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 ÖZET 

MEVSİMSEL ZAMAN SERİLERİNİN EKONOMETRİK ANALİZİ:               

BAZI MAKROİKTİSADİ DEĞİŞKENLER ÜZERİNE UYGULAMALAR 

Sera ŞANLI 

Yüksek Lisans Tezi, Ekonometri Ana Bilim Dalı 

Danışman: Doç. Dr. Mehmet ÖZMEN 

Ağustos 2015, 217 sayfa 

 

Bu çalışmada temel olarak enflasyon, büyüme, işsizlik, tüketim, gayri safi yurt 

içi hasıla, ihracat gibi bazı makroiktisadi zaman serilerinin mevsimsellik durumunda 

yapısal özelliklerini değerlendirmek için bu seriler üzerinde analizler yaparak zaman 

serilerinin mevsimsellik boyutunu tüm yönleriyle ele almak amaçlanmıştır. Çalışmada 

Mevsimsel Otoregresif Bütünleşik Hareketli Ortalama (SARIMA) modellemesi, 

Ilmakunnas (1990)’ın çalışmasına dayanan mevsimsel bütünleşme testleri, çeşitli 

yardımcı regresyon modelleri kullanılarak çeyreklik ve aylık frekanstaki veriler için 

mevsimsel birim kök testleri, deterministik-stokastik mevsimsellik testleri ve mevsimsel 

eşbütünleşme analizlerine yer verilmiştir. Mevsimsel birim kök analizleri; OCSB, DHF 

testlerinin yanısıra temelde Hylleberg, Engle, Granger ve Yoo tarafından geliştirilen en 

popüler yaklaşım olan HEGY yaklaşımıyla ele alınacaktır. Bu analizler, bize (sıfır 

frekansın yanı sıra) hangi mevsimsel frekanslarda birim kökün mevcut olup olmadığı 

bilgisini edinmemize imkan sağlayacaktır. Uygulamalardan elde edilen sonuçlar 

göstermiştir ki bir seri hangi frekanslarda birim kök içeriyorsa, seriyi durağanlaştırmak 

için yapılacak dönüşümlerde bu frekanslara karşılık gelen filtreler uygulanmalıdır. Öte 

yandan, aylık HEGY mevsimsel birim kök uygulamaları, aylık bazlı verilerin 

mevsimsel frekanslarda hiçbir mevsimsel birim kök içermeyebileceğini ortaya 

koymuştur. Ayrıca, Türkiye için ele alınan makroiktisadi serilerin yalnızca tek tür 

mevsimsel davranış sergilediği kesin değildir. Bu makroiktisadi seriler, hem 

deterministik hem de stokastik bir yapı içerebilir. 

Anahtar kelimeler: HEGY yaklaşımı, mevsimsel birim kökler, deterministik-stokastik 

mevsimsellik, mevsimsel bütünleşme, mevsimsel eşbütünleşme. 
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ABSTRACT 

THE ECONOMETRIC ANALYSIS OF SEASONAL TIME SERIES: 

APPLICATIONS ON SOME MACROECONOMIC VARIABLES 

Sera ŞANLI 

Master Thesis, Department of Econometrics 

Supervisor: Assoc. Prof. Mehmet ÖZMEN 

August 2015, 217 pages 

 

In this paper, it has been mainly aimed to treat the scope of the seasonality - 

which is an important component of time series - in all its bearings by making analyses 

on some macroeconomic time series (such as inflation, growth, unemployment, 

consumption, gdp, exports etc.) to evaluate the structural properties of these series under 

seasonality. The conducted analyses include Seasonal Autoregressive Integrated 

Moving Average (SARIMA) modelling, seasonal integration tests based on the study of 

Ilmakunnas (1990), seasonal unit root tests for quarterly and monthly data under the 

various auxiliary regression models, deterministic and stochastic seasonality tests and 

seasonal cointegration. The analyses of seasonal unit roots have been conducted 

fundamentally with the most popular approach developed by Hylleberg, Engle, Granger 

and Yoo called HEGY apart from the OCSB, DHF tests. There are some important 

implications of the results obtained for these applications: firstly, if a series has unit 

roots at which frequencies, filters corresponding to those frequencies should be applied 

to the series in interest in order to make it stationary. On the other hand, monthly HEGY 

seasonal unit root applications have revealed that even though the data are available on 

monthly basis, they may not include any seasonal unit roots at seasonal frequencies. In 

addition, it is not certain to say that all Turkish macroeconomic series display only one 

type of seasonal behaviour. Thus, they can have both a deterministic and stochastic 

structure.  

Keywords: HEGY procedure, seasonal unit roots, deterministic-stochastic seasonality, 

seasonal integration, seasonal cointegration. 
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CHAPTER I 

INTRODUCTION 

1.1. Statement of the Problem 

       Economic time series are generally recorded at some fixed interval. When we are 

dealing with macroeconomic time series, seasonal models are mostly available at 

monthly or quarterly frequency and for instance, for a variable with quarterly frequency, 

time series plotting of each quarter as a separate curve gives a useful insight about 

describing the seasonal behaviour of a series. Such plots are available in Hylleberg 

(1986). However, if studied with financial time series, our interest is often directed to 

the seasonal patterns at the daily level. So, seasonality may have many different 

manifestations and it is a widespread phenomenon observed in many econometric time 

series (Ghysels & Osborn, 2001, p.3). 

       The problem of the research is concerned with the concept of seasonality. However, 

there is no simple answer about what seasonality is. There are some factors underlying 

the source of seasonal variations like production cycle characteristics, calendar effects 

(the timing of certain public holidays-such as Christmas and Easter), timing decisions 

(the timing of school vacations, ending of university sessions etc.) repeating every year 

in the same month or quarter and differing in magnitude from year to year even the 

seasonal variations occur regularly (Hansda, 2012, p.1673). 

       According to Hylleberg (1992), the definition of seasonality in economics is given 

as: 

Seasonality is the systematic, although not necessarily regular, intra-year   

movements caused by the changes of the weather, the calendar and timing of 

decisions, directly or indirectly through the production and consumption 

decisions made by the agents of the economy. These decisions are influenced by 

endowments, the expectations and preferences of the agents, and the production 

techniques available in the economy (Hylleberg, 1992, p.4). 

       All the studies regarding time series methods are useful only in case the series in 

interest do not display seasonal patterns. That is why it is of great importance to take the 

time series properties of the series like seasonal patterns or trends into account while 

dealing with economic time series data and the research on what form of seasonality 

exists in the data in interest and thus  the way of modelling seasonality is also crucial. 
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       Seasonality could be viewed as deterministic or stochastic. The difference between 

these two types of seasonality can be explained in that way: while in the deterministic 

seasonal model shocks die out in the long run, in the stochastic seasonal model shocks 

have a permanent effect. Therefore, in the stochastic seasonal model a positive shock at 

time  will not only increase the value of a series, but also the value of   

etc. (Özcan, 1994, p.64). Taking seasonal differences can remove the seasonal pattern. 

However, in the case of deterministic seasonal variation which can be modelled as a 

deterministic function of time plus stationary noise, this transaction is not required. 

Since a deterministic seasonal pattern that is subject to differencing results in a 

noninvertible series; in other words, it contains a unit root in the Moving Average (MA) 

operator. There are some tests relating to testing the presence of deterministic 

seasonality which are the Canova-Hansen (CH) Test, the Caner Test and the Tam-

Reinsel Test. While Canova and Hansen (1995) adopt a nonparametric approach in 

handling of autocorrelation problem, Caner (1998) and Tam and Reinsel (1997) adopt a 

parametric approach and the Monte Carlo study conducted by Caner (1998) has 

revealed that his proposed test with the parametric approach provides better size and 

power properties than Canova and Hansen. On the other hand, while Caner (1998) 

advocates to estimate the deterministic seasonal model in seasonal differences; the 

others estimate this model in the levels of the series in interest that will be mentioned 

later. Contrary to the deterministic seasonality, in the case of stochastic seasonality the 

seasonal differences generate a stationary and invertible process. However, if seasonal 

differencing is not applied to the series having stochastic seasonality, the series 

continues to be nonstationary. Therefore, it is of great importance to determine which 

type of seasonality the series in question displays because nonstationarity and non-

invertibility situations create difficulties in parameter estimation and forecasting (Tam 

& Reinsel, 1997, p.725). In case seasonal time series have unit roots, these roots repeat 

themselves depending on the seasonal frequencies. As opposed to the conventional unit 

root tests, in the case of seasonal unit roots taking differences as the number of 

repeating unit roots in series will remain the series as non-stationary and this application 

will be able to convert the series into very complex models. In that case, the knowledge 

of whether unit root in a series is seasonal or not is very crucial (Türe & Akdi, 2005, 

p.3).      

t ty ,..., 2stst yy 
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       The perception of many econometricians directed at the fact that seasonal variation 

is often larger and more irregular than being considered and making inference in 

dynamic models like integration and cointegration tests is disrupted by using seasonal 

adjustment. All these create a stimulating effect to deal with modelling seasonality. On 

the other hand, the study of seasonality is tied closely to the study of business cycles. 

Many analysts tend to work with current data to make inferences about changes in 

overall economy. The aim is to identify changes in the trend of economic activity from 

movements in certain indicators, such as data on prices or interest rates, or some other 

index of economic activity that is reported very frequently (Jaditz, 1994, p.17). In this 

respect, inferences about the business cycles could be interpreted in a complicate way in 

the presence of seasonal pattern. This is another justification in order to deal with 

seasonality. 

 

1.2. The Aim of the Research 

       In this paper, it has been mainly aimed to treat the scope of the seasonality in all its 

bearings by making analyses on some macroeconomic time series, to evaluate the 

structural properties of these series under seasonality and to present the methods that 

have been suggested and/or employed in the literature including modelling seasonality-

what form of seasonality exists in the data worked, deterministic or stochastic-, seasonal 

integration, seasonal unit root analyses and so on. Since many time series display 

substantial seasonality, the presence of unit roots corresponding to other frequencies 

(like seasonal ones) rather than zero is highly possible. The analyses of seasonal unit 

roots will be conducted with the most popular approach developed by Hylleberg, Engle, 

Granger and Yoo called HEGY by working with different models that include trends, 

constants and seasonal dummy variables and with a variety of approaches other than 

HEGY. These analyses will enable us to understand whether there exist unit roots at 

seasonal frequencies or not. 

       It is remarkable to say that the aim in separating of the total variation of a time 

series into seasonal and other components is to obtain identification of underlying 

patterns and causal relationships and to lower the possibility of being ill-informed by 

spurious correlations created by systematic and independent effects (Fromm, 1978, 

p.26).  
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1.3. The Importance of the Research 

       It is very crucial to handle pure analysis of seasonality and determine it exactly in 

the deterministic time series indicators of the economic system in order to choose a 

proper policy analysis and carrying it for the economy of the country in question. So, 

the removal of the knowledge on seasonal factors of an economic variable (i.e. seasonal 

adjustment procedure) enables the policy maker to differentiate between the seasonal 

changes and long run changes in a variable and thereby design appropriate policy 

responses (Hansda, 2012, p.1673). 

       If necessary to give an example to why seasonality is important to be understood, 

assume that whether there is an expansion or recession in the economy, there is a 

significant drop in industrial production in the first quarter of the year. Therefore, it is 

significant for analysts to make inference about whether a first quarter dip is caused by 

seasonal factors that will vanish next quarter or whether the decline is an indicator for a 

change in the business cycle from boom to bust (Jaditz, 1994, p.17).  

       If we ignore the presence of this seasonality in the series although a series is 

seasonal in fact, both the knowledge of a description of seasonal fluctuation and a 

description of the variation in the series with the seasonal fluctuation removed may be 

disregarded in making useful administrative or policy decisions. Without a prior 

description, misspecification of the models and incorrect forecasts are highly possible. 

On the other hand, the knowledge on the amount of seasonal fluctuations may be in 

great importance for policy makers and administrators for allocating resources in a 

suitable way. For instance, in case more people are sentenced to prison in the fall, this 

knowledge will enable the prison administrator to arrange for more beds in the fall 

months. In addition, in case a nonseasonal series is seasonally adjusted by assuming that 

this series follows a seasonal pattern, this analysis will also be erroneous and a complex 

model to be constructed under this assumption will give rise to a misspecified model 

with an “overadjustment” of seasonality depending on the removal of seasonal 

fluctuations that are not present in any way (Block, 1983, pp.3-7). 

       In this research, the results which will be obtained with applications of seasonality 

analyses on some macroeconomic series will give us an insight about which pattern 

these series exhibit for a given period at any frequency and whether they are in 

accordance with the real world expectations or not.     
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CHAPTER II 

LITERATURE REVIEW 

2.1. Studies on Seasonal Patterns 

       There exists a vast literature on seasonality. Nerlove (1964) utilizes the spectral and 

cross-spectral techniques in order to analyse the effects of seasonal adjustment 

procedures and mention about a slowly changing and stochastic seasonal pattern to 

uncover itself in the spectrum of an economic time series through a set of peaks 

occurring at certain frequencies. Following the work of Box and Jenkins (1970), 

seasonal ARMA models have been estimated by many time series practitioners. In the 

paper by Kitagawa and Gersch (1984), it is dealt with a smoothness priors –Kalman 

Filter-Akaike Information Criterion (AIC)- approach to the modelling of time series 

with trend and seasonality. Kitagawa and Gersch (1984) have supported the usage of a 

state-space approach with a specific unobservable seasonal component. Through a state-

space representation, Thorburn and Tongur (2014) consider the issue of whether 

seasonal decomposition should be used prior to or after aggregation of time series and 

have an argument on that the preferable succession order between aggregation and 

seasonal decomposition must depend on the covariance structure of the series. 

Hylleberg (1986) provides an extensive discussion of definitions of seasonality. Hasza 

and Fuller (1982) and Li (1991) discuss the tests for normal and seasonal unit roots on 

the autoregressive operator. The studies by Otto and Wirjanto (1990), Ghysels, Lee and 

Siklos (1994b), McDougall (1995) indicate the presence of significant seasonal patterns 

on many macroeconomic time series. Bell (1987) refers to the discussion that series 

featuring seasonal unit roots and pure seasonal dummy processes are not regarded as 

distinct from a practical view of point when 1S  in equation (4.31). Eiurridge and 

Wallis (1990) mention about how seasonal patterns in variance should be modelled in 

the context of Kalman Filter. 

       Sims (1974) considers the seasonal components of economic time series as “errors 

in variables”, examines the nature of asymptotic biases in least squares estimates of lag 

distributions in the case of availability of seasonal noise and analyses procedures for 

correcting for seasonal bias. 
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       When looked at seasonality from economic viewpoint, Barsky and Miron (1987) 

outline the estimates of the seasonal patterns in a set of standard macroeconomic 

variables including consumption, investment, government purchases, employment and 

money stock concluding that a crucial source of the non-trend variation comes from 

seasonal fluctuations. Comparing the seasonal cycle to the business cycle, they show the 

U.S. (United States) economy to display a “seasonal business cycle” and express that it 

has the significant qualitative features that reflect closely the identical picture of the 

characteristics of the conventional business cycle. That is, besides the business cycle 

frequencies, at seasonal frequencies output movements are found to act together across 

broadly defined sectors and nominal money and real output are found to have a strong 

correlation. 

