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ABSTRACT 

Similarity analysis of unsteady Laminar Incompressible Stagnation Point Flow 

Boundary Layer in Presence of Oscillating Motion  

BELHAJ, Ali 

Ph.D., Mechanical and Aeronautical Engineering 

Thesis Supervisor: Assist. Prof. Dr.  Mustafa KAYA 

December-2018, 102 pages 

The similarity solutions of Navier-Stokes equations describe incompressible laminar 

flows over semi-infinite plates. A special case is the classical Hiemenz problem which 

deals with the steady two-dimensional stagnation point flow on a vertical solid wall.  

There are also recent studies on the unsteady version of the Hiemenz problem. In this 

thesis work, the unsteadiness of the stagnation point flow is generalized using a 

harmonically oscillating plate and a time-dependent freestream flow. For this purpose, 

the unsteadiness parameter, oscillating frequency and amplitude are introduced. The 

similarity solutions are computed for the values of these parameters in various 

combinations.  It is observed that, for any given oscillation amplitude, there exists a 

threshold frequency above which the flow is regular and periodic. The solution is unstable 

for the frequency below that value.  

Keywords: stagnation point flow, similarity solutions, unsteady flow, oscillating plate, 

blowing 
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ÖZET 

Salınım Hareketi Durumunda Zamana Bağlı Sıkışamaz Durma Noktası Akışının 

Sınır Tabakası 

  BELHAJ, Ali 

Doktora, Makina ve Havacılık Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Mustafa KAYA 

Aralık-2018, 102 sayfa 

Navier-Stokes denklemlerinin benzerlik çözümleri, yarı-sonsuz plakalar üzerindeki 

sıkışamaz laminer akışları tarif eder. Bu çözümlerin özel bir durumu, yatay bir katı duvar 

üzerindeki zamandan bağımsız iki-boyutlu durma noktası akışının incelendiği klasik 

Hiemenz problemidir. Hiemenz probleminin zamana bağlı versiyonları üzerine yeni 

çalışmalar da bulunmaktadır. Bu tez çalışmasında, durma noktası akışının zamana bağlı 

olma durumu genelleştirilmiştir. Genelleştirme, harmonik olarak salınan bir plaka ve 

zamana bağlı serbestakım akışı kullanılarak yapılmıştır. Bu amaç doğrultusunda, zamana 

bağlılık parametresi, salınım frekansı ve genliği değerlendirilmiştir. Benzerlik çözümleri, 

bu parametrelerin çeşitli kombinasyonlardaki değerleri için hesaplanmıştır. Verilen bir 

salınım genliği için, akışın düzgün ve periyodik olduğu eşik frekansının varlığı 

gözlenmiştir. Bu frekans değerinin altında çözüm kararsız olmaktadır. 

Anahtar Kelimeler: durma noktası akışı, benzerlik çözümleri, zamana bağlı akış, salınan 

plaka, üfleme 
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Chapter 1 

 Introduction 

 

1.1: Motivation and Objectives: 

1.1.1: Motivation  

In the history of fluid dynamics, more and more interest has been given to thee 

research on the field of non-steady stagnation point flows because of its wide range of 

applications in industry and aerodynamics. Stagnation point flows can be three 

dimensional or two-dimensional, time-dependent or independent, viscous or inviscid, 

orthogonal or inclined, and forward or reverse. The stagnation point flow solutions 

fundamentally deal with the flow motion in vicinity of stagnation field of a body surface 

transferring in the fluid or kept in a transferring fluid. A stagnation point flow with several 

physical meanings has a bigger physical importance, such as the prediction of the skin 

friction, decrease the effect of the aerodynamic drag, the mass transfer in vicinity of 

stagnation fields of bodies in high-speed flows, transpiration cooling, design of thrust 

bearings and radial diffusers. 

The problem of the current study is a generalization of the problem discussed by 

Blyth and Hall (2003). The mathematical model based on our assumption can be used 

any unsteady function either at the initial or at the boundary conditions. 

Two-dimensional oscillatory orthogonal stagnation-point flow towards a plane wall is 

investigated, the flow for two-dimensional case for arbitrary values of amplitude and 

frequency parameters was computed using a couple of unsteady oscillating functions, one 

an oscillating blowing at the wall. The second, an oscillating unsteady function at the 

potential flow. In this work, both oscillating flows we supposed to oscillate at the same 

oscillation frequency, the potential flow function includes the effect of the unsteadiness 

of the far field stream while the mass transfer function governing the flow through the 

wall is modulated by a dimensionless constant represents the blowing parameter. 
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1.1.2: Study Objectives  

There are to fundamental objectives of this study: 

1- Generalization of the problem of Blyth And Hall (2003) by creating a 

mathematical model in which could use any unsteady function at the initial or 

boundary conditions is applicable. 

2- Finding the similarity solution to the problem of unsteady stagnation point flow  

using a new assumption didn’t talked before in the previous studies. 

 

1.2: Stagnation Point Flows (Literature Review) 

 

Stagnation point flows occur when a flow becomes closed to adjacent boundary 

of a wall. This kind of flow behavior is of significant importance in engineering and 

aerodynamics since it exists whenever a fluid Collides with a solid body. Such flows have 

several applications such as, oscillating cylinder subjected to a flow or an airplane wing. 

A stagnation point is created in theses flows, about which the flow stream-lines locally 

similar those about a saddle point.  

Hiemenz (1911) was the first who addressed two-dimensional stagnation point flows 

travelling to a vertical non-moving surface. A similarity solution of the Navier Stokes 

equations was presented, due to non-satisfaction of no slip condition at the surface. The 

similarity solution makes the solution is obtainable at any point of the flow field, 

satisfying the flow velocity on the surface to that of the potential flow. 

As the flow reaches a solid body, its stream lines resembled about the stagnation point 

which created at the origin. 

 

Figure (1.1): Stagnation Point Flow (Hiemens 1911) 
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Riley (1965) and Stuart (1966) analyzed a non-stationary stagnation point flow 

transferring perpendicularly towards a vertical fixed flat-plate. The potential stream-

function was supposed to be totally in oscillation motion and dependent upon a 

dimensionless amplitude parameter and an oscillation frequency. No slip conditions at 

the free stream not being satisfied on the body surface, so it is important to obtain a 

solution in the form of a similarity solution in vicinity of the body surface. In the large-

frequency limit, the solution shows two types of flow behavior. Two layer-structures 

created. The first, is Stokes-layer occurs in the region adjacent to the surface, within this 

layer the non-stationary terms become the same of components of viscous effect in the 

equations characterize the flow. As a result of a mean velocity component continuing to 

the roof of this layer, it isn’t possible the Stokes-layer to make matching to the potential 

flow. To make this matching to happen, the introduction of a steady streaming-layer 

between the Stokes-layer and potential flow is needed. The steady streaming-layer 

thickness is on the order of the dimensionless oscillation frequency parameter, times the 

thickness of the Stokes-layer. 

Riley and Vasantha (1989) focused on this phenomenon, where the free-stream in the far 

field is totally in oscillation state and found the solution numerically, this solution is 

unable to find the solution for all values of the oscillation frequency parameter, the 

equations blow-up at a finite-time singularity. They connect this with the horizontal flow 

motion to the Centre of coordinates, which leads to the release of flow particles from the 

borders of viscous region. 

The inclusion of a mean flow component at far field flow was interested by Pedley (1972) 

and Grosch and Salwen (1982), where the mean component is large compared to the 

oscillatory component and oscillations frequency is high. As mentioned before, a Stokes-

layer occurs in the region closed to the surface of body, which have to match to a layer 

that has a thickness on the order of the square root of the dimensionless oscillation 

frequency parameter, multiply by the Stokes layer thickness. 

Because of the absence of a main flow at the far field region, the size of stokes-layer layer 

is considerably smaller than the problem discussed by Riley (1965) mentioned 

previously.  
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Merchant and Davis (1989) concluded the study of Pedley (1972) and Grosch and Salwen 

(1982), developing it to address the problem when the dimensionless frequency parameter 

value is high enough and the oscillatory component is much larger than the mean 

component. When the amplitude parameter is at a high critical value, the flow becomes 

reversal during a specific interval of the time. Thus, it is possible to compare this problem 

with the problem of Riley(1965), since the potential flow can be considered as totally in 

oscillating mode, then, flow is similar. Merchant and Davis considered the case of 

Synchronization of the two outer layers and concluded that for a specific oscillation 

dimensionless frequency, there exists a critical amplitude, above which, no solutions were 

found. 

Hall and Papageorgiou’s (1999) problem was the non-stationary incompressible 

stagnation point flow induced in an infinite channel, surfaces are moved with respect to 

space coordinates in an oscillating behavior. Corresponding to the oscillation frequency 

and the relative amplitude of the surface oscillating motion, the presence of totally 

periodic, semi-periodic and unstable flow solutions was numerically investigated.  In the 

small amplitude and high Reynolds number limit they showed that the flow structure 

passes through two time stages with chaotic flow existing on the longer time-stage. The 

chaos is shown because of the non-stationary break-down of a stationary flow stream, 

figure (1.2). 

 

Figure (1.2): Stable and Unstable Flow Parameters in the Problem of (P. Hall and D. T. 

Papageorgiou 1999) 
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Blyth and Hall (2003) studied the problem of oscillatory stagnation point flows for both 

a large and a small oscillation frequency. They concluded that, in the case of a large 

oscillation frequency, if the relative amplitude increased to a critical value, the equations 

break-down at a finite-time singularity. also, they observed the behavior of the solutions 

in vicinity of the blowing-up time. For the small-frequency limit, they found that the 

leading order solution is semi-steady. When the dimensionless amplitude is at a critical 

large value, at the time where equations break-down at a finite-time singularity. They 

examined that, for any value of the relative amplitude, there exists a threshold frequency 

figure (1.2) under which the flow is regular and periodic, with the same period as the 

modulation factor, and beneath which the solution terminates in a finite time singularity. 

The dividing line in parameter space between these two possibilities is identified and 

favorably compared with the predictions of asymptotic analyses in the small and large 

frequency limits. 

 

Figure (1.3): Stable and Unstable Flow Parameters in the Problem of (Blyth & Hall 

2003) 
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The mentioned studies have been stagnation-point flows which moving towards 

fixed walls. In the following part, the case of approaching stagnation point flows to an 

oscillatory vertical flat-plate will be focused. This case can be supposed similar to the 

case mentioned above considering a horizontal oscillatory motion at the far-field moving 

to a fixed vertical flat-plate. Rott (1956) studied this problem if the surface made 

oscillatory motion in its own plane, with a stationary orthogonal flow at the potential 

region. 

A similarity solution is presented including two functions, one consists a steadiness 

behavior and the other consists aperiodic behavior. This problem was examined in terms 

of a small and large frequency limiting cases. This problem was examined also by Glauert 

(1956). 

The cylinder oscillates horizontally in a flow field is an application of Glauert problem.  

Compared to the earlier study on oscillatory vertical flat plates discussed previously, they 

considered the problem in the reference system, where the stagnation point is fixed. In 

the potential flow, the flow is consists of a time-dependent stagnation point flow 

including a mean component coincided with an oscillatory component.  in addition to that 

is a oscillating horizontal motion, has the same oscillation frequency as the orthogonal 

stagnation point flow. This flow travelling towards a wall has an oscillating motion with 

the same oscillation frequency as the potential flow. They examined the problem where 

the mean component is dominant over the oscillating motion component and in the large 

frequency limit, the solution obtained showed a double layer structure at the wall which 

was talked above by Pedley (1972). Hazel and Pedley interested this problem, when the 

amplitude parameter was selected such that the flow non-reversed. they obtained the shear 

stress at the wall and the mean wall shear stress was examined for all the limiting cases. 

