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ABSTRACT 

AUTOMATIC FEATURE EXTRACTION OF EEG SIGNALS USING 
NEURAL NETWORKS AND TIME-FREQUENCY ANALYSIS 

ALSHEAR, Omar Saadi Fathi  

Master Thesis, Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Hassan SHARABATY 

December 2017, 48 pages 

Electroencephalography (EEG) is an important tool for the diagnosis of many 

human neurological disorders. The visual EEG analysis is very complex and requires 

a lot of time to be delivered by doctors. Moreover, the manual diagnosis is differing 

from one doctor to another depending on the doctor experience and some other 

factors. Time-frequency analysis & Artificial Neural Networks (ANN) is generally 

used in the automatic diagnosis of these signals. In this work, we propose to use 

Discrete Wavelet Transform (DWT) to decompose the EEG signals in preprocessing 

stage depending on Bonn University (UBonn) Dataset, then to analyze the extracted 

features using 2 hidden layers of ANN in order to deliver the classification decision. 

The preprocessing analysis was achieved via MATLAB Wavelet Toolbox using two 

wavelet functions: Daubechies 4 (db4) and Daubechies 8 (db8). In order to study the 

impact of selected features on the classification accuracy, we have discussed 6 

different cases in Feature extraction stage. Finally, the resulted vectors are trained by 

Levenberg-Marquardt training algorithm in the Decision-Making stage. The 

performance of our algorithm is evaluated via Confusion Matrix equations. In case of 

db4, the accuracy of the best proposed scenarios is 98.50% whereas db8 gives an 

accuracy of 98.75%. 

Keywords: Electroencephalogram, Artificial Neural Networks, Discrete Wavelet 

Transforms, Feature Extraction. 
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ÖZET 

SİNİR AĞLARI VE ZAMAN-FREKANS ANALİZİ KULLANILARAK EEG 
SİNYALLERİNİN OTOMATİK ÖZELLİK ÇIKARIMI 

 

ALSHEAR, Omar Saadi Fathi 

Yüksek Lisans Tezi, Elektrik-Elektronik Anabilim Dalı 

Tez Danışmanı: Yrd. Doç. Dr. Hassan SHARABATY 

Aralık 2017, 48 sayfa 

Elektroansefalografi (EEG), insanlarda bulunan birçok nörolojik bozukluğun 

teşhisinde kullanılan önemli bir araçtır. Görsel EEG analizi oldukça karmaşıktır ve 

doktorlar tarafından teslim edilmesi çok zaman gerektirmektedir. Bunun yanı sıra, 

manuel teşhis doktorun deneyimine ve bazı diğer faktörlere bağlı olarak bir 

doktordan diğer doktora farklılık göstermektedir. Zaman-frekans analizi ve Yapay 

Sinir Ağı (ANN) genellikle bu sinyallerin otomatik teşhisinde kullanılmaktadır. Bu 

çalışmada, Bonn Üniversitesi (UBonn) veri setine dayanılarak önişleme aşamasında 

EEG sinyallerinin ayrıştırılması için Kesikli Dalgacık Dönüşümü (DWT) 

kullanılmasını ve daha sonra sınıflandırma kararını vermek için yapay sinir ağının 

(ANN) 2 gizli katmanını kullanarak çıkarılmış özellikleri analiz edilmesini 

önermekteyiz. Önişleme analizi, Daubechies 4 (db4) ve Daubechies 8 (db8) olmak 

üzere iki dalgacık fonksiyonu kullanan MATLAB Dalgacık Araç Çubuğu üzerinden 

gerçekleştirilmiştir. Seçilen özelliklerin sınıflandırma doğruluğu üzerindeki etkisini 

incelemek için, özellik çıkarımı aşamasında 6 farklı durumu tartıştık. Nihai olarak, 

sonuçta ortaya çıkan vektörler Karar-Alma aşamasında Levenberg-Marquardt eğitim 

algoritması tarafından eğitilmiştir. Algoritmamızın performansı Karışıklık Matrisi 

eşitlikleri üzerinden değerlendirilmiştir. Db4 durumunda, önerilen en iyi senaryoların 

doğruluğu %98.50 olurken, db8 ise %98.75'lik bir doğruluk vermektedir. 

Anahtar kelimeler: Elektroansefalogram, Yapay Sinir Ağları, Kesikli Dalgacık 

Dönüşümü, Özellik Çıkarımı. 
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CHAPTER ONE 

1. BACKGROUND AND LITERATURE REVIEW 

1.1 Introduction 

The analysis of EEG signals is very complex because of the non-stationary 

nature of the brain activity. EEG Feature extraction helps to acquire all important and 

distinctive characteristics stored in the brain signal, and can be used to diagnose 

various neurological diseases. In addition, it reduces the needed time by doctors to 

analyze brain signals manually. Many Time-Frequency methods have been proposed 

to depict the brain wave changes that occur in EEG signals. 

1.2 The Brain and Its Structure 

The human brain has the same general structure as the brain of other mammals. 

However, it has evolved to become the largest in terms of size relative to the body. 

The blue whale has the heaviest brain at 6.92 kilograms compared to 1.5 kilograms 

for the human brain; however, the human brain has the highest encephalopathy 

coefficient at seven times higher than the average of mammals [1]. The increase in 

human cerebral volume comes largely from the development of the cerebral cortex, 

which is distinct from that of other primates, especially the frontal lobes which 

account for more than 30% of the cerebral surface and are mainly involved in 

planning, language and voluntary movement. Nearly half of the cerebral cortex is 

devoted to sensory analysis, particularly vision. 

Although it is protected by the blood-brain barrier and the thick bones of the 

skull as well as being bathed in the cerebrospinal fluid, the human brain remains 

subject to injuries and disease, the most frequent being head trauma, neurotoxic 

diseases, and neurological and neurodegenerative disorders. A number of psychiatric 
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disorders, such as schizophrenia and depression, are considered to be associated with 

brain dysfunctions, although the nature of these brain abnormalities is not well 

understood. Figure 1.1 shows the Brain and Human Skull. 

 

 
 

Figure 1.1: Brain and human skull. 

 

Historically, opinions have often been opposed to knowing that the brain or 

heart was the seat of the soul. In a sense, it was impossible to deny that 

consciousness seems to be localized in the head and that a blow to the head causes 

much more unconsciousness than a blow to the torso and that shaking the head gives 

vertigo. In another sense, the brain subjected to superficial examination seems inert, 

while the heart beats constantly. Stopping the heartbeat causes death, while emotions 

induced by changes in heart rhythm and grief often produce a feeling of pain in the 

heart ("broken heart"). For Aristotle, the seat of the soul was the heart and the brain, 

a cooling organ, merely served to ensure the circulation of blood (philosophical and 

medical theory of cardio centrism). Democritus divides the soul into three parts: the 

intellect in the head, the emotion in the heart, and the desire around the liver [2]. 

Hippocrates was certain that the soul was in the brain. For Herophilus, the brain was 

the center of intelligence. 

1.3 Literature Review 

An epilepsy seizure is a complex illness and it is the second most predominant 

complex issue in humans after strokes. Between (40) and (50) million people on the 
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planet experience the ill effects of epilepsy [3]. In an epilepsy seizure, the typical 

example of complex neuronal activities is plainly aggravated, bringing about 

abnormal sensations, feelings, and conduct or a number of shakes, muscle seizures, 

and the absence of cognizance. An epilepsy seizure is portrayed as a repetitive 

seizure by utilizing strange electrical activity created in the brain that adjusts 

observation or conduct. Epilepsy subjects encounter shifted indications amid seizures 

relying upon the area and degree of the influenced brain tissue. Contingent upon the 

degree of the association of brain regions during a seizure, epilepsy can be separated 

into two fundamental types. Summed up seizures include nearly the whole brain, 

while incomplete seizures start from an encircled zone of the cerebrum and stay 

limited to this territory. An electroencephalogram (EEG) is a recording of the 

electrical activity in the brain. There are two distinct types of EEG which rely upon 

the terminal regions of the head, namely the scalp (the skin covering the head) and 

within the skull. For scalp EEGs, anodes are set on the scalp with great mechanical 

and electrical connections. In spite of this, an intracranial EEG is acquired through 

exceptional terminals embedded into the brain during surgery. Scalp EEGs that 

concentration on this exploration are a very widely recognized demonstrative 

technique to distinguish anomalies of the electrical movement of the cerebrum. EEG 

records contain important data such as the identification of epilepsy. Inquiries about 

program seizure location started in the 1970s and different strategies tending to this 

issue have been exhibited. Chen et al. (2016) proposed a system to utilize DWT and 

