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ABSTRACT 
 

MASTER THESIS 
 

VOICE AND DATA TRAFFIC MODELING AND PREDICTION FOR A 
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LEARNING METHODS 
 

Yasin YUR 
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INSTITUTE OF NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF COMPUTER ENGINEERING 
 

  Supervisor : Assoc. Prof. Dr. M. Fatih AKAY  
   Year: 2017, Pages: 107 

Jury : Assoc. Prof. Dr. M. Fatih AKAY 
 : Asst. Prof. Dr. B. Melis ÖZYILDIRIM 
 : Asst. Prof. Dr. Onur ÜLGEN 
  
 The purpose of this thesis is to derive models for traffic characteristics of a 
3G network which is commercially deployed in Turkey and predict voice and data 
traffic by using various machine learning methods. The machine learning methods 
which were employed are Support Vector Machines (SVM), Multilayer Perceptron 
(MLP), Random Forest (RF) and Radial Basis Function Neural Network (RBF). 
Additionally, the Holt-Winters method has been applied to develop prediction 
models as a statistical method. Four different type of UMTS network traffic data 
have been utilized in order to build traffic prediction models. The performance of 
the forecasting models for the data sets has been assessed using Mean Absolute 
Percentage Error (MAPE). Finally, the performance of statistical and machine 
learning regression methods have been compared and the results show that SVM 
and Holt-Winters based models usually perform better than the ones obtained by 
the other methods. 

 
Key Words: Machine learning, time series, UMTS traffic forecasting, time lags   
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ÖZ 
 

YÜKSEK LİSANS TEZİ 
 

MAKİNE ÖĞRENME YÖNTEMLERİ KULLANILARAK ÜÇÜNCÜ NESİL 
MOBİL ŞEBEKELERDEKİ SES VE DATA TRAFİKLERİ İÇİN İLERİ 

YÖNLÜ TRAFİK TAHMİN MODELLERİNİN GELİŞTİRİLMESİ 
 

Yasin YUR 
 

ÇUKUROVA ÜNİVERSİTESİ  
FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI 
 

Danışman : Doç. Dr. M. Fatih AKAY  
   Yıl: 2017, Sayfa: 107 
Jüri     : Doç. Dr. M. Fatih AKAY 
  : Yrd. Doç. Dr. B. Melis ÖZYILDIRIM 
  : Yrd. Doç. Dr. Onur ÜLGEN 

    
 Bu tezin amacı, üçüncü nesil mobil şebekelerin devre anahtarlamalı ses ve 
paket anahtarlamalı veri trafikleri için ileri yönlü tahminin yapılmasını sağlayan 
daha akıllı modeller geliştirmektir. Trafik tahmin modelleri ilk olarak makine 
öğrenimi ile oluşturulmuş ve içerik olarak dört farklı yöntem kullanılmıştır. Bu 
yöntemler sırası ile Destek Vektör Makinesi (Support Vector Machine - SVM), 
Çok Katmanlı Algılayıcı (Multilayer Perceptron - MLP), Radyal Tabanlı 
Fonksiyon Sinir Ağı (Radial Basis Function Neural Network – RBF) ve Rasgele 
Orman’dır (Random Forest). İlave olarak istatistiki bir yöntem olan Holt-Winters 
methodu kullanılarak trafik tahmin modeli geliştirilmiştir. Trafik tahmin modelleri 
üretilirken UMTS şebekesine ait olan dört farklı tipteki gerçek trafik bilgileri 
kullanılmıştır. Modellerin performansı Ortalama Mutlak Yüzde Hata (MAPE) 
değeri hesaplanarak değerlendirilmiştir. Sonuçlar, genel olarak SVM tabanlı ve 
Holt-Winters tabanlı modellerin diğer yöntemlerden daha iyi performans elde 
ettiğini göstermektedir.  
 
Anahtar Kelimeler:  Makine öğrenme, zaman serileri, UMTS trafik tahmini, 

zaman gecikmeleri 
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GENİŞLETİLMİŞ ÖZET 

 

Günümüzde yeni nesil iletişim teknolojileri ve hava arayüzündeki artan 

frekans ve band genişlikleri ile daha fazla kapasitenin kullanıcıya sunulması, mobil 

ses ve data trafik talebini dramatik bir şekilde yükseltmektedir. Bununla beraber 

ülkemizde geçmiş zamanlara göre ucuzlayan mobil veri kullanımı ve farklı ihtiyaç 

paketlerinin kullanıcıya sunulması veri kullanımının hergeçen gün artmasına 

olanak sağlamaktadır. Bu gerçekler doğrultusunda artan trafik miktarının tahmin 

edilmesi işlemi mobil operatörler için şebeke kapasite analizi ile beraber yatırım 

gereksinimlerinin doğru boyutlandırılması ve dolayısı ile aboneye sunulacak servis 

kalitesinin arttırılması gerçekleri ile büyük önem arz etmektedir.  

Üçüncü nesil mobil şebekeler için ileri yönlü trafik tahmin işlemini 

yapabilecek yöntemler ya da uygulamalar sınırlı sayıdadır. Ticari olarak satışı olan 

ürünlerin çeşitliliği ile ülke içerisinde bulunabilirliği yeterli seviyelerde değildir. 

Bunun yanında mevcut ve kullanımda olan geleneksel istatistikî yöntemlerde yer 

almaktadır. Ancak bu uygulamaların hata seviyeleri bu derece önemli ve kritik bir 

operasyon için çok yüksek seviyelerdedir. Bu gerekçelerden dolayı, trafik tahmin 

işlemini yapabilecek ve yapılan bu tahmini doğru ölçeklendirebilecek daha akıllı 

modellere büyük gereksinim duyulmaktadır.  

Bu tezin amacı Türkiye’de ticari olarak servis veren bir operatörün üçüncü 

nesil mobil şebekesi için makine öğrenimine dayalı yöntemler kullanılarak ileri 

dönemli ses ve data trafik tahmini sağlayan modeller geliştimektir.   

Literatürde trafik tahmini üzerine yapılmış çalışmalar mevcuttur. Bu çalışmalar 

içerisinde makine öğrenme yöntemleri ve istatiksel regresyon yöntemleri 

kullanılmıştır. Tez kapsamında, literatürdeki diğer tüm çalışmalardan farklı olarak; 

daha fazla sayıda ve daha önce denenmemiş olan makine öğrenme yöntemleri 

kullanılarak elde edilen modellerin performansları birbirleri ile ve ilave olarak 
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istatiksel bir regresyon yöntemi olan Holt-Winters metodu kullanılarak oluşturulan 

modellerin performansıyla da karsılaştırılmıştır. Bu özgün değere ilave olarak 

litratürde yer alan diğer çalışmalar içerisinde Türkiye’deki üçüncü nesil mobil bir 

şebekenin trafik servis modellemesi çalışmasına rastlanmamıştır. Bu nedenle 

yüksek lisans tezi ile ilk defa Türkiye’de yer alan üçüncü nesil mobil bir şebekenin 

trafik modellemesi yapılmıştır. Ayrıca literatürdeki diğer çalışmaların içerisinde 

hem ses hemde data trafiğini aynı anda kapsayıp modelleyen bir çalışmada mevcut 

değildir. Yüksek lisans tezi bu iki trafik tipini aynı anda modelleyen ilk çalışma 

olmuştur.  

Tez içerisinde üç farklı veri seti kullanılmıştır. Bu setler sırası ile saatlik, 

günlük ve haftalık olarak ses ve data trafik bilgilerini içermektedir. Ses trafiği veri 

seti içerisinde yer alan bilgilerin birimi Erlang ve data veri seti içerisindeki 

bilgilerin birimi ise bit olacaktır. Veri setleri Türkiye’de servis veren üçüncü nesil 

mobil bir şebekenin geçmiş dönemli canlı şebeke kayıtlarından derlenmiştir.  

Makine öğrenme yöntemleri olarak Destek Vektör Makinesi (Support Vector 

Machine - SVM), Çok Katmanlı Algılayıcı (Multilayer Perceptron - MLP), Radyal 

Tabanlı Fonksiyon Sinir Ağı (Radial Basis Function Neural Network – RBF), 

Rasgele Orman (Random Forest) kullanılmıştır.  İlave olarak istatiksel regresyon 

yöntemi kullanılarak da bir modelleme yapılmıştır.  Bu işlem içerisinde yöntem 

olarak Holt-Winters metodu kullanılmıştır. Modellemeler sonucunda istatiksel 

regresyon yöntemi ve makine öğrenme yöntemlerinin performansları 

karsılaştırılmıştır. Sonuç olarak farklı makine öğrenme yöntemleri ve istatiksel 

regresyon yöntemleriyle analiz edilip, en iyi tahmin modelleri, en iyi tahmin 

modelini veren zaman gecikmeleri ve en başarılı yöntem karşılaştırmsı yapılmıştır. 

Modellerin performansı Ortalama Mutlak Yüzde Hata (Mean Absolute Percentage 

Error – MAPE) değeri hesaplanarak değerlendirilmiştir.  
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Elde edilen modellerin performansı göz önüne alındığında, çeşitli sonuçlara 

varılmaktadır. Her şeyden önce, SVM tabanlı modeller ve istatistiksel tabanlı Holt-

Winters modelleri ile diğer regresyon yöntemleri kullanılarak geliştirilen modellere 

göre daha iyi tahmin sonuçları elde edilmiştir. Performans ölçütü MAPE’ye göre 

sonucu en iyiden en kötüye doğru sıralanacak şekilde 3G / UMTS şebekesi trafik 

tahmin performansı açısından regresyon yöntemlerinin başarı sırası, SVM, Holt-

Winters, MLP, RF ve RBF olarak yer almaktadır.  

Sonuç olarak bu tez genişletilerek gelecekteki çalışmalar için farklı alanlara 

taşınabilir. Farklı zaman gecikmeleri ile farklı makine öğrenme yöntemleri 3G / 

UMTS ağ trafiğini tahmin etmek için uygulanabilir. Ayrıca, bu çalışma kolayca 

dördüncü nesil (4G / LTE) gibi yeni nesil kablosuz telekomünikasyon teknolojisi 

yada yakın zamanda geliştirilmesi tamamlanarak uygulamaya dönüşecek beşinci 

nesil (5G) mobil ağlar için kullanılacak şekilde genişletilebilir.  
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 INTRODUCTION 

 

1.1. UMTS Network 

Since 1998, Third Generation Mobile Telecommunication System has been 

deployed for enabling mobile accessible wireless data (packet switched) and voice 

(circuit switched) services. Universal Mobile Telecommunication System (UMTS) 

is the term used in Europe for 3rd generation (3G) networks and is planned to make 

the move from 2nd generation systems smoother, yet in the end, supplant them. This 

implies UMTS will, in the long haul, bolster all applications at present served by 

2nd generation cell frameworks, for example, GSM and PDC, cordless frameworks 

like DECT, and satellite frameworks like IRIDIUM (WCDMA for UMTS, 2004).  

The UMTS Network comprises Radio Network Controllers (RNC), Radio 

Base Stations (Node B), an O&M system including RANOS (Radio Access 

Network Operation System), TRAM (Tools for Radio Access Management) and 

Core Network (CN) as shown in Figure 1.1. 

 

Figure 1.1 UMTS Network (Ericsson WCDMA/UMTS System Overview, 2001) 
 

 



1. INTRODUCTION Yasin YUR 

2 

Wideband code division multiple access (WCDMA) radio access 

technology used in UMTS offers greater spectral efficiency and bandwidth. The 

frequency from 400 MHz to 3 GHz is allocated for communication spectrum. The 

following frequency bands are currently identified for UMTS in all three ITU 

Regions: 450 – 470 MHz, 790 – 960 MHz, 1710 – 2025 MHz, 2110 – 2200 MHz, 

2300 – 2400 MHz and 2500 – 2690 MHz. Additional frequency bands identified 

for IMT on a Regional or National basis are 698-790 MHz (Region 2), 610 – 790 

MHz (9 countries in Region 3: Bangladesh, China, Rep. of Korea, India, Japan, 

New Zealand, Papua New Guinea, Philippines and Singapore), 3400 – 3600 MHz 

(Over 80 Administrations in Region 1 plus 9 in Region 3 including India, China, 

Japan and Rep. of Korea). (WCDMA for UMTS, 2004).   

