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ABSTRACT 
 

    FORCE AND FRICTIONS 

 

 Majdi Farag Abdulati 

Ph.D., Department of Mechanical and Aeronautical Engineering 

Thesis Supervisor: Asst. Prof. Dr. Habib Ghanbarpourasl 

February-2019, 100 pages 

 

In the past, very few researchers focused their efforts on the path planning problem for 

those robots, which are used in the industrial processes. The main purpose of path 

planning solution is that it has significant engineering applications in the fields such 

as industrial robotics and mechatronics because now robots are extensively used in 

several industries including aerospace and automotive industries. The aim of this thesis 

is to presents new planning method for minimum-time trajectory, which is applicable 

in robotic manipulators. They are used in Cartesian-space because they have dynamic 

constraints, which consist of a desired path from the Cartesian-space to the 

manipulator while the external forces are subject to the input voltage of the actuators. 

The existing processes have many limitations and several constraints; however, the 

current thesis shows how to develop methods for minimum-time path planning 

keeping in view dynamics of robotics including torque and force limits. For this 

purpose, we used path parameter optimization algorithm to calculate the minimum-

time control in the presence of external force and frictions. The main matter of interest 

in this work is a path with unknown path parameter. This parameter is a function of 

time and the unknown vector, and it is used for optimization. In this thesis, the 

optimization of dynamic system has been converted into an optimization problem, 

which is subject to the equations of motion as well as limitations of angular velocity, 

angular acceleration, angular jerk, input actuator torques, input voltage, and final-time, 

respectively. In order to manage the all-time for the presented algorithm, the final-time 

of the task has been divided into steps for making the process easier. The final-time is 

an additional unknown variable in the optimization problem. The algorithm attempts 

to minimize the final-time by optimizing the path parameter, so it is a function of time 

MINIMUM-TIME PATH PLANNING FOR ROBOT MANIPULATORS 

USING PATH PARAMETER OPTIMIZATION WITH EXTERNAL 
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with some unknown parameters. In the nutshell, the algorithm can have a smooth input 

voltage in an allowable range, after which, all the motion parameters remain smooth. 

In addition, the simulation study shows that the presented approach is useful for the 

trajectory planning for a manipulator, which follows a Cartesian reference path. This 

point of view is new and provides interesting results, some of which have been already 

reported in the existing literature. 

Keywords: Minimum-time path planning, robot manipulators, trajectory planning, 

path parameter, dynamic constraints, constrained optimization. 
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Doktora, Makine ve Havacılık Mühendisliği Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Habib Ghanbarpourasl 

Şubat-2019, 100 sayfa 

 

Çok az sayıda araştırmacı geçmişte endüstriyel süreçlerde kullanılan robotlar için yol 

planlama problemine odaklanmıştır. Yol planlama çözümünün temel önemi 

endüstriyel robot teknolojisi ve Mekatronik gibi alanlarda birçok önemli mühendislik 

uygulamasına sahip olmasından kaynaklanmaktadır çünkü robotlar günümüzde uzay 

ve otomotiv endüstrileri de dâhil olmak üzere birçok endüstride yaygın olarak 

kullanılmaktadır. Bu tezin amacı, robotik işlemcilerde uygulanabilen minimum-

zamanlı gidiş yolu ve yörünge için yeni bir planlama yöntemi sunmaktır. Dış kuvvetler 

aktüatörlerin giriş gerilimine maruz kalırken, Kartezyen-uzaydan işlemcilere istendik 

bir yoldan oluşan dinamik kısıtlamaları olduğu için Kartezyen-uzayda kullanılırlar. 

Mevcut süreçlerin birçok sınırlılığı ve kısıtlamaları vardır; bununla birlikte, mevcut 

tez, tork ve kuvvet limitleri dahil olmak üzere robot teknolojisinin dinamiklerini göz 

önünde bulundurarak minimum-zamanlı yol planlama için yöntemlerin nasıl 

geliştirileceğini göstermektedir. Bu amaçla, dış kuvvet ve sürtünmenin varlığında 

minimum zaman kontrolünü hesaplamak için yol parametresi optimizasyon 

algoritmasını kullandık. Bu çalışmadaki ana ilgi konusu, bilinmeyen yol parametresi 

olan bir yoldur. Bu parametre zamanın ve bilinmeyen vektörün bir fonksiyonudur ve 

optimizasyon için kullanılır. Bu tezde, optimizasyon algoritması, hareket denklemleri 

ve bunun yanı sıra sırasıyla açısal hız, açısal ivme, açısal sarsıntı, giriş aktüatör 

torkları, giriş voltajı ve final zamanı sınırlamalarına tabii bir optimizasyon problemine 

dönüştürülmüştür. Sunulan algoritmanın planlama sürecini yönetmek için, görevin 

final zamanı süreci kolaylaştırmak için bölünmüştür. Final zamanı, optimizasyon 

probleminde bilinmeyen ilave bir değişkendir. Algoritma, yol parametresini optimize 

ederek final zamanını en aza indirmeye çalışır, bu nedenle bilinmeyen bazı 

parametrelerle zamanın bir fonksiyonuna dönüşür. Özet olarak, algoritma izin verilen 

DIŞ KUVVET VE SÜRTÜNME İLE YOL PARAMETRESİ OPTİMİZASYONU 

KULLANARAK ROBOTİK İŞLEMCİLER İÇİN MİNİMUM-ZAMANLI YOL 

PLANLAMASI 
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bir aralıkta düzgün bir giriş voltajına sahip olabilir, buradan sonrada tüm hareket 

parametreleri tahmin edilebilir kalır. Buna ek olarak, simülasyon çalışması sunulan 

yaklaşımın bir Kartezyen referans yolunu takip eden işlemci için yörünge planlaması 

bakımından yararlı olduğunu göstermektedir. Bu bakış açısı yenidir ve bazıları mevcut 

literatürde daha öncen de bildirilmiş olan ilginç sonuçlar vermektedir. 

Anahtar Kelimeler: Minimum zaman yol planlama, robot işlemciler, yörünge 

planlama, yol parametresi, dinamik kısıtlamalar, kısıtlı optimizasyon. 
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                                                       CHAPTER 1 

                                          GENERAL INTRODUCTION  

 

 

 

1.1 Research Background 

In this chapter, we aim to define the most important terminologies pertaining to this 

thesis. Further details will be presented in the later chapters. Robotics is an 

interdisciplinary branch of engineering science that involves design, construction, and 

operation.  

Nowadays, robotics has been acknowledged as an important field of industrial 

applications, and besides, it has important educational and medical applications. This 

field includes mechanical engineering, electrical engineering, electronics, computer 

science, artificial intelligence, and mechatronics. The multi-robot path planning 

problem can be avoided if the robots move from their starting-point to their end-point 

avoiding collisions with each other. The immense technological advancements during 

the past few decades have created the need for continuous development of new 

technological devices to cater the ever-increasing needs of human beings. This 

technological development was primarily observed in computer and electronic 

sciences: however; the technological development is no more confined to separate 

domains. In this scenario, the impact of technology is reflected in a vast array of fields, 

ranging from medical to educational to environmental fields of study. One such ever 

progressing field is robotics, which has the potential to facilitate the operations of a 

wide variety of domains. In the nutshell, a robotic manipulator is defined as a 

mechanical device, which is equipped with actuators and sensors, and they are 

controlled by a computing system in a workspace [1].  

Robotic system manipulators have been extensively used in a wide array of robotics 

research because they perform human tasks more efficiently. Besides efficiency, 

robotic manipulators facilitate by reducing time and effort required to get a task done. 

This is the primary reason that robotic manipulators have utility in many significant 

applications such as medical sciences, space exploration, navigation and mining. This 

utility of robotic manipulators has created the need to optimize their performance in 

terms of speed. Hence, robotic path planning with optimum-time has become a 
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significant research area during the past few decades. The robotic manipulator 

workspaces are inhabited with certain obstacles because the workspaces are actually 

governed by certain laws of nature. When one or more robots are functioning in a 

particular workspace, their motions need to be controlled not only to avoid collisions 

but also for optimizing-time.  

As mentioned earlier, robotic path planning is like devising an optimum strategy for 

the robots to initiate a move from their original-position to their final-position by 

avoiding obstacles in the way. The ultimate goal of path algorithm is to design a fully 

automated process for generating a series of movements to accomplish a task [2, 3].  It 

is a challenging task for robots to autonomously plan their paths considering the risks 

and constraints like collision, velocity limits, jerk and torque. This makes robotic path 

planning a challenging and interesting research area. 

Another interrelated concept, which has been addressed in many important studies, is 

trajectory tracking. Although the terms path planning and trajectory tracking 

algorithms are sometimes interchangeably used, trajectory tracking is a slightly 

different concept. It is a sub-domain of path planning; so, only the constraints of 

velocity and acceleration generate a set of localized trajectories of a specified path [4].  

In other words, trajectory generation means calculating a feasible way to let the robot 

move from an initial-point to the end-point. Generating a smooth and collision-free 

trajectory is imperative for efficient path planning. This complex challenge has been 

taken up by researchers during the past few decades, and they came up with valuable 

outcomes. The term "Robot" was first coined in 1921, when a Karel Capek, a Czech 

playwright in his play "Rossum's Universal Robots" mentioned robots as human-like 

machines. This play proved to be a pioneer and attracted widespread interest primarily 

in the genre of fiction, because the fictional artificial beings had a stark resemblance 

with human beings. The earliest works in robotics began during the World War II, 

when motorized manipulators were developed to control radioactive materials. 

Initially, these robotic manipulators required instructions for all their movements, but 

the first programmable robots were developed by George Devol in 1952, which were 

termed as programmed articulated transfer devices, and patented in 1966 [5]. This 

programmed device made way for robots. In 1962, Ernst developed a robot with force 

sensing mechanism, which was the first robot of its kind because it was capable of 
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functioning in an unstructured setting [6]. Then, the frequency of studies on robotics 

drastically increased.  

Another significant progress was the development of the first robotic language called 

WAVE in 1977, which enabled robots to accept high-level instructions. This led to the 

introduction of first SCARA (Selective Compliant Articulated Robot for Assembly), 

which was patented in Japan in 1979, and then in the USA. In the initial research 

endeavors in the field of robotics, a robot was thought of as simply a constituting 

mechanical arm controlled by motor engines. Hence, path planning and motion 

planning problems were based on static surroundings without the underlying 

constraints [7]. During the early 1980s, there were many significant efforts to enhance 

the performance of industrial robotic manipulators.  

Many of these studies focused on the understanding sensors as well as trajectory 

planning. For example, the first endeavor to understand the robotic path planning 

problem was to devise an obstacle avoidance strategy for a robot rover. On the other 

hand, there were several research endeavors in the early 1980s for understanding the 

dynamics of a multi-joint robot, using computation of torque. The robotic path 

planning problem attracted significant attention in that era when the researchers 

focused on finding a collision-free path for robotic manipulators [8]. Similarly, a 

significant obstacle avoidance strategy for a robotic path was devised in 1985. In the 

same year, the earliest robotic path planning strategy with time-optimization was 

conducted [9]. This study paved way for several significant advancements pertaining 

to time-optimized robotic path planning in the years to come. As the research in 

robotics progressed, its potential in different domains was identified. The first medical 

application of robotics was developed in 1987, and then in 1988, which comprised a 

robotic arm capable to perform a stereotactic brain surgery [10]. Since then, robotic 

applications have significant impact in the field of medicine to the extent that certain 

categories of robots have now been dedicated to the field of medicine. This includes 

micro-robots and bio-robots. Similarly, in the fields of research other than medicine, 

robotic applications are known to have a valuable impact. One such field is agriculture, 

in which, the utility of robotics was realized as early as 1985. Since then, robotics has 

largely automated agricultural operations and enhanced the efficiency of agricultural 

processes; however; other domains, which have seen significant advancements due to 
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robotic implementation, are construction [11], maintenance and repair, [12] and 

navigation [13] to name a few.                                                                                           

                                                                                           

1.2 Basics of Path Planning  

Path planning is a fundamental issue in robotics. This problem has been highlighted in 

many research works, for example, industrial engineering applications. Among all the 

types of path planning, optimization of the generated path may focus on different 

parameters such as time needed to move through a path, energy consumption during 

the process, geometric complexity of the path, and obstacle avoidance. The main idea 

behind this thesis is minimizing-time, which is needed for moving a robot from a 

starting-point to the end-point.  

Path planning problem is, in general, important active research topic in robotics. There 

are many approaches to solve this problem. A robotic path is defined as the position 

of specified-points, on which, the robotic manipulator traverses, so that it can move 

from one-location to the other. For covering required distance in a workspace, different 

tasks must be decided. The best path planning solution must be found to control the 

robot's motion, for which, path planning is used. The algorithm of research is the path 

planning of the whole way from an initial to a final-point including stopping on a 

defined-location. In this context, finding a feasible path for moving a robot arm from 

a current-location to the destination is called path planning task. Although various 

studies have attempted to provide a feasible solution to the path planning for many 

years, it is still an open research problem. The main reason behind this is: It entails 

several complexities, particularly because of the existence of certain obstacles in the 

environment, which serve as obstructions in the path. The key issue in path planning 

involves devising a strategy to make a robot move from its current-position to the 

desired-position without collision with the obstacles.  

Moreover, planning a robotic path can be more advanced if there are additional 

requirements as to how a robot traverses the path [14]. Considering these implications 

of robotic path planning, a more formal and parameterized definition of path planning 

problem for robotic manipulators was proposed in 1991 [15] in terms of formal 

representation called as configuration-space. According to this definition, the first part 

is to specify some "world" or space denoted by 𝑊. 𝑊 can be defined in two ways, that 
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is, two-dimensional space, in which, 𝑊 = 𝑅2, and three-dimensional world/space, 

𝑊 = 𝑅3.  

The definition is as follows: 

Given: 𝐴, 𝐶𝑓𝑟𝑒𝑒, 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙; we'll find a path 𝜏(𝑠) which is valid, feasible, and 

provides a solution. The terms used in the definition are explained below: 

• 𝐴: A single robotic manipulator is denoted by 𝐴. 

• 𝑞: This is the position of the robotic manipulator, which consists of its linear 

dimensions as well as the geometric orientation or angles of the robotic joints. 

These angles or degrees-of-freedom (DOF) are constrained as well as linked. 

All the DOFs can be represented as vectors called as configuration. 

• 𝐶: This is a group of entire 𝑞 vectors within a certain range of values, which 

are termed as configuration-space, and denoted by 𝐶. 

• 𝐶𝑓𝑟𝑒𝑒: At each position 𝑞, a robot 𝐴 may or may not come across an obstacle. 

The configuration, in which, 𝐴 does not come in contact with any obstacle, is 

denoted by 𝐶𝑓𝑟𝑒𝑒. 

• 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙: The starting position of the robotic path is represented by 𝑞𝑖𝑛𝑖𝑡, 

whereas the goal-position is denoted by 𝑞𝑔𝑜𝑎𝑙. 

• 𝜏(𝑠): The path that the robot 𝐴 traverses in a configuration-space 𝐶 is denoted 

by 𝜏(𝑠). The path 𝜏(𝑠) is a continuous function mapping, where 𝐶 ∊ [0, 1] 

mapped onto the configuration-space 𝐶.  

• Validation: If the condition ∀𝑠. 𝑠 ∊ [0, 1] ⇒ 𝜏(𝑠) ∊ 𝐶𝑓𝑟𝑒𝑒  is met, i.e. the path 

is not obstructed by any obstacle, such a path 𝜏(𝑠) is a valid path.  

• Solution: If 𝜏(0) = 𝑞𝑔𝑜𝑎𝑙, it means that the path 𝜏(𝑠) has reached the goal- 

position 𝑞𝑔𝑜𝑎𝑙, so the path will be the solution.  

• Feasible/Unfeasible: A valid path might not be a feasible path, despite 

successfully avoiding the obstacles, if it is not executable by the robot due to 

its constraints. This means when the path is beyond a robot's capabilities, it is 

not feasible, while if it is within its capabilities, it is termed as a feasible path. 

As explained above, path planning is formally implemented in a space representation 

called as configuration-space, which is represented by 𝐶. A certain robotic 

manipulator, having 𝑘 degrees-of-freedom (DOF), implies that each robotic 
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configuration can be denoted through the configuration-space 𝐶 in terms of a set of 

real values {𝑞1, . . . , 𝑞𝑘}. The 𝑘 values refer to the points in the configuration-space 𝐶. 

When the problem of finding a path from its first-point to the final-position evading 

the obstacles is visualized in the physical space, it seems a really complex one; 

however, it becomes easier when the configuration-space is considered because 

everything in a configuration-space is defined and formalized. Considering a 

configuration-space 𝐶, if the obstacle of the path 𝑂 is defined as a subspace of 𝐶, it 

represents a position where the robotic manipulator collides with something. That 

collision-free space can be calculated as 𝐶𝑓𝑟𝑒𝑒 = 𝐶-𝑂. Hence, 𝐶𝑓𝑟𝑒𝑒  is an obstacle-free 

path, on which, a robotic manipulator can freely move [14].  
 

1.3 Trajectory Planning Algorithm 

The trajectory planning for a dynamic system is a basic issue in industrial robotics 

research because it focuses on increasing productivity. Trajectory planning algorithm 

is based on the movement of a robot arm from one-position to another in a controlled 

manner. The position of a robot can be determined by knowing to what extent variables 

can be moved to achieve the desired-position or target. A path is defined as a sequence 

of robot motion without consideration of time. 

In trajectory planning, path movement must be attained with specific timings keeping 

in view velocities and accelerations. In the scientific robotics, the problem of path 

planning entails optimization of certain parameters such as time, distance, and force 

etc., whereby, a path has to meet that optimization criterion. This subset of path 

planning, which involves optimization of certain parameters, is termed as trajectory 

planning or tracking [14]. 

Path planning algorithm and trajectory tracking problem are sometimes 

interchangeably used, which is wrong. A path simply defines the start-to-end-points 

whereas the trajectory defines the points as well as time, at which, the final-position is 

attained. A trajectory can be thought of as a path that has time constraints attached to 

it. Trajectory tracking algorithm formalizes motion planning keeping in consideration 

the temporal and mechanical limitations of a robotic manipulator [16]. Trajectory 

tracking is formally defined as the real-time transition of the robotic manipulator from 

the initial-point to the next within the robot's kinematic limits while avoiding obstacles 

[17]; therefore, a trajectory can be single-dimensional. On the other hand, if a 
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trajectory is multi-dimensional, it means that the robotic manipulator has multiple 

degrees-of-freedom, and the same is the case with most of the robotic manipulators. A 

single-dimensional trajectory is represented by the scalar function 𝑞 = 𝑞(𝑡) whereas; 

a multi-dimensional trajectory is denoted in terms of a vector function of time: 𝑃 =

𝑃(𝑡). There are several criteria, according to which, a trajectory might be generated. 

Most significant of these criteria include the time-optimization criterion, energy 

optimization criterion, and the minimum jerk criterion [18]. 

Moreover, there are several kinematic and dynamic constraints commonly accounted 

for during the trajectory planning process. These constraints can be of two types: the 

ones, which are implicit to the robotic manipulator, and the ones, which are also 

implicit to the constraints of the current task. The common constraints are acceleration, 

friction, torque/force, jerk and joint limits, which are primarily the underlying 

characteristics of a robot [19]. These constraints can be incorporated into the trajectory 

generation as follows: 
 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐹(�̇�) + 𝐺(𝑞) = 𝜏                                                                     (1.1) 
 

Here, 𝑞 denotes the position, 𝜏 represents the torque, the mass is expressed in terms of 

𝑀(𝑞), the centrifugal force vector is denoted by 𝐶(𝑞, �̇�)�̇�, the friction vector is 

represented by 𝐹(�̇�), 𝐺(𝑞) that denote the gravity-torque vector, whereas, the 

derivatives of the position vector are denoted in terms of �̇� and �̈�, respectively. 
 

1.4 Way Point Tracking Limitations 

A robotic path can be generated based on a set of way points. A way point represents 

a certain position in a trajectory at a particular time; hence, it denotes the most atomic 

level of a trajectory. Within a certain trajectory, a way point can also contain 

information about the other connected way points such as the position and velocity of 

the previous and subsequent way points. Furthermore, a trajectory may consist of a 

vector of 𝑛 way points, on which, a robotic manipulator traverses so as to reach the 

final-position.  

In addition, the way points in a 2-D configuration-space are represented as (𝑥𝑘,𝑦𝑘), 

where 𝑘 ∊ {1, . . . , 𝑛}. Each way point can also include the robotic constraints such as 

time, velocity and acceleration. Simply put, way points represent a framework that 

specifies whether a position is within a set of desired-positions or not. Way points of 
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a path can be generated using straight-lines and circular-arcs. Other than that, if a 

smoother path is desired, different interpolation techniques are applied; however, 

interpolation may make the process more complex. It is desirable in most path 

planning problems to maintain the simplicity of the straight-line path while adding 

smoothness and flexibility to the interpolation techniques [20]. A feasible solution is 

needed to maintain simplicity while adding smoothness that derives a spline curve to 

generate lower order polynomials, which are joined with each other through control 

points. If a high number of way points are required, a higher order spline has to be 

chosen.  

Bobrow (1988) undertook further advancements in this domain by devising a 

mechanism to discover a collision-free path to acquire the minimum-time path 

planning solution to a robotic manipulator. In this study, he proposed the 

formularization of B-spline polynomials as well as the equations of motion in a 

nonlinear form in order to produce near optimal trajectories for a robot in the 

Cartesian-space [9]. 
 

1.5 Joint Control System 

In robotic manipulators, the robotic joints play a significant role for trajectory tracking 

problems. The movement, the position and the number of robotic joints determine their 

degree-of-freedom (DOF). Robotic manipulators are usually programmed to 

accomplish a particular task in a task space. In spite of this, the tasks of the robotic 

manipulator might be mapped onto the joint space, particularly in case of a robotic 

manipulator, which is controlled within a joint space. This mapping typically takes 

places with the help of inverse kinematic techniques. The robotic manipulator may be 

further mapped onto a torque space based on the information of the joint space. 

The trajectory tracking algorithm is implemented by the robotic manipulator in a joint 

space. The robotic manipulators in the joint space can be represented through two 

control design categories, which include classic joint control and model-based control. 

The classic joint-control caters to the generic implications of trajectory tracking while 

the model-based control implies the robotic control in the joint space specific to a 

certain trajectory tracking model [21]. 
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1.6 Problem Description and Method 

In the last few decades, researchers have been working on robotic path planning 

problems [8]; however, optimization of time and velocity for the path tracking of 

robotic manipulators is something that is still a challenge in the domain of robotic 

studies, and it has gained significant attention during the last few years. The approach 

to time-optimized robotic path planning is very significant particularly for industrial 

usage.  

Several techniques have been presented in the previous studies in this context; 

however, finding a minimum-time path planning solution still attracts significant 

attention of the researchers because of its complexities related to nonlinearity, force 

and torque limitations, and coupling dynamics, to name a few. Hence, in this research, 

a strategy is required that takes into account the constraints of torque, force and friction 

while tracking a time-optimal and velocity-optimal trajectory for robotic manipulators 

in the Cartesian-space. In the nutshell, a mechanism for path planning needs to be 

devised for robotic manipulators to traverse a pre-defined trajectory within a specified 

amount of time and velocity. 
 

