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ABSTRACT 

ADAPTIVE ITERATIVE LEARNING CONTROL FOR A LINEAR 

SYSTEM WITH UNKNOWN PARAMETERS 

 

 

 

Alzaidi, Ibrahim 

M.Sc., Mechanical Engineering Department 

Supervisor: Assist. Prof. Dr. Habib GHANBARPOURASL 

December 2017, 92 pages 

One of the main disadvantages of iterative learning control (ILC) systems is that 

the learning gain is static and does not update itself by using the current data of 

iteration. For  a dynamic system has uncertain parameters, although the controller will 

update its input, but the learning gain will not be adapted according to the new changes 

in parameters, so that, it will still treat the dynamic system as if no change has occurred, 

which leads to the controller failure in the tracking process.  

In this thesis, the analysis and design of adaptive iterative learning control 

(AILC) algorithm is implemented by using least squares approximation. A new 

method for calculating ILC learning gain matrix is presented. The ILC algorithm is 

applied on a SISO linear time-invariant (LTI) dynamic system with unknown 

parameters, and a parameter identificator is designed to optimize the accurate values 

of that unknown parameters and minimize the tracking error. The simulation procedure 

with the response results is placed in the last part of this monograph. The simulation, 

which represents the proposed algorithm, is suitable for linear systems that have 

unknown parameters but the bounds of these parameters are limited. Furthermore, the 

controller is able to compensate the internal error value. 

 

Keywords: Adaptive Iterative Learning Control, Parameter Identification, Unknown 

Parameters, Repetitive System, Learning Gain, Single Input Single Output (SISO).   
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ÖZET 

BİLİNMEYEN PARAMETRELİ LİNEER BİR SİSTEM İÇİN ADAPTİF 

İTERATİF ÖĞRENME KONTROLÜ 

 

 

 

Alzaidi, Ibrahim 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Danışman: Yrd. Doç. Dr. Habib GHANBARPOURASL 

Aralık 2017, 92 sayfa 

Tekrarlayan Öğrenme Kontrolü (ILC) sistemlerinin en büyük 

dezavantajlarından biri, öğrenme kazancının statik olması ve iterasyonun mevcut 

verilerini kullanarak kendini güncellemez olmasıdır. Belirsiz parametreleri olan 

dinamik bir sistemde kontrol elemanının kendi girdisini güncellemesine rağmen 

öğrenme kazancının parametrelerdeki yeni değişikliklere uyarlanamaması anlamına 

gelir ki bunun sonucunda öğrenme kazancı dinamik sistemi değişime uğramamış gibi 

işleme tabi tutacak ve bu da izleme sürecinde denetleyici arızasına neden olacaktır. 

Bu tezde, uyarlamalı iteratif öğrenme kontrol (AILC) algoritmasının analizi ve 

tasarımı, en küçük kareler yaklaşımı kullanılarak gerçekleştirilmiştir. ILC öğrenme 

kazanç matrisini hesaplamak için yeni bir yöntem sunulmuştur. ILC algoritması 

bilinmeyen parametreleri olan bir SISO doğrusal zamanla-değişmeyen (LTI) dinamik 

sistem üzerine uygulanır, ve bir parametre tanımlayıcı bilinmeyen parametrelerin 

doğru değerlerini optimize etmek ve izleme hatasını en aza indirmek için 

tasarlanmıştır. Yanıt sonuçları ile simülasyon prosedürü bu monografinin son 

bölümüne yerleştirilmiştir. Önerilen algoritmayı simgeleyen simülasyon, bilinmeyen 

parametreleri olan doğrusal sistemler için uygundur ancak bu parametrelerin sınırları 

sınırlıdır. Ayrıca, kontrolör dahili hata değerini telafi edebilmektedir.  
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CHAPTER ONE  

1. INTRODUCTION 

A general introduction to automatic control branches will be introduced in this 

chapter, the position of Iterative Learning Control (ILC) is discussed in this thesis with 

presenting some usage examples, a literature review of adaptive iterative learning 

control (AILC) and the problem to be solved in this thesis is presented, and then the 

organization of the thesis is placed at the end of this chapter. 

1.1 Introduction 

Any field of engineering and science has an automatic controller as an essential 

part of its systems and components. It is a necessary part of many fields like robotic 

systems, space-vehicle systems, modern manufacturing systems, and any operation 

involving control of humidity, pressure, flow, temperature, etc. [1]. Using feedback 

signals represents the main feature in control systems engineering to rise up the 

performance of the system to be controlled [2]. The common control theories which 

are used in current time are the conventional (classical) control theory and the modern 

control theory [1]. Under the second theory, there are many branches of theories like 

optimal control, nonlinear control, adaptive control, estimation control, intelligent 

control and robust control see Figure 1.1 [2]. The main differences between the 

conventional control theory and the modern control theory are related to some 

conditions that the control system can deal with such as the domain approach, the 

number of the inputs and outputs, and linear or non-linear systems. While the 

conventional control theory controls only Frequency domain approach and single-

input single-output (SISO) linear time-invariant systems, the modern control theory is 

applicable for multi-input multi-output (MIMO) linear or non-linear systems and time-

varying or invariant systems. 
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The connection between the performance of the industrial sector and the success 

in the market is highly bonded. The development of advanced industrial control 

systems is an important factor in providing the technological base that is necessary to 

achieve improving quality and competitiveness in the industrial sector.  

The advanced control systems can deal with a lot of problems that may happen 

in the dynamic systems, one of these problems is trajectory tracking, in this case, the 

controller must follow the path as fit as possible. This problem appeared clearly in 

industrial lines or robotic field which need to follow critical lines accurately, even 

though, it is important to other applications which also related to motion control [3].  

 

Figure 1.1: Control Engineering - History and ILC [4]. 

In spite of using several numerous design tools in the conventional control 

theories in order to improve the response of the dynamic systems in trajectory tracking 

field, but reaching the desired results not always available. If a trajectory track has 

been given to a machine controlled by a conventional control algorithm and this 

machine made some errors while achieving the desired path due to some outer or inner 

disturbances, these errors will be repeated in each iteration until the end and there is a 

possibility to be worse due to some unknown parameters or cumulative errors in the 

system unless get manual adjustment, in this case, achieving perfect tracking by using 

the traditional methods is not easy, so that, using modern control theories in the 

trajectory tracking control is preferable. 
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“Repetition is the mother of all learning”, with this quotation, it can be deduced 

the way in which a person acquired his knowledge and experience. This maxim is 

applicable to many things in life, for instance, the chef while cooking food he tests the 

food repetitively to check the seasoning and the other gradients till reach to the best 

result, and as he repeats this procedure more times, as he reaches to the best result in 

shorter time. This example can be called simply as the human version for cooking of 

what is called iteration control system algorithm (ILC). Here the taste variation of food 

from the desired taste represents the error. Chef’s experience represents the feedback 

controller which will still check the taste till reach to the wanted result. The number of 

making the same dish by the chef denote the iteration numbers in ILC, this is how the 

chef learned to optimize the seasoning after some iterations. This concept of ILC is 

transformed later into mathematic models [3].   

The iterative learning control (ILC) is one of the hopeful algorithms for the 

control systems that working according to self-learning concept. It is an algorithm 

capable to track the required trajectory within a certain period of time [5]. The 

intelligent control has many branches, one of them is the iterative learning control 

(ILC) as seen in Figure 1.1, which can be defined as an effective control tool for 

improving the response of the repetitive motion performance of uncertain dynamic 

systems [2].  

The idea of the iterative learning control systems is to apply a simple algorithm 

repetitively to an unknown plant until reach perfect tracking [6]. As seen in Figure 1.2, 

the error is reduced from trail to trail by increasing the input signal until approach zero 

error in the output and the desired graph. It is similar to the human example expressed 

before, as much repeat the activity as much get more experience and rise up his 

physical performance. Impression and similarity are the qualities that enable human to 

get his knowledge. In machines, the matter is not far away from this idea, where the 

initial setup, uniform sampling, fixed time point, repetitive desired trajectory and 

another setup could be taken similar to what mentioned in case of humane qualities 

[2].  
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Figure 1.2: The Convergence to the Zero Error Through the Iterations [4]. 

Even the iterative learning control idea started before the 1970 but the first 

publication was at 1974, and the first paper was in Japanese language (Formation of 

High-Speed Motion Pattern of Mechanical Arm by Trial) by Masaru Uchiyama in 

1978 [7]. In the eighties, Arimoto et al. rigorously formulated the Iterative Learning 

control problem [8]. Since 1992, the study and researchers in ILC have progressed 

very fast. On one hand, important work has been showed and stated in the main area 

of developing and analyzing new algorithms of ILC. On the other hand, researchers 

also have recognized that making integration between ILC and other control theories 

might give better controllers that show the desired performance which is impossible to 

be shown by any individual approach [9]. 

Since the birth of ILC idea in early 1980’s, the history of ILC can be separated 

into two periods. The first period was between the early 1980s’ and early 1990’s which 

represents the linearly increasing period of ILC, whether in terms of publications and 

reports in theory or in applications. The second period was from early 1990’s so far, 

nevertheless, the activities of research in ILC undergo a nonlinear (exponential) 

increase [10]. 

1.2 Usage of ILC 

This control system is commonly used in the repetitive operated dynamic 

systems like the robotic manipulators in the production lines, also it is used in several 
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numerous applications in different fields like automation, machine tool control, 

military, transportation systems, economic systems, medical engineering …etc. [2]. 

 

Figure 1.3: ILC Applications [2]. 

Although the robotic arms and manipulators are the most applications controlled 

by ILC, there are other applications controlled by ILC too such as: 

1.2.1 Automated ploughing 

The concept behind the automated agricultural ploughing control is creating 

parallel lines of grooves depending on a sequence, this sequence takes the initial 

groove line as a reference signal for the future iterations 𝑘. Using iterative learning 

control system in this system is valuable to be sure that the repetition to the groove 

line sequence is acceptable and by repeating the iterations the error will be less and 

less till reach to error very near to zero [11]. 

1.2.2 Automated coal cutting 

The equipment used for cutting the underground walls in coal extraction process 

shows another example of the machines that use ILC controller in their work. This 

equipment works in a multipass process while cutting the walls through trajectories. 

The tool used for cutting the underground walls basically is a rotating cutter, this cutter 

moves along the face of the wall through trajectories defined by the same face of that 
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wall, when the one pass along the wall’s face has been finished, the equipment will 

repeat the movement from new set point which revealed by cutting to start the second 

iteration depending on the previous iteration data as a new initial data. As a result, the 

controller has the ability to track the coal layer as the progress of the trail, and also it 

can set the new starting positions at each iteration [11]. 

1.3 Literature Review 

Comparatively, slow convergence rate is the problem of the classical ILC 

algorithms, where they are not able to adjust any changes could happen in parameters 

of dynamic systems due to the fixed laws on which the algorithm depends on [5]. That 

property represents one of the main weak points of standard ILC algorithms because 

they use fixed learning laws which are limited to a prior system knowledge. This 

means that even though more system knowledge may be gained each iteration, the 

learning law remains static. One way to address this limitation is to adaptively adjust 

the learning law after each iteration [12], so that, iterative learning control systems 

merged to adaptation algorithms are growing into a promising research area [13].  

ILC was first popularized by Arimoto et al. (1984) and several recent surveys of 

learning control suggest its recent surge in interest (see [2], [14]). The major 

improvement of ILC is that act of unknown systems can be enhanced with little 

dependency on the system model [8].  

Messner et al. (1990), used a new adaptive learning law based on integral 

transforms, though in a repetitive control environment [15].  

French and Rogers (1998) consider a system which included adaptively 

estimated parameters which can decrease parameters in a finite time horizon [16]. 

Bien, Z. et al. (1998) tried to guide readers to a good work related to the adaptive 

iterative learning control in discrete time. Also, there is plenty of space for improving 

ILC algorithms, without the need to former information of the system [17]. 

Owens et al. (1998), used the current trail feedback to implement 

convergence/stability norms for common adaptive learning control system and by 

using high gain for linear MIMO state space system [18]. French et al. (1999) also 

provided a scheme of learning control which based on an adaptation of the learning 

gain by using only the data of sign (BC) [19].  
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Phan and Frueh (1999) present a new algorithm of ILC, in this algorithm they 

used a reference model as a leader to the learning process, where this model enables 

the controller to achieve the desirable properties by choosing good previous 

knowledge for that [20]. 

Choi and Lee (2000) estimated uncertain parameters for AILC scheme by using 

a different advantage in the time domain when repetitive troubles are recognized and 

reduce the error percent in the next iteration. There is no need to know the limits of 

parameters that the algorithm should work with because the learning gains will be 

updated self-reliantly and the parameters will be adapted [21]. 

Early approaches of ILC focused on proportional (P-) type and proportional plus 

derivative (PD-) type learning algorithms similar to the feedback controller 

equivalents. Lately, DeRoover et al. (2000) and Gunnarsson et al. (2001) gained 

model-based learning algorithms popularity. These are based on the point that the ideal 

learning law is based on the inverse system dynamics. These model-based learning 

laws are limited by how well the system is modeled which begs the following question: 

is it necessary to spend effort obtaining a better system model before running the 

iterative control system? [12] [22] [23]. 

Lee et al. (2002) developed a direct model reference adaptive control scheme 

which will be converted to produce two laws, the first one is direct model reference 

repetitive control law, and the second one is discrete-time direct model reference 

learning control law. These two laws can definitely gain the zero error of converging 

by adjusting the input command. They produced this algorithm by using linear time-

invariant systems with no disturbances and applied the original adaptive control ideas 

and also by developing the learning laws with repetitive disturbances [24].  

Chen and Jiang (2002) used (SISO) nonlinear systems and apply an adaptive 

iterative control algorithm on it after assigning fully unknown feedback high-

frequency gain, where the convergence will be obtained by manipulating that gain in 

a Nussbaum-type function [25]. 

Yang et al (2002) presented an adaptive robust iterative learning control scheme 

with structured and unstructured uncertainty by using the Lyapunov method, they used 

an inexact model of a robotic system, which decomposed into both situations, whether 

were repetitive and non-repetitive parts [26]. 

Owens and Feng (2003) presented a new method of ILC law, in this law they 

used quadratic performance index to estimate the new parameters, this algorithm is 
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designed to work with discrete-time LTI dynamic system to guarantee the convergence 

to zero error [27].  

Miyasato et al. (2003) suggested a hybrid AILC and applied it to robotic 

manipulators to show how can adapt their actions to the changes and improve their 

skills [28]. Shou et al. (2003) used a type of nonlinear time-varying systems under 

some assumptions and conditions and applied open-closed-loop D-type ILC algorithm 

to ensure the convergence of the given learning gain [29].  

Chien et al. (2004) developed an offline nonlinear ILC systems, this system is 

based on output-feedback linearization [30]. Chiang et al. (2004) developed an output 

tracking error model, which used filtered signals from plant output and input, then 

generated a new output-based AILC for a linear system which has repetitive motion 

with unknown parameters, high relative degree, initial resetting error input disturbance 

and output noise [31].  

