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Abstract 

A new PIG robot navigation algorithm for searching the leakage and crash points in 

the under service oil-pipeline 

Mohammed Alkhatabe  

Master. Department of Aeronautics and Mechanical Engineering  

Supervisor: Assist. Prof. Dr. Habib Ghanbarpourasl. 

July, 2017, 123 Pages 

Abstract 

The field of robotics applications was rapidly growing in the last decade and 

continues to develop. The computational challenges of the robotic applications and 

translations of actions using sensors have helped to reduce the costs and size of any 

robot. The Pipe Inspection Gauge (PIG) robot is one of the most challenging fields 

for the robotics applications in pipeline-based applications, which has been used for 

many years to perform various maintenance operations in oil and gas pipelines. The 

PIG robot can inspect different parameters of pipeline during its journey. Although 

PIG robots use many sensors to detect the required pipeline parameters, matching 

these data with the corresponding pipeline location represents a very important 

parameter. High-end, tactical-grade inertial measurement units (IMUs) uses in the 

pigging applications to locate the detected problems of the pipeline by using other 

sensors, and to reconstruct the trajectories of the PIG robot.  

In this project, an integrated navigation system algorithm developes as a 

navigation system based on Unscented Kalman filter (UKF) for Pipe Inspection 

Gauge robot. Unfortunately, the errors of the inertial navigation system (INS) 

increase during the time due to, the uncalibrated and random errors of IMU’s 

sensors. There are many solutions for reducing the errors of the navigation system. 

Where, the system can use a very high tactical grid IMU, but in this case, the cost of 

the system will be high. The GPS in the most famous sensors can stabilize the errors 

of the INS, but in the isolated environments like inside of the pipeline, there is no 

GPS signal. Some researchers have used new methods such as adding odometer as an 

external sensor, the Non-holonomic constraints for the INS, the Zero-velocity 

Updates and Coordinate Updates methods for stabilizing the errors of the system. 

Furthermore, there are many smoothing methods such as (KF) and (UKF) for 

reducing the errors, but always all methods only can reduce the rate of the errors. The 
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solution in this thesis aims to stabilize the errors of the navigation system for a 

moving (PIG) robot by integrating of the IMU with an odometer and counting the 

number of the known length pipes, in an assumption oil pipeline, which joints 

between two locations in Karbala city in Iraq. The geometry of the pipeline contains 

the latitude, longitude and altitude of the pipeline in any position. The simulation of 

the PIG robot moves inside the pipeline is with known angular velocity and specific 

acceleration. The IMU’s data is simulated by adding some biases and noise to the 

sensors’ output. Furthermore, the output of the odometer is generated by adding 

noise to the output of the odometer. The algorithm of the navigation system is 

applied to the output of the IMU. The output of the navigation system is compered 

only against the INS and INS/odometer integration. So the navigation errors are 

discussed in the final part of the thesis. 

Key words: Pipe Inspection Gauge (PIG) robot, Inertial Measurement Units (IMU), 

Kalman Filter (KF), Unscented Kalman Filter (UKF), Inertial Navigation System  

(INS), Integrated Navigation System (INS). 
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Özet 

Hizmet alti petrol boru hattındaki kaçak ve kaza noktalarını aramak için yeni bir 

PIG robotunrn navigasyon algoritması 

Yüksek Lisans Tezi, Makine Mühendisliği Anabilim Dalı 

Tez Danışmanı: Yrd. Doç. Dr. Habib Ghanbarpourasl. 

Temmuz, 2017, 123 sayfa 

Özet  

Son on yılda robotik uygulama alanları hızla büyümüş ve gelişmeye devam 

etmektedir. Robotik uygulamalarını işleme dönüştürmek için yapılan 

hesaplamalardaki zorluklar ve sensörleri kullanarak hareketlerin veriye 

dönüştürülmesi, herhangi bir robotun maliyetlerini ve boyutunu azaltmaya yardımcı 

olmuştur. Boru Denetleme Aracı (PIG) robotu, uzun yıllardır petrol ve gaz boru 

hatlarında çeşitli bakım işlemlerini yapmak için kullanılan boru hattı tabanlı 

uygulamalarındaki robotik uygulamalar içinde en zor alanlardan biridir.PIG robotu, 

yolculuğu sırasında boru hattının farklı parametrelerini denetleyebilir. PIG robotları, 

gerekli boru hattı parametrelerini algılamak için birçok sensör kullanmasına rağmen, 

bu verileri boru hattındaki ilgili konum ile eşleştirmek çok önemli bir parametreyi 

ifade etmektedir. En son teknolojiye sahip, taktik sınıf atalet ölçüm birimleri (IMU), 

diğer sensörleri kullanarak boru hattında algılanan sorunları bulmak ve PIG 

robotunun yörüngelerini yeniden oluşturmak için tarama uygulamalarında kullanılır.   

Bu projede, Entegre edilmiş bir navigasyon sistemi algoritması , Boru Muayene 

Gauge robotu için Sezgisiz Kalman Süzgecine (UKF) dayanan bir navigasyon 

sistemi olarak geliştirilmektedir .Ne yazık ki, Inersiyal Navigasyon Sistemleri (INS) 

hataları, IMU sensörlerinin kalibre edilmemiş ve rastgele hataları nedeniyle kullanım 

zamanına bağlı olarak artmaktadır .Navigasyon sisteminin hatalarını azaltmak için 

pek çok çözüm yolu bulunmaktadır. Sistem, çok yüksek bir taktik sınıf atalet ölçüm 

birimi IMU kullanabilir, ancak bu durumda, sistemin maliyeti yüksek olacaktır. En 

ünlü sensörlerde yer alan GPS, INS hatalarını dengeleyebilir ancak boru hattının iç 

kısmı gibi izole edilmiş ortamlarda GPS sinyali yoktur. Bazı araştırmacılar sistemin 

kararlı hale getirilmesiiçin kilometre sayacını harici bir sensör olarak ekleme , INS 

için holonomik olmayan sabitleyiciler, sıfır hız güncellemeleri ve koordinat 

güncellemeleri gibi yeni yöntemler kullanmışlardır.Ayrıca, hataları azaltmak için 
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(KF) ve (UKF) gibi birçok düzleme yöntemi vardır, ancak her zaman tüm yöntemler 

yalnızca hataların oranını düşürebilir. Bu tezde ortaya atılan çözüm, IMU'nun bir 

kilometre sayacıyla birleştirilmesi ve uzunluğu biliinen borularının sayısının 

sayılması yoluyla hareket eden (PIG) robotu için navigasyon sisteminin, Irak'taki 

Kerbela şehrindeki iki konum arasındaki bağlantıların varsayımsal bir petrol boru 

hattında hatalarını stabilize etmeyi amaçlıyor.Boru hattının geometrisi, herhangi bir 

konumdaki boru hattının enlem, boylam ve yüksekliğini içerir. PIG robotunun 

simülasyonu boru hattı içerisinde, bilinen açısal hız ve belirli ivmelenme ile hareket 

eder. IMU'nun verileri, sensörlerin çıktılarına bazı sapma ve parazitler ekleyerek 

simüle edilir.Ayrıca kilometre sayacının çıktısı, kilometre sayacının çıkışına 

parazitler ekleyerek oluşturulur.Navigasyon sisteminin algoritması IMU'nun çıktısına 

uygulanır. Navigasyon sisteminin çıktısı yalnızca INS ve INS / kilometre sayacı 

entegrasyonu ile karşılaştırılmıştır .Dolayısıyla navigasyon hataları, tezin son 

bölümünde tartışılmaktadır. 

Anahtar kelimeler: Boru Denetleme Aracı (PIG) robotu, Atalet Ölçüm Birimleri (IMU) 

Kalman Süzgeci (KF), Sezgisiz Kalman Süzgeci (UKF), Inersiyal Navigasyon Sistemi  

(INS), Entegre Navigasyon Sistemi (INS). 
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1 1CHAPTER ONE 

          INTRODUCTION 

1.1 Background about The Domain of Pipelines and PIG Robots  

PIG robot is well known as an old term in the pipeline field, which means pipe 

inspection gauge robot. PIG robots are equipment/devices, which have several 

patterns as shown in Fig. 1.1. The PIG robots can be fed/inserted through the pipeline 

and travel along of its length. The PIG robot is driven forward or backward by a 

differential pressure across the equipment. In now days, the term PIG is being used 

to define any equipment/device create to pass through a pipeline driven by the fluid 

of the pipeline. Mostly, they are classified into two categories as shown in Fig. 1.2, 

the first is named Utility PIG that is employed for cleaning, and the second is named 

Smart/intelligent PIG that collects and provides detailed information of the pipeline 

like information of corrosion, thickness, leakage and crash points and the position of 

each detected problem [1]. 

 

Figure 1.1: General patterns of in-pipe robots, [2]. 

 

(a) Utility PIG robot      (b) Smart/intelligent PIG robot  

 

Figure 1.2: The main kinds of PIG robots, [3]. 
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An automatically robot domain operated machine became instead of a human 

effort. At first, it was difficult to imagine; especially with the view of appearance or 

perform functions in a humanlike behavior. With time, the robotics’ design, 

construction, and operation have developed. A robot in now days has a brain of its 

own. The advanced in robot domain mainly depended on micro electro-mechanical 

system (MEMS) based on some computational smoothing methods, which 

contributed reducing the cost of the intelligent parts and developing of their abilities, 

in addition to reduce the robot’s size and cost. In all over the world in the first half of 

2008 there were more than one million robots in operation, with roughly half in Asia, 

32% in Europe, 16% in North America, 1% in Australia and 1% in Africa [4]. In 

industrial and commercial fields, robots were used widely through the decade of the 

1990s, these robots characterized with greater accuracy and more reliable than 

human with no labor cost as Fig. 1.3 indicates. Based on the type of the job doing by 

robots can classify robots into roughly two classifications. The first category contains 

tasks which a robot can do with higher productivity, accuracy, or endurance than the 

ability of a human, and the second category includes of doing dirty, dangerous or 

dull jobs which humans find unwanted. Some examples of different kinds of robots, 

which are currently in service, as shown in Fig. 1.4, and some unwanted jobs shown 

in Fig. 1.5. 

 

Figure 1.3: Comparing prices of robot with costs of human labor in the 1990s, [5]. 
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(a) Manufacturing assembly 

robots 

(b) Pick and putting robot for 

electronics assemblage 

(c) Surgery robot 

(d) Domestic robot for 

cleaning 
(e) Robot for military purposes (f) (Asimo) Humanoid robot 

 

Figure 1.4: Different kinds of robots, [6]. 

 

Figure 1.5: Some unwanted jobs and many troubles in pipeline failure, [6]. 

In pipeline inspection robots domain, robots became instead of a human in 

many areas due to the widespread of using pipelines in major utilities for a long time, 

which start represent the most challenging areas to maintenance their pipelines. Over 

billions of places, from the huge plants to an individual house are using pipelines in 

many fields and for many reasons with the above-mentioned; problems in pipelines 

and as shown above in Fig. 1.4 and Fig. 1.5, robots became extremely instead of 

people for pipelines maintenance purposes. 

In 1893, Dmitri Mendeleev suggested pipelines to transport Petroleum, and 

then these pipes started to get widely used in all over the world. In 2007, the total 

length of the gas and oil pipelines in the world was nearly two millions km, and the 

length of oil/gas pipelines in the United States reached 793,285 km. Generally, 

pipelines represent the most economical way to transport large amounts of natural 

(a) an explosive gas 

pipeline  

(b) a clog city sewer  (c)Worker unclogging sewer, 

India, Chennai 
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gas or oil over land. Comparison with the railroad, they have lower cost per unit with 

higher capacity. 

The oil pipes are manufactured from steel or plastic tubes with inner diameter 

typically varying from 4 to 48 inches. Pipelines are mostly buried underground at a 

typical depth of about 3 to 6 feet. The oil is usually injected and kept in motion by 

pump stations along the pipeline; with flow rates about 1 to 6 m/s. Multi-product 

pipelines are used to transport two or more different products alternately on the same 

pipeline. Usually there is no physical separation between the different products in 

multi-product pipelines. Therefore some mixing of adjacent products causes, 

producing interface. Removing this interface from the pipeline is at receiving 

facilities and segregated to prevent contamination. Oil contains varying amounts of 

paraffin, or wax. In the colder weathers, wax accumulation may happen within a 

pipeline. Often these pipelines are inspected and cleaned using pipeline inspection 

gauges [6]. 

1.2 The Main Feeding Methods of A PIG Robot to The Pipelines 

PIG robot is pushed in and driven along the pipeline by using the differential 

pressure of the fluid flow. At the starting point of the PIG robot’s surveying journey, 

it is put in the launcher in deferent methods as shown in Fig. 1.6 with the same 

procedure to launch or to receive it. Similar scenario is done at the beginning and the 

end of the PIG robot’s surveying journey in a special launcher/receiving system as 

shown in Fig. 1.7 and Fig. 1.8. In addition, the PIG robot should has some significant 

mechanical features like, it should be fitted with the inner diameter of the pipeline 

with enough tolerance to move smoothly, and it should has a good design with a high 

flexibility to pass seamlessly through the elbow positioning Fig. 1.9.  

(a) Lateral feeding method (b) Injection method 

 

Figure 1.6: PIG’s inserting methods, [7]. 
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(a) PIG robot under launching  operation (b) PIG robot under receiving  operation 

 

Figure 1.7: Examples of real launching and receiving operations, [8]. 
 

 

         Figure 1.8: PIG’s launcher / receiving system, [9]. 

 

 

Figure 1.9: The flexibility of PIG robot through the elbow positioning, [10]. 

 

Varies oil-pipeline inspection robots are available like PIGS also known as 

SCRAPERS, as shown in Fig. 1.10 [11]. These devices are usually launched from 

PIG-launcher stations and travel into the pipeline to be received at any other station 

down-stream; Cleaning wax accumulates and material that may have deposited along 
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the line and to locate any pre or advanced detected or undetected damages in wall of 

pipeline during the journey of a PIG robot.  

 

Figure 1.10: Examples of the oil pipeline inspection robots, [11]. 

1.3 Components of PIG Robot 

By summarizing the details of Fig. 1.2b in the Fig. 1.11 that shows the smart 

PIG has three main intelligent units one of these consists the accelerometers and the 

gyroscopes, which is well known inertial measurement unite (IMU). Other one 

sensors unit that consists the suitable sensors for the robot’s task such as odometer 

sensor, counting sensor, the Global Positioning Systems (GPS) sensor and other 

sensors which can be added due to the robot’s task. The last unit has termed control 

or process unit that includes integrating of the sensor measurements data using fusion 

algorithm based on one of Kalman filters to get the robot fully autonomous. 