For the large frequency case, the oscillation of the wall was found that, it hasn't any effect 

on the mean shear stress of the wall and is only depends on the orthogonal flow. They 

considered this due to the viscous forces effect on the Stokes layer resisting any influence 

done by the oscillating wall.  

Stuart (1959) examined the flow consisting a time-independent orthogonal stagnation 

point flow, a shear flow with constant vorticity and a uniform stream. the flow 
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characterized in terms of a stream function. A similarity solution is created because, this 

stream function in the potential flow does not in matching to the velocity on the wall.  

After that, Drazin and Riley (2006) generalized the lasted work, to contain a free 

parameter at free-stream, which relates to the strength of the uniform stream in the 

potential flow. Stuart (2012) considered the viscous flow in the zone adjacent to a 

stagnation point when the external flow has uniform vorticity. 

Upon increasing the free parameter, the shear velocity profile creates a region of reversed 

flow in the zone adjacent to the wall. They summarized their analysis with a discussion 

of the gradient of the resembled stream-line closed to the vertical surface, with the same 

results to that of Dorrepaal (1986). Particularly, it was shown that the ratio of the 

resembling stream-line rate of change near the surfacel, to that of the rate of change in 

the potential flow field is not a function of the flow vorticity. 

Unsteady three-dimensional stagnation-point flow which, as in the steady case, embraces 

both the two-dimensional and axisymmetric flows. Such a flow has been considered by 

Cheng, Ozisik and Williams (1971). As for the steady case it is convenient to adopt a 

slight change of notation with x, y as co-ordinates in the plane and z perpendicular to it. 
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1.3: Problem of Current Study: 

The flow in vicinity of a stagnation point on a plane wall is described by the 

classical Hiemenz solution (2011). When this stream is modulated in time by a periodic 

multiplicative factor on an infinite stream function, the solution describes the local 

dynamic responses in the region closed to the deceleration point on a vertical surface in 

an oscillation state. Similarly, the body can be considered fixed, while the flow in the far 

field changes periodically in time. Steady flow motion, created by Reynolds stresses 

associated with the vibrational motion Stuart (1966), is a considerable advantage of such 

time periodic flows. As a kind of such influence which occurs around a transversely 

oscillating circular cylinder Schlichting(1932),. When the amplitude of far-field 

fluctuations is small, the modified Hiemenz stream can be used to simulate local 

perturbation effects, such as acoustic noise incident on the boundary layer around the 

translational bluff body. In our study, we are interested in behavior in vicinity of the 

stagnation point of the bluff body, where the front surface of the body can be locally 

supposed vertical flat plate. According to this consideration, we allow variations of 

arbitrary amplitude and frequency.  

Other studies related to this modified problem of Hiemenz are studies by Grosch 

and Salwen (1982) and Merchant and Davis (1989),; There are a set of previous studies 

on small fluctuations in free flow, the investigated flow with perturbations are high and 

low frequencies.  It is worth mentioning here, those by Matunobu (1977), Pedley(1972), 

and Ishigaki (1970); see also Lighthill (1954).  

 The studies mentioned showed that, at low frequencies, there is simply a quasi-

stationary version of the classical Hiemenz solution, and at high frequencies, there is a 

double boundary layer structure analogous to the structure first described by Riley (1965) 

and Stuart (1966) for such flows. Merchant and Davis solved the same unstable problem 

of Hiemenz, but also investigated the flow structure when the average component of free 

flow is much smaller than the vibrational surface. 

The structure of the double boundary layer also found, although the authors 

showed that no solutions exist when the average component of the free flow falls below 

a certain cut-off point. This does not mean that solutions with a different asymptotic form 

do not exist for smaller mean values of the free flow.  
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Our interest in the problem was prompted by Blyth and Hall (2003). They considered a 

non-stationary version of the classical Hiemenz solution describing an incompressible 

two-dimensional flow of the deceleration point on a solid wall, especially considering the 

response near the wall, when the solution at infinity is modulated in time by a periodic 

factor of a given amplitude and frequency. Although this problem has already been solved 

in the literature for the total frequency in cases where the amplitude of the time periodic 

factor is either large or small, they calculated the flow for arbitrary values of both these 

parameters. They investigated that, for any given amplitude, there exists a threshold 

frequency above which the flow is regular and periodic, with the same period as the 

modulation factor, and beneath which the solution terminates in a finite time singularity. 

The dividing line in parameter space between these two possibilities is identified and 

favorably compared with the predictions of asymptotic analyses in the small and large 

frequency limits. thier aim was to investigate the possibility of such varied dynamics for 

a periodically forced stagnation point flow in a semi-infinite domain. 

The aim was to investigate the possibility of such varied dynamics for a periodically 

forced stagnation point flow in a semi-infinite domain. 

In conclusion, we can compare the progress of my studies with those of previous studies. 

While Chang studied the problem of three-dimensional stagnation point flow assuming 

the potential flow velocity components varies with time as we mention in the previous 

section: 

t

A
U e

+
=

1
,             

Using this assumption, he can transfer Navier Stoke’s equations, which are 4 differential 

equations in the case of incompressible flow to 2 ordinary differential equations. In fact 

these function only satisfies this transformation, so we can’t use other time function, 

either at initial or boundary positions. 

similarity solution, which employed by Chang and followed by the majority of authors 

who study stagnation point flows is called (ODE solution), where ODE refers to ordinary 

differential equations. 

Blyth & Hall use (PDE Solution) which is Partial differential equation solution, for two-

dimensional flow, they added an oscillatory motion to the potential flow and resulted two 
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regions of oscillation, periodic and random, according to a limited values of oscillation 

frequency and amplitude. 

They were satisfied with this important result and did not study the effect on the 

characteristics of boundary layer. 

The problem of our study is a generalization of the problem discussed by Blyth 

and Hall. The mathematical model based on our assumption can be use any unsteady 

function either at the initial or at the boundary conditions, the development which created 

by our assumptions is showed in table (1.2).  

Two-dimensional oscillatory orthogonal stagnation-point flow towards a plane wall is 

investigated, we compute the flow for two-dimensional case for arbitrary values of 

amplitude and frequency parameters using an oscillating blowing at the wall )0(ev .  The 

following function was selected to express the blowing velocity: 

                                                ttve cos)( =                                                 

 As well as the effect of unsteady function at the potential flow )(tAxaUe = . We assume 

the following function to express the horizontal velocity component of the potential flow: 

                                             

t

ta





sin1

1
)(

+

=                                             
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Table (1.1): Generalization of the Previous Studies 
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1.4: Order of Thesis: 

Having summarized the work which have done in this section, the analysis which 

will follow in the following chapters was outlined. The start of analysis on stagnation 

point flows in chapter (3) by considering the unsteady two-dimensional laminar 

incompressible stagnation point flow approaching an interspersed vertical surface with 

an oscillating mass transfer. As previously talked by Blyth and Hall (2003). In addition, 

we have made a generalization of their case at the boundary conditions. the problem 

formulation have done by reducing the non-linear partial differential equations of  Navier 

Stoke’s for two dimensional stagnation point flow to one partial similarity equation using 

similarity transformations. This equation has solved numerically using the implicit 

scheme of the finite difference method. 

In chapter 4, our solver was investigated by comparing our results with CFD solver. The 

results of (ODE) solution of Chang (1970) was compared with our (PDE) solution for the 

same problem of Chang, hence the results were identical. 

The stagnation point flow boundary layer characteristics were observed under the effect 

of flow parameters. For each combination of blowing parameter k , oscillation frequency 

 and unsteadiness parameter D , the behavior of vertical and horizontal velocity profiles 

was observed, in addition to the shear stress distribution at the surface and within the 

boundary layer. It was found a border line separated between sets of parameters lead to 

periodic flow and sets of parameters lead to unstable flow, each set is a pair of (blowing 

parameter k , oscillation frequency  ), this line has determined according to a specific 

value of unsteadiness parameter D .  

In the same context, it was found a border-line separates two regions of flow parameters, 

region of parameters lead to a reversed flow at a definite time  at the surface and the other 

region of parameters lead to a non-reversed flow at a definite time  at the surface. 

Finally, chapter 5 introduced the most important conclusions from each chapter. 
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Chapter 2 

 Background knowledge of thesis 

2.1: Similarity Transformations 

Similarity solutions are a specifically small group of exact solutions to the 

boundary layer equations. In some flows, can be considered that, the velocity and 

enthalpy profiles differ only from several scale factors corresponding to the positions of 

the surface. This similarity property is very important in the boundary layer equations. 

The similarity method particularly used in transforming partial differential equations into 

ordinary differential equations. Converting the system to a set of ordinary differential 

equations can be applied by using appropriate dependent and independent variables in 

dimensionless form called similarity variables using methods of transformations defined 

as similarity transformations. However, the application of similarity transformations to 

time-dependent flows or three-dimensional flows of the boundary layer can’t be, all the 

time ensure the system converting to the state of ordinary differential equations from the 

state of partial differential equations. The Falkner-Scan equations governing the flow of 

a similar velocity-profiles, MHD Falkner Skan and the related heat-transfer equations, 

the velocity equations and the thermal boundary layer in the incompressible stagnation 

test were provided as a result of employing similarity transformations on particular 

boundary-layer equations. 

Similarity solutions are necessary for understanding the flow of a non-linear 

viscous flows. The similarity transformation converts the Navier-Stokes equations to a 

group of non-linear ordinary differential equations which make the solution is obtainable 

at all points of flow region to obtain universal curves. 

 

2.1.1: Two-Dimensional Similarity Solutions: The FaIkner-Skan Eqution 

 Start with a brief mathematical derivation of the Falkner-Skan equation, in addition to 

addressing the physical significance related with a set of geometries and pressure 

gradients. 

The Falkner-Skan equation contains an unique pressure gradient parameter 𝛽. For 

specific values of 𝛽, the stream-wise velocity profile solution provides some thoughtful 

features such as overshoot and back-flow. The possible physical significance for the 
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various ranges of 𝛽 is discussed. The Falkner-Skan equation is well known, but it is 

worthwhile to discuss it here in some detail because there are many analogies between 

the two dimensional and three-dimensional cases 

 

Derivation of the Falkner-Skan Equation 

Consider the two-dimensional bluff body. Boundary layer arises from the stagnation-

point and serves to reduce the far-field external velocity to zero at the surface of the body. 

The velocity distribution within the viscous region depends on the body shape and in 

reality, behaves in a complex way. but it can be considered, that region of the surface near 

the point of stagnation as a flat wall. 

It can to be supposed a self-similar velocity-profile in this limited area, and it is here, for 

example, that the Falkner-Skan equation (Which will be derived later) applicable. 

Consider the two-dimensional plane body of the bluff-body shown in the figure (2.1).  

range. We can assume a self-similar velocity profile in this region, and in such situation 

that the Falkner-Scan equation is applied. 

 

The dimensionless form of the boundary layer equations for two dimensional, 

incompressible, steady flow are: 

       x-momentum:
2

2

y

u

x

U
U

y

u
v

x

u
u e

e



+




=




+




                                            (2.1) 

                       continuity: 0=



+





y

v

x

u
                                                            (2.2) 

Here y  and v  are modulated  by 2
1

Re , 2
1

Re= yy , 2
1

Re= vv , where : y  and 
v   

are the actual normal coordinate and velocity respectively. In the scaled coordinates y  

and v  are )1(O  in the boundary layer. 

