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ABSTRACT

MEASUREMENTS-BASED SYSTEM IDENTIFICATION OF
GAS TURBINE GENERATOR

SABRY, Ameer
M.Sc., Mechanical Engineering Department
Supervisor: Assist. Prof. Dr. Habib GHANBARPOURASL
November 2017, 78 pages

The employing of gas turbines has grown rapidly i electrical energy production
following the economic growth and increased demand for electricity. Modelling and
control of gas turbines (GTs) have always been a controversial issue because of the
complex dynamics of these kinds of equipment. Considerable research activities have
been carried out so far in this field in order to disclose the secrets behind the nonlinear
behaviour of those systems. Although the results of the research in this area have been
satisfactory so far, it seems that there is no end to the efforts for performance
optimization of gas turbines. A variety of analytical and experimental models as well
as control systems have been built in the prior art for gas turbines. However, the need
for optimized models for different objectives and applications has been a strong
motivation for researchers to continue to work i this field. Since the problems of gas
turbine such as; mternal faults, and the load fluctuations on the power distribution
network may cause grid instability issues, it is essential to consider accurate dynamic
modelling of gas turbne system. In this research, several approaches for system
identification are implemented to characterize the dynamic behavior of the gas turbine
system for the purposes of monitoring, diagnostics, parameter estimation and control
design. The assessment of the applied method evaluated by the fitting percentage to
estimate the experimental data and the Mean Square Error (MSE).



The challenges faced when a practical field measurements have been adopted
for the gas turbine model GE Frame 9E of the Alquds-Iraq power plant as a multi-
mput case study. Firstly, data analysis has been applied to classify the input-input and
mput-output relationships for reducing the number of mputs. Initially, a lLnear model
with the most effective parameters represented by the Fuel Consumption (FC) and
Exhaust Temperature (ET), has been evaluated for the measurements of the system to
attain some preliminary insight into the data characteristics. Then, a nonlinear least
squares with automatically chosen line search has been carried out, we started by
evaluating a default-order discrete model which assumes 2 poles and 1 zero for each
transfer function. The mput/ output delay and the sampling time have been extracted
from the real measurements of the field data. Hammerstein model is proposed with
new iterative gradient descent as a prediction and error minimization method to
identify the dynamic model of the gas turbine and to parameterize the nonlinear
mapping. Fially, a modification to existing custom feed forward neural network has
been mmplemented to extract another modelling mathematical equation with the
number of neurons equal to the number of mputs to simplify the solution of the
resultant modelling equation. A comparative table of suitable evaluation parameters
has been presented to conclude the findings of the work. The identification methods
are formulated to permit theirr application and to provide a procedure for further future

application and modifications.

Keywords: Gas Turbines, System Identification, Dynamic Model, Mathematical
Equation.



OZET

GAZ TURBIN JENERATORUNUN OLCUMLER DAYALI SISTEM TANI

SABRY, Ameer
Yiksek Lisans, Makine Miihendisligi Bolimii
Danisman: Yrd. Do¢. Dr. Habib GHANBARPOURASL
Kasm 2017, 78 sayfa

Ekonomik biiylimeyi takiben elektrik enerjisi iretiminde ve elektrik talebinde
artis nedeniyle gaz tiirbinlermin istthhdamm hizla biylimiistir. Gaz tiirbinlerinin  (GT)
modellenmesi ve kontrolii, bu tiir ekipmanlarm karmasik dinamikleri nedeniyle her
zaman tartismah bir konu olmustur. Bu sistemlerin dogrusal olmayan davranigmmn
arkasmndaki swlar1 agiga c¢ikarmak icin bugiine kadar Onemli arastwrma faaliyetleri
yapimustr. Bu alandaki arastrmanmn sonuglart bugiine kadar tatmin edici olmakla
birlkte, gaz tlirbinlerinin performans optimizasyonu igcin ¢abalarm sona ermedigi
goriimektedir. Onceki teknolojide gaz tirbinleri icin ¢esitli analitk ve deneysel
modellerin yani swra kontrol sistemleri yapimustr. Bununla birlikte, farkh hedefler ve
uygulamalar i¢cin optimize edimis modellere duyulan ihtiyag, arastrmacilarm bu
alandaki cahsmalarma devam etmeleri icin giicli bir motivasyondur. Gaz tiirbini gibi
problemler yiiziinden; dahili arzalar ve glic dagitim sebekesindeki yiik dalgalanmalar
izgara istikrarsizhgl sorunlarma neden olabilir. Gaz tiirbini sisteminin dogru dinamik
modellemesini  dikkate almak esastr. Bu arastrmada, izleme, teshis, parametre
tahmini ve kontrol tasarmm i¢in gaz tiirbini sisteminin dinamik davramsmi karakterize
etmek icin ve sistem tammlama icin cesith yaklagmlar uygulanmaktadr. Uygulanan
yontemin deney verilerinin tahmin ediimesinde, uyma yiizdesi ile degerlendirilmesi



ve Ortalama Kare Hata (MSE) degerlendirimesidir. Alquds-Irak elektrik santralinin
GE Frame 9E gaz tiirbini modeli i¢cin ¢cok girish bir vaka cahsmasi olarak pratik bir
saha dlgiimleri yapildignda karsilaglan zorluklardrr. Ik olarak, girdi sayisim azaltmak
icn girdi-girdi ve girdi-¢ikti iliskilermi smiflandrmak i¢in veri analizi uygulanmustir.
Baslangicta, Yakit Tiketimi (FC) ve Egzoz Sicakhg (ET) ile temsil edilen en etkili
parametrelere sahip dogrusal bir model, sistemin Olgiimleri i¢in veri dzelliklerine
iliskin 6n Ongdrii elde etmek i¢in degerlendirildi. Daha sonra otomatik olarak secilen
hat aramasmda dogrusal olmayan en kiigciik kareler gerceklestirildi. Her aktarm
fonksiyonu i¢cin 2 kutup ve 1 sifir varsayarak, varsaylan emir ayrik bir model
degerlendirerek baslandi Giris / ¢ikis gecikmesi ve Ornekleme zamam alan verilernin
gercek Olclimlerinden  ¢ikarimistr. Hammerstein  modeli, gaz tlirbininin ~ dinamik
modelini tanimlamak ve dogrusal haritalama parametrelerini belirlemek icin  bir
tahmin ve hata minimizasyon yontemi olarak yeni iterasyon gradyen inisiyle
Onerimistr.  Sonu¢  olarak elde edillen modelleme denkleminin  ¢Ozimiinii
basitlestirmek i¢in ve giris sayisma esit sayida noron bulunan baska bir modelleme
matematiksel denklemi ¢ikarmak icin, mevcut 6zel ileriye beslemeli sinir ag iizerinde
bir degisiklk yapimustr. Calbsmann  bulgularmi  tamamlamak  i¢in  uygun
degerlendirme parametrelerinin - karsilastrmah bir tablosu sunulmustur. Belirleme
yontemleri, basvurularma izm vermek ve daha ileri uygulama ve tadilatlar icin bir

prosediir saglamak iizere formiile edimistir.

Anahtar Kkelimeler: Gaz Tirbmleri, Sistem Tanmmlama, Dmnamik Model, Matematik
Denklem.



CHAPTER ONE

INTRODUCTION

1.1. Introduction

The accurate modelling of power plant systems, excitation systems and prime
movers to predict power station performance is clearly a very important topic that has
been the subject of mterest for several decades. In the history of energy conversion,
the gas turbine is a relatively new energy converter. Nowadays, gas turbines, which
run on natural gas, diesel fuel, biomass gases and. etc, are a natural power plant for
offSshore platforms because of their compactness, low weight, and multiple fuel
applications. Therefore, the gas turbine has found increasing service in the power
mdustry. Since gas turbine mternal faults or distribution network load fluctuations may
cause instabilities in the grid, it is necessary to investigate an accurate dynamical
model for a gas turbine system. The chapter is organized as follows: Section 1.1
Measurements-Based System Identification of Gas Turbine Generator. Section 1.2
Literature Review. Section 1.3 Problem Statement 1.4. Scope of Work 1.5 Novelties,
the details can be seen in Figure 1.1.
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Figure 1.1: Introductory Diagram

1.2. Literature Review

Modelling and control of gas turbines (GTs) have always been a controversial
issue because of the complex dynamics of these kinds of equipment. Considerable

research activities have been carried out so far in this field in order to disclose the



secrets behind the nonlinear behaviour of these systems. Although the results of
the research in this area have been satisfactory so far, it seems that there is no end to
the efforts for performance optimization of gas turbines. A variety of analytical and
experimental models as well as control systems have been built so far for gas turbines.
However, the need for optimized models for different objectives and applications has
been a strong motivation for researchers to contnue to work m this field. The work in
this chapter is aimed at presenting a general overview of essential basic criteria that
need to be considered for making a satisfactory model and control system of a gas
turbine. GT type, GT configuration, modellng methods, modelling objectives as well
as control system type and configuration are the main preliminary factors for
modelling a gas turbine which will be briefly discussed in the chapter. Some of the
research in this field will also be stated shortly.

Critical engineering systems, such as gas turbines, require dynamic maintenance
planning strategies and predictions in order to reduce unnecessary maintenance tasks.
A condition based maintenance (CBM) decision-making strategy based on the
observation of historical condition measurements can make predictions for the future
health conditions of systems and this capability of predictions makes CBM desirable
for the systems reliability, maintenance, and overall operating costs [1]. The
predictions on the health level of the system can be provided to maintenance
scheduling and planning. This is especially useful in demanding applications, where
the maintenance must be performed safely and economically for an entire lifetime.

Prognostics can be defined as the process of predicting the lifetime point at which
a component or a system could not complete the proposed function planned during its
design [2]. The amount of time from the current time to the point of a system's failure
is known as Remamning Useful Life (RUL)[3]. The concept of RUL has been widely
applied as a competitive strategy to improve maintenance planning, operational
performance, spare parts provision, profitability, reuse and product recycle [4]. The
prediction of RUL is the principal goal of machine prognostics and this paper,
therefore, evaluates the prognostics as the calculation of RUL for turbofan engine
systems.

Data-driven prognostics are more effective methods in gas turbine prognostic

applications because of the simplicity in data and consistency in complex processes

[5].



