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ABSTRACT 

THE APPLICATION OF SPECTRAL ELEMENT METHOD TO 

MAGNETOSTATIC PROBLEMS 

ERCIYAS, Atakan 

Master, Department of Electrical and Electronics Engineering 

Thesis Supervisor: Asst. Prof. Dr. Ibrahim MAHARIQ 

January 2017, 97 pages 

Recently, we have observed good progress in our ability to simulate complex 

electromagnetic systems. Yet, there are still many challenges that have to be tackled 

for sake of computational electromagnetic field. One of these challenges is the 

constraint of accessible computational resources. The traditional techniques, such as 

finite element method, finite difference method and finite volume methods have been 

utilized for several decades. On the other hand, spectral element method has been 

recently applied in limited to some branches of electromagnetics such as photonic 

structures, waveguides. In this thesis, the numerical approximation to the set of partial 

differential equations which are governing a typical magnetostatic problem is obtained 

by spectral element method and simulation results are presented. Legendre 

polynomials and Gauss-Legendre-Lobatto grids are used in this thesis as test functions 

and discretization of problem domain. 

Key words:  Computational electromagnetics, finite element method, magnetostatics  

spectral element method.
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ÖZET 

SPEKTRAL ELEMAN YÖNTEMİNİN MANYETOSTATİK 

PROBLEMLERE UYGULANMASI 

ERCIYAS, Atakan 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Ibrahim MAHARIQ 

Ocak 2017,  97 sayfa 

Son zamanlarda, kompleks elektromanyetik sistemleri simüle etme 

kabiliyetimizde iyi ilerlemeler kaydettik. Ancak, hesaplamalı elektromanyetik 

alanında halen aşılmayı bekleyen birçok zorluk bulunmaktadır. Bu zorluklardan bir 

tanesi kullanılabilir sistem kaynaklarındaki kısıtlamadır. Son on yılda, 

elektromanyetik alanında sonlu fark yöntemi, sonlu elemanlar yöntemi ve sonlu hacim 

yöntemlerinin yoğun olarak kullanılmıştır. Öte yandan, spektral eleman yöntemi 

yüksek doğrulukta sonuçlar verdiğinden dolayı son yıllarda dalga klavuzları ve fotonik 

yapılar alanlarına kısıtlı olmak üzere kullanılmaya başlanmıştır. Bu tezde, tipik bir 

manyetostatik problemini tanımlayan kısmi diferansiyel denklemlerin çözümü 

spektral eleman yöntemi ile çözülmüş ve simülasyon sonuçları paylaşılmıştır. 

Çalışmamızda probleme ait tanımlanan alan Gauss-Legendre-Lobatto ızgaraları ile 

ayrıştırılmış olup, Legendre polinomları test fonksiyonu olarak kullanılmıştır. 

Anahtar Kelimeler: Hesaplamalı elektromanyetik, sonlu elemanlar yöntemi, 

manyetostatik, spektral eleman yöntemi. 
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CHAPTER ONE 

1. INTRODUCTION

1.1 Electromagnetic Modeling 

Electromagnetic modeling techniques are divided into two categories 

fundamentally by analytical and numerical. Analytical techniques start with the proper 

governing equations, such as Maxwell’s equations, and utilize mathematical 

manipulations in order to acquire quantities of interest. Some problems consist of 

simple structures that can be studied by utilizing this method. However, for complex 

structures, some simplifying assumptions which limit the accuracy of the result should 

be made. 

On the other hand, numerical methods, start with obtaining governing equations 

but put them in a discrete form so as to let them to be solved by a computer. In spite 

of numerical methods provide approximate solutions to problems, adjusting of 

modeling detail can reduce error to acceptable levels in terms of engineering point of 

view. Thanks to improvements of technology, there are more processing power and 

memory resources available with affordable prices which makes numerical methods 

more attractive [1]. 

1.2 Literature Review 

In literature, there have been many researchers involved in computational 

electromagnetics. However, there are still many existing challenges that have to be 

dealt with. One of these challenges is constraints on computational resources. For 

several decades, the conventional computational techniques such as finite element 

method, finite difference method and finite volume method that have been widely 

utilized in  the  electromagnetics.  Yet,  spectral  element  method  has  been  recently 
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applied in some branches of electromagnetics such as waveguides and photonic 

structures for improved accuracy. 

To illustrate that, Biro O. and Preis K. [2] published a paper about vector 

potential formulations for the problem consists of eddy currents in three dimensions. 

They presented how they obtained the uniqueness of the vector potential. Their study 

proved that the advantage of setting the normal component of the magnetic potential 

to zero on the interfaces between regions having different vector potentials. 

Lee J. et al. [3] published a paper which presents three dimensional spectral 

element method efficiently by utilizing the mixed order curl so as to obtain solutions 

of vector wave equations. They employed lookup tables corresponding to stiffness 

matrix in order to reduce CPU usage while assembling system matrices. The 

represented method provides higher accuracy with increased order of interpolation. 

Based on their study, spectral element method is more efficient when it is compared 

to conventional finite element method. 

In Ref. [4], a novel method, which combines both analytical and numerical 

solutions is introduced by Chau K, et al. in order to solve magnetic field in electrical 

machines for rotor and stator regions. The chief goal of study was to naturally couple 

the analytical solution with the FEM equations consisting of the continuity of vector 

potentials across the problem boundary. As a result, the stiffness matrix was obtained. 

Their results and experiments represent that computational time is nearly same because 

of analytical computation due to the fact that there are less nodes which was obtained 

in finite elements. 

In Ref. [5], Sjögren M. presented a study which consists of utilization of finite 

difference and spectral element methods on the material discontinuity problem. Based 

on the results, finite difference method and spectral element method can simulate 

simple case of wave reflection and refraction in 2D rectangular geometry accurately. 

Although finite difference method was better fitted and provided higher accuracy for 

specific geometry, spectral element method has more advantages in complex 

geometries because of the fact that it is easier to construct unstructured grid. In addition 

to that, spectral element method provided parallel implementation opportunity for 

large scale computations. Similar studies were presented by Airiau [6] and Christoph 

[7] by utilizing discontinuous Galerkin spectral element method and both results 

confirmed Sjögren’s study. 
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To extent of our knowledge, when literature is searched, one can infer that 

spectral element method has not been utilized in magnetostatic or quasi-magnetostatic 

problems. It is important to note that, spectral methods (but not SEM) were introduced 

in 1983 by Steele C. [8]. In the method introduced by the author, magnetic fields are 

evaluated by denoting them as a linear combination of a set of orthogonal functions. 

The only advantage of this method as it is pointed by the author is the reduction of 

linear equations defining the system compared to finite element method. However, 

spectral methods are not successful in solving complex domain problems and/or 

nonhomogeneous materials. Therefore, people did not extend Steele’s study. 

Park I. et al [9] presented a sensitivity analysis for the shape design problems 

consisting of two dimensional nonlinear magnetostatic system. To obtain the design 

sensitivity, the authors utilized the algebraic equation obtained by finite element 

method and adjoint variable method. They applied this algorithm to the sample 

problem of a quadrupole magnet operating in the saturation region. As a result, they 

obtained the optimal pole shape with a tolerable deviation after they had applied 

several iterations. 

An article about three dimensional magnetostatic field analysis by utilizing finite 

element method is provided by Chari K. et al [10]. They presented the requirement of 

choosing the vector potential function in order to make its divergence zero. 

Implementation of this requirement consists of an energy-related functional associated 

with the Poisson equation. They created the mesh corresponding to the field region by 

first order finite elements, and then the solution by minimizing the functional with 

respect to values of vector potential at the nodes of each element and evaluating linear 

algebraic equations is obtained. In order to accelerate convergence, they utilized an 

iterative solution method which is also known as the conjugate gradient technique. In 

the paper, they employed three-dimensional field analysis to the sample illustrative 

problems. When they compared the results, they observed that flux density results 

corresponding to a three-dimensional field analysis was perfectly matched with the 

two-dimensional solution. 

Penman J. and Fraser J. R. [11] outlined a method which provides bounded 

solutions to magnetostatic problems in a wide range. The method expands 

complementary and dual energy variational principles to include the T-  formulation 

of electromagnetic field problems by finite element method. In the paper, they 
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presented examples showing that the bounded nature of the procedure, and pointed 

how it can be utilized so as to reduce computational requirements for specific accuracy. 

Consequently, by the method that they presented in the article, it is possible to reduce 

computational effort significantly in order to obtain relatively accurate values of 

parameters depending on field in magnetostatic problems. 

Imhoff J.F., et al. [12], presented a finite element modeling consisting of open 

boundary 2D and 3D problems. In the article, they obtain finite element solution for 

unbounded electromagnetic problem. The results shown that obtained electromagnetic 

field values were highly accurate. Despite of utilizing the method in magnetostatic 

problem for its simplicity, it can be applied on different types of problems. As a result, 

the technique that they utilized is highly performant when it is compared to other 

methods. In addition, the chief advantage of the technique is drastically reduced 

computational time. 

1.3 Contribution of Thesis 

As it is presented in the literature review section, the computational methods are 

extensively utilized in electromagnetic problems, thanks to improvements of 

technology. Many of researchers applied finite element method, finite difference 

method and spectral element methods in electromagnetic problems especially in 

electromagnetic wave problems. However, spectral element method in particular has 

not been investigated in magnetostatic or quasi-magnetostatic problems. In this thesis, 

the numerical approximation to the set of the partial differential equations defining the 

typical magnetostatic problem is utilized by applying spectral element method for the 

first time. In this thesis, simulation results obtained by the spectral element method for 

a sample magnetostatic problem compared with finite element method corresponding 

to same problem. As it is presented in the results chapter, spectral element method 

provides higher accuracy than finite element method. This is in addition to all research 

paper where the accuracy of spectral element method is proven to be dominant. For 

instance, but not limited to, Mahariq et al. [13] provided a comparison amongst the 

spectral element method, the finite difference method, and the finite element method. 

For the sake of consistency, the comparison is carried out on one dimensional and two-

dimensional problems based on the same measure of error in order to emphasize on 

the high accuracy gained by the SEM. 
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1.4 Arrangement of Thesis 

In this chapter, the literature search is presented. Electromagnetic modelling 

process is described briefly, and the importance of utilizing spectral element method 

to magnetostatic problems is pointed. 

In Chapter 2, Maxwéll’s equations are discussed, types of electromagnetic 

problems are shortly introduced. In magnetostatic subsection, governing Maxwéll 

equations defining the sample problem is obtained. The importance of boundary 

conditions is discussed and the commonly used methods in electromagnetics are 

introduced. In Section 2.4, finite difference method is introduced. Advantages and 

disadvantages of this method is discussed in terms of accuracy, and domain 

complexity. In Section 2.5, finite element method is introduced, Galerkin and 

variational approaches are briefly described. The advantages of this method over finite 

difference method are discussed. 

In Chapter 3, the fundamentals of spectral element method are introduced. The 

formulation of spectral element method is presented for Maxwell’s equations defining 

the problem. The process of evaluation the corresponding stiffness and mass matrices 

is also formulated for rectangular and quadrilateral elements. The formulation of load 

vector and Helmholtz operator is obtained by utilizing the mass matrix formulas. 

In Section 4.1, two dimensional time-invariant magnetostatic problem is defined. 

In Section 4.2, problem discretization (which is also called meshing) and element 

numbering are presented. In Section 4.3, the boundary conditions and interface 

conditions which are utilized in the problem are presented.  The vector potential results 

are re-evaluated by changing various parameters such as number of nodes, magnetic 

permeability, injected current density and corresponding values are discussed in terms 

of accuracy, computational time, memory usage, CPU usage. In Section 4.5, same 

magnetostatic problem is implemented in a computational software called as “FEMM” 

and created by David Meeker [14]. The obtained finite element method results are 

compared with spectral element results. The results corresponding to the comparison 

are discussed, advantages and disadvantages of two methods are presented. 

In Chapter 5, the thesis is ended up by appending some comments, and some 

discussions are provided for future works. 



6 

 CHAPTER TWO 

2. MAGNETOSTATICS

2.1 Maxwell Equations 

Thanks to James Maxwell (b. 13th June 1831, d. 5th October 1879) who 

simplified and combined the laws of electromagnetism to give the complete picture 

describing all the phenomena that humans knew in that branch of physics. Maxwell 

re-expressed those governing laws into a much compact and generalized form known 

as Maxwell’s equations.  

Electric and magnetic phenomena study electromagnetic fields which are caused 

by electric charges in steady state or in motion. There are two types of electric charges 

in nature which are positive and negative. These types of charges are basically the 

source of electric field intensity, E. Moving electric charges produce current which 

also produces a magnetic field intensity, H.  Spatial distribution of a vector quantity 

defines a vector field which may be time varying or may not. Time-varying electric 

and magnetic field intensities are always followed by each other. That is, time varying 

electric field intensities and time varying magnetic fields are essentially coupled and 

produce electromagnetic field intensity. 

As it is mentioned, time-varying electric fields are accompanied by magnetic 

fields and vice versa. In Maxwell’s Equations, it is explained how electric and 

magnetic fields are generated and effect on each other. The first law of Maxwell’s 

Equations is Faraday’s law of induction, the second is Ampére’s law which is modified 

by Maxwell in order to include displacement current /D t  , the last two equations 

belong to Gauss’s law for electric and magnetic field [15]. 
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B

E
t


  


  (2.1) 

 
D

H J
t


  


  (2.2) 

 D     (2.3) 

 B 0    (2.4) 

The displacement current term /D t   in Ampére’s law is essential in predicting 

the existence of propagating electromagnetic waves. The quantities E and H are 

electric and magnetic field and measured in units of [volt/meter] and [ampere/m] 

respectively. The quantities D and B are electric and magnetic flux densities and are 

measured in units of [coulomb/m2] and [weber/m2], or tesla. D is also called the electric 

displacement, and B, the magnetic induction. 