The boundary conditions are: 

                                

,)(

,00,0

→→

===

yasxUu

yatvu

e
                                  (2.3) 

Where )(xU e  denotes the mainstream velocity. Define:  
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                                                      )(x

y


 =                                                           (2.4) 

Where: )(x  is a function proportional to the boundary-layer thickness which is to be 

found.  

Define:                                       )()( fxUu e=                                                      (2.5) 

Here   is a similarity variable and the interest is in self-similar solutions for which the 

dependence of the velocity profile on x  and y  can be collapsed into one variable,  . 

The boundary conditions transform to: 

                                        

,1

,00

→→

==





 asf

atf

                                  (2.6) 

From the continuity equation, a stream function   ; may be defined by: 

                                             x
v

y
u




−=




=


,                                             (2.7) 

From the definition of u , we obtain: 

)()( 


fxU
y

e=



 

 

by integration: 

                               
)()()()( 0 xfxxUe   +=                                                     (2.8) 

Here )(0 x  at this step is an arbitrary function of integration. 

By Differentiation with respect to x  , equation (2.8) becomes: 

               
)()()]()()()([ ,0, xfxxUxxUv xxexe   −+−=                                      (2.9) 

The chain rule is used to find: 
y

v

y

u

x

u












,,  and 

2

2

y

u




 in terms of  . Because, similarity 

solutions have to be provided, it was supposed that )(ff = . The final similarity 

transformations are: 

                                          





 fUfU

x

u
e

x
xe −=




,                                               (2.10)     
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After substitution and simplification of the equations, the following result is obtained: 

                        
0)1()( ,0

2
,

2 =+−++   ffUffUf xxexe                    (2.14) 

The only way (2.14) can be an ordinary differential equation IS if the coefficients are not 

functions of x. Therefore, defining: 

                                          
.)( consU xe ==                                                         (2.15) 

                                          
.,

2 consU xe ==                                                            (2.16) 

                                           
.,0 consx ==                                                             (2.17) 

therefore equation (2.14) becomes: 

                            0)1(
2

=+−++   fffff                                            (2.18) 

 Generally, a solid wall is assumed so that   vanishes. A constant value for 1=  may 

be chosen since the value of  : affects only the scale for  . 

The solution of equation (2.18) depends only on the parameter   which is a measure of 

the stream-wise pressure gradient. Where upon equation (2.18) becomes: 

 

                               0)1(
2
=−++   ffff                                                       (2.19) 

for which )1( = . The boundary conditions are: 
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Table (2.1): Flow Structures Corresponding to the Measure of the Stream-Wise Pressure 

Gradient Parameter  . 

1 0=   (Blasius solution for horizontal flat-plate). 

2 20    Flow travelling towards a wedge of half angle 

3 1=   For stagnation point flows  

4 2=  Flow turned around an angle of wedge 

5 ⎯→⎯  Flow travelling towards a point sink. 

6 02 −   Flow around an expansion corner of turning angle 

7 2−=  Flow around the edge of a thin flate- plate. 

8 1−=  Flow around a right-angle corner. 

 

 

2.1.2: Three-Dimensional Similarity Solutions 

Considered generalized orthogonal coordinates x , y , z . The lines of constant x

and y form a network on the body surface, and z  increases orthogonally from the body 

surface. 

The increment of distance between coordinate lines x  and dxx +  is dxq1 ; corresponding 

increments are dyq2  and dzq3 For thin boundary layers we can assume that the metric 

coefficients satisfy: 

                
1,),(,),( 32211 === qyxqqyxqq  

The velocity components in the x , y , and z  directions are called u , v , and w . The 

corresponding surface velocities of the inviscid flow are: 

 

               
0,),(,),( === eeeee WyxVVyxUU  
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Derivation of the Governing Equations: 

  A stream-line coordinate system was chosen with and according to the stream-

wise and cross-stream directions respectively; z is perpendicular to both x  and y . The 

boundary layer equations in a general streamline orthogonal coordinate system are:   
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The falkner transformation: 

For discussions of exact self-similar solutions and for the formulation of 

systematic methods of calculation of more general boundary layer flows, it is helpful to 

transform variables in some manner which accounts roughly for the anticipated 

magnitudes of boundary-layer thickness and velocity components. Many such 

transformations are available. 

We choose, rather arbitrarily, that associated with the name of Falkner. We call: 
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where L  is a characteristic body dimension and   is the kinematic viscosity. 

Thus:
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The choice of u  rather than v  and of x  rather than y  in the normalization of z  implies 

only that x  increases in a more-or-less down-stream direction, and that 0u except at 

singular points or lines. 

Our dependent variables are written as: 


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 ),,(),(

                                                            

which we designate simply fUu e= .  At this point the prime of f  does not imply that 

f depends only upon  , but is simply a shorthand. We shall write out 


f
and 
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f
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Similarly, we write:
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Using the continuity equation, with, we find, for the simple case of an impervious wall, 
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where we have introduced our final shorthand notation: 
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If wandvu ,,  are to vanish at 0=z , we see that boundary conditions on f and g are: 

0)0,,()0,,()0,,()0,,( ====   gfgf  

                         While: 

                                         1),,(),,( ==   gf  



20 
 

The transformed component momentum equations, in which the pressure gradients have 

been eliminated in favor of inviscid-flow velocity gradients, etc., become: 
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For stagnation point flow, suppose we deal with a "rounded" body, to which the flow 

from up-stream "attaches" at some point P, which we take as the origin of coordinates. 

In the immediate vicinity of P we can expand the surface 

metric coefficients in power series in   and  , e.g., 

                
..........)0,0)(()0,0)(()0,0(),( 11

11 +



+




+= 


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

qq
qyxq  

In particular, we choose a system of coordinates that is locally rectangular at the origin, 

so that: 

                                    1)0,0()0,0( 21 == qq  

Since 0,0
1 )(


q
  and the similar derivatives are finite, we have, in the vicinity of the origin, 

                                            0==   

Furthermore, if the approaching upstream flow is irrotational, it can be shown that there 

is an orientation of the x and y axis for which, in the vicinity of the origin, 

                              
..............., +=+= ByVAxU ee  
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The desired orientation of the x and y axes is along the principal directions of curvature 

of the surface. To be specific, we may take the x axis along the direction of maximum 

(convex outward) curvature. 

Then we shall have BAandA  ,0 . 

If B  is positive, we speak of a nodal attachment point; if it is negative, we designate it as 

a saddle point of attachment. 

We see that the given correspond to  

                                0,1 ==== rnsm  

If we assume a constant:

        
yU

xV

A

B
C

e

e==  

Where is the constant related with the three dimensional body geometry. 

We can then expect to use similarity transformations to find similar solutions for f and g, 

for which .0=



=





x

g

x

f
The governing equations reduce to: 

                           01)(
2

=+−++  ffCgff                                               (2.27)                          

                              0)1()(
2
=−+++  gCgCgfg                                        (2.28)                          

These equations have been solved numerically by Howarth (1951) for 10 C , 

and by Davey (1961) for 01 − C .  

 

 2.2: General Review of Steady Stagnation Point Flows  

2.2.1: The Classical Hiemenz (1911) Solution 

When a steady stream of a viscous fluid approaches a rigid stationary cylinder, the stream 

is brought to rest at the surface of the body and divides about it. Although the fluid is at 

rest, at each point of the surface of the cylinder, by analogy with the flow of an inviscid 

fluid, we identify stagnation points as those points on the surface at which the stream 

attaches to, or separates from, the cylinder. The flow in the neighborhood of a stagnation 

point of attachment may be modeled by the flow towards an infinite rigid flat plate. Now, 

for an inviscid fluid, the ir-rotational flow against the flat plate y = 0 is well known to be 

: 

AyVAxU −== ,                      
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The constant A  is not directly relevant to the flow pattern close to the stagnation point 

and is proportional to the free-stream speed about the cylinder. The inviscid stream 

function is:  

Axy−=  

In his study of the flow of a viscous fluid at a stagnation point it would appear to have 

been natural for Hiemenz (1911) to have assumed )(),( yxFyx = . If we introduce 

dimensionless variables, noting that there is no natural length scale in this problem, then: 

                                                          )()( 2
1

 xfA= ,                                           (2.29) 

where: 
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                                                 01)( 2 =+−+  ffff                                      (2.30) 
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                         (2.32) 

where 0P is a constant. This solution describes a flow in which linear diffusion of vorticity 

is balanced by non-linear convection of vorticity. The solution of (2.30), subject to the 

conditions (2.31), has been calculated numerically by Hiemenz (1911) and by Howarth 

(1934).  

Rott (1956) extended the solution of Hiemenz to include the situation in which the plane 

boundary slides in its own plane in the x-direction. This provides, for example, a model 

of the flow in the neighborhood of the stagnation point of a rotating circular cylinder 

placed in a uniform stream. In place of (2.29) we have: 
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where wu  is the speed of the translating plate. With P  unchanged as in (2.32), equation 

(2.30) then yields, as equation for g , 

                        0)(,1)0(,0 ===−+ gggffgg                            

(2.34) 

2.2.2: Oblique Stagnation-Point Flows 

In section 2.3.1 above, the dividing, or stagnation, streamline intersects the plane 

boundary 0=y  orthogonally. There is, however, a class of stagnation point flows for 

which the dividing streamline intersects the boundary at an arbitrary angle. Consider first 

an inviscid fluid and the stream function:                                                       

                                         2
0

2

1
yAxy  +=  

which combines both the classical stagnation-point flow and a cross flow of uniform 

shear, that is of constant vorticity 0− . This stream function satisfies both the Euler 

equations and the Navier–Stokes equations, though not the viscous condition of no slip 

at 0=y . Taking 0=y  as the boundary again the dividing streamline is now  

                                                        xAy )(2 0−= . 

This form of stagnation-point flow has been developed by Stuart (1959), Tamada (1979) 

and Dorrepaal (1986) for a viscous fluid as follows. With a superposed cross flow present 

it is natural, the stream function as: 

                                          
+=
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where again yA 2
1

)( = ., finally, similarity equation for g  and initial conditions are : 

                                               1)(,0)0(
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                                    (2.35) 

 

2.2.3: Two-Fluid Stagnation-Point Flow  
 

The classical Hiemenz stagnation-point flow is that of a stream against a solid 

boundary. Wang (1985a) has extended this to the flow against the interface with a second 

fluid. The interface is assumed planar so that we may expect the surface tension to be 



24 
 

large, or the density of the lower fluid to be much greater than the density of the upper 

fluid. 

The similarity of the Hiemenz flow is preserved so that in the upper fluid the stream 

function is expressed as in (2.29), with )(f  again satisfying equation (2.30). However 

the no-slip condition is violated in this case and we have  =)0(f , where   is 

determined only following a consideration of the flow in the second fluid in 0y . In the 

second fluid, which we assume has density  and viscosity   , we write 

)()( 2
1

 fxA−= ,   where now     y
A

2
1

)(



 −=  

Since we require, where a prime again denotes differentiation with 

respect to the independent variable, the equation for f is: 
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                                         (2.36) 

Where the conditions at 0= ensure continuity of velocity at the interface. 

