ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

Gökalp BULUT

KÖPRÜ AYAKLARINDAKİ OYULMALAR ÜZERİNE YÖNTEM ARAŞTIRILMASI

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

ADANA-2017

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KÖPRÜ AYAKLARINDAKİ OYULMALAR ÜZERİNE YÖNTEM ARAŞTIRILMASI

Gökalp BULUT

YÜKSEK LİSANS TEZİ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Bu Tez 10/02/2017 Tarihinde Aşağıdaki Jüri Üyeleri Tarafından Oybirliği/Oyçokluğu ile Kabul Edilmiştir.

Doç. Dr. Neslihan SEÇKİN Doç. Dr. Hatice ÇAĞATAY Doç. Dr. Selahattin KOCAMAN DANIŞMAN ÜYE ÜYE

Bu Tez Enstitümüz İnşaat Mühendisliği Anabilim Dalında hazırlanmıştır. **Kod No:**

Prof. Dr. Mustafa GÖK Enstitü Müdürü

Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir.

YÜKSEK LİSANS TEZİ

ÖΖ

KÖPRÜ AYAKLARINDAKİ OYULMALAR ÜZERİNE YÖNTEM ARAŞTIRILMASI

Gökalp BULUT

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Danışman	: Doç. Dr. Neslihan SEÇKIN
	Yıl: 2017, Sayfa: 151
Jüri	: Doç. Dr. Neslihan SEÇKİN
	: Doç. Dr. Hatice ÇAĞATAY
	: Doç. Dr. Selahattin KOCAMAN

Köprü ayaklarındaki oyulmanın analizi için cesitli geleneksel metodlar (örneğin Laursen, Neil, Jain ve Fischer Gunyakti, Johnson, Melville, Richardson ve Davis, Yanmaz) geliştirilmiştir. Bu çalışmada, otoyol ağında yer alan 1989 yılında inşaa edilmiş Ceyhan köprüsünün ayaklarındaki oyulma havza özellikleri dikkate alınarak literatürde geniş yer bulan bu yöntemler yardımı ile hesaplanmıştır. Burada uygulanan bu geleneksel yöntemlerin sonuçları da gerçek saha ölçümleri ile karşılaştırılmıştır. Ayrıca Ceyhan Köprüsü ayaklarındaki oyulmanın belirlenmesinde HEC-RAS yazılımı da kullanılmıştır. Program aracılığıyla, ayaklardaki su kotu ve ayaklar etrafındaki oyulma miktarı hesaplanmıştır. Elde sonuçlara göre, köprü oyulma problemine karşı güvenilirlik edilen değerlendirilmiştir. Elde edilen sonuçlar, Laursen, Günyaktı ve Yanmaz yönteminin diğerlerine kıyasla en iyi sonucu verdiğini göstermiştir.

Anahtar Kelimeler: Ceyhan Köprüsü, Köprü Ayaklarında Oyulma, HEC-RAS

Ι

ABSTRACT

MSc THESIS

RESEARCH METHOD ON SCOUR AT BRIDGE PIERS

Gökalp BULUT

ÇUKUROVA UNIVERSITY INSTITUTE OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF CIVIL ENGINEERING

Supervisor	: Assoc. Prof. Dr. Nesliha SEÇKIN
	Year: 2017, Pages: 151
Jury	: Assoc. Prof. Dr. Neslihan SEÇKİN
	: Assoc. Prof. Dr. Hatice ÇAĞATAY
	: Assoc. Prof. Dr. Selahattin KOCAMAN

Numerous conventional methods, such as Laursen, Neil, Jain ve Fischer Gunyakti, Johnson, Melville, Richardson and Davis, Yanmaz methods, have been developed for the analysis of scour at bridge piers. In current work, the scour at the pier of the Ceyhan Bridge which was built in 1989 in the Motorway Network was calculated with the help of those methods widely used in literature considering the basin characteristics. The results of these conventional methods applied herein were also compared with the actual field measurements. In addition, HEC-RAS software was also used in determining the scour at the pier of the Ceyhan Bridge. Via the program, the amount of water debris on the pier and the amount of the scour around pier were calculated. According to the obtained results, the reliability against bridge scour problem was evaluated. The results showed that Yanmaz, Gunyakti and Laursen methods gave best results in comparison with the others.

Key Words: Ceyhan Bridge, Scour at bridge piers, HEC-RAS

GENİŞLETİLMİŞ ÖZET

Bir köprünün, büyüklüğü ne olursa olsun, mühendislik ve ekonomi açıdan iyi bir şekilde projelendirilmesi için gerekli hidrolik çalışmalar henüz gereken önemi kazanmamıştır. Son yıllarda ağır hasar gören veya yıkılan akarsu köprüleri için ürütülen istatistiksel çalışmalar, hasar nedenlerinin çoğunun hidrolik etkenlerden kaynaklandığını açığa çıkarmıştır. Yapılan çalışmalarda hasar nedenlerinin %60 kadarı taban seviyesi alçalmaları ve köprü açıklığındaki yerel oyulmalar olmak üzere hidrolik etkenlere bağlanmıştır. Konunun önemi nedeniyle 1950'li yılların başından itibaren köprü ayakları etrafındaki oyulma problemleri deneysel olarak incelenmeye başlanmıştır. 1970'lerden sonra ivme kazanan bu konu güncelliğini daha da artırarak günümüze kadar uzanmıştır.

Köprü ayağı temellerinin emniyetli bir şekilde tasarlanması için ayaklar etrafındaki maksimum oyulma derinliğinin tahmin edilmesi gerekir. Ayaklar etrafındaki oyulma mekanizmasının oldukça fazla araştırılmış olmasına rağmen, olayın karmaşık olması nedeniyle henüz genel bir ifade geliştirilmemiştir. Bunun başlıca nedeni, ayaklar etrafındaki türbülanslı akımın üç boyutlu olması ve zamanla değişen katı madde taşıyan akımın oyulma çukuruyla girişimidir (Yanmaz ve Altınbilek, 1991).

Konuyla ilgili bilim adamları çalışmalarında birbirinden farklı parametreler kullandıklarından ve yaptıkları değişik kabullerden dolayı oyulmaya ilişkin bağıntılarda birbirinden çok farklı sonuçlar vermektedirler. Bu durum ise hesaplanan oyulma miktarının güven düzeyini azaltmaktadır. Köprü ayakları etrafında oluşan maksimum oyulma problemi 1950'li yılların başından itibaren çalışılmış olmasına rağmen, konunun karmaşık olması nedeniyle henüz tüm koşullara uygulanabilecek genel bir yöntem geliştirilememiştir. Genellikle laboratuar verisi kullanılarak türetilmiş olan bağıntılar herhangi bir özel durumda birbirinden oldukça farklı sonuçlar verebilmektedir. Her yöntem kendi türetilme koşullarında geçerli olup, faklı akım ve taban malzemesi değerlerinde farklı sonuçlar vermektedir. Laboratuar ortamında çok geniş akım ve taban malzemesi özellikleriyle, değişik akarsu güzergahı, en-kesit detayı, vb. koşulları çalışmanın zorluğu düşünüldüğünde, pratikte belli bir proje yapılacaksa yörenin kendine özgü kosullarına benzer model kosullarında calısılmıs bağıntılar kullanılmalıdır. Taskın esnasındaki tehlike nedeniyle yüksek akım koşullarında arazide ölçülmüş oyulma verisi çok azdır. Ayrıca bu verilerin güvenilirliği düşük olup, ölçülen oyulma derinliğinin olası maksimum değer olup olmadığı bilinmemektedir. Bu nedenle, boyut analizine göre türetilecek bir bağıntının arazi doneleriyle hassas kalibrasyonu yapılamamaktadır. Oyulma analizinin sağlıklı yapılabilmesi için sadece köprüye yakın civarındaki değil, memba ve mansaptaki tüm koşullar, akarsu kullanımı, mevcut ve yapımı olası hidrolik yapılar ve bunların etkileri, havzanın kullanımı ve hidrolojik verim bilinmeli ve köprü üzerine etkileri araştırılmalıdır. Bütün bu olayların hidrolojik boyutu havza kullanımı ve tasarım akım parametrelerinin belirlenmesiyle sınırlıdır. Problemin hidrolik boyutu ise akımların modellenmesi, su yüzü profillerinin belirlenmesi, taban malzemesi özelliklerinin belirlenmesi, katı madde taşınım miktarının saptanması ve elde edilen tüm bilgileri kullanarak toplam oyulma derinliğinin belirlenmesidir.

Bu çalışmada örnek bir uygulama ile köprü ayaklarının akıma etkileri incelenecektir. Bu çalışmanın yapılmasında HEC-RAS programı kullanılacaktır. Program sayesinde örnek uygulamadaki akarsuyun su yüzeyi profili, bazı akım değerleri, köprünün akıma olan etkisi ve oyulma miktarları hesaplanacaktır. Elde edilen sonuçların yorumları yapılarak köprünün oyulma problemlerine karşı hassas ya da kritik olup olmadığı yorumlanacaktır.

TEŞEKKÜR

Tez çalışmam boyunca desteğini hissettiğim, danışman hocam Sn. Doç. Dr. Neslihan SEÇKİN'e, eşim Aslı BULUT'a, annem Ayşe BULUT'a, babam Ahmet BULUT'a, ailemin diğer fertlerine,

Köprü Hidroliği kitabından ziyadesiyle istifade ettiğim Sn. Prof. Dr. A. Melih YANMAZ'a,

Çalışmamda yardımlarına başvurduğum Sn. Göksu SOYDAN'a, Sn. Emre TOPÇU'ya, Sn. Cemal KİRAZA'a, Sn. Nurettin ŞEKER'e, Sn. Bülent GÜMÜŞÖZ'e, Sn. Mustafa ŞAHİN'e, Sn. Murat IŞIK'a,

Görüş ve önerilerini paylaşan arkadaşlarıma, Çukurova Üniversitesi İnşaat Mühendisliği Bölümü çalışanlarına, Çukurova Üniversitesi Fen Bilimleri Enstitüsü çalışanlarına,

Teşekkürü bir borç bilirim.

Çalışmamı henüz anne karnında olan NİL kızıma ithaf ederim.

İÇİNDEKİLER

SAYFA

ÖZI
ABSTRACTII
GENİŞLETİLMİŞ ÖZETIII
TEŞEKKÜRV
İÇİNDEKİLER VI
ÇİZELGELER DİZİNİVIII
ŞEKİLLER DİZİNİX
SİMGELER VE KISALTMALARXII
1. GİRİŞ1
2. ÖNCEKİ ÇALIŞMALAR
2.1. Köprü Açıklığında Taban Oyulması5
2.2. Köprü Açıklığında Daralma Oyulması
2.3. Köprü Ayakları Etrafındaki Yerel Oyulmalar11
2.3.1. Oyulma Mekanizması
2.3.2. Oyulma Parametrelerinin Boyut Analizi
2.3.2.1. Yaklaşım Akım Hızının Etkisi15
2.3.2.2. Yaklaşım Akım Derinliğinin Etkisi16
2.3.2.3. Taban Malzemesi Dağılımının Etkisi16
2.3.2.4. Ayak ve Dane Büyüklüklerinin Oyulmaya Etkisi18
2.3.2.5. Ayak Şekli ve Narinliğinin Oyulma Derinliğine Etkisi19
2.3.2.6. Akımın Hücum Açısının Oyulma Derinliğine Etkisi21
2.3.2.7. Zaman Etkisi
3. MATERYAL VE METOD
3.1. Orta Ayaklar İçin Oyulma Bağlantıları23
3.2. Köprü Ayaklarındaki Oyulmalara Karşı Alınabilecek Tedbirler30
3.3. Çalışma Alanı Hakkında Genel Bilgi35
3.3.1. Havzanın Konumu
* **

3.3.2. Havzanın Akım Özellikleri	5
3.3.3. Havzanın İklim ve Bitki Örtüsü3	7
3.4. Çalışma Sahası Hakkında Genel Bilgi3	7
3.4.1. Ceyhan Köprüsü Özellikleri3	7
3.4.2. Ceyhan Nehri Taban Malzemesi ve Danelerin Grup Özellikleri4	5
3.5. Arazi Çalışmalarında Kullanılan Yöntemler4	6
3.5.1. Oyulma Ölçüm Yöntemi4	6
3.5.2. Nehir Rejiminin Gözlemlenmesi4	8
3.6. HEC-RAS Yöntemi	9
4. BULGULAR VE TARTIŞMA	3
4.1. Ölçüm Çalışmaları5	3
4.2. LN3 25 Yıllık Debiye Göre Orta Ayaklardaki Oyulmaların Hesabı	6
4.2.1. Tabandaki Oyulma Şeklinin Tespiti	9
4.2.2. Daralma Oyulmasının Hesabı6	0
4.2.3. Orta Ayaklar Etrafındaki Oyulmanın Hesabı	2
4.3. LN3 100 Yıllık Debiye Göre Orta Ayaklardaki Oyulmaların Hesabı6	8
4.3.1. Tabandaki Oyulma Şeklinin Tespiti70	0
4.3.2. Daralma Oyulmasının Hesabı7	2
4.3.3. Orta Ayaklar Etrafındaki Oyulmanın Hesabı7	2
4.4. HEC-RAS Analiz Sonuçları7	9
4.4.1. LN3 25 Yıllık Akım Koşullarında HEC-RAS7	9
4.4.2. LN3 100 Yıllık Akım Koşullarında HEC-RAS8	0
5. SONUÇLAR VE ÖNERİLER8	7
5.1. Sonuçlar	7
5.2. Öneriler	9
KAYNAKLAR9	1
ÖZGEÇMİŞ9	5
EKLER	6

ÇİZELGELER DİZİN

SAYFA

Çizelge 2.1. Laursen denklemindeki k1 katsayısı	10
Çizelge 2.2. Ettema'nın rölatif oyulma derinlikleri	17
Çizelge 2.3. Ayak çapına bağlı oyulma derinlikleri ilişkisi	19
Çizelge 2.4. Ayak formu katsayıları	20
Çizelge 3.1. Orta ayaklar etrafındaki oyulma bağıntıları	23
Çizelge 3.2. Taban şekil katsayısı	30
Çizelge 3.3. Türkiye'nin havzalarına ait teknik veriler	
Çizelge 3.4. Ceyhan havzasına ait teknik veriler	37
Çizelge 4.1. LN3 Q25 Ayaklardaki su kotu yükseklikleri	56
Çizelge 4.2. LN3 Q ₁₀₀ Ayaklardaki su kotu yükseklikleri	68

ŞEKİLLER DİZİNİ

SAYFA

Şekil 1.1.	Zonguldak, Çaycuma köprüsü, sel afeti,	2
Şekil 1.2.	Adıyaman, Göksu Köprüsü, ayak oyulması,	2
Şekil 2.1.	Plak tipli köprülerde oyulma kesit görünüş	5
Şekil 2.2.	Germe kiriş tipli köprülerde ayak oyulması kesit görünüş	6
Şekil 1.3.	Oyulma derinliği grafiği 1	7
Şekil 1.4.	Oyulma derinliği grafiği 2	8
Şekil 2.5.	Daralma oyulması	9
Şekil 2.6.	Bir köprü ayağı etrafındaki çevrintiler ve oyulma çukuru	12
Şekil 2.7.	Rölatif oyulma derinliği grafiği	16
Şekil 2.8.	Dane büyüklüğü dağılım eğrisi	18
Şekil 2.9.	Ayak genişliğinin hücum açısına göre değişimi.	21
Şekil 3.1.	Keson temel	31
Şekil 3.2.	Birbirine bağlanmış beton plaklar	32
Şekil 3.3.	Ayak etrafındaki riprap kaplama	32
Şekil 3.4.	Memba kazıkları	33
Şekil 3.5.	Memba plakaları	33
Şekil 3.6.	Ayak üzerinde dairesel plaka	34
Şekil 3.7.	Ayakta yarık oluşturulması	34
Şekil 3.8.	Türkiye'nin havza haritası	35
Şekil 3.9.	TAG otoyolu, Ceyhan nehri kesişimi, CitySurf KGM	
Şekil 3.10.	Ceyhan nehri köprüsü sağ platform proje onay kapak	
Şekil 3.11.	Ceyhan nehri köprüsü sol platform proje onay kapak	40
Şekil 3.12.	Ceyhan nehri köprüsü sağ platform boy profil	41
Şekil 3.13.	Ceyhan nehri köprüsü sol platform boy profil	42
Şekil 3.14.	Ceyhan nehri köprüsü nehir açıklığı profili	43
Şekil 3.15.	Ceyhan nehri batimetrisi	44
Şekil 3.16.	Ceyhan köprüsünün memba kısmına ait zemin görüntüsü	45

Şekil 3.17.	Ceyhan nehri zemin gradasyon grafiği	45
Şekil 3.18.	DSİ ve EİEİ arazi ölçüm aracı ile yapılan bir ölçüm	46
Şekil 3.19.	Ölçüm metodunun grafiksel gösterimi	47
Şekil 3.20.	Akarsuda yüzey dalgasının zamana bağlı yayılımı	48
Şekil 3.21.	HEC-RAS 5.0.3 Masaüstü ikon görünümü	49
Şekil 3.22.	HEC-RAS 5.0.3 Sürümü masaüstü program arayüz görünümü	49
Şekil 3.23.	HEC-RAS 5.0.3 Analiz menüsü	50
Şekil 4.1.	Kritik rejimde saha gözlemleri	53
Şekil 4.2.	Nehir rejiminde saha gözlemleri	54
Şekil 4.3.	Ceyhan köprüsü üzerinde yapılan ölçümlere ait görüntüler	55
Şekil 4.4.	Debi kesit alanının hesaplanması	57
Şekil 4.5.	Ayaklardaki su kotu yükseklikleri Q25	58
Şekil 4.6.	Ceyhan köprüsü kenar ayak taş tahkimat	61
Şekil 4.7.	Ayaklardaki su kotu yükseklikleri Q ₁₀₀	69
Şekil 4.8.	HEC-RAS Q25 Yıllık akim koşullarının hesaplama arayüzü	79
Şekil 4.9.	HEC-RAS Q25 Köprü ayakları oyulma analiz sonuç ekranı	79
Şekil 4.10.	HEC-RAS Q ₂₅ Köprü ayakları oyulma analiz sonuç raporu	80
Şekil 4.11.	HEC-RAS Q ₁₀₀ Yıllık akim koşullarının hesaplama arayüzü	80
Şekil 4.12.	HEC-RAS Q ₁₀₀ Köprü ayakları oyulma analiz sonuç ekranı	81
Şekil 4.13.	HEC-RAS Q_{100} Köprü ayakları oyulma analiz sonuç raporu	81
Şekil 4.14.	Sonuçların karşılaştırılması grafiği Q25	82
Şekil 4.15.	En yakın sonuçların karşılaştırma grafiği Q25	83
Şekil 4.16.	Sonuçların karşılaştırılması grafiği Q ₁₀₀	84
Şekil 4.17.	En yakın sonuçların karşılaştırma grafiği Q_{100}	85

SİMGELER VE KISALTMALAR

b	: Köprü orta ayak genişliği
b_t	: α hücum açısı altında bir ayağın etkili uzunluğu
d_0	: Yaklaşım akım derinliği
d _m	: Ortalama kum dane çapı
d ₅₀	: Yatak malzemesinin ağırlıkça %50'sinin geçtiği elek çapı
d ₉₀	: Yatak malzemesinin ağırlıkça %90'ının geçtiği elek çapı
f	: Tabanın başlangıç konumundan itibaren ölçülen oyulma derinliği
Fr	: Froude sayısı
Fr ₁	: Yaklaşım kesitindeki Froude sayısı
g	: Yerçekimi ivmesi
h	: Ayak membasındaki akım derinliği
H _{dc}	: Daralma oyulması
H _h	: Gelen akım doğrultusunda arka taraftaki kazığın ön yüzünde
	oluşan oyulma
H _{dmax}	: Denge halindeki maksimum oyulma derinliği
k	: Boyutlu hava direnci katsayısı
k _s	: Eşdeğer kumul pürüzlülüğü
Κ	: Akarsu tabanındaki kayanın yapısı ile ilgili bir katsayı
K _d	: Tane çapı büyüklüğü için düzeltme katsayısı
K _I	: Akım şiddeti düzeltme katsayısı
K _G	: Kenar ayaklar için akarsu enkesit geometrisi faktörü
Ks	: Ayak form katsayısı
\mathbf{K}_{yb}	: Akım derinliği ve ayak genişliğine oranına bağlı düzeltme sayısı
K_{α}	: Verev açısı etki katsayısı
K_{θ}	: Kenar ayaklarda akım yaklaşım açısı faktörü
Ks	: Taban malzemesi tane dağılım etkisi katsayısı
•	

N_s	: Sediment sayısı
n^*	: Yaklaşım akım kanalındaki Manning pürüzlülük katsayısı
Q	: Toplam debi
Re	: Reynolds sayısı
\mathbf{S}_{c}	: Kontrol hacminden çıkan sürüntü yükü
\mathbf{S}_{g}	: Kontrol hacmine giren sürüntü yükü
t	: Oyulma derinliği
u	: Ortalama akım hızı
u _a	: Tane dağılımı büyük akarsuda zırhlanan malzemede en fazla
	oyulma yapan akım hızı
	· Kritik ortalama akım hızı
u_c v c y a u_{kr}	
$u_c veya u_{kr}$ u_{*c}	: Kritik kayma gerilmesi hızı
u_c veya u_{kr} u_{*c} u_*	: Kritik kayma gerilmesi hızı : Kayma gerilmesi hızı
u_c veya u_{kr} u_{*c} u_* W_1	 : Kritik ortalana akını nızı : Kritik kayma gerilmesi hızı : Kayma gerilmesi hızı : Köprü yapısında yaklaşım kesitindeki ortalama genişlik
u_c veya u_{kr} u_{*c} u_* W_1 W_2	 : Kritik ortalana akin inzi : Kritik kayma gerilmesi hızı : Kayma gerilmesi hızı : Köprü yapısında yaklaşım kesitindeki ortalama genişlik : Köprü yapısında daralma kesitindeki ortalama genişlik
u_c veya u_{kr} u_{*c} u_* W_1 W_2 α	 : Kritik ortalana akin inzi : Kritik kayma gerilmesi hızı : Kayma gerilmesi hızı : Köprü yapısında yaklaşım kesitindeki ortalama genişlik : Köprü yapısında daralma kesitindeki ortalama genişlik : Akımın ayak ekseni ile yaptığı açı
u_c veya u_{kr} u_{*c} u_* W_1 W_2 α t	 : Kritik ortalana akin inzi : Kritik kayma gerilmesi hızı : Kayma gerilmesi hızı : Köprü yapısında yaklaşım kesitindeki ortalama genişlik : Köprü yapısında daralma kesitindeki ortalama genişlik : Akımın ayak ekseni ile yaptığı açı : Akarsu tabanında meydana gelen kayma gerilmesi
u_c veya u_{kr} u_{*c} u_* W_1 W_2 α t t t c	 : Kritik ortalana ukun nizi : Kritik kayma gerilmesi hızı : Köprü yapısında yaklaşım kesitindeki ortalama genişlik : Köprü yapısında daralma kesitindeki ortalama genişlik : Akımın ayak ekseni ile yaptığı açı : Akarsu tabanında meydana gelen kayma gerilmesi : Akarsu tabanında sediment taşınımının başladığı ana tekabül

1.GİRİŞ

Köprüler, karayolu ve demir yolu ulaşımında sürekliliği sağlayan çok önemli yapılardır. Ancak bir taşkın sonrası köprülerin yıkılması veya ağır hasar görmesi can ve mal kaybına neden olmaktadır. Yapılan istatistiksel araştırmalar köprülerin yıkılma ve hasar görmelerinin sebebinin % 60 hidrolik etkenlerden meydana geldiğini ortaya koymuştur (Shirhole ve Holt, 1991). Bu nedenle bir köprünün tasarımında en az yapısal etkenler kadar hidrolik etkenlerinde göz önünde bulundurulması gerekir.

Bilim insanları bu konunun önemine dayanarak 1950'li yıllardan itibaren bu konuyla ilgili deneysel çalışmalara başlanmış ve günümüzde de bu çalışmalara devam edilmektedir. Hidrolik oyulmaya etki eden parametrelerin fazlalığı ve bu parametrelerin neredeyse her akarsuda ve köprü yapısında farklılık göstermesi sebebiyle hem teorik, hem de deneysel sonuçlara dayalı, her koşulda kullanılan tek bir eşitlik elde edilememiştir. Bu yüzden tasarım yapacak bir mühendisin bu konuda tecrübeli olması, oyulma mekanizmasını anlamış olması ve bir sonraki bölümlerde de değinilecek olan oyulma miktarını hesaplamaya yönelik yöntemlerin, en azından hangi koşullarda geçerli olduğunu bilecek kadar bu yöntemlerden haberdar olması gerekir.

