
ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

MSc THESIS

Mehmet SARIGÜL

Q REGRESSION NEURAL NETWORK

DEPARTMENT OF COMPUTER ENGINEERING

ADANA, 2014

ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

Q REGRESSION NEURAL NETWORK

Mehmet SARIGÜL

MSc THESIS

DEPARTMENT OF COMPUTER ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of
degree of the Master of Science by the board of jury on ../../2015.

……………………………… ………………………………... …………………………………..
Assoc. Prof. Dr. Mutlu AVCI Assoc. Prof. Dr. Selma A. Özel Asst. Prof. Dr. Serdar YILDIRIM
SUPERVISOR MEMBER MEMBER

This MSc Thesis is written at the Department of Institute of Natural And Applied
Sciences of Çukurova University.
Registration Number:

Prof. Dr. Mustafa GÖK
Director
Institute of Natural and Applied Sciences

This thesis is supported by TÜBİTAK.

Not:The usage of the presented specific declerations, tables, figures, and photographs either in this

thesis or in any other reference without citiation is subject to "The law of Arts and
Intellectual Products" number of 5846 of Turkish Republic

ABSTRACT

MSc THESIS

Q REGRESSION NEURAL NETWORK

Mehmet SARIGÜL

ÇUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

 Supervisor : Assoc. Prof. Dr. Mutlu AVCI
 Year: 2015, Pages: 43
 Jury : Assoc. Prof. Dr. Mutlu AVCI
 : Assoc. Prof. Dr. Selma Ayşe ÖZEL
 : Asst. Prof. Dr. Serdar YILDIRIM

Q Learning was an important novelty for reinforcement learning. However Q
learning becomes inapplicable due to the gigantic size of solution spaces of real
world problems. Therefore, an efficient regression method is required not only to
generalize the state, action space but also accelerate speed of the learning algorithm.

In this thesis, Q regression neural network suggested is a novel regression
method obtained as a result of a GRNN form structure used for generalization Q-
value function. QRNN works with data generated by Q-Agent. It is tested with
popular reinforcement learning benchmarks and its performance is compared with
that of both Q-Learning and the other regression methods. Test results show that,
QRNN learning efficiency is much higher than the compared methods.

Key Words: Reinforcement Learning, Q Learning, Q value function generalization,

GRNN

I

ÖZ

YÜKSEK LİSANS TEZİ

Q REGRESYON SİNİR AĞI

Mehmet SARIGÜL

ÇUKUROVA ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

 Danışman : Doç. Dr. Mutlu AVCI
 Yıl: 2015, Sayfa: 43
 Jüri : Doç. Dr. Mutlu AVCI
 : Doç. Dr. Selma Ayşe ÖZEL
 : Yrd. Doç. Dr. Serdar YILDIRIM

Q öğrenme yöntemi takviyeli öğrenme için önemli bir gelişme olmuştur.
Ancak gerçek dünya problemlerinin sahip olduğu devasa büyüklükteki durum-
aksiyon sayısı Q öğrenme yöntemini uygulanamaz hale getirmektedir. Bu durum
sadece durum-aksiyon uzayını genellemeyecek, aynı zamanda da öğrenmeyi
hızlandıracak etkili bir regresyon metodunu gerekmektedir.

Bu tezde Q regresyon yapay sinir ağı adında Q değer fonksiyonunun
genelleştirilmesi ile GRNN formunda bir yapı kullanılması sonucu elde edilen yeni
bir eğiticisiz yapay sinir ağı önerilmiştir. QRNN Q ajanının ürettiği veriler üzerinde
çalışır. Önerilen metot popüler takviyeli öğrenme çalışma ortamları üzerinde test
edilmiş, Q öğrenme yöntemi ve diğer regresyon yöntemleri ile karşılaştırılmıştır.
Test sonucunda öğrenme hızının karşılaştırılan yöntemlere göre oldukça yüksek
olduğu gözlenmiştir.

Anahtar Kelimeler: Takviyeli Öğrenme, Q öğrenme yöntemi, Q değer fonksiyonu

genelleme, GRNN

II

ACKNOWLEDGEMENTS

I would like to thank my advisor Assoc. Prof. Dr. Mutlu AVCI for his

continuous and unconditional support, valuable guidance and encouragement.

I would like to thank each and every member of the evaluation committee for

their guidance.

I also want to thank my parents and my wife who never stopped believing in

me. I appreciate all of their support and encouragements.

I would like to thank TÜBİTAK for financial support during my MSc

education.

III

CONTENTS PAGE

ABSTRACT .. I

ÖZ ... II

ACKNOWLEDGEMENTS ... III

CONTENTS ... IV

LIST OF TABLES ... VI

LIST OF FIGURES .. VIII

l. INTRODUCTION .. 1

 l.1. Reinforcement Learning .. 2

 l.1.1. Dynamic Programming .. 3

 l.1.2. Temporal Difference Learning ... 5

 l.1.3. Q-Learning ... 5

 l.1.4. Eligibility Traces .. 7

 l.1.4.1. N-Step TD Prediction .. 7

 l.1.4.2. N-Step Q-Learning .. 9

 l.2. General Regression Neural Network ... 11

 l.3. RL_GLUE .. 13

2. PREVIOUS WORKS ... 15

3. PROPOSED METHOD AND TESTING BENCHMARKS 21

 3.1. Proposed Method .. 21

 3.1.1. QRNN Methodology ... 21

 3.1.2. QRNN Structure .. 23

 3.1.3. QRNN Algorithm .. 24

 3.2. Training Benchmarks .. 25

 3.2.1. Random Walk.. 25

 3.2.2. Mountain Car ... 26

 3.2.3. Pole Balance Benchmarks ... 27

 3.2.3.1. 2-Parameter Benchmark ... 27

 3.2.3.2. 4-Parameter Benchmark ... 28

4. PERFORMANCE ANALYSIS AND FUTURE WORK 31

IV

 4.1. Performance Analysis Results .. 31

 4.1.1. Random Walk .. 31

 4.1.2. Mountain Car Benchmark Results ... 31

 4.1.3. Pole-Balance Benchmark Results .. 33

 4.1.3.1. 2-Parameter Benchmark Results... 33

 4.1.3.2. 4-Parameter Benchmark Results... 34

 4.2. Future Work ... 35

5. CONCLUSION ... 37

REFERENCES ... 39

CURRICULUM VITAE .. 43

V

LIST OF TABLES PAGE

Table 4.1. Mountain-Car Experiment Results.. 32

Table 4.2. 2-Parameter Pole-Balance Experiment Results .. 33

Table 4.3. 4-Parameter Pole-Balance Experiment Results .. 35

VI

VII

LIST OF FIGURES PAGE

Figure 1.1. Agent Environment Communication ... 2

Figure 1.2. Dynamic Programming Algorithm .. 4

Figure 1.3. TD(0) Algorithm .. 5

Figure 1.4. Q-Learning Algorithm ... 6

Figure 1.5. TD(λ) Algorithm .. 8

Figure 1.6. Watkins’s Q(λ) Algorithm ... 10

Figure 1.7. Peng’s Q(λ) Algorithm .. 11

Figure 1.8. General Regression Neural Network Structure 13

Figure 2.1. Episode-Based LS TD ... 18

Figure 2.2. Fitted Q Iteration Algorithm .. 19

Figure 2.3. NFQ Algorithm .. 20

Figure 3.1. Training of QRNN ... 22

Figure 3.2. Usage of QRNN ... 22

Figure 3.3. QRNN Structure .. 23

Figure 3.4. QRNN Algorithm .. 24

Figure 3.5. Random Walk Benchmark ... 25

Figure 3.6. Mountain Car Benchmark.. 26

Figure 3.7. Pole-Balance(Inverted-Pendulum) 2-Parameter Benchmark 27

Figure 3.8. Pole-Balance(Inverted-Pendulum) 4-Parameter Benchmark 29

Figure 4.1. Left and right action values calculated by QRNN for random walk 31

Figure 4.2. Training and usage of Improved QRNN ... 35

Figure 4.3. Improved QRNN Algorithm .. 36

VIII

IX

1. INTRODUCTION Mehmet SARIGÜL

1. INTRODUCTION

Machine learning, a branch of artificial intelligence, concerns the construction

and study of algorithms and systems that can learn from data. When it is thought

about nature of learning, it can be realized how the idea of learning by interacting

with environment is emerged. When a car is driven or a speech is given, driver or

presenter is aware of how environment will respond to the action which is done.