Support Vector Machine (SVM) for epileptic center localization depending on EEG 

and for  giving a rule in choosing the best settings for DWT, disintegrated the EEG 

windows  in 7 commonly utilized wavelet families to their greatest hypothetical 

levels [4]. Riaz, F., Hassan et al. (2016) presented a system for the discovery of 

epilepsy seizures in EEGs. Their system depended on the extraction of temporal and 

spectral characteristics from the Empirical Mode Decomposition (EMD) of EEGs 

[5]. Singh et al. (2015) utilized wavelet transforms to depict EEG motion in 

estimated and details coefficients. Spike associated characteristics were extricated for 

a preparation of counterfeit normal system, which was utilized for characterization of 

normal patterns and epilepsy patterns in EEGs [6]. Abualsaud et al. (2015) studied 

the use of a new ensemble of classification to identify an epileptic seizure in the state 

of compressed and vociferous EEGs. The Noise-Aware Signal Combination (NSC) 
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ensemble classification combines four grouping models in their single execution. The 

main goal of the proposed classification was to improve the exactness of order within 

noisy and incomplete information while protecting a sensible measure of many-sided 

qualities [7]. Kumar et al. (2014) presented a discrete wavelet transforms (DWT) 

analysis and an approximation entropy (ApEn) of EEGs Seizure discovery was 

performed in two steps. In the first step, EEG signals were analyzed by DWT to 

estimate approximation and detail coefficients. In the second step, ApEn weights of 

the approximation and detail coefficients were estimated [8]. Nanthini et al. (2015) 

examined the execution of classification concerning Support Vector Machines 

(SVM) and Artificial Neural Networks (ANNs) by applying wavelet transforms for 

epilepsy seizure display. The study used the Discrete Wavelet Transform to analyze 

EEGs that which was non-stationary [9]. Nunes et al. (2014) presented a regular 

offering valuation of the lately entered Optimum-Path Forest (OPF) classification 

when working with the assignment of an epilepsy illness diagnosis straight in EEGs. 

The design used a huge benchmark dataset including five groups; the whole 

difference was very difficult obtain. The four models from the wavelet transform 

function and three famous filter methods were examined for the feature extraction 

and determination, respectively. Furthermore, Support Vector Machines (SVM) 

composed of the Radial Basis Function (SVM-RBF) kernel, Multilayer Perceptron 

Neural Networks (ANN-MLP) and Bayesian classification were applied to compare 

with indications of efficiency and implementation [10]. Fathima et al. (2013) 

presented a method depending on the wavelet analysis with the computation of 

certain statistical characteristics. The wavelet analysis performed up to the fourth 

level, followed by a computation of the statistical features, namely the inter-quartile 

range of the wavelet coefficients. The features were excerpted for five kinds of EEG 

signals. A linear classifier trained on these features could classify normal and 

epilepsy EEG signals with 100% sensitivity, and specificity had an accuracy of 

95.6% for five states [11]. Omerhodzic et al. (2013) presented Discrete Wavelet 

Transforms by t using Multi-Resolution Analysis (MRA) applied for analysis of EEG 

determination levels of ingredients of the EEGs. Parseval’s Theory was applied to 

obtain the rate of energy distribution characteristics of the EEGs at various decision 

levels. Second, for artificial neural networks (ANNs), the Features groups of the 

EEGs depended on the rate distribution of the strength of the signal features [12]. 
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Übeyli et al. (2009) presented a study in which EEGs were analyzed into time-

frequency simulations utilizing discrete wavelet transforms with the Daubechies 

function (order 2) and the analytical characteristics were determined to describe their 

distribution as supplies to the mixed neural network model [13]. Subasi et al. (2007) 

presented the discrete wavelet transforms which was used to process and analyze the 

signal to select the features of the extraction features and followed by presenting ME 

(Mixture Of Experts), a classification for epileptic seizure discovery dependent on a 

mixture of expert types [14]. Mohseni et al. (2006) utilized a Short Time Fourier 

Transform (STFT) to decompose EEG signals and extract properties depending on 

the imaginary using the Wagner-Ville and pseudo-Wagner-Ville distributions. These 

characteristics were used as data for artificial neural network classifications [15]. The 

EEG signals essentially have a small boundary of amplitude (nearly 100 μV) and a 

spectrum of frequency from 0.4 Hz to 80 Hz. Each EEG was regularly analyzed into 

five subbands: Delta (0.5-4 Hz), Theta (4-8 Hz), Alpha (8- 13 Hz), Beta (13-30 Hz), 

and Gamma (30-60 Hz) [16-18]. Table 1.1 shows the frequency range and capacity 

for each model of brain waves. 

Table 1.1: Spectrum frequency for human brain waves. 

Brainwave Founder Spectrum (HZ)  Description 

Delta Walter (1963) 0.5-4 Deep sleep 

Theta 
Walter and dovey 

(1944) 
4-8 Deep meditation 

Alpha Berger (1929) 8-13 
Relaxing, without 

attention 

Beta Berger (1929) 13-30 
Solving concrete 

problems 

Gamma 
Jasper and Andrew 

(1936) 
Above 30 

Sensory processing 
and solving high 
cognitive tasks 

 

In [19], the wavelet transform was used to analyze EEG signals to evaluate the 

mental behavior of human brains. In this paper, the seven emotional states were 

specified as relax, thought, memory-related, motor action, pleasant, fear, and 

enjoying music. The proposed algorithm is shown in Figure 1.2. 
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Figure 1.2: Flowchart of the method for [19]. 

 

1.4 Problem Definition 

The general problem in EEG signals analysis is that the recorded signals have 

noise in their frequencies. So, the manual analysis is very difficult and require a lot 

of time to be done by the human. Moreover, the delivered diagnosis is different from 

one doctor to another [20]. As explored above, many studies have been achieved in 

order to build algorithms that analyze EEG signal automatically [4, 9, 21]. Generally, 

time-frequency methods, like DWT with various wavelet functions, are used in the 

preprocessing phase [8, 9, 11, 22]. However, in the post-processing phase, Artificial 

Neural Networks (ANN) or Support Vector Machine (SVM) are generally used [10, 

12, 15].  Nevertheless, the results of all proposed classification algorithms have 

shown a margin of error ratio depending on the number of the extracted features and 

the used wavelet function. 
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1.5 Proposed Work & Aim of Study 

In this thesis, we use Bonn university Database (UBonn) provided by the 

Andrzejak and his equip in 2001 for different states of brain function. Our work is 

achieved via MATLAB environments. We propose to use Discrete Wavelet 

Transform (DWT) with Daubechies order 4 (db4) and Daubechies order 8 (db8) to 

decompose EEG signal into five sub-bands: Delta, Theta, Alpha, Beta, and Gamma. 

Six different classification cases will be discussed after extracting 8 features of the 

EEG signal in both time and frequency domain. In the first case, we will consider the 

most 4 features used in the previous studies that will be referred as essential features. 

The remaining 4 features will be considered in the others classification scenarios by 

combining them with the 4 essential one in order to study the influence of each 

feature on the classification accuracy. After that, the resulted vectors in all cases is 

given to the Artificial Neural Network (ANN) which will be trained by Levenberg-

Marquardt. Finally, we evaluate the performance of all cases using the Confusion 

Matrix equations. 

This work aims to obtain high classification accuracy between healthy and 

non-healthy EEG signals. 

1.6 Thesis Organization 

In Chapter 2, we present the feature extraction stage with explaining to 

different DWT techniques used to analyze the EEG signals. Whereas the 

classification with the Artificial Neural Network is included in Chapter 3. After that, 

we present and discuss our results in Chapter 4. Finally in Chapter 5, we summarize 

all conclusions of our work with proposed idea for the perspective works. 
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CHAPER TWO 

2. FEATURE EXTRACTION & WAVELET TRANSFORM 

2.1 Introduction 

The wavelet transform has two major differences from the Fourier transform in 

the short term: It can implement a different basis, not necessarily sinusoidal; there is 

a relationship between the width of the envelope and the frequency of oscillations, 

thus not only does it perform a scaling of the oscillation, it performs a scaling of the 

wavelet. 

