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ABSTRACT 
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   Year: 2015, Pages: 43 
 Jury : Assoc. Prof. Dr. Mutlu AVCI 
  : Assoc. Prof. Dr. Selma Ayşe ÖZEL 
  : Asst. Prof. Dr. Serdar YILDIRIM 
  

Q Learning was an important novelty for reinforcement learning. However Q 
learning becomes inapplicable due to the gigantic size of solution spaces of real 
world problems. Therefore, an efficient regression method is required not only to 
generalize the state, action space but also accelerate speed of the learning algorithm. 

In this thesis, Q regression neural network suggested is a novel regression 
method obtained as a result of a GRNN form structure used for generalization Q-
value function. QRNN works with data generated by Q-Agent. It is tested with 
popular reinforcement learning benchmarks and its performance is compared with 
that of both Q-Learning and the other regression methods. Test results show that, 
QRNN learning efficiency is much higher than the compared methods.  
 
Key Words: Reinforcement Learning, Q Learning, Q value function generalization, 

GRNN 
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ÖZ 
 

YÜKSEK LİSANS TEZİ 
 

Q REGRESYON SİNİR AĞI 
 

Mehmet SARIGÜL 
 

ÇUKUROVA ÜNİVERSİTESİ 
FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 
 

 Danışman : Doç. Dr. Mutlu AVCI 
   Yıl: 2015, Sayfa: 43 
 Jüri : Doç. Dr. Mutlu AVCI 
  : Doç. Dr. Selma Ayşe ÖZEL  
  : Yrd. Doç. Dr. Serdar YILDIRIM 
  

Q öğrenme yöntemi takviyeli öğrenme için önemli bir gelişme olmuştur. 
Ancak gerçek dünya problemlerinin sahip olduğu devasa büyüklükteki durum-
aksiyon sayısı Q öğrenme yöntemini uygulanamaz hale getirmektedir. Bu durum 
sadece durum-aksiyon uzayını genellemeyecek, aynı zamanda da öğrenmeyi 
hızlandıracak etkili bir regresyon metodunu gerekmektedir.  

Bu tezde Q regresyon yapay sinir ağı adında Q değer fonksiyonunun 
genelleştirilmesi ile GRNN formunda bir yapı kullanılması sonucu elde edilen yeni 
bir eğiticisiz yapay sinir ağı önerilmiştir. QRNN Q ajanının ürettiği veriler üzerinde 
çalışır. Önerilen metot popüler takviyeli öğrenme çalışma ortamları üzerinde test 
edilmiş, Q öğrenme yöntemi ve diğer regresyon yöntemleri ile karşılaştırılmıştır. 
Test sonucunda öğrenme hızının karşılaştırılan yöntemlere göre oldukça yüksek 
olduğu gözlenmiştir.   

 
Anahtar Kelimeler: Takviyeli Öğrenme, Q öğrenme yöntemi, Q değer fonksiyonu 

genelleme, GRNN 
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1. INTRODUCTION   Mehmet SARIGÜL 

1. INTRODUCTION 

 

Machine learning, a branch of artificial intelligence, concerns the construction 

and study of algorithms and systems that can learn from data. When it is thought 

about nature of learning, it can be realized how the idea of learning by interacting 

with environment is emerged. When a car is driven or a speech is given, driver or 

presenter is aware of how environment will respond to the action which is done. 

Reinforcement learning is a computational learning approach that based on learning 

from interacting with the environment. 

Reinforcement learning is a branch of machine learning that is interested in 

finding an optimal policy that must be followed in transitions on certain states to 

maximize total amount of rewards as a result of the selected actions. Q-Learning is a 

one of the popular and successful reinforcement learning methods. All state-action 

pairs which are existing in environment are valued depend to rewards that they give 

and values of next state-action pairs that they bring into.  

In this thesis, proposed QRNN is a new artificial neural network containing 

Q-learning and general regression approach simultaneously. It may be considered as 

a reinforcement learning general regression neural network with Q-learning. It works 

with approximate values of state-action pairs. After obtaining target values according 

to existing experience of Q-agent, these values are used as expected return values of 

the neural network. To measure the efficiency of the network, QRNN is used directly 

on problems which Q-agent may work on them. QRNN is not only generalizing Q-

values, it also increases rate of successful action selections. Finally, after tests it is 

observed that QRNN learns faster than standard Q-Learning algorithm and also other 

popular regression methods such as LSPI (Least Squares Policy Iteration) and NFQ 

(Neural Fitted Q Iteration).  It is also more efficient than the mentioned algorithms. 

Tests are done by considering number of learning steps. In mountain car problem the 

learning is accelerated more than 100 times. In pole balance problem with two 

parameters; QRNN is faster approximately 1.4 times than LSPI and it is also faster 

approximately 19 times than NFQ. In pole balance problem with four parameters, 
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QRNN is approximately 1.11 times faster than NFQ although QRNN is implemented 

in a wider state action space. These test results prove the efficiency and show 

importance of the proposed network. 

 

1.1. Reinforcement Learning 

 

Reinforcement learning can be identified by four main sub elements: policy, 

reward function, value function, and model of the environment. A policy defines 

agent's way of behaving at a given situation. Reward function determines the amount 

of the award that is gained by the agent as a result of the chosen actions. Value 

function determines how profitable being in a state for future actions. A high-quality 

state indicates the expectation of winning high-valued prizes by moving to the state. 

Model is the last sub element is all of the environmental factors (Watkins 1989). 

 

 
Figure 1.1. Agent Environment Communication 
 

The target of the reinforcement learning is to find an optimal policy that will 

be maximizing the rewards to be won over the long run.  

All reinforcement learning algorithms are based on the “value function” that 

specifies how valuable is being in a state and how good to be in a state for an agent 

(Bellman 1957). 