Reinforcement learning is a computational learning approach that based on learning

from interacting with the environment.

Reinforcement learning is a branch of machine learning that is interested in

finding an optimal policy that must be followed in transitions on certain states to

maximize total amount of rewards as a result of the selected actions. Q-Learning is a

one of the popular and successful reinforcement learning methods. All state-action

pairs which are existing in environment are valued depend to rewards that they give

and values of next state-action pairs that they bring into.

In this thesis, proposed QRNN is a new artificial neural network containing

Q-learning and general regression approach simultaneously. It may be considered as

a reinforcement learning general regression neural network with Q-learning. It works

with approximate values of state-action pairs. After obtaining target values according

to existing experience of Q-agent, these values are used as expected return values of

the neural network. To measure the efficiency of the network, QRNN is used directly

on problems which Q-agent may work on them. QRNN is not only generalizing Q-

values, it also increases rate of successful action selections. Finally, after tests it is

observed that QRNN learns faster than standard Q-Learning algorithm and also other

popular regression methods such as LSPI (Least Squares Policy Iteration) and NFQ

(Neural Fitted Q Iteration). It is also more efficient than the mentioned algorithms.

Tests are done by considering number of learning steps. In mountain car problem the

learning is accelerated more than 100 times. In pole balance problem with two

parameters; QRNN is faster approximately 1.4 times than LSPI and it is also faster

approximately 19 times than NFQ. In pole balance problem with four parameters,

1

1. INTRODUCTION Mehmet SARIGÜL

QRNN is approximately 1.11 times faster than NFQ although QRNN is implemented

in a wider state action space. These test results prove the efficiency and show

importance of the proposed network.

1.1. Reinforcement Learning

Reinforcement learning can be identified by four main sub elements: policy,

reward function, value function, and model of the environment. A policy defines

agent's way of behaving at a given situation. Reward function determines the amount

of the award that is gained by the agent as a result of the chosen actions. Value

function determines how profitable being in a state for future actions. A high-quality

state indicates the expectation of winning high-valued prizes by moving to the state.

Model is the last sub element is all of the environmental factors (Watkins 1989).

Figure 1.1. Agent Environment Communication

The target of the reinforcement learning is to find an optimal policy that will

be maximizing the rewards to be won over the long run.

All reinforcement learning algorithms are based on the “value function” that

specifies how valuable is being in a state and how good to be in a state for an agent

(Bellman 1957).

2

1. INTRODUCTION Mehmet SARIGÜL

𝑉𝜋(𝑠) = �π(𝑠,𝑎)�𝑃𝑠𝑠′𝑎
𝑠′

𝑎

[𝑅𝑠𝑠′𝑎 + 𝛾𝑉𝜋(𝑠′)] (1.1)

𝑉𝜋(𝑠) indicates value of state s. 𝜋(𝑠, 𝑎) is the probability of occurence of the

action a in state s under the policy 𝜋 . 𝑃𝑠𝑠′𝑎 is the probability of transition to state 𝑠′

after action a. 𝑅𝑠𝑠′𝑎 is the reward that is gained with the action a on transition from s

to 𝑠′. 𝑉𝜋(𝑠′) is the value of the new state 𝑠′. 𝛾 is a discount rate parameter that

specifies how much would be the effect of the next state value on the updating of the

previous state’s value. Solving a reinforcement learning problem means finding an

optimal policy that specifies how to act against different states. Bellman optimal

value function can be used to find an optimal policy (Bellman 1957).

 𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠) (1.2)

1.1.1. Dynamic Programming

Dynamic programming methods use Bellman equations iteratively to

calculate exact values of the states. A great model of all environmental factors is

needed to be able to use dynamic programing. It is hard to use for models that have

lots of states due to the calculations must be done for all states.

Dynamic programming is used the value assignment function iteratively and

state values are updated iteratively.

 𝑉𝑘+1(𝑠) = �𝜋
𝑎

(𝑠,𝑎)�𝑃𝑠𝑠′
𝑎 �𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝑘(𝑠′)�
𝑠′

 (1.3)

Last optimal policy is determined when changes in the values of states do not

cause a change in the current optimal policy.

3

1. INTRODUCTION Mehmet SARIGÜL

 𝜋′(𝑠) = argmax
𝑎

�𝑃𝑠𝑠′
𝑎 �𝑅𝑠𝑠′

𝑎 + 𝛾𝑉𝜋(𝑠′)�
𝑠′

 (1.4)

Optimal policy defines a path that begins from the first state and follows the

best actions that move the agent to the best states until the final state is arrived.

Figure 1.2. Dynamic Programming Algorithm

4

1. INTRODUCTION Mehmet SARIGÜL

1.1.2. Temporal Difference Learning

TD methods advise to use experience to solve the prediction problem between

actions. After taking each action, the value of the previous state is updated depending

on the new state’s value and gained reward (Sutton, 1988).

 𝑉(𝑠𝑡) = 𝑉(𝑠𝑡)+ ∝ [𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] (1.5)

𝑉(𝑠𝑡) is value of the current state. 𝑉(𝑠𝑡+1) is value of the following state.

𝑟𝑡+1 is the reward obtained in transition from 𝑠𝑡 to 𝑠𝑡+1. ∝ is a constant that specify

how quickly the state values will change. 𝛾 is another constant that specifies how

much would be the effect of the next state value on the previous state value on the

update the process.

Figure 1.3. TD(0) Algorithm

 TD(0) algorithm is run until a successful policy is found.

1.1.3. Q-Learning

One of the most important breakthroughs in reinforcement learning was the

development of Q-learning (Watkins 1989). In Q learning, updating process is done

5

1. INTRODUCTION Mehmet SARIGÜL

for action values instead of the state values. Best action of the next state is used as

reward expectation in update process. In this way, a valuable action owned by a bad

valued state is not ignored on the evolution progress. The update process of one-step

Q-learning is done by;

𝑄(𝑠𝑡,𝑎𝑡) = 𝑄(𝑠𝑡,𝑎𝑡)+∝ �𝑟𝑡+1 + 𝛾max
𝑎

𝑄(𝑠𝑡+1,𝑎) −𝑄(𝑠𝑡,𝑎𝑡)� (1.6)

𝑄(𝑠𝑡,𝑎𝑡) is value of the current action. max𝑎 𝑄(𝑠𝑡+1,𝑎) is value of the

following best action. 𝑟𝑡+1 is the reward obtained in transition from 𝑠𝑡 to 𝑠𝑡+1. ∝ is a

constant that specify how quickly the action values will change. 𝛾 is another constant

that specifies how much would be the effect of the next best action’s value on the

previous action’s value.

