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ABSTRACT

MSc THESIS

INVESTIGATION OF BEHAVIOUR OF THE
ELECTROMAGNETIC WAVES IN A PARALLEL PLATE WAVEGUIDE
WITH GRID TYPE SURFACES

ismail YILDIZ

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF ELECTRICAL ELECTRONICS ENGINEERING

Supervisor  : Prof. Dr. Hamit SERBEST
Year: 2015, Pages: 75
Jury  :Prof. Dr. Hamit SERBEST
: Prof. Dr. Turgut IKiZ
: Prof. Dr. Ali AKDAGLI

In this study, the behavior of the electromagnetic waves inside and outside of
a strip grating parallel plate waveguide is investigated by using ray tracing method.
First of all, reflection and transmission at a grid type interface are examined between
two simple media. The reflection and transmission coefficients for this interface are
obtained by using approximate boundary conditions. With the usage of these
coefficients, the effects of waves that are excited outside for TE and TM modes are
inspected in both mediums and compared with the results of the field expressions by
Floquet mode. Afterwards, the reason of preference of strip grating parallel plate
waveguides instead of the conventional parallel plate waveguides is mentioned such
that while strip’s width increases, dissipated loss also increases. However, smaller
selection of the strip’s width increases the amount of the expelled wave. Thus, it is
shown that the optimization of strip’s width is necessary.

Key Words: Grid Type Structures, Parallel Plate Waveguides, Approximate
Boundary Conditions
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YUKSEK LiSANS TEZIi

IZGARA TiPi YUZEYLERLE BiR PARALEL PLAKA DALGA
KILAVUZUNDA ELEKTROMANYETIK DALGALARIN DAVRANISININ
INCELENMESI

ismail YILDIZ

CUKUROVA UNIVERSITESI
FEN BiLIMLERI ENSTiTI:JSI"J
ELEKTRIK ELEKTRONIK MUHENDISLiGi ANABILIM DALI

Danigsman : Prof. Dr. Hamit SERBEST
Yil: 2015, Sayfa: 75
Jiiri : Prof. Dr. Hamit SERBEST
: Prof. Dr. Turgut IKiZ
: Prof. Dr. Ali AKDAGLI

Bu calismada, 1zgara tipi duvarl paralel plaka dalga kilavuzunun igerisindeki
ve disarisindaki elektromanyetik dalgalarin davranisi 1s1n izleme yontemi ile
incelenmistir. Oncelikle, iki basit ortam arasindaki 1zgara tipi bir arayiizde yansima
ve kirilma incelenmis olup, bu arayiiz i¢in yansima ve kirilma katsayilar1 yaklagik
sinir kosullar1 kullanilarak elde edilmistir. Elde edilen bu katsayilar kullanilarak,
disarida uyarilan TE ve TM modlarindaki dalganin igeride ve disaridaki etkisi
incelenmis ve Floquet modu ile bulunan alan ifadeleri ile karsilagtirllmigtir. Daha
sonra, klasik dalga kilavuzu yerine 1zgara tipi dalga kilavuzu tercih edilmesine
gerekce olarak, seritler genisledik¢e kaybolan giicte de artis olduguna deginilmistir.
Ancak seritlerin ¢ok kii¢iik se¢ilmesi kilavuzdan disar1 kacan dalgay1 biiylittiigii i¢in,
serit genisliginin optimize edilmesi gerektigi gosterilmistir.

Anahtar Kelimeler: Izgara Tipi Yapilar, Paralel Plaka Dalga Kilavuzu, Yaklasik
Sinir Kosullar
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1. INTRODUCTION

The propagation of an electromagnetic wave and scattering from any
interface or edge have been studied since the electromagnetic waves were
discovered. In order to transmit a wave, structures called transmission lines have
been improved. The parallel plate waveguide which has a cut-off frequency that
depends on distance between plates and medium parameters is one of the most well-
known and common waveguides where electromagnetic waves oscillate in one
direction and propagate in other directions. The cut-off frequency is the critical
parameter for a parallel plate waveguide, like other type waveguides; the waves
cannot propagate below the cut-off frequency, but occur evanescent due to the fact
that propagation constant of the wave become purely imaginary and negative, from
the e JX* with the purely imaginary k, it goes to zero when r goes to infinity.

In this work, the propagation of plane electromagnetic waves will be
considered through a parallel plate waveguide with a grid type structure. In contrast
to the conventional waveguide systems, the walls are not full conducting planes. For
waveguides with perfect electric conductor, PEC, walls, the electromagnetic wave
causes heat loss in the conducting surfaces. By substituting these full surfaces with
grating type walls it is expected to be able to reduce the amount of heat loss which
may occur during the propagation. This structure is similar to the Substrate
Integrated Waveguide (SIW). Also, at microwave frequencies these grating type

structures provide the opportunity to work at microelectronic dimensions.

1.1. Outline of Dissertation

In Chapter 2, previous studies are mentioned about parallel plate waveguides
with strip grating which are studied by different researchers.

In Chapter 3, the problem investigated in this thesis is defined and geometry
of this problem is shown in a figure clearly.

In Chapter 4, all coefficients in order to solve this type problem are

determined by using approximate boundary conditions.
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In Chapter 5, all field expression are calculated by using the coefficients
which are determined in chapter 4. For this calculation, Ray Tracing Method is used.

In Chapter 6, the field components are obtained by Floguet modes for same
geometry. The electric and magnetic fields which are obtained by using Ray Tracing
mode and Floquet mode are compared. The conventional waveguide and strip grating
waveguide are compared in terms of dissipated powers and expelled wave.

Finally, related references used in the thesis and biographical information of

the author are presented.
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2.LITERATURE REVIEW

For the last few decades, in waveguide and etc. structures, strip grating are
used because of their advantages instead of whole metal plate. There are a lot of
studies about periodic structures and strip grating.

Weinstein (1963) studied about the boundary conditions and presented the
approximate boundary conditions assuming that the surface at interface is perfectly
flat plane instead of the normal boundary conditions with different interface types;
for example half space of homogeneous medium with high refractive index, single or
multilayered dielectrics, anisotropic dielectric layer, single or multilayer dielectrics
coating a metallic substrate, grid structures consisting of flat strips or cylinders etc.

Jacobsen (1970), investigated the electromagnetic waves guided by a
periodically strip loaded dielectric slab by using Floquet modes. It’s analytical study
was presented in such a manner that; at grazing surface, with surface current
densities which have the same variation as the field quantities, electric and magnetic
Hertzian potentials are expanded in y direction applying Floquet’s Theorem. Also, he

said that the electric and magnetic field components were obtained in terms of
Hertzian potentials by the following formulas E = V x V x T + iwp(V x T*) and

H = —iwe(V x 1) +V x V x II* He obtained the determinantal equation with
narrow strips and presented numerical and experimental results involving different
combinations of the linear and dielectric parameters in terms of k- and k-£ diagrams
and mainly dealt with “backward-radiation” region of the k-f diagram. The general
behavior and complex solutions around the coupling regions and the boundaries of
the k-a plane were discussed. Additionally, the numerical results in the backward-
radiation region were verified experimentally by measuring the phase and amplitude
variation in the near field and by calculation from radiation patterns.

Guglielmi and Oliner, in 1989, published a set of articles, which mentioned
periodic structures which separate two different dielectric medium by metal-strip
grating. The main aim of these papers was to present a set of multimode equivalent
network representation in contradistinction to single mode representation which

contains only one reflected wave and only one transmitted wave on both sides of the



2. LITERATURE REVIEW Ismail YILDIZ

grating plane. In part | of set of articles, the unit cell approach was applied for two
different cases: the aperture phrasing (center of aperture at the origin) and the
obstacle phrasing (center of obstacle at the origin). For each case, E-polarized and H-
polarized were investigated. Depending on the polarization of incident wave, these
two phrasings have different electromagnetic importance. While the obstacle
discontinuity is electrically large for E-polarized and electrically small for H-
polarized, for the aperture phrasing is vice versa. Fredholm integral equations of the
first kind with singular kernels were used in order to represent aperture and obstacle
formulations.

In part 11 of these articles, they presented the approximate solution procedures
to solve the integral equation which were obtained in part | with small argument and
derived expressions for the elements of the coupling matrices in the four different
cases: obstacle phrasing and aperture phrasing for E-polarized and H-polarized. They
compared their numerical results with independent numerical solutions.

In part 111, Guglielmi and Hochstadt obtained and presented an analytical
solution in order to solve Hilbert-type singular integral equations and rigorous
multimode equivalent network representations for the main problem mentioned in
part I.

In 2000, Burghignoli and his team studied about the radiation from periodic
structures at low frequencies (below cut-off) and discovered a new complex solution
model which has been found to be an additional solution for n=0 spatial harmonic
and has physical meaning in the fast-wave region outside the bound-mode triangle
and nonphysical inside. They analyzed the dispersion (normalized phase f/ko and
normalized attenuation a/ko vs. frequency f) when s/p ratio, s referred to the width of
strips and p was spatial period, from 0, grounded dielectric slab, to 1, the dielectric-
filled parallel-plate waveguide, that is, transition from a basically open to a basically
closed structures. According to the study of Burghignoli’s team, for the large value
of s/p ratio there was a frequency range where the physical leaky mode had a very
low attenuation constant and it could provide an effective narrow-beam leaky wave

antenna.
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Burghignoli et al. have improved their studies about the dispersion features at
low frequencies in 2001. The results of previous paper covered just one dielectric
constant and two different values of s/p ratio which were 0 and 1, while current work
gave results for many dielectric constants and s/p ratios systematically. Additionally,
in the previous study obtained results have led to many open questions, study in 2001
has answered most of these questions and also proper values of f/ko and a/ko for
leaky-wave antennas were ensured by parameter ranges. The structure analysis has
been done by the transverse resonance technique. The behaviors of the dispersion
diagrams under the cut-off frequency were different from each other, while the
dielectric-filled parallel-plate mode was damping, grounded dielectric slab mode
became an improper real mode without physical meaning.

Manara et al. published their study at URSI (2005) which explained the
scattering from finite strip grating where large planar semi-transparent strips lied
parallel and free-standing, i.e. there was a slop between the grating plane and a
coordinate plane like x=a plane or y=b plane when incident wave was an arbitrary
polarized plane wave with oblique incidence. Their analysis aimed to prove the
efficiency and validity of high frequency asymptotic solutions with approximate
homogeneous transition boundary conditions. The expression of the scattered field
was obtained by using The Uniform Geometrical Theory of Diffraction (UTD) and
the Method of Moments (MoM) was used numerical solution without using any
approximate boundary conditions. The excitation and diffraction of the surface wave
(SW), appear in both UTD and MoM data, were examined specifically.

Nepa et al. (2005) investigated the electromagnetic scattering at edge of semi-
infinite strip grating that strips were parallel to each other and were not parallel to the
coordinate plane like x=a plane or y=b plane. Moreover there was an oblique
incidence with an arbitrary polarization. The obtained equivalent canonical problem
was solved by application of the Sommerfeld-Maliuzhinets method and based along
the grating parameters. Additionally, some numerical results were represented
predicting a non-vanishing diffracted field for any incident field polarization.