Ülkemizde son yıllarda köprü ayaklarında oyulma nedeniyle ölümlü ve maddi boyutlu kazalar oluştuğu için konunun önemi ciddiyetini korumaktadır.

Zonguldak ili Çaycuma ilçesinde 1951 yılında inşa edilen Çaycuma köprüsü 2012 de yıkılmıştır. Çaycuma köprüsü hidrolik etkenlerden (sel, oyulma, yığılma, vb.) kaynaklanan zorlamalar altında çöktüğü kanaatine varılmıştır (Caner, Yanmaz, 2012). Yaşanan bu olayda 15 kişi yaşamını yitirmiştir (Şekil 1.1).

Adıyaman'ın tek giriş ve çıkış yolu olan Göksu köprüsü 2012 yılında ayaklarının altının oyulması sonucu yıkılma tehlikesi geçirmiştir. Bu tehlikenin köprü mansap bölgesinde faaliyet gösteren kum ocağından kaynaklandığı tespit edilmiştir (Karayolları, Elazığ Bölge Müdürlüğü, 2012) (Şekil 1.2). <u>1. GİRİŞ</u>

Şekil 1.1. Zonguldak, Çaycuma köprüsü, sel afeti, 2012

Şekil 1.2. Adıyaman, Göksu köprüsü, ayak oyulması, 2012

Bu tez çalışmasında, karayolu ağında yer alan 1989 yılında inşa edilen Ceyhan köprüsünün orta ayakları üzerindeki oyulmalar havza özellikleri dikkate alınarak literatürde yaygın olarak kullanılan denklemler yardımıyla hesaplanmıştır. Arazi ölçümleri yapılarak gerçek oyulmalar ile teorik değerler karşılaştırılmıştır. Ek olarak bu çalışmanın yapılmasında HEC-RAS programı kullanılmıştır. Program sayesinde ayaklar üzerindeki su kotu ve ayaklar üzerindeki oyulma miktarları hesaplanmıştır. Elde edilen sonuçlara göre köprünün oyulma problemlerine karşı güvenilirliği değerlendirilmiştir.

2. ÖNCEKİ ÇALIŞMALAR

2.1. Köprü Açıklığında Taban Oyulması

Akarsu yatağına yerleştirilen bir köprü nehrin doğal akımında iki önemli değişiklik meydana getirir. Bunlardan birincisi nehir yatağında meydana gelen daralma sebebiyle membada meydana gelen kabarmadır. İkincisi ise akıntının içine yerleştirilen orta ayakların akıma engel olmaları sebebiyle meydana gelen çevrintilerdir. Akarsu bu doğal olmayan değişimleri yok ederek eski haline dönmeye çalışır. Bu esnada köprü yan ve orta ayakları etrafında ve akarsu tabanında Şekil 2.1 ve Şekil 2.2'de gösterildiği gibi aşınmalar meydana gelir. Bu aşınmalara "oyulma" denilir (Gedeli, 2006).

Şekil 2.1. Plak tipli köprülerde oyulma kesit görünüş (Yanmaz, 2002)

Şekil 2.2. Germe kiriş tipli köprülerde ayak oyulması kesit görünüş

Tabanı alüvyonlu bir akarsuyun kontrol hacminde meydana gelen oyulma hacmini süreklilik kanunundan faydalanarak şu şekilde hesaplayabiliriz;

$$\frac{d_V}{d_t} = S_c - S_g \tag{2.1}$$

Burada V tabanda alınan kontrol elemanının hacmi, t zaman, S_{c} ve S_{g} sırasıyla kontrol hacminden çıkan ve kontrol hacmine giren sürüntü yüküdür (Yanmaz, 2002).

Eğer $S_c - S_g > 0$ olursa akarsu tabanında birikme, eğer $S_c - S_g < 0$ olursa akarsu tabanında oyulma meydana gelir. Akarsu içerisindeki sürüntü debisi akım hızıyla doğru orantılı olarak artar. Akarsu tabanının daraldığı noktalarda hız artacağından bu noktada $S_g > S_c$ olur yani bu noktada oyulma meydana gelir. İşte bu oyulma türüne daralma oyulması denmektedir.

Akarsu yatağında akıma karşı bir engel konulduğunda bu engel etrafında çevrintiler oluşur. Bu çevrintiler sebebiyle ayak etrafında yerel oyulmalar meydana

gelir. Ayak etrafındaki oyulmanın en derin kısmı memba yüzünde yer almaktadır. Oyulma çukurunun memba şevi, taban malzemesinin su içindeki tabii şevine yakın, mansap şevi ise daha yatıktır. Köprü ayakları etrafında meydana gelen oyulmalar membada sürüntü maddesi taşınıp taşınmaması durumuna göre temiz su oyulması ve hareketli taban oyulması olarak iki grupta incelenmektedir.

Alüvyonlu akarsularda akımın sürükleme gerilmesinin taban malzemesinin kritik sürükleme gerilmesinden büyük olması, $t > t_c$, durumunda tabanda sürüntü maddesi taşınımı başlamaktadır. Bu şekilde meydana gelen oyulmalara hareketli taban oyulması denilmektedir. Ancak akarsu içerisinde bir engel olması durumunda akım sürükleme gerilmesi, taban malzemesinin kritik sürükleme gerilmesinden küçük olsa bile engel etrafındaki çevrintilerden dolayı oyulma oluşmaktadır. Bu oyulmaya temiz su halinde oyulma denilir ve Carstens'a (1966) göre yaklaşık olarakt = $t_c / 2$ 'de başlamaktadır.

Ayak etrafında t_c / 2 civarında başlayan oyulma Şekil 2.3'de verildiği gibi zamanla artar ve bir süre sonra sabit bir değere ulaşır. Buna denge oyulma derinliği, H_d, denilmektedir (Başak, Başlamışlı ve Ergün, 1975). Aynı şekilden görüldüğü gibi hareketli taban oyulması halinde denge oyulmasına daha kısa sürede ulaşılmaktadır.

Şekil 2.3. Oyulma derinliği grafiği 1 (Başak, Başlamışlı ve Ergün, 1977)

Belirli bir yapı genişliği ve taban malzemesi tane çapı için denge oyulma derinliği, τ değeri arttıkça artmakta ve akımın belli bir değerinde maksimuma ulaşmaktadır (Şekil 2.4). Bu değere denge halindeki maksimum oyulma derinliği denilmektedir ve H_{dmax} ile gösterilmektedir (Başak, Başlamışlı ve Ergün, 1977).

Şekil 2.4. Oyulma derinliğinin akımın sürükleme gerilmesine bağlı olarak değişimi (Başak, Başlamışlı ve Ergün, 1975)

2.2. Köprü Açıklığında Daralma Oyulması

Köprü geçişlerinde köprü kenar ayakları veya varsa köprü orta ayakları sebebiyle akarsu net açıklığında, B_{net} , azalma olabilir. Bu daralma sebebiyle membada kabarma ve hızda artma meydana gelir. Hızda meydana gelen artmalar akarsu tabanındaki kayma gerilmelerinin de artmasına neden olur. Eğer tabandaki kayma gerilmelerinin artışı fazla olursa tabanda ciddi miktarda oyulmalar meydana gelebilir. Oyulmanın derinliği $\mathbf{b} = W_1/W_2$ şeklinde tanımlanan bir daralma katsayısına bağlıdır (Yanmaz, 2002). Daralma oyulması Şekil 2.5'de gösterildiği gibi oluşmaktadır. Şekildeki W_1 ve W_2 sembolleri sırasıyla yaklaşım ve daralma kesitlerindeki ortalama genişlikleri, y_1 ve y_2 sırasıyla yaklaşım ve daralma kesitlerindeki ortalama derinlikleri göstermektedir. H_d ise daralma oyulması miktarını göstermektedir.

Şekil 2.5. Daralma oyulması (Yanmaz, 2002)

Literatürde sunulan daralma oyulması bağıntılarından bir kısmı şöyledir; Laursen (1960) tarafından sunulan ve Richardson ve Davis (2001) tarafından düzenlenen hareketli taban oyulması denklemi şöyledir:

$$\frac{y_2}{y_1} = \underbrace{\mathbf{\hat{g}}}_{\mathbf{\hat{Q}}_1} \underbrace{\mathbf{\hat{g}}}_{\mathbf{\hat{j}}} \underbrace{\mathbf{\hat{g}}}_{\mathbf{\hat{j}}} \underbrace{\mathbf{\hat{g}}}_{\mathbf{\hat{j}}} \underbrace{\mathbf{\hat{g}}}_{\mathbf{\hat{k}}_1} \underbrace{\mathbf{\hat{g}}}_{$$

Hız yükleri ihmal edilirse H_{dc} yaklaşık olarak $H_{dc} = y_2 - y_1$ olarak hesaplanabilir. Bu formülde üs olarak kullanılan k_1 katsayısı Çizelge 2.1'de verilmiştir. Temiz su oyulması için aynı kişiler tarafından denklem 2.3 önerilmiştir.

$$y_{2} = \begin{cases} \frac{2}{6} \frac{1}{D_{50}^{2/3} W^{2}} \frac{\ddot{O}}{\dot{O}} \\ \frac{1}{2} \frac{\dot{O}}{D_{50}^{2/3} W^{2}} \frac{\dot{O}}{\dot{O}} \end{cases}$$
(2.3)

	k ₁	Taban sürüntü yükü özelliği	
<0.5	0.59	Kayma ve yuvarlanma	
0.5~2	0.64	Sıçrama ve sınırlı askı hareketi	
>2.0	0.69	Askı yükü fazla sürüntü hareketi	

Çizelge 2.1. Laursen (1960) denklemindeki k1 katsayısı

Komura (1966) eşitlikleri:

$$\frac{y_2}{y_1} = 1.6F_{r_1}^{0.2} t_g^{-0.5}$$
 (temiz su oyulması için) (2.4)

$$\frac{y_2}{y_1} = 1.645 t_g^{-0.5} \qquad \text{(hareketli taban oyulması için)}$$
(2.5)

Gill (1981) eşitlikleri:

$$\frac{y_2}{y_1} = \mathbf{b}^{6/7} \underbrace{\mathbf{\hat{c}}}_{\mathbf{\hat{c}}} \underbrace{\mathbf{\hat{c}}}_{\mathbf{\hat{c}}} \underbrace{\mathbf{\hat{o}}}_{\mathbf{\hat{c}}}^{3/7} (\text{temiz su oyulması için})$$
(2.6)

$$\frac{y_2}{y_1} = b^{6/7} \overset{\text{ge}}{\underset{\text{ge}}{\text{ge}}} {}^{1/m} \overset{\text{ge}}{\underset{\text{ge}}{\text{ge}}} - \frac{t_c}{t_1} \overset{\text{o}}{\underset{\text{o}}{\text{ge}}} + \frac{t_c}{t_1} \overset{\text{o}}{\underset{\text{o}}{\text{ge}}}^{3/7}$$
(hareketli taban oyulması için) (2.7)

Yukarıdaki eşitliklerde kullanılan bazı simgelerin anlamları şöyledir,

Q1: Membadaki toplam debi

Q2: Daralmış kesitteki debi

Q: Köprü açıklığındaki metre cinsinden net genişlik W değerinden geçen debi

 σ_g : Taban malzemesi tane dağılımının geometrik standart sapması

Fr1:Yaklaşım kesitindeki Froude sayısı

- t .: Taban malzemesinin kritik kayma gerilmesi
- t 1: Yaklaşım kesitindeki taban kayma gerilmesi
- m: Einstein Brown (1950) bağıntısına göre m = 3 değerini alan bir üstür.
- $\beta = W_1 / W_2$ şeklinde tanımlanan daralma katsayısıdır.

2.3. Köprü Ayakları Etrafındaki Yerel Oyulmalar

2.3.1. Oyulma Mekanizması

Köprü ayaklarında oyulmayı oluşturan ana mekanizma ayağın memba yüzünde tabana doğru olan akım ve akarsu tabanında köprü ayağı etrafında meydana gelen çevrintilerdir. Bir köprü ayağına yaklaşan akım gittikçe yavaşlar ve ayak yüzünde hızı sıfıra düşer. Bunun sonucunda ayak yüzünde basınç artışı olur. Bir açık kanalda akım hızı yüzeyden tabana doğru azaldığı için ayak yüzeyindeki basınçta tabana doğru azalır. Bu şekilde tabana doğru azalan bir basınç gradyeni oluşur. Bu basınç gradyeni, akımı su jeti gibi ayak yüzünden aşağıya doğru gitmeye zorlar. İşte bu aşağı doğru olan akıntının çarpması etkisiyle taban aşınır ve ayak etrafında bir oyulma çukuru oluşur. Ayak yüzeyinde aşağı doğru oluşan bu düşey akımın çarpma etkisi en önemli oyulma parametresidir (Melville ve Raudkivi, 1977). Oyulma mekanizmasının ve akımın parametreleri Şekil 2.6'da gösterilmiştir.

Şekil 2.6. Bir köprü ayağı etrafındaki çevrintiler ve oyulma çukuru

Şekil 2.6'da gösterildiği gibi köprü ayağındaki düşey akım oymaya devam ederken aynı zamanda gelen akımla girişim yaparak karışık bir çevrinti sistemi oluşturur. Bu çevrintiler ayağın yanlarından geçerek ayak çapının birkaç katı kadar mesafe alırlar ve etkilerini kaybederler. Oluşan bu çevrintilere at nalına çok benzemeleri sebebiyle atnalı çevrintileri adı verilmektedir. Düşey akımın ayak tabanında oyduğu malzeme, atnalı çevrintiler tarafından mansaba taşınır. Ayak tabanındaki oyulma miktarı arttıkça atnalı çevrintilerinin şiddeti azalır dolayısıyla taşınan sediment miktarı da azalır. Köprü ayaklarında atnalı çevrintilerinin yanı sıra ayak mansabında akım yönünde başka çevrintilerde oluşur. Bu çevrintilere akımı ikiye ayırmalarından ve ayağın arkasında bıraktıkları izden dolayı kuyruk çevrintileri veya dümensuyu çevrintileri ya da akım ayrılma çevrintileri adı verilir.

Kuyruk çevrintileri atnalı çevrintilerine göre daha zayıftırlar ve daha az malzeme taşıyabilirler. Hem bu sebeple hem de membadan gelen sedimentin bir kısmının yığılması nedeniyle ayak mansabındaki oyulma miktarı membadakine göre daha azdır.

2.3.2. Oyulma Parametrelerinin Boyut Analizi

Köprü ayağı temellerinin emniyetli bir şekilde tasarlanması için ayaklar etrafındaki maksimum oyulma derinliğinin doğru tahmin edilmesi gerekir. Ayaklar etrafındaki oyulma mekanizması oldukça fazla araştırılmış olmasına rağmen, olayın karmaşık olması nedeniyle henüz genel bir ifade geliştirilmemiştir. Bunun başlıca nedeni, daha önce de anlatıldığı gibi ayaklar etrafındaki türbülanslı akımın üç boyutlu ayrılması ve zamanla değişen katı madde taşıyan akımın oyulma çukuruyla girişimidir. Oyulma mekanizmasını etkileyen parametreler şu fonksiyonla ifade edilir (Yanmaz, 2002).

Boyutsuz parametreler Buckingham- Π teoremiyle (Shames, 1992) bulunabilir. Analizde tekrar eden parametreler ρ , u ve b olarak seçilebilir. Bulunan boyutsuz parametreler tekrar düzenlenerek aşağıdaki bağıntı bulunmuştur.

$$\frac{H_{d}}{b} = f_{1} \underbrace{\underbrace{C}}_{\mathbf{c}} \underbrace{\frac{uD_{50}}{v}}_{b}, \mathbf{D}, \frac{d_{0}}{b}, \frac{u_{*}}{u}, \frac{D_{50}}{B}, \frac{ut}{b}, K_{f}, \frac{K_{c}}{D_{50}}, \frac{K_{b}}{D_{50}}, \frac{\ddot{\mathbf{c}}}{\dot{\mathbf{c}}} \\ \vdots \\ \underbrace{C}}_{\mathbf{c}} \underbrace{\frac{D_{50}}{b}}_{b}, \frac{C}{\mathbf{r} u^{2}}, \mathbf{a}, S_{0}, C_{c}, K_{a}, K_{a}, K_{d}, \mathbf{s}_{g}, K_{s}, K_{g}, K_{f}, \frac{\ddot{\mathbf{c}}}{\dot{\mathbf{c}}} \end{aligned}$$
(2.9)

Burada $u/\sqrt{gd_0}$ akımın Froude sayısı (Fr), uD_{50}/v tane Reynold sayısı (Re), $\Delta = (\rho_s - \rho)/\rho$ göreli yoğunluk, u_{*c} kritik kayma gerilmesi hızıdır. Olayı etkileyen boyutsuz parametre sayısının oldukça çok olması nedeniyle özel durumlar için bu ifade daha basit hale getirilebilir. Bunun için bazı varsayımlar yapılabilir. Sabit şekil faktörlü, kohezyonsuz taban malzemesi (C = 0, K_f = 1.0). Katı madde ve su yoğunlukları sabittir. Kuvartz kum için $\Delta \approx 1.65$ değerindedir. Akarsu köprü geçişinde önemli bir daralma olmayacak kadar geniştir ($C_c \approx 1.0$). Düzgün şevli akarsu tabanındaki taban şekillerinin etkisi ihmal edilmektedir. Taban pürüzlülüğü sadece d₅₀ cinsinden ifade edilmektedir ($K_b = 1.0$, $K_c = 1.0$). Akarsu planda düz ve prizmatiktir (S_0 sabit, $K_d = 1.0$). Tek pürüzsüz ayak tabana dik oturtulmuştur ($K_s = 1.0$, $K_g = 1.0$, $K_r = 1.0$, $K_v = 1.0$). Taban malzemesi çapı akarsu genişliğinden çok küçüktür ($d_{50} / B \approx 0$). Bu varsayımlardan sonra yukarıdaki denklem şu hali alır (Yanmaz, 2002).

$$\frac{H_d}{b} = f_2 \overset{\mathfrak{B}}{\underset{e}{\mathsf{e}}} F_r, R_e, \frac{d_0}{b}, \frac{u_*}{u}, \mathsf{S}_g, \frac{b}{D}, \frac{ut}{b}, K_a, K_s \overset{\ddot{\mathsf{O}}}{\underset{g}{\mathsf{o}}}$$
(2.10)

Pratikteki olası tasarım koşulları düşünüldüğünde bu bağıntı şu varsayımlarla daha basit hale dönüştürülebilir. Chabert ve Engeldinger (1956), Nicollet ve Ramette (1971), ve bazı diğer araştırmacıların yapmış oldukları deneyler, sabit bir ayak genişliği, b, taban malzemesi çapı, D₅₀, ve taban hareketi başlama anı ve hareketli taban koşulları için oyulma derinliğinin dengeli bir derinlik etrafında salınım yaptığını göstermiştir. Dolayısıyla $u_* \ge u_{*c}$ koşullarında Reynolds sayısının etkisi ihmal edilebilir. Sabit tane çapı ve taban eğiminde u_* / u sadece yaklaşım akım derinliği, d₀ değerine bağlıdır. Dolayısıyla u_* / u parametresi d₀ / b teriminde içirilmektedir. Hareketli taban koşullarında, uzun akım süreleri için zaman etkisi ihmal edilebilir. Zira oyulma derinliği dengeli bir derinlik etrafında salınım göstermektedir. Böylece denklemin daha genel hali şu şekli alır (Yanmaz, 2002).

$$\frac{H_d}{b} = f_3 \overset{\mathcal{R}}{\underset{\mathsf{o}}{\mathsf{e}}} F_r, \frac{d_0}{b}, \mathsf{S}_g, \frac{b}{D_{50}}, K_a, K_s \overset{\mathsf{O}}{\underset{\mathsf{o}}{\overset{\mathsf{i}}{\mathsf{s}}}}$$
(2.11)

2.3.2.1. Yaklaşım Akım Hızının Etkisi

Temiz su oyulması koşullarında ortalama hız, u_c değerine kadar artmaktadır. Bu aralıkta oyulma derinliği hızla orantılı olarak artmaktadır, çünkü temiz su oyulması durumunda akım gücünün tamamı oyulma için kullanılmaktadır. u_c değeri aşıldıktan sonra ise akımda katı madde taşınımı başladığı için akım gücünün bir kısmı madde taşınımı için kullanılmaktadır. Dolayısıyla, $u > u_c$ durumunda oluşan oyulma derinliği $u = u_c$ durumunda oluşan değerlerden daha azdır (Yanmaz, 2002).

Rölatif oyulma derinliğinin, H_d/D , U/U_c ile değişimi Şekil 2.7'de verilmiştir.

Bu şekle bakarak şunları söyleyebilmek mümkündür:

U / U_C =1.0 olması durumunda, oyulma derinliği maksimum olmaktadır.

U / U_C=1.5~2 olması durumunda, oyulma derinliği azalmaktadır.

 $2.0 < U / U_C < 3.0$ ~5.0 olması durumunda, oyulma derinliği tekrar artmakta, U/U_C » 5.0 olması halinde 2. maksimum oyulma derinliğine ulaştıktan sonra tekrar azalmaktadır (Üç, 1988).

 $U/U_C \approx 5.0$ olması durumunda Reynold sayısı $2.5*10^3 \sim 3.0*10^3$ civarındadır. Bu değerden büyük Reynold sayılarında deney koşullarında çalışma yapmak zor olduğundan, Üç (1988), literatürdeki prototip verilerden yararlanarak yaptığı çalışmalarda Re @ $1.0*10^6$ değerlerinde 3. maksimum oyulma derinliğine ulaşıldığını belirtmiştir (Üç, 1988).

Şekil 2.7. Rölatif oyulma derinliği grafiği (Chee ve Chiev, 1982)

2.3.2.2. Yaklaşım Akım Derinliğinin Etkisi

Akım alanına bir engel konulduğunda membada su kabarmasından dolayı yüzeysel çevrintiler oluşur. Akım tabanında ise bu çevrintilere ters yönde atnalı şeklinde çevrintiler oluşur. Akarsu tabanındaki oyulma bu iki çevrintinin birbiriyle yaptıkları girişimin bir sonucudur. Yaklaşım akım derinliği az ise bu iki çevrinti birbiriyle girişim yapmakta ve oyulmayı arttırmaktadırlar (Yanmaz, 2002). Yaklaşım akım derinliği arttıkça oyulma derinliği de artmaktadır. Ancak akım derinliğinin belli bir değerinden sonra oyulmaya etkili olmadığı tüm araştırmacıların ortak görüşüdür. Bunun nedeni, akım derinliğinin artması ile oyulmanın esas faktörü olan atnalı çevrintisinin fazla etkilenmemesi, buna karşılık atnalı çevrintiler ile yüzeysel çevrintiler arasındaki girişimin gittikçe azalmasıdır.

Yapılan bazı çalışmalara dayanarak ince agrega için $d_o / b \ge 3.0$ (Melville, 1988) değerlerinde ve kaba agrega için $d_o / b \ge 6.0$ (Breusers, 1991) değerlerinde akım derinliğinin oyulmaya etkisinin ihmal edilebileceğini söyleyebiliriz.

2.3.2.3. Taban Malzemesi Dağılımının Etkisi

Dane çapının oyulmaya etkisi konusunda iki farklı görüş mevcuttur:

- Oyulma derinliği dane çapından bağımsızdır (Larras, 1972: Coleman, 1971).
- 2- Oyulma derinliği dane çapının belirli sınırları arasında dane çapı ile artmakta, bu sınırlar dışında ise bağımsızdır (Laursen, 1956: Ettema, 1976).

Ettema'nın farklı dane çapları için elde ettiği rölatif oyulma derinlikleri Çizelge 2.2'de gösterilmiştir.

· · ·	· · · · · · · · · · · · · · · · · · ·						
	d ₅₀ (mm)	0.55	0.70	0.85	1.90	4.10	6.0
	H _{dmax} /D	1.47	1.75	2.00	2.05	2.20	2.10

Çizelge 2.2. Ettema'nın rölatif oyulma derinlikleri

Nicollet (1971), yaptığı çalışmada, üç farklı çapa sahip malzemeyi önce ayrı ayrı sonra eşit oranda karıştırarak deneyler yapmış ve sonuç olarak dane çapı ve granülometrisinin oyulma derinliğinde etkili olduğunu ortaya koymuştur.