Figure 1.4. Q-learning algorithm

In Q-learning algorithm for each episode, selected action values are updated

with equation 1.6. After a successful policy is found, evolution process is finished.

The weakness of algorithm is need the storage of Q-values for every state-

action pair. This could reason a huge amount of memory to be required for large

dimensional real-world problems. Also large state-action space could be required

6

1. INTRODUCTION Mehmet SARIGÜL

millions of episodes to find a successful policy. In this case a generalisation method

is needed to suit a successful policy for the problem.

1.1.4. Eligibility Traces

 Eligibility traces is one of the basic methods that is used to make

reinforcement learning methods more efficient. An eligibility trace keeps a record of

an event, such as visiting a state or taking an action. After a reward is gained or a

cost is spent, only eligible states or actions are awarded due to the reward or blamed

due to the cost that they bring out.

1.1.4.1. N-Step Td Prediction

Tabular TD methods use next state values as the reward expectation in update

process. n-step TD method considers next n actions’ rewards and value of the last

state which is reached as a result of the n actions, in order to update the state values.

While one-step update value is

 𝑅𝑡
(1) = 𝑟𝑡+1 + 𝛾𝑉𝑡(𝑠𝑡+1), (1.7)

two-step update value is

𝑅𝑡
(2) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑉𝑡(𝑠𝑡+2). (1.8)

As a result, n-step update value will be

𝑅𝑡
(𝑛) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯+ 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉𝑡(𝑠𝑡+𝑛). (1.9)

𝑅𝑡
(𝑛) value is referred as n-step return value at time t. After each action,

updating of state values is done with ∆𝑉𝑡(𝑠𝑡).

7

1. INTRODUCTION Mehmet SARIGÜL

 ∆𝑉𝑡(𝑠𝑡) = 𝛼�𝑅𝑡
(𝑛) − 𝑉𝑡(𝑠𝑡)� (1.10)

𝛾 is a discount rate parameter which is relevant to rewards. There is also need

a parameter to decide how much a reward or a cost must be affected to previous

events, states or actions. This parameter is called as trace-decay parameter and is

shown with λ. Eligibility trace values are updated after each action or state change.

 𝑒𝑡(𝑠) = 𝛾λ𝑒𝑡(𝑠) if s ≠ 𝑠𝑡 (1.11)

 𝑒𝑡(𝑠) = 𝛾λ𝑒𝑡(𝑠) + 1 if s = 𝑠𝑡 (1.12)

Each state has its own trace value depends to the distance between the owner

state and current state. Therefore, when a prize is gained every state is updated

depend to its trace value.

Figure 1.5. TD(λ) Algorithm

8

1. INTRODUCTION Mehmet SARIGÜL

1.1.4.2. N-Step Q-Learning

Difference of n-step Q-Learning is use of the action values rather than state

values and use of the best next state action as reward expectation to update the action

values. In this method R(n) is calculated as:

 𝑹𝒕
(𝟏) = 𝑟𝑡+1 + 𝛾max

𝑎
𝑄𝑡(𝑠𝑡+1,𝑎)

𝑹𝒕
(𝟐) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2max

𝑎
𝑄𝑡(𝑠𝑡+2,𝑎)

...

𝑹𝒕
(𝒏) = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ⋯+ 𝛾𝑛max

𝑎
𝑄𝑡(𝑠𝑡+𝑛, 𝑎) (1.13)

Update of the action values is calculated as:

∆𝑄𝑡(𝑠𝑡,𝑎𝑡) = 𝛼[𝑅𝑡
(𝑛) − 𝑄𝑡(𝑠𝑡,𝑎𝑡)] (1.14)

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠,𝑎) + ∆𝑄𝑡(𝑠,𝑎) (1.15)

9

1. INTRODUCTION Mehmet SARIGÜL

Figure 1.6. Watkins’s Q(λ) Algorithm

 Watkins’s Q(λ) algorithm keeps eligibility trace records for each visited state

till best policy is followed. If an exploration (random) action is chosen depend to

evaluation method, all eligibility traces are zeroed. Disadvantage of this algorithm is

cutting off traces after each exploring action. Peng’s Q(λ) algorithm (1996) is

another form of this algorithm which can be used to prevent this disadvantage.

10

1. INTRODUCTION Mehmet SARIGÜL

Figure 1.7. Peng’s Q(λ) Algorithm

 In Peng’s Q(λ) algorithm (Peng and Williams, 1996) eligibility traces are kept

and updated till episode is finished. It is shown that this algorithm is also effective on

reinforcement learning problems.

1.2. General Regression Neural Network

 GRNN (Specht, 1991) is a memory-based neural network which does not

require an iterative training that simply keeps all training data as pattern and

forecasts value of an input data with help of them.

GRNN is a four layered network. First layer is input layer that contains a

neuron for each input value. Second layer is pattern layer that keep all training data

as a pattern by holding a neuron containing a vector of data for each training data.

11

1. INTRODUCTION Mehmet SARIGÜL

When a new input data is entered into GRNN, it is subtracted for each stored data in

pattern neurons. Then squares of differences are summed and pass through the

Gaussian activation function. Third layer which is called summation layer has two

neurons that are named numerator and denominator. In this way numerator calculates

a dot product between outputs of pattern layer and a vector which contains expected

values of each training data. Denominator calculates sum of the outputs of pattern

layer. At the end output layer calculates quotient of numerator and denominator

values and finds the estimated value.

 𝑌(𝑥) =
∑ 𝑌𝑖exp (−𝐷𝑖2 2𝜎2⁄)𝑛
𝑖=1
∑ exp (−𝐷𝑖2 2𝜎2⁄)𝑛
𝑖=1

 (1.16)

 𝐷𝑖2 = (𝑥 − 𝑥𝑖)𝑇(𝑥 − 𝑥𝑖) (1.17)

12

1. INTRODUCTION Mehmet SARIGÜL

Figure 1.8. General Regression Neural Network Structure

1.3. Rl-Glue

All benchmarks are coded with C programming language on RL-Glue

(Reinforcement Learning Glue) interface which is a standard interface that allows

programming environment, agent and experiment separately and provides them to

connect each other and works correctly. (Tanner and White, 2009)

13

1. INTRODUCTION Mehmet SARIGÜL

14

2. PREVIOUS WORKS Mehmet SARIGÜL

2. PREVIOUS WORKS

Q learning is a breakthrough in reinforcement learning. Because of the large

dimensional problems have huge amount of state-action pairs, Q learning are not so

effective in many real-world problems. This problem is called “curse of

dimensionality” by Sutton (1996). Millions of action selection can be needed to find

a successful policy. In this case a regression method is needed. However, Q-value

estimates never become exact values. This led many regression methods to be tried

in reinforcement learning.

 Anderson (1987) used one-layer and two-layer networks with error back-

propagation to generalize value function and showed his own two-layer network

design is able to solve pole-balancing task for TD learning. Lin also used back-

propagation for generalization and applied it on different frameworks for TD

learning and Q-Learning (1991, 1992).