Ashraf et al. (2008) proposed a new merged algorithm between ILC and 

identification techniques and applied this algorithm on a practical simulation to test its 

robustness. The optimal gain matrices values are calculated by using steepest descent 

approach [5].  

Stearns et al. (2009) present an iteration varying learning filter which is based 

on identification techniques. This learning filter should be calculated every iteration to 

make the closed-loop system inverse based on a least squares approximation. They 

showed that the iteration which changes the learning filter successfully decreases the 

2-norm error speedily like a static, model-based learning filter and better than the 

learning filter of P-Type [12]. Dong et al. (2009) developed an AILC based on a theory 

of two operational modes, single and repetitive modes, and guarantee the convergence 

in both of them [32].  

Bu et al. (2013) proposed a model-free adaptive iterative learning control 

(MFAILC) algorithm in discrete time form to track a path of farm vehicle. This 

algorithm based on the dynamical form linearization model for a farm vehicle 

kinematic model, which designed to depend on the input/output data of the farm 

vehicle [33]. 

Oh et al. (2015) presented an AILC applicable on discrete linear time-invariant 

LTI, also it can be applicable to a stochastic system with batch-varying reference 

trajectories BVRT. And they proposed two approaches based on batch-domain and 
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time-domain Kalmen filter to deal with the problem of state and measurements noises 

[34]. 

Li et al. (2015) examined a distributed coordination problem by using iterative 

learning control and applied it to leader-follower multi-agent systems with the second-

order nonlinear dynamic system [35]. Xu (2016) presented a new distributed AILC 

algorithm applicable for a type of high-order nonlinear multi-agent systems (MAS) 

[36].  

Yu et al. (2016) proposed a new AILC algorithm applicable to nonlinear systems 

with both state and input constraints and took into consideration the external 

disturbances with random initial errors and time-varying parametric uncertainties [37]. 

Wei (2017) presented an AILC algorithm which can be applied to the nonlinear 

dynamic system, this system has unknown input dead-zone and unknown time-varying 

delays by using many theories like Lyapunov-Krasovskii, Young’s inequality and 

radial basis function neural networks [38]. 

1.4 Thesis Statements 

Iterative learning control algorithms are very effective method for control 

repetitive motioned dynamic systems, but their static learning gains made them 

inefficient to deal with the systems which have uncertain parameters, in this case, ILC 

system will fail to adapt to the changes in these parameters, then the dynamic system 

will fail to respond the reference signal as well.  

1.5 Thesis Objective 

The objective of this thesis is to design a control algorithm for dynamic systems 

that move repetitively and have some unknown parameters need to be adapted 

optimally. An iterative learning algorithm with Least squares approximation will be 

used to design an Adaptive Iterative Learning Control (AILC) algorithm to control a 

linear single-input single-output system with unknown parameters. 

1.6 Thesis Organization 

In the first chapter as seen above, a general background about the automatic 

control systems and the ILC control systems is illustrated, some examples of ILC 
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applications and the literature review also have placed in this chapter. In the second 

chapter, a general description of ILC theories and the relationships between these 

theories and the conventional control theories has presented. In chapter three, least 

squares approximation method and its branches have displayed. Chapter four discusses 

the adaptive iterative learning control (AILC) algorithm which depended on the ILC 

algorithm and the identification algorithm. In chapter five, the simulation and its 

results have presented. Finally, chapter six which contains the conclusion and 

recommendations. 
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CHAPTER TWO  

2. ITERATIVE LEARNING CONTROL 

The ideas on iterative learning control (ILC) presented in this chapter were 

developed over a period of several years and have performed in many publications, 

with changing degrees of fullness. 

2.1 General Overview of ILC 

The basic overall idea of iterative learning control can sum up in Figure 2.1. The 

signals described in this figure belong to the finite interval 𝑡 ∈ [0, 𝑡𝑓], where 𝑘 is the 

trail number, 𝑢𝑘is the input signal, 𝑦𝑘 is the output of the system, 𝑢𝑘+1is the updated 

input signal, and 𝑦𝑑 the desired output reference. The work of this system can be 

summarized as follows: when the input 𝑢𝑘(𝑡) is applied to the cycle at the trail 𝑘, the 

output of the system will be 𝑦𝑘(𝑡), a copy of these two values will be sent to memories 

in order to use them in the next trail for learning, and then the new updated input 

𝑢𝑘+1(𝑡) will be calculated after finding the error value between the output and the 

desired signals (𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡)), the new generated input 𝑢𝑘+1(𝑡), also it 

should be saved in a memory to be used as a new input to the next trail. So that, the 

main point of ILC input design is to obtain smaller error rate at each trail in order to 

approach zero. 

The approach of ILC can be explained by giving some notations, Let 𝑓: 𝑈 ⟶ 𝑌, 

where 𝑓 is a nonlinear operator working on mapping elements in the vector space 𝑈 to 

the vector space 𝑌, so 𝑦 = 𝑓(𝑢) where 𝑢 ∈ 𝑈  and 𝑦 ∈ 𝑌. So, the assumption is 

suitable norms that can be defined on 𝑢 and 𝑌 as well as a norm on 𝑓(∙). Let 𝑦(𝑡) =

𝑓𝑆(𝑢(𝑡), 𝑡) for a system called 𝑆, and let the dynamic system be 𝑓𝑆(∙, 𝑡) where, 𝑓𝑆 is the 

I/O operator. 
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Figure 2.1: Iterative Learning Control Idea [39]. 

The aim of this system is obtaining the closest output value 𝑦𝑘 to the desired 

value 𝑦𝑑, when that matching is reached, the input signal at that point called the 

optimal input 𝑢∗(𝑡), the representation of these assumptions can satisfies: 

min
𝑢(𝑡)

∥ 𝑦𝑑(𝑡) − 𝑓𝑠(𝑢(𝑡), 𝑡) ∥ =∥ 𝑦𝑑(𝑡) − 𝑓𝑠(𝑢
∗(𝑡), 𝑡) ∥ (2-1) 

ILC algorithm works to calculate the optimal input 𝑢∗(𝑡) when all of the signals 

belong to the finite interval [0, 𝑡𝑓]. ILC can reach to this optimal input by generating a 

sequence of inputs 𝑢𝑘(𝑡) then convert this sequence to that optimal input, the 

converting idea can be represented as: 

𝑢𝑘+1(𝑡) = 𝑓𝐿(𝑢𝑘(𝑡
′), 𝑦𝑘(𝑡

′), 𝑦𝑑(𝑡
′), 𝑡) 

                = 𝑓𝐿(𝑢𝑘(𝑡
′), 𝑓𝑆(𝑢𝑘(𝑡

′)), 𝑦𝑑(𝑡
′), 𝑡),         𝑡′ ∈ [0, 𝑡𝑓], 

(2-2) 

such that 

lim
𝑘→∞

𝑢𝑘(𝑡) = 𝑢
∗(𝑡)         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [0, 𝑡𝑓] (2-3) 

2.1.1 Some explanations about ILC 

1. If ILC algorithm works successfully, the next error signal must be reduced, and 

that reduction will affect the input signal for the next iteration as well which 

will give closer output to the desired signal.  

2. ILC signals have been defined by two variables 𝑘 and 𝑡, where the integer 𝑘 

denote the trial index while the variable t represents the discrete or the 

continuous time. 

3. When constructing the input 𝑢𝑘+1(𝑡𝑜), there is a possibility to use information 

about what happened after applying the input 𝑢𝑘 = (𝑡𝑜), because after the trail 

is completed there is no reasonable constraint in the operator 𝑓𝐿 of ILC 

algorithm prevents it. This fact can be expressed as a new variable called 𝑡′ in 
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the algorithm of ILC. There is just one possibility to prevent that when 𝑡 = 𝑡𝑓, 

though it is  𝑡′ ∈ [𝑡, 𝑡𝑓] it can be assumed as 𝑡′ ∈ [0, 𝑡𝑓].  

4. The difference between iterative learning control and conventional control 

have been illustrated. Figure 2.2 (a) shows the approach of ILC while 

preserving data about inputs effect at every instant throughout the iteration and 

calculate the corrected signal by depending on that data during the next trail. 

Figure 2.2 (b) shows that the conventional control calculates the error by using 

the same data in that current step. 

 

Figure 2.2: (a) (ILC), (b) Conventional Control [39]. 

5. Assume that the initial conditions of the system will be reset when the iteration 

is started again to its initial values. 

6. Trail length 𝑡𝑓 should be assumed as fixed. However, and it could be taken as  

𝑡𝑓 → ∞ for analysis purposes. 

7. The properties of ILC’s convergence must not be affected by the desired 

signal 𝑦𝑑(𝑡). If the desired signal is introduced, the ILC controller will not 

change any of its algorithm and it will learn the new optimal input simply. 

8. The system 𝑆 must be stable to show the convergence, if it is not, so one of the 

conventional techniques should be used to obtain stability then ILC algorithm 

be applicable. Because ILC’s work is improving performance [39]. 

2.2 Connection to Other Control Paradigms 

Before going ahead in discussing ILC algorithms, it is beneficial to talk about 

the relationship between ILC and the other conventional algorithms.  
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Figure 2.3: Unity Feedback Control System [39]. 

In unity feedback control system shown in Figure 2.3, the block 𝑃 denote system 

plant which will be controlled by the controller shown in block 𝐶, and the block 𝑌 

value will be calculated by the control system. The control system is operated by 

calculating the value of the output signal Y, then comparing it with the desired signal 

(reference signal) R. The difference between them (𝑅 − 𝑌) represents the error E 

which enters to the controller in order to calculate the new suitable actuating signal U, 

which will be used to drive the plant. Many control problems are subjected to 

Figure 2.3 as follow: 

2.2.1 Feedback control systems 

General feedback control algorithms are similar to each other whether frequency 

domain techniques or pole placement technique, they have block 𝑃 as plant, block 𝐶 

as a controller, the reference signal 𝑅 as input signal to the controller, and 𝑌 is the 

output of the system, where the feedback of close-loop will arrange frequency 

characteristics, the poles in case of pole placements, or even the steady-state error 

properties. 

It becomes clear that ILC is not like the technique explained above because ILC 

technique cannot affect the poles of the system, not like pole placement or frequency 

domain technique. 

2.2.2 Optimal control systems 

Minimizing the error in optimal control systems can be explained as min
𝐶
‖𝐸‖, 

the optimal controller will not be optimal anymore if the plant 𝑃 has changed in 

comparison to the model of the dynamic system. In case of ILC, it has similarity 
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somehow to the optimal controller, where if ILC designed in order to get stability of a 

dynamic system that could be possible because ILC can produce an output similar to 

the output of the optimal controller and both of them working to minimize the error. 

The difference between them is that ILC can obtain that output by adding the optimal 

input 𝑈∗ to the system instead of the real-time error processing, see Figure 2.4.  

 

Figure 2.4: ILC Approach In Another Representation [39]. 

2.2.3 Adaptive control systems 

When someone starts studying ILC, he might think that there is no difference 

between it and the adaptive control. The difference between them can be described as 

that between Figure 2.3 and Figure 2.4. ILC is not like the known conventional 

adaptive control, where, in the second type the adjustment of the parameters is done 

by online algorithms till reach the steady state equilibrium. Definitely, if any change 

happens in the parameters of the dynamic system the learning controller will be 

adapted to the new situation by changing the values of the parameters optimally and 

will change the input for the next trail [39]. 

2.2.4 Robust control systems 

As ILC algorithm can deal with unknown plants, so it is similar to the robust 

control system by this feature because the second one can treat with uncertain plants 

[39].  

2.2.5 Intelligent control systems 

Fuzzy logic, neural networks, and expert systems, all of them have developed 

control paradigms which can be met under the name of intelligent control techniques. 
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All of them have a common thing which can be described as involving learning 

somehow.  

Although the word "learning" has been widely used in the field of control, some 

confusion has occurred in understanding this word. In general, the control system has 

the ability to adapt the input signal in case of any change happened in the input-output 

observation, this feature refers to the word learning. But this feature is not only used 

in one control method, many control systems have the ability to respond to the changes 

happened in their environments. Thus the word “learning” needs to be more specified. 

So that, for (ILC) the word learning be used to point to generating a sequence of input 

trajectory iteratively, the detailing is shown in Figure 2.1 [39]. 

2.3 ILS’s algorithms  

In this part, the development of ILC algorithms will be presented. 

2.3.1 Continuous-Time ILC 

It is too hard to talk about all of ILC kinds because its research field is too wide, 

due to that the iterative learning control has two kinds of developing and analyzing 

algorithms, developing main algorithms and making integration between ILC and 

other control theories like nonlinear control, estimation control, robust control, optimal 

control and adaptive control, each of these algorithms has combined with the ILC 

giving out new algorithms for repetitive systems.  

The controller task makes 𝑦𝑘 approach 𝑦𝑑  , as the increasing of the iteration k as 

the approach happen within a fixed interval 𝑡 ∈ [0, 𝑇]. Consider the linear continuous-

time system below:  

�̇�𝑘(𝑡) = 𝐴𝑥𝑘(𝑡) + 𝐵𝑢𝑘(𝑡) (2-4) 

𝑦𝑘(𝑡) = 𝐶𝑥𝑘(𝑡) (2-5) 

where 𝑥 ∈ 𝑅𝑛, 𝑢 𝑎𝑛𝑑 𝑦 ∈ 𝑅𝑟 , 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑟 , 𝑎𝑛𝑑 𝐶 ∈ 𝑅𝑟×𝑛 

For the system above and under some assumption stated by (S. Arimoto), he 

made the standard algorithm and its error equation: 

𝑢𝑘+1 = 𝑢𝑘 + Γ𝑒𝑘 (2-6) 

e𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡) (2-7) 

Where Г is a diagonal learning gain matrix, and the convergence will be achieved 

when ‖𝐼 − 𝐶𝐵Γ‖𝑖 < 1 [8].  
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Starting from the classical ILC algorithm of Arimoto, many general expressions 

can be developed. For example, the combination of ILC and PID algorithms gives the 

expression shown in equation (2-8):  

𝑢𝑘+1 = 𝑢𝑘 + 𝜙𝑒𝑘 + Γ�̇�𝑘 + 𝜓∫𝑒𝑘 𝑑𝑡 (2-8) 

Where Φ, Γ, and Ψ denotes to the learning gain matrices [40]. Among possible 

usable update forms, the form (2-9) could be the simplest one:   

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + ϕ∆𝑦𝑘(𝑡) (2-9) 

Where, Φ is a positive constant matrix. The next form is considered as the second 

simplest form:  

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + Γ
𝑑

𝑑𝑡
∆𝑦𝑘(𝑡) (2-10) 

As the right-hand side of the form (2-10) has differentiation term with time, so 

this law will be considered as non-causal one, in spite of that, it is not used in real-time 

when the trail is 𝑘𝑡ℎ, but it is used at the trail (𝑘 + 1)𝑡ℎ. In order to find an appropriate 

value of ∆𝑦𝑘(𝑡), sufficient method can be applied for that [9].  

There are some basic assumptions for the standard ILC contain: 

1. Some types of Lipschitz condition or stable dynamics. 

2. Each trial has the same length. 

3. At the start of each trial, the system goes back to the same initial conditions. 

4. Undefined amount of time can elapse between trials. 

* The last two features distinguish ILC from repetitive control (RC) [41]. 