2 
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𝑉𝜋(𝑠) = �π(𝑠,𝑎)�𝑃𝑠𝑠′𝑎
𝑠′

𝑎

[𝑅𝑠𝑠′𝑎 + 𝛾𝑉𝜋(𝑠′)]                                             (1.1) 

 

𝑉𝜋(𝑠) indicates value of state s. 𝜋(𝑠, 𝑎) is the probability of occurence of the 

action a in state s under the policy 𝜋 . 𝑃𝑠𝑠′𝑎   is the probability of transition to state 𝑠′ 

after action a. 𝑅𝑠𝑠′𝑎   is the reward that is gained with the action a on transition from s 

to 𝑠′. 𝑉𝜋(𝑠′) is the value of the new state 𝑠′. 𝛾 is a discount rate parameter that 

specifies how much would be the effect of the next state value on the updating of the 

previous state’s value. Solving a reinforcement learning problem means finding an 

optimal policy that specifies how to act against different states. Bellman optimal 

value function can be used to find an optimal policy (Bellman 1957).  

 

 𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠)                                                                                             (1.2) 

 

1.1.1. Dynamic Programming 

 

Dynamic programming methods use Bellman equations iteratively to 

calculate exact values of the states. A great model of all environmental factors is 

needed to be able to use dynamic programing. It is hard to use for models that have 

lots of states due to the calculations must be done for all states.  

Dynamic programming is used the value assignment function iteratively and 

state values are updated iteratively. 

 

 𝑉𝑘+1(𝑠) = �𝜋
𝑎

(𝑠,𝑎)�𝑃𝑠𝑠′
𝑎 �𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝑘(𝑠′)�
𝑠′

                                            (1.3) 

 

Last optimal policy is determined when changes in the values of states do not 

cause a change in the current optimal policy.  

 

3 
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 𝜋′(𝑠) = argmax
𝑎

�𝑃𝑠𝑠′
𝑎 �𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)�
𝑠′

                                                       (1.4) 

 

Optimal policy defines a path that begins from the first state and follows the 

best actions that move the agent to the best states until the final state is arrived.  

 

 
Figure 1.2. Dynamic Programming Algorithm 
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1.1.2. Temporal Difference Learning 

 

TD methods advise to use experience to solve the prediction problem between 

actions. After taking each action, the value of the previous state is updated depending 

on the new state’s value and gained reward (Sutton, 1988).  

 

 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡)+ ∝ [𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)]                                            (1.5)  

 

𝑉(𝑠𝑡) is value of  the current state. 𝑉(𝑠𝑡+1) is value of the following state. 

𝑟𝑡+1 is the reward obtained in transition from 𝑠𝑡 to 𝑠𝑡+1. ∝ is a constant that specify 

how quickly the state values will change. 𝛾 is another constant that specifies how 

much would be the effect of the next state value on the previous state value on the 

update the process. 

 

 
Figure 1.3. TD(0) Algorithm 
 

 TD(0) algorithm is run until a successful policy is found.  
 

1.1.3. Q-Learning 

 

One of the most important breakthroughs in reinforcement learning was the 

development of Q-learning (Watkins 1989). In Q learning, updating process is done 

5 
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for action values instead of the state values. Best action of the next state is used as 

reward expectation in update process. In this way, a valuable action owned by a bad 

valued state is not ignored on the evolution progress. The update process of one-step 

Q-learning is done by; 

 

𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡)+∝ �𝑟𝑡+1 + 𝛾max
𝑎

𝑄(𝑠𝑡+1,𝑎) −𝑄(𝑠𝑡,𝑎𝑡)�            (1.6) 

 

𝑄(𝑠𝑡,𝑎𝑡) is value of  the current action. max𝑎 𝑄(𝑠𝑡+1,𝑎) is value of the 

following best action. 𝑟𝑡+1 is the reward obtained in transition from 𝑠𝑡 to 𝑠𝑡+1.  ∝ is a 

constant that specify how quickly the action values will change. 𝛾 is another constant 

that specifies how much would be the effect of the next best action’s value on the 

previous action’s value. 

 

 
Figure 1.4. Q-learning algorithm 
 

In Q-learning algorithm for each episode, selected action values are updated 

with equation 1.6. After a successful policy is found, evolution process is finished.   

The weakness of algorithm is need the storage of Q-values for every state-

action pair. This could reason a huge amount of memory to be required for large 

dimensional real-world problems. Also large state-action space could be required 

6 
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millions of episodes to find a successful policy. In this case a generalisation method 

is needed to suit a successful policy for the problem.  

 

1.1.4. Eligibility Traces 

 

 Eligibility traces is one of the basic methods that is used to make 

reinforcement learning methods more efficient. An eligibility trace keeps a record of 

an event, such as visiting a state or taking an action. After a reward is gained or a 

cost is spent, only eligible states or actions are awarded due to the reward or blamed 

due to the cost that they bring out.  

 

1.1.4.1. N-Step Td Prediction 

 

Tabular TD methods use next state values as the reward expectation in update 

process. n-step TD method considers next n actions’ rewards and value of the last 

state which is reached as a result of the n actions, in order to update the state values. 

While one-step update value is 

 

 𝑅𝑡
(1) = 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1),                                                                                     (1.7) 

 

two-step update value is 

  

𝑅𝑡
(2) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑉𝑡(𝑠𝑡+2).                                                                     (1.8)  

 

As a result, n-step update value will be  

 

𝑅𝑡
(𝑛) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯+ 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛).                   (1.9) 

 

𝑅𝑡
(𝑛) value is referred as n-step return value at time t. After each action, 

updating of state values is done with ∆𝑉𝑡(𝑠𝑡). 

7 
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 ∆𝑉𝑡(𝑠𝑡) = 𝛼�𝑅𝑡
(𝑛) − 𝑉𝑡(𝑠𝑡)�                                                                             (1.10) 

 

𝛾 is a discount rate parameter which is relevant to rewards. There is also need 

a parameter to decide how much a reward or a cost must be affected to previous 

events, states or actions. This parameter is called as trace-decay parameter and is 

shown with λ. Eligibility trace values are updated after each action or state change. 