 Boyan and Moore (1995) concerned about hardness of robust generalization

of value function with a function approximator such as a neural network. They

proposed Grow-Support algorithm to prevent bad convergence in Dynamic

Programming. Grow-Support algorithm suggests to select some state values from

state space, in order to finds their expected cost amount with an iterative procedure.

This procedure starts from chosen state and go through the episode until episode is

finished or a defined cost limit is exceeded. This progress is done for all chosen

states. After this, state values are updated. Then, a function approximator is used to

generalize value function. After that, all progress is repeated with the new value

function. It is repeated until the value function stops changing.

 Sabes (1994) suggested using a basis function to represent value function in

Q-Learning.

 Gordon (1995) proposed using k-nearest-neighbour method to generalise

value function. Determined number of states is kept to use for calculations of k-

nearest-neighbour algorithm.

 Sutton (1996) suggested sparse-coarse-coded function approximators

(CMACs) to avoid poor performance.

15

2. PREVIOUS WORKS Mehmet SARIGÜL

 Bradtke and Barto (1996) defined Least Square TD and Recursive Least

Square TD algorithms. In the algorithms a linear approximation function is used with

observed inputs and observed outputs. Outputs are defined by;

𝜓𝑡 = 𝛹(𝜔𝑡) + 𝜂𝑡 (2.1)

𝜓𝑡 = 𝜔𝑡
′𝛳 + 𝜂𝑡 (2.2)

where 𝛹 is the linear function to be approximated, 𝜔𝑡is observed input at time t, 𝜓𝑡

is the observed output at time t, 𝜂𝑡 is output noise at time t and 𝛳 is the parameter

vector. Sum of the least-squares between observed outputs and expected outputs can

be written as;

 𝐽𝑡 =
1
𝑡
�[𝜓𝑘 − 𝜔𝑘

′ 𝛳𝑡]2
𝑡

𝑘=1

 (2.3)

Partial derivative is taken with respect to 𝛳𝑡. In order to equation is set to zero and

solved to find 𝛳 parameter vector that minimizes error between observed and

expected outputs.

𝜃𝑡 = �
1
𝑡
�𝜔𝑘𝜔𝑘

′
𝑡

𝑘=1

�

−1

�
1
𝑡
�𝜔𝑘𝜓𝑘

𝑡

𝑘=1

� (2.4)

State value V can be defined as linear by;

𝑉(𝑥) = 𝛷𝑥′𝜃 (2.5)

where 𝛷𝑥 is state vector and 𝜃 is parameter vector. As mentioned before, bellman

equation which used as value function;

16

2. PREVIOUS WORKS Mehmet SARIGÜL

𝑉(𝑥) = �𝑃(𝑥,𝑦)[𝑅(𝑥,𝑦) + 𝛾𝑉(𝑦)]
𝑦𝜖𝑋

 (2.6)

can be written as;

𝑉(𝑥) = �𝑃(𝑥,𝑦)𝑅(𝑥,𝑦) + 𝛾�𝑃(𝑥,𝑦)𝑉(𝑦)
𝑦𝜖𝑋𝑦𝜖𝑋

 (2.7)

𝑉(𝑥) = ȓ𝑥 + 𝛾�𝑃(𝑥, 𝑦)𝑉(𝑦)
𝑦𝜖𝑋

 (2.8)

where ȓ𝑥 is the expected immediate reward from any state transition from x. If V(x)

and V(y) are replaced with 5th formula;

 ȓ𝑥 = 𝑉(𝑥) − 𝛾�𝑃(𝑥, 𝑦)𝑉(𝑦)
𝑦𝜖𝑋

 (2.9)

ȓ𝑥 = 𝛷𝑥′𝜃 − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦′𝜃
𝑦𝜖𝑋

 (2.10)

ȓ𝑥 = �𝛷𝑥′ − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦′
𝑦𝜖𝑋

�𝜃 (2.11)

Reward function depending on time becomes;

𝑟𝑡 = �𝛷𝑡 − 𝛾�𝑃(𝑥,𝑦)𝛷𝑦
𝑦𝜖𝑋

�

′

𝜃 (2.12)

17

2. PREVIOUS WORKS Mehmet SARIGÜL

To maximize reward, derivative of least-squares could be used. If (2.4) is rewritten;

𝜃𝑡 = [
1
𝑡
�𝛷𝑘(𝛷𝑘 − 𝛾𝛷𝑘+1)′
𝑡

𝑘=1

]−1 �
1
𝑡
�𝛷𝑘𝑟𝑘

𝑡

𝑘=1

� (2.13)

This formula can be used for episode-based problems as;

Figure 2.1. Episode-Based LS TD

 Bradtke and Barto (1996) also defined recursive version of LS TD algorithm

and provided convergence proofs of the algorithms. Boyan (2002) updated LSTD

algorithm in a way which gives ability to work with eligibility traces and named it

LSTD(λ). Lagoudakis and Parr (2003) proposed Least Squares Policy Iteration

method which able to learn state-action value function, means it can be used for Q

learning.

 Tsitsiklis and Van Roy (1997) analysed convergence of linear and non-linear

function approximators for TD learning.

 Riedmiller (1999) analysed concepts of neural control architecture which has

ability to learn control behaviour in technical process control accurately.

 Ernst, Geurts and Wehenkel (2005) suggested Fitted Q Iteration algorithm.

This algorithm works offline means after each episode is finished entirely, obtained

18

2. PREVIOUS WORKS Mehmet SARIGÜL

experience values are used in regression algorithm. Experience values are kept in

four-tuples form as (s,a,r,𝑠′). Here, s is the transition state, a is the selected action, r

is reward and 𝑠′ is the resulting state of action a.

Figure 2.2. Fitted Q Iteration algorithm

 As a result of the algorithm 𝒬𝑁 becomes;

𝒬𝑁(𝑠,𝑎) = 𝑟(𝑠,𝑎) + γmax
𝑢′𝜖𝑈

𝒬𝑁−1 (𝑠′,𝑎′) (2.14)

 After the distance between 𝒬𝑁 and 𝒬𝑁−1 becomes meaningless degree less,

𝒬𝑁 could be used is a regression method. Ernst, Geurts and Wehenkel also proposed

tree based methods and informed about their performance.

 Riedmiller (2005), taking the inheritance of Fitted Q algorithm, proposed

NFQ algorithm which represent Q-value function with a multilayer perceptron

network. NFQ algorithm works offline means after each episode is finished entirely,

obtained experience values are used to update the network. Experience values are

kept in triple form as (s, a, 𝑠′). Here, s is the transition state, a is the selected action

and 𝑠′ is the resulting state of action a.

19

2. PREVIOUS WORKS Mehmet SARIGÜL

Figure 2.3. NFQ algorithm

 Rprop which is used in algorithm is a fast back-propagation algorithm

proposed by Riedmiller and Braun (1993). c is the cost function. Target value is

determined with;

 𝑐(𝑠′,𝑎′, 𝑠𝑛) , 𝑖𝑓 𝑠𝑛ϵ𝑆+

𝑡𝑎𝑟𝑔𝑒𝑡𝑙 = 𝐶−, 𝑖𝑓 𝑠𝑛ϵ𝑆− (2.15)

 𝑐(𝑠′,𝑎′, 𝑠𝑛) + γmax
𝑎𝑛

𝒬𝑘 (𝑠𝑛,𝑎𝑛) , 𝑒𝑙𝑠𝑒

 𝑆+ shows goal states. 𝑆− shows forbidden states which must be avoided by a

successful policy. 𝐶−is equal to 1, maximum value for multilayer perceptron.