This theory developed by D. H. Owens who studied this algorithm by updating 

the following expression: 

𝑢𝑘+1(𝑡) = 𝛼𝑢𝑘(𝑡) + 𝐾𝑒𝑘+1(𝑡) (2-11) 

and its steady-state error is given by 𝑒∞  =  (𝐼 + 𝐺𝐾𝑒𝑓𝑓)
−1𝑦𝑑 , where the matrix G 

represents a dynamic system, the desired trajectory is considered as 𝑦𝑑, and 𝐾𝑒𝑓𝑓 =

 𝐾/(1 −  𝛼) [42]. Goldsmith has presented that if the update algorithm (𝑢𝑘 =

𝐹 𝑢𝑘−1 +  𝐶𝑒𝑘 + 𝐶𝑒𝑘−1) applied on a learning control system, its output equals to a 

feedback control system updated by the equation 𝑢(𝑡)  =  𝐾𝑒(𝑡 −  1) if the term 𝐾 is 

calculated by 𝐾 = (𝐼 − 𝐹)−1(𝐶 + 𝐷) [43].  

A lot of work has been done for nonlinear ILC, leading to what is called (Energy 

Function Approach) by using what is called control Lyapunov function. Also, a lot of 

work has been done using Fuzzy-Logic and Artificial neural networks [41]. 
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2.3.2 Optimization-Based Approaches 

Some researchers [44], in order to choose  𝑇𝑒 and guide the convergence to 

follow some error’s gradient, they took an approach similar to the discrete-time 

learning control expression explained below: 

𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + 𝐺𝑒𝑘(𝑡 + 1) (2-12) 

To reduce the quadratic cost of the error and to calculate the gain 𝐺, optimization 

gradient method have been used:  

𝐽 =
1

2
𝑒𝑘
𝑇(𝑖 + 1)𝑄𝑒𝑘(𝑖 + 1) (2-13) 

To take place between successive trails. Several techniques have been illustrated 

by the authors for implementing 𝐺, and the most optimization methods used are 

Newton-Raphson, Gauss-Newton, and steepest-descent methods. A time-varying 

gain 𝐺𝑘 is various for every trail is as result of the method of Newton-Raphson.  

The form exposed in equation (2-14) clarifies the update algorithm.  

𝑢𝑘+1 = 𝑢𝑘 + 𝜖𝑘𝑇𝑝
∗𝑒𝑘 (2-14) 

where 𝑇𝑝
∗ is the adjoint operator of the system and 𝜖𝑘 is a time-varying gain [39].  

2.3.3 Norm-Optimal ILC 

This approach has been developed in order to reduce the error rate by calculating 

the changes in the input signal.  

𝐽𝑘+1 = ‖𝑒𝑘+1‖
2 + 𝜆‖𝑢𝑘+1 − 𝑢𝑘‖

2 (2-15) 

The results will be similar to:  

𝑢𝑘+1 = 𝑢𝑘 + 𝐺
∗𝑒𝑘+1 (2-16) 

Where 𝐺∗ denote the adjoint operator of the system [45] [46].  

2.3.4 Frequency-Domain approaches 

Iterative learning control from the frequency domain viewpoint has been 

considered by several researchers like [47] where the input update law defends as:  

𝑈𝑘+1(𝑠) = 𝐿(𝑠)[𝑈𝑘(𝑠) + 𝑎𝐸𝑘(𝑠)] (2-17) 

A non-zero error will be produced by using this algorithm according to what 

illustrated in [40], in spite of that, Arimoto took his algorithm in the frequency domain 

[48]. In the same last domain, Luce et al. [49] have designed the operators 𝑇𝑒 and 𝑇𝑢 
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which considered as complete free operators for ILC algorithms, and there are many 

frequency domains results have been considered by other researchers [50] and [51].  

2.3.5 Discrete-Time systems 

Iterative learning control algorithm has treated by some researchers as a system 

belongs to discrete-time form, all of its simulations are done depending on this 

consideration [39].  

By consideration of Figure 2.1 the discrete-time definition will be:  

𝑢𝑘 = (𝑢𝑘(0), 𝑢𝑘(1),⋯ , 𝑢𝑘(𝑁 − 1)), (2-18) 

𝑦𝑘 = (𝑦𝑘(𝑚), 𝑦𝑘(𝑚 + 1),⋯ , 𝑦𝑘(𝑁 − 1 +𝑚)), (2-19) 

𝑦𝑑 = (𝑦𝑑(𝑚), 𝑦𝑑(𝑚 + 1),⋯ , 𝑦𝑑(𝑁 − 1 +𝑚)), (2-20) 

For the linear plant, the symbol 𝑘 denote to the number of trial, the symbol m 

denotes to the relative gain, and the symbol N denotes to trial’s length. Let 𝑚 = 1, the 

truncated 𝑙∞ − 𝑛𝑜𝑟𝑚, will be taken as: 

‖𝑥‖∞ = max
1≤𝑖≤𝑁

|𝑥𝑖| (2-21) 

As a result, the norm of the matrix 𝐻 will be found by: 

‖𝐻‖𝑖 = ‖𝐻‖∞ = max
𝑖
(∑|ℎ𝑖𝑗|

𝑁

𝑗=1

) (2-22) 

The linear dynamic system can be written as 𝑦𝑘 = 𝐻𝑢𝑘, the matrix 𝐻 is Markov 

parameters elements matrix which represents the matrix of rank 𝑁 as seen below: 

𝐻 =

[
 
 
 
 
ℎ1 0 0 ⋯ 0
ℎ2 ℎ1 0 ⋯ 0
ℎ3 ℎ2 ℎ1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
ℎ𝑁 ℎ𝑁−1 ℎ𝑁−2 ⋯ ℎ1]

 
 
 
 

 (2-23) 

ILC algorithm for this situation can be considered as: 

𝑢𝑘+1 = 𝑢𝑘 + 𝐴𝑒𝑘 (2-24) 

𝐴 =

[
 
 
 
 
𝛼1𝑦𝑑(1) 0 ⋯ 0
𝛼2𝑦𝑑(2) 𝛼1𝑦𝑑(1) ⋯ 0
𝛼3𝑦𝑑(3) 𝛼2𝑦𝑑(2) ⋯ 0

⋮ ⋮ ⋱ ⋮
𝛼𝑁𝑦𝑑(𝑁) 𝛼𝑁−1𝑦𝑑(𝑁 − 1) ⋯ 𝛼1𝑦𝑑(1)]

 
 
 
 

 (2-25) 

So the algorithm (2-24) could be arranged in the form: 

𝑢𝑘 = 𝐴𝑘𝑦𝑑 (2-26) 
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where 𝐴𝑘 is took as an inverse matrix approximately, which be updated at the 

end of each trial according to the expression below: 

𝐴𝑘+1 = 𝐴𝑘 + ∆𝐴𝑘 (2-27) 

Where ∆𝐴𝑘 is: 

∆𝐴𝑘 =

[
 
 
 
 
𝛼1𝑒𝑘(1) 0 0 ⋯ 0
𝛼1𝑒𝑘(2) 𝛼2𝑒𝑘(1) 0 ⋯ 0
𝛼1𝑒𝑘(3) 𝛼2𝑒𝑘(2) 𝛼3𝑒𝑘(1) ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝛼1𝑒𝑘(𝑁) 𝛼2𝑒𝑘(𝑁 − 1) 𝛼3𝑒𝑘(𝑁 − 2) ⋯ 𝛼𝑁𝑒𝑘(1)]

 
 
 
 

 (2-28) 
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CHAPTER THREE  

3. LEAST SQUARES PARAMETER IDENTIFICATION 

The estimation theory is one of the statistics branches which deal with evaluating 

the values of parameters relied on measured empirical data which has a random 

component [52]. Although estimation theories are related to statistics, but also they are 

used in several fields like signal processing, control, and trajectory tracking. There are 

several theories for estimation parameters like maximum likelihood method, least 

squares method, estimating equations, and output method. In this chapter, the least 

squares approximation method will be described with its branches. 

Least squares approximation can be used in extensive various applications, 

including parameter identification, for instance computing the properties of damping 

of a damper, for fluid-filled and works as a function of temperature, the dynamic 

identification of air plant and coefficients of static aerodynamic, and determination of 

orbit and attitude. Even the strategies of modern control, for example, some of the 

adaptive controllers, use the least squares approximation in order to update the 

parameters in the controller of the dynamic system. There are three quantities of 

interest for any parameter or variable in estimation:  

1. The true value: or “truth”, this value denotes the real value required of 

the quantity being approximated by the parameter estimator. The true 

values will be represented as unadorned symbols like 𝑥, 𝑦, 𝑧 … etc.  

2. The measured value: it is the coming signal from a sensor directly. Since 

measurements always contain errors, they are never perfect. So, 

measured values generally can be considered as the true values plus some 

error. The measured values are represented by the symbol (~) like  �̃�, �̃�, �̃� 

… etc. 

3. The estimated value: this value can be calculated from the estimation 

process itself, which are represented as �̂�, �̂�, �̂� … etc.  
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Other values used commonly in parameter estimation, measurement error and 

residual error. Where the measurement error 𝜐 is the difference between measurement 

value �̃� and the true value 𝑥: 

�̃�  =  𝑥 +  𝜐 (3-1) 

and the residual error 𝑒 is the difference between measurement value �̃�  and the 

estimated value �̂�.  

�̃�  =  �̂�  +  𝑒 (3-2) 

The true value and the real measured value cannot be known practically, the 

generation of the mechanism’s errors happening according to some of the statistical 

properties. The residual error 𝑒 can be founded easily just after finding the estimated 

value, also it is used to drive the algorithm of the estimator itself. It has to be taken 

into consideration that both of the errors have importance in determining the features 

of the estimator [53].  

3.1 Linear Batch Estimation Method 

In order to make central principles to solve wide field of estimation problems, 

the estimation method of linear least squares approximation of Gauss will be stated in 

this part of this monograph. By taking known discrete-time period 𝑡𝑘, a batch of 

measured values �̃�𝑘 could be found of the process 𝑦(𝑡):  

{�̃�1, 𝑡1;  �̃�2, 𝑡2; … ; �̃�𝑚, 𝑡𝑚} (3-3) 

and a suggested mathematical model of the form 

𝑦(𝑡) =∑𝑥𝑖

𝑛

𝑖=1

ℎ𝑖(𝑡),             𝑚 ≥ 𝑛 (3-4) 

where  

ℎ𝑖(𝑡) ∈ {ℎ1(𝑡), ℎ2(𝑡), … , ℎ𝑛(𝑡), } (3-5) 

are a batch of independent identified base functions. From equation (3-4), it results 

that the two variables x and y are related to each other.  

Depending on measures of “how well’ expression in (3-4) to find the optimal 

value of 𝑥 been clearly reasonable from the measurements in (3-3). A batch of 

estimates have been looked for, this batch donated by the values {�̂�1, �̂�2, … , �̂�𝑛 } which 

will be used in the equation (3-4) to estimate 𝑦(𝑡), even though, there are several ways 

like measurements errors, choosing wrong value of 𝑥, or modeling error that can rise 

up errors between the true and the estimated values. From the equation (3-4), it has 
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been considered that both of the estimated output �̂�𝑘 and the measured values �̃�𝑘 are 

related to the true and the estimated values. 

         �̃�𝑘 ≡ �̃�(𝑡𝑘) =∑𝑥𝑖ℎ𝑖(𝑡𝑘)

𝑛

𝑖=1

+ 𝜐𝑘,             𝑘 = 1, 2, … ,𝑚 (3-6) 

          �̂�𝑘 ≡ �̂�(𝑡𝑘) =∑�̂�𝑖ℎ𝑖(𝑡𝑘)

𝑛

𝑖=1

                       𝑘 = 1, 2,⋯ ,𝑚 (3-7) 

where 𝜐𝑘 represents the measurement error. The measurement process which has 

been assumed is modelled by Equation (3-6). 

Consider the next equation: 

         �̃�𝑘 =∑�̂�𝑖ℎ𝑖(𝑡𝑘)

𝑛

𝑖=1

+ 𝑒𝑘,                           𝑘 = 1, 2,⋯ ,𝑚 (3-8) 

where the residual error 𝑒𝑘 is defined as 

𝑒 ≡ �̃�𝑘 − �̂�𝑘 (3-9) 

Equation (3-8) is rewritten in compact matrix form as:  

�̃� = 𝐻�̃� + 𝐞 (3-10) 

where  

The measured values of 𝑦 ⟶ �̃� = [�̃�1 �̃�2⋯ �̃�𝑚]
𝑇             (3-11) 

The residual errors  ⟶ 𝐞 = [𝑒1 𝑒2⋯ 𝑒𝑚]
𝑇             (3-12) 

The estimated values of 𝑥 ⟶ �̂� = [�̂�1 �̂�2⋯ �̂�𝑚]
𝑇             (3-13) 

 

𝐻 = [

ℎ1(𝑡1) ℎ2(𝑡1) ⋯ ℎ𝑛(𝑡1)
ℎ1(𝑡2) ℎ2(𝑡2) ⋯ ℎ𝑛(𝑡2)
⋮ ⋮  ⋮

ℎ1(𝑡𝑚) ℎ2(𝑡𝑚) ⋯ ℎ𝑛(𝑡𝑚)

] (3-14) 

Equations (3-6) and (3-7) can be summarized as: 

�̃� = 𝐻𝐱 + 𝐯 (3-15) 

�̂� = 𝐻�̂� (3-16) 

where  

The measured values of 𝑦 ⟶ �̃� = [�̃�1 �̃�2  ⋯ �̃�𝑛]
𝑇             (3-17) 

The true values 𝑥 ⟶ 𝐱 = [𝑥1 𝑥2  ⋯ 𝑥𝑛]
𝑇             (3-18) 

The estimated values of 𝑦 ⟶ �̂� = [�̂�1 �̂�2  ⋯ �̂�𝑛]
𝑇             (3-19) 

The measurement errors ⟶ 𝐯 = [𝑣1 𝑣2  ⋯ 𝑣𝑛]
𝑇             (3-20) 
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Both of the mathematical expressions, (3-10) and (3-15), which normally 

denoted to what called “observation equations” if �̂� = 𝐱, and if there is available zero 

model errors [53]. 