2.2.4: The Classical Homann Solution  

This case is a special case of the three-dimensional stagnation point flow, but we 

include it here for completeness. In our formulation we allow the plate to slide in its own 

plane with constant velocity, and also allow for transpiration across it when porous; both 

of these features have been examined by Libby (1974, 1976) in the more general context 

of a three-dimensional stagnation point, whilst Wang (1973) has considered axisymmetric 

flow against a sliding plane.   

The boundary is taken as z = 0, and with no natural length scale in the problem a self-

similar solution with velocity components 

z
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Leads to using equations (2.19), (2.20), to the following equations for f and g, 
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With boundary conditions: 

                                         
0)(,1)0(

,1)(,0)0(,)0(

==

===

gg

fff 
                              (2.38)                 

With 0== wu  we recover the classical stagnation-point flow of Homann (1936). With 

0wu  we have, without any loss of generality, the boundary 

sliding in its own plane with constant speed in the direction θ = 0; this corresponds to the 

case addressed by Libby (1974) at a three-dimensional stagnation point, and by Wang 

(1973). For 0  the boundary is assumed to be porous with transpiration across it, 

again a case considered by Libby (1976) (in fact, for a compressible fluid) at a three-

dimensional stagnation point. For 0  we have injection, perhaps the more interesting 

case. As the injection rate increases the position 0 , where 0)0,( =f , increases, with 

viscous effects 

increasingly unimportant for 0  .. For 0   there is again, relatively speaking, a 

lack of structure in the solution with a fairly rapid change taking place in the 

neighborhood of 0 = . 

 

2.3: General Review of Unsteady Stagnation Point Flows: 

 

Introduction: 

The importance of studying the unsteady boundary layers is the fact that the 

majority of boundary layers that actually occur are unsteady. One or some of the 

following conditions may exist: either the time elapsed after the start of the movement is 

not significant, or there are fluctuations in prevailing velocity (which may itself have a 

mean of zero), or the boundary layer is unstable. Non-stationary flows occur in a variety 

of real live such as the pulsing flow of the arteries, the flow over fish fins and the wings 

of volatile birds, flow in the heart, some important technological applications, such as in 

gas turbine engines. In the latter case, periodic motions. 
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Unsteady stagnation point flow has been studied on a range of different 

movements over decades because of its importance in many engineering applications 

such as thermal cooling processes and industrial manufacturing processes.  Although 

many studies have been conducted on the unsteady flow in the vicinity of the stagnation 

point on a moving body, most of them investigated the flow on the plane associated with 

oscillations or with motion in the direction parallel to the plane itself as discussed above 

and little work has been reported on such an unsteady flow on a body moving along the 

impinging flow direction.  

In section 2.2 we examined steady stagnation-point flows on an infinite flat plate 

in different situations, as a model for the flow in the neighborhood of the stagnation point 

on a bluff body. Several authors have examined unsteady effects on such flows with a 

motivation, in part, prompted by aerodynamic flutter problems, and these we now 

consider. 

 

2.3.1: Orthogonal Oscillations 

In contrast to the flow in section 2.3 above we now consider the situation in which 

the steady stagnation-point flow is modified by the infinite plane performing harmonic 

fluctuations in its position along a normal direction. It is convenient, without loss of 

generality, to deal with the case in which the boundary is fixed with the far-field 

stagnation-point flow modulated by harmonic fluctuations of arbitrary amplitude and 

frequency. The study finds application to describe the local dynamics around a stagnation 

point on an oscillating body, or to model the local effects of disturbances at the stagnation 

point of a translating bluff body.  

The problem has received the attention of Grosch and Salwen (1982), Riley and 

Vasantha (1988), Merchant and Davis (1989) and Blyth and Hall (2003), where the most 

recent of these investigations is the most comprehensive. 

    Where,                                        y
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
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Far from the plane boundary y = 0 the modulated stagnation-point flow has the form: 
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and so we write, in place of (2.29), 
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With the pressure now given by :   
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                                         ta  cos1)( +=                                                             (2.42) 

Using similarity transformation, the following similarity equation was got:  

                                
22

, aaffffaf ++−+=                                            
(2.43) 

Together with: 

                             
)(),();,0(),0(   afff ==

                                 
(2.44) 

It may be noted that is 
A


 =  the Strouhal number 

 

2.3.2: The Homann Flow Against an Oscillating Plate 

Weidman and Mahalingham (1997) consider the axisymmetric stagnation-point 

flow against a porous plane boundary at which the transpiration velocity is a constant,  

equal to 
0

W− , and which performs periodic oscillations in its own plane,  in the x-

direction, with frequency ω .With rectangular co-ordinates (x, y, z) the velocity 

components may be written as:
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and the pressure as :
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                                    (2.46) 

A  is again the constant strain rate with 


eU
 the amplitude of the plate oscillations. 

Applying Navier stoke’s equations:
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where: 
2

1
0

)( A

W
S =  and  

A
= . The boundary conditions require:
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                                      (2.48) 

There are special cases: (a) 0== SU e , which corresponds to the classical steady, 

axisymmetric stagnation-point flow of Homann (1936), (b) 0== S , which represents 

the case of a flat plate moving transversely at uniform speed eU  beneath the 

axisymmetric stagnation-point flow as considered by  and (c) 0=S , representing the 

stagnation-point flow towards an impermeable plate performing transverse oscillations. 
 

 

2.3.3: Three-Dimensional Stagnation-Point Flow 

Three-dimensional stagnation-point flow which, as in the steady case, embraces both the 

two-dimensional and axisymmetric flows. Such a flow has been considered by Cheng, 

Ozisik and Williams (1971). As for the steady case it is convenient to adopt a slight 

change of notation with x, y as co-ordinates in the plane and z perpendicular to it. Cheng 

et al. assume that far from the boundary the x and y components of velocity are given by  

                                            t

Ax
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where ,, BA  and ω are constants, and introduce a self-similar solution as :    
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With 
A

BC =  and  
A


 = , using similarity transformations the following equations 

were yielded: 
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Numerical solutions of the equations for f  and g  are presented by Cheng (1971) for a 

range of values of C  and D , although the analogues of the dual solutions of Davey and 

Schofield (1967) and Schofield and Davey (1967) do not appear to have been explored. 

As for the steady case, values of 0C and 0C correspond, respectively, to nodal and 

saddle points of attachment; values of 0D and 0D correspond to decelerating and 

accelerating flows respectively.   
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Chapter 3 

 Similarity Transformation and Numerical Solution 

3.1: Similarity Transformations: 

The problem under consideration is that of two-dimensional version of Blyth 

and Hall (2003) flow approaching a vertical flat plate. Referring to a set of Cartesian 

axes ( yx, ), the flat plate occupies 0, =− yx .  

The velocity components are expressed as ),,(),,,( tyxvtyxu in the yx,  directions, 

respectively, governing equations which describe the fluid motion in this case are the 

two-dimensional unsteady Navier-Stokes equations. 

In some simplified cases, such as a fluid travels through a rigid body (e.g., missile, sports 

ball, automobile, spaceflight vehicle), or in oil recovery industry crude oil that can be 

extracted from an oil field is achieved by gas injection, or equivalently, an external flow 

impinges on a stationary point called stagnation-point that is on the surface of a 

submerged body in a flow, of which the velocity at the surface of the submerged object 

is zero. A stagnation point flow develops, and the streamline is perpendicular to the 

surface of the rigid body. The flow in the vicinity of this stagnation point is characterized 

by Navier-Stokes equations. By introducing coordinate variable transformation, the 

number of independent variables is reduced by one or more. 

The governing equations can be simplified to the non-linear ordinary differential 

equations and are analytic solvable 

 Navier-Stokes Equations 

The full Navier-Stokes equations are difficult or impossible to obtain an exact solution in 

almost every real situation because of the analytic difficulties associated with the 

nonlinearity due to convective acceleration. The existence of exact solutions are 

fundamental not only in their own right as solutions of particular flows, but also are 

agreeable in accuracy checks for numerical solutions. 

The Navier-Stokes equations are a system of non-linear, coupled partial differential 

equations (PDEs) which are derived from the principles of mass and momentum 

conservation. 

The equation of mass conservation, or continuity equation, can be written as: 



31 
 

                                            
0=+ yx vu                                                          (3.1) 

The equations of momentum conservation for a fluid are obtained from the 

application of the force-momentum principle, and can be written: 

x- momentum: 

                               

 yyxxxyxt uuPvuuuu ++−=++ 
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1
                          (3.2) 

y- momentum:  

                            

 yyxxyyxt vvPvvuvv ++−=++ 


1
                             (3.3) 

with the parameters, kinematic viscosity   , pressure P  and density  . 

The boundary conditions are taken as: 
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                        (3.4)
 

 Where vu &, the velocity components of the flow through the boundary layer are, )(0 tv

is the velocity of blowing\suction through the wall, )(tU e is unsteady potential velocity 

component.  

near the surface, because of the no slip condition not being satisfied, a similarity solution 

is employed. We defined dimensionless similarity variables as  , since:                          

                                                                     Ax=
                                                   

(3.5) 

                   
                                   

y
A
=


                                          (3.6)

 

Where,
 
A is a constant related with the body geometry, where 0A .

                                                

The velocity components vandu of the boundary-layer flow are assumed to have 

solutions of the following form: 

                                                               
),( tfu  =
                                            

(3.7) 

  
Then, the y-direction velocity component v of the potential flow is immediately 

determined from the continuity equation (3.1), by substituting the foregoing velocity 

components u  and v . 

                                                               
),( tfAv −=                                           (3.8)
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Consider the unsteady periodic motion of an incompressible viscous fluid in the vicinity 

of the stagnation point at 0== yx  on a blunt body. The potential flow approaches the 

body in the negative y-direction, impinges on the surface normally at the stagnation point 

flows away radially in all directions along the surface, and is assumed to have unsteady 

velocity components: 

                                                     )(taUe =                                                              (3.9) 

Where )(ta is an arbitrary time-dependent function, as a case study it was chosen )(ta as:

 

                                             

,

sin1

1
)(

t

ta





+

=                              (3.10)  

Where, is a constant related to free stream acceleration and   is the potential flow 

frequency.                                                                  
 

When  0=  , the problem reduces to the steady case, that means AxUe → . 

Corresponding to A& , we can define the unsteadiness parameter D as: 

                                                                                 
A

D


=  

The equations of motion [3.1 to 3.3] for the two-dimensional unsteady flow of 

incompressible viscous fluid in the vicinity of a forward stagnation point are reduced to 

two partial differential equations for a potential flow field chosen to vary periodically as 

a function of time, using the following procedure.  

At first, we consider a general form of chain rule: let us assume )(sr  to the first derivative 

with respect to transformation variables  , . 

                                                        ssss rrr   +=                                                (3.11) 

let us apply this rule, so that we can transform each term of the equation (3.2), 

separately: 

Term1:  By differentiating u in eq (3.7) with respect to the time, we got: 

                                                    
),(, tfAxu tt =                                               (3.12) 

Term2:  applying the rule (3.11) 
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xxx uuu   +=  

By differentiating u in eq (3.7) with respect to the   : ),( tfu  =  

Then, with respect to  : AtAxfu xx ===  ,0),,(  

By substitution, ,0).,( += tAfux   

Therefore, ).,( txfAux = l 

By multiplying ),(),( tAftAxfuux   = , 

Finally, 

                                                       
),(22 tfxAuux =                                     (3.13) 

Term3: applying rule (3.11) to find yu : 

yyy uuu   +=  

By differentiating:   


 

A
tAxfutfu yy ==== ),,(,0),( , h 

Therefore: 

                                                                     ),( tf
A

Axu y 


=                                   (3.14) 

By multiplying v  from eq. (3.8) by yu , we get: 

                                                           
),(),(2 tftxfAvuy  −=

                        
(3.15) 

 

Term4: applying the acceleration equation at the far-field flow:                   

                                                    
yeexeetex UVUUUP )()()(

1
++=−


                (3.16) 
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Where, teU )( is the rate of change of velocity with respect to time at a given point in a 

flow field which called as (the local acceleration or Temporal acceleration). 