 Whiteson (2006) proposed to use NeuroEvoulotion of Augmenting

Topologies (NEAT) which suggested by Stanley and Miikkulainen (2002) to

approximate Q value function. NEAT-Q also is a method that uses back propagation

to convergence the value function.

 Cetina (2008) proposed to use multilayer perceptron with radial basis

functions as Q-value function. It is mentioned about using a radial basis function

layer is prevented to stuck in local minimum.

 Shibuya (2010) suggested to use Complex-values RBF network to generalize

Q-value function.

{

20

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

3. PROPOSED METHOD AND TESTING BENCHMARKS

3.1. Proposed Method

3.1.1. QRNN Methodology

 Q Learning was important newness for reinforcement learning. However

huge size of state-action space of the real world problems makes Q learning

inapplicable and unworkable. An efficient regression method is needed for not only

to generalize the state, action space but also accelerate speed of learning algorithm.

Suggested reinforcement general regression neural network is a GRNN form

neural network which is used to generalize Q-value function. Main difference

between QRNN and other neural networks which have been used to generalize Q-

value function is QRNN is not an error-backpropagation network. Therefore QRNN

does not need a training phase. QRNN needs mostly accurate data in the pattern layer

to be able to predict the expected reward of a state-action pair. In this case, Q-

Learning algorithm is used to generate a bunch of episodes. While Q-Learning

algorithm is working, QRNN is established with the selected state-action pairs and

target values of them.

target = r + 𝛾max
𝑎′

𝑄(𝑠′,𝑎′) (3.1)

To limit pattern layer size of the network, state-action space is divided into

finite number of pieces and then each piece of the space is represent by a pattern

neuron. When a new triple (s, a, target) is observed, firstly it is checked to know

which pattern neuron is responsible for it. If this neuron does not exist, the neuron is

added to the pattern layer. If exists, neuron values are updated with new triple.

21

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

Figure 3.1. Training of QRNN

After a bunch of episodes are experienced, QRNN’s effectivity is tried on the

same problem. For each action, current state parameters are passed through the

QRNN and action has highest reward expectation is selected.

Figure 3.2. Usage of QRNN

22

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

3.1.2. QRNN Structure

Figure 3.3. QRNN Structure

𝐷𝑖2 = (𝑠 − 𝑠𝑖)𝑇(𝑠 − 𝑠𝑖)𝑤𝑇𝑤 (3.2)

𝑌(𝑠) =
∑ 𝑌𝑖exp (−𝐷𝑖2 2𝜎2⁄)𝑛+1
𝑖=1

∑ exp (−𝐷𝑖2 2𝜎2⁄)𝑛+1
𝑖=1

 (3.3)

s is a vector that keeps all features of a state. a is the action value. w is a

vector keeps sensitivity variables which are used to decide which parameter is

23

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

prescriptive. More clearly, if w parameter of a state is higher than other parameters of

the state, this causes this parameter to become less effective on the evolution

progress. 𝜎 is variance of the distribution. w and 𝜎 have opposite effect on a

parameter.

3.1.3. QRNN Algorithm

Figure 3.4. QRNN algorithm

 In QRNN algorithm, neural network creation and Q evolution process are

done simultaneously. While Q learning algorithm is run, data created by Q agent is

used to establish QRNN. For each action taken by the agent, a neuron is added or

updated (if (s, a) is exists in pattern layer) with state, action and also calculated target

24

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

values. After each n episodes, efficiency of QRNN is measured by k random

episodes. If QRNN is efficient, evolution progress is done.

3.2. Training Benchmarks

 Four different benchmarks are used to measure quality of QRNN

generalization. Random walk is the simplest one which has a simple Q-value

distribution. Other benchmarks are mountain-car, 2-parameter pole-balance and 4-

parameter pole-balance environments which are commonly used to measure

performance of reinforcement learning algorithms.

3.2.1. Random Walk

One dimensional random walk is one of the benchmarks that is used to

measure quality of a reinforcement learning algorithm. There are five states on a line

and each state connects to other two states which one of them is in the left, and other

one is on the right. Each state has two possible actions to be taken, “left” or “right”.

Each action has same possibility (%50). There is only one reward to be won; this

reward is gained when the episode is finished with the taking “right” action on the

fifth state to terminal. There is also another terminal state at the left of the first state.

It is recognized easily, best policy to be followed is consistently going to right for

each state.

Figure 3.5. Random Walk Benchmark

25

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

3.2.2. Mountain Car

 The mountain car problem is firstly defined by Moore in his PhD Thesis

(1990). When Singh and Sutton added the problem into “Reinforcement Learning:

An Introduction” (1998) book, it became more popular. The problem is about a

powerless car must overcome a hill. Due to the gravity is stronger than the car’s

engine; the car can’t speed up and reach the peak. The car is settled on a valley and

must learn to keep potential energy by driving up the opposite hill. After that the car

becomes able to reach the peak of the rightmost hill.

Figure 3.6. Mountain-Car Benchmark

Environmental parameters:

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (−0.07, +0.07)

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (−1.2,0.6)

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = (−1, +1)

For each time step reward is -1. After each action parameter changes

according to this formulas;

 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 += 𝐴𝑐𝑡𝑖𝑜𝑛 ∗ 0.001 + cos(3 ∗ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) ∗ (−0.0025) (3.4)

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (3.5)

26

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

As a starting condition, position is chosen randomly and velocity is set to

zero. When position becomes higher then 0.6, episode is terminated.

3.2.3. Pole-Balance Benchmarks

 Pole-balance is a classic problem is widely used for testing control

algorithms.

3.2.3.1. 2-Parameter Benchmark

In two-dimensional world, a cart with a pole onto is places on a track. There

is three actions (-50N, 0N, +50N). Two of the actions force the cart with 50N to

opposite directions, Third one doesn’t affect the cart. Goal is to prevent the pole to

fall.

Figure 3.7. Pole-Balance(Inverted-Pendulum) 2-Parameter Benchmark

 There is only one negative reward (-1) which is gained when the pole falls.

There are two parameter associated with the problem: 𝜃𝜃 is position of the pole as

radian value, 𝜃𝜃𝑣 is angular velocity of the pole. Value range of the parameters:

𝜃𝜃𝜖 �−
𝜋
2

,
𝜋
2
� 𝑟𝑎𝑑

𝜃𝜃𝑣𝜖[−2.5,2.5]𝑟𝑎𝑑/𝑠

27

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

Each action changes acceleration of the cart and the pole according to:

𝜃𝜃𝑎(𝑡) =
𝑔𝑠𝑖𝑛𝜃𝜃(𝑡) − 𝑐𝑜𝑠𝜃𝜃(𝑡)(𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚)

𝑙 �4
3 −

𝑚𝑐𝑜𝑠2𝜃𝜃(𝑡)
𝑚𝑐 + 𝑚 �

 (3.6)

where 𝑔 = 9.8 𝑚/𝑠2 is the gravity, 𝑙 = 0.5𝑚 is the half-pole length, F(t) =

F + 𝜂 is the force where 𝜂 is the noise term valued in range of [-10,10], 𝑚 = 2𝐾𝑔

and 𝑚𝑐 = 8𝐾𝑔 are the masses of the pole and the cart.