 

 𝑒𝑡(𝑠) =  𝛾λ𝑒𝑡(𝑠)               if s ≠ 𝑠𝑡                                                                   (1.11) 

 

   𝑒𝑡(𝑠) =  𝛾λ𝑒𝑡(𝑠) + 1       if s = 𝑠𝑡                                                                 (1.12) 

 

Each state has its own trace value depends to the distance between the owner 

state and current state. Therefore, when a prize is gained every state is updated 

depend to its trace value. 

 

 
Figure 1.5. TD(λ) Algorithm 
 

8 
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1.1.4.2. N-Step Q-Learning 

 

Difference of n-step Q-Learning is use of the action values rather than state 

values and use of the best next state action as reward expectation to update the action 

values. In this method R(n) is calculated as: 

 

 𝑹𝒕
(𝟏) = 𝑟𝑡+1 + 𝛾max

𝑎
𝑄𝑡(𝑠𝑡+1,𝑎)                                          

𝑹𝒕
(𝟐) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2max

𝑎
𝑄𝑡(𝑠𝑡+2,𝑎)                                       

... 

𝑹𝒕
(𝒏) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯+ 𝛾𝑛max

𝑎
𝑄𝑡(𝑠𝑡+𝑛, 𝑎)                                          (1.13) 

 

Update of the action values is calculated as: 

 

∆𝑄𝑡(𝑠𝑡,𝑎𝑡) = 𝛼[𝑅𝑡
(𝑛) − 𝑄𝑡(𝑠𝑡,𝑎𝑡)]                                                                 (1.14) 

 

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠,𝑎) + ∆𝑄𝑡(𝑠,𝑎)                                                                  (1.15) 
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Figure 1.6. Watkins’s Q(λ) Algorithm 
 

 Watkins’s Q(λ) algorithm keeps eligibility trace records for each visited state 

till best policy is followed. If an exploration (random) action is chosen depend to 

evaluation method, all eligibility traces are zeroed. Disadvantage of this algorithm is 

cutting off traces after each exploring action. Peng’s Q(λ) algorithm (1996) is 

another form of this algorithm which can be used to prevent this disadvantage. 

 

 

 

 

 

 

 

  

10 
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Figure 1.7. Peng’s Q(λ) Algorithm 
 

 In Peng’s Q(λ) algorithm (Peng and Williams, 1996) eligibility traces are kept 

and updated till episode is finished. It is shown that this algorithm is also effective on 

reinforcement learning problems. 

 

1.2. General Regression Neural Network 

 

 GRNN (Specht, 1991) is a memory-based neural network which does not 

require an iterative training that simply keeps all training data as pattern and 

forecasts value of an input data with help of them.  

GRNN is a four layered network. First layer is input layer that contains a 

neuron for each input value. Second layer is pattern layer that keep all training data 

as a pattern by holding a neuron containing a vector of data for each training data. 

11 
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When a new input data is entered into GRNN, it is subtracted for each stored data in 

pattern neurons. Then squares of differences are summed and pass through the 

Gaussian activation function. Third layer which is called summation layer has two 

neurons that are named numerator and denominator. In this way numerator calculates 

a dot product between outputs of pattern layer and a vector which contains expected 

values of each training data. Denominator calculates sum of the outputs of pattern 

layer. At the end output layer calculates quotient of numerator and denominator 

values and finds the estimated value.     

   

 𝑌(𝑥) =
∑ 𝑌𝑖exp (−𝐷𝑖2 2𝜎2⁄ )𝑛
𝑖=1
∑ exp (−𝐷𝑖2 2𝜎2⁄ )𝑛
𝑖=1

                                                                      (1.16) 

 

 𝐷𝑖2 = (𝑥 − 𝑥𝑖)𝑇(𝑥 − 𝑥𝑖)                                                                                    (1.17) 
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Figure 1.8. General Regression Neural Network Structure 
 

1.3. Rl-Glue 

 

All benchmarks are coded with C programming language on RL-Glue 

(Reinforcement Learning Glue) interface which is a standard interface that allows 

programming environment, agent and experiment separately and provides them to 

connect each other and works correctly. (Tanner and White, 2009) 
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2. PREVIOUS WORKS  

 

Q learning is a breakthrough in reinforcement learning. Because of the large 

dimensional problems have huge amount of state-action pairs, Q learning are not so 

effective in many real-world problems. This problem is called “curse of 

dimensionality” by Sutton (1996). Millions of action selection can be needed to find 

a successful policy. In this case a regression method is needed. However, Q-value 

estimates never become exact values. This led many regression methods to be tried 

in reinforcement learning.    

 Anderson (1987) used one-layer and two-layer networks with error back-

propagation to generalize value function and showed his own two-layer network 

design is able to solve pole-balancing task for TD learning. Lin also used back-

propagation for generalization and applied it on different frameworks for TD 

learning and Q-Learning (1991, 1992).  

 Boyan and Moore (1995) concerned about hardness of robust generalization 

of value function with a function approximator such as a neural network. They 

proposed Grow-Support algorithm to prevent bad convergence in Dynamic 

Programming. Grow-Support algorithm suggests to select some state values from 

state space, in order to finds their expected cost amount with an iterative procedure. 

This procedure starts from chosen state and go through the episode until episode is 

finished or a defined cost limit is exceeded. This progress is done for all chosen 

states. After this, state values are updated. Then, a function approximator is used to 

generalize value function. After that, all progress is repeated with the new value 

function. It is repeated until the value function stops changing.  

 Sabes (1994) suggested using a basis function to represent value function in 

Q-Learning. 

 Gordon (1995) proposed using k-nearest-neighbour method to generalise 

value function. Determined number of states is kept to use for calculations of k-

nearest-neighbour algorithm.    