       The paper by Miron (1990) presents some stylized facts about seasonal fluctuations 

in U.S. and other economies which convey the crucial information about the nature of 

the business cycle. The results show that the preference shifts have more considerable 

importance than technology shifts in explaining the important properties of observed 

seasonal patterns and seasonal cycles and business cycles are closely related. Miron 

(1990) also discusses the possible welfare implications of seasonal cycles. 

       In the paper by Beaulieu and Miron (1992a), the cross country variations in 

seasonal patterns are utilized to describe the basic sources of seasonal cycles. It is 

shown that a fourth quarter boom in output, a July or August trough in manufacturing 

production and a first quarter trough in almost every aspect of economic activity 

constitute the most significant characteristics of seasonal patterns. Even though the 

model proposed by Beaulieu and Miron (1992a) is in coherence with the stationary 

stochastic seasonality, only deterministic seasonality is analysed in the study based on 

the justification that seasonal unit roots and stationary stochastic seasonality are not of 

quantitative importance whenever dummies have been excluded. 

       In Jaditz (2000), testing for seasonal components in variance is expressed to be 

analogous to testing a stationary time series for seasonality in the mean. In the article, 

all nine common macro time series have been examined to find out if they display 

seasonality in variance and all series are found to display significant seasonality in 

variance. Since seasonal variation structures are very crucial to businesses and policy 

makers with regard to including important signs about the current situation of the 

economy, from this result it is inferred that the variance of macro time series seems to 

have a significant seasonal component.   
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       Franses (1992b) presents a general-to-simple test procedure for seasonality which is 

established upon the tests for parameter restrictions that are associated with seasonal 

behaviour in a general periodic model. In the study, this procedure is applied to the 

quarterly U.K. (United Kingdom) stock price index for the period 1963:Q1-1988:Q4 

and the U.S. CLI index for the period 1948:Q1-1987:Q4 and it is concluded that 

cyclical and trend behaviour vary per quarter for CLI index while the U.K. stock price 

series does not exhibit seasonal patterns.  

       The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests of 

the null hypothesis of no unit roots at seasonal frequencies denoting the presence of 

deterministic seasonality contrary to the tests of Dickey, Hasza and Fuller (DHF) (1984) 

and Hylleberg, Engle, Granger and Yoo (HEGY) (1990) tests dealing with the null of 

presence of seasonal unit roots. They generalize the Kwiatkowski, Phillips, Schmidt, 

and Shin (KPSS) (1992) test framework.  

       With Monte Carlo experiments applied to three data sets which are the quarterly 

seasonal fluctuations in U.S. macro variables originally used by Barsky and Miron 

(1989), quarterly European industrial production indexes used by Canova (1993) and 

stock returns on value weighted indexes for seven industrialized countries, they draw 

attention to the instable and therefore nonstationary seasonal pattern properties of these 

variables in most cases. The paper proposed by Canova (1993) presents a methodology 

for modelling and forecasting the series with common patterns at seasonal and/or other 

frequencies and attaches the concept of common patterns to a Bayesian Autoregression 

tradition developed by Litterman (1980), Doan, Litterman and Sims (1984) and Sims 

(1989) at origin.  

       In their paper, Raynauld and Simonato (1993) aim to assess a possible alternative 

based on the adaptation of the Bayesian Vector Autoregressive (BVAR) approach 

popularized by Litterman (1979, 1984, 1986), Doan, Litterman and Sims (1984) and 

Sims (1989) to the context of seasonal time series. The forecasting performance of the 

seasonal BVAR models has been evaluated in the context of a monthly model of the 

U.S. economy including both seasonal and nonseasonal variables. In the paper proposed 

by Shaarawy and Ali (2015), it has been aimed basically to develop an approximate 

Bayesian technique to identify the orders of any seasonal multivariate autoregressive 

processes and numerical results obtained point out to the sufficiency of using the 

proposed technique in identifying the orders of seasonal multivariate autoregressive 

processes for moderate and large sample size in an efficient manner.  
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       In their study, Ghysels and Perron (1996) examine the effects of seasonal 

adjustment filters on the statistical properties of different tests involving structural 

changes through theoretical discussions and Monte Carlo simulations. The adverse 

effects of linear filtering in the case of structural change are demonstrated using 

historical series of economic activity covering the Great Depression. The results 

indicate that the non-rejection of the unit root null hypothesis with seasonally adjusted 

series can be grounded on the smoothing properties of many filters requiring a power 

loss.  

       Tam and Reinsel (1997) examine the locally best invariant unbiased (LBIU) and 

point optimal invariant (POI) test procedures for a unit root in the seasonal moving 

average (SMA) operator for seasonal autoregressive integrated moving average models 

(SARIMA) and make use of the monthly non-agricultural industry employment series 

for males age 16-19 modelled by Hillmer, Bell and Tiao (1983). The results for 

conducted simulations have revealed that for this series, seasonality is stochastic and 

therefore seasonal differencing is appropriate. They also apply their tests to different 

types of seasonal time series data and find some of these series to have deterministic 

seasonality.  

       In order to distinguish stochastic seasonality from deterministic seasonal pattern, 

Tam and Reinsel (1998) also examine the LBIU and POI tests for a unit root in SMA 

model in the presence of a deterministic linear trend and their test is an extension of the 

framework proposed by Tanaka (1990) and Saikkonen and Luukkonen (1993) 

nonseasonal MA unit root tests to the seasonal frequencies. The test procedures are 

applied to the monthly average total ozone data at Boulder, Colorado from 1966 to 1991 

and as associated with non-rejection of the null hypothesis, they decide on that 

modelling seasonality as deterministic is appropriate rather than stochastic.  

       The article proposed by Caner (1998) suggests a locally best invariant test with the 

null of seasonal stationarity and the test is derived from the framework of King and 

Hillier (1985). It is also a generalization of the unit root test proposed by Leybourne and 

McCabe (1994) from zero frequency case to the seasonal frequency. When compared 

with the CH test, contrary to it Caner takes the autocorrelation into account in a 

parametric way and conducted Monte Carlo simulations revealed that his proposed test 

has better finite sample performance with good power properties than the CH test in an 

AR type of autocorrelation. Also, in the same manner to Caner (1998), Busetti and 

Harvey (2003) extend the test procedure proposed by Canova and Hansen (1995) and 
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propose a parametric version of the test. One crucial practical finding from Monte Carlo 

experiments is that for most economic time series taking first differences can be a good 

strategy. In addition, they consider a test for breaks in seasonal patterns, also a general 

test versus any kind of permanent seasonality, deterministic or stochastic.  

       Lenten and Moosa (1999) aim to model the trend and seasonal behaviour of the 

alcoholic beverages consumption in the U.K. over the period 1964-1995 by means of 

the univariate version of Harvey’s (1989) basic structural time series model. Using 

quarterly seasonally adjusted data, they have found the consumption of beer and wine to 

display stochastic seasonality and the consumption of spirits to display deterministic 

seasonality. Also, these three series are expressed to include stochastic trends. 

According to the goodness of fit measures and diagnostic test statistics, the model with 

stochastic trend and seasonality has been found to be the most suitable one when 

compared to other models. Harvey and Scott (1994) examine the implications of explicit 

modelling of seasonality as an unobserved component which facilitates the dynamic 

modelling by seperating non-seasonal components from seasonal ones using the 

consumption model of Davidson, Hendry, Srba and Yeo (1978).  

       In their paper, Cheung and Coutts (1999) make use of logarithmic daily returns of 

the Hang Seng Index on the Hong Kong Stock Exchange over the period 1 January 

1985 through 30 June 1997 in order to search for a January effect or monthly 

seasonality. Contrary to the previous studies regarding other stock indices which 

discover the presence of some type of monthly seasonality in most cases, their study 

shows strangely that there is no evidence of a January effect or monthly seasonality for 

the Hang Seng Index over the period in question.    

       Fang (2000) presents a broad characterization of the presence of significant 

seasonal patterns in estimated daily and hourly return volatilities using high frequency 

data for three exchange rates which are mark/dollar, yen/dollar and yen/mark and points 

out to that disregarding such patterns will result in a biased and insignificant empirical 

analysis.  

       In the study by Lim and McAleer (2000), the presence of stochastic seasonality is 

examined to clarify the nonstationary quarterly international tourist arrivals from Hong 

Kong and Singapore to Australia from 1975:Q1 to 1996:Q4 using HEGY (1990) 

procedure. Since the presence of seasonal unit roots gives an insight into a varying 

seasonal pattern that is against a constant seasonal pattern, the Box Jenkins Seasonal 

Autoregressive Integrated Moving Average (SARIMA) process is possible to be a more 
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suitable model for tourist arrivals rather than a deterministic seasonal model with 

seasonal dummy variables.  

       Seong, Ahn and Jeon (2008) deal with the spurious regression problem in a model 

including two different types of nonstationary seasonal time series, stochastic and 

deterministic. With a diverging conventional regression t ratio and an increasing sample 

size, the conducted Monte Carlo study shows the existence of the phenomenon of 

spurious regression.  

       Halim and Bisono (2008) propose a forecasting program for an automatic seasonal 

nonstationary homogenous forecasting which enables to get the knowledge of the best 

time series model in the sense of minimum AIC.  

       In their paper, Chang and Liao (2010) have aimed to forecast the monthly outbound 

tourism departures of three major destinations from Taiwan to Hong Kong, Japan and 

U.S.A. respectively using the SARIMA model.  

       Saz (2011) examines the efficacy of SARIMA models for forecasting Turkish 

inflation rates from 2003 to 2009 and presents a methodological approach for a 

combination of a systematic SARIMA forecasting structure and the stepwise selection 

procedure of the Hyndman-Khandakar (HK) algorithm. This combination is expressed 

to give rise to choosing a best single SARIMA model which is SARIMA(0,0,0)(1,1,1) 

model with one degree of seasonal integration, one seasonal AR and one seasonal MA 

part. According to a structural break analysis, the Turkish inflation rates have been 

found to display a range of structural breaks with the latest being in mid-2003 and 

stochastic nature of Turkish inflation has been found to outweigh its deterministic 

nature. 

 

2.2. Studies on Seasonal Unit Roots, Seasonal Integration and Cointegration 

       So far, there have been many applications of unit root tests. Univariate unit root 

tests were first proposed by Fuller (1976) and Dickey and Fuller (1979) whose unit root 

test is known as the most prominent one. These tests were applied to a number of 

macroeconomic data by Nelson and Plosser (1982).  In their paper, Nelson and Plosser 

(1982) state that stochastic variation due to real factors lies at the core of 

macroeconomic fluctuations. They make use of long historical time series for U.S. and 

application results fail to reject the hypothesis that the series are nonstationary 

stochastic processes.  
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       As associated with the unit root concept, the relationship between cointegration and 

error correction models was first suggested by Granger (1981) and then it was also 

introduced by Granger and Weiss (1983). Engle and Granger (1987) also offer a 

theorem based on Granger (1983) which associates the moving average (MA), 

autoregressive (AR) and error correction representations for cointegrated systems and 

estimation methods. Engle, Granger and Hallman (1989) and Hylleberg, et al. (1990) 

introduce the concept of seasonal cointegration in their papers. Lee (1992) and Johansen 

and Schaumburg (1999) examine the seasonal cointegration relationships that are based 

on maximum likelihood (ML) estimation. Joyeux (1992) has dealt with testing for 

seasonal cointegration using principal components. Kunst (1993) tries to evaluate the 

effects of modelling seasonal cointegration on predictive accuracy for German and U.K. 

macroeconomic series. In their study, Ahn and Reinsel (1994) handle the connection 

between the partially non-stationary vector autoregressive model with seasonal 

behaviour and seasonal cointegration and the error correction model.  

       Reimers (1997) analyses the forecasting performance of seasonally cointegrated 

processes through simulating different data generating processes and using the ML 

approach proposed by Lee (1992). In this study, there has been made a comparison 

between forecasts of cointegrated models in fourth differences and first differences 

including seasonal dummies. The simulation study has shown that the models in first 

differences with seasonal dummies yield lower forecast errors in the short term than the 

seasonally cointegrated models for forecast horizons up to four quarters and for larger 

horizons, the models in fourth differences have been found to outperform the models in 

first differences.  

       In their paper, Kunst and Franses (1998) deal with the impact of deleting, 

restricting or not restricting seasonal constants on forecasting seasonally cointegrated 

time series for Austria, Germany and the U.K.  

       Cubadda (2001) introduces the complex error correction model for seasonally 

cointegrated variables and suggests a reduced rank estimator and a Trace (TR) Test to 

determine the cointegration rank at frequencies that are different from zero and  .  

       In the study by Löf and Lyhagen (2002), the comparison of the forecasting 

performance of the seasonally cointegrated model of Johansen and Schaumburg (1999) 

and of the specification proposed by Lee (1992) with a parameter restriction included at 

the annual frequency has been covered. For three data sets from Austria, Germany and 

U.K., each including six variables: gross domestic product (GDP), private consumption, 



12 

 

gross fixed investment, goods exports, real wages and the real interest rate; it is also 

dealt with how the inclusion of restricted or unrestricted seasonal dummies may have an 

influence in the seasonal cointegration models. Since the semi-annual frequency for 

Austria appears to have full rank and the U.K. data set shows a rather weak 

cointegration evidence at the seasonal frequencies, only the German data are used in the 

forecasting example. Through Monte Carlo study, Löf and Lyhagen (2002) have found 

some evidence that for the smaller sample sizes the specification of Johansen and 

Schaumburg (1999) may result in worse forecasts in the case of the inclusion of more 

cointegrating relations and for larger sample sizes the study results have been found to 

favour of this specification.  

       In their study, Herwartz and Reimers (2003) examine the stochastic nature of the 

variables in the German money demand equation over the sample period from 1975:1 to 

1995:4 by using seasonal unit root tests and prediction tests for structural change are 

presented for testing the stability of the process subsequent to the German Monetary 

Union. Depending on the existence of seasonal unit roots, it is concluded that the 

specification of the German money demand function should be in annual differences. 

From this point of view, according to a seasonal cointegration analysis the evidence 

shows the presence of long-run relationships among the included variables for the zero 

and the seasonal frequencies.  

       Darné (2004) extends the ML seasonal cointegration procedure proposed by 

Johansen and Schaumburg (1999) to monthly observed time series.  

       Cubadda and Omtzigt (2005) introduce iterative reduced rank regression 

procedures that permit a simultaneous modelling of the cointegration restrictions at the 

conjugate complex unit root frequencies and examine the small-sample properties using 

simulations. According to a Monte Carlo study, it is concluded that their new tests for 

the cointegration rank at the annual frequency perform better than the TR test in 

Cubadda (2001) for small samples.   

