary experiments showed that all the strategies have converged to a certain 

solution well before 200 generations.  Tournament size is also can be set to 3, since it 

is the most common setting in the literature. All these parameters are listed in Table 

4.2. 

Having all these, crossover and mutation rates that produce the best 

optimization results individually for each test function have been determined by 

testing 500 different combinations for each benchmark test function. Deciding the 

remaining parameters beforehand, the number of tests required to set the optimum 

parameters was reduced to 7500. Table 4.3 lists optimum crossover and mutation 

rates for each benchmark functions after tuning up.   

 

Table 4.3. Mutation and crossover parameters for benchmark functions 
Function Mutation Rate (%) Crossover Rate (%) 

Rosenbrock 0 75 

Rastrigin 3 91 

Schwefel 9 88 

Ackley 8 94 

Langerman 0 78 

Fifth function of De Jong 4 71 

Drop wave 3 93 

Shekel 9 71 

Griewangk 6 96 

Deceptive 9 93 

 

It has to be emphasized that mutation and crossover rates are optimized just 

and only for (RC)-SGA. The suggested ADM strategies have been thought as 

enhancer(s) of any GA type reported in the literature. So in order to increase 



4.  RESULTS AND DISCUSSION   Serkan KARTAL 

46 
  

population diversity and enhance the searching capacity of a genetic algorithm, the 

suggested strateg(y)ies can be easily add on into the any existing algorithm.               

Test results that include minimum, maximum, average, best and worst fitness 

values that are obtained from fifteen independent run for Rosenbrock function is 

given in Appendices. Also, the results for each test function can be found in 

http://bmb.cu.edu.tr/skartal/thesis/ GA_ADM_Selection.html.   

 

4.2. Performance comparisons of ADM-RCGA 

 

In GA literature, the performance of the GA is usually measured on two basic 

criteria; reliability and efficiency. Reliability evaluates how much of the search space 

is scanned, in other words, it measures level of dispersion. Efficiency, on the other 

hand, measures the rate of convergence. In the present study, standard deviation is 

employed to compare the reliability of algorithms. It points out the level of scattering 

in obtained solutions. Bigger standard deviation denotes more scattered and reliable 

solutions. However, smaller standard deviation means lower level dispersion which 

can cause to premature convergence. The average fitness of the population is used to 

present the efficiency of solutions.  

 

4.3. Comparisons of ADM Strategies 

 
In this thesis, 255 different ADM strategies examined to observe their effects 

on (RC)-SGA. It has been observed that while some of the strategies have positive 

effect on the performance of RC-SGA, a large portion of the devised strategies have 

negative impact. This may be the result of experimental setup. Because, in this study, 

we intended to suggest an enhancer add on to a standard GA. In order to observe the 

enhancer’s performance, all the parameters are tuned up for the standard GA.  This 

has been done just for research purposes. Of course, in practice we should tune up 

the whole algorithm (SGA+ADM) to obtain the best performance. It has to be 

pointed out that if we had enough time to tune up every strategy for every function 

http://bmb.cu.edu.tr/skartal/thesis/
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there may be a chance to improve the results. However as stated earlier on, time 

limits of this study prevents us to investigate further more.  

Even though 255 ADM strategies are suggested, most of them are in the list 

just for the sake of completeness. Some of the ADM components, for example, 

promise to provide exploration (GPD, GID, etc.), some others hint to provide 

exploitation (GPS, GIS, etc.). Combination of different components will have 

varying effects on the algorithm. If there is enough time, one can always test all of 

ADM strategies, and identify the best one accordingly. However this may not be 

possible in every case. So, we feel obliged to suggest better performing components 

for any type of problem. 

In order to identify the components that have strong positive or negative 

effect on overall performance of SGA, some numerical methods should be employed. 

In statistics, factor analysis or principal component analysis are such methods that 

can identify the major elements effecting the problem. However both of the methods 

rely on statistical measures like standard deviation and mean. In our case, however, 

an ADM strategy component (PPD, GIS, etc.) is either exist or not exist in a strategy. 

Therefore it is in binary form. Mean of any component in 255 strategies is 0.5 and 

standard deviation is also equal to 0.5.  Therefore factor analysis and principal 

component analysis cannot be used since all the components have the same statistical 

measures. We need to devise a method to evaluate each components performance. 

Following sections are dedicated to introduce these methods.  

 

4.4. The proposed Component Performance Evaluation Method 

 

This section describes a method to identify the common components of ADM 

strategies that have strong positive or negative effect on overall performance of GA. 

In order to achieve this, for each benchmark function, average fitness values of 255 

ADM strategies and (RC)-SGA are calculated and arranged in descending order from 

the best one to the worst. The best performing strategy has the rank score of 256 and 

the worst has 1. If a component is frequently exist/non-exist in the good/bad 

solutions, it is assumed that this component has positive/negative effect on the 



4.  RESULTS AND DISCUSSION   Serkan KARTAL 

48 
  

performance. The simplest way to calculate the observation frequency of a 

component among the successful/failed strategies is to calculate its percentage in a 

certain portion of sorted list. That portion can be located in either sides of (successful 

or failed strategies) sorted list. However, to be more precise, we suggest the use of a 

total rank score gathered from the whole strategies for each component.  

Total rank score of a component can be minimum =8,256 or maximum 

=24,640. According to the distribution of a component’s existence in sorted 

list, its rank score will have a value within the range of [8,256-24,640]. If a 

component gathers 8,256 total rank score we can say that this component has 100% 

negative effect on the performance. If it scores 24,640 then we can claim that it has 

100% positive effect.  

 

 

 

 

 
Figure 4.1.The worst possible                              Figure 4.2. The best possible  

distribution of %P successful     distribution of %P  failed  
component       component 
 

We have divided the sorted list in two halves. The strategies located at the 

upper half of this list are called successful ADM strategies (Figure 4.1.) and the ones 

at the lower half are called failed ADM strategies (Figure 4.2.). Let’s assume that 

component C is observed in P% of the successful ADM strategies. The component C 

could be observed in any distribution as long as it satisfies P% of it, is in the upper 

half. Since, distribution can vary, a threshold value for being P% of the observations 

in the upper half ( ) has to be calculated (Equation 4.1). This can be achieved by 

considering P% of the observations are located at the bottom of upper half (as 

illustrated in Figure 4.1.) and the remaining (100-P)% of the observations are at the 

bottom of bottom half.  

 
%P 

%(100-P) 

 
%P 

%(100-P) 

UB1 

BU1 

UU1 

BB1 

Successful 
strategies 

Failed 
strategies 

 
%P 

%(100-P) 

 
%P 

%(100-P) UB2 

BU2 

UU2 

BB2 

Successful 
strategies 

Failed 
strategies 



4.  RESULTS AND DISCUSSION   Serkan KARTAL 

49 
  

               =    ∗(     ) −    ∗(     )  +    ∗(      ) −    ∗(     )     (4.1.)            

               =    ∗(     ) −    ∗(     )  +    ∗(      ) −    ∗(     )     (4.2.)

  

UU1, UB1, BU1, BB1, UU2, UB2, BU2 and, BB2 denote the top and bottom 

indexes used in calculation of success and failure limit values. Similarly, a threshold 

value for being P% of all observations in the bottom half (      ) (in failed ADM 

strategies) can be calculated from Equation 4.2.  