And xee UU )( is the rate of change of velocity due to the change of position of fluid 

particles in a fluid flow which called as (the convective acceleration). 

From eq (3.9) : )(tAxaUe =   

By differentiating eU with respect to yxt ,,   we get: 

0)(),()(),()( === yexette UtAaUtAxaU  

By substitution in eq. (3.20), we get: 

 

                               22 )]([)(
1

taxAtAxaP tx +=−


                                   (3.17) 

Term5: by considering eq. (3.14), let yu=  

 
),(),( tftfAAx 


  == j 

Applying rule (3.11) to  : 

yyy   +=  

By differentiating, we get: 





 

AtfAAxtf yy ==== ),,(,0),,(  

By substituting in y : 

),(
2

tfx
A

y 


 =  
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Finally, we get: 

                                    ),(
2

tfx
A

u yy 


=                                             (3.18)                                                 

by substituting in eq (3.2), by relations (3.12, 3.13, 3.15, 3.17, (3.18), we get the final 

similarity equation describes the stream-wise flow in stagnation point flow boundary 

layer:  

                         ( )  ftata
A

ffff
A

tt ++







=−+







 22
, )]([)(

11
                      (3.19)                                                                                                                                                      

Initial and Boundary Conditions: 

Boundary conditions for the differential equation are expressed as follows: 

                                  

)(,

),(
1

),0(,
)(

),0( 0
0

taf

tv
A

tf
Ax

tu
f

→→

−==










                      (3.20) 

To satisfy the interspersed wall boundary conditions and to match to the outer potential 

solution.  

Our study aim was create a mathematical model can generalize the flow boundary 

conditions, and studying the effect of flow parameters change on the characteristics of 

boundary layer, for different values of the fluctuation amplitude Δ, the oscillation 

frequency  and the unsteadiness parameter D . 

The boundary conditions in eq.(3.21) in a generalized form and our assumptions were 

applied to achieve a special case which under the effect of flow parameters’ changing. 

For that, the boundary conditions are reformed according to our case study as: 

                            

)(,

),(
1

),0(,0),0( 0

taf

tv
A

tff

→→

−==










                                   (3.21) 

)(0 tv was chosen as:  

                                                        ttv cos)(0 =                                                 (3.22) 
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Where Δ is the amplitude of the oscillating flow due to blowing/suction at the wall, and 

 is the oscillation frequency.  

By substituting by eq. (3.21) in eq. (3.20), we get: 

t
A

tf 


cos
1

),0( −= , hence, ,.A are constants, we can introduce, −=
A

k
1

, 

and named it as “blowing parameter”. 

 

3.2: Numerical Procedure to Solve (PDE) Similarity Equations:  

To solve equations (3.19) numerically, A fully implicit finite difference based PDE solver 

is used (Implicit Euler) 

Grid points: 

To find a numerical solution with finite difference methods, we first need to define a set 

of grid points in a limited domain as follows: Choose a state step size   and a time step 

size t , draw a set of horizontal and vertical lines across the domain, and get all 

intersection points ),( ni as shown in figure(3. 1) , 

 

 

 

 

 

 

 

 

 

Implicit & Explicit Scheme: 

Figure (3.1): Grid Points 
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When the data at the next time level is obtained from an explicit formula involving data 

from the previous time levels, this called an explicit scheme. In the case of explicit 

scheme, the situation leads to a stability restriction on the maximum allowable time  

step.   

 

Figure (3.2): Explicit and Implicit Schemes 

 

Numerical Solution Procedure: 

To solve equations (3.19) numerically, the following procedure is applied: 

1- Assume:  

                fQfQfQfQ tt =→=→== ,,  

By substitution the- Qs variables instead of the-fs variables in equation (3.19) 

                         AQAaaAfQAQQ tt ++=−+ 22                                  (3.23)                                                                       

2- Use implicit scheme as: 

   

2

1
1

11
1

1
1

1
112

1

)(

2

2
,,











+−
=
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==
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++
+

+
−

+
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i
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i
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t

QQQ
Q

QQ
QQQQ

t

QQ
Q

                (3.24) 
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3- By substituting (3.25) in (3.24)    

)
)(

2
()()()

2
(

2

1
1

11
12

1
1

1
11

1

 
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n
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AfQAQ
t

QQ
 

4- By multiplication by ( t ) 

                   

)2(
)(

)()(
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1
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
     

Let:                 
221

)(2 








=




=

t
A

t
A  

          Then the last equation becomes: 

)2()()(

))(

1
1

11
12

2

1
1

1
11

11

+
−
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+

+
−

+
+
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+−++=
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n
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i
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n
i

n
i
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n
i

n
i

n
i

QQQtaAta

QQfQQtAQQ




 

          Rearrange the equation to be the next time step variables in the left side           

          and the current time step variables in the right side:  

taAtaQ

QQ

QQfQfQQtAQ

nn
t

n
i

n
i

n
i

n
i

n
i

nn
i

nn
i

n
i

n
i

++=

−+

−+−+

+
−

+

+
+

+
−

+
+
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)()(

2

2

1
13

1
3

1
13

1
11

1
11

11





 

          Finally, we get: 

              
])()[(

][][]1[

2

21
1

121
1

1
1

nn
t

n
i

nnn
i

nnn
i

n
i

n
i

aAatQ

gfQgfQQtAQ

++=

−+−−+ +
−

+
+

+ 
                 (3.25) 

This equation is solved using Thomas algorithm because the system is tridioganal. 
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Chapter 4 

 

 Results and Discussion 

 

4.1: Results Investigation 

Since there is no experimental data published, it was not possible to compare the 

present results. Instead, the available analytical/numerical results in literature were used 

for comparison. 

4.1.1: Comparison PDE Solution with ODE Solution  

Similarity solutions exist for flows which show specific symmetries and group 

properties, such that a similarity transformation reforms the Navier–Stokes equations into 

a set of ordinary differential equations. Such solution called (ordinary differential 

equation solution), in our case the (partial differential equation solution) because of our 

study main object, where our aim was assume any unsteady function at the initial and the 

boundary conditions. This comparison between ODE solution in the literature and our 

PDE solution for the same assumptions used in the literature. The comparison shows a 

good matching using our solver as shown in figures (4.1), (4.2), that's what prompted us 

to go ahead achieving our objectives.    



40 
 

 

Figure (4.1): Compression PDE Solution With ODE Solution for Horizontal Velocity 

Profile 

 

Figure (4.2): Compression PDE Solution with ODE Solution for Vertical Velocity 

profile 

𝑓𝜂(𝜂) 

𝜂 

𝜂 
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4.1.2: Comparison Between Similarity Solution (PDE) and CFD Code: 

SU2 is an open-source CFD (computational fluid dynamics) software written in C++ 

using object-oriented programming to solve the partial differential equations (PDEs) and 

PDE-constrained optimization problems on unstructured meshes. Through the initiative 

of users and developers around the world, SU2 is now a well-established tool in 

the computational sciences with wide applicability to aeronautical, automotive, naval, 

and renewable energy industries. SU2 is used to validate the computer code developed in 

this thesis work. The steady-state flow over a vertical plate is solved using both 

the present method and SU2. The mesh employed in SU2 has 7396 rectangular elements 

with 7569 nodes, Figure (4.3). The solution by SU2 requires more than an hour of wall 

clock time on a 64-bit Windows 8 running personal computer with two 2.5-Ghz CPUs 

and 8-GB memory. The developed computer code is also run on the same computer which 

gives the ODE solution less than a second. 

 

 Figure (4.3): Velocity Field Stream Lines 
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 The comparison between CFD solution and similarity solution was done as 

shown in figures (4.4), (4.5), the comparison shows a good matching.  

 

Figure (4.4): Variation of the Velocity Component Parallel to the Wall near the 

Stagnation Point  

 

Figure (4.5): Variation of the Velocity Component Vertical to the Wall near the 

Stagnation Point 
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4.2: Flow Parameters and Regimes 

The behavior of unsteady flow is affected by the conditions in which it exists in. 

In our case, for an unsteady viscous incompressible laminar stagnation point flow and 

according to our assumed functions (chapter 3), the boundary layer characteristics were 

affected by three parameters, which are:   

- 𝐷 ∶  𝑡ℎ𝑒 𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

- 𝑘 ∶  𝑡ℎ𝑒 𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

- 𝜔 ∶  𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

4.2.1: Regions of Stable and Unstable flow Parameters Regions 

Regions of flow parameters are the regions formed by a combination of flow 

parameters (𝐷, 𝑘, 𝜔), 

This combination makes the flow take a certain behavior dependent on time and 

position. At first, we could classify the flow parameters to two combinations: 

1- Parameters’ combination, lead to periodic oscillatory motion. 

2- Parameters’ combination, lead to unstable oscillatory motion. 

We have focused our work in the first region, so we have rejected the flow 

Parameters’ combinations, lead to irregular oscillatory motion because they lead 

to blowing-up at definite time from our calculations. 

We have selected specific values of unsteadiness parameters and classified other 

parameters according to it. Table (4.1) shows this classification: 
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Table (4.1): Stable Periodic & Unstable Flow Parameters Regions 

Unsteadiness 

parameter 

Regular  

oscillation 

Irregular 

 oscillation 

𝐷 = 2 𝜔 ≥ 2 𝜔 < 2 

𝐷 = 4 𝜔 ≥ 5 𝜔 < 5 

𝐷 = 6 𝜔 ≥ 8 𝜔 < 8 

𝐷 = 10 𝜔 ≥ 11 𝜔 < 11 

 

This can be further clarified by observing the following  figure (4.6) where at each 

border line 𝐷 there is a boundary between the regularity and irregularity of the oscillating 

flow, where we find the regular flow parameters region above the line and the irregular 

flow parameters region below it. The results were examined accurately and found to be 

valid at any 𝜂. Where (0 ≤ 𝜂 ≤ 10). 

 

Figure (4.6): Stable Periodic & Unstable flow Parameters Regions 
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Periodic flow is a general expression describes the flow. In fact, this motion could be 

periodic or quasi-periodic. Such motions are shown for  fff &, profiles in figures 

(4.7), (4.8), (4.9) and (4.10), (4.11) respectively. 

 

 

Figure (4.7): Regular Periodic Structure for profilef −  

 

Figure (3.8): Regular Periodic Structure for profilef −  (example1) 
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Figure (4.9): Regular Periodic Structure for profilef −  (example2) 

 

 

Figure (4.10): Regular Periodic Structure for profilef −  (example1) 
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  Figure (4.11): Regular Quasi-Periodic Structure for profilef −  (example2) 

 

4.2.2: Regions of Revered and Non-Revered flows at:𝜼 = 𝟎 

In this section the classification of the combinations of flow parameters based on 

the reversibility.  