       Seong, Cho and Ahn (2006) introduce the Maximum Eigenvalue (ME) test for 

seasonal cointegrating ranks making use of the Cubadda’s (2001) approach and make a 

comparison between the performances of ME test and the TR test in the seasonal case. 

In the paper by Seong, Cho and Ahn (2007), the inference of seasonal cointegration 

with common linear restrictions among cointegrating vectors at possibly different 

frequencies of seasonal unit roots is handled, in order to accommodate linear restrictions 

in the Gaussian reduced rank (GRR) estimation of Ahn, Cho and Chan Seong (2004) the 
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necessary methods are presented and the related asymptotic distributions are 

established.  

       Seong (2009) presents two types of complex error correction models which are the 

extensions of the complex error correction model of Cubadda (2001) and obtains the 

limiting distribution of the Likelihood Ratio (LR) test to identify the seasonal 

cointegrating rank in these two models.  

       Seong (2013) considers a bootstrap algorithm for identifying seasonal cointegration 

ranks as an extension of Swensen (2006) who proposes a bootstrap algorithm to test and 

determine the cointegration rank in a reduced rank VAR (Vector Autoregression) model 

and Monte Carlo simulations show that the bootsrap algorithm can improve size 

distortions of the LR test in an efficient manner.  

       Mert and Demir (2014) have aimed to examine the seasonal patterns to detect if 

seasonal cointegration relationship exists between export and import series over the 

1969:1-2014:1 quarterly periods. Two series have been found to be cointegrated at ¼ 

and ¾ frequencies with one cointegrating vector and not cointegrated at zero (long-run) 

frequency. The results have shown that error correction mechanism works at ¼ 

frequency and the coefficient is negative in accordance with expectations. However, at 

¾ frequency, because of the error correction term is positive signed contrast to the 

expectations, the error correction mechanism has been determined not to operate. In this 

case, the return to equilibrium of deviations occurring in imports series at ¾ frequency 

has been expressed not to be fulfilled in the short term. 

       On the other hand, it is extremely common to come across seasonal economic time 

series displaying nonstationary stochastic seasonality. This situation has brought about 

the evolution of several seasonal unit root tests. Dickey, Hasza and Fuller (DHF) (1984) 

propose a test called DHF which is the extension of the well-known Dickey-Fuller (DF) 

procedure for the zero frequency unit root case to seasonal time series. They also extend 

the test to the case of higher-order stationary dynamics. The assumption of DHF test is 

that the true data generating process (DGP) displays a seasonal autoregressive process 

of order one or SAR(1) process and thus, seasonal integration is expressed to be tested 

with the alternative hypothesis of stationary seasonality. One main disadvantage of this 

test is that it does not allow for unit roots at some but not all of the seasonal frequencies.  

       The analysis of seasonal unit roots is fundamentally conducted with the most 

popular HEGY approach developed by Hylleberg et al. (1990) by working with 

different models that include trends, constants and seasonal dummies and in this paper it 
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is mentioned about that when deterministic components are available in the regression 

model although not included in the data, the limiting distributions change. HEGY test 

has originally been derived for quarterly seasonality and extended to data with different 

frequencies. Contrary to the DHF test proposed by Dickey et al. (1984), HEGY 

procedure enables to test for unit roots at each seasonal frequency as well as the zero 

frequency separately and the techniques are applied to quarterly U.K. data for the period 

1955:1 to 1984:4 in order to examine the cointegration relationship between 

consumption and income variables at different frequencies. As a result of application, 

Hylleberg et al. (1990) find the unit elasticity error correction model to be invalid at any 

frequency. The asymptotic distributions of the t-statistics from their testable model have 

been analysed by Chan and Wei (1988). In their paper, Chan and Wei (1988) 

characterize the limiting distributions of the least square estimates as a functional of 

stochastic integrals.  

       Osborn and Smith (1989) examine the performance of periodic autoregressive 

models in forecasting seasonal (quarterly) U.K. consumption and in the study, the 

preference between a periodic or non-periodic specification is stated to affect the 

resulting dynamic properties.  

       Osborn (1990) examines whether the seasonal component in each variable displays 

stochastic nonstationarity in quarterly data for 30 important U.K. macroeconomic 

variables including real GDP and its basic components, employment, price/earning 

indices, the rate of interest and the exchange rate and she reports that only interest rates 

and the exchange rate display no significant seasonality and a seasonal unit root exists 

in only six variables.  

       Franses (1990) deals with testing for seasonal unit roots in monthly observations. 

Franses (1994) proposes a seasonal unit root test that grounds on the multivariate 

representation of univariate seasonal processes. In his paper, the VQ (vectors of 

quarters) approach which considers an autoregressive model for the vector including 

annual observations per season is adopted and this approach is expressed to be able to 

regard as the most appropriate tool for univariate data analysis. The application of 

Johansen’s ML cointegration method shows an extension of HEGY procedure by taking 

periodically varying coefficients into consideration.  

       Ghysels, Hall and Lee (1996) suggest their approach as a generalization of the 

Hylleberg et al. (1990) testing procedure to take the presence of unit roots into account 

at the zero and seasonal frequencies in periodic AR models as in the approach by 
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Franses (1994) who considers the seasonal integration hypothesis in a periodic context 

and a Monte Carlo simulation evidence sheds light upon the advantages of taking 

periodicity into consideration in testing for unit roots in seasonal time series. In Franses 

and Vogelsang (1995), the problems of testing for seasonal unit roots (as the extension 

of HEGY procedure) in the presence of a single break in each season in a specific year 

are considered. If mean shifts are not included, it is expressed that there is an evidence 

of seasonal unit root at the bi-annual frequency. However, if seasonal unit roots are 

tested in the AO (additive outlier) or IO (innovative outlier) model, the evidence for 

seasonal unit root is said to vanish for quarterly U.S. industrial production data. Smith 

and Otero (1995) mention about how exogenous changes in the level or seasonal pattern 

of a series have an influence on the HEGY testing procedure for seasonal integration. In 

this study, it is expressed that the relative position of the “break” can influence the 

power of the seasonal unit root test statistic substantially and a change in the seasonal 

pattern has an adverse effect on the seasonal unit roots while a change in the level of the 

process does not affect them. As the size of the break increases, the ability of a unit root 

test to discriminate stationarity from nonstationarity is expressed to weaken. In addition, 

it is specified that for the sample size that is greater than or equal to 100 ( ), the 

power of the seasonal unit root test to reject the null hypothesis is 100% because the 

spectrum of the series at seasonal frequency is not influenced from this.  

       Kawasaki and Franses (1996) propose an alternative approach to determine the 

number of seasonal unit roots for a large set of quarterly macroeconomic variables by 

analysing versions of the basic structural model. Through Monte Carlo simulations, they 

conclude that their method operates very well with regard to having good size and 

power properties and has a tendency to detect more seasonal unit roots compared to the 

HEGY method.  

       Franses and Hobjin (1997) present critical values for a variety of unit root tests in 

seasonal time series by considering the extensions of Hylleberg et al. (1990) and 

Osborn, Chui, Smith and Birchenhall (OCSB) (1988) procedures that concern time 

series with increasing seasonal variation and structural breaks in the seasonal means (in 

the case of known break point).  

       Alexander and Jordá (1997) present an empirical research concerning the presence 

of seasonal unit roots at different frequencies in trade variables for Germany, France, 

the U.K. and Italy with both quarterly and monthly data by applying to the HEGY test. 

The findings have shown that the presence of unit roots at most seasonal frequencies is 

100T
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rejected more often in quarterly data than in monthly data; there has been a weak 

evidence of seasonal unit roots on German trade balance and French industrial 

production series; no seasonal unit roots have been found in the U.K. series and Italy 

has been shown as the only country displaying seasonal unit roots in all its three 

variables. As a conclusion; although the presence of seasonal unit roots appears more 

apparently in monthly data than in quarterly data, it is expressed that it cannot be 

referred to the presence of a strong seasonal integration in trade variables of countries in 

question.  

       Leong (1997) presents an empirical study focusing on the nature of the seasonality 

and testing for the presence of seasonal unit roots using HEGY procedure for quarterly 

observed Australian macroeconomic data (total exports, total imports, expenditure-

based GDP, retail trade turnover, total unemployed persons and manufacturers’ actual 

sales for clothing and footwear) and finds that although total exports and total imports 

include seasonal unit roots, other analysed macroeconomic variables do not have a 

seasonal unit root and it is seen that the variables exhibit deterministic fluctuations 

besides stochastic seasonality.  

       Breitung and Franses (1998) propose a semiparametric “Phillips-Perron (PP) type” 

extension of the HEGY testing procedure in order to account for serially autocorrelated 

errors. By following Schmidt and Phillips (1992), Breitung and Franses (1998) have 

covered score-type tests for integration at seasonal frequencies. As a result of their 

Monte Carlo simulations it is concluded that since the semiparametric version may 

suffer from an enormous size bias for some situations, these tests cannot be preferred 

for general use; from another point of view, in case the parametric tests necessitate a 

high augmentation lag it is stated that the semiparametric version may be more powerful 

than the parametric test of HEGY.  

       Paap, Franses and Hoek (1997) deal with choosing between the deterministic 

seasonal mean shift model and the seasonal unit root model from a forecasting 

perspective and the effects of neglecting and allowing for seasonal mean shifts on the 

forecasting performance through simulation. According to simulation results, it is 

shown that taking possible deterministic seasonal mean shifts into consideration can 

create an improved forecasting performance.  

       In the paper proposed by Rodrigues and Osborn (1999), the empirical performances 

of Dickey et al. (DHF) (1984), Osborn et al. (OCSB) (1988) and Hylleberg et al. 

(HEGY) (1990) tests are examined for monthly time series. Although the DHF and 
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OCSB tests impose restrictions on the autoregressive processes which are not tested 

explicitly, in case these restrictions are true these tests are said to improve power 

properties and become preferable with respect to size and power. Balcombe (1999) 

presents the extensions of the HEGY testing procedures following the sequential 

approach of Zivot and Andrews (1992) and expresses that the traditional HEGY tests 

can give rise to low power under the alternative of a zero frequency unit root with 

structurally unstable deterministic seasonality. An application of the sequential tests to 

U.S. agricultural price data and macroeconomic data has pointed out to the rejection of 

seasonal unit roots in all series in question. Rodrigues and Osborn (1999) suggest 

pretesting the restrictions before applying the seasonal unit root tests. However, since 

there is no certainty about whether the usual distributions will operate under the 

seasonal unit root null hypothesis, this pretesting is expressed to entail a further study.  

       Gil-Alana (1999) considers the different versions of tests of Robinson (1994) in 

order to test for unit roots and other fractionally integrated hypotheses being settled at 

the zero and/or at the seasonal frequencies on the interval ],0[   with monthly data. A 

Monte Carlo experiment conducted to control the power of the tests against different 

fractional alternatives shows that in case there are adequately large numbers of 

observations, the tests work well in a reasonable manner and an application to the CPI 

in Spain implies the presence of a single unit root at the zero frequency.  

       Psaradakis (2000) suggests bootstrap tests for unit roots in a seasonal 

autoregressive model and the finite sample performance of these tests are examined 

through simulations.   

       Shin and Oh (2000) present semiparametric tests that are the extensions of the 

seasonal unit root tests for the model of Dickey et al. (1984) and based on the feasible 

generalized least squares estimator instead of the ordinary least squares estimator.  

       Hamori and Tokihisa (2000) have aimed to analyse whether there exists seasonal 

integration in Japanese macro data or not for the targeted variables of GDP and its 

components from 1955:Q2 to 1996:Q1. It is concluded that if the seasonal integration 

test is applied without allowing for a structural break, the existence of seasonal 

integration is more likely in terms of the real variables and the evidence is in the 

direction that no noteworthy seasonality exists in the deflators when compared with the 

real variables. In their paper, Hamori and Tokihisa (2001) analyse the stability of 

Japanese money demand function using seasonal integration and seasonal cointegration 

and they find that there exist unit roots in money balances, interest rates and real GDP 



18 

 

series in different cycles. Because of the rejection of seasonal cointegration in every 

case, it is also expressed that there is no stable relationship between money supply and 

the real economy for the period under consideration.  

       Gil‐Alana and Robinson (2001) discuss the seasonal behaviour of quarterly U.K. 

and Japanese consumption and income series from an autoregressive unit root viewpoint 

using the tests of Robinson (1994). They conclude that resorting to seasonal fractional 

integration is a reasonable alternative for modelling these series.  

       The article proposed by Taylor and Smith (2001) deals with the problem of testing 

for a nonstochastic seasonal unit root in a seasonally observed time series process 

against a randomized seasonal unit root hypothesis (in other saying, a seasonal 

heteroscedastic integrated alternative).  

       Harvey, Leybourne and Newbold (2001b) have tried to analyse the behaviour of 

AO and IO tests for seasonal unit roots in the presence of seasonal mean shifts under the 

null hypothesis for quarterly data using Monte Carlo simulation. Simulation studies are 

expressed to show that the use of innovational outlier test with a break date selection 

that is based on the significance of shift dummy variables may result in an erroneously 

estimated break point, leading to spurious rejection of the null. Also, Ghysels (1994) 

presents a study on the effect of seasonal mean shifts on seasonal unit root testing.  

       Harvey, Leybourne and Newbold (2001a) have analysed the performance of unit 

root tests that allow for an endogenously determined break in level.  

       da Silva Lopes (2001) presents a comparison of the power properties of the tests 

proposed by Dickey et al. (1984), Osborn et al. (1988) and Hylleberg et al. (1990) for 

the seasonal differencing filter in the presence of seasonal mean shifts.  

       Rubia (2001) presents the extension of HEGY testing procedure to analyse the 

weekly seasonality of the daily electricity demand series quoted in several deregulated 

electricity markets and the evidence shows that the Spanish, Argentine and Australian 

electricity markets exhibit different seasonal patterns.  

       Kunst and Reutter (2002) present a combination of seasonal unit root tests in which 

some of them have absence of unit roots while other tests employ the presence of unit 

roots as their null hypothesis and they evaluate the outstanding qualities of such 

seasonal unit root test combinations founded upon a pseudo-Bayesian structure which 

strayed from the cited study of Hatanaka (1996) or Hylleberg (1995).  

       Osborn and Rodrigues (2002) present a general approach for derivation of the 

asymptotic distributions of various seasonal unit root tests, including those of Dickey et 
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al. (1984), Osborn et al. (1988), Hylleberg et al. (1990), Franses (1994), Ghysels et al. 