In order to positions and velocities of the cart and the pole is changed by the

following equations:

𝜃𝜃(𝑡) = 𝜃𝜃(𝑡) + 𝜏 ∗ 𝜃𝜃𝑣(𝑡) (3.7)

𝜃𝜃𝑣(𝑡) = 𝜃𝜃𝑣(𝑡) + 𝜏 ∗ 𝜃𝜃𝑎(𝑡) (3.8)

𝜏 = 0.1s is used as time step for each movement.

3.2.3.2. 4-Parameter Benchmark

In this case, QRNN is tried in a harder environment. QRNN must not only

learn to balance the pole and also must prevent the cart quit from the space reserved,

and also angular range which the pole must be in is much more smaller in this

environment. There is two actions (-10N, 10N). Two of the actions force the cart

with 10N to opposite directions, Goal is to prevent the pole to fall down and also

prevent the cart to get out of the field.

28

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

Figure 3.8. Pole-Balance(Inverted-Pendulum) 4-Parameter Benchmark

 There is only one negative reward (-1) which is gained when the pole falls or

cart gets out of the area. There are four parameter associated with the problem: x is

the position of the cart, v is velocity of the cart, 𝜃𝜃 is position of the pole as radian

value, 𝜃𝜃𝑣 is angular velocity of the pole. Value range of the parameters:

𝑥𝜖[−2.4,2.4]𝑚

𝑣𝜖[−1,1]𝑚/𝑠

𝜃𝜃𝜖 �−
𝜋
2

,
𝜋
2
� 𝑟𝑎𝑑

𝜃𝜃𝑣𝜖[−2.5,2.5]𝑟𝑎𝑑/𝑠

Each action changes acceleration of the cart and the pole according to:

𝜃𝜃𝑎(𝑡) =
𝑔𝑠𝑖𝑛𝜃𝜃(𝑡) − 𝑐𝑜𝑠𝜃𝜃(𝑡)(𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚)

𝑙(4
3 −

𝑚𝑐𝑜𝑠2𝜃𝜃(𝑡)
𝑚𝑐 + 𝑚)

 (3.9)

𝑎(𝑡) =
�𝐹(𝑡) + 𝑚𝑙𝜃𝜃𝑣(𝑡)2𝑠𝑖𝑛𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚 � −𝑚𝑙𝜃𝜃𝑎(𝑡)𝑐𝑜𝑠𝜃𝜃(𝑡)

𝑚𝑐 + 𝑚
 (3.10)

where 𝑔 = 9.8 𝑚/𝑠2 is the gravity, 𝑙 = 0.5𝑚 is the half-pole length, F(t) =

F + 𝜂 is the force where 𝜂 is the noise term valued in range of [-1,1], 𝑚 = 0.1𝐾𝑔

and 𝑚𝑐 = 1𝐾𝑔 are the masses of the pole and the cart.

Positions and velocities of the cart and the pole is changed by the following

equations:

29

3. PROPOSED METHOD AND TESTING BENCHMARKS Mehmet SARIGÜL

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝜏 ∗ 𝑣(𝑡) (3.11)

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝜏 ∗ 𝑎(𝑡) (3.12)

𝜃𝜃(𝑡) = 𝜃𝜃(𝑡) + 𝜏 ∗ 𝜃𝜃𝑣(𝑡) (3.13)

𝜃𝜃𝑣(𝑡) = 𝜃𝜃𝑣(𝑡) + 𝜏 ∗ 𝜃𝜃𝑎(𝑡) (3.14)

𝜏 = 0.02s is used as time step for each movement.

30

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

4. PERFORMANCE ANALYSIS AND FUTURE WORK

4.1. Performance Analysis Results

4.1.1. Random Walk Results

 Just one successful episode is enough for QRNN to learn best policy for

random walk. After following episode, values of the actions are shown.

[(𝑠3, 𝑙𝑒𝑓𝑡), (𝑠2, 𝑟𝑖𝑔ℎ𝑡), (𝑠3, 𝑟𝑖𝑔ℎ𝑡), (𝑠4, 𝑟𝑖𝑔ℎ𝑡), (𝑠5, 𝑟𝑖𝑔ℎ𝑡)]

 Left action Right Action
Figure 4.1: Left and right action values calculated by QRNN for random walk

 In the figure x axis shows states. There are five states that are valued between

0.1 and 0.5 with 0.1 sensitivity. y axis shows expected reward of the action. As

mentioned before, best policy is “right action” for each state. It is seen expected

reward of right action is higher for all states.

4.1.2. Mountain-Car Benchmark Results

 State-action space is defined in the size of 1800 ∗ 14 ∗ 2. 1800 different

position values, 14 different velocity values and 2 different actions are used.

Therefore maximum number of pattern nodes is 50400. Most of the nodes is not

created because of unvisited or irrational state-action pairs during the episodes. So

31

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

number of nodes in the pattern layer become furthest about 18000. Training episodes

starts with a random position and zero velocity. Maximum step size of a training

episode is limited with 5000. After each 25 episode QRNN performance is measured

with different variance values between 0.05 and 0.5 for different 180 states on the

benchmark. Testing state positions starts from -1.2 and are increased by 0.01 till

0.59. w is set to 1 for all state parameters.

QRNN is trained and performance of QRNN is measured with given

parameters for 10 times. Test episodes are limited with maximum number of 5000

steps. When QRNN become entirely successful on all test episodes, best Q-agent

policy efficiency is measured and test results is shown at the Table 4.1.

Table 4.1. Mountain-car experiment results
Test
No

Training
Episodes
Length

Best Q-Agent
Policy
Efficiency

QRNN
Performance

QRNN
Variance

QRNN
Min-Max
Episode
Step Size

1 25 11/180 (%6.1) 180/180(%100) 0.05 (8, 216)
2 25 16/180 (%8.8) 180/180(%100) 0.175 (40, 212)
3 50 18/180 (%10.0) 180/180(%100) 0.40 (3, 222)
4 275 36/180 (%0.0) 180/180(%100) 0.275 (3, 185)
5 125 21/180 (%11.6) 180/180(%100) 0.20 (3, 213)
6 225 34/180 (%18.8) 180/180(%100) 0.30 (3, 209)
7 75 8/180 (%4.4) 180/180(%100) 0.125 (40, 201)
8 150 23/180 (%12.7) 180/180(%100) 0.175 (41, 181)
9 25 16/180 (%8.8) 180/180(%100) 0.100 (3, 229)
10 25 18/180 (%10.0) 180/180(%100) 0.225 (40, 211)
Ave 100 20/180 (%11.1) 180/180(%100) - -

It is obtained that, while Q-learning needs more than 10000 episodes to learn

a successful policy, QRNN requires only averagely 100 episodes. Also, QRNN has

much better and robust results than Q-learning.

32

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

4.1.3. Pole-Balance Benchmark Results

4.1.3.1. 2-Parameter benchmark

In two-parameter benchmark only 𝜃 and 𝜃𝑣 are used as state parameters.

State-action space is in size of 32 ∗ 50 ∗ 3. Maximum number of pattern nodes

becomes 3200. There are unreasonable states which can’t be visited, in case number

of nodes in the pattern layer become maximum about 1500. Training episodes starts

with 𝜃 = 0 and 𝜃𝑣 = 0. Maximum step size of a training episode is limited with

3000, each movement takes 0.1 sec, which is equal to 300 second (5 minute) of

movement. After each 10 episode QRNN performance is measured with different

variance values between 0.02 and 0.2 for different 50 test episodes on the

benchmark. w is set to 1 for all state parameters. It is obtained that averagely 500

episodes is enough to learn a successful policy for QRNN.