In order to calculate whether component C is P% successful or not, an 

iterative process has been applied. P has been changed from 100 to 71* and       and       are calculated and checked for every component whether their total rank scores 

exceeds these threshold values. If a component’s total rank score is higher than       

it has been noted that this component has P% success rate (Ps=P and PF=0) and it has 

P% positive effect on overall performance. If a component’s total rank score is lower 

than       it has been noted that this component has P% failure (Ps=0 and PF=P) and 

it has P% negative effect on overall performance. If neither of the cases are satisfied 

then P is reduced and the test is repeated with the new P value. PS or PF are nothing 

different than P value but has sub-indices stating whether this P value for (S)uccess 

or (F)ailure.  

Once a component’s effect is identified, it is excluded from the remaining 

tests. For example, let’s assume that we identified component GPD has positive 

effect with P% success. All the strategies that do not include component GPD are 

removed from the sorted list and all the calculations for the remaining components 

restarted with the reduced list. Since the remaining components could not achieve 

more success than GPD, success rate P will not be reset. The remaining calculations 

are carried out with the reduced list, since the component’s effect is known. If a 

component is identified as having negative effect on performance, removing any 

ADM strategy containing this component from the list will prevent its interference to 

the remaining components. 

 

∗       and       overlap when P value reaches 71. 
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Table 4.4 shows the corresponding Success (PS) or Failure (PF) values, 

achieved by 8 different ADM methods for benchmark test functions. 

Recommendation confidence labels are arranged as in Table 4.5.  

 

Table 4.5. Recommendation confidence labels.  

Label Lower Boundary P% Upper Boundary P% 

Very Strong 90 100 

Strong 80 89.99 

Mild 75 79.99 

Weak 71.99 74.99 

- 71 71 

 

 It shown in Table 4.4 that the GPD exhibits very strong relationship with 

average 90.30% and median 89.5% PS value. We can confidently suggest that the 

ADM strategy you select for your problem should include GPD component. On the 

other hand, GPS and GIS have strong negative effect on the performance with 

average 87.50% - 80.40% and median 88% - 81% PF values, respectively. Therefore 

it is strongly not recommended to use GPS and GIS components in any ADM 

strategy. Deciding on three components with high confidence, the number of 

appropriate ADM strategies for a problem decreases to 32. Furthermore, with milder 

confidence level, we can recommend to include PPD component and not to include 

PPS component in an ADM strategy.  

If ‘Status’ row of Table 4.4 is closely inspected, we can clearly observe that 

any component that has similarity measure embodied into, has negative effect on the 

overall performance. Similarly, it can be seen that dissimilarity has the opposite 

effect. GID component, however, has weak positive effect among the dissimilarity 

based components. Since the bottom level for success rate PS is 73.8%, 73.5% is 

slightly over the critical value.  
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As a result, we can conclude the ADM strategies that work on the concept of 

diversity, especially genetic-based approaches, provide higher efficiency when added 

on to SGA. The similarity based components cause SGA to demonstrate poor-

performance. Also, the population based approaches provide higher efficiency than 

individual based methods. 

 

4.5. Detailed Evaluation of Rosenbrock Valley (F1) 

 

Previous section was dedicated to identify performance effect of ADM 

strategy components. Can we rely on the proposed performance evaluation method? 

In this section we intend to evaluate the performance test results in another way.  

Figure 4.3 is arranged to display the relationship between the components and their 

performance visually. Each ADM strategy corresponds a column in the image. If a 

component is active (ON) in a strategy it is painted with a color rather than white. 

Because white means the component is not used (OFF) within the strategy. ADM 

strategies are sorted from the best (Left hand side) to the worst (Right hand side) 

performance.   

 

 

 

 

 

 

 

 

 

 

 

    

Figure 4.3. Existence of ADM components in strategies. 

 

256(Best)       188(SGA)    128              64              
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Visual inspection of Figure 4.3 strongly agrees with the findings of proposed 

performance evaluation method. Left hand side of GPD row is heavily painted with 

green, because the most successful strategies are those consist of GPD. Furthermore, 

we can easily observe that failed ADM strategies (located at right hand side) rarely 

employ GPD component. 

The same discussion can be made for GPS, but in opposite way. GPS is 

heavily distributed in failed ADM strategies. It can be occasionally observed in 

successful ADM strategies too (at least more often than what GPD does in failed 

ADM strategies).  This is also in agreement with the recommendation confidence 

levels for GPD (Very Strong) and GPS (Strong). 

GIS component is also quite distinguishable, mostly distributed in failed 

ADM strategies region but it can be observed throughout the scale. If we recall its 

average 80.40% and median 81% P values, we should set a recommendation 

confidence level of ‘Strong’.    

It is quite obvious from the visual inspection of Figure 4.3, the status of three 

components GPS, GPD, GIS should be set as OFF, ON and OFF, respectively. This 

is in total agreement with the findings of Table 4.4.  

Additional to above discussion, the components GID and PIS displays a 

behavior that evenly distributed throughout the scale. This can be interpreted as the 

components may have no direct effect on the performance. That is in agreement with 

Table 4.4 where they are labelled as ‘Weak’.   We should also consider the effect of 

components on each other. Rankings are made in the existence of all ADM strategies 

which most of them are there just for the sake of completeness of experiments.  As 

soon as a component’s effect on the performance is identified, it should be excluded 

from the following discussions, since it may affect the performance of the other 

components.  
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PID          

             1           16          256 

Figure 4.4. Existence of PID component in the ADM strategies which are located                   
underneath the window. 

 
In order to quantify the visual data presented in Figure 4.3, the following 

operations have been applied to each component. A sliding window with the size of 

16 has been used to find the number of existence of a component in the ADM 

strategies which are located underneath the window (Figure 4.4.).  The graphs that 

are obtained from sliding windows for each component are given in Figure 4.5.   The 

effects of GPS and GPD components are clearly displayed. The slope of regression 

line fitted for the GPS count is 0.059 and positive. That means it has negative effect 

on the performance of ADM strategies. If we rescale GPS count axis to 256 rather 

than 16, the slope will be 16*0.059=0.94 which is almost 1. That shows strong 

negative correlation.  If we look at the graph that is drawn for GPD component, the 

slope is 0.075 and negative (0.075*16=1.2). In this case we can say that GPD has 

very strong positive effect on the performance.   We can conclude on GIS as it has 

milder negative effect than GPS and it should not be used on ADM strategies.  

Remaining five components, on the other hand, have slopes that almost flat. 

This can be resulted from the oppressing effect of dominant component GPS and GIS 

that are already decided having strong negative effect on the performance. Keeping 

component GPD ‘ON’ and omitting the components GPS and GIS, we will have 32 

different ADM strategies. In all of the remaining strategies, there will be GPD 

component but no GPS and GIS components. Table 4.6 documents the new ranks 

and old ranks of each ADM strategy. (Note that ‘1’ means that component exists in 

the ADM strategy.)      

SGA is located at the bottom third row in Table 4.6. The remaining ADM 

strategies are the ones with ranks 256 through 229 and 198,199,186,187.  Average 

old rank scores is calculated as 236. That means discarding GIS and GPS 

components from the ADM strategies resulted with higher performing strategies.   
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Figure 4.5. Sliding window figures for  ADMS components. 
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Table 4.6. New and old ranks of remaining 32 strategies and SGA.  