(1996) and Kunst (1997). Their unifying approach reveals that the asymptotic 

distributions of all these test procedures depend on the same vector of Wiener processes 

(i.e., the elements of the vector Brownian motions which are composed of the s distinct 

processes implied by the null hypothesis that the s observations within each year follow 

independent integrated processes in an asymptotical manner). This dependence leads to 

the conclusion that in order to generate all critical values, linear transformations of a 

single set of replications of the underlying process can be utilized instead of applying 

separate Monte Carlo simulations for each test. In addition, in this paper the OCSB and 

DHF test regressions are referred to be restricted forms of the Kunst and HEGY 

regressions which require nonstandard distributions and F-tests from the latter ones are 

shown to be exactly equivalent.  

       In her paper, Çağlayan (2003) investigates the presence of seasonal unit root for the 

monthly series of personal consumption expenditures made to non-durable and semi-

durable goods and services, per capita disposable income and stock market returns that 

are concerned with the life-long permanent income hypothesis over the period 1988:01-

2000:04 and examines if cointegration exists among given variables by using HEGY 

procedure. In her study, the presence of seasonal unit root has been found in 

consumption expenditures and disposable income series for both 0 and ¼  frequencies 

and in stock market returns series for ¼ frequency. Also, it is concluded that 

consumption expenditures and disposable income variables are cointegrated at zero 

frequency.  

       Kadılar and Erdemir (2003) focus on the problem of determining the lag number of 

multivariate seasonal models and express that in the case of seasonal patterns, using 

AIC gives rise to a poor performance in order to select the order of the seasonal vector 

autoregressive (SVAR) models. To overcome this problem, they develop a seasonally 

modified AIC which performs better than the usual AIC.  

       Gil-Alana (2003) has tried to construct confidence intervals for the seasonal 

fractional differencing parameter for several measures of the U.S. monetary aggregate 

by means of fractionally integrated techniques following the tests of Robinson (1994). 

In the study, it is utilized from quarterly and seasonally unadjusted time series data for 

the period of 1960Q1:1998Q4 and it is expressed that the conclusion is in the direction 

of the rejection of seasonal unit roots in favour of smaller integration degrees.  
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       Gil-Alana (2004) introduces a version of the tests of Robinson (1994) that enable to 

test different orders of integration at zero and each seasonal frequencies applying to the 

Italian consumption and income series and in the study results it has been given 

emphasis to the importance of the long run (zero) frequency for both consumption and 

income series but the seasonal frequency   in case of the differences.  

       da Silva Lopes and Montanes (2005) analyse the behaviour of HEGY seasonal unit 

root tests for quarterly time series in the presence of seasonal mean shifts.  

       Lucey and Whelan (2004) investigate the monthly and half-yearly seasonality of 

the Irish equity market in the long term and show that the Irish equity market displays a 

month-of-the-year effect with a January peak, in addition April effect and semi-annual 

seasonality.  

       Rodrigues and Franses (2005) introduce a sequential seasonal unit root testing 

procedure for high frequency data focusing on quarterly and monthly data. According to 

simulation results, it is shown that their new sequential approach is more powerful than 

the traditional HEGY procedure, particularly in small samples.  

       Ayvaz (2006) investigates the seasonal behaviours of Gross National Product 

(GNP), consumption, export and import series in Turkish Economy using HEGY 

procedure and tries to detect the presence of stochastic or deterministic seasonality for 

these quarterly data for the period 1989:Q1-2004:Q4. The evidence has shown that 

consumption series displays stochastic seasonality, GNP and export series include 

seasonal unit roots at semi-annual and annual frequencies. In addition, imports series is 

expressed to have a non-seasonal unit root (at zero frequency).  

       Coşar (2006) has tried to examine the seasonal properties of the Turkish consumer 

price index (CPI) through Beaulieu and Miron’s (1993) extension of the classical 

HEGY test developed by Hylleberg et al. (1990) and the LM-type CH seasonal unit root 

test procedures with the aim to specify the seasonality accurately in econometric 

models. In the Coşar’s (2006) study, there has been an evidence of both deterministic 

and nonstationary stochastic seasonality in the CPI series of Turkey.  

       Gagea (2007) studies the identification methods of the nature of the seasonal 

component of Romania’s quarterly exports between 1990-2006 by using HEGY 

seasonal unit root testing procedure. Conducted test shows that the seasonal component 

may be deterministic, stochastic or mixed and since the deterministic seasonal 
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component situation seems to be rather weak; the appropriate filter to eliminate seasonal 

variations is expressed to be the seasonal difference operator )1( 4L .  

       Otero, Smith and Giulietti (2007) deal with testing for seasonal unit roots in 

heterogeneous panels in the presence of cross section dependence.  

       In their study, Caporale and Gil-Alana (2008) introduce a version of the tests of 

Robinson’s (1994) procedure that is appropriate for testing the integration order of the 

trend and seasonal components of a time series at the same time. The tests enable to test 

for both unit and fractional degrees of integration. An application of the tests to monthly 

non-seasonally adjusted data on four U.S. monetary aggregates results in the presence 

of a unit root at the zero frequency together with possibly fractional values for the 

monthly component for all series.  

       Tasseven (2008) presents the extension of HEGY procedure based on an IO model 

for testing seasonal unit roots by considering seasonal mean shifts in more than one year 

with exogenous break points. Following the study of Franses and Vogelsang (1995), 

Tasseven (2008) applies to double break points considering the 1994 and 2001 major 

financial crises. Apart from seasonal unit roots, the study allows for the effects of 

shocks to the system such as policy interventions or other crises which can affect the 

domestic macroeconomic developments. Based on the empirical money demand model 

for Turkish economy for the 1986:1 – 2003:1 period; the GDP deflator, real M2 and the 

expected inflation variables are found to contain seasonal unit roots and in case the 

possible structural changes are taken into consideration, seasonal unit roots are seen to 

disappear for the real M1 balances. Proietti (2002) introduces a class of seasonal 

specific structural time series models in the context of unobserved components 

framework focusing on the time domain representation rather than the frequency 

domain.  

       Jiménez-Martin and Flores de Frutos (2009) propose a new equilibrium model of 

the exchange rates which takes seasonal shocks in preferences into account for five 

industrialized countries using seasonally unadjusted data and which makes a 

generalization of standard dynamic equilibrium models of exchange rates. The proposed 

model explains how agents smooth seasonal movements in fundamental variables for 

their investment decisions although the fundamental variables explaining exchange rates 

exhibit seasonal fluctuations.  
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       Shin and Oh (2009) deal with testing for seasonal unit roots for each seasonal 

frequency in panel models of cross-sectionally correlated time series in the basis of the 

instrumental variable estimation.  

       Khedhiri and El Montasser (2010) try to build up the asymptotic theory of the test 

of Lyhagen (2006) -who presents an extension of the KPSS framework to the seasonal 

case- in the time domain in the presence of AO. According to Monte Carlo studies 

conducted to examine the finite-sample performance of the seasonal KPSS test, it is 

concluded that the seasonal KPSS test has good power properties.  

       Harvey (2011) deals with modelling the inflation-output gap relationship by using 

unobserved components.  

       Kunst and Franses (2011) deal with the problem of testing for seasonal unit roots in 

monthly panel data through the generalization of the quarterly cross-sectionally 

augmented HEGY test to the monthly case.  

       In her study, Ayvaz Kızılgöl (2011) has examined if GDP, export, consumption and 

investment series have seasonal unit roots and display a seasonal cointegration 

relationship by using quarterly series for the period 1987Q1-2007Q3. For this aim, 

Ayvaz Kızılgöl (2011) has utilized from HEGY (1990) and Engle, Granger, Hylleberg 

and Lee (1993) tests. In the study, it is concluded that there is no seasonal cointegration 

relationship between series at zero and biannual frequencies. However, a seasonal 

cointegration relationship has been detected between gross domestic product and 

consumption series at ¼ (and ¾ frequency) for the model with intercept and seasonal 

dummy variables.  

       In the paper suggested by Chirico (2012), Italian daily electricity price data in the 

years 2008-2011 are analysed in order to detect the type of seasonality for the 

application of ARIMA (Autoregressive Integrated Moving Average) modelling. When 

HEGY test is performed on the sub-periods 2008-2009 and 2010-2011, it is concluded 

that 2008-2009 prices are seen to display a random walk movement contrary to 2010-

2011 daily prices that do not include such a movement. In addition, the seasonality 

features non-stochasticity in both sub-periods pointing out to the absence of seasonal 

unit roots and thus the presence of deterministic seasonality in the short run.  

       In their study, Gürel and Tiryakioğlu (2012) have analysed the seasonal patterns of 

the seasonally unadjusted quarterly Turkish Industrial Production Index estimated by 

the Turkish Statistical Institute (TURKSTAT) and the sub-sectors of the mining 

industry, the manufacturing industry and electricity, gas and water sectors at constant 
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1997 prices over the period 1977:1–2008:4 by using the HEGY approach. The main 

findings have shown that all these four series contain seasonal unit roots at long-run 

(zero) frequency indicating to the presence of non-seasonal unit roots and the electricity 

and total industry production series are not stationary at each seasonal frequency. 

According to the evidence, the presence of both deterministic and non-stationary 

stochastic seasonality has been detected in the Turkish manufacturing industry series.  

       Tıraşoğlu (2012) has carried out HEGY procedure for the series that are composed 

of CPI and its expenditure groups. Important results of the study are those: all series 

have unit roots at zero frequency and at semi-annual frequency unit root exists for CPI 

and its some expenditure groups.  

       The aim of the paper proposed by Meng and He (2012) is to propose a HEGY-type 

test based on the study by Hylleberg, Engle, Granger and Yoo (1990) in order to test 

seasonal unit roots in data with other frequencies not studied until that time such as 

hourly and daily data. In their study, Meng and He (2012) present the asymptotic 

distributions of the HEGY-type test statistics by following the work of Beaulieu and 

Miron (1992b), Chan and Wei (1988) and Hamilton (1994) and critical values for 

hourly and daily data at different frequencies. The study reveals that the HEGY-type 

test for hourly data suffers from the size distortion problem depending on the presence 

of the negative strong seasonal MA component in the series. Meng and He (2012) have 

tried to detect the presence of seasonal unit roots in hourly wind power production data 

in Sweden in warm season and cold season separately for 2008-2009 years and compare 

the performance of their test when deterministic components are included or not. For 

these separate two series, they conclude that are no seasonal unit roots in both series; 

however, zero frequency unit root exists in both. Regarding the size and power 

properties of the HEGY test, they also show that the smallest size distortion is satisfied 

when lag augmentations in auxiliary regression are included without lag elimination and 

tests with seasonal dummies included in auxiliary regression have more power than the 

tests without seasonal dummies.  

       Meng (2013) proposes corrected test statistics in order to test seasonal unit roots in 

the case of serially correlated residuals of the HEGY test equation following the 

commonly used PP unit root test technique. As a result of the simulation studies, Meng 

(2013) compares the corrected statistics and commonly used HEGY test statistics and 

expresses that the former for monthly data has more power when compared to the latter.  
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       In Rodrigues, Rubia and Valle e Azevedo (2013), the finite sample properties of the 

frequency-domain test suggested by Robinson (1994) and its time-domain equivalent 

suggested by Hassler, Rodrigues and Rubia (2009) are compared in order to test for 

seasonal integration in fractional context. Montasser (2011) focuses on the performance 

of the overall Fisher statistics of the Kunst and HEGY tests for seasonal integration by 

utilizing from the procedure introduced by Osborn and Rodrigues (2002) when the DGP 

exhibits a non-stationary alternative treated by del Barrio Castro (2006). According to 

simulation results, Kunst F-type statistic has been found to keep up high power in case 

all unit roots implied by the filter in question are not present. In the study, it is also 

concluded that the augmentation of the regression model of the test with lagged 

dependent variables maintains these high power properties. For the frequency-domain 

test, Rodrigues et al. (2013) make an extension of the analysis in Gil-Alana (2000).  

       In their study, Hindrayanto, Aston, Koopman and Ooms (2013) have tried to 

examine the dynamic properties of the frequency-specific basic structural models for 

seasonal time series in which the time-varying trigonometric terms associated with 

distinct seasonal frequencies have different variances for their disturbances.  

       Cellini and Cuccia (2014) investigate the seasonal processes that the Euro-U.S. 

dollar exchange rate exhibit over the period January 1999 (starting from birth of Euro) 

to December 2012. This study indicates to the statistical significance of specific month 

effects in the first-difference form of exchange rate and heterogeneity in their variance 

across months to a noteworthy extent. The evidence shows the presence of significant 

seasonality in the form of both day effect and month effect. In the study, U.S. dollar has 

been found to be inclined to appreciate with respect to the Euro in January while the 

Euro-Dollar exchange rate displays higher daily variability in December and lower 

variability in January, other things being equal. On the other hand, there has been no 

evidence of structural instability in the exchange rate level dynamics.  

       Alves (2014) considers the scope to which seasonal variations are present in the 

performances of 5349 Equity Europe or Equity Eurozone investment funds. Considering 

worldwide, results of the study indicate to the greater performance in the intermediate 

and final months of each quarter when compared to the first month.  

       del Barrio Castro, Osborn and Taylor (2014) have tried to discover the small 

sample performance of diverse methods in order to detect the lag augmentation 

polynomial in a HEGY seasonal unit root test regression using Monte Carlo methods 

and whether the results are improved by using seasonal generalized least squares 
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detrending developed by Rodrigues and Taylor (2007) or not. They have made an 

extension of the modified information criteria of Ng and Perron (2001) to the seasonal 

unit root testing context applying for lag specification with both ordinary least squares 

(OLS) and generalized least squares (GLS) detrending. In the study, it is concluded that 

in the proper use MAIC (modified AIC) and AIC present more reliable size compared 

to the lag selection methods on the basis of hypothesis testing or BIC (Bayesian 

Information Criterion) and the presence of seasonal unit roots at the semi-annual and 

annual frequencies is rejected very often by the results with OLS detrending than the 

ones with GLS detrending. On the other hand, Kunst (2014) has presented a paper 

considering a combined nonparametric test for seasonal unit roots.  

       Ben Zaied and Binet (2015) deal with modelling seasonal effects of residential 

water demand for quarterly data from 1980 to 2007 utilizing from seasonal integration 

and cointegration. As a result, they touch on the important role of seasonality in 

modelling residential water demand. 
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CHAPTER III 

METHODOLOGY 

3.1. Introduction to the Concept of Time Series 

       Before referring to the concept of seasonality which is a component of time series, 

the concept of time series and its components will be introduced. 

