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ABSTRACT

MASTER THESIS

VOICE AND DATA TRAFFIC MODELING AND PREDICTION FOR A
THIRD GENERATION MOBILE NETWORK USING MACHINE
LEARNING METHODS

Yasin YUR

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF COMPUTER ENGINEERING

Supervisor : Assoc. Prof. Dr. M. Fatih AKAY
Year: 2017, Pages: 107
Jury : Assoc. Prof. Dr. M. Fatih AKAY
: Asst. Prof. Dr. B. Melis OZYILDIRIM
: Asst. Prof. Dr. Onur ULGEN

The purpose of this thesis is to derive models for traffic characteristics of a
3G network which is commercially deployed in Turkey and predict voice and data
traffic by using various machine learning methods. The machine learning methods
which were employed are Support Vector Machines (SVM), Multilayer Perceptron
(MLP), Random Forest (RF) and Radial Basis Function Neural Network (RBF).
Additionally, the Holt-Winters method has been applied to develop prediction
models as a statistical method. Four different type of UMTS network traffic data
have been utilized in order to build traffic prediction models. The performance of
the forecasting models for the data sets has been assessed using Mean Absolute
Percentage Error (MAPE). Finally, the performance of statistical and machine
learning regression methods have been compared and the results show that SVM
and Holt-Winters based models usually perform better than the ones obtained by
the other methods.

Key Words: Machine learning, time series, UMTS traffic forecasting, time lags
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YUKSEK LiSANS TEZi

MAKINE OGRENME YONTEMLERI KULLANILARAK UCUNCU NESIL
MOBIL SEBEKELERDEKI SES VE DATA TRAFIKLERI ICIN iLERi
YONLU TRAFIK TAHMIN MODELLERININ GELISTIRILMESI

Yasin YUR

CUKUROVA UNIVERSITESI
FEN Bi_piMLERi ENSTITI"JSI"J
BILGISAYAR MUHENDISLiGi ANABILiM DALI

Danmisman  : Dog. Dr. M. Fatih AKAY
Yil: 2017, Sayfa: 107

Juri : Dog. Dr. M. Fatih AKAY
: Yrd. Dog. Dr. B. Melis OZYILDIRIM
- Yrd. Dog. Dr. Onur ULGEN

Bu tezin amaci, iigiincii nesil mobil sebekelerin devre anahtarlamali ses ve
paket anahtarlamali veri trafikleri igin ileri yonlii tahminin yapilmasini saglayan
daha akilli modeller gelistirmektir. Trafik tahmin modelleri ilk olarak makine
Ogrenimi ile olusturulmus ve icerik olarak dort farkli yontem kullanilmistir. Bu
yontemler sirasi ile Destek Vektdér Makinesi (Support Vector Machine - SVM),
Cok Katmanli Algilayict (Multilayer Perceptron - MLP), Radyal Tabanl
Fonksiyon Sinir Ag1 (Radial Basis Function Neural Network — RBF) ve Rasgele
Orman’dir (Random Forest). flave olarak istatistiki bir yontem olan Holt-Winters
methodu kullanilarak trafik tahmin modeli gelistirilmistir. Trafik tahmin modelleri
iretilirken UMTS sebekesine ait olan dort farkli tipteki gercek trafik bilgileri
kullanilmigtir. Modellerin performansi Ortalama Mutlak Yiizde Hata (MAPE)
degeri hesaplanarak degerlendirilmistir. Sonuglar, genel olarak SVM tabanli ve
Holt-Winters tabanli modellerin diger yontemlerden daha iyi performans elde
ettigini géstermektedir.

Anahtar Kelimeler: Makine 6grenme, zaman serileri, UMTS trafik tahmini,
zaman gecikmeleri




GENISLETILMIS OZET

Gunlimuzde yeni nesil iletisim teknolojileri ve hava arayiiziindeki artan
frekans ve band genislikleri ile daha fazla kapasitenin kullaniciya sunulmasi, mobil
ses ve data trafik talebini dramatik bir sekilde yiikseltmektedir. Bununla beraber
iilkemizde ge¢mis zamanlara gore ucuzlayan mobil veri kullanimi ve farkli ihtiyag
paketlerinin kullaniciya sunulmasi veri kullaniminin hergegen giin artmasina
olanak saglamaktadir. Bu gercekler dogrultusunda artan trafik miktarinin tahmin
edilmesi iglemi mobil operatorler igin sebeke kapasite analizi ile beraber yatirim
gereksinimlerinin dogru boyutlandirilmasi ve dolayisi ile aboneye sunulacak servis
kalitesinin arttirilmas1 gercekleri ile blytik 6nem arz etmektedir.

Uciinci nesil mobil sebekeler igin ileri yonlii trafik tahmin islemini
yapabilecek yontemler ya da uygulamalar simirli sayidadir. Ticari olarak satis1 olan
iriinlerin ¢esitliligi ile iilke igerisinde bulunabilirligi yeterli seviyelerde degildir.
Bunun yaninda mevcut ve kullanimda olan geleneksel istatistiki yontemlerde yer
almaktadir. Ancak bu uygulamalarin hata seviyeleri bu derece énemli ve kritik bir
operasyon igin ¢ok yiksek seviyelerdedir. Bu gerekgelerden dolayi, trafik tahmin
islemini yapabilecek ve yapilan bu tahmini dogru 6l¢eklendirebilecek daha akilli
modellere biiyiik gereksinim duyulmaktadir.

Bu tezin amaci1 TUlrkiye’de ticari olarak servis veren bir operatdrin Gglncl
nesil mobil sebekesi i¢in makine 6grenimine dayali yontemler kullanilarak ileri
donemli ses ve data trafik tahmini saglayan modeller gelistimektir.

Literatiirde trafik tahmini tizerine yapilmis ¢aligmalar mevcuttur. Bu ¢aligmalar
icerisinde makine O6grenme yontemleri ve istatiksel regresyon yontemleri
kullanilmigtir. Tez kapsaminda, literatiirdeki diger tiim ¢alismalardan farkli olarak;
daha fazla sayida ve daha Once denenmemis olan makine 6grenme yoOntemleri

kullanilarak elde edilen modellerin performanslari birbirleri ile ve ilave olarak



istatiksel bir regresyon yontemi olan Holt-Winters metodu kullanilarak olusturulan
modellerin performansiyla da karsilastirilmistir. Bu 6zgiin degere ilave olarak
litratiirde yer alan diger ¢alismalar igerisinde Tiirkiye’deki ti¢ilincii nesil mobil bir
sebekenin trafik servis modellemesi c¢alismasina rastlanmamustir. Bu nedenle
yuksek lisans tezi ile ilk defa Tlrkiye’de yer alan {igiincii nesil mobil bir sebekenin
trafik modellemesi yapilmistir. Ayrica literatiirdeki diger galismalarin igerisinde
hem ses hemde data trafigini ayn1 anda kapsayip modelleyen bir ¢alismada mevcut
degildir. Yiiksek lisans tezi bu iki trafik tipini ayn1 anda modelleyen ilk ¢alisma
olmustur.

Tez icerisinde ii¢ farkli veri seti kullanmilmistir. Bu setler sirasi ile saatlik,
glinlik ve haftalik olarak ses ve data trafik bilgilerini icermektedir. Ses trafigi veri
seti icerisinde yer alan bilgilerin birimi Erlang ve data veri seti icerisindeki
bilgilerin birimi ise bit olacaktir. Veri setleri Tiirkiye’de servis veren ii¢iincii nesil
mobil bir sebekenin gegmis donemli canli sebeke kayitlarindan derlenmistir.

Makine 6grenme yontemleri olarak Destek Vektdr Makinesi (Support Vector
Machine - SVM), Cok Katmanli Algilayici (Multilayer Perceptron - MLP), Radyal
Tabanli Fonksiyon Sinir Agi (Radial Basis Function Neural Network — RBF),
Rasgele Orman (Random Forest) kullamlmistir. ilave olarak istatiksel regresyon
yontemi kullanilarak da bir modelleme yapilmistir. Bu islem icerisinde yontem
olarak Holt-Winters metodu kullamilmistir. Modellemeler sonucunda istatiksel
regresyon yontemi ve makine Ogrenme yOntemlerinin performanslari
karsilastirilmigtir. Sonug olarak farkli makine 6grenme yoOntemleri ve istatiksel
regresyon yontemleriyle analiz edilip, en iyi tahmin modelleri, en iyi tahmin
modelini veren zaman gecikmeleri ve en basarili yontem kargilagtirmsi yapilmusgtir.
Modellerin performansi Ortalama Mutlak Yiizde Hata (Mean Absolute Percentage
Error — MAPE) degeri hesaplanarak degerlendirilmistir.



Elde edilen modellerin performansi goz 6nune alindiginda, ¢esitli sonuglara
varilmaktadir. Her seyden 6nce, SVM tabanli modeller ve istatistiksel tabanli Holt-
Winters modelleri ile diger regresyon yontemleri kullanilarak gelistirilen modellere
gbre daha iyi tahmin sonuglar1 elde edilmistir. Performans 6l¢itl MAPE’ye gore
sonucu en iyiden en kétllye dogru siralanacak sekilde 3G / UMTS sebekesi trafik
tahmin performansi agisindan regresyon yontemlerinin basar1 sirasi, SVM, Holt-
Winters, MLP, RF ve RBF olarak yer almaktadir.

Sonug olarak bu tez genisletilerek gelecekteki ¢alismalar i¢in farkli alanlara
taginabilir. Farkli zaman gecikmeleri ile farkli makine 6grenme yontemleri 3G /
UMTS ag trafigini tahmin etmek i¢in uygulanabilir. Ayrica, bu ¢alisma kolayca
dordincu nesil (4G / LTE) gibi yeni nesil kablosuz telekomiinikasyon teknolojisi
yada yakin zamanda gelistirilmesi tamamlanarak uygulamaya doniisecek besinci

nesil  (5G) mobil aglar icin kullanmilacak  sekilde genisletilebilir.
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1. INTRODUCTION

1.1. UMTS Network

Since 1998, Third Generation Mobile Telecommunication System has been
deployed for enabling mobile accessible wireless data (packet switched) and voice
(circuit switched) services. Universal Mobile Telecommunication System (UMTS)
is the term used in Europe for 3" generation (3G) networks and is planned to make
the move from 2" generation systems smoother, yet in the end, supplant them. This
implies UMTS will, in the long haul, bolster all applications at present served by
2" generation cell frameworks, for example, GSM and PDC, cordless frameworks
like DECT, and satellite frameworks like IRIDIUM (WCDMA for UMTS, 2004).

The UMTS Network comprises Radio Network Controllers (RNC), Radio
Base Stations (Node B), an O&M system including RANOS (Radio Access
Network Operation System), TRAM (Tools for Radio Access Management) and
Core Network (CN) as shown in Figure 1.1.

Network Management system

CN/other
Core Network . '_ management appl. |
Radio Access Network RANOS TRAM
RNC I Radio Tools for
" Access Radio
Network Access
Operation Management
Support
Node B IL .