GPS GPD GIS GID PPS PPD PIS PID Avg. Fitness Rank 

Score 

General 

Rank 

Score 

0 1 0 1 0 1 1 0 0,000222349 33 256 
0 1 0 1 0 1 1 1 0,000222349 32 255 
0 1 0 1 0 1 0 1 0,000256406 31 254 
0 1 0 1 0 1 0 0 0,00032208 30 253 
0 1 0 0 0 0 1 0 0,000360695 29 252 
0 1 0 0 0 0 1 1 0,000360695 28 251 
0 1 0 1 0 0 0 0 0,000399104 27 250 
0 1 0 1 0 0 1 0 0,00042613 26 249 
0 1 0 1 0 0 1 1 0,00042613 25 248 
0 1 0 1 1 1 1 0 0,000457137 24 247 
0 1 0 1 1 1 1 1 0,000457137 23 246 
0 1 0 0 1 1 0 1 0,000556395 22 245 
0 1 0 0 1 1 0 0 0,000732431 21 244 
0 1 0 0 0 1 0 1 0,000755561 20 243 
0 1 0 0 0 1 0 0 0,000793567 19 242 
0 1 0 1 1 0 0 1 0,000908037 18 241 
0 1 0 1 0 0 0 1 0,001009142 17 240 
0 1 0 0 0 0 0 1 0,001069168 16 239 
0 1 0 1 1 1 0 0 0,001072654 15 238 
0 1 0 0 0 0 0 0 0,0011572 14 237 
0 1 0 1 1 0 1 0 0,001918676 13 236 
0 1 0 1 1 0 1 1 0,001918676 12 235 
0 1 0 1 1 1 0 1 0,002889884 11 234 
0 1 0 1 1 0 0 0 0,003093539 10 233 
0 1 0 0 1 0 1 0 0,003378354 9 232 
0 1 0 0 1 0 1 1 0,003378354 8 231 
0 1 0 0 1 0 0 1 0,004089242 7 230 
0 1 0 0 1 0 0 0 0,005081286 6 229 
0 1 0 0 0 1 1 0 0,032119402 5 199 
0 1 0 0 0 1 1 1 0,032119402 4 198 
0 0 0 0 0 0 0 0 0,042001999 3 188 
0 1 0 0 1 1 1 0 0,048009078 2 187 
0 1 0 0 1 1 1 1 0,048009078 1 186 
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If we carry out sliding window process with undecided components, the 

graphs in Figure 4.6 will be obtained. However, sliding window size has been chosen 

as 8, since the number of ADM strategies is reduced to 32.  The slope of regression 

line for PPS is quite steep. PPS can be confidently considered as having negative 

effect on performance. Therefore it should not be used as ADM strategy component.  

Contrary to PPD, GID has positive effect on performance and a successful ADM 

strategy should employ GID and PPD as components.   

  

 

 
Figure 4.6. Sliding window figures for  remaining ADMS components. 
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The effect of undecided two components; PID, and PIS can be observed from  

Table 4.7.  The average old rank score is calculated as 254.5. Finally, it is 

recommended that an ADM strategy performs well if it contains GPD, GID and PPD 

components and does not contain GPS, GIS and PPS components. The common 

characteristic of the components that have positive effect on performance is all of 

them are based on dissimilarity. Contrary to this, all the components that have 

negative effect on performance are based on similarity.  

 

Table 4.7. New and old ranks of remaining 4 strategies and SGA.  
GPS GPD GIS GID PPS PPD PIS PID Avg. Fitness Rank 

Score 

General 

Rank 

Score 

0 1 0 1 0 1 1 0 0,000222349 5 256 
0 1 0 1 0 1 1 1 0,000222349 4 255 
0 1 0 1 0 1 0 1 0,000256406 3 254 
0 1 0 1 0 1 0 0 0,00032208 2 253 
0 0 0 0 0 0 0 0 0,042001999 1 188 

 

4.6. Suggested ADM Strategy and Its Evaluation 

 

Previous sections are dedicated to identify the effects of ADM strategy 

components on performance. The components GPD, GID and PPD are identified as 

those causing positive effect, and GPS, GIS and PPS are identified as those causing 

negative effect. The effect of components PID and PIS could not be decided. Even 

though, one is free to employ any component in his/her ADM strategy, a 

generalization has been made and the ADM strategy (RC)-SGA+GPD+GID+PPD 

has been suggested in this study. 

In this section, the effect of suggested ADM strategy on performance will be 

examined for Rosenbrock function. Similar discussion methodology can be extended 

to the remaining nine benchmark functions.  Figure 4.7a-d displays the performance 

results of four different optimization attempt with (RC)-SGA. In the first attempt 

(A1), (RC)-SGA has been used for optimization. The parameters crossover and 
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mutation rate have been set to 0.75 and 0.01, respectively, as suggested in the 

literature (Shopova and Vaklieva-Bancheva, 2006). In the second attempt (A2), the 

parameters for RC-SGA have been tuned up for the best performance. Crossover rate 

is determined as 0.75 and mutation rate is, surprisingly, set to 0. In the third attempt 

(A3) the suggested ADM strategy (RC)-SGA+GPD+GID+PPD has been used. The 

parameters were exactly the same of A2. As suggested earlier, ADM strategy is an 

add-on to SGA. By using the same parameters, it is intended to show direct effect on 

the standard algorithm. Fourth, and the last, attempt (A4) has been made to display 

full performance of suggested ADM strategy on (RC)-SGA by tuning up the strategy 

for best performance. In this case, crossover and mutation rate are set to 0.98 and 

0.09, respectively.  

 

 
Figure 4.7a. Average fitness values of four different optimization attempt with  

three different maximum number of generations; 200, 400 and 800. 
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Figure 4.7b. Median fitness values of four different optimization attempt with three 

different maximum number of generations; 200, 400 and 800. 
 

 
Figure 4.7c. Best fitness values of four different optimization attempt with three 

different maximum number of generations; 200, 400 and 800. 
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Figure 4.7d. Worst fitness values of four different optimization attempt with three  

different maximum number of generations; 200, 400 and 800. 
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Significant performance increase in A3 displays the effectiveness of the 

suggested ADM strategy (RC)-SGA+GPD+GID+PPD. Considering vertical axis is 

in logarithmic scale, the improvement is overwhelmingly high. Furthermore, as the 

number of generations are increased, the suggested ADM strategy maintains its 

diversity and keep searching for better solution (Figure 4.8).  On the other hand, 

(RC)-SGA quickly loses diversity after 200 generations.   

Not surprisingly, the performance of A4 is tremendously better than those of 

A1 and A2, even A3. When the maximum number of generations are extended to 

800, A3 converges to 0 which is the optimum point for Rosenbrock function. It 

should be noted that a double variable has a precision of 10-324. When the optimum 

point found as 0, it means, the precision barrier has been reached and the result is 

rounded to 0.   While, median fitness vale of A1 for 800 generations is calculated as 

7.9*10-3, It has been calculated as <10-324 for A4.  