 Sutton (1996) suggested sparse-coarse-coded function approximators 

(CMACs) to avoid poor performance.  
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 Bradtke and Barto (1996) defined Least Square TD and Recursive Least 

Square TD algorithms. In the algorithms a linear approximation function is used with 

observed inputs and observed outputs. Outputs are defined by; 

 

𝜓𝑡 = 𝛹(𝜔𝑡) + 𝜂𝑡                                                                                        (2.1) 

 

𝜓𝑡 = 𝜔𝑡
′𝛳 + 𝜂𝑡                                                                                            (2.2) 

 

where 𝛹 is the linear function to be approximated, 𝜔𝑡is observed input at time t, 𝜓𝑡 

is the observed output at time t, 𝜂𝑡 is output noise at time t and 𝛳 is the parameter 

vector. Sum of the least-squares between observed outputs and expected outputs can 

be written as;  

 

 𝐽𝑡 =  
1
𝑡
�[𝜓𝑘 − 𝜔𝑘

′ 𝛳𝑡]2
𝑡

𝑘=1

                                                                                    (2.3) 

 

Partial derivative is taken with respect to 𝛳𝑡. In order to equation is set to zero and 

solved to find 𝛳 parameter vector that minimizes error between observed and 

expected outputs. 

 

𝜃𝑡 = �
1
𝑡
�𝜔𝑘𝜔𝑘

′
𝑡

𝑘=1

�

−1

�
1
𝑡
�𝜔𝑘𝜓𝑘

𝑡

𝑘=1

�                                                                   (2.4) 

 

State value V can be defined as linear by; 

 

𝑉(𝑥) =  𝛷𝑥′𝜃                                                                                                (2.5) 

 

where 𝛷𝑥 is state vector and 𝜃 is parameter vector. As mentioned before, bellman 

equation which used as value function; 
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𝑉(𝑥) = �𝑃(𝑥,𝑦)[𝑅(𝑥,𝑦) + 𝛾𝑉(𝑦)]
𝑦𝜖𝑋

                                                              (2.6) 

 

can be written as;   

  

𝑉(𝑥) = �𝑃(𝑥,𝑦)𝑅(𝑥,𝑦) + 𝛾�𝑃(𝑥,𝑦)𝑉(𝑦)
𝑦𝜖𝑋𝑦𝜖𝑋

                                           (2.7)  

 

𝑉(𝑥) = ȓ𝑥 + 𝛾�𝑃(𝑥, 𝑦)𝑉(𝑦)
𝑦𝜖𝑋

                                                                         (2.8) 

 

where ȓ𝑥 is the expected immediate reward from any state transition from x. If V(x) 

and V(y) are replaced with 5th formula; 

 

 ȓ𝑥 = 𝑉(𝑥) − 𝛾�𝑃(𝑥, 𝑦)𝑉(𝑦)
𝑦𝜖𝑋

                                                                        (2.9) 

 

ȓ𝑥 = 𝛷𝑥′𝜃 − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦′𝜃
𝑦𝜖𝑋

                                                                          (2.10) 

 

ȓ𝑥 = �𝛷𝑥′ − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦′
𝑦𝜖𝑋

�𝜃                                                                       (2.11) 

 

Reward function depending on time becomes; 

 

𝑟𝑡 = �𝛷𝑡 − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦
𝑦𝜖𝑋

�

′

𝜃                                                                      (2.12) 
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To maximize reward, derivative of least-squares could be used. If (2.4) is rewritten;  

 

𝜃𝑡 = [
1
𝑡
�𝛷𝑘(𝛷𝑘 − 𝛾𝛷𝑘+1)′
𝑡

𝑘=1

]−1 �
1
𝑡
�𝛷𝑘𝑟𝑘

𝑡

𝑘=1

�                                            (2.13) 

 

This formula can be used for episode-based problems as; 

 

 
Figure 2.1. Episode-Based LS TD 
  

 Bradtke and Barto (1996) also defined recursive version of LS TD algorithm 

and provided convergence proofs of the algorithms. Boyan (2002) updated LSTD 

algorithm in a way which gives ability to work with eligibility traces and named it 

LSTD(λ). Lagoudakis and Parr (2003) proposed Least Squares Policy Iteration 

method which able to learn state-action value function, means it can be used for Q 

learning. 

 Tsitsiklis and Van Roy (1997) analysed convergence of linear and non-linear 

function approximators for TD learning. 

 Riedmiller (1999) analysed concepts of neural control architecture which has 

ability to learn control behaviour in technical process control accurately. 

 Ernst, Geurts and Wehenkel (2005) suggested Fitted Q Iteration algorithm. 

This algorithm works offline means after each episode is finished entirely, obtained 
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experience values are used in regression algorithm. Experience values are kept in 

four-tuples form as (s,a,r,𝑠′). Here, s is the transition state, a is the selected action, r 

is reward and 𝑠′ is the resulting state of action a. 

 

 
Figure 2.2. Fitted Q Iteration algorithm 
  

 As a result of the algorithm 𝒬𝑁 becomes; 

 

𝒬𝑁(𝑠,𝑎) = 𝑟(𝑠,𝑎) + γmax
𝑢′𝜖𝑈

𝒬𝑁−1 (𝑠′,𝑎′)                                                      (2.14) 

  

 After the distance between 𝒬𝑁 and 𝒬𝑁−1 becomes meaningless degree less, 

𝒬𝑁 could be used is a regression method. Ernst, Geurts and Wehenkel also proposed 

tree based methods and informed about their performance.  