However, it is not a different formalism of the Fourier transform; it is, in fact, 

complementary. It is wavelet decomposition using Fourier formalism. The wavelet 

technique is particularly used in computer data compression [23]. 

2.2 History of Wavelet Decomposition 

Wavelets emerged when some subjects of study required an analysis of 

frequency and time. In the nineteenth century, Fourier analysis was the only 

technique for the decomposition of a signal and its reconstruction without loss of 

information. Unfortunately, it provides a frequency analysis but does not allow the 

temporal location of abrupt changes, such as the appearance of a second musical note 

after a first note is played. 

In 1909, Alfréd Haar defines a function composed of a short negative pulse 

followed by a short positive pulse as the first wavelet [24]. 

In 1946, Hungarian mathematician Dennis Gabor invented the transformation 

of a function similar to that of Joseph Fourier, applied to a time window expressed 

by a Gaussian function. Finally, the term ‘wavelet’ was introduced into the 

mathematical language by Jean Morlet and Alex Grossmann in 1984. The term, 
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originally French, was translated into English as ‘wavelet,’ from the terms wave 

(wave) and the suffix ‘-let,’ denoting a diminutive (small). 

Yves Meyer, recognized as one of the founders of wavelet theory, gathered in 

1986 all previous discoveries (numbering 16) then defines orthogonal wavelets [25]. 

In the same year, Stéphane Mallat [26] made the connection between wavelets 

and multiresolution analysis. Finally, Ingrid Daubechies devised, in 1987, orthogonal 

wavelets called Daubechies wavelets that are easily implementable and used in the 

JPEG 2000 standard [23, 27]. 

2.3 Mathematical Definition 

There are two types of wavelet subgroup: discrete and continuous. 

2.3.1 Continuous Wavelet Transform 

Analyzing a square sum able function wavelet is to calculate all its scalar 

products with the wavelet family. Numbers obtained are called wavelet coefficients, 

and combining the transaction into a function of its wavelet coefficients is called a 

wavelet transform [23]. 

2.3.2 Discrete Wavelet Transform 

We can adapt the wavelet transform in cases where it is in a discrete set. This 

technique is used in the compression of digital data, with or without loss [23]. 

2.3.3 Using Wavelet Decomposition 

Wavelet decomposition is used particularly in data compression. The image 

compression method is used mainly in two formats: Enhanced Compression Wavelet 

(ECW), used primarily by professional mapping; JPEG 2000, from the newest ISO 

standardized format. 

This compression method is also used for video: The Dirac codec without a 

patent allows resolutions from 176×144 (QCIF) to 1920×1080 (HDTV), progressive 

or interlaced, double compression and better quality (almost lossless) in comparison 

to MPEG2. 
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It is based on the wavelet used for the compression by eliminating non-

perceptible high-frequency information by the eye. In particular, this often allows 

better analysis of functions with discontinuities or local phenomena. This is, for 

example, if the contours in the images, which explains the adoption of a wavelet 

decomposition in the JPEG 2000 standard [23]. 

One-dimensional (1D) signals, such as voltage signals, can be analyzed by 

using wavelet transformation. It is well known that wavelet transformations are 

widely used to compress data and to suppress noise. In the literature, this process is 

known as wavelet de-noising. 

Wavelet transformations of (1D) signals contain information regarding any 

low-frequency content of the voltage signal. This low-frequency content is called the 

approximation coefficients, while the information regarding the high-frequency 

content of the voltage signal is called the detail coefficients. 

The wavelet transformation of the signal using the matrix method is described 

in the following sections. 

2.4 Wavelet Transform 

Let )()( 2 RLt   is a continuous-time mother wavelet function and the set of 

functions obtained by shifting and scaling the mother wavelets: 

)(
1

, a

bt

a
ba


                                                                                           (2.1) 

is the orthonormal wavelet basis in the )(2 RL . That is: 

)()()(~)( ',', bbaadttt baba                                                              (2.2) 

In the wavelet, the a and b variables are real and the integral value indicates the 

closeness of the signal to a particular basis function. Dividing )(, tba  by a ensures 

the unity in the 2L  norm of the set  )(, tba  [28, 29]. 

The main disadvantages of the CWT are computational complexity and 

redundancy. The mother wavelet has to satisfy the following properties [30]. 
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A wavelet must have finite energy 

 dtt
2

)(                                                                                                (2.3) 

The time-scale cells corresponding to dyadic sampling are shown in Figure 2.1. 

 

 
 

Figure 2.1: Time-scale cells corresponding to dyadic sampling [31]. 

 

The discrete wavelet which is generated by dyadic sampling from the 

continuous wavelet transform is given by: 

)2(2 2/
, ktjj
kj                                                                                        (2.4) 

kj ,  is known as wavelet basis and we employ linear combinations of basic 

functions which are localized both in time and frequency to construct a signal 

function (f(t)) which is a linear combination of basic functions. Therefore, we can 

express a signal function as [32]: 

 









j k

kjkj tbtf )()( ,,                                                                                  (2.5) 

where 






 dtttfb kjkj )()( ,,                                                                                       (2.6) 
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2.5 Multi-Resolution Analysis 

A Wavelet Transform leads to a signal decomposition technique known as 

multiresolution analysis (MRA), which analyzes the signal at different frequencies at 

different resolutions. 

The idea is that there is a scaling transformation which moves in discrete steps, 

up and down an associated scale of subspaces. One of the resolution scales refers to 

“coarse” and the other to “fine.” When we compare two subspaces, we can see that 

the space of the coarse scale is contained within that of the fine resolution [33]. 

Where j and k are the dilation (scale) and translation indices, respectively, and 

can take on only integer values. Dilation and time parameters determine frequency 

and the time resolution of the WT. 

A function (f(t)) in the whole space has a piece in each subspace. Those pieces 

contain more of the complete information in f(t). The piece in jV  is )(tf i . One 

requirement on the sequence of subspaces is completeness: 

 jastftf i )()(                                                                             (2.7) 

We let W0 be space spanned by the orthonormal set of basis  Nkkt  ),( . 

Space W0 is orthogonal to the space W1. Then spaces spanned by the wavelet 

function bases are orthogonal between each other. Thus, ...... 2101  WWWW  

Any signal in the V1 space may be expressed in terms of the basis of V0 and W0 

space. If we combine the bases of V0 and W0 space, we can define any signal in V1 

space as: 

001 WVV                                                                                                     (2.8) 

W0 is the complementary of V0 while V0 is a subset of V1. Therefore, the V0 and 

W0 spaces are complementary. Two spaces are called that satisfy this property of 

orthogonality and use Vj ^Wj to denote Vj as orthogonal to Wj. Their bases together 

can represent any signal in the next “higher” or finer space of V1 [34]. Vj denotes 

subspaces corresponding to scaling basis (approximations) and Wj denotes subspaces 

corresponding to the wavelet basis (details). 

The part of the signal at resolution j and space Vj is the approximation of the 

signal at this resolution: 
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





k

kjkj tata )()( ,                                                                                         (2.9) 

and the part of the signal at resolution j and space Wj is the detail of the signal at this 

resolution: 







k

kjkj ttd )()( ,                                                                                     (2.10) 

The signal at resolution j is then: 

)()()( tdtatf jjj                                                                                       (2.11) 

The relationship between the scaling and wavelet function spaces is shown in 

Figure 2.2. Spaces spanned by scaling function bases are nested. Each Vj is contained 

in the next subspace Vj+1. 

 

 
 

Figure 2.2: Nested vector spaces spanned by scaling and wavelet bases. 

 

The wavelet decomposition process is represented schematically in Figure 2.3. 

 

 
 

Figure 2.3: Schematic representation of wavelet decomposition of signals. 

 

Below the properties, the multiresolution analysis is summarized. 
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CHAPTER THREE 

3. CLASSIFICATION VIA ARTIFICIAL NEURAL NETWORK 

3.1 Background & Definition 

Computers have become an indispensable part of the modern world and 

computer systems today can decide on two events and learn about the relationship 

between those two events. This cannot be expressed mathematically and it cannot 

solve problems that can be solved by computers using methods based on experience. 