1.7 Problem Statement 

In the recent years, robotic technology became one of the high importance scientific 

technologies; so, it is used in many research areas and experts believe that it is 

important to the future of mankind.  

In this research, the target is how to resolve the minimum-time path planning issue for 

a robot to move end-effector from one-position to another. The path planning 

algorithm operation needs to obtain the path parameter optimization algorithm with 

external force and the dynamic models of the robot system, which derive both forward 

and inverse kinematics equations; so, it is an important step in robot modelling. The 

analytical solution to the robot manipulator has been focused in this thesis to obtain a 

path using forward and inverse kinematic methods. Using these methods, 

manipulator's joint angles are determined from the required target given in the 

Cartesian-space and finding the trajectory planning solution for the path using the path 

as a parametric and minimum-time method for a robot manipulator. 
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1.8 Objectives Methodologies of the Thesis 

The principle research focuses to find the path planning problem for a robot arm. To 

achieve the aim of the project, its major objectives are formulated in the following 

way:  

• The aim of the thesis derivation of kinematic model is finding both direct and 

inverse kinematics as a necessary step in robot modelling. In particular, a 

detailed presentation of the Lagrange formalism, which has been used to 

determine the model of a manipulator. All the motion approaches considered 

in this work will be validated through the simulation results obtained in the 

case study of the robot manipulator by simulation, which was carried out with 

MATLAB program using a mathematical model of a SCARA robot. 
  

• This method helps solving the path planning issue with the help of new 

approaches to industrial robotic systems taking into consideration their 

limitations. The proposed algorithm develops approaches to path planning 

through mathematical models for the robot manipulator systems, its joints, 

driving motors, and their simulations. Moreover, the path planning is based on 

modelling and analysis of a robot, which is the goal of this study. Many cases 

have been tested in this research using a manipulator system with minimum-

time path planning method to motion planning of a robot arm from an initial-

point to the end-point. We developed and tested a mathematical model to 

evaluate the appropriate solutions to robot path from a starting-point to the 

target-point. 
 

• In the current work, we made a strategy for the minimum-time, and given initial 

and end-points. Moreover, this study investigates a minimum-time path 

planning mechanism of parametric trajectory of robotic manipulators under the 

external force constraint. The research is conducted to develop a robot path 

planning algorithm to move robot from a defined point-towards the target-point 

by considering minimization of travelling time for industrial robots. One of the 

goals of the current project is to minimize the cost function that is subject to 

constraints such as angular accelerations, angular velocities, angular jerks, 

input torques, input voltage, torques of actuators and final-time 
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limitations/constraints; therefore, the key purpose of this investigation is to 

optimize the time taken for a manipulator to traverse a pre-defined path.  
 

 
 

 

1.8.1 Obtaining the Dynamic Model 

By using mathematical modelling equations, which are based on the concepts of 

generalized coordinates, energy and generalized force are obtained. 

1.8.2 Designing the Model 

MATLAB is used to simulate the robot manipulator as a case study in this research. 

1.8.3 Simulation and Comparison of Results 

The results will be obtained through the simulation program. 
 

1.9 Thesis Overview 

This thesis is laid out as follows: By now the reader must have realized that Chapter 1 

introduces the issues pertaining to robotics path planning problems algorithm, 

definitions, trajectory tracking, planning algorithms, and the way point tracking 

technique. Chapter 2 reviews the literature survey of the robotic kinematics, general 

path planning problems, robot control system, minimum-time trajectory planning 

method, trajectory planning and tracking, and actuator of dynamic constraints. Chapter 

3 describes mathematical modelling and kinematic analysis of the robot arm. The 

mathematical model consists of expressions, which discuss the kinematic analysis: the 

Denavit–Hartenberg (DH) parameters, forward and inverse kinematics, and the 

modelling of the robot arm using the Newton–Euler method and the derived Lagrange 

method. The model constitutes kinematics and inverse dynamic equations. Chapter 4 

focuses on robot path planning technique. This research presents tests of the proposed 

minimum-time path planning algorithms using path parameter optimization algorithm 

with the help of external force and frictions for developing the permanent magnet DC 

motor system, which consists of an armature circuit driving a mechanical load. Chapter 

5 presents the simulation study and its results. Finally, Chapter 6 consists of some 

concluding remarks, recommendations and perspectives, which may be useful for 

future studies. 
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 CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

In the field of robotics, there is a need for tracking an already known path for robot 

manipulators in the Cartesian-space with maximum velocity or minimum-time 

because it has economic benefits. Minimum-time path planning problem for robots 

have been widely studied in the past especially for industrial applications.  

Many techniques have been proposed in the past to deal with this problem; however, 

due to factors such as non-linearity, coupling dynamics, complex systems, and torque 

limitation of an actuator, the task of finding a minimum-time path planning method 

for a manipulator has been quite complex; therefore, along with the advancements in 

the field of robotics as early as 1950s, many significant studies after that focused on 

the problem of path planning.  

With the passage of time, more research has been focused on path planning approach 

during the last 30 years. This section seeks to develop a strong foundation, on which, 

the central theme of this research is based. It illustrates the significance of robotic 

research in general as well as throws light on the specific techniques and approaches 

applied to the minimum-time path planning method. In this context, a survey of the 

valuable studies related to robotic path planning has been carried out. The excerpts 

mentioned in this review have been collected from different research resources. It is 

mainly concerned with robotic path planning, its several approaches, and dynamics of 

constraint. 

The review covers five main aspects of robotic path planning mechanism: Path 

planning problem with external force, trajectory planning and tracking algorithm, 

minimum-time path planning method, actuator of dynamic constraints approach and 

the literature of these aspects, which has been reviewed below. 

 

 

 



5

9 

 
 

13 

 

2.2 Path Planning Problem 

Path planning issue in robotic manipulators has been addressed since decades, starting 

from the earliest path planning study methods in this domain [22]. The methods 

suggested in the earlier studies proved to be detrimental to the advancements in the 

field of robotics particularly robotic path planning. Among the initial studies, path 

planning research attracted the most attention. It was called as generation of collision-

free paths [23]; therefore, in the collision-free path generation, two main approaches 

were presented including global-approach and local-approach. The global-approach 

requires the development of an accurate depiction of connectivity to make a series of 

collision-free arrangement for a robotic manipulator in the form of connectivity graph.  

On the other hand, the local-approach involves searching from a graph, which is 

already in place in the robotic manipulator's configuration-space. In another interesting 

study on path planning problem domain involved computation of heuristics to figure 

out the information about the geometrical structure of the robotic configuration-space. 

It was aimed at enabling the robotic manipulator to construct the grid by itself. One of 

the popular heuristic techniques for this scenario involves the searching of the path, 

which is guided towards the flow of cancelled gradient vector field, and it is produced 

by an artificial potential field [24]. 

Researchers have analyzed that although the global-approach promises to be efficient, 

it is computationally expensive. This is due to the fact that the global-approach 

requires the pre-calculation step, which is configuration of a connectivity graph before 

the path planning actually begins. This pre-computation makes the global-approach 

exponentially complex and expensive. Conversely, the local-approach excludes this 

pre-computation step because it only requires research in an already defined search 

space. Hence, the local-approach proves to be faster and less complex than the global- 

approach; however, it is unable to consider the additional constraints that might be 

present in the search space making it more simplistic than required. To address this 

issue, the researchers in the field of robotics have proposed powerful heuristic methods 

for guiding this path search. These studies paved way for further advancements in the 

coming years in the field of robotics. Researchers analyzed the application of B-spline 

polynomials for generating near-optimal trajectories in terms of minimization of the 

spline curve [9, 25], and [26]. In addition, other researchers have studied the usage of 
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spline curve, which was devised to connect straight-lines through circular-arcs by 

Fourier series and cubic Bezier splines. Another interesting approach proposed as a 

solution to the robotic path planning problem formulizes a Genetic Algorithm (GA) of 

a continuous nature in order to develop a path planning in a Cartesian-space. 
 

2.3 Trajectory Planning and Tracking  

The path planning algorithm for the robotic manipulators, particularly in case of 

autonomous systems, consists of two primary phases termed as the trajectory planning 

and the trajectory tracking algorithm. Several strategies of robotic trajectory planning 

and tracking have been proposed in the literature.  

Trajectory planning and tracking, in addition to obstacle avoidance, add dimensions to 

the path planning problem such as time-optimization, velocity-optimization, 

computational efficiency and the overall feasibility of the path planning mechanism. 

Significant studies, which added value to the field of robotic trajectory planning 

include a mechanism for letting the robot manipulator learn from the path it previously 

traversed [27]. This study specifies particular way points, using which, the robotic 

manipulator can get assistance to track a path. 

In a related study, a mechanism was employed to identify a series of way points in 

order to plan the path of robotic manipulators. In this approach, the velocities of the 

previous path are approximated to generate a trajectory. Moreover, a number of 

continuous trajectories are taken into account from the start to end where the specified 

trajectories are blended together. The mentioned procedure is termed as point-to-point 

trajectory motion by several significant researchers. The researchers also examined the 

point-to-point approach to trajectory planning while the trajectories were generated for 

the point-to-point path in a joint space.  

Several recent researchers have incorporated the type of path to be followed by a 

robotic manipulator in the path planning process; however, these types of path 

planning include straight-line path, cubic-spline and circular-path [28]. The 

researchers also considered the path types within the path planning process. The point-

to-point planning incorporates certain constraints such as position, velocity, 

acceleration and jerk in the form of polynomial coefficients besides recognizing the 

path type [29]. 
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Many past studies have emphasized the use of iterative and geometric methods as well 

as an optimized switching mechanism for trajectory planning in conformity with the 

Pontryagin's Maximum Principle (PMP). Furthermore, other relevant studies have 

employed the B-spline cubical mechanism in case of trajectory planning [30].  

Another significant study uses cubic-splines for global trajectory planning. This study 

generates a trajectory for a robotic manipulator in a joint space incorporating the jerk 

criterion, which minimized the jerk. Although the study does not take into 

consideration the manipulator's dynamics, the minimum jerk approach seems very 

effective for the path. The approach is applied to an arbitrary six joint robotic 

manipulator. This trajectory tracking mechanism does not only promise to improve the 

performance, but also vows to increase the robotic manipulator's life span [31]. 

Trajectory tracking algorithm has attracted significant attention of researchers, 

particularly for formulizing a trajectory tracking control mechanism in case of the 

flexible joint robotic manipulators. A few of these studies have presented an approach 

to trajectory tracking control without taking into account the actuator dynamics [31].  
 

2.4 Path Planning with Actuator Dynamics 

Most of the recent researchers have found it necessary to include actuator dynamics 

and constraints as a part of trajectory tracking control. For example, a trajectory 

tracking mechanism was proposed considering geometrical constraints, impulsive 

force constraints, torque constraints, maximum acceleration and velocity constraints. 

Another interesting study in this regard [32] compares different frameworks of 

trajectory tracking controllers for unmanned vehicles, which consider nonlinearity of 

the dynamics, uncertainties, noise, disturbances and several other constraints. The 

actuating machines usually used for robotic manipulators are DC motors. Hence, the 

actuator dynamics mostly consist of the force, energy and friction, which are required 

for the DC motors attached to the manipulators.  
 

2.5 Minimum-Time Trajectory Planning Method 

The most notable earliest studies in the domain of minimum-time problem along a path 

were conducted by several notable researchers.  
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In another study of the same era, the authors presented an approach to compute paths 

in cases of closed-kinematic chain mechanisms. The earliest in this domain also 

included solutions to the problem of minimum-time trajectory planning in the joint 

space along a specified geometric path, considering the robot dynamics and 

constraints, which are subject to force and torque [33]. This was the first attempt of its 

kind to address the minimum-time problem solving constraints.  

Bobrow took the research further and devised a technique to find a collision-free path 

to obtain a minimum-time motion planning [9]. He used non-linear equations of 

motion to produce optimal trajectories in the Cartesian-space. His use of B-spline 

polynomials produced optimal trajectories, which were further investigated by 

researchers [26]. Furthermore, minimization of the spline curve path was also studied 

in [25, 26, 34]. More researches who contributed to further advancements in the 

research added techniques for making the robot manipulator learn from the previous 

path devised [27] while a number of waypoints are determined with the help of a robot 

when it moves on the path. This procedure of specifying a set of way points for path 

planning is further elaborated by the researchers [35]. They estimated previous path 

velocities for trajectory generation and considered several continuous trajectories 

between points on a path. They were blended, which is also called as point-to-point 

motion. The method for generating a smooth and time-optimal trajectory has been 

presented, and the authors used the third derivative of the path parameter with respect 

to time as an input, which it limits the torque rate in order to achieve the smoothness 

of the path.  

The point-to-point motion was investigated by the researchers [36]. They generated 

trajectories in a joint space for the point-to-point motion. In this study, the authors also 

considered the constraints of the actuators' velocity, acceleration and jerk limits while 

finding the minimum-time for the path planning. In some studies, the type of path leads 

through the given way points, such as a straight-line path, cubic-spline or a circular-

path, which are included in the path planning. 

In addition to taking the path type into consideration, the point-to-point motion 

planning also includes the polynomial coefficients of the constraints such as the 

position, velocity, acceleration and jerk constraints [37]. Moreover, a recent study [38] 

focused on user-defined trajectories as well as the development of commercial robotic 
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software. Many previous studies have also focused on iterative and geometric methods 

as well as optimal switching structures in accordance with Pontryagin's Maximum 

Principle. Some researchers have applied B-spline cubical methods for trajectory 

planning [30, 42]. The optimization of the minimum-time path problem has also been 

analyzed using the Sequential Quadratic Programming (SQP) method. For 

optimization, the above-mentioned method involves the determination of minimum 

transmission-time with electromagnetic constraints such as kinematics. Building up on 

that, researchers [27] used a similar dynamic programming algorithm in order to solve 

the minimum-time path planning problem. The dynamic programming approach has 

also been applied in a previous research [3]. After the early advancements in this 

domain, ample amount of research has been diverted towards the constrained motion 

of robots. For example, researchers [40, 48] proposed a method to solve the minimum-

time problem considering the constraints of a jerk. Another study presented an 

algorithm for a minimum-time calculation, which was subjected to kinematic 

constraints [39, 41].  

Another proposed method to deal with the path planning problem involves the 

connection of straight-lines with circular arcs, perturbations of a straight-line with 

Fourier series and cubic Bezier splines. Furthermore, solutions to the path planning 

with end-effector constraints have also been studied. In addition, another study on path 

with torque constraints includes either the bang-bang trajectory or the 

bang-singular-bang trajectory. Other interesting algorithms for solving the path 

planning include a continuous Genetic Algorithm for path generation in a Cartesian-

space. More recently, the robotic methodologies of a point-to-point trajectory have 

also been applied in some applications [43]. 

 

2.6 Path Planning with External Force and Friction 

There are many other approaches to using trajectory, which include agricultural field 

machines that utilize trajectory generation for animal movement. Most of the 

significant studies on robotic manipulators include those, which estimate the minimum 

path and generate trajectories while handling any kinematic constraints on the velocity 

and acceleration [44]. This study proposes a path planning mechanism while 

trajectories are generated in the operational space, which is subject to certain dynamic 

constraints. The studies, which have been mentioned here, do not usually consider the 
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factors such as external force and friction while calculating the minimum-time for the 

path planning of robot system manipulators. 

There are some significant researches, which focus on external forces as well as 

friction as factors influencing the calculation of the minimum path for a robotic 

manipulator, which is controlled by DC motors [45] keeping in view the kinematic 

constraints of velocity and acceleration. Among the several aspects of path planning, 

the focus was on time-optimization of path planning. Traversing a given path in a 

limited amount of time has been a challenge for robotic manipulators and their 

developers. Path planning problem with time-optimization was first mentioned in a 

study [9], which paved way for several more studies in this domain including the 

minimum-time path planning problem along a specified path by some other 

researchers [33]. They took this research further and devised a time-optimized method 

of robotic path planning in a joint space. This study proposes a dynamic time-scaling 

algorithm as well as the graph search technique.  

Another important study among the earlier studies formalized an algorithm for 

minimum-time trajectory tracking with different actuator limits. The study proved to 

be extremely useful as it presented a faster approach to trajectory tracking keeping in 

view the robotic control mechanism constraints and search approaches to this task. The 

study was among the pioneers, which proposed a parameterized path in the 

configuration-space as an effective approach to finding a minimum-time trajectory. 

The research considered the actuator's torque constraints and searched the potential 

paths to finally propose a time-optimal path. The smoothing and parameterization of 

the path were done using splines [46]. 

Another valuable study of this era proposed a method of calculating a robotic path in 

case of closed-kinematic chain mechanisms [47]. Similarly, another related study 

proposed an efficient technique for time-optimized robotic manipulator's path 

planning problem within a specific geometric path while taking into account the 

significant constraints of force [33]. Moreover, the problem of time-optimized path 

planning was addressed in another study [48]. In a significant study, a smooth and 

minimum-time trajectory generation mechanism has been proposed [49], which 

formalized a method for smoothing out the path by employing the third derivative of 
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the parameter. The derivative has been derived considering the torque rate and time as 

inputs.  

The time-optimization of path planning and trajectory add productivity to the path 

planning mechanism; however, it was computationally expensive. Consequently, 

several studies have proposed a computationally cheaper methodology for a minimum-

time path. Then, some researchers proposed a minimum-time path problem 

mechanism for an industrial robotic path, specifically for the robotic task of picking 

fruits [50]. In this study, a minimum-time for industrial robots was proposed while 

avoiding obstacles, which is computationally way less expensive as compared to what 

was previously proposed because the dynamic manipulators had disjointed or 

decoupled links without velocity constraints. In terms of computationally cheap time-

optimal path planning, a time-optimal approach was presented in another study for a 

superior performance trajectory generation in case of omni-directional unmanned 

vehicles. The study uses a bang-bang control approach, which assures a balanced 

trade-off between time-optimality and computational efficiency because it comprises 

of a minimum number of computations by limiting the range of possible solutions [51].  

Several valuable studies have devised a minimum-time path planning while 

considering the manipulator's dynamics. They proposed a less computationally 

expensive methodology for time-optimal motion planning. The study transforms the 

time-optimal motion problem into a convex optimization. For this, a disjointed 

approach to path planning has been presented as opposed to a direct approach [33]. 

This disjointed approach first solves the path planning problem, which must take into 

account the task characteristics and constraints as well as obstacle avoidance. The 

second phase of this approach carries out the time-optimal trajectory by taking into 

account the manipulator and actuator limitations [52].  
 

2.7 Robot Dynamic Constraint Algorithm 

Constraints of a robotic manipulator include natural constraints, which exist because 

of its mechanical and geometric specifications. In several significant studies, the 

researchers considered the constraints of the manipulators such as a jerk, acceleration 

and velocity while determining the time-optimum path for robotic manipulators. 

Another approach to path planning was implemented taking into account the 

constraints of the end-effectors [53].  
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In a study, path planning problem was researched keeping in view torque constraints 

and used the bang-bang path planning. Moreover, this significant study discusses 

point-to-point time optimization in path planning, which has been proposed using the 

Sequential Quadratic Programming method [54]. This study also incorporates the 

minimum transmission time mechanism keeping in view electromagnetic constraints 

and kinematics.  

Moreover, researchers proposed a dynamic programming method for time-optimal 

path planning, which also discussed the early advancements in the domain of time-

optimal robotic movements [27]. In this context, researchers proposed an approach to 

discover a minimum-time path planning keeping in view certain constraints, especially 

the jerk constraints in terms of higher order derivatives of the robotic position [3]. A 

relevant research [48] employs a method for determining a minimum-time path 

planning solution taking into account the dynamic and kinematic constraints. In more 

recent significant studies, the mechanisms have been proposed for point-to-point 

trajectory problem in case of various other applications; for example, researchers 

utilized the trajectory planning approach in the domain of agricultural machines and 

trajectory generation for animal movement [55]. The studies, which have been 

mentioned until now, do not usually consider the factors of external force and friction 

while calculating the minimum path for robotic manipulators; however; there are some 

significant researches, which focus on external force as well as friction as factors 

influencing the calculation of the minimum path for a robotic manipulator. For 

example, studies on robotic manipulators, which were controlled by DC motors, 

considered the force and friction generated by the motors, and they were dependent on 

the kinematic constraints of velocity and acceleration [45]. The position and force 

constraints of a robotic manipulator's trajectory in a coordinate system were also 

addressed.  

In a related study, the authors proposed that the force constraints of robotic 

manipulators, when they interact with the environment, should add up to zero, in order 

to assure stability. This method employs a real-world interaction of forces within the 

configuration-space 𝐶. It also addresses the force constraints of robotic manipulators. 

In this study, the authors used a Dynamic Movement Primitive (DMP) to minimize the 

force in the process of interaction of a robot with its environment [56]. The study also 

proposes the approach to obtain the force constraints from kinaesthetic illustrations of 
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the robotic manipulator. The methodology employed in this study gets the robotic 

manipulator to tackle not only the force constraints in the path but the position and 

velocity constraints as well. 
 

 

2.8 Position Control for Robot Manipulators 

The research on the robotic arm control started as a part of space research, which caters 

to the requirements of a space robot manipulator. Some primary aspects of the robotic 

arm control for the applications of space studies were pointed out. After that, the 

robotic arm control was used in nuclear applications primarily to carry out 

decontamination operations, after which, the maintenance of the nuclear power plant 

was done through the robotic arm positioning. This proved to be a significant 

application, which required positioning precision of a robotic manipulator [57].  

Flexible robotic arm manipulators have been proposed since they were first used for 

surgical operations. Later, such robotic arm manipulators were developed for boosting 

the precision in micro-surgery. A similar application was developed for robotic 

positioning precision for the treatment of cancer patients in Massachusetts General 

Hospital. In addition to that, the researchers studied biped walking machines through 

the physical dynamics of the robotic arm manipulator [58]. The aspect of a robotic arm 

manipulator that has been studied extensively is the control.  

Robotic control refers to making a robotic manipulator carry out a task, keeping in 

view how familiar a robot is to the physical space, modelling and controlling factors. 

There are five major types of a robotic arm controls: Vibration control, position 

control, motion control, force control and the joint tracking control. Joint trajectory 

tracking control involves the robotic arms' joint control that is required for the motion 

along a specified trajectory. Moreover, vibration control of a robotic arm manipulator 

is important, as vibration causes a decline in the robot's performance in terms of its 

position [59]. Motion control in the robotic arm manipulator mainly makes sure that 

the robotic path is flexible as well as smooth. The force control in a robotic arm 

manipulator implies that the force, with which a manipulator interacts with the 

environment, can be controlled, and also with the help of the knowledge of the position 

and environment of a robotic manipulator [60]. Flexible robotic arm manipulators have 

been modeled in several significant researchers.  
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Researchers have focused on flexible robotic manipulators as opposed to rigid ones, 

so that they mentioned the benefits of portability, less complexity and less resource 

consumption. For example, the researchers analyzed the flexible robotic arm in case 

of collision-avoidance, which gives rise to other robotic applications, such as drawing 

robots and pattern recognition robots [61]. 