Raudkivi (1986), ve Ettema'da (1980), taban malzemesi dağılımının oyulmaya etkisini araştırmışlar ve dane dağılımı standart sapmasının oyulma derinliği üzerinde önemli etkileri olduğunu ortaya koymuşlardır. Dane dağılımının geometrik standart sapması, σ_g , arttıkça tabandaki zırhlanma etkisiyle, yani kaba malzemenin ince malzemenin üstünü örtmesiyle, oyulma derinliği önemli ölçüde azalmaktadır. Raudkivi (1986) bu etkiyi bir K_o katsayısıyla tanımlamıştır. Yanmaz (2002) Raudkivi'nin verdiği düzeltme eğrisi için şu regresyon denklemini vermiştir;

$$K_{\rm s} = 0.001346 \mathfrak{B}_{g}^{5} - 0.223 \mathfrak{B}_{g}^{4} + 1.406 \mathfrak{G}_{g}^{3} - 4.086 \mathfrak{G}_{g}^{2} + 5.00 \mathfrak{B}_{g} - 1.117 \mathfrak{C}(2.12)$$

Sonuç olarak şunu söyleyebiliriz ki, temiz su oyulması halinde oyulma derinliği dane çapından etkilenir, fakat hareketli taban oyulması halinde dane çapının oyulmaya etkili olup olmadığı tam olarak bilinmemektedir (Üç ve Ağaççıoğlu, 1988).

Kohezyonsuz danelerin büyüklük dağılımı elek analizi yöntemiyle bulunabilir. Çapı 1/16 mm'den küçük danelerin büyüklüğü çökelme yöntemiyle yapılabilir. Dane büyüklüğü bağılım eğrisi Şekil 2.8'de sunulmaktadır.

Şekil 2.8. Dane büyüklüğü dağılım eğrisi

2.3.2.4. Ayak ve Dane Büyüklüklerinin Oyulmaya Etkisi

Ettema (1980), göreli ayak büyüklüğünün, b / D_{50} , oyulma derinliğine etkisini araştırmıştır. Göreli ayak büyüklüğünün b / $D_{50} < 50$ değerleri için taban malzemesi oldukça kaba olup, tabanda fazla pürüzlülük yapmakta ve ayak memba tarafında oluşan düşey akım tabana gömülerek enerjisi olabildiğince sönümlenmektedir. Böylece taban erozyonu azalmaktadır (Breusers ve Raudkivi,

1991). Göreli ayak büyüklüğünün b / $D_{50} \ge 50$ değerleri için ise göreli oyulma derinliğinin, ds / b, dane çapından etkilenmediği gözlenmiştir.

Köprü ayakları etrafındaki oyulma çukuru büyüklüğü ayak büyüklüğüne bağlı olduğu için büyük ayak genişliklerinde dengeli oyulma derinliğinin değeri daha fazla olmakta ve bu değere daha geç ulaşılmaktadır (Yanmaz, 1991). Tasarımda yapısal açıdan sorun olmayacak en küçük ayak genişliği hidrolik açıdan en uygun sonucu verecektir (Yanmaz, 2002).

2.3.2.5. Ayak Şekli ve Narinliğinin Oyulma Derinliğine Etkisi

Münferit bir köprü ayağında meydana gelen oyulmanın en önemli sebebi akımda oluşan çevrintilerdir. Akım içerisinde oluşan bu çevrintilerin şiddeti akıma verilen rahatsızlıkla orantılı olarak artar. Dolayısıyla akım içerisine konulan engelin şekli ve boyutları akım içerisinde oluşan çevrintileri ve dolayısıyla oyulma miktarını etkiler.

Akımın atak açısından etkilenmeyen tek ayak şekli dairesel silindirik ayaklardır. Bu sebeple araştırmacılar, dairesel silindirik ayaklarda oluşan oyulma derinlikleri ile diğer ayak şekillerinde meydana gelen oyulma derinliklerini karşılaştırmışlardır. Literatürdeki ayak çapına bağlı olarak oyulma derinliğini veren bazı ampirik formüller Çizelge 2.3'de verilmiştir (Üç, 1988).

Larras (1963)	$H_{d0}=1.05D^{0.75}$
Breuser (1965)	H _{d0} =1.40D
Shen (1969)	$H_{d0} = D^{0.619}$
Başak (1975)	$H_{d0} = 0.558 D^{0.586}$
Coleman (1971)	$H_{d0}=1.40D^{9/10}(U^2/2g)^{1/10}$
Üç (1979)	$H_{d0} = 0.61 D^{0.766}$

Çizelge 2.3. Ayak çapına bağlı oyulma derinlikleri ilişkisi (Üç, 1988)

Dairesel olmayan ayak tipleri için oyulma derinlikleri; aynı boyutlardaki dairesel silindirik ayaklarda elde edilen derinliklerin bir ayak form katsayısı, K_s,

ile çarpılmasıyla elde edilir. Bazı araştırmacılar tarafından ayak şekline ve narinliğine bağlı olarak verilen ayak form katsayıları Çizelge 2.4' de gösterilmiştir. Aynı tablonun en sağında Başak ve arkadaşları (Başak, Başlamışlı ve Ergün, 1977) tarafından tavsiye edilen değerler de görünmektedir. Burada narinlik, bir ayağın uzunluğunun genişliğine oranı olarak tanımlanmakta ve narinlik oranı arttıkça oyulma derinliği azalmaktadır.

Buran Formu	ayak formu	L/b Orone	l'/b ^t Orani	FORM KATSAYISI							
				LAURSEN	CHABERT	TISON	ESCANDE	LARRAS	DIETZ	MAZA	TAVSIYE EDILEN DEGERLES
YARIM DAIRE	10	1	1	1.00	1.00	1.00	100	100	1.00	1.00	1.00
	₽ C C C C C C C C C C C C C C C C C C C	2	1	1.00	-	-	-	1.00	-	0.85	1.00
		3	1		-		-	100	0.90		
		4	1	14	-	-	-	1.00	-		
		4.5	1	100	-	1.00	-	-			
	10 to	5	1	-	-	-	-	-	0.86	-	0.86
ukowski	344 + 1 - 1 + 44	2	1	-	-	-	-	-	0.80		0.80
		4	4	-	0.66	-		38.0	4144	-	0.76
		4.1		-	-	0.76	-		-	- 1	0.70
		4.5	1	-	-	0.76	0.78		-		0.76
N	200 to	5	9	-	-	-	-	-	0.41	-	0.41
0.0	28 C	3	2	-	-	-	-	-	0.76	4	0.76
-		5	4	-	-	-	-	-	0.65	-	0.65
ELIPS	tor i	2	2	0.89	-	-	-	0.91	0.63	-	0.90
		3.	3	0.85	-	-	-	0.83	080	-	0.83
		5	5	-	-	-	-	-	0.61	-	10000
MERCEK	2 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2	0.89	-	-	-	0.91	-	-	0.90
		3	3	0.97	-	-	-	0.76		-	O.D.B.
				0.01	073	0.20	0.07	0.76	1000	-	0.00
		-	-		0.10	0.10	0.01	0.16	-	-	0.75
OGIVAL.	16 26	4	1	-	0.92	0.96	-	0.92	-	-	0.41
TRASL	₽	4		-	-	1.01	-	-	-	-	1.00
DİK DÖRTGEN	ţ.	0.25	-	1.0	-	-		-	-	-	1.20
		1	-		-	-		- 1		-	
		2	-		-	-	-	1.15	-	-	
		3	-		-	-	-	-	1.04	-	
		4	-		-	1.40	-	LH.	-	-	
		44	-		-	140	-		-		
		48	-	-		140	1.96	-			
		6	-	-		040	1.60	-	0.00		-
		5	-		-		-	-	0.99		
		0.3	-		-	1.40	-	111	-	-	
		6	-		-	-	-	1,11		-	-
		8	-		-	-	-	1.11		-	
		9.3	-		-	1,40	-	-		-	11
	1	10	-					10.00	100-00-00-00-00-00-00-00-00-00-00-00-00-		

Çizelge 2.4. Ayak formu katsayıları (Başak, Başlamışlı ve Ergün, 1977)

2.3.2.6. Akımın Hücum Açısının Oyulma Derinliğine Etkisi

Bir akım önüne konulan engelin şekil ve boyutlarının, engel etrafında oluşan oyulma üzerinde etkili olduğunu belirtmiştik. Bu sebeple akım içine konan engelin akımla yaptığı açı her değiştiğinde, eğer bu engel dairesel şekilli değilse, akıma karşı koyan yüzeyin genişliği ve şekli de değişir. Bu durumda hesaplanan oyulma derinliğinin yeni şartlara göre düzeltilmesi gerekir (Şekil 2.9).

ayağının tesirli genişliği"

Şekil 2.9. Ayak genişliğinin hücum açısına göre değişimi

2.3.2.7. Zaman Etkisi

Temiz su olması durumunda denge oyulma derinliğine çok geç ulaşılır. Bunun en önemli nedeni, böyle bir durumun oyulma çukuru içindeki ortalama kayma gerilmesi, su ağırlık kuvveti etkisi ve türbülans gerilmelerinin birlikte bir denge oluşturmasının sağlanmasıdır. Düşük akım sürelerinde oyulma derinliğinin artış hızı fazla olup, zaman arttıkça bu artış oranı azalmaktadır (Gedeli, 2006).

Raudkivi (1986), laboratuar koşullarında, yaklaşık olarak 50 saatlik bir sürenin, dengeli oyulma derinliğine erişmek için gerekli olduğunu belirtmektedir. Froude benzeşimi kullanıldığında 50 saatlik bir model süresinin doğada çok daha büyük akım sürelerine karşı geldiği anlaşılmaktadır (Yanmaz, 2002). Ancak pek çok durumda etkili akım süresi daha azdır. Bu nedenle, köprü ayağı temel
derinliğinin temiz su koşulları için tayin edilmesinde dengeli derinlik yerine makul bir tasarım süresinde ulaşılabilecek oyulma derinliğinin kullanılması daha gerçekçi ve ekonomiktir. Bunun için temiz su oyulması durumunda oyulma derinliğinin zamansal değişimi bilinmelidir (Yanmaz, 2002).

3. MATERYAL VE METOD

3.1. Orta Ayaklar İçin Oyulma Bağıntıları

Literatürde orta ayaklar için pek çok oyulma bağıntısı verilmiştir. Çizelge 3.1'de orta ayaklar etrafındaki oyulma bağıntıları geçerlilik şartıyla beraber sunulmaktadır.

Araştırmacı	Standart Denklem	Geçerlilik Şartı
Laursen 1958	$\frac{d_s}{b} = 1.34 \overset{\mathbf{a}}{\mathbf{c}} \frac{\mathbf{a}}{b} \frac{\mathbf{a}}{\mathbf{b}}^{0.5}$	Dairesel Ayak, Max. Temiz Su
Carsten 1966	$\frac{d_s}{b} = 0.546 \underbrace{\underbrace{\text{e}}_{S}^{\text{e}} - 1.64}_{S} \underbrace{\overset{\text{o}}_{S}^{5/6}}_{S} - 5.02 \underbrace{\overset{\text{o}}_{\phi}}_{\phi}$	Dairesel Ayak, Hareketli Taban (Sediment)
Laursen 1963	$\frac{d_s}{b} = 1.11 \overset{\circ}{\mathbf{c}} \overset{\circ}{\underline{b}} \overset{\circ}{\underline{b}} \overset{\circ}{\underline{b}} \overset{\circ}{\underline{b}} \overset{\circ}{\underline{b}}$	Dairesel Ayak, Hareketli Taban
Hancu 1971	$\frac{d_s}{b} = 2.42 \mathbf{\ddot{c}} \frac{\partial l_0}{\partial \dot{b}} \mathbf{\dot{o}}^{1/3} F_r^{2/3}$	Dairesel Ayak, Max. Temiz Su
Neil 1973	$\frac{d_s}{b} = K_s$	Ks=1.5(dairesel), Ks=2(dikdörtgen)
Bresusers ve Diğer. 1977	$\frac{d_s}{b} = 2.0 \tanh \mathbf{\hat{c}} \frac{\mathbf{\hat{a}} \mathbf{\hat{l}}_0}{\mathbf{\hat{e}} \ b} \frac{\mathbf{\hat{o}}}{\mathbf{\hat{e}}}$	Dairesel Ayak, Maksimum Temiz Su
Jain ve Fisher 1980	$\frac{d_s}{b} = 2.0 \left(F_r - F_{rc} \right)^{0.25} \stackrel{\text{ad}}{\underset{e}{\overset{o}{\circ}}} \stackrel{\text{o}}{\overset{o}{\overset{o}{\circ}}} \stackrel{\text{o}}{\overset{\circ}{\overset{o}{\circ}}}$	Dairesel Ayak, Hareketli Taban Fr- Frc > 0.2
Günyaktı 1988	$\frac{d_s}{b} = 1.183 \overset{\mathbf{a}}{\mathbf{c}} \frac{d_0}{b} \overset{\mathbf{o}^{0.471}}{\dot{\mathbf{c}}}$	Dairesel Ayak, Genel Oyulma
Günyaktı 1988	$\frac{d_s}{b} = 1.484 \mathbf{\hat{g}}_{b_t} \frac{\mathbf{\hat{o}}_0^{.569}}{\mathbf{\hat{b}}_t}$	Dairesel Olmayan Ayak, Genel Oyulma
Yanmaz 1989	$\frac{d_s}{b} = 0.85 \overset{\mathbf{a}}{\mathbf{c}} \overset{\mathbf{a}}{\mathbf{c}} \frac{\mathbf{a}}{b} \overset{\mathbf{o}}{\overset{\mathbf{o}}{\mathbf{c}}} \overset{\mathbf{o}^{0.686}}{\overset{\mathbf{o}}{\mathbf{c}}}$	Dairesel Ayak, Max. Temiz Su (2.26≥Ns≥1.16)

Çizelge 3.1. Orta ayaklar etrafındaki oyulma bağıntıları

Yanmaz 1989	$\frac{d_s}{b} = 1.11 \begin{bmatrix} \frac{\partial a}{\partial t_0} \\ \frac{\partial b}{\partial t_t} \\ \frac{\partial a}{\partial t_t} \end{bmatrix}$	Kare Ayak, Max. Temiz Su (2.26≥Ns≥1.16)
Johnson 1992	$\frac{d_s}{b} = 2.02 \overset{\text{ad}}{\overset{\text{o}}{c}} \frac{\overset{\text{o}}{\overset{\text{o}}{o}}}{\overset{\text{o}}{\overset{\text{o}}{o}}} F_r^{0.21} \mathbf{s}_g^{-0.24}$	Dairesel Ayak, Hareketli Taban
Melvill 1997	$D_s = K_{yb} K_I K_d K_s K_a$	Genel Oyulma
Richardson ve Davis 2001	$\frac{d_s}{b} = 2.0K_s K_a K_b K_z \overset{\text{ad}}{\overset{\circ}{\mathbf{c}}} \overset{\circ}{\overset{\circ}{\mathbf{c}}} \overset{\circ}{\overset{\circ}{\mathbf{c}}} F_r^{0.43}$	Genel Oyulma
Yanmaz 2001	$\frac{d_s}{b} = 1.564 \overset{\mathbf{\mathfrak{S}}}{\overset{\mathbf{\mathfrak{C}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{\overset{\mathbf{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{\overset{\mathfrak{O}}}}{{{}}}{{}}}$	Dairesel Ayak, Hareketli Taban
Yanmaz 2001	$\frac{d_s}{b} = 2.748 \overset{\bullet}{\mathbf{c}} \frac{\mathbf{d}_0}{\mathbf{b}} \overset{\bullet}{\mathbf{\phi}} \overset{\bullet}{\mathbf{b}} \overset{\bullet}{\mathbf{\phi}} F_r^{0.859}$	Dairesel Olmayan Ayak, Hareketli Taban

Çizelge 3.1. Devamı

Laursen (1963): Laursen (1963), dairesel ayak ve hareketli taban durumundaki oyulma için denklem 3.1'de ki bağıntıyı önermiştir.

$$\frac{d_s}{b} = 1.11 \overset{\text{ad}}{\underset{e}{\mathbf{c}}} \frac{\mathbf{\ddot{o}}_0}{b} \overset{\mathbf{\ddot{o}}_2}{\overset{\mathbf{\dot{o}}_2}{\dot{\mathbf{\dot{c}}}}}$$
(3.1)

d_s: oyulma miktarı

b : ayak etkin tesir genişliği

d₀: ayak üzerindeki etkin su yüksekliği

Neill (1973): Neill (1973), dairesel ve dikdörtgen ayaklar için denklem 3.2'deki bağıntıyı önermiştir. K_s katsayısı, dairesel ayaklar için 1.5 iken dikdörtgen ayaklar için 2 alınacaktır.

Gökalp BULUT

$$\frac{d_s}{b} = K_s \tag{3.2}$$

d_s: oyulma miktarı

b : ayak etkin tesir genişliği

Jain ve Fischer (1980): Jain ve Fischer (1980), silindirik bir kazık etrafında (Fr-Fr_c) > 0.2 olması şartı ile hareketli taban oyulması durumu için oyulma derinliğini, denklem 3.3'deki gibi önermişlerdir.

$$\frac{d_s}{b} = 2.0 \left(F_r - F_{rc} \right)^{0.25} \underbrace{\underbrace{\partial al}_0}_{\mathbf{c}} \underbrace{\overset{o}{\overset{o}{\mathbf{c}}}_{\mathbf{b}}}_{\mathbf{c}}^{0.5}$$
(3.3)

d_s: oyulma miktarı

b : ayak etkin tesir genişliği

d₀:ayak üzerindeki etkin su yüksekliği

Burada,

$$\operatorname{Fr} = \frac{\mathrm{u}}{(\mathrm{gd}_0)^{0.5}} \tag{3.4}$$

$$Fr_{c} = \frac{u_{c}}{(gd_{0})^{0.5}}$$
(3.5)

$$\frac{u_{c}}{u_{*c}} = 5.75 \log(5.53 \frac{d_{0}}{D})$$
(3.6)

Günyaktı (1988): Günyaktı (1988), genel oyulma durumunu incelemiş ve dairesel ayaklar için denklem 3.7'yi önermiştir.

$$\frac{d_s}{b} = 1.183 \overset{\text{ad}}{\overset{\text{c}}{c}} \frac{d_0}{b} \overset{\text{o}}{\overset{\text{o}}{s}} \overset{\text{o}}{\overset{\text{o}}{s}}$$
(3.7)

d_s: oyulma miktarı

b : ayak etkin tesir genişliği

d₀:ayak üzerindeki etkin su yüksekliği

Johnson (1992): Johnson (1992), hareketli taban durumu ve dairesel ayak için denklem 3.8'i önermiştir.

$$\frac{d_s}{b} = 2.02 \mathbf{\hat{c}} \frac{\partial}{\partial} \frac{\ddot{\mathbf{o}}}{b} \frac{\partial}{\partial} F_r^{0.21} \mathbf{s}_g^{-0.24}$$
(3.8)

d_s : oyulma miktarı

b : ayak etkin tesir genişliği

d₀: ayak üzerindeki etkin su yüksekliği

 σ_g : Taban malzemesi dane dağılımının geometrik standart sapmasıdır.

Melville (**1997**): Melville (1997), oyulmaya etki eden parametreleri çok ayrıntılı bir biçimde incelemiş ve bu parametreler cinsinden genel oyulma denklemini denklem 3.9' daki gibi vermiştir,

$$d_s = K_{yb} K_I K_d K_s K_a \tag{3.9}$$

d_s: Oyulma miktarı

Burada,

 K_{yb} : Akım derinliği ve ayak genişliğine oranına bağlı düzeltme katsayısı

Kı: Akım şiddeti düzeltme katsayısı

Kd: Dane çapı büyüklüğü için düzeltme katsayısı

Ks: Ayak şekil faktörü

 K_{α} : Yaklaşım akımıyla köprü aksı arasındaki açının etki faktörü

Kyb, değerleri şu şekilde hesaplanır:

$$b/d_o < 0.7$$
 (B) $K_{yb} = 2.4 b$ (3.10)

$$0.7 \le b / d_0 \le 5$$
 (3.11) (3.11)

K_I, değerleri şu şekilde hesaplanır,

Temiz su oyulması durumunda,

$$\sigma_{g} > 1.3 \text{ için} \qquad K_{I} = \overbrace{\boldsymbol{g}}^{\boldsymbol{\mathfrak{g}}\boldsymbol{u}} \cdot (\boldsymbol{u}_{a} - \boldsymbol{u}_{c}) \overset{\boldsymbol{o}}{\underset{\boldsymbol{\varphi}}{\overset{\boldsymbol{\cdot}}{\boldsymbol{\varphi}}}}$$
(3.13)

Temiz su oyulması durumunda,

$$\sigma_{\rm g} < 1.3$$
 (üniform taban malzemesi) için $K_I = \begin{cases} \frac{\partial u}{\partial u_c} & \dot{O} \\ \frac{\partial u}{\partial v_c} & \dot{O} \end{cases}$ (3.14)

K_s, Dairesel için 1, Kare için 1.1, uçları inceltilmiş ayaklar için 0.9 alınır.

 K_{α} : $\alpha = 0$ için 1 alınacaktır.

Burada,

u : Ortalama akım hızı

u_a: Dane dağılımı büyük akarsuda zırhlanan malzemede en fazla oyulma yapan akım hızı

uc : Kritik ortalama akım hızı

K_I: 1.0 (Hareketli taban durumunda)

K_d değeri şu şekilde hesaplanır,

$$\frac{b}{D_{50}} \pounds 25 \qquad \textcircled{B} \quad K_d = 0.57 \log(2.24 \frac{b}{D_{50}}) \tag{3.15}$$

$$\frac{b}{D_{50}} > 25 \qquad \textcircled{B} \quad K_d = 1.0 \tag{3.16}$$

Richardson ve Davis (2001): Richardson ve Davis (2001), genel oyulma koşulları için denklem 3.17'deki gibi önermiştir. Bu yöntem ABD'de en yaygın kullanılan yöntemdir. Literatürde Colorado State University (CSU) denklemi olarak da bilinir ve HEC_18 yazılımında standart denklem olarak kullanılır. Oyulmaya etki eden parametreler cinsinden şöyle verilir,

$$\frac{d_s}{b} = 2.0K_s K_a K_b K_z \overset{\text{gel}_0}{\overset{\text{o}}{\overleftarrow{b}}} \overset{\text{o}^{0.35}}{\overset{\text{o}}{\overleftarrow{b}}} F_r^{0.43}$$
(3.17)

d_s: Oyulma miktarı

Ks: Ayak şekil faktörü

 K_{α} : Yaklaşım akımıyla köprü aksı arasındaki açının etki faktörü

K_b: Taban şekil faktörü olup Çizelge 3.2' de verilmiştir.

 K_z : Tabandaki zırhlanma etkisi faktörü olup CSU yöntemine göre denklem 3.18 ve 3.19'daki gibi hesaplanır,

$$K_z = 1.0$$
 (d₅₀ < 2mm veya d₉₅ <20mm) (3.18)

$$K_z = 0.4 u_R^{0.15}$$
 (d₅₀ $\ge 2mm$ veya d₉₅ $\ge 20mm$) (3.19)

Burada u_R değeri denklem 3.20'deki gibidir.

$$u_R = \frac{u - u_{i_{cD_{50}}}}{u_{cD_{50}} - u_{i_{cD_{95}}}}$$
(3.20)

 u_{icDx} : Ayak etrafında D_x çaplı malzeme için oyulmayı başlatan ortalama akım hızı olup şu şekilde hesaplanır,

$$u_{icDx} = 0.645 \overleftarrow{c} \frac{\partial D_x}{\partial \dot{c}} \overleftarrow{b} \overset{;0.053}{\dot{\varphi}} u_{cDx}$$
(3.21)

 u_{cDx} : Tabanda D_x çaplı malzemede hareketi başlatan ortalama hız olup SI biriminde şu şekilde hesaplanır,

$$u_{cDx} = 6.19 d_0^{1/6} D_x^{1/3}$$
(3.22)

Taban Durumu	K _b
Temiz su oyulması	1.1
Düz taban ve ters basamaklar	1.1
Küçük basamaklar	1.1
Orta basamaklar	1.1-1.2
Büyük basamaklar	1.3

Çizelge 3.2. Taban şekili katsayısı (Richardson ve Davis, 2001)

 K_s , Dairesel için 1, Kare için 1.1, uçları inceltilmiş ayaklar için 0.9 alınır. K_{α} : $\alpha = 0$ için 1 alınacaktır.

Yanmaz (2001): Yanmaz (2001), hareketli taban durumu için denge oyulma miktarını dairesel ayak tipleri için denklem 3.23'deki gibi vermiştir,

$$\frac{d_s}{b} = 1.564 \underbrace{\overset{\mathbf{a}}{\mathbf{c}}}_{\mathbf{e}} \frac{\mathbf{b}}{b} \underbrace{\overset{\mathbf{b}}{\mathbf{o}}}_{\mathbf{\phi}} F_r^{0.413}$$
(3.23)

d_s : oyulma miktarı

b : ayak etkin tesir genişliği

d₀:Ayak üzerindeki etkin su yüksekliği

3.2. Köprü Ayaklarındaki Oyulmalara Karşı Alınabilecek Tedbirler

Akımdan kaynaklanan ve köprünün stabilizesini bozan en büyük yapısal etki köprü ayakları etrafındaki aşırı oyulmadır. Hareketli tabanlı akarsulara yerleştirilen köprü ayakları etrafında yapının güvenliğini azaltan oyulmalar meydana gelmektedir. Köprü ayakları etrafında oyulmayı azaltmaya yönelik olarak birçok çalışma yapılmış ve çeşitli önlemler geliştirilmiştir. Bu önlemlerden önemli olanları;

Keson temellerin teşkili: Akarsu yatağına yapılan, köprü ayağına temel teşkil edecek büyük boyutlu temellere keson temel adı verilmektedir. (Şekil 3.1) Bu temellerin yapılmasıyla köprü ayakları etrafında oluşacak olan oyulmanın maksimum derinliğinde %50'ye varan azalma olduğu belirlenmiştir (Üç ve Yüksel, 1988).

