

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION

INSTITUTE OF SCIENCE AND TECHNOLOGY

IMPROVING POSTING LISTS INTERSECTION WITH SKIP POINTERS

MASTER THESIS

Haitham Wajdi Hussein AL-OBAIDI

THE DEPARTMENT OF INFORMATION TECHNOLOGY

THE PROGRAM OF INFORMATION TECHNOLOGY

DECEMBER, 2017

UNIVERSITY OF TURKISH AERONAUTICAL ASSOCIATION INSTITUTE

OF SCIENCE AND TECHNOLOGY

IMPROVING POSTING LISTS INTERSECTION WITH SKIP POINTERS

MASTER THESIS

Haitham Wajdi Hussein AL-OBAIDI

1406050032

THE DEPARTMENT OF INFORMATION TECHNOLOGY

THE PROGRAM OF INFORMATION TECHNOLOGY

Thesis Supervisor: Assist. Prof. Dr. Shadi AL-SHEHABI

Thesis Co-Supervisor: Assist. Prof. Dr. Abdül kadir GORUR

 iii

 iv

STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that, as

required by these rules and conduct, I have fully cited and referenced all material and

results that are not original to this work.

Haitham Wajdi Hussein AL-OBAIDI

DECEMBER, 2017

 v

I would like to express my sincere gratitude to Assist. Prof. Dr. Shadi AL-SHEHABI

and Assist. Prof. Dr. Abdül Kadir GORUR for all the guidance, knowledge and wisdom

they provided at different stages of my educational journey. I would also express my

appreciation to the candle that burnt to light our ways, my father. My gratitude also goes

to my mother, who I learnt my first words from her. I would also thank all my family

especially my wife for all the support they provided along the way. Without you all, I

wouldn‟t be here today. Thank you.

ACKNOWLEDGEMENTS

 vi

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES.. viii

LIST OF TABLES ... ix

LIST OF ABBREVIATIONS ... x

ABSTRACT ... xi

ÖZET .. xiii

Chapter One .. 1

 Introduction .. 1

1.1. Data Indexing .. 1

1.2. Postings Lists ... 2

1.3. Skip Pointers .. 4

1.4. Problem Definition .. 5

1.5. Aim of the Study ... 6

Chapter Two .. 7

 Literature Review ... 7

Chapter Three .. 13

 Methodology .. 13

3.1. Existing Skip Methods .. 13

3.2. The Proposed Method: Dynamic Skip Pointers 18

Chapter Four.. 21

 Experimental results ... 21

TABLE OF CONTENTS

 vii

4.1. Experiment A .. 21

4.2. Experiment B ... 23

4.3. Experiment C ... 26

4.4. Experiment D .. 28

4.5. Experiment E ... 30

Chapter Five .. 33

 Discussion .. 33

Chapter Six .. 36

 Conclusion.. 36

References ... 38

 viii

Figure ‎1.1: Sample posting list.. 2

Figure ‎1.2: Sample inverted indexing dictionary. ... 3

Figure ‎1.3: Postings lists for two words. ... 5

Figure ‎2.1: Sample of Inverted indexing with dictionary and postings. 9

Figure ‎2.2: Sample postings list with skip pointers. ... 10

Figure ‎2.3: Sample hierarchy of a skip list. .. 10

Figure ‎3.1: Sample postings list with skip pointers. ... 15

Figure ‎4.1: Average execution time for the skip methods using stop words. 23

Figure ‎4.2: Average number of comparisons made by the skip methods using stop

words. ... 23

Figure ‎4.3: Average execution time for the skip methods using frequent words. 25

Figure ‎4.4: Average number of comparisons by the skip methods using frequent words.

 .. 25

Figure ‎4.5: Average execution time for the skip methods using rare words. 27

Figure ‎4.6: Average number of comparisons made by the skip methods using rare

words. ... 28

Figure ‎4.7: Average execution time for the skip methods using stop-frequent words

combination. ... 29

Figure ‎4.8: Average number of comparisons for the stop-frequent words combination. 30

Figure ‎4.9: Average execution time for the skip methods using stop-rare words

combination. ... 32

Figure ‎4.10: Average number of comparisons for the stop-rare words combination. 32

LIST OF FIGURES

file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199665
file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199667
file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199668
file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199669
file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199670
file:///E:/Theses/Haithem/Thesis/Thesis_F.docx%23_Toc501199671

 ix

Table ‎4.1: Time and comparisons count of the three skip methods to find the keywords

'in' & 'was'... 22

Table ‎4.2: Time and comparisons count of the three skip methods to find the keywords

'the' & 'of'. ... 22

Table ‎4.3: Average performance of the skip methods using stop words. 22

Table ‎4.4: Time and comparisons of the skip methods to find the words 'advantage' &

'meeting'.. 24

Table ‎4.5: Time and comparisons of the skip methods to find the words 'distance' &

'pass'.. 24

Table ‎4.6: Average performance of the skip methods using frequent words. 24

Table ‎4.7: Time and comparisons of the skip methods to find the words 'huddle' &

'people'. ... 26

Table ‎4.8: Time and comparisons of the skip methods to find the words 'moment' &

'uncle'. ... 26

Table ‎4.9: Average performance of the skip methods using rare words. 27

Table ‎4.10: Time and comparisons of the skip methods to find the words 'the' &

'associated'. ... 28

Table ‎4.11: Time and comparisons of the skip methods to find the words 'in' &

'meeting'.. 29

Table ‎4.12: Average performance of the skip methods using a stop-frequent words

combination. ... 29

Table ‎4.13: Time and comparisons of the skip methods to find the words 'be' &

'continent'.. 30

Table ‎4.14: Time and comparisons of the skip methods to find the words 'it' & 'grins'. 31

Table ‎4.15: Average performance of the skip methods using a stop-rare words

combination. ... 31

LIST OF TABLES

 x

WWW World Wide Web

IR Information Retrieval

SP Skip Pointer

SL Skip List

DS Dynamic Skip

LIST OF ABBREVIATIONS

 xi

Improving Posting Lists Intersection with Skip Pointers

AL-OBAIDI, Haitham Wajdi Hussein

Master, Department of Information Technology

Supervisor: Assist. Prof. Dr. Shadi AL-SHEHABI

Co-Supervisor: Assist. Prof. Dr. Abdül Kadir GORUR

December 2017, 54 pages

The rapid accumulative growth in the number of digital documents imposes many

challenges to the digital world. One of the main challenges created by this growth is to

find documents related to a search query in a reasonable execution time. To reduce the

time required to search for a certain word in all documents, inverted indexing is used,

where the indexing is based on words instead of documents, so that, each word is

indexed with a list of documents identification numbers that contain this word. Each

document number is known as postings and these postings are stored in an ordered

manner in lists known as postings lists.

When a search query is executed, the postings lists related to these words are

retrieved in order to find documents that exist in all postings lists, as results of the

search query, by finding intersections between related postings lists. As postings lists are

stored in an ordered manner, certain positions are skipped during search using skip

pointers, to accelerate the intersection process, by comparing the required value to a

value in a remote position in order to decide the next step taken by the intersecting

ABSTRACT

 xii

algorithm. The distribution of these skip pointers over the postings lists is a key factor to

accelerate the intersecting process and is different from one method to another. The

performance of the existing methods needs to be improved in order to process longer

postings lists while maintaining reasonable execution time.

In this study, a novel method based on skip pointer is proposed to provide faster

results for the intersecting process, in order to meet up the growing number of

documents. The proposed method is tested using different scenarios, and compared to

the existing methods. The results of the conducted experiments show significant

improvement in the number of comparisons, hence execution time, required to find

intersections between postings lists of different sizes.