Computers equipped with this feature, and leading the development of these 

capabilities work “Artificial Intelligence,” is known to be working. While working 

on artificial intelligence, scientists have been forced to work on the brain and being 

inspired by the structure of the brain, they have tried to extract a mathematical 

model. In order to model the brain with the idea that all behavior should be modeled 

accurate, the physical components of a variety of artificial cell and network models 

have been developed. Thus, with today’s computers as a separate discipline of 

algorithmic calculation methods, the “neural network” has emerged. In the most 

general sense of the ANN, it can mimic many nerve cells in the human brain that are 

the result of simple processors connected together at different levels of impact 

regarded as a complex system. Developed as a result of efforts to remove the 

mathematical model of nerve cells in the human brain, the ANN, in practice, often 

has a very different structure and form of data which may be quickly identified and 

used for detection. Engineering ANN is a reason behind the widespread use in the 

field, the ability of the solutions put forward in the classification technique with an 

effective solution to difficult or even impossible problems. Computers are very 

successful in their mathematical and algorithmic calculations in the process requiring 

a great amount of learning and recognition systems with the expectation of accuracy 

to perform operations. This matter is best resolved by an ANN. Neural networks can 
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be used in nonlinear equations and generalization capabilities due to the very 

complex and large-scale solutions to problems that are easily produced. Adaptable to 

be fast, easy, and in order to analyze and design as well as due to their ability to 

learn, they have become one of the most indispensable elements of our age [35]. 

Results that can be obtained with a very complex equation using other 

programs were made possible through the foresight of the neural network that can be 

estimated easily. Machines that can learn using neural networks due to in mind that 

because of the way people work areas or constraints of the human factor in the work 

to be done in the coming loss of precision has been achieved major improvements 

occur. A parallel ANN can be defined as a distributed computing system; in other 

words, on the basis of the ANN, they are formed in the process room functions 

requiring intelligence. This system consists of a one-way beacon channel and 

interconnected operation elements. The output signal can be amplified by the fact 

that although the cases need one, externally it is a simple though there appears to be 

an extremely complicated internal structure in the ANN. Because it is an imitation of 

biological neural networks, an understanding of the structure of biological neural 

networks will facilitate the understanding of the neural network. The building blocks 

required in artificial neural networks are neurons as in biological neural networks 

[35, 36]. 

Containing approximately 10 billion neurons in the human brain, the nerve 

cells are estimated to comprise 60 trillion connections with each other. Nerve 

messages from the senses are transmitted to the next cell evaluated by nerve cells. 

Thus, the message carried by the signal is transmitted to the central and nervous 

system. This generates response signals to evaluate central nervous system signals. 

These signals are transmitted in response to the organ in the form of the nervous 

system. Thus, the signals from the response of the sensory organs will be transmitted 

to the body through the nervous system in spite of the much slower process of the 

brain connected by parallel connections and experience gained in this enormous 

ability to renew connections between neurons are the ANN application directory 

[37]. 

At this point, the general structure of the ANN will be useful to sort out before 

discussing the details about the features that make it important, including the most 

basic capabilities of ANN in this context. 
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3.1.1 Non-Linear Function of The Network 

The neuron itself is not linear but it is the most essential component in an 

ANN. Accordingly, the neural network formed by the interconnection of neurons is 

not linear and also the non-linear characteristic due to the nature of an ANN is 

distributed across the network in parallel. This is mathematically possible in the 

absence of the desired linear mappings due to non-linear sub-units on the network 

structure in the fulfillment of the function. Therefore, the function of structural 

flexibility allows this to occur correctly. 

3.1.2 Input-Output Association 

The ANN guided especially to be mentioned later in the study has a structure 

that allows learning to occur so that using the elements in the ANN training set 

provide the desired results for the specified entry revising free elements in its 

structure. To make fewer errors at each iteration, it resets the weight and 

connections. 

3.1.3 Becoming Acceptable Easy Adapter 

When the threshold value is changed or by simple operations such as adjusting, 

the weight applied to the input can be adapted to the new environment. ANNs with 

different structures are used in different fields and thanks to this ability, they may be 

more preferable. 

3.1.4 Parallelism and Function of Disarray Structural 

Neurons within the network structures actually working simultaneously 

constitute a complex function. Working simultaneously in multiple neurons does not 

directly affect the success of the network in the event of outages of any neurons. 

Depending on the application in order to obtain the proper output, connections 

between neurons can be canceled automatically. This is indicative of the fact that in 

parallel and distributed structure of all the neurons in achieving the expected results 

of the ANN. 
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3.1.5 Generalization Ability 

The network during training describes the mapping of numerical data used if 

using the coarse features and it is thus able to produce meaningful answers for 

unused inputs during training. The neuron structure of the network in the event of 

breakdowns is shown in Figure 3.1. 

 

 
 

Figure 3.1: Neuron structure of the network in the event of breakdowns [38]. 

 

3.1.6 Error Tolerance 

An ANN application of a possible error occurring in the system is also one of 

the most important advantages such that the quality will not allow a sudden collapse. 

An ANN error will occur in the structure above because of the mentioned features 

that will result in gradual decline and the user will notice that something is wrong 

and provide the time needed to measure it. 

3.2 General Structure of Neural Network 

Neurons, the building blocks of artificial neural networks, meet in many layers 

that can be used in solving highly complex problems. An ANN has four main parts 

forming dendrites, axons, the core, and connections, as shown in Figure 3.2. 
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Figure 3.2: Sections comprising a neural network [38]. 

3.2.1 Dendrites 

Dendrites are tree root-like structures which convey the core of the 

electrochemical excitation received from other neurons. The electrical stimulation of 

neurons and dendrites in a consecutive sequence reaches through the synapses 

between them. 

3.2.2 Core 

The central processing unit core of the nerve cell collects and transmits signals 

from the dendrites to the axon. 

3.2.3 Axon 

Show and branching out from the body which is the cytoplasmic fraction. For 

each neuron; there is one. Axon exiting the body, to move from the nerve cell signals 

in the environment is official, so other nerve cells, nerve cells, muscle cells, such as 

cells or operational ties with the gland. Has an important role in message 

transmission. 
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3.2.4 Connection 

Newly produced is responsible for transmitting signals to other neurons. To 

receive notifications of a nerve cell is called the threshold stimulus intensity required 

intensity. The amplitude of the said notice must be at or above the threshold in order 

to receive alerts. The warning threshold value below the response is not generated by 

neurons. 

 

 
 

Figure 3.3: Artificial neuron structure [38]. 

 

The neuron model, shown in simplified form in Figure 3.3, can also be 

considered a threshold volume. The threshold (θ) unit, which collects the output and 

Hazel Harmandir, only produces an output exceeding the sum of the internal 

threshold of the entrance. A threshold neuron unit receives signals from the synapse 

and collects all the signals that are generated by multiplying the appropriate weight. 

You will now sign up to the power of the threshold gathered strong sign stimulus is 

transmitted along the axon and dendrites of the other neurons. Intersections 

compared with all the signs of the internal threshold gated neurons with dendrites 

and synapses from the axon signs spreading the threshold is exceeded. Output 

depending on whether the result of the sum function value is above or below the 

threshold activation functions are formed by the normalizing. ANN, connecting these 

simple nodes and the unit is obtained by conversion to a network. An ANN block 

diagram is shown in Figure 3.4. 
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Figure 3.4: ANN general block diagram [38]. 

 

To set the threshold value of the signal entering the activation function at this 

point bias (θ) is called a fixed input value applied to the input neurons, which allows 

the threshold to be changed in order to receive the expected outputs. An ANN has a 

basic, simple and versatile structure in which each node cell is called the nth degree 

and a non-linear transfer. Processing elements called nodes and links there between, 

each connection is involved in the transmission of a one-way mark delay. An 

unlimited number of processing element inputs and a single output connection. 

However, if this needs to be copied and used in many cells of single output power 

supply, the output of the processing element may be any desired mathematical type. 