In the direction of these developments, data transfer for downlink 

connection is 384 Kbps for the first release in 1999 (R99, the first UMTS release), 

and 7.2 Mbps for future release in which HSDPA technology, also called 3.5G, 

was introduced. For the uplink, the data transfer ranges from 384 Kbps to 5.76 

Mbps theoretically (3GPP, 1999). The latest release (Release 11) of UMTS can 

provide peak data rates up to 337.5 Mbps in the downlink and 22 Mbps in the 

uplink, using a combination of air interface improvements as well as multiple cell 

and Multiple Input Multiple Output features together (3GPP, 2014).  

The new technology provides greater bandwidth and higher throughput. 

Therefore, more capacity is required to meet higher user expectation. It is also 

obvious that crowded games, special events, and high-tech conventions are 

notorious for overwhelming cell-phone networks with up and down of traffic. In 

such cases, linear planning of network and classical prediction methods do not 

work well and the design of the networks come under surge of unusual things.  

So, networks need to be well designed, dimensioned and deployed to cope 

with expected or unexpected situations. Most important necessities for these tasks 
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are developing accurate traffic models and making reliable traffic prediction. More 

accurate traffic prediction means that more realistic results can be achieved. 

Predictive modelers also estimate future traffic demands and help 

telecommunications carrier plan accordingly. They start by collecting a carrier’s 

data to understand what has gone on in a network and what it looks like now—how 

much traffic is transmitted, what percentage is voice or video or text, what path it 

takes through the network. Then they run simulations to assess the impact if, for 

instance, a carrier starts selling the iPhone, or changes its marketing plan, or moves 

from 3G to 4G services. 

 

1.2. Literature 

 

1.2.1 Previous Work on Network Traffic Prediction 

In (Chan, et. al., 2006), an access control protocol has been proposed for an 

integrated voice, video, and non-real-time data traffic on the forward link (cell-site 

to mobile). The protocol contains predicting the remaining capacity available for 

the HSDPA packet data traffic. It evaluates the traffic models based on Markovian, 

AR and TSMR processes. Among the three models, the AR and TSMR show 

higher performance compared with the Markov model.  

In (Buerger et. al., 2008), four different models including linear, 

exponential, ARMA and DHR methods have been used for forecasting packet 

services traffic in 3G networks. It has been shown that sophisticated models (i.e. 

models based on ARMA and DHR) deliver better results than the simple ones (i.e. 

models based on linear and exponential functions). 

In (Gowrishankar, 2009), short time network traffic prediction has been 

studied. RRBFN, ESN and FARIMA methods have been applied for developing 

prediction models. The results show that neural network predictors show better 

performance than statistical models.  
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In (Chen et. al., 2010), modeling and forecasting have been accomplished 

by using BP neural network. The model has been built by analyzing the 

characteristics of network traffic and the results show that the model has good 

astringency and stability. 

In (Syed et. al., 2010), wavelet filters based on multi-resolution analysis 

along with the Seasonal Autoregressive Moving Average (SARIMA) models have 

been used to forecast traffic. The results have been compared with the ones 

obtained by simple SARIMA and it is concluded that the proposed methodology 

gives more accurate forecast.    

In (Chabaa et. al., 2010), to analyze internet traffic, multi-layer perceptron 

(MLP) based model has been developed. For estimating the weights of the neurons 

within the model, Levenberg-Marquardt (LM) and the Resilient back propagation 

(Rp) algorithms have been applied and the efficiency of these models have been 

compared with the one of some other statistical models. 

In (Tan et. al., 2012), bittorrent type network traffic and its behavior have 

been investigated by using time series ARMA model. It is proved that bittorrent 

network traffic can be modeled and forecasted by ARMA model effectively. 

In (Kim et. al., 2011), an autoregressive-generalized autoregressive 

conditional heteroscedasticity (AR-GARCH) error model for forecasting internet 

traffic has been developed and its performance has been compared with seasonal 

autoregressive integrated moving average (ARIMA) models in terms of root mean 

square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH 

models outperformed the seasonal ARIMA models in terms of forecasting accuracy 

with respect to the RMSE criterion. 

In (Chen et. al., 2012), the flexible neural tree (FNT) has been utilized to 

predict short time scale traffic in the network. FNT structure has been developed by 

using genetic programming (GP) and internal model parameters have been 

optimized by Particle Swarm Optimization (PSO) algorithm. It is concluded that 
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the developed model is efficient and reliable for short time scale traffic 

measurement.  

In (Miguel et. al., 2012), long term internet traffic has been predicted by 

using ensembles of Artificial Neural Network. Four different TLFNs have been 

utilized and each differ from others by the training data and the number of artificial 

neural networks used in the forecast. Results obtained by the TLFNs models have 

been also compared with the ones obtained with the classical Holt-Winters method. 

The proposed neural network models perform well and can be a good option for the 

link that transports internet traffic.    

In (Cortez et. al., 2012), the authors have utilized Naïve-Benchmark, Holt-

Winters, ARIMA, and ANN to figure Internet activity. It has been inferred that 

while ANN-based models gave the best outcome for 5-minute and hourly sets, 

Holt-Winters based models were more exact than the ones obtained by the other 

strategy for the daily set.      

In (Oliveira et. al., 2014), MLP and SAE have been used to forecast 

Internet traffic. The results of MLP and SAE based models have been confronted. 

The outcomes have demonstrated that despite the fact that SAE was a complex 

method, MLP based models performed well with respect to the SAE. 

In (Katris et. al., 2015), several different approaches have been evaluated 

for internet traffic forecasting. Firstly, the dependence of short or long and non-

linearity has been explored to take the advantage of such information. FARIMA, 

MLP, RBF, Holt-Winters, ARIMA/GARCH, FARIMA/GARCH, hybrid 

FARIMA+RBF, and hybrid FARIMA+MLP are the models used in the study. The 

results show that forecasting models that use non-linear functions has a better 

performance for internet traffic prediction. 

The summary of the studies and the methods used in each study are given 

in Table 1.1.     
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Table 1.1 Summary of studies between the years 2006 and 2016 
Study Methods Traffic Type 

(Chan, et.al., 2006) Markovian, AR, TSMR UMTS voice and data 
(Buerger et.al., 2008) ARMA, DHR UMTS data 
(Gowrishankar, 2009) RRBFN, ESN, FARIMA UMTS data 
(Chen et.al., 2010) BP-ANN Internet, IP based data  

(Syed et. al., 2010) Wavelet Filter based 
SARIMA, SARIMA Intranet, IP based data 

(Chabaa et. al., 2010) MLP, LM, RBP Internet, IP based data 
(Tan et. al., 2012) ARMA Internet, IP based data 
(Kim, 2011) AR-GARCH, ARIMA Internet, IP based data 
(Chen, 2011) GA, GNN Internet, IP based data 
(Chen et. al., 2012) FNT, FFNN Internet, IP based data 
(Miguel et. al., 2012) ANN, Holt-Winters, TLFN Internet, IP based data 

(Cortez et. al., 2012) Naive Benchmark, ANN, 
MLP, Holt-Winters Internet, IP based data 

(Maurya et. al., 2012) FIS Internet, IP based data 

(Wang et. al., 2012) NTWD, ARMA without 
Wavelet Analysis Internet, IP based data 

(Dorgbefu jnr.  et. al., 
2013) Kalman filter UMTS data 

(Oliveira et. al., 2014) MLP, SAE Internet, IP based data 
(Kamińska-Chuchmała, 
2014) GE Internet, IP based data 

(Katris et. al., 2015) 
FARIMA, MLP, RBF, 
ARIMA/GARCH, Holt-
Winters 

Internet, IP based data 

GLLA, Generic Local Linear Approximation; RBF, Radial Basis Function Neural Network; SVM, Support 
Vector Machine; LLA, Local Linear Approximation; ARMA, Auto-Regressive Moving Average; MMPP, 
Markov-Modulated Poisson Process; FFNN, Feed-Forward Neural Network; WMRA, Wavelet Multiresolution 
Analysis; ARIMA, Autoregressive Integrated Moving  Average; FIR, Multiresolution Finite-Impulse-Response; 
MODWT, Maximal Overlap Discrete Wavelet Transform; MMLP, Multiresolution Multilayer Perceptron; ANN, 
Artificial Neural Network; MLP, Multilayer Perceptron; GA-RBF, Genetic Algorithm RBF; BP, Back 
Propagation; LS- SVM, Least Square SVM; FARIMA, Autoregressive Fractionally Integrated Moving  Average; 
SPN, Spinning Network; GM(1,1), Grey-Markow Model; ANFIS, Adaptive Neuro-Fuzzy Inference System; 
GARCH, Generalized Autoregressive Conditional Heteroscedasticity; SVR, Support Vector Regression; GML, 
Gaussian Maximum Likelihood; ES, Holt Exponential Smoothing; MA, Moving Average; AR, Auto-Regressive 
 

1.3. Motivation, Purpose and Contributions of This Thesis  

Traditionally, prediction of network-based traffic which is collected from 

different sources is often performed by statistical methods, such as linear and 

exponential regression. However, these methods have limited efficiency. In other 

words, forecasts based on these models have a strong deviation compared with 

actual data collected from the live network. Therefore, machine learning methods 
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including supervised learning models are appropriate solutions and they can give 

more sophisticated and reliable estimations with respect to the classical methods.  

In literature, there exist several studies which predict the network traffic 

with the help of statistical as well as machine learning regression methods, but 

there is no comprehensive work that covers both voice (circuit switched) and data 

(packet switched) traffic together within the same framework. 

The aim of this thesis is to derive models for traffic characteristics of a 3G 

network which is commercially deployed in Turkey and predict voice and data 

traffic by using various machine learning methods. The machine learning methods 

that have been employed are Support Vector Machines (SVM), Multilayer 

Perceptron (MLP), Random Forest (RF) and Radial Basis Function Neural 

Network (RBF). Additionally, the Holt-Winters method has been applied to 

develop prediction models. Finally, the performance of statistical and machine 

learning regression methods have been compared in this thesis.  

The scope of this thesis is differentiated from the studies in literature as 

outlined below:  

 

• To the best of our knowledge, this is the first study ever that has developed 

traffic prediction models for one of the mobile operators in Turkey using 

machine learning methods.  

• While UMTS network traffic prediction was also employed in the previous 

studies, this is the first study that ever used machine learning methods such 

as SVM, MLP, RBF, RF with a statistical method Holt-Winters and their 

prediction results have been compared using a performance indicator 

known as MAPE. 

• To the best of our knowledge, this is the first research study that predicts 

both voice traffic and packet data traffic together within the same 

framework for a 3G mobile network.  
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• To the best of our knowledge, short, mid and long term three different time 

granularity traffic prediction methods have been focused on this study 

while previous works do not cover the time granularity as wide as this 

study.   
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 DATASET GENERATION 

 

In this thesis, three different types of the dataset have been used to build 

traffic prediction models of a commercially deployed 3G network operating in 

Turkey. Each dataset contains different time scales including hourly, daily and 

weekly traffic values. The sets and their traffic contents have been acquired from 

the live 3G mobile operator network with the permission of service provider.  

1st data set:  The first dataset includes hourly basis data for both voice and 

packet data (IP based) traffic acquired from a live network. The voice set contains 

circuit-switched (CS) traffic volume in Erlang, while packet-switched (PS) set 

contains IP-based data traffic volume in bits.  PS datasets contain three subsets, 

which are PS Downlink, PS Uplink and the sum of these, called PS Total traffic. 

The dataset was saved every hour between October 24th, 2015 and January 19th, 

2016. 

2nd data set: The second dataset includes voice and packet switched traffic 

with daily acquired values. It consists of CS (Voice) traffic, PS Downlink, PS 

Uplink and PS Total daily network traffic, respectively. It was acquired from the 

3G Network between December 21st, 2014 and May 8th, 2016.  

3rd data set: The third dataset consists of voice and packet switched traffic 

including CS traffic, PS Downlink, PS Uplink and PS Total traffic with weekly 

acquired values. It contains weekly traffic between March 3rd, 2014 and May 2nd, 

2016.   