Also, the obtained results for A1, A2, A3 and A4 with 200 generations are 

given for each test function in Table 4.8. The results are in total agreement for all test 

functions. 
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  In addition to this, Figure 4.9a-d display the relationships between the 

maximum number of generations and fitness values of A2 and A3. It can be observed 

from Figure 4.8 that A2 quickly loses its diversity and converges to some point in 

early generations (as early as 100 generations). However A3 maintain the diversity 

for a long time and this pay off as better searching capacity.  
 

 
Figure 4.8. Diversity values over the generations.  

 

 
 
Figure 4.9a. Average fitness values over the generations. 
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Figure 4.9b. Median fitness values over the generations. 
 

 

Figure 4.9c. Best fitness values over the generations. 
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Figure 4.9d. Worsts fitness values over the generations. 
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5.  CONCLUSIONS AND FUTURE WORKS 

 

The current study has presented new strategies to selection process that 

focuses on reliability and efficiency within the context of RCGAs.  255 unique 

selection strategies that differs from choosing individuals randomly, have been 

proposed. The criteria of selecting mating pairs is based either on their genotypic 

similarity/dissimilarity or on their phenotypic similarity/dissimilarity. The similarity 

based strategies enable individuals to exploit the current search region extensively 

before exploring new ones. On the other hand, dissimilarity based strategies provide 

more reliable and efficient search mechanism and prevent the GA from being trapped 

in local optima.  

To evaluate the performance of the proposed algorithm, a series of 

experiments are conducted on a set of 10 well known real-valued benchmark global 

optimization test functions. When compared with (RC)-SGA, the proposed ADM 

strategies, show a significant improvements in the quality of the global optimum 

solution found under the same simulation conditions. 

The present study also compares the performance of the proposed strategies 

with tuned crossing over and mutation parameters, along with the conventional 

parameters. On the contrary to (RC)-SGA, the proposed GPD, PPD and GID 

combination shows superior performance. Furthermore, this combination also 

exhibits better performance with tuned parameters. Finally, we can conclude that the 

proposed ADM based strategies provide more accuracy, greater reliability, and 

higher efficiency than the other GAs considered in the present study. 

The experiment outcome for the proposed strategies is excellent in most 

cases, but it still performed worse in some strategies due to the critical balance 

between exploitation of the best individuals and exploration of alternative regions of 

the search space and increasing the risks of local optima traps. As our future 

perspective, we plan to further improve the evolutionary efficiency by integrating the 

approach of design of experiment with the proposed ADM-RCGA algorithm. 
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Table 7.1. Test results for Rosenbrock Function with tuned crossover and mutation parameters 
Function 
Number 