User Equipment

Figure 1.1 UMTS Network (Ericsson WCDMA/UMTS System Overview, 2001)
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Wideband code division multiple access (WCDMA) radio access
technology used in UMTS offers greater spectral efficiency and bandwidth. The
frequency from 400 MHz to 3 GHz is allocated for communication spectrum. The
following frequency bands are currently identified for UMTS in all three 1TU
Regions: 450 — 470 MHz, 790 — 960 MHz, 1710 — 2025 MHz, 2110 — 2200 MHz,
2300 — 2400 MHz and 2500 — 2690 MHz. Additional frequency bands identified
for IMT on a Regional or National basis are 698-790 MHz (Region 2), 610 — 790
MHz (9 countries in Region 3: Bangladesh, China, Rep. of Korea, India, Japan,
New Zealand, Papua New Guinea, Philippines and Singapore), 3400 — 3600 MHz
(Over 80 Administrations in Region 1 plus 9 in Region 3 including India, China,
Japan and Rep. of Korea). (WCDMA for UMTS, 2004).

In the direction of these developments, data transfer for downlink
connection is 384 Kbps for the first release in 1999 (R99, the first UMTS release),
and 7.2 Mbps for future release in which HSDPA technology, also called 3.5G,
was introduced. For the uplink, the data transfer ranges from 384 Kbps to 5.76
Mbps theoretically (3GPP, 1999). The latest release (Release 11) of UMTS can
provide peak data rates up to 337.5 Mbps in the downlink and 22 Mbps in the
uplink, using a combination of air interface improvements as well as multiple cell
and Multiple Input Multiple Output features together (3GPP, 2014).

The new technology provides greater bandwidth and higher throughput.
Therefore, more capacity is required to meet higher user expectation. It is also
obvious that crowded games, special events, and high-tech conventions are
notorious for overwhelming cell-phone networks with up and down of traffic. In
such cases, linear planning of network and classical prediction methods do not
work well and the design of the networks come under surge of unusual things.

So, networks need to be well designed, dimensioned and deployed to cope
with expected or unexpected situations. Most important necessities for these tasks
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are developing accurate traffic models and making reliable traffic prediction. More
accurate traffic prediction means that more realistic results can be achieved.
Predictive modelers also estimate future traffic demands and help
telecommunications carrier plan accordingly. They start by collecting a carrier’s
data to understand what has gone on in a network and what it looks like now—how
much traffic is transmitted, what percentage is voice or video or text, what path it
takes through the network. Then they run simulations to assess the impact if, for
instance, a carrier starts selling the iPhone, or changes its marketing plan, or moves

from 3G to 4G services.

1.2. Literature

1.2.1 Previous Work on Network Traffic Prediction

In (Chan, et. al., 2006), an access control protocol has been proposed for an
integrated voice, video, and non-real-time data traffic on the forward link (cell-site
to mobile). The protocol contains predicting the remaining capacity available for
the HSDPA packet data traffic. It evaluates the traffic models based on Markovian,
AR and TSMR processes. Among the three models, the AR and TSMR show
higher performance compared with the Markov model.

In (Buerger et. al., 2008), four different models including linear,
exponential, ARMA and DHR methods have been used for forecasting packet
services traffic in 3G networks. It has been shown that sophisticated models (i.e.
models based on ARMA and DHR) deliver better results than the simple ones (i.e.
models based on linear and exponential functions).

In (Gowrishankar, 2009), short time network traffic prediction has been
studied. RRBFN, ESN and FARIMA methods have been applied for developing
prediction models. The results show that neural network predictors show better

performance than statistical models.
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In (Chen et. al., 2010), modeling and forecasting have been accomplished
by using BP neural network. The model has been built by analyzing the
characteristics of network traffic and the results show that the model has good
astringency and stability.

In (Syed et. al., 2010), wavelet filters based on multi-resolution analysis
along with the Seasonal Autoregressive Moving Average (SARIMA) models have
been used to forecast traffic. The results have been compared with the ones
obtained by simple SARIMA and it is concluded that the proposed methodology
gives more accurate forecast.

In (Chabaa et. al., 2010), to analyze internet traffic, multi-layer perceptron
(MLP) based model has been developed. For estimating the weights of the neurons
within the model, Levenberg-Marquardt (LM) and the Resilient back propagation
(Rp) algorithms have been applied and the efficiency of these models have been
compared with the one of some other statistical models.

In (Tan et. al., 2012), bittorrent type network traffic and its behavior have
been investigated by using time series ARMA model. It is proved that bittorrent
network traffic can be modeled and forecasted by ARMA model effectively.

In (Kim et. al.,, 2011), an autoregressive-generalized autoregressive
conditional heteroscedasticity (AR-GARCH) error model for forecasting internet
traffic has been developed and its performance has been compared with seasonal
autoregressive integrated moving average (ARIMA) models in terms of root mean
square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH
models outperformed the seasonal ARIMA models in terms of forecasting accuracy
with respect to the RMSE criterion.

In (Chen et. al., 2012), the flexible neural tree (FNT) has been utilized to
predict short time scale traffic in the network. FNT structure has been developed by
using genetic programming (GP) and internal model parameters have been

optimized by Particle Swarm Optimization (PSO) algorithm. It is concluded that

4
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the developed model is efficient and reliable for short time scale traffic
measurement.

In (Miguel et. al., 2012), long term internet traffic has been predicted by
using ensembles of Artificial Neural Network. Four different TLFNs have been
utilized and each differ from others by the training data and the number of artificial
neural networks used in the forecast. Results obtained by the TLFNs models have
been also compared with the ones obtained with the classical Holt-Winters method.
The proposed neural network models perform well and can be a good option for the
link that transports internet traffic.

In (Cortez et. al., 2012), the authors have utilized Naive-Benchmark, Holt-
Winters, ARIMA, and ANN to figure Internet activity. It has been inferred that
while ANN-based models gave the best outcome for 5-minute and hourly sets,
Holt-Winters based models were more exact than the ones obtained by the other
strategy for the daily set.

In (Oliveira et. al., 2014), MLP and SAE have been used to forecast
Internet traffic. The results of MLP and SAE based models have been confronted.
The outcomes have demonstrated that despite the fact that SAE was a complex
method, MLP based models performed well with respect to the SAE.

In (Katris et. al., 2015), several different approaches have been evaluated
for internet traffic forecasting. Firstly, the dependence of short or long and non-
linearity has been explored to take the advantage of such information. FARIMA,
MLP, RBF, Holt-Winters, ARIMA/GARCH, FARIMA/GARCH, hybrid
FARIMA+RBF, and hybrid FARIMA+MLP are the models used in the study. The
results show that forecasting models that use non-linear functions has a better
performance for internet traffic prediction.

The summary of the studies and the methods used in each study are given
in Table 1.1.
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Table 1.1 Summary of studies between the years 2006 and 2016

Study Methods Traffic Type
(Chan, et.al., 2006) Markovian, AR, TSMR UMTS voice and data
(Buerger et.al., 2008) ARMA, DHR UMTS data
(Gowrishankar, 2009) RRBFN, ESN, FARIMA UMTS data
(Chen et.al., 2010) BP-ANN Internet, IP based data

(Syed et. al., 2010)

(Chabaa et. al., 2010)
(Tanet. al., 2012)
(Kim, 2011)

(Chen, 2011)

(Chen et. al., 2012)
(Miguel et. al., 2012)

(Cortez et. al., 2012)
(Maurya et. al., 2012)
(Wang et. al., 2012)

(Dorgbefu jnr. et. al.,
2013)

(Oliveira et. al., 2014)
(Kaminska-Chuchmata,
2014)

(Katris et. al., 2015)

Wavelet Filter based
SARIMA, SARIMA
MLP, LM, RBP

ARMA

AR-GARCH, ARIMA
GA, GNN

FNT, FENN

ANN, Holt-Winters, TLFN
Naive Benchmark, ANN,
MLP, Holt-Winters

FIS

NTWD, ARMA without
Wavelet Analysis

Kalman filter
MLP, SAE
GE

FARIMA, MLP, RBF,
ARIMA/GARCH, Holt-
Winters

Intranet, IP based data

Internet, IP based data
Internet, IP based data
Internet, IP based data
Internet, IP based data
Internet, IP based data
Internet, IP based data

Internet, IP based data
Internet, IP based data

Internet, IP based data

UMTS data
Internet, IP based data

Internet, IP based data

Internet, IP based data

GLLA, Generic Local Linear Approximation; RBF, Radial Basis Function Neural Network; SVM, Support
Vector Machine; LLA, Local Linear Approximation; ARMA, Auto-Regressive Moving Average; MMPP,
Markov-Modulated Poisson Process; FFNN, Feed-Forward Neural Network; WMRA, Wavelet Multiresolution
Analysis; ARIMA, Autoregressive Integrated Moving Average; FIR, Multiresolution Finite-lImpulse-Response;
MODWT, Maximal Overlap Discrete Wavelet Transform; MMLP, Multiresolution Multilayer Perceptron; ANN,
Artificial Neural Network; MLP, Multilayer Perceptron; GA-RBF, Genetic Algorithm RBF; BP, Back
Propagation; LS- SVM, Least Square SVM; FARIMA, Autoregressive Fractionally Integrated Moving Average;
SPN, Spinning Network; GM(1,1), Grey-Markow Model; ANFIS, Adaptive Neuro-Fuzzy Inference System;
GARCH, Generalized Autoregressive Conditional Heteroscedasticity; SVR, Support Vector Regression; GML,
Gaussian Maximum Likelihood; ES, Holt Exponential Smoothing; MA, Moving Average; AR, Auto-Regressive

1.3. Motivation, Purpose and Contributions of This Thesis

Traditionally, prediction of network-based traffic which is collected from
different sources is often performed by statistical methods, such as linear and
exponential regression. However, these methods have limited efficiency. In other
words, forecasts based on these models have a strong deviation compared with

actual data collected from the live network. Therefore, machine learning methods
6
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including supervised learning models are appropriate solutions and they can give
more sophisticated and reliable estimations with respect to the classical methods.

In literature, there exist several studies which predict the network traffic
with the help of statistical as well as machine learning regression methods, but
there is no comprehensive work that covers both voice (circuit switched) and data
(packet switched) traffic together within the same framework.

The aim of this thesis is to derive models for traffic characteristics of a 3G
network which is commercially deployed in Turkey and predict voice and data
traffic by using various machine learning methods. The machine learning methods
that have been employed are Support Vector Machines (SVM), Multilayer
Perceptron (MLP), Random Forest (RF) and Radial Basis Function Neural
Network (RBF). Additionally, the Holt-Winters method has been applied to
develop prediction models. Finally, the performance of statistical and machine
learning regression methods have been compared in this thesis.

The scope of this thesis is differentiated from the studies in literature as

outlined below:

e To the best of our knowledge, this is the first study ever that has developed
traffic prediction models for one of the mobile operators in Turkey using
machine learning methods.

o While UMTS network traffic prediction was also employed in the previous
studies, this is the first study that ever used machine learning methods such
as SVM, MLP, RBF, RF with a statistical method Holt-Winters and their
prediction results have been compared using a performance indicator
known as MAPE.

e To the best of our knowledge, this is the first research study that predicts
both voice traffic and packet data traffic together within the same
framework for a 3G mobile network.