The flow velocity is inversely proportional dependent of pressure therefore, if 

the pressure gradient has a positive sign along flow direction that means the velocity 

decreases (reversed flow), and if it has a negative sign, that means the velocity increases 

(non-reversed flow) 

It is known from the previous studies dealing with unsteady stagnation point flows 

that the unsteadiness parameter D  effects on the pressure gradient, that as a result of an 

unsteady function for the potential flow velocity eU . 

The pressure gradient sign is dependent of the value of unsteadiness parameter. 

Table (4.2), summarize this relation: 
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Table (4.2): Regions of Reversed & Non-Reversed Flows (ODE solution) 

 

x

P




 

x

u




 

Flow type 

1D  - + Non-revered 

1D  + - Reversed 

 

Most of studies were concerned with (ODE solution) ordinary differential 

equations solution solving the governing equations describing the unsteady stagnation 

point flows. This solution was investigated by the solution we presented in this study. 

PDE solution enabled us to assume any unsteady function either at the surface or 

at the potential flow, in our study as mentioned chapter 3, our supposed unsteady function 

was: 

t

A
U e





sin1+

=  

This supposed oscillation function was applied, the behavior of flow could be 

observed under the effect of change of 𝑘, 𝜔, at 𝐷 < 1, and found that, for any arbitrary 

values of 𝑘, 𝜔, the flow at 𝜂 = 0 is always non-reversed all the time, which is the same 

flow behavior in (ODE solution) case (table4.2).  But there is an interesting behavior 

observed in our results due to our new assumed unsteady function, it was the existing of 

a non-reversed during the interval (0 ≤ 𝑡 ≤ 10) flow even the unsteadiness parameter 

exceeds a unity.  

When (𝐷 > 1) at a t higher values of oscillating frequency 𝜔, It could be found at 

each ( kD & ) parameter values, a corresponding value of  which we distinguished as 

* , where *  is a searched highest value of oscillation frequency at the border of 

irreversibility. 
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When: *   : 

- It was observed the possibility of existence of reversed flow at a definite time, 

as shown later in section (4.6) 

Here was the point of excellence that, our assumptions have created. So we could 

modify table (4.3) to take the following form: 

Table (4.3): Regions of Reversed & Non-Reversed flows (due to our 

assumptions) 

 

 

 

 

 

As an important benefit of our work was finding a general map shows two regions 

of flow parameters. So, it was possible to find a borderline formed by *  

- Values which were found under different flow conditions. The border line 

separates two regions, where the area above the borderline represents to parameters’ 

values related with flow irreversibility parameters, and the area under represents to the 

variable’s values related with flow reversibility parameters. 𝑘-values were selected to 

vary from 5 to 700, and the selected  𝐷 values were [ 6,4,2 === DDD ] 

The indicator representing the 𝑢 − 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 velocity direction at 0=  is 

)0(f . Where if:        )10:(0)0( − totatflowreversednonf  

    
)(0)0( timedefiniteatflowreversedf   

The flow under the effect of combination of flow parameters was observed 

accuretely, the following values have been got and inserted in the following table. 

 
Frequency 

  
x

P




 

x

u




 Flow type 

1D  any - + Non-revered 

1D  

*   - + Non-revered 

*   + - Revered 
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Table (4.4): Values of * at which the Point Separates Reversed and Non-    Reversed 

Regions of Parameters at the Wall (reversed flow at the wall exists at definite time) 

 𝝎∗ 

k  𝑎𝑡 𝐷 = 2 𝑎𝑡 𝐷 = 4 𝑎𝑡 𝐷 = 6 

5 9 24 38 

10 25 47 65 

30 75 101 117 

50 96 120 131 

70 103 126 137 

100 107 130 140 

200 105 126 139 

300 103 120 131 

400 101 119 127 

500 99 117 126 

600 97 116 124 

700 96 117 124 

 

According to this table, the following can be commented: 

- At values of 5k ,  →)0(f  

- After 500k , *  has a small variation and can be considered as constantly 

changes with k . 

- Reversibility of flow may be occur at any time, so *  values were searched 

corresponding to *)0(f , where
*)0(f  is the value of )0(f when 

inflected from negative to positive value. 

The results in table (4.4) was plotted in figure (4.12) 
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 Figure (4.12): Reversed and Non-Reversed Regions of Parameters at the Wall 

(reversed flow at the wall exists at definite time) 

4.2.3: Matching Regions of Stable Periodic and Unstable flow Parameters with 

Regions of Reversed and Non-Reversed flow Parameters 

We found it necessary to be more efficient and accurate to study the effect of flow 

parameters on the characteristics of the boundary layer starting by determining the limits 

of those parameters to be applied. 

In the following figure, figures (4.6) & (4.12) were combined in one figure, the 

figure shows at 4=D three regions of flow parameters as following: 

1- Unstable oscillating flow parameters region: This region has been excluded from 

this work because the combination of parameters involved in this region leads to 

a blow-up at a definite time. 

2- Regular & reversed oscillating flow parameters region, this region valid at 0= . 

3- Regular & non-reversed oscillating flow parameters region, this region valid at

0=  
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 Figure (4.13): Matching Regions of Stable Periodic and Unstable Flow Parameters with 

Regions of Reversed and Non-Reversed Flow Parameters at the Wall 

 

Figure (4.13): Matching regions of stable periodic and unstable flow parameters        

with regions of reversed and non-reversed flow parameters at ( 2=D ) 

At each point of the regions of flow parameters showed  in figure (4.13), the flow 

behaves differently in terms of 𝑓𝜂𝜂(0)𝑚𝑎𝑥−𝑟𝑒𝑣 and the period of time in which it occurred. 

For a specific case, at 100,2 == kD , the flow was accurately observed fto e to 

enclosure the flow behavior during the first period of time motion where the reversed 

flow accures & its maximum value. At the mentioned case, it was found the starting and 

ending time of reversed flow, in addition to the maximum value refered to the maximum 

reversed shear strees at the wall. 
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Table (4.5): Intervals of Reversed Flow & 𝑓𝜂𝜂(0)𝑚𝑎𝑥−𝑟𝑒𝑣 at the 1st Period  of 

Oscillation 

  
t (at starting reversed 

flow period) 

t (at ending reversed 

flow period) 

 

2 2.63 3.5 -9.448683 

5 1.06 1.4 -2.7437 

10 0.54 0.72 -1.62 

25 0.22 0.3 -0.66759 

40 0.16 0.19 -0.26 

70 0.1 0.11 -4.02E-02 

 

from table (4.5), it could be commented that: 

- As   increases, as the starting of reverd flow interval becoumes eirlier. 

- As   increases, as the  reverd flow interval becoumes shorter. Where at 

s/12= , the  reverd flow interval strev 87.0. =
 and at s/170= ,  

the  reverd flow interval strev 01.0. =
 

- As   increases, as 𝑓𝜂𝜂(0)𝑚𝑎𝑥−𝑟𝑒𝑣 becoumes smaaller. So at high values of 

oscillation frequency  , 𝑓𝜂𝜂(0)𝑚𝑎𝑥−𝑟𝑒𝑣 → 0. 

To clearify more, the data in the previous table was illustrated in figures (4.14), (4.15) 

𝑓𝜂𝜂(0)𝑚𝑎𝑥−𝑟𝑒𝑣 
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 Figure (4.14): Maximum Reversal Wall Shear Stress vs. Oscillating Frequency 

Increasing (at η=0, unsteadiness parameter D=2, blowing parameter k=100) 

 

 Figure (4.15): Reversal Flow Interval Starting Time vs. Oscillating Frequency             

(at η=0,unsteadiness parameter D=2,blowing parameter k=100) 
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4.3: The Effect of Flow Parameters On profilef −
 

4.3.1: The Effect of Blowing Parameter On profilef −
 

Figure(4.16) present the profiles of f , for values of k  (from 0 & 10) for specific 

values of unsteadiness parameter D  and oscillation frequency during a definite time 

from t=5.81 s to 5,85 s. 

Figures show the effect of blowing parameter on )0(f  which increases as k  be higher. 

Since, the motion is sinusoidal, )0(f  moves alternatively within the interval of ],[ kk− . 

If we consider profilef −  as a straight line, so we can consider the blowing parameter 

in terms of the slope of )(f , a small period of time was focused on and the main slope 

for that period was calculated, where profiles’ slope values during the considered time 

interval had a small differences between each other at the same flow parameters, 

therefore, it could be made a slope comparison at different values of k, it was found that, 

the main slope at (𝑘 = 0, 10, 100, 500) is as in the following figure : 

 

 Figure (4.16): Slope of f-Profile vs. Blowing Parameter k (at unsteadiness parameter 

D=4, oscillation frequency ω=100 1/s) during the period t = (5.81 s – 5.85 s) 

When no blowing effect, the initial velocity at the wall is independent of time, on the 

contrary of that when the blowing effect exists, the initial velocity at the wall changes 

with time, Figure (4.17). 
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 Figure (4.17): Structures of ( f-velocity profile)  during a definite period of time 

at(unsteadiness parameter D=4,oscillation frequency ω=100 1/s,blowing parameter 

k=0,10 respectively) 

4.3.2: The Effect of Oscillation Frequency On  profilef −  

Applying different arbitrary values of oscillation frequency 𝜔 didn’t show 

obvious effect on profilef −  . We have reached this conclusion after observing the flow 

under the influence of the flow parameter, for example, at: 60&4 == kD ,  and, at (

sststst 10,7,3,5.0 === ) ,the oscillation frequency values applied were (

ss /1100,/110 ==  ). The effect of these combinations of flow parameters is shown 

in figures (3.18).  

 

 

Figure (4.18): Structures of ( f-profile)  Under the Effect of ( blowing parameter 

k=60,unsteadiness parameter D=4,oscillation frequency ω=10 1/s,100 1/s)respectively 

at different times 
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4.3.3: Effect of Unsteadiness Parameter On f  Profiles (for specific k  &  ) 

By analyzing the effect of unsteadiness parameter D at specific blowing 

parameter  30=k  & oscillation frequency s/120=  at st 5.4=  on  profilef − . As 

shown in figure (3.24), the effect of unsteadiness parameter is very obvious at the same 

position  , as the unsteady parameter D  is smaller, as )(f  is greater. 

Within the region closer to the wall, at the higher values of unsteadiness 

parameter, the flow is reversed at the specified time along the direction perpendicular to 

the wall. 
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By comparing the effect of the oscillation frequency values at (𝜔 = 20 
1

𝑠
 &   𝜔 =

50 
1

𝑠
,   𝜔 = 100 

1

𝑠
, 𝜔 = 300  

1

𝑠
) on  𝑓 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 , the following comments could be 

concluded: 

- Flow reversibility disappears as the oscillation frequency increases. The existence of 

reversed flow was observed in figure (4.19) especially at D=15 but, as shown in 

figures (4.20) and (4.21) the flow is non-reversible at this case. 

- The effect of unsteadiness parameter decreases as the oscillation frequency increases. 

This effect is very weak at (𝜔 = 100 
1

𝑠
 &   𝜔 = 300 

1

𝑠
) as shown in figures (3.22), 

(3.23). 

 

 

Figure (4.20): Changing of Unsteadiness Parameter D On f-Profile Structure   at               

( blowing parameter k=30scillation frequency ω=50 1/s) at ωt=5.8  rad 
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 Figure (4.21): Changing of Unsteadiness Parameter D On  f-Profile Structure  at               

( blowing parameter k=30scillation frequency ω=100 1/s) at ωt=1.62  rad 

 

4.4: The effect of flow parameters on profilef −
 

4.4.1: The effect of blowing parameter on profilef −
 :  

What is noticeable in the case of profilef −
 (which refers to the velocity 

component along the stream –wise direction, and didn’t observe in  the case of 

profilef −  (which refers to the velocity component along the vertical direction) is that 

sometimes under some flow parameter combinations, the existence of oscillating motion 

either at the surface ( 0= ) or at the border of boundary layer ( → ). The main 

parameter causes this phenomenon is the blowing parameter k . 