Şekil 3.1. Keson temel (Raudkivi, 1990)

Ayakların etrafına anroşman yerleştirilmesi: Bu yöntem pratikte en çok uygulanan yöntemlerden biridir. Bu yöntemde esas olan ayakların etrafına büyük boyutlu taş blokların yerleştirilmesidir. Ayaklar etrafında oyulmaya neden olan, ayak önünde ve yan tarafında oluşan vortekslerin etkileri en aza indirilmektedir (Üç ve Yüksel, 1988).

Ayakların temel seviyelerini düzenlemek ayakların temel derinliklerinin arttırılmasıyla köprünün karşılaşacağı riskler azaltılabilir (Yanmaz, 2002).

Taban seviyesinde kaplama yapılması köprü ayakları etrafında oyulmayı önlemek amacıyla kullanılabilir. (Şekil 3.2) Ortalama taban seviyesinin altında bir dizi riprap tabakası yapılmak suretiyle ayaklar etrafındaki oyulma önlenebilir. (Şekil 3.3) Riprap büyüklüğünün doğru seçilmesi bu önlemin tam olarak işlevini yerine getirebilmesi açısından önemlidir. Riprap büyüklüğü yeterli değilse, yüksek hızlı akımlarda büyük kayma gerilmeleri sonucunda riprap tabakası harekete geçebilir. Riprap tabakasının harekete geçmesi halinde alttaki ince toprağın erozyonu sonucunda riprap tabakasında oturma problemi oluşabilir. Bu problemi önlemek için riprap tabakasıyla ince toprak arasına uygun bir filtre tabakası yerleştirilmelidir (Yanmaz, 2002).

Şekil 3.2. Birbirine bağlanmış beton plaklar (Yanmaz, 2002)

Şekil 3.3. Ayak etrafındaki riprap kaplama (Melville ve Coleman, 2000)

Köprülerin orta ayaklarının memba tarafına Şekil 3.4'deki gibi memba kazığı denilen kazıklar, uygun sayı ve konumda yerleştirilmeleriyle, akım hızını keserek akımı orta ayaklardan saptırmak suretiyle orta ayakların etrafında oluşacak oyulmaları azaltırlar (Yanmaz, 2002).

Şekil 3.4. Memba kazıkları (Melville ve Coleman, 2000)

Memba plakaları memba kazıklarına alternatif olarak kullanılabilir. Belli sayıda ve konumdaki plakalar Şekil 3.5'deki gibi orta ayaklar etrafına yerleştirilir. Bu plakaların kullanılmasıyla orta ayaklar etrafındaki oyulmanın azaldığı gözlenmiştir (Yanmaz, 2002).

33

Ayaklar üzerinde Şekil 3.6'daki gibi taban seviyesine yakın dairesel plakalar yerleştirilmesiyle taban düşey akım ve at nalı çevrintilerinin etkisinden korunarak akım koşullarına karşı daha güvenli bir duruma gelir (Yanmaz, 2002).

Şekil 3.6. Ayak üzerinde dairesel plaka (Yanmaz, 2002)

Ayaklar üzerine Şekil 3.7'deki gibi uygun boyutlarda yarıklar açılması suretiyle ayağın memba tarafındaki düşey akımı bozarak at nalı çevrintisinin etkisi azaltılabilir. Bu metodun uygulanabilmesi için akımın açılı gelmemesi gerekir (Yanmaz, 2002).

Şekil 3.7. Ayakta yarık oluşturulması (Yanmaz, 2002)

3.3. Çalışma Alanı Hakkında Genel Bilgi

3.3.1. Havzanın Konumu

Ceyhan Havzası Doğu Akdeniz bölgesinde yer alıp, batıda Seyhan, doğuda Asi ve Fırat, kuzeyde Kızılırmak havzaları güneyde ise Akdeniz ile çevrilidir. (Şekil 3.8)

Şekil 3.8. Türkiye'nin havza haritası, (T.C. Orman ve Su işleri Bakanlığı Devlet Su İşleri Genel Müdürlüğü Stratejik Plan, 2015 – 2019)

3.3.2. Havzanın Akım Özellikleri

Ceyhan havzasına ait yıllık ortalama akış 7,180 milyar m³ olarak belirlenmiş olup, Türkiye'nin 25 havzasındaki yıllık 186 milyar m³ lük su potansiyelinin yaklaşık % 3,9'unu teşkil etmektedir. (Çizelge 3.3)

Bu tezde, Ceyhan havzası DSİ/EİE akım gözlem istasyonlarının yılda anlık maksimum akım (m³/s) ve gözlendiği gün-ay yıllık toplam akım değerleri (mm) Çizelge 3.4'de verilen Q_{25} ve Q_{100} değerleri kullanılacaktır. Bu değerler Türkiye akarsu havzaları maksimum akımlar frekans analizi kitabından temin edilmiştir.

Çizelge 3.3.	Türkiye'nin havzalarına ait teknik veriler, (T.C. Orman ve Su işleri
	Bakanlığı Devlet Su İşleri Genel Müdürlüğü Stratejik Plan, 2015 -
	2019)

	TÜRKİYE'NİN HAVZALARI						
					(
No	Adı	Yağış Alanı km²	Ortalama Yillik Akış (km²)	Potansiyel İştirak Oranı	Ortalama Yillik Verim (l/s/km²)		
21	Firat-Dicle Havzasi	184.918	52,94	28,5	21,4		
22	Doğu Karadeniz Havzası	24,077	14,90	8	19,5		
17	Doğu Akdeniz Havzası	22.048	11,07	6	15,6		
9	Antalya Havzası	19.577	11,06	5,9	24,2		
13	Batı Karadeniz Havzası	29.598	9,93	5,3	10,6		
8	Bati Akdeniz Havzası	20.953	8,93	4,8	12,4		
2	Marmara Havzası	24,100	8,33	4,5	11		
18	Seyhan Havzası	20.450	8,01	4,3	12,3		
20	Ceyhan Havzası	21.982	7,18	3,9	10,7		
15	Kızılırmak Havzası	78.180	6,48	3,5	2,6		
12	Sakarya Havzası	58.160	6,40	3,4	3,6		
23	Çaruh Havzası	19.872	6,30	3,4	10,1		
14	Yeşilirmak Havzası	36.114	5,80	3,1	5,1		
3	Susurluk Havzası	22.399	5,43	2,9	7,2		
24	Aras Havzası	27.548	4,63	2,5	5,3		
16	Konya Kapali Havzasi	53.850	4,52	2,4	2,5		
7	Büyük Menderes Havzası	24.976	3,03	1,6	3,9		
25	Van Gölü Havzası	19.405	2,39	1,3	5		
4	Kuzey Ege Havzası	10.003	2,09	1,1	7,4		
5	Gediz Havzası	18.000	1,95	1,1	3,6		
1	Meriç-Ergene Havzası	14.560	1,33	0,7	2,9		
6	Küçük Menderes Havzası	6.907	1,19	0,6	5,3		
19	Asi Havzası	7.796	1,17	0,6	3,4		
10	Burdur Göller Havzası	6.374	0,50	0,3	1,8		
11	Akarçay Havzası	7.605	0,49	0,3	1,9		
	Toplam	779,452	186.05	100	209,30		

Çizelge 3.4. Ceyhan havzası DSİ/EİE akım gözlem istasyonlarının yılda anlık maksimum akım (m3/s) ve gözlendiği gün-ay yıllık toplam akım değerleri (mm) (Türkiye akarsu havzaları maksimum akımlar frekans analizi, MAFA, DSİ/EİE)

Adı	Ceyhan nehri – Ceyhan Köprü
No – KR.	2012 – EİE (K)
YA. – H	$19727.2 \text{ km}^2 - 18 \text{ m}$
UDF	LN3
2	1058.34
5	1359.18
10	1526.26
25	1712.38
75	1836.83
100	1952.01

3.3.3. Havzanın iklim ve bitki örtüsü

Ceyhan havzasının güneybatı kısımlarında tipik Akdeniz iklimi, memba kısımlarında ise kara iklimi hâkimdir.

3.4. Çalışma Sahası Hakkında Genel Bilgi

3.4.1. Ceyhan Köprüsü Özellikleri

Ceyhan nehri köprüsü, Tarsus-Adana-Gaziantep otoyolunun Ceyhan nehri geçişine inşa edilmiştir. Sağ taşıma yolu otoyolun 116+124.85 – 116+364.01 kilometreleri arasında olup boyu 239.16 metredir. Sol taşıma yolu otoyolun 116+154.89 – 116+392.01 kilometreleri arasında olup boyu 237.12 metredir. Her bir taşıma yolu 6 açıklıklı olup akslar arası mesafe 39.69 metredir. Ceyhan nehri köprü açıklığından Şekil 3.9'daki gibi akım yönünde sağ dış kenar, sol iç kenar olacak şekilde kıvrım yaparak geçmektedir. Köprü nihai projeleri (As-Built) Karayolları onayları, 1989 yılında imalat bilgileri işlenerek arşivlenmiştir. (Şekil 3.10 ve Şekil 3.11) Ceyhan nehri köprüsüne ait sağ ve sol platform boy kesitleri Şekil 3.12 ve Şekil 3.13'de mevcuttur. Proje bilgileri okunarak köprüye ve nehre ait kesit geometrileri Şekil 3.14 ve Şekil 3.15'deki gibi oluşturulmuştur.

3. MATERYAL VE METOD

<u>Gökalp BULUT</u>

Şekil 3.9. TAG Otoyolu, Ceyhan nehri kesişimi, CitySurf KGM

Şekil 3.10. Ceyhan nehri köprüsü sağ platform proje onay kapak

Şekil 3.11. Ceyhan nehri köprüsü sol platform proje onay kapak

3. MATERYAL VE METOD

Şekil 3.13. Ceyhan nehri köprüsü sol platform boy profili

Şekil 3.14. Ceyhan nehri köprüsü nehir açıklığı profili

Şekil 3.15. Ceyhan nehri batimetrisi

3.4.2. Ceyhan Nehri Taban Malzemesi ve Danelerin Grup Özellikleri

Çalışma alanından alınan arazi numunesine (Şekil 3.16) laboratuvarda yapılan elek analizi sonuçları Şekil 3.17'de mevcuttur.

Şekil 3.16. Ceyhan köprüsünün memba kısmına ait zemin görüntüsü

Şekil 3.17. Ceyhan nehri zemin gradasyon grafiği

3.5. Arazi Çalışmalarında Kullanılan Yöntemler

3.5.1. Oyulma Ölçüm Yöntemi

Arazi çalışmalarında kullanılacak oyulma ölçüm metodu Devlet Su İşleri ve Elektrik İşleri Etüt İdaresinin kullanmış olduğu saha araçları (Şekil 3.18) oyulma ölçüm tekniğine uygun olarak hazırlandı.

Yeterli ağırlıktaki kütle boyu bilinen bir ipin ucuna bağlanarak deniz seviyesi kotu belirlenmiş noktadan, ölçüm istenen bölge üzerine düşey ekseni boyunca sarkıtıldı. Ölçüm yapılan tarafta kalan L_1 boyu L boyundan çıkartılarak bulunan mesafe, belirlenmiş olan deniz kotundan düşülerek istenen noktanın kotu belirlenmiş oldu. Kot taşıma işlemi bütün ayak ve köprü en kesiti boyunca istenen aralıklarda yapıldı. Ölçüm metodunun grafiksel gösterimi Şekil 3.19'daki gibi oluşturuldu.

Şekil 3.18. DSİ ve EİEİ arazi ölçüm aracı ile yapılan bir ölçüm

47

3.5.2 Nehir Rejiminin Gözlemlenmesi

Akım rejimine göre dalgalar, memba ve mansap yönünde aynı anda veya sadece mansap yönünde yayılırlar. Nehir rejiminde dalga yayılması hem mansap hem de memba yönünde olurken, sel rejiminde dalgalar sadece mansap yönünde yayılır. Kritik akım durumunda ise yayılma başlangıç noktası membada sabit kalmak üzere mansap yüzü zamanla akım yönünde ilerler (Şekil 3.20) (Yanmaz, 2002). Ölçüm çalışmalarının doğruluğunu taban hareketinin minimuma yakın olmasına bağlıdır. Bu nedenle ölçüm çalışmalarında nehir rejimi koşulları aranmalıdır.

Şekil 3.20. Akarsuda yüzey dalgasının zamana bağlı yayılımı

3.6. HEC-RAS Yöntemi

HEC-RAS programı, Hydrologic Engineering Center's River Analysis System (Hidrolojik Mühendislik Merkezi Nehir Analiz Sistemi), US Army Corps of Engineers (ABD Kara Kuvvetleri Mühendisleri Birliği) Kuruluşu tarafından geliştirilmiştir.

Program <u>http://www.hec.usace.army.mil/software/hec-ras/</u> adresinden ücretsiz olarak temin edilebilmektedir.

Bu tez kapsamında internet adresi üzerindeki en güncel sürüm olan HEC-RAS 5.0.3 sürümü kullanılmıştır. Programın sorunsuz bir şekilde çalıştırılması için bilgisayarınızın Windows XP, Vista, W7, W8, W8.1, W10 sistemlerinden birine sahip olup 32-bit ya da 64-bit alt yapısına sahip olması gerekmektedir.

Program bilgisayarınıza indirilip yükleme işlemi yapıldıktan sonra Masaüstü ekranınıza Şekil 3.21'deki ikon belirir. Program çalıştırıldığında Şekil 3.22 ve Şekil 3.23'deki arayüz ekranı kullanıldı.

Şekil 3.21. HEC-RAS 5.0.3 Masaüstü ikon görünümü

HEC-RAS \$0.3 File Edit Run View Options GISTools Help	1774	a ×
e 및 지근 국업 🖓 🖶 최종 🏊 및 🧟 🗨 위원도 확진 한 💷 🛙	D55	Int
Project:		1
Ren: Geometria		
Steady Mowr		
Unsteady Flow: Description :		Customary Units

Şekil 3.22. HEC-RAS 5.0.3 Sürümü masaüstü program arayüz görünümü

Ek-1 de HEC-RAS arayüzünde bulunan sekmelerin işlevleri açıklandı.

HEC-RAS paket programı, bir boyutlu olarak, 4 farklı nehir analizi ve Hidrolik hesaplamalar yapabilmektedir.

File Edit	S 5.0.3 Run View Options GIS Tools Help		- ¤ ×
Project: Planc	Steady Flow Analysis Unsteady Flow Analysis Sediment Analysis Water Quality Analysis		◓ <u>ੑਸ਼</u> ฅฅฐฅ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
Steady Flom:	Hydraulic Design Functions		
Unsteady Flo Description :	Run Multiple Plans Run RAS-MODFLOW Coupled Medial		👘 🚊 🔤 US Customary Units
	Uncertainty Analysis	2	

Şekil 3.23. HEC-RAS 5.0.3 Analiz menüsü

Bunlar;

- 1) Düzenli Akım Analizi,
- 2) Değişken Akım Analizi,
- 3) Sediment Analizi,
- 4) Su Kalitesi Analizi,
- 5) Hidrolik Dizayn Fonksiyonları,

HEC-RAS tarafından su yüzü kesitlerini hesaplamak için bir boyutlu enerji denklemi kullanılmaktadır. Bu denklemle birlikte enerji kayıpları için Manning denklemindeki sürtünme katsayısı, daralma ve genişleme değişikliklerine bağlı hız yüksekliğindeki değişim için kinetik enerji düzeltme katsayısı, su yüzünün ani değiştiği yerlerde momentum denklemi kullanılmaktadır.

Bu tez çalışmasında, HEC-RAS programının arayüz sekmeleri kullanılarak Ceyhan nehri ve Ceyhan köprüsünün modellemesi yapıldı. EK 2'de Ceyhan köprüsüne ait HEC-RAS çözüm aşamaları görsellerle özetlendi. Programın analiz yöntemi ve hidrolik hesaplamalarından yararlanılarak ayaklar üzerindeki su kotu ve ayaklar üzerindeki oyulma miktarları hesaplandı. HEC-RAS programında oyulma hesabı yapılması için izlenmesi gereken kılavuz plan Çizelge 3.5'deki gibi hazırlandı.

4. BULGULAR VE TARTIŞMA

4.1. Ölçüm Çalışmaları

Mayıs ayında yapılan saha ölçümlerinde akış rejiminin kritik rejim olduğu görüntüleri Şekil 4.1'de mevcuttur. Kritik rejimde akış olmasından dolayı su üzerindeki bulanıklık ve dalgalanma hareketi net bir şekilde görülmektedir. Kritik rejimde nehir tabanı hareketinin fazla olmasından dolayı oyulma ölçüm değerleri güvenilir bulunmamıştır.

Kasım ayında yapılan saha ölçümlerinde akış rejiminin nehir rejimi olduğu görüntüleri Şekil 4.2'de mevcuttur. Nehir rejiminde akış olmasından dolayı su üzerindeki duruluk ve dalgalanma hareketi net bir şekilde görülmektedir. Nehir rejimde nehir tabanı hareketinin kritik rejime oranla daha stabil olmasından dolayı oyulma değeri daha güvenilir bulunmuştur. Ölçüm çalışması taban hareketinin en düşük seviyede olduğu kasım ayında yapıldı. Ceyhan Köprüsü üzerinde yapılan ölçümlere ait fotoğraflar Şekil 4.3'de sıralı şekilde özetlendi.

Şekil 4.1. Kritik rejimde saha gözlemleri

4. BULGULAR VE TARTIŞMA

Şekil 4.2. Nehir rejiminde saha gözlemleri

4. BULGULAR VE TARTIŞMA

Gökalp BULUT

Köprü genleşme derzi referans alınarak ölçüm noktaları belirlendi.

Gergin ip Gözle muayene Etkili yükseklik Ölçüm Şekil 4.3. Ceyhan köprüsü üzerinde yapılan ölçümlere ait görüntüler

4.2. L	N3 25	5 Yı	llık Debiye Gö	re Orta A	yaklardak	ki Oyulmala	rın Hesabı
	Q	=	A * K * R ² / ₃ *	I ¹ /2			
Q		=	1712.38	m³/s			
V		=	K*R ² / ₃ *I ¹ / ₂	m/s			
	А	=	287.3+((172.2	2*2+1.5*y	$+1.5*y)/2)^{3}$	^k V	m²
n		=	0.034	Mannig p	örüzlülük 1	katsayısı, DS	Sİ
K		=	1/n	1/0.034	Strickler	yatak pürüzli	ülüğü katsayısı
R		=	A/P	(287.3+(((172.2+3	(172.2*2+1 .6y)	.5*y+1.5*y)	/2)*y)/
			A Alan (m ²) /	P Islak Çe	evre (m) =	R Hidro	lik Yarıçap (m)
Ι		=	Y/X	(13.89-13	3.82)/26	Akarsu taba	an eğimi
у		\rightarrow	1.5	1.4	1.3	1.35	1.34
			\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
Α		\rightarrow	547.29	547.07	546.87	546.97	546.95
K		\rightarrow	29.41	29.41	29.41	29.41	29.41
R		\rightarrow	3.09	3.00	2.90	2.95	2.94
Ι		\rightarrow	0.0027	0.0027	0.0027	0.0027	0.0027
					Q	$= I^{1/2} K^{*} K^{*} F$	R ² / ₃ *I ¹ / ₂
		y=1	1.5 için	\rightarrow	1712.38	≠ 1772.3	
		y=]	1.4 için	\rightarrow	1712.38	<i>≠</i> 1735.8	
		y=]	1.3 için	\rightarrow	1712.38	<i>≠</i> 1698.8	
		y=1	1.35 için	\rightarrow	1712.38	≠ 1717.3	
		y=1	1.34 için	\rightarrow	1712.38	1713.6	

Çizelge 4.1. I	LN3 Q25 Ay	aklardaki su	kotu yüksek	likleri	

d1	d2	d3	d4	d5	
2.99	3.45	3.64	2.9	1.68	m

Şekil 4.4. Debi kesit alanının hesaplanması

Şekil 4.5. Ayaklardaki su kotu yükseklikleri - Q_{25}

4.2.1. Tabandaki Oyulma Şeklinin Tespiti

 $D_{max} = 1.7$ mm ise Melville ve Coleman'a göre (Günyaktı, 1988) karışık agreganın medyan çapı;

 $D_{50a} = D_{amax} / 1.8$ $D_{50a} = 1.7 / 1.8 = 0.94$

Köprü açıklığında ortalama akım hızı ;

$$\begin{split} &u = Q \ / \ A_T \\ &u = 1712.38 \ / \ (287.3 + ((172.2 * 2 + 1.5 * y + 1.5 * y)/2) * y \) \\ &u = 1712.38 \ / \ 933.98 \\ &u = 1.83 \ m/sn \end{split}$$

Akımın ortalama hızı, u, kritik ortalama hızdan, u_c , büyükse tabanda hareket vardır (Yanmaz, 2002).

Kritik ortalama hız şu bağıntıdan bulunabilir :

$$\frac{u_c}{u_{*c}} = 5.75 \log(5.53(\frac{y}{d_{50}}))$$

 $D_{50}=0.38$ mm ise Melville ve Coleman'dan (Laursen, 1956) Ünüform agrega için geçerli medyan çapı cinsinden kritik kayma gerilmesi hızı;

 $\begin{array}{l} 0.1 \mbox{ mm} \leq D \ 50 \leq 1 \mbox{ mm} \\ U_{*\,c} = 0.0115 + 0.0125 \mbox{ D}_{50} \\ U_{*\,c} = 0.015 \mbox{ m/sn} \end{array}$

Kritik ortalama hız Melville ve Coleman'dan (Laursen, 1956);

$$\frac{u_c}{u_{*c}} = 5.75 \log(5.53(\frac{y}{d_{50}}))$$

u_c / 0.015 = 5.75 log (5,53 * (3.64 / 0.38))
u_c = 0.15 m/sn

 $u \ \geq \ u \ _c$

Hareketli Taban oyulması vardır.

Üniformluk kat sayısı, C_u , tane dağılımının üniform veya üniform olmayan (geniş dağılımlı) malzeme olarak tasnif edilmesini sağlamaktadır.

Bu parametre şöyle tanımlanmaktadır:

 $C_u = D_{60} \ / \ D_{10}$ $C_u > 3.0 \ Taban \ malzemesi \ geniş \ dağılımlı olduğu \ kabul \ edilmektedir.$

Granülometri Eğrisinden;

 $C_u > 3.0$ (ünüformluk katsayısı)

C_u > 3 olduğundan Ceyhan Köprüsü enkesitinde taban malzemesinin geniş dağılımlı (karışık agrega) olduğu kabul edilir.

4.2.2. Daralma Oyulmasının Hesabı

Akarsu köprü geçişlerinde köprü kenar ayakları veya varsa köprü orta ayakları sebebiyle akarsu net açıklığında azalma olabilir. Bu daralma sebebiyle membada kabarma ve hızda artma meydana gelir. Hızda meydana gelen artmalar akarsu tabanındaki kayma gerilmelerinin de artmasına neden olur. Eğer tabandaki kayma gerilmelerinin artışı fazla olursa tabanda ciddi miktarda oyulmalar meydana gelebilir.

Ceyhan nehrinin debisinin tamamı köprü net açıklığında azalma olmadan geçmektedir. Köprü yeterli genişlikte olduğu için daralma oyulması hesabı ihmal edilmiştir. Kenar ayak olası oyulmalara karşı taş tahkimatlar ile güçlendirilmiştir. (Şekil 4.6) 100 yıllık akım koşullarına göre yapılan tahkiklerde su üst kotu kenar ayak alt kotundan aşağıda kaldığı tespit olunmuştur.