The charge and current densities  , J may be thought as the sources of 

electromagnetic fields. For wave propagation problems, these densities are localized 

in space; for example, they are restricted to flow on an antenna. The generated electric 

and magnetic fields are radiated away from these sources and can propagate to large 

distances to the receiving antennas. Away from sources, that is, in source free regions 

of space, Maxwell’s equations take the simpler form [15]. 

 
B

E
t


  


  (2.5) 

 
D

H
t


 


  (2.6) 

 D 0    (2.7) 

 B 0    (2.8) 

2.2 Types of Electromagnetic Problems 

2.2.1 Magnetostatic Fields 

Analytical and numerical methods which have been developed for solution of 

electrostatic field problems are also applied grandly to the magnetostatic field 

problems. Identically structured electrostatic fields which is produced by dipole 
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distributions and fictive double layers can represent magnetostatic fields. Free charges 

do not exist in magnetostatics, and the surface singularity which is generated by 

electric charges does not really exist.  A double layer causes a multivalued potential 

and as a result non-conservative field. It is important to note that the physical structure 

of field owing to stationary distributed current varies essentially from any 

configuration of electric charges. 

The equations correspond to stationary fields are obtained by setting time 

derivatives to zero in Maxwell’s Equations. 

 H J    (2.9) 

 B 0    (2.10) 

Equation of continuity must be appended to these which reduces to; 

 J 0    (2.11) 

Assume that flux density which is produced by current filament I1 is B1. I1 is 

linked by all lines belonging to this field. However, a fraction of B1 may also pass on 

second current filament I2. The “flux linkage” concept is utilized to make practical 

analysis of electromagnetic problems that of the solenoidal features in terms of 

stationary state current and flux [16]. 

When Stokes’ theorem is applied to (I), the equivalent integral equation is 

obtained below, 

 H J
C S

ds nda I       (2.12) 

S is the surface which is bounded by the contour C, and I is the total current 

flowing through the surface. The linked current I equals to the integral of H around a 

closed path. 

Every solenoidal field can be represented in terms of vector potential. So the 

equation which is defined in (2.10) can identically satisfy the equation defined below; 

 B A   (2.13) 

The vector A is selected to satisfy equation (2.13), so that the relationship 

between magnetic vectors must be specified ( H= (B)H ). If B is substituted with 

B=μH   in equation (2.13), the following equation is obtained; 
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×A

H=
μ


  (2.14) 

When the magnetic vector H defined in (2.9) is substituted with H obtained in (2.14), 

we arrive at, 

 A= J   (2.15) 

which can also be written as, 

 2A A J     (2.16) 

for vector potential. According to the Helmholtz theorem, if divergence and curl of a 

vector function is specified, it is determined to within an additive constant. Because of 

that, to determine A, its divergence must be specified. In order to be simplified, it has 

been chosen as, 

 A 0    (2.17) 

In xy coordinates, the equation which is defined in (2.15) is now reduced to, 

 2A J     (2.18) 

which is also known as Poisson’s equation [16]. 

2.2.2 Quasi-Magnetostatic Fields 

The previous section discussed the static magnetic field which is produced by 

the time invariant sources. In the case where the current distribution is slowly time 

varying, displacement current can be omitted that is, we can neglect the E
t




 term in 

Maxwell’s equations. Therefore, the following equations are obtained; 

 
0

E



    (2.19) 

 B = 0   (2.20) 

 
B

E
t


  


  (2.21) 

 0B = J   (2.22) 
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Due to B 0  , it is required to neglect also DJ , hence, 

 J 0    (2.23) 

The existence of static charge density is not prevented by equations (2.19), (2.20) 

and (2.21), (2.22). However, it is not reliable with the previous statement that the limit 

of source is constant current. Because of that reason, in case we choose (r, ) 0t  , 

generality will be valid. 

The Helmholtz theorem gives the following for B(r, )t , 

 
30 j(r , )

B(r, ) A(r, )
4 r r

t
t t d r






  

   (2.24) 

Consequently, the quasi-electrostatic electric field is obtained as, 

 
30 (r , ) /

E(r, )
4 r r

j t t
t d r





 
 

   (2.25) 

One can verify that Equations (2.23) and (2.24) are engaged to Faraday’s law, 

that is, divergence of Equation (2.25) is zero in case constant current condition is 

applied [17]. 

2.2.3 Time Harmonic Electromagnetic Fields 

Many problems in electrical engineering consist of time harmonic fields. 

Fortunately, the differentiation of time can be calculated and the time variable can be 

omitted to reduce Maxwell’s equations to be limited to its three spatial dimensions. In 

this section, the special case of time-harmonic fields will be introduced. 

 ( , , , ) Re[ ( , , ) ]jwt

sE x y x t E x y z e   (2.26) 

where ( , , )sE x y z  is space dependent, vector phasor containing information 

corresponding to direction, magnitude and phase. Therefore, the time harmonic 

Maxwell’s equations can be re-arranged as follows, 

     ( / )s sE j H t j         (2.27) 

 s s sH J j E     (2.28) 
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 s
sE




    (2.29) 

 0sB    (2.30) 

In case of source free condition which is characterized by 0J  , 0v   and 

0  , the time harmonic ( / )t j    Maxwell’s equations can be modified as, 

 s sE j H     (2.31) 

 s sH j E    (2.32) 

 0sE    (2.33) 

 0sB    (2.34) 

In this special case, there are not any sources existing, that is, there are not any 

particular solution that can be obtained. However, most general solutions which are 

obtained for the problems are combinations of the two independent solutions 

corresponding to homogeneous equations [15]. 

2.2.4 Electrostatic Fields 

Electromagnetism is a science that utilizes ways of understanding mutual 

interactions between electric charges in steady state or motion. Electrostatic which is 

branch of electromagnetism deals with interactions of steady state charges. 

Coulomb successfully discovered the fundamental law of electrostatics in 1785. 

During his study, he achieved in building a highly sensitive and accurate torsion 

balance in order to measure relative repulsion force between two lights. Based on that 

study, he clearly proved that, electrostatic forces follow along the line through the 

particle. Besides that, electrostatic forces are proportional to each electrical charges’ 

magnitude and it decreases inversely depending on the distance between charges. The 

equation which is stated by Coulomb is defined as, 

 1 2
1 122

12

r̂
q q

F K
r

   (2.35) 

 7 2

0

1
10

4
K c



    (2.36) 
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Figure 2.1: Forces between charges. 

 

where the electric constant is 0 ,   c is the speed of light. K is the constant which is 

obtained by experiments and its value is 
9 2 29 10 Nm CK   . But it is important to 

note that these values are defined in SI units. 

Gauss’s law explains us the behavior of electric flux. It is well-known fact that 

if the angle between flux lines and surface arises, the magnitude of field vector 

increases up to angle of surface’s normal. In other words, it is maximum when the 

angle between flux lines and surface is 90
 and it is minimum when the angle between 

flux lines and surface is 0 and that also means that flux lines and surface in parallel. 

The point charge is defined as, 

 
2

0

ˆ
4

q
E dS r dS

r
     (2.37) 

where n̂E dS  is flux of vector E from the element dS . n̂ is unit vector which defines 

the surface orientation. When the vector equation stated in (2.37) is calculated, we 

obtain, 

 
0

1

S V

E dS d 


     (2.38) 

and it defines that the total flux leaving out of any surface equals to the enclosed total 

charge which is divided by the electric constant [18]. 

2.2.5 Transient Electromagnetic Fields 

It is important to separate the moment of switching on the field and instant of 

non-stationary behavior starts in many cases. The non-stationary points a moment 



13 

which is accompanied by existence of transient (non-harmonic) field. These transient 

fields can be significant part of total field. 

A mathematical approach which is applied to transient electromagnetic fields 

must contain a description of continuous and instant changes which is belonging with 

field functions and the medium parameters. This approach should also consider the 

correlation between spatial and temporal changes in the media. Uniformly continuous 

and discontinuous functions which are belonging with field and media parameters are 

described by the generalized functions. Application of this theory to electromagnetic 

equations means using generalized derivatives instead of utilizing conventional 

derivatives with corresponding modification of Maxwell’s equation [19]. 

2.3 Boundary Conditions 

In computational electromagnetics, boundary conditions are required to be 

applied so as to be ensured of obtaining unique solutions. There are some various types 

of boundary conditions can be utilized on computational methods however, there are 

five of them commonly used in computational electromagnetics. 

In Dirichlet boundary condition, the value belongs to vector potential is defined 

explicitly on boundary. In most cases, A is defined zero on boundary in order to 

prevent magnetic flux to leave outside boundary. 

In Neumann boundary condition, normal derivative of potential is defined along 

boundary. In other words, A 0
n

 


 is defined in order to force magnetic flux to pass 

the boundary perpendicularly. 

Robin boundary condition utilizes features of Dirichlet and Neumann boundary 

conditions. In other words, it can be considered as a composition of Dirichlet and 

Neumann boundary conditions. Thus, Robin boundary condition states that, 

 
A

A=0c
n





  (2.39) 

In periodic boundary conditions, two boundaries are joint together. This type of 

boundary condition provides boundary values to be equal on corresponding points with 

same sign. The same rules are applied for anti-periodic boundary conditions. However, 

the boundary values on corresponding points are same but with opposite sign [20]. 
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2.4 Finite Difference Method 

Finite difference method is one of the techniques of numerical analysis methods 

utilized for approximation of solutions by dealing with partial differential equations 

[21]. 

2.4.1 Intuitive Derivation 

The approximate solutions are obtained by substituting derivative expressions 

with approximately equivalent difference quotients. In other words, the first derivative 

of a function is, 

 
0

( ) ( )
( ) lim

h

f a h f a
f a

h

 
    (2.40) 

then the approximation to first derivative would be, 

 
( ) ( )

( )
f a h f a

f a
h

 
    (2.41) 

for small values of h. Although, it is the first derivation of a function, one can utilize 

this formula to substitute derivative expressions in differential equations [21]. 

2.4.2 Derivation by Utilizing Taylor’s Polynomial 

If the function is to be approximated is well-behaved, by Taylor’s theorem we 

obtain, 

 
   2

20 0 0
0 0

( ) ( ) ( )
( ) ( ) ... ( )

1! 2! !

n

n

n

f x f x f x
f x h f x h h h R x

n


         (2.42) 

where !n  is represented as the factorial of n , and ( )nR x  is represented for reminder. 

By utilizing the same function as an example, we obtain the following by Taylor’s 

theorem, 

 0 0 0 1( ) ( ) ( ) ( ),f x h f x f x h R x      (2.43) 

which is equals to, 

 1( )( ) ( )
( )

R xf a h f a
f a

h h

 
     (2.44) 
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 Therefore, 1( )R x  is small enough, 

 
( ) ( )

( )
f a h f a

f a
h

 
    (2.45) 

2.4.3 Accuracy 

The error in the finite difference method computation is defined as the difference 

between analytical and approximate results. There are two error sources in finite 

difference method which are truncation and round-off errors. The loss of precision 

(round-off) error occurs due to rounding action of decimal quantities made by 

computers. Truncation error which is also called as discretization error, is the 

difference between exact solution and exact quantity of nodes [21]. 

 

 
 

Figure 2.2: The finite difference method depends on discretizing a function on a grid. 

 

To utilize FDM, the problem domain must be discretized first. This is usually 

achieved by dividing the problem domain into a grid created uniformly. It is important 

to note that, FDM provides sets of discrete numerical approximations [21]. 

Local truncation error is typically expressed in Big-O notation. Since local 

truncation error is referring to the single application of a method. Therefore, the 

quantity of error is ( )i if x f   where ( )if x  refers to exact value and if  refers to 

numerical approximation. It is appropriate to use the reminder term of a Taylor 
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polynomial so as to analyze discretization (truncation) error. By utilizing the Lagrange 

form of the reminder term in the Taylor polynomial 0( )f x h , which is; 

 
( 1)

1

0

( )
( ) ( )

( 1)!

n
n

n

f
R x h h

n


 


  (2.46) 

the predominant term of discretization error can be obtained where 0 0x x h   . 

2.5 Finite Element Method 

The Finite element method is also a numerical method which is utilized to the 

problems governed by differential equations. The fundamental principle of this method 

is to represent the problem domain in smaller subdomains which is called the finite 

elements. In Figure 2.3, the discretization of a two dimensional problem is illustrated.  

The distributed primary unknown quantities inside an element are interpolated by 

using the values of nodal elements or the values which are obtained in the edges. The 

interpolation which is also known as shape functions are obligated to be a complete 

set of polynomials. The accuracy corresponding to the obtained solution depends on 

the order of these polynomials. The numerical solution depends on the quantity of 

primary unknowns at the nodes of discretized domain. In order to obtain solution, 

system of linear equations must be solved. To construct such a linear system of 

equations, conversion corresponding to governing differential equation and boundary 

conditions to integro-differential formulation must be made by minimizing a 

functional or utilizing Galerkin approach (also known as weighted-residual method). 

This formulation is applied to a single element by using proper weight and 

interpolation functions. As a result, all elements are assembled which represents the 

entire domain in a global matrix system [22]. 

As it is mentioned earlier in the previous paragraph, there are two methods which 

are commonly utilized to obtain FEM equations; the variational method and weighted-

residual method. It is required by the variational technique to construct a functional 

which denotes the energy associated with the boundary value problem. A functional is 

a function which is denoted in an integral form and takes arguments which are also 

functions themselves. As it is referred from the most of the engineers, functional is a 

function of functions. A stable or stationary solution of boundary value problem can 

be evaluated by minimizing or maximizing governing functional. Such a solution 
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corresponds to a point of minimum, maximum or saddle. Nearby such a point, the 

solution is stable which means 

 

 
 

Figure 2.3: An example for 2D discretization of a problem domain by assigning unique numbers. 