7
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e To the best of our knowledge, short, mid and long term three different time
granularity traffic prediction methods have been focused on this study
while previous works do not cover the time granularity as wide as this

study.
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2. DATASET GENERATION

In this thesis, three different types of the dataset have been used to build
traffic prediction models of a commercially deployed 3G network operating in
Turkey. Each dataset contains different time scales including hourly, daily and
weekly traffic values. The sets and their traffic contents have been acquired from
the live 3G mobile operator network with the permission of service provider.

1t data set: The first dataset includes hourly basis data for both voice and
packet data (IP based) traffic acquired from a live network. The voice set contains
circuit-switched (CS) traffic volume in Erlang, while packet-switched (PS) set
contains IP-based data traffic volume in bits. PS datasets contain three subsets,
which are PS Downlink, PS Uplink and the sum of these, called PS Total traffic.
The dataset was saved every hour between October 24th, 2015 and January 19th,
2016.

2" data set: The second dataset includes voice and packet switched traffic
with daily acquired values. It consists of CS (Voice) traffic, PS Downlink, PS
Uplink and PS Total daily network traffic, respectively. It was acquired from the
3G Network between December 21st, 2014 and May 8th, 2016.

3'd data set: The third dataset consists of voice and packet switched traffic
including CS traffic, PS Downlink, PS Uplink and PS Total traffic with weekly
acquired values. It contains weekly traffic between March 3rd, 2014 and May 2nd,
2016.

The distributions of traffic for different datasets are given in Figure 2.1

through Figure 2.12, respectively.
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Figure 2.1 Hourly CS voice traffic distribution
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Figure 2.2 Hourly PS downlink data traffic distribution
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PS Uplink Traffic (bits)
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Figure 2.3 Hourly PS uplink data traffic distribution
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Figure 2.4 Hourly PS total data traffic distribution
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Figure 2.5 Daily CS voice traffic distribution
PS Downlink Traffic (bits)
70.000.000
o
3
g 60.000.000
§ 50.000.000
—
< 40.000.000
30.000.000
20.000.000
10.000.000
0
N N N N N N N N N
= = = = = = = = =
= N » o 00 [ = N N
N [ [ = = o N~ = =
= wv (] w (6] = = )] [e)}
H (2] (6]

Figure 2.6 Daily PS downlink data traffic distribution
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Figure 2.7 Daily PS uplink data traffic distribution
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Figure 2.8 Daily PS total data traffic distribution
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Figure 2.9 Weekly CS voice traffic distribution
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Figure 2.10 Weekly PS downlink data traffic distribution
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Figure 2.11 Weekly PS uplink data traffic distribution
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Figure 2.12 Weekly PS total data traffic distribution
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3. OVERVIEW OF METHODS

3.1. Support Vector Machine
SVMs were introduced by Vladimir N. Vapnikand Alexey Ya.
Chervonenkis in 1963 and are supervised learning algorithms for both the solution

of classification and regression problems.

3.1.1 Linear SVM
Assume (X1, Y1) ... (Xn, Yn) represent the training dataset where x; are the
vectors for the observations and yi = {-1, +1} be the targets. The primary goal of an
SVM is to find the optimal hyperplane (i.e. hyperplane with the highest margin)
that separates the two distinct targets from each other. The margin of the
hyperplane should be selected in such a way that distinct targets are as far as
possible from each other. The idea of choosing a large margin for the hyperplane is
to provide a more resistant hyperplane to noise.
Assume that all the data satisfy the constraints given by (3.1.) and (3.2.)
wx;+b = +1 y,=+1 (3.1)
wx+b < +1 y;=-1 (3.2)


https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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Origin . ’
- L@\ /
o Margin

Figure 3.1 Linear separable hyperplane. Support vectors are circled.

(3.3.) shows the combination of the two constraints,
yiw.x;+b)=>1 V; (3.3)

In (3.3), the normal to the hyperplane is given by w, the perpendecilur distance

from the origin is given by |b| / ||w]|, and the Euclidean form of wis given by

[lw|| is. The margin, which the distance between H;and H,and given by p, can
be calculated with (3.4.):

_11i=b| _|-1-b| _ 2
P=Twll = Twll — wl]

(3.4.)

The optimum value of the margin can be found by solving the primal optimization

problem given in (3.5.)

10
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. _ l 2
mint(w) =2 [|w?||
subject to
yiw.x;+b)=>1 V; (3.5)

Then Lagrangian technique is used to solve (3.5.) by introducing new Lagrange
multiplier o; for each constraint and the new formulation of the minimization

problem is given by,

! !
1
min L(w,b,a) = —||W||2 = Z a; y;(x;w + b) +Z a;
w,b 2 =1
l=

i=1
(3.6.)
with oj > 0 for each constraint in (3.5.). The problem is then reduced to
minimizing (3.6.) with respect to w, b and at the same time requiring the
derivatives of L(w;b,a) with respect to all the « vanish.
The solutions w', 5" and a" should satisfy the conditions given in (3.7.)
through (3.9.) with respect to the Karush-Kuhn-Tucker (KKT) conditions:

aL(w*, b*, a®)
B w, — Eaiyixw =0 forv=1,..,d
i
(3.7.)
oL(w*,b*, a*)
— z a;y; =0
L
(3.8.)

11
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yl(le+b)—1 = 0, Vi

(3.9)
a; =0 V;
(3.10.)
aiyi(xzw+b)—1)=0 V;
(3.11)

It is to be noted that the given KKT conditions are enough for w” & o* to be a
solution. Therefore, if one can find a solution to the KKT conditions, that solution
is also valid for the SVM problem. The optimal hyperplane as a linear combination

of the vectors in the training set is defined by the first KKT condition as

(3.12)
The second KKT condition requires that the a;coefficients of the training instances
should satisfy

n

Za{“yi=0, a; =20

i=1

(3.13)

Maximizing (3.6.) according to a, and minimizing with respect to wand b

is a dual solution of the SVM problem. The dual formula can be obtained by
placing (3.7.) and (3.8.) into (3.6.)

1 z ' ' =O
Max L, = E a; — = E @;a;y;yjXi. Xj subject to Vi{ S
a 2
a; = 0

(3.14.)

i i,j

12
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Thus, by solving the equations, the coefficients a;is obtained. The conditions with
a;> 0 are called “support vectors”. This leads to the decision function
f)=wlx;+b

M
= Zyi a;(xfx)+b
i=1

(3.15)
3.1.2 Non-Linear SVM
A linear separating hyperplane cannot usually divide most of the datasets.
However, these datasets can be linearly divided if they are mapped into a higher
dimensional space by a mapping function ®(x) and building a separating
hyperplane with a maximum margin in the input space. Figure 3.2 shows the
relation between linear decision function in the future space and non-linear
decision boundary in the input space.
Several Kernel functions including linear kernel, polynomial kernel, RBF

kernel and sigmoid kernel can be used to calculate the hyperplane given in (3.16.).

K(x,y) = (@), 2(y)) (3.16.)

13
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(a) (c) A

Input Space

Feature Space

P(x)

11
Figure 3.2 Data not linearly separable in the input space (a), separable by non-
linear space (b), Kernel mapped feature space (c).

3.2.  Multi-Layer Perceptron

Multi-layer perceptrons are organized in layers of neurons and implement a
feed-forward processing chain. Following notations can be used for the layers and
nodes of an MLP:

o The network consists of L layers, with 1=0 denoting the input layer and
I=L denoting the output layer.

e The notation for a single node is n} (1 < i < NY), N! being the number
of nodes in layer I.

e The activation of a network node depends on the strength of the input to
that node with respect to threshold value. For notational convenience,
the network thresholds are treated uniformly by adding an extra node
with a fixed output of 1.0 to all but the output layer. This node — called
the bias unit — is denoted n}, (for = L ).

o To allow for MLPs of arbitrary connectivity, it is useful to define a set
of source nodes S} and set of target nodes T} for each node n!. Given
that node m["is connected node nt, n;" is a source node of ni(i.e. n €

14
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S}) if m<l, but a target node of n} (i.e. n/* € T}) if m>1. Set S/ is null
for all input nodes (i.e. S? = @ for i =1,...,N°) and for all bias units
(ie. S? = @ for 1 =0,...,L-1); set T}is null for all output nodes (i.e.
T} = ¢ fori=1,..,N").

¢ Network weights can be represented in terms of the nodes they connect;

thus weight w}}”connects nodes n;"and n! with m<l (i.e. n;is a source

node of nfand nlis a target node of n™). However, it will often be more

convenient to consider weights in terms of the weight vector w

comprising all W weights in the network, with a single weight denoted

The number of nodes in the input and output layers of the MLP is determined
by, respectively, the pattern size and the target size of the chosen training task.
MLPs are typically trained using fixed training set of P training pairs, with each
training pair comprising two real valued vectors — a pattern p,(1< q < P) and
corresponding target (desired output) t,. Individual pattern and target elements are
denoted p; ; (1<i <N°) and ;4 (1< < N") respectively. The output y?, of input
node i is simply p; , for pattern q (except for v the fixed output of the bias unit).

For non-input node n!, the output is given by the weighted sum

I _ Im ., m
ai,q = Z Wij yj,q’ l>0

mecl
n; €s;

(3.17))

}’il,q = f(alé,q)' 1>0

(3.18))
15
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where aﬁ,q is the activation of node n! for pattern g, and the squashing or activation

function f(x) is both monotonic (i.e. non-decreasing) and continuously
differentiable. By far the most commonly used squashing function is the sigmoid or

logistic function

fx) = d+e®

(3.19)
which compresses the output of each non-input node in the range [0,1]. The most
popular alternative to the sigmoid is the hyperbolic tangent, f(x) = tanh(x), which
gives a compressed range [-1, 1].

The layers between the input and output layers are known as hidden layers.
The number of hidden layers and nodes has a major impact on MLP training: too
few, and the network will be unable to learn the problem; too many, and the
network may take excessively long to train and have poor generalization
capabilities — a features as, but are not identical to, patterns in the training set.
Upper and lower bounds on the number of hidden nodes required for an MLP to be
capable of learning a given task have been established by Huang and Huang

(1991), but optimal number of hidden nodes is much more difficult to determine.
3.3. Radial Basis Function Network

3.3.1 Network Architecture

RBF network includes several layers and the first layer has input neurons.
These neurons feed the feature vectors into the network. The second one is the
hidden layer that calculates the result of the basic functions. The last layer is the

output layer that calculates a linear union of the basic functions. These kinds of

16
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networks have the general estimation property (Park and Sandberg, 1991). Simple
structures of these networks give a decreasing for training time and make possible

learning in stages.
X € R" (a vector) is an input and f(x): R" —R (a function) is an output

estimated by using an RBF network:

N
FG) =) wihi ()
i=1

(3.20))
where N represents the number of neurons and h(x) is the radial basis function in

the hidden layer. The typical radial basis function is taken to be Gaussian:

h;(x) =exp <— (= C)2>

r2

(3.21))

The parameter c is the center vector and r is its radius.