In 2009, Vorobyov numerically solved the nonlinear operator equation for

reflection from a plane which consists of periodic semi-infinite grating of thin metal
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strips when incidence was H-polarized electromagnetic plane wave. Using the
successive iteration method, he composed an algorithm to solve a nonlinear operator
equation in the Fourier amplitude of the reflected field. Initial approximations and
convergence of the solution of the proposed algorithm were numerically verified.
The field reflected from semi-infinite grating investigated for different values of the
incidence angle, incidence wavelength and strip width.

Shapoval et al. (2013) studied about strip-gratings which were made from not
metal but graphene and proposed a novel numerical approach that is based on the
surface impedance of graphene. Also, on contrary to commercial software,
developed meshless algorithm ensures fast convergence and controlled accuracy of
computations. Additionally, they mentioned about hyper-singular integral, obtained
by Green functions, and the Nystrom-type discretization. Reflectance, transmittance
and absorbance were represented in terms of graphene and grating parameters.
Graphene relaxation time is proportional to the resonance number in THz levels,
therefore with reduced losses comes higher wave transmittance. They have shown
that if graphene strip numbers are low (>10), then Rayleigh anomalies may occur. So
that, in most of the applications as tunable absorbers and frequency selective surfaces
the graphene is a good alternative material.

Xiong et al. (2014), introduced a new approach in order to analyze large
periodic structures with finite length. Since it is impossible to produce infinite length
material, truncation of this material is needed to turn into finite length material. This
procedure causes discontinuities at the interface and excitation of surface waves that
leads to edge effect of finite periodic structures. Finite arrays are analyzed by
element-by-element method. While this method is suitable for small finite arrays, it
requires complex calculations for large finite arrays. Infinite periodic approximation
neglects the edge effect so this results in reduction in calculations but negligence of
edge effect is not appropriate for engineering applications. Proposed approach yields
proper prediction of the behavior of large finite periodic structures without ignoring
the edge effect. This work provides profit of low complexity and memory

consumption.
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3.FORMULATION OF THE PROBLEM

In this study, the propagation of the electromagnetic waves in parallel plate
waveguide is analyzed. While one of the plates of waveguide is PEC, the other wall

is strip grating. The geometry of the Problem is shown in Figure 3.1.

= e —

Figure 3.1. Geometry of the Problem

Suppose that an oblique incidence with an incident angle 6, has both E-
polarized and H-polarized modes. The solution is obtained for these two cases. Here,
time dependence is e/*. The direction of the propagation is x — and z — direction.
There is no propagation in y — direction.

In order to obtain the expressions of electric field and magnetic field in
medium 1 and medium 2, the reflection and transmission coefficients should be

determined first. The next part covers this study.
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4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE
BOUNDARY CONDITIONS

When an oblique incidence having an incidence angle travels to an interface
as in Figure 4.1, normally, the wave will have a reflection and a transmission
according to the reflection coefficient AT} and transmission coefficient AT where
the script TM says that this coefficient is obtained for H-polarized. Also, 11 and 12
are reflection and transmission coefficient respectively for incident wave in medium
1. If the incident wave comes from medium 2 to medium 1, subscripts of coefficient
become 22 and 21 instead of 11 and 12 respectively.

In order to determine the reflection and transmission coefficients, boundary
conditions must be applied on the surface. The normal known boundary conditions
cannot be applied in this problem because of the interface is not full PEC. Instead of
normal boundary conditions, approximate boundary conditions which were given for
the periodic structures by Weinstein in 1963, must be applied because of the strip
grating. This part continuous analytically obtaining of the coefficients.

4.1. TM Mode When Incidence in Medium 1

For H-polarized, when the incident wave is in medium 1, the reflection and
transmission coefficients A7) and AZY can be determined by using boundary

conditions and the field components are shown in Figure 4.1.

Figure 4.1. Reflection and transmission from grating structure when H-polarized
incidence in medium 1
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4.1.1. Incident Wave

The wave number of the medium 1 and medium 2 are:
ki = wver

and

ky = wveu;

where w is angular frequency, &;,u, are dielectric permittivity and magnetic
permeability of the medium 1 and &,, u, are dielectric permittivity and magnetic

permeability of the medium 2, respectively.

The magnetic field of the incident wave is:

ﬁOy — éye—jkl(—xc0590+zsin90)

By using the Maxwell’s equation VxH= jwelﬁ

d 9] d . .
— . +—b6. +—¢&. | x(é e—]kl(—xcoseo+zsm60)
( x ¥ o9y Y 0z Z) (& )

= jwe (Egxéy + EOyéy + Eoz€,)

) i (e—jkl(—xc0590+zsin90)) —8 i (e—jkl(—xc0590+zsin90))
zZ X aZ

0x

= jwe  (Eoxéx + Egz€;)

To obtain the x component of the electric field

10
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_ % {e —jk1(—XC0590+ZSin9o)} jklsineoe—jkl(—xc0590+zsin00)

Jjweq Jjwe,

_ kysinby

e —jk1(—xcosBy+2zsinbgy)
we,

To obtain the z component of the electric field

ad —jk1(—xcos6y+zsin6 i i
; 3 {e Jka( o o)} jiky 605906—]kl(—xc0590+zsm90)
o Jjwey Jjweq
oz = M e—jkl(—xc0590+zsin90)
z

wey

4.1.2. Reflected Wave
The H-polarized reflected wave has a magnetic field component as

ﬁly — éyA’ﬂ/le—jkl(xcost91+zsin61)
From the Maxwell’s equation VxH= jwelﬁ

d 0 d . ,
5 5 5 5 ATM ,—jk 6 6
(_ é, + a_ey + Eez> X (eyAll e ~Jk1(xcosby+zsin 1))

= jwe (B 8y + Elyéy + E1,€;)

{A71"11\/Ie—jk1(x00561 +Zsin61)} {A71"11V18—jk1(xcosﬂl +zsin61)}

T %%z

= jwey (E1xy + E1,€;)

“ ax

To obtain the x component of the electric field

11



4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY
CONDITIONS Ismail YILDIZ

— % {Azye—ﬂﬁ(stﬁ +ZSi"91)} ]A71"11v1 klsingle—jkl (xcosB,+zsinb)
Eix = =

Jwe; jwe;

_ Al'k,sin, .

we;y

—jkq(xcos61+zsinbq)
1x

To obtain the z component of the electric field

0 ™ , .
—jkq(xcos61+zsinb . - i
‘ ﬁ{All e ~Jka( 1 1)} —]Aﬂ”klcosele jkq(xcosB,+zsind;)
1z ngl jwsl
_ATM
_ TM1ki€oss iy rcoso, +asinds)
E, = e

Ar-H

4.1.3. Transmitted Wave
The H-polarized transmitted wave has a magnetic field component as

ﬁZy — éyA’{S/Ie—jkz (—xc0s0,+2zsin,)
The Maxwell’s equation for medium 2 becomes VX H = jwe, E

d d d : .
5 5 5 5 ATM ,—jko(— ) ]
( é, + 3y é, + Fp ez> X (ey412 e ~JKa2(=xcos6z+zsin 2))

= jwey (Exxéy + EZyéy + E3,€,)

d . . d . .
5 TM ,—jk,(—xcos0,+zsinb 5 TM ,—jk,(—xcos0,+zsinf
eza(Alze Jka( 2 2))_ex£(A123 Jk2( 2 2))

= jwey(Epxéy + EZyéy)

12
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— % {AIS/Ie —Jjkz(—xcos6; +ZSi"92)} jAE”kzsinHZ e~ Jk2(=xc0s0;+2sinb;)

E,, = - .
= Jwé; jwe,
™ .
oy = w e—jkz(—xcosaz +2zsinb5)
x we,
J TM ,—jky(—xcosB,+zsinb,) . .
I {Alz e /"2 2 2 } jA’{S/IkZ Cosgze—]kz(—xcosez +25in85)
E = - = -
2 ](‘)52 ]0)82
™
oy = we—jkz(—xcosez +2zsin6,)
z

WE,
4.1.4. Total Fields For Each Medium

Total fields in medium 1 is equal to the summation of incident and reflected fields.

. T™ .
El = kysinbg e—jkl(—xc0590+zsin90) + Ajq kqsinb, e —Jk1(xcos0;+zsinb,)
x
wEq wWeq

™
El = k1cos6o e—jkl(—xcost90+zsin90) _ Al1 kqcos6, e~ Jk1(xcos6;+zsinby)
z weq wey

H31/ — e—jkl(—xcoseo+zsin90) + A71"€/Ie—jk1(xc0591+zsin61)
The total fields in medium 2 is equal to the transmitted fields.

TM}, o
E2 = Aiy kasinb, e—jkz(—xcosez+zsin62)
x
wEy

™
E2 = Aiy kpc056; e—jkz(—xcosez+zsin92)
z wey

13
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HZ — A71"gde—jk2(—x00592+zsin92)
y =

4.1.5. Approximate Boundary Conditions

The approximate boundary conditions which was obtained by Weinstein are
modified for the coordinate system with horizontal z-axis and vertical x-axis.

B} + B} = (kaloHZ = jkaloHD) + Lo 5 (B2 — E2) (4.1
E2 — EL = (—jkyl,HZ — jly[,HY) — 1 (,f—y (E2 + ED) (4,2)
H} = Hy = (=jkoLiEZ = jkiLiED) + Ly o> (HE + HY) (4,3)
EZ — E} = (—jkaloH} — jkylsHy) — 1, (EZ + E3) (4, 4)

where

From the equation 4,4

EZ—E} =0 ,atx=0

™
Ajp kzcos6; o~ Jkz2(=xc0s0,+25in6;) _ (k1c059_0 e ~Jki(=xcosbo+zsinfo) _
wey weq

™
A11 kicosby e—jkl(xcosel+zsin91)) =0
wEq
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4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY
CONDITIONS Ismail YILDIZ

™™ ™™
Ai3 kyc0s0, e_jkzzsinez _ (leOSQO e_jklsin90 _ Aj1 kqcos6q e_jklzsingl) =0
We; we, weq '

at x=0
The solution is valid for all z values in this condition,
klsineo = klsin91 = szinez

It is clearly appeared that

klsineo = szingz
This last equation is known as Snell’s Law.
Hence, the equation above becomes

TM k2c056; TM~ k1€0s6y
A12 we - (1 - A11 =0
2 weEq

or

TM k2c0s6;
A12

TMA k1c0s6g
(1 - A11 £

TM _ (1 _ ATMYKk1c0500¢,
ATY = (1 - ATH) e (45)

From the equation 4,3

15
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A71"12V1 e —jky(—xcos0,+2zsinf,) __

(e—]kl(—xcoseo+zsm90) +Aﬂfle—]kl(xcosel+zsm91)) —

A13 kyco050, @~ Jk2(~xcos0;+2sind
_]kzll (—82 Jk2( 2 2)) —

™
]klll (k100590 —jkq(—xc0s0y+zsind,) _ A1l K1€056, e—jkl(xcost91+zsin91))
weEq

At x=0;

A e —jkyzsin, __ (8 jkqzsinf, +ATMe ]klzsmel) —

Ai5" kyco0s0, —'k 7sin@
—]kzl1 (—52 JK2 2 ) —

™
]k I (klcoseo e—jk1ZSin90 _Au kqcosfy e—jklzsinel)
11 & wEq

By using the Snell’s Law, the equation above becomes

™
ATIZVI _ (1 + AH/I) _ ]k2l1 (A12 kzgcosez) _jk1l1 (klcoseo _Ang klcoseo)
2

wEéq wEéq

jkZ1,cos6 jk?1,cos8 jk?1,cos6
A’{IZWI:1+ 241 2:|=A’{i”|:1+ 141 0]+[1_ 141 0]

wEy wEq wEq

(4,6)
We can obtain the expression AT and AT} solving the equations 4,5 and 4,6.