The function of the output of the processing element x (the input value), y (the output 

value), Ψ (the transfer function, f(x) (the collecting function), Wkj k (the connection 

weights) and θk for sequential neurons, including neurons in the sequential threshold 

for k, can be expressed as follows [33]: 

  00
0
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expressed in the form of a neuron matrix as follows: 
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Inputs are information that enters the cell from other cells or from the external 

environment. The information enters the cell via links on weight or weights, which 

will determine the effect on the corresponding input cell. The input values are 

weighted after entering the processing element; in other words, the impact on the 

system of each input signal can be replaced by the weight assigned to it. Weights are 

the relative strength of the value to be used as inputs in a neuron (the mathematical 

coefficient). Multiplication is used at this point. One neuron usually simultaneously 

is entered as many numbers. There are different weight values of every connection to 

the transmission between neurons in the ANN input. Thus, the weights impact on all 

inputs of each processor element, which has a weight of its own at each entry. These 

weights have the same function as the varying biological effects of a synaptic 

neuron. In both cases, some entries will be more effective in producing a neural 

response as the ensuing process becomes more an important element than the others. 

Commonly known as the aggregation function, it calculates the input coming from a 

cell and it is usually entered and calculated as the sum of the product of the entries 

related to weight. 

3.3 Learning in Neural Networks 

The network should be adaptable to a good result from artificial neural 

networks. This is only possible with suitable weights and the right connections. The 

network connection must learn the proper weight and behavior of the system in order 

to obtain organizing itself. Information in a neural network is kept in the weights of 

the neural connections in the network. Therefore, it is important to determine the 

weight. The knowledge that the weight value is stored in the entire network with a 

node does not mean anything to a single press. Weights across the entire network 

should take the appropriate value. However, there is a formula originally developed 

to determine the values of the optimum weights in a neural network. Network 

processor elements determine optimal weight values using a set of rules over time. 
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This processing is called "train the network". Accordingly, the weight value of a 

network to be trained must be dynamically varied within certain rules [34]. 

Overall, a learning event in a neural network takes place in two stages. Weight 

values to be shown in the first stage random sample are taken and the network has to 

be generated by the output of the network. According to the accuracy of the output 

value of the second stage as different examples showing the weights of the network 

are changed. The objective here is to find a weight value which will be useful to 

obtain an accurate output for these samples. Finding weight values to produce the 

correct output of the network indicates that it has the ability to make generalizations 

about the events represented by the example of the network. 

The event of generalization of the network is called a "learning network". 

Learning methods, including supervised, unsupervised and reinforcement were 

collected into three basic groups [35]. 

3.3.1 Supervised Learning 

In this method, the intervention of an outside trainer should say to the neural 

network. Trainers should produce results relevant to neural network input data in the 

neural network system. Therefore, the artificial neural network to input/output 

samples comprises two presentations. 

These two represent the features required to learn the network. This is part of 

the network input and it generates an output current connection with the information 

represented by the weight. This output is compared with the output which should be 

transferred over a network error and intermediate weights are modified to reduce this 

error. 

3.3.2 Unsupervised Learning 

The tutorial which helps the learning unsupervised learning network. 

Therefore, it is also often not called self-organizing (self-organized learning). 

Networking acquires its examples shown and classifies them according to certain 

criteria. These criteria can be known in advance. The network itself constitutes their 

learning criteria. 
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3.3.3 Reinforcement Learning 

This method is close to supervised learning rule learning. The reinforcement 

learning algorithm does not need to know the desired output. It does not provide an 

ANN output to the target output, the accuracy of a measure that is used to input the 

corresponding output obtained. 

3.3.4 Back Propagation Algorithm 

The back-propagation algorithm is the most widely-used learning algorithm for 

updating the parameters of a neural network. Today, problems with speech 

recognition solutions as artificial neural networks to the problem of non-linear 

systems are used with success in many fields [36]. 

Due to the attempt to reduce the error in the reverse direction, the network 

algorithm is called to the back-propagation algorithm. Today, it is derived from the 

many developed versions of the back-propagation algorithm. However, the back-

propagation algorithm is usually expressed with the generalized delta learning 

algorithm. 

Calculation of the back-propagation algorithm consists of two parts: 

a) Advanced calculations 

b) Back calculation 

3.3.5 Advanced Computing 

Advanced methods of calculation start with the administration of the network 

from the input layer of each sample in the training data set. Input data is sent to the 

intermediate layer between the hidden layer and input without any change. Here, the 

collection function is applied to each of the neural cells in the hidden layer. Input is 

gathered in the hidden layer of neural cells, with the result of the threshold value of 

the collection function being calculated. As in biological neural cells, they are 

normalized to the net input of the activation functions possessed by every neural cell 

to generate an electrical signal and producing an output value for the cell. This 

creates an output value of the input value of the neural cells in the next layer, and 

continues until the output of the computation network. The exit output value is found 

in layers and advanced calculation of the network is completed. 
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3.3.6 Levenberg Marquardt Algorithm 

Basically, the Levenberg-Marquardt (LM) calculation is a minimum square 

estimation calculation subject to the greatest neighborhood outline. Let ܧ	ሺݓሻ be a 

target error work surrendered of one of a kind blunder terms ݁_݅^2	ሺݓሻ		as result: 

ሻݓሺܧ ൌ ∑ ݁௜
ଶሺݓሻ ൌ ଶ௠||ݓ||

௜ୀଵ                                                                        (3.4) 

Wherever ݁௜	
ଶሺݓሻ ൌ ሺݕௗ௜ െ  ௗ௜ are the needed values of the outputݕ  and		௜ሻଶݕ

neurons, yi is the exact result of that neuron. It is assumed that function ݂	ሺ•ሻ and its 

Jacobian ܬ are verified at point ݓ. The reason for the Levenberg-Marquardt 

calculation is to ascertain the weight vector w with the end goal that ܧሺݓሻ is a 

minimum. Using the Levenberg-Marquardt calculation, another weight vector ݇ݓ ൅

1 can be taken from the past weight vector wk as: 

௞ାଵݓ ൌ ௞ݓ ൅                                                                               (3.5)																			௞ݓߜ

where      ݓߜ௞					as: 

௞ݓߜ ൌ െሺܬ௞
்݂ሺݓ௞)) (ܬ௄

௄ܬ் ൅  ሻିଵ                                                               (3.6)ܫ	ߣ

In Equation (3.6) ܬ௄ is the jacobian of ݂ estimated at	ݓ௞, λ the Marquardt 

parameter, and ܫ	the character matrix. 

3.4 Statistical Parameters 

The estimation of the suggested system on the identification problems is 

defined by calculating the statistical characteristics parameters of sensitivity 

accuracy, specificity accuracy, and classification accuracy. These statistical 

characteristics parameters include: 

Sensitivity True Positive Ratio (TPR): the number of accurately identified sure 

patterns / all numbers are actually sure of the patterns. A sure pattern shows the 

detection of epilepsy: 

Sensitivity	ሺTPRሻ ൌ ୘୔

୘୔ା୊୒
∗ 100%                                                              (3.7) 

Specificity True Negative Ratio (TNR): the number of accurately identified 

unsure patterns / all numbers are actually unsure of the patterns. An unsure pattern 

shows the detection normal/not-epilepsy: 
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Specificity	ሺTNRሻ ൌ ୘୒

୘୒ା୊୔
∗ 100%                                                              (3.8) 

Classification Accuracy (CA): the number accurately identified models/all 

numbers exemplars. 
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CHAPTER FOUR 

4. PROPOSED ALGORITHM, RESULTS AND DISCUSSIONS 

4.1 Proposed Algorithm 

Our proposed algorithm consists of three sections as shown in Figure 4.1. First 

of all, the preprocessing stage is achieved by using discrete wavelet transform that 

decompose the EEG signal into five sub-bands at specific frequencies. Then, eight 

features are extracted from the EEG signals in both time and frequency domain in 

multiple scenarios in order to measure the effect of the secondary features. Finally, 

these features are fed into an Artificial Neural Network to obtain the final decision. 

This algorithm is achieved using MATLAB 2017a. 

 

 
 

Figure 4.1: Frame general for analysis and classify of EEG signal. 
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4.2 Subjects and Datasets Discription 

The used Dataset in this work was provided by Bonn University for research 

purposes [39]. The entire information collection comprised five models (named A-E) 

each including 100 single channel EEG windows. These windows were selected and 

framed from constant multi-channel EEG records taking after visual examination for 

artifacts, such as being the result of muscle development or eye developments. Sets 

A and B comprised windows obtained from outside EEG records that were 

performed on five ordinary volunteers by applying an institutionalized final plan 

framework, as shown in Figure 4.2. 