 

that it is not sensitive to small changes of dependent parameters. This results a smaller 

numerical error comparing with a solution evaluated for any other point. Minimizing 

or maximizing of a functional is of a process obtaining partial derivatives of the 

function with respect to each variables and setting result of the derivation to zero. As 

a result, this constructs a set of equations which can be discretized by choosing 

appropriate interpolation functions so as to obtain FEM equations [22]. 

The second technique is weighted-residual method which is also known as 

Galerkin method. This method starts by constructing a residual directly form the partial 

differential equations which is related boundary value problem. It is important to note 

that, this function does not need to utilize the functional. The residual is of a method 
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transferring all items of partial differential equation on one side. Then, the residual is 

multiplied by a weight function and integration is obtained over the domain of an 

element. This is the reason of calling this method as a weighted-residual. The shape 

functions which are employed to interpolate the primary unknown quantity are 

obligated to be twice differentiable in case of usage second order differential equation. 

This requirement is debilitated by utilizing integration by parts and allocating the 

second derivative to the weight functions and shape functions. By utilizing that, related 

weight and shape functions are needed to be differentiable only for once. Due to this 

requirement, this formulation is denoted as the weak formulation. In addition to that, 

if the weight functions are selected from the same function set as the interpolation 

functions, the weighted-residual method is referred as Galerkin method [22]. 

In many cases, it is much easier to utilize Galerkin method due to the fact that 

the variational methods require strong knowledge of its principles so as to utilize it to 

construct functional. To prevent compelling procedure of utilizing a functional and 

involving related mathematical complexities, it is often considered to choose Galerkin 

approach instead of the variational approach. 

The most important steps should be followed on applying the Galerkin approach 

are; Discretizing the problem domain by utilizing finite elements, choosing the 

appropriate interpolation (shape) functions, obtaining the linear equations 

corresponding to single element, constructing the global matrix system, imposing the 

boundary conditions, solving the linear equations by utilizing linear algebra methods, 

post processing the results [22]. 
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CHAPTER THREE 

3. SPECTRAL ELEMENT METHOD

3.1 Spatial Discretization 

In order to represent the fundamentals of SEM formulation, strong formulation 

corresponding to magnetic vector potential will be introduced at the beginning. 

 2A J    on    (3.1) 

A g  on g  Dirichlet boundary conditions                     (3.2) 

 
1

n.( )A h

   on h  Neumann boundary conditions (3.3) 

2 , refers to an operator which is applied on partially differential equations. It is also 

called as Laplacian operator. A is representing the vector field.   refers to a domain 

of the problem, and as it is stated in the equations (3.2), (3.3), g  and h  refer to 

boundary of the domain. The normal unit vector n points out from h , and  g and  h 

refer to known functions.  

The Poisson equation is governed in residual form as follows by assigning left 

hand-side of the function to zero [23]. 

 2A J 0     (3.4) 

3.1.1 Weighted Residual Formulation 

It is assumed by the weighted residuals that approximate solution (3.5) can 

provide an accurate solution for A,  

 
1

A A
dofN

N i i

i

    (3.5) 
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where i  is of an analytical function which is called trial or expansion functions, Ai

, dofN  are unknown coefficients. i  equals to zero on Dirichlet boundaries in order to 

satisfy requirements of homogeneous boundary conditions by definition.  

The residual is multiplied by a weight function w to create weighted residual 

function. The approximate solution is compelled so as to fulfill the residual equation 

in aspect of weighted integral. The formulation stated below is the same as forcing 

residual to be vanished when it is projected on to test space. 

  2A J 0vd


      (3.6) 

The A is approximate solution and v is weighted function. They belong to Hilbert 

space. Hilbert space is also called as trial space which is denoted by   and where 

trial(approximate)  solutions exist. 

  1A : A ( ),A g on gH        (3.7) 

  1: ( ), v = 0 on gw w H      (3.8) 

The Hilbert (trial) and test spaces which are stated in (3.7) and (3.8), represented 

as  and   respectively, contain infinite number of functions which makes it an 

infinite dimensional problem. ,N Nv  are trial and test subspaces respectively and are 

chosen to contain finite number of functions. They are considered as approximation 

spaces which are finite dimensional and belong to and .N Nv v    The test space 

,0Nv  belongs to ,0N Nv v .  It can be inferred from the subscript 0 that test space satisfies 

the boundary conditions on g . This means that the test function v is zero on all 

Dirichlet boundaries [23]. 

The approximate solution N Nu   is modified as follows, 

 
0

A A
N

N i i

i




   (3.9) 

The trial functions i  are utilized as basis functions corresponding to an 

expansion of truncated series of the solution. For generalization purposes, we denote 

our unknown function that is to be solved by u, i.e., let A=u. 
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3.1.2 Weak Formulation 

In order to construct weak form, integration by parts method is employed to the 

first term of the Equation (3.6). 

 

A

. .u vd f vd hvds
  

         (3.10) 

In order to impose Neumann boundary conditions naturally and reduce the order 

of the first term, integration by part method is utilized. As a result, to precondition the 

mesh, linear order polynomials can be utilized. 

Domain discretization is the process in which weak formulation is applied into 

all individual elements [23]. 

 . .
e
h

e e e e e e e eu v d f v d h v ds


 

          (3.11) 

3.1.2.1 Weak formulation for one element 

The Equation (3.11) becomes, 

    , . ,
e
h

e ev u v u
dxdy dxdy f x y v x y dxdy h v ds

x x y y 
  

   
  

         (3.12) 

In case of treatment of whole domain as a single element, p-type method is 

converted to spectral method. There are lot of methods can be obtained if the trial 

function i  and test function v  are chosen. For instance, least squares and collocation. 

The main consideration is Galerkin method which is also known as Bubnov-Galerkin 

[23, 24]. 

The last term of Equation (3.12) refers to boundary term. It is chosen zero to 

satisfy Neumann boundary conditions 
1

n.( ) 0 on hA

   . Thus, Equation (3.12) 

transforms to; 

    , . ,
v u v u

dxdy dxdy f x y v x y dxdy
x x y y

  

   
 

        (3.13) 
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3.2 Two Dimensional Element Discretization 

Tensor product forms are employed to create steady diffusion operator and other 

special element operators used in elliptic problems. For instance, vector potential 

equation in a rectangular domain. By mapping all elements one by one in physical 

coordinate (x, y) to a master element    
2

1 2, 1,1    , u is obtained approximately in 

the element 
e . The typical function Nu(x, y)  is represented as follows, 

  1 2 1 2

0 0

u , ( ) ( )
N N

ij i j

i j

u     
 

   (3.14) 

3.2.1 2D differentiations in the computational domains 

The differentiations with respect to 1 2and   are defined in reference 

coordinate as follows, 

 1
2

0 01 1

( )
( )

N N
i

ij j

i j

u
u

 
 

  




 
   (3.15) 

 2
1

0 02 2

( )
( )

N N
i

ij i

i j

u
u

 
 

  




 
   (3.16) 

3.3 Galerkin Methods 

The test functions are selected to be identical with trial (expansion) functions. 

Consequently, the spaces and v  are selected to also be the same, the Equation (3.11) 

is utilized as an initial point of the method. That is called Galerkin weighted-residual 

method. Thus, weight(test) function v is presented as, 

  1 2 1 2

0 0

, ( ) ( )
N N

pq p q

p q

v       
 

    (3.17) 

3.4 Rectangular Geometries 

In this section, the evaluation corresponding to two dimensional rectangular 

stiffness matrix and mass matrix are formulated. In addition to that, Helmholtz 

operator and variable coefficient case are also formulated. 

 



23 

3.4.1 Evaluation of Two Dimensional Mass Matrix 

The two dimensional mass matrix is obtained by evaluating (u,v) as given in 

Equation (3.18) for all u, Nv v  for rectangular domains. Mass matrix is employed in 

order to evaluate load vector with force function [23]. 

   1 2 1 2 1 2, ( ) ( ) ( ) ( )pq p q q i j ij

pj ij

u v vudV v dx dx u       
 

 
   

 
    (3.18) 

For rectangular domain      1 2, 0, 0,x y L L    

 

1 1

1 2
ˆ 1 1 2 2 1 2

1 1

( ) ( ) ( ) ( )
2 2

p i j qkk

L L
M d d         

 

     (3.19) 

 1 2 ˆ ˆ
4

L L
M M M    (3.20) 

1L  and 2L  refer to the lengths of the edges of domain. 

Because of inverting the mass matrix is an important issue in aspects of 

computational costs, the usability of diagonal mass matrix is advantageous feature in 

unsteady or temporal discretization problems requiring frequent application of 
1M 
. 

Nevertheless, the primary cost is computational cost which is spent on constructing 

the matrix system involving numerical integration. 

M̂  will be diagonal in case of basis functions are orthogonal in respect of inner 

product. One option is to select  
0

N

p i



 in order to be an array of orthogonal functions 

like Legendre polynomials but this expansion will not fulfill automatically the required 

boundary conditions. The difficulty appears in cases where the degree of continuity is 

tried to be ensured in the global expansion.  For a domain having a single element, 

element and domain boundaries are identical. To obtain accurate results, it is enough 

to guarantee Nu . In typical, this is fulfilled in finite element methods by setting a 0C  

continuity between elemental regions that is to say, in spite of derivatives may not be 

continuous everywhere in the solution domain, the global expansion modes are 

continuous. 

Instead of utilizing fully orthogonal basis, localized Lagrangian interpolants can 

be employed. These interpolants can be used in conjunction with mass lumping. To 
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apply that, the mass matrix can be substituted with a diagonal matrix with an identical 

row sum. 

The SEM is not defined only by depending on its Lagrangian basis functions 

choice. It is defined by also the associated quadrature rule which is also known as inner 

product that is given by Gauss Lobatto quadrature in each spatial direction. The 

integral of g( )  is defined as follows for a single coordinate direction and in which 

   0 1 0 1, ,..., and , ,...,N Nw w w    are denoting the quadrature nodes [23]. 

 

1

01

( ) ( )
N

k k

k

g d w g  


   (3.21) 

In order to compute each inner product in SEM, integrand is evaluated first. 

Then, quadrature (3.21) is substituted for integration. Thus, M̂  becomes, 

 
0

ˆ ( ) ( )
N

ij k i k j k

k

M w L L 


   (3.22) 

However, due to the fact that the basis is Lagrangian 

i.e., ( ) , where is the Kronecker Deltai j ij ijL      , it is obvious that because of 

cardinality property of Lagrangian basis on the GLL grid,  M̂ is diagonal, 

 ˆ ( )iM diag w   (3.23) 

The stiffness matrix K is obtained in same a manner. p(x) and q(x)  are defined 

as constant first. It is led to especially simple form that is proper to both fast evaluation 

and inversion [23]. 

3.4.2 Stiffness Matrix Evaluation for Rectangular Element 

In 
2
, the energy product is defined as, 

 (u,v)=
v u v u

p p qvu dx
x x y y



    
  

    
   (3.24) 

By using the expansions defined in Equations (3.14), (3.15), (3.16) for u and v, 

the first term on the RHS of Equation (3.24) will be, 
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1 1

2
2 1

1 1 11 1

2

1

ˆ ˆ

p i
pq q j ij

pq ij

pq qj pi ij

pq ij

Lv u
p dx v p d d u

x x L

Lv u
p dx v p M K u

x x L

 
   

 
  



   
   

     

 


 

  



  (3.25) 

where K̂  is one-dimensional stiffness matrix on [-1,1]. By using tensor notation in 

Equation (3.20) gives, 

  2

1

ˆ ˆTLv u
p dx p v M K u

x x L


 
 

    (3.26) 

By using the expansions with same equations above, second term on the RHS of 

Equation (3.24) will be, 

 

1 1

1
2 1

2 2 21 1

1

2

ˆ ˆ

q j

pq p i ij

pq ij

pq qj pi ij

pq ij

Lv u
p dx v p d d u

y y L

Lv u
p dx v p K M u

y y L

 
   

 
  



    
   

     

 


 

  



  (3.27) 

where K̂  is one-dimensional stiffness matrix on [-1,1]. By using tensor notation in 

Equation (3.20) gives, 

  1

2

ˆ ˆTLv u
p dx p v K M u

y y L


 
 

    (3.28) 

Numerical quadrature can also be utilized to evaluate K̂  

 

11
1 1

0 0 1 1

11

0 1 1

( )( )ˆ ( ) ( )

( )( )ˆ

N N
j ki k

ij k i k j k k k

k k

N
j ki k

ij k

k

K w w w

LL
K w

  
   

 



 

 




  

 




 

 



  (3.29) 

1k  is the tensor product matrix corresponding to 1  coordinates of the element. 

Considering the number of nodes in the direction of x and y equals to each other, ˆ
piK  

equals to ˆ
qjK . This equation is recalled as one dimensional stiffness matrix and its 

implementation is also comparable. 
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More accurate evaluation can performed for one dimensional stiffness matrix if 

exact evaluation of mass matrix is obtained ( i j   has got a degree of 2N-2).  Because 

Gauss-Lobatto-Legendre rule which is applied for N+1 points, is applied also for all 

polynomials of degree 2N-1 or less [23]. 

1

1

( )i kL 






 is the derivative of the Lagrangian polynomials.

(1)

,N ijD  will be the 

differentiation matrix and can be represented as follows;  

 
(1)

,

( ) 1
,

( )

( 1)
, 0

: 4

( 1)
,

4

0, 1,..., 1

i

N i

N i i j

j

N ij

L
i j

L

N NdL i j
D

d
N N

i j N

i j N

 



  




 
  

 
 
    

   
 
   
 
    

  (3.30) 

The matrix elements are represented as the nodal values of first derivative 

corresponding to Gauss-Lobatto-Legendre Lagrangian polynomials. 