In the equation 4,6; write the equivalent instead of A7%/,

kicosOye ik21,cos6 ik?1;cos6, ik?1,cos6
(1—A 1 02[1+121 2]=Aﬂ/1[1+]11 0]+[1_J11 o]
kycos05¢e4 wEq wWEq

[k1c0590£2 _ A’H/I klcoseosz] [1 n jk%llcosez] [1 n jk? 1100590] [1 _ jk%llcoseo]
k,cos0,¢e4 k,cos0,¢4 wey

weq AT

16



4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY

CONDITIONS Ismail YILDIZ
kicosOpe, | kicosByey jkZlicos6, TM k1c0s00€; TM k1cosOge, jk51,c0s0,
kocosOpe1  kpcosfreq wey 11 kycosf,¢e4 11 kocosf,¢e4 wey -

ik21,cos6 jk21,cos6,

AIQ/[[1+]11 o]+[1_111 0]

wEeEq wEeq
leOSG()SZ jklkzllCOSQO TM k]_COSgOEz ATM jklkzl]_COSGo _ ATM +
kocos05¢e4 weq 11 kycosO,¢e4 1 weq -1

ATM jk21,cos6, 11— jk21,cos6,
11 P

kicosOpe, |, jkikzlicosOq n jk?1,cos6, 1= A71~11VI [1 n jk?1,cos6, n kqicosOge,
kocosO,¢e4 weq weq weq kocosO,¢e4

jklkzllcoseo]
wEéq

We can equalize the denominators at wk,cos8,¢,

kicosOpe, |, jkikzlicosOq n jk?1,cos6, 1= A71~11VI [ 14 jk?1,cos6, n
kocos05¢e4 weq weq weq

k]_COSGoEZ jklkzllCoseo]
kocos05¢e4 weq

wkcos0pe+jk1k311c0500c050,+jkak211c0500c0s0,—wk,cos0,81

wkycos6,&4

A1

M [wk1cos0pes+ jk1k311c0500c050,+jkok3 11 c0s0c0s02+wk;c050, 81]
wkycos0,&¢

The reflection coefficient for H-polarized when incident wave is in medium 1 is

found as

ATM _ [ik1kalicos8gcos0,(k1+ky)+wkqcosByes]—[wk,ycos0561]
11 = [ik1kolic0s6gcos0,(ki+ky)+wkqcosOgex]+[wkycos0,e4]

To obtain AT}, equation 4,5 can be used.

AT%/I _ (1 —ATM k100590£2
12 — 1

1 k,cos0,¢e4

17



4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY

CONDITIONS Ismail YILDIZ
ATM — kqicosOge, [ _ [jk1k2110059000592(k1+k2)+wk100590£2]—[wkzcosezel]]
12 kycosB,eq [jk1kzlicos6gcos0,(ki+ky)+wkicosBges|+[wkycosBye4]

ATM _ kicosBye, [[jk1k2llcoseocosez(k1+k2)+a)klcos@0£2]+[wk200592£1] _
1z kycos0y6eq L[jk1kylicos0gcos0,(kq+ky)+wkqcosOyey]+[wkycos0564]

[fk1kylicos0ycos0,(kq+ky)+wkqcosOyes]—[wkycos05€]

[jk1kylicos0gcosB,(kq+ky)+wkqcosOpes]+[wk,cos0,64]

ATM _ kicosfye, [ 2wkycos0,¢&4 ]
1z = kycos0y6eq L[jk1kylicosBgcos0,(kq+ky)+wkqcosOyey]+[wkycos0564]

Finally, the transmission coefficient for TM mode when incident wave is in medium
1 is found as

ATM — 2wkqcosbye;
12 [ik1kolicos6gcosO,(ki+ky)+wkqcosOgex]+[wkycosO,e4]

4.2. TM Mode When Incidence in Medium 2

For H-polarized, when the incident wave is in medium 2, the reflection and
transmission coefficients ATY and A%} can be determined by the same way above

and the field components are shown in Figure 4.2.

Figure 4.2. Reflection and transmission from grating structure when H-polarized
incidence in medium 2

18



4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY
CONDITIONS Ismail YILDIZ

4.2.1. Incident Wave
The magnetic field of the incident wave which is in medium 2 is:

ﬁOy — éye—jkz(xcosez+zsin92)
The electric field components of this wave can be found by using the Maxwell’s eq.
VxH= ja)szﬁ

d 0 d . .
— 6. +—é, +—¢& ) x (& e—jkz(xcosez+zsm62)
(ax ¥ oy Y 9z * (& )

= jwey (Eoxly + EOyéy + Eoz€,)

d . . 0 . .
5 —jky(xcos6,+zsinb 5 —jky(xcos6,+zsin6
eza(e Jko( 2 2)) _ ex&(e Jko( 2 2))

= jwey(Eoxéy + Egz€;)

For the x-component of electric field

0 , ,

—jko(xcosB,+2zsinb . . _i i
__{e Jka( 2 2)} ]k sind-e Jjko(xcosO,+2zsinb;)
E. = 0z _ 2 2

0x — -

Jwe, Jwe,

oy = kZSlnHZ e—jkz(xcost92+zsin62)
WE,

And, for the z-component of the electric field

d , ,

—Jjky(xcos0,+zsind . _i i
a_{e Jka( 2 2)} —]k1C0592€ Jko(xcosB,+zsinb,)
E — x —

0z — -

Jwe; Jwe,
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H2050s s rcostsasingy

EO =
z We,

4.2.2. Reflected Wave

The reflected wave has the magnetic field component with the reflection coefficient

ATH as below;

ﬁly — éyATZ"gIe—jkz(—xc0591+zsin91)

By using the same Maxwell’s eq. VxH= jwezl_f

9 9 9 | |
(a éx + @éy + a_ZéZ> X (éyAgg/Ie_JkZ(_x50591+ZSln91))

= jwey(Erxéy + Elyéy + E1,€,)

d . . d . .
5 TM ,—jk,(—xcos01+zsinf 5 TM ,—jk,(—xcos6+zsinf
eza{Azze Jka( 1 ﬂ}‘%&{t‘lzze Jk2( 1 1)}

= ngz(Elxéx + Elzéz)

The x- and z- components of the reflected field are shown below.

0 (M ] ;
—jky(—xcos6,+zsin6 . . o .
E _E{Azze Jhea( 1 1)} jATM k., sind, e jka(—xcos8;+zsinby)
1x ngz ngz
™™ .
= M —Jjkz(—xcos8;+zsinby)
- e
1x
WE,
i{ATM —jkz(—x00591+zsin91)} . ATM k(= xcos0y +25in0s)
E ox 22 € —jA35 kycosBe™ /%2 1 1
1z = —

jwe, jwe,
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_ A3kyc0s6,

1 e—jkz(—xcosel+zsin91)
z

WEe;

4.2.3. Transmitted Wave
The transmitted wave’s magnetic field component is;

Fizy — éyATZ"Q/Ie—jkl(xcoseo+zsin90)

And, electric field components of this wave are found from

0 0 0 . .
(a éx + @éy + &éz) X (éyATZ"IIVIe—]kl(xcoseo+zsm60))

= jwe (Exxéy + EZyéy + Ey,8;)

d . . 0 . .
5 TM ,—jkq(xcosBy+zsinb 5 TM ,—jkq(xcosBy+zsinb
eza(Aue Jka( ) 0))_ex£(‘421e Jka( o o))

= jwer (Eyxéy + EZyéy)

a TM j [
—jkq(xcosBy+2zsinb, . . -7 i
— {A21 e Jka( 0 0)} jAﬁ”klsmHOe jk1(xcosOy+zsinby)

E.. = dz
2x — . 3
](1)81 ](4)51
™ .
Eyy = Az1 ky5inb, @~ Jk1(xcosby+zsinbo)
x we;
d TM ,—jkq(xcos8y+zsinbg) : .
ﬁ{AM e 1 0 0 } _jA72"11VIk1COSHOe—]kl(xcoseo+zsm90)
E,, = - = ;
o Jwér Jjweyg
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_ATM
A21 k1C0590 e—jkl(xcoseo+zsin90)

OrH

EZZ =

4.2.4. Total Fields For Each Medium

The fields in medium 2

X ™ .
El— k,sinf, e ~Jka(xcosfy+25in6;) 4 Azz kasinby o~ Jk2(=xc0s6, +2sinb;)
1= S
wEey wez
™
F1 = “K2€050 ,—jk;(xcos,+2sin6,) | Azz k2€0501 ,—jk, (~xcosb, +2sinby)
z
wey wez

Hl = e—jkz(xcos¢92+zsin92) + ATZ"IZVIe—jkz(—xcosBl+zsin61)

And, in medium 1

TM}, o
E2 = Az1" kq5inbg e ~JKk1(xcosOo+zsinby)
X wEeEq
™
E2 = —A21 k1c0sbo e ~Jk1(xcosBy+zsinby)
z wEeEq

H? = A’gll\/le—jkl(xcoseo+zsin90)
From the equation 4,4
EZ—E}=0 ,atx=0

™
—Az1 kqc0sbg e ~Jk1(xcosOo+zsinbo) _ (_kZCOSHZ e~ Jkz2(xcosOr+2sinb;) 4
wEq wer

™ . ,
Az) l:)ng0591 e_jkz(—xc0591+zsm91)) =0 ,at x=0
2
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™
-ATMy, cosBy —jklzsineo _ (—kZCOSHZ e—jkzzSin92 + A5 kycos6, e_jkzzsingl) _

wEeEq wey wey

From Snell’s Law, the equation above become

ATM . cos6 k,cos6
21 "1 0_(1_A'512\/I 2 2=0

wWEq WE

or

kqcos6, kocos6
ATM 1 0 — (1 A 2 2
wey

TM _ k,cos0,¢4
Ar = (1- A kicosBpe, .7)

From the equation 4,3

HJ% - H; = __]klllEZZ _]kzllEzl y at X:0

A72"11Vle —Jjkq(xcosBy+zsinby) __

(e—]kz(xcosez+zsm92) +ATZ"IZVIe—]kz(—xcosel+zsm91)) —

™™
—jikyl, (we—jkl(xcosﬁo+zsin90)) _
wEq

kol ( kzcos6, e~ Jk2(xc0s0,+25in0;) + A7} ko c0564 e~ Jka(- xc0561+zsm61))
wEy wep

At x=0;

A72"11\/Ie—jklzsin90 _ (e—jkzzsinez + ATZ"IZVIe—jkzzsinBI) —

, —ATME. cosy _; i . —kycos0, _; i
_]klll ( 21 K1 00 jklzsmeo) _]kzll ( 2 2o jkozsinB, +
weq wey

™
A5} k0561 e—szzsinﬂl)
wEey
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By using Snell’s Law, the equation above become

™ _ ™ Azq klcosao) . (—RZCO.S‘92 A%\”kzcosez)
1 — (1 +A437) = —jkily (—81 jk2ly we, + we,
jk21,cos6 ik21,cos@ ik21,cos6
A’IZ"Q/I [1 _ Jkih o] — A72"g/1 [1 IRzt 2] [1 + JK2h 2] (4,8)
wey wey weq

We can obtain the expression A% and A%Y by solving the equations 4,7 and 4,8.