The distributions of traffic for different datasets are given in Figure 2.1 

through Figure 2.12, respectively.  
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Figure 2.1 Hourly CS voice traffic distribution 
 

 
Figure 2.2 Hourly PS downlink data traffic distribution 
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Figure 2.3 Hourly PS uplink data traffic distribution 
 

 
Figure 2.4 Hourly PS total data traffic distribution 
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Figure 2.5 Daily CS voice traffic distribution 
 

 
Figure 2.6 Daily PS downlink data traffic distribution 
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Figure 2.7 Daily PS uplink data traffic distribution 
 

 
Figure 2.8 Daily PS total data traffic distribution  
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Figure 2.9 Weekly CS voice traffic distribution 

 

 
Figure 2.10 Weekly PS downlink data traffic distribution 
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Figure 2.11 Weekly PS uplink data traffic distribution 

 

 
Figure 2.12 Weekly PS total data traffic distribution 
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 OVERVIEW OF METHODS 

 

3.1. Support Vector Machine 

SVMs were introduced by Vladimir N. Vapnik and Alexey Ya. 

Chervonenkis in 1963 and are supervised learning algorithms for both the solution 

of classification and regression problems.  

 

3.1.1 Linear SVM 

Assume (x1, y1) ... (xn, yn) represent the training dataset where xi are the 

vectors for the observations and yi = {-1, +1} be the targets. The primary goal of an 

SVM is to find the optimal hyperplane (i.e. hyperplane with the highest margin) 

that separates the two distinct targets from each other. The margin of the 

hyperplane should be selected in such a way that distinct targets are as far as 

possible from each other. The idea of choosing a large margin for the hyperplane is 

to provide a more resistant hyperplane to noise. 

Assume that all the data satisfy the constraints given by (3.1.) and (3.2.) 

 𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥  +1     𝑦𝑦𝑖𝑖 = +1    (3.1.) 

  𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≤  +1     𝑦𝑦𝑖𝑖 = −1        (3.2.) 

  

  

https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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Figure 3.1 Linear separable hyperplane. Support vectors are circled. 
 

(3.3.) shows the combination of the two constraints, 

  

 𝑦𝑦𝑖𝑖 (𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥  1     ∀𝑖𝑖  (3.3.) 

 

In (3.3), the normal to the hyperplane is given by w , the perpendecilur distance 

from the origin is given by |𝑏𝑏| ∕ ||𝑤𝑤||, and the Euclidean form of w is given by 

||𝑤𝑤|| is. The margin, which  the distance between H1 and H2 and given by p , can 

be calculated with (3.4.): 

  

𝜌𝜌 = |1−𝑏𝑏|
�|𝑤𝑤|�

− |−1−𝑏𝑏|
�|𝑤𝑤|�

= 2
�|𝑤𝑤|�

  (3.4.) 

 

The optimum value of the margin can be found by solving the primal optimization 

problem given in (3.5.) 
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 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤∈ℋ

𝜏𝜏(𝑤𝑤) = 1
2

�|𝑤𝑤2|�  

 

subject to  

 

𝑦𝑦𝑖𝑖 (𝑤𝑤. 𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥  1     ∀𝑖𝑖       (3.5.) 

 

Then Lagrangian technique is used to solve (3.5.) by introducing new Lagrange 

multiplier αi  for each constraint and the new formulation of the minimization 

problem is given by, 

  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤,𝑏𝑏

 𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝛼𝛼) =
1
2 �|𝑤𝑤|�2 −  � 𝛼𝛼𝑖𝑖

𝑙𝑙

𝑖𝑖=1

𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖𝑤𝑤 + 𝑏𝑏) + � 𝛼𝛼𝑖𝑖

𝑙𝑙

𝑖𝑖=1

 

   (3.6.) 

with αi  ≥ 0 for each constraint in (3.5.).  The problem is then reduced to 

minimizing (3.6.) with respect to w, b and at the same time requiring the 

derivatives of L(w,b,α) with respect to all the α  vanish. 

 The solutions w*, b* and α* should satisfy the conditions given in (3.7.) 

through (3.9.) with respect to the Karush-Kuhn-Tucker (KKT) conditions:  

  
𝜕𝜕𝜕𝜕(𝒘𝒘∗, 𝑏𝑏∗, 𝛼𝛼∗)

𝜕𝜕𝒘𝒘
= 𝑤𝑤𝑣𝑣 −  � 𝛼𝛼𝑖𝑖

𝑖𝑖

𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = 0  𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣 = 1, … , 𝑑𝑑 

   (3.7.) 

  

𝜕𝜕𝜕𝜕(𝒘𝒘∗, 𝑏𝑏∗, 𝛼𝛼∗)
𝜕𝜕𝜕𝜕

= − � 𝛼𝛼𝑖𝑖
𝑖𝑖

𝑦𝑦𝑖𝑖 = 0 

  (3.8.) 
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 𝑦𝑦𝑖𝑖(𝒙𝒙𝑖𝑖. 𝒘𝒘 + 𝑏𝑏) − 1 ≥  0,     ∀i  

  (3.9.) 

 𝛼𝛼𝑖𝑖  ≥  0    ∀𝑖𝑖  

  (3.10.) 

 𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(𝒙𝒙𝑖𝑖. 𝒘𝒘 + 𝑏𝑏) − 1) =  0     ∀𝑖𝑖  

   (3.11.) 

It is to be noted that the given KKT conditions are enough for w*; b*; α* to be a 

solution. Therefore, if one can find a solution to the KKT conditions, that solution 

is also valid for the SVM problem. The optimal hyperplane as a linear combination 

of the vectors in the training set is defined by the first KKT condition as  

  

𝒘𝒘∗ =  � 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖
𝑖𝑖

𝒙𝒙𝒊𝒊 

   (3.12.) 

The second KKT condition requires that the αi coefficients of the training instances 

should satisfy   

  

� 𝛼𝛼𝑖𝑖
∗𝑦𝑦𝑖𝑖 = 0 ,   𝛼𝛼𝑖𝑖  

𝑛𝑛

𝑖𝑖=1

≥ 0 

   (3.13.) 

 Maximizing (3.6.) according to α, and minimizing with respect to w and b 

is a dual solution of the SVM problem. The dual formula can be obtained by 

placing (3.7.) and (3.8.) into (3.6.)  

  

Max
𝛼𝛼

𝐿𝐿𝐷𝐷 = � 𝛼𝛼𝑖𝑖 −
1
2

𝑖𝑖

� 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝒙𝒙𝒊𝒊. 𝒙𝒙𝒋𝒋
𝑖𝑖,𝑗𝑗

    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   ∀𝑖𝑖 �
� 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑖𝑖
= 0

𝛼𝛼𝑖𝑖 ≥ 0
 

  (3.14.) 
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Thus, by solving the equations, the coefficients αi is obtained. The conditions with   

αi > 0 are called “support vectors”. This leads to the decision function  

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 

  

=  � 𝑦𝑦𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝛼𝛼𝑖𝑖�𝑥𝑥𝑖𝑖
𝑇𝑇𝑥𝑥� + 𝑏𝑏 

  (3.15.) 

3.1.2 Non-Linear SVM 

A linear separating hyperplane cannot usually divide most of the datasets. 

However, these datasets can be linearly divided if they are mapped into a higher 

dimensional space by a mapping function Φ(x) and building a separating 

hyperplane with a maximum margin in the input space. Figure 3.2 shows the 

relation between linear decision function in the future space and non-linear 

decision boundary in the input space.  

Several Kernel functions including linear kernel, polynomial kernel, RBF 

kernel and sigmoid kernel can be used to calculate the hyperplane given in (3.16.). 

 

 𝐾𝐾(𝑥𝑥, 𝑦𝑦) =  〈Φ(𝑥𝑥), Φ(y)〉    (3.16.) 
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Figure 3.2 Data not linearly separable in the input space (a), separable by non-

linear space (b), Kernel mapped feature space (c). 
 

3.2. Multi-Layer Perceptron 

Multi-layer perceptrons are organized in layers of neurons and implement a 

feed-forward processing chain. Following notations can be used for the layers and 

nodes of an MLP: 

 

• The network consists of L layers, with l=0 denoting the input layer and 

l=L denoting the output layer.  

• The notation for a single node is 𝑛𝑛𝑖𝑖
𝑙𝑙 (1 ≤ 𝑖𝑖 ≤  𝑁𝑁𝑙𝑙), 𝑁𝑁𝑙𝑙 being the number 

of nodes in layer l.  

• The activation of a network node depends on the strength of the input to 

that node with respect to threshold value. For notational convenience, 

the network thresholds are treated uniformly by adding an extra node 

with a fixed output of 1.0 to all but the output layer. This node – called 

the bias unit – is denoted 𝑛𝑛0
𝑙𝑙  (for ≠ 𝐿𝐿 ).  

• To allow for MLPs of arbitrary connectivity, it is useful to define a set 

of source nodes 𝑆𝑆𝑖𝑖
𝑙𝑙 and set of target nodes 𝑇𝑇𝑖𝑖

𝑙𝑙 for each node 𝑛𝑛𝑖𝑖
𝑙𝑙. Given 

that node 𝑚𝑚𝑗𝑗
𝑚𝑚is connected node 𝑛𝑛𝑖𝑖

𝑙𝑙, 𝑛𝑛𝑗𝑗
𝑚𝑚 is a source node of 𝑛𝑛𝑖𝑖

𝑙𝑙(i.e. 𝑛𝑛𝑗𝑗
𝑚𝑚 ∈
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𝑆𝑆𝑖𝑖
𝑙𝑙) if m<l, but a target node of 𝑛𝑛𝑖𝑖

𝑙𝑙 (i.e. 𝑛𝑛𝑗𝑗
𝑚𝑚 ∈ 𝑇𝑇𝑖𝑖

𝑙𝑙) if m>l. Set 𝑆𝑆𝑖𝑖
𝑙𝑙 is null 

for all input nodes (i.e. 𝑆𝑆𝑖𝑖
0 =  ∅ for i =1,…,N0 ) and for all bias units 

(i.e. 𝑆𝑆𝑖𝑖
0 =  ∅ for l =0,…,L-1); set 𝑇𝑇𝑖𝑖

𝑙𝑙is null for all output nodes (i.e. 

𝑇𝑇𝑖𝑖
𝑙𝑙 =  ∅ for i =1,…,NL ). 

• Network weights can be represented in terms of the nodes they connect; 

thus weight 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙𝑙𝑙connects nodes 𝑛𝑛𝑗𝑗

𝑚𝑚and 𝑛𝑛𝑖𝑖
𝑙𝑙 with m<l (i.e. 𝑛𝑛𝑗𝑗

𝑚𝑚is a source 

node of 𝑛𝑛𝑖𝑖
𝑙𝑙and 𝑛𝑛𝑖𝑖

𝑙𝑙is a target node of 𝑛𝑛𝑗𝑗
𝑚𝑚). However, it will often be more 

convenient to consider weights in terms of the weight vector w 

comprising all W weights in the network, with a single weight denoted 

𝑤𝑤𝑖𝑖(1 ≤ i ≤ W).  

 

The number of nodes in the input and output layers of the MLP is determined 

by, respectively, the pattern size and the target size of the chosen training task. 

MLPs are typically trained using fixed training set of P training pairs, with each 

training pair comprising two real valued vectors – a pattern 𝑝𝑝𝑞𝑞(1≤ q ≤ P) and 

corresponding target (desired output) 𝑡𝑡𝑞𝑞. Individual pattern and target elements are 

denoted 𝑝𝑝𝑖𝑖,𝑞𝑞   (1≤ i ≤ N0) and 𝑡𝑡𝑗𝑗,𝑞𝑞 (1≤ j ≤ NL) respectively. The output 𝑦𝑦𝑖𝑖,𝑞𝑞
0   of input 

node i is simply 𝑝𝑝𝑖𝑖,𝑞𝑞 for pattern q (except for 𝑦𝑦0
0 the fixed output of the bias unit). 

For non-input node 𝑛𝑛𝑖𝑖
𝑙𝑙, the output is given by the weighted sum  

 

𝑎𝑎𝑖𝑖,𝑞𝑞
𝑙𝑙 =  � 𝑤𝑤𝑖𝑖𝑖𝑖

𝑙𝑙𝑙𝑙

𝑛𝑛𝑗𝑗
𝑚𝑚∈𝑆𝑆𝑖𝑖

𝑙𝑙

𝑦𝑦𝑗𝑗,𝑞𝑞
𝑚𝑚 , 𝑙𝑙 > 0 

  (3.17.) 