3.1.1 Linear least squares method 

One of the famous methods to find the optimum choice for the unknown 

parameters is linear least squares method by Gauss. In this method, �̂�  minimizes the 

sum squares of the residual errors that observed in:  

𝐽 =
1

2
𝐞𝑻𝐞 (3-21) 

To find the error e sub-equation (3-10) in (3-21) and take in the calculation that 

a scalar equals its swap yields:  

𝐽 = 𝐽(�̂�)
1

2
(�̃�𝑇�̃� − 2�̃�𝑇𝐻�̂� + �̂�𝑇𝐻𝑇𝐻�̂�) (3-22) 

In order to minimize 𝐽, a suitable �̂� should be found. Using the matrix calculus 

differentiation instructions [53], some requirements will be got by following that for a 

global minimum of the quadratic function of the above expression (3-22) as follow:  

 

Figure 3.1: Surface of the Convex Performance Order 𝑛 =  2 Problem [53]. 

necessary condition 

∇�̂�𝐽 ≡

[
 
 
 
 
𝜕𝐽

𝜕�̂�1
⋮
𝜕𝐽

𝜕�̂�𝑛]
 
 
 
 

= 𝐻𝑇𝐻�̂� − 𝐻𝑇�̃� = 0 (3-23) 
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sufficient condition 

∇�̂�
2𝐽 ≡

𝜕2𝐽

𝜕�̂�𝜕�̂�𝑻
= 𝐻𝑇𝐻 (3-24) 

equation (3-24) must be positive definite, where ∇�̂�J represents the Jacobian matrix 

and ∇�̂�
2J represents the Hessian matrix. By considering the sufficient condition, the 

positive semi-definite called on any B matrix like that in 𝐱𝑇𝐵𝐱 ≥ 0 for all 𝐱 ≠ 𝟎. By 

setting and squaring 𝐡 = 𝐻𝐱, the scalar ℎ2 = 𝐡𝑇𝐡 ≥ 0 can easily be obtained, where, 

𝐻𝑇𝐻 is always positive semi-definite, and when 𝐻is maximum rank (𝑛) then it 

becomes positive definite.  

The space performance at 𝑛 + 1 represents the function 𝐽, which has a convex 

shape of parabola, the dimension of this parabola is (𝑛), and it has one distinct 

minimum point, for instance to what mentioned before, the bowl-shape surface 

with 𝑛 = 2 just like shown in Figure 3.1.  

From the equation (3-23), and by considering its necessary condition, the 

“normal equation” is existed now: 

(𝐻𝑇𝐻)�̂� = 𝐻𝑇�̃� (3-25) 

The result of 𝐻𝑇𝐻 will be positive definite when the rank of the matrix 𝐻 equal 

to 𝑛, at this situation the inverse of this matrix can be implemented in order to get the 

clear result of optimal estimate below:  

�̂� = (𝐻𝑇𝐻)−1𝐻𝑇�̃� (3-26) 

 

 

Figure 3.2: (a) Outline Plots for Observable System. 
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Figure 3.2: (b) Outline Plots for Unobservable System. 

The difference between the equations (3-10) and (3-26) is that the first one is 

Gauss’ “equations of condition” but the last one represents one of the most useful 

algorithms in solving easy least squares problems. The inverse of 𝐻𝑇𝐻 is useful in 

calculating �̂�, and that inverse is only available when the observations number is 

equivalent to or larger than the number of unknown 𝑥𝑖. 

If the two expressions 𝐻1 and 𝐻1 took in consideration as [sin𝑡 2cos𝑡] and 

[sin𝑡 2sin𝑡] respectively, and 𝐱 took as[1 1]𝑇, that will lead clearly to understand 

that 𝐻1 can provide a set of independent and linear functions, not like the other 

expression 𝐻2 which did not do that due to the second column of its matrix which twice 

of its first one. The Figure 3.2 (a) shows the minimum value of 𝐱 = [1 1]𝑇 when 𝐻1 

is used, not like the case of using 𝐻2 which could not implement the minimum values 

and it could make infinite of solutions as seen in Figure 3.2 (b). 

The least squares method has some advantages, one of these advantages is the 

equality between the number of unknown parameters and the order of the matrix 

inverse.  

3.1.2 Weighted least squares 

The method of least square shown in (3-21) is minimized in order to calculate �̂�, 

Implies an equal concentration on each �̃�𝑘 measurement. Because of what is 

commonly reported that measurements occur in with inaccuracy, so the question has 

become how to choose the appropriate values of these weights which can be selected 

instinctively for each amount, where these weights are inversely proportional to the 
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measure the estimated accuracy, for instance, infinity weight is suitable for zero error 

measurement, and zero weight is suitable for infinite error measurement. For the sake 

of combine appropriate weighting, a standard form of lest square has been set as below: 

𝐽 =
1

2
𝐞𝑻𝑊𝐞 (3-27) 

We now seek to calculate �̂� that minimize 𝐽, where  𝑊 is an 𝑚 × 𝑚 symmetric 

matrix because the terms 𝑒𝑖𝑒𝑗 , 𝑖 ≠ 𝑗, are always weighted equally with the 

corresponding  𝑒𝑗𝑒𝑖 terms. In order that  �̂� yield a minimum of equation (3-27), we 

have the requirements: 

 

necessary condition 

∇�̂�𝐽 = 𝐻
𝑇𝑊𝐻𝐱 − 𝐻𝑇𝑊�̃� = 𝟎 (3-28) 

sufficient condition 

∇�̂�
2𝐽 = 𝐻𝑇𝑊𝐻  (3-29) 

where the equation (3-29) must be positive definite. 

The solution for �̂� has been obtained from the necessary conditions in the 

equation (3-28), the obtaining of �̂� is given by: 

�̂� = (𝐻𝑇𝑊𝐻)−1𝐻𝑇𝑊�̃� (3-30) 

Also, equation (3-29) shows that the weight 𝑊 have to be positive definite.  

3.2 Linear Sequential Estimation Method 

An implicit assumption is present in developing the preceding section, this 

means that all measurements exist for the processing at the same time. The 

measurements exist successively in subsets in many application in the world, it may 

be recommendable to identify new estimates relied on all preceding measurements.  

Only the following two subsets are considered to simplify the initial discussion: 

�̃�1 = [�̃�11 �̃�12 ⋯ �̃�1𝑚1]
𝑇

= an 𝑚1 × 1 vector of measurments 
(3-31) 

�̃�2 = [�̃�21 �̃�22 ⋯ �̃�2𝑚2]
𝑇

= an 𝑚2 × 1 vector of measurments 

(3-32) 

and the associated observation equations 

�̃�1 = 𝐻1𝐱 + 𝐯1 (3-33) 

�̃�2 = 𝐻2𝐱 + 𝐯2 (3-34) 
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Where:  

𝐻1 = an 𝑚1 × 𝑛 known coefficient matrix of maximum rank 𝑛 ≤ 𝑚1 

𝐻2 = an 𝑚2 × 𝑛 known coefficient matrix                                                    

𝐯1, 𝐯2 = vector of measurement errors                                                         

𝐱 = the 𝑛 × 1 vector of unknown parameters                                      

The least squares estimate, �̂�, of 𝐱 based upon the first measurement subset 

(3-31) follows from equation (3-30) as: 

�̂�1 = (𝐻1
𝑇𝑊1𝐻1)

−1𝐻1
𝑇𝑊1�̃�1 (3-35) 

Where 𝑊1 is an 𝑚1 ×𝑚1 symmetric, positive matrix related with measurements 

�̃�1. It is possible to consider �̃�1and �̃�2 in the same time and determine an 

estimate �̂�2 of 𝐱 , that estimation based on the subsets of measurement illustrated in 

(3-31) and (3-32). So that, the compound observation equations have been formed as: 

�̃� = 𝐻𝐱 + 𝐯 (3-36) 

where  

�̃� = [
�̃�1
∙ ∙
�̃�2

] , 𝐻 = [
𝐻1
∙ ∙
𝐻2

] , 𝐯 = [

𝐯1
∙ ∙
𝐯𝟐
] (3-37) 

Then, the compound matrix of weight is assumed to take block diagonal shape, 

so its shape will be: 

𝑊 = [
𝑊1 ⋮ 0
⋯  ⋯
0 ⋮ 𝑊2

] (3-38) 

Then, by depending on the first two subsets of measurement which follows from 

the equation (3-30), the optimal least squares estimate will be: 

�̂�𝟐 = (𝐻
𝑇𝑊𝐻)−1𝐻𝑇𝑊�̃� (3-39) 

By taking into consideration that the matrix 𝑊 is a diagonal matrix, and by 

expanding the equation (3-39) will lead to: 

�̂�𝟐 = [𝐻1
𝑇𝑊1𝐻1 + 𝐻2

𝑇𝑊2𝐻2]
−1(𝐻1

𝑇𝑊1�̃�1 + 𝐻2
𝑇𝑊2�̃�2) (3-40) 

By using the above procedure, it is clearly conceivable that it is possible to keep 

on founding compound equations and solving them to find the new optimal estimates 

as in equation (3-40). Though, it is not taken into consideration the benefit of 

calculations that done on with the previous subsets of data effectively in the method 

that illustrated above, the main point of using least square is basically to make efficient 
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use of earlier estimates and connected side calculations by calculations arrangement 

to find the next estimate (e.g., �̂�𝟐). 

Let’s be the defining the following variables is the start of this approach: 

𝑃1 ≡ [𝐻1
𝑇𝑊1𝐻1]

−1 (3-41) 

𝑃2 ≡ [𝐻1
𝑇𝑊1𝐻1 + 𝐻2

𝑇𝑊2𝐻2]
−1 (3-42) 

By (assuming that both 𝑃1
−1 and  𝑃2

−1 exist) 

 𝑃2
−1 = 𝑃1

−1 + 𝐻2
𝑇𝑊2𝐻2 (3-43) 

We now rewrite equation (3-35) and (3-36) using the definitions in equation 

(3-41) and (3-42) as:  

�̂�𝟏 = 𝑃1𝐻1
𝑇𝑊1�̃�𝟏 (3-44) 

�̂�𝟐 = 𝑃2(𝐻1
𝑇𝑊1�̃�𝟏 + 𝐻2

𝑇𝑊2�̃�𝟐) (3-45) 

Pre-multiplying equation (3-44) by 𝑃1
−1 yields  

𝑃1
−1�̂�𝟏 = 𝐻1

𝑇𝑊1�̃�1 (3-46) 

Next, from equation (3-43) we have  

𝑃1
−1 = 𝑃2

−1 − 𝐻2
𝑇𝑊2𝐻2 (3-47) 

Putting the equation (3-47) into equation (3-46) leads to: 

𝐻1
𝑇𝑊1�̃�1 = 𝑃2

−1�̂�1 − 𝐻2
𝑇𝑊2𝐻2�̂�1 (3-48) 

At last, putting equation (3-48) into equation (3-45) and gathering terms gives: 

�̂�2 = �̂�1 + 𝐾2(�̃�2 − 𝐻2�̂�1) (3-49) 

where  

𝐾2 ≡ 𝑃2𝐻2
𝑇𝑊2 (3-50) 

We now have a mechanism to consecutively provide an updated estimate, �̂�2, 

depended on the previous estimate, �̂�1, and connected side calculations. We can easily 

generalize equation (4-1) and (4-2) to use the kth estimate to determine estimate at k+1 

from the k+1 subset of measurements, which leads to a most important result in 

sequential estimation theory: 

�̂�𝑘+1 = �̂�𝑘 + 𝐾𝑘+1(�̃�𝑘+1 − 𝐻𝑘+1�̂�𝑘) (3-51) 

where: 

𝐾𝑘+1 = 𝑃𝑘+1𝐻𝑘+1
𝑇 𝑊𝑘+1 (3-52) 

𝑃𝑘+1
−1 = 𝑃𝑘

−1 + 𝐻𝑘+1
𝑇 𝑊𝑘+1𝐻𝑘+1 (3-53) 

Equation (4-1) modifies the previous best correction �̂�𝑘 by an additional 

correction to account for the information contained in the 𝑘 + 1 measurement subset. 

This equation is a Kalman update equation for computing the improved estimate �̂�𝑘+1. 
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Equation (4-2) is the correction term, known as the Kalman gain matrix. The sequential 

least squares algorithm plays an essential role for linear (and nonlinear) dynamic state 

estimation. Equation (3-51) is in fact a linear difference equation, usually found in 

digital control analysis. This equation may be rearranged as: 

�̂�𝑘+1 = [𝐼 − 𝐾𝑘+1𝐻𝑘+1]�̂�𝑘 + 𝐾𝑘+1�̃�𝑘+1 (3-54) 

Which clearly is in the form of a time-varying dynamical system. Therefore, 

linear tools can be used to check stability, dynamic response times, etc. 

The specific form for 𝑃−1 in equation (3-53) is known as the information matrix 

recursion. The current approach for computing 𝑃𝑘+1 includes computing the inverse 

of equation (3-53) which offers no advantage over upsetting the normal equations in 

their original batch processing in equation (3-39). This is because of the fact that an 

𝑛 × 𝑛 inverse must still be implemented. We may think about whether there is a less 

demanding approach to 𝑃𝑘+1 given that we have calculated 𝑃𝑘 before. As shown 

before, when the measurements’ number 𝑚 in the new data subset is small compared 

to 𝑛 (as is usually the case), a small rank adjustment to the already computed 𝑃𝑘 can 

be calculated efficiently using the Sherman-Morrison-Woodbury matrix inversion 

lemma. Let  

𝐹 = [𝐴 + 𝐵𝐶𝐷]−1 (3-55) 

where:  

𝐹 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐴 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐵 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑛 × 𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐶 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑚 ×𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐷 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑚 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

Then, assuming all inverses exist  

𝐹 = 𝐴−1 − 𝐴−1𝐵(𝐷𝐴−1𝐵 + 𝐶−1)−1𝐷𝐴−1 

The matrix inversion lemma can be proved by showing that 𝐹−1𝐹 = 𝐼. Brute 

force calculation of  𝐹−1𝐹 gives 

 𝐹−1𝐹 = 𝐼 − 𝐵[(𝐷𝐴−1𝐵 + 𝐶−1)−1 − 𝐶 + 𝐶𝐷𝐴−1𝐵(𝐷𝐴−1𝐵 + 𝐶−1)−1]𝐷𝐴−1 (3-56) 

It is sufficient to demonstrate that the amount of the square sections of equation 

(3-56) is indistinguishably zero, in order to verify the matrix inversion lemma. So, we 

need to verify that 

(𝐷𝐴−1𝐵 + 𝐶−1)−1 = 𝐶 − 𝐶𝐷𝐴−1𝐵(𝐷𝐴−1𝐵 + 𝐶−1)−1 (3-57) 
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Right multiplying both sides of equation (3-57) by (𝐷𝐴−1𝐵 + 𝐶−1) reduce 

equation (3-57) to  

𝐼 = 𝐶(𝐷𝐴−1𝐵 + 𝐶−1) − 𝐶𝐷𝐴−1𝐵 (3-58) 

This finishes the proof. 

Applying the matrix reversal lemma to equation (3-53) is the subsequent step. 

The F, A, B, C, and D are the “judicious choices” which can be calculated by: 

𝐹 = 𝑃𝑘+1 (3-59) 

𝐴 = 𝑃𝑘
−1 (3-60) 

𝐵 = 𝐻𝑘+1
𝑇  (3-61) 

𝐶 = 𝑊𝑘+1 (3-62) 

𝐷 = 𝐻𝑘+1 (3-63) 

The matrix information recursion now becomes 

𝑃𝑘+1 = 𝑃𝑘 − 𝑃𝑘𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 +𝑊𝑘+1
−1 )−1𝐻𝑘+1𝑃𝑘 (3-64) 

Thus, 𝑃𝑘+1, which is used in equation (3-52), can be obtained by “updating” 𝑃𝑘, 

and the update process usually required inverting a matrix with rank less than n. A 

large number of following applications of the recursion (3-64) rarely introduces 

mathematics errors which can cancel the estimates. 