As shown in figure (4.22), the unsteadiness parameter was selected as ( 4=D ) 

and the oscillation parameter ( s/130= ) at a specific time ( radt 7.4= ), an arbitrary 

values of blowing parameter were applied as ( 500,160,60,10,0=k ). We will discuss the 

effect of the blowing parameter on profilef −  
in two points as following: 
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According to our boundary conditions where at: 

t

A
tawhere

tau








sin1(

)(:

)(,

+

=

→→

 

The velocity profile )(f  matches the potential velocity at the edge of boundary 

layer. As shown in Figure (4.22), velocity profiles have different paths to match the 

potential flow, these paths were determined by blowing parameter under the current 

conditions. 

It was observed that, )(f  matches the potential flow at 
 
further to the wall, 

as the blowing parameter was higher, that means the thickness of the viscous region 

adjacent to the wall (the boundary layer) must to be thicker. 

 

Figure (4.22): Changing of Blowing Parameter k Effect On  f_η-Profile Structure   at ( 

unsteadiness parameter D=4,scillation frequency ω=30 1/s) at ωt=5.7  rad 

The existence of an oscillating motion near the wall or at the border of the viscous region 

in the current situation due to the increasing of the blowing parameter. As shown in 

figures (4.23), (4.24), (4.25) and (4.26), at time ( sssst 10,7,3,5.0= ) for a different 

values k & 30,4 == D . 
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- At 10=k , it wasn’t observed any oscillating motion. And the flow during the 

boundary layer matches the potential flow closer to the wall. 

-  At 60=k , small oscillations were observed near the wall (at sometimes). And 

the flow during the boundary layer matches the potential flow at    further than 

the previous case. 

- At 160=k , higher oscillations might be observed near the wall (at sometimes).  

- At 500=k , very high oscillations might be observed near the wall and 

sometimes), oscillations might be observed at the edge of boundary layer too. 

 

  

 Figure (4.23): Structures of fη-Profile at (blowing parameter k=10 ,  unsteadiness 

parameter D=4) at different values of ωt 
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 Figure (4.24): Structures of fη-Profile at ( blowing parameter k=60 unsteadiness 

parameter D=4) at different values of ωt 

 

 

 Figure (4.25): Structures of   fη-Profile at (blowing parameter k=160 ,  unsteadiness 

parameter D=4) at different values of ωt 
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Figure (4.26): Structures of fη-Profile at ( blowing parameter k=500 ,  unsteadiness 

parameter D=4) at different values of ωt 

 

4.4.2: The Effect of Oscillation Frequency on profilef −
:  

 Figure (4.27) shows the effect of oscillation frequency on profilef −
 for 

60,4 == kD at different values of  t , as shown profilef −  
has different structures, 

in general )(f takes the usual shape of profilef −
 sometimes, it was observed  

small oscillation (at flow parameters applied ). 
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 Figure (3.27):  Structures of fη-profile at ( blowing parameter k=60 ,  unsteadiness 

parameter D=4) at different values of ωt 

 

In figures (4.28), 4.29), (4.30) and (4.31), it was shown some ( profilef −
) structures 

under the effect of changing the oscillation parameter at ( sssst 10,7,3,5.0= ). 

 

Figure (4.28):  Structures of fη-profile  at ( blowing parameter k=60 ,  unsteadiness 

parameter D=4 ,oscillation frequency ω=30 1/s 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

𝜔t=4.73 rad 𝜔t=0.79 rad 𝜔t=0.22 rad 𝜔t=0.53  1/s

𝐷 = 4, 𝑘 = 60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

t=o.5 s t=3 s t=7 s t=10 s

𝜔 = 30 1/s
𝐷 = 4, 𝑘 = 60



65 
 

 

 Figure (4.29): Structures of fη-Profile at ( blowing parameter k=60 ,  unsteadiness 

parameter D=4 ,oscillation frequency ω=100 1/s ) 

 

 

 

 

 

 

 

 

 

 

 

 Figure (4.30): Structures of   fη-Profile at (blowing parameter k=60 ,  unsteadiness 

parameter D=4 ,oscillation frequency ω=300 1/s ) 
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Figure (4.31):  Structures of   fη-Profile at (blowing parameter k=60,  unsteadiness 

parameter D=4 ,oscillation frequency ω=700 1/s ) 

 

4.4.3: The Effect of Unsteadiness Parameter on profilef −
:  

 In contrast of profilef −  case, the unsteadiness parameter D  don’t always effect 

on profilef −  
in our case of assumptions. An accurate observation was done by 

applying the unsteadiness parameter as ( 10,6,2,5.0=D ) for 60=k at different values 

of t  . 

Figures (4.32) and (4.33) show less effect of D  on profilef −  
at different values of t

.  However, was to make sure that this is not always true. 
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Figure (4.33):  Structures of   fη-profile   at (ωt=4.82 rad) and (blowing parameter k=60,  

oscillation frequency ω=160 1/s ) at different values of unsteadiness parameter D 

 

Figures (4.34) and (4.35) show a different structure of fη-profile at (blowing parameter 

k=60   oscillation frequency ω=160 1/s) where, unsteadiness parameter at D=0.5 and D=2 

respectively t different time scales. 
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 Figure (4.34): Structures of fη-profile at  (blowing parameter k=60,unsteadiness 

parameter D=0.5,  oscillation frequency ω=160 1/s)  ,  at different times 

.  

 

 Figure (4.35):  Structures of   fη-profile at (blowing parameter k=60, unsteadiness 

parameter D=2, oscillation frequency ω=160 1/s), at different times. 
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4.5: The Effect of Flow Parameters on profilef −
 

The importance of studying profilef −
 behavior relates to the fact that it 

represents the rate of change of profilef −
which refers to stream-wise velocity 

component through the boundary layer. 

The sign of profilef −
 at any 

 
refers to the direction of velocityu −   at that position. 

We talked about this issue in details in section (4.3). 

The second benefit is that profilef −
 behavior refers to the shear stress distribution 

within the boundary layer. 

In next sections, the effect of the flow parameters was discussed. 

4.5.1: The Effect of Blowing Parameter on profilef −
 

The influence of blowing parameter was studied by applying the flow parameters 

at 𝑡 = 4.5 𝑠 where, = 4 & 𝜔 = 60 1/𝑠 . 

Blowing parameter had the values of 𝑘 = 0, 20, 60, 120. The observed results can be 

summarized as following: 

- At the given time and parameters, shear stress is maximum at  𝑘 = 0. And then, 

as 𝑘 increases, 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥 goes inside the boundary layer. For example, as shown 

in figure (4.43). 

- It is obvious from figure (4.36) that as blowing parameter 𝑘 inceases 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥 

decreases. 

These results led us to study the effect of blowing parameter at higher frequency, all 

parameters were maintained at the previous values unless oscillation frequency 

became as 𝜔 = 300 1/𝑠. As shown in figure (4.36) maximum value of shear stress is 

very close to the wall. This contrasts with what was in the case of  𝜔 = 60 1/𝑠. 
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 Figure (4.36): Structures of    fηη-profile at  (unsteadiness parameter D=4,  oscillation 

frequency ω=60 1/s)  ,  at different values of blowing parameter. 

 

 Figure (4.37): Structures of fηη-profile at (unsteadiness parameter D=4,   oscillation 

frequency ω=300 1/s)  ,  at different values of blowing parameter. 
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the range of 𝜂 = 2 𝑡𝑜 𝜂 = 4, at 𝑘 = 60 the flow matches during the range of  𝜂 =

6 𝑡𝑜 𝜂 = 8, and  

it was interesting to observe the effect of applying a higher blowing parameter for 

example at  𝑘 = 300 by applying the same flow parameters and at the same time. 

Relatively, observed a higher oscillation comparing with the previous cases. These 

oscillations sometimes occur near the wall then transfers to the border or boundary layer. 

As shown in figures (4.38) and (4.39) a 𝑡 = 4.5 𝑠, 𝑘 = 300, 𝐷 = 4 the maximum wall 

shear at (ω=30), after that as (ω increases) as the oscillation amplitude becomes smaller. 

Figure (4.38) shows at 𝜔 = 10 1/𝑠, the flow during the boundary layer matches the 

potential flow at 𝜂 = 2,  continued stable to 𝜂 = 10.  While at 𝜔 = 60 1/𝑠, 0)( f

during the interval [0 ≤ 𝜂 ≤ 8] and oscillated at 𝜂 > 8. 

 

 

 Figure (4.38): Structures of fηη-profile at (unsteadiness parameter D=4, blowing 

parameter=300, at different values of oscillation frequency ω. 
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Figure (4.39) shows at 𝜔 = 120 1/𝑠 and 𝜔 = 300 1/𝑠, small oscillation with comparing 

with the previous cases, near the wall and at the potential flow. 

 

 Figure (4.39): Structures of fηη-profile at (unsteadiness parameter D=4, oscillation 

frequency ω=300 1/s)  ,  at different values of blowing parameter. 

4.5.2: The Effect of Oscillation Frequency on profilef −  

The influence of oscillation frequency   were observed in the range of 

sto /1)2005(= at: 4.5st = for unsteadiness parameter 4=D  and blowing parameter 

60=k .  

From figures (4.40) and (4.41) the following could be deduced: 

- At specific times, maximum shear stress can exist within the boundary layer, 

for example, as shown in figure (4.40). 

- At st 5.4= it is obvious that maximum shear stress decreases and goes further 

inside the boundary layer as the oscillation frequency   increases at the same 

unsteadiness and blowing parameters. 

- On the other hand, at the same time, it was observed that the maximum shear 

stress has a maximum value at the wall for example, as shown in figures (4.41). 
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Figure (4.40): Structures of fηη-profile at (unsteadiness parameter D=4,blowing 

parameter k=60)   at different values of oscillation frequency (ω=5,50,70,80,150 1/s) 

 

 Figure (4.41): Structures of fηη-profile at (unsteadiness parameter D=4,blowing 

parameter k=60)   at different values of oscillation frequency (ω=30,40,100,200 1/s) 
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4.5.3: The Effect of the Unsteadiness Parameter on profilef −  

-  At the lower values of , the maximum shear stress may be move inside the boundary 

layer at specific time. 

- As the oscillation frequency increases, the maximum shear stress becomes closer to the 

wall. 

- The effect of changing of unsteadiness parameter, is more obvious at low frequency 

values, as shown in figure (3.42), for s/150= , the effect of unsteadiness parameter 

change seems obvious in values of max)(&)0(  ff  . Before 4  the effect of 

unsteadiness parameter change can be seen. 

 

 Figure (4.42): Structures of fηη-profile at (blowing parameter k=60, oscillation 

frequency ω=50 1/s)at different values of unsteadiness parameter D 

 

- For all the chosen values of  , as shown in figures (4.43), (4.44) and (4.45), it is 

possible to say: from 4  to 10 0)( → f , at 10  the flow was 

disturbed again.  