Keywords: Information retrieval; Skip pointers; Skip lists; Inverted indexing.

 xiii

Atlama İşaretçileriyle Kesişen Mesaj Gönderi Listelerini İyileştirme

AL-OBAIDI, Haitham Wajdi Hussein

Yüksek Lisans, Bilgi Teknolojileri Bölümü

Tez Danışmanı: Yrd.Doç.Dr. Shadi AL-SHEHABI

Eş Danışman: Yrd.Doç.Dr. Abdül Kadir GORUR

 Aralık 2017, 54 sayfa

Dijital belge sayısındaki hızlı artış dijital dünyayı birçok zorlukla karşı karşıya

bırakmaktadır. Bu artışın yarattığı ana zorluklardan birisi makul bir süre içerisinde bir

arama sorgusuyla ilgili belgeleri bulmaktır. Tüm belgelerde belirli bir kelimeyi bulmak

için gereken süreyi kısaltma amacıyla ters indeksleme kullanılmaktadır. Burada

indeksleme belgeler yerine sözcüklere dayalıdır, bu nedenle her kelime bu kelimeyi

içeren bir belge kimlik numarası listesi ile indekslenir. Her belge numarası gönderi

olarak adlandırılmakta ve bu gönderiler gönderi listeleri olarak bilinen listelerde sıralı

bir şekilde saklanmaktadır.

 Bir arama sorgusu yürütüldüğünde, arama sorgusunun sonucu olarak bütün

gönderi listelerinde mevcut olan belgeleri bulmak için ilgili gönderi listeleri arasında

kesişimler bulunarak bu kelimeler ile ilgili gönderi listeleri getirilir. Gönderi listeleri

sıralı bir şekilde saklandığı için, kesişme işleminin yapıldığı algoritma tarafından

atılacak bir sonraki adıma karar vermek ve kesişim sürecini hızlandırmak için gerekli

değeri uzak bir konumdaki değer ile karşılaştırarak arama sırasında atlama işaretçileri

kullanılarak belirli pozisyonlar atlanmaktadır. Bu atlama işaretçilerinin gönderi

ÖZET

 xiv

listelerine dağılımı kesiştirme işlemini hızlandırmak için önemli bir faktördür ve bir

yöntemden diğerine farklılık arz etmektedir. Bir yandan makul yürütme süresi

korunurken diğer yandan daha uzun gönderi listelerinin işlenebilmesi için mevcut

yöntemlerin uygulamalarının geliştirilmesi gerekmektedir.

Bu çalışmada, gittikçe artan doküman sayısını karşılamak için, kesiştirme süreci

için daha hızlı sonuç elde etmek amacıyla atlama işaretçilerine dayanan yeni bir yöntem

önerilmiştir. Önerilen yöntem, farklı senaryolar kullanılarak test edilmiş ve mevcut

yöntemlerle karşılaştırılm. Yürütülen deneylerin sonuçları, farklı boyutlardaki gönderi

listeleri arasındaki kesişimleri bulmak için gereken karşılaştırma sayısında, dolayısıyla

yürütme süresinde önemli oranda bir gelişme göstermiştir.

Anahtar Kelimeler: Bilgi alımı ; Atlama işaretçileri; Atlama listeleri; Ters

indeksleme.

1

The skip pointers technique is widely used in different applications that require

finding intersections in ordered lists, according to the acceleration it provides to such

processes [1-3]. This technique provides shortcuts for the search process, so that, it is

possible to compare ranges in order to figure out whether the required value may exist in

that range of positions or not. Many other techniques are built based on the use of skip

pointers, such as skip lists and other more complex methods that use skip pointer in

multiple ways to accelerate the process of finding intersections [4-6].

Data indexing aims to provide easier and faster way to retrieve information from

indexed documents. For example, it takes plenty of time to search all the documents for

a certain word, every time a search query is requested. Such process becomes even more

time-consuming, when the number of documents is increased. With the rapidly growing

number of online digital documents, it has become impractical to use the traditional

techniques to search for a certain word in all these documents, every time a search

phrase is queried. Thus, many studies have proposed different techniques to provide

alternative techniques rather than scanning the documents per each search query.

One of the widely used techniques for faster retrieval of information, is the inverted

indexing, where indexing is based on retrieved information rather than documents. In

this technique, words are extracted from the indexed document, each word alongside

with all the documents that this word appears in [7-9]. Using this method, it becomes

easier to query the document that has a certain word, by simply retrieving the indexed

data related to the word. Each document identification number, where the word appears

in that document, is known as posting. The list of documents identification numbers for

CHAPTER ONE

INTRODUCTION

1.1. Data Indexing

2

an indexed word is known as postings list. While the table that includes the indexed

words and the postings lists is known as the dictionary.

Every indexed document is assigned with an identification number. These numbers

are assigned in an ordered way, depending on the indexing sequence of these

documents. So that, newer documents have larger identification number than the older

ones. Thus, appending new documents to a list maintains the order of the documents

identification numbers in that list. This technique is used to create the postings lists

during the inverted indexing process.

Documents are scanned periodically to update postings lists, related to each word in

the dictionary, which are created during inverted indexing. Documents that no longer

exist are removed from all postings lists, while modified documents are scanned for

changes, so that these documents are removed from the postings lists of words that no

longer exists in the document, and postings are added to the postings lists related to

words added to the document in the appropriate position depending on the document

identification number. A sample postings list for the word “World” is shown in Figure

1.1. The frequency of this word in the scanned documents is shown next to the indexed

word, then documents identification numbers from the dataset, which are shown inside

the cells, are distributed in the 198 positions, which are shown under the cells that

contain the document identification numbers.

When a search is being queried for documents related to specific words, the results

are concluded using the postings lists, without the need to go through the scan or

indexing process. On the other hand, maintaining the order of the identification numbers

in the postings lists assists accelerating the search process by using skip pointers. These

1.2. Postings Lists

6 17 29 179 208 411 473 512 837

1 2 3 98 99 100 101 102 198

… …

Figure 1.1: Sample posting list.

World 198

3

pointers accelerate the discovery of intersections among postings lists in order to

accelerate the search process. These pointers have no role in the inverted indexing

process, they are only placed on the postings lists resulted from inverted indexing, after

the inverted indexing is completed. A sample inverted indexing dictionary, for multiple

words, is shown in Figure 1.2.

Figure ‎1.2: Sample inverted indexing dictionary.

4

In a certain ascending list, if a number in a specific position is less than a certain

number, then all numbers before that position are less than that certain number too.

Based on this idea, skip pointers techniques rely on comparing the queried values to

values in a certain position, so that, if the values in these positions are less than the

queried values, all values prior to this position are neglected, based on the previous idea.

The use of such technique helps to eliminate larger number of values using fewer

comparisons.

The classic skip pointer technique places skip pointers, one skip pointer for every

group of locations in the ordered list. The number of positions per each group is equal to

the square root of the total number of items in that list. When a certain value is queried,

the method goes through the list by checking the value in the position of the next skip

pointer, before deciding the path it goes through, for the search process. This process is

repeated every time a position with a skip pointer is reached. In case that the value in the

position, where the next skip pointer is located, is less than the queries values, then the

entire elements prior to this position are eliminated from the search process.

In order to find documents that contain more than one word, postings list for each

word is retrieved in order to find documents that exist in all postings lists. This search is

achieved by finding the intersections between two postings lists. The list that results

from this intersection is then used to find intersections with other lists, in case that the

search query includes more than two words. The search for intersections is continued

until the last postings list is processed when the results of this intersection are the results

of the search queried. These results include the identification numbers of all the

documents that include all the words queried in the search.

Skip pointers based methods have the ability to eliminate multiple postings, which

cannot be in the intersection results, from both lists by iterating through these lists

removing all documents in one list with identification number less than the last searched

number from the other list. This procedure cannot be achieved using other search

methods, such as binary search, where the search for intersections must iterate through

1.3. Skip Pointers

5

one list and search for documents from that list in the other list, one by one. Thus, skip

pointers based methods have the ability to find these intersections using fewer

comparisons, hence, less execution time. For example, to search for intersection in the

postings lists shown in Figure 1.3 using binary search method, the first posting from one

of the postings lists is searched for in the other one. So that, the first posting for the

word “Nice”, which is 3 is searched for in the second postings list. For the word

“Place”, by dividing the list into two parts, then the value of the posting in the middle,

which is 42 is compared to the required value. As the value 42 is larger than the required

value 3, the right half of the list is neglected, and the remaining set is divided by two.