 

 
 

Figure 4.2: 10/20 Global method for arranging the electrodes. 

 

Volunteers were stimulated in a wakeful state with eyes open (A) and eyes shut 

(B), consecutively. Datasets C, D, and E additionally from EEG document of pre 

surgical assurance. EEGs from five patients were selected, every one of which had 

performed full seizure control after resection of one of the hippocampal shapes that 

were in this way very much analyzed to be the epileptogenic put. Windows in set D 

were recorded from inside the epileptogenic zone, the area that contained seizure 

action. The windows were examined over all recording locales indicating octal 

action. All EEG signs were recorded with the comparing 128-channel enhancer 

mode, utilizing a normal regular reference. The information was digitized at 173.61 

specimens per second utilizing 12-bit determination. Band-pass channel surroundings 
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were 0.53-40 Hz (12 dB/oct) and duration of window 23.6 second. In this study, we 

focused on the two Datasets (A and D) of the entire Dataset. Standard EEGs are 

presented in Figure 4.3. 

 

 
 

Figure 4.3:  Five datasets of UBonn database. 

 

4.3 Analysis Levels 

The analysis level is an essential parameter of the DWT. Each level in a DWT 

agrees to a particular frequency band. Moreover, levels of decomposition give further 

detailed depictions of signals but they may introduce feature repetition and increase 

the computational cost. Based on the classifier being used, the computational cost 

can rise exponentially. The highest-level L of analysis, in theory, is combined 

decided by the signal and the mother wavelet to complete the condition: 

ܮ ൏ ଶ݃݋݈
௡

ிିଵ
                                                                                                  (4.1) 

Where n and F are the signal length and filter length, respectively [40]. Any 

window in the UBonn dataset has 4097 sampling points and each wavelet has a 

highest theoretical level of analysis provided in the column ‘Max Level,’ as shown in 

Table 4.1. 
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Table 4.1:  Max level for Daubechies function on the UBonn dataset. 

Wavelet Max level 

db4 9 

db8 8 

 

4.4 Feature Extraction using DWT 

EEGs can be considered an overlap of various formations occurring and 

approaching various time-scales at various intervals. For one of the concepts, 

wavelets decompose to separate and identify underlying configurations at various 

time scales. This means that we know that the Wavelet Transform (WT) fits to 

explain non-stationary signals because it is extremely limited in the time-frequency 

domain. Each part from the time and frequency identification implies recognition as 

compact support which is one of the most interesting characteristics in the WT. The 

central influence is in the WT because the WT has to change windowing size, which 

is wide at lower frequencies and small at the high frequencies, thereby driving an 

improvement in the time-frequency resolution in all frequency spectra. Hence, the 

spectral decomposition of the EEGs occurs by utilizing the DWT. The choice of the 

appropriate wavelet and the number of analysis levels is actually influential in the 

analysis of signals utilizing the WT. The number of decay levels is based on the 

predominant frequency elements of the signal. The decomposition levels are 

arranged where the signal bands that correlate excellently with the frequencies 

needed for distribution of the signal are maintained in the wavelet coefficients. 

In this study, the number of levels was selected to be (5). Therefore, the EEGs 

were analyzed into details D1–D5, the last being an approximation, A5 as shown in 

Figure 4.4 and Table 4.2. 
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Figure 4.4: EEG sub-band analysis. 5-level analysis (UBonn Dataset). 

Table 4.2: Bandwidth of frequencies for all coefficients. 

Decomposed Signal Frequency Range (Hz) 

D1 - Non-useful frequency (noise) 43.4-86.8 

D2 - (Gamma) 21.7-43.4 

D3 - (Beta) 10.8-21.7 

D4 - (Alpha) 5.4-10.8 

D5 - (Theta) 2.7-5.4 

A5 - (Delta) 0-2.7 

 

Normally, experiments are conducted with various kinds of wavelet function 

and the one that provides the best performance is selected for the appropriate 

application. The similarity features are found in the Daubechies wavelet and it is 

more appropriate to identify changes of the EEGs. Hence, the wavelet coefficients 
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are calculated employing the Daubechies wavelet function of order (4) and 

Daubechies order (8). In this study, the wavelet transforms coefficients were 

calculated using MATLAB software. The ANN inputs represented the most 

significant element to create the artificial neural network dependent on the model 

classifier as the best classification will perform badly if the information is not chosen 

well. This input determination has two purposes: (1) they are the components of a 

model, or (2) they are established inputs that best serve a presented pattern. The 

estimation of the discrete wavelet coefficients gives a compact design that displays 

the energy spread of the signal in the time-frequency. 

Hence, these detail wavelet coefficients and approximation wavelet 

coefficients of the EEGs were applied to the vectors of those features expressing the 

information in the signal. Rectangular windows were composed by 4097 discrete 

data and they were selected so that it contained a single EEG window. For each EEG 

window, the details of the wavelet coefficients were calculated (DK, k = D1, D2, D3, 

D4, D5) at the 1st, 2nd, 3rd, 4th and 5th levels (2052 + 1029 + 518 + 262+134 

wavelet coefficients), and one approximation wavelet coefficient (A5) at the 5th 

level (134 wavelet coefficients) was calculated, as shown in Figure 4.5. 

 

 
 

Figure 4.5: Brain rhythm analysis using db4 (window 37). 

 



32 

Then 4097 coefficients of the wavelet were taken for each EEG window. 

Therefore, the time domain of the signal should be transformed to the frequency 

domain in order to obtain further information about the signal features. The wavelet 

transform is able to acquire the information in the time or frequency domain. Thus, it 

gives the user a choice of the appropriate information they require. Moreover, it is 

useful in eliminating any Electromyography (EMG) and Electrooculography (EOG) 

artifacts in the EEG signals. 

In this study, the following statistical parameters were applied to describe the 

time-frequency distribution of the EEGs to minimize the dimensionality of the 

extracted vectors of the feature. The statistics on the set of wavelet coefficients were 

utilized from each sub band and selected to know the type EEG signal as follow: 

1)  Maximum of the wavelet coefficients in each sub band. 

2)  Minimum of the wavelet coefficients in each sub band. 

3)  Mean of the wavelet coefficients in each sub band is obtain from the 

equation: 

భ	ୀ		௜ߤ
೙
∑ ݅														݆݅ܦ ൌ 1,2,3……… . . ௡							ܫ
௝ୀଵ            (4.2) 

4)  The standard deviation (SD) of the wavelet coefficients in each sub band: 

ߪ ൌ ට ଵ

ேିଵ
∑ ሺܦ௜ െ ሻଶேߤ
ூୀଵ     (4.3) 

5)  Entropy in the sub band is a mathematical pattern of the distrust of the 

result wherever the signal included a thousand folds of bits of data. The 

analytical description is 

ሻܰܧሺ	ݕ݌݋ݎݐ݊ܧ ൌ 	∑ ଶே݅ܦ
௝ୀଵ ݅												ଶ݆ሻ݅ܦሺ݃݋݈݆ ൌ 1,2,3…… . .  (4.4)  ܫ

6)  The energy of the wavelet coefficients in the each sub band shows the 

power of the signal since it provides the region below the curve line of 

power in any period of time. The energy of the EEGs of the limited period 

is given as: 

ሻܰܧሺ	ݕ݃ݎ݁݊ܧ ൌ 	∑ ௜௝|ଶܦ|
ே
௜ୀଵ         ݅ ൌ 1,2,3…… . .  (4.5) ܫ

7)  The medium power in each sub band for the wavelet coefficients. 

8)  The rate of the absolute mean values nearby in each sub band. 

The classification results will be shown in the output of ANN.  Figure 4.6. 

shows the schematic of the proposed neural network model in case 1 as it will be 

explained later in this section. 
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Figure 4.6: Schematic of the proposed neural network model. 

 

The final step will be the evaluating step. Here the accuracy of the healthy 

(Specificity) and non-healthy (Sensitivity) EEG patterns will be calculated using 

Confusion Matrix equations as shown in Figure 4.7. 

 

 
 

Figure 4.7:  Accuracy of the healthy and non-healthy. 