The “update equation” (3-51) can also be rearranged in several alternate forms. 

One of the more common is obtained by substituting equation. (3-64) into the equation. 

(3-52) to obtain 

𝐾𝑘+1 = [𝑃𝑘 − 𝑃𝑘𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 +𝑊𝑘+1
−1 )−1𝐻𝑘+1𝑃𝑘]

× 𝐻𝑘+1
𝑇 𝑊𝑘+1 

(3-65) 

= 𝑃𝑘𝐻𝑘+1
𝑇 [𝐼 − (𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 +𝑊𝑘+1
−1 )−1𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 ]𝑊𝑘+1 (3-66) 

Now, factoring (𝐻𝑘+1𝑃𝑘𝐻𝑘+1
𝑇 +𝑊𝑘+1

−1 )−1 outside of the square brackets leads 

directly to 

𝐾𝑘+1 = 𝑃𝑘𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 +𝑊𝑘+1
−1 )−1

× [𝑊𝑘+1
−1 + 𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 − 𝐻𝑘+1𝑃𝑘𝐻𝑘+1
𝑇 ]𝑊𝑘+1 

(3-67) 

This leads to the covariance recursion form, given by 

�̂�𝑘+1 = �̂�𝑘 + 𝐾𝑘+1(�̃�𝑘+1 − 𝐻𝑘+1�̂�𝑘) (3-68) 

where 

𝐾𝑘+1 = 𝑃𝑘𝐻𝑘+1
𝑇 [𝐻𝑘+1𝑃𝑘𝐻𝑘+1

𝑇 +𝑊𝑘+1
−1 ]−1 (3-69) 

𝑃𝑘+1 = [𝐼 − 𝐾𝑘+1𝐻𝑘+1]𝑃𝑘 (3-70) 
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The covariance type of successive least squares is most usually utilized as a part 

of training since it is all the more computationally productive. Be that as it may, the 

data shape might be numerically prevalent in the introduction arrange. The procedure 

may begin at any progression by form the earlier estimate �̂�1 and estimate 𝑃1. For 

initialization, the first data subset can be used if a previous estimates are not obtainable, 

that could be done by using a batch least squares to determine �̂�𝑞 and 𝑃𝑞, where 𝑞 ≥ 𝑛. 

Then the sequential least squares algorithm can be invoked for 𝑘 ≥ 𝑞. However, 

sequential least squares can still be used for𝑘 = 1, 2,⋯ , 𝑞 − 1 if one uses: 

𝑃1 = [
1

𝛼2
𝐼 + 𝐻1

𝑇𝑊1𝐻1]
−1

  (3-71) 

�̂�1 = 𝑃1 [
1

𝛼
𝛽 + 𝐻1

𝑇𝑊1�̃�1] (3-72) 

Where α is a very “large” number and β is a vector of very “small” numbers. It 

can be shown that the resulting recursive least squares values of 𝑃𝑛 and �̂�𝑛 are very 

close to the corresponding batch values at time 𝑡𝑛. 

If the model is, in fact, linear and if there is no correlation between measurement 

errors of different measurement subsets (so that the assumed block structure of W is 

strictly valid), then the sequential solution for �̂� in equation (3-51) will agree exactly 

with the batch solution in equation (3-30), to within arithmetic errors. This is because 

equation (3-51) is simply an algebraic rearrangement of the normal equations (3-30). 

3.3 Error Output Method (Implementation of Least Squares Method for 

Dynamic System) 

For nonlinear dynamic systems like aircraft dynamics, error output of unknown 

aerodynamic coefficients or stability and control derivatives is used to quantify the 

performance of these particular dynamic systems. These models are often used to 

design control systems to provide increased maneuverability and for use in the design 

of automated unpiloted vehicles. Generally, such coefficients are typically first 

determined using experimental methods like wind tunnel applications for the aircraft 

model, and as a newer approach, using computational fluid dynamics. Error output 

using the dynamic system measurement data is beneficial to provide a final verification 

of these coefficients, and also update models for other applications such as adaptive 

control algorithms. This section introduces the basic ideas which incorporate 

estimation principles for the dynamic system error output from the measured data [54]. 
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Identification methods’ applications for the coefficients of aircraft goes back to 

the mid-1920s, which included the fundamental location of ratios of damping and 

frequencies. In the 1940s and mid-1950s, frequency response data have fitted by these 

coefficients (magnitude and phase). Around a similar time, linear least squares were 

applied using flight data, but gave poor results in the presence of measurement noise 

and gave biased estimates. Iliff (1989) described another method like time vector 

techniques and analog matching [54].  

The most popular approaches today for aircraft or similar dynamic models 

coefficient identification are based on maximum likelihood techniques. The desirable 

attributes of these techniques, such as asymptotically unbiased and consistent 

estimates, are especially useful for the estimation of aircraft coefficients in the 

presence of measurement errors associated with flight data 

The aircraft model equations of motion can be written in continuous- discrete 

form as shown below: 

�̇� = 𝐟(𝑡, 𝐱, 𝐩) (3-73) 

�̃�𝒌 = 𝐡(𝑡𝑘, 𝐱𝒌) + 𝐯𝒌 (3-74) 

Where 𝐱 is the 𝑛 × 1 state vector (e.g., angle of attack, pitch angle, body rates, 

etc.), 𝐩 is the 𝑞 × 1 vector of aircraft coefficients to be determined, y is the 𝑚 × 1 

measurement vector, and 𝐯 is the 𝑚 × 1 measurement-error vector which is assumed 

to be represented by a zero-mean Gaussian noise process with covariance R. Note that 

there is no noise associated with the state vector model. Modelling errors may also be 

present, which lead to several obvious complications. However, the most common 

approach is to ignore it; any modelling error is most often treated as state or 

measurement noise, or both, in spite of the fact that the modelling error may be 

predominately deterministic rather than random. 

The maximum likelihood estimation approach minimizes the following loss 

function:  

𝐽(�̂�) =
1

2
∑(�̃�𝑘 − �̂�𝑘)

𝑇𝑅−1(�̃�𝑘 − �̂�𝑘)

𝑁

𝑘=1

 (3-75) 

where �̂�𝑘 is the estimated response of y at time 𝑡𝑘 for a given value of the 

unknown parameter vector 𝒑, and N is the total number of measurements. A common 

approach to minimize equation (4-1) for dynamic system parameter identification 
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involves using the Newton-Raphson algorithm. If 𝑖 is the iteration number, then 

the 𝑖 + 1 estimate of 𝒑, denoted by �̂�, is obtained from the 𝑖𝑡ℎ estimate by: 

�̂�𝑖+1 = �̂�𝑖 − [∇�̂�
2𝐽(�̂�)]

−1
[∇�̂�𝐽(�̂�)] (3-76) 

where the first and second gradients are defined as: 

[∇�̂�𝐽(�̂�)] = −∑[∇�̂��̂�𝑘]
𝑇
𝑅−1(�̃�𝒌 − �̂�𝒌)

𝑁

𝑘=1

 (3-77) 

[∇�̂�
2𝐽(�̂�)] = ∑[∇�̂��̂�𝑘]

𝑇
𝑅−1[∇�̂��̂�𝑘] −∑[∇�̂�

2�̂�𝑘]𝑅
−1(�̃�𝒌 − �̂�𝒌)

𝑁

𝑘=1

𝑁

𝑘=1

 (3-78) 

The Gauss-Newton approximation to the second gradient is given by 

[∇�̂�
2𝐽(�̂�)] ≈ ∑[∇�̂��̂�𝑘]

𝑇
𝑅−1[∇�̂��̂�𝑘]

𝑁

𝑘=1

 (3-79) 

This approximation is easier to compute than an equation. (3-78), and has the 

advantage of possible decreased convergence time. 

 

Figure 3.3: Dynamic System Parameter Identification [54]. 

The dynamic system parameter identification process using maximum-

likelihood. First of all, a control input is introduced to stimulate the motion. This input 

should be “rich” enough so that the test dynamic system undergoes a general motion 

to allow sufficient observability of the to-be-identified parameters. For most 
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applications, it is assumed that the control system inputs adequately lead the motion in 

comparison to the effects of the turbulence and other unknown disturbances. An 

estimated response from the mathematical model is computed first using some initial 

guess of the dynamic system parameters, which are usually obtained from ground-

based wind tunnel data or by other means. A response error is computed from the 

estimated response and measured response. Then equations (3-76), (3-77), and (3-79) 

are used to provide a Gauss-Newton update of the dynamic system parameters. Next, 

the convergence is checked using some stopping criterion. If the procedure has not 

converged then the previous dynamic system parameters are replaced with the newly 

calculated ones. These newly obtained dynamic system parameters are used to 

calculate a new estimated response from the mathematical model. The process 

continues until convergence is achieved. The error-covariance of the estimated 

parameters is given by the inverse of equation (3-79), which is also alike to within 

first-order terms to the Cramer-Rao lower bound. Experiments are frequently repeated 

to confirm consistency. If the results are found to be consistent, then the measurements 

can be combined to obtain improved estimates.  
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CHAPTER FOUR  

4. ADAPTIVE ITERATIVE LEARNING CONTROL (AILC) 

ALGORITHM 

Iterative learning control algorithm can control dynamic systems with a 

repetitive motion which have fixed parameters, if a dynamic system has one or more 

of these parameters changed, ILC will fail to control the system. So that, the necessity 

to develop ILC algorithms to have the ability to adapt itself and control such a systems 

has appeared. 

The algorithm that will be illustrated in this chapter represents a combination 

between Arimoto’s ILC control algorithm and the Error output method, this combined 

algorithm enables the controller to control the linear dynamic systems even when this 

system has some unknown parameters after adapting itself to suit the new situation.  

In this chapter, the linear dynamic system’s equation and its discretization will 

be illustrated, ILC algorithm and the method of determining its learning gain matrix 

will be presented, at last, the illustration of AILC algorithm by combining ILC 

algorithm and least squares approximation will be placed.  

4.1 Linear Dynamic System Description  

The linear system which will be controlled in this monograph is the (spring-

mass-damper) system shown in Figure 4.1: 

 

Figure 4.1: Spring-Mass-Damper Dynamic System. 
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The differential equation of this linear dynamic system and the transfer function 

shown in the equations (4-1) and (4-2) respectively.  

�̈� + 2𝜁𝜔𝑛�̇� + 𝜔𝑛
2𝑥 = 𝑢 (4-1) 

𝐺(𝑠) =
1

𝑆2 + 2𝜁𝜔𝑛𝑆 + 𝜔𝑛2
 (4-2) 

Where 𝜁 donates the dimensionless damping ratio, and 𝜔𝑛 is the natural 

frequency of the system. The pols of the characteristic equation given as described in 

(4-3). 

𝑆1, 𝑆2 = −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1 (4-3) 

When 𝜁 < 1, the roots are complex and the system is underdamped:  

𝑆1, 𝑆2 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛√𝜁2 − 1 (4-4) 

When 𝜁 = 1, the roots are repeated and real, and the condition is called critical 

damped and the S-plane plot of poles and zeros of 𝑦(𝑆) is shown in Figure 4.2  

where 𝜃 = 𝑐𝑜𝑠−1𝜁. As 𝜁 varies with 𝜔𝑛 constant locus as shown in Figure 4.3. 

 

Figure 4.2: An S-plane Plot of The Poles and Zeros of Y(s) [55]. 

 

Figure 4.3: The Locus of Roots as 𝜻 Varies with 𝝎𝒏 Constant [55]. 
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The transient response is increasingly oscillatory as the roots approach the 

imaginary axis when 𝜁 approaches zero [55]. The state space form of the system is: 

[
�̇�
�̇�
 ] = [

0 1
−𝜔𝑛

2 −2𝜁𝜔𝑛
] [
𝑥
𝜈
 ] + [

0
1
 ] [𝑢] (4-5) 

The controlled output of the system will be the distance 𝑥 as expressed in the 

next equation: 

𝑦 = [1 0] [
𝑥
𝜈
 ] (4-6) 

4.2 System Discretization 

The applied ILC and identification algorithms in this monograph are taken for 

discrete-time and linear time-invariant (LTI) system, to apply the adaptive iterative 

learning control (AILC) algorithm on it. The continuous-time system expressed in 

(4-1) needs to be converted to a discrete-time system equation by applying a 

discretization method [56]. The continuous-time state space model of the system (4-5) 

and (4-6) is expressed as: 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (4-7) 

𝑦 = 𝐶𝑥(𝑡) (4-8) 

In general, solving discrete-time equations are easier than differential equations, 

because it can be solved easily by means of a recursion procedure. The recursion 

procedure is quite simple and convenient for digital computations.  

Consider the following state space equation and output equation in the discrete-time 

form: 

𝑥𝑘+1 = Φ𝑥𝑘 + Θ𝑢𝑘 (4-9) 

𝑦𝑘 = 𝐶𝑥𝑘 (4-10) 

The solution of equation (4-9) for any positive integer k may be obtained directly 

by recursion as follow:  

𝑘 = 0,        𝑥1 = Φ𝑥0 + Θ𝑢0  

𝑘 = 1,        𝑥2 = Φ𝑥1 + Θ𝑢1     =   Φ
2𝑥0 +ΦΘ𝑢0 + Θ𝑢1  

𝑘 = 2,        𝑥3 = Φ𝑥2 + Θ𝑢2     =   Φ
3𝑥0 +Φ

2Θ𝑢0 +ΦΘ𝑢1 + Θ𝑢2 

 

                                                                                                                        ⏟                                        
⇓

  

𝑥𝑘 = Φ
𝑘𝑥0 +∑Φ𝑘−𝑗−1

𝑘−1

𝑗=0

Θ𝑢𝑗  (4-11) 
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The equation (4-11) is the response equation for the system exposed in (4-9) in 

discrete-time form. Clearly, 𝑥𝑘 consists of two parts, one represents the contribution 

of initial state 𝑥0 and the other contribution of the input  𝑢𝑗  [56]. 

𝑥𝑘 = Φ𝑘𝑥0⏟  
𝑃𝑎𝑟𝑡 𝑜𝑛𝑒

+∑Φ𝑘−𝑗−1
𝑘−1

𝑗=0

Θ𝑢𝑗
⏟          

𝑃𝑎𝑟𝑡 𝑇𝑤𝑜

 
 

Where 𝑘 = 1, 2, 3, … ., and 𝑗 = 0, 1, 2, … , 𝑘 − 1. The output 𝑦𝑘 is given by:  

𝑦𝑘 = 𝐶Φ
𝑘𝑥0 + 𝐶∑Φ𝑘−𝑗−1

𝑘−1

𝑗=0

Θ𝑢𝑗 + 𝐷𝑢𝑗  (4-12) 

Obtaining the matrices Φ and Θ can be calculated by using Tylor series1, Where: 

Φ = 𝑒𝐴𝑇 (4-13) 

Θ = ∫ 𝑒𝐴𝜆
𝜆

0

𝐵𝑑𝜆 (4-14) 

Where 𝜆 = (𝑘 + 1)𝑇 − 𝜏. 