The value in the middle of the remaining list, which is 9, is compared to the required

value 3. As the 9 is larger than the 3, then the right half is also neglected, keeping only

two values remain. Both values are not equal to the required value, thus, this value is not

included in the intersection results. This process is repeated for every posting from one

of the lists, until all values from that list is searched for in the other one. Such technique

does not have the ability to eliminate multiple values from the first list, while the skip

pointers methods do that, as the following chapters explain.

The rapid increase in the number of documents available on the internet each day is

creating problems about finding documents related to a certain search query. Many

methods are proposed to overcome the problem of retrieving information from a single

document, so that, the process of finding intersections among the retrieved data, has

become the bottleneck of searching these documents. Skip pointers is a widely used

method, in different techniques, to find intersections between lists, using less number of

1.4. Problem Definition

 96 Nice

Place

3 7 14 21 37 38 73 78

2 5 9 14 22 42 44 68 78 81 91

Figure 1.3: Postings lists for two words.

6

comparisons, hence, less time consumption. The huge numbers of documents impose

challenges to the existing methods, where finding intersections for huge lists within a

reasonable interval of time require supercomputers.

The aim of this study is to propose a new algorithm that is capable of processing lists

with an enormous number of entries in them. The proposed method is based on the skip

lists and is capable of finding all the intersection using fewer comparisons and therefore,

less execution time.

The remainder of this study is organized as follows: chapter two reviews literature

related to the subject, which this study is investigating. Chapter three explains the

existing methods, the way they process lists to find intersections, as well as the proposed

method and the algorithm it uses to find intersections. Chapter four demonstrated the

experiments conducted to measure and compare the performance of the proposed

method with the existing method. Chapter five discusses the results of the experiments

and the difference among these methods. Chapter six illustrates the conclusions acquired

from this study.

1.5. Aim of the Study

7

The rapid growth in the number of documents on the World Wide Web makes it

difficult to use the traditional techniques used earlier, when only limited number of

documents are used to exist or shared in a certain physical or logical location [10, 11].

Information retrieval is one of the services that are suffering from this growth, where

existing techniques are very time consuming when used to process the existing huge

number of documents that contain the required information. Thus, many improvements

are proposed for the information retrieval techniques in order to process the increasing

number of documents and retrieve the required information within acceptable processing

time [12].

Information Retrieval (IR) is the act of search, representation and manipulation of

huge human-language data collections, such as electronic text. Many methods are

proposed to accelerate the process of information retrieval from documents, in order to

maintain the processing time within the acceptable limits despite the huge increasing

number of documents online [13, 14]. Information retrieval techniques may be used to

retrieve information from a document, or retrieve documents that have information

related to a certain query.

Most of the proposed methods focus on improving the process of retrieving data

from every single document. For example, inverted indexing is targeted toward

retrieving information about documents related to an ad hoc query by indexing

information the opposite way the data is stored in. Each word is indexed alongside with

all documents that this word appears in, and the number of time that it appears in that

document. Thus, when a query that contains an indexed word, information about related

documents are retrieved directly from inverse indexing tables, rather than searching all

the document during every query processing [15].

CHAPTER TWO

LITERATURE REVIEW

8

Some other methods rely on estimating the language model used in each document,

so that, when an ad hoc query is executed, the likelihood of a document related to this

search is estimated depending on the concluded language model. This also allows faster

information retrieval from the documents themselves. The method proposed in [16] uses

the Bayesian decision theory to estimate a probabilistic ranking for each query to be in a

certain document. The ranking is computed using model languages created for both the

document and the search query being searched in the documents.

Information may be retrieved from one or more documents for each query. Then, the

documents that have information related to that query are retrieved as search results for

that query. Most search queries contain more than one word, which may or may not be

sequential in the documents. Thus, it is not possible to search for that query in the

document as one phrase. It is mandatory to search for each word a time in order to

measure the relevance of each document to the search query. To do so, each word is

searched in the available electronic documents, then, the intersection of related

documents is retrieved as the most related results to the search query. These results may

also be ranked according to the position of the words in the query and the frequency of

each word‟s repetition [17-19].

A posting list is a list that contains the identification numbers of documents. Inverted

indexes are dictionaries for the terms exist in a posting list, alongside with all postings

that have this term in them. Information retrieval from a certain document is related to

the size of that document, in other words, the more the data presented in the document,

the more time required extracting data from that document. As demonstrated earlier,

many methods are proposed to accelerate this process. On the other hand, refining the

results by finding the intersection of documents that contain more words from the search

query is related to the number of documents found to be related to that search query. For

example, a two-word search query is executed and two lists are generated, where each

list contains the documents that have information related to each word in the search

query. Then, these results must be refined in order to display the documents that include

both words in order to display these documents only, or give priority to these documents

in an arranged search results, where most relevant results are displayed first. The

9

increased number of document imposes challenges to the query results refining process

[20, 21]. An example of inverted indexing is shown in Figure 2.1, which shows words

stored in the dictionary alongside with the postings where each word is found in.

Finding intersections by iterating through one list and search for that document into

the other list is very time-consuming, especially with the rapidly increasing number of

documents uploaded to the internet every day. Thus, it is important to use faster methods

that have the capability of providing the exact same results in shorter time. Such

methods are based on taking larger steps in linked lists and check if these larger steps

are useful or not. Such technique is known as Skip Pointers (SP) [22].

Skip pointers are shortcuts placed on different places over a postings list. When

searching for a specific item in that list, it is possible to take these shortcuts, and

compare the values they point at, to the item being searched from. Then, if that item is

found to be located before the shortcut, it is possible to go back and search for it in the

items between the last step before jumping to the shortcut, and the position of the

shortcut. Otherwise, all items previous to the shortcut are neglected. In both cases, the

number of steps required to find an item in the ordered list is less than the time required

to search for that item by iterating through the list items, one by one [23]. A sample

posting list is shown in Figure 2.2, where specific predefined positions have alternative

larger steps to try in order to make a decision about the path it is taking.

Figure 2.1: Sample of Inverted indexing with dictionary and postings.

.

.

.

 96 Information

Retrieval

Method

3 7 14 21 37 38 73 78

1 14 22 38 63 68 81 88

2 5 9 14 22 42 44 68 78 81 91

.

.

.

Dictionary Postings

10

A more complex method, based on skip pointers, is known as Skip Lists (SL). In this

method, skip pointers are arranged in a pyramid-like hierarchy, where shortcuts in a

certain level are the skip pointer for the lower level, which may sequentially include

skip pointer, for a lower level. This method provides a path for the query being search

about the position that queried value may be located in. In the example shown in Figure

2.3, the skip pointer in the third level may be used to directly conclude whether a certain

value may exist in the posting list, which is located at the bottom of the hierarchy or not.

Then, the second level directs the search operation to search in the right part of the

posting list or the left one. In such simple hierarchy, half of the postings in the lists are

eliminated from the search operation using only two comparisons.

Figure 2.2: Sample postings list with skip pointers.

1 7 9 17 20 26 28 37 41

1 2 3 4 5 6 7 8 9

Skip Pointer Skip Pointer

1 7 9 17 20 26 28 37 41

1 2 3 4 5 6 7 8 9

Skip Pointer Skip Pointer
1 20 41

1 41
Skip Pointer

Figure 2.3: Sample hierarchy of a skip list.

11

There are many applications based on using skip pointers and skip lists, in order to

find intersections among linked lists, such as the method proposed for a storage system

in [24] to provide a decentralized structure and the Big Table system [25] to manage

storage and retrieval of huge data using a distributes storage. Skip lists are always

widely used alongside with the inversely indexed material in search engines [26]. The

reason behind using the slip lists and pointers in such technologies is their capability in

processing huge number of documents faster than any other proposed methods [27].