       A time series is a set of random variables indexed in time, { }. From 

this point of view, an observed time series is denoted by { }, where the sub-

index represents the time to which the observation  is relevant. For instance, the first 

observed value  gives the realization of the random variable  and in the same 

manner,  is the realization of  and so on. The characterization of a T-dimensional 

vector of random variable is possible by different probability distribution (Cholette & 

Dagum, 2006, p. 15). Time series are measured at regular intervals of time, generally 

monthly or quarterly, over relatively long periods (they are also mentioned as raw data, 

non-adjusted or original series). This enables us to reveal and analyse the behaviour of 

patterns and establish the current estimates in a more meaningful and historical 

perspective (Central Bureau of Statistics, 2011, chap. 2). Examples are available in 

various fields: the annual crop yield of sugar beets and their price per ton for instance 

are recorded in agriculture; daily stock prices, weekly interest rates or monthly 

unemployment rates are reported on newspapers’ business sections; social sciences 

make researches on annual death and birth rates, the number of accidents in the home 

and various forms of criminal activities; meteorology reports hourly wind speeds, daily 

maximum and minimum temperatures and so on. Time series analyses contain methods 

that attempt to have a better understanding of the data generating mechanism or to 

predict future events based on known past events (Falk et al., 2011, p. 1). 

       Generally, methods for time series analyses are separated into three classes as 

descriptive methods, time domain methods and frequency domain methods. Descriptive 

methods include the decomposition of an observed time series into trend, seasonal, 

cyclical and irregular components (Iwueze, Nwogu, Johnson & Ajaraogu, 2011, p. 633).  

Although time domain and frequency domain approaches operate in a distinct way, they 

are complementary procedures which are related mathematically. In time domain 

methods, data series are tried to be characterized in the same terms in which they are 
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observed and reported and characterization of relationships between data values is 

feasible through the autocorrelation function (ACF). Also, different time domain 

procedures are available for discrete and continuous data (Wilks, 2006, p. 339). 

Frequency domain methods centre on spectral analysis which is a procedure to estimate 

the spectral density function. This type of function is helpful in describing how the 

variation in a time series may be accounted for by cyclic components at different 

frequencies (Chatfield, 2004, p. 8). So, in frequency-domain analysis the overall time 

series is considered to emerge from the combined effects of a collection of sine and 

cosine waves oscillating at different rates. The original data is generated by the sum of 

these waves. However, the primary interest is on the relative strengths of the individual 

component waves. Briefly, frequency-domain analyses occur in the mathematical space 

described by this aggregation of sine and cosine waves (Wilks, 2006, p. 339).  For the 

relation between frequency-domain and time-domain analyses also see Warner (1998). 

     A time series has a characteristic feature that the data are not generated 

independently. Data are frequently under the control of a trend effect and contain cyclic 

components. Hence, statistical methods assuming independent and identically 

distributed data are removed from the time series analysis. For this reason, proper 

methods are needed under the heading of time series analysis (Falk et al., 2011, p. 1). 

 

3.1.1. Components of Time Series 

       The components of a time series consist of various elements that can be separated 

from the observed data. These components can be classified in a wide manner as shown 

in Figure 1. Briefly, a time series includes four components: 

       1) Secular Trend (T): Trend or secular trend shows the long term-tendency of the 

time series to move in an upward or downward direction and reflects how its behaviour 

is over the entire period being analysed. It does not contain any short term variations 

such as seasonality, irregularity etc. (Jain & Jhunjhunwala, 2007, pp. 8.2-8.3). In case a 

time series does not include any trend component, then the data is said to be stationary 

(Gaynor & Kirkpatrick, 1994, p. 80). 

       2) Seasonal Variations (S): These variations are the part of the variations in a time 

series which indicate the regular periodic changes occurring within a period of less than  

a  year  and  which  may  be  observed  as  daily,  weekly,  monthly  or quarterly (Jain &  

Jhunjhunwala, 2007, p. 8.3). Therefore, the fluctuations recurring every year with more 
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Figure 1. Components of time series (Source: Jain & Jhunjhunwala, 2007, p. 8.2) 
 

or less the same timing and intensity generate a seasonal pattern. To give an example, 

the demand for cold beverages becomes low during the winter, starts to increase during 

the spring, peaks during the summer months and then starts to decline in the autumn or 

pizza delivery peaks on the weekends (Collier & Evans, 2010, p. 196). Systematic 

calendar related effects as one type of component of a time series include both seasonal 

and calendar effects. Seasonal fluctuations can be stemmed from climatic variations like 

summer, winter or rainfalls; administrative or legal measures like starting and ending 

dates of school year or fiscal year; social/cultural/traditional/religious and calendar-

related effects (e.g., the timing of certain public holidays such as Christmas, Valentine’s 

Day; variation in the length of months and quarters depending on the nature of the 

calendar). Other calendar effects are associated with the factors not necessarily 

happening in the same month (or quarter) each year (Central Bureau of Statistics, 2011, 

chap. 2). These effects are given as trading day effects and moving holidays: 

       * Trading Day Effects: It is well known that from year to year the number of 

weekdays of months differs so that there are always four of each weekday and a few 

additional days in each month. Therefore, some days recur more often than others and 

the availability of such an effect (how often each of the seven days of the week occurs 

in each month) has an influence on the volume of economic activity, particularly in 

retail sales and stock market activities. For instance, the retail grocery sales volume in 

U.S. is smaller on Mondays, Tuesdays and Wednesdays than on days later in the week. 

So, in a year in which March, say, has an excess of early weekdays and higher when 

March has five Thursdays, Fridays and Saturdays; there will be proportionately low 

sales volume sales in this month in a year. Besides this, since the length of February is 

     Long 

Term 

 Short Term 

Secular  Cyclical  Seasonal    Irregular 
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not the same in each year, this leap year effect which is not incorporated into the 

seasonal component comprises trading day effects along with recurring day-of-week 

effects and when these effects are disregarded in case they have significant size, 

modelling and forecasting are obstructed to an extreme degree. For this reason, it is of 

great importance to detect, estimate and remove such effects during the seasonal 

adjustment process (see Bleikh & Young, 2014, p. 45; Soukup & Findley, 2000)  

       * Moving Holidays: These are holidays like New Year celebrations and religious 

holidays whose exact timing shift over the year by affecting economic activity and 

should be taken into consideration in time series analysis and forecasting. One example 

to this is Easter which can happen in either March or April (Bleikh & Young, 2014, p. 

45). It can be said that calendar-related systematic effects related to the dates of moving 

holidays are not considered as seasonal, since they happen in different calendar months 

depending on the dates of the holidays (Central Bureau of Statistics, 2011, chap. 2). 

       2.1) Stable and Moving Seasonality: During the period being analysed, in case 

seasonal pattern is unchanged or it remains virtually the same in time, in magnitude and 

shape; the series in question is said to display stable seasonality. If the seasonal pattern 

changes gradually over time in amplitude or shape, or both, the series is said to have 

moving seasonality. The causes for this type of seasonality may be a gradually evolving 

seasonal pattern as economic behaviour, economic structures, technological advances, 

and institutional and social arrangements change. To give an example, the magnitude of 

the seasonal component for agriculture series may show a gradual decrease which is 

stemmed from the technological changes that reduce the effect of weather on growth 

and sales of fruits and vegetables (Central Bureau of Statistics, 2011, chap. 2 - p. 5). In 

case there is too much moving seasonality, this could lead to inaccurate estimation of 

the seasonal component of the series (Branch & Mason, 2006, p. 14).  

       3) Cyclical Variations (C): These variations have a longer duration than a year and 

extend over long periods of two to fifteen years. However, they may not exhibit a 

regular periodicity. Generally, they are referred to as business cycles, which are the 

periodic movements in the time series around the trend line. These cycles do not occur 

at a uniform frequency. A cyclical variation consists of four phases: (i) prosperity (ii) 

recession (iii) depression (iv) recovery. Starting from prosperity phase, all economic 

activities are inclined to be at their peak (output, employment prices, investment, profit, 

etc. increase). After prosperity phase, these activities begin to fall and recession starts. 

And then this fall comes to the lowest level, namely depression level. In this level, the 
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production of goods and services, employment, income, prices etc. show a significant 

drop. Then, the recovery phase starts for economic activities. Therefore, the cycle 

becomes completed from period of one boom to another boom. It should be noted that 

business cycles do not have a regular period as the period of various seasons. For this 

reason, they are called cyclical fluctuations rather than periodic fluctuations. The study 

of business cycles enables us to frame suitable policies for stabilizing the level of 

business activity, examine the characteristics of fluctuations of a business and forecast 

and estimate the future behaviour. 

Table 1 

Distinctions between Seasonal Variations and Cyclical Variations 

Basis of Distinction Seasonal Variations Cyclical Variations 

1. Causes The causes of seasonal variations 

are seasons, festivals, weather 

conditions, customs, traditions. 

The causes of cyclical 

variations are disparity 

between demand and supply, 

working of the economic 

system. 

2. Duration These variations occur during 

less than a year. 

These variations occur during 

different periods of two to 

fifteen years. 

3. Area of occurrence These variations happen in any 

economy. 

These variations generally 

occur in capitalists economy. 

4. Periodicity These variations are less 

powerful. 

These variations are more 

powerful. 

5. Degree of Accuracy These variations can be 

estimated with a high degree of 

accuracy. 

These variations cannot be 

accurately estimated because 

of lack of their regularity. 

6. Regularity There is regular periodicity in 

these variations. 

There is no regularity in the 

periodicity of these variations. 

7. Activities of Preceding 

Variations 

These variations do not depend 

on the activities of preceding 

period. 

These variations depend upon 

the activities of preceding 

period.  

Source: Jain & Jhunjhunwala, 2007, p. 8.4.; Jain & Sandhu, 2006-07, pp. 8.5-8.6. 

 

       4) Irregular or Random Variations (I) (sometimes called white noise): These 

are erratic fluctuations in a time series which do not have a definable pattern. They are 

mostly stemmed from the effect of “outside” events on the data and occur at once or 

unexpectedly in a time series. Thus, the main causes can be considered as strikes, 

floods, wars, earthquakes etc. Since there is no regularity in their periodicity, they are 

called random or chance fluctuations and so they are unpredictable by their nature. To a 

usual extent, they indicate short term variations and because of their irregular structure, 

isolating these variations from the time series completely becomes complicated. 

(Gaynor & Kirkpatrick, 1994, p. 80; Jain & Sandhu, 2006-07, p. 8.6). 
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3.1.2. Time Series Models 

       The relationship among the different time series components can be expressed 

through either the additive or multiplicative models: 

1. Additive Model: According to the additive model, all the components of time series 

are not affected by one another and they are expressed in absolute values. Let Y be 

represented as observed value in a given time series (original data). In this case, Y can 

be expressed as a sum of four components in the following way: 

                                                                                             (3.1) 

 

 
Figure 2. Decomposition of additive time series (Source: Using R for Time Series 

Analysis) 
 

2. Multiplicative Model: A multiplicative model assumes that the trend, seasonal, 

cyclical and irregular components are represented by a multiplicative function. This 

model is widely used in practice. Its assumption is that all the four components 

mentioned above are not necessarily independent and they can be influenced by one 

another. In this model, only the trend (T) component is expressed in absolute value 

while other components are expressed as rate or percentage. Therefore, Y is modelled 

by: 

                                                                                                          (3.2) 

 

ISCTY 

ISCTY 
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Figure 3. Graphical representations of additive and multiplicative seasonality 

(Source: Forecasting Society, 2014). 

 

To summarize, diverging aspects of two types of models from one another is given as: 

 

Table 2 

Distinctions between Additive and Multiplicative Seasonality Models 

        Basis of distinction         Additive Model     Multiplicative Model 

1. Basic Assumptions      It assumes that all the four 

components of time series are 

independent of each other. 

     It assumes that all the four 

components of time series are 

due to different causes but 

they are not necessarily 

independent and they can 

affect one another. 

2. Expression                 

3. Absolute values/rates      All components of a time 

series are expressed as absolute 

values. 

     Only trend (T) is expressed 

as an absolute value while 

other components (S,C,I) are 

expressed as rate or 

percentages. 

Source: Jain & Jhunjhunwala, 2007, p. 8.5. 

 

Note: Unfortunately, many real-life time series are not classified as additive or 

multiplicative models. It is usual to come across a time series corresponding to a 

multiplicative model. However, it should not be multiplied with some type of irregular 

component. In this case, a more realistic model is given as a mixed multiplicative model 

with an addition of the irregular component to other components, namely a pseudo 

additive model  in equation (3.3):  

                                                                                                       (3.3) 

Apart from the pseudo additive model given above, a pseudo multiplicative model is 

also likely to fit some real-life data most closely given as: 

                                                                                                      (3.4) 

(Davis & Pecar, 2013, p. 189). 

ISCTY  ISCTY 

ISCTY  )(

)( ISCTY 
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3.2.   The Definition of Seasonality  

       Seasonality is a widespread phenomenon observed in many economic time series. 

Everyone knows what it is. However, it is not common to think about an applicable 

definition of it. It is certain for the concept of seasonality that there should be something 

like ‘a systematic intra-year movement’ in its definition. At this point, it is of great 

importance to consider the causes of such a systematic movement with regard to finding 

out how systematic it is. In Hylleberg (1992), the concept of seasonality is defined as: 

“Seasonality is the systematic, although not necessarily regular, intra-year movement 

caused by the changes of the weather, the calendar, and timing of decisions, directly or 

indirectly through the production and consumption decisions made by the agents of the 

economy. These decisions are influenced by endowments, the expectations and 

preferences of the agents, and the production techniques available in the economy.” 

(Hylleberg, 1992, pp. 3-4).  

 

3.2.1. What is Seasonal Adjustment? 

       The most well-known statistics like Balance of Payments (BOP) and Gross 

Domestic Product (GDP) are regular time series. By analysing those series, it is tried to 

get an idea about the general pattern of the data, the long term movements, and whether 

any unusual occurrences have had major effects on the series. However, this type of 

analysis is not free from ambiguity when studied with original series. Since, some short-

term effects associated with the time of the year which obscure other movements are 

inevitable to occur. For instance, retail sales rise each December depending on 

Christmas. The main aim in applying to seasonal adjustment is to remove common 

seasonal fluctuations and typical calendar effects in the time series mentioned. Or in 

other saying, we can say that the nonseasonal fluctuations are filtered from the raw data 

with seasonal adjustment. The seasonally adjusted series are frequently made available 

to the public and mentioned in financial press. Getting a seasonally adjusted series 

requires subtracting from (or divide) the raw series (by) an estimate of the seasonal 

component. When we adjust the original data for these effects, this makes the 

comparisons between consecutive time periods more effectively. (Ghysels & Osborn, 

2001, pp. 1-2; Office for National Statistics, 2007, chap. 2). The concept of seasonal 

adjustment brings with it an important question of whether unit root tests should be 

http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/time-series-analysis/guide-to-seasonal-adjustment.pdf%20and%20(;%20Ghysels&Osborn,%202001,%20pp.1-2)).%20The
http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/time-series-analysis/guide-to-seasonal-adjustment.pdf%20and%20(;%20Ghysels&Osborn,%202001,%20pp.1-2)).%20The
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applied to seasonally adjusted or seasonally unadjusted data. In their study, Ghysels and 

Perron (1993) draw attention to that although correlation in the data at seasonal 

frequencies is removed by seasonal adjustment, seasonal adjustment introduces a bias in 

the ACF at lags less than the seasonal period which does not disappear even 

asymptotically. Therefore, in case seasonally adjusted (or filtered) data are used, there 

will be a bias in ADF and PP statistics toward non-rejection of the unit root. Briefly, in 

an asymptotical manner if worked with unadjusted data rather than adjusted data, the 

unit root tests are expected to be more powerful (Maddala & Kim, 1998, pp. 364-365). 