1.2.1. Power Plant Gas Turbine M odels

A single-shaft gas turbine design and off-design model was presented by
Lazzaretto and Toffolo [6]. They used analytical method and feedforward neural
network as two different approaches to model the system. Appropriate scaling
techniques were employed to construct new maps for the gas turbine using the
available generalized GT maps. The new maps were validated using the obtained
experimental data. Ogaji et al. applied three different architectures of artificial neural
networks (ANNSs) for multi-sensor fault diagnosis of a stationary twin-shaft gas turbine
using neural network [7]. The results indicated that ANNs could be used as a high-
speed powerful tool for real-time control problems. Arriagata et al. applied ANNs for
fault diagnosis of a single-shaft industrial gas turbine [8]. They obtained a
comprehensive data set from ten faulty and one healthy engine conditions. The data
were trained using feedforward multi-layer perceptron (MLP) structure. The results
proved that ANNs could identify the faults and generate warnings at early stages with
high reliability. Basso, Giarre, Groppi and Zappa applied a nonlinear autoregressive
with exogenous inputs (NARX) model to identify dynamics of a small heavy-duty
power plant gas turbine [9]. The objective was to make an accurate reduced-order
nonlinear model using black-box identification techniques. They considered two
operational modes for the gas turbine; when it was isolated from power network as a
stand-alone unit and when it was connected to the power grid. They showed that in
order to reduce the complexity and improve the simulating capability of the model, the
ingredients should be chosen carefully. Bettocchi et al. nvestigated artificial neural
network model of a single-shaft gas turbine as an alternative to physical models [10].
They observed that ANNs can be very useful for the real time simulation of GTs
especially when there was insufficient information on the system dynamics and
behaviour. In another effort, Bettocchi et al. developed a multiple-nput and multiple
output (MIMO) neural network approach for diagnosis of single-shaft gas turbine
engines [11]. A NARX model was applied to model a power plant micro gas turbine
(MGT) and the related distribution system dynamics by Jurado [12]. However, the
nonlinear terms in the model were restricted to second order. The resulted model was
capable of modelling both low and high amplitude dynamics of MGTs. The quality of
the model was examined by cross validation technique. The model was tested under

different operational conditions and electrical disturbances. Geon applied ANN to

4



prognosticate key parameters in turbine hall and to identify GT key cost drivers [13].
The study just focused on the construction of turbine hall section. The results of the
research showed that the ANN regression model was reliable and could be used by the
contractors to estimate turbine hall construction process. Spina and Venturini applied
ANN to train operational data through different patterns in order to model and simulate
a single-shaft gas turbine and its diagnostic system with a low computational and time
effort [14]. Magnus Fast et al. applied simulation data and ANN to examine condition-
based maintenance of gas turbines [15]. In another effort, Fast et al. used real data
obtained from an industrial single-shaft gas turbine working under full load to develop
a simple ANN model of the system with very high prediction accuracy [16]. A
combination of ANN method and cumulative sum (CUSMUS) technique was utilised
by Fast et al. for condition monitoring and detection of anomalies in GT performance
[15]. To minimise the need for calibration of sensors and to decrease the percentage of
shut-downs due to sensor failure, an ANN-based methodology was developed for
sensor validation in gas turbines by Fast et al. [17]. Application of ANN to diagnosis
and condition monitoring of a combined heat and power plant was discussed by Fast
et al [18]. Fast applied different ANN approaches for gas turbine condition
monitoring, sensor validation and diagnosis [19]. Yoru et al. examined application of
ANN method to exergetic analysis of gas turbines which supplied both heat and power
in a cogeneration system of a factory [20]. They compared the results of the ANN
method with the exergy values from exergy analysis and showed that much closer
exergetic results could be attamed by using ANN method. Application of ANNs and
ANFIS to micro gas turbines was mvestigated by Bartolini et al.[21]. They mnvestigated
the effects of changes of ambient conditions (temperature, pressure, humidity) and
load on MGTs output power. The results indicated that ambient temperature variations
had more effect on the output power than humidity and pressure. Besides, MGTs were

less mfluenced by ambient conditions than load.

1.2.2.State Space model (Levenberg—Marquardt algorithm)

All these algorithms can be considered as variations of the steepest descent
method, because they only use information of the objective function and its gradient.
It is possible, however, to estimate the Hessian matrix of the error function by using

only the values of the first derivatives of the networks outputs with respect to the



weights and, with this information, obtain better values for the variation of the network
weights at each learning cycle. This is one of the observations that led to the
development of the Levenberg-Marquardt (LM) method [22]&[23]. The LM
algorithm, taken from the optimization field, has increased its popularity within the
neural networks community in the last few years. The difference between optimization
and neural-network applications of the method comes from the fact that in the latter
there are often many parameters that need to be estimated.

Although the results achieved with this method are very good, its application to
neural networks suffers from some drawbacks, derived from its nonlocal nature (the
changes in the weights of a neuron depend on the errors due to far neurons).

« It is not biologically feasible.

* It is both time and memory consuming. The first problem is due to the fact that
biological neurons only have information about what is happening in some
neighborhood. We have recently [24] developed the neighborhood-based LM (NBLM)
method that, through the use of the neural neighborhood concept, improves the
behavior of the LM algorithm in both time and memory concerns. In that work, the
feasbility of the method was proved and some preliminary tests were carried out.
However, as the software used for the simulations was an adaptation of the LM routine
ncluded in Neural Network, which only takes into account successful cycles, it was
not easy to quantify the training time, which is essential to compare the performance
of the method with other widely used algorithms. So our main goal in this work was

to implement the method using routines based on those found in LINPACK[25].

1.2.3.Custom ANN

There are particular importance because of the ability to integrate mnovative and
conventional approaches by generating inclusive prognostic methods over a wide-
ranging data series. The most commonly practiced data-driven prognostic methods in
the literature are the Artificial Neural Networks (ANNs) [26] & [5]. ANNs are
computational algorithms mspired by biological neural networks of the brain and are
used as machine-learning systems made up of data processing neurons, which are the
units to connect through computation of output value by the nput data. They learn by
example by identifying the unique output with many past mputs values [27]. Neural

networks are effective applications to model engineering tasks consisting of a broad



category of nonlinear dynamical systems, data reduction models, nonlinear regression
and

discrimnant models [28]. In some complex engmneering applications, the
observations from the system may not include precise data, and the desired results may
not have a direct link with the nput values. In such cases, ANN is a powerful tool to
model the system without knowing the exact relationship between iput and output
data [29]. In particular, when a longer horizon with several steps ahead long term
predictions is required, the recurrent neural networks play an mmportant role in the
dynamic modelling task by behaving as an autonomous system, and endeavouring to
recursively simulate the dynamic behaviour that caused the nonlinear time series [30];
[31]; [32]. Recurrent Neural Network structure applies the target values as a feedback
mto the mput regress or for a fixed number of time steps [33]. Multi-step long term
predictions with dynamic modellng are suitable for complex system prognostic
algorithms since they are faster and easy to calculate compared to various other
prognostics methods. The recurrent neural networks, therefore, have been widely
employed as one of the most popular data-driven prognostics methods and a significant
number of studies across different disciplines have stated the merits of them by
mtroducing different methodologies. However, ANN multi-step predictions mn
prognostic applications can be quite challenging when only a few time series or a little
previous knowledge about the degradation process is available and the failure pomt is
expected to happen in the longer term. The greater interest in neural networks is the
accomplishment of learning but it is not always possible to train the network as desired.
The results at multi-step long-term time series predictions may be effective and this
is generally more evident in the time series having exponential growths or decays. In
this paper, a Nonlnear Auto Regressive neural network with Xogenous inputs
(NARX) is designed to make future steps of predictions for an engne from past
operational values. The model learns successfully to make predictions of time series
that consists of performance related parameters. The designed prognostic method is
modeled by using turbofan engne simulation C-MAPSS data sets from NASA data
repository [34]. The results demonstrate the relationship between the historical
performance deterioration of an nitially tramed subset and the RUL prediction of a

second test subset.



1.2.4. Hammerstein model

The Hammerstein model is a special kind of nonlinear systems which has
applicatons in many engneering problems and therefore, identification of
Hammerstein models has been an active research topic for a long time. Existing
methods in the literature can be roughly divided mnto six categories: the iterative
method, the over-parameterization method, the stochastic method, the nonlinear least
squares method, the separable least squares method, and the blind method [35].
Frequency domain identification methods for a linear system are well understood and
developed [36]. This idea will be used to Hammerstein models. By exploring the
fundamental frequency, the linear part and the nonlinear part can be identified.

A thorough introduction to the gas turbine theory is provided in [37]. There exist
a large number of publications on the modeling of gas turbines. The model complexity
varies according to the mtended application. A detailed first principle modeling based
upon fundamental mass, momentum and energy balances is reported by [38] and [39].
These models describe the spatially distributed nature of the gas flow dynamics by
dividing the gas turbine into a number of sections. Throughout each section, the
thermodynamic state is assumed to be constant with respect to location, but varying
with respect to time. Mathematically, the full partial differential equation model is
reduced to a set of ordinary differential equations, which are facilitated easily within a
computer simulation program. For a detailed model, a section might consist of a single
compressor or turbine stage. Much simpler models result if the gas turbine is
decomposed into just three sections corresponding to the main turbine components,
i.e. compressor, combustor and turbine, as in [40]. Instead of applying the fundamental
conservation equations, as described above, another modeling approach is to
characterize the gas turbine performance by utilizing the real steady state engine
performance data, as in [41]. It is assumed that transient thermodynamic and flow
processes are characterized by a continuous progression along the steady state
performance curves, which is known as the quasi-static assumption. The dynamics of
the gas turbine, e.g. combustion delay, motor inertia, fuel pump lag etc. are then
represented as lumped quantities separate from the steady-state performance curves.
Very simple models result if it is further assumed that the gas turbine is operated at all
times close to the rated speed [42].Table 1.1. Presents a summary of noteworthy

contributions of models estimated for gas turbine power plant.

8



Table 1.1: A Summary of Noteworthy Contributions For Gas Turbine Power Plant.

Reference | System Type Method Results/Conclusions
ANN(ATrtificial
Electrical power and exhaust gas temperature
Neural Network)
are chosen as system main outputs which can
identification
be expressed by fuel flow, shaft speed and
techniques are
Nonlinear compressor inlet guide vanes considering the
[43] developed to
system ambient temperature effects. The operating
estimate a General
condition of the gas turbine during
Electric Frame 9,
identification procedure is considered from
116MW
full speed no load to full load.
The nonlinear, dynamic behavior of the
One method for
. . subject engine is calculated solving anumber
estimating this
I of systems of partial differential equations,
stress situation 1s to
[44] nonlinear F which describe the unsteady behaviour of
utilize a database.
each component individually. To identify
each differential equation system
unambiguously,
Periodic test signals, frequency domain
Linear models . . . ) )
analysis and identification techniques, and
estimated on small- ) ) .
time-domain NARMAX modeling can be
signal data are first ) .
Linear effectively combined to enhance the
[45] examined and the . .
models modeling of a gas turbine.
need for a global
nonlinear model is
established




Reference

System Type

Method

Results/Conclusions

A State-Space model is
used for identification
and some observer-

based methods are used

The proposed fault detection and
isolation tool has been tested on a
single-shaft industrial gas turbine

simulator.

predictions with the
output parameters of a

commercial turbine

[46] State-space for residual generation,
while for residual
evaluation a neural
network classifier for
MLP is used
The parameter fit of the model to a
These simple specific engine such as the GE LM2500
mathematical detailed in this work utilizes constants
47 Simple expressions arise from | and empirical fits of power conversion
mathematical the balance of energy efficiencies obtained wusing data
flow across engine collected from a high-fidelity engine
components simulator such as the Gas Turbine
Simulation Program (GSP).
The influence of the pressure and
The gas-turbine model is | temperature ratios on the overall plant
validated by direct efficiency and the fuel conversion rate
comparison ofthe model | is  discussed.  This  kind  of
[48] Nonlinear

thermodynamic analysis is necessary in
order to design efficient as well as
commercially

interesting new

generations of plants of this type.

1.3. Problem Statement

The global gas turbine has been growing recently, Increasing awareness
regarding sustainable energy sources that have shifted the industry focus towards
large-scale incorporation of natural gas as a fuel for employing of gas turbines in
electrical energy production following the economic growth and increased demand for
electricity. Gas turbines have a very expensive, complex, and precise components
functioning at high temperature and pressure of gas conditions. Performance drooping
or the failure due to ambient temperature, load, or fuel delivery variations of the turbine
engine will highly affect its operation. Since the problems of gas turbine such as;
mternal faults, and the load fluctuations on the power distribution network may cause

10



grid instability issues, it is essential to consider accurate dynamic modellng of gas

turbine system.

1.4. Objectives

To study several approaches for system identification that could be mmplemented
to characterize the dynamic behavior of the gas turbine system for the purposes of
monitoring, diagnostics, parameter estimation and control design.

To identify the unknown nonlinear map factors, and the linear dynamics of the
turbine system measurements.