The formulas (4-13) and (4-14) can be extracted as follow: 

Φ = 𝐼 + Δ𝑡 +
Δ𝑡2

2!
𝐴2 +

Δ𝑡3

3!
𝐴3 +

Δ𝑡4

4!
𝐴4 +⋯+

Δ𝑡𝑘

𝑘!
𝐴𝑘 (4-15) 

Θ = Δ𝑡𝐵 +
Δ𝑡2

2!
𝐴2𝐵 +

Δ𝑡3

3!
𝐴3𝐵 +

Δ𝑡4

4!
𝐴4𝐵 +⋯+

Δ𝑡𝑘

𝑘!
𝐴𝑘𝐵 (4-16) 

4.3 Apply ILC Algorithm on Linear Dynamic System  

Main Arimoto’s algorithm (2-6) and its error equation (2-7) is used in this 

monograph. 

𝑢𝑘+1 = 𝑢𝑘 + Γ𝑒𝑘  

𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡)  

Where Г is the diagonal learning gain matrix, and convergence is certain if and 

only if ‖𝐼 − 𝐶𝐵Γ‖𝑖 < 1. The analysis of the dynamic system equation in the discrete-

time form when 𝑡 = 0, 1, 2, … , 𝑁𝑝 where 𝑁𝑝 is the expected iteration length, and at the 

iteration 𝑘 takes the following sequence:  

                                                 

 

 

1 In MATLAB, Φ and Θ matrecis could be found by using the command [Φ,Θ]=c2d(A,B,dt) 
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𝑥𝑘 = 𝐴𝑥𝑘(𝑡 − 1) + 𝐵𝑢𝑘(𝑡 − 1)  ⟹ 𝑥𝑘(𝑡 + 0) = 𝐴
1𝑥𝑘(𝑡 − 1) + 𝐵𝑢𝑘(𝑡 − 1)  

𝑥𝑘(𝑡 + 1) = 𝐴𝑥𝑘(𝑡) + 𝐵𝑢𝑘(𝑡)  ⟹ 𝑥𝑘(𝑡 + 1) = 𝐴
2𝑥𝑘(𝑡 − 1) + 𝐴𝐵𝑢𝑘(𝑡 − 1) + 𝐵𝑢𝑘(𝑡)  

𝑥𝑘(𝑡 + 2) = 𝐴𝑥𝑘(𝑡 + 1) + 𝐵𝑢𝑘(𝑡 + 1)  ⟹ 
𝑥𝑘(𝑡 + 2) = 𝐴

3𝑥𝑘(𝑡 − 1) + 𝐴
2𝐵𝑢𝑘(𝑡 − 1) + 𝐴𝐵𝑢𝑘(𝑡) +

𝐵𝑢𝑘(𝑡 + 1)  

𝑥𝑘(𝑡 + 3) = 𝐴𝑥𝑘(𝑡 + 2) + 𝐵𝑢𝑘(𝑡 + 2)  ⟹ 
𝑥𝑘(𝑡 + 3) = 𝐴

4𝑥𝑘(𝑡 − 1) + 𝐴
3𝐵𝑢𝑘(𝑡 − 1) + 𝐴

2𝐵𝑢𝑘(𝑡) +

𝐴𝐵𝑢𝑘(𝑡 + 1) + 𝐵𝑢𝑘(𝑡 + 2)  

The above sequence can be written as follows:  

𝑥𝑘(𝑡 + 𝑛) = 𝐴
𝑛+1𝑥𝑘(𝑡 − 1) + 𝐴

𝑛𝐵𝑢𝑘(𝑡 − 1) + 𝐴
𝑛−1𝐵𝑢𝑘(𝑡) + 𝐴

𝑛−2𝐵𝑢𝑘(𝑡 + 1) +⋯+

𝐵𝑢𝑘(𝑡 + 𝑛 − 1)  
(4-17) 

By depending on the equation (4-11) the equation of the state of the system 

(4-17) can be expanded in matrix form as follows:  

[
 
 
 
 
𝑥𝑘(𝑡)

𝑥𝑘(𝑡 + 1)

𝑥𝑘(𝑡 + 2)
⋮

𝑥𝑘(𝑡 + 𝑛)]
 
 
 
 

=

[
 
 
 
 
Φ
Φ2

Φ3

⋮

Φ𝑛+1]
 
 
 
 

𝑥𝑘−1(𝑡) +

[
 
 
 
 
Θ 0 0 ⋯ 0
ΦΘ Θ 0 ⋯ 0

Φ2Θ ΦΘ Θ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

Φ𝑛Θ Φ𝑛−1Θ Φ𝑛−2Θ ⋯ Θ]
 
 
 
 

[
 
 
 
 
𝑢𝑘(𝑡 − 1)
𝑢𝑘(𝑡)

𝑢𝑘(𝑡 + 1)
⋮

𝑢𝑘(𝑡 + 𝑛 − 1)]
 
 
 
 

 (4-18) 

And from the equation (4-12) the output matrix can be expressed as: 

[
 
 
 
 
𝑦𝑘(𝑡)

𝑦𝑘(𝑡 + 1)

𝑦𝑘(𝑡 + 2)
⋮

𝑦𝑘(𝑡 + 𝑛)]
 
 
 
 

⏟      
𝑌𝑘

=

[
 
 
 
 
𝐶Φ
𝐶Φ2

𝐶Φ3

⋮

𝐶Φ𝑛+1]
 
 
 
 

⏟      
𝑑

𝑥𝑘−1(𝑡) +

[
 
 
 
 
𝐶Θ 0 0 ⋯ 0
𝐶ΦΘ 𝐶Θ 0 ⋯ 0

𝐶Φ2Θ 𝐶ΦΘ 𝐶Θ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐶Φ𝑛Θ 𝐶Φ𝑛−1Θ 𝐶Φ𝑛−2Θ ⋯ 𝐶Θ]
 
 
 
 

⏟                          
𝐺

[
 
 
 
 
𝑢𝑘(𝑡 − 1)
𝑢𝑘(𝑡)

𝑢𝑘(𝑡 + 1)
⋮

𝑢𝑘(𝑡 + 𝑛 − 1)]
 
 
 
 

⏟          
𝑈𝑘

 (4-19) 

 Which can be referred as the expression in (4-19):  

𝑌𝑘 = 𝐺𝑈𝑘 + 𝑑𝑥𝑘−1 (4-20) 

Where 𝐺 is a lower triangular matrix and its parameters are the Markov 

parameters of the dynamic system. The input vector to the control system can be 

founded by:  

𝑈𝑘+1 = 𝑈𝑘 + Γ𝑒𝑘 (4-21) 

Where Γ represent ILC learning gain matrix, and 𝑒𝑘 is the difference between 

the reference signal 𝑅𝑘 and the output of the system 𝑌𝑘 from the equation (4-20):  

𝑒𝑘 = 𝑅𝑘 − 𝑌𝑘 (4-22) 

By substituting equations (4-20) in the equation (4-22), and then plug the output 

in equation (4-21) we get the overall equation of the input vector to the ILC control 

system as shown below:  

𝑈𝑘+1 = 𝑈𝑘 + Γ(𝑅𝑘 − 𝐺𝑈𝑘 − 𝑑𝑥𝑘−1) = 𝑓(𝑈𝑘) (4-23) 
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The learning gain matrix Γ of ILC algorithm is responsible for ensuring the 

convergence, the equation (4-23) which will be converged when the maximum 

absolute eigenvalue of the learning gain matrix Γ be less than one |𝜆|𝑚𝑎𝑥 < 1. 

‖𝐼 − Γ𝐺‖ = max
1≤𝑡≤𝑁𝑝

|𝜆𝑖| (4-24) 

When it been converged it will lead to 𝑈𝑘 = 𝑈𝑘−1 = 𝑈∞, so the error have to be 

zero 𝑒𝑘 = 0. To ensure that the learning gain matrix will lead the term to approach to 

zero error.   

The main eigenvalue’s definition will be used to calculate the learning gain 

matrix Γ.  

𝐴𝑣 =  𝜆𝑣 (4-25) 

Let’s the matrix  𝐴 = (𝐼 − Γ𝐺) so:  

(𝐼 − Γ𝐺)𝑣 =  𝜆𝑣 (4-26) 

𝑣 − Γ𝐺𝑣 =  𝜆𝑣 (4-27) 

(I − 𝜆)𝑣 = Γ𝐺𝑣 (4-28) 

Γ = (𝑣 − 𝜆𝑣)𝑣−1𝐺−1 (4-29) 

As the eigenvector is an arbitrary vector, so for simplicity let 𝑣 = 𝐼, and if the 

eigenvalue took as matrix Λ, so the equation (4-29) can be written as: 

Γ = (𝐼 − Λ)𝐺−1 (4-30) 

The equations (4-30) is applicable only if the lower diagonal matrix 𝐺 is an 

invertible matrix, to find the inverse of the diagonal matrix 𝐺−1, the below method 

will be followed. Consider 𝐺 matrix in the system below:   

[
𝑋
𝑌
𝑍
] = [

𝑎 0 0
𝑏 𝑐 0
𝑑 𝑒 𝑓

]
⏟      

𝐺

[
𝑥
𝑦
𝑧
] 

(4-31) 

Where, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are scalars, to inverse the system (4-31), it will be 

written as: 
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𝑋 = 𝑎𝑥                   
𝑌 = 𝑏𝑥 + 𝑐𝑦          
𝑍 = 𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧

} ⟹

{
 
 

 
 𝑥 =

1

𝑎
𝑋                                                                 

𝑦 =
1

𝑐
(𝑌 − (

𝑏

𝑎
𝑋))                                             

𝑧 =
1

𝑓
(𝑍 − 𝑑 (

1

𝑎
𝑋) − (

𝑒

𝑐
(𝑌 − (

𝑏

𝑎
𝑋))))

  

(4-32) 

 

𝑥 = (
1

𝑎
)𝑋                                              

𝑦 = −(
𝑏

𝑎𝑐
)𝑋 + (

1

𝑐
)𝑌                        

𝑧 = (−
𝑑

𝑎
+
𝑒𝑏

𝑎𝑐
)𝑋 − (

𝑒

𝑐
)𝑌 + (

1

𝑓
)𝑍

  (4-33) 

so the inverted system becomes: 

[
𝑥
𝑦
𝑧
] =

[
 
 
 
 

1

𝑎
0       0

−𝑏

𝑎𝑐

1

𝑐
       0

−𝑑

𝑎
+
𝑒𝑏

𝑎𝑐
       

−𝑒

𝑐
        

1

𝑓]
 
 
 
 

⏟                
𝐺−1

[
𝑋
𝑌
𝑍
]  

(4-34) 

and the inverse of 𝐺 is: 

𝐺−1 =

[
 
 
 
 
 

1

𝑎
    0    0

−𝑏

𝑎𝑐

1

𝑐
0

−𝑑

𝑎
+
𝑒𝑏

𝑎𝑐
    
−𝑒

𝑐
     

1

𝑓]
 
 
 
 
 

 (4-35) 

This method can be used to find the inverse matrices when the dynamic system 

is (SISO), but in (MIMO) dynamic systems (e.g. two inputs two outputs system) C and 

B vectors will be [2 × 2] matrices, then CB will not be a scalar and it will be [2 × 2] 

matrix, in this case, finding 𝐺 matrix by using this method will be not an easy job as 

follow: 

[
𝑋
𝑌
𝑍
] = [

𝐴22 0 0
𝐵22 𝐶22 0
𝐷22 𝐸22 𝐹22

]
⏟          

𝐺

[
𝑥
𝑦
𝑧
] 

(4-36) 

Where, 𝐴22, 𝐵22, 𝐶22, 𝐷22, 𝐸22, 𝑎𝑛𝑑 𝐹22 are scalars, to inverse the system (4-31), 

by following the previous steps, the matrix will be:    
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𝐺−1 = [

𝐴22
−1 022 022

−𝐵22𝐴22
−1𝐶22

−1 𝐶22
−1 022

−𝐷22𝐴22
−1 + 𝐸22𝐵22𝐴22

−1𝐶22
−1 −𝐸22𝐶22

−1 𝐹22
−1

] (4-37) 

4.4 Adaptive Iterative Learning Control (AILC) Algorithm  

Adaptive iterative learning control (AILC) algorithm considered by using 

Arimoto’s ILC standard algorithm (2-6) and the error output method of the least 

squares approximation (3-76), the adaptive iterative learning control (AILC) algorithm 

is explained in Figure 4.4.  

 

Figure 4.4: The Developed (AILC) Algorithm. 
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The main dynamic system with given initial values of unknown parameters 𝑃 is: 

𝑥𝑘+1 = Φ𝑘(𝑃)𝑥𝑘 + Θ𝑘(𝑃)𝑢𝑘 (4-38) 

𝑦𝑘 = 𝐶𝑘(𝑃)𝑥𝑘 (4-39) 

The mathematical model with values of identified parameters �̂� is: 

�̂�𝑘+1 = Φ̂𝑘(�̂�)�̂�𝑘 + Θ̂𝑘(�̂�)𝑢𝑘 (4-40) 

�̂�𝑘 = �̂�𝑘(�̂�)�̂�𝑘 (4-41) 

The input signal 𝑢𝑘  for the dynamic systems (4-38) and the mathematical model 

(4-40) is calculated by the ILC algorithm (4-23), with the identified parameters �̂�, 

which is calculated by the method of error output method of least squares 

approximation. By using (3-23) and (3-24), the necessary and sufficient conditions of 

the identification process take the forms:  

Necessary condition 

∇𝐽 = 2∑(−𝑒𝑖
𝑇𝑅−1𝛾)

𝑡

0

 (4-42) 

Sufficient condition 

∇2𝐽 = 2∑(𝛾𝑇𝑅−1𝛾)

𝑡

0

 (4-43) 

Where ∇𝐽 Jacobian matrix and ∇2𝐽 is the Hessian matrix, and 𝑒 is the error 

between the output of the main dynamic system 𝑦 and the output mathematical 

model �̂�. 

𝑒𝑖 = 𝑦 − �̂� (4-44) 

And 𝛾 can be calculated from the system below: 

𝜉𝑘+1 = Φ̂�̂�𝑘+1𝜉𝑘 +
𝜕𝑓

𝜕�̂�𝑘
 (4-45) 

γ = Ĉ�̂�𝑘+1𝜉𝑘+1 +
𝜕𝑔

𝜕�̂�𝑘
 

(4-46) 

Where 𝜉 is the sensitivity of the state which can be implemented by 𝜉𝑖𝑗 =

𝑑𝑥𝑖 𝑑�̂�𝑗⁄ , and γ is the sensitivity of output which can be implemented by 𝛾𝑖𝑗 =

𝑑𝑦𝑖 𝑑�̂�𝑗⁄ . 