Several other utilities of flexible robotic arm manipulators have been studies by 

different researchers; however, the focus of the problem remained the controlling of 

arm vibrations. This problem has been taken up by some researchers, who mostly 

employed dynamic models and other control techniques as a solution to this problem. 

As is the case with other robotic manipulators, the robotic arm manipulator also 

encounters several constraints. One of the errors of control arises when the torque 

requirement of the motor is not met; hence flexibility is not taken care of. Secondly, 

the challenge is to maintain the precision and accuracy of the position of end-effector. 

To solve these problems, a robotic arm is required to have minimum vibration.  

Robotic arm manipulators have been modeled in different ways in different studies. 

The mathematical models primarily work based on the energy principles. The robotic 

arm's kinetic energy is stored in terms of their inertia, and the potential energy is stored 

as a function of its position and gravitational field. If a robotic arm manipulator is 

flexible, it is able to store its potential energy by means of its links or joints. The joints 

or links may be exposed to twisting, turning or compression. Twisting joints store more 

potential energy whereas compression stores less potential energy because stiffness 

emerges as a consequence of compression. The bending of the joints stores potential 

energy by means of deflection. The linear models are only able to capture the single-

link robotic arm manipulators whereas; they are unable to capture the multi-link 

manipulators [62]. Due to the non-linearity of multi-link robotic models, it becomes 

more complicated to capture the multi-link model. A Lagrangian-based model was 

proposed [63] in order to model multi-link flexible robotic arms. For modelling an 𝑛-

link robotic arm model, the method for Assumed Mode Model (AMM) was analyzed 

applying a special moving coordinate system, which is termed as virtual rigid-link 

coordinate, and it helped solving this problem [64].  

Another significant approach to solve this problem was proposed when the multi-link 

robotic arm manipulator was modeled with a linear dynamic model. This approach 
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involves a random number of flexible robotic links. The flexible links of a robotic arm 

model are treated using the Euler–Bernoulli (EB) beams. The researchers formularized 

the dynamic equations for the 𝑛-link robotic arm manipulators with the help the 

Newton–Euler (NE) method. Typically, flexible robotic manipulators are represented 

with mathematical models to analyze flexible models of robotic arm manipulators with 

the help of Euler–Bernoulli beams [65].  

The dynamics of the flexible manipulator have been represented using partial 

equations. The differential equations are interpolated into finite models mainly using 

three models including Assumed Modes Model, finite element method, and lumped 

parameter. Moreover, the assumed mode approach transforms the 𝑛-dimensional 

system model into a finite dimensional model with a compulsion that the finite mode 

amplitude as well as the positional eigenfunctions must be taken into account. For 

designing the Assumed Mode Model, the eigenfunctions as well as the boundary 

condition of the robotic arm's link should be chosen [66]. 

In this study, the researchers explained that by using the Assumed Mode Model, the 

dynamic robotic model has been illustrated highlighting the vibration modes. Hence, 

the robotic link is denoted by a set of linear models of eigenfunctions. Moreover, it 

has been stipulated that the boundary conditions for the Assumed Mode Model can be 

selected in a number of ways; however, a limited set of Assumed Mode Model 

boundary conditions can prove to be significant for the robotic manipulators for some 

specified applications. This set of boundary conditions need optimization for the 

Assumed Mode Model in a way that is closest to the natural modes. The natural modes 

are determined by a number of factors of the robotic environment, particularly inertia 

and size of payload mass. The study concludes that it is extremely important to choose 

the suitable number of boundary conditions for the Assumed Mode Model to yield 

better results. This choice of the number of boundary conditions must be assessed 

based on the structure of robotic manipulator and the natural modes. The Assumed 

Model primarily decomposes the infinite link into a set of eigenfunctions, which are 

also known as mode shapes or time-specific coordinates. In studies, several ways of 

choosing the boundary condition for the Assumed Mode Models have been specified. 

Mostly, the selection of boundary conditions is based on the closeness to the natural 

modes of the robotic environment [67]. 
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Many researchers have used Assumed Mode Model for designing the flexible link 

robotic manipulators in order to analyze the relationship between the vibration modes 

and the non-linearity of the manipulators. A significant method of boundary condition 

modelling is to use Euler–Bernoulli's beam, which is primarily used for assuring the 

model flexibility as well as its natural mode, which is computed according to the load 

of the manipulator's link. This approach to the Assumed Modes Method ensures that 

the estimated deflection of the link depends on the diagonal vibrations of the elastic 

manipulator's beam, which can be represented as a set of functions of the shape of the 

mode and the time-based displacement.  

In this study, a significant amount of nonlinearity was added to the two-link flexible 

manipulator considering the inertial constraints, using an equation for developing an 

Assumed Modes Model also known as Lagrange's equation. In this study, a control 

mechanism has been applied comprising four actuators. Two of them are the DC 

motors coupled with the structures of the flexible links of the robotic arm manipulator, 

which help obtaining the required end-point motion. 

The researchers have also proposed a mechanism of modelling multiple flexible links 

and joints in a dynamic manner, making use of the Euler–Lagrange model in addition 

to the Assumed Modes Model. In this study, the unitary flexible-links are influenced 

by the disturbances of the robotic arm manipulator's environment, so that the designed 

robotic controller belongs to the lower order [68]. The flexible robotic arm has been 

proposed by using the Assumed Mode Model. A flexible-link model has been used to 

explicitly develop a dynamic equation for carrying out the pre-specified motion but in 

this case, the researchers considered possibility of a robotic arm joint getting locked. 

They also examined the consequences of the stiffness or rigidness in the wrist force 

sensor of the flexible robot arm.  

Furthermore, the Assumed Mode Model and force controlled robotic arm manipulator 

has been investigated. The study proposed a closed-force model in terms of the two-

link (2-DOF) flexible robotic arm manipulator making use of the Assumed Mode 

Model. The study derives the two modes of modelling the two-link flexible robotic 

arm manipulator using Assumed Mode Model with the help of mathematical equations 

for a predefined motion, and formalization of hybrid force law. The study converts the 
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nonlinear closed-loop mathematical equations into the linear ones. The study also 

calculates the eigenvalues of the linear set of mathematical equations [69]. 

Many years later, another valuable study in this considered considered the eigenvalues 

of linear equations considering time variations of the boundary conditions. The 

experimental justification of modelling a flexible 3 meters long robotic arm 

manipulator was found with the help of Assumed Mode Model keeping in view several 

constraints and limitations. It proposed dynamic modelling of flexible robotics by 

using the Assumed Mode Model keeping in view the payload factor [70]. This study 

was mathematically as well as experimentally justified and verified. It was followed 

by a lightweight closed-loop model for highly flexible arm manipulator specifically 

designed for space applications. This approach has been derived from the Newton's–

Euler model, and it was simulated and verified using MATLAB/Simulink as well as 

the MSC/Adams software [70]. 

The two-link flexible robotic arm can be developed by deriving combination of Euler–

Lagrange model and Assumed Mode Model but geometrical, inertial and payload 

constraints must be kept in mind. As an alternative approach, nonlinear autoregressive 

moving average can also be used coupled with the algorithm of extended recursive 

least squares.  

Researchers faced many problems during modelling and controlling a flexible arm 

manipulator. It was found that the stiffening of the robotic arm took place because of 

centrifugal force in more cases as compared to geometrical stiffening. Further 

investigations were carried out applying the Assumed Mode Model with a pin-free 

link, open-loop feedback-control, and open-loop flexible robotic control. Later, the 

Assumed Mode Model was used to understand elastic deformation of the robotic arm. 

It was tested with the help of Euler–Bernoulli beams; so, the possibilities of robotic 

link inertia or the twisting of the flexible robotic arm link were ignored. The equations 

for the motion of the robotic manipulator were formalized using the Lagrange's model.  

It was believed earlier that the Finite Element Method (FEM) characterizes the factor 

of elasticity in case of flexible robotic arm manipulators. It can be explained as: In 

finite element, the elasticity factor is accounted for in rigid bodies while the robotic 

arm link is then overlaid on it. A major benefit of the finite element method is that it 

tackles the nonlinearity with simplicity and less complexity. The finite element method 
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tackles the design and boundary condition uncertainties and disturbances in the robotic 

environment. Although finite element model provides a lot of advantages as compared 

to other models, however, it fails to consider the natural frequency. 

In addition to that, the finite element method might result in complex over-projected 

stiffness in the flexible robotic arm manipulators. The mathematical simulation of the 

finite element method can be exhaustive because it has many wide-range state space 

equations. A flexible robotic arm manipulator employs finite element method; 

however, it considers the links of the flexible robotic arm as a sequence of 𝑛 elements 

which have the same size. In most cases, the finite element method formulizes a 

flexible robotic arm manipulator as a nonlinear dynamic model by a combination of 

Lagrange approach as well as the Euler–Bernoulli beam approach, taking into account 

more than one node. The more the number of nodes is, the more will be the dimensions 

of the stiffness matrix. This clearly means that the increased nodes increase the length 

and complexity of the equations. This implies that for an optimal performance of the 

flexible element method, the number of nodes must be wisely selected [71].  

In the same study, a mechanism has been proposed to dynamically model the complex 

spatial aspects, particularly for the applications of flexible robotic arm manipulators. 

In this study, the analysis has been carried out for employing the finite element method 

in combination with other dynamic analysis methods as well as the coordinate 

reduction mechanisms for nonlinear and complex system analysis. A set of dynamic 

equations was applied, which mathematically represent the multi-link flexible robotic 

arm manipulators. By formalizing an equation for the finite element method, the 

coordinates of the specified nodes were represented as positional constraints [71]. 

In another relevant research, the dynamic and kinematic constraints of the flexible-

link robotic manipulator have been analyzed in case of a generalized three-dimensional 

motion. This study takes into account the mass as well as flexibility of the flexible 

robotic arm manipulator without making it discrete. Furthermore, the model of two-

link flexible robotic arm manipulator was presented, which could move the two-joints 

on a horizontal plane. The study formulized accurate equations for partial 

differentiation to capture the modes of the flexible robotic arm by comparing the 

equations of the boundary conditions with the equations of partial differentiation 

centered on the elbow. This comparison of the boundary condition equations with the 
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equations of partial differentiation was used to produce precise eigenfrequencies. The 

flexible-link robotic arm manipulator's movement was thirty percent because of the 

use of eigenfrequencies. Hence, eigenfrequencies have proved to be a significant 

measure of the configuration of the flexible link robotic arm manipulator. Later, a 

segregation of the elastic deformity and the rigid body motion was carried out using 

the predefined path of the rigid body. 

Further work on geometric stiffness for a flexible robotic arm shows that the first order 

equation of motion was derived to explain the movement of a flexible robotic arm [72]. 

Another researcher suggested a mechanism to incorporate the finite element method 

for deriving a dynamic equation for a planar two-link flexible robotic arm with the 

help of Elementary Beam Theory (EBT). Moreover, the study used the finite element 

method to determine the system force and bending of joints of a flexible robotic arm. 

While examining the forward dynamics, the inertial loads, also called the acceleration 

vector, was kept in view and in the reverse dynamic examination. The dynamic 

equations were used to find out the acceleration of the specified coordinates. The study 

employed the coupling effects, which were caused by the elastic deformation by 

formularizing the equations, and considering the impacts of inertia, deformation and 

nonlinearity of the link's motion. Furthermore, this study incorporates the dynamics of 

the manipulator in the form of the actuator-servo effect. Later, a mechanism was 

employed to determine the dynamic strength as well as the dynamic stiffness of the 

flexible robotic. Lagrange's dynamic differential equations were used for modelling 

flexible robotics by incorporating the integrated model and the robot system dynamics. 

This study estimates the dynamic strength as well as the dynamic stiffness using the 

dynamic deformation model, dynamic stress model and the reliability model. 

Furthermore, the study applies the Monte Carlo technique for acquiring the random 

dynamic parameters for flexible robotics.  

This mechanism for determining dynamic stiffness of a flexible robotic device can be 

verified by using it for a multi-link flexible robotic arm manipulator. This examination 

of dynamic stiffness of a flexible robotic was further investigated. The study used the 

Assumed Mode Model to capture the dynamics of the manipulator.  

A significant study on robotic modelling shows that the minimum energy was 

produced while tracking the trajectory of the joints of a flexible robotic by employing 
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a Genetic Algorithm. In addition to that, this study applies the principle of Extended 

Hamilton as well as the Euler–Bernoulli's beam in order to obtain the numerical model 

of the flexible robotic. Furthermore, this technique was verified through the 

mathematical simulation. This study proposed the incorporation of the specified model 

into the finite element method in order to verify its efficiency in case of a two-link as 

well as multi-link flexible robotic arm manipulators. Like other significant studies, the 

results of this study have also been verified using the mathematical simulation [73].   

In another significant research, a mechanism was proposed to minimize vibrations in 

a flexible robotic arm with two-flexible modes. This can also be accomplished by 

employing the method of command input pre-definition. This method takes into 

account several pre-conditions and constraints, but its results were verified through 

mathematical simulation [74].  

A study formalized a filter for adaptive disturbance rejection by incorporating the input 

shaping control law to minimize the vibration by applying an unmanned spacecraft for 

(2-DOF) flexible robotic arm manipulator. The results were verified through 

mathematical simulations. The third and final type of model for the flexible robotic 

arm manipulator is the lumped parameter method. The lumped parameter method 

develops the robotic manipulator model in terms of a lump of masses as well as mass-

less springs. The lumped parameter method is considered as an easy method among 

the three types of flexible manipulator models; however, its accuracy is compromised 

in some cases. This method consists of two approaches: It is applied in an experimental 

way, and a series of experiments are conducted to find out the parameters [75].  

The researchers also proposed a method for two conjoined flexible robotics for 

tackling a rigid object employing the lumped parameter. A novel method was 

suggested for analyzing the robotic arm manipulator using the lumped model. 

Moreover, the lumped parameter was proposed for estimating the elastic mechanical 

process in order to illustrate the required trajectory for a flexible robot [75].  

Some similar studies were published in 1996. One of them suggested the variables 

should be disjoined from the joint for the elastic variables for illustrating the trajectory 

control of a flexible robot.  In the same year, another study applied this method to 

handle the force of the constrained flexible robotic arm manipulator. Another approach 

was, as mentioned earlier, the lumped parameter method, which helps analyzing the 
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stability of a flexible robotic device. In this algorithm, the authors concluded: When 

multiple links of the manipulator are taken into account, many control issues can be 

curbed as opposed to the non-flexible or rigid manipulators. A number of implicit 

complexities were faced while developing a flexible robotic arm manipulator. One of 

them was the non-minimum phase, which is the consequence of the zeroes of the 

system in the half s-plane. At the same time, there can be several causes behind non-

minimum phase in a flexible robotic arm manipulator. The firstly is the occurrence of 

non-collocated actuation of a flexible robotic arm manipulator. In this case, the transfer 

function involves calculating the position output, in which, torque acts as an input. 

Similarly, mapping inputs from the flexible link robotic arm manipulators can be made 

linear. In this case, the input torque produced on the joint represents a non-minimum 

phase, which has several negative effects on the function of a flexible robot. It may 

diminish the trajectory tracking performance because of the constrained control input, 

and also causes increased error in trajectory tracking.  

The non-minimum phase makes the functioning of a robotic arm control more complex 

and limits the bandwidth. For flexible robotic manipulators, under-actuation means 

that the flexible robotic has less actuators, so it is very significant. The mechanism has 

its own dynamic coupling needs. The under-actuated robotic manipulator control was 

studied in terms of degrees-of-freedom, which are controlled by the actuated degree- 

of-freedom. Another problem with the minimum-phase manipulators is the non-

holonomic constraints. The non-holonomic constraints describe the coordinates, which 

are not dependent on the time-derivative. In some studies, the modelling of 𝑛-link 

robotic arm manipulators have been carried out with the help of hierarchical control 

concept. This study acquires the equation of motion by applying the multi-body system 

technique [76].  

Another significant approach was formulating dynamic equations for a 3-D multi-link 

robotic arm manipulator, which caters to the prismatic as well as the revolute joints. 

Moreover, the dynamic and kinematic implications of the flexible multi-link robotic 

arm model were analyzed using a free-moving platform in a cosmic space. Other 

strategies for capturing the control of a robotic arm model include end-effector 

regulation, joint tracking of trajectory as well as trajectory tracking of the end-effector 

[77].  
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2.9 Robotic Motor System Control 

The main control task is start-to-end motion of a robot arm that is possible by designing 

an algorithm to solve the robot path planning, which is the goal of this thesis. To 

generate power in robots, an electrical DC or AC motor is required. Robotic 

applications typically require a good velocity, high torque and high accuracy to be 

considered as efficient robots. A motor transfers torque to the points on the robotic 

arm links using mechanical links like chains. Mostly, motor friction is thought to inflict 

certain limitations on the performance of a robotic manipulator. Among the earliest 

studies on this topic, a study [78] modelled a robotic manipulator, monitored the 

effects of a DC motor particularly motor friction, and analyzed the overall performance 

of the robot. This study suggests the usage of an adaptive controller to recompense the 

friction effects of the motor on the robotic manipulator. Designing a control system 

usually involves modelling different types and sizes of DC motors for various robotic 

applications. For example, a study [79], modelled the usage of a DC motor in Wheeled 

Mobile Robots (WMR) as a wheel driving machine while controlling the rotation of 

the motor. Wheeled Mobile Robots are mobile robots, which perform with the help of 

sensors. The sensors help robots avoid obstacles on the robotic motion path. In this 

case, the wheels of a Wheeled Mobile Robots are steered by a DC motor. This study 

[79] models a DC motor with the help of control mechanisms and models the DC 

motor by first employing its electrical circuit diagram.  

After that, the DC motor system is characterized in terms of a set of mathematical 

equations. Based on that, a suitable transformation function for the equations is 

devised. Finally, the model is simulated with simulation software such as MATLAB. 

The robotic motor modelling proposes an adaptive fuzzy approach with a brushed DC 

motor system in case of a flexible joint robotic manipulator but most of the researchers 

preferred modelling of Brushless DC Motor (BLDM) over the brushed motor for 

several robotic applications. It has been shown that Brushless DC Motor is connected 

to a flexible robotic arm also called as direct-drive Brushless DC Motor, which has so 

far yielded a much-improved performance for force-controlled actuators [80]. Among 

more notable studies in this regard, the researchers [81] used Brushless DC Motor for 

direct-drive for tracking control in the robotic applications. Direct-drive motors refer 

to the motors which are directly attached to the robotic links without any gear. 
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Similarly, brushless DC motors were also considered in robotic manipulators in a 

mathematical form.  

In the studies, manipulator-controlled direct-drive robots have been extensively 

proposed, as they ensure high performance of a robotic arm manipulator, since they 

do not require gears for interacting with a motor. For obtaining the required amount of 

torque, direct-drive manipulators are effective, so that the friction is minimized [80]. 

The reasons for using a Brushless DC Motor have been discussed in the study, among 

which, the most notable factor is the performance boost. The incorporation of direct-

drive brushless DC motor in robotic manipulators has been studied particularly in case 

of commercial robots. The designers designed a low-cost commercial micro robot 

named Alice using two direct-drive and watch type DC motors because of its demand 

in the toy market. It had low power consumption and easy control of the watch-type 

DC motors, which assured efficient design. 

In this scenario, the robotic motors drove the robotic manipulators along a particular 

path assuring obstacle avoidance. Another significant study analyzed the speed and 

power consumption characteristics of a DC motor in the mathematical form as well as 

in terms of mechanical energy consumption of a DC motor. The study proposes a 

method to minimize the mechanical energy consumption of the DC motors for robotic 

manipulators [81]. The minimization of energy of robotic motors was also studied 

extensively by some other researchers [82, 83]. 
 

2.10 Summary 

The literature pertaining to this field is extensive, and it has many studied cases of 

motion planning and trajectory planning for a robot arm. A majority of researchers 

used the optimization algorithm technique. Some others have used the pseudo-inverse 

analytical process for optimization. The researchers observed many constraints like 

precedence, geometric and connectivity constraints, cost of the assembly and the least 

stability criteria, which were considered during assembly sequence generation that has 

been reported in many studies.  

In many cases, numerical optimization methods were used. Our research on robots 

focused on finding a minimum-time trajectory planning method for the path of a robot 
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manipulator. The modelling was done to limit constraints in terms of kinematic 

constraint equations, which are essential to solve.  

Most of the research work deals with the derivation of the robot equations depending 

on several strategies. This study focuses on algorithm for direct/inverse kinematic 

analysis and modelling. Most of the relevant approaches focus on logical and sensing 

for obstacle avoidance. As far as the path planning problem is concerned, several 

studies deal with this subject based on logical computation, spline polynomials, and 

B-splines to drive the robot path in the joint space. This study focuses on Cartesian-

space information for the motion planning for taking the end-effector from the starting-

point to end-point. 
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CHAPTER 3 

     MATHEMATICAL MODELLING AND 

        KINEMATIC ANALYSIS  

 

 

3.1 Introduction 

The conventional solution approach to kinematics is important in various fields of 

post-modern technology from computer graphics (e.g. character animation) to space 

exploration. All these fields of application are fundamentally required to evaluate both 

orientation and the position of the Cartesian-coordinates of end-effector and joint 

variables of a robot manipulator. To evaluate the position and orientation of end-

effector and its joint variables, a researcher should apply homogeneous transformation 

matrix method. This method is a conventional tool to describe the kinematic 

relationship between the joint and the links. Moreover, this method of representation 

has been used for many decades for tracing the end-effector position of robot 

manipulators. 

In the third current chapter, we mentioned the essential mathematical information to 

help readers understand the study and the analysis. We have used necessary 

mathematical tools, which are needed in robotic systems. The modelling problem 

should be applied before applying any control method to resolve a path planning 

problem. In this section, we are concerned with the development of the model for a 

SCARA robot (Self Compliant Articulated Robotic Arm), its kinematics, and 

dynamics of its formulation systems.  

The goal of this chapter is applying modelling equations of a robot arm, which show 

the forces needed for the movement of robots. For effectively controlling the position 

of a robotic manipulator, the dynamics of the manipulator should be known and 

explicitly specified in terms of the force, which is exerted on it to cause motion. The 

dynamic modelling involves the dynamic movement of a robotic arm manipulator, 

which is generated by the actuators and the force, which is applied on them. To control 

the application of force on a manipulator is a significant challenge because a weaker 

force causes the manipulator to respond slowly while too much force might crack or 
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destroy it. This force is applied in terms of the torque generated by the actuators for 

the dynamic motion of a robotic manipulator. The structure of a robotic arm will be 

fully described along with the parameters of its links.  