By combining Equations (3.26) and (3.28) with similar expression for 

derivatives of y, Equation (3.20) becomes, 

      2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ( , )
4

T L L L L
A u v v p M K p K M p M M u

L L

 
      

 
  (3.31) 

At the RHS of Equation (3.13), In case there is no force equation for load matrix, 

it is required to be calculated for all of the PDE’s. 

  1 2

4

ˆ ˆ( ) ( , ). ( , ) TL L
F v f x y v x y dxdy v M M f

L


     (3.32) 

The second expression is obtained by the insertion of the interpolant of ( )f x  

into the RHS of Equation (3.13) [23]. 

3.4.3 Helmholtz (Neumann) Operator for a Single Element 

Equations from (3.20) to (3.32) explain the essential procedures for evaluation 

of the bilinear form ( , ), ( , ) and ( )u v A u v F v  for any element pair ( , Nu v V ). The 

discrete Helmholtz operator, 
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      2 1 1 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ:
4

L L L L
H p M K p K M q M M

L L

 
      

 
  (3.33) 

is sometimes called as the Neumann operator. Because, it is the system obtaining the 

homogeneous Neumann problem. It is positive and symmetric. It is also definite unless 

q=0, if it has one dimensional nullspace of the constant mode. 

3.4.4 Laplacian Operator for a Single Element 

For q=0, the Laplacian operator, which is also named as Steady diffusion operator will 

be, 

    2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

 
    

 
  (3.34) 

For Laplacian problem, 

  ( )u v   (3.35) 

Here, the local stiffness matrix is evaluated. The local stiffness matrix is of a 

rectangular element on reference coordinates and it is calculated for steady diffusion 

operator. Sometimes K  is called by its symbol, because it is name is stiffness matrix. 

All of the stiffness matrices corresponding to the square element which are 

located on different coordinates with same degree, are identical. ( )v  will be 

different regardless of the dependency of force function on x and y coordinates. 

For non-zero Neumann boundary condition, in case of square domain, poldif.m 

can be utilized in order to find the differentiation matrix in respect of x or y of element 

[23, 24]. 

3.4.5 The Variable-Coefficient Case 

In order to develop the system matrices, it is required to perform the evaluation 

of integrals once again in the first term at RHS of Equation (3.24) for the case of 

variable p(x,y). The reference coordinate and physical coordinate are same. For 2D 

domains, the first term corresponding to Equation (3.24) is written as, 

 

1 1

1 2 1 2

1 11 1

( , ) : ( , )x

v u
u v p d d   

 
 

 


     (3.36) 
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which establishes a single term in the energy inner product ( , )x u v . To produce 

discrete operators, the expansion equations corresponding to (3.14), (3.15), (3.16), 

(3.17) for u, v and p are inserted into Equation (3.36): 

 

1 1

2 1

1 11 1

( , )
p i

x pq mn q j n m ij

pq ij mn

u v v p d d u
 

     
 

 

  
  

   
      (3.37) 

If left in this form, tensor product form is destroyed by mnp  which makes an 

unacceptable fill in stiffness matrix. 

 

1 1

2 1

2 21 1

( , )
q j

y pq mn n p j m ij

pq ij mn

u v v p d d u
 

     
 

 

   
  

   
      (3.38) 

The Spectral element method avoids this difficulty by employing a high order 

quadrature rule. This rule is based on Gauss Lobatto Legendre points and it is coupled 

with Lagrangian basis functions. The first integral which is defined in the right side of 

the Equation (3.38) is approximated as, 

   
 

   1 11 1

1

0 1 1 1 1

ˆ ˆ ˆ
N

p k p mi k i m

m k k m mp mi m

k

dL dLdL dL
L w w D D D

d d d d

  


   

    (3.39) 

where 
 1

1

ˆ :
p m

mp

dL
D

d




 . The second integral which is defined in Equation (3.38) is 

approximated as, 

      1 1 1 1

0

N

q k j k n k k qn jn n

k

L L L w w    


   (3.40) 

Let : diag( ) and : diag( )m mP p W w   diagonal matrices. This matrices have entries 

m mnp p  and :m mn m nw p w w   where ˆ 1 ( 1)m m N n     corresponding to natural 

ordering of the nodes [23]. W can be represented regarding tensor product forms where 

ˆ diag( )iM w . 

 ˆ ˆ( )W P M M    (3.41) 

and the integral expression in Equation (3.36) is altered regarding W, 

      ˆ ˆ, T T

x u v v I D W I D u     (3.42) 
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From this expression, the spectral element stiffness matrix can be finalized for 

Equation (3.24) for q=0. 

        ˆ ˆ ˆ ˆT TK I D W I D D I W D I        (3.43) 

The appearance of matrix P in Equation (3.41) is not in tensor form. Because of 

that, the fast diagonalization method cannot be utilized to invert K . However, the 

order of complexity of forward application is obtained by the differentiation regarding 

with matrices and TD D  which is  1dO N  . Because, the cost of applying the diagonal 

matrix to a vector is  dO N . It is important to note that, if W were full instead of 

being diagonal, the cost of applying K  would be  2dO N  [23]. 

3.5 Local Elemental Procedures for Quadrilateral Elements 

It is important to remember that, it is required to evaluate the inner products of 

the form for every elemental region to solve Galerkin formulation of the Laplace 

equation which is defined for deformed geometries. The Equation (3.24) for q=0 can 

be re-arranged as follows; 

  , ( ) . ( ) . ( )
e

M

u v p x v udx p x v uJ d 


         (3.44) 

where 
e  represents the element region. st  represents the computational domain. x 

represents the Cartesian coordinates and J represents the Jacobian of the mapping 

between two regions. There are three important notions based on the structure of inner 

product. First, integration within st . Second, differentiation in the problem domain 

st . Last, differentiation in the elemental region 
e . In order to differentiate and 

integrate the elemental region, between these regions, elemental mapping is defined. 

The Local Cartesian coordinates  1 2,   which are denoted by, 

    1 1 2 2 1 2, , ,e ex x y x       (3.45) 

are defined in 2D so that consider these cases a one to one mapping amongst Cartesian 

coordinates  1 2,x x . Likewise, 

      1 1 2 3 2 1 2 3 3 1 2 3, , , , , , , ,e e ex x y x z x             (3.46) 
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are defined in three dimensions [23]. 

3.5.1 Elemental Mappings for General Straight-Sided Elements 

In order to produce a simple mapping for elemental shapes with no curved edges, 

linear vertex modes of a modified modal expansion can be utilized. 

Due to linear order elements, it is named as bilinear mapping for a random-

shaped straight-sided quadrilateral where only the Cartesian coordinates of the vertices 

required to be prescribed. 

For the straight-sided quadrilaterals, 

 

       

       

1 2 1 2

1 2 1 2

1 1 1 1

2 2 2 2

1 1 1 1
, i 1,2

2 2 2 2

A B

i i i

D C

i i

x x x

x x

   

   

   
  

   
 

  (3.47) 

The equation (3.47) is sub parametric for high-order element matrices. It is 

important to underline that the Jacobian of the mapping to the standard region should 

be non-zero when developing a mapping. It should also be of the same sign. To meet 

these requirements, all elemental regions need to have internal corners with angles less 

than 180 degrees. Similarly, if the quadrilaterals are concave, it would not be possibly 

to generate local stiffness matrix with an interior angle wider than 180 degrees, so they 

are required to be convex shaped [23]. 

3.5.2 Elemental Mappings for General Curvilinear Elements 

From Equation (3.47), it can be inferred that this includes the vertex modes 

corresponding to modified hierarchical expansion basis. The mapping formula above 

can also be represented as: 

    
1 2

1 1 1 2 1 1 2

0 0

, ( ) ,
N N

e

pq pq

p q

x x x    
 

    (3.48) 

    
1 2

2 2 1 2 2 1 2

0 0

, ( ) ,
N N

e

pq pq

p q

x x x    
 

    (3.49) 

where 1 1( ) ( )a a

pq p q      and 0i

pqx  , apart from vertex modes which are exception 

and having values, 
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   

   
1

1 2 1

1 1 1 10,0 ,0

1 1 1 1, 0,

A B

N

c D

N N N

x x x x

x x x x

 

 
  (3.50) 

Creating a mapping using the expansion modes in this form allows us to include 

curved-sided regions by representing them isoparametrically. The geometric 

representations consist of an expansion of the same and polynomial order as the 

variables. 

Defining and representing a curved region is more complex than representing a 

straight-sided region, which only requires the values of the vertex locations. Mesh 

generation process of the isoparametric quadrilateral, involves the process of defining 

the mapping functions. A definition of mapping with edges represented in Cartesian 

coordinates can be shown as: 1 1 2 2( ), ( ), ( ), and ( )A B C D

i i i if f f f    . The definition 

process of mapping functions is thought as a part of mesh generation process 

corresponding to isoparametric quadrilateral [23]. 

If definition of the edges is known, a mapping for curvilinear domains can be 

utilized. To achieve that, isoparametric form of equation should be employed so that 

include more non-zero expansion coefficients. In case of existence of a polynomial in 

wrong order, the approximation of shape mapping is required 1( )f  . 

This can be achieved by utilizing an approximation of the edge function in 

aspects of the Lagrange polynomial. The approximation for 1( )A

if   is utilized as, 

 1 1

0

( ) ( , ) ( )A A

i p

p

f f i h  


   (3.51) 

 
0 1

0

ˆ ( )i

p p

p

x  


   (3.52) 

Coincidence of each element corresponding to the vertices provides the elements 

remain continuous and this is one important feature for approximation. One way to 

assure that is to utilize collection projection. The collection points should include the 

endpoints 1 1  . A coherent way to approximate 1( )A

if   is represented in (3.51).  

Utilizing the Gauss-Lobatto-Legendre quadrature points are useful for the collocation 

projection. Applying collocation projections to nodal points series, Af  can 

approximately represented in aspects of a hierarchical expansion ( )p   so that obtain 
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the coefficients 
0

ˆ i

px  in Equation (3.52). In case the polynomials span has same space, 

the final modification can be applied by collocation or Galerkin projection. Modified 

Galerkin projection can be employed in case of usage corresponding to more 

collocation points. If the coordinate expansion coefficients are determined, 
0

ˆ i

px , (3.48)

, (3.49), and (3.50) can be calculated in order to govern the isoparametric mapping 

from standard region [23]. 

 

 
 

Figure 3.1: A general curved quadrilateral element can be expressed in terms of series of parametric functions.  

1 1 2 2( ), ( ), ( ), and ( )A B C Df f f f     (Adopted from [24]). 

For the quadrilateral region which is illustrated in Figure 3.1 the linear blending 

function can be represented as, 
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  

  (3.53) 

where the vertex points are not discrete. If 1 1 2 2( ), ( ), ( ), and ( )A B C Df f f f    are 

substituted in Equation (3.51) and reorganized, the expansion of the form which is 

given by (3.48) and (3.49) can be achieved. The Equation (3.53) which is a blending 

function has been utilized in spectral element methods with approximation of an 
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Equation (3.51) to the mapped edges. Local collapsed coordinates should not be 

employed to generate a non-smooth Jacobian. Continuity of 0C  can be lost [23]. 

3.5.3 Integration Inside of an Element Region 

After the coordinates are governed corresponding to element’s inner and surface 

nodes, all partial derivatives required to be determined. 1 2 1 2

1 1 2 2

, , ,
x x x x

      

   
 must be 

obtained in order to find Laplacian operator. 
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     
  
     

 

  (3.54) 

3.5.4 Differentiation Inside of an Elemental Region 

The chain rule is utilized for the 2D case so that differentiate a function inside 

the random elemental region 
e  
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  (3.55) 

To evaluate partial derivatives in form of 1

1x




, they are represented in aspects of 1 2,   

The total change follows as; ( 1 1 1 2 2 2 1 2( , ), ( , )e ex x x x     ) 

 

1 1

1 21 1

2 22 2

1 2

x x

dx d

dx dx x

  



 

  
     
    
     
   

  (3.56) 

In order to obtain, it can be inverted [23]. 
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1

2 1

2 21 1

2 22 12

1 1

1

D

J

x x

d dx

d dxx xJ

 



 



  
     

    
        

  (3.57) 

However, since mapping is considered to be one to one. And it has an inverse, 

 1 1

1 1 1 2 2 2 1 2( ) ( , ), ( ) ( , )e ex x x x x x      (3.58) 

and consequently, it is achieved that, 

 

1 1

1 21 1

2 22 2

1 2

x xd dx

d dx

x x

 



  

  
     
    
     
   

  (3.59) 

which by evaluation, finally gives, 

 

1 2 1 1

1 2 2 2 2 2

2 2 2 1

1 2 1 2 2 1

1 1

1 1

D D

D D

x x

x J x J

x x

x J x J

 

 

 

 

   
  

   

   
  

   

  (3.60) 

The 2D gradient operator can be obtained as whole partial derivatives are 

represented in terms of differentials respected to 1 2,   

3.6 Implementation of Spectral Element Method 

High order FEM was not well-known until 1980. Because high order means 

increased size of the element matrix. If size of element matrix is increased, the 

computational time is also increased. Decreasing the band size corresponding to the 

assembled stiffness matrix was a problem consists of the earliest times of FEM. Hence, 

diagonal mass matrix is the great asset for whom involves in Finite element method. 

Since Gauss-Lobatto-Legendre Lagrangian polynomials equal to kronecker delta at 

Gauss-Lobatto-Legendre nodes, GLL Lagrangian polynomials and quadrature are 

utilized. The matrix will be filled, If the same polynomials and quadrature are not 

utilized [23]. 
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3.7 Vector Potential Equation with Single Rectangular Spectral Element 

Rectangular element stiffness matrix is achieved by utilizing the Equation   

(3.34). Global stiffness matrix is equivalent to rectangular element stiffness matrix. 

Consequently, numbering local nodes equals to numbering global nodes. 