To evaluate the applied modelling method by the fitting percentage to estimate
the field observations, and also by the Mean Square Error (MSE).

To analyse the acquired data of the gas turbme to identify the mput-input and
mput-output relationships in order to reduce the number of inputs and the model
complexity.

To prepare the findings of this research towards a control relevant model of the
existing system which facilitates the control design and improves the disturbing effects
on the turbine output shaft power.

1.5. Scope of Work

The work initially, addresses a linear model with the most effective parameters
represented by the fuel consumption (FC) and exhaust temperature (ET), and then
evaluated with the field measurements of the system to attain some preliminary insight
mto the data characteristics. Later, a Nonlinear Least Squares with automatically
chosen line search carried out in the same concern. The mput/ output delay and the
sampling time have been extracted from the real measurements of the field data.
Hammerstein model is proposed with new iterative gradient descent as a prediction
and error minimization method to identify the dynamic model of the gas turbine and
to parameterize the nonlnear mapping. Finally, a modification to existing custom feed
forward neural network has been mmplemented to extract another modelling
mathematical equation with the number of neurons equal to the number of inputs to

simplify the solution of the resultant modelling equation.
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1.6. Contributions/Novelties

Intensive parametric analysis of the gas turbine type GE Frame 9E and its
performance through real measurements that conducted in Alquds-Iraq power plant as
a multi-input case study.

Deriving a mathematical modelling equation from the proposed custom ANN
for the output power of the system as a function of measured input parameters.

Presenting a linear and non-linear modelling system to simulate and estimate the
system performance according the several mputs that affect on the system output

behaviour.

1.7. Summary

There are different approaches and methodologies in modelling and control of
gas turbines. Choosing the right method and creating the right model based on the
required application depends on different factors. In this chapter of this work, a brief
overview of basic consideration for making a satisfactory model of gas turbines was
discussed. A short description of each of these models and factors, including GT type,
GT configuration, modelling methods, modelling objectives as well as control system
type and configuration were provided. Samples of significant research related to each
of the areas were presented. By highlighting the mentioned factors, remarkable

enhancements can be achieved in the process of modelling and control of gas turbimnes.
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CHAPTER TWO

GAS TURBINE

2.1. Introduction

Of the various means of producing mechanical power, the turbine is in many
respects the most satisfactory. The absence of reciprocating and rubbing members
means that balancing problems are few, that the lubricating oil consumption is
exceptionally low, and that reliability can be high. The mherent advantages of the
turbine were first realized using water as the working fluid, and hydro-electric power
is still significant contributor to the world's energy resources. Around the turn of the
twentieth century the steam turbine began its career and, quite apart from its wide use
as marine power plant, it has become the most important prime mover for electricity
generation Steam turbine plant producing up to (500) MW of shaft power with an
efficiency of nearly (40 percent) are now being used. In spite of its successful
development, the steam turbine dose have an inherent disadvantage [49].

It is that the production of high pressure high temp. Steam mvolves the
mstallation of bulky and expensive steam generation equipment, whether it be a
conventional, boiler or nuclear reactor. The significant feature is that the hot gases
produced in the boiler furnace or reactor core never reach the turbine; they are merely
used indirectly to produce an intermediate fluid, namely steam. Clearly a much more
compact power plant results when the water to steam step is eliminated and the hot
gases themselves are used to drive the turbine.

There are two main factors affecting the performance of gas turbine component
efficiencies and turbine working temperature. The higher they can be made, the better
the allFround performance of the plant. It was, in fact, low efficiencies and poor
turbine materials which brought about the failure of a number of early attempts to
constant a gas turbine engne. For example, in 1904 two French engineers,
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Armengaud and Lemale, built a unit which did little more then turn itself over:
the compressor efficiency was probably no more than 60 %, and the max. Gas temp.
That could be used was about 740k. The development of the gas turbine has kept pace
with the progress on aerodynamic science and metallurgy, so that it is now possible to
find highly advanced engmnes that use a compression ratio up to 35:1, with an
efficiency of the individual components a round 85 — 90 and a turbine inlet
temperature up to 1650 c°.

2.2. Gas Turbine Plants.

A gas turbine plants as shown in figure. (2.1) consist of a turbo compressor,
combustion chamber (or H.E) and turbine. The plant is started by rotating the
compressor- turbine assembly of a starting motor arrange another device. When the
compressor develops enough pressure to support combustion of the fuel in the
combustion chamber, the hot gases can themselves drive the gas turbine, and the plant
becomes self- steaming. The turbine should develop enough power to be able to drive
the compressor and load. The output of the plant is the difference between the turbine
work and the compressor work. The actual output at the generator termmals will be
much less than this. Gas turbine plants can be compared with steam turbine plants; the
chief distinguishing features of the gas turbine plants are their high melt gas temp.
(tmax >1500k) and lower pressure. The exhaust gas pres. of the gas turbine plants are
nowhere near the considerably low pressure. (22.5mbar) employed in the condensing
steam plants. This explains why it is not necessary to employ large low pressure.

cylinders and multiple exhaust even large terrestrial gas turbine plant [50].

2.3. Open Cycle Single Shaft And Twin Shaft Arrangements

If the gas turbine is required to operate at a fixed speed and fixed load condition
such as in peak load power generation schemes, the single — shaft arrangement shown
mn Figure 2.1 may be suitable. Flexibility of operation, ie. the rapidity with which
machine can accommodate itself to changes of load and rotational speed, and
efficiency at part lad, are in this case an important. Indeed, the effectively high mertia
due to the drag of the compressor is an advantage because it reduces the danger of
cover speeding in the event of a loss of electrical load. A heat — exchanger might be

added as n Figure 2.1 to improve the thermal efficiency, although for a given size of
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plant, the power plant output could be reduced by as much as 10 " due to frictional
press. Losses in the heat - exchanger.

Figure 2.2 shows modified from proposed of use when the fuel, e.g pulverized
coal, is such that the products of combustion contain constituents which corrode or
erode the turbmne blades. It is much less efficient than the normal cycle because the
heat — exchanger, inevitably less than perfect, is transferring the whole of the energy
mput instead of merely a small part of the it. Such a cycle would only be considered if
a supply of 'dirty' fuel was available at very low cost [51].

oy

Compressor

Figure 2.1: A Heat — Exchanger Might be Added

Separate
Power Turbine

RN —— fuel
HE .

YA

Turbine

Compressor

Figure 2.2: A Heat-Exchanger Proposed of Use When The Fuel

When flexibility in operation is of paramount importance, such as i road, rail
and marine application, the use of mechanically independent (or free) power turbine is
desirable. This twin — shaft arrangement Figure 2.3 the high — pressure turbine drives
the compressor and the combination acts as a gas generator for the low — pressure
power turbine.

Twin shaft arrangement is also used for large scale electricity generation units,
with the power turbine designed to run at the alternator speed without the need for an
expensive reduction gear box. A minor advantage is that the starter unit need only be
sized to turn over the gas generator. A disadvantage, however, is that a shedding of
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electrical load can lead to rapid over — speeding of the power turbine, and the control
system lust be designed to prevent this [52].
Notice: For any given compressor Pres. Ratio the power required per unit

quantity of working fluid is directly proportional to the mlet temp.

®

-

| Power turbine

| i

| Gas generator

Figure 2.3: Gas Turbine With Separate Power Turbine

2.4. Closed Cycle

Outstanding among the many advantages claimed for the close cycle is the
possibility of using a high pressure ( and hence a high gas density) throughout the
cycle, which would result in a reduced the size of turbo machinery for a given output
and enable the power output to be altered by a change of pressure level in the circuit,
this form of control means that a wide range of load can be accommodated without
alteration of the max.cycle temperature and hence with little variation of overall
efficiency. The chief disadvantages of the closed cycle is the need for an external
heating system, which mvolves the use of an auxilary cycle and introduces at
temperature difference between the combustion gases and the working fluid. The
allowable working temperature of the surfaces in the heater will therefore impose an
upper limit on the maximum temperature of the main cycle [53]. A typical arrangement
of a closed cycle gas turbine is shown n Figure 2.4 . The cycle includes a water-cooled
pre-cooler for the main cycle fluid between the heat-exchanger and compressor. In this
particular arrangement, the gas heater forms part of the cycle of an auxiliary gas turbine
set, and power is controlled by means of a blow-off valve and an auxiliary supply of
compressor gas as shown. The high density of the working fluid improves heat
transfer, so that more effective heat-exchanger is possible. At the time of writing dozen
or so closed cycle plants of (2 — 20 MW) output have been built, mostly form the
Escher — Ways stable, and all with air as the working fluid but burning various fuels
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such as coal, natural gas, blast furnaces gas and oil. Turbine mlet pressure at up to forty
atmospheres have been used. With helum, larger sets of up to (250 MW) are thought
to be possible.

Compressed ges s upply

Figure 2.4: Simple Closed Cycle Gas Turbine

2.5. Gas Turbine Applications

Sometimes we shall find it necessary to use the distinguishing terms' 'aircraft gas
turbine and "industrial gas turbine ". The first term is self-explanatory, while the
second is intended to include all gas turbines not included in the first category. This
broad distinction has to be made for three main reasons: Firstly, the life required of an
industrial plant is of the order of (100000 hours) without major over haul, whereas this
is not expected of an aircraft gas turbine. Secondly, lLimitation of the size and weight
of an aircraft power plant is much more important than in the case of most other
application. Thirdly, the aircraft power plant can make use of the kinetic energy of the
gases leaving the turbine, whereas it is wasted in other types and consequently must
be kept as low as possible.

Finally, the gas turbine can be used as a compact air compressor suitable for
supplying large quantities of air at moderate pressure. In this case the turbine produced
just sufficient power to drive the compressor and the net power output is in the form
of compressed air bled from the compressor. Figure 2.5 and Figure 2.6 show an
mndustrial gas turbine during assembly at the OEM’s facility.
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Figure 2.5: GE-9H gas turbine is prepared for testing (Source: GE Power Systems)

Figure 2.6: A GE Frame 9F ready for shipping. (Source: GE Power Systems)

2.6. Cycles of Gas Turbine

Gas turbine cycles are classified according to the type of fuel combustions that
taking place mnside the combustion chamber 1 Constant pressure cycle, known as the
Joule or Brayton cycle (The Brayton cycle is an idealization of a simple gas turbine
proposed by Brayton in the 1870's It is a 4 step cycle ), as shown in Figure 2.7 (a) and
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(b) and Figure 2.8 (a) and (b). If the combustion in the chamber take place at constant

pressure and letting the volume to increase, then it is called the constant pressure cycle

Brayton Heat Cycle Entropy Diagram Brayton Heat Cycle PV Diagram
c
= E | =
[ Expansion o
2 (Work Out) g B c
m
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Figure 2.7: (a) and (b) Brayton Cycle

Exhaust Emission

Eylinder
ton
Air input
RN

Figure 2.8: (a) and (b) Application Brayton Cycle

2.6.1. Gas turbine cycles

The ideal cycle that the working fluid undergoes in this closed loop is the
Brayton cycle, which is made up of four internally reversible processes:

(A-B) Is the isentropic compressing, the air is compressed through the axial
compressor (Air drawn into the turbine and compressed in the compressor stage).

(B-C) Is the Constant-pressure combustion or heat addition (Fuel mixed with the
high pressure air in the combustion chamber and burned at constant pressure).

(C-D) Is the Isentropic expansion (in the turbine) (Hot gases expand in the
turbine stages.)

(D-A) Is the Constant-pressure heat rejection. (Constant pressure ejection of the
spent, hot gases to the environment.)