The distribution of skip pointer in a posting list is an important factor that affected

the number of steps taken by comparisons to reach a decision about the searched query,

whether a value exists in this list or not. The less number of skip pointers means a larger

number of values to search in using a step by step search, in case that the value at the

end of the skip pointer is larger than the value being searched for. Otherwise, a larger

number of skip pointers results in smaller portions of the postings list, which reduces the

benefit of using skip pointers. The appropriate number of skip pointers results in faster

intersection process, as it reduces the number of comparisons for each intersection

process [26].

The classic skip pointers technique is simple, where the value being searched for is

compared to the value that the skip pointer is pointing at before deciding the next step. If

the value that the skip pointer is pointing at is less than the value being searched for,

then the next position is the position next to where the skip pointer is pointing at.

Otherwise, the next search position is the next position that the skip pointer is pointing

from [22]. The skip pointers in this method are distributed in a way where the distance

between one skip pointer and another is equal to the square root of the number of

postings in this postings list, which means that the number of positions that are skipped

by each skip pointer is related to the number of postings in a list, where larger lists

produce larger number of postings skipped by each skip pointer. Thus, this method may

also have some performance issues with a huge data.

12

An improved approach is proposed in [28], where the next position that skip pointer

is pointing at is compared to the value being searched from, and the size of the step

taking by the skip pointer is measured. The number of skipped position by the initial

skip pointers, in this method, is equal to three halves of the square root of the number of

postings in the list. If the value in the next position of the skip pointer is larger than the

required value, the size of the next step is compared to a preset threshold in order to

decide the position of the next step. If the step size is larger than the threshold value, the

number of steps between the start and the end of the skip pointer, excluding the start and

end positions, is divided by two and a skip pointer is created which points to the midway

of the previous skip pointer.

Then, the value stored in the position where the new skip pointer is pointing at is

compared to the required value in order to decide the position that a step by step search

starts from. If the value in the position that the new skip pointer is pointing at is less

than the value being searched for, then the previous procedure is repeated, until the

queried value is larger than the value in the position the skip pointer is pointing to, or the

number of cells between the start and the end of the skip pointer is less than the

predefined threshold. Otherwise, when the queried value is larger than the value where

the skip pointer is point at, or the number of skipped postings is less than the predefined

threshold, a step by step search starts at this point. This method has a limited capacity to

reduce the size of the portion, where a step by step search is conducted, when applied to

find intersections among posting lists.

13

The main benefit behind using skip pointers is to reduce the time required to find

intersections between two posting lists that contain a huge number of postings. This time

reduction is achieved by using less number of comparisons to find a certain value from

one list in another. To do so, skip pointers provide shortcuts to farther values, so that it

is possible for the algorithm to compare the value in the position of the next pointer, and

the value being searched for. If the value in that position is less than the value being

searched for, then it is possible for the search operation to neglect all values between the

current position and the position of the next skip pointer. The procedures followed by

algorithms, when the value in the position of the next skip pointer is larger than the

required value, are different from one method to another.

In order to provide a better illustration for the proposed improvement in the way skip

pointers are used to accelerate an intersection process between two postings lists, it is

important to discuss, in details, how skip pointers work. Skip pointers are located on

different locations in the posting list, so that, when a search operation is executed, the

value in the position where the skip pointer is pointing at is compared to the required

value, in order to decide whether the required value may be in the range between the

current position and the position where the next skip pointer is located at, or is pointing

at. This allows skipping multiple positions without the need to go through them one by

one, which allows faster processing.

In the classic method, skip pointers are distributed in the postings list, where the

number of skipped position is equal to the square root of the number of postings in that

list. As the identification numbers of the documents in that postings list are arranged in

an ascending number, it is possible for the search algorithm to decide the position of the

CHAPTER THREE

METHODOLOGY

3.1. Existing Skip Methods

14

next step, whether to be where the skip pointer is pointing at, or the position next to

current position. The decision is based on the comparison between the value being

searched for and the value in the location where the skip pointer is pointing at. If the

value being searched for is larger than the value in the far location, then all values in the

positions until the next skip pointer are neglected, because the values are arranged in an

ascending order, and the value where the skip pointer is pointing is less than the queried

value, which makes it impossible for that value to be in these positions. The pseudo

code for this algorithm is shown in Algorithm 3.1.

Algorithm ‎3.1: Postings lists intersection using skip pointers method.

IntersectWithSkips(p1,p2)

1 ⟨

⟩

2 while

3 if () ()

4 then ADD(()

5 ()

6 ()

7 else if () ()

8 then if () ((()) ())

9 then while () ((()) ())

10 do ()

11 else ()

12 else if () ((()) ())

13 then while () ((()) ())

14 do ()

15 else ()

16 return intersections

15

For example, if a value of 179 is being searched for in the postings list shown in

Figure 3.1, then after comparing the value in the first position with the value being

searched for, the value in the position where the skip pointer is pointing at is compared

to the value being searched, because the value in the first position is less than the value

being searched for. When the value in the 100
th

 position is found to be greater than the

value being searched for, the conclusion now is that if the value exists in the postings

list, then it should be in the positions between the 1
st
 and 100

th
. A step by step search is

then started to find the required value in that range.

Another case is when, for example, the value being searched for is 895. In this case,

the search also starts from the first position, then, as the value being searched for is

larger than the value in that position, the next value compared to the required value is

where the skip pointer is pointing at, which is the 100
th

 position. As the value in that

position is still less than required value, all values prior to this position are neglected,

and the next position used in comparison is where the second skip pointer is pointing at.

As it is larger than the required value, the step by step search then starts from the 100
th

position, until the required value, or a larger value, is found in step by step search.

The improved skip method, proposed in [28], where the number of positions skipped

by every skip pointer is equal to three halves of the square root of the total number of

postings in the posting list. This method uses the same technique when moving forward,

until a skip pointer, which points to a position that holds a larger value then the value

being searched for, is reached. At this step, the algorithm does go back to where the skip

pointer leaves from, it goes to the midway between the start and the end positions of the

skip pointer. This value is compared to the queried value in order to decide the next step.

6 17 29 179 208 411 473 512 837

1 2 3 98 99 100 101 102 198

Skip Pointer Skip Pointer

895 918

199 200

… …

Figure 3.1: Sample postings list with skip pointers.

16

If the value in the mid position of the skip pointer is found to be larger than the queried

value, a new midway is selected between the position of lastly checked value and the

start of the skip pointer. This process is repeated until the number of positions between a

newly set skip pointer, which is selected at the midpoint of the last skip pointer,

becomes less than a predefined threshold, or when the value in that position becomes

less than the queried value, where in this case a step by step search is started. The

algorithm used to find intersections between two postings lists using the improved skip

pointers method is shown in Algorithm 3.2.

Algorithm ‎3.2: Postings lists intersection using improved skip pointers method.

IntersectWithImSkips(p1,p2)

1 ⟨

⟩

2 while

3 if () ()

4 then ADD(()

5 ()

6 else if (()) ()

7 then while (()) ()

8 do ()

9 else

10 ()

11 while (())

12 ()

13 If () ()

14 then

15 else if () ()

16 then

17 else

18

19 else if () ()

17

20 then if () ()

21 ()

22 else

23 If (()) ()

24 then while (()) ()

25 do ()

26 else

27 ()

28 while (())

29 ()

30 If () ()

31 then

32 else if () ()

33 then

34 else

35

36 ADD(()

37 else ()

38 return intersections

In summary, the classic skipping technique takes forward skips, equal to the square

root of the total number of postings in the posting list, in order to find whether the

queried value may be in that range of positions or not. In case it is in that position, a step

by step search is started from the position next to the position where the last skip pointer

starts. While in the improved method, where pointers skip a number of positions equal

to three halves of the square root of the total number of postings in the posting list.