The structure of the robotic manipulator should enable the derivation of the kinematic 

and dynamic equations, which will be used later in the design process of the 

controllers. There are two different approaches to modelling of a robot in general: The 

Euler–Lagrange (EL) formulation and the Newton–Euler (NE) method. The former 

treats the manipulator as a whole; so, the dynamic analysis is based on Lagrangian 

function, which uses the description of both kinetic and potential energies of the 

system. This formulation only states the differential equations that determine forces 

and torques of individual actuators. As a result of using Newton–Euler approach 

through dynamic equations, the required forces and torques of actuators help 

computing the forces and moments acting on the joints. This formulation separately 

treats each link of a manipulator. It means that the equations describing the linear and 

angular motion of the links are separately expressed for each body with respect to its 

coordinate frames. 

 

Figure 3.1: Proposed approach to position analysis of robot manipulator. 

 

3.2 Dynamic Modelling of Robotic Manipulator  

This section presents the geometric structure description of manipulator robots using 

the (DH) representation, named after Denavit and Hartenberg [85]. It is the first step 

to compute the dynamic model for simple open-chain manipulator robots. We also 

presented the Lagrange formalism, using which; we established the general equation 
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of motion for manipulator robots. Finally, to illustrate the dynamic model of 

manipulator robots, we used a manipulator robot that was used in the simulation to 

validate the theoretical study presented in this thesis. To operate such an articulated 

system, we must resort to laws for stability of this system. These control laws 

sometimes use some elements of the dynamics of the robot, so the parameters are 

known. The dynamic equation of a manipulator consists of mathematical models of 

equations of motion of the mentioned robot. There are two types of a model; the 

inverse model has been used in the control applications, however, this model provides 

particular torques, which are exerted by the actuators, according to positions, speeds, 

accelerations, and the direct dynamic model used in the simulation, which provides 

joint acceleration based on positions, speeds and joint torques.   

Several methods have been used to obtain the inverse dynamic model. We formulated 

Newton–Euler and Lagrange–Euler processes. We used the Lagrange–Euler 

formulation because it is simple and systematic, and it describes the dynamic model 

of the system in terms of work and energy using generalized coordinates. The first part 

of this chapter presents features of basic manipulative robots such as the degree-of-

freedom and the notion of singularity, etc. In the second part, we will present geometric 

description of the systems articulated for particularly manipulative robots; a 

description based on two methods, one of them is the Denavit–Hartenberg (DH) 

standard; however, this method is not powerful enough especially in the case of 

articulated tree structures or parallel. The other more modern and more powerful 

method is modified (DH). In the third part of this chapter, the formalism of Lagrange 

will be applied to a model robot. This particular approach is quite simple to implement, 

and it is implementable both through computer-assisted and manual calculations. In 

this part, we will treat the different structural properties of the dynamic model, which 

are very effective in the correctors' synthesis. By the end of this chapter, the 

calculations of the model of the SCARA robot will be accomplished and used for 

validation. 

3.3 Kinematics of Robot Manipulator 

Kinematic modelling is an important section of robot technology. This section deals 

with the kinematic position of a mechanical system. Robot kinematic refers to the 

analytical study of motion and structure of robot manipulators. Formulation of the 
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suitable kinematics models for a robot mechanism is very crucial for analyzing the 

behaviour of industrial manipulators. There are two types of problems in the kinematic 

analysis of robot manipulators: Forward and Inverse Kinematics. 
 

1. Calculating the Forward Kinematic (FK). 

2. Calculating the Inverse Kinematic (IK). 

 

 

 

Figure 3.2: Block diagram of the kinematic approach. 

 

The kinematics of a robotic refers to the mathematical equations that describe the 

forward and inverse relationships between the Cartesian position coordinates of the 

manipulator end-effector and the angular positions of the revolute joints. These 

equations are very important in the process of mapping the manipulator's desired 

trajectories from the Cartesian-space to the joint space and vice versa. The robotic 

manipulator kinematics can be divided into inverse and direct kinematics.  

The direct kinematics describes the Cartesian position coordinates of the end-effector 

as functions of the joint angular positions. On the other hand, the inverse kinematics 

describes the joint's angular positions as functions of the end-effector Cartesian- 

coordinates. Figure 3.1 shows a simplified block diagram of kinematics modelling. 

In this thesis, the following steps describe a general analytical procedure for deriving 

the direct and inverse kinematics of a manipulator, which help deriving the kinematics 

of the robotic arm, as shown in Figure 3.5. 

 

 

 

Kinematics Solution 

 

Forward Kinematics:  
Given joint angles, find the 
position and orientation of 

the end-effector  
 

Inverse Kinematics:   
Given the position and 

orientation of end-effector, 

 find the joint angles   
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Figure 3.3: The forward and inverse dynamic problems. 

       

 

3.3.1 Forward (Direct) Kinematics  

A manipulator is a series of links connected by joints either revolute or prismatic from 

the base frame through the end-effector. Calculating the position and orientation of the 

end-effector in terms of the joint variables is known as direct kinematics. To obtain 

the direct kinematic equations for the manipulator, the following steps must be 

accomplished. For forward kinematics, all the link lengths and joint angles of the robot 

system must be available.   

In forward kinematics, the values of joint and link variables are substituted in a set of 

equations that define a particular configuration of the robotic system. Forward 

kinematic problem is one of the most significant obstacles faced in the dynamic motion 

of a serial-link robotic manipulator. The joint variables are the angles between the links 

in the case of revolute or rotational joints, and the link extension in the case of 

prismatic or sliding joints [84]. The forward kinematic problem has been addressed by 

several studies; however, it is still an open-ended research question. The problem of 

forward kinematics occurs when a robot moves from a position 𝐴 and 𝐵 with respect 

to a common coordinate system.  
 

Forward Kinematic (FK) problem defines the collective impact of a set of joint angles 

between the links. Consequently, it determines the position and angle of the end-

effector if the values of joint variables are given. For the representation of a forward 

Inverse Kinematics 

Position and Orientation 
of the End-Effector 

 Link Parameters   Joint Movements  

  Forward Kinematics          
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kinematics problem, a fixed coordinate system is created, which is termed as the base 

frame, and it serves as a reference to the robotic manipulator.  
 

𝑥 = 𝑓(𝜃)                                                                                                                  (3.1)                                          
 

Forward kinematics is used to solve the end-effector position and orientation given in 

the joints' values. Giving specific values to the joints is the only solution to the problem 

and hence, there is only one-position and orientation for the end-effector.  

 

Figure 3.4: Direct kinematics block diagram. 

In order to derive the forward kinematics of a robotic manipulator, the following steps 

must be followed: 

 

3.3.1.1 Derivation of Denavit–Hartenberg (DH) Parameters 

Denavit and Hartenberg (DH) have proposed a systematic method for performing the 

passage between adjacent joints of a mechanical system. This method is called the 

Denavit–Hartenberg [85]. The standard Denavit–Hartenberg is mainly about 

kinematic chains while each joint has a degree-of-freedom of rotation or translation. 

The translation and the rotation are so-called kinematic assemblies of lower order, 

which means that the adjacent surfaces remain in contact during their movement. The 

six possibilities thus offered are the hinge, the slide, the cylindrical bearing, spherical 

ball joint, torque screw-nuts, and plane-to-plane motion. There are many ways to 

describe the robot configuration. One way is to use Denavit–Hartenberg notation of 

describing the link and its connection to the neighboring link which is the joint 

variable.  
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Denavit–Hertenberg uses the four-parameter method for the manipulator kinematics. 

These parameters allow the calculation of the vector for different links and the rotation 

matrix, as illustrated in Figure 3.5.  
 

 

 
 

Figure 3.5: Modified Denavit–Hertenberg (DH) parameter for a revolute joint. 
 

There are four variables in Denavit–Hertenberg method notation. They are as follows 

[86]: 
 

1. 𝑎𝑖−1: (Length) the measured distance along 𝑋𝑖 from 𝑍𝑖 to 𝑍𝑖−1. 

2. ∝𝑖−1: (Twist) the measured angle about 𝑋𝑖 from 𝑍𝑖 to 𝑍𝑖−1. 

3. 𝑑𝑖: (Offset) the measured distance along 𝑍𝑖 from 𝑋𝑖−1 to 𝑋𝑖. 

4. 𝜃𝑖: (Angle) the measured angle about 𝑍𝑖 from 𝑋𝑖−1 to 𝑋𝑖. 
 

These parameters are illustrated in Figure 3.5 for a revolute joint. It is important to 

notice that 𝑑𝑖 and ∝𝑖−1 do not change unless the robot configuration changes. 

Here, 𝑎𝑖−1 is the link length and ∝𝑖−1 is the link twist. After assigning the frames, we 

can make a table for representing the four parameters for the three-link (3-DOF), 

SCARA robot manipulator. Table 3.1 shows the parameter type associated with 

revolute or prismatic parameter joints. (See appendix A) 
 

3.3.1.2 Derivation of the Homogenous Transformation Matrices 

We now present the matrices of passage from link 𝑖 to 𝑖 − 1 after constructing the 

Denavit–Hertenberg (DH) parameters. The next step is to construct the transformation 

matrix for each link from the following equation. The parameters ∝𝑖−1 and 𝑑𝑖 are 
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constants. The geometry of the link determines them. One of the other two parameters 

𝜃𝑖 and 𝑎𝑖−1 vary as the joint moves. For a revolute joint, variable 𝜃𝑖 represents the joint 

displacement, while 𝑎𝑖−1 is a constant. On the other hand, for a prismatic joint, 

parameter 𝑎𝑖−1 is the variable representing joint displacement and 𝜃𝑖 is a constant [88]. 

The joint variable 𝑞𝑖 associated to the 𝑖𝑡ℎ joint is defined as: 
 

𝑞𝑖 = (1 − 𝜎𝑖)𝜃𝑖 + 𝜎𝑖𝑑𝑖                                                                                               (3.2) 
 

Where:  

𝜎𝑖 = {
0 if joint 𝑖 is rotational
1     if 𝑖 joint prismatic

                                                                                   (3.3) 

A commonly used convention for selection of frames of references in robotics is the 

application of the Denavit–Hertenberg [85], which has been shown in Figure 3.6. It 

can be seen that the homogenous transformation matrix 𝑇𝑖
𝑖−1 defines frame 𝑖 with 

respect to frame 𝑖 − 1, which can be obtained as: 
 

𝑇𝑖
𝑖−1 = 𝑅𝑜𝑡(𝑋, ∝𝑖−1)𝑇𝑟𝑎𝑛(𝑋, 𝑎𝑖−1)𝑇𝑟𝑎𝑛(𝑍, 𝑑𝑖)𝑅𝑜𝑡(𝑍, 𝜃𝑖)                                   (3.4) 

 

 

 

 
                      

Figure 3.6: Denavit–Hertenberg (DH) frame assignment. 

 

With: 

𝑅𝑜𝑡(𝑋, ∝𝑖−1) = [

 1    0
0   𝑐𝑜𝑠(∝𝑖−1)

0 0
−𝑠𝑖𝑛(∝𝑖−1) 0

0   𝑠𝑖𝑛(∝𝑖−1)
 0    0

𝑐𝑜𝑠(∝𝑖−1)    0
0    1

]                                           (3.5) 

𝑇𝑟𝑎𝑛(𝑋, 𝑎𝑖−1) = [

1 0
0  1

0  𝑎𝑖−1
 0 0

0 0
0  0

1  0
0   1

]                                                                     (3.6) 
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𝑇𝑟𝑎𝑛(𝑍, 𝑑𝑖) = [
 
1 0
0  1

 
0   0
0   0

0 0
 0  0

1   𝑑𝑖
0   1

]                                                                           (3.7) 

𝑅𝑜𝑡(𝑍, 𝜃𝑖) = [

𝑐𝑜𝑠(𝜃𝑖) −𝑠𝑖𝑛(𝜃𝑖)  

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖)
 
 0   0
 0   0

0             0
0             0

   
1   0
0  1

]                                                     (3.8) 

Then,  

The overall transformation matrix between the end-effector frame and the base frame 

will be: 
 

𝑇𝑖
𝑖−1 = [

𝑐𝑜𝑠(𝜃𝑖)          −𝑠𝑖𝑛(𝜃𝑖)
𝑠𝑖𝑛(𝜃𝑖)𝑐𝑜𝑠(∝𝑖) 𝑐𝑜𝑠(∝𝑖−1)𝑐𝑜𝑠(𝜃𝑖)

0  𝑎𝑖−1
−𝑠𝑖𝑛(∝𝑖−1) − 𝑑𝑖𝑠𝑖𝑛(∝𝑖−1)

𝑠𝑖𝑛(∝𝑖−1)𝑠𝑖𝑛(𝜃𝑖)       𝑠𝑖𝑛(∝𝑖−1)𝑐𝑜𝑠(𝜃𝑖)
0         0

𝑐𝑜𝑠(∝𝑖−1)   𝑑𝑖𝑐𝑜𝑠(∝𝑖−1)
0  1

]           

(3.9) 

for (𝑖 = 1,…𝑛)    

We can notice that the homogenous transformation matrix (3.9) has the general form: 
 

𝑇𝑖
𝑖−1 = [𝐴𝑖

𝑖−1 𝑂𝑜
𝑖−1

0 1
]                                                                             (3.10) 

 

Here, 𝑇𝑖
𝑖−1 matrix is linked with the end of the arm frame, 𝑖 − 1 to its base 𝑖, 𝐴𝑖

𝑖−1 is 

the (3×3) matrix defining the orientation of frame 𝑖 with respect to the orientation of 

frame 𝑖 − 1, and 𝑂𝑜
𝑖−1 defining the origin of frame 𝑖 with respect to frame 𝑖 − 1. 

 

3.3.2 Inverse Kinematics  

This section is concerned with the "Inverse Problem" in terms of the end-effector 

position and orientation. This is the problem of inverse kinematics, and it is, in general, 

more difficult to resolve than the forward kinematic problem [86]. For inverse 

kinematic problem, a researcher should place the robot manipulator at a desired- 

location, and then calculate the values of joint of the hand of the robot, which is called 

as inverse kinematics.  

The inverse kinematics defines the particular configuration of the robotic system, so it 

is possible to calculate the values of joint and link variables of the robot. It is relevant 
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to most of the real applications and tasks than forward kinematics. The problem is non-

linear, so we must check whether there is a solution, and then check whether there are 

multiple solutions, and finalize the strategy to find the solution. The existence of a 

solution mainly depends on the manipulator's workspace and whether the end-

effector's desired position lies in the accessible workspace or not. Another possibility 

for the problem is to find multiple solutions and decide about the preferable solution. 

A criterion to build the decision on is finding the closest solution with obstacle 

avoidance. The analytical equation of inverse kinematics is given by: 
 

𝜃 = 𝑓−1(𝑥)                                                                                                              (3.11) 
 

Inverse Kinematics (IK), as the name suggests, can be thought of as an inverse of direct 

kinematics, that is, if the position and angle of the end-effector is given, it determines 

the joint angles of both the links. Clearly, the problem of finding the joint angles is 

more complex than the forward kinematics. Inverse kinematic approach can be 

approximated as shown in Figure 3.7. 
 

 

          

 

 

 
     

                                Figure 3.7: Inverse kinematics. 
 

 
 

 

 

3.4 Dynamic Modelling of Robot Manipulator 

Robot manipulators can be described mathematically in different ways. For robot 

design purposes, it is necessary to make a mathematical model that reveals the 

dynamic behaviour of the manipulator. This mathematical model has been derived 

using the Lagrangian mechanics [89]. 

In this section, we have analyzed the dynamic behavior of manipulator arms, which 

we have described in terms of the rate of change with respect to time in the arm 

configuration in relation to the joint torque exerted by the actuators. This relationship 

can be expressed by a set of differential equations called as equations of motion, which 

govern the dynamic response of the arm linkage to input joint torque. 

    Inverse 

    Kinematics 
End-effector desired 

position, velocity, and 
acceleration 

 

Joints variables desired 
position, velocity, and 

acceleration 
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The dynamics describe the relationship between forces, torques and motion. The 

kinematics describes the motion without the consideration of the forces and torques, 

while the dynamic equations describe the relationship between forces and motion. The 

model of motion is important for designing a robot, simulation, animation of robot 

motion and designing control algorithm.  

Euler–Lagrange equation is a known method to describe the evaluation of mechanical 

model. The Lagrangian system must be solved in order to determine the Euler–

Lagrange function. The two main formalisms that are generally used in the model 

equation of the robot manipulator dynamics are described below:  
 

1. Newton–Euler (NE) Formulation.  

2. Lagrangian–Euler (LE) Equation. 
 

3.4.1 Newton–Euler Formulation 

A method used for analysing the dynamics of robot is recursive Newton–Euler 

formulation, which is described in this section. More detailed derivation of this 

formulation has been given in the literature [84]. The inverse dynamics of an open 

kinematic chain structure can be calculated in three steps: 

1. Find the acceleration and the velocity of each body in the structure. 

2. Find forces required to produce computed accelerations. 

3. Find the forces transmitted across the joints from the forces acting on the bodies. 

The derivation of the Newton–Euler formulation for an 𝑛-link manipulator is 

completely based on a previous research [84]. It is necessary to choose the frames: 

{0, . . . , 𝑛}. Here, frame 0 stands for an inertial frame, and frame 𝑖 is rigidly attached to 

link 𝑖 [84]. The following list presents several vectors and scalars expressed in the 

frame 𝑖, which are required for the Newton–Euler process. 

 

3.4.2 Euler–Lagrange Equations 

In this work, we have presented the Lagrange–Euler and we do not consider that for 

simple open-chain robots. Lagrange's formalism exists in the first calculation of the 

Lagrange function of the manipulator robot; therefore, the difference between its 

kinetic energy 𝐾 and its potential energy 𝑈 is calculated and then applied the dynamic 

model by applying derivatives and partial derivatives. The 𝑛 scalar equations are 
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obtained called as Lagrange equations. To obtain the dynamic model with the 

Lagrange–Euler formalism, we must first determine the kinetic energy 𝐾(𝑞, �̇�) and the 

potential energy 𝑈(𝑞) because the Lagrangian 𝘓(𝑞, �̇�) is given by: 
  

𝘓(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑈(𝑞)                                                                                       (3.12) 
 

The Lagrange–Euler equation for conservative systems has been applied [87]; so, the 

manipulator robot's movement equations are given by: 
 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝑞
= 𝜏                                      (3.13)                                                                                                        

 

Where, 𝑞 and �̇� ∈ 𝑅𝑛 are the coordinates and the generalized velocities, respectively. 

𝜏 ∈ 𝑅𝑛 is the vector of generalized forces or torques. The Lagrangian approach can be 

expressed in the following form:  
 

𝘓 = 𝐾 − 𝑈                                                                                                              (3.14) 

Here, 𝘓 is the Lagrangian of the robotic manipulator, 𝐾 is the kinetic energy of the 

system, and 𝑈 is the potential energy of the system. 

To obtain the general arm dynamic equations of motion, we will compute the total 

kinetic and potential energies of the system, the Lagrangian, and then substitute them 

into the Lagrange's equation (3.13) to obtain the final result. 
 

3.5 General Expression for Kinetic Energy  

First, we'll derive expression for the kinetic energy of the robot noting that the kinetic 

energy of any rigid object consists of translational kinetic energy due to linear velocity 

of the center mass, and the rotational kinetic energy that emerges due to angular 

velocity of the link. 

Given a point on link 𝑖 with coordinates of 𝑟𝑖 with respect to frame 𝑖 have been attached 

to the link. The base coordinate of this point is:  

𝑟 =  𝑇𝑖
0𝑟𝑖                                                                                                                    (3.15) 

 

Here, (𝑇𝑖
0 = 𝑇1

0𝑇2
1…𝑇𝑖

𝑖−1) is a homogeneous transformation ∈ 𝑅(4×4) that is a 

function of the joint variables {𝑞1, 𝑞2, … , 𝑞𝑖}. Consequently, the velocity of the point 

in the base coordinates is: 
 

 

𝑣 =
𝑑𝑟

𝑑𝑡
= ∑ {

𝜕𝑇𝑖
0

𝜕𝑞𝑖
𝑞�̇�} 𝑟𝑖 + 𝑇𝑖

0∑ {
𝜕𝑟𝑖

𝜕𝑞𝑖
𝑞�̇�}

𝑗
𝑖=1

𝑗
𝑖=1                                                           (3.16) 
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Hence, (𝑖 = 1,2, … , 𝑛) 

Since  
𝜕𝑇𝑖

0

𝜕𝑞𝑖
= 0 for i > 𝑗, we can replace the upper limit of the summation with 𝑛 which 

represents the number of joints. 

{
𝜕𝑟𝑖

𝜕𝑞𝑖
} = 0 because it is constant with respect to frame 𝑖 that is attached to the link. 