3.3.2 Training

A two-step algorithm is usually used to train RBF. The first step requires
the selection of the center vectors c¢; of the RBF functions in the hidden layer.
Randomly sampled from some set of examples or K-means clustering can be used
to accomplish the first step.

In the second step, the coefficients w; are fitted to the hidden layers output
with respect to some transfer function. The least squares function is one of the
commonly used transfer functions. Detailed information can be found in
“Multivariable Functional Interpolation and Adaptive Networks”, (Broomhead D.
S., 1988).

17
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3.4. Random Forest

RF was built by Leo Breiman (2001). A group of unpruned classification
or regression trees which are formed by the random choice of samples of the
training data is created with the RF (Ali et. al., 2012).

RF makes use of bagging and random feature selection, which are two
important machine learning methods. In bagging, every tree is practiced on the
training set’s bootstrap case and estimations are generated by a large number of
trees.

RF is a method that is an extension of bagging. While growing a tree, a
subset of features is selected randomly by RF instead of using all features to divide
into each node. To assess the expectation execution of the RF calculation, RF
utilizes a kind of cross-approval correspondingly to preparing process by using
OOB cases. Particularly, at the training, a certain bootstrap sample has been used
during growth of each tree. Since bootstrapping is exemplifying by replacing with
the training set, a certain set of the sequence is repeated in the case when others are
“left out” of the samples. The “left out” ranks generate the OOB case. In the mean,

while each tree is grown, 1- et = 2/3 of the training sequences has been used and e-

1 ~1/3 has been left as OOB. Since OOB ranks haven’t been employed during
construction of the tree, they can be employed to assess the estimation performance
(Jiang et. al., 2007).

RF algorithm is shown below;

1. Choose tree M bootstrap cases by using the main data.

2. For every case, raise an unpruned regression or classification tree by
regulating sequent change: in every node, instead of selecting the best
division between all predictors, say wy N of the predictors, select the best
division through those attributes.

18
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3. Guess new data by collecting predictions of the wee m trees (that is, if it is
a classification problem, then choose majority, if it is a regression

problem, then choose average).

The estimated error rate could be attained, according to the training set as

below;

1. At every bootstrap repetition, guess the data in the OOB using the tree
risen with the bootstrap sample.

2. Collect the OOB estimations. Figure out the error rate, and define it as
the OOB estimate ones (Liaw and Wiener, 2002).

3.5.  Holt-Winters

Holt-Winters is an exponential smoothing method which is used when the
data exhibits both trend and seasonality. Seasonal and trended samples are
separated from the unnecessary attributes by meaning the historical rates. It has
some benefits like the easiness of using it, having less computation, and more
accurate results for seasonal series.

The two main HW models are Additive model for time series exhibiting
additive seasonality and Multiplicative model for time series exhibiting
Multiplicative seasonality.

The general forecast function is:

y\t+l|t = (mt + lbt)ct_s+l l = 1,2 ™ (322)
mt = ao Ci]_ts + (1 - ao)(mt_l + bt—l) (323)
by = ay(my —me_1) + (1 — ay)br (3.24)
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Ve
Ce =z~ + (1 —ay)c—s
t

(3.25))

where m is the component of level, b is the component of the slope, ¢ is the
relevant seasonal component with s signifying the seasonal period (e.g. 4 for
quaerterly data and 12 for monthly data), a, a4, @, are model parameters lie
between 0 and 1.

It is important to select the starting values and smoothing parameters
(Chatfield and Yar (1998). For starting values, the component m,, is sensible to the

avearege observations in the first year, i.e.

S
Yt
mo= )%
t=1
(3.26.)

where the number of seasons is given by s. 3.27. can be used to find the starting

value for the slope

_ Xt=1ye/s}— {Zgis+1 Ve/s}

b S

(3.27))

After allowing a trend adjustment, the seasonal index rate can be computed:

_ = (k= 1)by/2}
Co = e

(Multiplicative)

20
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(k — )by
Co = Yk _{mo +T}

(Additive)
where k=1, 2..., sand it’ll lead to s separate values for ¢, which is what is required
to gain the initial seasonal pattern.

Usually, the values between 0.02 and 0.2 are used for the smoothing
parameters. It is again possible to estimate them by minimizing the sum of squared
one-step-ahead errors, but there is no exclusive combination of «,, a;, a, which

will minimize the square errors for all ¢
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4. DEVELOPMENT OF PREDICTION MODELS

4.1. SVM Model

Support Vector Machines are learning machines that depend on two
important elements: a linear learning algorithm and specific kernel that calculates
the internal process of input data points and projects them to a future space. For the
learning algorithm, the penalty parameter “C” controls the trade-off between
margin maximization and error minimization (Chapelle et.al. 2002)

The selection of kernel type and the parameter C are the critical steps for
the learning mechanism. The accuracy of the whole process also depends on these
tasks. There is a tradeoff between reducing the error related to training and
reducing the complexity of the model and this is stated by parameter C. A small
value of C will increase a number of training errors and a large value of C will
exhibit an attitude similar to that of a hard-margin SVM. The kernel parameters are
important in the sense that they act as a bridge between the input space and the
high-dimensional feature space (Ji and Wang, 2007). “&” is the another important
parameter for the SVM. It controls the width of insensitive zone and states the
number of support vectors.

In this thesis, RBF and polynomial kernel have been utilized separately for
developing the models. Recently, polynomial kernels are less widely used than the
RBF kernel. The reason is that in the case of training, a polynomial kernel may
have less accuracy than that of RBF, but training with a low degree polynomial
kernel strategy is much faster and it saves time.

These all parameters together with the penalty parameter “C” are called the
hyperparameters of the SVM.

The optimal values hyperparameters are usually found by grid search. That
is, the values of the parameters are differentiated with a fixed step size through an
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interval of values and the performance of every combination is assessed using
some performance measure. A cross-validation within the grid search can be
utilized in order to develop the generalization capability of the SVM regression
model. In the process of k-fold cross validation, the cross validation is recurred k
times (this means k folds), with each of the k subsets utilized precisely once as the
validation data. The k results from the folds then ought to be associated to generate
a single prediction.

The intervals for values of the parameters for the SVM models are given in
Table 4.1.

Table 4.1 The intervals for values of the parameters for the SVM model

Parameter Value Interval
C [2°, 2°]
Y [2°,27]
£ [0, 1]
Degree [1, 3]

4.2. MLP Model

The MLP architecture depends on the choice of the number of layers, the
number of hidden nodes in each of these layers and the objective function. If the
number of neurons that is utilized is not sufficient, less information will be
acquired. On the contrary, the local minimum might enhance and the network
might come close to a local minimum, hence the network’s sensitivity will
decrease. Nevertheless, there is not a strict regulation for detecting the number of
neurons in a hidden layer. Generally, the optimal number is selected with trial and
error based on the difficulty of the problem.

In the hidden layer of the MLP models, the tansigmoid function is utilized

whereas in the output layer of MLP models, the pure linear function is used. LM
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algorithm is implemented to train the network. Other important parameters of the

MLP based models and their values are given in Table 4.2.

Table 4.2 The intervals for values of the parameters for the MLP models

Parameter Value Interval
Number of hidden layers [1, 4]
Number of neurons in hidden layer [1, 50]
Learning rate [0, 1]
Momentum [0, 1]

4.3. RBF Network Model

The performance of the radial basis function (RBF) depends on numerous
factor. The choice of basis function and shape parameter have a significant impact
on the accuracy of an RBF. The decisions tremendously affect the accuracy and
the numerical stability of the method utilized.

Other important parameters of the RBF models are the number of clusters

and the clustering seed, and their values are given in Table 4.3.

Table 4.3 The intervals for values of the parameters for the RBF models

Parameter Value Interval
Number of clusters [1,4]
Clustering seed [1,50]

4.4. RF Model

Random forest is an ensemble classifier using many decision tree models
in order to improve the classification rate for classification and regression analysis.
There are many advantages of random forest such as generating a highly accurate

classifier, running efficiently on a large database, giving a prediction about the
25
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variable that is important in the classification, having an effective method for
estimating missing data, etc. (Ali et al., 2012).

The important parameters that affect the performance of a random forest
model are the number of trees, the number of features to be used in random
selection and the random number seed. The interval of the parameters used in this

study is given in Table 4.4.

Table 4.4 The intervals for values of the parameters for the RF models

Parameter Value Interval
Number of trees in the forest [1,250]
Number of features [0,120]
Random number seed [1,25]

4.5. Holt-Winters Model

The Holt-Winters is a popular statistical forecasting method because it is
simple to use, has low data-storage demand, and is easily automated. In this
method, the predictive model consists of trended and seasonable patterns that are
chosen from noise by averaging historical values. It has some advantages like the
easiness of using it, having less computation, and accuracy for seasonal series
(Cortez et al., 2012). The seasonal variation can be an additive or multiplicative
form. The multiplicative form is used more widely and it has better output results
than the additive form. However, there is a limitation that if a data series consist of
some values equal to zero, the multiplicative Holt-Winter method cannot be used.

The problem regarding the Holt-Winters method is the selection of
smoothing parameters and their initial values, so that prediction better accord with
time series data. In this thesis, smoothing factors and initial parameters in Holt-

Winters method are estimated by minimizing the prediction result. Hence, the
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optimal parameters selected with a method in which empirical calculation
continued up to lowest prediction error rate met.

The important parameters that affect the performance of a Holt-Winters
model are the length of the seasonal cycle, the smoothing factor for the seasonal
component, the smoothing factor for the trend and the smoothing factor for the

series value. These parameters and their intervals are given in Table 4.5.

Table 4.5 The intervals for values of the parameters for the Holt-Winters model

Parameter Value Interval
Seasonal cycle length [1,24]
Seasonal smoothing factor [0,1]
Trend smoothing factor [0,1]
Value smoothing factor [0,1]

4.6. Lag Selection

A very important step for time series prediction is the correct selection of
the past observations which are named as lags. The lag is an important value for the
embedding of the series i.e. for its reconstruction in a state space.

Two methods are usually used to calculate the lags. The first one consists
of selecting the first value that corresponds to a zero of the autocorrelation
function. The second one selects a value corresponding to a minimum of the
mutual information (MI). However, both approaches have the same goal: to select
variables that are as much independent (or uncorrelated) as possible in order to
reconstruct a trajectory in the state space that approaches at best the true dynamics
of the time series. In this study, autocorrelation coefficient calculation is used to

select the lags for each time-varying datasets.

27



4. DEVELOPMENT OF PREDICTION MODELS Yasin Yur

4.6.1 Autocorrelation function

The autocorrelation is defined as the correlation of a time series attributes
at times n among n-k where k=1... K=N-1. It measures the sign correlated between
a time shift and itself where the map of the number of the time shift determined
also as a time lag. The autocorrelation function helps to determine the rate of
dependence in data. Also, it helps to state stability of time series, utilize likely time
series model and sorting sample that occurs again in time series. Further, time
series with distinct scale can be compared by using the autocorrelation function.

A time series can be determined by equation

rn Xi1 x”l
X={xin:i=1,. ,Jin=1,..,N} = | X1 Xin Xin
XiN - XN e XN

such that x, = {x;,:n =1,....,N} refers the i time series (i =1,...,1),x,
express the n" investigation (n = 1, ..., N) of the i"" time series(i = 1, ..., ).