When a position pointed at by a skip pointer has a value larger than the value queried

for, the midway position between the start position and the end position of the skip

pointer is selected for comparison with the queried value. This process is repeated until

the number of positions skipped by the skip pointer is less than a predefined threshold,

18

or the value in the position where the latest skip pointer is pointing at is less than the

queried values, where a step by step search is started. Thus, in both methods the step by

step search start as soon as a skip pointer, with a starting position that has a less value

than the queried value and pointing at a position that has a larger value than the queried

one, is found.

As the number of the documents is rapidly increasing, and with the significant

number of studies that proposed methods to improve the information retrieval process

from each document, creating the postings lists has shown significant improvement.

Thus, the bottleneck that is limiting the execution of search queries, is finding

intersections among these lists. As the use skip lists is also based on skip pointers, it is

important to improve the performance of the skip pointers technique even more, in order

to process huge lists within a reasonable amount of time. As demonstrated in the

previous section, the classic method skips forward positions until it reaches a skip

pointer that points to a position with a larger value than the queried value, where a step

by step search is started. While the existing improved method also skips forward until it

reaches the same position as the classic techniques, then it starts to move forward one

step at a time, and use smaller skip pointers to reach for a position that holds a smaller

value than the queried one.

Although the existing improved technique has the ability to process much more

larger lists than the classic technique in the same period of time, the increased number of

documents is imposing a new challenge to this technique, which compares the values in

the position located halfway, the last skip pointer that points to a larger value than the

queried one, is pointing to. When the number of postings in the posting lists goes higher,

these steps become huge, and it is possible to neglect a matching value located very

close to the position where the last pointer is pointing at.

To override such problems, this study proposes a new method to find intersections in

postings lists, based on the skip pointers technique. The new method has the ability to

adapt different sizes of postings lists, where the number of skipped positions is

3.2. The Proposed Method: Dynamic Skip Pointers

19

dynamically adjusted depending on the number of remaining postings in the postings list

and the number of positions skipped in the last skip action taken by the algorithm.

Unlike the classic skip pointers technique, the proposed method does not use pre-

distributed pointers on the postings list. The number of skipped steps is calculated

dynamically during the execution of the algorithm; depending on the position of the

current pointer and the position of the last detect position, where a larger value,

compared to the queried value, is found. The number of skipped position is equal to half

the count of position in between the last selected position to compare their values to the

queried value. In the beginning, if the required value is larger than the value in the

current position, half of the postings are skipped in order to check the value in the

midway position between where the pointer is standing, and the end of the list. In case

that this value, in the midway, is larger than the queried value, for example, then the

position next to where the pointer at, is set as the minimum of the range, where the

queried value should be in, if exists. Then the position before the position where the last

skip pointer pointed at, is considered as the maximum of that range.

After setting the minimum and maximum positions of the range that may include the

queried value, the midway of that range is selected as the new position that skip pointer

is pointing at. This process is repeated until the queried value is found, or the size of the

skipped steps becomes equal to two. If any of these cases occurs, a new skip pointer is

created, by computing the midpoint of the last position that holds less value than the

queried value and the end of the postings list. This dynamic skipping used in this

technique assures different skips when postings lists of different sizes are used. When a

larger list is used, then the skip pointer automatically accommodates to the size of the

list, as the size of the list is always used to update the skip pointer. Then, by eliminating

items from one list, based on the values searched for from the other list, the step size

starts to get smaller as it gets smaller when specific ranges are concluded to search for

the queried value in. Algorithm 3.3 shows the procedure executed by the proposed

method in order to find intersections between two postings lists.

20

Algorithm ‎3.3: Dynamic skip pointers postings lists intersection method.

IntersectWithMDSkips(p1,p2)

1 ⟨

⟩

2 while

3 if () ()

4 then ADD(()

5 ()

6 ()

7 ()

8 ()

9 else if () ()

10 then if () ((()) ())

11 then while () ((()) ())

12 do ()

13 ()

14 else

15 If ()

16 else

17 ()

18 else

19 then if () ((()) ())

20 then while () ((()) ())

21 do ()

22 ()

23 else

24 If ()

25 else

26 ()

27 return intersections

21

In order to evaluate the performance of the proposed method, the classic skip

pointers method, as well as the improved skip pointers method, is implemented

alongside with the proposed method. All methods are implemented using Java

programming language. Then, a different combination of keywords is searched for, in

order to measure and compare the performance of all the methods discussed earlier. The

words are classified into three categories that are stop words, which are words like „is,

are and the‟, frequent words and rare words. Words are classified into these categories

according to the frequency of the appearance of these words in the literature. Sample

literature is selected to execute the experiments from the Project Gutenberg [29]. A total

of 642 digital books are downloaded and converted into 900000 digital documents, by

using each paragraph of the downloaded books to create a separate document. A

computer with an Intel® Core™ i7-7500Q CPU @ 1.6GHZ with 8GB of memory

running using Linux Ubuntu 12.4 operating system.

In this experiment, two search queries are executed, where two stop words are used

in each search query. The search queries are executed three times using 300000, 600000,

and 900000 documents sequentially. The time required to process the postings lists for

each of these queries is measure as well as the number of comparisons made to find the

intersections between lists. The first two words searched for, in this experiment, are „in‟

and „was‟. Time taken by each algorithm, and the number of comparisons made to come

up with the intersections lists is summarized in Table 4.1.

CHAPTER FOUR

EXPERIMENTAL RESULTS

4.1. Experiment A

22

Table ‎4.1: Time and comparisons count of the three skip methods to find the keywords 'in' & 'was'.

 Classic Method IM Method DS Method

Searched

Docs.

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

Intersectio-

ns

300000 0.108 257771 0.072 256933 0.07 228896 80154

600000 0.108 525146 0.093 524850 0.109 468372 165618

900000 0.102 786735 0.127 785050 0.084 686780 241266

Then, another combination of stop words is used to test the performance of each of

the three skip methods. The used words are „the‟ and „of‟. The time consumed by every

method to find intersections between the postings list for these words, as well as the

number of comparisons made by each method to find these intersections are summarized

in Table 4.2.

Table ‎4.2: Time and comparisons count of the three skip methods to find the keywords 'the' & 'of'.

Searched

Docs.

Classic Method IM Method DS Method

Intersecti-

ons

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.036 255990 0.088 255990 0.133 255171 185175

600000 0.04 517739 0.099 517739 0.168 516600 376089

900000 0.049 765768 0.112 765768 0.169 763600 567037

Then, the average of both scenarios is computed to conclude the average

performance of the skip methods to find intersections of postings list for documents that

have the selected stop words. The average performance is shown in Table 4.3 and

illustrated visually in Figure 4.1 and Figure 4.2.

Table ‎4.3: Average performance of the skip methods using stop words.

Searched

Docs.

Classic Method IM Method DS Method

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.0566 247675.6 0.0738 247445 0.119 241085

600000 0.0672 499439.8 0.098 499352 0.1494 486738

900000 0.0694 746392.4 0.1124 746052.4 0.147 724056.2

23

Figure ‎4.1: Average execution time for the skip methods using stop words.

Figure ‎4.2: Average number of comparisons made by the skip methods using stop words.

In this experiment, two frequent words are queried in the search, where a frequent

word is a word found frequently in the documents included in the experiments. The

words selected for the first scenario of this experiment are „advantage‟ and „meeting‟.

The number of comparisons made by each skip method and the time consumed by each

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 300000 600000 900000

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Searched Documents

Classic Method

IM Method

DS Method

0

100000

200000

300000

400000

500000

600000

700000

800000

0 300000 600000 900000

N
u

m
b

e
r

o
f

C
o

m
p

ar
is

o
n

s

Number of Searched Documents

Classic Method

IM Method

DS Method

4.2. Experiment B

24

method in order to find intersections in the postings lists of these words are shown in

Table 4.4.

Table ‎4.4: Time and comparisons of the skip methods to find the words 'advantage' & 'meeting'.