 

The kinetic energy of an infinitesimal mass 𝑑𝑚 at 𝑟𝑖 has a velocity vector, which is 

described by: 

𝑣 = [𝑣𝑥 𝑣𝑦 𝑣𝑧]
𝑇
is defined as: 

𝑑𝐾𝑖 =
1

2 
(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)𝑑𝑚                          (3.17)                                                                         

𝑑𝐾𝑖 =
1

2 
𝑡𝑟𝑎𝑐𝑒(𝑣𝑣𝑇)𝑑𝑚                      (3.18)                                                                                                            

Using the expression of the velocity 𝑣 given by the equation (3.16), we have obtained: 
 

𝑑𝐾𝑖 =
1

2
𝑡𝑟𝑎𝑐𝑒 {∑ ∑ (

𝜕𝑇𝑖
0

𝜕𝑞𝑗
) (𝑟𝑖𝑟𝑖

𝑇𝑑𝑚)
𝜕𝑇𝑖

0𝑇

𝜕𝑞𝑘
𝑞�̇�𝑞�̇�

𝑛
𝑘=1

𝑛
𝑗=1 }                                       (3.19) 

 

Thus, the total kinetic energy for link 𝑖 is given by: 
 

𝐾𝑖 = ∫ 𝑑𝐾𝑖𝑙𝑖𝑛𝑘 𝑖
                                                                                                        (3.20) 

 

 

By substituting 𝑑𝐾𝑖 by the expression (3.19), we can move the integration symbol 

inside the summations. So, the inertia matrix ∈ 𝑅(4×4) for the link 𝑖 is given by: 
 

𝐼𝑖 = ∫ 𝑟𝑖𝑟𝑖
𝑇𝑑𝑚

𝑙𝑖𝑛𝑘 𝑖
                                                                                                  (3.21) 

𝐼 = [

𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑥𝑦 𝐼𝑦𝑦

  𝐼𝑥𝑧
  𝐼𝑦𝑧

𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                        (3.22) 

Here, the integrals are taken on the body volume 𝑖. It is a constant matrix that is 

evaluated once for each body. It depends on the geometry and distribution of the body 

mass 𝑖. It is expressed as follows: 
 

𝐼𝑥𝑥 =∭(𝑦2 + 𝑧2) 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = ∫(𝑦2 + 𝑧2)𝑑𝑚  

𝐼𝑦𝑦 =∭(𝑥2 + 𝑧2) 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = ∫(𝑥2 + 𝑧2)𝑑𝑚                                      (3.23) 

𝐼𝑧𝑧 =∭(𝑦2 + 𝑥2) 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = ∫(𝑦2 + 𝑥2)𝑑𝑚  
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Cross products of inertia: 

With: 
 

𝐼𝑥𝑦 = 𝐼𝑦𝑥 =∭−𝑥𝑦 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = −∫𝑥𝑦𝑑𝑚   

𝐼𝑥𝑧 = 𝐼𝑧𝑥 =∭−𝑥𝑧 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = −∫𝑥𝑧𝑑𝑚                                            (3.24) 

𝐼𝑦𝑧 = 𝐼𝑧𝑦 =∭−𝑦𝑧 𝜌(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = −∫𝑦𝑧𝑑𝑚   

 

The function  𝜌(𝑥, 𝑦, 𝑧) is the density of the body. 
 

and first moments: 
    

𝑚�̅� = −∫𝑥𝑑𝑚,𝑚�̅� = −∫𝑦𝑑𝑚,𝑚𝑧̅ = −∫ 𝑧𝑑𝑚                                                 (3.25) 

 

It is equal to: 
 

 

𝐼𝑖 =

[
 
 
 
 
∫ 𝑥²𝑑𝑚 ∫𝑦𝑥𝑑𝑚

∫𝑥𝑦𝑑𝑚 ∫𝑦²𝑑𝑚

∫𝑧𝑥𝑑𝑚 ∫𝑥𝑑𝑚

∫ 𝑧𝑦𝑑𝑚 ∫𝑦𝑑𝑚

∫𝑥𝑧𝑑𝑚 ∫𝑦𝑧𝑑𝑚

∫𝑥𝑑𝑚 ∫𝑦𝑑𝑚

∫𝑧²𝑑𝑚 ∫𝑧𝑑𝑚

∫𝑧𝑑𝑚 ∫𝑑𝑚 ]
 
 
 
 

                                                        (3.26) 

 

Here, 𝑚 is the total mass of the body, so 𝑟𝑖 = [�̅� �̅� 𝑧̅ 1]
𝑇represents the vector of 

coordinates based on the body's center of gravity 𝑖 in the reference 𝑅𝑖, we can write: 

𝐼𝑖 is the inertia matrix as shown below: 
 

𝐼𝑖 =

[
 
 
 
 
 
−𝐼𝑥𝑥+𝐼𝑦𝑦+𝐼𝑧𝑧

2
−𝐼𝑥𝑦

−𝐼𝑥𝑦
𝐼𝑥𝑥−𝐼𝑦𝑦+𝐼𝑧𝑧

2

 
−𝐼𝑥𝑥        𝑚�̅�
−𝐼𝑦𝑧       𝑚�̅�

−𝐼𝑥𝑧               −𝐼𝑦𝑧
𝑚�̅�              𝑚�̅�

𝐼𝑥𝑥+𝐼𝑦𝑦−𝐼𝑧𝑧

2
𝑚𝑧̅

𝑚𝑧̅ 𝑚 ]
 
 
 
 
 

                                                   (3.27) 

In equation (3.27), 𝑚 is the mass, (�̅�, �̅�, 𝑧̅) is the location vector of the center of mass, 

expressed in terms of {𝑖} local coordinate frame, and 𝐼𝑥𝑥, … , 𝐼𝑥𝑦, … are  

moments/products of inertia pertaining to link 𝑖 with respect to {𝑖} local coordinate 

frame. These quantities are either given by the manufacturer's specifications or they 

can be calculated from the other quantities: 

This is a constant matrix, which is evaluated once for each link. It depends on the 

geometry and mass distribution link 𝑖.  
 

After defining 𝐼𝑖 , we may write the kinetic energy of link 𝑖 as described by: 
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𝐾𝑖 =
1

2
𝑡𝑟𝑎𝑐𝑒 {∑ ∑ (

𝜕𝑇𝑖
0

𝜕𝑞𝑗
) 𝐼𝑖

𝜕𝑇𝑖
0𝑇

𝜕𝑞𝑘
𝑞�̇�𝑞�̇�

𝑛
𝑘=1

𝑛
𝑗=1 }                                                        (3.28) 

 

The total arm kinetic energy of the manipulator is then written as: 

 

𝐾 = ∑ 𝐾𝑖
𝑛
𝑖=1 =

1

2
∑ 𝑡𝑟𝑎𝑐𝑒 {∑ ∑ (

𝜕𝑇𝑖
0

𝜕𝑞𝑗
) 𝐼𝑖 (

𝜕𝑇𝑖
0𝑇

𝜕𝑞𝑘
) 𝑞�̇�𝑞�̇�

𝑛
𝑘=1

𝑛
𝑗=1 }𝑛

𝑖=1                            (3.29) 

 

Since the trace of a sum of matrices is the sum of individual traces, we may interchange 

the summation and the trace operator to obtain: 
 

𝐾 =
1

2
∑ ∑ 𝑚𝑗𝑘

𝑛
𝑘=1 (𝑞)𝑞

�̇�
𝑞
�̇�

𝑛
𝑗=1                                                                                 (3.30) 

or 

𝐾 =
1

2
�̇�𝑇𝑀(𝑞)�̇�                                                                                                     (3.31) 

Here, the arm inertia matrix 𝑀(𝑞) has the elements defined as follows:      

𝑚𝑗𝑘(𝑞) = ∑ 𝑡𝑟𝑎𝑐𝑒 {(
𝜕𝑇𝑖

0

𝜕𝑞𝑗
) 𝐼𝑖

𝜕𝑇𝑖
0𝑇

𝜕𝑞𝑘
}𝑛

𝑖=1                                                                      (3.32) 

Since the kinetic energy is a scalar quantity, so: 

 𝐾 =
1

2
�̇�𝑇𝑀(𝑞)�̇� = 𝐾𝑇 = ((

1

2
�̇�𝑇𝑀(𝑞)�̇�)

𝑇

 

𝐾 = 𝐾𝑇 , 𝑀(𝑞) = 𝑀(𝑞)𝑇                                                                                       (3.33) 

 or  𝑚𝑗𝑘(𝑞) = 𝑚𝑘𝑗(𝑞) 

3.6 General Expression for Potential Energy  

If link 𝑖 has mass 𝑚𝑖 and center of gravity �̅�𝑖 expressed in the coordinates of its frame 

𝑖, the potential energy of the link is given by �̅�𝑖. 

Let the potential energy of the manipulator be 𝑈 and let each of its link potential be 

𝑈𝑖, it is expressed by: 
 

𝑈𝑖 = 𝑚𝑖𝑔
𝑇𝑇𝑖

0�̅�𝑖                                                                                                      (3.34) 

Representing the coordinates of the center of gravity in the coordinates, we have the 

total potential energy of the robot arm, which is: 
 

𝑈 = 𝑚𝑖𝑔
𝑇𝑇𝑖

0�̅�𝑖                                                                                                      (3.35)         

Letting: 
 

𝑇𝑖
0�̅�𝑖 = 𝑃𝑖

0                                                                                                             (3.36) 
 

𝑈 = ∑ 𝑈𝑖
𝑛
𝑖=1 = ∑ 𝑚𝑖𝑔

𝑇𝑃𝑖
0𝑛

𝑖=1                                                                                 (3.37) 
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Where: 

𝑔𝑇 = [ 𝑔𝑥 𝑔𝑦 𝑔𝑧] 
 

𝑔 is the gravitational constant (𝑔 = 9.8062 𝑚/𝑠𝑒𝑐2) 
 

3.7 Equation of Motion 

From equations (3.12) and (3.13), and considering the fact that the potential energy 

does not depend on the joint velocity of the equation of motion of the manipulator arm, 

we get the following expression: 
 

𝑑

𝑑𝑡
 
𝜕𝐾(𝑞,�̇�)

𝜕𝑞�̇�
−
𝜕𝐾(𝑞,�̇�)

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
= 𝜏𝑖                                                                                (3.38) 

𝜕𝐾(𝑞,�̇�)

𝜕�̇�
 = 

1

2
(
𝜕�̇�𝑇𝑀(𝑞)�̇�

𝜕�̇�
) =

1

2
(𝑀(𝑞)�̇� + 𝑀(𝑞)𝑇�̇�) = 𝑀(𝑞)�̇�                                    (3.39) 

𝜕𝐾(𝑞,�̇�)

𝜕𝑞�̇�
= ∑ 𝑚𝑖𝑗

𝑛
𝑗=1 (𝑞)𝑞�̇�                                                                                        (3.40) 

𝑑

𝑑𝑡
 
𝜕𝐾(𝑞,�̇�)

𝜕𝑞�̇�
= ∑ 𝑚𝑖𝑗

𝑛
𝑗=1 (𝑞)𝑞�̈� + ∑ ∑ (

𝜕𝑚𝑖𝑗(𝑞)𝑞�̇�

𝜕𝑞𝑘
)𝑛

𝑘=1
𝑛
𝑗=1 𝑞�̇�                                      (3.41) 

∑ 𝑚𝑖𝑗
𝑛
𝑗=1 (𝑞)𝑞�̈� +∑ ∑ (

𝜕𝑚𝑖𝑗(𝑞)𝑞�̇�

𝜕𝑞𝑘
)𝑛

𝑘=1
𝑛
𝑗=1 𝑞�̇� −

1

2
∑ ∑ (

𝜕𝑚𝑖𝑗(𝑞)�̇�𝑘

𝜕𝑞�̇�
)𝑛

𝑘=1
𝑛
𝑗=1 𝑞�̇� +

𝜕𝑈(𝑞)

𝜕𝑞𝑖
= 𝜏𝑖             (3.42) 

Using the symmetry property of the matrix 𝑀(𝑞) we have: 

𝜕𝑚𝑖𝑗(𝑞)𝑞�̇�

𝜕𝑞𝑘
𝑞�̇� −

1

2

𝜕𝑚𝑘𝑗(𝑞)

𝜕𝑞𝑖
�̇�𝑘�̇�𝑗 =

1

2
{
𝜕𝑚𝑖𝑗(𝑞)

𝜕𝑞𝑘
�̇�𝑘�̇�𝑗 +

𝜕𝑚𝑘𝑖(𝑞)

𝜕𝑞𝑗
�̇�𝑘�̇�𝑗 −

𝜕𝑚𝑘𝑗(𝑞)

𝜕𝑞𝑖
�̇�𝑘�̇�𝑗}    (3.43) 

𝑀(𝑞) =
1

2
{
𝜕𝑚𝑖𝑗(𝑞)

𝜕𝑞𝑘
+
𝜕𝑚𝑘𝑖(𝑞)

𝜕𝑞𝑗
−
𝜕𝑚𝑘𝑗(𝑞)

𝜕𝑞𝑖
} �̇�𝑘�̇�𝑗                                                          (3.44) 

 

Using of Christoffel symbols: 
 

𝐶𝑖𝑗(𝑞, �̇�) = ∑ 𝐶𝑖𝑗𝑘
𝑛
𝑘=1 �̇�𝑘                                                                                         (3.45) 

 

Here: 
 

𝐶𝑖𝑗,𝑘 =
1

2
{
𝜕𝑚𝑘𝑗(𝑞)

𝜕𝑞𝑖
+
𝜕𝑚𝑘𝑖(𝑞)

𝜕𝑞𝑗
−
𝜕𝑚𝑖𝑗(𝑞)

𝜕𝑞𝑘
}                                                                           (3.46) 

𝐶𝑘𝑗 = 𝐶𝑖𝑘𝑗(𝑞)𝑞�̇�                                                                                                     (3.47) 

𝐶𝑘𝑗 = ∑
1

2
{
𝜕𝑚𝑘𝑗(𝑞)

𝜕𝑞𝑖
+
𝜕𝑚𝑘𝑖(𝑞)

𝜕𝑞𝑗
−
𝜕𝑚𝑖𝑗(𝑞)

𝜕𝑞𝑘
}𝑛

𝑖 𝑞�̇�                                                           (3.48) 
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Substituting it into the equation of motion, we get: 
 

∑ 𝑚𝑖𝑗
𝑛
𝑗=1 (𝑞)𝑞�̈� + ∑ ∑ 𝐶𝑖𝑗𝑘

𝑛
𝑘=1

𝑛
𝑗=1 �̇�𝑘�̇�𝑗 +

𝜕𝑈(𝑞)

𝜕𝑞𝑖
= 𝜏𝑖                                              (3.49) 

Now let 𝐺(𝑞) be the vector having 𝑖𝑡ℎ coordinates: 
𝜕𝑈(𝑞)

𝜕𝑞𝑖
. We can write equation (3.49) 

in the compact form as follows:  

The modelling equation of a robotic manipulator system will be as follows [86].  
 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝜏                                                                              (3.50) 
 

Where, 𝐶(𝑞, �̇�)�̇� is the Coriolis/centripetal vector and 𝐺(𝑞) represent the gravity 

vector. Equation (3.50) is the final form of the dynamic equation for a robot. 

Where: 

𝜏: Joints torque ∈ 𝑅𝑛  

�̈�: Joint accelerations ∈ 𝑅𝑛  

�̇�: Joint velocities ∈ 𝑅𝑛 

𝑞: Joint positions ∈ 𝑅𝑛  

𝑀(𝑞): Inertia matrix ∈ 𝑅𝑛×𝑛  

𝐺(𝑞): Vector of gravity forces ∈ 𝑅𝑛 

𝐶(𝑞, �̇�): Matrix of centrifugal forces and Coriolis ∈ 𝑅𝑛×𝑛 
 

3.8 SCARA Robot Arm Coordination System and DH Parameters 

SCARA robot has high repetition accuracy (<0.025 𝑚𝑚), fast acceleration and highest 

speed (2000-5000 𝑚𝑚/𝑠) of movement to meet the demands of short cycle times in 

automated assembly. A typical SCARA robot structure is shown in Figure 3.8. It is 

compact, and the working envelopes are relatively limited (ranges<1000 𝑚𝑚). The 

range of payloads that can be supported by this robot is (10-100 𝑘𝑔). These robots are 

best used for planar type tasks such as pick and place or assembly line sorting. Table 

3.2 summarizes data for typical SCARA robots (See appendix A). 
 

3.8.1 Kinematics Modelling of 3-DOF SCARA Robot  

The SCARA robot is used in many applications such as pick and place, assembly, and 

packaging. The SCARA robot is a nonlinear dynamic system, which has some 

uncertainties including friction. In this section, the application of the equations of 

motion has been applied to simulate and illustrate the mathematical method. For the 
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sake of simplification, we have chosen the first (3-DOF) of the SCARA robot [90]. It 

is sufficient to position the terminal organ (the effector) at any point in the accessible 

space of the robot. First, we represent the articular configuration of the SCARA robot 

of the three degrees-of-freedom Revolute-Revolute-Prismatic (RRP), and then we'll 

calculate the dynamic model of this robot. 
 

3.8.2 SCARA Configuration: Revolute-Revolute-Prismatic (RRP) 

In order to support the theoretical development presented in this thesis, simulation 

studies have been performed using (3-DOF) mechanical structure moving in 3 

dimensional-space of the 3-D SCARA robot. This robot model has already been 

considered by many modern researches. SCARA robot is shown in Figure 3.8. As its 

name implies, it is specially designed for assembly operations. Although the SCARA 

robot has a Revolute-Revolute-Prismatic (RRP) manipulator structure (Figure 3.9), it 

is quite different from the spherical configuration in the appearance or application, 

which is quite unlike the spherical design which has (𝑍0, 𝑍1, 𝑍2) in perpendicular while 

the SCARA robot has (𝑍0, 𝑍1, 𝑍2) in parallel. 

 

 

Figure 3.8: The SCARA manipulator. 

The values of the SCARA robot parameters are given by the following Table. 3.2. (See 

appendix A).    

 

Figure 3.9: Coordinate frames are attached to SCARA robot arm (RRP) type. 
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Assign (𝑍0, 𝑍1… , 𝑍𝑛−1) axes along the motion axes of joint 1, joint 2…, joint 𝑛, 

respectively, Therefore, the 𝑍𝑖 axis coincides with the motion axis of the joint 𝑖 + 1.   
 

                    

      Figure 3.10: Three-degrees-of-freedom (3-DOF) SCARA robot. 

Here, 𝑚1: The mass of link-1; 𝑚2: The mass of link-2; 𝑚3: The mass of link-3; 𝑙1: 

The length of link-1; 𝑙2: The length of link-2; 𝑑: The position of the end-effector; 𝑙𝑐1: 

Position of the center of mass link-1; and 𝑙𝑐2: Position of the center of mass link-2. 

Link-1 has mass 𝑚1 and inertia tensor 𝐼𝑐1, Link-2 has mass 𝑚2 and inertia tensor 𝐼𝑐2, 

Link-3 has mass 𝑚3 and inertia tensor 𝐼𝑐3.  
 

3.8.3 General Form of Transformation Matrix 

In this chapter, we will calculate the dynamic equation of the SCARA robot based on 

the formulas presented in this study using the mathematical formulation to determine 

the elements of the matrices 𝑀 and 𝐶 and the elements of 𝐺. The kinematics was 

described using Denavit–Hartenberg algorithm. Applying the rules of Denavit–

Hartenberg (DH) notions presented in section 3.3.1.1, we can easily represent the 

manipulator robot and thus calculate all the corresponding transition matrices. 

Transformation matrix for points in frame 𝐵1 to the base frame 𝐺: 
 

 

𝑇1
0 = [

𝑐𝑜𝑠(𝜃1) −𝑠𝑖𝑛(𝜃1)
𝑠𝑖𝑛(𝜃1) 𝑐𝑜𝑠(𝜃1)

0  𝑙1𝑐𝑜𝑠(𝜃1)
0  𝑙1𝑠𝑖𝑛(𝜃1)

0                 0
0                 0

        
1                0
0                1

]               (3.51)    

                                                 

Transformation matrix for points in frame 𝐵2 to the base frame 𝐵1:  
 

 

𝑇2
1 = [

𝑐𝑜𝑠(𝜃2) −𝑠𝑖𝑛(𝜃2)
𝑠𝑖𝑛(𝜃2) 𝑐𝑜𝑠(𝜃2)

 0 𝑙2𝑐𝑜𝑠(𝜃2)
 0  𝑙2𝑠𝑖𝑛(𝜃2)

0              0
0              0

1  0
0  1

]                                                    (3.52) 

𝑧0 
 𝑦0 

 

  𝑂𝑜 𝑥0 
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Transformation matrix for points in frame 𝐵3 to the base frame 𝐵2: 
 

 

𝑇3
2 = [

1   0
0   1

0     0
0      0

0   0
0   0

1 −𝑑
0    1

]                                                                                     (3.53) 

 

Using the relations 𝑇𝑒 =  𝑇3
0 = 𝑇1

0𝑇2
1𝑇3

2, we can calculate the following matrices: 

The overall transformation matrix between the end-effector frame and the base frame 

is: 
 

𝑇𝑒 =  𝑇3
0 = [

𝑐12 −𝑠12
𝑠12  𝑐12

 
0 𝑙1𝑐1 + 𝑙2𝑐12
0  𝑙1𝑠1 + 𝑙2𝑠12

0    0
0     0

 
1                 − 𝑑
0                    1

]                                                        (3.54) 

 

Using:  𝑐1 = 𝑐𝑜𝑠(𝜃1), 𝑠1 = 𝑠𝑖𝑛(𝜃1) , 𝑐2 = 𝑐𝑜𝑠(𝜃2), 𝑠2 = 𝑠𝑖𝑛(𝜃2),  

𝑐12 = 𝑐𝑜𝑠( 𝜃1 + 𝜃2), 𝑠12 = 𝑠𝑖𝑛(𝜃1 + 𝜃2) 

 

End-effector's (𝑥, 𝑦, 𝑧) coordinates were placed in the reference frames as a function 

of joint parameters (forward kinematics): 
 

[
𝑥
𝑦
𝑧
] = [

𝑙1𝑐𝑜𝑠(𝜃1) + 𝑙2𝑐𝑜𝑠(𝜃1 + 𝜃2)

𝑙1𝑠𝑖𝑛(𝜃1) + 𝑙2𝑠𝑖𝑛(𝜃1 + 𝜃2)
−𝑑
1

]                                                                      (3.55) 

 

Joint parameters as function of (𝑥, 𝑦, 𝑧) were measured at the reference frame (inverse 

kinematics): 
 

𝑥2 + 𝑦2 = (𝑙2𝑠𝑖𝑛(𝜃2))
2 + ((𝑙1 + 𝑙2𝑐𝑜𝑠(𝜃2))

2                                                     (3.56) 

𝜃2 = ±
𝑋2+𝑌2−[(𝑙2)

2+(𝑙1)
2]

2𝑙1𝑙2
                                                                                       (3.57) 

𝜃1 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) − 𝑡𝑎𝑛−1 (

𝑙2𝑠𝑖𝑛(𝜃2)

(𝑙1+𝑙2𝑐𝑜𝑠(𝜃2)
)                                                                (3.58) 

𝑑 = −𝑍                                                                                                                    (3.59) 
 

3.8.4 Properties of Inertia Matrix  

Let us first find the inertia matrices. For simplification of the calculation and since 

there is absence of the parameters' values, we consider that the bodies of the arm are 

stems. So, all the products of inertia are null as well as the moments of inertia tensors 

of three links with respect to the axes (𝑥,𝑦, 𝑧). 
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The inertia tensor matrix of the first link-1 is: 
 

𝐼1 = [

𝐼𝑥𝑥1 𝐼𝑥𝑦1
𝐼𝑥𝑦1 𝐼𝑦𝑦1

  𝐼𝑥𝑧1
  𝐼𝑦𝑧1

𝐼𝑥𝑧1 𝐼𝑦𝑧1 𝐼𝑧𝑧1

]                                                                                       (3.60) 

 

 

The inertia tensor matrix of the second link-2 is: 
 

 

𝐼2 = [

𝐼𝑥𝑥2 𝐼𝑥𝑦2
𝐼𝑥𝑦2 𝐼𝑦𝑦2

  𝐼𝑥𝑧2
  𝐼𝑦𝑧2

𝐼𝑥𝑧2 𝐼𝑦𝑧2 𝐼𝑧𝑧2

]                                                                                       (3.61) 

 

The inertia tensor matrix of the third link-3 is: 
 

  

𝐼3 = [

𝐼𝑥𝑥3 𝐼𝑥𝑦3
𝐼𝑥𝑦3 𝐼𝑦𝑦3

  𝐼𝑥𝑧3
  𝐼𝑦𝑧3

𝐼𝑥𝑧3 𝐼𝑦𝑧3 𝐼𝑧𝑧3

]                                                                                      (3.62) 

 

 

 

• Evaluation of the Dynamic Parameters: 𝑀(𝜃), 𝐶(𝜃, �̇�), 𝐺(𝜃) 
 

The elements of the inertia matrix 𝑀(𝜃) are: 
 

𝑀(𝜃) = [

𝑚11(𝜃) 𝑚12(𝜃) 𝑚13(𝜃)

𝑚21(𝜃) 𝑚22(𝜃) 𝑚23(𝜃)

𝑚31(𝜃) 𝑚32(𝜃) 𝑚33(𝜃)
] 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥                               (3.63) 

 

Now we are ready to form the inertia matrix 𝑀(𝜃). 
 