 

Figure 1.11: Concepts drawing for the articulated proposed PIG robot, [12]. 

1.4 Literature Review 

1.4.1 Review of integrated of navigation of PIG system 

The PIG robots are well-known as fully autonomous robots, which depends     

mainly on Inertial Navigation Systems, that were widespread to be applied as 

either the associated or the main controlling instruments for vehicles navigations in 

long-range travelling, like submarines and airliners. It has now been 47 years since 

1970s, when optical gyroscope based INS was used as the well-functioned 



7 

 

complement in the integrated systems of radio navigation in flying applications [13]. 

With the enormous advance of Micro-Electro-Mechanical Systems (MEMS) inertial 

sensors and GPS, high-end, tactical-grade and decreasing in cost of Inertial 

Measurement Units (IMUs) have contributed widely interests in industrial, 

commercial and civilian fields in the last decade. It has been implemented and 

proved that the INS/GPS integration is the best technique for vehicular navigation 

[14]. In now days, promising potentials using INS exist in civilian and commercial 

applications for auto pilot, drone flying, personal navigation, unnamed vehicles, 

horizontal drilling, etc. [15, 16, 17 and 18]. 

The Dead-Reckoning (DR) nature of the stand-alone INS causes the error 

accumulation of navigation parameters. Furthermore, low-cost INS faces the problem 

of large and unpredictable sensor noises and errors [19]. Therefore, aiding navigation 

information becomes fundamental to cope these weaknesses. GPS, a Radio-

Frequency (RF) signal-based system, is able to provide absolute positioning solutions 

with long-term accuracy under any weather conditions [20]. But, this rendering is 

usually discontinued by frequent signal outages. Therefore, it is considered not 

suitable to be used in isolated environments like mines and channels. The integration 

of INS and GPS takes advantage of the integral features of both systems and 

outperforms either single system run alone [21]. Since the last decade, different 

integration strategies, i.e. loose-coupled, tightly-coupled, and deeply-coupled 

INS/GPS integrations, have been researched and developed [22]. 

By depending on Line-Of-Sight (LOS) measurements, the high-accuracy, 

continuous GPS positioning updates are not available in the isolated environments 

like tunnels, mines or indoor areas. At these conditions, the information from 

alternative navigation-related techniques must be integrated with the stand-alone INS 

to stabilize the navigation error increase. Like them, the aiding performance of 

odometers, magnetometers, and non-holonomic constraints are most commonly used 

when GPS signals are discontinuous in land-vehicle navigation [23, 24]. Zero-

Velocity Update (ZUPT) is another active method to enhance the navigation 

accuracy by stabilizing the increasing velocity errors with appropriately selection 

time intervals [25]. Moreover, Coordinate Update (CUPT), sometimes available at 

certain predetermined surveying stations (i.e. control points), is capable of aiding to 
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enhance the navigation performance and get high accuracy positioning 

measurements. The integration strategies with INS and the aiding techniques have 

been demonstrated to be workable for pipeline surveys, pedestrian navigation, and 

vertical mine shaft surveys [18, 26 and 27]. 

1.4.2 Review of Kalman filters 

Kalman Filter (KF) is recognized as the classic real-time estimation method to 

integrate multi-sensor information from INS and aiding sources. In the KF context of 

integration systems, INS provides the predictions as well as the system knowledge, 

while the aiding sensors provide the measurement updates. Extended Kalman Filter 

(EKF) is utilized to resolve the nonlinearity problem in the INS navigation equations; 

it simply applies the Taylor series expansion on the nonlinear system along with 

observation equations, and takes terms to the first order, where the Probability 

Density Function (PDF) is approximated by a Gaussian distribution [28]. KF is a 

recursive algorithm that implements a series of prediction and measurement update 

steps to obtain the optimal estimates based on minimum variance criterion [29]. It 

will only work in prediction mode during measurement gaps where the navigation 

solution accuracy degrades rapidly with time. As a result, this performance cannot 

meet the accuracy requirements of several navigation and surveying applications. 

Hence, post-processing methods such as backward smoothing can be employed in 

this case to yield better navigation solutions. 

Furthermore, the EKF simply uses the Taylor series expansion for the 

nonlinear system along with the observation equations, and it is specialist to handle 

only to the first order terms while the probability density function PDF is 

approximated depending on a Gaussian distribution. In practice however, EKF has 

shown several limitations and easily exhibits divergent characteristics, [30, 31 and 

32]. 

Julier and Uhlmann were pioneered in the development of the unscented 

transformation (UT) to approximate two of the first statistical moments [33, 34]. The 

unscented Kalman filter (UKF) was developed based on UT with the underlying 

supposition that approximating a Gaussian distribution is easier compering with 

approximating a nonlinear transformation [33, 35]. The UKF depends on using 

deterministic sampling to approximate the state distribution as a Gaussian Random 
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Variable (GRV). The sigma points are selected to capture the true mean and 

covariance of state distribution and are transmitted through the nonlinear system. The 

following mean and covariance are then calculated from the transferred sigma points. 

The UKF determines the mean and covariance accurately to the second order [34], 

while the EKF is only capable to obtain first order accuracy [34]. Thus, the UKF 

provides superior state estimates for nonlinear systems [35]. However, UKF needs 

calculation the new set sigma points at each sample time that must involves using a 

matrix square root for the state covariance matrix. While the square-root of 

covariance matrix is an integral part of the UKF, it is still the full covariance which is 

recursively updated. In the Square-root form of UKF SR-UKF implementation, 

square-root matrix of the state covariance will be transmitted directly, avoiding the 

need to re-factorize at each time step [36]. SR-UKF uses QR factorization method, 

Cholesky of the Rank 1 update and efficient least square solution for linear systems 

[37, 38 and 39]. 

1.4.3 Review of PIG robot’s navigation algorithms based on Kalman filters 

Many studies have been made to get a reliable positioning method for various 

applications of PIG robot by fusing of INS with different aided systems by using 

various fusion algorithms. In some research works, Kalman filters were used as a 

tool for reducing the size of inertial measurement unit IMU with maintaining on its 

quality and to create navigation algorithm for processing and reducing the sensors 

errors to get the navigation performance of a PIG robot with a high accuracy. Most 

pipeline inspection applications have become an important integral part of life, 

therefore fully autonomous mobile PIG robot becomes necessary. 

Rauch, et al., (1965), [40]. Have been applied the Rauch-Tung-Striebel 

Smoother (RTSS) in the navigation due to its robustness and effectiveness. The 

RTSS does not require the process of the full-scale Backward Kalman Filter (BKF). 

By utilizing all the information stored in the Forward Kalman Filter (FKF), the RTSS 

recursively updates the smoothed estimate and its covariance in a backward sweep. 

Fraser and Potter, (1969), [41]. Proposed that the fixed-interval smoother can 

be accomplished by a combination of two Kalman filters manipulated forward and 

backward, i.e. FKF and BKF, using a series of convenient discrete-time equations. It 

has been demonstrated that the aforementioned Two Filter Smoother (TFS) and the 
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RTS smoother are mathematically equivalent in linear cases [42]. However, the 

traditional TFS was originally designed for linear systems. Therefore, it was not 

applicable for INS-based multi-sensor systems because of the high nonlinear 

characteristics in the INS navigation equations. The further attempt of applying the 

common EKF both forward and backward failed to accurately estimate the 

smoothing INS error states. This problem was resolved by a revised smoothing 

algorithm that was proposed specifically for pipeline surveys using inertial 

measurements units [43]. The main idea in such modification was that the BKF 

nominal trajectory is assumed to track both the FKF prediction and update results 

rather than the predictions only [14]. 

Hang Liu, (2009), [44]. Employed Kalman filter as the real-time estimation 

method to fuse the multi-sensor information, optimal smoothing has been utilized as 

the post-processing methodology to provide better navigation solutions in stand-

alone mode for a PIG robot. The optimal smoothing included utilizing and evaluating 

two different fixed-interval smoothing algorithms. The first one was the Two Filter 

Smoother TFS and the other was the Rauch-Tung-Streibel Smoother RTSS. The TFS 

is performed by combining the results of Forward Kalman Filtering FKF and 

Backward Kalman Filtering BKF through minimizing the smoother error covariance 

without depending on the GPS signal. The integration strategies of INS and the 

aiding techniques; odometers, non-holonomic constraints, Zero-velocity Updates 

(ZUPTs) and Coordinate Updates (CUPTs) were proved to be applicable and 

effective to overcome the problem of INS time-dependent error. The achieved results 

of the used INS-based all the aiding applications mentioned earlier showed that the 

TFS substantially improve the position estimation accuracy over the corresponding 

filtered solution. Furthermore, the TFS’ estimation efficiency was compared with the 

commonly used RTSS. 

Wasim Al-Masri, (2016), [45]. According to the accumulated error in the INS 

and reduced inertial sensor system RISS solution, proposed the INS to be combined 

with velocity constraints, and with the detected pipe length as measurements to 

correct the solution of INS. So, to achieve RISS solution corrected, proposed the 

RISS to be combined only with the detected pipe length as measurements. And setup 

an experimental, with a prototype of the in-pipe robot, to exam and validate the 
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proposed algorithms based on EKF with a real pipe. The proposed algorithms’ 

accuracy was around  after sensor fusion where a sensor fusion was proposed to be 

based on EKF. 

D. Chatzigeorgiou, et al., (2015), [46]. Was proposed a new system for in-

pipe leak detection. Detection was proposed to be depended on the presence gradient 

in a pressure in the neighborhood that contains the leak. So, the study based on EKF 

algorithms to validate the concepts by construction a prototype to evaluate the 

systems performance under real environment conditions by setting up an experiment 

in the laboratory. 

J.-H. Kim, et al., (2010), [47]. Was presented the design and application of a 

single-modulated fully autonomous mobile pipeline exploration robot (FAMPER). 

The mechanism of FAMPER provides for the first-rate mobility in horizontal as well 

as vertical pipelines, and to achieve the system fully autonomous, the study was 

proposed the system architecture enables FAMPER.  

H. Choi and S. Ryew, (2002), [48].Was presented a PIG robot navigation 

algorithm for internal inspection of underground urban gas pipelines, where the PIG 

robot was developed to be employed as a mobile platform for visual and Non-

Destructive Testing (NDT) of the pipeline nets. In the work of this study, the robot 

was constructed as an articulated structure to be similar as a snake and was provided 

with a tether cable. 

A. C. Murtra and J. M. M. Tur, (2013), [49]. Was proposed for 

visual/inertial localization of a mobile robot in sewer pipe net a complementary 

technique. In the proposed system of this study, the fusion of data was based on the 

graph of simultaneous localization and mapping (SLAM) framework, where it was 

included usage sensor data from a cable encoder and from an IMU. The proposed 

system was so suited to be considered as a complementary technique to solve 

situations comparing with visual feature tracking which could fail, due to the 

situations of environment. 

S. Bonnabel and E. Salan, (2011), [50]. Was proposed solution that includes 

using measurements of GPS, gyroscope and an accelerometer to provide a nonlinear 

observer, which is used to develop a solution of a vehicle navigation. This nonlinear 
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observer has three subfilters; the first one has two gains and estimates yaw angle and 

gyroscopes bias. The second subfilter has one gain and the third one has one gain. 

The second subfilter is to estimate the accelerometer’s scaling. The third one is to 

give estimates of the vehicle’s velocity and position. The filtering stage proposed in 

this study was included the non-holomonic constraints to get extra enhancement for 

the estimates. Under testing, the algorithm showed reliable results. However, the 

accelerometer bias was not taken into the consideration of the algorithm and it also 

did not use the quaternion approach which has stability in finding vehicle’s attitude. 

A. Brandt and J. Gardner, (1998), [51]. Was taken the non-holomonic 

constraints into the consideration , where these constraints were fused in a navigation 

solution for land vehicle and they were depended on the direction of the vehicle 

relative to the earth and the attitude of the vehicle relative with its velocity. The main 

cause of using these constraints was especially to enhance the estimates of velocity 

and position. 

Hussein Sahli, (2016), [52]. Handled with robot navigates in a small diameter 

pipeline. In this case, the challenge was how to exceed the usage of large sizes IMUs 

with the same accuracy. So, there was using an augmenting IMU with odometers. In 

addition , was presented a new methodology to enable using low-cost IMUs with 

employing the EKF and the pipeline junctions detection system to increase the 

accuracy of the navigation parameters and to decrease the total root mean square 

errors even during the unavailability of above ground markers. The results showed 

that the position of the total root mean square errors were reduced by approximately 

85% of the standard EKF solution. Thus, the mapping of small diameter pipelines 

became possible after that. 

1.4.4 Costs’ Review 

There is a cost comparing of some laterture solutions in Table 1.1. This 

comparing is according to the five main limitations and characteristics in any 

literature solution, which consist: activity of the solution in the PIG robot’s 

applications, sensing mode, method of positioning detection, efficiency of the 

method, autonomy of the system. 
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Table 1.1: Comparison of some pipeline monitoring systems’ costs. 

Project Active Sensing Method Efficiency Auto-

nomy 

Cost 

Hagen Schempf, 

(2005), [53]. A 

network system. 

Passive Static Position 

sensors 

Fair 

(no free 

error) 

No High 

A.A.F. 

Nassiraei,  et al. 

(2007) [54]. A fully 

autonomous robot. 

Active  Mobile Robot 

wheel 

rotations 

Low 

(many slip 

errors) 

Yes Not 

avail

-able 

Jong-Hoon Kim, 

(2011) [6]. An 

autonomous 

monitoring robotic 

system. 

Active Mobile Radio-

frequency 

identificati

on 

systems 

Fair 

(no free-

error) 

Yes Low 

Hagen Schempf, et 

al. (2003) [55]. Sub 

autonomous 

assessment robotic 

system. 

Active Mobile Counting 

locations 

of pipe 

joint 

Fair 

(depended 

on 

detection) 

Yes Low 

Hussein Sahli, 

(2016), [52]. Sub 

autonomous robotic 

system with GPS’ 

aiding. 

Active Mobile Counting 

locations 

of pipe 

joint 

Fair 

(depended 

on 

detection) 

Yes Low 

 

1.5 Objectives 

This thesis aims to provide a comprehensive solving to the navigation error 

problem of a PIG robot, by a new robust navigation algorithm that enables a high 

accurate localization. In this thesis, the attention will be devoted to discussing and 

analyzing the UKF to reduce the rate of errors for INS-based PIG robot application 

in its journey. The Matlab program will be the tool of this work. 