This cycle (Brayton cycle) may be characterized by two quantities: the peak

Pg _ P¢

temperature in the cycle T, and the ratio of pressures = b T p
A D
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If we assume that the working fluid in this cycle is an ideal gas then from basic

thermodynamic theory we know that:

PV = mRT (2-1)
PVY= Constant (this is true or an adiabatic process) (2-2)
Using equations (1) and (2), it can be shown quite readily that:
s _ Tc pPp L= P =
—_— =—=(—)Y =(—/) VY -
E_t-B7 =@ @)

Where y is the ratio of specific heats of the gas (for air this constant = 1.4).
Ideally, y is a constant. In a real gas turbine cycle it varies throughout the cycle as a
function of the working fluids chemical composition and temperature. However, for
simplicity it is assumed here that it is a constant value.

The temperature T, is the highest temperature in the cycle and may be assumed
to be the notional temperature of the hot gases entering the first stage of the turbine.
In practice, this temperature will need to be kept below a certain limit in order to
preserve the life of (reduce fatigue and stress on) the hot gas-path parts in the turbine.
However, it is extremely difficult to measure this temperature in practice since
msertion of thermocouples with a fast response time mto this region of the turbine can
be difficult, and there is not one temperature but rather a spread of temperatures across
the combustion chamber/cans. Therefore, it is common to measure the temperature at
the exhaust of the turbmne (T,), and through controlling of this temperature T, is
mamtained below its limit. Based on equation (3), if there is a set limit on T, then the

limit on T, will vary as a function of pressure ratio r. That is,

T, limit = T, limit (1 /r)y% (2-4)
In practice the processes mvolved are more complex and variations iy,
evaluation of fluid friction etc. can not be ignored and thus the relationship between
the cycle temperatures is also more complex. However, the basic concepts are the
same and thus typically modern gas turbine controls will imit the exhaust temperature
of the turbine as a function of'the cycle pressure ratio [54],[55].
Therefore, in general the exhaust temperature limit of the gas turbine will be
implemented as a monotonic function of pressure ratio, ie.:
Tplimit = f(r) (2-5)
The exhaust temperature is governed by airflow into the combustion chamber
and the fuel burnt.
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The airflow through the turbine can be adjusted by changing the angular position
of the inlet guide vanes (IGVs). In a combined-cycle power plant the IGVs are
modulated during part load conditions. This reduces the airflow and thus keeps exhaust
temperature high at reduced loading levels to maintain the desired level of the heat
transfer into the heat recovery steam generator; this helps to maintain an overall higher
plant efficiency [40]. Once the gas turbine is loaded close to base load, the IGVs
become wide open. At this point the control of the turbine fuel flow is taken over by
a temperature control loop which acts to control the fuel in order to maintain the
exhaust temperature at its limit. In a simple-cycle turbine the IGVs are wide-open
throughout most of the units loading cycle. Thus, for comparable turbines at the same
part-load condition, the exhaust temperature of a combined-cycle unit is higher than
that of a simple-cycle unit. The consequence of this is that if a frequency excursion
were to occur the resultant transient overshoot i turbine power would be higher on
the simple-cycle unit since it would have started at a temperature significantly lower
than its combined-cycle counter part. However, the final steady-state power output of

both turbines would be the same once they reach, and settle down, at their temperature
limit.

2.6.2.Characteristics of Axial Compressor Flow

Consider equation (88). From this equation it can be seen that the term RT has
the physical units of meter squared per seconds-squared (m?.s72). Now if we take
the speed of the compressor blades in revolutions per second (Hz) and multiply this by
the length of the compressor rotor blade (L) and then divide this number by the square
root of RT, we have:

— @b -
== (2-6)

Which is a dimensionless quantity. Furthermore, since the speed of sound in a
fluid =,/¥YRT, then y can be physically interpreted as the speed of the tip of the
compressor rotor blades to the ratio of the speed of sound (i.e. a Mach number [40]).
Similarly, a dimensionless quantity can be established for the rate of mass flow of air

mto the compressor

=m0 @-7)
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Where A is exposed area at the inlet of the compressor, P is the air pressure at

the inlet and  is the mass flow of air (inkgs~?!). Furthermore, since
m = pAv (2-8)

Where p is the density of air and v the velocity of air, and form equation (2-7)

P = pRT, then equation (2-9) can also be written as
¢ =7 (2-9)

Which physical represents the relative speed of the air entering the compressor
to the speed of sound (again a Mach number).

These quantities together with pressure and temperature ratios characterize the
compressor. The advantage of this characterization is that the temperature and speed
dependency of the compressor airflow can be represented as one monotonic function.
This is graphically shown in Figure 2.9. The dimensionless airflow versus speed
characteristic of an example turbine can be found in [49].The significance of this
representation is that for example the operating condition defined by 7, and @, (see
Figure 2.9) can be reached by either decreasing shaft speed in order to arrive at n
=7, or by raising ambient temperature relative to the reference condition under which
n is defined = 1.0 pu. Note, however, that although the dimensionless airflow for two
such conditions is similar the actual airflow for a higher temperature condition will be

less due to the lower air density.

¢ Y

(dimensionless air flow)

1.0 pu —

n, 1.0 pu ) '— n
(dimensionless speed)

Figure 2.9: Compressor Airflow Characteristics

This information, ie. the airfow versus speed curve for a compressor, is not
readily available but there is a potential for identifying this relationship through field
test [49].
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2.6.3.Deviation of Actual Gas-Turbine Cycles from Idealized Ones

The genuine gas-turbine cycle contrasts from the perfect Brayton cycle on a few
records. First off, some weight drop amid the warmth expansion and warmth dismissal
procedures is inescapable. All the more vitally, the genuine work contribution to the
compressor is more, and the real work yield from the turbine is less in light of
rrreversibility.

The deviation of genuine compressor and turbine conduct from the glorified
isentropic conduct can be precisely represented by using the isentropic efficiencies of

the turbne and compressor as.

Ws has—hq
= — = = 2-10
M Wq haa—h4 ( )
Wa h3—h4q
= — = — 2-11
r Wg h3—hys ( )

Where states 2a and 4a are the actual exit states of the compressor and the
turbine, respectively, and 2s and 4s are the corresponding states for the isentropic case,

as illustrated m Figure 2.10.

T A

Pressure drop
during heat
addition

Pressure drop
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] rcjection

>
§

Figure 2.10: The Deviation of An Actual Gas-Turbine Cycle From The Ideal Brayton Cycle As A Result of
Irreversibilities.

2.6.4. Modification in The Simple Cycle

We have discussed simple cycle in the previous pages and found that the heat of
exhaust gases in a waste, if it is not used by modifying the cycle, Also for higher power
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generation or say for multistage compression and expansion if mtercooling and
reheating are not used, the output can not be increased.Therefor in practical gas turbine
power plant accessories such as exchanger, mntercooler and heaters are used to increase

efficiency and output.

2.6.5.Gas Turbine Modeling

The dynamic turbine modellng has focused on the turbine component n a gas
turbine power plant simulator. Thus, the turbine model was built up by smaller model
components to predict the turbine dynamic behavior at different operating conditions.
Turbine blade cooling was studied using an air stream injecting from compressor outlet
to the turbine stator and rotor to avoid high thermal stress on the stage. However, this
was made on the expense of a power output loss. This is fully consistent with the
conclusions of [56] that for low and medium gas turbine power plants, blade cooling
can be omitted.

2.7. Overview on Turbine Frame 9

The gas turbine is the most versatile item of turbomachinery today. It can be
used in several different modes in critical industries such as power generation, oil and
gas, process plants, aviation, as well domestic and smaller related industries. A gas
turbine essentially brings together air that it compresses in its compressor module, and
fuel, that are then ignited. Resulting gases are expanded through a turbine. That
turbine’s shaft continues to rotate and drive the compressor which is on the same shaft,
and operation continues. A separate starter unit is used to provide the first rotor motion,
until the turbine’s rotation is up to design speed and can keep the entire unit running.

The compressor module, combustor module and turbine module connected by
one or more shafts are collectively called the gas generator. In land-based industries,
gas turbines can be used in either direct drive or mechanical drive application. With
power generation, the gas turbine shaft is coupled to the generator shaft, either directly
or via a gearbox “direct drive” application. A gearbox is necessary in applications
where the manufacturer offers the package for both 60 and 50 cycle (Hertz, Hz)
applications. The gearbox will use roughly 2 percent of the power developed by the

turbine in these cases.
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In power generation applications, a gas turbine’s power/ size is measured by the
power it develops in a generator (units watts, kilowatts, Megawatts). In mechanical
drive applications, the gas turbine’s power is measured in horsepower (HP), which is
essentially the torque developed multiplied by the turbine’s rotational speed.

The combination of compressor module, combustor module and turbine module
is termed the gas generator. Beyond the turbine end of the gas generator is a freely
rotating turbine. It may be one or more stages. It is not mechanically connected to the
gas generator, but instead is mechanically coupled, sometimes via a gearbox, to the
equipment it is driving. Compressors and pumps are among the potential “driven”

turbomachinery items. See Figure 2.11 below.

FREE POWER TURBINE
NOZZLE GUIDE VANE FREE POWER TURBINE

POWER OUTPUT

TURBINE (driving engine compressor)
SHAFT

COUPLING SHAFT

REDUCTION GEAR ASSEMBLY

EXHAUST OUTLET CASING

Figure 2.11: A typical Free Power Turbine. (Source: Rolls-Royce, UK)

The technical specification of the turbine of this study can be listed as in the
following table (Table 2.1).
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Table 2.1: Technical Specification of The Turbine

General Operation Conditions

Atmospheric Pressure 1012

Design ambient temperature 50° centigrade
Minimum ambient temperature -6° centigrade
Maximum ambient temperature 55° centigrade
Design relative humidity 30%
Minimum relative humidity 5%
Maximum relative humidity 95%

Seismic code UBC97

Grid code No specific requirement
Gas Turbine
Frame size PGI171

Fuel system

Dual fuel (natural gas +light diesel oil)

Starter

FElectrical motor

Arr filtration

Self-cleaning

Compressor /turbine cleaning

On and off —line compressor water wash

and off-line turbine washing

Exhaust system

Side right

Fire protection

High pressure CO,

Generator
Model Model GE9AS, Brush BDAX9, or
Alston T900B as a function of

availability

Frequency 50Hz

Power factor 0.85 lagging

Power factor Up to 0.95 leading

Terminal voltage 15 KV

Control Systems

Gas turbine

Speedtronic Mark Vie(TMR)
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Estimated Performance — Base Load , Liquid Fuel

Estimated Performance- PG9171

Load Condition Base Base Base
Exhaust static pressure mm H20 106.7 75.6 72.4
Ambient temperature deg C -0.5 50 55

The complexity of power plant operation, of their interaction with the electrical
network, as well as the need of mplementing coordinated control systems to cope with
specific operational requirements, call for the development/use of advanced and
accurate simulation tools. This may represent the adequate complement or substitute
the practice of repetitive prototyping and expensive tests on real systems. Within this
context, the parameter identification of power plant dynamic models represents one of
the main issues for proper simulation of the transients occurring during critical
operation conditions. This work deals with a parameter-identification procedure
conceived for the development of a computer-based simulator aimed at reproducing
the islanding and black-startup energization transients of a power system consisting of
a combined cycle power plant, the local distribution network and relevant loads.

In particular, the computer simulator refers to a 80 MW power plant composed
by two aero-derivative gas turbine (GT) units and a steam turbine unit (ST) i
combined cycle. The simulator represents the dynamic behavior of the GTs, the heat
recovery steam generator, the ST and their control systems. Concerning the electrical
apparatus, it includes the model of the synchronous generators along with their
exciters, automatic voltage regulators (AVRs), as well as the representation of the local
electrical network (step up unit transformers, cable link between the power plant
substation and distribution substation and loads) connected to the external
transmission network.