In the equation 4,8; write the equivalent instead of A%},

kycosf,¢ jk?1,cos6 jk21,cosf k21,cos6
(1 2 21[1_1 1l O]ZAgg/I[l JKat1 2] [1+Jz1 2]
kqcos0ye; weq &5 wey

k,c0s0,¢, M k20050581 jk?1icos6, ™ jk211cos6,
%ocoso.e. _ A22 1- =Ayp |[1-—7——|+
kqcos0g&; kqcos0ye; weq wey

[1 + jk3 1100592]

WE

kycos0,e;  kpcos6,e1 jk3l,c0s6, TM k2c0s65¢1 M k2c0s0z¢1 jkZlicos0y
kicosBye, kqcosBgey weq 22 kqcosBge, 22 kicosBye, weq

ik21,cos6 ik21,cos6
ATZ" ATM] 201 2 +1+ JK3 b 2
wEy wEey

kocosOye1  jkikylicosB, ATM kycos0y¢e4 ATM jkikylicosB, ATM
kqcos0ye; wey 22 kqcos0ye, wey -

ATM jk31,cos6, 114 jk31,cos6,
wEy wWEy

We can equalize the denominators at wk,cos6,e,
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TM jk1k21160592 _ ™
+ A3 T s, Ayy —

kocosOye1  jkqikylicosO, ATM kycos05¢4
kicosBye, wey 22 kicosfye,

ATM jk31,cos6, 114 jk31,c0s6,
22 . T

wkycos0,e1  jk?k,lic0504c0s6, TM Wkyc0s05€4 M JkZkalicosOpcos0,

22 22 wkqcosOye, -

wkqcosBye, wkqcos0yey wkqcosBye,

ATM wkycosbogz T Jk1k3lic0560c0s0; | wkicosbog, | jkik3licosocosh,
22 22

wkqcosByey wkqcosBye, wkqcos0ye, wkqcosOye,

ATM [—wkz €080, +jk?ky11c050c050,+ jkqk31,c0500c050,—wky coseoez] _
22 wkqcosBye, -

—wk;050,81+jk3k,11c0504c050,+ jk1k31,c0503c050,+wk, 050y,

wkqcosBye;

The reflection coefficient for H-polarized, incidence in medium 2, is

ATM _ [[jklkzllcoseocosez(kl+k2)—a)k2c059281]+wk1c0590£2]
2z — [jk1kalicosOgcosO,(k1+ky)—wkycos0,61]—wkqcosBge,

To obtain A%Y;

™ __ TM szOSQle
A21 - (1 - AZZ
kqcosBye,
ATM _ kycosBye4 [ [jk1k21160560c0562(k1+k2)—wkzcost9251]+wk160590£2]
21 — kicosbye, [jk1kylicos0gcosO,(k1+ky)—wkycosO0,61]—wkqcosOgey
ATM — kycosb,e4 [[jklkzllcoseocosez(k1+k2)—wk2cos@zel]—wklcoseosz
21— kqicosOge, L[jk1kolicos0gcos0,(ki+ky)—wkycos0,61]—wkicosOpey

[jk1kolicosOgcosO,(ki+ky)—wkycos0,e1]+wkicosOy 82]
[jk1kylicosOgcos05(kq1+ky)—wk,cos0581]—wkqcosOpey

ATM __ kpcos0384 [ —2wkqcos0y&;, ]
21 —

kicosOge, L[jk1kolicosO0gcosO,(ki+ky)—wkycos0,e1]-wkicosOgey

And, the reflection coefficient
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ATM _ [ —2wk,cos05¢&41 ]
21 [fk1kylicosOgcosO,(kq+ky)—wkycos0,61]—wkqcosBye,

4.3. TE Mode When Incidence in Medium 1

For E-polarized, when the incident wave is in medium 1, the reflection and
transmission coefficients A7Z and AT can be determined by the same way above, the

field components is shown in Figure 4.3.

Figure 4.3. Reflection and transmission from grating structure when E-polarized
incidence in medium 1

4.3.1. Incident Wave

For E-polarized, while the wave is propagating in the x- and z- directions, electric

field has y-component.
E’O =5 e—jkl(—xcost90+zsin90)
y y

Magnetic field is obtained by Maxwell’s equation

VxE=—jomuH

o. 9. 9 | |
A A o A ik (= 0 0
(—ax e, + @ey + a—ZeZ> X (eye Jjk1(—xcos0y+zsin 0))

= —jop (Hoxéy + HOyéy + Ho,€,)
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d . . d . .
5 —jkq(—xcosBy+2zsin6 5 —jkq1(—xcosBy+2zsinb
eza(e Jk4( ) o)) _exg(e Jk4( o o))

= _ja).ul(HOxéx + Hy,€é;)

Magnetic field has x-component given below;

d —jk1(=xcosBy+2zsinb, i i
b E{e Jk( 0 0)} _ _jklsineoe—]kl(—xcost90+zsm90)
0x — . = -
Jjwy o
Hoyy = —kysinb, @~ Jk1(=xcos8+2sinb)
x

Wiy

and, z component as

- aa_x {e —jk1(—XC0590+Z$in90)} _jklcosgoe—jkl (—xcosBy+2zsinby)
Ho = : = :
’ jou jou

—k,cosb
0 i _ .
HOz — e jk1(—xcosBy+zsinby)

Wiy

4.3.2. Reflected Wave
Reflection wave’s electric field is

E)ly — éyA71"11:"e—jkl(xcosel+zsin61)

From the same Maxwell’s equation VXE=— ja),ulﬁ

27



4. OBTAINING THE COEFFICIENTS BY USING APPROXIMATE BOUNDARY
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0 0 0 . .
(a éx + @éy + aéz) X (éyA71"11:"e—]kl(x00591+25m91))

= —jwu; (Hyxéx + Hlyéy + Hy,€,)

. . 0 . .
5 TE ,—jkq(xcos6,+zsin6 A TE ,—jkq(xcosf1+zsin6
ez_(Alle Jka( 1 1))_ex_(Alle Jk4( 1 1))
0x 0z

= —jopy (Hyxéx + Hy,€;)

Magnetic field’s components are

d TE ,—jk,(xcos01+zsinb i i
u a_Z{All e’ 1( 1 1)} _jATI"fklsinale—]kl(xc0591+zsm91)
1x = ; = ;
Jol JwH
_ATEL o
Hy, = Airkysind, @~ Jk1(xcos6, +2sinb;)
x
wihq
and
0 ATE o—Jjk1(xcos6,+zsinb,) : 1TE —jkq(xcos0,+2zsinf;)
u —ﬂ{ 1€ } jAiTkicosf0,e7 "1 1 1
1z = p = .
JwHy JwHy
ATk cos; . .
Hy, = 1171 1e—jk1(x00591+zsm91)

Wiy
4.3.3. Transmitted Wave
The transmitted wave has the electric field

EZy — éyA’{‘ge—jkz(—xcost92+zsin62)

Magnetic field’s components are found from Maxwell’s equation
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VXE = —ja)uzﬁ

d d . )
5 5 5 5 ATE ,—jk;(—xcos6,+zsind
(_ex+_ey+_ez)x (eyA1ze jko(—xCc0s0,+zsin z))

= —jwuy (Hyxly + HZyéy + H,,€,)

eza (A e—]kz( xcos@2+zsm92)) _ exa (A e—]kz( xcos@z+zsm92))

= —jouy(Hyly + Hyz8,)

ad —jky(—xcos6,+2zsinb i i
H 3z {Alz e’ 2( 2 2)} —jA{EkzsinHZe‘f"z (=xcosB,+2zsinb,)
2x = =

Jwus B Jowus,

x- component of the transmitted wave is
__ATE ;
H,, = A1z kpsin, o~ Jk2(=xcos6; +25inb;)
X
Wiy

_ (')i {ATI"ZEe—jkz(—xcosez +zsin62)}
X

H,, = -
2 JWH,

A71"2E kz 60592 e~ ) ko (—xcos6,+zsin0d,)

jws
z- component of the transmitted wave is

—ATE L, cos0, .

Wiy

HZZ — —jky(—xcos0,+zsinb,)
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4.3.4. Total Fields For Each Medium

Total fields in medium 1 are obtained by summation of components the incident and

reflected waves

. TE .
Hl = —k1sinbo e—jkl(—xcoseo+zsin90) _ Airk,sinb, e~ Jk1(xcos01+2zsinb;)
X wiq W,
TE
HY = —kicosb e—jkl(—xcoseo+zsin90) + A1 kicos6q e~ Jk1(xcos01+zsinb,)
z Wiy Wy

Ejl, — e—]kl(—xcos¢90+zsm90) + ATI"fe—]kl(xcosel+zsm61)

Total fields in medium 2 are equal to the components of the transmitted wave.

TE}, o
H,% _ “412 kasinb, e—jkz(—xcosez+zsin92)
wWH2
—ATEk,cos0 i i
= 12727772 ,—Jka(— 2 2
g2 = 4122 2 o—Jk (—xcos6,+zsin6,)
z wWH2

E2 — Azge—jkz(—xc0592+zsin92)
y

From the equation 4,2
Ej —E; =0 atx=0

A71"2Ee —jky(—=xcos0,+2zsinf,) __

(e—jkl(—xc0590+zsin90) +A’{‘Ilz"e—jkl(xc0591+zsin91)) =0, atx=0

Azge—jkzzsmez _ (e—]k1251n90 + A71"fe—]k1251n91) =0
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With the Snell’s Law, the equation above becomes

ATE—(A+4TH) =0

or
ATE =1 4+ ATE (4,9)
From the equation 4,1
Ej + Ej = (jkyloHZ — jkiloHy) , atx=0

AIE e —jky(—=xcos0,+2zsinf,) +

(e—jkl(—xcos¢90+zsmeo) + A71"fe—jk1(x00591+zsm91)) —
jkaly (M —sz(—xcosez+zsin92)) _
WH2

]k1l0 (klc—oseo e—]k1( xcos8p+zsinby) + —All 21:0561 —Jjk1 (x60591+zsm61))
1

At x=0;

A{ge—jkzzsiné?z + (e—jklzsineo +A71"fe—jklzsin61) —
A7 kyc050; ik ssin@

ikl (—12 e Jk2zsinbz ) _

Ji2to e

. —kqcos8y _; i ATEk . cosO, _; i
]kllo ( 1 P JjkqzsinB 44t 1o ]k1251n91)
wWH1 wWHy

When the Snell’s Law is applied to the above

—kqcos6 n ATEL, 60590)

Wy Wiy

, -ATEk ] ,
ATS + (1 + A1) = jkyl, (%:OSZ) — jkalo (
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2 £1,2 il 2
ATE [1 + szlocosez] = ATE [_1 _ M] + [_1 + M} (4,10)

Wiy Wy wWhy
We can obtain the expression ATZ and AT by solving the equations 4,9 and 4, 10.