 

1.6 Organization of the thesis 

The thesis is organized to be contained on six chapters and a references list.  
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Chapter one includes the historical review and presentation of the pipeline 

inspection gauge PIG technology. It includes explanation for the main parts of PIG 

robot with the sending and receiving procedure, it at the beginning and end of the 

pipeline. In addition, this chapter reviews the literature studies that include the 

pigging technology integrity systems with their costs and efficiency in a briefly set of 

examples, and includes an introduction to Kalman filters that represent the tool to 

create the algorithm of the PIG robot in the posterior chapters in this thesis.  

Chapter two consists an inertial navigation system with essential building 

blocks. It introduces different reference frames that are used in navigation field, and 

attitude representations that are used in an inertial navigation system. Finally, the 

INS fundamentals, inertial sensor calibration and compensation of the measurement 

error, mechanization of INS, mathematical models for aiding sensors and the error of 

INS model will be presented and discussed.  

Chapter three reviews the KF, EKF and the unscented transformation UT with 

UKF and their algorithms with their mathematical models for filtering task. 

Chapter four includes a briefly review for the previous chapters and shows how 

to combine most parts of previous chapters together in the work of this thesis to 

create the new PIG robot navigation algorithm. Where it consists definition for the 

navigation parameters of PIG robot with its trajectory constraints, a brief description 

for the odometer measurement and the counting system, implementation of UKF for 

the system of the robot navigation with the non-holonomic constraints and the error 

models of INS and modeling of the random process. 

Chapter five includes the results of the new methodology for in-pipeline robot 

navigation by aiding the junctions of pipeline based on UKF algorithm that has been 

introduced in Chapter four. And includes comparing and discussing the navigation 

errors for the results depending on some assumptions. 

Finally, Chapter six concludes the research results and offers the 

recommendations for developing the future suggested techniques. 
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2 CHAPTER TWO 

          INERTIAL NAVIGATION SYSTEMS AND AIDING TECHNIQUES 

2.1 Overview of Aided Inertial Navigation Systems 

The publication of Schuler Pendulum principle issued the theory reference for 

inertial navigation which was firstly applied by Germany in 1942 [13]. The 

upcoming Gimbaled Inertial Navigation Systems (GINSs) that were successfully 

designed for aircrafts and submarines, however, relied on complex, sizable, 

expensive but precise gimbaled platforms and gyroscopes [56]. The invention of 

lightweight digital computers permitted to remove the mechanical parts and triggered 

the appearance of Strapdown INSs (SINSs) [57]. With the development of 

miniaturized optical and MEMS gyroscopes, SINS gained many advantages 

including smaller volume, less power requirement, lower cost and faster respond. 

After the Global Positioning System (GPS) Selective Availability (SA) error removal 

and the Galileo plan agreement [20], low-cost INS/GPS integration was widely 

researched and applied in civilian navigation fields during the last decade. 

INS is built with inertial sensors: accelerometers sensing linear accelerations 

and gyroscopes (gyros) sensing angular rotation rates. Orthogonally mounted inertial 

sensor triads on a rigid body compose the Inertial Measurement Unit IMU, the key 

component of a SINS. IMU computes navigation solutions by processing the inertial 

sensor measurements through the mechanization equations with respect to the 

predefined reference frame. With the IMU rigidly tied on the host, SINS is 

considered to be a self-contained Dead-Reckoning (DR) system as it is capable of 

providing the complete 3-D navigation parameters, namely positions, velocities and 

attitudes, without any external signal receiving or transmission [58]. Generally 

speaking, the IMU performance is dominated by the gyroscope accuracy [59]. 

According to the sensor characteristics including biases and scale factors, gyroscopes 

are usually classified into several categories: strategic-grade, navigation-grade, 

tactical-grade and customer-grade gyroscopes [25]. Another classification is based 

on the manufacture principles: mechanical gyros, suspended gyros, Ring Laser Gyros 

(RLG), Fiber Optical Gyros (FOG) and MEMS gyros. Considering the requirement  
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of low-cost and miniaturization, SINS is based on the tactical-grade and customer-

grade gyroscopes [60]. An investigation of gyroscope technology with respect to the 

sensor bias and scale factor is roughly described in Fig. 2.1. 

 

Figure 2.1: Investigation of Gyroscope Technology [25]. 

The development of gyroscopes and accelerometers led for much more 

successfully design and led to achieve the miniaturization and inexpensiveness 

simultaneously. Performance of accelerometer technology is described with respect 

to the sensor bias and scale factor, as shown in Fig. 2.2. 

 

Figure 2.2: Investigation of Accelerometer Technology [25]. 

Compared to the higher-grade systems, low-cost INS confronts the problems of 

large and unpredictable sensor errors and noises. This inadequacy leads to the fast 

navigation error accumulation over short time intervals [61]. The inertial sensor 

calibration techniques are essential to model the determinant errors and uncertainties. 
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Another practical way to improve the accuracy is aiding the INS with other 

complementary sensors or navigation-related information [24]. In this thesis, we will 

use the integration of IMU/Odometer for a main navigation system and will use the 

pipe counting system for another external measuring system. The data of the 

counting system will be available when the system is between two pipes in welding 

points, so the updating by counting sensor have low frequency but the updating with 

odometer is high frequency updating.  

2.2 Overview of Reference Frames and Attitude Parameterization 

SINS algorithms require frequent transformations between different reference 

frames, in which the sensor measurements and navigation states are defined. On the 

other hand, background information about attitude representations and their 

conversions is a foundation for the reference frame transformations. The details 

related to the reference frames and attitude parameterization will be discussed in this 

section. 

2.2.1 Reference frames 

The reference frames and their axes are shown in the Fig. 2.3 and they are 

frequently used in SINS modeling as they are listed following: 

 
 

Figure 2.3: Reference Frames [60]. 
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Inertial frame (i-frame) 

An inertial frame is idealized as a right-handed orthogonal, non-rotating and 

nonaccelerating frame with respect to fixed stars. An operational i-frame is realized 

by defining its origin at the Earth center, its axes are denoted by 𝑥  𝑦      as shown in 

Fig. 2.3, with    coincident with Earth’s polar axis (which is assumed to be invariant 

in direction ) [60]. For its x-axis pointing towards the vernal equinox [22], and x-y 

directions are in the equatorial plane. 

Earth-Centered Earth-Fixed Frame (ECEF or e-frame): 

ECEF is defined as a right-handed orthogonal frame which has its origin at the 

Earth center, which has its axes are denoted as 𝑥  𝑦      as shown in Fig. 2.3, where 

its z-axis (  ) parallel to the Earth mean spin axis, and its x-axis (𝑥 ) pointing 

towards the mean meridian of Greenwich. 

Navigation Frame (n-frame) 

The navigation frame is a local geographic frame which has its origin point at 

the location of the navigation system. In this thesis, it is defined as the North-East-

Down NED right-handed frame as shown in Fig. 2.3. The turn rate of the navigation 

frame, with respect to the Earth-fixed frame (    ) is governed by the motion of the 

point P with respect to the Earth. This is often referred to as the transport rate [60].  

Body Frame (b-frame) 

The body frame is illustrated in Fig. 2.4, is an orthogonal axis set which is 

aligned with the Roll, Pitch, Yaw axes of the vehicle in which the navigation system 

is installed [60]. The body frame is the same as the IMU orthogonal body axis in 

which the accelerations and angular rotation rates by inertial sensors are resolved 

[62]. In SINS, the b-frame and n-frame are assumed to be overlapped for 

convenience.  

 

Figure 2.4: Body Reference Frame [36]. 
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Computer Frame (c-frame) and Platform Frame (p-frame)     

The computer frame is near to the navigation frame that assumed by the 

navigation system computer. The platform frame is the assumed inertial stabilized 

platform axis set in which the measurements from the hypothesized inertial sensors 

are resolved [62]. P-frame is actually the b-frame counterpart in gimbaled INSs. 

2.2.2 Attitude Representations 

In SINS, used attitude representation methods are often listed as following: 

Angular Rotation Vector and Angular Velocity 

The transformation of a frame from its initial orientation to its final destination, 

or the transformation between two different frames is preferred to be represented 

with a single rotation operation around its rotation axis. Angular rotation vector 

describes the magnitude and the direction of this rotation in a 3×1 vector µ= [µx   µy   

µz ]
T 

. 

Angular velocity describes the rotation speed and its rotation around which axis 

direction occurs. It is usually given by a vector form from three components as 

shown below: 

𝜔  
 

[

𝜔 
𝜔 
  
] 

Where the superscript refers to the name of the coordinate frame that 

contains the projection of the angular velocity components (it is normally set as the 

frame b); the (b, n) subscript means that the coordinate n-frame rotates with respect 

to b-frame. 

The skew-symmetric matrix form is an alternative expression of angular 

velocity, which is as following [25]: 

    
  (𝜔  

  )  [

     𝜔
 
   𝜔

 

    𝜔
 

    𝜔
 

 𝜔
 
   𝜔     

]                                                                                           

The angular velocity and the angular rotation vector are given in one 

relationship which is as following [63]: 
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 ̇      ⁄  𝜔  
  

 

 
  𝜔  

  
 

  
     𝜔  

                                                

Euler Angles and Direction Cosine Matrix (DCM) 

An Euler angle is defined as a rotation angle about one coordinate frame axis. 

The relative orientation between two frames can be decomposed as a sequence of 

three rotations expressed by Euler angles. Mathematically, it can be explained as a 

product of three elementary rotation matrix obtained by Euler angles [57]. This 

product is defined as Direction Cosine Matrix (DCM) as one of the main methods for 

attitude parameterization. 

The Euler angle elementary matrix and the corresponding DCM are formulated as, 

  
                  

 [
   
             
          

] [
          
   
         

] [
              
          
   

]            

 Where: 

         : are Roll, Pitch, and Heading (Yaw) angles, respectively which denote 

the three components of Euler angles; 

  
 : denotes the DCM from b-frame to n-frame. 

R: denotes an elementary rotation matrix, and its subscript denotes the instantaneous 

axis about which the Euler angle is rotated. 

Attitude Quaternion 

       Quaternion implementation is preferred in updating the attitude in INS as the 

linearity of quaternion differential equations, the lack of trigonometric functions, 

allow efficient algorithm [64]. Similar to the angular rotation vector, quaternion 

defines the frame transformation using a single rotation about its direction axis. It is 

represented in a      parameter vector by the rotation vector as [57]: 

 

  
  [

   ‖    ‖

‖ ‖
 

   ‖    ‖
]  

[
 
 
 
 
 
   ‖    ‖

‖ ‖
  

   ‖    ‖

‖ ‖
  

   ‖    ‖

‖ ‖
  

  𝑠‖    ‖]
 
 
 
 
 

                                                                         (2.5) 
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Where: 

  
 :  denotes the quaternion, which signifies the rotation from n-frame b-frame. 

‖ ‖: denotes the Euclidean norm of the rotation vector, which is the rotation 

magnitude as, 

‖ ‖  √                                                                                                       (2.6) 

The product of quaternion vectors represents a series of continuous rotations as: 

  
    

 ●  
 
=[
  
  
]● [

  
  
]  [

               
       

   
]                                            (2.7) 

Where: 

● denotes the quaternion product;  denotes the vector cross product; 

V denotes the vector part of a quaternion, which is composed of first three 

components; 

S denotes the scalar part of a quaternion, which is the last component. 

The conjugate quaternion is described as, 

 

   
       

  [
 
   ‖    ‖

‖ ‖
 

   ‖    ‖
]                                                                                (2.8) 

 

Where    
    denotes the conjugate quaternion of    

   

 

2.2.3 Reference Frame Transformations 

Frequently used reference frame transformations are discussed below. 

Transformations between i-frame, e-frame and n-frame 

The relationship between i-frame, e-frame and n-frame are depicted in Fig. 2.5. 

The DCM from e-frame to n-frame is expressed in terms of the geodetic latitude   

and longitude   as: 

  
    (   

 
 ⁄ )        [

                      
          

                       
]             (2.9) 

The corresponding quaternion is, 

  
  

[
 
 
 
            ⁄          

           ⁄          

           ⁄          

           ⁄          ]
 
 
 

                                                                 (2.10) 

The angular velocities frequently used are listed as [25, 60]: 
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𝜔  
     𝜔  

  𝜔              
  𝑟   𝑠                                         (2.11) 

𝜔  
    

 𝜔  
    𝜔       𝜔      

                                                       (2.12) 

𝜔  
    ̇       ̇   ̇        

        =        ⁄                        
                              (2.13) 

Where: 

      : are the east and north velocities; 

N, M: are the meridian and prime vertical radii of curvature. 

h: is the ellipsoidal height; 

 ̇                 ̇                                                                    (2.14) 

 

Figure 2.5: i-frame, e-frame and n-frame [24]. 
 

Transformations between b-frame and n-frame 

The DCM from b-frame to n-frame is given as [23]: 

  
                     

       [
          
            
   

] [
         
   

          
] [

   
   𝑠   𝑠 𝑛  
       𝑠  

]         (2.15) 

     

[

           𝑠                          𝑟        𝑠          
          𝑠                       𝑟                  
     𝑠 𝑛             

] 

Where        are Euler angles; the Roll, Pitch, and Yaw (Heading) angles. 
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The conversion from DCM to the Euler angles is shown as [64]: 

        
   

√     
 

  

                 

                                                                                                             (2.16) 

Where     is the (i, j) element in DCM   
   

The conversions between quaternion and DCM are shown as [23]: 

  
  [

  
    

    
    

                         

              
    

    
    

             

                          
    

    
    

 

]              (2.17) 

and, 

  
  [

  
  
  
  

]  

[
 
 
 
 
                   √             

                  √             

                  √             

   √             ]
 
 
 
 
 

                              (2.18) 

 

Transformations between n-frame, c-frame and p-frame 

The relationship between n-frame, c-frame and p-frame is illustrated in Fig. 

2.6, where the perturbation angle from n-frame to c-frame is defined as   , the 

perturbation angle from n-frame to p-frame is defined as  , and the perturbation 

angle from c-frame to p-frame is defined as   . Since all these misalignments are 

small angles, the following equations are yielded as [24, 62], 

        𝑠                    
   

   
 

   

   
        

 

   
                 (2.19) 

  
                

            
                                               (2.20) 

                                                                                                                 (2.21) 

Where, 

       : denote the latitude and longitude errors; 

       : denote the north and east velocity errors; 

( ) denotes the skew symmetric matrix of a three-element vector. 
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Figure 2.6: n-frame, c-frame and p-frame [24]. 