As the first step of modellng and control, it is necessary to get enough
mformation about the type of the modelled gas turbine. Although there are different
types of GTs based on their applications in industry, they have some main common
parts including combustion chamber, compressor and turbine. The set of these
components is called engine core or gas generator (GG). Compressor and turbine are

connected with the central shaft and rotate together.
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GTs are divided into two main categories including aero gas turbines (jet
engnes) and stationary gas turbines. In aero industry, the gas turbine is used as the
propulsion system to make thrust and to move an airplane through the air. Thrust is
usually generated based on the Newton's third law of action and reaction. There are
varieties of aerogas turbines including turbojet, turbofan, and turboprop. If the main
shaft of the GG is connected to an electro generator, it can be used to produce electrical
power. Industrial power plant gas turbines are playing a key role in producing power,
especially for the plants which are far away on oil fields and offshore sites where there
is no possibility for connecting to the general electricity network. GGs may also be
tied to large pumps or compressors to make turbo-pumps or turbo compressors

respectively.
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CHAPTER THREE

GAS TURBINE IDENTIFICATION BY ANN

3.1. Overview

Artificial neural network models for gas turbines can be formed using different
methods based on the flexibility that artificial neural networks provide. This flexibility is
depends on the number of neurons, the number of hidden layers, values of the biases and
weights, type of the activation function, the structure of the network, algorithms and
training styles as well as data structure. On the other hand, the best structure is the one
which can predict behaviour of the system as accurately as possible.

Choosing the right parameters of gas turbines (GTs) as outputs and inputs of the NN
is very significant for making a reliable and accurate model. The availability of data for
the selected parameters, Knowledge of the system to determine the interconnection
between different objectives and parameters for model making are the key factors in
selecting appropriate outputs and nputs. Accuracy of the Choosing output parameters can
be examined by sensitivity analysis.

There are different approaches and methodologies in system identification and
modelling of industrial systems. Artificial neural network (ANN) is increasingly
considered as a suitable alternative to white-box models over the last few decades. The
nature and strength of the interrelations of system variables as well as the nature of
applications are vital criteria for traning a neural network with sufficiently rich empirical

data. The general methodology that follow can be described in Figure 3.1.
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Figure 3.1:Flow Diagram of The Adopted ANN Methodology in System Identification
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3.2. Custom Neural Network

Artificial neural networks are computational analogues of small biological
neural systems that possess useful computational properties. In particular, it is possible
to train a neural network on example data such that the neural network can
subsequently map inputs correctly to outputs that were not present in its training set.
In this way it is possible to build a model of a complicated physical system, such as a
gas turbine engine, without drawing from any prior knowledge of the physics of the
system. Although we know a great deal about the physics of the gas turbine, the explicit
calculation of degradation mfluences from the available performance data is
ambiguous and so this ability to model an engmne purely from the data it provides is
useful.

In this research, the neural network used is a custom feed-forward network with
the mput propagating through the network to produce an output. Later it wil be
described how errors are back-propagated from the output of the model to the mput
and it is important to note that the terms ‘nput’ and ‘output’ are fixed in relation to the
network geometry. A feedforward neural network with sigmoidal activation functions
approximates any mapping with a differentiable neural network function. It is the
differentiability of the neural network model that makes it suitable for optimization of
the engine. The calculation of the values of the derivatives can be done by a simple
extension to the existing error back- propagation algorithm used for training neural

networks.

3.3. Methodology

The complexity of real neurons is highly abstracted when modelling artificial
neurons. These basically consist of inputs, which are multiplied by weights, and then
computed by a mathematical function which determines the activation of the neuron.

The backpropagation algorithm is used in layered feedforward ANNs. This
means that the artificial neurons are organized in layers, and send ther signals
“forward”, and then the errors are propagated backwards. The network receives inputs
by neurons in the input layer, and the output of the network is given by the neurons on
an output layer. There may be one or more intermediate hidden layer. The

backpropagation algorithm uses supervised learning, which means that we provide the
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algorithm with examples of the mnputs and outputs we want the network to compute,
and then the error (difference between actual and expected results) is calculated. The
idea of the backpropagation algorithm is to reduce this error, until the ANN learns the
training data. The training begins with random weights, and the goal is to adjust them
so that the error will be minimal

The first step to formulate the problem is the identification of proper mputs and
output sets. According to relations between the turbine parameters’ observations such
as; air temperature, Fuel Consumption, and Inlet Guide Vane position as mput signals
and electrical output power of gas turbine as output signals.

3.3.1. ANN Design

In this work, a Custom Neural Network used for the simulation and training the
process. A custom Feed forward network is chosen for implementing the artificial
neural network (ANN). Three mputs at the mput layer, hidden layer and output layer
respectively. Some hidden layers are taken and number of neurons vary from 4 to 20
in each layer in order to arrive at final architecture. After sufficient experimentation
and simulation, one hidden layer is selected. The hidden layer contains four neurons
in related to three mputs, Fuel, let guide fan, and exhaust temperature, while the
output layer contains one neuron in related to one output which represented by the
Plant output power (Mwatt). The neural network architecture is displayed in

Figure 3.2.
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Figure 3.2: One-Layer Network With Three Inputs, Four Neurons, and One Output neuron (Power)

3.3.2. Training algorithm

For better performance of the proposed neural network design, all inputs and
output data have been normalized, then, they are used in the neural network training
procedure. Eighty percent of data are used for training, ten percent of input is used for
validating and ten percent of data are used for testing network. All Input and output
data are gathered from logging system and operational documents from real Power
Plant. The training algorithm can be expressed in a form of a block diagram as shown
in Figure 3.3.
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Figure 3.3: Training Algorithm of The Proposed Custom Neural Network.

3.3.3.Deriving Model Equation

This part of the work wants to present a general data-driven method for
formulating suitable model equations for gas turbine as a nonlinear complex system.
The method is validated in a quantitative way by its application to experimentally
measured data. We have developed the gas turbine power formula as a function of the
variables on which it mamly depends, that are: Fuel (F), Exhaust Temperature (ET)
and Inlet Guide Vane (IGV). A log-sigmoid activation function is used for the neurons
of the hidden layer, while the linear function for the output layer neurons to simplify
the solutions. Therefore, for the hidden layer:

fi (n) =logsig (n)

£ (n) =pureline (n)
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Where f1 (n) and f> (n) denote to the activation function of n-th neuron in the
hidden and output layers respectively. The mput layer is a three-dimensional vector
represented by: the Fuel (F), Exhaust Temperature (ET), and the Inlet Guide Vane
(IGV). Thus, for the configuration of Figure 3.3, whereas 3 nput parameters, 4 hidden
neurons, and one output neuron, the neurons’ output equations at the hidden layer

(A} ... A}), are as follows:

n; = FxIwg gy +ET * Iwgy 5 + IGV * Iw(y 5 +bgy 5 (3-1a)
A, = 1/(1 o)) (3-2a)
n; = F*Iwyqy) +ET *Iw,,) +1GV * Iw, 5 + b,y (3-1b)
A, =1 /(1 ) (3-2b)
ny =F*Iweg ) + ET % Iws,) +IGV * Iw(g 5 + bsy (3-1¢)
a4, =1 /(1 el (3-2¢)
ny=F *Iw ) + ET % Iwg, ) + GV * Iw(, 5 + bly 4, (3-1d)
A, = 1/(1 el (3-2d)

Where all nj ..n;, A}.. A}, represent the neurons input summation finction

and the activation functions of the hidden layer respectively. At the output layer:-

Power = Al * LW(l.l) + AZ * LW(l'Z)A3LW(1,3)

output

+A4 * LW(1'3) + A%_l * b(21,1) (3-3)

A% = f,(n?) = pureline(n?) = 1 (3-4)

Where the n?, A}, represent the neurons input summation function and the
activation functions of the output layer respectively.

Where Power:

outpue> denotes to the model output power which resulting from

training the weights; Iw, Lw, b, b? , that are associated with the input, hidden and the
bias respectively.

Mean Squared Error (MSE): is the criteria that used to stop the training process,
on which the loop terminates when minimum desired error occurs. The standard
reference MSE is used to calculate the performance of the networks. It represents the
average squared difference between initial target values and achieving output values

from open loop mode.
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MSE = =3t Gry = Ve )2 (3-5)

Where the ¥,.;),¥,(;)» denote the observations and the modeling outcome data
respectively.

Correlation Coeflicient (R): it measures the correlation between the correct

outputs and those provided by the network; as R is closer to 1 as the approximation is

better. The value ofthe correlation coefficient can be expressed as in (3.6).

Lyy-CENEy)
R = - 3.6
JnE Y- nEy)-C y)? (3.6)

Where 7 is the number of pairs of data.

3.4. Results and Network Performance

A two cases have been addressed for modellng i this part, the first, when
training the proposed custom ANN on 3 main inputs (Fuel (F), Exhaust Temperature
(ET) and Inlet Guide Vane (IGV)), while the second, trained at five input parameters
(Fuel Consumption (FC), Fuel Percentage (FP), Exhaust Temperature (ET), Inlet
Guide Vane (IGV),and Compressor Air Pressure (Cp).

3.4.1.Case 1, (3 inputs)

After conducting the simulation for more than seven times while comparing the
custom ANN outcome with the measurements, Best performance index with a
minimum  error occurred at 45 Epochs (number of training iterations) with
performance value equals to 0.643, which indicates the value on which the iteration
process has stopped (the value of MSE) this process with the network weights training

can be seen n Figure 3.4.

36



Best Training Performance is 0.64385 at epoch 45

——Train | 4
Best |

- \ Goal |

Mean Squared Error (mse)
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45 Epochs

Figure 3.4: Training Process Along With Performance Index M easuring For 3 Inputs.

To get the mathematical modelling equation for the system model, the weights’

vectors of the layers for the custom ANN has been extracted as follow:

13.3 —5.6179 —3.3508
—-0.69582 —2.0788 0.31162

- 0.00045481 0.094982 0.00023654
—2.5308 74064 0.11496

b1 =[-18.331, 4.5183, 1.7403, -8.0575]
Lw = [-1.5129; -912.35; 2028; 34.579]
by =-885.01

w

Where Iw, b1, Lw, b2 represent the nput layer, nput bias, hidden layers, and
output bias weights respectively. The simulation results of the output power can be
calculated from solving the resultant algebraic equations. Therefore, after some
substitutions and simplifications, the mathematical modelling equations of the power
can be given by:

Power

2027.9528
= 0.17546 % ¢(—009498249682+16V) 4 1

912.35

0.0109 * ¢(20788+IGV) 4 o(0.69582+F) 4 p—0.31162Et

1.51289
o 0145262.55 % ¢(5:61787+IGV) 4 o(3.3508+Et) 4 o(-13.29982+F) 4 1|

34.5786
+ 3157.538 % ¢(25307+F) 4 o(-7.406387+IGV) 4 o(-7.406387 +lGV) 4 o(-0.11496+Et) | 1

—885.0101
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The comparison between the simulated and the predicted data which also called

the correlation coefficient can be seen in Figure 3.5

Training: R=0.9995

O  Data
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Figure 3.5: Comparison Between Simulated and The Predicted.