3.7.1 Evaluation of Gauss Lobatto Legendre Nodes and Weights 

The Lobatto function implemented in Lobatto.m is utilized as 

   w, y  = Lobatto N  in order to find Gauss Lobatto Legendre weights and nodes 

in range 1, -1.  The row vector x is also represented as the roots of Gauss Lobatto 

Legendre Lagrangian polynomials. The function is implemented by Tarman [24] and 

is given in Appendix A. 

3.7.2 Evaluation of Mass Matrix and One Dimensional Stiffness Matrix 

As it was mentioned before, ( )i j ijL   , where ij   is the Kronecker Delta. 

There is no doubt that ( )i jL   equals to  I = eye N+1 ; In Fig. 2, Gauss Lobatto 

Legendre polynomials within the degree of N=6 are illustrated. 

The function which is expressed as  D = poldif x,1 ; evaluates the 

differentiation matrix. It is element in first row and the first column is the derivative 

of 1 1 1 1( ) at 1, ( 1)L x L   . D(:, p) is the derivative of 1( )iL   whole points in range 

[1, -1] which means the matrix’s pth column. The initial collocation point is 1. It can 

be inferred from the graph corresponding to lagrangian polynomials. The derivative of 

pth lagrangian polynomials equal to zero at pth collocation point except the points of 

first and last. For instance, the function  D = poldif x, 2 ; finds the 

differentiation matrix in second order [23]. 

3.7.2.1 Evaluation of one dimensional mass matrix 

Equations (3.22) and (3.23) can be both utilized. Equation (3.23) is defined as 

 RH2 = diag w ; Equation (3.22) is defined as; 
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Mathematical Expression      MATLAB implementation

0

ˆ ( ) ( )

ˆ ( )

N

ij k i k j k

k

i

M w L L

M diag w

 








              for p=1:N+1 

                for q =1:N+1

                  L=I(:,q).*I(:,p)

                  RHS2(p,q)=dot(w,L);

                end

              end

   RHS2=diag(w)

  

w is the kw  and L  is the ( ) ( )i k j kL L  . w  and k  are same dimensioned vectors. 

In order to achieve multiplication of array “.*” operators are utilized. The line which 

is implemented as L=I(:,q).*I(:,p) represents point by point product of 

andI(:,q)  I(:,p). The dot product is achieved by the following piece of code; 

dot(w,L)=w(1)*L(1)+w(2)*L(2)+...+w(N+1)*L(N+1)  

The fourth order of Lagrangian polynomial is illustrated in Figure 3.2. It can be 

inferred that it oscillates less than fourth equispaced Lagrangian polynomial at the 

boundaries [23]. 

 

 
 

Figure 3.2: The plot of GLL Lagrangian polynomials obtained for 6th degree. There are 7 collocation points 

between [1, -1]. p = i. (Adopted from [23]). 

 



37 

3.7.2.2 Evaluation of two dimensional mass matrix 

Equation (3.20) is defined as, 

Mathematical Expression    MATLAB implementation 

1 2 ˆ ˆ
4

L L
M M M                  s=kron(RHS2, RHS2);

  

The two dimensional matrix is diagonal. 1L  and 2L  represent the length of 

standard element and are equal to 2. The kronecker product of A and B matrices is 

represented by A B  [23]. The computation of kronecker product is achieved by 

MATLAB with built-in function kron(A,B). If and  p q r s   represent the 

dimensions corresponding to A and B respectively, A B  becomes a matrix with a 

dimension pr qs  with p q  block and arranged as follows, 

 

2 2

1 2 2 2

3 4 3 3 4 4

3 3 4 4

a b a b

a b c d c d

c d a b a b

c d c d

 
 

              
 
 

  (3.61) 

3.7.2.3 Evaluation of one dimensional stiffness matrix 

Equation (3.29) is utilized to obtain one dimensional stiffness matrix. It is 

implemented as follows, 

Mathematical Expression    MATLAB implementation 

11

0 1 1

( )( )ˆ
N

j ki k
ij k

k

LL
K w



 




 


          for p=1:N+1

            for q =1:N+1

                Ae=D(:,q).*D(:,p);

                df2(p,q)=dot(w,Ae);

            end

          end
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3.7.3 Construction of the Grid 

Local coordinates corresponding to the master elements are obtained by 

Lobatto.m . The collocation points which is located in x and y direction are same 

for N=21. However, it is not compulsory to have same degree for all directions. 

[xx,yy] = meshgrid(x(1:N+1), y(1:N+1)); gives the local 

coordinates corresponding to each node which is presented in Figure 3.3 of the master 

element [23]. 

3.7.3.1 Obtaining the plot of grid 

The plot of master element grid can obtained by the command 

plot(xx,yy,xx',yy'). As it can be inferred from the Figure 3.3, the grid is 

denser near edges.  Due to orthogonality feature of Gauss-Lobatto-Legendre 

polynomials the distance between nodes which are located near the edges is less than 

the nodes which are located near the intersection of midlines [23]. 

 

 
 

Figure 3.3: Single spectral element pilot obtained for degree of N=24. The bold lines represent the axis of the 

reference coordinates. There is an existing node at each intersection point. (Adopted from [23]). 
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3.7.4 Evaluation of Load Vector 

The both equations (3.20) and (3.32) are identical but the force function included 

in Equation (3.32). The force function is evaluated at xx = xx(:); yy = yy(:);

. Two dimensional mass matrix (M) is utilized to be implemented as s. Therefore, 

Equation (3.32) is implemented as, 

Mathematical Expression    MATLAB implementation 

 1 2 ˆ ˆ( )
4

TL L
v v M M f 

        for p=1:(N+1)̂ 2

          for q =1:(N+1)̂ 2

            if (p==q)

              RHS(q)=s(p,q).*f(q);

            end

          end

        end

  

3.7.5 Evaluation of Steady Diffusion Operator 

One dimensional stiffness and mass matrices ˆ ˆ,M K  was evaluated so as to 

implement the Equation (3.34). The Equation can be re-arranged for MATLAB 

implementation as follows, 

Mathematical Expression    MATLAB implementation 

   2 1

1 2

ˆ ˆ ˆ ˆ:
L L

p M K p K M
L L

   
 
 
 

delta=kron(RHS2,df2)+kron(df2,RHS2); 

Two dimensional rectangular element stiffness matrix is equal to steady 

diffusion operator in case of application for single element [23]. 

3.7.6 Imposing the Dirichlet Boundary Condition 

Dirichlet BC can be utilized for a single rectangular spectral element by 

removing either first and last rows both or first and/or last rows corresponding to K̂ . 

The one dimensional stiffness matrix is evaluated by employing the Equation (3.29) 

and M̂ . One dimensional mass matrices are calculated by using Equation (3.22). The 

Equation (3.34) is defined in MATLAB as follows, 
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delta=kron(RHS2, df2(2:N, 2:N)+kron(df2(2:N,2:N), RHS2);  

In Figure 3.4, the sparsity graph corresponding to the obtained delta is illustrated. 

As it is shown in the Figure 3.4, dimension of delta  is 11200x11200. As it shown 

in the figure, black regions are of non-zero matrix elements and there are 5244760 

elements having non-zero values in delta [23]. 

 

 
 

Figure 3.4: Sparsity plot of the element stiffness matrix. 

 

3.7.7 Imposing the Neumann Boundary Conditions 

For Neumann boundary condition, there is a method can be utilized on two 

dimensional rectangular elements so as to alter the related row in element stiffness 

matrix (steady diffusion operator) with related row corresponding to two dimensional 

1st order differentiation matrix. 

DNBC=kron(I, D)+kron(D, I); 

The calculation of domain corresponding to square element stiffness and master 

element matrices which spans the area bounded by 1 1, 1 1x y       can obtained 

by same equations (3.22), (3.29), (3.34). If domain is not bounded by [1, -1], D must 

be obtained at one dimensional mapped nodes (from [1, -1] to [0, 1]). The D 
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differentiation matrix is utilized to evaluate steady diffusion operator. In addition to 

that, two dimensional first order differentiation matrix has to be same. 

The related components which belong to the column vector RHS' is altered with 

u at the Neumann boundary condition. 

RHS(c)=h; 

c represents the node number corresponding to node numbers of Neumann 

boundary condition. 

3.7.8 Evaluation of the u Values in Vector Potential Equations 

un=-delta\RHS'; 

Backslash operator is employed to execute matrix left division. For the problem 

defined in thesis, delta is a matrix having size of 11200 by 11200. The elapsed time is 

3.800713 seconds during calculation. If inv() command is executed to evaluate left 

division, 885.586415 seconds required for calculation which proves that the command 

is much slower than backslash. Besides that, MATLAB warns us not to use this 

command [23]. 

3.7.9 Plotting the Three Dimensional Graph of the Solution 

In thesis, to represent the vector potential values surf and contour plots are 

created. In MATLAB, there are two built-in commands which provides a user to create 

contour and surf pilots which are surf() and contour(). 

As it specified by MATLAB and stated in the manual, contour() command 

can take from 1 to N arguments. In our problem, we have two axis and vector potential 

values corresponding to these coordinates. Hence, we implemented the following 

code, 

for elmt=1:28

  contour(X(:,:,elmt),Y(:,:,elmt),(uL(:,:,elmt))); hold on;

  contour(X(:,:,elmt),-Y(:,:,elmt),(uL(:,:,elmt))); hold on;

end

 

Due to the symmetry on the x axis, the contour plot is mirrored along the x. 
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For surf()command, the same procedure is applied and it takes some 

additional arguments for face color, edge color and face lighting. It is implemented as 

follows, 

 

 for elmt =1:28

 surf(X(:,:,elmt),Y(:,:,elmt),(uL(:,:,elmt)),'FaceColor','interp',...

 'EdgeColor','none',...

 'FaceLighting','phong')    ; hold on;

surf(X(:,:,elmt),-Y(:,:,elmt),(uL(:,:,elmt)),'FaceColor','interp',...

 'EdgeColor','none',...

 'FaceLighting','phong')    ; hold on;

 end
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CHAPTER FOUR 

4. RESULTS 

4.1 Sample Problem 

In this thesis, a typical magnetic problem is considered in time-invariant domain 

to verify the formulation of SEM which is presented in the previous chapter. The 

structure shown in Figure 4.1 is consists of an iron core which has three legs and two 

windows inside it. As it is shown in Figure 4.1, the coil, which provides the 

magnetizing current to the core, is placed along the middle leg. The resultant magnetic 

flux is divided equally between the left and right legs of iron core. 

 

 
 

Figure 4.1: The structure of the problem.  
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The problem is defined in two dimensions on xy plane and as anyone can notice 

from Figure 1, the iron core is 8 cm wide and 6 cm high. The current injected through 

coil is 10 A/m2. The permeability of the iron core is selected as 200000 times of 

permeability of air 0  which is represented in textbooks. It should be noticed that in 

simulation results, the flux density in air is almost zero due to selection of relatively 

high permeability of material. 

In addition, it is important to note that the computational domain of the problem 

is reduced to half due to the fact that our problem is symmetrical around x-axis. 

4.2 Meshing 

As it is discussed in the spectral element method chapter, the computational 

domain has to be discretized into elements in order to be solved. The elements which 

are used for discretizing the computational domain is composed of Gauss-Legendre-

Lobatto grids. Possible geometries of some elements that can be utilized by SEM are 

shown in Figure 4.2. As it is discussed earlier, like finite element methods, 

discretization of domains which are composed of deformed shapes can be handled by 

spectral element method. 

 

 
 

Figure 4.2: Representation of formed and deformed elements utilized by SEM. 

 

Figures 4.3 and 4.4 show, respectively, the GLL node distributions in a regular 

element and a deformed element. 
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Figure 4.3: GLL grid in a regular square element (21x21 nodes). 

 

 
 

Figure 4.4: Discretized deformed element plot. 
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Figure 4.5: Gauss-Legendre-Lobatto grids in the elements forming the computational domain. 

 

In Figure 4.5, complete meshing belongs to the computational domain is 

illustrated. As it can be noticed from the figure, spectral element discretization is 

similar to finite element discretization. In other words, elements are getting larger as 

we move farer from the region of interest. 

Assignment of numbers to elements is vital for initialization of computational 

process. Because, before start computing, each individual element should be 

represented on the coordinates system. As it is illustrated in Figure 4.6, the assignment 

of numbers is started from 1 and ended up with 56. As anyone can infer from the figure, 

there is a symmetry on the x axis. Due to the symmetry, the difference between element 

numbers corresponding to mutual elements is 28. For instance, as an element’s number 

at the upper side of x axis is 1, the element number corresponding to its mutual element 

is 29. 
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Figure 4.6: Element numbering corresponding to problem domain. 

 

4.3 Boundary Conditions 

Boundary conditions’ definition is given in the second chapter and as it is 

mentioned, it is important to apply them on spectral element formulation in order to 

provide unique solution. 

In this thesis, two types of boundary conditions are employed. Dirichlet 

boundary condition is applied along exterior boundaries so as to enforce zero vector 

potential values. In fact, choosing A = 0 will not affect the result due to the fact that 

most of the flux will flow in the core. Neumann boundary condition is applied along x 

axis (axis of symmetry). As it is stated in the definition corresponding to Neumann 

boundary condition, it provides us to ensure that zero tangential magnetic flux 

densities are guaranteed. In other words, the application of Neumann boundary 

condition along the x axis means that the derivative of vector potential values along 

the x axis is zero. 

After obtaining the numerically solved vector potential, one can compute the 

magnetic flux density as follows: 

 
x y

A A
, and .

y x
B B

 
 
 

  (4.3.1) 
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The governing differential equations defining each region have derived in 

Chapter 2. But in order to solve those partial differential equations, the problem 

requires interface conditions to be defined on adjacent regions. This condition can be 

satisfied by defining the normal component of 

 
1

n.( )A

   (4.3.2) 

on the boundary. The definition introduced in (4.3.2) provides us to define tangential 

value of electromagnetic field intensity on boundary. 