For a specific i time series, x,, = {x;,:n = 1, ...., N} the autocorrelation
coefficientat lag k(k = 1, ..., N — 1 = K) is shown by

A = Zg=k+1(xin - fi)(xi(n_k) - fi)
" Zg—l(xin - fi)z

such that x; is the average of the time it series. The autocorrelation function of a

time series is built by the autocorrelation coefficients at the distinct time lags. The
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interval of the autocorrelation is [-1,1]. The autocorrelations for each dataset are

given in Figure 4.1 through 4.12.
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Figure 4.1. Autocorrelations for hourly voice traffic
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Figure 4.2. Autocorrelations for hourly PS total traffic
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Figure 4.3. Autocorrelations for hourly PS downlink traffic
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Figure 4.4. Autocorrelations for hourly PS uplink traffic
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Figure 4.5. Autocorrelations for daily voice traffic
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Figure 4.6. Autocorrelations for daily PS total traffic
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Figure 4.7. Autocorrelations for daily PS downlink traffic
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Figure 4.8. Autocorrelations for daily PS uplink traffic
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Figure 4.9 Autocorrelations for weekly voice traffic
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Figure 4.10 Autocorrelations for weekly PS total traffic
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Figure 4.11. Autocorrelations for weekly PS downlink traffic
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Figure 4.12. Autocorrelations for weekly PS uplink traffic
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4.6.2 Time Lag Length Estimation

How many lags should be included in a time series regression is a vital
problem to model time series. A small window gives limited information to the
network while a large number of time lags can enhance the entropy which has an
impact on learning but may increase the forecast error. There are many methods for

lag length determination:

a. The F-statistic approach: In order to identify the lag length p, F-statistic
test compares the fits of different models.
b. The Bayesian Information Criterion (BIC): To estimate p by

minimizing an information criterion
SSE
BIC = Nln (T) + pIn(N)

such that N defines the number of training, p refers to the number of
parameters, SSE means sum squared error. The BIC trades off these two
forces so that the number of lags that minimizes the BIC is a consistent
estimator of the true lag length.

c. The Akaike information criterion (AIC):

SSE) 2

AIC = N1 (— nd
"N ) TPy

In huge number samples, the AIC will overrate p with nonzero
probability.
In this thesis, four rules have been utilized to build forecasting models. The
rules of the sliding windows are given below;
36



4. DEVELOPMENT OF PREDICTION MODELS Yasin Yur

1. Use all time lags from 1 to a given maximum m: <1, 2... m>

2. Use all lags the autocorrelation values of which are above a given
threshold 1.

3. Use all lags the autocorrelation values of which are above a given
threshold 2.

4. Use the time lags the autocorrelations values of which are above
threshold 3 within the recycling period of the time unit, e.g. recycle

period 30 for daily and 169 for the hourly dataset.

By using the heuristic rules for time lag selection, discussed above, four
different sliding windows have been generated for each data set.

Table 4.6 through Table 4.17 show the time lags used in each model.

Table 4.6. List of the chosen time lags for hourly voice traffic
Lag Name Chosen Lag

Lag-1  {1,2,....,24}

Lag-2 {1,2,3,45}

Lag-3  {1,2,3,4,5,19,20,21,22,23,24,25}
{1,2,3,4,5,19,20,21,22,23,24,25,26,27,28,29,43,44,45,46,47,48,49,50

Lag-4 ,51,52,53,67,68,69,96,97,98,99,100,101,115,116,117,118,119,146,1
4,148,149,163,164,165,166,167,168,169}

Table 4.7. List of the chosen time lags for hourly PS total traffic
Lag Name Chosen Lag

Lag-1  {1.2,....,24}

Lag-2 {1,2,3,4}

Lag-3  {1,2,3,4,20,21,22,23,24,25}
{1,2,3,4,20,21,22,23,24,25,26,27,28,44,45,46,47,48,49,50,51,52,68,
69,70,71,72,73,74,75,76,92,93,94,95,96,97,98,99,100,116,117,118,1
19,120,121,122,123,124,140,141,142,143,144,145,146,147,148,164,
165,166,167,168,169}

Lag-4
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Table 4.8. List of the chosen lags for PS downlink traffic
Lag Name Chosen Lag

Lag-1  {1,2,...,24}

Lag-2 {1,2,3,4}

Lag-3  {1,2,3,4,20,21,22,23,24,25}
{1,2,3,4,20,21,22,23,24,25,26,27,28,44,45,46,47,48,49,50,51,52,68,
69,70,71,72,73,74,75,76,92,93,94,95,96,97,98,99,100,116,117,118,1
19,120,121,122,123,124,140,141,142,143,144,145,146,147,148,164,
165,166,167,168,169}

Lag-4

Table 4.9. List of the chosen lags for hourly PS uplink traffic
Lag Name Chosen Lag

Lag-l {12...,24}

Lag2  {1,2,3,4,5}

Lag-3  {1,2,3,4,20,21,22,23,24,25}
{1,2,3,4,5,19,20,21,22,23,24,25,26,27,28,29,43,44,45 46,47,48,49,
50,51,52,53,67,68,69,70,71,72,73,74,75,76,77,91,92,93,94,95,96,97,

Lag-4  98,99,100,101,115,116,117,118,119,120,121,122,123,124,125,139,
140,141,142,143,144,145 146,147,148,149,163,164,165,166,167,
168,169}

Table 4.10. List of the chosen time lags for daily voice traffic
Lag Name Chosen Lag

Lag-l {L.2,....,30}

Lag-2  {1,6,7,8}

Lag-3  {16,7,8,13,14,15,21,28,35,42}
{1,2,3,4,55,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30}

Lag-4
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Table 4.11. List of the chosen time lags for daily PS total traffic

Lag Name Chosen Lag
Lag-1 {1,2,....,30}
Lag-2 {1,6,7,8}
Lag-3  {1,2,3,45,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,28}
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

26,27,28,29,30}

Table 4.12. List of the chosen time lags for daily PS downlink traffic

Lag Name Chosen Lag
Lag-1  {1,2,....,30}
Lag-2  {1,2,3,45,6,7}
Lag-3  {1,2,3,45,6,7,8,9,10,11,12,13,14,15,16,17,18}
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

26,27,28,29,30}

Table 4.13. List of the chosen time lags for daily PS uplink traffic

Lag Name Chosen Lag
Lag-1  {1,2,....,30}
Lag-2  {1,2,3,45,6,7}
Lag-3  {1,2,3,45,6,7,8,9,10,11,12,13,14,15,16,17,18}
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

26,27,28,29,30}

Table 4.14. List of chosen time lags for weekly voice traffic

Lag Name Chosen Lag
Lag-1 {1,2,....52}
Lag-2 {1,2}
Lag-3 {1,2,3,4}
Lag-4  {1,2,3,45,6,7,8,9,10,11,12}
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Table 4.15. List of chosen time lags for weekly PS total traffic

Lag Name Chosen Lag
Lag-1 {1,2,....52}
Lag-2 {1,2,3}

Lag-3  {1,2,3,4,5,6}
Lag-4  {1,2,3/456,7,89,10,11,12}

Table 4.16. List of the chosen time lags for weekly PS downlink traffic
Lag Name Chosen Lag

Lag-l {1,2,....52}
Lag-2 {1,2,3}

Lag-3 {1,2,3.4,5,6}

Lag-4 {1,2,3,45,6,7,89,10,11,12}

Table 4.17. List of the chosen time lags for weekly PS uplink traffic
Lag Name Chosen Lag

Lag-1 {1,2,....52}

Lag-2  {1,2,3,4}

Lag-3  {1,2,3,45,6,7,8}

Lag-4 {1,2,3,45,6,7,8,9,10,11,12}

4.7. Performance Metric

The performance of the forecasting models have been evaluated by
computing Mean Absolute Percentage Error (MAPE) value which is a metric used
commonly in forecasting applications. It has an advantage of being scale
independent, so it is frequently usable for the comparison of forecast performance
between different series.

The formula of MAPE is
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100" |4, — F, |
MAPE = z
n & A;

where n is the number of the forecast, A is the actual value, and Ft is the forecast

value (Benzer et al., 2015).
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5. RESULTS AND DISCUSSION

In this thesis, five different methods including SVM, MLP, RBF, RF, and
Holt-Winters have been employed to forecast the circuit switched voice and packet
switched data traffic for live UMTS network. In order to build models, three
different train/test split combination have been utilized. The split ranges are 70%
for training and 30% for testing, 80% for training 20% for testing, and 90% for
training and 10% for testing, respectively.

Table 5.1 through Table 5.12 show the computed MAPE’s for hourly

traffic dataset.

Table 5.1. MAPE values for hourly CS voice traffic prediction with 70%-30% split

rate
Models SVM MLP RF RBF Holt-Winters
Hourly CS traffic lag-1 8.61 9.83 1196 80.33 22.18
Hourly CS traffic lag-2 1452 19.63 11.47 187.41 22.18
Hourly CS traffic lag-3 7.84 11.11 11.97 132.33 22.18
Hourly CS traffic lag-4 7.82 10.60 11.77 36.71 9.29

Table 5.2. MAPE values for hourly PS total traffic prediction with 70%-30% split

rate
Models SVM MLP RF RBF Holt-Winters
Hourly PS total traffic lag-1 351 4.76 4.03 18.06 8.78
Hourly PS total traffic lag-2 576 7.08 3.97 30.56 8.78
Hourly PS total traffic lag-3 341 530 4.39 2245 8.78
Hourly PS total traffic lag-4 3.32 5.16 4.38 15.68 6.86

43



5. RESULTS AND DISCUSSION

Yasin Yur

Table 5.3. MAPE values for hourly PS downlink traffic prediction with 70%-

30%split rate

Models

SVM

Hourly PS downlink traffic lag-1
Hourly PS downlink traffic lag-2
Hourly PS downlink traffic lag-3
Hourly PS downlink traffic lag-4

3.49
5.76
3.48
2.97

MLP RF RBF Holt-Winters
3.68 4.00 57.59 9.01
7.33 3.83 68.04 9.01
3.50 4.48 41.25 9.01
3.31 4.41 14.27 6.92

Table 5.4. MAPE values for hourly PS uplink traffic prediction with 70%-30% split

rate

Models

SVM

MLP RF RBF Holt-Winters

Hourly PS uplink traffic lag-1
Hourly PS uplink traffic lag-2
Hourly PS uplink traffic lag-3
Hourly PS uplink traffic lag-4

3.63
6.47
3.54
3.25

4.23 4.23 38.92 9.87
4.78 4.27 40.31 9.87
4.03 4.32 18.67 9.87
4.75 3.95 15.35 8.86

Table 5.5. MAPE values for hourly CS voice traffic prediction with 80%-20% split

rate

Models

SVM MLP RF RBF Holt-Winters

Hourly CS voice traffic lag-1
Hourly CS voice traffic lag-2
Hourly CS voice traffic lag-3
Hourly CS voice traffic lag-4