  

𝑦𝑦𝑖𝑖,𝑞𝑞
𝑙𝑙 = 𝑓𝑓�𝑎𝑎𝑖𝑖,𝑞𝑞

𝑙𝑙 �, 𝑙𝑙 > 0 

   (3.18.) 
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where 𝑎𝑎𝑖𝑖,𝑞𝑞
𝑙𝑙  is the activation of node 𝑛𝑛𝑖𝑖

𝑙𝑙 for pattern q, and the squashing or activation 

function f(x) is both monotonic (i.e. non-decreasing) and continuously 

differentiable. By far the most commonly used squashing function is the sigmoid or 

logistic function  

  

𝑓𝑓(𝑥𝑥) =   
1

(1 + 𝑒𝑒−𝑥𝑥)
 

  (3.19.) 

which compresses the output of each non-input node in the range [0,1]. The most 

popular alternative to the sigmoid is the hyperbolic tangent, f(x) = tanh(x), which 

gives a compressed range [-1, 1]. 

The layers between the input and output layers are known as hidden layers. 

The number of hidden layers and nodes has a major impact on MLP training: too 

few, and the network will be unable to learn the problem; too many, and the 

network may take excessively long to train and have poor generalization 

capabilities – a features as, but are not identical to, patterns in the training set. 

Upper and lower bounds on the number of hidden nodes required for an MLP to be 

capable of learning a given task have been established by Huang and Huang 

(1991), but optimal number of hidden nodes is much more difficult to determine.  

 

3.3. Radial Basis Function Network 

 

3.3.1 Network Architecture 

RBF network includes several layers and the first layer has input neurons. 

These neurons feed the feature vectors into the network. The second one is the 

hidden layer that calculates the result of the basic functions. The last layer is the 

output layer that calculates a linear union of the basic functions. These kinds of 
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networks have the general estimation property (Park and Sandberg, 1991). Simple 

structures of these networks give a decreasing for training time and make possible 

learning in stages. 

X ∈ Rn (a vector) is an input and f(x): Rn →R (a function) is an output 

estimated by using an RBF network:  
  

𝑓𝑓(𝑥𝑥) = � 𝑤𝑤𝑖𝑖ℎ𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝑥𝑥) 

  (3.20.) 

where N represents the number of neurons and ℎ(𝑥𝑥) is the radial basis function in 

the hidden layer. The typical radial basis function is taken to be Gaussian: 

  

ℎ𝑖𝑖(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑥𝑥 − 𝑐𝑐)2

𝑟𝑟2 � 

  (3.21.) 

The parameter 𝑐𝑐 is the center vector and 𝑟𝑟 is its radius.  

 

3.3.2 Training 

A two-step algorithm is usually used to train RBF. The first step requires 

the selection of the center vectors ci  of the RBF functions in the hidden layer. 

Randomly sampled from some set of examples or K-means clustering can be used 

to accomplish the first step.  

In the second step, the coefficients wi are fitted to the hidden layers output 

with respect to some transfer function. The least squares function is one of the 

commonly used transfer functions. Detailed information can be found in 

“Multivariable Functional Interpolation and Adaptive Networks”, (Broomhead D. 

S., 1988).   
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3.4. Random Forest  

RF was built by Leo Breiman (2001). A group of unpruned classification 

or regression trees which are formed by the random choice of samples of the 

training data is created with the RF (Ali et. al., 2012). 

RF makes use of bagging and random feature selection, which are two 

important machine learning methods. In bagging, every tree is practiced on the 

training set’s bootstrap case and estimations are generated by a large number of 

trees. 

RF is a method that is an extension of bagging. While growing a tree, a 

subset of features is selected randomly by RF instead of using all features to divide 

into each node. To assess the expectation execution of the RF calculation, RF 

utilizes a kind of cross-approval correspondingly to preparing process by using 

OOB cases. Particularly, at the training, a certain bootstrap sample has been used 

during growth of each tree. Since bootstrapping is exemplifying by replacing with 

the training set, a certain set of the sequence is repeated in the case when others are 

“left out” of the samples. The “left out” ranks generate the OOB case. In the mean, 

while each tree is grown, 1- e-1 ≅ 2/3 of the training sequences has been used and e-

1 ≅ 1/3 has been left as OOB. Since OOB ranks haven’t been employed during 

construction of the tree, they can be employed to assess the estimation performance 

(Jiang et. al., 2007). 

RF algorithm is shown below;  

 

1. Choose tree m bootstrap cases by using the main data. 

2. For every case, raise an unpruned regression or classification tree by 

regulating sequent change: in every node, instead of selecting the best 

division between all predictors, say try n of the predictors, select the best 

division through those attributes. 
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3. Guess new data by collecting predictions of the tree m trees (that is, if it is 

a classification problem, then choose majority, if it is a regression 

problem, then choose average). 

 

The estimated error rate could be attained, according to the training set as 

below;  

 

1. At every bootstrap repetition, guess the data in the OOB using the tree 

risen with the bootstrap sample. 

2. Collect the OOB estimations. Figure out the error rate, and define it as 

the OOB estimate ones (Liaw and Wiener, 2002). 

 

3.5. Holt-Winters 

Holt-Winters is an exponential smoothing method which is used when the 

data exhibits both trend and seasonality. Seasonal and trended samples are 

separated from the unnecessary attributes by meaning the historical rates. It has 

some benefits like the easiness of using it, having less computation, and more 

accurate results for seasonal series. 

The two main HW models are Additive model for time series exhibiting 

additive seasonality and Multiplicative model for time series exhibiting 

Multiplicative seasonality.  

The general forecast function is:  

 

𝑦𝑦�𝑡𝑡+𝑙𝑙|𝑡𝑡 = (𝑚𝑚𝑡𝑡 + 𝑙𝑙𝑏𝑏𝑡𝑡)𝑐𝑐𝑡𝑡−𝑠𝑠+𝑙𝑙          𝑙𝑙 = 1,2 …   (3.22.) 

𝑚𝑚𝑡𝑡 = 𝛼𝛼0
𝑦𝑦𝑡𝑡

𝑐𝑐𝑡𝑡−𝑠𝑠
+ (1 − 𝛼𝛼0)(𝑚𝑚𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1)   (3.23.) 

𝑏𝑏𝑡𝑡 = 𝛼𝛼1(𝑚𝑚𝑡𝑡 − 𝑚𝑚𝑡𝑡−1) + (1 − 𝛼𝛼1)𝑏𝑏𝑡𝑡−1  (3.24.) 
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𝑐𝑐𝑡𝑡 = 𝛼𝛼2
𝑦𝑦𝑡𝑡

𝑚𝑚𝑡𝑡
+ (1 − 𝛼𝛼2)𝑐𝑐𝑡𝑡−𝑠𝑠 

   (3.25.) 

 

where m is the component of level, b is the component of the slope, c is the 

relevant seasonal component with s signifying the seasonal period (e.g. 4 for 

quaerterly data and 12 for monthly data),  𝛼𝛼0, 𝛼𝛼1, 𝛼𝛼2 are model parameters lie 

between 0 and 1.  

It is important to select the starting values and smoothing parameters 

(Chatfield and Yar (1998). For starting values, the component 𝑚𝑚0 is sensible to the 

avearege observations in the first year, i.e.  

 

𝑚𝑚0 =  �
𝑦𝑦𝑡𝑡

𝑠𝑠

𝑠𝑠

𝑡𝑡=1

 

  (3.26.) 

where the number of seasons is given by s. 3.27. can be used to find the starting 

value for the slope  

  

 𝑏𝑏0 =  
{∑ 𝑦𝑦𝑡𝑡 𝑠𝑠⁄𝑠𝑠

𝑡𝑡=1 } − {∑ 𝑦𝑦𝑡𝑡 𝑠𝑠⁄2𝑠𝑠
𝑡𝑡=𝑠𝑠+1 }

𝑠𝑠
 

  (3.27.) 

After allowing a trend adjustment, the seasonal index rate can be computed:  

  

𝑐𝑐0 =
{𝑦𝑦𝑘𝑘 − (𝑘𝑘 − 1)𝑏𝑏0/2}

𝑚𝑚0
 

   (Multiplicative) 
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𝑐𝑐0 = 𝑦𝑦𝑘𝑘 − �𝑚𝑚0 +
(𝑘𝑘 − 1)𝑏𝑏0

2 � 

  (Additive) 

where k=1, 2…, s and it’ll lead to s separate values for 𝑐𝑐0 which is what is required 

to gain the initial seasonal pattern.  

Usually, the values between 0.02 and 0.2 are used for the smoothing 

parameters. It is again possible to estimate them by minimizing the sum of squared 

one-step-ahead errors, but there is no exclusive combination of 𝛼𝛼0, 𝛼𝛼1, 𝛼𝛼2 which 

will minimize the square errors for all t.  
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 DEVELOPMENT OF PREDICTION MODELS 

 

4.1. SVM Model  

Support Vector Machines are learning machines that depend on two 

important elements: a linear learning algorithm and specific kernel that calculates 

the internal process of input data points and projects them to a future space. For the 

learning algorithm, the penalty parameter “C” controls the trade-off between 

margin maximization and error minimization (Chapelle et.al. 2002) 

The selection of kernel type and the parameter C are the critical steps for 

the learning mechanism.  The accuracy of the whole process also depends on these 

tasks. There is a tradeoff between reducing the error related to training and 

reducing the complexity of the model and this is stated by parameter C. A small 

value of C will increase a number of training errors and a large value of C will 

exhibit an attitude similar to that of a hard-margin SVM. The kernel parameters are 

important in the sense that they act as a bridge between the input space and the 

high-dimensional feature space (Ji and Wang, 2007). “ε” is the another important 

parameter for the SVM. It controls the width of  insensitive zone and states the 

number of support vectors.  

In this thesis, RBF and polynomial kernel have been utilized separately for 

developing the models. Recently, polynomial kernels are less widely used than the 

RBF kernel. The reason is that in the case of training, a polynomial kernel may 

have less accuracy than that of RBF, but training with a low degree polynomial 

kernel strategy is much faster and it saves time.  

These all parameters together with the penalty parameter “C” are called the 

hyperparameters of the SVM.   

The optimal values hyperparameters are usually found by grid search. That 

is, the values of the parameters are differentiated with a fixed step size through an 
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interval of values and the performance of every combination is assessed using 

some performance measure. A cross-validation within the grid search can be 

utilized in order to develop the generalization capability of the SVM regression 

model. In the process of k-fold cross validation, the cross validation is recurred k 

times (this means k folds), with each of the k subsets utilized precisely once as the 

validation data. The k results from the folds then ought to be associated to generate 

a single prediction.  

The intervals for values of the parameters for the SVM models are given in 

Table 4.1. 

 

Table 4.1 The intervals for values of the parameters for the SVM model 
Parameter Value Interval 

C [2-5, 25] 

γ [2-5, 25] 

ε [0, 1] 

Degree [1, 3] 

 

4.2. MLP Model  

The MLP architecture depends on the choice of the number of layers, the 

number of hidden nodes in each of these layers and the objective function. If the 

number of neurons that is utilized is not sufficient, less information will be 

acquired. On the contrary, the local minimum might enhance and the network 

might come close to a local minimum, hence the network’s sensitivity will 

decrease. Nevertheless, there is not a strict regulation for detecting the number of 

neurons in a hidden layer. Generally, the optimal number is selected with trial and 

error based on the difficulty of the problem. 

In the hidden layer of the MLP models, the tansigmoid function is utilized 

whereas in the output layer of MLP models, the pure linear function is used. LM 
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algorithm is implemented to train the network. Other important parameters of the 

MLP based models and their values are given in Table 4.2. 

 

Table 4.2 The intervals for values of the parameters for the MLP models 
Parameter Value Interval 

Number of hidden layers [1, 4] 

Number of neurons in hidden layer  [1, 50] 

Learning rate [0, 1] 

Momentum [0, 1] 

 

4.3. RBF Network Model  

The performance of the radial basis function (RBF) depends on numerous 

factor.  The choice of basis function and shape parameter have a significant impact 

on the accuracy of an RBF.  The decisions tremendously affect the accuracy and 

the numerical stability of the method utilized. 

Other important parameters of the RBF models are the number of clusters 

and the clustering seed, and their values are given in Table 4.3.       

   

Table 4.3 The intervals for values of the parameters for the RBF models 
Parameter Value Interval 

Number of clusters [1,4] 

Clustering seed  [1,50] 

 

4.4. RF Model  

Random forest is an ensemble classifier using many decision tree models 

in order to improve the classification rate for classification and regression analysis. 