 

2.3 Inertial Navigation System (INS) Fundamentals 

2.3.1 INS navigation equations 

Without a detailed derivation, the INS navigation equations in the n-frame 

which define the dynamics model of the navigation states in continuous-time domain 

can be described as [57, 65]: 

[
   𝑟 ̇

     ̇

     
 ̇
]  [

     

  
      𝜔  

  𝜔  
        

  
 (𝜔  

  )   𝜔  
     

 
]                                                     (2.22) 

Where, 

𝑟        : is defined as the position vector, which is essentially the polar 

coordinate expression in e-frame; its Cartesian coordinate counterpart is: 

𝑟   𝑟 𝑟 𝑟   = 

                                𝑒                        (2.23) 

Where e is the first eccentricity of reference ellipsoid. 

f 
b
 , 𝜔  

 : are the specific force and angular rate measurements from inertial sensors 

projected in b-frame, which are the time-varying parameters in navigation equations; 

  : denotes the gravity vector in n-frame, 

    [
         

              
    

]                                                   (2.24) 
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2.3.2 Inertial sensor calibration and measurement error compensation 

Generally, the raw outputs of inertial sensors are corrupted by biases, scale 

factors, non-orthogonalities and noises, shown as in Eq. (2.25) and (2.26). 

   [

  
 

  
 

  
 

]          (         )𝜔                                             (2.25) 

 ̃  [

 ̃ 
 

 ̃ 
 

 ̃ 
 

]                                                                  (2.26) 

Where, 

The superscripts x, y, z denote the sensor triad axes, 

The subscripts 0 denote the determinant sensor error; the subscripts k denote the 

random sensor error at time epoch   , 

 : denotes to the gyroscope. 

acc: denotes to the accelerometer. 

 ̃  : denote the vectors of the raw accelerometer outputs and the true specific force. 

�̃�  𝜔: denote the vectors of the raw gyro outputs and the true angular velocity. 

b: denotes the bias vector. 

w: denotes the random noise. 

L: denotes the linear sensor error matrix with scale factor SF and non-orthogonality r 

as: 
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];      [
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𝑟    
  

𝑟    
  

      
 

𝑟    
  

𝑟    
  𝑟    

  
      

 

]             (2.27) 

 

The process of calculation of sensor error parameters, i.e. biases, scale factors, 

and non-orthogonalities, is known as sensor calibration. 
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Determination of sensor errors are preferred to be calibrated beforehand in 

laboratory. Normal SINS laboratory calibration technologies are following the idea 

to compare the IMU outputs with the reference information including gravity and 

earth rotation rate [66]. The random errors are always mathematically modeled as 

stochastic processes [61]. Allan Variance method is utilized as part of the 

laboratory work to determine the model types and estimate the model parameters 

for the random noise [67]. Random sensor error parameters can be calibrated in 

field tests or be estimated on-line in the integrated navigation systems. The effect of 

random errors will be suppressed using optimal estimation methods with aiding 

sources, as discussed in the succeeding chapters. 

With calibrated parameters, sensor errors can be compensated from raw outputs as: 

𝜔             
  (          )                                                           (2.28) 

                  
    ̃                                                               (2.29) 

Instead of specific forces and angular rates, incremental velocities and angles 

are the outputs in most of the high-grade IMUs. Integration procedures to relate the 

two types of IMU outputs are introduced as follows [57]: 

    ∫ 𝜔   𝜔    
  
    

                                                                                    (2.30) 

    ∫          
  
    

                                                                                      (2.31) 

Where, 

       denote the incremental angles and velocities; 

           is the time increment. 

2.3.3 INS mechanization 

SINS mechanization is defined as the integration process to calculate the 

navigation states, i.e. positions, velocities and attitudes, with raw inertial sensor 

measurements. Therefore, the mechanization algorithm can be regarded as the 

discrete-time form of the INS navigation equations. Several approximation methods 

were applied to solve the quaternion differential equations in attitude integration. 

Further, a single-speed mechanization algorithm considering midway navigation 

states and applying quaternion algebras was developed [57]. SINS mechanization is 

the integration process to determine the navigation states from the previous time 
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epoch     to the current time epoch    using compensated IMU outputs. Its 

simplification in [24], which will be summarized in this thesis. 

Velocity Integration 

The discrete-time form of the second component in Eq. (2.22) can be written as: 

   
      

      
      

                                                                                     (2.32) 

    
                   

        
                                                                        (2.33) 

    𝜔  
 𝜔  

                                                                                                   (2.34) 

    
         

  
 

 
        

  
 

  
           

        
                      (2.35) 

    
        𝜔  

  𝜔  
                                                                      (2.36) 

Where: 

The subscripts k-1, k-1/2 and k denote the previous, midway and current time epochs 

    ,       ,    respectively.  

  : denote the corresponding variable is projected to the b-frame at tk. 

    
 : is the increment induced by gravity and Coriolis force. 

    
 : is the increment induced by specific force. 

   is the n-frame rotation vector from (𝑛   -frame) to (𝑛 -frame). 

The second and third terms at the right of Eq. (2.35) are the rotational and sculling 

motion. 

Positions at midway are required to be extrapolated from the previous time 

navigation states as: 

            
         

 
                                                                  (2.37) 

                                                                             (2.38) 

                                                                    (2.39) 

                                                
      (2.40) 

         [

   ‖          ‖

‖       ‖
       

   ‖          ‖
]                                                    (2.41) 

 

       
            

                                                                                 (2.42) 
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Where the midway latitude and longitude can be extracted from quaternion        
      

. 

Velocity at midway are extrapolated as: 

      
      

  
     
 

 
     

  
      
        

 

 
                                        (2.43) 

Where   𝑘  
𝑛  is the second and third velocity increments at the right of Eq. 

(2.32) stored in the previous epoch. 

Position Integration 

The midway velocity can be updated by interpolation as: 

      
  

    
    

 

 
                                                                                 (2.44) 

The height can be updated by the midway downside velocity as: 

                                                                                                        (2.45) 

The current time quaternion    
   containing position information can be 

updated by the products of e-frame and n-frame rotations as: 

   
          

        
                                                                               (2.46) 

   
        

      
                                                                                  (2.47) 

   
     [

    ‖     ‖

‖  ‖
  

   ‖     ‖
]                                                                        (2.48) 

     
   [

   ‖     ‖

‖  ‖
  

   ‖     ‖
]                                                                         (2.49) 

   𝜔  
                                                                                            (2.50) 

Where: 

  : is recalculated with the renewed midway velocity using Eq. (2.34). 

  : denotes the e-frame rotation vector from (𝑒   -frame) to (𝑒 -frame). 

   
          

  : denote the quaternion vectors corresponding to the above rotation 

vectors. 

Attitude Integration 

The midway positions can be renewed by interpolation as: 
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                                                                                             (2.51) 

       
       

 
                                                                                 (2.52) 

       
       

 
                                                                                 (2.53) 

The quaternion    
  containing attitude information can be updated by the 

products of n-frame and e-frame rotations as: 

   
          

         
                                                                              (2.54) 

   
        

       
                                                                                 (2.55) 
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    ‖     ‖

‖  ‖
  

   ‖     ‖
]                                                                       (2.56) 

     
  [

 
    ‖     ‖

‖  ‖
  

   ‖     ‖
]                                                                     (2.57) 

       
 

  
                                                                                          (2.58) 

Where: 

  : is the b-frame rotation vector from (    -frame) to (  -frame). 

The second term at the right of Eq. (2.58) denotes the second-order coning 

correction. 

2.3.4 INS error model 

SINS navigation equations are the non-linear models to describe the dynamics 

of the navigation states. The linearized equations can be derived by perturbation 

analysis [68], which are transferred as the models of the navigation error states, i.e. 

position errors, velocity errors, and attitude angle errors. For convenience, the  -

angle error model, which indicates the perturbation is conducted with respect to the 

computer frame, will be utilized in this thesis. In addition, the random sensor error 

parameters including residual bias and measurements noise are modeled as constant 

and white noise. Materials [24, 61, 62 and 69] for detailed deductions of the above 

algorithm models are recommended to readers with interest. 

The continuous-time  -angle error model for navigation states and sensor error 

states are shown as: 
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 �̇�   𝜔  
   𝑟      

  ̇         𝜔  
  𝜔  

              
                                          (2.59) 

 ̇    𝜔  
  𝜔  

       
  𝜔  

     

                                 

Where, 

The position error vector is  𝑟    𝑟  𝑟  𝑟  
   

The superscript c denotes the computer frame. 

The sensor measurement errors are written as: 

          
                                                                                             (2.60) 

 𝜔  
     𝜔  

                                                                                              (2.61) 

The gravity perturbation is: 

       𝑟
        

  

   

  

   

  

√    
   𝑟                                   (2.62) 

Where the diag(●) denote the diagonal matrix form of a vector. 

The stochastic models for the sensor random biases are given as: 

 ̇                                                                                                                     (2.63) 

 ̇                                                                                                                      (2.64) 

Where, 

     and     are  biases of accelerometers and gyroscopes, respectively. 

The combination of Eq. (2.59) and Eq. (2.63)-(2.64) yields the forward linear 

dynamics process model with both the navigation error parameters and the sensor 

error parameters defined as the system states. The discrete-time form of this process 

model can be given by [70, 71]: 

 𝑥       𝑥         (  [
              
           

]
   

     ) 𝑥         

         [
                          

                  
]
   

 𝑥                                        

 

         [
   

        
     

       
     

]
   

 𝑥                                                          (2.65) 

Where: 

The 15 system state vector is, 
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 𝑥  [     
      

     (   )
 
          

 ]
 

 
                                      (2.66) 

     is the state transition matrix, obtained from the numerical approximation of the 

continuous-time dynamics matrix F(t) , which is composed of the following matrix, 

   [

  𝜔  
              

           𝜔  
  𝜔  

               
           𝜔  

  𝜔  
       

]             (2.67) 

   [

        
      

     
   

     

]                                                                              (2.68) 

The covariance matrix for the driving noise w in discrete-time domain is: 

      [
     
     

]                                                                                        (2.69) 

Where: 

     and     : are covariance of accelerometers and gyroscopes, respectively. 

2.3.5 Initial alignment 

INS initial alignment is defined as the process to determine the initial values of 

the navigation parameters. Dependable position and velocity information can be 

provided by high-accuracy GPS solutions. Since the accuracy of the initial attitudes 

predominantly governs the navigation error accumulation, initial alignment is 

narrowly considered as the procedure to initialize the attitude information, contained 

in the DCM,   
  [68]. For IMUs whose gyro bias and noise levels are smaller than 

the values of the Earth rotation rate, such as navigation-grade or high-end tactical-

grade IMUs, a coarse alignment followed by a fine alignment can be applied to 

estimate the initial attitude parameters. The coarse alignment is an analytic method 

providing the averaged solutions. It can be decomposed as the levelling step, 

determining the initial roll and pitch, and the Gyro-compassing step, determining the 

heading angle [60]. In many cases with the established DCM from the b-frame to the 

n-frame, the fine alignment is an optimal estimation method by an INS-only KF 

using horizontal specific force and east-channel gyro error measurements. Both of 

the two alignment methods are processed in stationary mode and implemented on the 

basis of the reference information including gravity and Earth rotation rate [64]. 
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For low-cost IMUs, the poor gyroscope characteristics result in the failing of 

initial heading alignment [72]. On the other hand, stationary alignment cannot meet 

the real-time consideration in civilian and commercial applications, such as vehicle 

navigation [23]. Aiding sources including magnetometers, GPS multi-antenna 

systems and/or GPS-derived velocity information are indispensable to the in-motion 

alignment techniques. Besides, kinematic alignment is researched from the system 

observability point of view in aircraft applications [73]. 

2.4 Measurement Models for Aiding Sources 

Since the EKF is commonly applied to resolve the non-linearity in system 

model, it is the measurement disclosure, or the difference between the INS 

mechanization outputs and the observations from aiding sources that is concerned in 

the INS-based integration systems, 

  ̃   ̃     ̃                                                                                                (2.70) 

Where,  ̃    is the INS mechanization solution;  ̃       is the aiding sensor 

observation. 

2.4.1 Global Positioning System (GPS) 

The GPS is a Global Navigation Satellite System (GNSS) developed by the 

United States Department of Defence (DOD), which provides absolute positioning 

information and long term accuracy under all weather conditions [20]. Due to its 

dependency on radio signal transmission and line-of-sight (LOS) measurements, 

GPS suffers from various error sources and poor satellites geometry. To eliminate or 

mitigate the common errors between receivers, epochs, satellites or stations, the 

Differential GPS (DGPS) technique is implemented to improve the positioning 

accuracy to centimeter level. Several strategies were performed to integrate the GPS 

and INS data to overcome their individual disadvantages and reach superior 

performance. In this thesis, loosely-coupled integration is introduced which utilizes 

position or position/velocity measurements from GPS-only filter to aid INS 

solutions. The measurement model using GPS position solutions considering the 

lever arm effect can be written as [24]: 

     𝑟 
  (  

     
  )                                                                             (2.71) 
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Where, 

    
 : denotes the lever-arm effect between the GPS antenna and IMU mass center 

projected in the b-frame; 

  : is the GPS position measurement noise, with the spectral density matrix obtained 

from statistic and/or kinematic GPS data processing as, 

       ([  
   

   
 ])                                                                                 (2.72) 

The measurement vector is: 

  ̃    �̃�    
  �̃�    

    ̃ 
     
                                                              (2.73) 

 

  [
       
        𝑠  
    

]                                                                  (2.74) 

Where,  �̃�    
  �̃�    

  : denote the position vectors achieved by INS and GPS. 

The measurement model using GPS velocity solutions considering the lever 

arm effect can be written as: 

       
   𝜔  

     
 (    

  )     
 (    

  ) 𝜔  
              (2.75) 

Where: 

  : is the GPS velocity measurement noise, with the covariance matrix obtained 

from statistic and/or kinematic GPS data processing as: 

        [   
    

    
 ]                                                                              (2.76) 

The measurement vector is: 

  ̃   ̃    
   �̃�  

    ̃ 
     
   ̃ 

 (    
  )�̃�  

   ̃    
                  (2.77) 

Where, ( ̃    
  ,  ̃    

 ) denote the velocity vectors of INS and GPS. 