7.13
13.76
6.80
5.32

7.59 7.72 25.17 22.03
9.74 8.22 41.15 20.15
9.55 7.88 32.65 20.15
8.93 7.74 24.36 6.88

44



5. RESULTS AND DISCUSSION

Yasin Yur

Table 5.6. MAPE values for hourly PS total traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Hourly PS total traffic lag-1 3.13 3.67 3.27 12.84 10.73
Hourly PS total traffic lag-2 580 4.49 294 17.69 7.87
Hourly PS total traffic lag-3 3.14 352 3.45 12.10 7.87
Hourly PS total traffic lag-4 251 3.34 3.56 12.05 4.77

Table 5.7. MAPE values for hourly PS downlink traffic prediction with 80%-20%

split rate

Models

SVM MLP RF RBF Holt-Winters

Hourly PS downlink traffic lag-1
Hourly PS downlink traffic lag-2
Hourly PS downlink traffic lag-3
Hourly PS downlink traffic lag-4

3.15
5.63
3.18
2.60

3.37 3.33 12.69
4.60 2.93 15.89
3.27 3.36 11.95
3.47 3.63 11.66

8.07
8.49
8.07
6.20

Table 5.8. MAPE values for hourly PS uplink traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Hourly PS uplink traffic lag-1 344 3.80 4.46 11.26 8.75
Hourly PS uplink traffic lag-2 7.14 4.67 3.67 18.53 6.40
Hourly PS uplink traffic lag-3 3.13 350 4.75 13.33 6.60
Hourly PS uplink traffic lag-4 262 4.24 499 10.84 6.38
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Table 5.9. MAPE values for hourly CS voice traffic prediction with 90%-10% split

rate

Models

SVM MLP RF RBF Holt-Winters

Hourly CS voice traffic lag-1
Hourly CS voice traffic lag-2
Hourly CS voice traffic lag-3
Hourly CS voice traffic lag-4

6.59 6.89 7.51 21.85
11.35 8.72 7.55 49.19
6.50 9.36 7.42 23.34
331 6.75 7.39 16.06

17.58
4.48
4.52
4.48

Table 5.10. MAPE values for hourly PS total traffic prediction with 90%-10% split

rate
Models SVM MLP RF RBF Holt-Winters
Hourly PS total traffic lag-1 289 2.89 334 950 8.18
Hourly PS total traffic lag-2 3.19 3.19 2.93 10.38 3.96
Hourly PS total traffic lag-3 3.24 277 3.39 9.77 3.96
Hourly PS total traffic lag-4 210 295 3.43 9.20 3.67

Table 5.11. MAPE values for hourly PS downlink traffic prediction with 90%-10%

split rate

Models

SVM MLP RF RBF Holt-Winters

Hourly PS downlink traffic lag-1
Hourly PS downlink traffic lag-2
Hourly PS downlink traffic lag-3
Hourly PS downlink traffic lag-4

2.94
3.58
2.90
2.11

2.92 3.29 10.04
3.20 2.96 12.45
2.77 3.50 10.31
3.31 2.65 8.49

7.23
7.30
7.29
2.06
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Table 5.12. MAPE values for hourly PS uplink traffic prediction with 90%-10%

split rate
Models SVM MLP RF RBF Holt-Winters
Hourly PS uplink traffic lag-1 295 2.84 2.82 8.09 7.81
Hourly PS uplink traffic lag-2 4,14 2.87 2.29 10.72 6.42
Hourly PS uplink traffic lag-3 3.26 275 2.74 10.34 7.81
Hourly PS uplink traffic lag-4 195 285 268 7.85 2.03

Table 5.13 through Table 5.24 show the MAPE’s of the forecasting models

in each category for daily data set with a pre-defined split rate, separately.

Table 5.13. MAPE values for daily CS voice traffic prediction with 70%-30% split

rate
Models SVM MLP RF RBF Holt-Winters
Daily CS voice traffic lag-1 7.63 590 15.86 11.24 3.38
Daily CS voice traffic lag-2 400 593 16.71 18.93 3.38
Daily CS voice traffic lag-3 3.52 6.31 14.46 16.97 3.39
Daily CS voice traffic lag-4 3.64 4.87 16.95 17.04 3.36

Table 5.14. MAPE values for daily PS total traffic prediction with 70%-30% split

rate
Models SVM MLP RF RBF Holt-Winters
Daily PS total traffic lag-1 3.75 349 1291 1751 5.09
Daily PS total traffic lag-2 448 376 12.89 12.92 5.09
Daily PS total traffic lag-3 3.74 525 1225 18.49 5.09
Daily PS total traffic lag-4 3.43 6.09 1196 17.96 3.14
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Table 5.15. MAPE values for daily PS downlink traffic prediction with 70%-30%

split rate
Models SVM MLP RF RBF Holt-Winters
Daily PS downlink traffic lag-1 2.60 3.89 13.80 10.50 5.32
Daily PS downlink traffic lag-2 2.60 3.89 13.80 10.50 5.32
Daily PS downlink traffic lag-3 2.18 4.62 14.84 13.59 5.32
Daily PS downlink traffic lag-4 2.19 5.05 13.96 14.56 3.31

Table 5.16. MAPE values for daily PS uplink traffic prediction with 70%-30% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily PS uplink traffic lag-1 260 3.89 5.00 6.84 4.25
Daily PS uplink traffic lag-2 260 3.89 5.00 6.84 4.25
Daily PS uplink traffic lag-3 2.18 5.60 534 7.7 4.13
Daily PS uplink traffic lag-4 220 5.06 4.08 8.73 2.82

Table 5.17. MAPE values for daily CS voice traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily CS voice traffic lag-1 2.67 358 11.99 10.21 2.90
Daily CS voice traffic lag-2 2.67 358 1225 11.97 2.42
Daily CS voice traffic lag-3 234 476 11.72 10.58 242
Daily CS voice traffic lag-4 225 4.65 11.24 10.55 2.42
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Table 5.18. MAPE values for daily PS total traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily PS total traffic lag-1 271 543 500 10.96 5.97
Daily PS total traffic lag-2 271 513 4.82 10.10 3.12
Daily PS total traffic lag-3 259 441 435 9.72 3.12
Daily PS total traffic lag-4 2.89 399 455 7.26 3.12

Table 5.19. MAPE values for daily PS downlink traffic prediction with 80%-20%

split rate
Models SVM MLP RF RBF Holt-Winters
Daily PS downlink traffic lag-1 2.85 4.84 5.18 12.06 4.96
Daily PS downlink traffic lag-2 2.85 4.84 5.18 12.07 4.48
Daily PS downlink traffic lag-3 2.73 460 521 11.18 3.30
Daily PS downlink traffic lag-4 297 424 499 7.89 3.30

Table 5.20. MAPE values for daily PS uplink traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily PS uplink traffic lag-1 202 277 281 4.08 4.16
Daily PS uplink traffic lag-2 202 277 281 4.08 2.34
Daily PS uplink traffic lag-3 2.03 359 2.87 3.94 2.34
Daily PS uplink traffic lag-4 215 287 3.15 3.75 2.34
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Table 5.21. MAPE values for daily CS voice traffic prediction with 90%-10% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily CS voice traffic lag-1 3.11 424 5.28 9.40 3.23
Daily CS voice traffic lag-2 3.15 278 5.32 9.52 2.73
Daily CS voice traffic lag-3 3.11 3.05 5.63 8.98 2.59
Daily CS voice traffic lag-4 293 475 547 8.93 2.59

Table 5.22. MAPE values for daily PS total traffic prediction with 90%-10% split

rate

Models SVM MLP RF RBF Holt-Winters
Daily PS total traffic lag-1 3.02 366 4.82 4.73 7.06
Daily PS total traffic lag-2 294 350 4.91 4.78 3.30
Daily PS total traffic lag-3 3.30 3.89 455 4.80 3.30
Daily PS total traffic lag-4 359 4.01 445 482 3.22

Table 5.23. MAPE values for daily PS downlink traffic prediction with 90%-10%

split rate

Models

SVM MLP RF RBF Holt-Winters

Daily PS downlink traffic lag-1
Daily PS downlink traffic lag-2
Daily PS downlink traffic lag-3
Daily PS downlink traffic lag-4

3.07
3.09
3.38
3.73

3.87 5.37 531
3.87 5.37 5.76
3.88 5.20 5.18
407 4.61 4.93

6.89
3.44
3.44
3.44
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Table 5.24. MAPE values for daily PS uplink traffic prediction with 90%-10% split
rate

Models SVM MLP RF RBF Holt-Winters
Daily PS uplink traffic lag-1 240 221 298 3.87 3.67
Daily PS uplink traffic lag-2 240 221 298 3.87 2.57
Daily PS uplink traffic lag-3 256 243 3.09 3.67 2.57
Daily PS uplink traffic lag-4 282 3.14 3.49 3.98 2.57

Table 5.25 through Table 5.36 show the MAPE’s of the forecasting models

in each category for weekly data set with a pre-defined split rate, separately.

Table 5.25. MAPE values for weekly CS voice traffic prediction with 70%-30%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly CS voice traffic lag-1 7.63 590 15.86 11.24 3.38
Weekly CS voice traffic lag-2 400 593 16.71 18.93 3.38
Weekly CS voice traffic lag-3 3.52 6.31 14.46 16.97 3.39
Weekly CS voice traffic lag-4 3.64 4.87 16.95 17.04 3.36

Table 5.26 MAPE values for weekly PS total traffic prediction with 70%-30% split
rate

Models SVM MLP RF RBF Holt-Winters
Weekly PS total traffic lag-1 354 9.70 16.27 13.66 3.18
Weekly PS total traffic lag-2 3.45 7.90 27.46 19.70 3.17
Weekly PS total traffic lag-3 3.43 8.41 21.27 13.67 3.17
Weekly PS total traffic lag-4 3.32 7.88 19.55 15.38 3.10
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Table 5.27. MAPE values for weekly PS downlink traffic prediction with 70%-30%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly PS downlink trafficlag-1 ~ 2.60 3.89 13.80 10.50 5.32
Weekly PS downlink traffic lag-2 ~ 2.60 3.89 13.80 10.50 5.32
Weekly PS downlink traffic lag-3 ~ 2.18 4.62 14.84 13.59 5.32
Weekly PS downlink traffic lag-4 ~ 2.19 5.05 13.96 14.56 3.31

Table 5.28. MAPE values for weekly PS uplink traffic prediction with 70%-30%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly PS uplink traffic lag-1 2.60 3.89 5.00 6.84 4.25
Weekly PS uplink traffic lag-2 2.60 3.89 5.00 6.84 4.25
Weekly PS uplink traffic lag-3 2.18 5.60 534 7.7 4.13
Weekly PS uplink traffic lag-4 220 5.06 4.08 8.73 2.82

Table 5.29. MAPE values for weekly CS voice traffic prediction with 80%-20%

split rate

Models

SVM MLP RF RBF Holt-Winters

Weekly CS voice traffic lag-1
Weekly CS voice traffic lag-2
Weekly CS voice traffic lag-3
Weekly CS voice traffic lag-4