Şekil 4.6. Ceyhan köprüsü kenar ayak taş tahkimat

4.2.3. Orta Ayaklar Etrafındaki Oyulmanın Hesabı Laursen (1963)

$$\frac{d_s}{b} = 1.11 \overset{\text{gel}_0}{\overset{\text{o}}{\mathbf{c}}} \overset{\text{o}^{0.5}}{\overset{\text{o}}{\mathbf{c}}} \qquad \text{Dairesel Ayak,} \\ \text{Hareketli Taban}$$

d1	d2	d3	d4	d5			
2.99	3.45	3.64	2.9	1.68	m		
b = 2.8 m (4 1 Numaralı	Ayak Genişliğ Ayak İçin :	i) ds /2	.8=1.11*	$(2.99/2.8)^{0.1}$	5	ds _{Laursen} =	3,21 m
2 Numaralı	Ayak İçin :	ds /2	.8=1.11*	(3.45/2.8) ^{0.}	.5	ds _{Laursen} =	3,45 m
3 Numaralı	Ayak İçin :	ds /2	.8=1.11*	(3.64/2.8) ^{0.}	.5	ds _{Laursen} =	3,54 m
4 Numaralı	Ayak İçin :	ds /2	.8=1.11*	(2.9/2.8) ^{0.5}		ds _{Laursen} =	3,16 m
5 Numaralı	Ayak İçin :	ds /2.	.8=1.11*	(1.68/2.8) ^{0.}	.5	ds _{Laursen} =	2,41 m

Neill (1973)

$$\frac{d_s}{b} = K_s$$
Ks=1.5(dairesel),
Ks=2(dikdörtgen)

d1	d2	d3	d4	d5	
2.99	3.45	3.64	2.9	1.68	m

b = 2.8 m (Ayak Genişliği)			
1 Numaralı Ayak İçin :	ds/2.99=1.5	ds _{Neil} =	4.49 m
2 Numaralı Ayak İçin :	ds/3.45=1.5	ds _{Neil} =	5.18 m
3 Numaralı Ayak İçin :	ds/3.64=1.5	ds _{Neil} =	5.46 m
4 Numaralı Ayak İçin :	ds/2.9=1.5	ds _{Neil} =	4.35 m
5 Numaralı Ayak İçin :	ds/1.68=1.5	ds _{Neil} =	2.52 m

Jain ve Fischer (1980)

$$\frac{d_s}{b} = 2.0 \left(F_r - F_{rc} \right)^{0.25} \underbrace{\underbrace{\mathfrak{S}}_{\mathbf{c}} l_0}_{\mathbf{b}} \underbrace{\overset{0.5}{\mathbf{o}}}_{\mathbf{b}} \underbrace{\mathsf{Dairesel}}_{\mathbf{b}} \operatorname{Ayak}, \\ \text{Hareketli} \quad \text{Taban} \\ \text{Fr-Frc} > 0.2 \end{aligned}$$

d1	d2	d3	d4	d5	
2.99	3.45	3.64	2.9	1.68	m

b = 2.8 m (Ayak Genişliği)

 $Fr = u /(g*D)^{1/2}$

U=3.22 Uc=0.18 Fr= 0.58 Fc=0.03 Fr-Fc > 0.2

1 Numaralı Ayak İçin :	$ds/2.8 = 2*(0.58-0.03)^{0.25}*(2.99/2.8)^{0.5}$	ds _{J. ve F.} =	4.98	m
2 Numaralı Ayak İçin :	ds/2.8=2*(0.58-0.03) ^{0.25} *(3.45/2.8) ^{0.5}	ds _{J. ve F.} =	5.35	m
3 Numaralı Ayak İçin :	$ds/2.8=2*(0.58-0.03)^{0.25}*(3.64/2.8)^{0.5}$	ds _{J. ve F.} =	5.50	m
4 Numaralı Ayak İçin :	$ds/2.8=2*(0.58-0.03)^{0.25}*(2.9/2.8)^{0.5}$	ds _{J. ve F.} =	4.91	m
5 Numaralı Ayak İçin :	$ds/2.8=2*(0.58-0.03)^{0.25}*(1.68/2.8)^{0.5}$	ds _{J. ve F.} =	3.74	m

Günyaktı (1988)

	$\frac{d_s}{b} = 1.183 \mathbf{\ddot{c}} \frac{\mathbf{a}l_0}{\mathbf{\dot{e}}} \mathbf{\ddot{o}}^{.471}_{\mathbf{\dot{e}}}$			Daire Gene	sel l Oyul	Ayak, ma
d1	d2	d3	d4	d5		
2.99	3.45	3.64	2.9	1.68	m	

b = 2.8 m (Ayak Genişliği)						
1 Numaralı Ayak İçin :	ds =/2.8=1.183*(2.99/2.8) ^{0.471}	ds _{günyaktı} =	3.42	m		
2 Numaralı Ayak İçin :	ds =/2.8=1.183*(3.45/2.8) ^{0.471}	ds _{günyaktı} =	3.65	m		
3 Numaralı Ayak İçin :	ds =/2.8=1.183*(3.64/2.8) ^{0.471}	ds _{günyaktı} =	3.75	m		

4 Numaralı Ayak İçin :
$$ds =/2.8=1.183*(3.64/2.8)^{0.471}$$
 $ds_{günyaktı}= 3.37$ m
5 Numaralı Ayak İçin : $ds =/2.8=1.183*(1.68/2.8)^{0.471}$ $ds_{günyaktı}= 2.60$ m

Johnson (1992)

		d a		2 = 0.21 = 0.2	4	Dairesel	Ayak,
d1	d2	$\frac{1}{b}$ d 3 2.0	ê b ø	$F_r^{0.21}\mathfrak{B}_g$		Hareketli '	Taban
2.99	3.45	3.64	2.9	1.68	m		

b = 2.8 m (Ayak Genişliği)

$$Fr = u / (g*D)^{1/2} = 0.584$$

$$\sigma_g \!= \left(D_{84.1/} D_{15.9} \right)^{0.5} \\ = \left(0.7/0.01 \right)^{0.5} = 8.37$$

1 Numaralı Ayak İçin :	ds/2.8=2.02 * (2.99/2.8) ^{0.02}	ds _{Johnson} =	3.04 m
, ,	* $(0.584)^{0.21}$ * $(8.37)^{-0.24}$		2.05
2 Numaralı Ayak İçin :	$ds/2.8=2.02*(3.45/2.8)^{0.02}*$ (0.584) ^{0.21} *(8.37) ^{-0.24}	ds _{Johnson} =	3.05 m
	(0.584) $(0.57)ds/2.8=2.02*(3.64/2.8)^{0.02}*$	ds _{Johnson} =	3.05 m
3 Numaralı Ayak İçin :	$(0.584)^{0.21} * (8.37)^{-0.24}$	Jourgon	
4 Numaralı Ayak İcin ·	ds/2.8=2.02*(2.9/2.8) ^{0.02} *	ds _{Johnson} =	3.04 m
4 Mullaralı 7 Yak içili .	$(0.584)^{0.21} * (8.37)^{-0.24}$		
5 Numaralı Ayak İcin ·	ds/2.8=2.02*(1.68/2.8) ^{0.02} *	$ds _{Johnson} =$	3.00 m
5 Tumaran Ayak için .	$(0.584)^{0.21} * (8.37)^{-0.24}$		

Melville (1997)

Genel Oyulma		$K_{d}K_{s}K_{a}$	$D_s = K_{yb} K_I K_d K_s K_a$					
		d5	d4	d3	d2	d1		
	m	1.68	2.9	3.64	3.45	2.99		

b = 2.8 m (Ayak Genişliği)

Kyb =	2*(2.8*d)^0.5
Kd =	1

Ks = 1 dairesel $K\alpha = 1 \alpha = 0$

1 Numaralı Ayak İçin :	ds _{Melville} =	5.79	m
2 Numaralı Ayak İçin :	ds _{Melville} =	6.22	m
3 Numaralı Ayak İçin :	ds _{Melville} =	6.38	m
4 Numaralı Ayak İçin :	ds _{Melville} =	5.70	m
5 Numaralı Ayak İçin :	ds _{Melville} =	4.34	m

Richardson ve Davis (2001)

$\frac{d_s}{h} = 2.0K_s K_a K_b K_z$	$\frac{\partial \mathbf{e} l_0}{\partial \mathbf{b} \dot{\mathbf{o}}} \overset{\mathbf{o}^{0.35}}{\dot{\mathbf{o}}}$	$F_{r}^{0.43}$	Genel Oyulma
<i>D</i> E	e p ø		Gener Oyunna

d1	d2	d3	d4	d5	
2.99	3.45	3.64	2.9	1.68	m

b = 2.8 m (Ayak Genişliği) Ks = 1 Dairesel $K\alpha = 1$ α=0 Kb = 1.1 Kz = 1 $D_{50} < 2$

 $Fr = u /(g*D)^{1/2} = 0.584$

1 Numaralı Ayak İçin :	ds Richardson ve Davis	5.00	m
2 Numaralı Ayak İçin :	ds Richardson ve Davis	5.26	m
3 Numaralı Ayak İçin :	ds Richardson ve Davis	5.36	m
4 Numaralı Ayak İçin :	ds Richardson ve Davis	4.95	m
5 Numaralı Ayak İçin :	ds Richardson ve Davis	4.09	m

Yanmaz (2001)

		$\frac{d_s}{d_s} = 1$	$\frac{d_s}{d_s} = 1.564 \mathbf{c} \frac{\mathbf{e} \mathbf{d}_0}{\mathbf{c}} \mathbf{\ddot{o}}^0$			Dairesel	Ayak,
		b	₿b ø	j [']		Hareketii	aban
d1	d2	d3	d4	d5			
2.99	3.45	3.64	2.9	1.68	m		

$$b = 2.8 m$$
 (Ayak Genişliği)
Fr= u / (g * D)^{1/2} = 0.584

1 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564^{*}(2.99/2.8)^{0.405}}{^{*}(0.584)^{0.413}}$	ds _{Yanmaz} =	3.60	m
	$ds/2.8=1.564*(3.45/2.8)^{0.405}$			
2 Numaralı Ayak İçin :	$(0.584)^{0.413}$	ds _{Yanmaz} =	3.82	m

4. BULGULAR VE TARTIŞMA

3 Numaralı Ayak İçin :	$ ds/2.8 = 1.564 * (3.64/2.8)^{0.405} * (0.584)^{0.413} $	ds _{Yanmaz} =	3.90	m
4 Numaralı Ayak İçin :	$ds/2.8=1.564*(2.9/2.8)^{0.405}$ *(0.584) ^{0.413}	ds _{Yanmaz} =	3.56	m
5 Numaralı Ayak İçin :	$ds/2.8=1.564*(1.68/2.8)^{0.405}$ *(0.584) ^{0.413}	ds _{Yanmaz} =	2.85	m

4.3. LN3 100 Yıllık Debiye Göre Orta Ayaklardaki Oyulmaların Hesabı

Çizelge 4.2. LN3 Q₁₀₀ Ayaklardaki su kotu yükseklikleri

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

Şekil 4.7. Ayaklardaki su kotu yükseklikleri Q_{100}

4.3.1. Tabandaki Oyulma Şeklinin Tespiti

Dmax = 1.7 mm ise Melville ve Coleman'a göre (Günyaktı, 1988) karışık agreganın medyan çapı;

 $D_{50a} = D_{amax} / 1.8$ $D_{50a} = 1.7 / 1.8 = 0.94$

Köprü açıklığında ortalama akım hızı ;

$$\begin{split} &u = Q \ / \ A_T \\ &u = 1952.01 \ / \ (287.3 + ((172.2 * 2 + 1.5 * y + 1.5 * y)/2) * y \) \\ &u = 1952.01 \ / \ 1055.49 \\ &u = 1.85 \ m/sn \end{split}$$

Akımın ortalama hızı, u, kritik ortalama hızdan, uc, büyükse tabanda hareket vardır. (Yanmaz 2002)

Kritik ortalama hız şu bağıntıdan bulunabilir :

$$\frac{u_c}{u_{*c}} = 5.75 \log(5.53(\frac{y}{d_{50}}))$$

 $D_{50}=0.38$ mm ise Melville ve Coleman'dan (Laursen, 1956) Ünüform agrega için geçerli medyan çapı cinsinden kritik kayma gerilmesi hızı;

 $\begin{array}{l} 0.1 \mbox{ mm} \leq D_{50} \leq 1 \mbox{ mm} \\ u \ast_c = 0.0115 + 0.0125 \mbox{ } D_{50} \\ u \ast_c = 0.015 \mbox{ m/s} \end{array}$

Kritik ortalama hız Melville ve Coleman'dan (Laursen, 1956);

$$\begin{split} &U_c \ / \ U_{*c} = 5.75 \ \log \ (5.53*(y/D_{50})) \\ &U_c \ / \ 0.015 = 5.75 \ \log \ (\ 5.53 \ * \ (\ 3.64 \ / \ 0.38 \) \) \\ &U_c = 0.15 \ m/s \\ &U \ \ge \ U_c \end{split}$$

Hareketli Taban oyulması vardır.

Üniformluk kat sayısı, C_u , tane dağılımının üniform veya üniform olmayan (geniş dağılımlı) malzeme olarak tasnif edilmesini sağlamaktadır.

Bu parametre şöyle tanımlanmaktadır:

 $C_u = D_{60} / D_{10}$

 $C_u > 3.0$ Taban malzemesi geniş dağılımlı olduğu kabul edilmektedir.

Granülometri Eğrisinden;

 $C_u > 3.0$ (ünüformluk katsayısı)

 $C_u > 3$ olduğundan Ceyhan Köprüsü enkesitinde taban malzemesinin geniş dağılımlı (karışık agrega) olduğu kabul edilir.

4.3.2. Daralma Oyulmasının Hesabı

Akarsu köprü geçişlerinde köprü kenar ayakları veya varsa köprü orta ayakları sebebiyle akarsu net açıklığında azalma olabilir. Bu daralma sebebiyle membada kabarma ve hızda artma meydana gelir. Hızda meydana gelen artmalar akarsu tabanındaki kayma gerilmelerinin de artmasına neden olur. Eğer tabandaki kayma gerilmelerinin artışı fazla olursa tabanda ciddi miktarda oyulmalar meydana gelebilir.

Ceyhan Nehrinin debisinin tamamı köprü net açıklığında azalma olmadan geçmektedir. Köprü yeterli genişlikte olduğu için daralma oyulması hesabı ihmal edilmiştir.

4.3.3. Orta Ayaklar Etrafındaki Oyulmanın Hesabı Laursen (1963)

d, $a a a a b$	Dairesel	Ayak,
$\frac{a_s}{b} = 1.11 \overset{\circ}{c} \frac{a_0}{b} \overset{\circ}{e} \overset{\circ}{b} \overset{\circ}{g}$	Hareketli	Гаban

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

b = 2.8 m (Ayak Genişliği 1 Numaralı Ayak İçin :) ds /2.8=1.11*(3.65/2.8) ^{0.5}	ds= 3.55	m
2 Numaralı Ayak İçin :	ds /2.8=1.11*(4.11/2.8) ^{0.5}	ds= 3.77	m
3 Numaralı Ayak İçin :	ds /2.8=1.11*(4.3/2.8) ^{0.5}	ds= 3.85	m

4 Numaralı Ayak İçin :	ds /2.8=1.11*(4.3/2.8) ^{0.5}	ds= 3.50 m
5 Numaralı Ayak İçin :	ds /2.8=1.11*(2.34/2.8) ^{0.5}	ds= 2.84 m
Neill (1973)		

$$\frac{d_s}{b} = K_s$$
Ks=1.5(dairesel),
Ks=2(dikdörtgen)

d1	d2	d3	d4	d5		
3.65	4.11	4.3	3.56	2.34	m	
b = 2.8 m	(Ayak Gei	nişliği)				
1 Numara	lı Ayak İçi	in :	ds/3.65=1.5	ds _{Neil}	_{ll} = 5.48	m
2 Numara	ılı Ayak İç	in :	ds/4.11=1.5	ds _{Neil}	_{ll} = 6.17	m
3 Numara	ılı Ayak İçi	in :	ds/4.30=1.5	ds _{Neil}	_{ll} = 6.45	m
4 Numara	ılı Ayak İç	in :	ds/3.56=1.5	ds _{Neil}	_{ll} = 5.34	m
5 Numara	ılı Ayak İçi	in :	ds/2.34=1.5	ds _{Neil}	_{ll} = 3.51	m

Jain ve Fischer (1980)

$d_{1} = 0 (\pi - \pi)^{0.25} \frac{\partial^{0.5}}{\partial^{0.5}}$	Dairesel	Ayak,
$\frac{s}{b} = 2.0(F_r - F_{rc}) \overset{\circ}{\mathbf{c}} \stackrel{\circ}{\underline{b}} \stackrel{\circ}{\underline{g}}$	Hareketli	Taban
	Fr-Frc > 0.2	2

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

b = 2.8 m (Ayak Genişliği) Fr = U / (g * D)^{1/2} U = 3.22 Uc = 0.18 Fr-Fc > 0.2 Fr=0.58 Fc=0.03

Fr-Fc > 0.2

1 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=2 * (0.58-0.03)^{0.25}}{* (3.65/2.8)^{0.5}}$	ds $_{J ve F} =$	5.51	m
2 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=2^{*}(0.58\text{-}0.03)^{0.25}}{^{*}(4.11/2.8)^{0.5}}$	ds $_{J ve F} =$	5.84	m
3 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=2^{*}(0.58-0.03)^{0.25}}{^{*}(4.3/2.8)^{0.5}}$	ds $_{J ve F} =$	5.98	m
4 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=2^{*}(0.58-0.03)^{0.25}}{^{*}(3.56/2.8)^{0.5}}$	ds $_{J ve F} =$	5.44	m
5 Numaralı Ayak İçin :	ds/2.8=2*(0.58-0.03) ^{0.25} *(2.34/2.8)^0.5	ds _{J ve F} =	4.41	m

Günyaktı (1988)

d , $ad_{0} \ddot{o}^{0.471}$	Dairesel	Ayak,
$\frac{a_s}{b} = 1.183 \mathbf{c} - \mathbf{b} \mathbf{e} \mathbf{b} \mathbf{\phi}$	Genel Oyu	ılma

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

e = 2.8 m (Ayak Genişliği)				
1 Numaralı Ayak İçin :	ds /2.8=1.183*(3.65/2.8) ^{0.471}	ds _{günyaktı} =	3.75	m
2 Numaralı Ayak İçin :	ds /2.8=1.183*(4.11/2.8) ^{0.471}	ds _{günyaktı} =	3.97	m
3 Numaralı Ayak İçin :	ds /2.8=1.183*(4.3/2.8) ^{0.471}	ds _{günyaktı} =	4.05	m
4 Numaralı Ayak İçin :	ds /2.8=1.183*(4.3/2.8) ^{0.471}	ds _{günyaktı} =	3.71	m
5 Numaralı Ayak İçin :	ds /2.8=1.183*(2.34/2.8) ^{0.471}	ds _{günyaktı} =	3.04	m

Johnson (1992)

$$\frac{d_s}{b} = 2.02 \operatorname{ce}_{\dot{\mathbf{c}}} \frac{d_0}{b} \operatorname{ce}_{\dot{\mathbf{c}}}^{0.02} F_r^{0.21} \mathbf{s}_s^{-0.24} \qquad \text{Dairesel Ayak,}$$
Hareketli Taban

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

b = 2.8 m (Ayak Genişliği) $Fr = U / (g*D)^{1/2} = 0,584$ $\sigma_g \!= \! \left(D_{84.1/} \! D_{15.9} \right)^{0.5} \\ = \! \left(0.7/0.01 \right)^{0.5} = 8.37$

$$ds/2.8=2.02^{*}(3.65/2.8)^{0.02}$$

1 Numaralı Ayak İçin : *(0.584)^{0.21}*(0.584)^{-0.24} ds_{Johnson}= 3.05 m

$$ds/2.8{=}2.02{*}(4.11/2.8)^{0.02}$$
2 Numaralı Ayak İçin : *(0.584)^{0.21}*(0.584)^{-0.24} ds_{Johnson}= 3.06 m

3 Numaralı Ayak İçin :	$ds/2.8=2.02*(4.3/2.8)^{0.02}$ $*(0.584)^{0.21}*(0.584)^{-0.24}$	ds _{Johnson} = 3.06 m
4 Numaralı Ayak İçin :	$ds/2.8=2.02*(3.56/2.8)^{0.02}$ $*(0.584)^{0.21}*(0.584)^{-0.24}$	$ds_{Johnson}=$ 3.05 m
5 Numaralı Ayak İçin :	$ds/2.8=2.02*(2.34/2.8)^{0.02} \\ *(0.584)^{0.21}*(0.584)^{-0.24}$	ds _{Johnson} = 3.02 m

Melville (1997)

 $D_s = K_{yb}K_IK_dK_sK_a$ Genel Oyulma

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

 $K_{yb} = 2*(2.8*b)^{0.5}$ Kd = 1 $\begin{array}{rcl} \mathrm{Ks} & = & 1 \\ \mathrm{K\alpha} & = & 1 \end{array}$ dairesel α=0

1 Numaralı Ayak İçin :	ds _{melville} =	6.39	m
2 Numaralı Ayak İçin :	ds _{melville} =	6.78	m
3 Numaralı Ayak İçin :	ds _{melville} =	6.94	m
	-		

4 Numaralı Ayak İçin :	ds _{melville} =	6.31	m

5 Numaralı Ayak İçin : $ds_{melville} = 5.12 \text{ m}$

Richardson ve Davis (2001)

$$\frac{d_s}{b} = 2.0K_s K_a K_b K_z \overset{\text{cel}_0}{\underset{e}{\mathbf{o}}} \overset{\mathbf{o}^{0.35}}{\overset{\mathbf{o}}{\mathbf{o}}} F_r^{0.43} \quad \text{Genel Oyulma}$$

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

b = 2.8 m (Ayak Genişliği)

Ks	1	dairesel	
Κα	1	α=0	
Kb	1.1		
Kz	1	D50<2	
Fr	0.584		
1 Ni	ımaralı Ay	ak İçin :	
2 Numaralı Ayak İçin :			

3 Numaralı Ayak İçin :	$ds_{R \text{ ve } D} = 5.68$	m
4 Numaralı Ayak İçin :	$ds_{R ve D} = 5.32$	m
5 Numaralı Ayak İçin :	$ds_{R ve D} = 4.59$	m

 $ds_{R ve D} = 5.36 m$

 $ds_{R ve D} = 5.59 m$

Yanmaz (2001)

d_{1} , d_{2} , a_{2} , a_{2} , a_{2} , a_{3} , a_{12}	Dairesel	Ayak,
$\frac{a_s}{b} = 1.564 \overset{\circ}{c} \frac{a_0}{b} \overset{\circ}{e} \overset{\circ}{b} \overset{\circ}{\varphi} F_r^{0.413}$	Hareketli 7	Faban

d1	d2	d3	d4	d5	
3.65	4.11	4.3	3.56	2.34	m

b = 2.8 m (Ayak Genişliği)

$Fr = u / (g*D)^{1/2} = 0.584$

1 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564*(3.65/2.8)^{0.405}}{*(0.584)^{0.413}}$	ds _{Yanmaz} =	3.90	m
2 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564*(4.11/2.8)^{0.405}}{*(0.584)^{0.413}}$	ds _{Yanmaz} =	4.10	m
3 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564^{*}(4.3/2.8)^{0.405}*}{(0.584)^{0.413}}$	ds _{Yanmaz} =	4.17	m
4 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564*(3.56/2.8)^{0.405}}{*(0.584)^{0.413}}$	ds _{Yanmaz} =	3.87	m
5 Numaralı Ayak İçin :	$\frac{\text{ds}/2.8=1.564*(2.34/2.8)^{0.405}}{*(0.584)^{0.413}}$	ds _{Yanmaz} =	3.26	m

4.4 HEC-RAS Analiz Sonuçları

4.4.1 LN3 25 Yıllık Akım Koşullarında HEC-RAS

Karayollarından temin edilen proje verilerinden hazırlanan geometrik veriler ve akım verileri HEC-RAS 5.0.3 programına modellemesi yapıldı. (Şekil 4.8) Analiz sonuçları raporlandı. (Şekil 4.9) (Şekil 4.10)

view upcions up look fielp	
· 코요 ♥ - 보시쇼요ㅋ	● ◄ፇ∥∥⊻≆⊾ё∎⊞ฃ∞₅ 🛛 🚂
EYHAN_TEZ	Cilusers/ahmet/Desktop/CEVHAW/CEVHAN_TEZ.prj
THAN, PLAN, TEZ	C: Users' where Desktop (CEYHAN) CEYHAN, TEZ p0 1
yhan_geometri	C:/Lawre/phwet/Desktop/CEVHAN/CEVHAN_TE2.g01
YHAN_1712.38	C:/Lisers/phmet/Desktop/CEVHAN/CEVHAN_TEZ.#01
	1
CittAN_Hydraulic	C: Weers where ti Deektop (CE114W) CE114VI_TE2.h01
	日本品 学品 上上上述: SHAN, FEZ SHAN, FEZ SHAN, 1712.38 SHAN, 1712.38

Şekil 4.8. HEC-RAS 5.0.3 25 Yıllık akim koşullarının hesaplama arayüzü

Şekil 4.9. HEC-RAS 5.0.3 Köprü ayakları oyulma analiz sonuç ekranı

	101	Charnel	Regist
(m) -		2.12	
ing:		3.13	
ty yniste		2.01	
n (n):		3.11	
a fundede		1712.58	
		164.85	
····):	0.38	0.38	0.58
m3/21:		1712.38	
© (m):		194.60	
	0.690	0.090	0.090
(m):		0.40	
(m/ba) a		0.54	
		Live	
a same soon a de			
e saire sour us	40		
	Republic		
	2.80		
and a second	0.22000		
den la	2.35000		
and the second second	2.42		
m (ma)c	1.37		
	1.00		
	0.00		
	1.00		
	1.00		
er:	1.10		
mm /:	1.00		
ier:	1.00		
e 4			
ful:	6.50		
	0.57		
	CS Francis		
draction Scour	(m):		
	Chann is	5.30	
d	har bon Scour (karlion Scott (n): Charmelt	karlını Sinar (n): Osanatı — 5.32

Şekil 4.10. HEC-RAS 5.0.3 Köprü ayakları oyulma analiz sonuç raporu

4.4.2 LN3 100 Yıllık Akım Koşullarında HEC-RAS

Karayollarından temin edilen proje verilerinden hazırlanan geometrik veriler ve akım verileri HEC-RAS 5.0.3 programına modellemesi yapıldı. (Şekil 4.11) Analiz sonuçları raporlandı. (Şekil 4.12) (Şekil 4.13)

File Edit R	un View Options GIS Tools Help		36
	효고 술 👻 📅 보통 🛓	114 • - Frexis Commers 👔	
Projecti	KEYHAN_TEZ	C:/Lisers/ahmet/Desktop/CEVHAN/CEVHAN_TEZ.prj	e
Planc	CEVIHAN_PLAN_TEZ_PLN2	C:/Users/phwet/Desktop/CEVHAV/CEVHAN_TEZ.p03	
Geometry:	(ceyhan_geometri	C:/users/ghmet/Desktop/CEYHAN/CEYHAN_TEZ.g01	_
Steady Flow:	CENHAN_1952.01	C:/Lixers/ahmet/Desktop/CEYHAW/CEYHAN_TEZ.#02	_
Unstaady Flow:	F	En la construction de la constru	_
Hydr Designo	CEYHAN Hydraulic	C: 'Livers' ahreat' Desktop (CEVHAN/CEVHAN_TEZ.H01	_
Description :		SI Unita	

Şekil 4.11. HEC-RAS 5.0.3 100 Yıllık akim koşullarının hesaplama arayüzü

Şekil 4.12. HEC-RAS 5.0.3 Köprü ayakları oyulma analiz sonuç ekranı

Şekil 4.13. HEC-RAS 5.0.3 100 Yıllık debi oyulma sonuçları

Şekil 4.14. Sonuçların karşılaştırılması grafiği Q₂₅

Şekil 4.15. En yakın sonuçların karşılaştırma grafiği Q_{25}

Şekil 4.16. Sonuçların karşılaştırılması grafiği Q₁₀₀

Şekil 4.17. En yakın sonuçların karşılaştırma grafiği $Q_{\rm 100}$

5. SONUÇLAR VE ÖNERİLER

5.1. Sonuçlar

Ceyhan Viyadüğü orta ayaklarındaki oyulmalar için yapılan bu çalışmada araştırmacılar tarafından türetilmiş olan bağıntılar ve HEC-RAS programı birbirlerinden farklı sonuçlar vermiştir.