2.4.2 Odometer and Non-Holonomic Constraints 

Odometers, or milometers, are applied in land-vehicle navigation and pipeline 

surveys to provide augmented host velocity observations. The measurement model 

using odometer velocity measurements considering the misalignment between h-

frame and b-frame can be written as [74]: 
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              (2.78) 

Where, 

  
 : denotes the DCM from b-frame to h-frame; 

         
 : denotes the lever arm effect between the odometer and IMU mass center 

projected in b-frame. 

    
 : is the velocity vector of INS mechanization. 

  : is the odometer measurement noise, with the covariance matrix evaluated by the 

priori knowledge on sensor characteristics. 

The measurement vector is, 
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        = ̃ 
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 (�̃�  
  )         
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  (2.79) 

Where: 

         
 

: denotes the velocity vector observed by odometer projected to host-

frame; 

         
 

: denotes the odometer observation along the forward direction in h-

frame. 

Non-holonomic constraints is defined as the fact that unless the vehicle jumps 

off the ground or slides on the ground, the velocity of the vehicle in the plane 

perpendicular to the forward direction is almost zero, as in Eq. (2.80) [72, 75 and 

76]. This is illustrated as in Fig. 2.7. 

  ̃ 
       ̃ 

                                                                                  (2.80) 

Where, the superscripts y, z denote the transversal and down directions in h-frame. 

Simplified from Eq. (2.78), the measurement model using non-holonomic 

constraints can be written as: 

    [
   

 

   
 
]    

 
  𝑛
  
       

   
     

  𝑛
      

                         (2.81) 

Where: 

 The subscript 2: 3, 3: 3 denote the last two rows’ elements of a     matrix. 
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  : is the assumed non-holonomic constraints noise. 

The measurement vector is: 

  ̃    ̃
 

 
 ̃𝑛
 
 
       

[
    
𝑦

    
 ]                                                                                   (2.82) 

Where,     
 

 ,      
  are the velocities achieved by INS in east and down directions. 

 

Figure 2.7: Non-holonomic Constraints [44]. 
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CHAPTER THREE 

  KALMAN FILTERS 

3.1 Kalman Filter (KF)  

The Kalman filter is a mathematical power apparatus that is playing as an 

increasingly essential part in fields of mechanical engineering as we incorporate 

sensing of the actual world in our frameworks. The great news is you do not need to 

be a mathematical genius to comprehend and successfully utilize Kalman filter. 

Kalman filter is known as the one of the best and the most significant 

mathematical tools, which can be often used for stochastic estimation from noisy 

sensor measurements, and it has named after Rudolph E. Kalman, who published his 

well-known paper in 1960, which is telling a recursive solution to the discrete-data 

linear filtering problem. 

While the Kalman filter has been around for more than 45 years, it (and related 

ideal estimators) have as of late begun flying up in a wide assortment of computer 

graphics in many applications. These applications span from simulating melodic 

instruments in Virtual Reality, to head tracking, to removing lip movement from 

video arrangements of talkers, to fitting spline surfaces over accumulations of 

focuses [77]. 

The Kalman filter is basically a group of mathematical equations that applying 

a predictor-corrector style estimator that is ideal to minimize the estimated error 

covariance while some assumed conditions are met. Since the Kalman filter has been 

introduced, it was started to be extensively used in many research and application, 

especially in the autonomous field or aided navigation. This is likely due in a vast 

part to get advances in digital computing that made the utilization of the filter 

workable, in any case, but due to the relative simplicity of the filter and the filter’s 

sturdy nature. Seldom do the conditions, which are necessary for optimality, really 

exist, but the filter didn’t show any weakness yet for several applications in spite of 

this case [77]. Unfortunately, in most of the navigation applications the models are 

needed to be non-linear. Therefore, the EKF is more utilization to be employed than 

the KF in some parts of INS. 
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The Kalman filters are based on the linear dynamics systems discretized in the 

time domain. Employing KF to deal with any linear state-space system needs 

building a model to express about the linear state-space dynamically, and using the 

observation relationship between the system states and measurement quantities. 

Therefore KF can be described the linear dynamics systems as the continuous-time 

system Eq. (3.1) and the discrete time measurement Eq. (3.2), as; 

𝑥        𝑥                                                                                              (3.1) 

     𝑥                                                                                                           (3.2) 

Where: 

 : denotes the continuous time. 

𝑘: refers to epoch of the discrete time   . 

𝑥: indicates the system state in vector form. 

 : indicates the measurement in vector form. 

 : indicates the process/ system noise in vector form, which is assumed to be a 

Gaussian white noise with the covariance matrix,                        , 

where the operator      refers to the Dirac delta function and Q is called the spectral 

density matrix [29]. 

  : refers to the measurement/ sensors’ white noise in vector form. 

F: refers to the system dynamics prediction matrix. 

G: refers to the system noise control/ shaping matrix; 

H: refers to the observation design matrix for model the sensors. 

For digital implementation, the Eq. (3.1) is preferred to be in the following form: 

𝑥        𝑥                                                                                              (3.3) 

Where: 

(      ∫     
  
    

           ): is suitable at    which dues to the existence of the 

input white noise throughout the time interval           ) [71]: 

Where: 

      : refers to the system prediction/ transition matrix during the epoch from      

to   . 

k −1: refers to the time epoch     . 
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In reality, for most system models, the dynamics prediction matrix F(t) is 

considered to be time invariant during the short time interval           . So, the 

transition matrix (      ) can be achieved from the dynamics matrix by the 

following simple numerical approximation [78]; 

        
    𝑠        𝑒          

   

  
   

   

  
                          (3.4) 

For the reason that a white sequence is a zero-mean random variable sequence, 

which is uncorrelated time wise, the covariance matrix combines    with    is given 

in [71] as following: 

      
   {

      𝑘
     𝑘

                                                                                           (3.5) 

      
   {

      𝑘
     𝑘

                                                                                              (3.6) 

      
        𝑘                                                                                                   (3.7) 

 

Where the process/ system noise matrix    is resulting as [44]: 

         
    {[∫                 

    
  

] [∫                 
    
  

]
 

}             

       =∫ ∫                  
    

    
  

    
  

            
                                   

          
 

 
              

       
                 

                            (3.8) 

The placement of the estimation of the initial state �̂�  and its covariance 

     �̂� �̂� 
   is the first step of the Kalman Filter algorithm. With a priori 

information of the noise characteristics and a priori information of the initial 

conditions, the Kalman Filter algorithm can be applied refining the a series of 

estimation with measurement update steps [29]. 

The Kalman Filter estimation/ prediction step of the system model, which is 

given by the prediction state estimate in Eq. (3.9) and the prediction covariance 

matrix in Eq. (3.10): 

�̂� 
        �̂�   

                                                                                                      (3.9) 

  
          

       
                                                                                    (3.10) 

Where: 

�̂� : indicates the prediction state estimate. 
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�̂� : indicates the update state estimate. 

  : indicates the prediction covariance matrix. 

  : indicates the update covariance matrix. 

In the measurement update step, the best state estimate and its covariance are 

updated with the predictions and the observations. The following set of equations 

treats the measurement update step: 

     
   

      
   

     
                                                                               (3.11) 

        �̂� 
                                                                                                      (3.12) 

�̂� 
  �̂� 

                                                                                                          (3.13) 

Where: 

  
            

 ; 

  : denotes the innovation sequence, which refers to the variance between the 

prediction and the observation. 

  : denotes the gain of Kalman Filter, or the weighting matrix, which determines 

how much of the new information contained in the innovations that should be 

accepted by the system [22]. The gain matrix is derivate based on the minimum 

variance norm. In Fig. 3.1, the KF algorithm is outlined:  

 

Figure 3.1: Kalman Filter Algorithm [44]. 

3.2 The Extended Kalman Filter (EKF) 

As described above in Section 3.1, the Kalman filter has mathematical models, 

which are assumed to be linear. Therefore, KF governs its attempts to estimate the 

state 𝑥 of a discrete-time linear by a linear stochastic difference equation. However, 
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for estimated a non-linear process and its measurement relationship the EKF will be 

more appropriate than the KF because of the EKF modifies some of the concepts that 

are offered in Section 3.1 to be the typical discrete-time non-linear system model and 

its measurement relationship as showed in the below equations [70]: 

𝑥    𝑥    𝑘                                                                                          (3.14) 

     𝑥  𝑘                                                                                                    (3.15) 

Where: 

 f ( ): is the non-linear function, which relates the state at the previous time step 𝑘    

to the state at the current time step 𝑘. 

h ( ): is the non-linear function, which relates the state 𝑥  to the measurement   . 

The rule strategy to manage the non-linear estimation issues is to linearize the 

models around a nominal trajectory, which is predetermined or immediate. The 

definition of this nominal trajectory is as the trace, which tracks a vector of time-

changing parameter that refers usually to the succession of the system state vectors 

with the predicted or evaluated values [70]. By utilizing Taylor series expansion, the 

linearization procedure of the non-linear system model is given as following: 

𝑥 
      𝑥   

    𝑘                                                                                            (3.16) 

𝑥  𝑥 
                                                                                                          (3.17) 

𝑥    𝑥    𝑘         

   𝑥   
    𝑘     

   𝑥      

  
       

         
 𝑥    𝑥   

      

      

 

        =𝑥 
    

          

  
       

         
 𝑥    𝑥   

                                     (3.18) 

Or, 

    
   𝑥      

 𝑥
       

          𝑥         

         =                                                                                                  (3.19) 

Where: 

𝑥   : symbolizes to the nominal trajectory. 

  : denotes what is termed “error state” that represents the system state disturbance 

from the nominal trajectory. 
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  𝑥      : refers to the continuous non-linear function. 

    : refers to the linearized system dynamics matrix, relating to the system 

transition matrix        in the linear situation. 

        Similarly, the linearization procedure of the non-linear system m measurement 

model is given as following; 

     𝑥  𝑘       𝑥 
    𝑘  

   𝑥      

 𝑥
     

       
 𝑥  𝑥 

        

        =  
    

          

  
     

       
 𝑥  𝑥 

                                              (3.20) 

or, 

         𝑥 
    𝑘  

             
   𝑥      

 𝑥
     

        𝑥     

            =                                                                                                     (3.21) 

Where: 

   : denotes what is termed “measurement closing” that relates the actual to the 

predicted measurements. Which represents the measurement disturbance from the 

nominal trajectory. 

  : denotes the linearized observation design matrix. 

The Fig. 3.2 illustrates the EKF algorithm briefly as outlined below, 

 

Figure 3.2: Extended Kalman Filter [77]. 
 

By combination of Eq. (3.19) and (3.21) the linear system model and 

measurement model can be reconstructed. Consequently, the optimal estimates of the 

error states can be achieved by the application of KF on this set of models. Finally, 

the original system state that is termed state “reset” can be achieved by Eq. (3.17). If 

this reset step is overcome in closed loop after every Kalman filter measurement 
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update step, or another way to say that, if the feedback on the nominal trajectory 

happens, the nominal trajectory will belief the estimation outcomes and will diverge 

consistent with them. Subsequently, this error state will be established as “zero” to 

show the nominal value as the estimated value. This methodology is termed as 

Extended Kalman Filter EKF. In contrast, if the reset step is overcome in open loop, 

or another way to say that, if just the feed forward on the Kalman filter estimates 

happens, the nominal trajectory will be detected priori and will disregard the 

estimates of the Kalman filter. This what is termed Linearized Kalman Filter LKF 

[24, 79]. To describe how the filtering consequences relate to the nominal trajectory 

for each of the LKF and EKF are illustrated in Fig. 3.3 and Fig. 3.4 respectively. It 

reveals to us that while the LKF nominal trajectory is independent of the estimation 

consequences of the filtering, the nominal trajectory of the EKF will track them if the 

rate of the feedback is similar with the rate of the estimation update. 

 

Figure 3.3: Relationship of Filtering Outcomes with LKF Nominal Trajectory [44]. 
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Figure 3.4: Relationship of Filtering Outcomes with EKF Nominal Trajectory [44]. 
 

3.3 The Unscented Kalman Filter (UKF) 

One of the most widely used methods for tracking and estimation is the 

Kalman filter KF, due to its simplicity and optimality. However, the implementation 

of the KF to nonlinear systems can be difficult. The most prevalently approach is to 

use the Extended Kalman Filter EKF, which simply transforms all nonlinear models 

to the linear models for that the traditional linear Kalman filter can be applied. 

Although the Extended Kalman Filter in many forms is openly used filtering 

strategy. However more than thirty years of experience with it has led to a general 

assent within the tracking and control community, which it is difficult to implement, 

difficult to tune, and only reliable when the systems are almost linear on the time 

scale of the update intervals. A new linear estimator which is called Unscented 

Kalman Filter has been developed to support the nonlinear systems. Utilizing the 

principle that a set of sampled points can be used to parameterize mean and 

covariance, the estimator gives performance equivalent to the KF for the linear 

systems, and it applies for the nonlinear systems without the linearization steps 

required by the EKF. The new approach shows analytically that its performance is 

superior to that of the EKF in virtually all applications and, indeed, is directly apply 

to the second order Gauss filter. The method is not restricted to assuming that the 

distributions of noise sources are Gaussian [80]. 

The basic concept of the UKF is illustrated in Fig. 3.5. The EKF simply 

transforms the mean through the given nonlinear function and considers it as the 
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transformed mean, which is valid if the given transformation is linear. The UKF, 

however, samples several points from the given mean and covariance of the PDF and 

transforms all of the points through the given nonlinear transformation. The 

transformed mean and covariance are constructed from the transformed points. 

First applied the UKF to INS/GPS integration and demonstrated the UKF’s 

capability of dealing with large and small attitude errors seamlessly [81]. 

Unfortunately, it was possible for singularities to occur, since attitude was expressed 

in terms of the Euler angles, and the metric required to measure the attitude 

difference was incomplete. 

 

Figure 3.5: The concept of the UKF [24]. 

 

With the use of quaternion attitude representation, singularities can be 

resolved. For quaternion-based UKFs for attitude, determination can review [82, 83]. 

Where according to [82] has been used rotation vectors (singular at ±180
o
) to express 

attitude covariance while in [83] has been used a generalized representation, where 

the singularity can be placed anywhere from 180
o
 to 360

o
. In section, 3.3.1.1 will 

review of the unscented transformation (UT). Then, in Section 3.3.1.2, the 

conception of the UKF will be reviewed. Finally, Section 3.4 Implementation 

Variations and the mechanism behind UKF to reduce the errors. 

3.3.1 The Unscented Kalman Filter (UKF) 

The UKF handles the approximation issues of the EKF. The state distribution is 

again represented by a Gaussian Random Variables (GRV). However, it is being 

specified using a minimal set of carefully selected sample points. These sample 

points fully capture the true mean and covariance of the GRV, and when propagated 

through the true nonlinear system, capture the posterior mean and covariance 
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accurately to the second order (Taylor series expansion) for any nonlinearity. To 

elaborate on this, starting with explaining the unscented transformation [24]. 