GPS GPD GIS GID PPS PPD PIS PID Average 
Fitness 

Median 
Fitness 

Best Fitness Worst 
Fitness 

Standard 
Deviation 

Rank 
Score 

1 0 1 0 1 0 1 1 0 0,000222349 3,42887E-05 1,24757E-07 0,0022516 0,000575029 256 
1 0 1 0 1 0 1 1 1 0,000222349 3,42887E-05 1,24757E-07 0,0022516 0,000575029 255 
1 0 1 0 1 0 1 0 1 0,000256406 2,45975E-05 8,89603E-08 0,0017933 0,000475115 254 
1 0 1 0 1 0 1 0 0 0,00032208 6,25775E-05 4,39959E-06 0,002354682 0,000665016 253 
1 0 1 0 0 0 0 1 0 0,000360695 0,000100496 4,64627E-08 0,002097147 0,000625548 252 
1 0 1 0 0 0 0 1 1 0,000360695 0,000100496 4,64627E-08 0,002097147 0,000625548 251 
1 0 1 0 1 0 0 0 0 0,000399104 0,000145085 8,25246E-06 0,001483349 0,000458129 250 
1 0 1 0 1 0 0 1 0 0,00042613 0,000112858 2,70513E-07 0,002906873 0,000779858 249 
1 0 1 0 1 0 0 1 1 0,00042613 0,000112858 2,70513E-07 0,002906873 0,000779858 248 
1 0 1 0 1 1 1 1 0 0,000457137 8,17928E-05 2,79477E-07 0,002510972 0,000748805 247 
1 0 1 0 1 1 1 1 1 0,000457137 8,17928E-05 2,79477E-07 0,002510972 0,000748805 246 
1 0 1 0 0 1 1 0 1 0,000556395 8,70235E-05 7,21577E-07 0,005106238 0,001298186 245 
1 0 1 0 0 1 1 0 0 0,000732431 3,06366E-05 5,88328E-07 0,00665134 0,001760438 244 
1 0 1 0 0 0 1 0 1 0,000755561 0,00052513 5,67031E-05 0,00453724 0,001107979 243 
1 0 1 0 0 0 1 0 0 0,000793567 0,000122745 4,85116E-07 0,004220182 0,001245137 242 
1 0 1 0 1 1 0 0 1 0,000908037 0,000190122 7,85652E-08 0,003720326 0,001165062 241 
1 0 1 0 1 0 0 0 1 0,001009142 0,00048863 9,95755E-06 0,003718745 0,000983169 240 
1 0 1 0 0 0 0 0 1 0,001069168 0,000561439 1,24556E-05 0,004696372 0,001493637 239 
1 0 1 0 1 1 1 0 0 0,001072654 6,88421E-05 3,3439E-08 0,012243802 0,003139863 238 
1 0 1 0 0 0 0 0 0 0,0011572 0,000415621 2,2834E-08 0,005070898 0,001500989 237 
1 0 1 0 1 1 0 1 0 0,001918676 0,000220027 2,69019E-06 0,013950899 0,00397519 236 
1 0 1 0 1 1 0 1 1 0,001918676 0,000220027 2,69019E-06 0,013950899 0,00397519 235 
1 0 1 0 1 1 1 0 1 0,002889884 0,000110307 5,44272E-08 0,029672076 0,007988087 234 
1 0 1 0 1 1 0 0 0 0,003093539 0,000303472 6,8552E-08 0,03191701 0,008383941 233 
1 0 1 0 0 1 0 1 0 0,003378354 0,000283899 6,16438E-09 0,020576252 0,006224718 232 
1 0 1 0 0 1 0 1 1 0,003378354 0,000283899 6,16438E-09 0,020576252 0,006224718 231 
1 0 1 0 0 1 0 0 1 0,004089242 0,000886137 3,51132E-05 0,024974328 0,006912521 230 
1 0 1 0 0 1 0 0 0 0,005081286 0,000260963 5,19296E-06 0,034131092 0,010083098 229 
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1 0 1 1 0 1 0 0 1 0,009238309 0,000784088 5,28968E-08 0,076723068 0,021095137 228 
1 0 1 1 1 1 0 0 1 0,009238309 0,000784088 5,28968E-08 0,076723068 0,021095137 227 
1 1 1 0 1 0 0 1 0 0,00984364 0,00069422 2,98059E-12 0,043055049 0,015077477 226 
1 1 1 0 1 0 0 1 1 0,00984364 0,00069422 2,98059E-12 0,043055049 0,015077477 225 
1 0 1 1 0 1 1 0 1 0,010571487 0,001931095 1,66153E-07 0,041622207 0,016074754 224 
1 0 1 1 1 1 1 0 1 0,010571487 0,001931095 1,66153E-07 0,041622207 0,016074754 223 
1 1 1 0 0 0 1 0 1 0,010689666 0,000224868 3,43373E-11 0,066788235 0,020422239 222 
1 0 1 1 0 0 1 0 1 0,011434916 0,000239715 2,20141E-08 0,129686189 0,03313442 221 
1 0 1 1 1 0 1 0 1 0,011434916 0,000239715 2,20141E-08 0,129686189 0,03313442 220 
1 0 1 1 0 0 1 1 0 0,014461534 0,004200468 2,01669E-08 0,08039103 0,025849225 219 
1 0 1 1 0 0 1 1 1 0,014461534 0,004200468 2,01669E-08 0,08039103 0,025849225 218 
1 0 1 1 1 0 1 1 0 0,014461534 0,004200468 2,01669E-08 0,08039103 0,025849225 217 
1 0 1 1 1 0 1 1 1 0,014461534 0,004200468 2,01669E-08 0,08039103 0,025849225 216 
1 0 1 1 0 0 1 0 0 0,01496786 0,000950649 3,15252E-10 0,085902671 0,023653073 215 
1 0 1 1 1 0 1 0 0 0,01496786 0,000950649 3,15252E-10 0,085902671 0,023653073 214 
1 1 1 0 1 1 0 1 0 0,016373257 0,00060083 2,76255E-10 0,094455452 0,027954149 213 
1 1 1 0 1 1 0 1 1 0,016373257 0,00060083 2,76255E-10 0,094455452 0,027954149 212 
1 0 1 1 0 1 1 0 0 0,020731962 0,003095754 8,7761E-09 0,203498258 0,052276344 211 
1 0 1 1 1 1 1 0 0 0,020731962 0,003095754 8,7761E-09 0,203498258 0,052276344 210 
1 0 1 1 0 1 1 1 0 0,021995431 0,004643587 9,34976E-07 0,141387513 0,038385162 209 
1 0 1 1 0 1 1 1 1 0,021995431 0,004643587 9,34976E-07 0,141387513 0,038385162 208 
1 0 1 1 1 1 1 1 0 0,021995431 0,004643587 9,34976E-07 0,141387513 0,038385162 207 
1 0 1 1 1 1 1 1 1 0,021995431 0,004643587 9,34976E-07 0,141387513 0,038385162 206 
1 1 1 0 1 1 1 0 0 0,024222878 0,004179698 1,92488E-15 0,172610175 0,045646616 205 
1 0 1 1 0 1 0 0 0 0,025246789 0,004982418 9,50574E-05 0,229032506 0,058101326 204 
1 0 1 1 1 1 0 0 0 0,025246789 0,004982418 9,50574E-05 0,229032506 0,058101326 203 
1 0 0 0 1 1 0 0 0 0,025353896 0,004425047 0,000164941 0,133671421 0,043364831 202 
1 1 1 0 0 1 1 0 1 0,027481135 2,90823E-06 2,37892E-14 0,299811874 0,077503824 201 
1 1 1 0 1 1 1 0 1 0,028842099 0,004499299 3,92032E-11 0,136313795 0,046223826 200 
1 0 1 0 0 0 1 1 0 0,032119402 2,28451E-05 1,77487E-07 0,374249421 0,098148681 199 
1 0 1 0 0 0 1 1 1 0,032119402 2,28451E-05 1,77487E-07 0,374249421 0,098148681 198 
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1 1 1 0 1 0 1 0 1 0,034164811 0,001989553 7,53067E-09 0,324040203 0,082145322 197 
1 1 1 0 1 0 0 0 0 0,036639336 0,001453172 1,54599E-15 0,312053843 0,082989373 196 
1 0 1 1 0 1 0 1 0 0,037850132 0,000473495 2,60912E-08 0,323632521 0,090374802 195 
1 0 1 1 0 1 0 1 1 0,037850132 0,000473495 2,60912E-08 0,323632521 0,090374802 194 
1 0 1 1 1 1 0 1 0 0,037850132 0,000473495 2,60912E-08 0,323632521 0,090374802 193 
1 0 1 1 1 1 0 1 1 0,037850132 0,000473495 2,60912E-08 0,323632521 0,090374802 192 
1 0 1 1 0 0 0 0 1 0,038962237 0,013909983 1,48871E-05 0,229384679 0,065781328 191 
1 0 1 1 1 0 0 0 1 0,038962237 0,013909983 1,48871E-05 0,229384679 0,065781328 190 
1 1 1 0 1 0 0 0 1 0,041368943 0,003551891 3,0295E-13 0,279169308 0,078388768 189 
1 0 0 0 0 0 0 0 0 0,042001999 0,014891517 1,15106E-08 0,178332788 0,054896613 188 
1 0 1 0 0 1 1 1 0 0,048009078 0,000250614 3,89849E-06 0,363159395 0,124011751 187 
1 0 1 0 0 1 1 1 1 0,048009078 0,000250614 3,89849E-06 0,363159395 0,124011751 186 
1 0 0 0 1 1 0 0 1 0,052981429 0,024576792 6,02671E-06 0,214157974 0,064853909 185 
1 1 1 0 0 1 0 0 0 0,053148799 0,002424077 5,21708E-07 0,308230332 0,100681466 184 
1 0 0 0 1 1 1 1 0 0,053693631 0,003669718 4,86276E-11 0,32283424 0,089912206 183 
1 0 0 0 1 1 1 1 1 0,053693631 0,003669718 4,86276E-11 0,32283424 0,089912206 182 
1 0 0 0 1 0 0 0 1 0,058487074 0,030072429 9,26626E-08 0,177745051 0,0651878 181 
1 1 1 1 0 1 1 1 0 0,05915072 0,007890796 5,07218E-07 0,400807428 0,123129251 180 
1 1 1 1 0 1 1 1 1 0,05915072 0,007890796 5,07218E-07 0,400807428 0,123129251 179 
1 1 1 1 1 1 1 1 0 0,05915072 0,007890796 5,07218E-07 0,400807428 0,123129251 178 
1 1 1 1 1 1 1 1 1 0,05915072 0,007890796 5,07218E-07 0,400807428 0,123129251 177 
1 0 0 0 1 0 0 1 0 0,060581511 0,024849324 1,35926E-06 0,209780167 0,070971756 176 
1 0 0 0 1 0 0 1 1 0,060581511 0,024849324 1,35926E-06 0,209780167 0,070971756 175 
1 0 1 1 0 0 0 0 0 0,060915907 0,002478383 8,03887E-11 0,428163453 0,113446558 174 
1 0 1 1 1 0 0 0 0 0,060915907 0,002478383 8,03887E-11 0,428163453 0,113446558 173 
1 1 1 0 0 1 1 1 0 0,06448931 0,004038013 3,21263E-05 0,396366367 0,1185017 172 
1 1 1 0 0 1 1 1 1 0,06448931 0,004038013 3,21263E-05 0,396366367 0,1185017 171 
1 1 1 0 1 1 0 0 1 0,064898787 0,006842245 1,75072E-10 0,420993915 0,129331904 170 
1 1 1 0 1 0 1 0 0 0,067610068 0,027055934 2,84104E-11 0,59153542 0,15151457 169 
1 1 1 0 0 1 0 0 1 0,067614397 0,003983237 1,38126E-08 0,4672059 0,155487085 168 
1 0 0 0 1 1 1 0 0 0,0701169 0,002378417 1,55902E-09 0,569139359 0,145911496 167 