 Riedmiller (2005), taking the inheritance of Fitted Q algorithm,  proposed 

NFQ algorithm which represent Q-value function with a multilayer perceptron 

network. NFQ algorithm works offline means after each episode is finished entirely, 

obtained experience values are used to update the network. Experience values are 

kept in triple form as (s, a, 𝑠′). Here, s is the transition state, a is the selected action 

and 𝑠′ is the resulting state of action a. 
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Figure 2.3. NFQ algorithm 
 

 Rprop which is used in algorithm is a fast back-propagation algorithm 

proposed by Riedmiller and Braun (1993). c is the cost function. Target value is 

determined with;  

 

                                                           𝑐(𝑠′,𝑎′, 𝑠𝑛) , 𝑖𝑓 𝑠𝑛ϵ𝑆+ 

𝑡𝑎𝑟𝑔𝑒𝑡𝑙 =                          𝐶−, 𝑖𝑓 𝑠𝑛ϵ𝑆−                                                           (2.15) 

                                                           𝑐(𝑠′,𝑎′, 𝑠𝑛) + γmax
𝑎𝑛

𝒬𝑘 (𝑠𝑛,𝑎𝑛) , 𝑒𝑙𝑠𝑒 

  

 𝑆+ shows goal states. 𝑆− shows forbidden states which must be avoided by a 

successful policy. 𝐶−is equal to 1, maximum value for multilayer perceptron. 

 Whiteson (2006) proposed to use NeuroEvoulotion of Augmenting 

Topologies (NEAT) which suggested by Stanley and Miikkulainen (2002) to 

approximate Q value function. NEAT-Q also is a method that uses back propagation 

to convergence the value function. 

   Cetina (2008) proposed to use multilayer perceptron with radial basis 

functions as Q-value function. It is mentioned about using a radial basis function 

layer is prevented to stuck in local minimum.  

 Shibuya (2010) suggested to use Complex-values RBF network to generalize 

Q-value function.  

{ 
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3. PROPOSED METHOD AND TESTING BENCHMARKS 

 

3.1. Proposed Method 

 

3.1.1. QRNN Methodology 

  

 Q Learning was important newness for reinforcement learning. However 

huge size of state-action space of the real world problems makes Q learning 

inapplicable and unworkable. An efficient regression method is needed for not only 

to generalize the state, action space but also accelerate speed of learning algorithm. 

Suggested reinforcement general regression neural network is a GRNN form 

neural network which is used to generalize Q-value function. Main difference 

between QRNN and other neural networks which have been used to generalize Q-

value function is QRNN is not an error-backpropagation network. Therefore QRNN 

does not need a training phase. QRNN needs mostly accurate data in the pattern layer 

to be able to predict the expected reward of a state-action pair. In this case, Q-

Learning algorithm is used to generate a bunch of episodes. While Q-Learning 

algorithm is working, QRNN is established with the selected state-action pairs and 

target values of them.  

 

target = r +  𝛾max
𝑎′

𝑄(𝑠′,𝑎′)                                                                            (3.1) 

 

To limit pattern layer size of the network, state-action space is divided into 

finite number of pieces and then each piece of the space is represent by a pattern 

neuron. When a new triple (s, a, target) is observed, firstly it is checked to know 

which pattern neuron is responsible for it. If this neuron does not exist, the neuron is 

added to the pattern layer. If exists, neuron values are updated with new triple. 
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Figure 3.1. Training of QRNN 
 

After a bunch of episodes are experienced, QRNN’s effectivity is tried on the 

same problem. For each action, current state parameters are passed through the 

QRNN and action has highest reward expectation is selected. 

     

 
Figure 3.2. Usage of QRNN 
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3.1.2. QRNN Structure 

 

 
Figure 3.3. QRNN Structure 

 

𝐷𝑖2 = (𝑠 − 𝑠𝑖)𝑇(𝑠 − 𝑠𝑖)𝑤𝑇𝑤                                                                               (3.2) 

 

𝑌(𝑠) =
∑ 𝑌𝑖exp (−𝐷𝑖2 2𝜎2⁄ )𝑛+1
𝑖=1

∑ exp (−𝐷𝑖2 2𝜎2⁄ )𝑛+1
𝑖=1

                                                                         (3.3) 

  

s is a vector that keeps all features of a state. a is the action value. w is a 

vector keeps sensitivity variables which are used to decide which parameter is 
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prescriptive. More clearly, if w parameter of a state is higher than other parameters of 

the state, this causes this parameter to become less effective on the evolution 

progress. 𝜎 is variance of the distribution. w and 𝜎 have opposite effect on a 

parameter.  

 

3.1.3. QRNN Algorithm 

 

 
Figure 3.4. QRNN algorithm 
 

 In QRNN algorithm, neural network creation and Q evolution process are 

done simultaneously. While Q learning algorithm is run, data created by Q agent is 

used to establish QRNN.  For each action taken by the agent, a neuron is added or 

updated (if (s, a) is exists in pattern layer) with state, action and also calculated target 
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values. After each n episodes, efficiency of QRNN is measured by k random 

episodes. If QRNN is efficient, evolution progress is done. 

 

3.2. Training Benchmarks 

 

 Four different benchmarks are used to measure quality of QRNN 

generalization. Random walk is the simplest one which has a simple Q-value 

distribution. Other benchmarks are mountain-car, 2-parameter pole-balance and 4-

parameter pole-balance environments which are commonly used to measure 

performance of reinforcement learning algorithms.    

 

3.2.1. Random Walk 

  

One dimensional random walk is one of the benchmarks that is used to 

measure quality of a reinforcement learning algorithm. There are five states on a line 

and each state connects to other two states which one of them is in the left, and other 

one is on the right. Each state has two possible actions to be taken, “left” or “right”. 

Each action has same possibility (%50). There is only one reward to be won; this 

reward is gained when the episode is finished with the taking “right” action on the 

fifth state to terminal. There is also another terminal state at the left of the first state. 

It is recognized easily, best policy to be followed is consistently going to right for 

each state. 

 

 
Figure 3.5. Random Walk Benchmark 
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3.2.2. Mountain Car 

 

 The mountain car problem is firstly defined by Moore in his PhD Thesis 

(1990). When Singh and Sutton added the problem into “Reinforcement Learning: 

An Introduction” (1998) book, it became more popular. The problem is about a 

powerless car must overcome a hill. Due to the gravity is stronger than the car’s 

engine; the car can’t speed up and reach the peak. The car is settled on a valley and 

must learn to keep potential energy by driving up the opposite hill. After that the car 

becomes able to reach the peak of the rightmost hill. 