Searched

Docs.

Classic Method IM Method DS Method

Intersec-

tions

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.006 2406 0.006 2406 0.004 1986 4

600000 0.01 5243 0.011 5243 0.007 4244 14

900000 0.015 7959 0.012 7959 0.01 6480 18

Then, the same scenario is repeated, by searching for two frequent words. The words

selected for this scenario are „distance‟ and „pass‟. Comparisons made be each skip

method as well as the time taken by these methods to find the intersections between the

postings lists generated for each word are measures, and summarized in Table 4.5.

Table ‎4.5: Time and comparisons of the skip methods to find the words 'distance' & 'pass'.

Searched

Docs.

Classic Method IM Method DS Method

Inters-

ections

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.016 11815 0.015 11815 0.014 7686 104

600000 0.027 25194 0.033 25194 0.02 16142 231

900000 0.033 39041 0.041 39041 0.027 25104 360

The average performance for each skip methods, when two frequent word are

queries, is calculated and shown in Table 4.6.

Table ‎4.6: Average performance of the skip methods using frequent words.

Searched

Docs.

Classic Method IM Method DS Method

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.0098 6264 0.0104 6257.8 0.0072 4172.8

600000 0.0182 17188.2 0.022 17188.2 0.0158 13294.6

900000 0.021 20455.8 0.026 20441.2 0.0148 13248.2

25

For better illustration, average times required by each skip method are shown in

Figure 4.3, while number of comparison executed to find intersections are shown in

Figure 4.4.

Figure ‎4.3: Average execution time for the skip methods using frequent words.

Figure ‎4.4: Average number of comparisons by the skip methods using frequent words.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 300000 600000 900000

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Searched Documents

Classic Method

IMMethod

DS Method

0

5000

10000

15000

20000

25000

0 300000 600000 900000

N
u

m
b

e
r

o
f

C
o

m
p

ar
is

o
n

s

Number of Searched Documents

Classic Method

IMMethod

DS Method

26

In this experiment, two different combinations of words that are rarely seen in the

documents included in the experiments, are used for querying the documents, in order to

collect the postings lists, for the intersection process using the skip methods. The first

section of the experiment is executed using the words „huddle‟ and „people‟. The

number of comparisons made by each intersection method based on skip pointers, and

the time consumed by each method to execute these comparisons, are shown in Table

4.7.

Table ‎4.7: Time and comparisons of the skip methods to find the words 'huddle' & 'people'.

Searched

Docs.

Classic Method IM Method DS Method

Inters-

ections

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0 2751 0 2751 0 920 2

600000 0 6225 0.016 6225 0 1630 3

900000 0.015 10277 0.016 10277 0 2279 6

 Next, a different combination of rarely used word is queried in order to create

postings lists that are intersected using skip pointer techniques. The words that are used

in this combination are „moment‟ and „uncle‟. The execution time of each method, as

well as the number of comparisons made between the two postings lists, in order to find

the common documents between these postings lists, are summarized in Table 4.8.

Table ‎4.8: Time and comparisons of the skip methods to find the words 'moment' & 'uncle'.

Searched

Docs.

Classic Method IM Method DS Method

Intersectio-

ns

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms)

Comparison

s

300000 0 4569 0 4569 0 2480 14

600000 0.015 11653 0.016 11606 0 5573 36

900000 0.016 16882 0.031 16882 0 7803 48

Finally, the average time and number of comparison executed by each skip method

in this experiment are shown in Table 4.9. These values are considered as the average

performance of the skip methods, when rarely used words are queried.

4.3. Experiment C

27

Table ‎4.9: Average performance of the skip methods using rare words.

Searched

Docs.

Classic Method IM Method DS Method

Time (ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.0012 3307.3333 0.0005 3307.3333 0.0003 1614.3333

600000 0.0015 8002.0000 0.0003 7986.3333 0.0000 3397.0000

900000 0.0020 12346.6667 0.0012 12346.6667 0.0002 5010.6667

For better illustration, these values are shown in Figures 4.5 and 4.6. Where Figure

4.5 shows the average execution time of each method when used to find intersections

between postings lists generated for documents that contain rarely used words, and

Figure 4.6 shows the number of comparisons used by each method in order to find these

intersections.

Figure ‎4.5: Average execution time for the skip methods using rare words.

0

0.0005

0.001

0.0015

0.002

0.0025

0 300000 600000 900000

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Searched Documents

Classic Method

IMMethod

DS Method

28

Figure ‎4.6: Average number of comparisons made by the skip methods using rare words.

The performance of each method is measured, in this experiment, using two

different combinations of one stop word and one frequent word. In the first scenario, the

words „the‟ and „associated‟ are used to measure the time requires by each method to

execute the required number of comparison, according to each method. The measured

execution time and number of comparisons made by each method in this scenario, are

shown in Table 4.10.

Table ‎4.10: Time and comparisons of the skip methods to find the words 'the' & 'associated'.

Searched

Docs.

Classic Method IM Method DS Method

Intersectio-

ns

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.059 91454 0.057 83358 0.02 14659 1614

600000 0.064 246742 0.073 224782 0.024 30892 3323

900000 0.063 400826 0.1 377941 0.037 46503 4931

Moreover, a different combination of one stop word and one frequent word is used,

and the execution time and number of comparison for this combination are shown in

Table 4.11.

0

2000

4000

6000

8000

10000

12000

14000

0 300000 600000 900000

N
u

m
b

e
r

o
f

C
o

m
p

ar
is

o
n

s

Number of Searched Documents

Classic Method

IMMethod

DS Method

4.4. Experiment D

29

Table ‎4.11: Time and comparisons of the skip methods to find the words 'in' & 'meeting'.

Searched

Docs.

Classic Method IM Method DS Method

Intersectio-

ns

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.054 142002 0.06 128870 0.017 15188 1122

600000 0.067 331264 0.087 303071 0.03 33559 2643

900000 0.063 534030 0.113 495592 0.039 49185 3661

The average performance of finding intersection between two lists, one resulted

from searching documents that contain a certain stop word, and the other list is for the

documents that contain a certain frequent word, are shown in the Table 4.12.

Table ‎4.12: Average performance of the skip methods using a stop-frequent words combination.

Searched

Docs.

Classic Method IM Method DS Method

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.063 135690.8 0.063 129369 0.035 42310

600000 0.0724 303757.4 0.0774 290143.2 0.0502 89763

900000 0.0742 471583.4 0.0994 453008.2 0.0736 138368.4

These values, of the average performance, are also illustrated visually. Figure 4.7

shows the execution time of each skip method to find intersections, while Figure 4.8

shows the number of intersections necessary to find these intersections.

Figure ‎4.7: Average execution time for the skip methods using stop-frequent words combination.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 300000 600000 900000

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Searched Documents

Classic Method

IMMethod

DS Method

30

Figure ‎4.8: Average number of comparisons for the stop-frequent words combination.

The scenarios used in this method are based on using one stop word and one rarely

used word in order to create two postings lists, one for each. Then, the performance of

each skip method is tested by measuring the number of comparisons that each method

makes, in order to find the intersections, and the consumed by these methods to execute

the comparisons, and find the intersections. Table 4.13 shows the number of

comparisons that each method requires in order to find intersections in the postings lists,

and the execution time to search for the words „be‟ and „continent‟.

Table ‎4.13: Time and comparisons of the skip methods to find the words 'be' & 'continent'.

Searched

Docs.

Classic Method IM Method DS Method

Intersect

ions

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.027 41446 0.052 35783 0.009 5177 268

600000 0.047 56701 0.058 53826 0.013 8041 468

900000 0.067 169984 0.068 152064 0.014 16534 750

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 300000 600000 900000

N
u

m
b

e
r

o
f

C
o

m
p

ar
is

o
n

s

Number of Searched Documents

Classic Method

IMMethod

DS Method

4.5. Experiment E

31

Then, the test is repeated using different combination of one stop word and one rare

word. The words used in this scenario are „it‟ and „grins‟. The performance summary of

the skip methods used to find the intersections between the postings lists, one list for

each word, are shown in Table 4.14.