 

81 
  

1 0 0 0 1 1 1 0 1 0,073080737 0,047972307 3,87021E-07 0,24388114 0,080958282 166 
1 0 0 0 0 1 1 1 0 0,079562165 0,019622884 6,59438E-08 0,596814451 0,156657396 165 
1 0 0 0 0 1 1 1 1 0,079562165 0,019622884 6,59438E-08 0,596814451 0,156657396 164 
1 0 0 0 1 0 0 0 0 0,081317058 0,088806287 2,9154E-06 0,205359718 0,054730251 163 
1 1 1 0 1 1 1 1 0 0,08331362 0,000523667 2,6233E-11 0,559114588 0,171068577 162 
1 1 1 0 1 1 1 1 1 0,08331362 0,000523667 2,6233E-11 0,559114588 0,171068577 161 
1 1 1 1 0 1 1 0 0 0,085530482 0,007035366 8,79765E-12 0,892596802 0,232841513 160 
1 1 1 1 1 1 1 0 0 0,085530482 0,007035366 8,79765E-12 0,892596802 0,232841513 159 
1 1 1 1 0 1 1 0 1 0,089296048 0,034452763 1,48706E-11 0,465416179 0,134582563 158 
1 1 1 1 1 1 1 0 1 0,089296048 0,034452763 1,48706E-11 0,465416179 0,134582563 157 
1 0 1 1 0 0 0 1 0 0,090731429 0,038569549 2,6297E-05 0,617194805 0,162398247 156 
1 0 1 1 0 0 0 1 1 0,090731429 0,038569549 2,6297E-05 0,617194805 0,162398247 155 
1 0 1 1 1 0 0 1 0 0,090731429 0,038569549 2,6297E-05 0,617194805 0,162398247 154 
1 0 1 1 1 0 0 1 1 0,090731429 0,038569549 2,6297E-05 0,617194805 0,162398247 153 
1 1 1 0 0 0 0 1 0 0,093409523 0,000671476 4,55714E-15 0,866229798 0,224306308 152 
1 1 1 0 0 0 0 1 1 0,093409523 0,000671476 4,55714E-15 0,866229798 0,224306308 151 
1 0 0 0 0 0 0 1 0 0,098517764 0,025920641 9,53842E-06 0,449648995 0,14235747 150 
1 0 0 0 0 0 0 1 1 0,098517764 0,025920641 9,53842E-06 0,449648995 0,14235747 149 
1 1 1 0 0 0 1 0 0 0,09976503 0,000410198 9,62888E-14 1,018454602 0,276144298 148 
1 0 0 0 0 1 1 0 1 0,102449989 0,041871541 0,000302257 0,776731388 0,196132062 147 
1 0 0 0 0 1 1 0 0 0,10750472 0,039196683 4,97919E-05 0,713353134 0,183276562 146 
1 0 0 1 0 1 1 1 0 0,110124008 0,052188839 5,74405E-05 0,462625765 0,127656753 145 
1 0 0 1 0 1 1 1 1 0,110124008 0,052188839 5,74405E-05 0,462625765 0,127656753 144 
1 0 0 1 1 1 1 1 0 0,110124008 0,052188839 5,74405E-05 0,462625765 0,127656753 143 
1 0 0 1 1 1 1 1 1 0,110124008 0,052188839 5,74405E-05 0,462625765 0,127656753 142 
1 0 0 0 0 0 1 0 1 0,115608788 0,036709132 1,2671E-07 0,572944839 0,172239668 141 
1 1 1 1 0 0 0 1 0 0,11684557 0,026235723 5,97194E-07 0,663780732 0,191283625 140 
1 1 1 1 0 0 0 1 1 0,11684557 0,026235723 5,97194E-07 0,663780732 0,191283625 139 
1 1 1 1 1 0 0 1 0 0,11684557 0,026235723 5,97194E-07 0,663780732 0,191283625 138 
1 1 1 1 1 0 0 1 1 0,11684557 0,026235723 5,97194E-07 0,663780732 0,191283625 137 
1 0 0 0 1 1 0 1 0 0,12259726 0,083861965 0,009890883 0,384234161 0,113763851 136 



 

82 
  

1 0 0 0 1 1 0 1 1 0,12259726 0,083861965 0,009890883 0,384234161 0,113763851 135 
1 1 1 0 0 0 0 0 0 0,126826887 0,015212148 4,22789E-17 0,680439754 0,213417823 134 
1 0 0 0 1 0 1 0 0 0,126904348 0,023958426 4,42716E-07 0,657836113 0,190545563 133 
1 0 0 0 0 1 0 0 1 0,128144071 0,0560316 0,000324018 0,521007975 0,162728184 132 
1 0 0 1 0 0 0 0 0 0,136826478 0,011585711 0,002820215 0,720567013 0,243991152 131 
1 0 0 1 1 0 0 0 0 0,136826478 0,011585711 0,002820215 0,720567013 0,243991152 130 
1 1 1 0 1 1 0 0 0 0,137039525 0,005440952 4,96422E-11 0,910457807 0,260503528 129 
1 0 0 0 0 0 0 0 1 0,139969463 0,044678106 0,001516034 0,654266678 0,193303848 128 
1 1 1 1 0 0 0 0 0 0,144103635 0,035610229 0,00071197 0,627577858 0,191348742 127 
1 1 1 1 1 0 0 0 0 0,144103635 0,035610229 0,00071197 0,627577858 0,191348742 126 
1 1 1 0 1 0 1 1 0 0,146404204 0,020791526 2,30668E-09 0,482252826 0,174534465 125 
1 1 1 0 1 0 1 1 1 0,146404204 0,020791526 2,30668E-09 0,482252826 0,174534465 124 
1 0 0 1 0 0 0 1 0 0,150274296 0,022351139 7,98611E-06 0,797260684 0,233187579 123 
1 0 0 1 0 0 0 1 1 0,150274296 0,022351139 7,98611E-06 0,797260684 0,233187579 122 
1 0 0 1 1 0 0 1 0 0,150274296 0,022351139 7,98611E-06 0,797260684 0,233187579 121 
1 0 0 1 1 0 0 1 1 0,150274296 0,022351139 7,98611E-06 0,797260684 0,233187579 120 
1 1 1 1 0 0 0 0 1 0,151263098 0,015448897 2,13731E-07 0,561819042 0,198047183 119 
1 1 1 1 1 0 0 0 1 0,151263098 0,015448897 2,13731E-07 0,561819042 0,198047183 118 
1 1 1 0 0 1 1 0 0 0,151315045 0,001129274 5,5589E-13 0,962373119 0,258956112 117 
1 0 0 0 1 0 1 1 0 0,156177122 0,077839722 4,58866E-05 1,125925913 0,277343051 116 
1 0 0 0 1 0 1 1 1 0,156177122 0,077839722 4,58866E-05 1,125925913 0,277343051 115 
1 0 0 0 1 0 1 0 1 0,157146082 0,030256565 3,02868E-07 0,882150688 0,251822474 114 
1 1 1 0 0 0 0 0 1 0,16894688 0,000553211 4,26502E-14 1,46408243 0,403179349 113 
1 1 1 0 0 1 0 1 0 0,175890445 0,017348306 1,28616E-07 0,81158727 0,264835559 112 
1 1 1 0 0 1 0 1 1 0,175890445 0,017348306 1,28616E-07 0,81158727 0,264835559 111 
1 1 0 0 1 0 1 0 0 0,176940054 0,122828986 0,001961196 0,546197702 0,171971208 110 
1 1 1 1 0 0 1 0 1 0,179874026 0,051856912 1,05718E-07 1,447879222 0,367087969 109 
1 1 1 1 1 0 1 0 1 0,179874026 0,051856912 1,05718E-07 1,447879222 0,367087969 108 
1 0 0 1 0 0 1 0 1 0,195144901 0,049362554 0,001101142 1,008771276 0,297536042 107 
1 0 0 1 1 0 1 0 1 0,195144901 0,049362554 0,001101142 1,008771276 0,297536042 106 
1 1 1 0 0 0 1 1 0 0,196088761 0,003425925 5,56419E-10 1,379503525 0,39467255 105 