QRNN is trained and performance of QRNN is measured with given

parameters for 10 times. Test episodes are limited with maximum number of 3000

steps. When QRNN become entirely successful on all test episodes, best Q-agent

policy efficiency is measured and test results is shown at the Table 4.2.

Table 4.2. 2-Parameter Pole-Balance experiment results
Training
No

Training
Episodes

Best Q-Agent
Policy Balancing
Time

QRNN
Balancing
Time

QRNN
Successful
Variance

1 440 ep. 1.1 sec. 5min. 0.06
2 510 ep. 1.1 sec. 5min. 0.06 to 0.08 and

0.10 to 0.12
3 490 ep. 1.1 sec. 5min. 0.02 to 0.10
4 670 ep. 1.14 sec. 5min. 0.02 to 0.13
5 430 ep. 1.07 sec. 5min. 0.02 to 0.05
6 530 ep. 1.14 sec. 5min. 0.02 to 0.10
7 420 ep. 1.07 sec. 5min. 0.02 to 0.04
8 580 ep. 1.09 sec. 5min. 0.04 to 0.14
9 530 ep. 1.18 sec. 5min. 0.02, 0.05, 0.06,

0.08, and 0.09
10 530 ep. 1.05 sec. 5min. 0.02 to 0.12
Ave 513 ep. 1.1 sec 5min. -

33

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

QRNN needs averagely 513 episodes to learn a successful policy. It was

presented (Lagoudakis and Parr, 2003), LSPI can balance the pole about 285 second

after 1000 episodes. Q learning with experience replay, suggested in same paper,

requires averagely 700 episodes to learn a successful policy.

It was reported NFQ algorithm (Riedmiller, 2005) needs averagely 200

episodes to find a successful policy. But, each episode is repeated over the network

50 times to learn with backpropagation. In this case training of the network takes

10000 passes. In contrast, QRNN is not a type of backpropagation network. After

averagely 513 episodes is run, establishment of the neural network is done and a

successful neural network is ready to use.

4.1.3.2. 4-Parameter benchmark

In this case, any state is defined with four parameters (x, v, 𝜃,𝜃𝑣) and State-

action space is in size of 10 ∗ 10 ∗ 11 ∗ 10 ∗ 2. Number of nodes in the pattern layer

become maximum about 5000. Training episodes starts with random 𝑥 between -1

and 1,𝑣 = 0, 𝜃 = 0 and 𝜃𝑣 = 0. Maximum step size of a training episode is limited

with 3000 which is equal to 60 second (1 minute) of movement. After each 50

episode QRNN performance is measured with different variance values between 0.02

and 0.5 for different 50 test episodes on the benchmark. w is set to 1 for all state

parameters. It is obtained that averagely 2960 episodes is enough to learn a

successful policy for QRNN.

QRNN is trained and performance of QRNN is measured with given

parameters for 10 times. Test episodes are limited with maximum number of 3000

steps. Result are given in the Table 4.3.

34

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

Table 4.3. 4- Parameter Pole-Balance experiment results
 No Training

Episodes
Best Q-Agent
Policy Time
Average

QRNN Time
Average

QRNN Successful
Variances

1 2500ep. 5.28sec. 1min. 0.136 to 0.174
2 600 ep. 0.48sec. 1min. 0.434 to 0.478
3 2900ep. 5.11sec. 1min. 0.111
4 3400ep. 8.45sec. 1min. 0.124 to 0.158
5 3700ep. 6.22sec. 1min. 0.130 and 0.131
6 3350ep. 10.0sec. 1min. 0.234
7 2850ep. 6.03sec. 1min. 0.142 to 0.180
8 3550ep. 6.42sec. 1min. 0.124 to 0.178
9 3600ep. 8.93sec. 1min. 0.104 to 0.108
10 3150ep. 5.66sec. 1min. 0.148 to 0.246
Ave 2960ep. 6.27sec. 1min. -

It was reported NFQ algorithm (Riedmiller, 2005) needs averagely 14440

cycles to find a successful policy. QRNN needs averagely 13000 cycles (equals to

3000 episodes) to find a successful policy.

4.2. Future Work

 QRNN is an effective method for many kind of problems. But as it can be

considered, QRNN performance is directly related to Q-Values of the Q learning

algorithm. This problem can be prevented by using QRNN not only a regression

method but also a learning algorithm.

Figure 4.2: Training and usage of Improved QRNN

QRNN

state
st

reward
rt

action
 at

ENVIRONMENT

35

4. PERFORMANCE ANALYSIS AND FUTURE WORK Mehmet SARIGÜL

Figure 4.3: Improved QRNN Algorithm

 As it is seen, QRNN learning algorithm is a batch learning method means

values of state-action pairs are updated after the episode is done. Reason of this

process is to prevent undesired local minimum and local maximum values on the

regression surface.

 According to the results obtained in first, learning algorithm learns faster than

the previous methodology, but also unwanted oscillations can be occurred on the

regression surface. Therefore the methodology is still in progress.

36

5. CONCLUSIONS Mehmet SARIGÜL

5. CONCLUSIONS

In this thesis, a very effective unsupervised learning regression neural

network able to generalize the solution surface or solution hyper plane of

reinforcement learning problems named as QRNN is proposed. The high efficiency

of regression is obtained by the utilization of GRNN inherited network topology. On

the other hand, main drawbacks of GRNN are also contained by QRNN. These are

mainly problematic of the selection the efficient variance value for the corresponding

data set and relatively high throughput time for a new data due to complex

calculation. Estimation time consumption is decreased by limiting number of pattern

layer nodes of the QRNN.

Under limited number of pattern layer neurons, QRNN is also effective with

real time learning. It may be created and tested while Q agent is running on the

environment. QRNN does not require an extra training time due to its state keeping

structure. In backpropagation networks, a bunch of episodes must be stored as

training data and then they must be passed through the network for many epochs. If

learning process is unsuccessful, a new or bigger data set must be tried for the error

back propagation networks. In contrast, QRNN evolution process can be done by

growing the states kept in pattern layer. After a number of episodes used to establish

QRNN, additional episodes can also be used to improve performance of the network.

An iterative training process is not required for QRNN. Through this work QRNN is

applied to solve popular problems of reinforcement learning that are random walk,

mountain car and pole balance problems. Regression performance of QRNN is

compared with that of LSPI and NFQ algorithms on the same test benches. QRNN

learns much faster than these two algorithms. Tests are done by considering number

of learning steps. In mountain car problem the learning is accelerated more than 100

times. In pole balance problem with two parameters; QRNN is faster approximately

1.4 times than LSPI and it is also faster approximately 19 times than NFQ. In pole

balance problem with four parameters, QRNN is approximately 1.11 times faster

than NFQ although QRNN is implemented in a wider state action space. These test

results prove the efficiency and show importance of the proposed network.

37

5. CONCLUSIONS Mehmet SARIGÜL

38

REFERENCES

BARRETO, A. D. S., ANDERSON, C. W., 2007. Restricted gradient-descent

algorithm for value-function approximation in reinforcement learning,

Artificial Intelligence, March 2008, 172(4-5):454-482

BELLMAN, R. E. 1957. A Markov decision process, Journal of Mathematical

Mech., 6:679-684

BELLMAN, R. E., 1957. Dynamic Programming, Princeton University Press,

Princeton, NJ.