3.3.1.1 Unscented Transformations (UT) 

The unscented transformation (UT) refers to the procedure for obtaining a set 

of weights,   ’s, and sigma points, 𝑥 ’s, from the given mean, �̅�, and covariance,   . 

The UT method used for calculating the statistics of a random variable, which 

undergoes a nonlinear transformation [84]. Consider propagating a random variable x 

(dimension L) through a nonlinear function, y = f (x). Assume x has mean �̅� and 

covariance   . To calculate the statistics of y, the flowing equations form a matrix 𝑥 

of 2L+1 sigma victors 𝑥 : 

   �̅�                                                                      

         �̅�   √                                    

                                       �̅�   √                                            (3.22) 

Where        𝑘    is a scaling parameter. The constant   determines 

the spread of the sigma points around �̅� and is usually set to a small positive value 

(e.g.        ) [35]. 

The constant 𝑘 is a secondary scaling parameter which is usually set to 0 or 

    [85], and   is used to incorporate prior knowledge of the distribution of 𝑥 (for 

Gaussian distribution,     is the optimal [35].  √          is the  th column of 

the matrix square root (e.g., lower triangular Cholesky factorization). These sigma 

vectors are propagated through the nonlinear function: 

                                 𝑦    𝑥                                                                    (3.23) 

and the mean and the covariance for y are approximated using a weighted sample 

mean and covariance of the posterior sigma points; 

 �̅�  ∑   
     

   𝑦                                                    (3.24) 

                                            ∑   
     

    𝑦  �̅�  𝑦  �̅� 
                               (3.25) 

With weights    given by: 

     
   

                                                                     (3.26) 
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                                                       (3.27) 

                                          
   

   
   
 

 

      
                                            (3.28) 

A block diagram is shown in Fig. 3.6 illustrates the steps in performing the UT. 

The UT method varies basically from general Monte-Carlo sampling methods which 

orders of magnitude more sample points in a try to propagate an accurate (possibly 

non-Gaussian) distribution of the state. The UT results in approximations are precise 

to the 3
rd

 order for Gaussian inputs for all nonlinearities. For non-Gaussian inputs, its 

approximations are precise to at least the 2
nd

 order, the accuracy of the third and 

higher order moments is determined by the choice of   and    

 

Figure 3.6: Block diagram of the UT [35]. 
 

In Fig. 3.7 a simple example for a 2-dimentional system, which includes three 

schemes. The left scheme shows the true mean and covariance propagation of using 

Monte-Carlo sampling, the schemes in middle show the results of using a 

linearization approach as would be done in the EKF; the schemes on the right side 

show the performance of the UT (note just 5 sigma points are required). The superior 

performance of the UT is clear. 
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Figure 3.7: Example of comparing the UT and EKF performance for mean and 

covariance propagating with actual sampling [35]. 
 

3.3.1.2 Unscented Kalman Filter 

The unscented Kalman filter UKF is an explicit extension of the UT to the 

recursive estimation in the following equation: 

                    �̂�                 𝑥      𝑦                 𝑦                      (3.29) 

Observations 𝑦 , estimate state 𝑥 ,    is the gain term and �̂�  is the conditional 

mean. 

Where the state Random Variables RV is redefined as the sequence of the 

original state   , the process noise    and the observation noise    variables: 

  
     

     
     

   . The UT sigma points selection scheme, Eq. (3.22), is applied to 

this augmented state RV to compute the corresponding sigma matrix,   
 . The UKF 

equations are given in Table 3.1 for the following system: 

𝑥    𝑥                                                                                         (3.30) 

 𝑦    𝑥                                                                                                          (3.31) 

Note that no explicit calculations of Jacobians are necessary to implement this 

algorithm. Furthermore, the overall number of calculations is of the same order as the 

EKF [35]. 
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Table 3.1: Equations of Unscented Kalman Filter [35]. 

Initialize with 

 ̂                                                                                                                    (3.32) 

          ̂       ̂  
                                                                                (3.33) 

 ̂ 
          ̂ 

                                                                                               (3.34) 

 

  
       

   ̂ 
     

   ̂ 
     [

    
    
    

].                                               (3.35) 

For k         , 
calculate the sigma points: 

    
    ̂   

  ̂   
   √    

  ̂   
   √    

                                             (3.36) 

The time-update equations are: 

  |   
        

           
                                                                            (3.37) 

 ̂ 
  ∑   

     
       |   

                                                                                      (3.38) 

  
  ∑   

     
   (    |   

   ̂ 
 )(    |   

   ̂ 
 )
 
                                             (3.39) 

    |     (    |   
        

 )                                                                             (3.40) 

 ̂ 
  ∑   

     
       |                                                                                          (3.41) 

 

and the measurement-update equations are: 

  ̅  ̅  ∑   
     

        |     ̂ 
       |     ̂ 

   ,                                           (3.42) 

      ∑   
     

        |     ̂ 
       |     ̂ 

   ,                                          (3.43) 

           ̅  ̅ 
                                                                                                    (3.44) 

 ̂   ̂ 
          ̂ 

                                                                                       (3.45) 

     
      ̅  ̅   

 ,                                                                                        (3.46) 

 

Where, 

                                             
 
       √    , 

the composite scaling parameter;  , the dimension of the augmented state; L, the 

process noise covariance;   , the measurement-noise covariance;   , and as in Eq. 

(3.28) the weights (  ) are calculated. 

     

3.4 Implementation Variations  

For the special case (often encountered) where the process and measurement 

noise are purely additive, the computational complexity of the UKF can be reduced. 

In such a case, the system state require not to be increased with the noise RVs. This 

reduces the dimension of the sigma points as well as the whole number of sigma 

points used. The all covariance of the noise source are then joined into the state 

covariance using a simple additive procedure. In Table 3.2 this implementation was 

given. The complexity of the algorithm is represented in order L
3
, where L is the 
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dimension of the state. This is the similar complexity as the EKF. The forming of the 

sample previous covariance matrix   
  represents the most costly operation. 

Depending on the form of F, this may be simplified; for example, with parameter 

estimation, the complexity reduces to order L
2 

[35]. 

When the noise of the system are in additive form, we can simplify the UKF 

algorithm. Consider the system dynamic equation and measurement equation to be in 

the forms:  

𝑥    𝑥                                                                                                 (3.47) 

𝑦    𝑥                                                                                                      (3.48) 

 

The Table 3.2 includes the implementation of the additive version of UKF for 

the above system. 

Table 3.2: Unscented Kalman Filter–additive (zero mean) noise case [35]. 

Initialize with 

 ̂                                                                                                                   (3.49) 

          ̂       ̂  
                                                                                (3.50) 

 

For k         , 
calculate the sigma points: 

       ̂    ̂     √     ̂     √     .                                         (3.51) 

 

The time-update equations are: 

  |   
                                                                                                    (3.52) 

 ̂ 
  ∑   

     
       |   

                                                                                       (3.53) 

  
   ∑   

     
   (    |   

   ̂ 
 )(    |   

   ̂ 
 )
 
                                       (3.54) 

 

(augment sigma points) 

  |       |   
     |   

   √      |   
   √                                  (3.55) 

   |     (  |   )                                                                                            (3.56) 

 ̂ 
  ∑   

     
       |                                                                                          (3.57) 

 

and the measurement-update equations are: 

  ̅  ̅  ∑   
     

   (    |     ̂ 
 )(    |     ̂ 

 )
 
   ,                                 (3.58) 

      ∑   
     

        |     ̂ 
       |     ̂ 

   ,                                          (3.59) 

           ̅  ̅ 
                                                                                                    (3.60) 

 ̂   ̂ 
          ̂ 

                                                                                       (3.61) 

     
      ̅  ̅   

 ,                                                                                        (3.62) 
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where   √       is the composite scaling parameter, the dimension of the state 

is L, the process-noise covariance is   , the measurement-noise covariance is    and 

as in Eq. (3.28) the weights (  ) are calculated. 
 

 Here the sigma points are augmented with additional points derived from the matrix 

square root of the process noise covariance. This needs setting L → 2L and 

recalculating the various weights    accordingly. Alternatively, may redraw a whole 

new set of sigma points, i.e.          ̂ 
  ̂ 

   √  
  ̂ 

   √  
 ]. This 

alternative approach results in fewer sigma points being used, and also rejects any 

odd-moments information captured by the original propagated sigma points. 

 

The Fig. 3.8 illustrates the UKF algorithm briefly as outlined below: 

 

 

Figure 3.8: A high level of the operation of the Unscented Kalman filter [86]. 
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CHAPTER FOUR 

           IMPLEMENTATION OF UKF FOR NAVIGATION OF PIG ROBOT 

4.1 Introduction 

In this chapter there will be a briefly review for each previous chapters and 

how to combine their most parts together in the work of this thesis.    

Thus, the Pipe Inspection Gage PIG robots as shown in Fig. 4.1 below where 

they have been employed for many years to achieve an important benefit in field of 

non-destructive tests for detection the several of operational defects in gas, oil 

pipelines and other pipelines that usually happen during their actual service life. 

 

 

Figure 4.1: Pipeline Inspection Gauge (PIG) Robot [52]. 

In this project, we developed an integrated navigation system algorithm for a 

PIG robot. In which is usually used many sensors for detecting the desired pipeline’s 

parameters, but the important task is to combine the desired pipeline parameters that 

are obtained from the sensors’ data with corresponding to the pipeline location. 
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As we deal with INS in this project, it is usually has errors and for stabilizing 

these errors there are many methods that are represented by adding extra sensors. 

One of the most famous and practical sensor for this purpose is the GPS sensor. 

However, unfortunately, in our project the errors of INS cannot be stabilized 

depending on GPS sensor, because the journey of our PIG robot will be through an 

assumed oil pipeline that is well-known for most oil pipelines to be buried under 

ground far away from the GPS signal. Therefore, there are many new methods that 

are only used for reducing the errors rate of the INS, such as adding odometer as an 

external sensor, zero velocity updates and coordinate updates or by using some 

smoothing methods like KF and UKF. However, in our navigation algorithm, we will 

try to stabilize the errors of INS by using counting for the number of pipes in an 

assumed oil pipeline that has known length. This assumed oil pipeline represents the 

journey of our PIG robot inside of Karbala city in Iraq. Karbala city is situated 

at 32.62 latitude, 44.02 longitude and at height 32 meters above the sea level where 

our PIG robot starts its journey. The idea behind of counting the pipes’ number in the 

oil pipeline is depending on simulation of a counting sensor for the junctions 

between the pipes, which might be jointed with each other by welding or by other 

methods as shown in Fig. 4.2 below: 

 

Figure 4.2: Samples of Pipeline Joints [52]. 
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According to the previous studies, become well known that the errors of 

inertial navigation grow unlimitedly, but if the navigation solutions were constrained 

then the growth of errors would be limited. So our PIG robot does not have a velocity 

meter in the directions perpendicular to the forward movement, because all of the 

perpendicular velocities will be reset to zero as a concept of the constrain inertial 

navigation that allow to reset the biases. This is named non-holonomic constraints in 

navigation terms. 

To design a navigation system, it is necessary to take in account the 

consideration of  the environment conditions that influence the body motion. In this 

chapter, the constraints depended on pipeline measurement structure for pig 

navigation will be reviewed. The effect of these constraints will be analyzed and 

compared with measurement data of INS navigation using UKF throgh the next 

chapter. 

In the previous studies, has been developed a quaternion-based UKF for the 

integration of GPS and INS following the former approach [87]. However in this 

study, because it is assumed the oil pipeline to be buried under the ground so the 

interrupted GPS signal there may cause increasing in the errors of the positions. For 

that reason, there will be instead of GPS, a counter for counting pipes, which are 

found in the pipeline that represents the trajectory of the PIG robot to support this 

approach. 

4.2 Dynamic of PIG robot with Non-Holonomic Constraints  

Inertial Measurement Unit IMU is a device that includes the two significant 

inertial sensors set (accelerometers and gyroscopes). By utilizing IMU and INS 

algorithm, the determination of the position, velocity and attitude of the PIG robot 

will be possible as shown in Fig. 4.3 and the noise of IMU is inversely propotional 

with its size as shown in Fig. 4.4. 
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Figure 4.3: Block Diagram of The IMU Mechanization Process [88]. 
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Figure 4.4: Comparison of IMUs [52]. 

 

In the body frame of our PIG robot, the output of its accelerometers are given 

the specific body force that is denoted by   , which provides its linear body velocity 

that is denoted by   , which is expressed in vector form in three directions by the 

following form: 

   [

  
 

  
 

  
 

]                                                                                                               (4.1) 

Since our PIG robot is considered as a land vehicle, so its motion can be run by 

two non-holonomic constraints. Firstly, according to the dynamic of its movement 

inside of the pipeline, the robot does not slide on or jump off the ground, therefore 

the perpendicular velocities to the forward direction are assumed to be zero. 

Secondly, because of these assumptions it is necessary to ignore accelerometer 

vibrations, suspension dynamics, and assume the trajectory of our PIG robot inside 
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the oil pipeline to be smoothly or in other words ignoring sideslip of the PIG robot 

during the turns in its trajectory. So, depending on the PIG axes defined in Fig. 4.5 

the approximated model of the horizontal and vertical velocities perpendicular to the 

forward direction can be stated respectively as following: 

  
     

  
                                                                                                                        (4.2) 

The expression of the errors in the horizontal and vertical velocities can be as: 

    [

   
 

   
 

   
 

]  [

      
         

 

      
         

 

      
         

 

]  [

      
         

 

      
 

      
 

]                                       (4.3) 

Since our robot is tightly moves inside the assumption oil pipeline, for this 

reason our PIG robot will has only forward motion. So, non-holonomic constraints 

approach is convenient to be applied for the navigation of the robot. 

The gravity and the pressure inside the pipeline generate the specific force. The 

following model gives the expression of the specific force: 

     
   ̇            

                                                                             (4.4) 

Where; 

  ; is the total specific force that represents the output of accelerometer. 

   ; is the projection of gravity acceleration along the navigation frame. 

       
  ; are related to the centrifugal terms. 

When the velocity of the robot is a constant velocity, the spesific force will be 

near the gravity acceleration at body frame.  

The output of gyroscope is angular velocity, which is denoted by 𝜔  
 . 