The parameter identification algorithm can be calculated as shown below in 

equation (4-47), which is found by using Newton-Raphson optimization algorithm and 

applying it to the necessary conditions ∇𝐽 and sufficient conditions ∇2𝐽. The equation 

below is mainly based on the equation (3-76). 
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�̂�𝑘+1 = �̂�𝑘 − [∇
2𝐽]−1∇𝐽 (4-47) 

Using Newton-Raphson method has a very good advantage in solving estimation 

problems because this method is a very fast method, that will make the implementation 

of the new estimated parameters become very fast and the system will be applicable 

for fast dynamic systems. 
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CHAPTER FIVE  

5. SIMULATION AND RESULTS 

The application of the adaptive iterative learning control (AILC) algorithm on 

the LTI dynamic system that expressed in chapter four will be simulated in this chapter 

by using MATLAB. The system will be taken in simulation is in discrete-time state-

space system shown in the expression (4-5), and its output is shown in (4-6), the 

discrete-time form of the matrix A and the vector B could be implemented by using the 

series expressed in (4-15) and (4-16). The discretized matrices Φ and Θ will be used 

in the discrete-time form of the dynamic system shown in the expressions (4-9) and 

(4-10). After the determining the discrete-time form of the dynamic system, the control 

algorithm will be applicable to it.  

5.1 Reference Signals  

Two kinds of reference signals will be used in this simulation, first one is a 

combination of sine and cosine waves as illustrated in the expression (5-1). And the 

second one is a rough square wave which has configured by using Fourier series as 

expressed in (5-2).  

5.1.1 First reference signal 𝑹𝑪𝟏 

The first reference signal which is used in this simulation is 𝑅𝐶1, its equation is 

shown in (5-1), and its shape is illustrated in Figure 5.1.  

𝑅𝐶1 = sin(2𝜋(𝑡 𝑇⁄ )) + 0.04(cos(0.4𝜋(𝑡 𝑇⁄ + 4)) + 0.2 sin(2𝜋(𝑡 𝑇 + 5⁄ )) (5-1) 

where 𝑡 is time duration of the simulation, the symbol T is a weight factor to control 

the frequency of signal, which is taken as 0.4 in this simulation.  The initial values of 

the dynamic system’s state vector 𝑥𝑘−1 = [𝑥𝑖 𝑣𝑖]𝑇 are taken as 𝑥𝑖 = 2 and 𝑣𝑖 = 2 to 
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start far away from the starting point of the reference signal 𝑅𝐶1 which is (−0.4532) 

in order to see the response clearly in spite of that will make a jump in the input signal. 

 

Figure 5.1: First Reference Signal (𝑅𝐶1). 

5.1.2 Second reference signal 𝑹𝑪𝟐 

The second reference signal 𝑅𝐶2 that will be used in this simulation is a rough 

square wave configured in the equation (5-2), which implemented by applying Fourier 

series on sine wave to get the shape shown in Figure 5.2. 

𝑅𝐶2 =∑
sin (4.1𝑖)𝑡

(𝑖)!

𝑗

𝑖=1

 (5-2) 

Where 𝑗 = 1, 3, 5, … , 19, 𝑡 is the time 0 < 𝑡 < 𝑁, and 𝑁 = 10 𝑠𝑒𝑐., and the initial 

values of the dynamic system’s state vector 𝑥𝑘−1 = [𝑥𝑖 𝑣𝑖]𝑇 will be taken as in the 

first reference signal 𝑥𝑖 = 2, and 𝑣𝑖 = 2 to start far away from the starting point of the 

𝑅𝐶2 which is (0). 
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Figure 5.2: Second Reference Signal (𝑅𝐶2). 

5.2 Simulation of ILC Algorithm  

In this part, Arimoto’s ILC algorithm (4-23) will be applied to the illustrated 

dynamic system and the output vector 𝑌𝑘 expressed in equation (4-20) will be taken 

into consideration. The learning gain matrix Γ will be implemented by using the 

equation (4-30), and it will be surely exist if 𝐶𝐵 > 0, eigenvalues 𝜆 of the learning 

gain matrix will be used to control the speed of the ILC control system.  

The actual parameters of the dynamic system will be taken as 𝜁 = 0.1, and 𝜔𝑛 =

0.2, in this part, the actual parameters 𝑃 and the identified parameters �̂� will be the 

same values 𝑃 = �̂� = [𝜁 𝜔𝑛]
𝑇 = [0.1 0.2]𝑇, that means the dynamic system has 

no unknown parameters and the control system has no parameter identificator.  

The goal of this part of the simulation is showing the behavior of the pure ILC 

controller with the LTI dynamic system and how to track the reference signals 𝑅𝐶1 

and 𝑅𝐶2 before applying the unknown parameters on the dynamic system. The 

supposed results of this part is, ILC should track the reference signals at several 

situations and shows different results for that, and also it should fail to track the same 

signals at the same situations when applying the unknown parameters on the dynamic 

system. In the next part, AILC algorithm should be successful to achieve what ILC 
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failed to do, and also gives close results to that results of pure ILC when no unknown 

parameters.  

Figure 5.3 shows the results when ILC tracking the reference signal 𝑅𝐶1 at 

eigenvalue 𝜆 = 0.99 and iteration number 𝑘 = 5, and Figure 5.4 shows the results 

when ILC tracking the reference signal 𝑅𝐶2 at the same values of eigenvalue and 

iteration number. 

 

Figure 5.3: ILC Response to 𝑅𝐶1at 𝜆 = 0.99 and 𝑘 = 5. 

 

Figure 5.4: ILC Response to 𝑅𝐶2 at 𝜆 = 0.99 and 𝑘 = 5. 
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Figure 5.5 and Figure 5.6 show the converging of ILC algorithm to 𝑅𝐶1 and 𝑅𝐶2 

when eigenvalue of the learning gain matrix 𝜆 = 0.99, and also show tracking progress 

for many iteration numbers 𝑘. The convergence speed of the control system also affect 

the response of the dynamic system which can be changed by with change of 

eigenvalue 𝜆 of the learning gain matrix Γ, as the eigenvalue 𝜆 approach to 1, as ILC 

controller needs more iterations 𝑘 to reach zero error.  

To show the effect of the control system’s convergence speed on the dynamic 

system’s reference, ILC algorithm have applied on the dynamic system with constant 

iteration number 𝑘 = 5, with different eigenvalues 𝜆 = 0.99, 0.95 and 0.90, the results 

of ILC controller to track 𝑅𝐶1 and 𝑅𝐶2 at the mentioned situations are illustrated on 

Figure 5.7 and Figure 5.8.  

 

Figure 5.5: ILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.99 (Iteration Convergence). 
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Figure 5.6: ILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.99 (Iteration Convergence). 

 

Figure 5.7: ILC Response Sensitivity to 𝑅𝐶1 Signal at 𝜆 = 0.99, 0.95, 0.90 , k=1. 
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Figure 5.8: ILC Response Sensitivity to 𝑅𝐶2 Signal at 𝜆 = 0.99, 0.95, 0.90 , k=1. 

As ILC controller will fail to control the dynamic system to track the reference 

in case of any change in one or more of its parameters, so it needs to an identificator 

to calculate the optimum parameters to adapt its output with the new changes, and that 

what it took into consideration in AILC algorithm, the difference between ILC and 

AILC has illustrated in Figure 5.9 and Figure 5.10 under high initial parameters to 

show big error and to show the robustness of AILC. 

 

Figure 5.9: ILC vs AILC for 𝑅𝐶1at 𝜆 = 0.99, k=5 and �̂� = [5; 5]𝑇. 
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Figure 5.10: ILC vs AILC for 𝑅𝐶2at 𝜆 = 0.99, k=5 and �̂� = [5; 5]𝑇 
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equation (4-44), this error value is used to calculate the next identified parameters �̂� 

which will represent the new parameters entering to the ILC controller and the 

mathematical model after been calculated by the equation (4-47), the necessary and 

sufficient conditions ∇2𝐽  and ∇𝐽 respectively will be implemented by equations (4-42) 

and (4-43), and sensitivity of output 𝛾 will be calculated by equation (4-45) after 

finding the sensitivity of state 𝜉 from equation (4-46).  

The sensitivity of state:            𝜉𝑘+1 = Φ̂�̂�𝑘+1𝜉𝑘 +
𝜕𝑓

𝜕�̂�𝑘
 

The sensitivity of output:         γ = Ĉ�̂�𝑘+1𝜉𝑘+1 +
𝜕𝑔

𝜕�̂�𝑘
 

The discretized dynamic system (4-40) consists of functions naturally, so it can 

be described as 𝑓(�̂�) =  �̂�𝑘+1 = Φ̂𝑘(�̂�)�̂�𝑘 + Θ̂𝑘(�̂�)𝑢𝑘, and because we have two 

states and two unknown parameters, the partial derivative of the functions with respect 

to unknown parameters will be [4 × 4] matrix. 

For the two states in the dynamic system, 𝑓(�̂�) = [
𝑓1(�̂�)

𝑓2(�̂�)
] explained in details 

below: 

[
𝑓1(�̂�)

𝑓2(�̂�)
] = [

𝑥𝑘+1
𝑣𝑘+1

] = [
0 1
−𝜔𝑛

2 −2𝜁𝜔𝑛
] [
𝑥𝑘
𝑣𝑘
] + [

0
1
] 𝑢𝑘 (5-3) 

The partial derivative of 𝑓 with respect to unknown parameters is 
𝜕𝑓

𝜕�̂�
=

[
𝜕𝑓1

𝜕�̂�

𝜕𝑓2

𝜕�̂�
]
𝑇

, since there are two unknown parameters �̂� = [𝜁 �̂�𝑛]
𝑇, so the complete 

matrix will be: 

[
 
 
 
𝜕𝑓1

𝜕�̂�
𝜕𝑓2

𝜕�̂� ]
 
 
 
=

[
 
 
 
 
𝜕𝑓1

𝜕𝜁

𝜕𝑓1
𝜕�̂�𝑛

𝜕𝑓2

𝜕𝜁

𝜕𝑓2
𝜕�̂�𝑛]

 
 
 
 

 (5-4) 

The size of equations inside the matrix (5-4) directly depends on the number of 

terms that have applied in discretization process of the matrices Φ and Θ in (4-15) and 

(4-16), the higher the number of discretization terms, the larger the size of the 

functions. Increasing of discretization terms has an effective benefit, where it increases 

the accuracy of the results and reduce the errors, but taking high number of terms will 

complicate the code as well as consume more time in simulation, because of that, just 

two terms have taken in this simulation, and just the result of one term have written in 

(5-5):  
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𝑓1 = 𝑥 + 𝑣𝑑𝑡 

𝑓2 = −𝑣(2�̂�𝑛𝜁𝑑𝑡 − 1) − �̂�𝑛
2𝑥𝑑𝑡 

(5-5) 

The partial derivative of each function with respect to each of the unknown 

parameters in �̂� is shown as follow:  

[
 
 
 
𝜕𝑓1

𝜕�̂�
𝜕𝑓2

𝜕�̂� ]
 
 
 
= [

0  0
   

−2𝑣�̂�𝑛𝑑𝑡  −2�̂�𝑛𝑥𝑑𝑡 − 2𝑣𝜁𝑑𝑡
] (5-6) 

The next system shows the formulas of the matrix above in case of more 

discretization terms:  

 [

𝜕𝑓1

𝜕�̂�
𝜕𝑓2

𝜕�̂�

] =

[
 
 
 ∑

∆𝑡𝑘𝑖

𝑘𝑖!
(
𝜕𝑓1

𝜕�̂�
)
𝑘𝑖𝑘𝑖

𝑖=0  ∑
∆𝑡𝑘𝑖

𝑘𝑖!
(
𝜕𝑓1

𝜕�̂�𝑛
)
𝑘𝑖𝑘𝑖

𝑖=0
   

∑
∆𝑡𝑘𝑖

𝑘𝑖!
(
𝜕𝑓2

𝜕�̂�
)
𝑘𝑖𝑘𝑖

𝑖=0  ∑
∆𝑡𝑘𝑖

𝑘𝑖!
(
𝜕𝑓2

𝜕�̂�𝑛
)
𝑘𝑖𝑘𝑖

𝑖=0 ]
 
 
 

[

𝑥𝑘
 
𝑣𝑘
]  (5-7) 

Where 𝑘𝑖 is discretization term, and 𝑘 refers to ILC iteration number.  

After implementing the new update of the unknown parameters �̂�𝑘+1, it will be 

sent to the ILC controller in order to adapt the input 𝑈𝑘+1 according to the new 

identified parameters, which will affect the matrix 𝐺 due to the change that happened 

in matrices Φ and Θ, the discretized forms of A and B matrices of the continuous-time 

form of the system. The new identified parameters �̂� will reduce the error 𝑒𝑖 that 

calculated by equation (4-44).  

5.3.1 AILC simulation for 𝑹𝑪𝟏at 𝝀 = 𝟎. 𝟗𝟗 

In this part, AILC algorithm behavior with reference signal 𝑅𝐶1 will be shown 

when eigenvalue 𝜆 = 0.99, at this eigenvalue the convergence speed will be slow so 

the control system will need more iterations to reach zero error. The initial identified 

parameters �̂�𝑖 in this part of simulation and the next parts will be taken as �̂�𝑖 =

[0.08 0.22]𝑇. The input signal graph of this part is shown in Figure 5.11, and the 

response of the dynamic system is shown in Figure 5.12, the convergence steps of 

response shown in Figure 5.13. The graph of distance error 𝑒𝑑 is illustrated in 

Figure 5.14, the identified parameters �̂� is shown in Figure 5.15, the error of the 

unknown parameter identificator is shown in Figure 5.16, the velocity of the dynamic 

system to the velocity of the reference signal 𝑅𝐶1 is shown in Figure 5.17, and the error 

of the two velocities 𝑒𝑣 is shown in Figure 5.18.  
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Figure 5.11: AILC Input Signal (U) for 𝑅𝐶1 Signal at 𝜆 = 0.99. 

 

Figure 5.12: AILC Response Sensitivity to 𝑅𝐶1 Signal at 𝜆 = 0.99. 

0.5 1 1.5 2 2.5

-300

-200

-100

0

100

200

300

400

500

Time in (s)

In
p
u
t 
S

ig
n
a
l 
(u

)

AILC input signal (U) to RC1 at eigenvalue=0.99

 

 

Input signal at k=1

Input signal at k=5

Input signal at k=10

0 1 2 3 4 5 6 7 8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time in (s)

S
y
s
te

m
 r

e
s
p
o
n
s
e

AILC system response to RC1 signal at eigenvalue=0.99

 

 

RC1

System response at k=1

System response at k=5

System response at k=10



57 

 

 

Figure 5.13: AILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.99 (zoomed). 

 

Figure 5.14: Distance Error 𝑒𝑑 for 𝑅𝐶1 at 𝜆 = 0.99. 
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Figure 5.15: Identified Parameters �̂� to 𝑅𝐶1 at 𝜆 = 0.99. 

 

Figure 5.16: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶1 at 𝜆 = 0.99. 
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Figure 5.17: The Velocity (v) Response to Velocity of 𝑅𝐶1 at 𝜆 = 0.99. 