 

83 
  

1 1 1 0 0 0 1 1 1 0,196088761 0,003425925 5,56419E-10 1,379503525 0,39467255 104 
1 0 0 0 0 0 1 0 0 0,211529628 0,03434032 4,92891E-07 0,884263633 0,271254101 103 
1 0 0 0 0 0 1 1 0 0,214699405 0,027712425 0,000181966 0,879730005 0,274549035 102 
1 0 0 0 0 0 1 1 1 0,214699405 0,027712425 0,000181966 0,879730005 0,274549035 101 
1 1 0 0 0 0 1 1 0 0,214745738 0,115635158 1,15745E-05 0,839265993 0,235944163 100 
1 1 0 0 0 0 1 1 1 0,214745738 0,115635158 1,15745E-05 0,839265993 0,235944163 99 
1 0 0 1 0 1 1 0 1 0,21495018 0,151922646 4,14446E-05 0,906812207 0,252297964 98 
1 0 0 1 1 1 1 0 1 0,21495018 0,151922646 4,14446E-05 0,906812207 0,252297964 97 
1 1 1 1 0 1 0 0 0 0,220040742 0,078304407 4,82374E-07 1,226743047 0,328735748 96 
1 1 1 1 1 1 0 0 0 0,220040742 0,078304407 4,82374E-07 1,226743047 0,328735748 95 
1 0 0 1 0 1 1 0 0 0,220329054 0,007809061 4,16508E-05 1,892878793 0,493743375 94 
1 0 0 1 1 1 1 0 0 0,220329054 0,007809061 4,16508E-05 1,892878793 0,493743375 93 
1 1 0 0 1 0 1 1 0 0,24568055 0,107680523 7,56726E-07 1,283934922 0,351530108 92 
1 1 0 0 1 0 1 1 1 0,24568055 0,107680523 7,56726E-07 1,283934922 0,351530108 91 
1 0 0 1 0 0 1 0 0 0,248130921 0,041511348 0,002181131 1,428879236 0,424649267 90 
1 0 0 1 1 0 1 0 0 0,248130921 0,041511348 0,002181131 1,428879236 0,424649267 89 
1 1 0 0 0 0 1 0 0 0,265504123 0,174093369 0,031628176 0,856247755 0,240837107 88 
1 1 1 1 0 1 0 0 1 0,268501339 0,052805403 0,000151093 2,935332956 0,741917886 87 
1 1 1 1 1 1 0 0 1 0,268501339 0,052805403 0,000151093 2,935332956 0,741917886 86 
1 0 0 0 0 1 0 0 0 0,282844785 0,234487898 0,008505374 0,893815179 0,265506455 85 
1 0 0 1 0 0 1 1 0 0,295135143 0,019055517 0,001846107 1,992304598 0,540836453 84 
1 0 0 1 0 0 1 1 1 0,295135143 0,019055517 0,001846107 1,992304598 0,540836453 83 
1 0 0 1 1 0 1 1 0 0,295135143 0,019055517 0,001846107 1,992304598 0,540836453 82 
1 0 0 1 1 0 1 1 1 0,295135143 0,019055517 0,001846107 1,992304598 0,540836453 81 
1 1 1 1 0 1 0 1 0 0,297322175 0,095692861 0,000251564 1,463437315 0,429147038 80 
1 1 1 1 0 1 0 1 1 0,297322175 0,095692861 0,000251564 1,463437315 0,429147038 79 
1 1 1 1 1 1 0 1 0 0,297322175 0,095692861 0,000251564 1,463437315 0,429147038 78 
1 1 1 1 1 1 0 1 1 0,297322175 0,095692861 0,000251564 1,463437315 0,429147038 77 
1 1 1 1 0 0 1 0 0 0,297544214 0,04348226 1,44319E-08 1,937440731 0,500209778 76 
1 1 1 1 1 0 1 0 0 0,297544214 0,04348226 1,44319E-08 1,937440731 0,500209778 75 
1 1 0 0 1 1 0 0 1 0,298626979 0,247846601 0,002815939 0,78538827 0,243860687 74 



 

84 
  

1 1 0 0 1 1 1 0 1 0,303421092 0,250467017 0,006951909 0,837482332 0,257612189 73 
1 1 0 0 1 0 1 0 1 0,32064563 0,193554389 0,000703391 1,521805458 0,392982713 72 
1 0 0 1 0 1 0 0 1 0,321331054 0,184855226 0,000895214 2,175652924 0,52837166 71 
1 0 0 1 1 1 0 0 1 0,321331054 0,184855226 0,000895214 2,175652924 0,52837166 70 
1 0 0 1 0 1 0 0 0 0,324797447 0,196676103 0,00016472 1,808153724 0,449016495 69 
1 0 0 1 1 1 0 0 0 0,324797447 0,196676103 0,00016472 1,808153724 0,449016495 68 
1 0 0 1 0 0 0 0 1 0,327675081 0,017193935 0,00071536 2,792632714 0,780918394 67 
1 0 0 1 1 0 0 0 1 0,327675081 0,017193935 0,00071536 2,792632714 0,780918394 66 
1 1 0 0 1 0 0 1 0 0,382472417 0,333647622 0,04325442 0,822505748 0,256149315 65 
1 1 0 0 1 0 0 1 1 0,382472417 0,333647622 0,04325442 0,822505748 0,256149315 64 
1 1 0 0 1 1 1 0 0 0,383496909 0,183782312 0,000339515 1,754477758 0,469320924 63 
1 0 0 0 0 1 0 1 0 0,38939061 0,144088845 0,015804234 3,146989625 0,780532351 62 
1 0 0 0 0 1 0 1 1 0,38939061 0,144088845 0,015804234 3,146989625 0,780532351 61 
1 1 0 0 1 0 0 0 1 0,395054791 0,320995563 0,001881049 1,032110545 0,342255521 60 
1 1 0 0 0 1 1 0 0 0,403689501 0,356129325 0,011596635 1,401618077 0,353827132 59 
1 1 0 1 0 0 1 0 0 0,406081668 0,400862197 0,0005169 1,475299783 0,410044862 58 
1 1 0 1 1 0 1 0 0 0,406081668 0,400862197 0,0005169 1,475299783 0,410044862 57 
1 1 0 0 0 0 0 1 0 0,406928243 0,257733836 0,056637348 1,434675658 0,390475637 56 
1 1 0 0 0 0 0 1 1 0,406928243 0,257733836 0,056637348 1,434675658 0,390475637 55 
1 1 0 0 0 0 1 0 1 0,410695876 0,219074819 0,022523409 1,950909779 0,50376318 54 
1 1 0 0 1 1 1 1 0 0,412159947 0,236813505 0,00504834 1,525506216 0,48890518 53 
1 1 0 0 1 1 1 1 1 0,412159947 0,236813505 0,00504834 1,525506216 0,48890518 52 
1 1 0 0 0 1 0 0 0 0,413620832 0,277847983 0,081932633 0,928714375 0,276612923 51 
1 1 0 0 0 1 0 0 1 0,423311931 0,329382099 0,063107167 0,911201941 0,295507812 50 
1 1 0 0 1 0 0 0 0 0,427706046 0,429336179 0,000520843 0,928379924 0,310965477 49 
1 1 0 1 0 1 0 0 1 0,440916046 0,384540133 0,005404768 1,467720267 0,360947568 48 
1 1 0 1 1 1 0 0 1 0,440916046 0,384540133 0,005404768 1,467720267 0,360947568 47 
1 1 0 0 0 1 1 1 0 0,442351092 0,248064348 0,007541843 2,168496143 0,531714382 46 
1 1 0 0 0 1 1 1 1 0,442351092 0,248064348 0,007541843 2,168496143 0,531714382 45 
1 1 0 0 0 0 0 0 1 0,457074298 0,303911896 0,006725799 1,437931019 0,420319851 44 
1 1 0 0 0 0 0 0 0 0,468881982 0,373036848 0,056637348 1,613588543 0,449725499 43 