Here, 𝑚𝑖𝑗 where (𝑖 = 1, 2, 3) and (𝑗 = 1, 2, 3) are expressed, using equation (3.32): 

 

 

𝑚11(𝜃) = 𝑚1𝑙c1
2+𝐼𝑧𝑧1 +𝑚2(𝑙1

2 + 𝑙c2
2 + 2𝑙1𝑙c2 𝑐𝑜𝑠(𝜃2))+ 𝐼𝑧𝑧2 + 𝑚3(𝑙1

2 + 𝑙c2
2 +

2𝑙1𝑙c2 𝑐𝑜𝑠(𝜃2))+ 𝐼𝑧𝑧3                                                                                                (3.64) 

𝑚12(𝜃) = 𝑚21(𝜃) = 𝑚2(𝑙c2
2 + 𝑙1𝑙c2 𝑐𝑜𝑠(𝜃2)) +  𝑚3(𝑙c2

2 + 𝑙1𝑙c2 𝑐𝑜𝑠(𝜃2)) +

𝐼𝑧𝑧2 + 𝐼𝑧𝑧3                                                                                                              (3.65) 

𝑚22(𝜃) =  𝑚2𝑙c2
2 +𝑚3𝑙2

2 + 𝐼𝑧𝑧2 + 𝐼𝑧𝑧3                                                         (3.66) 

𝑚33(𝜃) = 𝑚3                                                                                                          (3.67) 

𝑚13(𝜃) = 𝑚31(𝜃) = 𝑚23(𝜃) = 𝑚32(𝜃) = 0          (3.68) 
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3.8.5 The Matrix of Centrifugal and Coriolis Forces 

We now determine the elements of the following matrix of centrifugal forces and 

Coriolis. They are as follows: 

The Coriolis/centripetal matrix 𝐶(𝜃, �̇�): 

𝐶𝑖𝑗,𝑘 = ∑
1

2
{
𝜕𝑚𝑖𝑗(𝜃)

𝜕𝜃𝑘
+
𝜕𝑚𝑘𝑖(𝜃)

𝜕𝜃𝑗
−
𝜕𝑚𝑘𝑗(𝜃)

𝜕𝜃𝑖
}𝑛

𝑖 𝜃�̇�, (𝑖, 𝑗, 𝑘 = 1,2, … . 𝑛)                           (3.69) 

 

Therefore, 
 

𝐶(𝜃, �̇�) = [

𝑐11(𝜃, �̇�) 𝑐12(𝜃, �̇�) 𝑐13(𝜃, �̇�)

𝑐21(𝜃, �̇�) 𝑐22(𝜃, �̇�) 𝑐23(𝜃, �̇�)

𝑐31(𝜃, �̇�) 𝑐32(𝜃, �̇�) 𝑐33(𝜃, �̇�)

]                                                      (3.70) 

 

Computing Christoffel symbols for using the formulas in equation (3.46), from where: 
 

𝐶11(𝜃, �̇�) = −𝑙1 𝑠𝑖𝑛(𝜃2)(𝑚3𝑙2 +𝑚2𝑙c2)𝜃2̇                                                          (3.71) 

𝐶12(𝜃, �̇�) = −𝑙1 𝑠𝑖𝑛(𝜃2)(𝑚3𝑙2 +𝑚2𝑙c2)𝜃1̇                                                          (3.72) 

𝐶21(𝜃, �̇�) = 𝑙1 𝑠𝑖𝑛(𝜃2)(𝑚3𝑙2 +𝑚2𝑙c2)𝜃1̇                                                             (3.73) 

𝐶13(𝜃, �̇�) = 𝐶31(𝜃, �̇�) = 𝐶22(𝜃, �̇�) = 𝐶23(𝜃, �̇�) = 𝐶32(𝜃, �̇�) = 𝐶33(𝜃, �̇�) = 0 (3.74) 

 

For simplicity and more systematic dynamical model, we consider the next 

assumptions: 
 

𝐼𝑧𝑧1 = 
1

12
𝑚1𝑙1, 𝐼𝑧𝑧2 = 

1

12
𝑚2𝑙2, 𝐼𝑧𝑧3 = 0, 𝑙c1 = 

1

2
𝑙1, 𝑙c2 =

1

 2
𝑙2                                 (3.75) 

3.8.6 The Gravitational Torque Vector 

To calculate the gravity, we must find the potential energy of the robot arm, as 

expressed by equations (3.35) and (3.37): 
 

𝑈1 = 𝑚1𝑔
𝑇𝑇1

0�̅�1 = 0    

𝑈2 = 𝑚2𝑔
𝑇𝑇2

0�̅�2 = 0                                                                                             (3.76) 

𝑈3 = 𝑚3𝑔
𝑇𝑇3

0�̅�3 = − 𝑚3𝑔    

When: 

𝑔𝑇 = [0  0 − 𝑔 ]  

�̅�1 = [1
2
𝑎1 0 0 1 ]  
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�̅�2 = [1
2
𝑎2 0 0 1 ]                                                                                                      (3.77) 

�̅�3 = [0 0 1
2
𝑎1 1 ]  

Where: 
  

𝑈(𝜃) = 𝑈1(𝜃) + 𝑈2(𝜃) + 𝑈3(𝜃)                                                                             (3.78) 

𝑈(𝜃) = −𝑚3𝑔                                                                                                        (3.79) 

Using this expression of total potential energy 𝐺𝑘 =
𝜕𝑈(𝜃)

𝜕𝜃𝑘
, we can calculate the 

elements of the gravity vector with the following equations. The gravity matrix 𝐺(𝜃) 

is as follows: 
 

𝐺1(𝜃) =
𝜕𝑈

𝜕𝜃1
= 0,  𝐺2(𝜃) =

𝜕𝑈

𝜕𝜃2
= 0, 𝐺3(𝜃) =

𝜕𝑈

𝜕𝜃3
= −𝑚3𝑔                                 (3.80)   

                       

The function 𝐺(𝜃) has been defined in a next equation as: 

𝐺(𝜃) =
𝜕𝑈(𝜃)

𝜕𝜃
= [

𝐺1(𝜃)

𝐺2(𝜃)

𝐺3(𝜃)
] = [

0
0

−𝑚3𝑔
]                                                                     (3.81) 

𝐺(𝜃) = [0  0−𝑚3𝑔]
𝑇                                                                                                    (3.82) 

 

We can write down the dynamic equations of the robot as: 

((
1

3
𝑚1 +𝑚2 +𝑚3) 𝑙1

2 + (
1

3
𝑚2 +𝑚3) 𝑙2

2 + (𝑚2 + 2𝑚3)𝑙1𝑙2 𝑐𝑜𝑠(𝜃2)) 𝜃1̈ 

+((1
3
𝑚2 +𝑚3)𝑙2

2 + (1
2
𝑚2 +𝑚3)𝑙1𝑙2 𝑐𝑜𝑠(𝜃2))𝜃2̈ − 𝑙1𝑙2(𝑚2 + 2𝑚3) 𝑠𝑖𝑛(𝜃2)𝜃1̇ +

𝑙1𝑙2(
1

2
𝑚2 +𝑚3)(𝑠𝑖𝑛(𝜃2)𝜃2̇ =𝜏1                                                                             (3.83) 

((1
3
𝑚2 +𝑚3)𝑙2

2 + (1
2
𝑚2 +𝑚3)𝑙1𝑙2 𝑐𝑜𝑠(𝜃2)) 𝜃1̈+((1

3
𝑚2 +𝑚3)𝑙2

2) 𝜃2̈ 

+𝑙1𝑙2(
1

2
𝑚2 +𝑚3)(𝑠𝑖𝑛(𝜃2)𝜃1̇ =𝜏2                                                                          (3.84) 

𝑚3𝜃3̈ −𝑚3𝑔 = 𝜏3                                                                                                   (3.85) 

 

The final-dynamic model of the manipulator can be expressed in the matrix form as 

follows: 
 

𝑀(𝜃) [

𝜃1̈
𝜃2̈

𝜃3̈

] + 𝐶(𝜃, �̇�) [

𝜃1̇
𝜃2̇

𝜃3̇

] + 𝐺(𝜃) = [

𝜏1
𝜏2
𝜏3
]                                                                (3.86) 
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We can write the matrices in component form: 

𝑀(𝜃) = [
𝑚11 𝑚12 0
𝑚21 𝑚22 0
0 0 𝑚33

], 𝐶(𝜃, �̇�) = [
𝑐11 𝑐12 0
𝑐21 0 0
0 0 0

]                                           (3.87) 

𝐺(𝜃) = [0  0 − 𝑚3𝑔]
𝑇, 𝜏1 = [𝜏1 𝜏2 𝜏3]

𝑇                                                                (3.88) 

 

Finally, we can write down the dynamic equations of three degrees-of-freedom (3-

DOF) for SCARA robot. They are as follows:  
 

 

[
 
 
 
 ((

1

3
𝑚1 +𝑚2 +𝑚3) 𝑙1

2 + (
1

3
𝑚2 +𝑚3) 𝑙2

2 + (𝑚2 + 2𝑚3)𝑙1𝑙2 𝑐𝑜𝑠(𝜃2)) ((
1

3
𝑚2 +𝑚3) 𝑙2

2 + (
1

2
𝑚2 +𝑚3) 𝑙1𝑙2 𝑐𝑜𝑠(𝜃2)) 0

((
1

3
𝑚2 +𝑚3) 𝑙2

2 + (
1

2
𝑚2 +𝑚3) 𝑙1𝑙2 𝑐𝑜𝑠(𝜃2)) ((

1

3
𝑚2 +𝑚3) 𝑙2

2) 0

0 0 𝑚3]
 
 
 
 

 

[

𝜃1̈
𝜃2̈
𝜃3̈

] + [

−𝑙1𝑙2(𝑚2 + 2𝑚3) 𝑠𝑖𝑛(𝜃2) 𝑙1𝑙2(
1

2
𝑚2 + 2𝑚3) 𝑠𝑖𝑛(𝜃2) 0

𝑙1𝑙2(
1

2
𝑚2 +𝑚3) 𝑠𝑖𝑛(𝜃2) 0 0

0 0 0

] [

𝜃1̇
𝜃2̇
𝜃3̇

] + [
0
0

−𝑚3𝑔
] = [

𝜏1
𝜏2
𝜏3
]                         (3.89)  
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CHAPTER 4 

MINIMUM-TIME PATH PLANNING FOR ROBOT MANIPULATORS  

USING PATH PARAMETER OPTIMIZATION WITH  

EXTERNAL FORCE AND FRICTIONS  

 

 

 

4.1 Introduction 

During recent years, robotics has become a significant topic of scientific research 

because of its application in many fields and in many research areas. It is one of the 

technologies that have the potential to shape/reshape the future of mankind. In many 

engineering applications, parametric trajectory is tracked when the robot moves 

through the desired path at a high velocity. In the path planning method, the path 

smoothens, which is very significant because if it is not smooth, a robot might make 

and unusual tilt, crash or make dangerous movements. The path planning algorithm of 

manipulative robots has become a very important and vast field of research. During 

the last few decades, several laws have been established. For an arm of a manipulator 

robot to reach a desired position regulation or follow a pre-defined trajectory 

continuation, so obviously, the motion planning must have certain properties 

robustness, speed, convergence or stability. 

In this research, the target is how to solve minimum-time path planning problem for 

the robot manipulator and finding the trajectory planning solution for the path using 

path parameter. In this chapter, we have presented the main algorithm for trajectory 

planning, and focused on minimum-time path planning method for robot manipulators 

using path parameter optimization algorithm with external force and frictions. 
 

4.2 Dynamic Modelling of the Robot Manipulator with Friction 

In this section, we have supposed that the manipulator's joint angles are represented 

by a vector 𝑞, so, the joint angle velocity will be �̇�, while �̈� will be the angular 

acceleration. The dynamic modelling equation of motion of the robot manipulator can 

be written as follows [89]:  
 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝑇                                                                              (4.1) 
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In this case, the total torque 𝑇 will be as follows: 
 

𝑇 = 𝑇𝑒𝑥𝑡 + 𝑇𝑐 + 𝑇𝑓                                                                                                  (4.2) 

 

Here, 𝑀(𝑞) ∈ 𝑅𝑛×𝑛 is the inertia matrix and 𝐶(𝑞, �̇�) ∈ 𝑅𝑛×𝑛 is a matrix that contains 

the information of centrifugal and Coriolis torques. Here, 𝐶 is not a unique matrix 

but 𝐶(𝑞, �̇�)�̇� is a unique vector. 𝐺(𝑞) ∈ 𝑅𝑛×𝑛 is the gravity torque, 𝑇 is the summation 

of total torques, and 𝑛 is a number of joints' angles. 𝑇𝑒𝑥𝑡, 𝑇𝑐 , and 𝑇𝑓 are the external 

force, control and friction torques, respectively. The external torque 𝑇𝑒𝑥𝑡 has been 

expressed in following equation [89]: 
  

𝑇𝑒𝑥𝑡 = 𝐽𝑇𝐹𝑒𝑥𝑡                                                                                                          (4.3) 
  

Here, 𝐹𝑒𝑥𝑡 is the external force at the robot's end-effector, and 𝐽𝑇is the transpose of the 

Jacobian matrix.  
 

 

4.3 Friction Modelling  

We consider that the external force is generated by friction between the end-effector 

and task plane, and its direction is along the opposite direction of the end-effector's 

velocity. We consider a model as follows: 
 

𝐹𝑒𝑥𝑡 = −𝜇𝑣𝑓𝑛�̂�𝑣                                                                                                       (4.4) 
 

 

In the mentioned expression, 𝑣 is the norm of the velocity vector of the end-effector, 

𝑓𝑛 is a normal force which is perpendicular to the surface that has velocity vector and 

the end-effector's link, 𝜇 is the friction coefficient, and �̂�𝑣 is a unit vector along the 

velocity tangent. The joint angle friction torque has been modeled [89]: 
 

𝑇𝑓 = 𝐾𝑐𝑠𝑖𝑔𝑛(�̇�) + 𝐾𝑣�̇�                                                                                           (4.5) 

 

Here, 𝐾𝑐 is a diagonal matrix that consists of the Coulomb's friction coefficients for 

any joint, and 𝐾𝑣 is another diagonal matrix having the viscous friction coefficients of 

the joint angles. 
 

4.4 Actuator Dynamics 

This section studies and analyzes the dynamic behaviour of the permanent-magnet DC 

motor system. Many researchers consider �̇� and �̈� to have constraints, but when the 

actuator is able to generate more torque, it will be able to generate higher jerk and 
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acceleration, so the limitations on the time derivatives of the joint angles come from 

the actuators. 

Consequently, the added limitations on the time derivatives of the joint angles will 

cause more limitation for the robot, so we will not use the actual potential of the robot. 

Here, we will consider the transmission of rotation between the actuators and the arm 

of the robot as being guaranteed by the mechanical transmission system of the gears. 

Although this mechanism reduces the angular velocity of the motor, it increases the 

generated torque of the motor [89]: 

𝑇𝑐 = 𝑁𝑇𝑚 

𝑁 = 𝑑𝑖𝑎𝑔([𝑁1, … , 𝑁𝑛])                                                                                          (4.6) 

�̇� = 𝑁−1�̇�𝑚    

Here, 𝑁 is the diagonal matrix of the transmission gear system, 𝑇𝑚 the vector of 

motor's torque, �̇�𝑚 is the speed of the motor.  

 

4.5 DC Motor System Modelling 

This section analyzes the dynamic behavior of the permanent-magnet DC motor, 

which is the driving force of the robotic manipulator. For studying it, first a 

mathematical model has been developed for the DC motor. The joint angle motors are 

generally DC motors. The use of Kirchhoff's voltage law for armature windings has 

been shown in Figure 4.1. The DC motor system equations are as follows [90]: 

 

𝐼̇ = 𝐿−1(−𝑅𝐼 − 𝐾𝑏𝑒𝑚𝑓�̇�𝑚 + 𝑈)                                                                     

                                                                                                                                 (4.7) 

𝑇𝑚 = 𝐾𝑚𝐼   

 
                                         

                           Figure 4.1: DC motor system equivalent circuit. 



5

9 

 
 

60 

 

Here, 𝐿 = 𝑑𝑖𝑎𝑔([𝐿1, 𝐿2, … , 𝐿𝑛]) is a diagonal matrix that contains the motor 

inductance elements and 𝑅 = 𝑑𝑖𝑎𝑔([𝑅1, 𝑅2, … , 𝑅𝑛]) is a matrix that contains the 

armature resistances, 𝐾𝑏𝑒𝑚𝑓 = 𝑑𝑖𝑎𝑔([𝐾𝑏𝑒𝑚𝑓1
, 𝐾𝑏𝑒𝑚𝑓2

, … , 𝐾𝑏𝑒𝑚𝑓𝑛
]) shows the back 

electromotive force constant matrix, 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑛) is the input voltage vector, 

𝐼 = (𝐼1, 𝐼2, … , 𝐼𝑛) is the armature current of each DC motor system, and 𝐾𝑚 =

𝑑𝑖𝑎𝑔([𝐾1, 𝐾2, … , 𝐾𝑛]) is the motor torque constant matrix.  
 

By substituting equation (4.7) into the equation (4.6), we get: 
 

𝑇�̇� = 𝐴𝑇𝑐 + 𝐵�̇� + 𝐷𝑈                                                                                                (4.8) 

𝐴 = 𝑑𝑖𝑎𝑔 ([−
𝑅1

𝐿1
, −

𝑅2

𝐿2
, … , −

𝑅𝑛

𝐿𝑛
 ])    

𝐵 = 𝑑𝑖𝑎𝑔 ([−
𝐾𝑚1𝐾𝑏𝑒𝑚𝑓1

𝑁1
2

𝐿1
, −

𝐾𝑚2𝐾𝑏𝑒𝑚𝑓2
𝑁2

2

𝐿2
, … , −

𝐾𝑚𝑛𝐾𝑏𝑒𝑚𝑓𝑛
𝑁𝑛

2

𝐿𝑛
])                    (4.9) 

𝐷 = 𝑑𝑖𝑎𝑔 ([
𝐾𝑚1𝑁1

𝐿1
,
𝐾𝑚2𝑁2

𝐿2
, … ,

𝐾𝑚𝑛𝑁𝑛

𝐿𝑛
])  

 

As a result, the augmented equations of the motion of the robot manipulator will be as 

follows: 
 

𝑇𝑐 = 𝑀�̈� + 𝐶�̇� + 𝐺(𝑞) − 𝑇𝑒𝑥𝑡 − 𝑇𝑓                                                                         (4.10) 

 

By calculating the time derivative of equation (4.10), we have: 
 

𝑇�̇� = �̇��̈� + 𝑀𝑞 + �̇��̇� + 𝐶�̈� +
𝜕𝐺

𝜕𝑞
�̇� − �̇�𝑒𝑥𝑡 − �̇�𝑓                                                       (4.11) 

 

Equation (4.8) has been rearranged as follows: 
 

𝑈 = 𝐷−1(𝑇�̇� − 𝐴𝑇𝑐 − 𝐵�̇�)                                                                                     (4.12) 
 

Here, �̇�𝑒𝑥𝑡 and �̇�𝑓 are calculated using equation (4.3), thus: 

 

�̇�𝑒𝑥𝑡 = 𝐽�̇�𝐹𝑒𝑥𝑡 + 𝐽
𝑇�̇�𝑒𝑥𝑡                                                                                                   (4.13) 

When the normal force is constant, by calculating the time derivative of 𝐹𝑒𝑥𝑡 using 

equation (4.4), we obtain the following: 
 

�̇�𝑒𝑥𝑡 = −𝜇�̇�𝑓𝑛�̂�𝑣 − 𝜇𝑣𝑓𝑛�̂��̇�                                                                                     (4.14) 
 

Here, �̂�𝑣  and �̂��̇� are the unit vectors of velocity and its time derivative, respectively. 

In conclusion, when the desired joint angles and their first, second and third-time 
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derivatives were known, in order to calculate 𝑈, we needed to calculate 𝑇𝑐 using the 

desired path, after which, equation (4.11) was used to calculate the 𝑇�̇�. Finally, by 

using equation (4.12), 𝑈 was calculated.  
 

4.6 Constrained Dynamic System of the Robot Manipulator 

This section introduces and discusses benefits of constraints. There are a number of 

constraints, which emerge because of the limitations of the robot. These constraints 

can be divided into two-groups, out of which, the first-group is related to kinematic 

constraints such as constraints in the joint angles, angular velocity, angular 

acceleration, jerk and higher time derivatives of the joint angles. We can consider 

limitations for the higher time derivatives of the joint angles. The second-group is 

related to the constraints on the actuators. The equations for the constrained dynamic 

system of the motors are as follows [90]: 
 

|�̇�𝑚𝑖| ≤ �̅̇�𝑚𝑖                                                                                                     (4.15.a) 

|𝐼𝑖| ≤ 𝐼�̅�                                                                                                               (4.15.b) 

|𝑈𝑖| ≤ �̅�𝑖                                                                                                             (4.15.c) 

|𝐼�̇�| ≤ 𝐼̇ ̅𝑖                                                                                                               (4.15.d) 

√
1

𝑡𝑓
∫ 𝐼𝑖

2(𝑡) 𝑑𝑡
𝑡𝑓
0

≤ 𝐼�̅�𝑖 , for (𝑖 = 1, 2, … , 𝑛)                                                        (4.15.e) 

Here, 𝑛 is the number of joint angles, and �̅̇�𝑚𝑖, 𝐼�̅�, �̅�𝑖, 𝐼
̇ ̅
𝑖 , 𝐼�̅�𝑖 represent the maximum 

admissible motor speed, current, feeding voltage, the time derivative of current and 

braked motor current, respectively. Finally, we converted these constraints into robot 

manipulator constraints as follows: 
 

 

|�̇�𝑖| ≤ 𝑁−1�̅̇�𝑚𝑖                                                                                                     (4.16.a) 

|𝑇𝑐𝑖| ≤ 𝑁𝐾𝑚𝐼�̅�                                                                                                      (4.16.b) 

|𝑇�̇�𝑖| ≤ 𝑁𝐾𝑚𝐼̇
̅
𝑖                                                                                                       (4.16.c) 

√
1

𝑡𝑓
∫ 𝑇𝑐𝑖

2(𝑡)𝑑𝑡
𝑡𝑓
0

≤ 𝑁2𝐾𝑚
2𝐼�̅�𝑖

2
, for (𝑖 = 1, 2, … , 𝑛)                                           (4.16.d) 

 



5

9 

 
 

62 

 

Where: 

�̇�𝑖, 𝑇𝑐𝑖 , 𝑇�̇�𝑖 , and√
1

𝑡𝑓
∫ 𝑇𝑐𝑖

2(𝑡)𝑑𝑡
𝑡𝑓
0

  

 

The four above mentioned variables represent the angular velocity of joint angles, the 

control torque, the time derivative of the torque, and guaranteed term for harmless 

overtaking of the permanent operating range [91]. 
 

4.7 Definition of the Parametric Trajectory Optimization Problem 

In robotic applications, we need to track a desired trajectory in the Cartesian-space. 