BERTSEKAS, D. P., 2010. Approximate Dynamic Programming, Dynamic

Programming and Optimal Control II (3 ed.).

BOYAN, J. A., and MOORE, A. W., Generalization in reinforcement learning:

Safely approximating the value function, Advances in Neural Information

Processing Systems, vol. 7, 1995 :MIT Press.

BOYAN, J. A., Technical Update: Least-Squares Temporal Difference Learning,

Machine Learning, v.49 n.2-3, p.233-246, November-December 2002

BRADTKE, S. J., BARTO, G. A., 1996. Linear least-squares algorithms for

temporal difference learning, Machine Learning, v.22 n.1-3, p.33-57,

Jan./Feb./March 1996 .

BRADTKE, S. J., ANDREW, G. B., 1996. Learning to predict by the method of

temporal differences, Machine Learning (Springer) 22: 33–57.

CETINA, V. U., 2008. Multilayer Perceptron with Radial Basis Function as Value

Function in Reinforcement Learning

ERNST, D., GEURTS, P., and WEHENKEL, L., 2005. Tree-based batch mode

reinforcement learning. Journal of Machine Learning Research, 6, 503-556.

FAIRBANKS, M., ALONSO, E., 2012. The divergence of reinforcement learning

algorithms with value-iteration and function approximation, In Proceedings

of the 2012 International Joint Conference on Neural Networks (IJCNN),

Brisbane, Queensland, Australia, 10–15 June (pp. 1–8). doi:

10.1109/IJCNN.2012.6252792.

39

GEIST, M., PIETQUIN, O., 2011. Parametric Value Function Approximation: a

Unified View, ADPRL (2011).

GORDON, G. J., 1995. Stable function approximation in dynamic programming,

Carnegie Mellon Univ.

KAELBLING, L. P. and MICHAEL L. L. and Andrew W. M., 1996. Reinforcement

Learning: A Survey, Journal of Artificial Intelligence Research 4: 237–285.

KONIDARIS, G., 2008. Value function approximation in Reinforement Learning

using the fourer basis, Computer Science Department Faculty Publication

Series Paper 101.

LAGOUDAKIS, M. G., and PARR, R., 2003. Least-squares policy iteration, Journal

of Machine Learning Research, 4, 1107–1149.

LANGLOIS, M. and SLOAN, R. H., Reinforcement learning via approximation of

the Q-function, Journal of Experimental & Theoretical Artificial Intelligence

Vol. 22, No. 3, September, 2010, 219-235.

LIN, L.J., 1992. Self-improving reactive agents based on reinforcement learning,

planning and teaching Machine Learning, 8 (1992), pp. 293–321.

MCGOVERN, A. and SUTTON, R. S., 1997. Towards a better Q(lambda), Presented

at the Fall 1997 Reinforcement Learning Workshop

MENACHE, I., MANNOR, S., and SHIMKIN N., 2005. Basis Function Adaption in

Temporal Difference Reinforcement Learning, Annals of Operations

Research 134, 215–238

PENG, J. and WILLIAMS, R. J., 1994. Incremental multi-step q-learning. In Cohen,

W. W. and Hirsh, H., editors, Proceedings of the Eleventh International

Conference on Machine Learning, pages 226-232.

POWELL, W., 2007. Approximate dynamic programming: solving the curses of

dimensionality, Wiley-Interscience. ISBN 0-470-17155-3.

RIEDMILLER, M., 2000. Concepts and facilities of a neural reinforcement learning

control architecture for technical process control, Journal of Neural

Computing and Application 8, 323–338.

40

RIEDMILLER, M., 2005. Neural Fitted Q Iteration - First Experiences with a Data

Efficient Neural Reinforcement Learning Method, J. Gama et al. (Eds.):

ECML 2005, LNAI 3720, pp. 317–328, © Springer-Verlag Berlin Heidelberg

2005.

SABES, P., 1993. Approximating Q-values with basis function representations,

Proceedings of the Fourth Connectionist Models Summer School, Lawrence

Erlbaum, Hillsdale, NJ (1993).

SHIBUYA, T., and ARITA, H., HAMAGAMI, T., 2010. Reinforcement learning in

continuous state space with perceptual aliasing by using complex-valued RBF

network, IEEE International Conference on Systems, Man and Cybernetics,

2010, :1799-1803.

SINGH, S. P. and SUTTON, R. S., 1996. Reinforcement learning with replacing

eligibility traces, Machine Learning, 22:123-158.

SPECHT, D.F., 1991. A General Regression Neural Network, IEEE transactions on

neural networks, vol. 2. No. 6. page 568-576

SUTTON, R. S. and BARTO, A. G., 1998. Reinforcement Learning: An

Introduction, MIT Press. ISBN 0-262-19398-1.

SUTTON, R. S. (1988). "Learning to predict by the method of temporal

differences". Machine Learning (Springer) 3: 9–44.

SUTTON, R. S., 1996. Generalization in reinforcement learning: Successful

examples using sparse coarse coding, In Advances in Neural Information

Processing Systems 8: Proceedings of the 1995 Conference, pages 1038-

1044, Denver, Colorado, 1996.

SUTTON, R. S., 1984. Temporal Credit Assignment in Reinforcement

Learning. PhD thesis, University of Massachusetts, Amherst, MA.

SZITA, I., and LORINCZ, A., 2003. Reinforcement learning with linear function

approximation and LQ control converges, Technical report,

arXiv:cs/0306120v2.

TANNER, B., and WHITE, A., 2009. RL-Glue: Language-Independent Software for

Reinforcement-Learning Experiments. Journal of Machine Learning

Research, 10(Sep):2133--2136, 2009. (BibTex)

41

TESAURO, G., 1992. Practical issues in temporal difference learning. Mach.

Learning 8, 257-277.

TSITSIKHS, J. N., and VAN ROY, B., 1997. An analysis of temporal-difference

learning with function approximation, IEEE Transactions on Automatic

Control 42: 674-690.

TSITSIKLIS, J., 1994. Asynchronous stochastic approximation and Q-learning,

Machine Learning, 16(3) 185–202.

UENO, T., MAEDA, S.I., KAWANABE, M., Ishii, S., 2011. Generalized TD

learning, Journal of Machine Learning Research, June 2011, 12:1977-2020

WATKINS, C. J. C. H., 1989. Learning from Delayed Rewards, PhD thesis,

Cambridge University, Cambridge, England.

WATKINS, C. J. C. H., and DAYAN, P., 1992. Q-learning, Machine Learning,

8:279-292.

WHITESON, S., STONE, P., 2006. Evolutionary Function Approximation for

Reinforcement Learning, The Journal of Machine Learning Research, 7,

p.877-917, 12/1/2006.

42

BIOGRAPHY

Mehmet SARIGÜL was born in Hatay, in 1989. he completed his

elementary education at General Refet Bele İlköğretim Okulu. He graduated from

Harbiye Lisesi, in 2005. He received the B.E.degree from Department of Computer

Engineering, Çukurova University in 2010. His research interests include machine

learning, reinforcement learning, artificial neural network algorithms and

applications, software design.

43

	1ilkiki
	MSc THESIS

	2romarakamlı
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	CONTENTS PAGE
	LIST OF TABLES PAGE

	3introduction
	4Onceki calismalar
	5Material ve metod
	6Bulgular ve arastirmalar
	7Sonuclar ve oneriler
	15KAYNAKLAR