4.4 Vector Potential Results 

The aim of this thesis is to solve the partial differential equations which are 

derived from Maxwell’s equations by applying the spectral element method to the 

problem explained in section 4.1. In this section, vector potential results are obtained 

and presented. In addition to that, vector potential values will be re-evaluated by 

changing one of the parameters such as magnetic permeability, injected current density 

or number of nodes whereas keeping rest of the parameters constant. Also, the results 

will be compared in terms of accuracy, computation time, memory consumption and 

CPU load. 

Based on injected current and permeability specified as 210A/mJ   and 

5

02 10     in the problem definition section, vector potential result is obtained and 

illustrated in Figure 4.7. As it is shown in the figure, vector potential values reach 

maximum 0.3 T.m approximately. 

It is well known fact that the derivative of magnetic vector potential equals to 

magnetic flux density. As it is illustrated in the figure, the derivation of vector potential 

value along green plane which represents outside of core is zero. That is to say, the 

magnetic flux density at outside the core equals to zero. On the other hand, the slope 

of vector potential is different than zero in the range [0, 1], [3, 4] and [-1 0], [-3,-4] on 

the x axis which proves that the vector potential values are varying across that range. 

Therefore, it can be said that the magnetic flux density values are different than zero 

and is directly proportional to slope of A. 
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Figure 4.7: Vector potential result surface plot obtained for permeability of 
5

02 10    and injected 

current 
210A/mJ   with 21 nodes. 

 

 
 

Figure 4.8: Vector potential surface plot in X-Z view obtained for paramters of number of nodes 21,  

permeability
5

02 10    and injected current 
210A/mJ   
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In Figure 4.8, the vector potential values are re-illustrated in X-Z view to show 

the slope clearly. As it can be clearly seen from the figure, the slope of the vector 

potential only exists in the core which is bounded by the coordinates [-4, -3], [-1 0] 

and [0, 1], [3, 4]. The magnetic flux density is zero at outside of the core and the area 

of elements forming the coils. All of the magnetic flux is flowing through the iron core 

as the magnetic permeability of iron is much higher than the permeability of air. 

 

 
 

Figure 4.9: Vector potential contour plot a permeability of 
5

02 10    and injected current 

210A/mJ  . 

 

In Figure 4.9, the magnetic flux isolines are illustrated in form of contour plot. 

There is almost no leakage magnetic flux flowing outside from the iron core except 

leakages around the coils. 

As it is mentioned at the beginning of the section, the parameters that are used 

to evaluate vector potential and magnetic flux density such as magnetic permeability, 

number of nodes and injected current density should be changed and obtained results 

should be compared in order to interpret results more accurately. To achieve that, the 

magnetic permeability is set to a value of  steel which is 0100   at constant injected 

current density and number of nodes in order to understand the effect of permeability 

on vector potential results. 
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Figure 4.10: Vector potential surface plot obtained for permeability of 0100  , and injected current 

210A/mJ  . 

 

In Figure 4.10, magnetic vector potential values are illustrated in the form of 

surface plot. As it is shown in the figure, the slope is not equal to zero at the outside 

of the core and also it is not zero around coils. As it was stated earlier in this section, 

in order to interpret the magnetic flux density, the slope of magnetic vector potential 

should be analyzed. If one considers the slope of magnetic vector potential one can 

inferred that there is too much leakage flux flowing outside from the iron core when it 

is compared to results obtained for higher magnetic permeability. In other words, due 

to reduced magnetic permeability of iron core, the magnetic flux can leak from the iron 

core easily. 
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Figure 4.11: Vector potential surface plot obtained in X-Z view for magnetic permeability of 0100  , 

injected current 
210A/mJ   and number of nodes 21. 

 

The Figure 4.11, vector potential is illustrated to interpret magnetic flux density 

more accurately due to the fact that the slope of magnetic vector potential can be 

noticed easily in X-Z view. As it is shown in the figure, the magnetic vector potential 

values are varying across the domain. 

If magnetic permeability is changed, the magnitude of magnetic vector potential 

will also change based on Maxwell’s equations. That is to say, if the value of magnetic 

permeability is increased, it is expected to see that the evaluated value of magnetic 

vector potential will also increase or vice versa. In this problem, the magnetic 

permeability was reduced to 0100  . 
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Figure 4.12: Vector potential surface plot obtained for magnetic permeability of
5

02 10   , injected 

current 
3 210 A/mJ   and number of nodes 21. 

 

In Figure 4.12, magnetic vector potential values are illustrated and evaluated for 

the injected current density 1kA/m2, magnetic permeability 
5

02 10    and number 

of nodes 21. If Figure 4.12 and Figure 4.7 are compared, one can notice that both 

figures are almost identical. In Figure 4.7, the parameters of magnetic permeability 

and injected current density were set to 10 A/m2 and 02000   respectively. On the 

other hand, in Figure 4.12, the injected current density is increased to 1000 A/m2 as 

the magnetic permeability is kept at 
5

02 10   . As it can be inferred from Figure 

4.12, it can be said that only amplitude of magnetic vector potential is increased to 

approximately 30 T.m. 

As it was previously mentioned, in order to utilize spectral element method, the 

problem should be discretized into elements. The elements which are obtained have 

nodes and these nodes are used for evaluation individually. Therefore, the number of 

nodes employed by the evaluation process plays a role for accuracy and time being 

consumed during computation. There is always a trade-off between accuracy and 
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consumed time. If higher number of nodes are defined, it is expected to see that there 

will be more computational time consumed. In other words, higher number of nodes 

means that more processing time and memory resources are required. 

In order to verify relationship between accuracy of obtained magnetic vector 

potential value and elapsed time during computation, the number of nodes is changed 

to 6 while keeping the other parameters constant. In this case, it is expected to see less 

accurate values of magnetic vector potential and fewer consumed computational time. 

It is important to set a reference point to compare results. The reference point is 

selected as following values, X = 2 cm, Y = 1 cm. 

The magnetic flux density results are employed to investigate the effects of 

number of nodes on accuracy.  In Figure 4.13, magnetic flux density is illustrated 

which is calculated for 6 nodes, magnetic permeability 
5

02 10    and injected 

current density 210A/m . As it is shown in the figure, magnetic flux density varies 

between 0T to 0.16T. It can be said that, the magnetic flux lines are following the path 

which is closest to the interior edges in the core as it is expected. On the other hand, 

one can claim that the density of magnetic flux inside the core is homogeneous. 

In Figure 4.14, the output of information corresponding to the elapsed time 

during computation of the problem is given. As it can be inferred from the figure, the 

computational time is 3.48 seconds. 
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Figure 4.13: Magnetic flux density plot obtained for magnetic permeability of 
5

02 10   , injected 

current density 
210A/mJ   and number of nodes 6. 

  

 
 

Figure 4.14: Elapsed time measured during calculation 6 nodes, 
5

02 10   , injected current density 

210A/mJ  . 



56 

 
 

Figure 4.15: Representation of an element highlighted for 6 nodes, 
5

02 10    with an injected current 

210A/mJ  . 

 

In Figure 4.15, the created nodes corresponding to each element in the problem 

are illustrated and one of the element belonging to the domain is highlighted. As it can 

be seen from the figure, each element has 36 nodes and totally the domain has 2016 

nodes. 

In Figure 4.16, magnetic flux density is shown which is calculated for the 

parameters of magnetic permeability 
5

02 10   , injected current density 210A/m  

and number of nodes 21. It can be clearly inferred from the figure; the magnetic flux 

density values are not homogeneous inside of the iron core. The magnetic flux density 

values are differentiating while it was keeping constant in the previous calculation 

which was made for 6 number of nodes. The reason is that there are more calculation 

points in the domain due to increased number of nodes to 21 which provides us higher 

accuracy. The elapsed time is given in the Figure 4.17, and it is increased to 97.842964 

seconds as it is expected. 
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Figure 4.16: Magnetic flux density plot obtained for parameters of  magnetic permeability 
5

02 10   , 

injected current density 
210A/mJ   and number of nodes 21. 

 

 
 

Figure 4.17: Elapsed time measured during calculation for parameters of number of nodes 21, 
5

02 10   , 

injected current density 
210A/mJ   
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Figure 4.18: Representation of an element having 21x21 nodes. 

 

In Figure 4.18, part of the created nodes in the problem domain are shown and 

one of the element belonging to the domain is highlighted. As it is shown in the figure, 

each element has 441 nodes and totally the domain has 24696 nodes. Based on the 

results obtained in different number of nodes configuration, 21 number of nodes is 

accurate and efficient enough to produce reliable solutions. 

It is previously mentioned that the accuracy highly depends on defined number 

of nodes for each element. In thesis, two different number of nodes configuration are 

applied to each element in order to compare results and element 8 is chosen to be a 

reference. 

In Figure 4.19, the vector potential is presented for different number of nodes 

corresponding to the reference point. The vector potential value along the x axis which 

is highlighted in blue line for 21 nodes, varies in range starting from zero to 

approximately 0.34 T.m. On the other hand, the vector potential value which is 

highlighted in red-color line for 6 nodes, varies from 0 T.m to nearly 0.28 T.m. When 
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it comes to comparison, the difference between those values as it was previously 

mentioned that caused by number of nodes created for problem domain elements. 

 

 
 

Figure 4.19: Comparison of magnetic vector potential values corresponding to reference element. 

 

Memory usage is one of the important parameters that should be taken into 

account while utilizing spectral element method. It is well-known fact that defining 

number of nodes plays key role on the accuracy of results. If number of nodes is too 

low, it is nearly impossible to obtain accurate results. If number of nodes is too high 

however, the accurate results is guaranteed but the resources, especially RAM to be 

assigned for calculation process are increased dramatically. 

In Figure 4.20, the memory usages are represented for different number of node 

configurations. The line which is highlighted in red color represents the usage 

belonging with the calculation made for 21 nodes and the blue highlighted line 

represents the values belonging with calculation made for 6 nodes. The memory values 

are presented in terms of gigabytes. As it is represented in the figure, the difference 

between memory usages in both cases is too much.  The average memory values of 
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calculation made for 21 number of nodes and 6 number of nodes are 2.0131 gigabytes 

and 0.1022 gigabytes, respectively. 

 

 
 

Figure 4.20: Consumed RAM results during execuation of script for 21 and 6 nodes. 

 

Figure 4.21 illustrates the consumed processor resources which is required by 

the computational process. The red line presents CPU activity corresponding to script 

executed by the 21 nodes and blue line represents CPU activity corresponding to 6 

number of nodes configuration. As it is illustrated in the figure, all processor resources 

are allocated during computation for each number of nodes configuration. However, 

due to lower accuracy, the process configured with 6 number of nodes finishes its job 

faster than other’s. Besides, it is important to note that, two of executions overshoots 

the 100% which means that more than one CPU core is allocated for execution. 
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Figure 4.21: CPU load results during execution of the script for the number nodes 6 and 21. 

 

4.5 Comparison Between SEM and FEM 

In this thesis, spectral element method is utilized to solve the present problem 

because of its high accuracy and ability of calculation on deformed elements efficiently 

and requiring low computational resources. In order to prove that, finite element 

method is utilized to solve the same problem for verification purposes. 

In order to utilize finite element method on our problem, it is required to 

discretize the problem domain into elements.  Figure 4.22 illustrates the problem 

definition involving several subdomains. For instance, “u1” represents the outer 

boundary and “air” represents outside and partially inside of iron core, “Positive” and 

“Negative” labels represent coils attached to core. 
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Figure 4.22: Problem definition for FEM. 

 

The discretization of problem domain is illustrated in the Figure 4.23. As it can 

be shown in the figure, triangular elements used for discretization. Besides that, it can 

be also inferred that the number of elements is denser in corners and sparser in middle. 

It is important to note that, outer boundary of problem domain was not used in spectral 

element method. 
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Figure 4.23: Meshing the problem domain in FEM. 

 

In order to compare the results which is obtained by spectral element method 

and finite element method, a reference line on the problem domain is chosen. As it can 

be seen in Figure 4.24, the reference line is defined as “ab” in the middle leg of iron 

core. 
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Figure 4.24: Vector potential contour plot obtained by FEM. 

 

Figure 4.25 shows the magnetic flux density values corresponding to finite 

element method and spectral element method results along the defined reference line 

drawn from a to b. As it shown in the figure, the average value of magnetic field density 

(B) is 35.4 T. Besides, SEM shows smoother form of variation compared to FEM and 

as it is shown in the figure, SEM is more symmetrical around x axis (x=0). 

The maximum difference between results corresponding to SEM and FEM is 

approximately 1.12%. It can be considered small amount of difference and FEM can 

also be seemed as accurate as SEM and yet this amount of difference can be acceptable 

in aspects of engineering. However, the other features of spectral element method like 

low dependency on computational resources make it more feasible to be used. 
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Figure 4.25: Accuracy comparison between FEM and SEM. 

 

4.6 Summary 

In this chapter, the simulation results corresponding to the formulation of a 

typical magnetostatic problem by spectral element method are presented. In order to 

simulate results of the problem, the following steps are followed; defining typical 

magnetostatic problem, obtaining governing partial differential Maxwell’s equations, 

discretization of problem domain, defining boundary conditions and the utilization of 

spectral element method respectively. The problem defined in thesis is time-invariant 

and two dimensional. And, the problem is symmetrical around x axis(x=0). Due to the 

symmetry, computational time of the problem is reduced and also memory usage is 

reduced to half as it is expected. Adapted formulation by spectral element method is 

based on the continuous galerkin approach, however discontinuous approach can also 

be used. 

Number of nodes created for domain elements effects on the accuracy of results 

as it is previously mentioned in thesis. In order to prove that, more than one number 

of nodes configuration has been used and the corresponding results are presented. 

In order to show memory usage effect, simulation process has repeated several 

times with different number of nodes configuration. It is expected to see that lower 

number of nodes configuration is associated with less memory usage. The results 

proved our expectations by presenting higher memory consumption on higher number 

of nodes configuration. 