There are many advantages of random forest such as generating a highly accurate 

classifier, running efficiently on a large database, giving a prediction about the 
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variable that is important in the classification, having an effective method for 

estimating missing data, etc. (Ali et al., 2012).  

The important parameters that affect the performance of a random forest 

model are the number of trees, the number of features to be used in random 

selection and the random number seed. The interval of the parameters used in this 

study is given in Table 4.4.  

 

Table 4.4 The intervals for values of the parameters for the RF models 
Parameter Value Interval 

Number of trees in the forest [1,250] 

Number of features   [0,120] 

Random number seed [1,25] 

 

4.5. Holt-Winters Model  

The Holt-Winters is a popular statistical forecasting method because it is 

simple to use, has low data-storage demand, and is easily automated. In this 

method, the predictive model consists of trended and seasonable patterns that are 

chosen from noise by averaging historical values. It has some advantages like the 

easiness of using it, having less computation, and accuracy for seasonal series 

(Cortez et al., 2012). The seasonal variation can be an additive or multiplicative 

form. The multiplicative form is used more widely and it has better output results 

than the additive form. However, there is a limitation that if a data series consist of 

some values equal to zero, the multiplicative Holt-Winter method cannot be used.  

The problem regarding the Holt-Winters method is the selection of 

smoothing parameters and their initial values, so that prediction better accord with 

time series data. In this thesis, smoothing factors and initial parameters in Holt-

Winters method are estimated by minimizing the prediction result. Hence, the 
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optimal parameters selected with a method in which empirical calculation 

continued up to lowest prediction error rate met. 

The important parameters that affect the performance of a Holt-Winters 

model are the length of the seasonal cycle, the smoothing factor for the seasonal 

component, the smoothing factor for the trend and the smoothing factor for the 

series value. These parameters and their intervals are given in Table 4.5.   

 

Table 4.5 The intervals for values of the parameters for the Holt-Winters model 
Parameter Value Interval 

Seasonal cycle length [1,24] 

Seasonal smoothing factor   [0,1] 

Trend smoothing factor [0,1] 

Value smoothing factor [0,1] 

 

4.6. Lag Selection  

A very important step for time series prediction is the correct selection of 

the past observations which are named as lags. The lag is an important value for the 

embedding of the series i.e. for its reconstruction in a state space.  

Two methods are usually used to calculate the lags. The first one consists 

of selecting the first value that corresponds to a zero of the autocorrelation 

function. The second one selects a value corresponding to a minimum of the 

mutual information (MI). However, both approaches have the same goal: to select 

variables that are as much independent (or uncorrelated) as possible in order to 

reconstruct a trajectory in the state space that approaches at best the true dynamics 

of the time series. In this study, autocorrelation coefficient calculation is used to 

select the lags for each time-varying datasets.  
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4.6.1 Autocorrelation function 

The autocorrelation is defined as the correlation of a time series attributes 

at times n among n-k where k=1… K=N-1. It measures the sign correlated between 

a time shift and itself where the map of the number of the time shift determined 

also as a time lag. The autocorrelation function helps to determine the rate of 

dependence in data. Also, it helps to state stability of time series, utilize likely time 

series model and sorting sample that occurs again in time series. Further, time 

series with distinct scale can be compared by using the autocorrelation function. 

A time series can be determined by equation 

 

  

𝑋𝑋 = {𝑥𝑥𝑖𝑖𝑖𝑖: 𝑖𝑖 = 1, … , 𝐼𝐼; 𝑛𝑛 = 1, … , 𝑁𝑁} =  

⎣
⎢
⎢
⎢
⎡
𝑥𝑥11 … 𝑥𝑥𝑖𝑖1 … 𝑥𝑥𝐼𝐼1
… … … … …

𝑥𝑥1𝑛𝑛 … 𝑥𝑥𝑖𝑖𝑖𝑖 … 𝑥𝑥𝐼𝐼𝐼𝐼
… … … … …

𝑥𝑥1𝑁𝑁 … 𝑥𝑥𝑖𝑖𝑖𝑖 … 𝑥𝑥𝐼𝐼𝐼𝐼⎦
⎥
⎥
⎥
⎤
 

  

 

such that 𝑥𝑥𝑛𝑛 = {𝑥𝑥𝑖𝑖𝑖𝑖: 𝑛𝑛 = 1, … . , 𝑁𝑁} refers the ith time series (𝑖𝑖 = 1, … , 𝐼𝐼), 𝑥𝑥𝑖𝑖𝑖𝑖 

express the nth investigation (𝑛𝑛 = 1, … , 𝑁𝑁) of the ith time series(𝑖𝑖 = 1, … , 𝐼𝐼). 

For a specific ith time series, 𝑥𝑥𝑛𝑛 = {𝑥𝑥𝑖𝑖𝑖𝑖: 𝑛𝑛 = 1, … . , 𝑁𝑁} the autocorrelation 

coefficient at lag 𝑘𝑘(𝑘𝑘 = 1, … , 𝑁𝑁 − 1 = 𝐾𝐾) is shown by  

  

𝜆𝜆𝑖𝑖𝑖𝑖 =  
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖)�𝑥𝑥𝑖𝑖(𝑛𝑛−𝑘𝑘) − 𝑥̅𝑥𝑖𝑖�𝑁𝑁

𝑛𝑛=𝑘𝑘+1

∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖)2𝑁𝑁
𝑛𝑛−1

 

  

such that  𝑥̅𝑥𝑖𝑖 is the average of the time 𝑖𝑖𝑡𝑡ℎ series. The autocorrelation function of a 

time series is built by the autocorrelation coefficients at the distinct time lags. The 
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interval of the autocorrelation is [-1,1]. The autocorrelations for each dataset are 

given in Figure 4.1 through 4.12.  
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Figure 4.1. Autocorrelations for hourly voice traffic 
 

 
Figure 4.2. Autocorrelations for hourly PS total traffic 
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Figure 4.3. Autocorrelations for hourly PS downlink traffic 

 

 
Figure 4.4. Autocorrelations for hourly PS uplink traffic 
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Figure 4.5. Autocorrelations for daily voice traffic 

 

 
Figure 4.6. Autocorrelations for daily PS total traffic 
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Figure 4.7. Autocorrelations for daily PS downlink traffic 

 

 
Figure 4.8. Autocorrelations for daily PS uplink traffic 
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Figure 4.9 Autocorrelations for weekly voice traffic 

 

 
Figure 4.10 Autocorrelations for weekly PS total traffic 
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Figure 4.11. Autocorrelations for weekly PS downlink traffic 

 

 
Figure 4.12. Autocorrelations for weekly PS uplink traffic 
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4.6.2 Time Lag Length Estimation 

How many lags should be included in a time series regression is a vital 

problem to model time series. A small window gives limited information to the 

network while a large number of time lags can enhance the entropy which has an 

impact on learning but may increase the forecast error. There are many methods for 

lag length determination: 

 

a. The F-statistic approach: In order to identify the lag length 𝑝𝑝, F-statistic 

test compares the fits of different models.  

b. The Bayesian Information Criterion (BIC): To estimate 𝑝𝑝 by 

minimizing an information criterion  

  

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑁𝑁 ln �
𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁
� + 𝑝𝑝 ln(𝑁𝑁) 

 

such that 𝑁𝑁 defines the number of training, 𝑝𝑝 refers to the number of 

parameters, 𝑆𝑆𝑆𝑆𝑆𝑆 means sum squared error. The BIC trades off these two 

forces so that the number of lags that minimizes the BIC is a consistent 

estimator of the true lag length.  

c. The Akaike information criterion (AIC):  

  

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁 ln �
𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁
� + 𝑝𝑝

2
𝑁𝑁

  

 

In huge number samples, the AIC will overrate 𝑝𝑝 with nonzero 

probability.  

In this thesis, four rules have been utilized to build forecasting models. The 

rules of the sliding windows are given below; 
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1.  Use all time lags from 1 to a given maximum m: <1, 2… m> 

2. Use all lags the autocorrelation values of which are above a given 

threshold 1.  

3. Use all lags the autocorrelation values of which are above a given 

threshold 2. 

4. Use the time lags the autocorrelations values of which are above 

threshold 3 within the recycling period of the time unit, e.g. recycle 

period 30 for daily and 169 for the hourly dataset.   

 

By using the heuristic rules for time lag selection, discussed above, four 

different sliding windows have been generated for each data set.  

Table 4.6 through Table 4.17 show the time lags used in each model.  

 
Table 4.6. List of the chosen time lags for hourly voice traffic 

Lag Name Chosen Lag 

Lag-1 {1,2,….,24} 
Lag-2   {1,2,3,4,5} 
Lag-3   {1,2,3,4,5,19,20,21,22,23,24,25} 

Lag-4 
{1,2,3,4,5,19,20,21,22,23,24,25,26,27,28,29,43,44,45,46,47,48,49,50
,51,52,53,67,68,69,96,97,98,99,100,101,115,116,117,118,119,146,1
4,148,149,163,164,165,166,167,168,169} 

  

Table 4.7. List of the chosen time lags for hourly PS total traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,24} 
Lag-2   {1,2,3,4}  
Lag-3   {1,2,3,4,20,21,22,23,24,25} 

Lag-4 

{1,2,3,4,20,21,22,23,24,25,26,27,28,44,45,46,47,48,49,50,51,52,68,
69,70,71,72,73,74,75,76,92,93,94,95,96,97,98,99,100,116,117,118,1
19,120,121,122,123,124,140,141,142,143,144,145,146,147,148,164,
165,166,167,168,169} 
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Table 4.8. List of the chosen lags for PS downlink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,…,24} 
Lag-2   {1,2,3,4} 
Lag-3   {1,2,3,4,20,21,22,23,24,25} 

Lag-4 

{1,2,3,4,20,21,22,23,24,25,26,27,28,44,45,46,47,48,49,50,51,52,68,
69,70,71,72,73,74,75,76,92,93,94,95,96,97,98,99,100,116,117,118,1
19,120,121,122,123,124,140,141,142,143,144,145,146,147,148,164,
165,166,167,168,169} 

 

Table 4.9. List of the chosen lags for hourly PS uplink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2…,24} 
Lag-2   {1,2,3,4,5} 
Lag-3   {1,2,3,4,20,21,22,23,24,25} 

Lag-4 

{1,2,3,4,5,19,20,21,22,23,24,25,26,27,28,29,43,44,45,46,47,48,49,       
50,51,52,53,67,68,69,70,71,72,73,74,75,76,77,91,92,93,94,95,96,97, 
98,99,100,101,115,116,117,118,119,120,121,122,123,124,125,139, 
140,141,142,143,144,145,146,147,148,149,163,164,165,166,167, 
168,169} 

 

Table 4.10. List of the chosen time lags for daily voice traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,30} 
Lag-2   {1,6,7,8} 
Lag-3   {1,6,7,8,13,14,15,21,28,35,42} 

Lag-4 
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30} 
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Table 4.11. List of the chosen time lags for daily PS total traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,30} 
Lag-2   {1,6,7,8} 
Lag-3   {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,28} 

Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30} 

 

Table 4.12. List of the chosen time lags for daily PS downlink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,30} 
Lag-2   {1,2,3,4,5,6,7} 
Lag-3   {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} 

Lag-4 
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30} 

 

Table 4.13. List of the chosen time lags for daily PS uplink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,30} 
Lag-2   {1,2,3,4,5,6,7} 
Lag-3   {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18} 

Lag-4 
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30} 

 

Table 4.14. List of chosen time lags for weekly voice traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,52} 
Lag-2   {1,2} 
Lag-3   {1,2,3,4} 
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12} 
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Table 4.15. List of chosen time lags for weekly PS total traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,52} 
Lag-2   {1,2,3} 
Lag-3   {1,2,3,4,5,6} 
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12} 

 

Table 4.16. List of the chosen time lags for weekly PS downlink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,52} 
Lag-2 {1,2,3} 
Lag-3   {1,2,3,4,5,6} 
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12} 

 

Table 4.17. List of the chosen time lags for weekly PS uplink traffic 
Lag Name Chosen Lag 

Lag-1 {1,2,….,52} 
Lag-2   {1,2,3,4} 
Lag-3   {1,2,3,4,5,6,7,8} 
Lag-4 {1,2,3,4,5,6,7,8,9,10,11,12} 

 

4.7. Performance Metric 

The performance of the forecasting models have been evaluated by 

computing Mean Absolute Percentage Error (MAPE) value which is a metric used 

commonly in forecasting applications. It has an advantage of being scale 

independent, so it is frequently usable for the comparison of forecast performance 

between different series.     