 

4.5 Results 

In this stage, the EEG signal is decomposed into five sub-bands: Delta, Theta, 

Alpha, Beta, and Gamma according to the frequencies mentioned in Table 4.2. Then, 

we extract the 8 features of each sub-bands in as shown in Table 4.3. Here, the total 

extracted features from five levels of the analyzed windows is equal to 
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5 levels * 8 features * 200 windows = 8000 features 

Table 4.3: The extracted Features in the decomposed levels. 

# Gamma Beta Alpha Theta Delta 

1 Mean values Mean values Mean values Mean values Mean values 

2 STD STD STD STD STD 

3 Band Power Band Power Band Power Band Power Band Power 

4 
Absolute Mean 

Values 
Absolute Mean 

Values 
Absolute Mean 

Values 
Absolute Mean 

Values 
Absolute Mean 

Values 

5 Max Max Max Max Max 

6 Min Min Min Min Min 

7 Entropy Entropy Entropy Entropy Entropy 

8 Energy Energy Energy Energy Energy 

 

These features are estimated via the Kruskal-Wallis statistical method which 

can be applied to decide whether there are statistically important differences between 

two or more groups of an independent variable. 

In this step, we discuss six different cases of the extracted features that will be 

delivered to classification stage in multi scenarios. In the first case, we consider the 

most 4 features used in the previous studies i.e. mean, rate power, standard deviation, 

and rate of the absolute mean values. These features will be referred as “essential 

features”. The remaining 4 features, called “secondary features”, will be considered 

in the others cases by combining them with the essential features as shown in Table 

4.4. In this table, the () sign indicates the using of feature in classification. 

However, the (*) sign indicates that the corresponding feature is not used in 

classification. 

Table 4.4: Different cases of classification. 

     Feature 
 
Case 

Mean 
Avg. 

Power 
deviation. 

Ratio 
Mean 

Max. Min. Entropy Energy 

Cas.1     * * * * 

Cas.2      * * * 

Cas.3     *  * * 

Cas.4     * *  * 

Cas.5     * * *  

Cas.6         
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The resulted vector of all previous cases is implemented to Multilayer 

Perceptron Neural Network (MLPNN) with an Levenberg-Marquardt (LM) 

algorithm for the classification. 

80% of dataset is employed for running (training neurons) and the 20% of 

dataset is used for validation (testing), as shown in Table 4.5. 

Table 4.5: Distribution of datasets A & Dataset D. 

Type Training Dataset Test Dataset Complete Datasets 

Non-Healthy  80 20 100 

Healthy  80 20 100 

Complete Datasets 160 40 200 

 

The output decisions of ANN stage are evaluated by using the Confusion 

Matrix equations in order to estimate the Specificity, the Sensitivity and the 

Accuracy of our algorithm as shown in the following paragraphs. 

In the first case, using the 4 essential features, we have repeated the 

classification process ten times before calculating the average specificity and the 

average sensitivity. This will allow us to find accuracy ratio of our algorithm using 

both function db4 and db8 as shown in Figure 4.8 and Figure 4.9. 

 

 
Figure 4.8: Average accuracy of case 1 using db4 (Essential features). 
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Figure 4.9: Average accuracy of case 1 using db8 (Essential features). 

 

The same procedure was repeated to measure the accuracy of our proposed 

algorithm in other cases. 

Figure 4.10 and Figure 4.11 show the evaluation of the second case using the 4 

essential features plus the maximum feature using both function db4 and db8. 

 

 

Figure 4.10: Average accuracy of case 2 using db4. 
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Figure 4.11: Average accuracy of case 2 using db8. 

 

Figure 4.12 and Figure 4.13 show the evaluation of the third case using the 4 

essential features plus the minimum feature using both function db4 and db8. 

 

 

Figure 4.12: Average accuracy of case 3 using db4. 
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Figure 4.13: Average accuracy of case 3 using db8. 

 

Figure 4.14 and Figure 4.15 show the evaluation of the fourth case using the 4 

essential features plus the entropy feature using both function db4 and db8. 

 

Figure 4.14: Average accuracy of case 4 using db4. 
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Figure 4.15: Average accuracy of case 4 using db8. 

 

Figure 4.16 and Figure 4.17 show the evaluation of the fifth case using the 4 

essential features plus the energy feature using both function db4 and db8. 

 

 

Figure 4.16: Average accuracy of case 5 using db4. 
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Figure 4.17: Average accuracy of case 5 using db8. 

 

The previous results show the impact of each secondary feature individually. 

However, Figure 4.18 and 4.19 shows the last scenario which correspond to the 

accuracy result of all features (i.e secondary plus essential features). 

 

 

Figure 4.18: Average accuracy of case 6 using db4. 
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Figure 4.19: Average accuracy of case 6 using db8. 

 

Table 4.6 summarizes the evaluation results of our algorithm for all discussed 

scenarios.  This table also show the accuracy increasing percentage resulting from 

adding each secondary feature to the essential one (case 1). 

Table 4.6: Comparison between the six cases using db4 and db8. 

Cases Accuracy % Sensitivity % Specificity % 
Wavelet  
function 

Percent 
Increase 

Case 1 97% 94% 100% 

db4 

--- 

Case 2 97.50% 95% 100% 0.50% 

Case 3 97.25% 95.5% 99% 0.25% 

Case 4 97.25% 94.5% 100% 0.25% 

Case 5 97.25% 94.5% 100% 0.25% 

Case 6 98.50% 97% 100% 1.50% 

Case 1 97.25% 95% 99.50% 

db8 

--- 

Case 2 97.50% 95% 100% 0.25% 

Case 3 97.50% 96% 99% 0.25% 

Case 4 97.25% 94.50% 100% 0% 

Case 5 97.50% 95.50% 99.50% 0.25% 

Case 6 98.75% 97.50% 100% 1.50% 
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Table 4.7 and Figure 4.20 show the comparison between our proposed method 

and previous works that used the same database. It is clear that our proposed 

algorithm outperform the pervious developped methods. 

Table 4.7: Comparing previous studies conducted on the UBonn dataset. 

Author Wavelet 
Function 

Classification Accuracy Year 

Nunes [10] DWT (db4) ANNs 93% 2014 

Fathima [11] DWT (db4) ANNs 95.3% 2013 

Omerhodzic [12] DWT (db4) ANNs 94 % 2013 

Subasi [14] DWT (db4) ANNs 93.2% 2007 

Our work  DWT (db4) ANNs 98.50% 2017 

Our work  DWT (db8) ANNs 98.75% 2017 

 

 

Figure 4.20: Comparison between previous works and this study. 
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CHAPTER FIVE 

5. CONCLUSIONS & FUTURE WORKS 

5.1 Conclusions 

In this work, high accurate algorithm is proposed to identify epilepsy seizures 

in EEG signals. Our study is performed depending on Bonn University Dataset and 

achieved via MATLAB environment using MATLAB Wavelet Toolbox. In the pre-

processing phase, the EEG signal is decomposed into five levels by means of 

Discrete Wavelet Transform using 2 functions, db4 and db8. 

In order to study the impact of the secondary features on the classification 

accuracy, six different classification cases have been discussed. The resulted features 

vector in all scenarios was input to 2 hidden layers of ANN trained by Levenberg-

Marquardt method to deliver the classification decision. 

The proposed method was evaluated by Confusion Matrix equations. It was 

clear that our algorithm outperforms the previous studies applied on the same 

database. 

The best classification accuracy obtained when extracting eight features from 

the EEG signals was 98.50% in Daubechies order 4 and 98.75% in Daubechies order 

8 respectively. 

5.2 Future Works 

The perspective of this work can be using the Field Programmable Gate Array 

(FPGA) to implement the proposed method to find healthy and non-healthy EEG 

signals. For feature extraction, we can use the entropy of the signals at different 

frequencies.



44 

REFERENCES 

[1] D. Freeman, C. J. Bajema, J. Blacking, R. L. Carneiro, U. Cowgill, S. Genovés, 
et al., "The Evolutionary Theories of Charles Darwin and Herbert Spencer," 
Current Anthropology, vol. 15, pp. 211-237, 1974. 

[2] S. Finger, Origins of neuroscience: a history of explorations into brain 
function: Oxford University Press, USA, 2001. 

[3] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. 
Hudspeth, Principles of neural science vol. 4: McGraw-hill New York, 2000. 