3.4.2.Case 2, (5 inputs)

Several simulation processes have been conducted while also comparing the
custom ANN outcome with the measurements to get best performance index with a
minimum error. It is found that; after 175 Epochs (number of training iterations),
performance index value approach to 0.141, the process during the network training

for the weights can be seen in Figure 3.6.
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Figure 3.6: Training Process Along With Performance Index M easuring For 5 Inputs.
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To get the mathematical modelling equation for the system model, the weights’

vectors of the layers for the custom ANN has been extracted as follow:

0.8075 —0.4150 2.0339 0.8931 1.1604 ]
| 07315 0.4089 -33787 - 01995 01577 |
~0.0043 0.0063 —0.0036 —0.0104 — 0.3216]
0.1705 0.9799 —7.0593 —1.6297 1.1510 |
[ —16.5654]
.- —27.1018|
4.1898 |
4.2818 |

Lv=[ 66.7025 —0.3444 —172.4861 6.4324]
ba=[ 73.2855]

Thus, the power equation due to the network outcome be:

Power = 66.702/(exp(0.414 * IGV — 0.893 xFP — 1.160 *Cp —
0.807* FC — 2.033* ET + 16.565) + 1.0) — 0.344/(exp(0.199 * FP —
0.408 xIGV — 0.157 xCp — 0.731* FC + 3.378*ET + 27.101) + 1.0) +
6.432/(exp(1.629+ FP — 0979 xIGV — 1.151*Cp — 0.170* FC + 7.059
ET — 4.281) + 1.0) — 172.486/(exp(0.010+x FP — 0.006 x IGV + 0.321 *
Cp + 0.004+«FC + 0.003*ET — 4.189) + 1.0) + 73.285

The comparison between the simulated and the predicted data output can be
seen in Figure 3.7.
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Figure 3.7: Comparison Between Simulated and The Predicted.

While the field measurements compared with the model outcome data can be

shown in Figure 3.8.
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Figure 3.8: Comparison of Data Fields M easurements and Network Power (M watt) With Time (Sec).

Another interpretation of the approximation range of the custom ANN model

structure is the error curve over the sampling time with can be shown in Figure 3.9.
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Figure 3.9: Error Curve of Custom ANN M odel

Furthermore, and to clarify the response of the output model formula with

respect to each mput individually, the following figures demonstrate these relations
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between the power output from one side, and with respect to Fuel Consumption (FC),
Fuel Percentage (FP), Exhaust Temperature (ET), Inlet Guide Vane (IGV), and
Compressor Air Pressure (Cp). As can be seen in Figure 3.10 (a,b,c,d, and d)
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Figure 3.10:The M odel Output Power With Respect to Each Input; (a) Fuel Consumption (FC), (b) Fuel Perce
(FP), (c) Exhaust Temperature (ET), (d) Inlet Guide Vane (IGV),and (e) Compressor Air Pressure (Cp)

3.5. Summary

A custom ANN technique is applied to the GT system, which described in the
previous section, to extract a model shows the effect of the system mput parameters
on the output power. The target of using Custom ANN is achieved when the power
modeling equation has been obtained. The function complexity depends on the number
of inputs and their interactive relationships among them, and also the number of
selected hidden neurons in the network. The linear activation function of the output
neuron simplifies the solution of the algebraic equations that equivalent to the number
of hidden neurons that in turn add the nonlinearity behavior of the network to model
that due to system measurements.

Data sampling is made from full speed no load to full load (86.17 MW base load)
conditions with sampling mterval 1.0 sec. Gas turbine behaviors are extremely
depends on fuel consumption and ambient condition, and the experiments showed that
the ambient temperature is a crucial parameter. Based on simulation results, it is found
that the ANN model can describe the system behaviors adequately.

The resulting model showed that the existing artificial neural network method

can be reliably process to determine the system of gas turbine systems. The gas turbine
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output parameters can reasonably be predicted based on changes in system inputs. The
approach of this study can also be used to predict performance of similar gas turbine
systems with high accuracy when training from real data obtained from this type GT
frame 9. This is particularly useful when real data is only available over a limited

operational filed.
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CHAPTER FOUR

LINEAR AND NONLINEAR IDENTIFICATION MODELS OF GAS
TURBINE

4.1. Introduction

The primary focus of this dissertation is the development of methods to extract
simple linear dynamic models of system dynamics suitable for condition monitoring
and control design of industrial gas turbines. This is an inherently nonlinear application
and we cannot trivialize or ignore the nonlinear characteristic of the machinery. To
accommodate the nonlnear characteristics, the mterconnection of the fuel system and
turbine engine is approximated by a block Hammerstein system for the identification
of fuel valve contamination.

Linear dynamic models have been demonstrated to capture the dominant
dynamics of gas turbine behavior and to be suitable for the design of diagnostic
algorithms. For example, high-fidelity models can be used for modelling the fuel
control subsystem, or alternatively viewed as a black-box system shown in a simple
block diagram as shown in Figure 4.1. This, or similar, simplified block structure
approximations will be used throughout the discussion due to the relative simplicity
and utility. Example closed loop black-box system, where P is the plant, K the
controller, with reference r, control output u (t), mput noise d, plant mput u, plant

output y, measurement noise v, and measurement z

v(t)

d(t) u(t) y(t)

r(t)

Figure 4.1: Sample Control System Block Diagram
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A mathematical model is called continuous-tine when it describes the
relationship between continuous time signals. Continuous-time models are shown with
a function f (t) that changes over continuous time. A model is called discrete-time
when it directly expresses the relationships between the values of the signals at discrete
mstants of time. The relationship between signal values is usually expressed by using
differential equations. In practical applications, signals are most often obtained in

sampled form in discrete time measurements.

4.1.1.Linear System Identification

The object’s static and dynamic characteristics, static and dynamic nonlinearities
and characteristics’ sensitivity to operating parameters must be accounted while
identifying the dynamic object. The model structure is composed by using theoretical
studies, and the parameters from test data are estimated. Usually, power system
dynamic model structures are known and can be described by linear or nonlinear
differential equations. The task of identification is to determine numerical values of
the model parameters. The response of linear system output can be described by the
sum of responses to separate input signals. According to the iput signal type, the
object’s response can be described as transient function h(t), impulse function g(t),
transfer function — frequency response functionW (jw), autocorrelation function
Rxy(tr) and spectral density function Sxy(w). All these characteristics are
mterdependent, but the object dynamic parameters are estimated n a different way
because of noises, naccurate and msufficient test data. The parametric identification
methods are used for identification of dynamic models in the transient nvestigation of
the power system. Non-parametric identification methods, e.g. correlation or spectral
density analysis may be used for estimation of generalized parameters.

Identification of the frequency domain method is based on Fourier
transformation. The task of identification n time domain is the determmation of the
transient function between mput and output signals. If the object’s input and output
signals are stationary processes and are measured discretely, the object model can be
written as

y(®) = G(q,0)u(®) + H(q,0) e(t) (4-1)
where ¢. shift operator; 6. transfer function parametric vector, e(¢): sequence of
random unrelated data [57],[58].
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Parametric identification methods. The generalized parametric model is

described by expression:

A@Y© = ZBu® + 5 Ze(®), (4-2)

Where y(¢): output signal, u(z): mput signal, e(¢): signal error or noise, ¢. shift
operator and 4(q), B(g), C(q), D(g) and F(q)— polynomials [2].

Partial cases of the model (4-2) can be used, assuming that some of the
polynomials A(q), B(q),C(q),D(q) and F(q) are equal to 1 (Table 4.1). If the
discrete parametric identification method is used, the polynomials of the identified
model, (4-2), are transformed into contnuous time model polynomials.

Relationship between parameter vectors of discrete and continuous time
functions depend on z and s operators.

The parameters 6, and 8j0f discrete generalized parametric model partial cases
response function G(q,6,) and H(q,6,) are identified using sampled input and output
signals u(t) and y(t). The main transient function G(q,08;) of identified discrete
model is converted into continuous time domain transfer fimction W (s, ). The
parametric vector 8 of the continuous time model is determined from the expression

0 = argming Yl (y(t + 1) —9(t + 1),60)2. 4-3)

Table 4.1: Most Frequent Cases of Partial Parametric M odel

Model structure Polynomials
FIR(finite impulse response) B(q)
ARX A(9).B(9)
ARMAX A(9).B(q),C(q)
ARMA A(9).C(q)
ARARX A(9), B(q), D(q)
ARARMAX A(9), B(q), C(q).D(q)
OE(output error) B(q), F(q)
BJ (Box-Jenkins) B(q), F(q), C(q), D(q)

The identified model must meet three similarity conditions:
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* The autocorrelation of output signals of measured and simulated identified
transfer function must converge towards 1, and the least square criterion must be as
small as possible:

R = corr(y(t),j?(t)) -1
(4-4)

5= e+ =9(t+0)* >0

Where
y(t): measured output signal: §(t): simulated output signal of the identified
transfer function W (s, 8) when the input of the transfer function is measured signal u

(t); S: least square coefficient, R: autocorrelation coefficient.
4.1.2. Nonlinear System Identification

A Hammerstem model is a specialized model structure where a nonlinear system
is approximated by a series connection of a static memory less nonlinear function in
series with a linear dynamic plant. The Hammerstein model structure is relevant to
many engineering applications where nonlinear behavior is the rule rather than the
exception. Most physical devices have nonlinear characteristics outside a limited lnear
range. Control elements, such as valves and position actuators, are typically linear in
a limited operating range and possess some form of saturation, hysteresis, or nonlinear
characteristics in the input/output characteristic.

In addition, it is common to approximate a dynamic nonlinear system with a
linear dynamic model around a local operating point. The linear models may be
obtained via linearization of a known nonlinear model or by experimentation and
identification methods.

The performance of the fuel control system in a gas turbine engine is critical to
maitain stability and achieve performance targets. A digital feedback controller
meters fuel mto the combustion chamber using measurements of shaft speed, stage
temperatures, pressures, and power. The fuel control valve(s) typically possess a
nonlinear position to flow area relationship. The control system requires knowledge of
this nonlinear characteristic to accurately regulate fuel flow. Uncertainty or
degradation of the physical fuel valve’s flow characteristic can lead to instability or

operational limitations of the turbine engmne. Maximization of machine availability is
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essential for operators and the cost of unplanned service interruption is typically
greater than the cost of preventative maintenance and returning the unit to service. The
motivation of this research is the identification of turbine parameters in a nonlinear
actuator characteristic in closed-loop operation. Hammerstein model framework. The
Hammerstein model structure comprises an input nonlinearity in series with a linear
dynamic model. This model structure can be used to identify the turbine parameters
nonlinearity and approximate the dynamics of the turbine engine via a linear plant
model. Identification of closed-loop Hammerstein systems has focused on
instrumental variable based methods as they mitigate the bias due to the correlation of

output noise and the mput and output signals.
4.2. Transfer Function Identification

This model shows how to deal with field experimental data with several mnput
and output channels (MIMO data). The common operations, such as viewing the
MIMO data, estimating and comparing models, and viewing the corresponding model
responses are highlighted. This data set is collected from a Field scale Turbine engine.
It has several mputs such as; Comp.Air Pressure (Cp) in (bar), ExhTemp (ET) m (°C),
FulePerce (FP) in (%), Inlet Gide Vane (IGV) i (deg), Fuel Consumption (FC) in
(m3 /sec). As a bignning, we’ll consider the most effective parameters that represented
by ET, FC, defined as above. The output is the generated power and the sampling time

was 1 (sec).
4.2.1. The fitting percentage

The fitting percentage can be expressed as the fitting value of estimation

experimental data and calculated using:

fit = 100(1-—2=I__y (4-5)

[ly—mean (y)ll

Where y is the validation data output and ¥ is the output of the system.

4.2.2. Akaike's Final Prediction Error (FPE)

Akaike's Final Prediction Error (FPE) criterion provides a measure of model

quality by simulating the situation where the model is tested on a different data set.
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After computing several different models, you can compare them using this criterion.
According to Akaike's theory, the most accurate model has the smallest FPE.