 

3.2.2. Tests for Seasonality 

       In their paper, Cellini and Cuccia (2011) deal with the seasonality of monthly time 

series of bilateral nominal exchange rates. In order to detect the presence of seasonality, 

for each of the considered monthly time series, they examine the following tests: 

  1) The D8 F-test for evaluating the presence of stable seasonality, ;  is a one-

way analysis-of-variance test which measures the degree of stability of the seasonal 

component of a time series. Basically, this test is based on the quotient of two variances: 

the between-month variance and the residual variance and it checks for the equality of 

monthly means with the hypotheses given as, 

    

    for at least one pair (p,q)                                                                    (3.5) 

where  are the monthly means of the seasonal irregular (SI) component (the 

detrended series) taken place in table D8. The assumption of this test is that SI values 

are independently normally distributed with means denoted by  and common 

standard deviation given by . This assumption could be true to a certain extent for the 

underlying true SI ratios in a conceptual manner. However, it does not hold for the 

estimates of the SI ratios which are in fact dependent and heteroscedastic and thus has 

an influence on the behaviour of the resulting F-statistic.  A traditional solution to this 

issue is using a cut-off value of 7 as critical value rather than using a critical value from 

the F-distribution (Lytras, Feldpausch & Bell, 2007, p. 848; US Census Bureau, 2010, 

p. 2). In case  is greater than 7.0, the null hypothesis of no stable seasonality is 

rejected and the series is regarded as seasonal (presence of stable seasonality). As a 
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consequence, the series will be seasonally adjusted. By contrast, in case  is less than 

7.0 this results in the acceptance of the null hypothesis (for instance, for quarterly time 

series this indicates that all four quarterly seasonal means are equal) implying that there 

is no seasonal variability in the data. In this case, the series will not be seasonally 

adjusted. 

   2) The Kruskall-Wallis statistic, K, which examines the equality of median values 

across different months (the implication of a value of this statistic falling into the 

rejection region is that median values are not constant across months). The Kruskal-

Wallis test statistic, K is given as: 

,                                                                             (3.6) 

where the k seasons are first ordered and assigned ranks ( ) and  

 is the rank total for the i
th

 season; 

is the number of observations in the i
th

 season; 

is the total number of observations; and  

 k is the number of seasons. 

This test statistic has an approximate Chi-square distribution on k – 1 degrees of 

freedom (Paquette, 2009, pp. 17-18.) 

3) The F-test for evaluating the presence of moving seasonality, ;   this  test   is  

applied to the sum of the seasonal and irregular components of the time series (that is, 

the series without trend and cyclical components) and is based on the quotient of two 

variances, the variance between years and the residual variance. With the null 

hypothesis of no moving seasonality, a test value falling into the rejection region 

indicates that the seasonal irregular component of the series is not stable across years; 

that is, the seasonal component is moving over years. Since moving seasonality can lead 

to distortions, this situation complicates the process of disentangling seasonality. On the 

other hand, the acception of the null means that identifiable stable seasonality is 

present. 

        All tests mentioned above are computed by the X-12- ARIMA program, which is a 

widely used program in applied economic analyses and provided by the U.S. Census 

Bureau for seasonal adjustment and this program is an enhanced version of the X-11 

Variant of the Census Method II. 
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       Getting a statistically efficient estimate of the seasonal component of a series may 

not be possible even in case a series is found to be seasonal according to the results of F 

test for evaluating stable seasonality. In other saying, this seasonal component may not 

be identifiable in a statistical manner. For deciding about the identifiability situation and 

evaluating the goodness of the de-seasonal procedure (or in other saying for deciding 

whether to seasonally adjust a series), apart from the F statistic for stable seasonality 

, analysts use some quality control measures as guidelines like M7 statistic and Q 

statistic. M7 is one of the quality assessment statistics developed by Statistics Canada in 

the 1970s (see Lothian & Morry, 1978) and commonly preferred in applied economic 

researches. This statistic is calculated by using  and  statistics which represent 

the D8 F-statistics for stable seasonality and moving seasonality respectively (see 

Ladiray & Quenneville, 2001) and given as        

                                                                                               (3.7) 

(Lytras et al., 2007, pp. 848-849).  It varies over the interval [0,3] and the values that are 

smaller than 1 are an indicator for an accurate de-seasonal procedure (that is, the series 

has identifiable seasonality). Another quality measure is Q statistic. The Q statistic is a 

weighted average of 11 M statistics (that is, 11 quality measures from M1 to M11 

describing the extent to which the seasonal decomposition is successful) that test for 

different kinds of problems concerning the overall quality of the seasonal adjustment 

like large variances, and the nonexistence of randomness in the irregular component. 

Evaluating estimates of the irregular and seasonal components is the main aim with the 

use of M-statistics. Both calculation and interpretation of all M values are given in 

detail in Lothian and Morry (1978). An irregular component of the series which is 

statistically random and neither too large nor too small relative to the remaining 

components and the series entirely and a stable seasonal component are preferred to be 

able to measure the seasonal component of a series precisely. Six of the M-statistics 

which are M1, M2, M3, M4, M5 and M6 measure the size of the irregular component 

compared to the other components. More obviously, M3 and M5 measure the size of the 

irregular component compared to the trend component. M4 measures the 

autocorrelation in the irregular component. M7 measures the extent to which the 

seasonal effect is identifiable. M8 to M11 quality measures deal with the extent to 

which the seasonal pattern changes. The smaller the value of a quality measure, the 
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better the seasonal decomposition scores. The M statistics are normalized to 1.0. The 

implication of the values of M7 and Q that are less than 1.0 together is that the 

seasonality of a series being analysed is identifiable. A value of M7 that is greater than 

1.0 is a sign of substantial moving seasonality. A value of Q that is greater than 1.0 

indicates some kind of problems such as large variances, the absence of randomness in 

the irregular component or too much change in the seasonal component. In either case, 

we could not measure the seasonality of the series. Therefore, it can be said that in order 

to conclude that the deseasonal series is acceptable, it is necessary for Q statistic to be 

lower than 1 and M values that are smaller than 1.0 indicate that the seasonal 

adjustment may be considered as successful (Branch & Mason, 2006, pp. 14,18; Cellini 

& Cuccia, 2011, pp. 44-45; Van Velzen, Wekker & Ouwehand, 2011, pp. 16-18). 

 

3.2.3. Combined Test for the Presence of Identifiable Seasonality  

       The test for identifiable seasonality is also feasible to be performed by combining 

the F tests for stable and moving seasonality along with a Kruskal-Wallis test for stable 

seasonality. The following description is based on Lothian and Morry (1978). Recall 

that  and  stand for the F value for the stable and moving seasonality tests 

respectively. This combined test operates in the following way: 

1. If  the  null  hypothesis  in  the  stable  seasonality  test  cannot  be rejected at the 

0.10% significance level (,001), then since the series is said to be not seasonal, PROC 

X12 (X12 Seasonal Adjustment Procedure) displays "Identifiable Seasonality Not 

Present." 

2. In case the null hypothesis is rejected in the first step, the quantities given below  

are calculated: 

                                            ,                                                         (3.8) 

Let T represent the simple average of  and : 

                                                                                                                (3.9)                      

If the null hypothesis of no moving seasonality is rejected at the 5% significance level 

(,05) and in the case of , this means that we fail to reject the null hypothesis of 

identifiable seasonality not present and PROC X12 displays "Identifiable Seasonality 

Not Present." 
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3. If  the  null  hypothesis  of  identifiable  seasonality  not  present  is not accepted,  

however , or the Kruskal-Wallis chi-squared test cannot reject at the 

0.10% significance level (,001), then PROC X12 displays “Identifiable Seasonality 

Probably Not Present”. 

4. In case  the  null  hypotheses  of  no  stable seasonality that are related to  and  

Kruskal-Wallis chi-squared tests are rejected and if none of the combined measures 

expressed in steps 2 and 3 fail, then we reject the null hypothesis of identifiable 

seasonality not present, and PROC X12 displays “Identifiable Seasonality Present” 

(Statistical Analysis Software). 

 

3.3. Seasonality in the Mean   

       In this section, we will have a look at a class of time series processes in which 

seasonal mean behaviour can be modelled. This class consists of deterministic seasonal 

mean shifts, stochastic stationary and nonstationary processes and unobserved 

components ARIMA models. Each class will be mentioned in details in Chapter 4. 

Here, there will be a brief introduction only to stochastic processes which appear more 

difficult to be understood than other processes for creating a basic understanding. 

 

3.3.1. Linear Stationary Seasonal Processes (Stochastic Stationary Processes)  

       Stochastic seasonality can be mostly depicted by the autoregressive – moving 

average (ARMA) processes. A famous example for this class of processes is represented 

by the first order seasonal autoregressive (SAR) process: 

                                                                                                           (3.10) 

where  ~ i.i.d.  with  (i.i.d.: Independent and Identically Distributed). 

With a use of lag operator , (3.10) can be written as  

                                                                                                         (3.11) 

Since there is no intercept in this process, the unconditional mean of the process 

regardless of the season becomes equal to zero. However in the deterministic seasonal 

process, this property differs as will be seen later. On the other hand, the mean 

conditional on past  is not equal to zero and it displays seasonal patterns: 
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                                                                                             (3.12) 

and ACF for the process is represented by  

                                           ,   ,                                           (3.13)  

and  for all other k values. As implied by (3.13), we can mention about the 

presence of autocorrelation only for seasonal lags and the magnitude of this 

autocorrelation diminishes over time. In conclusion, the only pattern in  is connected 

to seasonality. But, since the series is mean reverting toward its expected value of zero 

regardless of the season, this seasonality in  has a transitory characteristic. With 

seasonal MA polynomials, the case of first order SAR process can be extended to higher 

order processes, namely 

                                                                                                  (3.14) 

where  and , where the roots of both 

polynomials lie outside the unit circle and both polynomials have no common roots. 

Such processes are namely seasonal ARMA processes. For the ACFs of such processes, 

see Box, Jenkins and Reinsel (2008) (Ghysels & Osborn, 2001, pp. 8-9). 

                                   

 3.3.2. Nonstationary Unit Root Processes 

       A typical characteristic of most economic time series is that they display unit root 

nonstationarity. This characteristic is also possible to be observed in the seasonal. 

Seasonal random walk process is the simplest one showing those features: 

                                                                                                                  (3.15) 

where  stands for the seasonal differencing operator. Because this process 

can be obtained from (3.10) with , it is also namely a seasonal unit root process. 

Again, taking the stationary case as basis with the assumption of , 

there will be no seasonality in the mean. However, the seasonality becomes persistent in 

the case of  in (3.12) in the sense that  

                            k=1,2,……                     (3.16)                      

Therefore we can say that mean reversion does not apply to this process (Ghysels & 

Osborn, 2001, pp. 11-12). 
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3.4. Seasonal Moving Average (SMA) Model         

       SMA model can be specified by: 

                                                                                    (3.17) 

where  is the parameter of interest which is on or near the unit circle,  is the lag 

operator and  ~ i.i.d. . Here, the null hypothesis  implies the 

presence of seasonal MA unit root against the alternative of . Tam and 

Reinsel (1997) have also mentioned in their paper about testing for deterministic 

seasonality to be identical to testing for seasonal MA unit root in the ARIMA model and 

expressed that seasonal differencing for a deterministic seasonal series results in a 

seasonal unit root in the MA operator (Tam & Reinsel, 1997, p. 727). By using the 

parameterization , where T is the sample size, Davis, Chen and Dunsmuir 

(1996) have tried to build up the convergence in distribution of the maximum likelihood 

(ML) estimator of  (Davis et al., 1996, pp. 160-161). For more information, see 

Davis et al. (1996) or Tam and Reinsel (1998). 

 

3.5. Seasonal ARIMA Models (SARIMA)                          

       The characterization of seasonal series occurs by a strong serial correlation at the 

seasonal lag. As known, the classical decomposition of the time series consists of a 

trend component, a seasonal component and a random noise component. But, in practice 

it may not be logical to assume that the seasonality component repeats itself exactly in 

the same way cycle after cycle. SARIMA models allow for randomness in the seasonal 

pattern from one cycle to the next (Brockwell & Davis, 2006, p. 320). 

       Box and Jenkins (1970) presents an extension of the ARIMA model in order to take 

seasonal effects into consideration. At the core of idea for adding this seasonal 

component, trying to adjust a cyclical effect takes place. For example, in the case of 

monthly data, the observation  may depend in part on  accounting for an annual 

effect. In the same manner, for daily data, the dependence may be realized through  

representing a weekly effect. Coping with these dependencies in order to remove the 

seasonal effect in question may be possible via differencing the data. However, one can 

also specify AR or MA relationships at the seasonal interval in question. For this case, 

Box and Jenkins (1970) define a general multiplicative SARIMA model shown as 
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ARIMA x , where the lower-case letters  indicate the 

nonseasonal orders and the upper-case letters  indicate the seasonal orders of the 

process with period s (that is, s is the number of observations per year). The parentheses 

mean that the seasonal and nonseasonal elements are multiplied (Hamaker & Dolan, 

2009, pp. 198-199, Pankratz, 1983, p. 281). 

       Before giving a clear definition for SARIMA, assume that  is 

an ARMA process if { } is stationary and if for every t, 

                                   (3.18) 

where  ~ . (3.18) can be written symbolically as  

                                    ,                                     (3.19) 

where  and  are the  and  degree polynomials  

                                                                                     (3.20) 

and  

                                                                                     (3.21) 

and L is the backward shift operator defined by ,  . These 

 and  polynomials are mentioned as the autoregressive (AR) and moving average 

(MA) polynomials respectively of the difference equations (3.19) (Brockwell & Davis, 

2006, p. 78). If we fit an ARMA(p,q) model  to the differenced series 

, then the model for the original series becomes 

. This is a special case of the general SARIMA model which 

will be defined as follows: 

       Definition:  If  d  and  D are nonnegative integers, then { } is a seasonal ARIMA    

x  process with period s if the differenced series 
t

DSd

t XLLY )1()1(   

 is a causal ARMA process defined by  

                           , ~                            (3.22) 

where (seasonal AR(P) characteristic polynomial), 

 (seasonal MA(Q) characteristic polynomial) with  

and expressed in (3.20) and (3.21) respectively (Brockwell & Davis, 2002, p. 203). 
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On the other hand, a more general multiplicative SARIMA model can be expressed by 

adding a constant term  to take the case of a deterministic trend into consideration as 

follows: 

                                                                               (3.23) 

and substituting  into (3.23), it becomes 

                                                                 (3.24) 

(Shumway & Stoffer, 2011, p. 157). 