 

85 
  

1 1 0 0 1 1 0 1 0 0,47112733 0,407148183 0,081932633 1,423149039 0,347166798 42 
1 1 0 0 1 1 0 1 1 0,47112733 0,407148183 0,081932633 1,423149039 0,347166798 41 
1 1 1 1 0 0 1 1 0 0,474985444 0,311075604 7,81478E-08 2,556589592 0,676761584 40 
1 1 1 1 0 0 1 1 1 0,474985444 0,311075604 7,81478E-08 2,556589592 0,676761584 39 
1 1 1 1 1 0 1 1 0 0,474985444 0,311075604 7,81478E-08 2,556589592 0,676761584 38 
1 1 1 1 1 0 1 1 1 0,474985444 0,311075604 7,81478E-08 2,556589592 0,676761584 37 
1 1 0 1 0 1 1 1 0 0,47505104 0,28345491 0,036811509 2,584795171 0,620819761 36 
1 1 0 1 0 1 1 1 1 0,47505104 0,28345491 0,036811509 2,584795171 0,620819761 35 
1 1 0 1 1 1 1 1 0 0,47505104 0,28345491 0,036811509 2,584795171 0,620819761 34 
1 1 0 1 1 1 1 1 1 0,47505104 0,28345491 0,036811509 2,584795171 0,620819761 33 
1 1 0 1 0 0 1 0 1 0,481052731 0,213758532 0,010733632 2,190641271 0,576488902 32 
1 1 0 1 1 0 1 0 1 0,481052731 0,213758532 0,010733632 2,190641271 0,576488902 31 
1 1 0 0 0 1 0 1 0 0,486207145 0,400019065 0,059230277 1,467720267 0,404344502 30 
1 1 0 0 0 1 0 1 1 0,486207145 0,400019065 0,059230277 1,467720267 0,404344502 29 
1 1 0 1 0 1 1 0 0 0,511401287 0,288899946 0,068496141 1,978061564 0,57464101 28 
1 1 0 1 1 1 1 0 0 0,511401287 0,288899946 0,068496141 1,978061564 0,57464101 27 
1 1 0 1 0 1 0 0 0 0,512160644 0,384540133 0,012382531 1,239070306 0,424836589 26 
1 1 0 1 1 1 0 0 0 0,512160644 0,384540133 0,012382531 1,239070306 0,424836589 25 
1 1 0 1 0 1 1 0 1 0,531623964 0,384540133 0,110645166 1,41106286 0,369010261 24 
1 1 0 1 1 1 1 0 1 0,531623964 0,384540133 0,110645166 1,41106286 0,369010261 23 
1 1 0 0 0 1 1 0 1 0,534520764 0,42033313 0,008161161 2,268469612 0,563511028 22 
1 1 0 1 0 0 0 0 1 0,539203914 0,46350311 0,027789796 2,030738587 0,531984114 21 
1 1 0 1 1 0 0 0 1 0,539203914 0,46350311 0,027789796 2,030738587 0,531984114 20 
1 1 0 1 0 0 1 1 0 0,554524322 0,453336867 1,83253E-07 2,030804208 0,644342408 19 
1 1 0 1 0 0 1 1 1 0,554524322 0,453336867 1,83253E-07 2,030804208 0,644342408 18 
1 1 0 1 1 0 1 1 0 0,554524322 0,453336867 1,83253E-07 2,030804208 0,644342408 17 
1 1 0 1 1 0 1 1 1 0,554524322 0,453336867 1,83253E-07 2,030804208 0,644342408 16 
1 1 0 1 0 1 0 1 0 0,554831804 0,421659992 0,081932633 1,548477464 0,438940267 15 
1 1 0 1 0 1 0 1 1 0,554831804 0,421659992 0,081932633 1,548477464 0,438940267 14 
1 1 0 1 1 1 0 1 0 0,554831804 0,421659992 0,081932633 1,548477464 0,438940267 13 
1 1 0 1 1 1 0 1 1 0,554831804 0,421659992 0,081932633 1,548477464 0,438940267 12 



 

86 
  

1 1 0 0 1 1 0 0 0 0,560568776 0,514580387 0,144088845 1,542198881 0,365890557 11 
1 1 0 1 0 0 0 0 0 0,570498259 0,384540133 0,018388345 2,627143167 0,740459615 10 
1 1 0 1 1 0 0 0 0 0,570498259 0,384540133 0,018388345 2,627143167 0,740459615 9 
1 0 0 1 0 1 0 1 0 0,583156343 0,34524205 0,025297008 2,486469142 0,648738428 8 
1 0 0 1 0 1 0 1 1 0,583156343 0,34524205 0,025297008 2,486469142 0,648738428 7 
1 0 0 1 1 1 0 1 0 0,583156343 0,34524205 0,025297008 2,486469142 0,648738428 6 
1 0 0 1 1 1 0 1 1 0,583156343 0,34524205 0,025297008 2,486469142 0,648738428 5 
1 1 0 1 0 0 0 1 0 0,655274469 0,411547634 0,050518818 2,935382944 0,864725914 4 
1 1 0 1 0 0 0 1 1 0,655274469 0,411547634 0,050518818 2,935382944 0,864725914 3 
1 1 0 1 1 0 0 1 0 0,655274469 0,411547634 0,050518818 2,935382944 0,864725914 2 
1 1 0 1 1 0 0 1 1 0,655274469 0,411547634 0,050518818 2,935382944 0,864725914 1 

 