Table ‎4.14: Time and comparisons of the skip methods to find the words 'it' & 'grins'.

Searched

Docs.

Classic Method IM Method DS Method

Intersecti-

ons

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.006 2247 0.025 1927 0 228 6

600000 0.015 13496 0.034 8644 0.001 603 25

900000 0.023 19353 0.036 10525 0.002 889 39

The average performances of each skip methods, when used to find intersections

between lists, one created for a stop word and the other is created for a rarely used word,

are summarized in Table 4.15.

Table ‎4.15: Average performance of the skip methods using a stop-rare words combination.

Searched

Docs.

Classic Method IM Method DS Method

Time

(ms) Comparisons

Time

(ms) Comparisons

Time

(ms) Comparisons

300000 0.02 25137.4 0.0318 21424.2 0.0056 3395.2

600000 0.0266 56002.6 0.0374 50198.2 0.0068 6476.4

900000 0.0342 104377.4 0.05 91453.6 0.0094 9879.6

These measures are also illustrated visually in the Figure 4.9 and 4.10. Where Figure

4.9 demonstrated the timed consumed by each method to process the lists created for

such combination, while Figure 4.10 shows the number of comparisons that each

method requires to find these intersections.

32

Figure ‎4.9: Average execution time for the skip methods using stop-rare words combination.

Figure ‎4.10: Average number of comparisons for the stop-rare words combination.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 300000 600000 900000

Ti
m

e
 (

m
ill

is
e

co
n

d
s)

Number of Searched Documents

Classic Method

IM Method

DS Method

0

20000

40000

60000

80000

100000

120000

0 300000 600000 900000

N
u

m
b

e
r

o
f

C
o

m
p

ar
is

o
n

s

Number of Searched Documents

Classic Method

IM Method

DS Method

33

The average performance of the proposed method in Experiment A, shows that

despite the longer execution time, it has found the same number intersections by

executing less number of comparisons. In the first part of the experiment, the proposed

method has outperformed both methods in two occasions, where the IM method has

outperformed the proposed method only when 600000 documents are used for the

search. While in the second part of the same experiment, the classic method consumed

less time, than both the IM and the proposed method, in order to find the intersections

between the postings lists. Although the proposed method executed less number of

comparisons, the time consumed by each comparison in the proposed method is higher

than that in the classic method. Thus, when postings lists are created for a stop words

combination, the enormously high number of documents in each posting lists makes it

more efficient to go directly in a step by step search.

The use of two stop words is rarely applicable when documents are searched

according to their contents. These words do not add any improvements to the search

schema, but it requires more time to process such queries. Thus, in most search queries

that include stop words, stop words are either neglected or used together with the next

word, so that the results of the search are more related to the required query, and is

executed in reasonable time interval [30-32]. Moreover, the proposed method is also

able to process these words in shorter time, compared to the other two methods, when a

moderately used stop word is included in the query, such as the word „was‟, which is

used in the first part of Experiment A. Eventually, the classic method has better overall

performance, compared to the IM method and the proposed method, in finding

intersections between two high density lists, as shown in Table 4.3.

CHAPTER FIVE

DISCUSSION

34

In experiment B, the high performance of the proposed method is well illustrated

when an intensive reasonable search is executed. The search queries that are tested in

this experiment included two frequently used words, in the documents included in the

search. This experiment shows the high capability of the proposed method in handling

the intersection of postings lists that are generated for search queries that include

frequently used words in the literature being searched in, as shown in Table 4.6. The

proposed method has outperformed the other two methods in different combinations of

such words, where the number of comparisons as well as the execution time are less

than the classic and the IM methods.

Moreover, the performance of the proposed method is compared to the other two

methods by searching for two rarely used word, in the literature included in the search,

in Experiment C. The results show that the proposed method has outperformed the

classic and the IM methods with a relatively more difference, compared to the results of

earlier experiments in this study. The proposed method consumes less time and require

less comparisons, in order to find the same number of intersections in both scenarios

experimented in Experiment C. The overall performance of the compared methods,

shown in Table 4.9 shows that, despite the huge difference in performance, the IM

method has closed performance than the classic method, compared to the proposed

method.

Eventually, experiments D and E measure the performance of the compared

methods, when used to find intersections between postings lists, one created for a stop

words, while the other is created for a frequent word or rare word, consequentially. The

results of all the scenarios tested in these experiments show the high performance of the

proposed method in comparison to the other two methods. The average performance of

the compared methods when a stop word is used with a frequently used word,

summarized in Table 4.12, show that the proposed method has significantly better

performance than the other methods. While the difference in the measured performance

shows the higher superiority of the proposed method when a combination of a stop word

and a rare word is used, as shown in Table 4.15.

35

In summary, the results show that the proposed method has an overall better

performance than the other two methods in real life situation, including some intensive

search queries. The difference of the performance between the proposed method, from

one side, and the methods used in the experiments, for comparisons, is noticed to get

bigger when the density of documents in one, or both, of the postings lists is decreased.

In other words, the superiority of the method is noticed to be increased regardless to the

number of documents in the postings lists, but is related to the average difference

between the identification number of adjacent postings in the postings lists. This is

caused by the relatively more complex calculations done in the proposed method

compared to the other methods, wherein most of the comparisons, the proposed method

computes the midpoint of the last two postings where the skip point left from and points

to. Such calculation eventually returns the next cell where the skip pointer is pointing

from, in dense lists. Thus, it is simpler to use the traditional method of going to the next

posting. This effect only appears when the non-practical queries of searching a

combination of two stop words.

36

There are many applications that require finding intersections between two ordered

lists [33-35]. One of the most important applications of these methods is to find

documents that include a combination of words. The accumulatively increasing number

of documents imposes challenges to the existing methods, in order to perform the

queried search and return the results in a reasonable interval of time. Many methods are

proposed to speed up the process of finding documents related to a single word. These

methods create postings, where each posting represents the identification number of a

document that has this word. These postings are grouped into lists known as postings

lists.

In order to find the results of a multiple-word query, it is important to find the

documents that exist in the postings lists of each word. In other words, they represent

the results of intersecting these postings lists. Even in search queries that include more

than two words, most methods are based on finding intersections between two postings

lists then pass the new list, generated from the results of the intersection, to be compared

to the other postings list, and so on. To accelerate this process of finding these

intersections, multiple techniques are proposed based on skip pointers. Where skip

pointers are located on different locations on the list, to provide an alternative route with

larger step size for the specific locations in postings list.

The classic method predefines the locations of the skip pointer, by distributing them

on the postings lists, using a step size equal to the square root of the size of the postings

list. When a position with a skip list is reached during the search, the position of the next

skip pointer is compared to the value being searched for. If the value at the next skip

pointer is less than the required value, the postings prior to the position of the next skip

pointer are neglected. This process is repeated until the end of the list, or when the value

CHAPTER SIX

CONCLUSION

37

in the position of the next skip pointer is larger than the required value, then a step by

step search is started.

An improvement for this method is proposed in an earlier study where the same

procedure is executed while the value in the position where the next skip pointer is

pointing at, is larger than the queried value, until a position reached where the next skip

pointer points at a position that has a value larger than the queried value. At this point,

the value in the midway position is compared to the queried value in order to decide

whether to start a step by step search, in case that the queried value is larger than the

value in the midway position. Or, the midway position of the last midway and the last

checked position is selected as a new skip point. This procedure is repeated until a value

equal to, or less than, the queried value is found, or a predefined threshold is crossed.

In this study, a new method is proposed to find intersections between two postings

lists, based on the skip pointers technique. The proposed method places a skip pointer at

the midway between the last compared position, with less value than the queries value,

and the last position, with a value higher than the queried value. Then, the value in that

position is compared to that position in order to decide the part of the postings list that

may include the queried value. This procedure is repeated until the queried value is

found in the list, or the difference between the last two positions is equal to, or less than,

two.