Normally, there are three gyroscopes in the PIG robot and these are responsible 

about the measureing and recording of the angular velocity along the three axes x, y 

and z as shown in Fig. 4.3, and these rates according to the three axes x, y and z are 

denoted by (   
 ,    

 ,    
 ), which are given in the following vector form: 

𝜔  
  [

𝜔 
 

𝜔 
 

𝜔 
 

]                                                                                                              (4.5) 
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Where, the symbols 𝜔 
 , 𝜔 

  and 𝜔 
  represent the angular velocity vectors 

along the 𝑥  𝑦  and   axis respectively. 

The motion of the robot is assumed to be in a smooth trajectory and the PIG 

robot is assumed to be fitted to the inner diameter of pipeline. This fitting should 

include a permissible tolerance that is necessary to make the PIG robot pass 

smoothly through the junctions’ rings inside the pipeline. Thus, the angular velocity 

of the system will be near the zero value: 

𝜔  
  [

 
 
 
]                                                                                                                (4.6) 

 

 

Figure 4.5: Definition of PIG Axes [52]. 
 

4.3 Definetion of Navigation Parameters 

Always the outputs of IMU have some errors. In this study, we will consider 

the constant bias and white noise for sensors of our robot. Where, the symbols   , 

  ,    and     will represent the accelerometers’ bias, gyroscopes’ fixed bias, white 

noise of accelerometers and white  noise of gyroscopes respectively. The biases are 

given in following forms: 

                 

                                                                                                         (4.7) 
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Where, the index   and   refer to the accelerometer and gyroscope, respectively. 

So, the noise vector of IMU can be modelized  as: 

   [
  
  
]                                                                                                               (4.8) 

Where: 

  ; is the sensors noise vector of the accelerometer and gyroscope.  

Thus, the observation model for the accelerometer measurements is [89]: 

 ̃       
                                                                                              (4.9) 

And the observation model for the gyroscope measurements is [89]: 

�̃�  
      𝜔  

                                                                                        (4.10) 

 The expression of the accelerometer and gyroscope measurements in vector model 

form will be as following; 

 ̃  [
 ̃ 
�̃�  
 ]                                                                                                              (4.11) 

Where; 

 ̃ ; is the accelerometer and gyroscope measurements vector (IMU outputs). 

 ̃  ; is the accelerometer measurement vector   𝑠  . 

�̃�  
  ; is the gyroscope measurement vector 𝑟   𝑠 . 

Since the navigation states vector (𝑥) of the robot is given in the following form: 

𝑥                  
      

       
                                                                               (4.12) 

Where: 

 ; refers to the robot position vector (   ) in a coordinate form (latitude   , 

longitude ( ), altitude ( )) in a location of its trajectory. 

 ; refers to the velocity vector (   ) of the robot along the North, East and Down 

in a location of the robots trajectory.  

  ; is the attitude vector (   ), which represents the angles (Roll, Pitch and Yaw) 

of the robot in a location of its trajectory. 

So, both of    and    should be in vector of  (   ). 
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By using of the formulation in chapter two, the state space form of navigation 

algorithem will be modelized as following:  

𝑥    𝑥     ̃                                                                                              (4.13) 

4.4 The Odometer Measurement and Counting System 

Generally, odometers are used for measuring the forward distance by utilizing 

the distance measurement wheels technique as shown in Fig. 4.6. By differentiating 

the travelled distance by the wheels over the time, the odometer can give the 

information of the forward velocity. Thus, it is used in our PIG robot for the same 

purpose. However, when the PIG robot is driven through the pipeline that might has 

medium flow with differential pressure. The differential pressure may led for some 

sudden variation in the standard velocity magnitude of the PIG robot during its 

journey, which is either because of  the losing in its mechanical performance or 

according to the sliding of its wheels on the pipe wall. Moreover, because of some 

lubrication that might be found on the pipe wall the sliding of wheels will occur with 

or without existence the differential pressure in the medium flow. 

Therefore, depending on odometers to navigate the positions needs to be 

supported with an extra technique like GPS. However, in this study, GPS signal 

assumed to be not available, so instead of GPS we will use a counting system to 

count the number of pipes in the pipeline to update navigation errors. This is 

considered the main objective of this thesis, which is depending in its work on a 

sensor to sense the junctions between the pipes in the pipeline as shown in Fig. 4.2. 

In many cases, the pipelines are constructed by using pipes have the same length 

with small standard deviation (STD). So, in such cases using the counting system to 

reducing error of the position will be more beneficial than GPS.  

So, the vector form of odometer output is: 

     [

     
     
     

]                                                                                                      (4.14) 

Scince the robot motion is under non-holonomic constraints, so the output of 

the odometer will be just along x-direction so: 
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Thus, the odometer will correct the navigation output according to the scenario 

in Fig. 4.7 sharing with the counting system over a short period ( pipeline length). 

 

Figure 4.6: Odometers of Smart PIG Robot [52]. 
 

 

Figure 4.7: Scenario of the algorithm for corrected the estimation state of INS by 

odometer output and counting system. 

4.5 The Counting System 

The spikes of counting sensor can detect junctions between every two pieces. 

Every piece in pipeline has beginning and end detected junction lines with its 

previous and posterior pieces respectively respect to the direction of the motion. The 

distance between beginning and end detected for each piece represents its standard 

length, in this work it is (20  ). Totally, these length measurements can be used to 

update the navigation states to reduce the errors of INS. Where, we can achieve the 

length of any piece in the sequence of the pipes in the pipeline: By integration, the 
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multiplication of the velocity along the x-direction with the typical output of the 

counting system between two times relate to the start and end junction lines of one 

piece.  

4.6 Implementation of UKF for PIG Robot 

          Let the process equation of the state vector with process noise is given as 

following: 

𝑥    𝑥     ̃                                                                                              (4.15) 

Where: 

𝑥  : is the navigation state vector at time 𝑘. 

 ̃    : is the accelerometer and gyroscope output vector. 

     : is the process noise vector with zero mean and covariance   for IMU output. 

Let suppose the output odometer to be given as: 

𝑦    𝑥        
                                                                                     (4.16) 

Where: 

𝑦  : is the output vector of odometer output at time 𝑘. 

  : is the measurement noise vector with zero mean and covariance   for odometer 

output. 

If there was counting system, there would be the following form:  

     𝑦      √                                          (4.17) 

Where: 

   : is the output vector of counting system and always it will be    . 

  ,    and   : are latitude, longtitude and altitude coordenaits of the robot at the 

starting point of the pipeline. 

  ,    and   : are latitude, longtitude and altitude coordenaits of the robot at the end 

point of the pipeline. 

  : is the Earth’s radius at the starting point of the pipeline. 
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  : is the measurement noise vector with zero mean and covariance   for counting 

system. 

        Hence, ( 𝑥   
 ), (𝑦   

 ) and (    
 ). (         ) assumed to be 

Gausian weight noise.  

        The UKF can be implemented as following: 

I. Initialization of UKF 

𝑥     
   

   
            𝑥   �̅�                                                    

   

[
 
 
 
 
      
    
    
    
    

    
      
    
    
    

    
    
      
    
    

    

    
    
    
       
    

    
    
    
    
       ]

 
 
 
 

    𝑥  �̅�   𝑥  �̅�  
      (4.18) 

Hence,      refers to expected value of    . 

II. Generation the sigma points for navigation states 

      �̅�   �̅�     √    �̅�     √                                                      (4.19) 

III. Prediction phase  

        For prediction the sigma points, will be by using the process equation as given 

below: 

𝑥            
           

 ̃          
                                                                                        (4.20) 

        Calculation the mean and covariance of INS predicted parameters: 

�̅�  ∑   
     

   𝑥                                                                                                 (4.21) 

  ̅      ∑   
     

   (𝑥    �̅�   )(𝑥    �̅�   )
 
                                              (4.22) 

Hence, the   
   

and   
   

are mean and covariance weights that use to caculate 

the mean and covariance. 

The   in the above equations refers to the dimension of the expended state 

space, where it is equivalent to            . 

   : refers to the dimension of the original state 𝑥 . 

  ,    and    are the dimension of the IMU measurements noise           

respectively.  
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   is the weight calculated by Eq. (3.28). 

Prediction of the sigma points of the odometer output is by applaying the 

obeservation equation: 

𝑦     (    
       

    )        
                                                                          (4.23) 

          The mean of the predicted odometer output: 

�̅�  ∑   
     

   𝑦                                                                                                 (4.24) 

           If a counting system output is available, the sigma points of predicted output 

will be: 

      (    
        

  )                                                                                             (4.25) 

          So, the predicted mean of the counting system output will be: 

  ̅  ∑   
     

                                                                                                     (4.26) 

IV. Measurement Update: 

          The odometer residual covariance is: 

      ∑   
     

   (𝑦    �̅�   )(𝑦    �̅�   )
 
                                               (4.27) 

 Prediction of the covariance of the correction between the residual odometer 

and states will update as: 

      ∑   
     

   (𝑥    �̅�   )(𝑦    �̅�   )
 
                                                      (4.28) 

           Prediction of the covariance of the counting system residual: 

      ∑   
     

   (       ̅  )(       ̅  )
 
                                                  (4.29) 

  Prediction of the covariance of the correction between the residual counting 

system and states will update as: 

      ∑   
     

   (𝑥    �̅�   )(       ̅  )
 
                                                       (4.30) 

            When the data of odometer is available; 

            Define the Kalman gain for odometer as: 



64 

 

   
              

                                                                                                (4.31) 

       Update the states as: 

�̂�  �̅�      
    𝑦  �̅�                                                                                  (4.32) 

       Update the covariance by measurment as: 

    ̅    
        

                                                                                             (4.33) 

       When the data of counting system is availabile: 

  
                

                                                                                                (4.34) 

       Update the states of navigation system by counting measurment as: 

�̂�  �̅�    
           ̅                                                                                   (4.35) 

       Update the covariance of states: 

    ̅    
          

                                                                                          (4.36) 

 ̅ : the update of   ̅    . The figure below shows briefly the steps of above system. 

 

Figure 4.8: Diagram of system implementation. 
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3 CHAPTER FIVE 

                                                     SIMULATION STUDY 

5.1 Introduction  

In this chapter, the simulation study of the integrated navigation system for PIG 

application will be introduced. At the first step, the simulations of robot and sensors’ 

outputs are generated, and in the second step, the output of sensors is processed by 

UKF algorithm that introduced in the previous chapter. It should be mention that the 

inertial sensors that used for navigation are in the navigation grads, because the 

navigation of PIG with low cost sensors has large errors and the external sensors like 

odometers and counting sensor isn't able to stabilize the errors within the navigation 

system. We know the INS is a stand-alone system, and can calculate the navigation 

parameters which are position, velocity, and attitude, but the errors of such a system 

are unstable. 

Odometers are able to measure the velocity of system in body frame and 

counting system is able to count the number of pipes, so the error of position will be 

unstable. The integrated system just can reduce the rate of errors and in long time, 

the error will be unstable.  

5.2 Sensors parameters 

Today we know the inertial sensors (gyroscopes and accelerometers) have 

many type of errors like fixed bias, nonlinearity, misalignments, gain errors and 

noise errors. In this study, we will suppose that IMU is calibrated system, and has 

only biases (due to drift from calibration condition or random bias) and white noises. 

The aiding sensors have only measurement white noise. In addition, the out of 

counting sensor is a pulse and do not has any data, actually here the time of passing 

from the welding points is important. The parameters of sensors are represented in 

Table 5.1. 
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Table 5.1: Parameters of sensors. 

raw name value unit 

1 Gyroscopes unknown bias 0.0083,    -0.0062,   -0.0041 Deg/hour 

2 Std of gyroscopes’ noise 0.0103,    0.0103,   0.0103 Deg/hour 

3 accelerometers unknown bias -0.0003, 0.0002,0.0004 m/s^2 

4 Std of accelerometers’ noise 0.0002, 0.0002, 0.0002 m/s^2 

5 Std of odometer’s noise 0.001 m/sec 

6 Std of pip’s length 0.3 m 

 

In Table 5.1 vector parameters’ data are represented in a line are for x, y and z 

directions respectively.  

5.3 Nominal Trajectory  

For generating of nominal states and generating of nominal values of sensors, 

we used an attitude control system and a velocity control system. The starting point 

is the coordinate of the Karbala city. By sending, some command to the control 

system simulated path is generated. In Table 5.2, the initial condition of simulation 

sates (nominal values) are shown. 

Table 5.2: Nominal values of parameters. 

raw name value unit 

1 Initial latitude (latitude of Karbala) 32.3233 Deg 

2 Initial longitude (longitude of 

Karbala) 

44.0594 Deg/hour 

3 Initial altitude (altitude of Karbala) 32 m 

4 Angular velocity of PIG     6.8697, -10.6989, -.0378 deg/hour 

5 Attitude (Roll, Pitch, Yaw) 0.0, 0.0, 57.2958 deg 

6 Specific force 0.0, 0.0, 9.8004 m/sec^2 

 

          The command to the velocity and attitude control system are: 
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Figure 5.1: Command for velocity control system (in body coordinate). 

  

As it shown in Fig. 5.1, command velocity along the x direction is 3 m/sec, and 

along the y and z direction is zero, so the velocity of robot will increase and finally 

will receive to the 3 m/sec.  

 

Figure 5.2: Command for attitude control system. 
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The commands to the attitude control system are shown in Fig. 5.2. As we can 

see, the heading and pitch angles are a sine signal, but the roll command is zero 

signal. After simulation of dynamic equations for PIG robot, the nominal parameters 

are generated.  

 

Figure 5.3: Specific forces along x, y and z direction. 

  

In Fig. 5.3, ideal outputs of accelerometers are shown. After some time, the 

velocity of system will be constant, so the acceleration of system will be zero, and 

output of accelerometers will be projection of    along the body frame. 

Consequently, the specific forces along the x and y directions are due to orientation 

of PIG (roll and pitch angles), and along the z direction is near the –| |.  
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Figure 5.4: Angular velocity of robot relative to inertial coordinate system. 

  

The ideal output of rate gyros are shown in Fig. 5.4. The 𝜔  is like Sine signal and 

angular velocity along the x and y directions are zero.  

 

Figure 5.5: Velocity along the north, east and down direction. 

 

In Fig. 5.5, velocity of robot relative to Earth that projected in navigation frame 

are shown. The projection of velocity of robot relative to Earth the projected in the 

body frame are shown in the Fig. 5.6. 
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Figure 5.6: Projection of velocity in the body frame. 

  

These velocities are near the command velocities, because the control system 

tries to keep the system’s velocity near the command signals that represented in Fig. 

5.1. 