  

 
Figure 3.6. Mountain-Car Benchmark 
 

Environmental parameters:  

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (−0.07, +0.07)                                       

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (−1.2,0.6)                                             

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = (−1, +1)                                              

 

For each time step reward is -1. After each action parameter changes 

according to this formulas; 

 

            𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 += 𝐴𝑐𝑡𝑖𝑜𝑛 ∗ 0.001 + cos(3 ∗ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ∗ (−0.0025)               (3.4) 

 

             𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦                                                                      (3.5) 
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As a starting condition, position is chosen randomly and velocity is set to 

zero. When position becomes higher then 0.6, episode is terminated.  

 

3.2.3. Pole-Balance Benchmarks 

 

 Pole-balance is a classic problem is widely used for testing control 

algorithms. 

 

3.2.3.1. 2-Parameter Benchmark 

 

In two-dimensional world, a cart with a pole onto is places on a track. There 

is three actions (-50N, 0N, +50N). Two of the actions force the cart with 50N to 

opposite directions, Third one doesn’t affect the cart. Goal is to prevent the pole to 

fall.  

 

 
Figure 3.7. Pole-Balance(Inverted-Pendulum) 2-Parameter Benchmark 
 

 There is only one negative reward (-1) which is gained when the pole falls. 

There are two parameter associated with the problem: 𝜃𝜃 is position of the pole as 

radian value, 𝜃𝜃𝑣 is angular velocity of the pole. Value range of the parameters: 

  

𝜃𝜃𝜖 �−
𝜋
2

,
𝜋
2
� 𝑟𝑎𝑑                                                    

𝜃𝜃𝑣𝜖[−2.5,2.5]𝑟𝑎𝑑/𝑠                                         
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Each action changes acceleration of the cart and the pole according to: 

 

𝜃𝜃𝑎(𝑡) =
𝑔𝑠𝑖𝑛𝜃𝜃(𝑡) − 𝑐𝑜𝑠𝜃𝜃(𝑡)(𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚 )

𝑙 �4
3 −

𝑚𝑐𝑜𝑠2𝜃𝜃(𝑡)
𝑚𝑐 + 𝑚 �

                            (3.6) 

 

where 𝑔 = 9.8 𝑚/𝑠2 is the gravity, 𝑙 = 0.5𝑚 is the half-pole length, F(t) =

F + 𝜂 is the force where 𝜂 is the noise term valued in range of [-10,10], 𝑚 = 2𝐾𝑔 

and 𝑚𝑐 = 8𝐾𝑔 are the masses of the pole and the cart.  

In order to positions and velocities of the cart and the pole is changed by the 

following equations: 

 

𝜃𝜃(𝑡) = 𝜃𝜃(𝑡) + 𝜏 ∗ 𝜃𝜃𝑣(𝑡)                                                                                       (3.7) 

 

𝜃𝜃𝑣(𝑡) = 𝜃𝜃𝑣(𝑡) + 𝜏 ∗ 𝜃𝜃𝑎(𝑡)                                                                                    (3.8) 

 

𝜏 = 0.1s  is used as time step for each movement.  

 

3.2.3.2. 4-Parameter Benchmark 

 

In this case, QRNN is tried in a harder environment. QRNN must not only 

learn to balance the pole and also must prevent the cart quit from the space reserved, 

and also angular range which the pole must be in is much more smaller in this 

environment. There is two actions (-10N, 10N). Two of the actions force the cart 

with 10N to opposite directions, Goal is to prevent the pole to fall down and also 

prevent the cart to get out of the field.  
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Figure 3.8. Pole-Balance(Inverted-Pendulum) 4-Parameter Benchmark 
  

 There is only one negative reward (-1) which is gained when the pole falls or 

cart gets out of the area. There are four parameter associated with the problem: x is 

the position of the cart, v is velocity of the cart, 𝜃𝜃 is position of the pole as radian 

value, 𝜃𝜃𝑣 is angular velocity of the pole. Value range of the parameters: 

 

𝑥𝜖[−2.4,2.4]𝑚                                                  

𝑣𝜖[−1,1]𝑚/𝑠                                                

𝜃𝜃𝜖 �−
𝜋
2

,
𝜋
2
� 𝑟𝑎𝑑                                             

𝜃𝜃𝑣𝜖[−2.5,2.5]𝑟𝑎𝑑/𝑠                                         

 

Each action changes acceleration of the cart and the pole according to: 

 

𝜃𝜃𝑎(𝑡) =
𝑔𝑠𝑖𝑛𝜃𝜃(𝑡) − 𝑐𝑜𝑠𝜃𝜃(𝑡)(𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚 )

𝑙(4
3 −

𝑚𝑐𝑜𝑠2𝜃𝜃(𝑡)
𝑚𝑐 + 𝑚 )

                            (3.9) 

 

𝑎(𝑡) =
�𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚 � −𝑚𝑙𝜃𝜃𝑎(𝑡)𝑐𝑜𝑠𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚
                            (3.10) 

 

where 𝑔 = 9.8 𝑚/𝑠2 is the gravity, 𝑙 = 0.5𝑚 is the half-pole length, F(t) =

F + 𝜂 is the force where 𝜂 is the noise term valued in range of [-1,1], 𝑚 = 0.1𝐾𝑔 

and 𝑚𝑐 = 1𝐾𝑔 are the masses of the pole and the cart.  