The experiments conducted in this study shows the superiority of the proposed

method in different combination of words. The improvement in the performance of the

proposed method, compared to the classic and IM methods, is noticed to have better

performance when one or both of the postings lists being processed has led dense

postings, regardless to the number of postings in that list. Less dense postings lists are

lists that have a larger average difference between values stored in adjacent positions.

In future studies, it is recommended to test the proposed method in a multi-layer

hierarchy in order to find intersections among multiple postings lists, by processing

multiple pairs of postings lists simultaneously, which may reduce the time consumed to

find intersections among these lists.

38

[1] S. Vigna, "Quasi-succinct indices," in Proceedings of the sixth ACM

international conference on Web search and data mining, 2013, pp. 83-92.

[2] J. Lin and A. Trotman, "The role of index compression in score-at-a-time query

evaluation," Information Retrieval Journal, vol. 20, pp. 199-220, 2017.

[3] J. Wang, C. Lin, R. He, M. Chae, Y. Papakonstantinou, and S. Swanson, "MILC:

inverted list compression in memory," Proceedings of the VLDB Endowment,

vol. 10, pp. 853-864, 2017.

[4] E. K. F. Dang, R. W. P. Luk, and J. Allan, "Fast forward index methods for

pseudo-relevance feedback retrieval," ACM Transactions on Information

Systems (TOIS), vol. 33, p. 19, 2015.

[5] I. Shlyakhter, P. C. Sabeti, and S. F. Schaffner, "Cosi2: an efficient simulator of

exact and approximate coalescent with selection," Bioinformatics, vol. 30, pp.

3427-3429, 2014.

[6] B. Ye, "A Set Intersection Algorithm Via x-Fast Trie," JCP, vol. 11, pp. 91-98,

2016.

[7] B. B. Cambazoglu, E. Kayaaslan, S. Jonassen, and C. Aykanat, "A term-based

inverted index partitioning model for efficient distributed query processing,"

ACM Transactions on the Web (TWEB), vol. 7, p. 15, 2013.

[8] W. Jung, H. Roh, M. Shin, and S. Park, "Inverted index maintenance strategy for

flashSSDs: Revitalization of in-place index update strategy," Information

Systems, vol. 49, pp. 25-39, 2015.

[9] D. Stalnaker and R. Zanibbi, "Math expression retrieval using an inverted index

over symbol pairs," in DRR, 2015, p. 940207.

[10] L. M. Abualigah, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, "A krill

herd algorithm for efficient text documents clustering," in Computer

Applications & Industrial Electronics (ISCAIE), 2016 IEEE Symposium on,

2016, pp. 67-72.

[11] M. Shakiba, N. Ale Ebrahim, M. Danaee, K. Bakhtiyari, and E. Sundararajan, "A

Comprehensive Comparison of Educational Growth within Four Different

Developing Countries between 1990 and 2012," 2016.

REFERENCES

39

[12] S. Dumais, E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins, "Stuff

I've seen: a system for personal information retrieval and re-use," in ACM SIGIR

Forum, 2016, pp. 28-35.

[13] A. Berger and J. Lafferty, "Information retrieval as statistical translation," in

ACM SIGIR Forum, 2017, pp. 219-226.

[14] S. Büttcher, C. L. Clarke, and G. V. Cormack, Information retrieval:

Implementing and evaluating search engines: Mit Press, 2016.

[15] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, et al., "Verifiable privacy-

preserving multi-keyword text search in the cloud supporting similarity-based

ranking," IEEE Transactions on Parallel and Distributed Systems, vol. 25, pp.

3025-3035, 2014.

[16] J. Lafferty and C. Zhai, "Document language models, query models, and risk

minimization for information retrieval," in ACM SIGIR Forum, 2017, pp. 251-

259.

[17] M. Zhitomirsky-Geffet, J. Bar-Ilan, and M. Levene, "Testing the stability of

“wisdom of crowds” judgments of search results over time and their similarity

with the search engine rankings," Aslib Journal of Information Management, vol.

68, pp. 407-427, 2016.

[18] F. Shoeleh, M. Azimzadeh, A. Mirzaei, and M. Farhoodi, "Similarity based

Automatic Web Search Engine Evaluation," in Telecommunications (IST), 2016

8th International Symposium on, 2016, pp. 643-648.

[19] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins, "Evaluation of the ability of

the Shodan search engine to identify Internet-facing industrial control devices,"

International Journal of Critical Infrastructure Protection, vol. 7, pp. 114-123,

2014.

[20] V. Ivanov, B. Palyukh, and A. Sotnikov, "Efficiency of genetic algorithm for

subject search queries," Lobachevskii Journal of Mathematics, vol. 37, pp. 244-

254, 2016.

[21] A. Kalinin, U. Cetintemel, and S. Zdonik, "Searchlight: Enabling integrated

search and exploration over large multidimensional data," Proceedings of the

VLDB Endowment, vol. 8, pp. 1094-1105, 2015.

[22] C. Manning, P. Raghavan, and H. Schütze, "Introduction to information

retrieval/Christopher D," ed: Cambridge University Press, Cambridge, England,

2009.

[23] L. Qian, Z. Ji, Z. Fu, Q. Wu, and G. Song, "Pre-judgment and Incomplete

Allocation Approach for Query Result Cache," Chinese Journal of Electronics,

vol. 25, pp. 1101-1108, 2016.

40

[24] A. Lakshman and P. Malik, "Cassandra: a decentralized structured storage

system," ACM SIGOPS Operating Systems Review, vol. 44, pp. 35-40, 2010.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, et

al., "Bigtable: A distributed storage system for structured data," ACM

Transactions on Computer Systems (TOCS), vol. 26, p. 4, 2008.

[26] P. Boldi and S. Vigna, "Compressed perfect embedded skip lists for quick

inverted-index lookups," in String Processing and Information Retrieval, 2005,

pp. 25-28.

[27] F. Mei, Q. Cao, F. Wu, and H. Li, "A Concurrent Skip List Balanced on Search,"

in International Workshop on Advanced Parallel Processing Technologies,

2017, pp. 117-128.

[28] F. Aeini, F. Mahmoudi, and N. UsefiFard, "Improved Skips for Faster Postings

List Intersection," 2012.

[29] Free ebooks - Project Gutenberg. Available:

http://www.gutenberg.org/robot/harvest?filetypes[]=txt

[30] A. Kilgarriff, "Using corpora as data source for dictionaries," The Bloomsbury

Companion to Lexicography. London: Bloomsbury, pp. 77-96, 2013.

[31] N. Raghuvanshi and J. Patil, "A brief review on sentiment analysis," in

Electrical, Electronics, and Optimization Techniques (ICEEOT), International

Conference on, 2016, pp. 2827-2831.

[32] T. Danisman and A. Alpkocak, "Feeler: Emotion classification of text using

vector space model," in AISB 2008 Convention Communication, Interaction and

Social Intelligence, 2008, p. 53.

[33] G. Tolosa, E. Feuerstein, L. Becchetti, and A. Marchetti-Spaccamela,

"Performance improvements for search systems using an integrated cache of

lists+ intersections," Information Retrieval Journal, vol. 20, pp. 172-198, 2017.

[34] M. Ilić, D. Rančić, and P. Spalević, "COMPARISON OF DATA MINING

ALGORITHMS, INVERTED INDEX SEARCH AND SUFFIX TREE

CLUSTERING SEARCH," Facta Universitatis, Series: Automatic Control and

Robotics, vol. 15, pp. 171-185, 2016.

[35] S. Kumar and P. Gupta, "Comparative Analysis of Intersection Algorithms on

Queries using Precision, Recall and F-Score," International Journal of Computer

Applications, vol. 130, 2015.

http://www.gutenberg.org/robot/harvest?filetypes%5b%5d=txt