Çalışmadan elde edilen sonuçlar aşağıda maddeler halinde özetlenmiştir.

- Köprü yapım yılı itibari ile 29 yılını tamamlamış olup bu tez kapsamında 25 yıllık ve 100 yıllık debiler için hesaplamalar yapılmıştır. Karşılaştırma grafikleri Şekil 4.14 ve Şekil 4.15, 25 yıllık debi esas alınarak çizilmiştir. Bu grafiklere göre arazide ölçülen oyulma derinliğine en yakın üç sonucun Laursen, Günyaktı ve Yanmaz olduğu tespit edilmiştir. Köprüden 29 yıllık debi geçmesine rağmen araştırmacılar ile arasındaki farklılığın hareketli taban oyulması koşulları ve akış rejimindeki düzensizlikten kaynaklandığı sonucuna varılmıştır.
- 2. Karşılaştırma grafikleri Şekil 4.16 ve Şekil 4.17, 100 yıllık debi esas alınarak çizilmiştir. Bu grafiklere göre arazide ölçülen oyulma derinliğine en yakın üç sonucun Laursen, Günyaktı ve Yanmaz olduğu tespit edilmektedir. Fakat 29 yıllık oyulma derinliği göz önüne alındığında oyulmanın lineer artışı düşünüldüğünde Richardson ve Davis, Jain ve Fischer, Neil, Melville ve HEC-RAS' dan elde edilen sonuçlarında dikkate alınması gerekliliği tespit edilmiştir. Araştırmacılar ile gerçek sonuçlar arasındaki farklılığın debi periyodunun henüz 100 yıllık debi periyoduna ulaşmamasında, hareketli taban oyulması koşulları geçerli olmasından ve akış rejimindeki düzensizlikten kaynaklandığı sonucuna varılmıştır.
- 3. Arazi ölçümlerinde elde edilen oyulma değerleri ile araştırmacıların bağıntı sonuçları kıyaslanırsa nehrin talveg ekseninde ki oyulmanın çakıştığı fakat

nehrin sağ ve sol eksenlerinde bu çakışmanın olmadığı gözlenmektedir. Oyulmaya eşdeğer en yakın bağıntının Neill'e ait olduğu tespit edilmiştir.

- 4. Nehrin talveg noktasındaki oyulmanın diğer noktalara oranla daha fazla olmasının sebebi, talveg kesitinde akım hızının en yüksek olmasındandır. Arazi ölçülmeleri ve bağıntı sonuçları kıyaslandığında eş değer çakışmanın olmadığı tespit edilmiştir. Akım hızı ile oyulmanın doğru orantılı olduğu sonucuna varılmıştır.
- 5. Oyulma bağıntıları kendi türetilme koşullarında geçerli olup, bu bağıntılar faklı akım ve taban malzemesi değerleri gibi çeşitli parametrelerden etkilenmekte olduğu bilinmektedir. Ceyhan Köprüsü Arazi ölçümleri sonucunda elde edilen oyulma değerlerinin araştırmacılardan Günyaktı ve Yanmaz'ın bağıntı sonuçlarına en yakın çıkması Türkiye havza özellikleri değerlendirilerek yapılan bağıntıların Türkiye havza koşullarında oluşan oyulma değerlerine en yakın çıktığı sonucunu doğrulamıştır.
- 6. Ceyhan Nehri 100 yıllık akım koşulları gözetilerek yapılan hesaplamalar sonucunda Ceyhan Viyadüğünün 2 ve 3 numaralı orta ayakların temel alt kotunun oyulma çukuru içerisinde kalacağı gözlenmiştir.
- 7. Ceyhan Nehri 25 ve 100 yıllık akım koşulları gözetilerek yapılan oyulma hesaplamalarında debinin köprünün kenar ayaklarına çıkmadığı tespit edilmiştir. Kenar ayaklar olası debi artışlarına karşı taş tahkimat uygulaması ile güçlendirilmiştir.
- **8.** Köprü kiriş alt kotu yeterli yükseklikte olup olası debi artışları için yeterli hava payı bırakıldığı gözlenmiştir.
- 9. Ceyhan köprüsünde 29 yıllık oyulma sonucu 4 ve 5 numaralı ayaklarda birikme olduğu tespit olunmuştur. Bunun hareketli taban oyulması ve Ceyhan nehrinin köprü açıklığından kıvrım yaparak geçmesinden kaynaklandığı sonucuna varılmıştır.

5.2. Öneriler

Ceyhan Nehri Viyadüğünün kazık temeller üzerine inşa edilmesi oyulma problemlerine karşı güvenirliğini arttırmıştır. Fakat oyulma derinliğine bağlı olarak kazık temeller üzerine taşıma gücü kayıpları dikkate alınarak köprü statik sonuçlarının değerlendirilmesi sonucunda köprünün oyulmaya karşı güvenilirliği noktasında kesin sonuçlara varılacaktır.

Ceyhan nehri viyadüğünün oyulmaya karşı güvenilirliklerini arttırmak için bir dizi önlemler alınması gerekebilir. Köprü ayaklarında oyulma kaynaklı maddi hasar ve manevi kayıpların önlenmesi için aşağıdaki öneriler teklif edilebilir.

- Köprülerin oyulmaya karşı analizlerinin yapılabilmesi için köprülerin güvenirliğini değerlendirmek üzere Karayolları Genel Müdürlüğü ve Devlet Su İşleri Genel Müdürlüğü ortak çalışma grupları oluşturması,
- 2. Köprü teknik verileri ile Hidrolik tabanlı verilerin ortak veri bankasında tutulması,
- Köprü ayakları üzerine debi ve oyulma ölçümü yapan Elektronik cihazların yerleştirilerek kayıtların tutulması, Bu Cihazların Akıllı Ulaşım Sistemlerine Dahil Edilmesi,
- Köprü memba ve mansap bölgesinden kontrolsüz malzeme alımlarının tespit edilmesi için düzenli gözlem denetimlerinin yapılıp kayıt altına alınması,
- **5.** Köprü memba ve mansap bölgesine oluşturulacak debi savaklama yapılarıyla suyun hızı düşürülmesi,
- **6.** Köprü projelerinde oyulma hesaplarının dikkate alınarak temel alt kotu ve kazık temel boylarının hesap edilmesi,
- Köprü projelendirilmesinde köprü ayaklarındaki oyulmaların hesabında literatüre girmiş programlar ile yapılacak analiz verilerinden dikkatli bir şekilde yararlanılması ve kazık temel boylarının hesap edilmesi,

8. Menderesli akan akarsularda ayak üzerinde etki eden oyulma ve birikme kaynaklı statik yüklerin tesirlerinin önüne geçilmesi için, kıvrımlar üzerine ayak yerleştirilmemesi, zorunlu hallerde ayak açıklığı geniş köprü tasarımlarının tercih edilmesi, mühendislik ekonomisi ve güvenli tarafta kalmak için önerilebilir.

KAYNAKLAR

- Başak, V., Başlamişli, Y., Ve Ergün, Ö., 1975. Bir Doğru Üzerinde Yer Alan Kazık Grubu Etrafında Yerel Oyulmalar. Devlet Su İşleri Genel Müdürlüğü, Ankara, Türkiye. Rapor No: Hi-583.
- Başak, V., Başlamişli, Y., Ve Ergün, Ö. 1977. Doğrusal Eksenli ve Dairesel Kesitli Kazık Grubu Etrafında Meydana Gelen Yerel Oyulmalar. Devlet Su İşleri Genel Müdürlüğü, Ankara, Türkiye. Rapor No: Hi-641.
- Breusers, H.N.C., Nicollet G. Ve Shen H.W., 1977. Local Scour Araund Cylindrical Piers. Journal of the Hydraulics Research, IAHR, 15(3), 211-252.
- Breusers, H.N.C., ve Raudkivi, A.J., 1991. Scouring-Hydroulic Structures Design Manual 2. International Association for Hyroulic Research. A. A. Bakema, Rotterdam, Brookfield, Hollanda.
- Carstens, M.R., 1966. Similarity Laws for Localized Scour. Journal of the Hydraulics Division. ASCE. 92(HY3), 13-36.
- Carstens, M.R., 1966. Similarity Laws for Local Scour. Proceedinds. ASCE. HY3, P. 4818, May.
- Chabert, J. ve Engeldinger, P., 1956. Etude des Affoillements Autour des Piles des Ponts. Rotaire National d'Hydrolique, Chatou, Fransa.
- Chee, 1982. Live Bed Scour at Bridge Piers. University of Aucland, New Zealand. Rep. No. 290.
- Chiev, 1982. Local Scour at Bridge Piers. University of Aucland. New Zealand. Rep. No. 355.
- Ettema, R., 1976. Influence of Bed Material Gradation on Local Scour. M. Eng. Thesis, University of Auckland, New Zealand.
- Ettema R., 1980. Scour at bridge piers. Doktora tezi, Auckland Üniversitesi, Auckland, Yeni Zelanda.

- Gedeli, F., 2006. Niğde Üniversitesi Fen Bilimleri Enstitüsü, Manisa Gediz Köprüsü Orta Ayaklardaki Oyulma Üzerine Yöntem Araştırılması.
- Günyakti, A., 1988. Köprü Ayakları Etrafında Oyulma Derinliğinin Grafik Yöntemle Tayini. Mühendislik ve Çevre Bilimleri Tübitak, 12(1) 96-108.
- Gedeli, F., 2006. Manisa Gediz Köprüsü Orta Ayaklardaki Oyulma Üzerine Yöntem Araştırılması. Niğde Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
- Hancu, S., 1971. Sur le Calcul des Affouillements Locaux Dans la Zone des Piles de Ponts. Proceeding 14 th IAHR Congress 3:299-313.
- Hec-Ras 5.0.3, September 2016. http://www.hec.usace.army.mil.
- Jain, S.C. ve Fischer E.E., 1980. Scour Araund Bridge Piers at High Flow Velocities. Journal of the Hydraulics Division, ASCE, 106(HY11), 1827-1842).
- Johnson, P.A., 1992. Reliability-based Pier Scour Engineering. Journal of Hydraulic Engineering. ASCE, 118(10): 1344-1358.
- Komura, S., 1966. Equilibrium Depth of Scour in Long Constrictions. Journal of the Hydroulic Division. ASCE, 92(HY5).
- Kulga, Z., Dizdar, M. Türkiye akarsu havzaları maksimum akımları frekans analizi (Mafa) Kitabı.
- Laursen, E. M. ve Toch, A., 1956. Scour around Bridge Piers and Abutment. IOWA Highway Research Board Bulletin. ABD. No.4.
- Laursen, E. M., 1958. Scour at B. Crossings. Highway Research Board A.L. B. Lowa ABD. No8.
- Laursen, E. M., 1960. Scour at Bridge Crossings. Journal of the Hydroulics Division. ASCE, ABD. 86(2), 39-54.
- Laursen E. M., 1963. An Analysis of relief bridges Scour. Journal of the Hydraulics Division, ASCE. ABD.
- Larras, J., 1972. Hydrouliques et Granulats. Ed. Eyrolles, Paris, France.
- Melville, B.W. 1977. Pier and Abutments Scour Integrated Approach. Journal of 92

Hydraulic Engineering. ASCE. 123(2), 125-136.

- Melville, B.W. ve Raudkivi, A.J., 1977. Flow Characteristics in Local Scour at Bridge Piers. Journal of Hydraulic Research IAHR, 15(1):373-380.
- Melville, B.W. ve Shutherland, A.J., 1988. Design Method for Local Scour at Bridge Piers, Journal of Hydroulic Engineering. ASCE. 114(10):1210-1226.
- Neill, C.R., 1973. Guide to Bridge Hydraulics. Roads and Transportation Association of Canada, University of Toronto Press, Toronto, Kanada.
- Nicollet, G. ve Ramette, M. 1971. Affoillements au Voisinage de Piles de Pont Cylindiriques Circularies. Proceedings XIV. IAHR Congress, Paris, Fransa, 315-322.
- Nicollet, C., 1971. Sur Problem des Affouillements au des Piles de Pont Cylidiriques. L.N.H. Chatau, Paris.
- Richardson, E.V. ve Davis S.R., 2001. Evaluating Scour at Bridge. Hydraulic Engineering Circular No: 18, Yayın No: Fhwa Nhi 01-001, Fhwa, US. Dept. Of Transportation, Washington D.C., ABD.
- Richardson, E.V. ve Davis, S.R. 2001. Evaluating Scour at Bridges. Hydroulic Engineering Circular, No:18, Yayın No: Fhwa Nhi 01-001, Fhwa, US. Department of Transportation, Washington, D.C., ABD.
- Raudkivi, A.J., 1986. Functional Trends of Scour at Bridge Piers. Journal of Hydroulic Engineering, ASCE, 112(1), 1-13.
- Shames, I.H. 1992. Mechanics of Fluids. McGraw Hill, Singapore.
- Shirhole, A.M. ve Holt, R.C., 1991. Planning for a Comprehensive Bridge Safety Program, Transportation Research Record 1290. Transportation Research Board, National Research Council, Washington, D.C., ABD, 39-50.
- T.C. Orman ve Su Işleri Bakanlığı Devlet Su İşleri Genel Müdürlüğü Stratejik Plan, 2015 – 2019. Ankara.
- Üç, S., Ağaççioğlu, H. Köprü Ayaklarındaki Oyulma Derinliğinin Belirlenmesi ve Bir Uygulama. <u>http://www.e-kutuphane.imo.org.tr/pdf/12947.pdf</u>
- Üç, S., 1988. Vorteks Yayılma Frekansının Oyulma Derinliğine Etkisi Doktora tezi. Yıldız Teknik Üniversitesi. İstanbul. 98.
- Üç, S. ve Yüksel, Y., 1988. Köprü ayaklarının menbaına yerleştirilen pilot ayaklar ile yerel oyulmanın azaltılması. Yıldız Üniversitesi Dergisi. 8-16.
- Yanmaz, A.M. 1989. Time Dependent Analysis of Clear Water Scour Around Bridge Piers. Doktora Tezi Orta Doğu Teknik Üniversitesi. Ankara, Türkiye.
- Yanmaz, A.M. ve Üstün, İ. 2001. Generalized Reliablity Model for Local Scour Around Bridge Piers of Various Shapes. Turkish Journal of Engineering and Environmental Sciences, Turkish Scientific and Technical Research Council. Ankara, Türkiye. 25.6.687-698.
- Yanmaz, M.A., 2002. Köprü Hidroliği. METU Press. Ankara, Türkiye. 1. Baskı, sf.148-173.

ÖZGEÇMİŞ

2002 yılında başladığı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü'nden 2007 yılında mezun oldu. 2005 yılında Ankara ilinde Koçoğlu firmasında Şantiye Stajını, 2006 yılında Mersin ilinde Mimart Firmasında Büro Stajını yaptı. 2007 – 2008 yıllarında Irak Süleymaniye'de Socar-Co. Müteahhidi Tekim-AŞ Firmasında Saha Mühendisi, 2008 – 2010 yıllarında Adana Pozantı'da Karayolları Müteahhidi Tekfen - Tubin - Özdemir O.G. Firmasında Büyük Sanat Yapıları Şefi, 2010 – 2014 yıllarında Mersin Yenicede Demiryolları Müteahhidi Ansaldo - İlci O.G. Firmasında Dizayn Şefi olarak çalıştı. Vergi Mükellefi olarak Mersin il ve ilçe Belediyelerinde İnşaat Mühendisleri Odası onaylı Fenni Mesul ve Statik Proje Müellifi işleri yaptı. 2014 Yılında KPSS Merkezi Yerleştirmesi ile Karayolları Mersin 5. Bölge Müdürlüğüne Kesin Hesap Mühendisi olarak atandı. 2017 yılı itibari ile Yapım Kontrol Mühendisi olarak görevini sürdürmekte. Evli ve bir çocuk babasıdır. <u>gokalpbulut@yahoo.com</u>

EKLER

EK 1

HEC-RAS 5.0.3 Arayüz işlem sekmeleri

- 1- File = Dosya İşlemleri
- 2- Edit = Düzenleme İşlemleri
- 3- Run = Program Çalıştırma İşlemleri
- 4- View = Program Girdi ve Sonuçlarını Görüntüleme İşlemleri
- 5- Options = Ayarlar
- 6- GIS Tools = Coğrafik Bilgi Sistemleri Araçları
- 7- Help = Yardım İşlemleri
- 8- Open, Save = Açma ve Kaydetme (Kısa Yol)

9- View, Edit Flow Data = Akım Verilerinin Girilmesi, Görüntülenmesi (Kısa Yol)

10- View, Edit Sediment Data = Sediment Verilerinin Girilmesi, Görüntülenmesi (Kısa Yol)

11- Perform Simulation = Similasyon Üzerinde performnsların Görüntülenmesi (Kısa Yol)

- 12- Open Ras Mapper = Haritalandırma Kılavuzu Açma (Kısa Yol)
- 13- View Sections, Profiles = Kesit ve Profil Görüntüleme (Kısa Yol)
- 14- View Summary Tables = Özet Tablo Görüntüleme (Kısa Yol)
- 15- File Names = Dosya İsimleri ve Uzantılarının görüntülenmesi
- 16- Descriptions = Açıklamalar
- 17- Unit Sytem = Ölçülendirme Birim Sistemi

EK 2

Ceyhan Köprü Proje Dosyasına Başlama

File \rightarrow New Project \rightarrow Create Folder

HEC-RAS 5.0.3 File Edit Run View	· Options 615 Tool	N Help		<u>F</u> 			
Projecti Plani Geometryi Steady Flowi Unsteady Flowi Description i	New Project			File Name	Selected Folder Cr/Users/goldato1	Default Project Polder Desktop	Decursents
		General	Hala	Cruste Politer		IS I the new for the new rob directory online //hard/golebbillookhop CETHAN OK Cancel	

HEC-RAS 5.0.3 Yeni proje dosyası başlatma

Options \rightarrow Unit System \rightarrow SI (Metric System)

HEC-RAS 5.0.3	a 🖻 🖄
File Edit Rum View Options GESTeels I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Project: KEYHAN_TEZ Plan:	E:Weers'gokabb/Desktop/CEYHAN/CEYHAN/CEYHAN/CEYHAN
Geonetryi Steady Flow	
Description r	👙 🛄 🕅 Units

P-	Select Onits Syste	
C US Customery System Intern Set as default	etionel (Metric Syst For men projects	uri)

HEC-RAS 5.0.3 Birim sistemi değiştirme

Nehir Güzergâhının Girilmesi Edit → Geometric Data

HEC-RAS 5.0.3 Geometrik veri giriş menüsü

Add New River Reach

HEC-RAS 5.0.3 Akarsu güzergâhı ekleme

Enine Kesitlerin Girilmesi

Cross Section Data Options \rightarrow Add New Cross Section

HEC-RAS 5.0.3 En kesit adet bilgilerinin girilmesi

Cross Sector	Data		
Buit Edit Dpr	tions Plat H		
Reni Certai		Apply Data 12 + + Pot Options Geop Pres XS Picts Caur Pres	PotTenain (Fanalable) Out from Terrain
HANTI I		(max) + + 1	
		And for the state of the second of	
Description		The second	
Del Rav	Jan Az	Downstear Reach Lengths	
Criter Secto	on coordinates	L08 Chamic R08	
Station	Elevation	. 25 25 26	
10	15,05	Manager Value [7]	
1 1.24	17.8	L00 Chanel R00	
1 17.0	14.2	0.034 0.034 0.034	
4 18.45	14		
5 28.35	12.31	Main Channel Bank Stations	
3 34.33	15.31	Loft Bank Right Bank	
7 50	11.620	0 (217.06 No Data 1	er Plot
3 81.45	11.30	Cartilities Coefficient Educer 191	
2 15.05	10.56	Contraction Dependion	
43 150	10.4558	0.1 0.3	
11 129.28	11.38		
12 200.38	13.3		
13 229.15	14		
14 205.28	17		
15 207.06	18.15		
18		4)	

HEC-RAS 5.0.3 En kesit verilerinin girilmesi

HEC-RAS 5.0.3 En kesit simülasyonu

HEC-RAS 5.0.3 En kesit kopyalama editörü

KEYHAN_TEZ	C: Users (gokelpb Deaktop)(CEVHAN/CEVHAN_TEL	#) 🔛
Cecmetric Date		- B
Tools How Borran Street	Tools GSTools Help Annu Scott Control	niption : Flot WS extents for P
Corr Sector		+6
Belgitike C	20	
bitrol and bitrol and	ŝ	
ataraje Ang		
		7.4
Puru Shakin OP		• 2
Iffice Parant		

HEC-RAS 5.0.3 Plan görünüm simülasyonu

bit Edit Out	one Plat I	listç										
ver. Dayhar		-	April Tala	2 - + 😎	Col. Dallas	a New	Pers 31 Fais	Clear Pren	P fulle	and freedoute	Cut for Terran	
auger 1		River Sta.	6	+ 1 +	-		A Conception of the local	000	WY TTZ	Flay		
				147 551					-			
20.000	1220	and the second second	the second second			1			101			
Cellan	Park	2w	burn mar br	ablegis	2	9-			100			Laces
O as falls	Destates	- 4	Der Der	90.4 N								
Pilelier:	Percellant	a 18	98	124		1						ulter
10	19.85		Menoralization	121	1 4	1					*	Earch.
7.1.94	17.8	1.1	2 Dian	30.7 b	1 3							-
5 17.5	.41	1.12	1.1%	0.079		11						
4 14.45	14		-	And in case of the local division of the loc	1.	4.4					1	
5 25.25	134		den seres t	De Statione	"正"。	4 3					1	
* AL	12.34		AL FUEL	-topic same	8	1.1					12	
7.52	11.622	1.0	14	17.06	1 B	1.3					1	
8 367.40	18.59	0	d Ray Dar Year	d Oberty 10	8 .	1 1						
2 120.65	UI 55	0	motacton .	Experimin	1.7	મું પ્ર					11	
10 190	0.639	0.1	0	.2	1	10 4	1 m				- <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i> - <i>b</i>	
11 176.38	11.25	1.11				10.0	**					
12 28.25	12.3				1 3	-	-				100	
12 25.10	14										53	
14 22.30	1.7	1.1				1		-	-			
14 171.04	18.14	¥			1 1	1						100
0					1.1.2		- 66	184		742	2.0	210
									Challer Ind			