There are two ways of finding a trajectory that must be considered as a part of path 

planning solution.  

The first one is called as a trajectory of robot manipulators, which are defined by the 

way point method to solve the path planning problem using the optimization method, 

and it does not have analytical formulation. Some researchers suggested a second 

approach, which is a technique related to a path parameter, and it is defined by the 

independent parameter. In this case, the path parameter is parameterized by using a 

time-independent scalar-path parameter.  

In this study, when the path parameter has discontinuities in 𝑘th time derivatives, then 

the path and all the dynamics will have discontinuities at the 𝑘th and the higher 𝑘th 

derivative, for example, when the second-time derivative of path parameter had a 

discontinuity between the intermediate-points of the linear acceleration, angular 

acceleration, jerk (a derivative of acceleration), and other time derivatives will also 

have discontinuities. Sometimes, this path is analytically formulated and parametrized 

with an independent parameter, which is a function of time. This independent 

parameter approach given in this chapter is also called as path parameter algorithm. In 

the following discussion, there is a free parameter for the path that has to be defined 

as a function of time, when the free parameter is known as a function of time and some 

parameters of a manipulator like time history of joint angles, angular velocities, or 

torque of the joint are known.  

We are interested in performing a task with a robot keeping in view the minimum-time 

path planning problem. Thus, the cost function will be as follows: 
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4.7.1 The Cost Function  

In this case, the cost function will be: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽 = ∫ 𝑑𝑡 =
𝑡𝑓
0

𝑡𝑓                                      (4.17.a) 

Where, 𝐽 is the cost function in the objective function, and 𝑡𝑓 is the final-time.  

4.7.2 Subject to the Constraints 

𝑇�̇� = �̇��̈� + 𝑀𝑞 + �̇��̇� + 𝐶�̈� +
𝜕𝐺

𝜕𝑞
�̇� − �̇�𝑒𝑥𝑡 − �̇�𝑓   

𝑈 = 𝐷−1(𝑇�̇� − 𝐴𝑇𝑐 − 𝐵�̇�)   

|�̇�𝑖| ≤ 𝑁−1�̅̇�𝑚𝑖                                                                                                   (4.17.b) 

|𝑇𝑐𝑖| ≤ 𝑁𝐾𝑚𝐼�̅�                                                                                                        

|𝑇�̇�𝑖| ≤ 𝑁𝐾𝑚𝐼̇
̅
𝑖      

√
1

𝑡𝑓
∫ 𝑇𝑐𝑖

2(𝑡)𝑑𝑡
𝑡𝑓
0

≤ 𝑁2𝐾𝑚
2, for (𝑖 = 1, 2, … , 𝑛) 

Where, 𝑀 and 𝐶 are functions of 𝑞 and �̇�, respectively; therefore, the time derivative 

of these matrices is as follows: 

𝑀 =̇ ∑  𝑛
𝑖=1

𝜕𝑀

𝜕𝑞𝑖
�̇�𝑖 , �̇� = ∑  𝑛

𝑖=1
𝜕𝐶

𝜕𝑞𝑖
�̇�𝑖 + ∑  𝑛

𝑖=1
𝜕𝐶

𝜕�̇�𝑖
�̈�𝑖                                                 (4.18)    

                                                                                                            

4.8 Dynamic Parameter of the Robotic Manipulator 

Suppose the purpose of path planning is to track a desired path in the Cartesian-space 

that is parameterized by 𝛾. The position of end-effector 𝑟 is a function of the path.  

 

Figure 4.2: Trajectory planning along a parameterized path. 

y 

     z 

 𝒙   

𝒕 = 𝒕𝟎 
𝒕 = 𝒕𝒇 

𝒓𝒇 
𝒓𝟎 

𝒓(𝜸) 

Desired Path 
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The sample trajectory has been shown in Figure 4.2, the coordinates of the start and 

stop-points are 𝑟0 and 𝑟𝑓 . When the robot is at the starting-point, for simplicity, 𝛾 can 

be represented by 𝛾(𝑡0) = 0, and at the stopping-point, it is 𝛾(𝑡𝑓) = 𝛾𝑓. It is necessary 

to specify the initial-position and the final-position of the end-effector.  
 

4.8.1 Objective Function 

The aim of this optimization algorithm technique is to find 𝛾(𝑡) to minimize the cost 

function equation (4.17.a) by considering the constraints equation (4.17.b). In this 

case, polynomial approach is taken to convert the function optimization into a 

parameter optimization problem; therefore, the approach will provide a sub-optimal 

solution; however, 𝛾(𝑡) has a number of constraints because of the manipulator 

limitations. First, we know 𝛾 has two constraints based on the definition of the path at 

the first and the end-times as follows: 
 

𝛾(𝑡0) = 𝛾(0) = 0                                                                                                   

𝛾(𝑡𝑓) = 𝛾𝑓                                                                                                                (4.19) 

 

Where, 𝛾(𝑡) is a function of time and the unknowns (𝑥, 𝑦, 𝑧) are components of 

position vector 𝑟 for minimum-time path planning. We have to find the shape of 

function 𝛾(𝑡) such that the robot manipulator is able to start from point 𝑟0 and move 

through the desired path towards the 𝑟𝑓 in the minimum-time. This desired path is 

fixed, and it will not change with time.  

When the robot wants to move through the desired path with high velocity, the 

actuators might be unable to generate the desired torques, so there are some constraints 

that we have to take into account.  

To find other constraints, we define the relation between the kinematic constraints in 

the Cartesian-space and the joint-space; therefore, we start by finding the relation 

between the velocity, acceleration, and jerk as functions of time in the Cartesian-space, 

thus: 
 

 

�̇� = v = 𝑟′�̇� 

�̈� = 𝑎 = 𝑟′′�̇�2 + 𝑟′�̈�                                                                                                 (4.20) 

𝑟 = 𝒥 = 𝑟
′′′�̇�2 +2𝑟′′�̈� + 𝑟′𝛾 
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Here, v, 𝑎, and 𝒥  represent velocity, acceleration, and jerk of the end-effector, 

respectively. The relation between kinematic parameters in the Cartesian-space and 

the joint space are given as follows: 
 

v = 𝐽�̇� 

𝑎 = 𝐽�̇̇� + 𝐽�̈�                                                                                                             (4.21) 

𝒥 = 𝐽�̇̈� + 2𝐽�̈̇� + 𝐽𝑞 
 

Here, 𝐽, 𝐽,̇ and 𝐽 ̈ are the Jacobian, first and second-time derivatives of the Jacobian 

matrix, respectively. It is desirable for the velocity, acceleration and jerk to be zero at 

the initial-point.  
 

4.8.2 The Conditions 

Thus, by using equation (4.20); �̇�,  �̈�,  𝑞,⃛  will be zero. These conditions are simple in 

the view of the actuators for starting because the commands of the actuator will not 

jump to the maximum. 
 

4.8.3 Initial and Final Conditions 

Hence, if at the starting-point, the velocity, acceleration and jerk are zero in the 

Cartesian-space, the time derivatives of the path parameter �̇�(0), �̈�(0) and 𝛾(0) will 

be zero; therefore, the initial-conditions for 𝛾(𝑡) will be: 
 

𝛾(0) = 0 

�̇�(0) = 0                                                                                                        (4.22) 

�̈�(0) = 0 

𝛾(0) = 0 
 

It is necessary to define the final-conditions for the path parameter. We know that 𝛾𝑓 

is known by the definition of the path, so again, in order to have zero velocity, zero 

acceleration, and zero jerk in the Cartesian-space and the joint spaces, the final- 

condition for 𝛾(𝑡) will be: 
 

𝛾(𝑡𝑓) = 𝛾𝑓 

�̇�(𝑡𝑓) = 0                                                                                                              (4.23) 

�̈�(𝑡𝑓) = 0 

𝛾(𝑡𝑓) = 0 
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For a sub-optimal solution, suppose the function 𝛾(𝑡) is approximated by time-series 

as follows: 
 

𝛾(𝑡) = ∑ 𝑎𝑖
𝑛
𝑖=4 𝑡𝑖                                                                                                     (4.24) 

 

In the above format, all the initial-conditions were satisfied but the final-conditions 

were not. For maintaining simplicity to meet the final-conditions, we will consider a 

model for 𝛾(𝑡) as follows: 
 

𝛾(𝑡) = 𝐴𝛾1(𝑡) + 𝐵𝛾2(𝑡) + 𝐶𝛾3(𝑡) + 𝐷𝛾4(𝑡)                                                         (4.25) 
 

Here, 𝐴, 𝐵, 𝐶, and 𝐷 are constant and unknown parameters, and 𝛾1, 𝛾2, 𝛾3 and 𝛾4 have 

a format as given in equation (4.25); therefore, they will satisfy the initial-conditions: 
 

 

𝛾1(𝑡) = ∑ 𝑎𝑖
𝑛
𝑖=4 𝑡𝑖       

𝛾2(𝑡) = ∑ 𝑏𝑖
𝑛
𝑖=4 𝑡𝑖                                                                                                 (4.26) 

𝛾3(𝑡) = ∑ 𝑐𝑖
𝑛
𝑖=4 𝑡𝑖  

𝛾4(𝑡) = ∑ 𝑑𝑖
𝑛
𝑖=4 𝑡𝑖                                                                                                                 

 

When, 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖, and 𝑑𝑖 , (𝑖 = 4,… , 𝑛), and 𝑡𝑓 are known, we can calculate 𝐴, 𝐵, 𝐶, and 

𝐷 as follows: 
 

𝐴𝛾1(𝑡𝑓) + 𝐵𝛾2(𝑡𝑓) + 𝐶𝛾3(𝑡𝑓) + 𝐷𝛾4(𝑡𝑓) = 𝛾𝑓 

𝐴𝛾1̇(𝑡𝑓) + 𝐵𝛾2̇(𝑡𝑓) + 𝐶𝛾3̇(𝑡𝑓) + 𝐷𝛾4̇(𝑡𝑓) = 0  

𝐴𝛾1̈(𝑡𝑓) + 𝐵𝛾2̈(𝑡𝑓) + 𝐶𝛾3̈(𝑡𝑓) + 𝐷𝛾4̈(𝑡𝑓) = 0                                                    (4.27) 

𝐴𝛾1⃛(𝑡𝑓) + 𝐵𝛾2⃛(𝑡𝑓) + 𝐶𝛾3⃛(𝑡𝑓) + 𝐷𝛾4⃛(𝑡𝑓) = 0 

 

In equation (4.27), there are four unknown parameters 𝐴, 𝐵, 𝐶, and 𝐷 when 

𝛾1, 𝛾2, 𝛾3 and 𝛾4 are known at the final-time. For the satisfaction of the final- 

conditions, we can write:  
 

[

𝐴
𝐵
𝐶
𝐷

] =

[
 
 
 
 
𝛾1(𝑡𝑓)   𝛾2(𝑡𝑓)   𝛾3(𝑡𝑓)   𝛾4(𝑡𝑓)

�̇�1(𝑡𝑓)   �̇�2(𝑡𝑓)   �̇�3(𝑡𝑓)   �̇�4(𝑡𝑓)

�̈�1(𝑡𝑓)   �̈�2(𝑡𝑓)   �̈�3(𝑡𝑓)   �̈�4(𝑡𝑓)

𝛾1(𝑡𝑓)   𝛾2(𝑡𝑓)   𝛾3(𝑡𝑓)   𝛾4(𝑡𝑓)]
 
 
 
 
−1

[

𝛾𝑓 
0
0
0

]                                                  (4.28) 
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Hence, when 𝐴, 𝐵, 𝐶, and 𝐷 are selected from equation (4.28), the initial and final- 

conditions will always be satisfied. Consequently, 𝛾(𝑡) will be the function of the 

unknown vector as given below: 
 

𝛾(𝑡) = 𝛾(𝑥, 𝑡) 

𝑥 = [𝑎4, … , 𝑎𝑛, 𝑏4, … , 𝑏𝑛, 𝑐4, … , 𝑐𝑛, 𝑑4, … , 𝑑𝑛, 𝑡𝑓]
𝑇                                                 (4.29) 

 

Where, 𝑥 is an unknown vector that is calculated by minimizing the cost function 

through equation (4.17.a), which is subject to the dynamic constraints of the robot 

equation (4.17.b). Therefore, the function of this optimization problem is to minimize 

the equation (4.17.a); so, the constraints equation (4.17.b) will be as follows: 
 

• Cost Function: 
 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐽(𝑥) = [0(1𝑥4)(𝑛−4) 1]𝑥                             (4.30) 

 

 

• The Constraint Equations: 
 

𝑇𝑐 = 𝑀�̈� + 𝐶�̇� + 𝐺(𝑞) − 𝑇𝑒𝑥𝑡 − 𝑇𝑓    

𝑇�̇� = �̇��̈� + 𝑀𝑞 + �̇��̇� + 𝐶�̈� +
𝜕𝐺

𝜕𝑞
�̇� − �̇�𝑒𝑥𝑡 − �̇�𝑓        

𝑈 = 𝐷−1(𝑇�̇� − 𝐴𝑇𝑐 − 𝐵�̇�)     

|�̇�𝑖| ≤ 𝑁−1�̅̇�𝑚𝑖                                                                                                        (4.31) 

|𝑇𝑐𝑖| ≤ 𝑁𝐾𝑚𝐼�̅�   

|𝑇�̇�𝑖| ≤ 𝑁𝐾𝑚𝐼̇
̅
𝑖  

√
1

𝑡𝑓
∫ 𝑇𝑐𝑖

2(𝑡)𝑑𝑡
𝑡𝑓
0

≤ 𝑁2𝐾𝑚
2𝐼�̅�𝑖

2
, for (𝑖 = 1, 2, … , 𝑛) 

 

4.9 Managing the Constraints of the Optimization Problem of Robot Path 

Planning 

The purpose behind the algorithm of the optimization problem is to minimize the final-

time 𝑡𝑓 subjected to the dynamics of the robot manipulator. As mentioned previously, 

unknown parameters are collected in the vector 𝑥; therefore, the objective function can 

be written as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑥) = 𝑥�̂�+1 = 𝑡𝑓                                                                                   (4.32) 
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Where, �̂� is the number of unknown parameters for modelling 𝛾(𝑡); therefore, 

4(𝑛 − 4) = �̂�; however, many constraints exist due to the limitations pertaining to 

angular velocity, motor input voltages, and the torques of the motors. These constraints 

may appear at different times.  

We can manage the constraints of the problem at any time by adding the previous 

constraints. A simple method of doing this is to divide the time between the initial and 

final-points with known and constant 𝑚 incremental-times. The constraints listed in 

Table 4.1 have two types. The first type consists of differential equations and the 

second type consists of non-linear or linear equations of inequality. 

In this study, we suggest rewriting every constraint without solving the differential 

equations. We know that some constraints may appear at all times, so we can manage 

the constraints of the problem at any time by adding them to the previous constraints. 

A simple algorithm has been used to generate new constraints for any time-interval; 

therefore, when the vectors 𝑥 and 𝑡𝑓 are known, we can divide the 𝑡𝑓 by 𝑚 incremental-

times as follows: 
 

∆𝑡 =
𝑡𝑓 

𝑚
, 𝑡𝑘 = ∆𝑡𝑘, (𝑘 = 0,… ,𝑚)                                                                          (4.33) 

To prepare the constraints as a function of the unknown vector 𝑥, first the initial-time 

𝑥0 is generated  as a random vector. This random vector will guarantee the first and 

end-conditions of the path parameter, but it is very important for it to adjust it for other 

constraints as well. Table 4.1 shows the processes of generating of constraints. (See 

appendix A).  

In Table 4.1, 𝑎 and 𝑎 are respectively used to represent the maximum and minimum 

of parameter 𝑎. Therefore, the size of the constraints at each step will increase. There 

are ten constraints in each 𝑡𝑘, so the size of the constraint vector at the end will 

be 10(𝑚 + 1). In equation (4.31), there is an integral equation for any motor.  
 

This integral can be written as follows: 
 

∆𝑡 ∑  𝑁
𝑖=1 𝑇𝑐𝑖

2 = 𝑁∆𝑡�̅�𝑐𝑖
2
                                                                                         (4.34) 

 

Thus, by the end of every iteration, another constraint is added to the previous 

constraints. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

 

 

5.1 Introduction 

This chapter discusses the simulations and their results pertaining to the robotic 

manipulator. For simulation, MATLAB has been used for the proposed algorithm, 

which we applied to the manipulator test and trials. We used dynamic robot 

manipulator model for synthesizing the motion. 

Moreover, we have presented theoretical results, which were obtained through the 

mentioned simulation program in order to understand and analyze the overall impact. 

We used MATLAB because now it is a universally acceptable process for simulation.  
 

5.2 Robot Simulation Dynamic Model 

The SCARA robot and its kinematic and dynamic models have been used in a previous 

simulation study as well [91] but in the current thesis, we have considered some 

significant additional parameters and considered even small changes to obtain accurate 

simulations.   

The robot manipulator model has been shown in Figure 5.1, which we have used for 

experiments. The mathematical form of simulation is given below: 
 

 

[
(3.78 + 0.272𝑐𝑜𝑠𝑞2 + 0.022𝑠𝑖𝑛𝑞2) + (0.08 + 0.136𝑐𝑜𝑠𝑞2 + 0.011𝑠𝑖𝑛𝑞2)

(0.08 + 0.136𝑐𝑜𝑠𝑞2 + 0.011𝑠𝑖𝑛𝑞2)
  
0
0.08

] [
�̈�1
�̈�2
] +

[
(0.011𝑐𝑜𝑠𝑞2 − 0.136𝑠𝑖𝑛𝑞2) + (�̇�2 + �̇�1) + 0.07 

(0.011𝑐𝑜𝑠𝑞2 − 0.136𝑠𝑖𝑛𝑞2)�̇�1
 
(0.011𝑐𝑜𝑠𝑞2 − 0.136𝑠𝑖𝑛𝑞2)�̇�1

0.013
] [
�̇�1
�̇�2
] =

[
𝑇𝑐1
𝑇𝑐2
] + [

(0.62𝑠𝑖𝑔𝑛�̇�1)
(0.17𝑠𝑖𝑔𝑛�̇�2)

] + [
𝐾𝑣1
0
 
0
𝐾𝑣2

] [
�̇�1
�̇�2
] + [

𝑇𝑒𝑥𝑡1
𝑇𝑒𝑥𝑡2

]                                             (5.1) 

 

For two-link or (2-DOF) robot manipulator, the kinematics equations are based on the 

end-effector's position, and they are a function of joint angles and the robot 

manipulator's length. It can be expressed in matrix form as follows: 
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𝑟 = [
𝑥
𝑦] = [

𝑙1𝑐𝑜𝑠𝑞1 + 𝑙2𝑐𝑜𝑠(𝑞1 + 𝑞2)
𝑙1𝑠𝑖𝑛𝑞1 + 𝑙2𝑠𝑖𝑛(𝑞1 + 𝑞2)

]                                                                  (5.2) 

 

Now applying the given direct kinematic, we can express the inverse kinematic 

equations in the following form: 
 

𝑞1 = 𝑡𝑎𝑛
−1 (

𝑦

𝑥
) − 𝑡𝑎𝑛−1 (

𝐾2

𝐾1
)                                                                                         (5.3) 

𝑞2 = 𝑡𝑎𝑛
−1 (

𝑠𝑖𝑛(𝑞2)

𝑐𝑜𝑠(𝑞2)
)                                                                                                         (5.4) 

In this case, the formulas for 𝐾1, 𝐾2, 𝑠𝑖𝑛(𝑞2) and 𝑐𝑜𝑠(𝑞2) are as follows: 

𝐾1 = 𝑙1 + 𝑙2𝑐𝑜𝑠(𝑞2), 𝐾2 = 𝑙2𝑠𝑖𝑛(𝑞2)                                                                   (5.5)                                                                        

𝑠𝑖𝑛𝑞2 = ±√1 − 𝑐𝑜𝑠𝑞22                                                                                                   (5.6) 

𝑐𝑜𝑠𝑞2 =
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2𝐿1𝐿2
                                                                                             (5.7) 

 
 

 

 Figure 5.1: Photo of the IRCCyN SCARA robot. 
 

The robot manipulator parameters have been mentioned in Table 5.1. (See appendix 

A).    

Here, the normal force is 𝑓𝑛 = 0.1𝑁. We have shown the actuators' electro-mechanical 

constraints in Table 5.2. (See appendix A).    
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5.3 Discussion on Simulation of Results 

This section shows that the simulations were performed for plotting Figure 5.1 with 

the help of a pencil, which is attached to the end-effector. By doing this, we will draw 

the desired path while the end-effector must track the given path. In this case, the 

Cartesian path is a function of the path parameter, which can be expressed in matrix 

form as given below: 
 

𝑟 = [
𝜌𝑠𝑖𝑛(𝛾)

0.5𝜌𝑐𝑜𝑠(𝛾)
]                                                                                                    (5.8) 

If we take the derivatives of 𝑟 based on path parameter 𝛾, the derivatives will be as 

follows: 
 

𝑟′ = [
𝜌′ 𝑠𝑖𝑛(𝛾) + 𝜌𝑐𝑜𝑠(𝛾)

0.5𝜌′𝑐𝑜𝑠(𝛾) − 0.5𝜌𝑠𝑖𝑛(𝛾)
]                                                                          (5.9) 

𝑟′′ = [
𝜌′′ 𝑠𝑖𝑛(𝛾) + 2𝜌′ 𝑐𝑜𝑠(𝛾) − 𝜌𝑠𝑖𝑛(𝛾)

0.5𝜌′′𝑐𝑜𝑠(𝛾) − 𝜌′𝑠𝑖𝑛(𝛾) + 0.5𝜌𝑐𝑜𝑠(𝛾)
]                                                  (5.10)  

𝑟′′′ = [
𝜌′′′ 𝑠𝑖𝑛(𝛾) + 3𝜌′′𝑐𝑜𝑠(𝛾) − 3𝜌′𝑠𝑖𝑛(𝛾) + 𝜌𝑐𝑜𝑠(𝛾)

0.5𝜌′′′𝑐𝑜𝑠(𝛾) − 1.5𝜌′′𝑠𝑖𝑛(𝛾) − 0.5𝜌′𝑐𝑜𝑠(𝛾) − 𝜌𝑠𝑖𝑛(𝛾)
]                      (5.11) 

Here, 𝜌, 𝜌′, 𝜌′′and 𝜌′′′ can be mathematically expressed as follows: 
 

𝜌 = 0.4 − 0.1𝛾𝑐𝑜𝑠(𝛾), (0 ≤ 𝛾 ≤ 2000)                                                              (5.12) 

𝜌′ = −0.1𝑐𝑜𝑠(𝛾) + 0.1𝛾𝑠𝑖𝑛(𝛾)                                                                                   (5.13) 

𝜌′′ = 0.2 𝑠𝑖𝑛(𝛾) + 0.1𝛾𝑐𝑜𝑠 (𝛾)                                                                                    (5.14) 

𝜌′′′ = −0.4 𝑠𝑖𝑛(𝛾) − 0.1𝛾𝑐𝑜𝑠 (𝛾)                                                                        (5.15) 

 

We have presented the desired path in Figure 5.2 with clearly marked starting and 

stopping-points, which are as follows: 
 

𝑟0 = [
0
0.2
]𝑚                                                                            

𝑟𝑓 = [
−0.1965
−0.2699

]𝑚                                                                                                (5.16)                                                                                   
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Figure 5.2: Desired path in a 2-D Cartesian-space. The blue curve shows  

          the motion along the x-axis and y-axis, respectively. 
 