The formula of MAPE is  
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where n is the number of the forecast, tA  is the actual value, and tF  is the forecast 

value (Benzer et al., 2015). 
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 RESULTS AND DISCUSSION 

 

In this thesis, five different methods including SVM, MLP, RBF, RF, and 

Holt-Winters have been employed to forecast the circuit switched voice and packet 

switched data traffic for live UMTS network. In order to build models, three 

different train/test split combination have been utilized. The split ranges are 70% 

for training and 30% for testing, 80% for training 20% for testing, and 90% for 

training and 10% for testing, respectively.  

Table 5.1 through Table 5.12 show the computed MAPE’s for hourly 

traffic dataset.  

  

Table 5.1. MAPE values for hourly CS voice traffic prediction with 70%-30% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly CS traffic lag-1 8.61 9.83 11.96 80.33 22.18 
Hourly CS traffic lag-2 14.52 19.63 11.47 187.41 22.18 
Hourly CS traffic lag-3 7.84 11.11 11.97 132.33 22.18 
Hourly CS traffic lag-4 7.82 10.60 11.77 36.71 9.29 

 

Table 5.2. MAPE values for hourly PS total traffic prediction with 70%-30% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS total traffic lag-1 3.51 4.76 4.03 18.06 8.78 
Hourly PS total traffic lag-2 5.76 7.08 3.97 30.56 8.78 
Hourly PS total traffic lag-3 3.41 5.30 4.39 22.45 8.78 
Hourly PS total traffic lag-4 3.32 5.16 4.38 15.68 6.86 
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Table 5.3. MAPE values for hourly PS downlink traffic prediction with 70%-
30%split   rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS downlink traffic lag-1 3.49 3.68 4.00 57.59 9.01 
Hourly PS downlink traffic lag-2 5.76 7.33 3.83 68.04 9.01 
Hourly PS downlink traffic lag-3 3.48 3.50 4.48 41.25 9.01 
Hourly PS downlink traffic lag-4 2.97 3.31 4.41 14.27 6.92 

 

Table 5.4. MAPE values for hourly PS uplink traffic prediction with 70%-30% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS uplink traffic lag-1 3.63 4.23 4.23 38.92 9.87 
Hourly PS uplink traffic lag-2 6.47 4.78 4.27 40.31 9.87 
Hourly PS uplink traffic lag-3 3.54 4.03 4.32 18.67 9.87 
Hourly PS uplink traffic lag-4 3.25 4.75 3.95 15.35 8.86 

 

Table 5.5. MAPE values for hourly CS voice traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly CS voice traffic lag-1 7.13 7.59 7.72 25.17 22.03 
Hourly CS voice traffic lag-2 13.76 9.74 8.22 41.15 20.15 
Hourly CS voice traffic lag-3 6.80 9.55 7.88 32.65 20.15 
Hourly CS voice traffic lag-4 5.32 8.93 7.74 24.36 6.88 
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Table 5.6. MAPE values for hourly PS total traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS total traffic lag-1 3.13 3.67 3.27 12.84 10.73 
Hourly PS total traffic lag-2 5.80 4.49 2.94 17.69 7.87 
Hourly PS total traffic lag-3 3.14 3.52 3.45 12.10 7.87 
Hourly PS total traffic lag-4 2.51 3.34 3.56 12.05 4.77 

 

Table 5.7. MAPE values for hourly PS downlink traffic prediction with 80%-20% 
split   rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS downlink traffic lag-1 3.15 3.37 3.33 12.69 8.07 
Hourly PS downlink traffic lag-2 5.63 4.60 2.93 15.89 8.49 
Hourly PS downlink traffic lag-3 3.18 3.27 3.36 11.95 8.07 
Hourly PS downlink traffic lag-4 2.60 3.47 3.63 11.66 6.20 

 

Table 5.8. MAPE values for hourly PS uplink traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS uplink traffic lag-1 3.44 3.80 4.46 11.26 8.75 
Hourly PS uplink traffic lag-2 7.14 4.67 3.67 18.53 6.40 
Hourly PS uplink traffic lag-3 3.13 3.50 4.75 13.33 6.60 
Hourly PS uplink traffic lag-4 2.62 4.24 4.99 10.84 6.38 
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Table 5.9. MAPE values for hourly CS voice traffic prediction with 90%-10% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly CS voice traffic lag-1 6.59 6.89 7.51 21.85 17.58 
Hourly CS voice traffic lag-2 11.35 8.72 7.55 49.19 4.48 
Hourly CS voice traffic lag-3 6.50 9.36 7.42 23.34 4.52 
Hourly CS voice traffic lag-4 3.31 6.75 7.39 16.06 4.48 

 

Table 5.10. MAPE values for hourly PS total traffic prediction with 90%-10% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS total traffic lag-1 2.89 2.89 3.34 9.50 8.18 
Hourly PS total traffic lag-2 3.19 3.19 2.93 10.38 3.96 
Hourly PS total traffic lag-3 3.24 2.77 3.39 9.77 3.96 
Hourly PS total traffic lag-4 2.10 2.95 3.43 9.20 3.67 

 

Table 5.11. MAPE values for hourly PS downlink traffic prediction with 90%-10% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS downlink traffic lag-1 2.94 2.92 3.29 10.04 7.23 
Hourly PS downlink traffic lag-2 3.58 3.20 2.96 12.45 7.30 
Hourly PS downlink traffic lag-3 2.90 2.77 3.50 10.31 7.29 
Hourly PS downlink traffic lag-4 2.11 3.31 2.65 8.49 2.06 
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Table 5.12. MAPE values for hourly PS uplink traffic prediction with 90%-10% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Hourly PS uplink traffic lag-1 2.95 2.84 2.82 8.09 7.81 
Hourly PS uplink traffic lag-2 4.14 2.87 2.29 10.72 6.42 
Hourly PS uplink traffic lag-3 3.26 2.75 2.74 10.34 7.81 
Hourly PS uplink traffic lag-4 1.95 2.85 2.68 7.85 2.03 

 

Table 5.13 through Table 5.24 show the MAPE’s of the forecasting models 

in each category for daily data set with a pre-defined split rate, separately. 

 

Table 5.13. MAPE values for daily CS voice traffic prediction with 70%-30% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily CS voice traffic lag-1 7.63 5.90 15.86 11.24 3.38 
Daily CS voice traffic lag-2 4.00 5.93 16.71 18.93 3.38 
Daily CS voice traffic lag-3 3.52 6.31 14.46 16.97 3.39 
Daily CS voice traffic lag-4 3.64 4.87 16.95 17.04 3.36 

 

Table 5.14. MAPE values for daily PS total traffic prediction with 70%-30% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS total traffic lag-1 3.75 3.49 12.91 17.51 5.09 
Daily PS total traffic lag-2 4.48 3.76 12.89 12.92 5.09 
Daily PS total traffic lag-3 3.74 5.25 12.25 18.49 5.09 
Daily PS total traffic lag-4 3.43 6.09 11.96 17.96 3.14 
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Table 5.15. MAPE values for daily PS downlink traffic prediction with 70%-30% 
split   rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS downlink traffic lag-1 2.60 3.89 13.80 10.50 5.32 
Daily PS downlink traffic lag-2 2.60 3.89 13.80 10.50 5.32 
Daily PS downlink traffic lag-3 2.18 4.62 14.84 13.59 5.32 
Daily PS downlink traffic lag-4 2.19 5.05 13.96 14.56 3.31 

 

Table 5.16. MAPE values for daily PS uplink traffic prediction with 70%-30% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS uplink traffic lag-1 2.60 3.89 5.00 6.84 4.25 
Daily PS uplink traffic lag-2 2.60 3.89 5.00 6.84 4.25 
Daily PS uplink traffic lag-3 2.18 5.60 5.34 7.7 4.13 
Daily PS uplink traffic lag-4 2.20 5.06 4.08 8.73 2.82 

 

Table 5.17. MAPE values for daily CS voice traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily CS voice traffic lag-1 2.67 3.58 11.99 10.21 2.90 
Daily CS voice traffic lag-2 2.67 3.58 12.25 11.97 2.42 
Daily CS voice traffic lag-3 2.34 4.76 11.72 10.58 2.42 
Daily CS voice traffic lag-4 2.25 4.65 11.24 10.55 2.42 
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Table 5.18. MAPE values for daily PS total traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS total traffic lag-1 2.71 5.43 5.00 10.96 5.97 
Daily PS total traffic lag-2 2.71 5.13 4.82 10.10 3.12 
Daily PS total traffic lag-3 2.59 4.41 4.35 9.72 3.12 
Daily PS total traffic lag-4 2.89 3.99 4.55 7.26 3.12 

 

Table 5.19. MAPE values for daily PS downlink traffic prediction with 80%-20% 
split   rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS downlink traffic lag-1 2.85 4.84 5.18 12.06 4.96 
Daily PS downlink traffic lag-2 2.85 4.84 5.18 12.07 4.48 
Daily PS downlink traffic lag-3 2.73 4.60 5.21 11.18 3.30 
Daily PS downlink traffic lag-4 2.97 4.24 4.99 7.89 3.30 

 

Table 5.20. MAPE values for daily PS uplink traffic prediction with 80%-20% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS uplink traffic lag-1 2.02 2.77 2.81 4.08 4.16 
Daily PS uplink traffic lag-2 2.02 2.77 2.81 4.08 2.34 
Daily PS uplink traffic lag-3 2.03 3.59 2.87 3.94 2.34 
Daily PS uplink traffic lag-4 2.15 2.87 3.15 3.75 2.34 

 

 

 

 

 



 5. RESULTS AND DISCUSSION Yasin Yur 

50 

 

Table 5.21. MAPE values for daily CS voice traffic prediction with 90%-10% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily CS voice traffic lag-1 3.11 4.24 5.28 9.40 3.23 
Daily CS voice traffic lag-2 3.15 2.78 5.32 9.52 2.73 
Daily CS voice traffic lag-3 3.11 3.05 5.63 8.98 2.59 
Daily CS voice traffic lag-4 2.93 4.75 5.47 8.93 2.59 

 

Table 5.22. MAPE values for daily PS total traffic prediction with 90%-10% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS total traffic lag-1 3.02 3.66 4.82 4.73 7.06 
Daily PS total traffic lag-2 2.94 3.50 4.91 4.78 3.30 
Daily PS total traffic lag-3 3.30 3.89 4.55 4.80 3.30 
Daily PS total traffic lag-4 3.59 4.01 4.45 4.82 3.22 

 

Table 5.23. MAPE values for daily PS downlink traffic prediction with 90%-10% 
split   rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS downlink traffic lag-1 3.07 3.87 5.37 5.31 6.89 
Daily PS downlink traffic lag-2 3.09 3.87 5.37 5.76 3.44 
Daily PS downlink traffic lag-3 3.38 3.88 5.20 5.18 3.44 
Daily PS downlink traffic lag-4 3.73 4.07 4.61 4.93 3.44 
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Table 5.24. MAPE values for daily PS uplink traffic prediction with 90%-10% split   
rate 

Models SVM MLP RF RBF Holt-Winters 

Daily PS uplink traffic lag-1 2.40 2.21 2.98 3.87 3.67 
Daily PS uplink traffic lag-2 2.40 2.21 2.98 3.87 2.57 
Daily PS uplink traffic lag-3 2.56 2.43 3.09 3.67 2.57 
Daily PS uplink traffic lag-4 2.82 3.14 3.49 3.98 2.57 

 

Table 5.25 through Table 5.36 show the MAPE’s of the forecasting models 

in each category for weekly data set with a pre-defined split rate, separately. 