 

Figure 5.7: Attitude of PIG. 

  

The attitude of PIG is represented in Fig. 5.7, these attitude are very close to 

command attitude that represented in Fig. 5.2, because the control system tries to 

keep the attitude near the desired attitude.  
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Figure 5.8: Position of PIG. 

 

The latitude, longitude, and altitude of robot are shown in the Fig. 5.8. These 

coordinates are for the Karbala city.  

 

Figure 5.9: Trajectory of PIG. 

 

Fig. 5.9 shows the trajectory of PIG. As it can extracted from the figure, the 

robot has a journey along the north and east less than 3 km and 7 km inside of 45 

min.  
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5.4 Sensors Output 

The output of ideal accelerometers are shown in the Fig. 5.3, by adding the bias 

and white noise to that signals, out of accelerometers will be simulated. The errors of 

accelerometers are shown in the Fig. 5.10. 

 

Figure 5.10: Accelerometers’ errors. 

 

The ideal output of gyroscopes are shown in the Fig. 5.10,  by adding bias and 

white noise error to these signals the output of gyros are simulated. The errors of 

gyroscopes are shown in the Fig. 5.11. 
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Figure 5.11: Gyroscopes’ errors. 

 

The integrated navigation system has two aided sensors. One of them is 

odometer that output of odometers are illustrated in the Fig. 5.12. 

 

Figure 5.12: Output of odometers. 
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As we can see, the velocity along the y and z directions are just noise of 

measurement, and along the x direction after 3 minutes are constant.  

Simulating of the counting system is more complex than the other sensors. In 

this simulation when the time is going ahead the program calculated the length of 

pipe from starting point when the length is greater than the 20 m, a noise with zero 

mean and 0.3 m standard deviation is added to output of sensor and will used in the 

integrated navigation algorithm. 

 

Figure 5.13: Counting system output (the length of pipes).  

 

As seen in Fig 5.13, the nominal value of pipes are 20 meters, but some time 

that is lower and some time that is greater than the nominal value. In addition, the 

frequency of available data from counting system is different. When the velocity is 

low, the frequency of data is low and when the velocity is high, the frequency will be 

high.  

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

time (sec)

o
u
tp

u
t 

o
f 

c
o
u
n
ti
n
g
 s

y
s
te

m
 (

m
)



75 

 

 

Figure 5.14 Counting system output at the first 120 seconds. 
 

5.5 Inertial navigation parameters errors and standard deviations  

The initial condition of navigation system has some errors; these errors are 

classified in Table 5.3. 

Table 5.3: Initial value (or initial error) of navigation system. 

raw name Value unit 

1 Initial latitude error  0.5 m 

2 Initial longitude error -0.5 m 

3 Initial altitude error 0.3 m 

4 Errors of initial velocity   0.001, -0.002, -0.003 m/sec 

5 Initial attitude (Roll, Pitch, Yaw) 0.01, -0.02., -0.03 deg 

6 Accelerometer estimated bias 0.0, 0.0, 0.0 m/sec^2 

7 Gyroscope estimated bias 0.0, 0.0, 0.0 deg/sec 

 

         The standard deviation of navigation system states at initial time are illustrated 

in table 5.4. 
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Table 5.4: Initial standard deviation of navigation systems states. 

raw name value unit 

1 Std of initial latitude 1 m 

2 Std of initial longitude 1 m 

3 Std of initial altitude 1 m 

4 Std of initial velocity 0.003, 0.003, 0.003 m/sec 

5 Std of initial attitude (Roll, Pitch, Yaw) 0.05, 0.05, 0.05 deg 

6 Std of accelerometer estimated bias 0.5e-3, 0.5e-3, 0.5e-3 m/sec^2 

7 Std of Gyroscope estimated bias 0.01, 0.01, 0.01 deg/hour 

 

5.6 Navigated parameters errors  

In this section, the navigation parameters’ errors and its 3-sigma will represent. 

The error of accelerometers’ bias for x, y and z directions are represented in figures 

from (5.15) up to (5.17) respectively.  

 

Figure 5.15: Error of x-accelerometer bias and its three-sigma bounds.  
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Figure 5.16: Error of y-accelerometer bias and its three-sigma bounds. 

 

Figure 5.17: Error of z-accelerometer bias and its three-sigma bounds.  

As we can see in the above figures, all of estimated biases are in three-sigma 
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Figure 5.18: Error of x-gyroscope bias and its three-sigma bounds 
 

 

Figure 5.19: Error of y-gyroscope bias and its three-sigma bounds. 
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Figure 5.20: Error of z-gyroscope bias and its three-sigma bounds. 

  

As we can see from the above figures, the bias of gyroscopes are remained in 

their bound, but the bias of z-gyroscope has large errors. Because the observability of 

this parameter come from the observability of heading, again the lack of good 

external senor is fleeing the errors of yaw angle. The attitude errors are shown in 

figures from (5.21) up to (5.23). 

 

Figure 5.21: Error of roll and its three-sigma bounds. 
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Figure 5.22: Error of pitch and its three-sigma bounds. 

 

Figure 5.23: Error of yaw and its three-sigma bounds. 
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Figure 5.24: Error of the north velocity and its three-sigma bounds. 

  

 

Figure 5.25: Error of east velocity and its three-sigma bounds. 
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Figure 5.26: Error of the down velocity and its three-sigma bounds. 

As we can see from the above three figures, the velocity error along the down 

is lower than velocities’ errors along the north and east directions.  

         The position error of the navigation system are represented in figures from 

(5.27) to (5.29). 

 

Figure 5.27: Error of latitude and its three-sigma bounds. 
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Figure 5.28: Error of the longitude and its three-sigma bounds. 

 

Figure 5.29: Error of the altitude and its three-sigma bounds. 
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As we can see the error along the north and east directions error are lower than 

the 2.5 m and 3.5 m respectively, but altitude error is very small, less than the 2.5 m. 

we can say the total error of navigation system in 45 minutes is close to length of one 

pipe and it is god result.  

5.7 Errors of INS/Odometer 

Here, there is a simulation in the absence of counting system. When the 

integrated navigation system does not uses the counting system, the system does not 

has any sense of length or position so the position will be completely unobservable. 

The figures (5.30) to (5.31) are represents the accelerometers’ biases and its three 

sigma bounds. 

 

 

Figure 5.30: Error of the x-accelerometer’s bias and its three-sigma bounds. 
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Figure 5.31: Error of the y-accelerometer’s bias and its three-sigma bounds. 

 

Figure 5.32: Error of the z-accelerometer’s bias and its three-sigma bounds. 
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The figures (5.33) to (5.35) shows the performance of filter for estimation of 

gyroscope’s biases. 

 

Figure 5.33: Error of the x-gyroscope’s bias and its three-sigma bounds. 

 

Figure 5.34: Error of the y-gyroscope’s bias and its three-sigma bounds. 
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Figure 5.35: Error of the z-gyroscope’s bias and its three-sigma bounds. 

It is shown that the bias of x-axis and y-axis have low errors and z gyro has 

large error.  

Figures (5.36) to (5.38) are show the attitude errors of integrated system.   

 

Figure 5.36: Error of the roll and its three-sigma bounds. 
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Figure 5.37: Error of the pitch and its three-sigma bounds. 

 

Figure 5.38: Error of the yaw (heading) and its three-sigma bounds. 

It is shown that error of roll and pitch immediately reduce, but the error of 

heading is reduced very slowly.  

The figures (5.39) to (5.41) represent the errors of velocity in navigation frame.  

0 500 1000 1500 2000 2500 3000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time (sec)

e
rr

o
r 

o
f 

p
it
c
h
 (

d
e
g
)

0 500 1000 1500 2000 2500 3000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

time (sec)

e
rr

o
r 

o
f 

y
a
w

 (
d
e
g
)



89 

 

 

Figure 5.39: Error of the north velocity and its three-sigma bounds. 

  

 

Figure 5.40: Error of the east velocity and its three-sigma bounds. 
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Figure 5.41: Error of the down velocity and its three-sigma bounds. 

It is shown that the errors of velocity in navigation has bounded error and these 

errors are in 3-sigma bounds. Figures (5.42) to (5.44) represents the position errors.  

 

Figure 5.42: Error of the latitude and its three-sigma bounds. 
 

0 500 1000 1500 2000 2500 3000
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-3

time (sec)

e
rr

o
r 

o
f 

v
d
 (

m
/s

)

0 500 1000 1500 2000 2500 3000
-20

-15

-10

-5

0

5

10

15

20

time (sec)

e
rr

o
r 

o
f 

la
ti
tu

d
e
 (

m
)



91 

 

 

Figure 5.43: Error of the longitude and its three-sigma bounds. 

 

Figure 5.44: Error of the altitude and its three-sigma bounds. 
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5.8 Errors of inertial navigation system 

When the navigation system uses only the data of IMU, errors of inertial 

navigation system will be very large, because the system don’t has any aiding 

system, so the all of errors will be increase. In the below errors of attitude are shown 

in the Fig. 5.45.  

 

Figure 5.45: Error of the attitude (roll, pitch, and yaw). 

We can see that the errors of roll, pitch, and yaw are completely oscillating 

unstable. If the time approach to infinitive, the errors of attitude will approach to 

infinitive.  The velocity error is shown in the below figure.  

 

Figure 5.46: Error of the velocity (north, east, and down velocities). 
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Again, the errors of velocity is oscillating unstable. Fig. 5.47 represents the 

error of position.  

 

 

Figure 5.47: Error of the latitude, longitude, and altitude. 
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Table 5.5: Summery of position errors. 

raw Name 

 (maximum 

error) 

INS/Odometer/Counting System 

(m) 

INS/Odometer 

(m) 

INS 

(km) 

1 Latitude 2.5 4 3 

2 Longitude  3.5 4 10 

3 Altitude  2 1.8 1.8 

4 Mean square 

error  

4.7 5.9 10.59 

 

We can see the role of the counting system in the reduction of position errors. 
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4 CHAPTER SIX 

                              CONCLUSION AND RECOMMENDATIONS 

In this chapter, a brief review of the thesis and contributions and some 

recommendation will discuss. 

6.1 Brief review of thesis 

In chapter one, there was an introduction to in-pipeline robot navigation. The 

current problem with smart PIG robot is the navigation errors that can be stabilized 

by several types of aiding sensors to improve the errors of navigation system, which 

have been discussed in the next chapters. In addition, chapter two included 

introduction for the navigation frames, the errors of inertial sensor with their 

mechanization and with their mathematical models and the explanation for the 

calibration of inertial sensor and measurement error compensation. The filtering 

explanation was included in chapter three. Error models of INS with UKF have been 

offered in chapter four and the stochastic processes included UT model. Thus, the 

entire implementation algorithm of UKF for pipeline navigation has been shown in 

chapter four. Controlling/stabilizing the deviation in the pipeline navigation has been 

illustrated in a comparing between INS/odometer and INS/odometer/counting system 

in chapter five. 

6.2 The research contributions 

     This research includes two contributions: 

 Improving the navigation errors for in-pipeline smart inspection robot by 

defining a new algorithm based on integration of pipeline constraints as 

odometer measurements along y and z direction, odometer, and counting 

system. With absence of these constraints and sensors as shown in Table 5.5, 

the errors of INS are unstable and, so the navigation parameters have large 

errors. In chapter four, proposed algorithm is presented and discussed. The 

efficiency of algorithm are shown in chapter five. 

 In the industry of pipeline, there are several methods for detection the 

pipeline junctions such as, electromagnetic acoustic transducers, magnetic 
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flux leakage and by utilizing accelerometers and gyroscopes (IMUs’ 

sensors) readings that capture junctions depending on their sensitivity for the 

sudden vibration of a PIG robot during the period of crossing these 

junctions. However, a new method in section 4.5 has been introduced. This 

method is based on sensor with spikes that may possible to be connected to 

the odometers’ arms by moving joints to sense the changing in the inner 

diameter of pipeline at its junctions during the PIG moving along in it. These 

sensing readings of the sensor is provided to the counting system to update 

the measurement model for correction the positioning errors. 

6.3 Conclusion 

          From the research in this thesis can be concluded the following: 

 This thesis’s objective was to provide a comprehensive solving to the 

navigation error problem of a PIG robot, to enable a high accurate 

localization. A new navigation algorithm based on INS/odometer/counting 

system achieves this task to overcome from the increasing in navigation 

errors when depending on a tactical grade IMUs. The correction task in this 

research aimed to get the robot to be localized to within length of one pipe 

that may be needed to replace with a tolerance that might reach to less than 

three meters to be accepted in the case of burrowing for maintenance.     

 With absence together the aiding sensors (GPS, land marks, etc.) and the 

constraints of the motion body the needing for a standalone system becomes 

necessary to enable INS provides appropriate navigation solving for along 

traveling period. However, by comprehensive the system manner and by 

aiding useful system environment parameters will be possible to design 

system with appropriate constraints to limit/stabilize the growth of 

navigation errors along the whole traveling. So, new constraints (pipeline 

length) have been taken in measurement model to limit the drift of the INS 

errors over short period. The fitting PIG nearly to the pipe inner diameter 

excludes the consideration of roll angle with staying on a small value. 

 In order to implement to get accurate localization for the required parameters 

under PIG searching travel, the robot positioning needs to be marked by 

either inside or outside of the straight pipe. Thus, the detection operation for 
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pipeline junctions that provides junctions data to the counting system to 

support the measurement model as it has been explained in section 4.5 and 

shown in results in section 5.4 Fig. 5.14. 

The results show that the newly suggested algorithm can improve the errors of 

INS/odometer from 5.9m to 4.7m that means the new method can reduce the position 

errors of system nearby 20%. In addition, the INS errors are very large nearby 

10.5km. So, the integrated system is very efficient method to reduce the errors of 

INS. 

6.4 Recommendations 

Here are some recommendations for future researches that may be investigated 

to enhance the accuracy of the current in-pipeline navigation utilizing navigation 

grade based on IMU: 

 Creation a system of low cost with few inertial sensors can match or exceed 

the performance of high-end tactical grade IMU using multiple navigation 

grade based IMUs.  

 Including different aiding sensors can improve the positioning of the 

navigation results. Hence, camera or SICK as vision sensors and 

magnetometers can be involved in the future research. 

 In the application field, the output solving can be validated with an existing 

map, to detect with optimal efficiency the pipeline parts that require to be 

maintenance. 

 Using the special communication system for length measurement. 

 Using the map of pipeline for positioning of Robot. 

 Since this is an offline system, still there is other algorithm for non-linear 

filtering can be examined; such as particle filter (PF). 
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