 

Figure 5.18: Velocity Error 𝑒𝑣 for 𝑅𝐶1 at 𝜆 = 0.99. 
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Figure 5.22, the identified parameters �̂�  is shown in Figure 5.23, the error of the 

unknown parameter identificator is shown in Figure 5.24, the velocity of the dynamic 

system to the velocity of the reference signal 𝑅𝐶1 is Figure 5.25, and the error of the 

two velocities 𝑒𝑣 is shown in Figure 5.26.  

 

Figure 5.19: AILC Input Signal (U) for 𝑅𝐶1 Signal at 𝜆 = 0.95. 

 

Figure 5.20: AILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.95. 
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Figure 5.21: AILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.95 (zoomed). 

 

Figure 5.22: Distance Error 𝑒𝑑 for 𝑅𝐶1 at 𝜆 = 0.95. 

 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time in (s)

S
y
s
te

m
 r

e
s
p
o
n
s
e

AILC system response to RC1 signal at eigenvalue=0.95

 

 

RC1

System response at k=1

System response at k=5

System response at k=10

0 0.5 1 1.5 2 2.5 3 3.5

-2

-1.5

-1

-0.5

0

0.5

Time in (s)

D
is

ta
n
c
e
 e

rr
o
r

Distance Error (ed) of (AILC) at RC1 and eigenvalue=0.95

 

 

Distance Error at k=1

Distance Error at k=5

Distance Error at k=10



62 

 

 

Figure 5.23: Identified Parameters �̂� to 𝑅𝐶1 at 𝜆 = 0.95. 

 

Figure 5.24: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶1 at 𝜆 = 0.95. 
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Figure 5.25: The Velocity (v) Response to Velocity of 𝑅𝐶1 at 𝜆 = 0.95. 

 

Figure 5.26: Velocity Error 𝑒𝑣 for 𝑅𝐶1 at 𝜆 = 0.95. 
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unknown parameter identificator in Figure 5.32, the velocity of the dynamic system to 

the velocity of the reference signal 𝑅𝐶1 is Figure 5.33, and the error of the two 

velocities 𝑒𝑣 is shown in Figure 5.34. 

 

Figure 5.27: AILC Input Signal (U) for 𝑅𝐶1 Signal at 𝜆 = 0.90. 

 

Figure 5.28: AILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.90. 
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Figure 5.29: AILC Response to 𝑅𝐶1 Signal at 𝜆 = 0.90 (zoomed). 

 

Figure 5.30: Distance Error 𝑒𝑑 for 𝑅𝐶1 at 𝜆 = 0.90. 
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Figure 5.31: Identified Parameters �̂� to 𝑅𝐶1 at 𝜆 = 0.90. 

 

Figure 5.32: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶1 at 𝜆 = 0.90. 
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Figure 5.33: The Velocity (v) Response to Velocity of 𝑅𝐶1 at 𝜆 = 0.90. 

 

Figure 5.34: Velocity Error 𝑒𝑣 for 𝑅𝐶1 at 𝜆 = 0.90. 
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Figure 5.36 and Figure 5.37. The distance error 𝑒𝑑 is illustrated in Figure 5.38, the 

identified parameters �̂�  is shown in Figure 5.39, the error of the unknown parameter 

identificator is shown in Figure 5.40, the velocity of the dynamic system to the velocity 

of the reference signal 𝑅𝐶2 is Figure 5.41, and the error of the two velocities 𝑒𝑣 is 

shown in Figure 5.42. 

 

Figure 5.35: AILC Input Signal (U) for 𝑅𝐶2 Signal at 𝜆 = 0.99. 

 

Figure 5.36: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.99. 
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Figure 5.37: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.99 (zoomed). 

 

Figure 5.38: Distance Error 𝑒𝑑 for 𝑅𝐶2 at 𝜆 = 0.99. 
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Figure 5.39: Identified Parameters �̂� to 𝑅𝐶2 at 𝜆 = 0.99. 

 

Figure 5.40: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶2 at 𝜆 = 0.99. 
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Figure 5.41: The Velocity (v) Controlled by (AILC) at 𝑅𝐶2 and 𝜆 = 0.99. 

 

Figure 5.42: Velocity Error 𝑒𝑣 for 𝑅𝐶2 at 𝜆 = 0.99. 
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parameter identificator is shown in Figure 5.48, the velocity of the dynamic system to 

the velocity of the reference signal 𝑅𝐶2 is Figure 5.49, and the error of the two 

velocities 𝑒𝑣 is shown in Figure 5.50. 

 

Figure 5.43: AILC Input Signal (U) for 𝑅𝐶2 Signal at 𝜆 = 0.95. 

 

Figure 5.44: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.95. 
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Figure 5.45: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.95 (zoomed). 

 

Figure 5.46: Distance Error 𝑒𝑑 for 𝑅𝐶2 at 𝜆 = 0.95. 
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Figure 5.47: Identified Parameters �̂� to 𝑅𝐶2 at 𝜆 = 0.95. 

 

Figure 5.48: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶2 at 𝜆 = 0.95. 
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Figure 5.49: The Velocity (v) Controlled  by (AILC) at 𝑅𝐶2 and 𝜆 = 0.95. 

 

Figure 5.50: Velocity Error 𝑒𝑣 for 𝑅𝐶2 at 𝜆 = 0.95. 
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Figure 5.54, the identified parameters �̂�  is shown in Figure 5.55, error of the unknown 

parameter identificator is shown in Figure 5.56, the velocity of the dynamic system to 

the velocity of the reference signal 𝑅𝐶2 is Figure 5.57, and the error of the two 

velocities 𝑒𝑣 is shown in Figure 5.58. 

 

Figure 5.51: AILC Input Signal (U) for 𝑅𝐶2 Signal at 𝜆 = 0.90. 

 

Figure 5.52: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.90. 
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Figure 5.53: AILC Response to 𝑅𝐶2 Signal at 𝜆 = 0.90 (zoomed). 

 

Figure 5.54: Distance Error 𝑒𝑑 for 𝑅𝐶2 at 𝜆 = 0.90. 
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Figure 5.55: Identified Parameters �̂� to 𝑅𝐶2 at 𝜆 = 0.90. 

 

Figure 5.56: The Error 𝑒𝑖 Between 𝑦 and �̂� to 𝑅𝐶2 at 𝜆 = 0.90. 
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Figure 5.57: The Velocity (v) Controlled  by (AILC) at 𝑅𝐶2 and 𝜆 = 0.90. 

 

Figure 5.58: Velocity Error 𝑒𝑣 for 𝑅𝐶2 at 𝜆 = 0.90. 
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taken in this part of the simulation, these values will be farther from the main value 

that it depended on most parts of this simulation in order to show the effectiveness of 

AILC algorithm. 

The identified parameters of the signal 𝑅𝐶1 at 𝜆 = 0.99 with the three sets are 

shown in Figure 5.59, when eigenvalue 𝜆 = 0.95 the identified parameters graph will 

be as shown in Figure 5.60, and the Figure 5.61 shows the identified parameters when 

eigenvalue 𝜆 = 0.90. 

 

Figure 5.59: Identified Parameters for 𝑅𝐶1 Signal at 𝜆 = 0.99 and k=3. 

 

Figure 5.60: Identified Parameters for 𝑅𝐶1 Signal at 𝜆 = 0.95 and k=3. 
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Figure 5.61: Identified Parameters for 𝑅𝐶1 Signal at 𝜆 = 0.90 and k=3. 

The same previous process will be taken for the second reference signal 𝑅𝐶2 . 

The identified parameters when the eigenvalue 𝜆 = 0.99, the three sets’ results are 

shown in Figure 5.62, when eigenvalue 𝜆 = 0.95 the identified parameters graph will 

be as shown in Figure 5.63, and the Figure 5.64 shows the identified parameters when 

eigenvalue 𝜆 = 0.90. 

 

Figure 5.62: Identified Parameters for 𝑅𝐶2 Signal at 𝜆 = 0.99 and k=3. 
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Figure 5.63: Identified Parameters for 𝑅𝐶2 Signal at 𝜆 = 0.95 and k=3. 

 

Figure 5.64: Identified Parameters for 𝑅𝐶2 Signal at 𝜆 = 0.90 and k=3. 

5.4 Result Discussion 

The reference signals 𝑅𝐶1 and 𝑅𝐶2 have tracked by ILC algorithm when the 

dynamic system has no unknown parameters as shown in Figure 5.3 and Figure 5.4, 

the progress of tracking with the iteration number for both reference signals are 

illustrated in Figure 5.5 and Figure 5.6.  

The comparison between ILC and AILC has shown in Figure 5.9 and 

Figure 5.10, where they show the weak point of ILC and how it failed to control the 

dynamic system when has unknown parameters. From the results of AILC simulation 
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it is obvious that the algorithm has succeeded to track what ILC failed on, and has 

adapted itself by identifying the new parameters to track the same reference signals 

and the same dynamic system with unknown parameters and at difference eigenvalues 

as seen in Figure 5.12, Figure 5.20 and Figure 5.28 for 𝑅𝐶1 , and in Figure 5.36, 

Figure 5.44 and Figure 5.52 for 𝑅𝐶2 .  

In some conditions AILC algorithm shows more efficient results than other ones, 

in some conditions the algorithm does not need many iterations to reach to zero error, 

in the graphs shown in Figure 5.13, Figure 5.21 and Figure 5.29, AILC examined under 

𝑅𝐶1 signal for three numbers of iterations 𝑘 (1, 5 and 10), and for different eigenvalues 

(0.99, 0.95 and 0.90), the results were, as the eigenvalue of the learning gain matrix Γ 

is low as the controller AILC needs less iteration number to reach zero error. The same 

results have implemented when 𝑅𝐶2 is used, see Figure 5.37, Figure 5.45 and 

Figure 5.53.  

The porous of the control system is to track the position of the dynamic system, 

so it is important to get the zero error in distance 𝑥 tracking. The results of the distance 

error 𝑒𝑑 are illustrated under the same circumstances and for the two reference 

signals 𝑅𝐶1 and 𝑅𝐶2 as well, see Figure 5.14, Figure 5.22, Figure 5.30, for 𝑅𝐶1, and  

Figure 5.38, Figure 5.46 and Figure 5.54 for 𝑅𝐶2 , where the error will reach to zero at 

the small eigenvalues faster than the big ones. 

By considering the results of velocity error 𝑒𝑣 for 𝑅𝐶1 shown in Figure 5.18, 

Figure 5.26 and Figure 5.34, and for 𝑅𝐶2 shown in Figure 5.42, Figure 5.50 and 

Figure 5.58, it is obvious that the velocity error doesn’t reach to zero, this error is due 

to several reasons, one of them is the discretization process which has its own errors 

especially when a small number of terms have taken in discretization, in this simulation 

just two terms have taken in calculation for simplicity and faster calculation. The 

second reason is the derivation. Since the velocity comes from the derivation of the 

distance, the distance errors will be doubled and appear as we have seen in the last 

figures, and also the errors in the identified parameters are another reason for that 

velocity errors. 

The identificator has the ability to adapt the unknown parameters even when 

they have different initial values. In the simulation, the AILC have simulated at initial 

parameters �̂�0 = [0.08 0.22]𝑇, then the ability of the identificator have been 
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examined by another pairs [0.30 0.40]𝑇 and [0.15 0.25]𝑇 and the results as seen 

in Figure 5.59, Figure 5.60, Figure 5.61, Figure 5.62, Figure 5.63, and Figure 5.64. 

Simulation results comparison is summarized in Table 5-1 below: 

 Table 5-1: Simulation Percentages of AILC Algorithm.  

𝑹𝑪 𝝀 
Iterations 

(k) 

𝒎𝒂𝒙(𝒆𝒑)

𝒎𝒂𝒙(𝑹𝑪)
% 

𝒎𝒂𝒙(𝒆𝒗)

𝒎𝒂𝒙(𝑹�̇�)
% 

𝒎𝒂𝒙(𝒆𝒊)

𝒎𝒂𝒙(�̂�)
% 

𝒎𝒂𝒙(𝒆𝒊)

𝒎𝒂𝒙(�̂�𝒏)
% 

𝑹𝑪𝟏  

0.99 

1 45.4026 70.6933 0.00001 0.00001 

5 0.0395 31.2582 0.0407 0.0159 

10 0.0072 15.8328 0.0125 0.0050 

0.95 

1 0.0198 30.7313 0.0459 0.0195 

5 0.000534 7.4695 0.00001 0.00001 

10 0.0001625 7.3999 0.00001 0.00001 

0.90 

1 0.0093 15.0273 0.0040 0.0016 

5 0.00015918 7.3999 0.00001 0.00001 

10 0.00010292 7.3999 2.2115 0.000001 

𝑹𝑪𝟐  

0.99 

1 220.4697 32.2570 0.00001 0.00001 

5 0.0694 71.8004 0.00001 0.00001 

10 0.0043 17.7502 0.00001 0.00001 

0.95 

1 0.0573 17.7933 0.00001 0.00001 

5 0.0090 17.7502 0.3302 0.1268 

10 0.000218 17.7502 0.00001 0.00001 

0.90 

1 0.0134 17.7502 0.0278 0.0161 

5 0.000206 17.7502 0.00001 0.00001 

10 0.000655 17.7502 0.6002 0.2457 

 

Where: 𝒆𝒑: Position error, the difference between the position of the dynamic 

system and the reference signal 𝑋 − 𝑅𝐶.  

 𝒆𝒗: Velocity error, the difference between the velocity of the dynamic 

system and the velocity of the reference signal 𝑉 − 𝑅�̇�. 

 𝒆𝒊: The difference between the output of the dynamic system and the 

identificator. 
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CHAPTER SIX  

6. CONCLUSION AND RECOMMENDATIONS 

In this chapter, the conclusion of the thesis is illustrated, and what kind of ideas 

could be helpful for future researchers to be followed them. 

6.1 Conclusion  

From the illustrated results in this thesis, it has been considered that AILC 

algorithm succeeded to control the SISO time-invariant dynamic system within the 

illustrated operating conditions. AILC algorithm succeeded in overcoming the 

obstacles that ILC failed in, where AILC has controlled the dynamic system with 

unknown parameters and get the same results that ILC algorithm got on the same 

dynamic system and in the same conditions before its parameters have changed. The 

explained learning gain matrix was able to adapt the new parameters and change these 

values in the system in order to correct the errors in signal tracking. It has been clarified 

that convergence speed of the controller is directly proportional to the speed of 

response, and inversely proportional to the iteration number, the faster the controller 

convergence speed, the faster response and fewer iterations number. Strength and 

weakness points of AILC algorithm have described and classified in the result 

discussion in terms of controller convergence speed, iteration number, and the shape 

of reference signals. 

6.2 Recommendations 

1. Iterative learning control algorithm (ILC) cannot obtain the stability of 

unstable systems without merging with one of the conventional control 

theories, so, this algorithm can be edited to be applicable for unstable 
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repetitive dynamic systems have unknown parameters by merging it with one 

of the conventional control theories to it.  

2. Developing AILC to be able to control time-varying systems.  

3. AILC algorithm could be developed to be applicable to nonlinear continuous 

systems by using integral equations.  

4. Checking the convergence ability of the parameters estimation problem and 

controlling it with the Lyapunov method. 

5. Developing the algorithm to control dynamic systems that have robustness 

problem and stochastic noise. 
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