 

Table 5.25. MAPE values for weekly CS voice traffic prediction with 70%-30% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly CS voice traffic lag-1 7.63 5.90 15.86 11.24 3.38 
Weekly CS voice traffic lag-2 4.00 5.93 16.71 18.93 3.38 
Weekly CS voice traffic lag-3 3.52 6.31 14.46 16.97 3.39 
Weekly CS voice traffic lag-4 3.64 4.87 16.95 17.04 3.36 

 

Table 5.26 MAPE values for weekly PS total traffic prediction with 70%-30% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS total traffic lag-1 3.54 9.70 16.27 13.66 3.18 
Weekly PS total traffic lag-2 3.45 7.90 27.46 19.70 3.17 
Weekly PS total traffic lag-3 3.43 8.41 21.27 13.67 3.17 
Weekly PS total traffic lag-4 3.32 7.88 19.55 15.38 3.10 
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Table 5.27. MAPE values for weekly PS downlink traffic prediction with 70%-30% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS downlink traffic lag-1 2.60 3.89 13.80 10.50 5.32 
Weekly PS downlink traffic lag-2 2.60 3.89 13.80 10.50 5.32 
Weekly PS downlink traffic lag-3 2.18 4.62 14.84 13.59 5.32 
Weekly PS downlink traffic lag-4 2.19 5.05 13.96 14.56 3.31 

 

Table 5.28. MAPE values for weekly PS uplink traffic prediction with 70%-30% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS uplink traffic lag-1 2.60 3.89 5.00 6.84 4.25 
Weekly PS uplink traffic lag-2 2.60 3.89 5.00 6.84 4.25 
Weekly PS uplink traffic lag-3 2.18 5.60 5.34 7.7 4.13 
Weekly PS uplink traffic lag-4 2.20 5.06 4.08 8.73 2.82 

 

Table 5.29. MAPE values for weekly CS voice traffic prediction with 80%-20% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly CS voice traffic lag-1 2.67 3.58 11.99 10.21 2.90 
Weekly CS voice traffic lag-2 2.67 3.58 12.25 11.97 2.42 
Weekly CS voice traffic lag-3 2.34 4.76 11.72 10.58 2.42 
Weekly CS voice traffic lag-4 2.25 4.65 11.24 10.55 2.42 
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Table 5.30. MAPE values for weekly PS total traffic prediction with 80%-20% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS total traffic lag-1 2.71 5.43 5.00 10.96 5.97 
Weekly PS total traffic lag-2 2.71 5.13 4.82 10.10 3.12 
Weekly PS total traffic lag-3 2.59 4.41 4.35 9.72 3.12 
Weekly PS total traffic lag-4 2.89 3.99 4.55 7.26 3.12 

 

Table 5.31. MAPE values for weekly PS downlink traffic prediction with 80%-20% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS downlink traffic lag-1 2.85 4.84 5.18 12.06 4.96 
Weekly PS downlink traffic lag-2 2.85 4.84 5.18 12.07 4.48 
Weekly PS downlink traffic lag-3 2.73 4.60 5.21 11.18 3.30 
Weekly PS downlink traffic lag-4 2.97 4.24 4.99 7.89 3.30 

 

Table 5.32. MAPE values for weekly PS uplink traffic prediction with 80%-20% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS uplink traffic lag-1 2.02 2.77 2.81 4.08 4.16 
Weekly PS uplink traffic lag-2 2.02 2.77 2.81 4.08 2.34 
Weekly PS uplink traffic lag-3 2.03 3.59 2.87 3.94 2.34 
Weekly PS uplink traffic lag-4 2.15 2.87 3.15 3.75 2.34 
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Table 5.33. MAPE values for weekly CS voice traffic prediction with 90%-10% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly CS voice traffic lag-1 3.11 4.24 5.28 9.40 3.23 
Weekly CS voice traffic lag-2 3.15 2.78 5.32 9.52 2.73 
Weekly CS voice traffic lag-3 3.11 3.05 5.63 8.98 2.59 
Weekly CS voice traffic lag-4 2.93 4.75 5.47 8.93 2.59 

 

Table 5.34. MAPE values for weekly PS total traffic prediction with 90%-10% split 
rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS total traffic lag-1 3.02 3.66 4.82 4.73 7.06 
Weekly PS total traffic lag-2 2.94 3.50 4.91 4.78 3.30 
Weekly PS total traffic lag-3 3.30 3.89 4.55 4.80 3.30 
Weekly PS total traffic lag-4 3.59 4.01 4.45 4.82 3.22 

 

Table 5.35. MAPE values for weekly PS downlink traffic prediction with 90%-10% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS downlink traffic lag-1 3.07 3.87 5.37 5.31 6.89 
Weekly PS downlink traffic lag-2 3.09 3.87 5.37 5.76 3.44 
Weekly PS downlink traffic lag-3 3.38 3.88 5.20 5.18 3.44 
Weekly PS downlink traffic lag-4 3.73 4.07 4.61 4.93 3.44 
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Table 5.36. MAPE values for weekly PS uplink traffic prediction with 90%-10% 
split rate 

Models SVM MLP RF RBF Holt-Winters 

Weekly PS uplink traffic lag-1 2.40 2.21 2.98 3.87 3.67 
Weekly PS uplink traffic lag-2 2.40 2.21 2.98 3.87 2.57 
Weekly PS uplink traffic lag-3 2.56 2.43 3.09 3.67 2.57 
Weekly PS uplink traffic lag-4 2.82 3.14 3.49 3.98 2.57 

 

Figure 5.1 through Figure 5.12 show the average of the MAPE’s of all 

methods separately and the percentage decrement rates in MAPE’s between the 

models having the lowest MAPE’s on the average and the other regression models 

for each data set. 
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Figure 5.1. Average MAPE of the forecasting models for hourly CS voice traffic 

with 70%-30% split rate 
 

 
Figure 5.2. Percentage decrease rates in average MAPE of the forecasting models 

for hourly CS voice traffic with 70%-30% split rate 
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Figure 5.3. Average MAPE of the forecasting models for hourly PS total traffic 

with 70%-30% split rate 
 

 
Figure 5.4. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS total traffic with 70%-30% split rate 
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Figure 5.5. Average MAPE of the forecasting models for hourly PS downlink 

traffic with 70%-30% split rate 
 

 
Figure 5.6. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS downlink traffic with 70%-30% split rate 
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Figure 5.7. Average MAPE of the forecasting models for hourly PS uplink traffic 

with 70%-30% split rate 
 

 
Figure 5.8. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS uplink traffic with 70%-30% split rate 
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Figure 5.9. Average MAPE of the forecasting models for hourly CS voice traffic 

with 80%-20% split rate 
 

 
Figure 5.10. Percentage decrease rates in average MAPE of the forecasting models 

for hourly CS voice traffic with 80%-20% split rate 
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Figure 5.11. Average MAPE of the forecasting models for hourly PS total traffic 

with 80%-20% split rate 
 

 
Figure 5.12. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS total traffic with 80%-20% split rate 
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Figure 5.13. Average MAPE of the forecasting models for hourly PS downlink 

traffic with 80%-20% split rate 
 

 
Figure 5.14. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS downlink traffic with 80%-20% split rate 
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Figure 5.15. Average MAPE of the forecasting models for hourly PS uplink traffic 

with 80%-20% split rate 
 

 
Figure 5.16. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS uplink traffic with 80%-20% split rate 
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Figure 5.17. Average MAPE of the forecasting models for hourly CS voice traffic 

with 90%-10% split rate 
 

 
Figure 5.18. Percentage decrease rates in average MAPE of the forecasting models 

for hourly CS voice traffic with 90%-10% split rate 
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Figure 5.19. Average MAPE of the forecasting models for hourly PS total traffic 

with 90%-10% split rate 
 

 
Figure 5.20. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS total traffic with 90%-10% split rate 
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Figure 5.21. Average MAPE of the forecasting models for hourly PS downlink 

traffic with 90%-10% split rate 
 

 
Figure 5.22. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS downlink traffic with 90%-10% split rate 
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Figure 5.23. Average MAPE of the forecasting models for hourly PS uplink traffic 

with 90%-10% split rate 
 

 
Figure 5.24. Percentage decrease rates in average MAPE of the forecasting models 

for hourly PS uplink traffic with 90%-10% split rate 
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Figure 5.25. Average MAPE of the forecasting models for daily CS voice traffic 

with 70%-30% split rate 
 

 
Figure 5.26. Percentage decrease rates in average MAPE of the forecasting models 

for daily CS voice traffic with 70%-30% split rate 
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Figure 5.27. Average MAPE of the forecasting models for daily PS total traffic 

with 70%-30% split rate 
 

 
Figure 5.28. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS total traffic with 70%-30% split rate 
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Figure 5.29. Average MAPE of the forecasting models for daily PS downlink 

traffic with 70%-30% split rate 
 

 
Figure 5.30. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS downlink traffic with 70%-30% split rate 
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Figure 5.31. Average MAPE of the forecasting models for daily PS uplink traffic 

with 70%-30% split rate 
 

 
Figure 5.32. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS uplink traffic with 70%-30% split rate 

0

1

2

3

4

5

6

7

8

SVM MLP RF RBF Holt Winters

M
AP

E(
%

)

0

10

20

30

40

50

60

70

80

SVM-MLP SVM-RF SVM-RBF SVM-Holt
Winters

M
AP

E(
%

)



 5. RESULTS AND DISCUSSION Yasin Yur 

72 

 

 
Figure 5.33. Average MAPE of the forecasting models for daily CS voice traffic 

with 80%-20% split rate 
 

 
Figure 5.34. Percentage decrease rates in average MAPE of the forecasting models 

for daily CS voice traffic with 80%-20% split rate 
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Figure 5.35. Average MAPE of the forecasting models for daily PS total traffic 

with 80%-20% split rate 
 

 
Figure 5.36. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS total traffic with 80%-20% split rate 
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Figure 5.37. Average MAPE of the forecasting models for daily PS downlink 

traffic with 80%-20% split rate 
 

 
Figure 5.38. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS downlink traffic with 80%-20% split rate 
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Figure 5.39. Average MAPE of the forecasting models for daily PS uplink traffic 

with 80%-20% split rate 
 

 
Figure 5.40. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS uplink traffic with 80%-20% split rate 
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Figure 5.41. Average MAPE of the forecasting models for daily CS voice traffic 

with 90%-10% split rate 
 

 
Figure 5.42. Percentage decrease rates in average MAPE of the forecasting models 

for daily CS voice traffic with 90%-10% split rate 
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Figure 5.43. Average MAPE of the forecasting models for daily PS total traffic 

with 90%-10% split rate 
 

 
Figure 5.44. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS total traffic with 90%-10% split rate 
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Figure 5.45. Average MAPE of the forecasting models for daily PS downlink 

traffic with 90%-10% split rate 
 

 
Figure 5.46. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS downlink traffic with 90%-10% split rate 
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Figure 5.47. Average MAPE of the forecasting models for daily PS uplink traffic 

with 90%-10% split rate 
 

 
Figure 5.48. Percentage decrease rates in average MAPE of the forecasting models 

for daily PS uplink traffic with 90%-10% split rate 
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Figure 5.49. Average MAPE of the forecasting models for weekly CS voice traffic 

with 70%-30% split rate 
 

 
Figure 5.50. Percentage decrease rates in average MAPE of the forecasting models 

for weekly CS voice traffic with 70%-30% split rate 
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Figure 5.51. Average MAPE of the forecasting models for weekly PS total traffic 

with 70%-30% split rate 
 

 
Figure 5.52. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS total traffic with 70%-30% split rate 
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Figure 5.53. Average MAPE of the forecasting models for weekly PS downlink 

traffic with 70%-30% split rate 
 

 
Figure 5.54. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS downlink traffic with 70%-30% split rate 
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Figure 5.55. Average MAPE of the forecasting models for weekly PS uplink traffic 

with 70%-30% split rate 
 

 
Figure 5.56. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS uplink traffic with 70%-30% split rate 
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Figure 5.57. Average MAPE of the forecasting models for weekly CS voice traffic 

with 80%-20% split rate 
 

 
Figure 5.58. Percentage decrease rates in average MAPE of the forecasting models 

for weekly CS voice traffic with 80%-20% split rate 
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Figure 5.59. Average MAPE of the forecasting models for weekly PS total traffic 

with 80%-20% split rate 
 

 
Figure 5.60. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS total traffic with 80%-20% split rate 
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Figure 5.61. Average MAPE of the forecasting models for weekly PS downlink 

traffic with 80%-20% split rate 
 

 
Figure 5.62. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS downlink traffic with 80%-20% split rate 
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Figure 5.63. Average MAPE of the forecasting models for weekly PS uplink traffic 

with 80%-20% split rate 
 

 
Figure 5.64. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS uplink traffic with 80%-20% split rate 

0

2

4

6

8

10

12

14

SVM MLP RF RBF Holt Winters

M
AP

E(
%

)

0
10
20
30
40
50
60
70
80
90

Holt Winters-
SVM

Holt Winters-
MLP

Holt Winters-RF Holt Winters-RBF

M
AP

E(
%

)



 5. RESULTS AND DISCUSSION Yasin Yur 

88 

 

 
Figure 5.65. Average MAPE of the forecasting models for weekly CS voice traffic 

with 90%-10% split rate 
 

 
Figure 5.66. Percentage decrease rates in average MAPE of the forecasting models 

for weekly CS voice traffic with 90%-10% split rate 
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Figure 5.67. Average MAPE of the forecasting models for weekly PS total traffic 

with 90%-10% split rate 
 

 
Figure 5.68. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS total traffic with 90%-10% split rate 
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Figure 5.69. Average MAPE of the forecasting models for weekly PS downlink 

traffic with 90%-10% split rate 
 

 
Figure 5.70. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS downlink traffic with 90%-10% split rate 
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Figure 5.71. Average MAPE of the forecasting models for weekly PS uplink traffic 

with 90%-10% split rate 
 

 
Figure 5.72. Percentage decrease rates in average MAPE of the forecasting models 

for weekly PS uplink traffic with 90%-10% split rate 
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methods in terms of their prediction performance based on the 

MAPE’s is SVM, Holt-Winters, MLP, RF and RBF.  