In the equation 4,10; write the equivalent instead of AT%,

(1+A7 )[1+”‘2’°C"592]=A15 |1 - Leilocosto] . [ g 4 Jilocosty)

Wy Wiy

jk214cos6 jkZ1l,cos6 ik?1ycos0,

1 4 Lk2lo 2 4 ATE +ATE]20 Z—Aff[—l—]lo 0]+
Wiy WUy Wiy
ik21ycos6

[_1 _I_J 1‘o 0]

wWHy
jk21ycos6 jk21ycos6 ik21ycos6 ik21ycos6,
A]{f[z_l_Jzo 2+J10 0]:_2_120 2+J10 0
Wh2 wWH1 WH2 W,
We can equalize the denominators at wu,pu,
E [2 n jk31ocos6, n jkflocoseo] - __ jk31pcos6, n jk2lgcos8,
WH2 wWH1 WH2 W,

ATE [2 WHa + Jjk3locos6zuq + jk%lowseollz] — Q2 Jjk3locosOapq +
[OF257251 (27257251 [O257 251 (27257251 (CF757251

JjkFlocosOopz

(OF257251

ATE [Zw#2#1+1k21050592H1+1k1loC0590M2] _ [—200#2!11—jk%loC0592H1+]'k%10C0590H2]
[AYIPYTR Whz2 U,

TE _ jkilocosOouz—[2wpzpis+jk31oc0s6, 1]
11 ™ jk21c0s00pp+[2wua s+ jk210c0S0, 11 |

To obtain ATZ ;
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ATE = QL+ ATF

ATE — (1 + jk%1000590#2—[Zw#2#1+jk%10C0592#1])
1z JkZ1cosOguz+[2wpa e +jk316c0s0, 14 ]

TE _
A12 -

jk3locosBopz+[2wpapy +jk3locosOaus] | jkilocosOopz—[2wuaps+jk5locosbru,]
jk%l0C0590u2+[2wu2u1+jk% locosezﬂl] jk% 1060590u2+[2wu2u1+jk% locosezﬂl]

Finally, the transmission coefficient for E-polarized with incidence in medium 1 is

TE __ ( 2jk%loC0590ﬂ2 )
12 jkZ1ocosOpz+[20puz iy +jk310c0s0, 11 ]

4.4. TE Mode When Incidence in Medium 2

For E-polarized, when the incident wave is in medium 2, the reflection and
transmission coefficients AL and AZ% can be determined by the same way above and

the field components are shown in Figure 4.4.

—
+—>
d

Figure 4.4. Reflection and transmission from grating structure when E-polarized
incidence in medium 2

4.4.1. Incident Wave

The electric field of the incident wave for E-polarized with incidence in medium 2 is
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EOy — éye—jkz(xcosez+zsin92)

Magnetic field can be obtained by using that,

—

VXE = —jwu,H

d 9] d . .
— 6. +—¢6, +—¢& ) x (& e—]kz(x00592+25m92)
(ax ¥ oy Y o9z * (& )

= —jwy (Hoxly + HZyéy + Hy,é,)

d . . 0 . .
5 —jky(xcos6,+zsinb 5 —jky(xcos6,+zsinb
eza(e Jko( 2 2)) _ ex&(e Jko( 2 2))

= —jwpy(Hyxy + Hyz8,)
x- and z- components of the incident wave are equal to;

d { —jky(xcos6, +zsin92)}

. . —ik 9 + . 9
Ha = dz _ —]kzslnaze Jko(xcosB,+zsinb,)
ox = - = .
Jwu, jou,
HOX e Me—jkz(xcosez+zsin92)
Wi
And,
g ~Jka(xc0s0,+z5inb,) i —Jjk,(xc0s8,+zsinb,)
—ax e } jkicos@,e ik 2 2
H _ 0x . 1 2
0z — " = .
JOH JwH
oy = kacos6, o Jkz(xc0s0; +25in0s)

Wiy
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4.4.2. Reflected Wave
The components of the reflection wave are found below. Electric field of this wave

Ely — éyATZ"S"e—jkz(—xcosel+zsin91)
From the equation V x E = —jwu,H

0 0 d _ _
(a é, + @éy + a_ZéZ) X (éyAgge_JkZ(_x50591+ZSl7‘l91))
= —jwuy(Hixy + Hyyéy, + Hyz8,)
9 ( 4z —Jka(—xcos8,+zsinb) 5 9 (arE —jka(—xc0s61+zsinby)
{Azze 2 ! 1}—ex£{A22e 2 1 1}

“ ax

= _jw.uz(Hlxéx + leéz)

The x- component of magnetic field is
d

TE ,—jky(—xcos01+zsin6 , , ik (— i
u a_Z{AZZ e~ Jka( 1 1)} —]AgngSlnele jko(—xc0s0;+zsinby)
1x = . = .
JWH Jwis
_ATE], i
Hy, = A2z k25inby @~ Jk2(~xc0561+25inb,)
x

Wi,

The z- component of magnetic field is

_ ai {Agge—jkz(—xcosel +zsin91)}
X

H,, = -
1 Jwl;

B _jA’é‘IZEkz 605916 —jky(—xcos01+2zsinbq)

Jwiy
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_ —Aj5kycosb,

Hy, = e ~Jk2(—xcos6,+zsinb)
VA

Wi,
4.4.3. Transmitted Wave

Last wave has an electric field component as;

EZy — éyAgfe—jkl(xcoseo+zsin60)
Magnetic field components are found by using V x E = —jwu,H

0 0 0 _ _
(a é, + @ éy + e éz) X (éyAYZ"llz"e—jkl(xc0590+zsm90))

= —jwuy (Hyxéy + HZyéy + Hy,é,)

. ) 0 . .
5 TE ,—jkq(xcosOy+zsinf 5 TE ,—jkq(xcosOy+zsinfd
eza(A21e Jk41( 0 0)) _ex&(A21e ] 1( 0 0))
= —jwuy (Hyxby + H2yey)
i{ATE —jkl(xcosé)0+zsin90)} . A TE . — jkq(xcos8g+zsinby)
H gz 121€ —jA37 kysinfy e "1 0 0
Zx = =

Jjwpq Jjwpq

X- component of the magnetic field is

_ATEL o
H,, = AZllelneOe—jkl(xcoseo+zsin90)
X
Wiy
_i{ATE ~jkixcosbotasingo)) 4 — iy (xcos8y +2sinby)
. Ox 1218 JjAS7kicosBye 1 0 0
ZZ = =

Jjopy Jjowuy

And, the z- component is
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TE
AZ 1 kl COS@O e —jkq(xcosBy+zsinby)

H, =
2z Wy
4.4.4. Total Fields For Each Medium

Total fields in medium 2 are the summation of the components of the incident and

reflected waves

. TE .
Hl = — kzsind, e—jkz(xc0592+zsin92) _ A3 kpsin, e—jkz(—xc0591+zsin91)
X Wy [ayp)
TE
Hzl — kzcos6, e—jkz(xcosez+zsin62) _ Azzkacos0, e ~Jka(—xcos6,+zsinby)
W2 wWH2
Ejl, — e—jkz(xcosez+zsin92) + Agge—jkz(—xcosel+zsin61)

And, in medium 1,

TE}, o
H,? _ 421 k1sinfo e ~Jk1(xcos+zsinby)
wWH1

TE
HZZ _ A21 k1cos6o e ~Jk1(xcosBy+zsinby)
wWH1

EJ% — Agfe—jk1(x00590+25in90)

From Eq. 2

EZ—EL=0 , atx=0
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Aiz"lfe —Jjkq(xcosBy+zsinby) __

(e=Jka(xcosOy+zsings) 4 ATE o—jka(-xcosbi+zsinb1)) = | at x=0
A72"11:*e—jklzsin90 _ (e—jkzzsinez + Agge—jkzzsinal) =0
With the Snell’s Law, the equation above becomes
AFf—(1+435) =0
or
ATE =1 4 ATE (4,12)
From the equation 4,1
Ey + Ej = (jkiloHZ — jk,loHy) , atx=0

ATZ"fe —Jjkq(xcosBy+zsinby) +

(e—]kz(xcosez+zsm92) +ATZ"ge—]kz(—xcosel+zsm91)) —

TE
jk1lo (A21 kicosby e—jkl(xc0590+zsin90)) _jkzlo (k250592 e—jkz(xc0562+zsin92)
Wy [2)725)

TE
Azz kpc056, e —jky(—xcos6, +zsin91))
Wiy

At x=0;

ATZ"fe—]klzsmeo + (e—]kzzsmez +A72"12:"e—]k225m61) —

TE
jk1l0 (A21 kqcos0q e—jk125in90) _
wWHy

TE
jkl (kzc—osez e Jkzzsinby _ we—jkzzsinel)
2o\ "o =
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Then,

Agf + (1 + AE’ZE _ jk1lo (Agfklcosao) _jkzlo (kzcosez . Agszcosel)

WHq wWH2 wWH2

ik?1locos6 ik21locos6 ik21ocosO
ATE [1 - FhoPo] = gTE |- 4 [l y [ g Jiiocosth]
wWHq [0)2%} Wiy

(4,12)
We can obtain the expressions ATE and A% by solving the equations 4,11 and 4,12.