HEC-RAS 5.0.3 En kesitler üzerinde düzenleme yapılması

Köprü Bilgilerinin Girilmesi

Add Bridge Culvert \rightarrow Bridge Culvert Data \rightarrow Options \rightarrow Add

HEC-RAS 5.0.3 Köprü bilgilerinin girilmesi

\$	《효고의 학교 최시철과적 학 국위》님께의 관립립어~~ 🚦
ometric Data	
Edit Options	View Tables Tools GISTools Help
Reach Store	And Crew Solution Street States State
	T Bridge Culvert Data
8	File View Options Help
2	Riven Cevten · Activities + (0)
*	Readh 1 • River Stall 4.5 • 4
-	Description
	Bounding XS'si _ s 4 Distance between (26 (ht)
1	Beck/ Road-Augen Road-
8	
	Per to the second secon
	Sloping Butrante Rb-L5 Downham midde
10	Picking 1
	Appendent 3 of the second seco
6	
	Maria 1
	Dpening Anshrie
· .	una
2	(

HEC-RAS 5.0.3 Köprü simülasyon ekranı

HEC-RAS 5.0.3 Köprü tabliye verilerinin girilmesi

HEC-RAS 5.0.3 Köprü tabliye simülasyon görünümü

re dourretin. Sate analytim: databy Flow: databy Flow: table Flow: Tell Control A Sate Flow: Tell Control	nterio fu Andri
Red / The: tabash Four tabash	aladefo Auf
Liken Sectors Belge Like Here Sectors Secto	
Here 6	
100000	
teresteres and the second seco	
Stellar Table Proze	

HEC-RAS 5.0.3 Köprü plan görünümü simülasyonu

Pier Data Editor

HEC-RAS 5.0.3 Köprü orta ayak verilerinin girilmesi

HEC-RAS 5.0.3 Köprü orta ayak verilerinin kopyalanması

Geometry Data Editor \rightarrow Save Geometry Data

HEC-RAS SI	03	
File Edit Ru	un View Options GISToolis Help	
GF Wel (2) Project: Plan: Geometry: Plands Reco	ISE INCIDENT Entrikki, TEZ Fayhan, geometri	Image: Source
Uneheady Plaw: Description :		t inits

HEC-RAS 5.0.3 Geometrik verilerinin kayıt edilmesi

Q25, Akım Koşullarının Girilmesi

Edit — Steady Flow Data , $Q_{25} = \ 1712.38 \ m^3\!/sn$

HEC-RAS 5.0.3 akım koşullarının girilmesi

HEC-RAS 5.0.3 Mansap akarsu taban eğiminin girilmesi

(ect)	K.ETHAN,	JEZ			Usars' gokalob (Lesktop (L	ETHAVICE/HAV_TEC	0
netryi	ryi beyhan_ge Rawi 9 dy Mave: 9	geometri		(ci	(Users/gokalpb/Desktop/)C	EVHAN/CEVHAN_TEZ	201
dy Rows	ryi beshen_g (Rovi) Idy Plav:	Steady Flow Bour	dary Conditions]
sdy Rows taxedy Plays	-	F Set boundary	for all profiles		C Set boundary for	one profile at a tine	
				Available Exte	ental Boundary Condition T	ipes	
Ba		Kinown W.S.	Oritical	Depth	Normal Depth	Rating Curve	Delete
1.08	River	5		ielected Sources	ry Condition Locations and	Турен	
		Rher	Reach	Profile	Upstream Normal Depth 5 at 0.00	Deve	meteor
			1.	17		HEC-RAS	
						Enter the down	stream slope for
						Normal depth com	putation for reaching

HEC-RAS 5.0.3 Memba akarsu taban eğiminin girilmesi

	는 그 교	V 10	五声	上上る		111日 11	09S	1
1	EYHAN_TEZ				Ei Users (gokalpb (Deskto	PICEVHANICEYHAN_TE	2.prj	-
. !								
ry: 8 m F	w/han_geome	2i			C: Liters (golalph (Deskto	PICEVHAN/CEVHAN_TE	Z.g01	
dy Flow:	-							
tion: [St ur	ta
	_	_	_					
Steady	Flow Data						(Cristella)	× J
Ele Oat	nor Links	_						
File Opti	ons Help					Low Courses		
File Opti Enter/Edit 1	ans Help Sumber of Prof	les (32000	mand) 1	Reach	Boundary Conditions	uply Data		
File Opti Enter/Edit 1	ons Help sumber of Prof	les (32000	nax): [] Locaboru e	Reach f Now Data Che	Boundary Conditions	uply Date		
File Opti Enter/Edit I River:	ans Help kunber of Prof	les (32000	nançı (1 Locarboru o	Reach	Soundary Conditions A	nghy Daita d Multiple		
File Opti Enter/Edit I River:	ons Help kunber of Prof	les (32000	nau(): [] Locarborn o •] •] River Sta	Reach Flaw Data Che	Soundary Conditions A	ngly Data d Multiple ge Location		
File Opti Enter/Edit I River:	ons Help kunber of Prof schen	les (32000 	nax() [] Locabora o] River Sta	Reach Flaw Data Cha - 3	Soundary Conditions A Inges Add A Row Chan Nofile Iw	d Multiple ge Location		
File Opti Enter/Edit 1 River: 2 Reacht 1 River	ans Help Weber of Prof How Char Row Char R	les (3000) uch	nau(): [] Locateon o •] River Sta RS	Reach Flow Data Cha 18 PF 1	Boundary Conditions A reges Add A Plow Chan Droffie Ma	aphy Data d Multiple ge Location errors and Plow Rates		
File Opti Enter/Edit 1 River: 2 Reachs 1 Biver 1 Cayha	ons Help kunber of Prof schen Row Chur R. 1	les (32000 - - - 	nax() [] Locarborn o P River Sta RS 8	Reach Frize Data Cha I I I I I I I I I I I I I I I I I I I	Boundary Conditions) A nges Add A Plaw Chan Praffie No	ophy Davie d Multiple ge Location avers and Plow Rates		
File Opti Enter/Edit I River: 2 Reacht 1 Biver 1 Cayha	ons Help suber of Prot Non Char Row Char Row Char Row Char Row Char	les (32000 weth	nax() [] Locatemi o ? River Sta RS 8	Reach Flow Data Che I Flow Data Che I I I I I I I I I I I I I I I I I I I	Roundary Conditions A Add A Row Chan Modile Ne	ophy Date d Multiple ge Location areas and Plow Rades		
File Opti Enter/Edit I River: 2 Reach: 1 Siver 1 Ceyha	ons Help subber of Prof Hom Char n 1	les (32000 2 20 Location acti	nau(): [1 Locarberni o • River Sta • RS 8	Reach Flow Data Che I FF 1 1712.38	Boundary Conditions A Inges Add A Riow Chan Picifie Tw	oply Data d Multiple ge Location areas and Plow Rules		
File Opt Enter/Edit 1 River: 2 Reache 1 Binwr 1 Celyha	ons Help sumber of Prof Helm Prov Char n 1	les (32000 ; co Location ach	max): 3 Locarboris o P River Sta 1 RS 8	Reach Friew Data Cha 8 PF 1 1712.38	Boundary Conditions A roges Add A Plane Chen Profile The	ophy Data d Multiple ga Location among and Picon Radius	_	
File Opt Enter/Edit 1 River: 2 Reache 1 Binwr 1 Celyha	ons Help kulter of Prof shert Pow Char n 1	les (32000 2 pe Location auch	nax)) 1 Locateria o - River Sta - - RS - - - - - - - - - - - - - - - -	Reach Friew Data Cha 18 PF 1 1712.38	Boundary Conditions Ad reges Add A Plow Chan Doofin M	ophy Data d Multiple ge Location errors and Plow Raises		
File Opt Enter/Edit I Reach: 1 Biver 1 Ceyha	ons Help kunber of Prof schen Row Char n 2	les (32000 2 pe Location auch	nax)i T Locaborin o River Sta R	Reach Flaw Data Chi 9 PF 1 1712.38	Boundary Conditions	ophy Date d Multiple ge Location areas and Plow Rates		
File Opt Enter/Edit I Reach: 1 Reach: 1 Shw 1 Ceyha	ans Help kueber of Prof How Char n 1	les (22000 2 col Location auch	nax(): [] Locarborn o • • River Sta 8	Reach f Haw Data Chu 1 1 7 1 7 1712.38	Foundary Conditions	oply Data dMultiple ge Location aver and Plow Rules		

HEC-RAS 5.0.3 Debi verisininin girişi

	c Rum I≺∕I⊸	View Op	tions (ills	Tools Help	▶ ► -48	-	15 - SI - I	ella I	133 (m)	miel	neel	r and the	T
	-15	니-티브	01	200	201-2-1-44		~ ~ Ľ ¥	100	1 C I MB	and ref	445		Ł
ject:	1. 1.	THAN_TEZ	-		-	C:Usersly	pokulipb (Desktop (CE	EYHAN'	LEYHAN TE	2.01	Te	I III	59
-	- stee	dy How Dat	8			_				_	100	and the second	
atty P	File C	ptoni He	91						022211				
tead	Enter/En	dit Number of	Profiles (32)	000 max)r 1	Rea	dh Boundary I	conditions	ADDIV D	2.5				
cripte	_	1		Location	s of Flow Data C	Changes							
-	River:	Cayhan		4			A0	OMUN	Dec				
	Reacht	μ		River S	ka t B		Add A Flow Chan	nge Loc	2000				
- 11		Row	Charge Loca	literi		1	Profile N	lanes a	nd Flow Rate	H	_	_	
	1 Cer	/han	1	8	1712.38								
Flow D	ata As				ie Name		Selected Folder	Def	adt Project	nator I	Dearm	enta	
Flow D	lata As 712.30			- A	le Nanie Ziffiari "TEZ. (*		Selected Folder Ci Users (gokalpt	Daf Deskt	ieult Project top/(CEYHAN	falder	Decum	ents	
Flow D	712.30			n je	le Nome Em Ang_TE2, f*		Selected Folder Ci Users (golado Ci Users) Selector Selector Ci (1) Selector Sel	Def bipeskt	indt Project Iopi(CEYHAN	Falder	Decum	enta	
HAN_1	712.38			R List of av	le Nome Ethiologista, f ^{or} collabole files		Selected Folder Ci Users (gabapt Ci Users Selable Dektop	Def	iudt Project Iop/CEYHAN	Palder]	Docum	arrts	

HEC-RAS 5.0.3 Akım koşullarının kaydedilmesi

Ein Edt D	un View Octoor OSTools Hele	
	· · · · · · · · · · · · · · · · · · ·	L≝ ♥ ♥ፇፇዸ¥⊾ Ღ∎∎☞┉ 🛛 🚂
Project:	CEVHAN_TEZ	Crifusers (gokalph)/Desktop/CEYHAN/CEYHAN_TEZ.prj
Plan: Geografiu:	kerten gepretri	C: Litera lookabb Deektoo ICEYHAN ICEYHAN TEZ. a01
Steady Flow (CEVMAN_1712.38	Cr Users (pokabb Desktop (CEMAN (CEMAN, TEZ. 101
Unsteady Flows Description :		SE Units

Modelin Çalıştırılması,

Run \rightarrow Steady Flow Analysis \rightarrow File \rightarrow Save Plan

HEC-RAS 5.0.3 Plan koşullarının kaydedilmesi

1	3 Steedy Row Analysis	N 1.1 1.1	E E E E	
Project Planc Geome	File Options Halp Plan: CEYHAN_PLAN_TE2 Geometry Pile:	ceyhan_geometri	Short 10	EPHAN_TE2.001 EPHAN_TE2.001 EPHAN_TE2.001
lteady Jrates Descrip	Steady Row File : Flow Regime G Subcritical C Nixed Cottonal Programs	CCYHWN_1712.38 Plan Description :	+EC-RAS	EPHWLJEZ.01
Į	F Proodpleen Mepping	Compute	CENter the short plan Identifier (15 char nearoweeded Ef char was) CENHAN_PLAN_TEZ OK Cancel	

HEC-RAS 5.0.3 Plan koşullarının verilerinin kaydedilmesi

80 ×	1 I D V T I L L	<u>ふえば ● ▼ チッ</u>		
rajecti	CEVHWN_TEZ	C:\Users\gokalpb\	Desktop/CEVHAN/CEVHAN_TEZ.prj	
lanc	CEYHAN_PLAN_TEZ	Cilµisers'gokalpbi	Desktop/CEYHAN/CEYHAN_TE2.p01	
ieonetry:	ceytan_geometri	C: Users (pokalpb)	Desktop/CEYHAN/CEYHAN_TEZ.g01	
Steady Flow:	KEYHAN_1712.38	C:\Lisers\pokalpb\	(Desktop/(CEYHAN)(DEYHAN_TEZ.#01	
	(Maria i C	_		_
	E Steedy Flow Analysis			
	File Options Help			
	Plan : CEYHAN_PLAN_TEZ	Short I	D DEMMA PLAN TEZ	
	File Options Help Plan : CEYHAN_PLAN_TEZ Geometry Ple :	Short II caybar_geometri	D RETHING PLANTEZ	
	File Options Hulp Plan : DEYHAN, PLAN, TEZ Geometry Plan : Steady flow Pla :	Short IX cayfeer_geometri CEYHAN_1712.38 Plan Description 1	o (ozmanjunujez L	
	File Options Help Plan : Cernan, PLAN, TEZ Geometry Ple t Staady flow Ple : Plan Regime G Subjective C Supercritical C Mixed	Short S ceyfran_peometri CEYHAN_1712.38 Plan Description 1	D KORMANJUNIJIEZ	
	File Options Hulp File: CEPHAN_PLAN_TE2 Geometry File : Steady Flow File : File: Regime (* Subertical (* Supercritical (* Supercritical (* Mixed Optional Programs (* Floodplan Mapping	Short IX cayhan_peonetri CEYH444_1712.38 Han Description I	р (остинцицицтех 	

HEC-RAS 5.0.3 Analiz ekranı

(E HEC-RAS Finished Computations	
HEC-RAS S03 HEC-RAS S03 File Edit Run 1 Genetory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Cen Geoverory Standy Row Geoverory File Geoverory G	HEC-RAS Finished Computations Write Georetry Information Layer: Complete Profile: Control Finished	
	Preuse Tokasa 3	Cose

HEC-RAS 5.0.3 Analiz sonuç ekranı

第日 × 豆 This	: [o Hie: (
aject: OEYH Rive	: Ceyhan	• Profile: P	F 1	-		Cefaults	Apply	130
n: DEM Rea	te 1	· River Start	KS BR	- + 1		Computer	Report.	
standy Flows RZENY Co steady Flows RZENY (scription : 73. 90 22 W 02 58 58 58 58 58 58 58 58 58 58 58 58 58	traction Per Abut LOB LOB t 0.33 ation Defsure e Bed Specific Deta r t K1	channel A08 3.33 1 3.11 1 1712.28 1 0.38 0.38 Defau Defau 1712.28 1 194.63 1 194.63 1	24 22 20 8 8 44 12 0 0 4 4 12 0 0	Bridge Sc So 100 St	K1 coefficient for S1: S1: Water Temp (C): w lpn(k): v*/w: K1 CK E6 slope in apper	Contraction LOB LODDOCC 0 F F F F F F F F F F F F F F F F F F F	Legend W8 PF 1 Scour Channel 1001998 10000000000	ROE 1.0000

HEC-RAS 5.0.3 Köprü ayakları oyulma analiz ekranı

HEC-RAS 5.0.3 Köprü ayakları oyulma analiz veri giriş ekranı

HEC-RAS 5.0.3 Köprü orta ayakları oyulma analiz veri giriş ekranı

HEC-RAS 5.0.3 Köprü kenar ayakları oyulma analiz veri giriş ekranı

HEC-RAS 5.0.3 Hidrolik verilerin kaydedilmesi

	Save Hydraulic Design Data As			. E
	Title CEYHAN_Hydraulic	File Name Central Tez.h*	Selected Folder Default Project Polder Documents C: Users Jahmet (Desktop) (CEYHAM	
indy Plove lotion i	List of available files		Contraction	Bank S
	OK Cancel Help	Create Folder	[⊇t:[4ce]	3

File Edit Ri	03 un View Options GISTools Help	×
	立主命 💝 📅 五大盘。	LI = - /////¥L/UDEE
Project:	KEYHAN_TEZ	Ci/Users/ahmet/Desktop/QEYHAW/CEYHAN_TEZ.prj
Plan:	CEYHAN, PLAN_TEZ	C: Users Jahmet (Desktop (CEYHAN) CEYHAN, TEZ (001
Geometry:	jeeyhan_geometri	C:/Lawro/phower/Deaktop/CEYHAN/CEYHAN/CEZ.g01
Steady Flow:	CEVHAN_1712.38	C:/Users/ahmet/Deaktop/CEYHAN/CEYHAN/TEZ.R01
Unsteady Plon:	[
Hvdr Design:	CONHAN_Hydraulic	C: Weers/where t/Deaktop VCEVHAV/CEVHAV/_TEZ.h01
Description :		SI Units

HEC-RAS 5.0.3 Hidrolik veri dosyasının oluşturulması

Oyulma ve Su Yüzeyi Profili Sonuçlarının Görülmesi

HEC-RAS 5.0.3 Köprü ayakları oyulma analiz ekranı

HEC-RAS 5.0.3 Köprü ayakları oyulma analiz sonuç ekranı

Contraction	n Scour		Channel	Dialat
Input Data		Left	Channel	Right
	Average Depth (m): Approach Velocity (m/s): Br Average Depth (m):		3.13 2.81 3.11	
	BR Opening Flow (m3/s): BR Top WD (m): Grain Size D50 (mm): Approach Flow (m3/s):	0.38	1712.38 164.85 0.38 1712.38	0.38
	Approach Top WD (m):	0.690	194.63	0.600
Results	Ki Coendent.	0.050	0.030	0.030
	Scour Depth Ys (m): Critical Velocity (m/s): Equation:		0.40 0.54 Live	
Pier Scour				
Input Da	All piers have the same scour depth ata			
	Pier Shape: Pier Width (m): Grain Size D50 (mm): Depth Upstream (m): Velocity Upstream (m/s): K1 Nose Shape: Pier Angle: Pier Length (m): K2 Angle Coef: K3 Bed Cond Coef: Grain Size D90 (mm): K4 Armouring Coef:	Round nos 2.80 0.38000 3.25 2.94 1.00 0.00 12.00 1.00 1.10	e	
Results	Serve Death Ve (e):	4.00		
	Froude #: Equation:	0.52 CSU equat	ion	
Combined !	Scour Depths			
	Pier Scour + Contraction Scour (m):			

HEC-RAS 5.0.3 Köprü ayakları oyulma analiz sonuç rapor ekranı

HEC-RAS 5.0.3 Simülasyon menüsü

HEC-RAS 5.0.3 Kesit simülasyonu

HEC-RAS 5.0.3 Su Yüzeyi profili simülasyon menüsü

HEC-RAS 5.0.3 Su yüzeyi profili simülasyonu

HEC-RAS 5.0.3 3D simülasyonu

ect CEVHAN_TEZ	Save Flow Data As Title Centran_1952.01		File Name	Selected Folder Default Project Polder Docume
tere terement 7 Strady Row Dota teady R File Options Halp related Strate/Edit Number of Pro hydr Des teorophi Reserve 1 Reser	CENHAN 1712.38 CENHAN 3832.03	List of available files	CENHWY TEZ FOI CENHWY TEZ IVOZ	C:(Sers Wathat Desito Economic Economic
jertanjaroj d				

$Q_{100,}$ Akım Koşullarının Girilmesi

HEC-RAS 5.0.3 100 Yıllık akım koşullarının farklı kaydedilmesi

Modelin Çalıştırılması

ALCONCE:	CEVHAN_TEZ		C:\Lisers\ahmat\Desktop\CEYHAN\CEYHAN_TE2.prj	-
Plan: Geometry: Steady Flow: Unsteady Plow: Hydr Dealgns Description:	CEYHAN_BEAME CEYHAN_1952 CEYHAN_Hydri	Steady Flow Analysis File Options Help Plan : Geometry File : Council file File :	- X Short 10 shan_geonetri	
		How Regime Plu IF Suboritical Supercritical IF Mixed Optional Programs IF Roodplain Mapping If Nodplain Mapping	an Description :	
			Campute	
HEC-RASS/ File Edit Ru).3 n View Optic	ana GISToola Halp ∰III ≿IX 11		×
	CEVIHAN_TEZ	<u>▼]@]⊐ ≫ ≊ ⊀ </u> ≪	C:/Jsers/phinet/Desktop/CEYHAW/CEYHAW_TEZ.prj	0
roject:	CEYHAN PLAN T	EZ_PLN2	C:/Liters/phynet/Desktop/CEVHAV/CEVHAV_TEZ.p03	-
roject: larc			Service 1.1 116 11 Service and Service and Service Services	-
roject: lær: ieometry;	ceyhan_geometri		k: here here here here here here here her	
ingject: Narc Geometry: Steady Plows	keyhan_geometii KC11HAN_1952.01	1	C: Users Jahret Desktop (CENTAV) CENTAN_CEXTAN_CEX. 602	_
Project: Narc Geometry: Steady Plows Jinsteady Flows	oeyhan_geometri CC17HAN_1952.01		C: Users/ehmet/Desktop/CEYHW/I/CEYHWI_TEZ.01	-

HEC-RAS 5.0.3 100 Yıllık akim koşullarının hesaplama ekranı

Oyulma ve Su Yüzeyi Profili Sonuçlarının Görülmesi

HEC-RAS 5.0.3 100 Yıllık debi oyulma sonuçları

HEC-RAS 5.0.3 100 Yıllık debi su yüzeyi profili simülasyonu

HEC-RAS Analiz Raporlarının Hazırlanması

HEC-RAS 5.0.3 Rapor hazırlama menüsü

Report Generator
Report file Desktop\CEYHAN\CEYHAN_TEZ.rep No Table Borders
General Summary
V Plan Data V Manning's n Values
Flow Data
🔽 Geoemtry Data 🔽 Contr. and Expan. Coefficients
Output
Profiles to Include in Report Profiles
1
Specific Tables (Detailed Output)
Cross Section Table
Culvert Table Storage Area
I Bridge Table
Multiple Openings Pump Stations
TInline Weir Table
ProfileTables (Summary Output) Selected Summary Tables
Available Summary Tables Scienced Scienced Sciences
Standard Table 1 Standard Table 1 Standard Table 2
Four XS Culvert Bridge Only
Culvert Only
Bridge Only
Bridge Comparison
Multiple Opening Y
Summary of Errors, Warnings and Notes
Close Generate Report View Report

HEC-RAS 5.0.3 Rapor detaylarının girilmesi

EK 3 HEC-RAS Rapor Örneği

CEYHAN_TEZ.rep

HEC-RAS HEC-RAS 5.0.3 September 2016 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

х	х	XXXXXX	XXXX			XXXX		XX		XXXX
х	Х	х	X	X		х	х	х	х	X
х	х	х	X			X	x	х	X	x
XXX	XXXX	XXXX	х		XXX	XX	XX	XXX	XXX	XXXX
X	Х	X	х			X	X	Х	X	X
X	х	X	X	X		х	х	X	х	X
X	X	XXXXXXX	XX	XX		X	×	x	X	XXXXX

```
PROJECT DATA
Project Title: CEYHAN_TEZ
Project File : CEYHAN_TEZ.prj
Run Date and Time: 16.1.2017 19:17:12
```

Project in SI units

PLAN DATA

```
Plan Title: CEYHAN PLAN TEZ
Plan File : C:\Users\ahmet\Desktop\CEYHAN\CEYHAN_TEZ.p01
           Geometry Title: ceyhan_geometri
           Geometry File : C:\Users\ahmet\Desktop\CEYHAN\CEYHAN_TEZ.g01
           Flow Title : CEYHAN_1712.38
                       : C:\Users\ahmet\Desktop\CEYHAN\CEYHAN_TEZ.f01
           Flow File
Plan Summary Information:
Number of: Cross Sections =
                               8 Multiple Openings =
                                                               0
                               0 Inline Structures =
1 Lateral Structures =
            Culverts =
Bridges =
                                                               0
                                                               ø
Computational Information
    Water surface calculation tolerance = 0.003
    Critical depth calculation tolerance = 0.003
    Maximum number of iterations = 20
Maximum difference tolerance = 0.1
                                         = 0.001
    Flow tolerance factor
```