If you use the same data set for both model estimation and validation, the fit
always mmproves as you increase the model order and, therefore, the flexibility of the
model structure.

Akaike's Final Prediction Error (FPE) is defined by the following equation:

FPE = det (152 e(t,0,) (e(t,))") (ijjx) (4-6)

Where:

e Nis the number of values in the estimation data set.
e e(t)is any-by-1 vector of prediction errors.

o 0, represents the estimated parameters.

e dis the number of estimated parameters.

The method that has been adopted in the estimation process is nonlinear least
squares with automatically chosen line search. To gain some preliminary insight into
the data characteristics, we started by evaluating a default-order discrete model which
assumes 2 poles and 1 zero for each transfer function. The mput/ output delay has been
extracted from the real measurements of the field data (Generator Power). Therefore,
to estimate the parameters of the addressed turbine system, we need to identify the
following:

Data has 1 output given by (Generator Power). 2 mputs given by (Exhaust
Temperature and Fuel Consumption). Number of samples are 1047. Thus, Transfer
functions with poles given by: [2 2], and zeros: [1 1], while the I/O delay: [1 1].

First, we've collected the measured channels into an iodate object:

At a sample time: 1 seconds, the Discrete-time identified transfer functions are
as follows:

From mnput "Exhaust Temperature" to output "Gen. Power":

—0.0001243 q7*

Gl=q"
4 1T - 1914q + 09152 q2

While from iput "Fuel Consumption" to output "Gen. Power":

0.782q7*
1 — 01159 q ' — 0.8479 q~2

The fitting to estimate experimental data was: 94.45%, FPE: 2.017, and Mean
Square Error (MSE): 1.992.

G2=q 1=
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4.2.3.Pole Zero Map

For basic information about the inspection of system stability, we can use the

pole-zero map as can be seen Figure 4.2.

Pole-Zero Map
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Figure 4.2: Pole-Zero Map

To plot the simulated response of a dynamic system model to the field
experimental data, a time response comparison between the validation/Output power

(Gen. Power) and the Model estimated (tf3) can be seen in Figure 4.3.

Measured and simulated model output

— 3
Validation data

MW att

Figure 4.3: Time Response Comparison Between The Validation/Output Power (Gen. Power) and The M odel
Estimated (tf3)
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4.2.4.Step and Impulse Responses

The step and the impulse responses of the estimated transfer function model can

be seen in Figure 4.4.

Step Response Impulse Response
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Figure 4.4: Step and Impulse Responses

Where the rise and settling time have been indicated on the step response of the

plot as well as the confidence region.

4.3. Determining whether the systemis stable

The system has been tested according to the above time and frequency analysis
and the distribution of its poles and zeros of the estimated model, and in a short and
confident decision, we used the function STB = is stable (tf3) to check the stability
and it is a stable system (STB=1)

4.4. State Space

State-space models are very useful for dynamic systems; that is, systems with
responses that are time functions. Wiberg (1971) and Zadeh and Desoer (1963) give

general discussions of state-space models. Tim can be treated as either a continuous or
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discretized variable in dynamic models; the theories of discrete- and continuous-time
systems are quite different.
The system shown in Figure 4.5 has multi inputs u, (t),u,(t), u,(t) and single
output variable y(t) if the system is state determined knowledge of its state variables
(x1tg, Xyt v e - - X ty) at some initial time t, and the inputsu, (t), u,(t),u, (t)
fort >t, is sufficient to determine all future behavior of the system. The state
variables are an internal description of the system which completely characterize the

system state from which any output variables y(t),and at any time t may be computed.

Input vector u Output vector y
uy (t) N

System
U (t) y(®)

Described by state variables ~—
ur ()

{X1, Xgy ce v X}

Figure 4.5: System M odels (System Inputs and Outputs).

System models constructed with the ideal ('linear'’) and pure one port elements
(such as damper, spring and mass elements) are state determined. In the general case

the form of the n state equations is:

%, = f1 (ou,t)
%, = f, (u,0)
' (4-7)

xn = fn (xru; t)

For a linear and time mvariant (LTI) system of order r inputs and with n, and,
Equation (4-5) become a set of n coupled first order linear differential equations with
constant coeflicients:

X, = ayx;+ apx, + o+ agx, +byju + -+ b u,

Xp= QpX,+ QX+ + ap, X, + b u, +-+b,,.u,
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where are the coefficients a;; and by; are constants that describe the system. This
set of n equations defines the derivatives of the state variables to be a weighted sum
of the state variables and the system mputs. Equations (4-6) may be written compactly

in a matrix form:

[x1] [a11 a2 a1n] [xl] [bn b1r] [u1]
0 T il 5 N o B
al | SN T

[ L P | 40 1 R B

The general form is :

x(t) = Ax(t) + Bu(t) (4-10)
y(t) = Cx(t) + Du(t) 4-11)

The matrix A is called the stability matrix. B is called the control matrix, and C

and D are called state and control observation matrices, respectively.

4.5. Estimate state-space models

The applied data set is collected from a field scale Turbine engmne. It has several
mputs such as; Compressor Air Pressure (Cp) in (bar), Exhaust Temperature (ET) in
(°C), Fule Percentage (FP) n (%), Inlet Gide Vane (IGV) in (deg), Fuel Consumption
(FC) in (m3/sec).

The state-space model is in the innovations form as in the following:

x(t+Ts) = Ax(t) + Bu(t) + Ke(t) (4-12)
y(t) = Cx(t) + Du(t) + e(t) (4-13)
If we assume that: m = (data, order)

m: The resulting model as object.

Data: An iodate object containing the output-input data.

Order: The desired order of the state-space model. If order is entered as a row
vector (like order = [1:10]), preliminary calculations for all the indicated orders are
carried out. A plot will then be given that shows the relative importance of the
dimension of the state vector. More precisely, the singular values of the Hankel
matrices of the impulse response for different orders are graphed. The idea is to choose

an order such that the singular values for higher orders are comparatively small
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4.6. Results of State Space Estimation

We evaluate the system identification of the state space model through two

selections of system order, 6" and 2"d,

4.6.1.6'™" order state space model:

The model can be extracted by using the following function:
Dt = m (Turbine, 6')

Where Dt is the Discrete-time identified state-space model which is given by:
x(t+Ts) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)

The state space matrices are:

[ -0.9943 -0.122  -0.1147 -0.01322 0.0412 -0.06808 ]
0.008958 -0.8416 -0.4598 0.02681  0.2348  -0.2817
-0.0213  -0.06195 -0.3118 -0.5727  0.1352 0.5323

4= -0.01224  -0.03751 -0.124 -0.3988 -0.6464 -0.09283
—0.005661 —0.06676 —0.514 —0.6569 —0.4587 —0.2404
| 0.01114 0.0903  0.1115 -0.1185 0.4911 -0.7373 |
ExhTemp FulePerce FuleConsum  Comp.press. Inlet Gid.vane
[ 0.002344 0.01175 0.002625 0.09157 -0.007331]
0.005084 0.02942 0.01137 0.1777 -0.01042
B -0.005143 -0.03055 -0.01069 -0.0184 -0.01994
0.001228 0.001982  0.03497 0.1077 -0.09494
-0.0002276 -0.004193 -0.02865 -0.006642 -0.1083
| 0.001897 0.02288 0.01563 0.08402 -0.1654

C=[15 1243 —-1.433 0.5997 -0.7291 —-0.5136]
D=[0 0 0 0 0 0]

From mnput "Exhaust Temperature" to output "Power":
0.04878 s> + 0.1396s* — 0.1422s3 — 0.06761s? — 0.01987s + 0.004107

s® + 3.742 s5 + 5.284 s* + 3.594 s3 + 1.425s% 4+ 0.5013s + 0.1285

From mput "Fuel Percentage" to output "Power":

0.2491s° + 0.6865s* — 0.6577s3 — 0.2899s% — 0.08888s + 0.02185
s® + 3.742 s5 + 5.284s* + 3.594 s3 + 1.425s% + 0.5013s + 0.1285
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From mput "Fuel Consumption" to output "Power":

0.1027s°> — 0.3265s* — 0.5194s% — 0.5771s% — 0.3706s + 0.09142
s® + 3.742 55 + 5.284s* + 3.594s3 + 142552 + 0.5013s + 0.1285

From mput "Compressed Pressure" to output "Power":

1.647s% + 4.295s* — 3.977s3 — 2.182s%— 1.172s+ 0.3509
s® + 3.742 s5 + 5.284s* + 3.594 s3 + 1.425s% + 0.5013s + 0.1285

From mput "Inlet Guide Vane" to output "Power":

0.01263s®> — 0.3529s* + 0.9548s% + 0.728s% + 0.02701s — 0.08191
s® + 3.742 55 + 5.284s* + 3.594s3 + 142552 + 0.5013s + 0.1285

The Sample time of the measurements is 1 seconds, The Comparison between
the state space model and the measurements can be seen in Figure 4.6, and the
evaluation parameters to measure how close the model from the measured data can be
described by:

Fit to estimation data: 99.33% (prediction focus)

FPE: 0.03325, MSE: 0.02909

90
80
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60 87
E 50 86 e gerees™
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20 / 83 M
10 / 24
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Figure 4.6: 6 Order Comparison Between The State Space M odel and The M easurements.

The interpretation of the approximation range of the linear model structure is the

error curve over the sampling time with can be shown in Figure 4.7.
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Figure 4.7: Error Curve of Linear M odel

4.6.2.2nd order state space model:

The model can be extracted by using the following function:
Nt = m(Turbine,2nd)
Where Nt is the 2" order discrete-time identified state-space model which is
given by:
x(t+Ts) = Ax(t) + Bu(t) + Ke(t)
y() = Cx(t) + Du(t) + e(t)

The state space matrices are :

4 = [ 0.9707 0.1993
0.001675 0.8617
ExhTemp FulePerce FuleConsum  Comp.press. Inlet Gid vane
_ | 0.0004622 0.005599 -5.012e-05 0.05653 -0.00109
" 1-5.261e-05 -0.001677 -0.005503 -0.06388 0.002002

C=[18.58 -1.629]

D=[0 0 0 0 0 0]

The Sample time of the measurements is 1 seconds, The Comparison between

the state space model and the measurements can be seen in Figure 4.8, and the
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evaluation parameters to measure how close the model from the measured data can be
described by:

Fit to estimation data: 95.23% (prediction focus)

FPE: 0.03039, MSE: 0.02709
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Figure 4.8: 2" Order M odel Comparison Between The State Space M odel and The M easurements.

4.6.3.Impulse Responses

A first step to get a feel for the dynamics is to look at the step responses between
the different channels estimated directly from data, Compressor Air Pressure (Cp)in
(bar), Exhaust Temp (ET) i (°C), Fule Perce (FP) n (%), Inlet Gide Vane (IGV) in
(deg), Fule Consumption (FC) in (kg). The difference between the 6" order and the 2"d
when a step and impulse test is applied can be seen in Figure 4.9.
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4.7. Nonlinear Approximations with Nonlinear Descriptions

A Hammerstein model is a specialized model structure where a nonlinear system
is approximated by a series connection of a static memory less nonlinear function in
series with a linear dynamic plant as shown in Figure 4.10. The Hammerstem model
structure is relevant to many engineering applications where nonlinear behavior is the
rule rather than the exception [59]. Most physical devices have nonlinear
characteristics outside a limited linear range. Control elements, such as valves and
position actuators, are typically linear in a limited operating range and possess some
form of saturation, hysteresis, or nonlinear characteristics in the nput/output

characteristic [60].
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Figure 4.10: Open-Loop Hammerstein System With Static M emory Less Nonlinear M ap F(O) and Linear Plant
Model G.