In the equation 4,12; write the equivalent instead of AZ%,

.12 £1,2 P12
(1 n Agf) [1 . jkllocoseo] _ A72~125 [_1 + ]kZlOZOSBZ] + [_1 _ jkzlgcosez]
2

wWH1 w WH2

k215056, ikZ1yc0s6 ik21,cos0
1_]1(;) 0+A£§—A£§jlo 0=A72"§[_1+120 z]+
U1 w1y Wi
[_1 _ jk%locosez]
WHa2
jk21ycos6 jk?1ycos6, ik21ycos6 ik21,cos6,
Agg[z_Jzo 2 JKilo 0]:_2_120 2+J10 0
Wh2 wWH1 wWH2 W,
We can equalize the denominators at w
21
ATE [2 WUz jk31gcos0, 4 _ jk%locoseoﬂz] — o QHat jk31ocos0, 1y n
22 WHa U WHa U1 WHa U WHa U Whz2 U,
JjkilocosBop,
Wha U,

ATE [—2(0#2#1+]'k510005921«l1+jk%locoseoﬂz] — 20z i1 +k51oc0S0z = jkFlocosOo iz
22 ey wHz H1
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The reflection coefficient for E-polarized when incident wave is in medium 2 can be

written as;

TE _ JKk3locosOruy—[jkFlocosOour—2wpzpy]
22 jk%locosezﬂl'l'[jk%locoseoﬂz—zwﬂzﬂll

To obtain ATE

ATE = (1 + AT

ATE — (1 ]'kgloC0592M1—[jk%1000590112—260#2#1])
21 jk%1060592y1+[jk%locoseouz—Zwuzul]

TE _

A21 -

(jkg1000592ﬂ1+[jk%1000590ﬂ2—Zwllzlh] Jjk3 1000592111—[1"(%1000590112—2&)#2#1]>
jk%loC0592ﬂ1+[jk%loCOSGOﬂz—2(1)[12[11] jk% 10C0592H1+[jk% loCOSQOHZ—Z(A)Hzﬂl]

And, the transmission coefficient for E-polarized when incident wave is in medium 2

TE _ ( 2jk31ycos0, )
JkZ19cos0,u1+[jk315c0s00 s —2w o 14 ]
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5. SOLUTION WITH GEOMETRICAL OPTICS

The electric field and magnetic field expressions for each medium can be
obtained by summation of the all fields in each medium. All fields are shown in
Figure 5.1. Fields after the second scattering are neglected because their amplitude is
too small as compared to the amplitude of the components of incident wave.

x=-h

Figure 5.1. All waves in the problem for H-polarized

When magnetic field component of the incident wave is 1733’)4 =
éye‘fkl(‘xc"seoﬂsmeo) (for H-polarized), electric field components can be found by
using Maxwell’s Equations. The electric field of this wave will contain x and z
components, it will not contain y component. Samely, (for E-polarized) the magnetic
field of the incident wave will contain x and z components without y component if
the electric field component of the incident wave is Egf = é, e~ /k1(-xcosbo+zsindo),
Thus, both electric and magnetic field expressions will have x, y and z components
since E-polarized and H-polarized exist. Reflected and transmitted waves have the
same form with the incident wave by multiplying with the reflection and

transmission coefficient, respectively.

Also, 6, =6; =65 and 6, = 6; = 6, from Snell’s Law.
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All field components in medium 1 and medium 2 are listed below.

HTM — o —jk1(—xcosBy+2zsinby)

oy

ETM — kysin, e~ Jk1(=xcos6o+2sinb)
0x wE;

ETM — kycosb, e~ Jk1(-xcos6o+2sinby)
0z we;

TM _ ATM _—jkq(xcosOy+zsinb
Hly = ATMe Jka( ) 0)

ATV, sing, .

E}"M — —jkq(xcosBy+zsinby)
x we;
_ATM
E}"M — Aty kyicosby e ~Jk1(xcosBy+zsinby)
z

wey

HTM — A71"12\48—jk2(—x00592+zsin62)

™ .
ETM — A1z kpsinb, —jko(—xc050,+2sinby)
2x = e
we,
™
ETM _ Az kacos6, —jky(—xc0s0,+2sind,)
2z e
We,
™ __ TM ,—jko(xcosO,+zsinb —jhkycos @
H3y —_A129 Jka( 2 z)e jnkz 2
_ATM1, o
Eg"y — Az kasind, g ~Jk2(xc00; +25in8;) 5~ jhk,cos
We,
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ATMk,cos0, .

;‘é\/l — ot —jkz(xcos@2+zsin92)e—jhk2cos 0,
HZ)I)/I — _A71"9/1A72"g/le—jk2 (—xcos0, +zsin92)e—j2hk2cos 6,
ELIC\/I — _AIS/IAig:fZSinHZ g~ Jk2(=xc050,+25in83) 5~ j2hk;c08 6,
EZ;VI — _AE/IAE){SZCOSHZ @~ Jk2(~xc0s0;+25inB;) o, —j2hk;cos 6,
Hg‘)l/vl — _A71"S/IA72"11V16—jkl(xc0590+zsin90)e—j2hk2cos 0,
E;‘JICVI — _AzyAiiflsineo o ~Jk1(xcos6y+2sinby) o~ j2hk,cos 6;
Eg‘é\/l — AIQWAglyleOSHO @ ~Jk1(xcosBo+zsinby) o —j2hk,cos 0

Ar-H

ETE —e —jkq1(—xcosBy+zsinby)

oy —
TE _ M —jkq1(—xcosBy+zsinby)
H e
0x — wu
1
HTE = —kicosby @~ Jk1(=xcosBo+zsinb)
0z — Wi
1

E}"}f‘ — A71"fe—jk1(x00560+zsin90)

_ATEL o
A1 kysindy —jkq(xcosBg+zsinby
e

TE _
Hiy =
Wiy
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ATtk cos0, .

Wiy

TE _ —jkq1(xcosBy+zsinb
HTE = Jka( ) 0)

ETE — A{ge—jkz(—xcosez+zsin92)

2y
__ATE :
HIE — A1z kpsind, —jky(—xc050,+2sin6,)
2x = e
Wi,
__ATE
HIE = A1z kycos6, —jko(—xc056,+2z5in6,)
2z — e
Wiy
TE _ __ ATE _,—jk,(xcos0,+zsinB,) ,—jhk,cos 6
E3y_A12612 2 2) g T I 2
TE .
Hg‘E — A1z kysinb, @~ Jk2(xcos0;+25in6;) ,— jhk;c0s 6,
x
Wiy
__ATE
Hg‘E — A1z kycos6, g~ Jk2(xc0s6; +25in6;) 5~ jhk,cos 6
z
Wiy
TE _ __ ATE ATE ,—jky(—xcos@,+zsinb,) ,—j2hk,cos O
E4y = A12Azze JK2 2 2)e~J 2 2
TE ATE .
HLICE — A1z Azz kpsind, @~ Jka(=xc0s0;+25in85) p— j2hk,cos 6,
Wiz
TE ATE
HZZE — A1 Az kacos6, @~ Jk2(=xc050,+25inB3) 5, —j2hk;cos 6,
WH,
TE _ __ ATE ATE ,—jk,(xcosOy+zsinb,) ,—j2hk,cos 6
ESy_ A12A21911 0 oe] 2 2
TE ATE -
HTE — A12A21k15ln90 e—jkl(xcoseo+zsin60)e—thkzcos 0,
5x —

Wi
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TE p\TE

— —jkl(xcoseo+zsin90)e—j2hk2cos 6,
5z
wHq

The electric field in medium 1 is;

where
Ex = Eqy' + Ef' + Egy'
E, = Ej; + E{y + E}
E, = Eg;' + EL;" + Eg;'
x- component of the electric field in medium 1 is

. ™ .
E = k15m90e—jkl(—xc0590+zsin90) + A1z k1_5m90e—jkl(xc0560+zsin60) —
x

wWEq weéq

TM 4,TM;, i
A1z Az1 kq5inbo e ~Jk1(xcosBo+zsinbp) ,—j2hk;cos 6,
weEq

y- component of the electric field in medium 1 is
E, =
e—jkl(—xcoseo+zsin60) +A71"fe—jk1(xcoseo+zsin60) _

ATI"EATZ"IEB —Jjkq(xcosBy+zsinby) e —j2hk,cos 0,

z- component of the electric field in medium 1 is
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™
E = kicos6y o —Jk1(=xcosfo+2sindy) _ A1y k1cosby e ~Jk1(xcosOo+zsinbo) 4
A
wEq wWeq

TM ,TM;, ;i
Ajp A1 kisinby @~ Jk1(xcosBo+2sinby) o~ j2hk,cos 6
wEeEq

The magnetic field in medium 1 is;
H' = é,H, + é,H,, + &,H,
where
Hy = Hox + Hiy + Hgy
Hy, = Hgy' + HI)' + HE)!
H, = Hg; + Hi; + Hg;

X- component of the magnetic field in medium 1 is

. TE .
H. = —ksinby e~ Jk1(=xcosO+zsingy) _ Ai1kisindy e ~Jk1(xcosOo+zsinbo) 4
X Wity W
TE 4TE}, i
Aiz Az1 k15inbg e~ Jk1(xcosOo+2sinby) o —j2hk;cos 6;
Wy

y- component of the magnetic field in medium 1 is

Hy, =

e—jkl(—xcost90+zsin90) + A71"9/Ie—jk1(xcost90+zsin60) _

AE/IA?Z"Q/Ie —jkq1(xcosBy+zsinby) e —j2hk,cos 0,

z- component of the magnetic field in medium 1 is
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TE

H = —k1cos6y e ~Jki(=xcosfo+zsinfo) 4 A11kyc0569 e ~Jk1(xcosBo+zsinbo) _

L, =—
W, wWHq

TE 4TE
A17 A1 k1cosby g ~Jk1(xcosBy+2sinby) o~ j2hk,cos 6;
wWH1

The electric field in medium 2 is;

—

E? = é,E, + é,E, + é,E,
where
Ey = E;y' + E5Y' + ELY
E, = E}; + E3; + Ey
E, = E3}' + E3}' + E4}'

x- component of the electric field in medium 2 is

ATMk,sing, .

We;

—jky(—xcos0,+2zsin6,)

E, =
ATk, sind,
- e
wey
AT AT |, sind,

we,

—jky(xcos0,+2zsind,) e —jhk, cos 0,

e —Jjky(—xcos6, +zsin62)e —j2hk,cos 0,

y- component of the electric field in medium 2 is

Ey — A71"§e —jky(—xcosB0,+2zsinb,) _ A71"§e —Jjk,(xcosB, +zsin92)e —jhk, cos 6,

_A71"5?A72"ge—jk2 (—=xcos0, +zsin92)e—j2hk2 cos 6,
z- component of the electric field in medium 2 is
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™
A1z kacos, e~ Jkz(—xcos8,+zsind,)

E, =
z we,
ATk, cos0,
_.l_ e ——
we,
TM pTM
B Ai5 A35 kycos0,

WEe;

e —Jjky(xcos0,+zsinby) e —jhk,cos 6,

e —Jjky(—xcos6,+2zsinb,) e —j2hk,cos 6,

The magnetic field in medium 2 is;
H? = é,H, + é,H, + é,H,
where
Hy = H3 + Hiy + Hig
H, = H7' + H3)' + Hy)!
H, = H7 + H3; + Hif
X- component of the magnetic field in medium 2 is

__ATE], i
— A1z kpsind, g~ Jk2(=xc050;+25inb,)
0J25)
ATl k,sino, .
WH,
ATEATE K, sind,
+ e

Wiz

—jko(xcos0,+2zsind,) e —jhkycos 6,

—jky(—xcos8, +zsin62)e —j2hk,cos 0,

y- component of the magnetic field in medium 2 is
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Hy — A71"12\/Ie—jk2(—xcosez+zsin92) _ AT&VIB—jkz(xcosez+zsin92)e—jhk2cos 6, _