Positions and velocities of the cart and the pole is changed by the following 

equations: 
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𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝜏 ∗ 𝑣(𝑡)                                                                               (3.11) 

 

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝜏 ∗ 𝑎(𝑡)                                                                               (3.12) 

 

𝜃𝜃(𝑡) = 𝜃𝜃(𝑡) + 𝜏 ∗ 𝜃𝜃𝑣(𝑡)                                                                                     (3.13) 

 

𝜃𝜃𝑣(𝑡) = 𝜃𝜃𝑣(𝑡) + 𝜏 ∗ 𝜃𝜃𝑎(𝑡)                                                                                 (3.14) 

 

𝜏 = 0.02s  is used as time step for each movement.  
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4. PERFORMANCE ANALYSIS AND FUTURE WORK 

 

4.1. Performance Analysis Results 

 

4.1.1. Random Walk Results 

 

 Just one successful episode is enough for QRNN to learn best policy for 

random walk. After following episode, values of the actions are shown. 

 

[(𝑠3, 𝑙𝑒𝑓𝑡), (𝑠2, 𝑟𝑖𝑔ℎ𝑡), (𝑠3, 𝑟𝑖𝑔ℎ𝑡), (𝑠4, 𝑟𝑖𝑔ℎ𝑡), (𝑠5, 𝑟𝑖𝑔ℎ𝑡)]    

 

 
                            Left action                                                                      Right Action 
Figure 4.1: Left and right action values calculated by QRNN for random walk 
 

 In the figure x axis shows states. There are five states that are valued between 

0.1 and 0.5 with 0.1 sensitivity. y axis shows expected reward of the action. As 

mentioned before, best policy is “right action” for each state. It is seen expected 

reward of right action is higher for all states.  

 

4.1.2. Mountain-Car Benchmark Results 

 

  State-action space is defined in the size of 1800 ∗ 14 ∗ 2. 1800 different 

position values, 14 different velocity values and 2 different actions are used. 

Therefore maximum number of pattern nodes is 50400. Most of the nodes is not 

created because of unvisited or irrational state-action pairs during the episodes. So 
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number of nodes in the pattern layer become furthest about 18000. Training episodes 

starts with a random position and zero velocity. Maximum step size of a training 

episode is limited with 5000. After each 25 episode QRNN performance is measured 

with different variance values between 0.05 and 0.5 for different 180 states on the 

benchmark. Testing state positions starts from -1.2 and are increased by 0.01 till 

0.59. w is set to 1 for all state parameters.  

QRNN is trained and performance of QRNN is measured with given 

parameters for 10 times. Test episodes are limited with maximum number of 5000 

steps. When QRNN become entirely successful on all test episodes, best Q-agent 

policy efficiency is measured and test results is shown at the Table 4.1. 

 

Table 4.1. Mountain-car experiment results 
Test 
No 

Training 
Episodes 
Length 

Best Q-Agent 
Policy 
Efficiency 

QRNN 
Performance 

QRNN 
Variance 

QRNN 
Min-Max 
Episode 
Step Size 

1 25 11/180 (%6.1) 180/180(%100) 0.05 (8, 216) 
2 25 16/180 (%8.8) 180/180(%100) 0.175 (40, 212) 
3 50 18/180 (%10.0) 180/180(%100) 0.40 (3, 222) 
4 275 36/180 (%0.0) 180/180(%100) 0.275 (3, 185) 
5 125 21/180 (%11.6) 180/180(%100) 0.20 (3, 213) 
6 225 34/180 (%18.8) 180/180(%100) 0.30 (3, 209) 
7 75 8/180 (%4.4) 180/180(%100) 0.125 (40, 201) 
8 150 23/180 (%12.7) 180/180(%100) 0.175 (41, 181) 
9 25 16/180 (%8.8) 180/180(%100) 0.100 (3, 229) 
10 25 18/180 (%10.0) 180/180(%100) 0.225 (40, 211) 
Ave 100 20/180 (%11.1) 180/180(%100) - - 

  

It is obtained that, while Q-learning needs more than 10000 episodes to learn 

a successful policy, QRNN requires only averagely 100 episodes. Also, QRNN has 

much better and robust results than Q-learning.     
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4.1.3. Pole-Balance Benchmark Results 

 

4.1.3.1. 2-Parameter benchmark 

 

In two-parameter benchmark only 𝜃 and 𝜃𝑣 are used as state parameters. 

State-action space is in size of 32 ∗ 50 ∗ 3. Maximum number of pattern nodes 

becomes 3200. There are unreasonable states which can’t be visited, in case number 

of nodes in the pattern layer become maximum about 1500. Training episodes starts 

with 𝜃 = 0 and 𝜃𝑣 = 0. Maximum step size of a training episode is limited with 

3000, each movement takes 0.1 sec, which is equal to 300 second (5 minute) of 

movement. After each 10 episode QRNN performance is measured with different 

variance values between 0.02 and 0.2 for different 50 test episodes on the 

benchmark. w is set to 1 for all state parameters. It is obtained that averagely 500 

episodes is enough to learn a successful policy for QRNN.     

QRNN is trained and performance of QRNN is measured with given 

parameters for 10 times. Test episodes are limited with maximum number of 3000 

steps. When QRNN become entirely successful on all test episodes, best Q-agent 

policy efficiency is measured and test results is shown at the Table 4.2. 

 

Table 4.2. 2-Parameter Pole-Balance experiment results 
Training 
No 

Training 
Episodes 

Best Q-Agent 
Policy Balancing 
Time 

QRNN 
Balancing 
Time  

QRNN 
Successful 
Variance 

1 440 ep. 1.1 sec. 5min.  0.06 
2 510 ep. 1.1 sec. 5min.  0.06 to 0.08 and 

0.10 to 0.12 
3 490 ep. 1.1 sec. 5min.  0.02 to 0.10  
4 670 ep. 1.14 sec. 5min.  0.02 to 0.13 
5 430 ep. 1.07 sec. 5min.  0.02 to 0.05 
6 530 ep. 1.14 sec. 5min. 0.02 to 0.10 
7 420 ep. 1.07 sec. 5min.  0.02 to 0.04 
8 580 ep. 1.09 sec. 5min.  0.04 to 0.14 
9 530 ep. 1.18 sec. 5min.  0.02, 0.05, 0.06, 

0.08, and 0.09  
10 530 ep. 1.05 sec. 5min.  0.02 to 0.12 
Ave 513 ep. 1.1 sec 5min.  - 

33 



4. PERFORMANCE ANALYSIS AND FUTURE WORK          Mehmet SARIGÜL 

QRNN needs averagely 513 episodes to learn a successful policy. It was 

presented (Lagoudakis and Parr, 2003), LSPI can balance the pole about 285 second 

after 1000 episodes. Q learning with experience replay, suggested in same paper, 

requires averagely 700 episodes to learn a successful policy.  