• Generally, the results show that prediction models based on the daily 

time scale exhibit higher performance than the models based on the 

other time scales (hourly and weekly). But there is no distinct 

performance difference between the prediction models based on other 

time scales (hourly and weekly).  

• For hourly and daily datasets, in general, the time lags having shorter 

time scale (Lag-2) yield higher MAPE’s. On the other hand, shorter 

time lag outperforms for the weekly dataset.    

• For hourly dataset, the time lags having longer time scale (Lag-4) 

yields best MAPE results for all split ranges and for all type of traffic 

datasets. However, there are no distinct performance differences for 

other datasets (daily and weekly) and split ranges.     

• When the performance of the prediction models based on averages 

MAPE’s combined with all split ranges is examined, the MAPE’s of 

the prediction models obtained on daily dataset have lower error rates 

than the ones obtained on hourly ad weekly time scale.   

• Lowest MAPE values are achieved on weekly CS voice dataset via 

90% to 10% train-test split range. On the other hand, the highest 

MAPE values are acquired on hourly CS voice dataset with a split 

range of 70%_30%.  

• Network dimensioning and future capacity enhancement can be 

conducted by using the predicted traffic and its time granularity.  The 

expansion of the network parts (RAN or Core) can be easily 

controlled by using most relevant traffic type which limits the capacity 

of the system frequently.  
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5.2. Discussion on Hourly Dataset Results 

 

• For hourly traffic datasets, in general, SVM-based prediction models 

have lower MAPE values than the prediction models based on other 

machine learning and statistical methods regardless of the time lags 

selection with a single exception. 

• For all hourly traffic datasets, in general, RBF yields the worst 

prediction performance with respect to the highest average MAPE’s.   

• In general, the interval of the MAPE’s of the prediction models for 

hourly datasets are between 3.31% to 94.82% for CS voice traffic, 

2.10% to 19.62% for PS total traffic, 2.06% to 19.23% for PS 

downlink traffic and 1.95% to 23.56% for PS uplink traffic.  

• For CS voice traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is SVM, 

MLP, RF, Holt-Winters and RBF for 70%_30% split; SVM, RF, 

MLP, Holt-Winters and RBF for 80%_20% split and SVM, RF, Holt-

Winters, MLP and RBF for 90%_10% split.   

• For PS total traffic, the general ranking of the models in terms of their 

prediction performance based on the average MAPE’s is SVM, RF, 

MLP, Holt-Winters and RBF for 70%_30% split; RF, SVM, MLP, 

Holt-Winters and RBF for 80%_20% split and SVM, MLP, RF, Holt-

Winters, MLP and RBF for 90%_10% split.   

• For PS downlink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is SVM, 

RF, MLP, Holt-Winters and RBF for 70%_30% split; RF, SVM, 

MLP, Holt-Winters and RBF for 80%_20% split and SVM, MLP, 

MLP, RF, Holt-Winters and RBF for 90%_10% split.   
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• For PS uplink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is RF, 

SVM, MLP, Holt-Winters and RBF for 70%_30% split; MLP, SVM, 

RF, Holt-Winters and RBF for 80%_20% split and RF, MLP, SVM, 

Holt-Winters and RBF for 90%_10% split. 

• Among the lengths of time lags, the lags having the longer scale or 

generated by selecting all autocorrelations above a given threshold 

give lower MAPE’s for all hourly traffic datasets. Particularly, Lag-4 

yield 22.96%, 50.7%, 30% lower MAPE’s on the average than the 

MAPE’s of Lag-1, Lag-2 and Lag-3 for voice traffic, 10.99%, 22.93% 

and 10.18% for PS total traffic, 13.17%, 30.43% and 17.11% for PS 

downlink traffic, 5.05%, 25.16% and 11.12% for PS uplink traffic.  

• In general, the lowest MAPE values and the lowest average MAPE’s 

are acquired via 90%_10% split for all hourly traffic datasets. More 

precisely, it yields 30.09% and 19.12% lower MAPE’s on the average 

than the MAPE’s of 70%_30% and 80%_20% splits.  

  

5.3. Discussion on Daily Dataset Results 

 

• For daily traffic datasets based on 80%_20% split, SVM-based 

prediction models have lower MAPE values than the prediction 

models based on other machine learning and statistical methods 

regardless of the time lags selection. For other splits of the dataset, 

general ranking among the methods in terms of best result is SVM, 

Holt-Winters, and MLP.    
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• For all daily traffic datasets, in general, RBF shows the worst 

performance based on the prediction performance with the highest 

average MAPE’s.   

• In general, the interval of the MAPE’s of the prediction models for 

daily datasets is between 2.25% to 18.93% for CS voice traffic, 2.89% 

to 18.49% for PS total traffic, 2.18% to 14.84% for PS downlink 

traffic and 2.02% to 8.73% for PS uplink traffic.  

• For CS voice traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is Holt-

Winters, SVM, MLP, RF and RBF for 70%_30% split; SVM, Holt-

Winters, MLP, RBF and RF for 80%_20% split and Holt-Winters, 

SVM, MLP, RF and RBF for 90%_10% split range. 

• For PS total traffic, the general ranking of the models in terms of their 

prediction performance based on the average MAPE’s is SVM, Holt-

Winters, MLP, RF and RBF for 70%_30% split; SVM, Holt-Winters, 

RF, MLP and RBF for 80%_20% split and SVM, MLP, Holt-Winters, 

MLP, RF and RBF for 90%_10% split.   

• For PS downlink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is SVM, 

MLP, Holt-Winters, RBF and RF for 70%_30% split; SVM, Holt-

Winters, MLP, RF and RBF for 80%_20% split and SVM, MLP, 

Holt-Winters, RF and RBF for 90%_10% split.  

• For PS uplink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is SVM, 

Holt-Winters, MLP, RF and RBF for 70%_30% split; SVM, Holt-

Winters, RF, MLP and RBF for 80%_20% split and MLP, SVM, 

Holt-Winters, RF and RBF for 90%_10% split. 
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• In general, the lowest MAPE values and the lowest average MAPE’s 

are acquired via 80%_20% split for all hourly traffic datasets with a 

single exception. It yields 14.39% and 15.83% lower MAPE’s on the 

average than the MAPE’s of 90%_10% and 70%_30% splits.   

• Among the lengths of time lags, the lags having the longer scale or 

generated by selecting all autocorrelations above a given threshold 

give lower MAPE’s only for PS total and PS uplink traffic. 

Particularly, Lag-4 yield 12.12%, 4.91% lower MAPE’s on the 

average than the MAPE’s of Lag-1 and Lag-3 for PS total traffic, 

8.03%, 4.39% and 6.11% lower than Lag-1, Lag-2, and Lag-3 for PS 

downlink traffic.   

 

5.4. Discussion on Weekly Dataset Results 

 

• For weekly traffic datasets, Holt-Winters based prediction models 

have lower average MAPE values than the prediction models based on 

the machine learning methods regardless of the time lags and split 

range selection. More specifically, Holt-Winters prediction models 

yield 46.64%, 83.23%, 87.74% and 78.68% lower MAPE’s on the 

average than the MAPE’s of SVM, MLP, RF, RBF for CS voice 

traffic; 10.29%, 52.13%, 80.13%, 66.28% for PS total traffic; %23.74, 

64.24%, 81.62%, 71.54% for PS downlink traffic; %58.06%, 39.73%, 

78.35% and 64.81% for PS uplink traffic, respectively.  

• For all weekly traffic datasets, in general, RF shows the worst 

performance based on the highest average MAPE’s.   

• In general, the interval of the MAPE’s of the prediction models for 

weekly traffic datasets are between 1.59% to 26.32% for CS voice 
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traffic, 3.12% to 23.38% for PS total traffic, 2.18% to 14.84% for PS 

downlink traffic and 2.01% to 13.48% for PS uplink traffic.  

• For CS voice traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is Holt-

Winters, SVM, RBF, MLP and RF for 70%_30% split; Holt-Winters, 

SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM, 

MLP, RBF and RF for 90%_10% split. 

• For PS total traffic, the general ranking of the models in terms of their 

prediction performance based on the average MAPE’s is Holt-Winters, 

SVM, RBF and RF for 70%_30% split; Holt-Winters, SVM, RBF, 

MLP and RF for 80%_20% split and Holt-Winters, SVM, MLP, RBF 

and RF for 90%_10% split.   

• For PS downlink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is Holt-

Winters, SVM, MLP, RBF and RF for 70%_30% split; Holt-Winters, 

SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM, 

MLP, RBF and RF for 90%_10% split.  

• For PS uplink traffic, the general ranking of the models in terms of 

their prediction performance based on the average MAPE’s is Holt-

Winters, SVM, MLP, RBF and RF for 70%_30% split; Holt-Winters, 

SVM, RBF, MLP and RF for 80%_20% split and Holt-Winters, SVM, 

MLP, RBF and RF for 90%_10% split. 
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 CONCLUSION 

 

In this thesis, circuit switched voice and packet switched data traffic 

prediction models have been developed for commercially deployed 3G/UMTS 

network in Turkey using various machine learning methods including SVM, MLP, 

RBF, RF and a statistical regression method which is Holt-Winters. Experiments 

have been conducted on twelve different data sets which have been formed by 

different time scales and carried traffic type. Several time lags have been utilized 

for each data set to develop voice and data traffic forecasting models. For model 

training and testing, the utilized dataset has been partitioned in three different 

ranges. In the first split, 70% of dataset content has been used for training while the 

rest of data has been used for testing. Additionally, 80%_20% and 90%_10% train 

and test splits have been used as second and third partitioning range for datasets. 

The performance of the forecasting models has been evaluated using MAPE. 

Considering the results obtained, various conclusion can be deduced. First 

of all, SVM based models and statistical based Holt-Winters models show better 

performance than the models developed by other regression methods. The order of 

the regression methods for 3G/UMTS network traffic forecasting in terms of their 

prediction performance based on the MAPE’s, from the best to the worst, is SVM, 

Holt-Winters, MLP, RF, and RBF. Secondly, the forecasting models on the daily 

time scale indicate much better performance than the forecasting models based on 

the other time scales (that is, hourly and weekly). Thirdly, when the lengths of the 

time lags are compared, the time lags having longer scales or generated by using 

autocorrelations yield lower MAPE’s on the average while the time lags having 

shorter scales yield higher MAPE’s on the average for hourly traffic forecasting.                  

Because SVM-based prediction models yield better performance for hourly 

traffic and Holt-Winters yields the same for weekly traffic, it can be said that SVM 
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is useful for hourly and Holt-Winters for weekly to forecast 3G network voice and 

data traffic. 

Future work can be performed in a number of different areas. Different 

machine learning methods with different time lags can be applied to forecast the 

3G/UMTS network traffic. Additionally, this work can easily be extended to next 

generation wireless telecommunication technology like fourth generation / Long 

Term Evaluation (4G/LTE) or fifth generation (5G) mobile networks. 
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