2.67
2.67
2.34
2.25

3.58 11.99 10.21
3.58 12.25 11.97
476 11.72 10.58
465 11.24 10.55

2.90
2.42
2.42
2.42
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Table 5.30. MAPE values for weekly PS total traffic prediction with 80%-20% split

rate

Models SVM MLP RF RBF Holt-Winters
Weekly PS total traffic lag-1 2.71 5.43 5.00 10.96 5.97
Weekly PS total traffic lag-2 2.71 5.13 4.82 10.10 3.12
Weekly PS total traffic lag-3 259 441 435 9.72 3.12
Weekly PS total traffic lag-4 2.89 399 455 7.26 3.12

Table 5.31. MAPE values for weekly PS downlink traffic prediction with 80%-20%

split rate

Models

SVM MLP RF RBF Holt-Winters

Weekly PS downlink traffic lag-1
Weekly PS downlink traffic lag-2
Weekly PS downlink traffic lag-3
Weekly PS downlink traffic lag-4

2.85
2.85
2.73
2.97

4.84 5.18 12.06
4.84 5.18 12.07
460 5.21 11.18
424 499 7.89

4.96
4.48
3.30
3.30

Table 5.32. MAPE values for weekly PS uplink traffic prediction with 80%-20%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly PS uplink traffic lag-1 2.02 277 2.81 4.08 4.16
Weekly PS uplink traffic lag-2 202 277 2.81 4.08 2.34
Weekly PS uplink traffic lag-3 2.03 359 2.87 3.94 2.34
Weekly PS uplink traffic lag-4 2.15 287 3.15 3.75 2.34
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Table 5.33. MAPE values for weekly CS voice traffic prediction with 90%-10%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly CS voice traffic lag-1 3.11 4.24 528 9.40 3.23
Weekly CS voice traffic lag-2 3.15 2.78 532 9.52 2.73
Weekly CS voice traffic lag-3 3.11 3.05 5.63 8.98 2.59
Weekly CS voice traffic lag-4 293 475 547 8.93 2.59

Table 5.34. MAPE values for weekly PS total traffic prediction with 90%-10% split

rate

Models

SVM MLP RF RBF Holt-Winters

Weekly PS total traffic lag-1
Weekly PS total traffic lag-2
Weekly PS total traffic lag-3
Weekly PS total traffic lag-4

3.02
2.94
3.30

3.66 4.82 4.73
3.50 491 4.78
3.89 4.55 4.80

3.59 4.01 4.45 482

7.06
3.30
3.30
3.22

Table 5.35. MAPE values for weekly PS downlink traffic prediction with 90%-10%

split rate

Models

SVM MLP RF RBF Holt-Winters

Weekly PS downlink traffic lag-1
Weekly PS downlink traffic lag-2
Weekly PS downlink traffic lag-3
Weekly PS downlink traffic lag-4

3.07
3.09
3.38
3.73

3.87 5.37 531
3.87 5.37 5.76
3.88 5.20 5.18
4.07 4.61 4.93

6.89
3.44
3.44
3.44
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Table 5.36. MAPE values for weekly PS uplink traffic prediction with 90%-10%

split rate
Models SVM MLP RF RBF Holt-Winters
Weekly PS uplink traffic lag-1 240 221 298 3.87 3.67
Weekly PS uplink traffic lag-2 240 221 298 3.87 2.57
Weekly PS uplink traffic lag-3 256 2.43 3.09 3.67 2.57
Weekly PS uplink traffic lag-4 2.82 3.14 349 398 2.57

Figure 5.1 through Figure 5.12 show the average of the MAPE’s of all
methods separately and the percentage decrement rates in MAPE’s between the
models having the lowest MAPE’s on the average and the other regression models

for each data set.
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Figure 5.1. Average MAPE of the forecasting models for hourly CS voice traffic
with 70%-30% split rate
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Figure 5.2. Percentage decrease rates in average MAPE of the forecasting models
for hourly CS voice traffic with 70%-30% split rate
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Figure 5.3. Average MAPE of the forecasting models for hourly PS total traffic
with 70%-30% split rate
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Figure 5.4. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS total traffic with 70%-30% split rate
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Figure 5.5. Average MAPE of the forecasting models for hourly PS downlink
traffic with 70%-30% split rate
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Figure 5.6. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS downlink traffic with 70%-30% split rate
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Figure 5.7. Average MAPE of the forecasting models for hourly PS uplink traffic
with 70%-30% split rate
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Figure 5.8. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS uplink traffic with 70%-30% split rate
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Figure 5.9. Average MAPE of the forecasting models for hourly CS voice traffic
with 80%-20% split rate
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Figure 5.10. Percentage decrease rates in average MAPE of the forecasting models
for hourly CS voice traffic with 80%-20% split rate
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Figure 5.11. Average MAPE of the forecasting models for hourly PS total traffic
with 80%-20% split rate
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Figure 5.12. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS total traffic with 80%-20% split rate
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Figure 5.13. Average MAPE of the forecasting models for hourly PS downlink
traffic with 80%-20% split rate
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Figure 5.14. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS downlink traffic with 80%-20% split rate
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Figure 5.15. Average MAPE of the forecasting models for hourly PS uplink traffic
with 80%-20% split rate
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Figure 5.16. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS uplink traffic with 80%-20% split rate
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Figure 5.17. Average MAPE of the forecasting models for hourly CS voice traffic
with 90%-10% split rate
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Figure 5.18. Percentage decrease rates in average MAPE of the forecasting models
for hourly CS voice traffic with 90%-10% split rate
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Figure 5.19. Average MAPE of the forecasting models for hourly PS total traffic
with 90%-10% split rate
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Figure 5.20. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS total traffic with 90%-10% split rate
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Figure 5.21. Average MAPE of the forecasting models for hourly PS downlink
traffic with 90%-10% split rate
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Figure 5.22. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS downlink traffic with 90%-10% split rate
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Figure 5.23. Average MAPE of the forecasting models for hourly PS uplink traffic
with 90%-10% split rate
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Figure 5.24. Percentage decrease rates in average MAPE of the forecasting models
for hourly PS uplink traffic with 90%-10% split rate
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Figure 5.25. Average MAPE of the forecasting models for daily CS voice traffic
with 70%-30% split rate
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Figure 5.26. Percentage decrease rates in average MAPE of the forecasting models
for daily CS voice traffic with 70%-30% split rate
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Figure 5.27. Average MAPE of the forecasting models for daily PS total traffic
with 70%-30% split rate
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Figure 5.28. Percentage decrease rates in average MAPE of the forecasting models
for daily PS total traffic with 70%-30% split rate
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Figure 5.29. Average MAPE of the forecasting models for daily PS downlink
traffic with 70%-30% split rate
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Figure 5.30. Percentage decrease rates in average MAPE of the forecasting models
for daily PS downlink traffic with 70%-30% split rate
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Figure 5.31. Average MAPE of the forecasting models for daily PS uplink traffic
with 70%-30% split rate
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Figure 5.32. Percentage decrease rates in average MAPE of the forecasting models
for daily PS uplink traffic with 70%-30% split rate
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Figure 5.33. Average MAPE of the forecasting models for daily CS voice traffic
with 80%-20% split rate
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Figure 5.34. Percentage decrease rates in average MAPE of the forecasting models
for daily CS voice traffic with 80%-20% split rate
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Figure 5.35. Average MAPE of the forecasting models for daily PS total traffic
with 80%-20% split rate
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Figure 5.36. Percentage decrease rates in average MAPE of the forecasting models
for daily PS total traffic with 80%-20% split rate
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Figure 5.37. Average MAPE of the forecasting models for daily PS downlink
traffic with 80%-20% split rate
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Figure 5.38. Percentage decrease rates in average MAPE of the forecasting models
for daily PS downlink traffic with 80%-20% split rate
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Figure 5.39. Average MAPE of the forecasting models for daily PS uplink traffic
with 80%-20% split rate
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Figure 5.40. Percentage decrease rates in average MAPE of the forecasting models
for daily PS uplink traffic with 80%-20% split rate
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Figure 5.41. Average MAPE of the forecasting models for daily CS voice traffic
with 90%-10% split rate
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Figure 5.42. Percentage decrease rates in average MAPE of the forecasting models
for daily CS voice traffic with 90%-10% split rate
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Figure 5.43. Average MAPE of the forecasting models for daily PS total traffic
with 90%-10% split rate
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Figure 5.44. Percentage decrease rates in average MAPE of the forecasting models
for daily PS total traffic with 90%-10% split rate
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Figure 5.45. Average MAPE of the forecasting models for daily PS downlink
traffic with 90%-10% split rate
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Figure 5.46. Percentage decrease rates in average MAPE of the forecasting models
for daily PS downlink traffic with 90%-10% split rate
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Figure 5.47. Average MAPE of the forecasting models for daily PS uplink traffic
with 90%-10% split rate
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Figure 5.48. Percentage decrease rates in average MAPE of the forecasting models
for daily PS uplink traffic with 90%-10% split rate
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Figure 5.49. Average MAPE of the forecasting models for weekly CS voice traffic
with 70%-30% split rate
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Figure 5.50. Percentage decrease rates in average MAPE of the forecasting models
for weekly CS voice traffic with 70%-30% split rate
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Figure 5.51. Average MAPE of the forecasting models for weekly PS total traffic
with 70%-30% split rate
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Figure 5.52. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS total traffic with 70%-30% split rate
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Figure 5.53. Average MAPE of the forecasting models for weekly PS downlink
traffic with 70%-30% split rate
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Figure 5.54. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS downlink traffic with 70%-30% split rate
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Figure 5.55. Average MAPE of the forecasting models for weekly PS uplink traffic
with 70%-30% split rate
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Figure 5.56. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS uplink traffic with 70%-30% split rate
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Figure 5.57. Average MAPE of the forecasting models for weekly CS voice traffic
with 80%-20% split rate
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Figure 5.58. Percentage decrease rates in average MAPE of the forecasting models
for weekly CS voice traffic with 80%-20% split rate
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Figure 5.59. Average MAPE of the forecasting models for weekly PS total traffic
with 80%-20% split rate
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Figure 5.60. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS total traffic with 80%-20% split rate
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Average MAPE of the forecasting models for weekly PS downlink
traffic with 80%-20% split rate
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Figure 5.62. Percentage decrease rates in average MAPE of the forecasting models

for weekly PS downlink traffic with 80%-20% split rate
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Figure 5.63. Average MAPE of the forecasting models for weekly PS uplink traffic
with 80%-20% split rate
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Figure 5.64. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS uplink traffic with 80%-20% split rate

87



5. RESULTS AND DISCUSSION Yasin Yur

SVM MLP RF RBF

Holt Winters

18
16
14
12
10

MAPE(%)

o N B O

Figure 5.65. Average MAPE of the forecasting models for weekly CS voice traffic
with 90%-10% split rate
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Figure 5.66. Percentage decrease rates in average MAPE of the forecasting models
for weekly CS voice traffic with 90%-10% split rate
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Figure 5.69. Average MAPE of the forecasting models for weekly PS downlink
traffic with 90%-10% split rate
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Figure 5.70. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS downlink traffic with 90%-10% split rate
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Figure 5.71. Average MAPE of the forecasting models for weekly PS uplink traffic
with 90%-10% split rate
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Figure 5.72. Percentage decrease rates in average MAPE of the forecasting models
for weekly PS uplink traffic with 90%-10% split rate