It was reported NFQ algorithm (Riedmiller, 2005) needs averagely 200 

episodes to find a successful policy. But, each episode is repeated over the network 

50 times to learn with backpropagation. In this case training of the network takes 

10000 passes. In contrast, QRNN is not a type of backpropagation network. After 

averagely 513 episodes is run, establishment of the neural network is done and a 

successful neural network is ready to use.     

 

4.1.3.2. 4-Parameter benchmark 

 

In this case, any state is defined with four parameters (x, v, 𝜃,𝜃𝑣) and State-

action space is in size of 10 ∗ 10 ∗ 11 ∗ 10 ∗ 2. Number of nodes in the pattern layer 

become maximum about 5000. Training episodes starts with random 𝑥 between -1 

and 1,𝑣 = 0, 𝜃 = 0 and 𝜃𝑣 = 0. Maximum step size of a training episode is limited 

with 3000 which is equal to 60 second (1 minute) of movement. After each 50 

episode QRNN performance is measured with different variance values between 0.02 

and 0.5 for different 50 test episodes on the benchmark. w is set to 1 for all state 

parameters. It is obtained that averagely 2960 episodes is enough to learn a 

successful policy for QRNN.     

QRNN is trained and performance of QRNN is measured with given 

parameters for 10 times. Test episodes are limited with maximum number of 3000 

steps. Result are given in the Table 4.3. 
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Table 4.3. 4- Parameter Pole-Balance experiment results 
 No Training 

Episodes 
Best Q-Agent 
Policy Time 
Average 

QRNN Time 
Average 

QRNN Successful 
Variances 

1 2500ep. 5.28sec. 1min.  0.136 to 0.174 
2 600 ep. 0.48sec. 1min.  0.434 to 0.478 
3 2900ep. 5.11sec. 1min.  0.111 
4 3400ep. 8.45sec. 1min.  0.124 to 0.158 
5 3700ep. 6.22sec. 1min.  0.130 and 0.131 
6 3350ep. 10.0sec. 1min.  0.234 
7 2850ep. 6.03sec. 1min.  0.142 to 0.180 
8 3550ep. 6.42sec. 1min.  0.124 to 0.178 
9 3600ep. 8.93sec. 1min.  0.104 to 0.108 
10 3150ep. 5.66sec. 1min.  0.148 to 0.246 
Ave 2960ep. 6.27sec. 1min.  - 

 

It was reported NFQ algorithm (Riedmiller, 2005) needs averagely 14440 

cycles to find a successful policy. QRNN needs averagely 13000 cycles (equals to 

3000 episodes) to find a successful policy.  

 

4.2. Future Work 

  

 QRNN is an effective method for many kind of problems. But as it can be 

considered, QRNN performance is directly related to Q-Values of the Q learning 

algorithm. This problem can be prevented by using QRNN not only a regression 

method but also a learning algorithm. 

 

 
Figure 4.2: Training and usage of Improved QRNN 

QRNN 
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Figure 4.3: Improved QRNN Algorithm 
 

 As it is seen, QRNN learning algorithm is a batch learning method means 

values of state-action pairs are updated after the episode is done. Reason of this 

process is to prevent undesired local minimum and local maximum values on the 

regression surface.  

 According to the results obtained in first, learning algorithm learns faster than 

the previous methodology, but also unwanted oscillations can be occurred on the 

regression surface. Therefore the methodology is still in progress.  
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5. CONCLUSIONS 

 

In this thesis, a very effective unsupervised learning regression neural 

network able to generalize the solution surface or solution hyper plane of 

reinforcement learning problems named as QRNN is proposed. The high efficiency 

of regression is obtained by the utilization of GRNN inherited network topology. On 

the other hand, main drawbacks of GRNN are also contained by QRNN. These are 

mainly problematic of the selection the efficient variance value for the corresponding 

data set and relatively high throughput time for a new data due to complex 

calculation. Estimation time consumption is decreased by limiting number of pattern 

layer nodes of the QRNN.  

Under limited number of pattern layer neurons, QRNN is also effective with 

real time learning. It may be created and tested while Q agent is running on the 

environment. QRNN does not require an extra training time due to its state keeping 

structure. In backpropagation networks, a bunch of episodes must be stored as 

training data and then they must be passed through the network for many epochs. If 

learning process is unsuccessful, a new or bigger data set must be tried for the error 

back propagation networks. In contrast, QRNN evolution process can be done by 

growing the states kept in pattern layer. After a number of episodes used to establish 

QRNN, additional episodes can also be used to improve performance of the network. 

An iterative training process is not required for QRNN. Through this work QRNN is 

applied to solve popular problems of reinforcement learning that are random walk, 

mountain car and pole balance problems. Regression performance of QRNN is 

compared with that of LSPI and NFQ algorithms on the same test benches. QRNN 

learns much faster than these two algorithms. Tests are done by considering number 

of learning steps. In mountain car problem the learning is accelerated more than 100 

times. In pole balance problem with two parameters; QRNN is faster approximately 

1.4 times than LSPI and it is also faster approximately 19 times than NFQ. In pole 

balance problem with four parameters, QRNN is approximately 1.11 times faster 

than NFQ although QRNN is implemented in a wider state action space. These test 

results prove the efficiency and show importance of the proposed network. 
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