A71"12\4A72"12Vle—jk2(—x60592 +Zsin92)e—j2hk2 cos 6,
z- component of the magnetic field in medium 2 is

_ATE
H., = Me—jkz(—xcosez+zsin62)
i WH
TE
w e—]'kz (xcos0, +zsin92)e—jhk2 cos B,

%)

TE 4TE
+ A13 Ayz kycos0, p —Jka(=xc0s0,+25in05) o~ j2hkzc0s 6,
Wiy

Thus, the electric and magnetic field’s expressions in medium 1 and medium 2 can

be written as,

e Electric field in medium 1

- i , , ™ i , ,
El = éx {klsmeo e—]kl(—xcos¢90+zsm90) + Ai1" kq5inbg e ~Jk1(xcosbo+zsinby) _
WEq wWEq

TM ,TM,, ;
Ajg A1 kisinby @~ Jk1(xcosBy+2sinby) 5~ j2hk;cos 62} +8 {e—jkl(—xcoseo+zsin90) +
weéq y

A71"fe—jk1(xc0590+zsin90) _ A’{gAgllz"e—jkl(x60590+zsin90)e—j2hk2cos 92} +

™
~ {klcost% o —Jki(~xcosfo+zsinp) _ A11 kicosbg @~ Jk1(xcos8y+zsind) +
z

wEeEq weEq

TM ATM,, o;
Aiy Az1 ki5inbg e —Jk1(xcos8o+25inb) o~ j2hk;cos 6, }
wEq
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e Magnetic field in medium 1

- _ i . . TE i . .
H! = éx{ k15in6o e—]kl(—x60590+25m90) _ Airkysinbg e—]kl(xc0590+zsm90) +
Wi wWHq

TE 4TE}, o

Aiz Ax1k1sinbo ik, (xcosOo+zsindy) ,—j2hk,cos 0, 5 [ ,—jki(—xcos6y+zsinb,)

T em e e +eye +
1

A71"Q/Ie—jk1(xcoseo+zsin90) _ A71"S/IA’£§/1€—jkl(xcoseo+zsin90)e—jzhkzcos 92} +
TE
P {—klcoseo e ~Jki(=xcosfo+zsinfo) 4 A11 kyc0569 e ~Jk1(xcosbo+zsinbo) _
z wWHq wWHq

TE ,TE
Ajz Az1kqc0s8g o~ Jk1(xcos6y+2sinby) o~ j2hk,cos 92}
wWH1

e Electric field in medium 2

£? =

TM;, i
é {A12 kez5in6, e—jkz(—xcos¢92+zsin92) _
x wEey

TM;, ;
Ay kasinf, e—jkz(xcosez+zsin92)e—jhk2 cosf, __
wEy

TM ,TM :
Az A2z K3Sinb, @~ Jk2(=xc058,+25in6;) o~ j2hkzcos 92} +
wEy
TE ,—jk,(—xcos6,+zsinb,) TE ,—jk,(xcosO,+zsinf —jhk, cos 6
. Alzelz( 2 2 —A12812( 2 z)eJ 2 2 4
y _A’{gAgllz"e—sz (—xcos@2+zsm92)e—]thzcos 0,

™

é {Au k200592e—jkz(—xcosez+zsin62) +

z
wEy

™
Aiy kzc056; e—jkz(xcos@2+zsin92)e—jhk2cos 6, _
wEy

ArMA3TMK2€056,; @~ Jk2(=xc0s0;+25inB;) 5, —j2hk;co0s 6, }
wEy
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e Magnetic field in medium 2

—

H? =

TE .
6 {we—jkz(—xcoseﬁzsinez) +
x w2

TEj, o
A7 kasinf, e —jky(xcosB,+2zsind,) e —jhkycos 6, +
wWH2

TE 4TE}, i
Aiz Az1 kasinb,; @~ Jkz2(=xc0s8,+25in6;) o~ j2hkzcos 92} +
wWH2

éy{AEWe —jky(—xcos0,+2zsinby) _ A71"£/Ie —jky(xcos6, +zsin92)e —jhkycos0, __

TM pTM ,—jk,(—xc0s0,+zsinb;) ,—j2hk,cos 6,
Ay AyTe e +
-ATEk,cos0 i i
6 { 12 K2 2 e—]kz(—xcos¢92+zsm92) _
z Wity

TE
Ajz kycos6; e—sz (xcosB, +zsin92)e—jhk2 cos 0, +
Wiy

AzrEA3TEK2€056, @~ Jk2(=xc0s0;+25inB;) ,—j2hk;cos 6, }
[2)75
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6. COMPARISON WITH THE OTHER KNOWN RESULTS

Jacobsen (1970), studied about the electromagnetic waves guided by a
periodically strip loaded dielectric slab by using Floquet modes. He worked
numerically and experimentally, but analytically he just gave the electric and
magnetic field formulation, didn’t show obtaining the expressions of electric and

magnetic fields. In this part of the work, these expressions are also obtained from,

=Vx§xﬁ+iwu(ﬁxﬁ*)

te

i = —iwe( x 1) + 7 x ¥ x 1"

The geometry of Jabobsen’s problem is shown in Figure 6.1. He defined the

medium 1 as free space and medium 2 as slab.

4#’ €0y Uo
> &1, g
d

Figure 6.1. Geometry of the problem for Jacobsen’s work

=V)><Vxﬁ+iwu(§xﬁ*)

iy

i = —iwe(¥ x ) +7 x 7 x Ii

where
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where IT and IT* are electric and magnetic Hertzian potentials, respectively.
. in(?% - .(0) . .
Y = oz 3, AL el 5 (in medium 0)

2T

N = oidor 5 {oPetes 4 A,(f)e-i'c%“x}e[in(ﬂZ] . —h<x<0 (in

medium 1)

i . (27, . .
Hy(o) = elioZZB,(lo) e[‘”(d)z]emno X x> 0 (in medium 0)

M = efdory, {b,(ll)ei"%ﬂx n Br(ll)e—ikff)x} (@l _n<x<o (i

medium 1)
2
k) =k§ =

2
1
W =kt -

To determine the field expressions, we should find the results below:

e VxVxII
o UxVxI*
o VxIi
o« VxIi*
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Since,

0 A J 4
—(aex+ay€y+

(&, x &) %ny>

a

_(6A+6A+6A)X<A6H Aan)
“\ax Ty T 5,%) TGy T gy

2
= (&, x éz)ﬁl'[y — (&, x éx)W;ZHy + (&, x &) o
92 92
- (éy X éx)mny + (éz X éz)mny
2
- (éz X éx)@l'ly

al_[ =0
ay ¥
al_[* 0
ay 7
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e In Free Space (medium 0)

In medium O, the necessary terms in order to obtain the electric and magnetic

fields expressions are acquired below one by one.

? 2 . (2
aaxz fly = %{eigoz E :A;O) elrCa)el v }
; 2T
= " E A© e[‘<5°+”(7)>2]em§lo)x

0z2 Y  0z2

- (an ({;))2 3 a0 [ (o

2
s = e oot
. 2n
2 il {ot+nl— >z] . (0)
zg,gmeuo DY

2 2
Pty = 2 fecor 3 4 el i)
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2
9 * — { l(ozzB(O) [ln z m(o)x}
822

- <CO +n (%n))z Z B e[i<<"+"(%n)>z]em;°>x

d d (. _2m
— I, = —Jei%o? © [in(5)e] m;)}
x ax{e i zAn e

. 2T
Jot+n(=5- ) ]
— iKr(LO) ZA;O) e[l< 0 (d) z ucg])

0 0 ( . 2
Eny = &{BKOZZA%O) e[m( r) ]elK%O) }
. 2
e e e

9 1 = { i¢oz Z BO o[m(3)e] s }
ax
. 21
i ( +n|— )z] 0
= ik E B,SO) el \° (@) Ky

d
— I i{oz 0) [Ln z lKn }
5z 62{ ZB

(o) g

For the electric field in free-space

=

Erg =V x VX +iop(Vx )

R 02 92 ' ,\ P ) A P *
= —ey ﬁ-l_ﬁ l'ly+la),u<—ex£1‘[y+ezany)
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- Jo+ .

Efs = &4 [ lwpi <(0 + n( ))Z B(O) Gotn( )> ]em,(f)x]
0)2 z A(O) e[i<€o+n(%n)>z] i@y

n n

A

+éy |k

+ ((0 +n (%T))Z z A© e[i<60+n(2d_”)>l]eik7(10)x]
iwuik,so) Z B,EO) e[i<€o+n(%”)>z]em;0)x]

+é,

Hence, electric field in free space can be written as

=3 a0 el (e { o (¢O+n(3§))2}éy
+ Z B e[i<(°+n(2d_n))z]e“‘;0)x {Iwﬂ <(o +n (%))l éx

- w,u;c(o) 2 }

For the magnetic field in free-space

His = —iwe(VXT) +VxVxI* =

_ . 0 .0 . (0% 0%\ _,
=—lwe<—ex£l'ly+ezaﬂy>+—ey W-’_ﬁ IL;,
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2m

ol e

. 21
03 50 [ CO)|

~

+éy

+ <(0 +n (%n))z Z B© e[i<<"+"(%)>z]em%°)1

(e

+é,

—iwsik,go) Z AE,O) e

Hence, magnetic field in free space can be written as
. 2T 2
- Lo+ ) . (0 2 2T
o= 30 el O o™ (e an (B s
. 21
o+ —> ] , 2m\\| .
+3 a9 ol e[ ()

+ a)ex,go)éz}

e InSlab (medium 1)

In medium 1, the necessary terms in order to obtain the electric and magnetic

fields expressions are acquired below one by one.