As it is proved by results, the spectral element method is feasible to use in 

magnetostatic problems due to its high accuracy. 
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CHAPTER FIVE 

5. CONCLUSION & FUTURE WORK

Electromagnetic modeling is handled by techniques; analytical modeling, and 

numerical modeling. Numerical modeling is utilized in electromagnetic problems by 

discretizing the problem domain into elements while analytical modeling begins with 

governing differential equations and solve them by some mathematical manipulations. 

Due to the complexity of electromagnetic problems, numerical methods became more 

popular recently thanks to the advent of technology. 

There are several numerical methods that can be utilized in computational 

electromagnetics. However, some of them such as finite element and finite difference 

methods have been extensively applied. After Patera [25] had introduced spectral 

element method in the article, spectral element method began to be applied in various 

branches of engineering problems by many researchers. The chief advantage of 

spectral element method is that it offers high accuracy and low computational resource 

requirements. Despite of these advantages, this method has not been used in 

magnetostatic or quasi-magnetostatic problems. When literature is searched, we 

confirmed that there are several studies have been made based on the application of 

spectral element method in the wave theory and photonics structure. 

In this thesis, we applied the spectral element method in sample magnetostatic 

problem. The sample problem is time invariant and defined in two-dimensions. The 

magnetic permeability is assumed as a different constant value in each region such as 

air, iron core and current injected coil.  After vector potential results had been obtained, 

the problem was re-evaluated in order to realize the effects of parameters defining our 

problem. First, we created sparser mesh, we obtained less accurate results in contrast 

with denser mesh. Then, we reduced the permeability of the core and we observed 

more leakage flux as it is expected. Last but not least, when the injected current was 

increased, we observed higher vector potential values.
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In addition, we also modeled and simulated the same problem by a freely 

available software which is created by Meeker, D [14]. Consequently, the results 

proved that spectral element method provides accuracy with less computational 

resources when it is compared to finite element method. 

In our future work, we are planning to study the following topics; 

1. Quasi-magnetostatic problems 

2. Discontinuous Galerkin approach 

3. Since we assumed that the permeability    is linear, it may become non-

linear under high excitation conditions. In future works, nonlinear 

permeability can be considered. 

4. Solving problems involving permanent magnets. 

5. Investigation of solving the resultant system of equations A x b  by 

different iterative methods. 
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Appendix A. Lobatto.m

function [w, y] = Lobatto(n) 

% The Legendre-Lobatto points y(1:n+1) are the roots of 

f(x) = (1- x^2) dP_n/dx, 

% with the weights w(1:n-1) = 2/n(n+1) P_n(y(1:n-1))^-2 

and w([0 n] = 2/n(n+1). 

% where P_n(x) is the nth degree Legendre polynomial. % 

% This routine uses Newton iteration to find the roots to 

10 digit accuracy. 

% Only symmetric half is computed. 

% The initial estimates are the Chebyshev points 

cos((pi/n)*(0:n)). % 

% By using the two relations 

% (1-x^2)(dP_n/dx) = n(n+1)/(2n+1) (P_(n-1) - P_(n+1)) 

% P_n = -1/(2n+1) (dP_(n-1)/dx - dP_(n+1)/dx) 

% we identify 

% f = P_(n-1) - P_(n+1) and df/dx = -(2n+1)P_n. 

if n==1, w = [1 1]; y = [1 -1]; return, end 

if n==2, w = [1/3 4/3 1/3]; y = [1 0 -1]; return, end 

s = 2/(n*(n+1)); 

m = ceil(n/2) - 1; % # of half-internal points except 

zero. for i=1:m 

z = cos((pi/n)*i); d = 1; 

while abs(d) >= 5e-11 

Lnm1 = legendre(n-1,z); Lnp1 = legendre(n+1,z); Ln = 

legendre(n,z); 

fz = Lnm1(1,1) - Lnp1(1,1); fpz = -(2*n+1)*Ln(1,1); 

    d = -(fz/fpz); z = z + d; 

end 

yh(i) = z; 

wh(i) = 1/Ln(1,1)^2; 

end 

if 2*ceil(n/2)==n, 

    Ln = legendre(n,0); w0 = 1/Ln(1,1)^2; 

    w = s*[1 wh(:)' w0 fliplr(wh(:)') 1]; 

    y = [1 yh(:)' 0 -fliplr(yh(:)') -1]; 

else 

end 
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Appendix B: processlogger.go

package main 

 

import ( 

 "bytes" 

 "fmt" 

 "os" 

 "os/exec" 

 "regexp" 

 "strconv" 

 "strings" 

 "time" 

) 

 

func parse_results(results string) (string, string) { 

 var cpu string 

 var ram string 

 

 if results != "error" { 

  r, _:= regexp.Compile(`([0-9\.]+)\s+(\d+)`) 

  usage:= r.FindAllStringSubmatch(results, -1) 

  cpu = usage[0][1] 

  ram = usage[0][2] 

 } else { 

  cpu = "" 

  ram = "" 

 } 
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 return cpu, ram 

} 

 

func ps(pid string) string { 

 var stdOut bytes.Buffer 

 

 cmd:= exec.Command("ps", "-eo", ",%cpu,rss", pid) 

 cmd.Stdout = &stdOut 

 

 err:= cmd.Run() 

 

 if err != nil { 

  return "error" 

 } else { 

  return stdOut.String() 

 } 

} 

 

func start_matlab_proc(c chan int, d chan bool) { 

 

 cmd:= exec.Command("matlab", "-nosplash", "-nodesktop", "-r", 

"sem_code") 

 

 go func() { 

  err:= cmd.Start() 

  if err == nil { 

   c <- cmd.Process.Pid 

  } 

  cmd.Wait() 

  d <- true 

 }() 
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} 

 

func write_to_file(cpu_vals []string, mem_vals []string, t_vals []string) { 

 

 day, month, year, hour, minute, second:= get_time_str() 

 

 prefx:= fmt.Sprintf("%d_%d_%d_%d_%d_%d", day, month, year, hour, 

minute, second) 

 

 file, _:= open_to_write(fmt.Sprintf("cpu_%s.txt", prefx)) 

 

 fmt.Fprintf(file, fmt.Sprintf("cpu = [%s];", 

strings.TrimLeft(strings.Join(cpu_vals, " "), " "))) 

 fmt.Fprintf(file, fmt.Sprintf("t = [%s];", strings.TrimLeft(strings.Join(t_vals, 

" "), " "))) 

 

 file, _ = open_to_write(fmt.Sprintf("mem_%s.txt", prefx)) 

 

 fmt.Fprintf(file, fmt.Sprintf("mem = [%s];", 

strings.TrimLeft(strings.Join(mem_vals, " "), " "))) 

 fmt.Fprintf(file, fmt.Sprintf("t = [%s];", strings.TrimLeft(strings.Join(t_vals, 

" "), " "))) 

} 

 

func open_to_write(filename string) (*os.File, error) { 

 

 var file *os.File 

 var err error 

 

 file, err = os.Create(filename) 

 

 if err != nil { 

  panic(fmt.Sprintf("Cannot open file: %s", filename)) 

 } 
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 return file, err 

} 

 

func get_time_str() (int, int, int, int, int, int) { 

 

 now:= time.Now() 

 

 day:= time.Time.Day(now) 

 month:= int(time.Time.Month(now)) 

 year:= time.Time.Year(now) 

 

 hour:= time.Time.Hour(now) 

 minute:= time.Time.Minute(now) 

 second:= time.Time.Second(now) 

 

 return day, month, year, hour, minute, second 

} 

 

func main() { 

 

 var pid string 

 var t float64 

 var p int 

 

 k:= make(chan int) 

 d:= make(chan bool) 

 

 cpu_vals:= make([]string, 1) 

 mem_vals:= make([]string, 1) 

 t_vals:= make([]string, 1) 

 

 go start_matlab_proc(k, d) 
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 p = <-k 

 pid = strconv.Itoa(p) 

 

 fmt.Printf("MATLAB Process has been started [pid]: %d \n", p) 

 fmt.Println("Process logging has been initialized...") 

 

 t = 0 

 res:= 200 // Set resolution 

 

 for { 

 

  cpu, ram:= parse_results(ps(pid)) 

 

  if cpu != "" && ram != "" { 

 

   cpu_vals = append(cpu_vals, cpu) 

   mem_vals = append(mem_vals, ram) 

   t_vals = append(t_vals, strconv.FormatFloat(t, 'f', 2, 64)) 

  } 

 

  select { 

 

  case done:= <-d: 

 

   if done { 

    write_to_file(cpu_vals, mem_vals, t_vals) 

    os.Exit(0) 

   } 

  default: 

  } 
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  time.Sleep(time.Duration(res) * time.Millisecond) 

  t += float64(res) / 1000 

 } 

}
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Appendix C:  Published Article (Turk J Elec Eng & Comp Sci /DOI: 10.3906/elk-

1605-6)

A spectral element method for the solution of magnetostatic fields 

Ibrahim MAHARIQ1,2,*, Atakan ERCIYAS2 

1 Department of Electrical and Electronics Engineering, TOBB University of 

Economics and Technology, Ankara 06560, Turkey 

2Electrical & Electronics Engineering, Faculty of Engineering, University of Turkish 

Aeronautical Association, Ankara 06790, Turkey 

*Correspondence: ibmahariq@gmail.com 

 

Abstract: Recently, we have seen good progress in our capability to simulate complex 

electromagnetic systems. However, still there exist many challenges that have to be 

tackled in order to push limits restricting the field of computational electromagnetics 

upward. One of these challenges is the limitations in the available computational 

resources. Over several decades, the traditional computational methods, such as finite 

difference, finite element, and finite volume methods, have been extensively applied 

in the field of electromagnetics. On the other hand, the spectral element method (SEM) 

has been recently utilized in some branches of electromagnetics as waveguides and 

photonic structures for the sake of accuracy. In this paper, the numerical approximation 

to the set of the partial differential equations governing a typical magnetostatic 

problem is presented by using SEM for the first time to the best of our knowledge. 

Legendre polynomials and Gauss-Legendre-Lobatto grids are employed in the current 

study as test functions and meshing of the elements, respectively. We also simulate a 

magnetostatic problem in order to verify the SEM formulation adapted in the current 

study. 

Key words: Computational electromagnetics, finite element method, magnetostatics, 

spectral element method. 
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1. Introduction 

Electromagnetic problems are typically defined by Maxwell Equations which 

describe to us how electric and magnetic fields are generated and effect on each other. 

However, it is quite difficult to solve them by analytical methods owing them being 

part of partial differential equations [1]. Fortunately, there are some numerical 

methods in which Maxwell’s equations are approximated to obtain the associated 

solutions with acceptable accuracies, thanks to computational electromagnetics that 

was developed in parallel with of improvement computing machines. 

Numerical methods are discriminated among each other mainly according to 

some key points such as accuracy and requirements of computational resources 

(available CPU and memory). That is, a numerical method may have less 

computational time than another as it has more memory consumption, or vice versa 

[2-4]. Among these numerical methods that have been being applied intensively for 

several decades are the finite difference method (FDM) and the finite element method 

(FEM). 

FEM is one of powerful numerical methods ever invented to solve partial 

differential and integral equations of initial and boundary-value problems (BVP) in 

complex geometries. In early 1960's engineers used the method in order to 

approximate the solution in different research areas such as fluid dynamics, heat 

transfer. In the late 1960's and early 1970's it became to be applied in engineering 

problems. Continuous quantities such as pressure, temperature can be modeled by 

discrete finite elements as polynomials. 

Finite difference method is another approach to solve Maxwell’s equations. In 

order to apply this method, first the problem domain should be discretized, and 

discretization process is done by dividing the problem domain into equi-spaced 

elements. This method has two computational error sources. Those are round-off error 

and truncation error. Round-off error based on loss of precision of decimal quantities 

owing to iterations on computing process. The truncation error, also known as 

discretization error, consists of samples which is taken from each step on computation 

to approximate infinite elements [5]. 

Many researches have been introduced in the literature over the past decades in 

calculating magnetic fields associated with low-frequency magnetic problems. Most 

of the recent work has been devoted to study the minor details such as boundary 
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conditions, numerical iterations and little improvements in accuracy. For instance, but 

not limited to, Biro [6] utilized various finite element method techniques on three-

dimensional magnetostatic problems in order to improve numerical stability. 

In Ref. [7], a novel analytical solution of the airgap region is derived and coupled 

with the FEM equations in order to solve the field in an electrical machine for both 

rotor and stator regions. The motivation behind that study was to naturally couple the 

analytical solution with the FEM equations based on the continuity of magnetic vector 

potentials across their boundaries. Consequently, the stiffness matrix was derived. 

Results and experiments shows that computational time is approximately same due to 

analytical computation despite the fact that it is expected to have less nodes in finite 

elements. 

Spectral element method (SEM), on the other hand, was first introduced by 

Patera [8] in 1984 for computational fluid dynamics. Patera proposed a spectral 

element method that combines the flexibility of the finite element method with the 

accuracy of spectral methods.  

Generally speaking, spectral element methods are considered as a family of 

approximation schemes based on the Galerkin method. They share common 

characteristics with finite-element discretizations, and this provides the reason why 

they can be viewed as h- or p-versions of finite element method. That is, when viewed 

as h-version, a Lagrangian interpolation formula on the parent element exists in both, 

as well as the basis functions have local support. On the other hand, spectral element 

methods use high-degree polynomials on a fixed geometric mesh for the sake of 

enhanced accuracy, and this is the fact characterizing the p-version of finite element 

methods [9]. 