Computation Options

	EYHAN_TEZ.rep				
Critical depth computed only w	here necessary				
Conveyance Calculation Method:	At breaks in n values only				
Friction Slope Method:	Average Conveyance				
Computational Flow Regime:	Subcritical Flow				

```
FLOW DATA
```

Flow Tit	Le: CEYHAN_1712.38
Flow Fil	e : C:\Users\ahmet\Desktop\CEYHAN\CEYHAN_TEZ.f01
Flow Dat	a (m3/s)

River	Reach	RS	PF 1
Ceyhan	1	8	1712.38

Boundary Conditions

River	Reach	Profile	Upstream
Downs	tream		
Ceyhan	1	PF 1	Normal 5 = 0.0027
Normal S	= 0.0027		

GEOMETRY DATA

Geometry Geometry	Title: c File : C	eyhan_ge :\Users\	ometri ahmet\De	sktop\CE	YHAN\CEY	HAN_TEZ.	g01		
CROSS SE	CTION								
RIVER: C	eyhan								
REACH: 1			RS: 8						
INPUT									
Descript	ion:								
Station	Elevation	Data	nun=	15					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.05	1.94	17.8	17.8	14.2	18.45	14	28.15	12.31
34.13	12.31	50	11.622	87.45	10.56	120.05	10.56	150	10.658
178.28	11.28	200.35	12.3	209.19	14	225.28	17	227.05	18.15

				CEYHAN	TEZ.rep			
Manning's	n Val	ues	num-	3				
Sta	n Va	l Sta	n Val	Sta	n Val			
0	.03	4 0	.034	227.06	.034			
Bank Sta: Expan.	Left	Right	Lengths	: Left	Channel	Right	Coeff Contr.	
27-	0	227.06		26	26	26	.1	.3

CROSS SECTION OUTPUT Profile #PF 1

E.G. Elev (m)	14.93	Element	Left OB	Channel
Vel Head (m)	0.39	Wt. n-Val.		0.034
W.S. Elev (m)	14.54	Reach Len. (m)	26.00	26.00
Crit W.S. (m)		Flow Area (m2)		618.88
E.G. Slope (m/m)	0.001914	Area (m2)		618.88
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38
Top Width (m)	195,75	Top Width (m)		195.75
Vel Total (m/s)	2.77	Avg. Vel. (m/s)		2.77
Max Chl Dpth (m)	3.98	Hydr. Depth (m)		3.16
Conv. Total (m3/s)	39144.8	Conv. (m3/s)		39144.8
Length Wtd. (m)	26.00	Wetted Per. (m)		196.24
Min Ch El (m)	10.56	Shear (N/m2)		59.18
Alpha	1.00	Stream Power (N/m s)		163.75
Frctn Loss (m)	0.05	Cum Volume (1000 m3)		105.06
C & E Loss (m)	0.00	Cum SA (1000 m2)		34.15

CROSS SECTION

RIVER: Ceyhan REACH: 1

RS: 7

INPUT Description:

				CEYHAN_	TEZ.rep				
Station E	levati	on Data	num=	15					
Sta	Ele	v Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
Θ	19.0	5 1.94	17.8	17.8	14.2	18.45	14	28.15	12.31
34.13	12.3	1 50	11.622	87.45	18.49	120.05	18.49	150	10.588
178.28	11.2	8 200.35	12.3	209.19	14	225.28	17	227.06	18.15
Manning's	n Val	ues	num=	3					
Sta	n Va	1 Sta	n Val	Sta	n Val				
0	.03	4 0	.034	227.06	.034				
Bank Sta: Expan.	Left	Right	Lengths	: Left (Channel	Right	Coeff	Contr.	
10	9	227.06		26	26	26		.1	.3

CROSS SECTION OUTPUT Profile #PF 1

E.G. Elev (m)	14.88	Element	Left OB	Channe1	
Vel Head (m)	0.40	Wt. n-Val.		0.034	
	10.000	120-12-12-12-12-12-12-12-12-12-12-12-12-12-	0340432		
W.S. Elev (m)	14.48	Reach Len. (m)	26.00	26.00	
Crit W.S. (m)		Flow Area (m2)		614.55	
E.G. Slope (m/m)	0.001951	Area (m2)		614.55	
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38	
Top Width (m)	195.20	Top Width (m)		195.20	
Vel Total (m/s)	2.79	Avg. Vel. (m/s)		2.79	
Max Chl Dpth (m)	3.99	Hydr. Depth (m)		3.15	
Conv. Total (m3/s)	38763.2	Conv. (m3/s)		38763.2	
Length Wtd. (m)	26.00	Wetted Per. (m)		195.68	
Min Ch El (m)	10.49	Shear (N/m2)		60.10	
Alpha	1.00	Stream Power (N/m s)		167.47	
Frctn Loss (m)	0.05	Cum Volume (1000 m3)		89.03	
C & E Loss (m)	0.00	Cum 5A (1000 m2)		29.06	

CROSS SECTION

CEVHAN_TEZ.rep

RIVER: Ceyh	an								
REACH: 1			R5: 6						
INPUT									
Description									
Station Ele	vation	Data	num-	15					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.05	1.94	17.8	17.8	14.2	18.45	14	28.15	12.31
34.13	12.31	50	11.622	87.45	10.42	120.05	10.42	150	10.528
178.28	11.28	200.35	12.3	209.19	14	225.28	17	227.06	18.15
Manning's n	Value	s	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
0	.034	0	.034	227.06	.034				
Bank Sta: L	eft	Right	Lengths	s: Left C	hannel	Right	Coeff	Contr.	
capan	0 2	27.06		26	26	26		.1	.3
CROSS SECTI	ON OUT	PUT Pro	ofile #PF	F 1					
E.G. Elev	(n)		14.82	Eleme	nt		Left	OB Ch	annel
Right OB	(m)		8 49	left o	.Val			6	034
VET HEAD	()		0.40	HCT II	agr.				1034
W.S. Elev 26.00	(n)		14.42	Reach	Len. (r	1)	26.0	0 2	6.00
Crit W.S.	(m)			Flow .	Area (m)	2)		60	9.54
E.G. Slop	e (m/m) (.001998	Area	(n2)			649	9.54
Q Total (m3/s)		1712.38	Flow	(m3/s)			171	2.38
Top Width	(n)		194.63	Top W	idth (m))		19	4.63
Vel Total	(m/s)		2.81	Avg.	Vel. (m,	(5)			2.81
Max Ch1 D	pth (m)	4.00	Hydr.	Depth ((m)			3.13
Conv. Tot	al (m3	/s)	38313.6	Conv.	(n3/s)			383	13.6
Length Wt	d. (m)		26.00	Wette	d Per. ((m)		19	5.10
Min Ch El	(n)		18.42	Shear	(N/m2)			6	1.20
Alpha			1.00	Strea	n Power	(N/m s)		17	1.93
Frctn Los	s (m)		0.05	Cun V	olume (1	1000 m3)		7	3.12
C & E Los	s (m)		0.00	Cun S	A (1000	m2)		2	4.00

CEYHAN_TEZ.rep

CROSS SECTION

RIVER: Ce	eyhan								
REACH: 1			RS: 5						
INPUT									
Descripti	Lon :								
Station E	Elevation	Data	num=	15					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.05	1.94	17.8	17.8	17.8	18.45	17.8	28.15	12,31
34.13	12.31	58	11.622	87.45	10.35	120.05	10.35	150	10,458
178.28	11.28	200.35	12.3	209.19	17.19	225.28	17.19	227.06	18.15
Manning's	s n Value	5	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
0	.034	θ	.034	227.06	.034				
Bank Sta: Expan.	Left	Right	Lengths	: Left C	hannel	Right	Coeff	Contr.	

A 777 BE	26	76	26	
0 221.00	20	20	20	

CROSS SECTION OUTPUT Profile #PF 1

E.G. Elev (m)	14.77	Element	Left OB	Channe1
Right OB Vel Head (m)	0.44	Wt. n-Val.		0.034
W.S. Elev (m)	14.33	Reach Len. (m)	7.00	7.00
Crit W.S. (m)	13.15	Flow Area (m2)		582.92
E.G. Slope (m/m)	0.002091	Area (m2)		582.92
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38
Top Width (m)	179.43	Top Width (m)		179.43
Vel Total (m/s)	2.94	Avg. Vel. (m/s)		2.94
Max Chl Dpth (m)	3.98	Hydr. Depth (m)		3.25
Conv. Total (m3/s)	37451.3	Conv. (m3/s)		37451.3
Length Wtd. (m)	7.00	Wetted Per. (m)		180.56
Min Ch El (m)	10.35	Shear (N/m2)		66,19

CEVHAN_TEZ.rep

Alpha	1.00	Stream Power (N/m s)	194,43
Frctn Loss (m)	0.02	Cun Volume (1000 m3)	57.61
C & E Loss (m)	0.01	Cun SA (1000 m2)	19.13

```
BRIDGE
```

RIVER: Ceyhan RS: 4.5 REACH: 1 INPUT Description: Distance from Upstream XS = 7 Deck/Roadway Width = 12 Weir Coefficient = 1.4 Upstream Deck/Roadway Coordinates num 6 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 0 23.16 0 0 23.16 0 0 23.16 20.83 227.06 23.16 20.83 227.06 23.16 0 227.06 23.16 0 Upstream Bridge Cross Section Data
 Station Elevation Data
 nume
 15

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev ning's n Values num- 3 Sta n Val Sta n Val Sta n Val 0 .034 0 .034 227.06 .034 Manning's n Values Bank Sta: Left Right Coeff Contr. Expan. 0 227.06 .1 .3 Downstream Deck/Roadway Coordinates OUM= 6
 Main
 O
 O
 Sta
 Hi Cord
 Sta
 Hi Cord
 Cord
 Sta
 Hi Cord
 Cord
 Cord
 Sta
 Hi Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 Cord
 < Downstream Bridge Cross Section Data
 Station Elevation Data
 nume
 15

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev Sta Elev 17.8 28.15 12.31 150 10.388

CEYHAN_TEZ.rep 178.28 11.28 200.35 12.3 209.19 17.19 225.28 17.19 227.06 18.15 : num- 3 Sta n Val Sta n Val 0 .034 227.06 .034 Manning's n Values Sta n Val 0 .034 Bank Sta: Left Right Coeff Contr. Expan. 0 227.06 .1 .3 .1 .3 Upstream Embankment side slope 0 horiz. to 1.0 vertical Downstream Embankment side slope -0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = Elevation at which weir flow begins = .98 Energy head used in spillway design Spillway height used in design Weir crest shape = Broad Crested Number of Piers = 5 Pier Data Pier Station Upstream= 34.14 Downstream= 34.14 Upstream num- 2 Width Elev Width Elev 2.8 0 2.8 23.16 Downstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Pier Data Pier Station Upstream= 73.82 Downstream= 73.82 Pier Station Upstream= 73.8 Upstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Downstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Pier Data Pier Station Upstream= 113.51 Downstream= 113.51 Upstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Downstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Pier Data Pier Data Pier Station Upstream= 153.2 Downstream= 153.2 Upstream num= 2 Width Elev Width Elev 2.8 0 2.8 23.16 Downstream num= 2

CEYHAN_TEZ.rep Width Elev Width Elev 0 2.8 23.16 2.8 Pier Data Pier Station Upstream= 192.89 Downstream= 192.89 กนส= Upstream 2 Width Elev Width Elev
 Alloth
 Elev
 With
 Elev
 With
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 Mith
 Elev
 < Downstream Number of Bridge Coefficient Sets = 1 Low Flow Methods and Data Energy Selected Low Flow Methods = Highest Energy Answer High Flow Method Energy Only Additional Bridge Parameters Add Friction component to Momentum Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow - Upstream energy grade line BRIDGE OUTPUT Profile #PF 1 E.G. US. (m) 14.77 Element Inside BR US Inside BR DS N.S. US. (m) 14.33 E.G. Elev (m) 14.74 14.69

1712.38 W.S. Elev (m)

1712.38 Crit W.S. (m)

Max Ch1 Dpth (m)

Vel Total (m/s)

Flow Area (#2)

Specif Force (m3)

Froude # Chl

W.P. Total (m)

23.16 Hydr Depth (m)

14.17

13.26

3.82

3.34

512.33

9.61

3.11

195.64

1428.96

Q Total (m3/s)

Q Bridge (m3/s)

Weir Sta Lft (m)

Weir Sta Rgt (m)

Weir Max Depth (m)

Min El Weir Flow (m)

Weir Submerg

Min El Prs (n)

Q Weir (m3/s)

14.12

13.22

3.84

3.35

510.79

8.61

1429.44

3.10

1	Λ	3
т	-	\mathcal{I}

20.83

CEYHAN_TEZ.rep

	CETT	hur ler u eb	
195.34			
Delta EG (m)	0.13	Conv. Total (m3/s)	28627.9
28514.8			
Delta WS (m)	0.16	Top Width (m)	164.85
164.68			
BR Open Area (m2)	1789.17	Frctn Loss (m)	8.84
0.02			
BR Open Vel (m/s)	3.35	C & E Loss (m)	0.00
0.03			
BR Sluice Coef		Shear Total (N/n2)	91.88
92.48			
BR Sel Method	Energy only	Power Total (N/m s)	307.09
310.01			

Warning: Pier drag coefficient of 2.0 assumed for Class B flow.

CROSS SECTION

RIVER: Ce	yhan								
REACH: 1			RS: 4						
INPUT									
Descripti	on:								
Station E	levati	on Data	num=	15					
Sta	Ele	v Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.0	5 1.94	17.8	17.8	17.8	18.45	17.8	28.15	12.31
34.13	12.3	1 50	11.622	87.45	10.28	120.05	10.28	150	10.388
178.28	11.2	8 200.35	12.3	209.19	17.19	225.28	17.19	227.06	18.15
Manning's	n Val	ues	num=	3					
Sta	n Va	1 Sta	n Val	Sta	n Val				
0	.03	4 0	.034	227.06	.034				
Bank Sta: Expan.	Left	Right	Lengths	: Left	Channel	Right	Coeff	Contr.	
100000000	0	227.06		26	26	26		.1	.3

CROSS SECTION OUTPUT Profile #PF 1

E.G. Elev (m)	14.64	Element	Left OB	Channe1
Vel Head (m)	0.48	Wt. n-Val.		0.034
W.S. Elev (m)	14.17	Reach Len. (m)	26.00	26.00
Crit W.S. (m)		Flow Area (m2)		560.85
E.G. Slope (m/m)	0.002366	Area (m2)		560.85

144

CE	YH	AN.	T	E	Z	•	rep	1

1712.38	Flow (m3/s)	1712.38
178.86	Top Width (m)	178.86
3.05	Avg. Vel. (m/s)	3.05
3.89	Hydr. Depth (m)	3.14
35202.9	Conv. (m3/s)	35202.9
26.00	Wetted Per. (m)	179.90
10.28	Shear (N/m2)	72.34
1.00	Stream Power (N/m s)	220.86
0.06	Cum Volume (1000 m3)	43.89
0.00	Cum SA (1000 m2)	14.75
	1712.38 178.86 3.85 3.89 35202.9 26.00 10.28 1.00 0.06 0.00	1712.38 Flow (m3/s) 178.86 Top Width (m) 3.85 Avg. Vel. (m/s) 3.89 Hydr. Depth (m) 35202.9 Conv. (m3/s) 26.80 Wetted Per. (m) 10.28 Shear (N/m2) 1.00 Stream Power (N/m s) 0.06 Cun Volume (1000 m3) 0.80 Cun SA (1000 m2)

CROSS SECTION

RIVER: Ceyhan RS: 3 REACH: 1 INPUT
 INPUT

 Description:

 Station Elevation Data
 num=
 15

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 0
 19.05
 1.94
 17.8
 17.8
 14.2
 18.45
 14
 28.15
 12.31

 34.13
 12.31
 50
 11.622
 87.45
 10.21
 120.05
 10.21
 150
 10.318

 178.28
 11.28
 200.35
 12.3
 209.19
 14
 225.28
 17
 227.06
 18.15
 num= Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 0 .034 0 .034 227.06 .034 Manning's n Values Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 26 26 26 0 227.06 .1 .3 CROSS SECTION OUTPUT Profile #PF 1 14 57 Element Laft OR Channel E C Elaw (m)

E.G. Elev (m)	14.57	Element	Left OB	Channel
Right OB				
Vel Head (m)	0.46	Wt. n-Val.		0.034

	(EYHAN_TEZ.rep		
W.S. Elev (m)	14.12	Reach Len. (m)	26.00	26.00
Crit W.S. (m)		Flow Area (m2)		570.38
E.G. Slope (m/m)	0.002442	Area (m2)		570.38
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38
Top Width (m)	191.73	Top Width (m)		191.73
Vel Total (m/s)	3.00	Avg. Vel. (m/s)		3.00
Max Chl Dpth (m)	3.91	Hydr. Depth (m)		2.97
Conv. Total (m3/s)	34649.5	Conv. (m3/s)		34649.5
Length Wtd. (m)	26.00	Wetted Per. (m)		192.15
Min Ch El (m)	10.21	Shear (N/m2)		71.10
Alpha	1.00	Stream Power (N/m s)		213.44
Frctn Loss (m)	0.07	Cum Volume (1000 m3)		29.19
C & E Loss (m)	0.00	Cum SA (1000 m2)		9.93

CROSS SECTION

RIVER: Ce	yhan								
REACH: 1			RS: 2						
INPUT									
Descriptio	on:								
Station E	levati	on Data	num=	15					
Sta	Ele	v Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.0	5 1.94	17.8	17.8	14.2	18.45	14	28.15	12.31
34.13	12.3	1 50	11.622	87.45	10.14	120.05	10.14	150	10.248
178.28	11.2	8 200.35	12.3	209.19	14	225.28	17	227.06	18.15
Manning's	n Val	ues	num=	3					
Sta	n Va	1 Sta	n Val	Sta	n Val				
θ	.03	4 0	.034	227.06	.034				
Bank Sta:	Left	Right	Lengths	: Left	Channel	Right	Coeff	Contr.	
Expan.									
	0	227.06		26	26	26		.1	. 3

					CEYHAN_TEZ.rep
CROSS	SECTION	OUTPUT	Profile	#PF	1

E.G. Elev (m)	14.51	Element	Left OB	Channel
Vel Head (m)	0.47	Wt. n-Val.		0.034
W.S. Elev (m)	14.03	Reach Len. (m)	26.00	26.00
Crit W.S. (m)		Flow Area (m2)		561,53
E.G. Slope (m/m)	0.002560	Area (m2)		561.53
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38
Top Width (m)	191.03	Top Width (m)		191.03
Vel Total (m/s)	3.05	Avg. Vel. (m/s)		3.05
Max Chl Dpth (m)	3,89	Hydr. Depth (m)		2,94
Conv. Total (m3/s)	33842.4	Conv. (m3/s)		33842.4
Length Wtd. (m)	26.00	Wetted Per. (m)		191.44
Min Ch El (m)	10.14	Shear (N/m2)		73.64
Alpha	1.00	Stream Power (N/m s)		224.58
Frctn Loss (m)	0.07	Cum Volume (1000 m3)		14.47
C & E Loss (m)	0.00	Cum SA (1000 m2)		4.96

CROSS SECTION

RIVER: CO	eyhan								
REACH: 1			RS: 1						
INPUT									
Descript:	ion:								
Station	Elevation	Data	num-	15					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	19.05	1.94	17.8	17.8	14.2	18.45	14	28.15	12.31
34.13	12.31	50	11.622	87.45	10.07	128.05	10.07	150	10.178
178,28	11.28	200.35	12.3	209.19	14	225.28	17	227.06	18.15
Manning'	s n Value	s	num-	3					
Sta	n Val	Sta	n Val	Sta	n Val				

CEYHAN_TEZ.rep 0 .034 0 .034 227.06 .034

Bank Sta:	Left	Right	Lengths:	Left (Channel	Right	Coeff Contr.	
expan,	θ	227.06		26	26	26	.1	.3

CROSS SECTION OUTPUT Profile #PF 1

E.G. Elev (m)	14.44	Element	Left OB	Channel
Right OB		1000		
Vel Head (m)	0.49	Wt. n-Val.		0.034
W.S. Elev (m)	13.95	Reach Len. (m)		
Crit W.S. (m)	13.00	Flow Area (m2)		551.56
E.G. Slope (m/m)	0.002701	Area (m2)		551.56
Q Total (m3/s)	1712.38	Flow (m3/s)		1712.38
Top Width (m)	190.16	Top Width (m)		190.16
Vel Total (m/s)	3.10	Avg. Vel. (m/s)		3.10
Max Chl Dpth (m)	3.88	Hydr. Depth (m)		2.90
Conv. Total (m3/s)	32949.0	Conv. (m3/s)		32949.0
Length Wtd. (m)		Wetted Per. (m)		190.55
Min Ch El (m)	10.07	Shear (N/m2)		76.67
Alpha	1.00	Stream Power (N/m s)		238.03
Frctn Loss (m)		Cum Volume (1000 m3)		
C & E Loss (m)		Cum SA (1000 m2)		

SUMMARY OF MANNING'S N VALUES

River:Ceyhan				
Reach	River Sta.	n1	n2	n3
1	8	.034	.034	.034
1	7	.034	.034	.034

		CEYHAN_TEZ.rep					
1	6	.034	.034	.034			
1	5	.034	.034	.034			
1	4.5	Bridge					
1	4	.034	.034	.034			
1	3	.034	.034	.034			
1	2	.034	.034	.034			
1	1	.034	.034	.034			

SUMMARY OF REACH LENGTHS

River: Ceyhan

Reach	River Sta.	Left	Channel	Right
1	8	26	26	26
1	7	26	26	26
1	6	26	26	26
1	5	26	26	26
1	4.5	Bridge		
1	4	26	26	26
1	3	26	26	26
1	2	26	26	26
1	1	26	26	26

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Ceyhan

Reach	River Sta	. Contr.	Expan.
1	8	.1	.3
1	7	.1	.3
1	6	.1	.3
1	5	.1	.3
1	4.5	Bridge	
1	4	.1	.3
1	3	.1	.3
1	2	.1	.3
1	1	.1	.3

Profile Output Table - Standard Table 1

Reach River Sta Profile Q Total Min Ch El W.S. Elev Crit W.S. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl

CEYHAN_TEZ.rep

				(m3/s)	(n)	(m)	
(m)	(n)	(m/m)	(m/s)	(#2)	(m)	1995	
1	8	PF	1	1712.38	10.56	14.54	
	14.93	0.001914	2.77	618.88	195.75		0.50
1	7	PF	1	1712.38	10.49	14.48	
	14.88	0.001951	2.79	614.55	195,20		0.50
1	6	PF	1	1712.38	18.42	14.42	
	14.82	0.001998	2.81	689.54	194.63		0.51
1	5	PF	1	1712.38	10.35	14.33	
13.15	14.77	0.002091	2	.94 582.92	179.43		0.52
1	4.	5		Bridge			
1	4	PF	1	1712.38	10.28	14.17	
	14.64	0.002366	3.05	560.85	178.86		0.55
1	3	PF	1	1712.38	10.21	14.12	
	14.57	0.002442	3.00	570.38	191.73		0.56
1	2	PF	1	1712.38	10.14	14.03	
	14.51	0.002560	3.05	561.53	191.03		0.57
1	1	PF	1	1712.38	10.07	13.95	
13.00	14.44	0.002701	3	.10 551.56	190.16		0.58

Profile Output Table - Standard Table 2

Read	ch	Ri	ver Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn
Loss	C & E	Loss	Q Left	Q Channel	Q Right	Top Width		
					(=)	(m)	(m)	
(m)		(m)	(m3/s)	(m3/s)	(m3/s)	(n)		
1		8		PF 1	14.93	14.54	0.39	
0.05		0.00		1712.38		195.75		
1		7		PF 1	14.88	14.48	0.40	
0.05		0.00		1712.38		195.20		
1		6		PF 1	14.82	14.42	0.40	
0.05		0.00		1712.38		194.63		
1		5		PF 1	14.77	14.33	0.44	
0.02		0.01		1712.38		179.43		
1		4.	5		Bridge			
1		4		PF 1	14.64	14.17	0.48	
0.05		0.00		1712.38		178.86		
1		3		PF 1	14.57	14.12	0.46	
0.07		0.00		1712.38		191.73		
1		2		PF 1	14.51	14.03	0.47	

		CEYHAN_T	EZ.rep		
0.07	0.00	1712.38		191.03	
1	1	PF 1	14.44	13.95	0.49
		1712.38		190.16	

Profile Output Table - Bridge Only

Reach	Rive	r Sta	Profile	E.G. US.	Min El P	Prs BR Open Area
Prs O WS	Q Total	Min El W	Weir Flow	Q Weir (m)	Delta EG	BR Sluice Coef (m) (n2)
(m)	(m3/s)		(m)	(m3/s)	(m)	
1	4.5		PF 1	14.77	20.	.83 1789.17
	1/12.38		\$3.10		0.15	