       As seen in the definition given above, derivation of { } comes from the original 

series { } using both simple differencing (in order to remove trend) and seasonal 

differencing s

s L 1  to remove seasonality. For instance, when 1 Dd  and 

12s , then  becomes 

 

                                                                                   (3.25) 

 Now take a SARIMA model of order x . Then this model can be written 

in the following equation: 

                                                  
tt ZLYL )1()1( 12                                             (3.26) 

where . Then we find 

                                   1213112 )(   tttttt ZZXXXX                                (3.27) 

 

so that  depends on  and  as well as the innovation at time 

(Chatfield, 1996, p. 60). 

       Now, let us take an ARIMA x  process with a periodicity of four 

(since, s=4) as an example. Here, D = 1 implies that  is differenced once by length 

four. With d = 0, it can be inferred that there is no seasonal differencing. There is one 

seasonal MA term at lag 4 (Q = 1) and one nonseasonal MA term at lag 1 (q = 1). 

Moreover, the two MA operators are multiplied by each other. Using lag operator, this 

model can be written as 
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       As another example, take the case of ARIMA x  process with a 

periodicity of length 12 (since, s=12). In this example, it is obvious that tX  does not 

require seasonal and nonseasonal differencing at all since 0d  and 0D . On the 

other hand, the seasonal part of the process is composed of one AR )1( P and one MA 

)1( Q component at lag 12. In addition, there is a nonseasonal AR term at lag 1 )1( p

. The multiplication of the two AR operators in the lag operator form can be expressed 

as  

                                      
tt ZLXLL )1()1)(1( 12

1

12

11                              (3.29) 

(Pankratz, 1983, p. 281). 

       In identifying SARIMA model, the first task is to find values d  and D  which 

reduce the series to stationarity and remove most of the seasonality. Then, we need to 

assess the values of and  by examining the sample ACF and partial 

autocorrelation function (PACF) of the differenced series
 
at lags which are multiples of 

s and choosing a SARIMA model in which ACF and PACF have a similar shape. 

Ultimately, the model parameters may be estimated through an appropriate iterative 

procedure. For details, see Box and Jenkins (1970, chap. 9) (Chatfield, 1996, pp. 60-61) 

(all AR and MA polynomial representations have been taken from Brockwell & Davis, 

2006, p. 78). 

 

3.5.1. Stationarity and Invertibility Conditions 

       Representing a model in a multiplicative form is a big convenience in terms of 

expressing the seasonal and nonseasonal components separately and controlling the 

stationarity and invertibility conditions. For instance, take an ARIMA x  

model and express it in a lag operator form as follows: 

                      
t

ss

t

s ZLLLXLLL )1)(1()1)(1( 1

2

211

2

21               (3.30)  

The stationary requirement applies only to the AR coefficients. The nonseasonal part of 

(3.30) has the same stationarity conditions as for an )2(AR :    and 

. Now we need to apply a seperate stationary condition for the AR seasonal 

part. It is the same as for a nonseasonal AR(1) model, except in this case we have a 

(seasonal) sAR )1( component; so the condition becomes 11  . 

)0,0,1( 12)1,0,1(

qPp ,, Q

)1,0,2( s)2,0,1(

,12  ,112 

112 



44 

 

       As in the case of stationarity, we need to consider invertibility condition which 

applies only to the MA part of (3.30) for nonseasonal and seasonal components 

separately. For the nonseasonal part, the condition is . The conditions on the 

seasonal part are the same as for a nonseasonal MA(2) model, except in this case there 

exists an sMA )2( component. Therefore the joint conditions are given as 12  ,  

112   and 112   (Pankratz, 1983, p. 285). (AR and MA polynomial 

representations have been taken from Brockwell & Davis, 2006, p. 78). 

 

3.5.2. The Expanded Model 

       It should be noted that all multiplicative SARIMA models can be telescoped out 

into an ordinary ARMA model in the variable 

                                                                                                            (3.31) 

For instance, consider that the series  follows a SARIMA x  or 

ARIMA x 12)1,1,0(  model. For this process, we have 

    
                                  tt ZLLXLL )1)(1()1)(1( 12

11

12                              (3.32) 

and it becomes 

       
  
                            

tt ZLLLY )1( 13

11

12

11                                    (3.33) 

where . Hence, it can be said that this multiplicative SARIMA 

model has an ARMA(0,13) representation where only the coefficients 1 , 112 
def

  and 

1113  
def

 are not zero and all other coefficients of the MA polynomial are equal to 

zero. So, if the model in question is SARIMA x given in (3.32), only the 

two coefficients which are  and 1  have to be estimated. However, for the 

ARMA(0,13), instead we have to estimate the three coefficients which are ,  and 

. Therefore, it is apparent that SARIMA models take a parsimonious model structure 

into account and a model specification such as (3.33) is called an expanded model. In 

addition, we can say that only an expanded multiplicative model can be estimated 

directly (Chen, Schulz & Stephan, 2003, pp. 233-234).  
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3.5.3. Theoretical ACFs and PACFs for Seasonal Processes  

       In SARIMA models, estimated acfs and pacfs display the same expected 

behaviours as in the structure of nonseasonal models. For seasonal time series data, 

observations s time periods apart  have characteristics in 

common. So, observations s periods apart are expected to be correlated and in this 

manner, acfs and pacfs for seasonal series should have nonzero coefficients at one or 

more multiples of lag s . If we observe nonseasonal and purely seasonal 

acfs and pacfs, it is seen that the coefficients appearing at lags 1,2,…. in the former 

appear at lags  in the latter. For instance, theoretical acf of a nonseasonal 

AR(1) process having 7,01   tails off exponentially in this manner (where k is the lag 

length and represents the autocorrelation coefficient):               

 

Table 3 

Behaviour of the Theoretical ACF of a Non-seasonal Process 

k k  

1  

2  

3 

  

 

 

 

       For instance, for quarterly data (that is, s=4), a stationary seasonal process 

including one seasonal AR coefficient also has a theoretical acf decaying in an 

exponential manner, however at the seasonal lags which are multiples of 4, 

the representation becomes as shown in Table 4. 
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Table 4 

Behaviour of the Theoretical ACF of a Seasonal Process 

k k  

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12 

  

 

 

 

       This similarity between nonseasonal and seasonal acfs and pacfs makes the 

seasonal analysis simpler. So, having knowledge of nonseasonal acfs and pacfs helps 

give a description of identical patterns occurring at multiples of lag s (Pankratz, 1983, 

pp. 270-271). For more details, see Box and Jenkins (1976, chap. 9). 
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7.04 

05 
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07 
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010 

011 
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CHAPTER IV 

DETERMINISTIC SEASONALITY 

4.1. Introduction to Deterministic Seasonality 

       Deterministic seasonality gives a description of varying unconditional mean 

behaviour with the season of the year. It is the known part of the seasonal cycle when 

“the process is started” and is limited to time constant seasonal means or time constant 

growth rates that show differences across quarters/months (Kunst, 2012). In this section, 

deterministic seasonality will be handled in detail with its dummy variable and 

trigonometric representations. It would be unfair to consider recent developments 

associated with deterministic seasonality apart from the issues surrounding stochastic, 

and especially nonstationary stochastic seasonality. Therefore a further analysis will be 

realized on various types of seasonal processes and finally some tests will be proposed 

in order to distinguish between deterministic and nonstationary stochastic seasonality by 

testing the null hypothesis that seasonality is of the deterministic type. When we 

consider topics pertaining to seasonality, it is mostly convenient to realize the season 

and the year to which a specific observation t relates in an explicit manner. For this 

realization, it is preferable to use two subscripts for a variable with the first one 

referring to the season and the second to the year. From the knowledge of the season in 

which the initial observation falls, we can infer about the season for all subsequent 

values of t. By making a simple assumption that 1t  corresponds to the first season of 

a year (that is, the first quarter for quarterly data or January for monthly data as 1s ) 

and  denotes the season in which observation t falls, the series of observations 

could be written in the double subscript notation as 

. Generally,  could be written as identical to 

, where (that is,  is one plus the integer remainder obtained 

when  is divided by S that denotes the number of observations per year) and 

 which is a notation for the year in which a specific observation  

falls with “int” denoting the integer part. In the case of that  includes T observations, 

we will assume that there are exactly  years of data, so that (Ghysels & 

Osborn, 2001, pp. 6, 19).  
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4.2. Representations of Deterministic Seasonality 

       There are two representations of deterministic seasonality which will be mentioned 

in following sections:  

1. The Dummy Variable Representation  

2. The Trigonometric Representation  

 

4.2.1. The Dummy Variable Representation 

       The most frequently used dummy variable representation of seasonality can be 

expressed as follows: 

                                         ,                                        (4.1) 

where  is a univariate process,  is a seasonal dummy variable that takes the value 

one in season s (that is, = 1 if  for s = 1,…..,S) and is zero otherwise and 

finally the process  is a weakly stationary stochastic process with mean zero. Thus, 

for season s of year , 

                                              ,                                           (4.2) 

This property is of primary interest with respect to implying that the process has a 

seasonally shifting mean. This time varying mean gives information about 

nonstationarity of process. Since it is very easy to remove this nonstationarity position 

of the process so that the deviations  are weakly stationary, this 

nonstationarity is often ignored. The disadvantage of this dummy representation in (4.2) 

is that it cannot distinguish seasonality from the overall mean when the latter becomes 

nonzero. The overall mean of is given as:       

                                                                                                    (4.3) 

       The deterministic seasonal effect for season s denoted by is found by subtracting 

this overall mean. That is, . It is very clear from this equation that when 

observations are summed over a year, there will be no deterministic seasonality. Since 

this equation comes with a restriction of . If the level of the series (here 

denoted as ) is isolated from the seasonal component, it will take the form of  
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                                                 



S

s

tstst zmy
1

                                                 (4.4) 

       This equation can be reformulated in a way to include a trend component that is 

unchanged over the seasons by putting  instead of . A further reformulation 

is realized by writing separate trends for each season: 

                                                                         (4.5) 

       Here, we encounter again with same restrictions that are 

mentioned above. However, this type of trending deterministic seasonality has such an 

implication that observations for seasons of the year diverge over time and that is why it 

may seem unrealistic for many applications. For both (4.4) and (4.5) processes, each 

observation deviates from its respective seasonal mean with a constant variance over 

both  and  as implied by stationarity for . This result 

points out to that when we have a deterministic seasonal process, the observations 

cannot wander too far from their underlying mean (Ghysels & Osborn, 2001, pp. 20-

21).  

 

4.2.2. The Trigonometric Representation 

       A deterministic seasonal process with period S can also be equivalently written in 

terms of sines and cosines corresponding to (4.4) as follows: 

                                                        (4.6) 

where  
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Thus, both dummy variable representation and trigonometric representation will be the 

same. However, the trigonometric representation is seen to be more useful in separating 

seasonality from the overall mean  than the dummy variable representation. In 

equation (4.7),  is considered only for  and  only for 

. Because,  multiplies a sine term that is always zero. This 

representation provides a basis to spectral analysis of seasonality and seasonal 

adjustment (see Hannan, Terrel & Tuckwell, 1970). 

       If we took the case of quarterly data, as an implication of equation (4.6) the 

seasonal dummy variable coefficients of equation (4.1) are connected with the 

deterministic components of the trigonometric representation in the following way:  

                                                    

                                                    

                                                                                                        (4.11) 

                                                     

       For quarterly data (that is, S = 4), the trigonometric components can easily be 

expressed in a clear way: 

For  k=1,   So,     

  k=2,    

  k=1,          

  k=2,    

with and  denoting the annual wave and  denoting the half-year component 

(Kunst, 2012). 

       As seen above, the coefficients and  are related with the spectral frequency 

, because they multiply  and  respectively for (through 

the values 1, 0, -1, 0; it can be inferred that  and  have a half-cycle every two 

periods and a full cycle every four periods even though  is associated with the second 
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logic, it is obvious that 2  is related with the spectral frequency  , since it multiplies 

 tcos  for ,........2,1t   in (4.6). Also because the terms of  tcos  alternate between -1 

and 1, 2  displays a full cycle every two periods. In the case of quarterly data, these 

spectral frequencies also mean the seasonal frequencies; since any deterministic 

seasonal pattern over the four quarters of the year can be specified as a linear function 

of terms at these 
2


 and   frequencies, such that 

)cos()2/sin()2/cos( 211  ttt  . By construction of these functions, in an 

essential manner the seasonal pattern sums to zero over any four sequential values of t. 

        (4.11) can also be represented in a different notation as: 

                                                             BR. ,                                                       (4.12) 

where ),,,( 4321
   ,  ),,,( 211

 B   and 

                                               



























1011

1101

1011

1101

R                                                 (4.13) 

       This 4x4 non-singular matrix handles the one-to-one relationship between the 

dummy variable representation expressed in (4.1) and the trigonometric representation 

(4.6) for the quarterly case. Equation (4.12) can also be applied for data at sampled 

other frequencies. For instance, if we take monthly data with S=12, then the seasonal 

frequencies become 
6

5
,

3

2
,

2
,

3
,

6


 and  . For monthly data, it is also possible to 

express any deterministic seasonal pattern by using the trigonometric cosine and sine 

functions at these spectral frequencies. However, recall one more time that the 

representation holds the overall mean   separate from the deterministic component 

with the latter necessarily summing to zero over any twelve successive values of t. Now 

return to the general case of S seasons. There are some good properties concerned with 

matrix R in (4.13). When   is included in the vector B, the matrix R becomes a square 

matrix and must be non-singular because there is a one-to-one relationship between the 

seasonal dummy and trigonometric representations. The columns of the matrix R are 

orthogonal to each other meaning that when the vector iR  represents the ith column, so 

that ),......,( 1 SRRR  , then .,0 jiRR ji 


 This quality of R assures that DRR   is a 

diagonal matrix. So, if the ith diagonal element of D is shown as id , then  
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                                                        (4.14) 

so that the inverse of R becomes the transpose of itself. For instance, let’s verify this in 

the quarterly case: 

                                    


























25.025.025.025.0

05.005.0

5.005.00

25.025.025.025.0

1R                                    (4.15) 

Thus, it should be noted that the first column of R includes a vector of ones. In this case, 

SdRR 


111
 and consequently, each element of the first row of 1R  corresponds to 

1/S and this inverse provides us a definitional relationship 



S

s

sS
1

)/1(  . It is also 

remarkable to say that equations (4.8) and (4.10) - which describe the coefficients k  

and k  as cosine and sine functions - efficiently reveal the elements of 1R . 

Sometimes, it is very practical to identify the overall mean with the zero spectral 

frequency. So,   can be expressed with respect to trigonometric functions as 

)/2cos(0 Skt  with 0k  and (4.6) becomes equivalent to  

                                     t

S

k

kkt z
S

kt
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y 
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
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0

2
sin

2
cos





                         (4.16) 

since sin(0)=0. It is realized that the overall mean   has a spectral interpretation, so it is 

convenient to write it as   and therefore use the representation (4.6) in preference to 

(4.11).       