5.1. General Discussion on the Results

e For all data sets, in general, SVM and Holt-Winters based prediction
models show the highest performance regardless of the selection of

time lags. Among the regression models, the general ranking of the
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methods in terms of their prediction performance based on the
MAPE’s is SVM, Holt-Winters, MLP, RF and RBF.

e  Generally, the results show that prediction models based on the daily
time scale exhibit higher performance than the models based on the
other time scales (hourly and weekly). But there is no distinct
performance difference between the prediction models based on other
time scales (hourly and weekly).

e For hourly and daily datasets, in general, the time lags having shorter
time scale (Lag-2) yield higher MAPE’s. On the other hand, shorter
time lag outperforms for the weekly dataset.

e For hourly dataset, the time lags having longer time scale (Lag-4)
yields best MAPE results for all split ranges and for all type of traffic
datasets. However, there are no distinct performance differences for
other datasets (daily and weekly) and split ranges.

e When the performance of the prediction models based on averages
MAPE’s combined with all split ranges is examined, the MAPE’s of
the prediction models obtained on daily dataset have lower error rates
than the ones obtained on hourly ad weekly time scale.

e Lowest MAPE values are achieved on weekly CS voice dataset via
90% to 10% train-test split range. On the other hand, the highest
MAPE values are acquired on hourly CS voice dataset with a split
range of 70%_30%.

e Network dimensioning and future capacity enhancement can be
conducted by using the predicted traffic and its time granularity. The
expansion of the network parts (RAN or Core) can be easily
controlled by using most relevant traffic type which limits the capacity
of the system frequently.
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5.2. Discussion on Hourly Dataset Results

e  For hourly traffic datasets, in general, SVM-based prediction models
have lower MAPE values than the prediction models based on other
machine learning and statistical methods regardless of the time lags
selection with a single exception.

e For all hourly traffic datasets, in general, RBF vyields the worst
prediction performance with respect to the highest average MAPE’s.

e In general, the interval of the MAPE’s of the prediction models for
hourly datasets are between 3.31% to 94.82% for CS voice traffic,
2.10% to 19.62% for PS total traffic, 2.06% to 19.23% for PS
downlink traffic and 1.95% to 23.56% for PS uplink traffic.

e For CS voice traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is SVM,
MLP, RF, Holt-Winters and RBF for 70%_30% split; SVM, RF,
MLP, Holt-Winters and RBF for 80%_20% split and SVM, RF, Holt-
Winters, MLP and RBF for 90%_10% split.

e  For PS total traffic, the general ranking of the models in terms of their
prediction performance based on the average MAPE’s is SVM, RF,
MLP, Holt-Winters and RBF for 70%_30% split; RF, SVM, MLP,
Holt-Winters and RBF for 80%_20% split and SVM, MLP, RF, Holt-
Winters, MLP and RBF for 90%_10% split.

e  For PS downlink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is SVM,
RF, MLP, Holt-Winters and RBF for 70%_30% split; RF, SVM,
MLP, Holt-Winters and RBF for 80%_20% split and SVM, MLP,
MLP, RF, Holt-Winters and RBF for 90%_109% split.
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e For PS uplink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is RF,
SVM, MLP, Holt-Winters and RBF for 70%_30% split; MLP, SVM,
RF, Holt-Winters and RBF for 80%_20% split and RF, MLP, SVM,
Holt-Winters and RBF for 90%_10% split.

e Among the lengths of time lags, the lags having the longer scale or
generated by selecting all autocorrelations above a given threshold
give lower MAPE’s for all hourly traffic datasets. Particularly, Lag-4
yield 22.96%, 50.7%, 30% lower MAPE’s on the average than the
MAPE’s of Lag-1, Lag-2 and Lag-3 for voice traffic, 10.99%, 22.93%
and 10.18% for PS total traffic, 13.17%, 30.43% and 17.11% for PS
downlink traffic, 5.05%, 25.16% and 11.12% for PS uplink traffic.

e In general, the lowest MAPE values and the lowest average MAPE’s
are acquired via 90%_10% split for all hourly traffic datasets. More
precisely, it yields 30.09% and 19.12% lower MAPE’s on the average
than the MAPE’s of 70%_30% and 80%_20% splits.

5.3. Discussion on Daily Dataset Results

e For daily traffic datasets based on 80% 20% split, SVM-based
prediction models have lower MAPE values than the prediction
models based on other machine learning and statistical methods
regardless of the time lags selection. For other splits of the dataset,
general ranking among the methods in terms of best result is SVM,
Holt-Winters, and MLP.
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e For all daily traffic datasets, in general, RBF shows the worst
performance based on the prediction performance with the highest
average MAPE’s.

e In general, the interval of the MAPE’s of the prediction models for
daily datasets is between 2.25% to 18.93% for CS voice traffic, 2.89%
to 18.49% for PS total traffic, 2.18% to 14.84% for PS downlink
traffic and 2.02% to 8.73% for PS uplink traffic.

e For CS voice traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is Holt-
Winters, SVM, MLP, RF and RBF for 70%_30% split; SVM, Holt-
Winters, MLP, RBF and RF for 80%_20% split and Holt-Winters,
SVM, MLP, RF and RBF for 90%_10% split range.

o For PS total traffic, the general ranking of the models in terms of their
prediction performance based on the average MAPE’s is SVM, Holt-
Winters, MLP, RF and RBF for 70%_30% split; SVM, Holt-Winters,
RF, MLP and RBF for 80% 20% split and SVM, MLP, Holt-Winters,
MLP, RF and RBF for 90%_10% split.

e  For PS downlink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is SVM,
MLP, Holt-Winters, RBF and RF for 70%_30% split; SVM, Holt-
Winters, MLP, RF and RBF for 80% 20% split and SVM, MLP,
Holt-Winters, RF and RBF for 90%_10% split.

e For PS uplink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is SVM,
Holt-Winters, MLP, RF and RBF for 70%_30% split; SVM, Holt-
Winters, RF, MLP and RBF for 80% 20% split and MLP, SVM,
Holt-Winters, RF and RBF for 90%_10% split.
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e In general, the lowest MAPE values and the lowest average MAPE’s
are acquired via 80%_20% split for all hourly traffic datasets with a
single exception. It yields 14.39% and 15.83% lower MAPE’s on the
average than the MAPE’s of 90%_10% and 70%_30% splits.

e Among the lengths of time lags, the lags having the longer scale or
generated by selecting all autocorrelations above a given threshold
give lower MAPE’s only for PS total and PS uplink traffic.
Particularly, Lag-4 yield 12.12%, 4.91% lower MAPE’s on the
average than the MAPE’s of Lag-1 and Lag-3 for PS total traffic,
8.03%, 4.39% and 6.11% lower than Lag-1, Lag-2, and Lag-3 for PS

downlink traffic.

5.4. Discussion on Weekly Dataset Results

o For weekly traffic datasets, Holt-Winters based prediction models
have lower average MAPE values than the prediction models based on
the machine learning methods regardless of the time lags and split
range selection. More specifically, Holt-Winters prediction models
yield 46.64%, 83.23%, 87.74% and 78.68% lower MAPE’s on the
average than the MAPE’s of SVM, MLP, RF, RBF for CS voice
traffic; 10.29%, 52.13%, 80.13%, 66.28% for PS total traffic; %23.74,
64.24%, 81.62%, 71.54% for PS downlink traffic; %58.06%, 39.73%,
78.35% and 64.81% for PS uplink traffic, respectively.

o For all weekly traffic datasets, in general, RF shows the worst
performance based on the highest average MAPE’s.

e In general, the interval of the MAPE’s of the prediction models for
weekly traffic datasets are between 1.59% to 26.32% for CS voice
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traffic, 3.12% to 23.38% for PS total traffic, 2.18% to 14.84% for PS
downlink traffic and 2.01% to 13.48% for PS uplink traffic.

e For CS voice traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is Holt-
Winters, SVM, RBF, MLP and RF for 70%_30% split; Holt-Winters,
SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM,
MLP, RBF and RF for 90%_10% split.

e  For PS total traffic, the general ranking of the models in terms of their
prediction performance based on the average MAPE’s is Holt-Winters,
SVM, RBF and RF for 70%_30% split; Holt-Winters, SVM, RBF,
MLP and RF for 80%_20% split and Holt-Winters, SVM, MLP, RBF
and RF for 90%_10% split.

e For PS downlink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is Holt-
Winters, SVM, MLP, RBF and RF for 70%_30% split; Holt-Winters,
SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM,
MLP, RBF and RF for 90%_10% split.

e For PS uplink traffic, the general ranking of the models in terms of
their prediction performance based on the average MAPE’s is Holt-
Winters, SVM, MLP, RBF and RF for 70%_30% split; Holt-Winters,
SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM,
MLP, RBF and RF for 90%_10% split.

97



5. RESULTS AND DISCUSSION Yasin Yur

98



6. CONCLUSION Yasin YUR

6. CONCLUSION

In this thesis, circuit switched voice and packet switched data traffic
prediction models have been developed for commercially deployed 3G/UMTS
network in Turkey using various machine learning methods including SVM, MLP,
RBF, RF and a statistical regression method which is Holt-Winters. Experiments
have been conducted on twelve different data sets which have been formed by
different time scales and carried traffic type. Several time lags have been utilized
for each data set to develop voice and data traffic forecasting models. For model
training and testing, the utilized dataset has been partitioned in three different
ranges. In the first split, 70% of dataset content has been used for training while the
rest of data has been used for testing. Additionally, 80%_20% and 90%_10% train
and test splits have been used as second and third partitioning range for datasets.
The performance of the forecasting models has been evaluated using MAPE.

Considering the results obtained, various conclusion can be deduced. First
of all, SVM based models and statistical based Holt-Winters models show better
performance than the models developed by other regression methods. The order of
the regression methods for 3G/UMTS network traffic forecasting in terms of their
prediction performance based on the MAPE’s, from the best to the worst, is SVM,
Holt-Winters, MLP, RF, and RBF. Secondly, the forecasting models on the daily
time scale indicate much better performance than the forecasting models based on
the other time scales (that is, hourly and weekly). Thirdly, when the lengths of the
time lags are compared, the time lags having longer scales or generated by using
autocorrelations yield lower MAPE’s on the average while the time lags having
shorter scales yield higher MAPE’s on the average for hourly traffic forecasting.

Because SVM-based prediction models yield better performance for hourly
traffic and Holt-Winters yields the same for weekly traffic, it can be said that SVM
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is useful for hourly and Holt-Winters for weekly to forecast 3G network voice and
data traffic.

Future work can be performed in a number of different areas. Different
machine learning methods with different time lags can be applied to forecast the
3G/UMTS network traffic. Additionally, this work can easily be extended to next
generation wireless telecommunication technology like fourth generation / Long
Term Evaluation (4G/LTE) or fifth generation (5G) mobile networks.
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