In this structure, a nonlinear characteristic of the system is modelled by a static
memory less block f(0) and the dynamics of the plant is captured by a linear dynamic
model G (s).The mternal signal or state x(t) is often unknown or estimated.

Figure 4.11 illustrates the block diagram of a Hammerstein-Wiener model
structure. We could study this model as a combination of three series blocks. To
formulate the problem, we have an equation (1) which is a nonlinear function

transforming mput data u (t) and w (t) has the same dimension as u (t).

u(t) Input w(t) Linear x(t) Output y(t) \
Nonlinearity f Block B/F Nonlinearity h

Figure 4.11: Block Diagram of A Hammerstein-Wiener M odel

w(t) = f(u(®) (4-14)
The second block equation is:
x(t) = gw(t). (4-15)

Equation (4-13) is a linear transfer function. Has the same dimension as where

B and F are similar to polynomials in the linear system model. For outputs and inputs,

the linear block is a transfer function(tf) matrix containing entries:

Bji(q)
tf = % (4-16)
Where:
j=12,.... Ny,
(4-17)
i=1,2,.... 1y,
Finally for the third block:
y(®) = h(x(®)) (4-18)
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Which is a nonlinear function that maps the output of the linear block to the
system output. And are internal variables that define the mput and output of the linear
block, respectively. Because f acts on the mput port of the linear block, this function
is called the mput nonlinearity. Similarly, because h acts on the output port of the linear
block, this function is called the output nonlinearity. If system contains several inputs
and outputs, you must define the functions fand h for each mput and output signal.

The mput-output relationship will be decomposed ito two or more
mterconnected elements, when the output of a system depends nonlinearly on its
mputs. So, we can describe the relationship by a linear transfer function and a nonlinear
function of mputs. The Hammerstein-Wiener model uses this configuration as a series
connection of static nonlinear blocks with a dynamic linear block.

Applications of Hammerstem-Wiener model are in wide areas, for example we
can mention modelling electro-mechanical system and radio frequency components,
audio and speech processing and predictive control of chemical processes. These
models have a useful block representation, transparent relationship to linear systems,
and are easier to implement than heavy-duty nonlinear. Therefore, they are very useful.
The Hammerstein-Wiener model can be used as a black-box model structure since it
prepares a flexible parameterization for nonlinear models. It is possible to estimate a
lmear model and try to improve its quality by adding an mput or output nonlinearity
to this model [61]. Also, we can use Hammerstein-Wiener model as a grey box
structure to take in physical knowledge about process characteristics. For instance, the
mput nonlinearity might represent typical physical transformations in actuators and the

output nonlinearity might describe common sensor characteristics [62].

v(t)
U@ [ o x(t) [ s |T® l s(t) y(®)
S Norflinea S m ‘)®‘> g(S) —

Figure 4.12: (Ha.-w.) Output Error System

The output error system for Hammerstein-Wiener n Figure 4.12 can be

expressed as

x(t) = flu(t)] (4-19)
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r(®) = 22y (1) (4-20)

A(2)
s(t) =r(t) +v(t) 4-21)
y(® = g[s®)] (4-22)

Where u(t) and y(t) are the system input and output, x(t),r(t) and s(t) are the
mternal variables, v(t) is stochastic white noise with zero mean, the linear block is an
output error model, A(z) and B(z) are polynomials in the unit backward shift operator
z71(z71y(®) = y(t — 1)) And defined by

Az) =1+a;z7 ' +a,z7% +a,z7?
B(z) = b,z + bzt + - +a,z79

Assume that the orders q and p are known and y(t) = 0,u(t) = 0 and v(t) =

0 for t < 0. The mnput nonlinearity f is modeled as a linear combination of

basis functions f;,:

x(8) == flu(®] = X¥-; ¢ fi[u(@®)] (4-23)
Where m is the number of the basis functions. The output non-linearity is
considered to be mvertible, and can be written as a linear combination of the basis
functions [63]:
s® =gyl =X, d g, [y®)] (4-24)
From (4-17), (4-18) and (4-21), we have

r(0) =[1-A@]r® + B(2)x(t)
=-Xart—0+ Z?=1bj =1 Cx frelu(t— ]
Then we have
s@®=-X_art—i)+ Z;’zl b; ¥y ¢ filu(t — NI +v(t) (4-25)
The objectives of this letter are two-fold: first, by means of the auxiliary model
identification idea [64], [65], transform the Hammerstein-Wiener system into a
bilinear parameter identification model; second, by means of the hierarchical
identification principle [66], [67], present new algorithms to estimate the system
parameters (a;, b;,c;, d;) from available mput-output data y(t), u(t).
Notice that parameters i (4-22) and (4-23) are not unique. Without loss of

generality, assume that the first coefficient of the non-linear part is unity, ie., d; = 1
[68].Combining (4-22) and (4-23) gives
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9:1ly@Ol = -2 1d, 9:[yDO] - I;:l a;r(t—1i)+
b T o filu(t— DI+ v(o) (4-26)

4.8. Results (Nonlinear Model)

Many practical applications, such as the fuel control of a gas turbine engine, can
be modelled by a feedback connection of a linear controller in series with a
Hammerstein system, where the nonlinearity provides a representation of the control
element or actuator. An iterative gradient-based method is proposed to simultaneously
identify the nonlinear fuel valve characteristic and a low-order linear plant model in
gas turbine applications that leverages a priori knowledge of both the nonlinearity and
engine dynamics. The identification is a nonlinear prediction error minimization
method i a closed loop

The model where a nonlinear block both precedes and follows a linear dynamic
system is called a Hammerstein-Wiener model. This is illustrated diagrammatically in

Figure 4.13.

fu"'t _ll-[:
U | we St e L
—= ful.a) —s| L£(,¥) Fw i 5

Figure 4.13 The General Hammerstein-Wiener M odel Structure, Which Consists of Sandwiching A Linear Time
Invariant System\ L Between Memory Less Nonlinearities fH and fW.

The same condition and number of mputs for the linear system modelling.
Hammerstein-Wiener model here applied with 1 output and 5 nputs.

At 1(sec) Sampling interval several trails by adopting the system identification,
the linear transfer function matrix corresponding parameters can be given by the
variables nb, nf and nk:

nb = [22222],nf = [33333],nk = [11111]

Where:

nb: is the number of zeros.

nf:is the number of poles.

nk: is the mput delay.
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The nonlinearity estimators selected for each mput as: For mput 1, 2, 3, 4, and
5: pw linear with 10 units

The output nonlinearity estimator is also pw linear with 10 units, the loss

function: 0.027864 to get a Best fit of a 99.35 % as shown in Figure 4.14 the general

Hammerstein-Wiener model structure
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Figure 4.14: The General Hammerstein-Wiener M odel Structure, Which Consists Of

To declare the difference between the linear and nonlinear model along with the
observations, Figure 4.15.
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To declare the fitting approximation of both proposed linear and non-linear

models, a comparison of those two models have been drawn as compared with filed

Figure 4.15: Linear, Non-Linear M odels and The Field M easurements

measurements, as can be seen in Figure 4.16.

Another interpretation of the approximation range of the Hammerstein-Wiener

model structure is the error curve over the sampling time with can be shown in

Figure 4.17.
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Figure 4.16: Linear, Non-linear models and the field measurements (zoom in)
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Figure 4.17: Error Curve of Non-Linear (Hammerstein) M odel

To declare the difference between (Non-linear (Hammerstein), and linear(2"d

order and 6" order ),ANN) models a comparison of those two models have been drawn

as compared with filed measurements, as can be seen n Figure 4.18.
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Figure 4.18: Linear, Non-Linear, ANN M odels and The Field M easurements
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To compare the approximation that Hammerstein-Wiener model provides with
the lnear model and custom ANN model, the error curve over the sampling time for

all of them with respect to power observations can be shown in Figure 4.19.
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Figure 4.19: Comparison Between Error Curves Due to The Non-Linear [Hammerstein, Ann] M odel and The
Linear M odel.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATION

5.1. CONCLUSIONS

There are different approaches and methodologies in modelling and control of
gas turbines. Choosing the right method and creating the right model based on the
required application depends on different factors. A short description of each of these
factors, mcluding GT type, GT -configuration, modelling methods, modelling
objectives as well as control system type and configuration were provided. Samples of
significant research related to each of the areas were presented. By highlighting the
mentioned factors, remarkable enhancements can be achieved in the process of
modelling and control of gas turbines.

Modelling and control of gas turbines (GTs) have always been a controversial
issue because of the complex dynamics of these kinds of equipment. Considerable
research activities have been carried out so far in this field in order to disclose the
secrets behind the nonlinear behaviour of these systems. Although the results of the
research in this area have been satisfactory so far, it seems that there is no end to the
efforts for performance optimization of gas turbines. A variety of analytical and
experimental models as well as control systems have been built so far for gas turbines.
However, the need for optimized models for different objectives and applications has
been a strong motivation for researchers to continue to work m this field.

The assessment of the applied method evaluated by the fitting percentage to
estimate the experimental data and the Mean Square Error (MSE). The challenges
faced when a practical field measurements have been adopted for the gas turbine model
GE Frame 9E of the Alquds-Iraq power plant as a multi-input case study. Firstly, data
analysis has been applied to classify the mput-input and input-output relationships for
reducing the number of mputs.
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A linear model has been addressed itially with the most effective parameters
represented by the Fuel Consumption (FC) and Exhaust Temperature (ET), has been
evaluated for the measurements of the system to attain some preliminary insight into
the data characteristics.

Considerable research activities have been carried out so far in this field in order
to disclose the secrets behind the nonlinear behaviour of these systems. Although the
results of the research in this area have been satisfactory so far, it seems that there is
no end to the efforts for performance optimization of gas turbines. A variety of
analytical and experimental models as well as control systems have been built for gas

turbines. A reasonable results with significant fitting for the field measurements has

been attained from adopting approaches and can be briefly listed asin the Table 5.1.

Table 5.1: A comparison of the models under study.

Description Custom ANN Linear TF State-space Non-linear
model Estimation Hammerstein
model
Complexity Simple Intermediate Intermediate Complex
Providing Provides a Transfer State space Several
mathematical formula function as a model mathematical
formula represents the black box 6™ Order expressions
output power of 2™ Order
the system
Facility for Difficult Easy Easy Intermediate
further analysis
Approximation | Higher for high | Higher in high Proportional Equivalent to
accuracy number of order with number of | the nonlinearity
hidden neurons state variables | portions of the
and layers outcome
equations
Best fit
percentage 97.39% 96.43% 97 % 99.35

5.2. Recommendations

The extraction of the mathematical modelling equation for the gas turbine
(Model: Frame 9) system in power plant application, is possible if it is taken into
account the availability of the field-based experimental data for all the effected mputs
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to the generated output power. As a continuation of the work conducted for this thesis,

suggestions for future research include the following:

1.

Expanding the application of this proposed algorithm and procedure in the

power plant systems that based on the gas turbine to drive its generators.

. Utilizing the significant contribution outcome of this study, which

represented by the single mathematical model equation based on custom

ANN for further investigations and control purposes.

. Since the research outcomes provide thorough mathematical model

comparisons that used the previous recorded measurements, they can be used
to estimate the future behaviour of the system.

For more precise mathematical representation of the output generated power
of such systems, several operation conditions are needed in adequate numbers

of cycles over the time.

. Applying mathematical modelling for such dynamic systems to estimate the

performance or controlling some adaptive processes to be an economical and

time saving solution for large scale power plant applications.

Implementing the proposed modeling method to investigate and modelling of

subsystems individually in a more detailled as well as utilizing the same modeling

results to simulate the system with its equivalent passive and active elements.
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