[4] D. Chen, S. Wan, and F. S. Bao, "Epileptic Focus Localization Using Discrete 
Wavelet Transform Based on Interictal Intracranial EEG," IEEE Transactions 
on Neural Systems and Rehabilitation Engineering, vol. 25, pp. 413-425, 2017. 

[5] F. Riaz, A. Hassan, S. Rehman, I. K. Niazi, and K. Dremstrup, "EMD-based 
temporal and spectral features for the classification of EEG signals using 
supervised learning," IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, vol. 24, pp. 28-35, 2016. 

[6] G. Singh, M. Kaur, and D. Singh, "Detection of an epileptic seizure using 
wavelet transformation and spike based features," in Recent Advances in 
Engineering & Computational Sciences (RAECS), 2015 2nd International 
Conference on, 2015, pp. 1-4. 

[7] K. Abualsaud, M. Mahmuddin, M. Saleh, and A. Mohamed, "Ensemble 
classifier for epileptic seizure detection for imperfect EEG data," The Scientific 
World Journal, vol. 2015, 2015. 

[8] Y. Kumar, M. Dewal, and R. Anand, "Epileptic seizures detection in EEG 
using DWT-based ApEn and artificial neural network," Signal, Image and 
Video Processing, vol. 8, pp. 1323-1334, 2014. 

[9] B. S. Nanthini and B. Santhi, "Different approaches to analyzing EEG signals 
for seizure detection," International Journal of Signal and Imaging Systems 
Engineering, vol. 8, pp. 28-38, 2015. 



45 

[10] T. M. Nunes, A. L. Coelho, C. A. Lima, J. P. Papa, and V. H. C. de 
Albuquerque, "EEG signal classification for epilepsy diagnosis via optimum 
path forest–A systematic assessment," Neurocomputing, vol. 136, pp. 103-123, 
2014. 

[11] T. Fathima, M. Bediuzzaman, and P. K. Joseph, "Wavelet based features for 
classification of normal, ictal and interictal EEG signals," Journal of Medical 
Imaging and Health Informatics, vol. 3, pp. 301-305, 2013. 

[12] I. Omerhodzic, S. Avdakovic, A. Nuhanovic, and K. Dizdarevic, "Energy 
distribution of EEG signals: EEG signal wavelet-neural network classifier," 
arXiv preprint arXiv:1307.7897, 2013. 

[13] E. D. Übeyli, "Combined neural network model employing wavelet 
coefficients for EEG signals classification," Digital Signal Processing, vol. 19, 
pp. 297-308, 2009. 

[14] A. Subasi, "EEG signal classification using wavelet feature extraction and a 
mixture of the expert model," Expert Systems with Applications, vol. 32, pp. 
1084-1093, 2007. 

[15] H. R. Mohseni, A. Maghsoudi, M. H. Kadbi, J. Hashemi, and A. Ashourvan, 
"Automatic Detection of Epileptic Seizure using Time-Frequency 
Distributions," in Advances in Medical, Signal and Information Processing, 
2006. MEDSIP 2006. IET 3rd International Conference On, 2006, pp. 1-4. 

[16] H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, "A wavelet-chaos methodology 
for analysis of EEGs and EEG subbands to detect seizure and epilepsy," IEEE 
Transactions on Biomedical Engineering, vol. 54, pp. 205-211, 2007. 

[17] A. C. Merzagora, S. Bunce, M. Izzetoglu, and B. Onaral, "Wavelet analysis for 
EEG feature extraction in deception detection," in Engineering in Medicine 
and Biology Society, 2006. EMBS'06. 28th Annual International Conference of 
the IEEE, 2006, pp. 2434-2437. 

[18] M. Kalaivani, V. Kalaivani, and V. A. Devi, "Analysis of EEG Signal for the 
Detection of Brain Abnormalities," at International Journal of Computer 
Applications® year, 2014. 

[19] T. Ahmed, M. Islam, M. S. U. Yusuf, and M. Ahmad, "Wavelet based analysis 
of EEG signal for evaluating mental behavior," in Informatics, Electronics & 
Vision (ICIEV), 2013 International Conference on, 2013, pp. 1-6. 

 



46 

[20] H. Sharabaty, "Diagnostic de la somnolence d'un opérateur: analyse 
automatique de signaux physiologiques,"  Phd thesis, Université Paul Sabatier - 
Toulouse III,  France, 160p,  2007. 

[21] H. Sharabaty, B. Jammes, D. Esteve, "EEG analysis using HHT: One step 
toward automatic drowsiness scoring", in Proc. 22nd Int. Conf. on Advanced 
Information Networking and Applications, Okinawa, Japan, 2008 pp. 826–831. 

[22] B. Jammes, H. Sharabaty, and D. Esteve, "Alpha and theta wave localisation in 
EEG signals: survey of existing algorithms", LAAS-CNRS, Report 05467, 
European Project IST SENSATION N°507231 17p, Toulouse,  2005. 

[23] G. Strang and T. Nguyen, Wavelets and filter banks: SIAM, 1996. 

[24] J.-S. Guf and W.-S. Jiang, "The Haar wavelets operational matrix of 
integration," International Journal of Systems Science, vol. 27, pp. 623-628, 
1996. 

[25] Y. Meyer, Wavelets and operators vol. 1: Cambridge university press, 1995. 

[26] S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency 
dictionaries," IEEE Transactions on signal processing, vol. 41, pp. 3397-3415, 
1993. 

[27] I. Daubechies, "Orthonormal bases of compactly supported wavelets," 
Communications on pure and applied mathematics, vol. 41, pp. 909-996, 1988. 

[28] A. Mertins, "Signal Analysis: Wavelets, Filter Banks, Time-Frequency 
Transforms and Applications, English (revised edition)," 1999. 

[29] A. Grossmann and J. Morlet, "Decomposition of Hardy functions into square 
integrable wavelets of constant shape," SIAM journal on mathematical 
analysis, vol. 15, pp. 723-736, 1984. 

[30] P. Addison, J. Watson, and T. FENG, "Low-oscillation complex wavelets," 
Journal of Sound and Vibration, vol. 254, pp. 733-762, 2002. 

[31] S. G. Mallat, "A theory for multiresolution signal decomposition: the wavelet 
representation," IEEE transactions on pattern analysis and machine 
intelligence, vol. 11, pp. 674-693, 1989. 

 



47 

[32] R. Ganesan, T. K. Das, and V. Venkataraman, "Wavelet-based multiscale 
statistical process monitoring: A literature review," IIE transactions, vol. 36, 
pp. 787-806, 2004. 

[33] D. E. Dutkay and P. E. Jorgensen, "Wavelets on fractals," Revista Matemática 
Iberoamericana, vol. 22, pp. 131-180, 2006. 

[34] J. Rafiee, P. Tse, A. Harifi, and M. Sadeghi, "A novel technique for selecting 
mother wavelet function using an intelli gent fault diagnosis system," Expert 
Systems with Applications, vol. 36, pp. 4862-4875, 2009. 

[35] S. Haykin, Neural networks: a comprehensive foundation: Prentice Hall PTR, 
1994. 

[36] S. Haykin and N. Network, "A comprehensive foundation," Neural Networks, 
vol. 2, p. 41, 2004. 

[37] D. Saad, On-line learning in neural networks vol. 17: Cambridge University 
Press, 2009. 

[38] https://medium.com/autonomous-agents/mathematical-foundation-for-
activation-functions-in-artificial-neural-networks-a51c9dd7c089. 

[39] http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3. 

[40] Y.-L. Wu, D. Agrawal, and A. El Abbadi, "A comparison of DFT and DWT 
based similarity search in time-series databases," in Proceedings of the ninth 
international conference on Information and knowledge management, 2000, 
pp. 488-495. 



48 

CURRICULUM VITAE 

PERSONAL INFORMATION 

Surname, Name : Omar Saadi Fathi ALSHEAR 

Nationality : IRAQI 

Date and Place of Birth : IRAQ- Ninawa, 1982-5-30 

Phone : 00905365810522 

Email : omarsaad529@gmail.com 

EDUCATION 

Degree Institution Year of Graduation 

BS 
University of Mosul- 

College of Engineering 
2006 

High School Alrisala  2001 

WORK EXPERIENCE 

Year Place Enrollment 

2007 - 2015 
Iraqi Ministry of 

Electricity 
Maintenance Engineer 

FOREIGN LANGUAGES 

English, Turkish 

 

 

 