In recent literature, some details regarding the application of SEM in 

electromagnetic wave propagation have been investigated. Martin Sjögren et al [10], 

the comparison of FDM and SEM over material discontinuity is studied. It is stated 

that FDM and SEM can simulate simple case of wave reflection and refraction in two-

dimensional rectangular geometry accurately. For a particular geometry, FDM is better 

suited and has higher efficiency. However, in more complicated geometries SEM has 

more advantages due to the fact that it is easier to implement unstructured grid. Besides 

that, this method also suited well for parallel implementations for large computations. 
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Similar results were confirmed by Airiau [11] and Christoph [12] in which the 

discontinuous Galerkin Spectral Element Method is considered. 

To the best of our knowledge, when the literature is searched, one can observe 

that SEM has not been applied in magnetostatic or quasi-magnetostatic problems. It is 

noteworthy to mention that spectral methods (but not spectral element method) were 

introduced in 1983 by C. Steele [13]. The author utilized a spectral method in which 

the magnetic fields are computed by expressing them as a linear combination of a set 

of orthogonal functions. The only advantage pointed by the author is the reduction in 

the size of the system of linear equations when compared with finite element method. 

However, spectral methods are not successful in solving domains involving complex 

geometries and/or nonhomogeneous materials. For that reason, people later on didn’t 

extend Steele’s work. 

In this paper, the spectral element method is applied in modelling of time-

invariant, two-dimensional magnetostatic problems. The reduced computational cost 

and the accuracy offered by SEM are the main motivation behind this study [2-4, 14-

15]. As most of magnetostatic problems are complex in nature, the application of the 

SEM in low-frequency magnetic problems forms a new spot towards improving the 

accuracy of designs performed by engineers and specialists.  

The paper is arranged as follows: Section II reviews the derivations of the 

governing partial differential equations in magnetostatics. In section III, the spatial 

approximation to these equations is presented by SEM. A typical demonstration is 

discussed and presented in section IV, and finally, some conclusions and future works 

associated with the interest of this paper is introduced in the last section. 

2. Problem Formulation 

Magnetostatic problems is a special case of electromagnetic problems. In a 

magnetostatic problem, where only magnetic fields in a given structure are solved, the 

currents are steady or said to be time-invariant.  

Gauss’s law for magnetism and Ampere’s law are expressed respectively in a 

differential form as, 

0B        (1) 

H J        (2) 
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in which J  stands for the injected current density, B  is the vector field of the magnetic 

flux density, and H  is the field intensity, and are related as B H , with   being 

the magnetic permeability. Due to helmhotz decomposition theorem, the magnetic flux 

density has a unique potential vector, A , such that: 

B A       (3) 

By substituting equation (3) in (2), the following differential equation is obtained:  

1
A J



 
   

 
     (4) 

Since the magnetic material is assumed to be homogeneous,   can be out of 

differentiation, and one can rewrite equation (4) as: 

  2A A J         (5) 

in which 2  stands for the vector Laplacian. With the choice of the gauge: 

0A        (6) 

equation (5) leads to Poisson equation:  

2 A J        (7) 

In two dimensional Cartesian coordinates (2D), if ˆ( , )z xJ J x y a , then  ˆ( , )z zA A x y a  

meaning that the solution is sought for the z-component only, i.e., let the scalars ,A J

be ( , )zA A x y  and ( , )zJ J x y . Therefore, equation (7) reads as: 

2 2

2 2

A A
J

x y


 
 

 
     (8) 

and it must be satisfied in magnetic materials where currents flow, whereas the 

following equations:  

2 2

02 2

A A
J

x y


 
 

 
     (9) 

2 2

2 2
0

A A

x y

 
 

 
     (10) 

in a coil region and in air, respectively. 
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The application of boundary conditions is important in order to provide unique 

solution of the partial differential equations. In magnetic and electrostatic problems, 

there are some boundary conditions that are commonly used [16]. Dirichlet boundary 

condition defines the value of potential explicitly on boundary. In fact, in most of 

magnetic problems, zero Dirichlet condition is introduced. 

However, in Neumann boundary condition, the normal derivative of potential 

along the boundary is defined. In magnetic problems, the derivative of magnetic 

potential is set to zero along the boundary so that magnetic flux is forced to pass the 

boundary at 90˚ angle [16].  

There is another boundary condition called Robin boundary condition that 

combines Dirichlet and Neumann boundary conditions. It describes the value of vector 

potential and its normal derivative at boundary. Whereas in Periodic boundary 

conditions, two boundaries are both joint together. 

3. Spectral Element Method Formulation 

Patera [8] offered a spectral element method which utilizes flexibility of finite 

element method and accuracy spectral method. There are mainly two techniques that 

are utilized in spectral element method. One depends on Chebyshev polynomials, and 

the other is based on Legendre polynomials. Both implementations employ Gauss-

Labatto quadrature grid (GLL) in order to achieve Langrangian interpolation.  

In the current study, we apply SEM based on Legendre polynomials as being test 

functions, and Gauss-Lobatto-Legendre quadrature grids in order to perform 

Lagrangian interpolation [8-9, 17]. 

We seek an approximate solution to the presented set of partial differential 

equations in the trial space 

 
D N

z z bc zn
A A H | A f , A g

 
       (11) 

The residual resulting from the substitution of the approximate solution from the trial 

space into equations (8)-(10) is then projected onto the test space: 

V {v H v 0}
D

        (12) 

The projection is performed by using the weighted inner product operation: 

 z zv,A v A d





  x      (13) 
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in the Hilbert space H where overbar denotes complex conjugation. The projection 

procedure 

2(v, ) 0z zA J         (14) 

and the variational (weak) form is obtained as (after integration by parts): 

( v) dx v dx v g dx

N

z zA J   
  

        (15) 

Adapting the formulation to arbitrary domain geometry is achieved in two steps. The 

first involves partitioning of the domain into M-mutually disjoint elements: 

M
1 e M e

e=1

... ... .          (16) 

A typical integral in the variational form then becomes 

e

M

z z

e 1

v A d v A d , 
 

 x x      (17) 

The second step is to introduce the standard square element 

 std 2( , ) | 1 1, 1 1               (18) 

that will standardize and facilitate the integral operations over a general quadrilateral 

element 
e  through mapping: 

e e

1 2x ( , ), y ( , ).            (19) 

The operations can then be converted using the rules: 

e e
1 1

e e
2 2

dx d

dy d

 

 

 

 





 

 

 

 

    
    
     

J

    (20) 

e e
2 1

e e
2 1

x 1

y

-
,

-

 

  

 


 

  
  

  
 

 

    
      
      

J
   (21) 

where J  is the determinant of the Jacobian.   
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The associated roots m  as nodes provide the stable form of interpolation 

N

z z m m

m 0

A ( ) A ( )L ( )  


     (22) 

where L denotes respective Lagrange interpolants with the typical form 

k

N
( )

k ( )

0
k

L ( )
 

 









      (23) 

satisfying the cardinality property k kL ( )  . This provides the means for 

evaluating the derivatives, 

k

km

N N

d
z z m m k z m m kd

m 0 m 0
D

A ( ) A ( )L ( ) A ( ) L ( )
 

    
 

      (24) 

where kmD  stands for the differentiation matrix. It also provides Gauss-Legendre-

Lobatto (GLL) quadrature 

1 N

z k z k

k 01

A ( )d A ( )   


     (25) 

These can easily be extended to two dimensions over the tensor grid k( , )   

with the mapping functions i ( , )    constructed by using the linear blending function 

approach [9, 18]. It is noteworthy to mention that MATLAB was utilized in the 

numerical implementation of the SEM formulation. 

It is more an art experience than a science to know how to optimally place and 

size the mesh in the FEM. In fact, experience taught us to have more elements in the 

physical domain where functions change rapidly and have less elements where low 

gradients are expected. Mesh generation may take several trials before achieving a 

good mesh distribution. On the other hand, the complexity in the physical domain itself 

may add additional limitations on mesh generation [19].  

In contrast, SEM has the flexibility of using larger elemental aspect ratio without 

significant deterioration in accuracy. For instance, but not limited to, S. Dong et al. 

[20] proposed a parallel SEM for dynamic three-dimensional nonlinear elasticity 

problems that provides a tolerant large elemental aspect ratio employing Jacobi 
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polynomial-based shape functions, as an alternative to the typical Legendre 

polynomial-based shape functions in solid mechanics. D. Rh. Gwynllyw et al. [21] 

proposed an iterative method for moving SEM applied to the journal bearing problem 

where they investigated the results of extremely large physical aspect ratio. In 

conclusion, the basis behind the mesh optimality in the case of SEM differs from that 

of FEM case. But yet, since this topic is an important aspect and as it doesn’t lie within 

the scope of the current study, the authors will discuss and investigate mesh optimality 

by SEM in a future work because of the limitation on the paper length. 

4. Simulation results 

In order to verify the formulation of the spectral element method adapted in the 

current study, a typical magnetic problem is considered in time-invariant domain. The 

structure is composed of a steel core having two windows as shown in Figure 1. A coil 

is place on the middle leg and carries the electric current. The dimensions of the 

structure is chosen so that the magnetic flux flowing in the middle leg is shared equally 

between left leg and right leg.  

As the problem is unbounded in nature, one needs to truncate it so that it becomes 

computationally feasible. For this purpose, we assigned Dirichlet boundary condition 

( A 0 ) on the exterior boundary which is placed at a distance equals to twice of the 

width of an outer leg. In fact choosing A 0  will not affect on the solution as the 

magnetic flux density is calculated based on the change in the vector potential as: 

, and .x y

A A
B B

y x

 
 
 

    (26) 

The governing differential equations to be satisfied in each region have derived 

and stated in Section 2. However, in order to solve it, the problem requires interface 

conditions that must hold between adjacent regions (as air-core interference). This 

condition is satisfied by specifying the value of the normal component of 

1
n̂ .( )A


      (27) 

on the boundary. This is equivalent to specifying the tangential value of the 

magnetic field intensity on the boundary. 

The computational domain as pointed earlier in this study has be discretized into 

elements. Figure 2 shows the elements composing the computational domain and the 
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Gauss-Legendre-Lobatto grids in each element. In this figure, the dark grey region 

represents the core, whereas the coil is represented by light grey regions. As it can be 

seen from the figure, meshing in spectral element method is similar to that of finite 

element method. In other words, the elements are getting larger and larger as we move 

away from the critical regions. In Figure 3, we share the solution of the vector magnetic 

potential in the domain. The corresponding injected current is 10
2A/ mm  and at a core 

relative magnetic permeability of 2000 H/m. The associated contour plot is shown in 

Figure 4. As it can be clearly seen from the figure, flux density in the air is almost zero. 

The reason is because of the relatively high magnetic permeability defining the steel. 

It is worthy to note that since our problem is symmetrical around x-axis, the 

computational domain is reduced to half. To account for this symmetry, Neumann 

boundary condition has to be applied, i.e. 

0
A

y





                                                              (28) 

In this work, continuous galerkin method is adapted, this means that nodes that 

lie on the boundaries of an element must be same as those corresponding to adjacent 

elements. On other hand, one can use discontinuous galerkin method, in this case 

Riemann solvers must be utilized in order to match the solution at the interfaces 

between elements [22].  

For purpose of comparison, the same structure introduced in Figure 1 is solved 

by FEM as shown in Figure 5 in which triangular elements are used to discretize the 

computational domain. The contours of the magnetic vector potential are also 

presented on the same figure. Figure 6 presents the magnetic field density (B) as 

obtained by SEM and FEM across the points forming the line ab shown in Figure 5. 

The average of B is about 35.4 Tesla. As it can be seen from Figure 6, SEM shows 

smoother variation in B and symmetric around x = 0. The maximum difference 

between SEM and FEM results is around 1.12%. However, although this is acceptable 

in terms of engineering point of view, one should not forget the other advantages of 

SEM from the view of computational aspects.  Although triangular elements can be 

utilized by SEM as investigated by [23], but since it adds more complexity to 

numerical implementation, our study is based on the application of quadrilateral 

elements with straight or curved sides as GLL is considered for nodal distribution. 

Some examples of these quadrilateral elements are shown in Figure 7. This flexibility 
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in the shapes of SEM elements can be utilized in meshing complex geometries where 

different scattering objects of arbitrary shapes are involved. Finally, we show in Figure 

8 a typical GLL nodes distribution in a curved sided quadrilateral element which can 

also be utilized by SEM. 

Based on the formulation presented in the current study, the resulting system 

after discretized by spectral element method is complex valued. In other words, both 

the real part and the imaginary part of the unknowns must be solved. This system is 

linear, sparse, symmetric, indefinite and relatively ill-conditioned. Hence, solving this 

system requires an iterative method, and to efficiently solve it, a suitable 

preconditioner must be applied. Conjugate Gradient (CG) method or the Generalized 

Minimum Residual (GMRES) can be utilized with Jacobi, ILU decomposition, or 

successive over relaxation as a preconditioner. 

5. Conclusion 

In this study, we have presented, for the first time, the formulation of a typical 

magnetostatic problem by the spectral element method. In addition, we have provided 

to the reader a typical simulation example showing the successful application of the 

method. Although the adapted formulation is based on continuous galerkin approach, 

it is also possible to utilize the discontinuous approach. 

As pointed throughout the paper, the spectral element method offers higher 

accuracy than the traditionally applied finite element method. Moreover, it has less 

computational cost. The latter advantage is very valuable when dealing with large 

computational problems that cannot be performed sometimes because of limited 

available memory.  
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Figure C.1: The structure of the simulated problem. 

 

 

 
 

Figure C.2: Gauss-Legendre-Lobatto grids in the elements forming the computational domain. 
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Figure C.3: The solution of the vector magnetic potential. 

 

 

 
 

Figure C.4: The contour plot of the vector magnetic potential. 
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Figure C.5: Meshing and contour plots by FEM. 

 

 

 

Figure C.6: SEM and FEM magnetic flux densities across the line ab (shown in Figure 5). 
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Figure C.7: Various quadrilateral elements can be utilized by SEM. 

 

 

 

 
 

Figure C.8: Distribtuion of GLL nodes in a curved sided quadrilateral element. 
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