 

 

The outcomes of the simulations and the desired path from the starting-point to the 

end-point in 2-D Cartesian-space have been illustrated in Figure 5.2. For 

approximating 𝛾 as a function of time, the value of 𝑛 in equation (4.24) was taken as 

𝑛 = 10. The Taylor expansion contains terms up to 𝑡10. Thus 𝑎𝑖 = 𝑏𝑖 = 𝑐𝑖 = 𝑑𝑖 = 0 

while (𝑖 = 1,… ,4).  
 

Now we'll find the number of unknown parameters. Since 𝛾 is (4 × 6); we added 𝑡𝑓 to 

it so it will be (4 × 6 + 1 = 25) unknown parameters; therefore, we used normal 

distribution for generating the path parameter coefficients. Here, the final-time for the 

movement was initially estimated as (17) seconds.  
 

The time ranges between (0) to (17) seconds, which has been further divided into 

(5000) points. They are shown in Table 5.1 (See appendix A). Hence, the total number 

of constraints is (50,000). In case of iteration, the number of constraints will increase 

if the time is increasing. When the optimization algorithm was applied, the final-time 

was (14.4296) seconds, and the results were found, which are given below. The path 

parameter, its first, second, and third-time derivatives have been shown in Figures 5.3 

and 5.4, which are showing simulation results. 
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Figure 5.3: The corresponding optimal path parameter for                          

moving end-effector. 

 

        

Figure 5.4: The time derivatives of the path parameter with zero starting and ending  

have been shown in green, blue, and red curves respectively. 
 

 

Now we know the end-point trajectory. The results shown in Figure 5.3 demonstrate 

that the path parameter starts at zero and ends at (200 𝑑𝑒𝑔 = 3.4907 𝑟𝑎𝑑). The test 

results show that the path parameters result in smooth graph formation while 

Figure 5.4 depicts the first three-time derivatives of the path parameter. These 

parameters have zero values both at the starting and ending-points. In addition, the 

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

g
a
m

a
 (

ra
d
)

0 5 10 15
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (sec)

ti
m

e
 d

e
ri
v
a
ti
v
e
s
 o

f 
p
a
th

 p
a
ra

m
e
te

r 
(r

a
d
/s

e
c
, 

ra
d
/s

e
c2

, 
ra

d
/s

e
c

3
)

 

 

gama-dot

gama double dot

gama triple dot



5

9 

 
 

74 

 

first-time derivative assumes positive value. We discovered that 𝛾 is an increasing 

function; therefore, the end-effector always goes towards the final-point when the time 

increases, and it does not move in the backward direction. Some of the other 

derivatives were positive while some of them were negative because the system 

changes the acceleration along the Cartesian reference path. 

              

               Figure 5.5: The time history of each joint angle. The blue and green curves  

                        show the values for joint 1 and joint 2, respectively. 

 

Figure 5.6: The time derivative of the first joint with zero starting and   

ending shown by green, blue, and red lines, respectively. 
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Figure 5.7: The time derivative of the second joint with zero starting and ending shown  

in green, blue, and red, respectively. The curve exists in the 2-D space. 
 

 

Figure 5.5 shows the joint angles while Figures 5.6 and 5.7 show the first second and 

third time-derivatives of the joint angles, respectively. It is obvious that the time 

derivatives of the joint angles show smoothness at the beginning and end-points where 

they are equal to zero. The simulations and the figures show that the angular velocity 

of the joint angles has both positive as well as negative values; therefore, the robot 

changes its angular velocity. If we take the absolute values of the maximum angular 

velocities, they are [
1.5
1.757

] 𝑟𝑎𝑑/𝑠𝑒𝑐, so they exist within the defined range, which has 

been shown in Table 5.2 (See appendix A).     
 

          

 

 

 

 

 

 

 

 
 

     Figure 5.8: The value, velocity, acceleration, and jerk with zero starting and  

           ending points along the 𝑥-direction in 2-D Cartesian-space. 
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Figure 5.9: The value, velocity, acceleration, and jerk with zero starting and 

  ending along the 𝑦-direction in the Cartesian-space. 
 

 

Figures 5.8 and 5.9 show that the third time derivatives of the joint positions have been 

used for calculating the joint velocity, acceleration, and jerk, which have zero values 

at the first and the end-times; therefore, their graphs are smooth, while the end-effector 

smoothly moves through the Cartesian-space. So far, the functions that described the 

end-point trajectory either moved in the x direction or the 𝑦 direction, and we 

differentiated them with respect to time. 

                                
 

Figure 5.10: Computed torques for each joint angle with zero starting and ending points. 

The blue and green curves show torque at joint 1 and joint 2, respectively. 
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Figure 5.11: The time derivative of the first and second joints with zero starting and ending 

with torque computations. The blue and green curves correspond to the first  

and the second derivative of control torque, respectively. 
 

 

Figures 5.10 and 5.11 show the torque of the joint angles and time derivatives of the 

torques. Again, the torque, and the first time derivative are smooth, and have zero 

values at the start and stop-times. 
 

 

   Figure 5.12: Actuator feeding voltages of the motor with zero starting and ending.  

      The blue and green curves show voltage at joint 1 and joint 2, respectively. 
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The simulations illustrated in Figure 5.12 show the feeding voltage of the motors. They 

show smooth curves and have zero values both at the starting and stopping points. In 

this case, it is obvious that the robot uses maximum voltages for link-one, which is 

(20) volts and uses (15.161) volts for the second-link; so, the feeding voltages are 

within the range. The algorithm has a smooth input voltage, and smooth path that 

reduces the dynamic reactions of a robot when the motor operations start and stop.  
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CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS  

 

 

6.1 Conclusions  

After considering all the important factors, and conducting the experiments, we have 

summarized the following conclusions: 

The main purpose of this research was to investigate the possibility of improving the 

path planning algorithm performance for an industrial robot's manipulator. For our 

research work, we used a new technique based on path parameter optimization 

algorithm to resolve the path planning problem in the Cartesian-space in the presence 

of external forces and friction. The actuators of the robot are modelled for permanent-

magnet DC motors keeping in view their constraints. The goal of this thesis is to 

develop a minimum-time path planning mechanism to move the industrial robot from 

one-point or position to the desired end-point minimizing the travelling time. The aim 

is to minimize the cost function, which is subjected to constraints such as angular 

velocities, angular accelerations, angular jerks, input torques, input voltage and final-

time; therefore, the key purpose of this research is to optimize the time taken for the 

robotic manipulator system to move on a pre-defined path. By dividing the time 

between the start and stop, the path parameter optimization algorithm is converted to 

optimize the cost function, which is subjected to some equality nonlinear constraints 

and inequality linear constraints. 

MATLAB simulation has been used for path planning solution of a manipulator with 

a desired path within the Cartesian-space. The path parameter is used for the 

formulation of the desired path as a function of time. A polynomial model has been 

considered for the path parameter so that it can guarantee constraints at the starting 

and ending-points. Consequently, the initial three-time derivatives of the joint angles 

and the position of the end-effector are equal to zero. In addition, the overall outcome 

in terms of voltages, torques, and time derivatives of the torques are equal to zeros in 

the boundary conditions. It is obvious that the approach can hold all the constraints 
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pertaining to the actuators including other kinematics constraints between the initial 

and final-times.  
 

Consequently, the method used in this research was sub-optimal because we used 

polynomial model for the path parameter; therefore, it isn't the global optimum-point. 

The best advantages of the method include smoothness of all the dynamic and 

kinematic parameters, and more importantly, we were able to automatically control 

the start and stop-conditions. The computer-aided simulation study shows satisfactory 

performance responses of the method for the robotic manipulator's path planning. We 

introduced a method for path planning problem and parametric trajectories under the 

external force of the robot manipulator, which is driven by permanent-magnet DC 

motors. For this purpose, path planning for a robot arm was optimized for finding a 

minimum-time path planning solution. The path planning was carried out by 

simulating a model in the MATLAB function, which is based on a given input to the 

robot along the path for the minimum-time consumption between the start and stop-

points. Since this problem is important because it has industrial implications, new 

operating procedures should be introduced to improve the quality and the functionality 

of the presented approaches to robotics. Efforts should be made to generate smooth 

trajectories with minimum jerk and other constraints.  
 

6.2 Recommendations and Future Work 

Some possible directions for future work include addition of some new factors and 

components: Future research efforts should be focused on resolving the path planning 

problem with better solutions and improvement of the already developed models. 

Improvement of models by adding the complete modelling of the selected factors in 

the model and simulating the model in different spaces is highly recommended. For 

the future work, some research work pertaining to this study can be organized as 

follows: 

• Applying the optimization strategy has been proposed using algorithm for 

solving minimum-time path planning method for multi-point manufacturing 

tasks. Using the start-stop movements, the path planning problem has been 

converted into a Travelling Salesman Problem (TSP) and a series of point-to-

point minimum-time transfer path planning problems can be used to 

parameterize the transfer path and then the path parameters are optimized to 
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obtain the minimum point-to-point transfer time. A new Travelling Salesman 

Problem with minimum-time index should be constructed and then solved by 

using a classical Genetic Algorithm (GA) according to the proposed approach. 

• In future, optimization algorithms should be designed and used to solve the 

path planning problem of robot manipulators by finding the shortest path in 

real-time in the presence of obstacles. The problem should be approached from 

the control perspective, and the configuration-space should be searched for 

path points, which optimize the cost function. This method should be 

implemented via a multi-pass sequential localized search via a backtracking 

technique. Further, the proposed technique converges to a global-optimal or a 

sub-optimal algorithm solution. The specified algorithm should be 

implemented on a (3-DOF) manipulator arm, and it should be analyzed for cost 

and time of execution.  

• This thesis strongly recommends applying other types of inputs like cubic-

spline trajectory planning. The optimal trajectory planning algorithm has been 

developed for planning minimum-time smooth motion trajectories for 

manipulators, and it also controls uncertainty, so it is recommended to be 

included. Optimal trajectory planning algorithm has been divided into two 

phases. The first phase encompasses derivation of minimum-time optimal 

trajectory using cubic-spline because of its less vibration and other 

characteristics. Although cubic-splines are widely used in robotics, velocity 

and acceleration ripples in the first and last knots can worsen the manipulator 

trajectory. The second phase includes changing cubic-spline interpolation in 

the first and last knots of optimized trajectory with 7th order polynomial for 

having zero jerks at the beginning and end-points of the trajectory. Particle 

Swarm Optimization (PSO) method has been chosen as optimization algorithm 

because of its easy implementation and successful optimization performance. 

Using the 7th order, the mean of 7th order derivative, and the seventh-order 

spline will require that the control points must satisfy several constraints. For 

manipulators, the path is generally planned for some-point on the platform. 

Assuming that it is the centre-point of the platform, the control points require 

less than eight constraints for positioning include velocity and accelerations, 

then 7th order derivative should be given some initial-condition. In the 
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following lines, we'll turn to each parameter of our path planning algorithm 

and discuss its possible impact on the performance. First of all, we would like 

to know how the performance changes with the type of chosen trajectory. We 

have presented and analyzed the techniques for improving trajectory quality by 

changing the trajectory. Until now, we have implemented two representative 

trajectory types, and the polynomial point-to-point motion. 
 

 

 
  

   Figure 6.1: Trajectory path parameterization. 

 
 

• Polynomial Trajectories 

In this section, we'll focus on the trajectory generation with a polynomial. In this 

setting, the movement of each dimension is a polynomial movement. Firstly, the 

case, in which, the robot stops at each base point has been analyzed, and afterwards, 

we'll look into the path motion, on which, the robot does not stop at every base point. 

Polynomials with a higher-degree can be used but we only need to get a continuous 

function for calculating the values and the velocity. 
 

• Requirements for Trajectories 

Generate a time-optimal path independent of trajectories/band limits. 

 
                                     
                                         Parameterized Path 
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• Other ways based on the conclusions of this research can be used for time-

optimal path planning algorithm for a manipulator to find the best path 

according to the cost function and taking into account the kinematical 

constraints of the manipulator. Efforts should be made to assure time efficiency 

and cost minimization. The manipulator's end-effector should move in a 

complex 3-D workspace from an initial-configuration to a given final-

configuration. Then, the path planning algorithm should be formulated as a 

global-optimization problem, which is solved using a Genetic Algorithm, and 

it can be applied to solve the optimization problem with goals and constraints 

consisting of planning the end-effector trajectory, avoiding collisions between 

the robots and the obstacles (with small magnitude), and minimizing energy 

consumption with multiple populations. The path planning problems that we 

focused on were constrained, since we want to stay within the dynamic limits 

of the robot. This situation can occur often enough, which can decrease the 

amount of computations the robot needs to do. The main innovations and 

contributions of the proposed approach are following: 
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• Any shape of the robot can be accommodated, and the collision checking 

is not combinatorial. 

• Some kind of constraints for path selection might emerge. These 

constraints are known as path constraints. 

• The manipulator's kinematical constraints (path, maximum velocity, 

acceleration, and jerk) must be considered. 
 

By suggesting this, we assume that a (2-DOF) manipulator operating in a 3-D 

workspace is cluttered with static obstacles. The overall requirements that must be 

satisfied are as follows: 
 

• The obstacles have known position and shape, and they are static. 

• The desired initial-point and final-point are fixed and known. 
 

 

         
 

 

Figure 6.2: (a) The projection of the solution path (blue curve) taking place in X-Y 

Cartesian-space. (b) The projection of the solution path (blue curve)  

taking place in X-Y Cartesian-space. 
 

 

 

 
 

Figure 6.3: The projection of the end-effector's path in X-Y Cartesian-space. 
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Figure 6.4: (a) The end-effector trace while the manipulator is moving from  

           the starting-point to the final-point. (b) Another point of view. 

• The plan is to employ the designed Neural Network (NN) controllers to control 

the performance of path planning algorithms of robotic manipulators with or 

without a mathematical model, which would make them effective for both 

planned and unplanned trajectory tracking problems of any degree-of-freedom. 

The robotic manipulator can be used to design inverse kinematic controller of 

the robot arm. A neural network consists of an interconnected group of 

artificial neurons, and it processes information using the connectionist 

approach to computation. There is little research that has been done for 

applying the neural networks for the purpose of path planning for robot 

manipulators.  

Modern neural networks are non-linear statistical data modelling tools. They 

are usually used to model complex relationships between inputs and outputs or 

to find patterns in the obtained data. To simulate the given method of path 

planning, the initial-point and the destination-point were randomly defined 

while the camera sensor mounted in the environment was used to detect the 

points of collision and the destination. The neural network used in this method 

was back-propagation feed-forward network. The path planning method 

implemented in this work can be extended to use for multi-robot environment, 

which contains more than one object. By using this method, the path planning 

algorithm can be accomplished without any prior knowledge of the 

environment while it also ensures that minor changes in the environment may 

not affect effective path planning of the robot for future research on this topic. 
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Examples are: planning for robots, minimal-time planning method, and real-

time motion planning. 

Neural network is an important area of application in the field of robotic motion 

planning. It is used as a cost function with some techniques to increase the 

degree-of-freedom and higher dimensional work spaces but that increases 

complexity. Thus, the neural network used for solving the inverse kinematics 

solves path planning problems for robots at a higher degree-of-freedom, which 

is necessary to improve the quality of the path. It can produce off-line data of 

position and end-effector of a robot, which helps formulating a relation 

between position of the joint and the end-effector. A neural network can 

determine the relation between the joint position and the end-effector. 
 

        𝛾 = 𝑓(𝑡𝑖, 𝜔, 𝑡𝑓), 𝛾(𝑡, 𝑃)                                                                           (6.1)                                                                      

                   𝑃 = [

 𝑡𝑖
𝛾
𝜔
𝑡𝑓

]                                                                                           (6.2) 

Some other parameters can also be considered such as mathematical 

complexity, stochastic nature of the path planner, local minima solving, and 

uncertainties etc. 
 

 

 

 

 

 

 

 

 

           

  Figure 6.5: Proposed methodology of using neural network architecture. 

 

The proposed neural network will be able to follow the desired joint position and speed 

trajectories with an acceptable error even in disturbance. The structure of the network, 

which contained a large number of neurons in the hidden layer, can lengthen the time 

needed for training and weight adjustment process. This large structure of the network 
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increases with the degree-of-freedom (DOF) of the manipulator. As mentioned earlier, 

a number of neurons can be placed in different configurations (layers) to form a neural 

network (perceptron). A perceptron network may consist of a single layer or multiple 

layers of neurons. A single layer perceptron consists of a number of neurons placed in 

a parallel structure. Figure 6.5 shows a single layer perceptron, which consists of a 

number of neurons while each of them has its own activation function, which might 

be similar or different from the functions of other neurons, and its own weight vector 

that connects it to the input vector. The complexity of the input connections with the 

neurons of a single layer perceptron’s is evident from Figure 6.5. Since there is no 

limit to the number of inputs applied to a single layer perceptron or the number of 

neurons that may be placed in a layer, a more simplified representative notation of a 

single layer perceptron has been used, as shown in Figure 6.5. We have applied a 

cognitive neural network, which is used to determine a collision-free shortest path of 

a robot from the initial-point to the destination in an unknown environment. Moreover, 

a neural network has been created, which is used by its non-linear functional 

approximation. 
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APPENDIX  

Appendix [A]: TABLES  

1. Kinematics Parameters: 

                          Table 3.1: Kinematics parameters. 
 

Arm Parameters Symbol Revolute Joint Prismatic Joint 

Joint Angle 𝜃 Variable Fixed 

Joint Distance 𝑑 Fixed Variable 

Link Length 𝑎𝑖−1 Fixed Fixed 

Link Twist Angle 𝛼𝑖−1 Fixed Fixed 

 

2. Dynamic Parameters: 

                                       Table 3.2: Representing the SCARA robot parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Symbol Values 

Mass of the first link-1 𝑚1 1 𝑘𝑔 

Mass of the second link-2 𝑚2 1 𝑘𝑔 

Mass of the third link-3 𝑚3 1 𝑘𝑔 

Length of the link-1  𝑙1 = 𝑎1 1 𝑚 

Length of the link-2 𝑙2 = 𝑎2  1 𝑚 

Length of the link-3  𝑑 1 𝑚 
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3. Denavit-Hartenberg (DH) Parameters: 

 

                    Table 3.3: The SCARA robot arm parameters. 

 

                                                                                                    

 

 

 

 

 

                                                                                                            *For joint variable  

4. Generating Constraints: 

                Table 4.1: Managing constraints for the optimization problem at time 𝑡𝑘 . 

Link Joint Angle 

𝜃 

Twist Angle 

𝛼𝑖−1 

Link Length 

𝑎𝑖−1 

Link Offset 

𝑑 

1 𝜃1 0 𝑙1  0 

2 𝜃2 0 𝑙2  0 

3 𝜃3 𝜋 0 −𝑑 

Initial-time - Initial estimate of the final-time 𝑡𝑓(0) 

- Generating random vector 𝑥 

 

For 𝑘 = (1,… ,𝑚) 

- Using of 𝑥, calculate 𝛾𝑘 , �̇�𝑘 , �̈�𝑘, 𝛾𝑘 

- Using equation (4.20), calculate 𝑟𝑘 , �̇�𝑘, �̈�𝑘 , 𝑟𝑘 

- Calculate: 

𝑞𝑘 = 𝑞(𝑟𝑘) 

𝐽𝑘 and 𝐽�̇� 

�̇�𝑘 = 𝐽𝑘
−1𝑟𝑘

′�̇�𝑘 𝐽�̇� 

𝑣 = 𝐽𝑘𝑞�̇� 

- Calculate: 

𝑀𝑘(𝑞𝑘), 𝐶𝑘(𝑞𝑘 , �̇�𝑘), 𝐺𝑘 , 𝑇𝑒𝑥𝑡𝑘, 𝑇𝑓𝑘
 

�̈�𝑘 = 𝐽𝑘
−1(−𝐽�̇��̇�𝑘 + 𝑟𝑘

′′�̇�𝑘
2 + 𝑟𝑘

′�̈�𝑘) 

𝑇𝑐𝑘 = 𝑀𝑘�̈�𝑘 + 𝐶𝑘�̇�𝑘 + 𝐺𝑘𝑞𝑘 − 𝑇𝑒𝑥𝑡𝑘 − 𝑇𝑓𝑘
 

- Calculate: 

�̇�𝑘(𝑞𝑘, �̇�𝑘), 𝐶�̇� , 𝐺�̇� , �̇�𝑒𝑥𝑡𝑘, �̇�𝑓𝑘
 

𝑞𝑘 = 𝐽𝑘
−1(−𝐽𝑘

−1�̇�𝑘 − 2𝐽�̇��̈�𝑘 + 𝑟𝑘
′′′�̇�𝑘

2 + 2𝑟𝑘
′′�̈�𝑘 + 𝑟𝑘

′𝛾𝑘) 

�̇�𝑐𝑘 = �̇��̈� + 𝑀𝑞 + �̇��̇� + 𝐶�̈� +
𝜕𝐺

𝜕𝑞
�̇� − �̇�𝑒𝑥𝑡 − �̇�𝑓 

𝑈𝑘 = 𝐷
−1(�̇�𝑐𝑘 − 𝐴𝑇𝑐𝑘 − 𝐵�̇�𝑘) 

- Constraints are: 
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5. Parameters of the Robot Manipulator: 

                              Table 5.1: Parameters of the IRCCyN SCARA robot. 

Task 

 𝑁0 
𝜇 𝐾𝑣 𝐾𝑐 

𝑙(𝑚) 
 

1 0.2 0.4 0.01 0.21  

2 0.2 0.3 0.01 0.3  

 

 

 

6. The Electro-Mechanical Constraints of the Actuators: 

   Table 5.2: Electro-mechanical constraints of the SCARA robot. 

Axis �̅� 

(𝑣𝑜𝑙𝑡) 

𝑞 

(𝑑𝑒𝑔) 

�̅̇� 

(𝑟𝑎𝑑. 𝑠−1) 
 

1 20 0-270 1.5  

2 20 0-180 2  

 

 

 

 

 

𝐶𝑘 =

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑈𝑘 − �̅�
𝑈 − 𝑈𝑘 
 𝑇𝑐𝑘 − �̅�𝑐
𝑇𝑐 − 𝑇𝑐𝑘

�̇�𝑘 − �̅̇� 
�̇� − �̇�𝑘 

�̇�𝑐𝑘 − �̅̇�𝑐

�̇�𝑐 − �̇�𝑐𝑘
𝛾𝑘 ≥ 0
�̇�𝑘 ≥ 0 }

 
 
 
 
 
 

 
 
 
 
 
 

≤ 0 
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