% I, = aa_xzz{z {[ar(ll)ei;cg})x + Agll)e—i;cg)x] e[i<(0+n(%”)>z]}}

2T

_ _K_Tgl)ZZ{[agl) pirix 4 AW e-m;l)x] eH“)“(T))Z]}
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az2 YV~ 8z2

O =2 {Z {[a,(f)ei"%l)x + A,(ql)e‘“‘g)x] e[i(z"m(%ﬂ))z]}}

2

_ ((0 +n (%T)) Z {[agl)eilcgll)x + Agll)e—ircgll)x] e[i({0+n(%ﬂ))z]}

2T

0 I — aa_zz{z {[bgl)eix,(ll)x + Br(ll)e—ircgll)x] e[i<§o+n(7)>z]}}
X

0x2 y -

. 2
2 . (1) . (D) [l<(+n—>z]
_ —Kr(ll) E {[b,(ll)e”cnl X4 B?’(ll)e_”cnl x] el \°° (7)

6622 Iy = 66_22 {E {[bﬁl)e“‘g)x + B,(ll)e—i}c%“x] e[i<€°+”(—zf )H“
z z
== <fo

2
o) Bt s

i(zm(%ﬂ))z]}

i M. = i{z {[agl)eix,(ll)x + Agl)e—ixgl)x] e[i<<0+n(%r)>z]}}

21

. @) ey [i<<+n—>z]
— lK,Sl) Z{[ag)emnl X _ A;l)e iy x] e 0 (d)

2T

-t
= i<€0
i (2_7T>> Z {[ag) % 1 A g=0x] e[i<fo+”(%”))2]}

d
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% I = % {Z {[bfll) eicx 4 @, m<1>x] e[‘(fo*”(%n))Z]}}
(1)2{ (6 0z _ g o= “)] [(z"“’(?))Z]}

2T

:_ZH; 2%{2 {b(l) x4 p( il }e[i<50+n(7)>2]}
= i((o

+n(2—n)>2{[bﬁl)e“‘ % 4 g g-iniix ]e[<fo+n(zf)>2]}

d

For the electric field in slab
B, =V xVx i +iou(V x TI*)
[ 07 0?2 ] L0 0
= —ey ﬁ + ﬁ Hy + Lwu (—exEHy + ezal'[y)
. 2T
B =—¢, {(—xﬁ?z ) {[a;%m%”x + AV e-iwx] e[l(fom(v))zl} -

(60 +n(Z)) m{[afens  ape-e?e] o CH
e, {iwm ((0 +n (%”)) 3 {[br(})eix%“x + B{einx] e[i(%”(%"))Z]}} N
é, {iw,uizc,(ll) 3 {[br(ll)eix%1 x B(l) —lK(l) ] e[ (fo"'n( ;))Z]}}

Hence, electric field in slab can be written as
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—

E_

oo 0 () s+ 0 Mo
{ { aWeinx 4 4@ =i ]e[i<fo+n(%n))z]}lk_r(ll)2 N ((O N
s

For the magnetic field in slab

Hy = —iwe(VxT) +VxVxI* =

) 0 0 (02 0° .
=—lws(—ex£l'ly+ezaﬂy)+—ey ﬁ+ﬁ Hy

H,=é, {iwsi ((0 +n (%n)) Z {[ ) yirx 4 4D, mmx] . i<zo+n(%”)>z]}}
—é, {—K,(ll)ZZ{[b(l) ez | g iV ] [<<0+"(%”)>Z]}
- (CO + n(%))zz {[b(l) x4 p(D g il ]e[i(%*”(%n))Z]}}
-8, {iweik,(ll) Z {[ar(ll)e“‘(l) —AWe ‘”f(l)x] [ <<°+n )> ]}}

Hence, magnetic field in slab can be written as

STl

oot g Hen)

-
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(6 s n () |0’ o pvene]liorn GO«
é, {wfkr(ll) X {[a,(f)ei"r(f)x - Agll)e—i’fﬁf)x] e[i(%*”(%ﬂ))z]}}

To obtain a graph of electric field and magnetic field expressions vs
frequency, the first 3 modes are used because the amplitudes of the fields for third
and bigger modes are too small as compared to the first 3 modes i.e. n=0, n=1 and
n=2.

In Figure 6.2, it is shown that the electric fields in free space for obtaining
with Floguet modes with the constants A=1 and B=0,001 and medium 1 obtained by
ray tracing solution with the 90 incidence angle are matched. In order to realize the
oscillation on electric field when frequency increases, the expanded version of the
graph is shown in Figure 6.3.

Electric Field vs. Frequency in Free-Space

Ray Tracing

- 0.8- —Floquet Mode
()
2
Q
‘g 0.6
w
ks
S 0.4F
2
c
(o))
T
=02

0 [ [ [ [ [ [ [ [

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Frequency % 10"

Figure 6.2. Electric field in free space (medium 1)
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0.96 Electric Field vs. Frequency in Free-Space

Ray Tracing

o
©
o

o
©
2

Magnitude of Electric Field
o o
© ©
R
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[{e}

=
T

Og [ [ [ [ [ [ [ [ [ [
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency X 1010
Figure 6.3. The expanded version of the electric field in medium 1 for ray tracing
solution

The same work is done for magnetic fields and shown in Figure 6.4 and
Figure 6.5.

Magnetic Field vs. Frequency in Slab

o
oo
T

Ray Tracing
—Floquet Mode

©
(o))
T

o
2

Magnitude of Magnetic Field

©
N
\

[ [ [ [ [ [ [ [
0O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency 10

x 10
Figure 6.4. Magnetic field in free space (medium 1)
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0.04 Magnetic Field vs. Frequency in Free-Space

Ray Tracing

o
©
®

o

[{e}

N
T

Magnitude of Magnetic Field
o 3
L—F

0.89-

[ [ [ [ [ [ [ [ [ [
0'880 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency

x 10"
Figure 6.5. The expanded version of the magnetic field in medium 1 for ray tracing

solution

In slab, like in medium 1, electric and magnetic fields with ray tracing
solution are compared with the fields from the other solution technique and also
shown in the following figures below.

Electric Field vs. Frequency in Slab

Ray Tracing
—Floquet Mode

0'20 0.2 1.6

Frequency . 1010

o
®

o
@

o
\‘

o
&)

Magnitude of Electric Field
o o
N o

©
w

Figure 6.6. Electric field in slab (medium 2)
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Magnetic Field vs. Frequency in Slab

Ray Tracing
—Floquet Mode
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Figure 6.7. Magnetic field in slab (medium 2)

According to the graphs in free space and in slab, it can be said that the
solution by using the Ray Tracing Method can be used as an alternative solution for
this problem instead of solution with Floquet modes, because the graphs show us that
the curves of electric and magnetic fields have the same waveform. There are some
differences at curves since they are not same problem.

On the other hand, in order to answer the question that why the strip grating
prefers to the parallel plate waveguide with full metallic surface, the advantage of
this structure should announce such as low dissipated loss.

The parallel plate waveguides with full metal and with strip grating wall are
shown in Figure 6.8 and Figure 6.9. The top views of these structures are shown in
Figure 6.10 and 6.11. To determine the dissipated loss, the waveguide has to get a
wall which has resistance value instead of PEC, so that the conductivity of the
material of wall has to get a finite value. Also, the electric and magnetic fields are
able to propagate in the material least along one skin depth distance.

The dissipated power in terms of the electric field E and the conductivity oy is
defined as:

b o=t
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To evaluate the volume integral, the wall of the waveguide must be nonzero

but it can be very small.

A
v

Figure 6.8. Parallel Plate Waveguide with Full Metallic Surface

2d _

A
Q

Figure 6.9. Parallel Plate Waveguide with Strip Grating

A//

Figure 6.10. Parallel Plate Waveguide with Full Metallic Surface view from top

L/ LS

-/

Figure 6.11. Parallel Plate Waveguide with Strip Grating view from top

AR

X
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Supposing that the material used for the walls of the waveguides is the same
and the same electric field propagates in the slabs. Let the length of the wall and

strips is equal to d and thickness is w. The dissipated losses for each case:

e The case when the wall is full;

Bapw =2 [If o5 |E| av = 2o, || wiza

e The case when the wall has strip grating;
Pasg =5 JIJ o5 |E| v = 505|E| wl2a

Thus, the ratio of the dissipated losses between grating strip and full wall is

proportional to the width of the strips a.

- 1 =12
Pasg EO’_glEl wl2a

=a/d

Pafw %as|ﬁ|zwl2d

The meaning of that the ratio of the a / d , that is, a determines the dissipated
loss of the parallel plate waveguide with strip grating wall. In order to decrease the
dissipated loss, the width of strips a must be decreased.

On the other hand, a should not go to zero. Because the electromagnetic wave
in the waveguide must not escape to out of waveguide. It is clearly explained as
below.

Let an electromagnetic wave exists in the parallel plate waveguide with the
strip grating which has width a and periodicity d. Reflected and transmitted waves
shown in Figure 6.12 are proportional to the reflection and transmission coefficients,

respectively.
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Figure 6.12. Incident, reflected and transmitted waves at an interface with strips

The transmission coefficient determines the amount of the wave going to
other side of the interface, that is, the transmitted wave. The good performance of the
waveguide, transmitted wave on the other side of the waveguide must be minimum.
Let investigate the transmitted wave with respect to the ratio of a/d.

The reflection and transmission coefficients for E-polarized and H-polarized
are obtained separately when incident wave in medium1 and in medium2 above.

The variation of the coefficients with respect to the ratio a/d is shown in
Figure 6.13 and Figure 6.14 at 300 MHz and 3 GHz

A3tm vs a/d

l,

0.8

T

f =300 MHz
f=3GHz

0.6

0.4+

0.2

O*

-0.2

The Reflection Coefficient Astm

-0.4

T

_06 [ [ [ [ [ [ [ [ [
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The Ratio a/d
Figure 6.13. Reflection Coefficient vs. the Ratio a/d
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A4tm vs a/d
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Figure 6.14. Transmission Coefficient vs. the Ratio a/d

According to the graphs, while the width of strips is increasing, the reflection
coefficient goes to 1 and transmission coefficient goes to 0. This means that if the
width is increased, then the amount of the wave which can escape to out of
waveguide will decrease. So, the width of the strips must be increased.

Now, the strips width should be decreased in order to decrease the dissipated
loss and should be increased in order to prevent escaping of wave. So that, the strips

have to get an optimum width to access both of cases
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7. CONCLUSION

In literature, there are lots of studies about transmission of electromagnetic
waves. Waveguides are one of them among these studies. In this thesis, parallel plate
waveguides are investigated.

Parallel plate waveguide is a structure where two metal parallel layers strict
wave in one dimension while wave can propagate in other two dimensions.
According to the nature of the walls of the structure, during the propagation, expelled
wave and dissipated power should be taken into account.

In this thesis, instead of conventional parallel plate waveguide, parallel plate
waveguide with strip grating is studied. The advantages of the strip grating are
investigated when it’s compared with the waveguide with full metallic walls. First of
all, the strip grating metal is placed at an interface between two simple different
dielectric mediums and the reflection and transmission coefficients at interface are
obtained for both E-polarized and H-polarized by using the Weinstein’s approximate
boundary conditions. Then, with using these coefficients, waves which are assumed
to be excited in medium 1 are analyzed for E-polarized and H-polarized by using ray
tracing method. According to the incident wave, the components of the other waves
in medium 1 and medium 2 are expressed by using Maxwell’s Equations. Jacobsen
had investigated the same problem with Floquet modes. The electric and magnetic
field expressions that are not expressed in his study are obtained. With the
comparison of the electric and magnetic field expressions acquired by using both ray
tracing mode and Floquet mode and it is observed that same results are obtained.
Thus, it can be easily said that ray tracing mode is an alternative solution method for
this problem.

In this thesis, dissipated power is investigated in order to show/prove that
waveguides with strip gratings are preferred instead of conventional waveguides.
There are advantages in the topic of dissipated power with the ratio of strip width (a)
over period (d). While strip width is decreasing, the dissipated power is also
decreasing which is a desired situation. On the other hand, while strip width is

decreasing, the amount of the wave which escapes out of the waveguide is
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increasing. So that, strip width should not be very small. Additionally, in the
consideration of dissipated power and expelled wave, strip widths should be
optimized in terms of different values of strip period, medium parameters, incident

angle and frequency.
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