- When the change of is in the range of s1)260100( − , the effect of 

unsteadiness parameter change is almost nonexistent, this situation still exist for 

s1200 unless at 0 where, as shown in figure(4.45), )0(f is dependent 

on the unsteadiness parameter D . 
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 Figure (4.43): Structures of fηη-profile   at (blowing parameter k=60, oscillation 

frequency ω=100 1/s) at different values of unsteadiness parameter D 

 

 Figure (4.44): Structures of fηη-profile at (blowing parameter k=60, oscillation 

frequency ω=200 1/s) at different values of unsteadiness parameter D 
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 Figure (4.45): Structures of fηη-profile   at (blowing parameter k=60, oscillation 

frequency ω=400 1/s) at different values of unsteadiness parameter D 

  

4.6: Effect of Low Parameters on Wall Shear Stress wall   
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In the following sections we will discuss the results considering the influence of flow 

parameters on shear stress within the boundary layer. 

4.6.1: Effect of Blowing Parameter on the Wall Shear Stress 

The following table includes the maximum values of )(f  which was found 

within a period of time don’t exceed 0.6 second from the beginning of the unsteady 
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motion, in table (4.6) were included the time at which )(f  has a maximum value at 

(𝐷 = 2,   𝑘 = 10, 50, 100, 200). As it was mentioned in sec (4.5), and shown in figures 

(4.36), (4.40), (3.42), the maximum shear stress may be exist inside the viscous boundary 

layer if &k don’t exceed specific values. But for higher values maximum shear stress 

exist at the wall (at 0 ). These values were searched to correspond the value of 2=D

, and various values of &k . These values were plotted in Figure (4.46). Associating to 

Figure (4.46), it could to be commented the following: 

- Maximum )(f  increases with blowing parameter k . 

- For each k  value, )(f
 
increases rapidly to its maximum value, corresponds 

to a specific value of the oscillation parameter at  =  where   within the range 

of s1]7030[ − . 

- )(f  decreases during the range ]30070[ − s1 , to goes almost constantly 

after s1300 . 

Table (4.6): Maximum Values of  𝑓𝜂𝜂 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒  Indicates Maximum Shear 

stress  𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. vs. oscillation frequency 𝜔 at different values of 

𝐵𝐿𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 at 𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 = 2 

𝜔 

(1
𝑠⁄ ) 

 

(k=200) (k=100) (k=50) (k=10) 

1 9.258861 7.299397 8.337737  
5 14.12924 12.33942 10.30847 4.717446 

10 15.61116 14.06375 11.86223 5.029949 

20 16.77482 15.15149 12.77014 4.470926 

30 17.20849 15.50646 12.72162 3.952873 

40 17.41046 15.59892 12.29333 3.577264 

70 17.42147 14.83062 10.56896 2.859268 

100 16.72094 13.42369 8.950562 2.508152 

200 13.28164 9.575809 5.944116 1.977901 

300 7.475956 5.844906 4.210639 1.726169 

400 7.604838 5.611407 3.692614 1.57697 

500 7.696629 5.881554 4.027748 1.657984 

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. 𝑎𝑡  𝐷 = 2, within 0.6 s 
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 Figure (4.46): Maximum Values of fηη-profile Indicates Maximum Shear Stress        

fηη (η)_(max.) vs. oscillation frequency ω at different values of blowing parameter k at 

unsteadiness parameter D=2 

4.6.2: Effect of Unsteadiness Parameter on the Shear Stress 

 In the previous section, the effect of the blowing parameter on the shear stress was 

discussed, in this section we’ll discuss the effect of the unsteadiness parameter on 

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥., at  𝑘 = 100. 

Associating to table (4.7) and figure (4.47), it could to be comment the following: 

- Maximum )(f  decreases with the increasing of the unsteadiness parameter D

. 

- For each D , )(f
 
increases rapidly to its maximum value, corresponds to a 

specific value of the oscillation parameter at  =  where   within the range of 

s1]4030[ − . 

- )(f  decreases during the range of ]30040[ − s1 , to goes almost 

constantly after s1300 . 
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- 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥.  is almost the same in the range of s/1]300100[ − , so the effect 

of D  is absent.  

- As shown in table (4.7), at values of 8D , corresponding the values of 

s/110 , 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. ⟶ ∞. 

 

Table (4.7):  Maximum Shear Stress  𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. vs. Oscillation Frequency 𝜔,

𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 = 100 at at different values of 

𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 

𝜔 

(1
𝑠⁄ ) 

 

 

D=0.5 D=2 D=4 D=6 D=8 D=10 

1 11.57255 7.299397 5.174363 3.967744 diverge diverge 

5 15.14843 12.33942 10.58405 9.544457 diverge diverge 

10 15.86737 14.06375 12.62341 11.73697 11.10935 diverge 

20 16.20153 15.15149 14.16732 13.50914 13.01286 12.66048 

30 16.22204 15.50646 14.80039 14.23102 13.83276 13.44041 

40 16.02257 15.59892 15.04938 14.63641 14.37666 14.11536 

70 14.951 14.83062 14.66735 14.50092 14.33132 14.15852 

100 13.4547 13.42369 13.38082 13.33619 13.28975 13.24147 

200 9.537017 9.575809 9.629546 9.68594 9.745383 9.808267 

300 5.97941 5.844906 5.677917 5.540308 5.389138 5.287292 

400 5.830675 5.611407 5.317554 5.021995 4.72474 4.425796 

500 6.104455 5.881554 5.584054 5.286202 4.98799 4.689408 

 

𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥.  𝑎𝑡 𝑘 = 100 
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 Figure (4.47): Maximum values of  fηη-profile  Indicates Maximum Shear Stress Fηη 

(η)_(max.) vs. Oscillation Frequency ω, Blowing Parameter k=100 at at Different 

Values of Unsteadiness Parameter D 

 

4.6.3: The Observation of the Time of Maximum Shear Stress 

It was interesting to determine the time at which 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. occurs, this critical 

time changes according to flow parameters changing, so table (4.7) and figure (4.54) are 

valid only for the corresponding flow parameters’ values. It was selected for𝑘 = 100, the 

unsteadiness parameter values as (𝐷 = 0.5, 2, 6, 10) and (𝑓𝑟𝑜𝑚 5 𝑡𝑜 700 
1

𝑠
). By 

analyzing the data installed in table (4.8), it could be comment that: 

- The time at which 𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. exists, occurs earlier if 𝐷 was smaller. 

- As the oscillation frequency becomes higher,  𝑓𝜂𝜂(𝜂)𝑚𝑎𝑥. occurs earlier. 

- For the considered range of 𝜔 values, the maximum time that 𝑓𝜂𝜂(𝜂) can take to 

reach its highest value is 𝑡 = 0.6𝑠 at 𝜔 = 5 
1

𝑠
, 𝐷 = 2, 𝑘 = 100. Table (4.8): the 

time at which   

- the previous results were illustrated in figure (4.48). 
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Table(4.8): 𝑓𝜂𝜂 − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒  Maximum Value Occurrence Time  vs. Oscillation 

frequency 𝜔, 𝑏𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑘 = 100 at at Different Values of 

𝑢𝑛𝑠𝑡𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐷 

 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛  

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜔 

 

 

D=0.5 D=2 D=6 D=10 

5 0.35 0.5 0.57 0.6 

10 0.19 0.19 0.28 0.3 

20 0.1 0.12 0.14 0.15 

30 0.08 0.08 0.08 0.1 

40 0.07 0.07 0.08 0.08 

60 0.05 0.06 0.06 0.06 

80 0.05 0.05 0.05 0.05 

90 0.04 0.04 0.04 0.04 

100 0.04 0.04 0.04 0.04 

104 0.04 0.04 0.04 0.04 

110 0.04 0.04 0.04 0.04 

120 0.04 0.04 0.04 0.04 

140 0.03 0.03 0.03 0.03 

160 0.03 0.03 0.03 0.03 

200 0.03 0.03 0.03 0.03 
 

 

 

  

 

 

 

 

 

 

Figure (4.48): The Time at which fηη-profile Maximum Value Occurs vs. Oscillation 

Frequency ω, Blowing Parameter k=100 at at Different Values of Unsteadiness 

Parameter D 
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Chapter 5  

Conclusion and Future Work 

5.1 Concluding Remarks: 

The study has interested on oscillatory stagnation point flows. The problem comprised an 

unsteady oscillating motion at the potential flow with a periodic flow motion through the 

wall surface. This problem was a generalization of the problem that previously addressed 

by Blyth and Hall (2003). The oscillatory stagnation point flows problem was analyzed 

by many researchers, such as Merchant and Davis (1989). They showed that for a high 

oscillation frequency value, it is found a critical oscillation dimensionless amplitude, 

above which equations can’t be solved. The mentioned study promoted   Blyth and Hall 

(2003) to address the problem and concluded that above the critical relative amplitude 

equations blow-up at a finite time singularity. In current study we assume a specific 

unsteady function at the far-field flow and an unsteady blowing/suction at the surface. It 

was interesting in analysis finding that the solutions below a critical value of oscillation 

parameter break down at a finite time. According to our assumptions, for each determined 

value of the unsteadiness parameter, the critical value of oscillation parameter 

approximately constant with changing of the blowing parameter. So, we could consider 

a border line separates to regions of flow parameters, the region above the line refers to 

the flow parameters leading to a regular or stable flow motion, while the region below 

the line refers to the flow parameters leading to unstable flow motion where the flow 

break down at a finite time. 

In chapter 3, a mathematical model in a form of a non-linear partial similarity differential 

equation with boundary conditions was done, it was derived from Navier-Stoke’s 

equations in a two-dimensional version.  

The effect of change of flow parameters on the boundary layer characteristics was 

addressed in chapter 4. 

It was observed that, the change of the blowing parameter  𝑘 doesn’t effect on flow 

stability or un-stability, while, for a specific blowing parameter and a specific 

unsteadiness parameter, there exists a critical oscillation dimensionless frequency, under 

which, no solutions was found.  

the effect of the unsteadiness parameter and the oscillation frequency was as following: 
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At: 𝐷 = 2 the flow profiles are periodic for 𝜔 ≥ 2  (
1

𝑠
) 

At: 𝐷 = 4 the flow profiles are periodic for 𝜔 ≥ 5  (
1

𝑠
) 

At: 𝐷 = 6the flow profiles are periodic for 𝜔 ≥ 8  (
1

𝑠
) 

And so on, as the unsteadiness parameter increases, the oscillation frequency must 

increase to to maintain the boundary layer profiles in a periodic structure. 

At: 𝐷 ≤ 1, the boundary layer profiles always periodic regardless of the change of flow 

parameters. 

It was observed that the flow at a specific value of the unsteadiness parameter where 𝐷 >

1 can be non-reversed at the surface all the time if 𝜔 ≥  𝜔∗.  At 𝐷 > 1 & 𝜔 ≥  𝜔∗ the 

flow becomes reversed at definite period of time. 

At the values of 𝐷 ≤ 1 the flow at the wall is non-reversed all the time regardless of the 

value of 𝜔. 

 

5.2 Further work   

As mentioned, the purpose of this thesis is a generalization of the problem of Blyth and 

Hall (2003), the case considered was adding an unsteady motion to the potential flow 

with the presentence of periodic motion at the wall. In fact, our model allows adding any 

type of unsteady motion either through the wall or at the far-field stream. In addition, the 

problem can be developed to be three-dimensional case. So, we recommend the following 

researchers who interest the area of stagnation point flows, applying different 

assumptions for the same problem to compare the effect of flow parameters on the 

boundary layer characteristic discussed in our study. 
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