       Even if not explicitly stated here, it is obvious that the trend coefficients in the 

seasonally varying trend model can also be expressed by using a trigonometric 

representation and then with suitable definitions of the elements of R, and B in (4.12), 

the relationships between the trend coefficients in the dummy variable and 

trigonometric representations can easily be observed (Ghysels & Osborn, 2001, pp. 21-

24). 
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4.3. Stochastic and Deterministic Seasonality 

4.3.1. Stochastic Seasonal Processes                  

       The discussion on previous section dealing with deterministic seasonality which has 

an unconditional mean, )( syE . In this section, we will cover stochastic seasonality. 

     Let’s take the case of first order seasonal autoregressive AR(1) process for z : 

                         ssSs zz  1,
,   Ss ,,.........1 ,   T,........,2,1                         (4.17) 

where  St   is i.i.d. ),0( 2 . This seasonal AR(1) process puts emphasis on that the 

autoregressive relationship for sz  in season s is associated with the same season in the 

preceding year. The process can be written in a more general form using starting value 

as follows: 

                                            js

j

j

ssss zz 





 




  ,

1

0

0                                            (4.18) 

In the model defined here, there are two sources of seasonality: the first one is the 

unobserved starting value for season s, 0sz , which influences the subsequent 

observations for that season through 0ss z


 . The second one is that sz  is affected by 

disturbances for the specific season s in previous years (
js  ,
 for 0j ), so that 

patterns that occur by chance through the disturbances are inclined to be repeated. On 

the other hand, in both cases s  should be greater than zero for these repeating patterns. 

If the process is also stationary )10(  s , the effects of 0sz  and of any specific 
js  ,
 

diminish over time. 

       The variance of (4.17) is expressed as follows: 

                                    





1

0

22

0

2
)()(




 
j

j

ssss zVarzVar                                     (4.19)  

If 11  s  or in other words if the process is stationary and )()( 0ss zVarzVar  , 

the variance becomes: 

                                                
)1(

)(
2

2

s

szVar






                                                   (4.20) 

which is constant over both seasons Ss .,,.........1  and years  T,,.........2,1 . 

     For the case of quarterly data, the seasonal autoregression process in (4.17) can be 

expressed as: 
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                              sss zz  1,4
,  4,....,1s    T,........,2,1                            (4.21) 

So, the model can be written as 
ttzL   )1( 4

4
 and decomposition of the polynomial 

operator for this seasonal AR(1) process is given as: 

                             )1)(1)(1()1( 22
4

4
4

4
4

4

4 LLLL                          (4.22) 

Here the first component )1( 4
4 L  represents a nonseasonal factor and other two 

components namely )1( 4
4 L  and )1( 22

4 L  contribute to seasonality. We can say 

that AR processes ttyL   )1( 4
4  and ttyL   )1( 22

4  have peaks at frequencies 

  and 
2


, respectively in their spectral densities. The term )1( 22

4 L  can also be 

decomposed as )1).(1( 4
4

4
4 LiLi    where 1i . However, we cannot separate 

this complex pair of factors with 
2


 frequency, because they should be together to have 

a real-valued process. On the other hand in the case of monthly data, the factorization 

becomes )1( 12

12L  with 012  . As analogous to the quarterly case, this polynomial 

operator can be factorized to a nonseasonal factor and eleven seasonal factors and the 

seasonal factors consist of five complex pairs that are related to the seasonal frequencies 

3

2
,

2
,

3
,

6


and 

6

5
 (these can be obtained by using 

s

j2
, where s=12 and 

2/,......,2,1 sj   or 6,......,2,1j ) together with a real factor associated with the 

frequency   (Ghysels & Osborn, 2001, pp. 24-26). 

 

4.3.2. The Seasonal Random Walk                  

       In the case of 1s  in (4.17), we refer to the seasonal random walk process and 

the observed process sy  will be   sss yy  1,
, or by expressing it with a starting 

value, we get   

                                                   





 
1

0

j

sjss yy                                                  (4.23) 

This seasonal random walk process will include S random walks since Ss ,,.........1 . 

Because the disturbances are independent over the seasons, these S random walks (for S 

seasons of the year) are also independent of each other. Therefore, any linear 

combination of these processes can itself be exhibited as a random walk. The 
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accumulation of disturbances enables the differences to wander far from the mean over 

time, leading to the phenomenon that “summer may become winter” (Baltagi, 2001, p. 

657). 

       Contrary to the stationary stochastic seasonal process, here the effects of the 

starting value for season s which is 0sy , and of any specific disturbance for season s 

)( sj  do not diminish over time as   increases. Hence, in the case of 0)( 0  ssyE   

for all  , )( syE  becomes equal to s . More clearly, any deterministic seasonal 

component in the starting value for the seasonal random walk in season s is carried over 

to all following observations associated with that season
1
. It should be noted that a 

significant distinction between the deterministic seasonal process mentioned previously 

and seasonal random walk process exists so that in the first case, )( syVar  is constant 

over both s and  . However, in equation (4.23), 2

0 )()(   ss yVaryVar  and as seen, 

it linearly increases with  . So, one more time we can state that with this increasing 

variance, sy  can wander far from its unconditional mean s  over time (Ghysels & 

Osborn, 2001, pp. 26-27). 

 

4.3.2.1. Asymptotic Properties of a Seasonal Random Walk 

       If we are to mention about asymptotic properties of a seasonal random walk 

process, firstly we assume that the initial values of the data generating process (DGP) 

are equal to zero ( 00 sy  for Ss ,,.........1 ). In that case, S independent partial sum 

processes can be obtained as: 

                                      





 
1j

sjsy   (for Ss ,,.........1 )                                   (4.24)  

As T , then the behaviour of each scaled partial sum converges to a Brownian 

motion. That is, 

                                                           
1
 Sometimes, it may be misleading to think that the seasonal random walk has no deterministic 

component. Because for simplicity, there is an assumption  often made such as 00 sy  or at least

0)( syE . Therefore even though the seasonal random walk process does not explicitly include 

deterministic seasonal effects, these are implicitly included when )( syE  is nonzero (see Baltagi, 2001, p. 

657). 
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                                         










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1

2/1
)(

1

j

sssj rWy
T

T                                     (4.25) 

where   indicates convergence in distribution and )(rWs  for Ss ,,.........1 are 

independent standard Brownian motions, derived from an i.i.d. (0,1) disturbance (see 

also Baltagi, 2001, p. 659). Then while the DGP is the seasonal random walk with 

initial values equal to zero, as T  

1)  









 
T

ss drrWyT
1

1

0

2/3
,)(     Ss ,,.........1                                                (4.26) 

2)    











 
T

ssss rdWrWyT
1

1

0

2

1,

1
),()(     Ss ,,.........1                                

(4.27) 

3)  









 
T

ss drrWyT
1

1

0

2222
,)]([     Ss ,,.........1                                          (4.28) 

(see Banerjee, Lumsdaine, & Stock, 1992).   

       Note that the disturbance terms   s  underlying Brownian motions are independent 

over seasons and for this reason )(rWs  are independently distributed over Ss ,,.........1  

as well. 

       An extension of seasonal random walk process of (4.23) to a more general seasonal 

unit root process in which tts zy   is a stationary and invertible ARMA process  

(Ghysels & Osborn, 2001, pp. 27-28).         

 

4.3.3. Deterministic Seasonality versus Seasonal Unit Roots                

       Recent discussions on seasonality so far have focused on whether an observed 

series should be modelled as a deterministic seasonal process or a seasonal unit root 

process. For both cases, it is possible to have a stationary stochastic seasonal 

component. In later sections, we will discuss the tests of the deterministic seasonality 

null hypothesis. Before handling these tests, it is remarkable to mention about the 

relationship between the competing hypotheses. According to Bell (1987), the two 

competing processes are the simple deterministic seasonality model which is  

                           ,  sssy      Ss ,,.........1 ,     T,,.........1                           (4.29) 

and the process of  

                      ,)1(   s

S

SsS Ly      Ss ,,.........1 ,    T,,.........1                    (4.30) 

These two specifications are equivalent in the special case of 1S . It is very 
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straightforward to get this result: if  s  is replaced by  s

S

S L )1(   in (4.23), then the 

implication of the annual differenced process (4.30) implies 

                                               ,)1(1,   s

S

Sss Lyy    

                                                     ,)1(
1

0 






j

sj

S

Ss Ly                                      (4.31) 

For 1S , (4.31) becomes  

                                               





 
1

1,0 ),(
j

jssjss yy  

                                                      sssy  00  

                                                     , ss   

when 00 sssy   . As well known, this last line is the deterministic seasonality 

equation. So, using a simplified assumption about the starting values which is 

00 sssy   , the two processes of (4.29) and (4.30) with a special case of 1S  are 

equivalent for any sy . 

       Sometimes, to discriminate between deterministic seasonality and a seasonal unit 

root process may be hard. There is a prevalent view about the cancellation of the 

seasonal differencing operator S  and the noninvertible MA operator SL1  in (4.30) 

with 1S . The extension of this logic also occurs when there is “near cancellation” 

situation with S  close to but less than unity in (4.30). In this case, in an empirical 

manner the properties of the seasonal unit root process for finite T values become 

similar to the properties of the deterministic seasonal process given in (4.29). Therefore, 

generally it may be a hard task to distinguish a deterministic seasonal process from a 

seasonal unit root process (Ghysels & Osborn, 2001, pp. 28-29). 

 

4.3.4. Unobserved Components Approach 

       Observed time series are assumed to be a function of several components which are 

trends, cycles, seasonality and irregularity. Traditionally, these components are accepted 

to be separately generated and this idea takes place at the core of the seasonal 

adjustment. A linear unobserved component model is expressed in that way: 

                                                ,
i

t

s

t

c

t

tr

tt yyyyy                                           (4.32) 

where the superscripts respectively denote the trend, business cycle, seasonal and 

irregular components which are mutually independent and there is no general consensus 
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about the nature of these components. However, for some specific cases, some simple 

decompositions are available. For example, for a seasonal random walk process an 

unobserved component model can be written as: 

                                                         ,)1(
ns

t

ns

tyL                                                                                                     

                                                 ,).....1( 1 s

t

s

t

S yLL  
                                     (4.33) 

where 
ns

ty  denotes the nonseasonal component of ty  which is composed of 
tr

ty , 
c

ty  

and 
i

ty . The first line of (4.33) displays a nonseasonal random walk and therefore 

includes the zero frequency component of the seasonal random walk. It is very common 

to decompose the operator S  into (1 – L) and ).....1( 1 SLL  in testing of seasonal 

unit roots that will be discussed later. However, there is no unique decomposition of ty  

into separate orthogonal components (see, Bell & Hilmer, 1984) and seasonal 

adjustment methods for the time series require to be established on a specific 

decomposition (Ghysels & Osborn, 2001, p. 12). 

       Harvey (1989) specifies the seasonal component summed over a year as random 

with a zero mean rather than summing to zero over the year in a deterministic way 

given in (4.1). Thus, the second line of (4.33) which is 
s

t

s

t

S yLL   ).....1( 1
 is 

taken as basis with 
s

t being i.i.d. ),0( 2w  and independent of the disturbances driving 

the other components. With 02 w , the deterministic seasonal model becomes a 

special case of the second line of (4.33). If disturbance term has a nonzero variance, in 

that case the unobserved components approach enables seasonality to evolve over time. 

However, in that case the addition of a disturbance term with nonzero variance has a 

drawback in terms of specifying a seasonal component transformed into a nonstationary 

process. Indeed, for autoregressive process in 
s

t

s

t

S yLL   ).....1( 1
 there will be S 

– 1 unit roots occurring at seasonal frequencies. 

       A different type of unobserved components approach for a nonstationary stochastic 

seasonal component is available in the case of allowing   and   coefficients which 

take place in the trigonometric representation in subsection 4.2.2. to evolve as random 

walks so that  

                                     ,1, kttkkt   
   2/,......,1 Sk   

                                     ,
*

1, kttkkt      1)2/(,......,1  Sk                                (4.34) 

where  kt   and  
*

kt   are   i.i.d.  ),0( 2w   processes.  This generalization also underlies  
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the  Canova  and  Hansen  (1995)  framework.  So,   at  each  seasonal  frequency ,
2

s

k
 

( 2/,......,1 Sk  ), seasonality evolves over time and available nonstationarity observed 

in (4.34) is directly associated with the corresponding seasonal frequencies for any 

given k. The implication of the unobserved components approach which makes the 

generalization of deterministic seasonality and allows it to evolve over time is that with 

this evolvement, seasonality displays a nonstationary stochastic process with unit roots 

available at all seasonal frequencies. However, what we are trying to mention here is 

not that an unobserved components model can never be expressed with stationary 

seasonality (such models are covered to some extent by Nerlove, Grether, & Carvalho 

1995), rather in recent studies unobserved components models of interest are based on 

nonstationary seasonality. Whether the unobserved components approach is in the form 

of the second line of (4.33) or (4.34), it also shows a typical nonstationary stochastic 

process for the nonseasonal component and this process is simply specified as the 

random walk by which the nonseasonal component is  t

ns

ty   with  

                                                        
ns

ttt   1                                                  (4.35) 

(Ghysels & Osborn, 2001, pp. 29-30). 

 

4.3.5. A Summary of Seasonality Models 

       As mentioned above, there exist two basic types of seasonality: 

1)   Deterministic  Seasonality  features   time-constant   seasonal  means:  These  are  

nonstationary, however when looked at sub-series for seasons, they are stationary. The 

nature of this seasonality can be expressed with “summer remains summer”. Since 

stochastic models generally include deterministic parts, deterministic can be seen as a 

special case of stochastic and so it does not mean that deterministic seasonality is non-

stochastic. However, in current usage, stochastic seasonality is described with stationary 

patterns and deterministic seasonality is described with complete dummy patterns. 

2)   Stochastic Seasonality is separated into two parts: 

   a. Stationary Stochastic Seasonality features time-constant means (not so good 

models) 

   b. Unit Root Seasonality implies nonstationarity. This type of seasonality has evolving 

seasonal means over time. 
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   In stochastic seasonality, we can say that “summer may become winter” (Kunst, 

2012). 

 

4.4. Testing Deterministic Seasonality 

       It is very crucial to test about whether seasonality of a series is of this type or not. 

In this respect, Harvey (1989) handles the subject of unobserved components model in 

the context of 
s

t

s

t

S yLL   )....1( 1
 with 

s

t being i.i.d. ),0( 2w  and suggests 

testing the null hypothesis of deterministic seasonality by means of a test of 02 w  

against 02 w . Although this approach is attractive in its simplicity, it is also 

restrictive in terms of depending on the assumption that the specified unobserved 

components model sufficiently represents the DGP for ty . Especially, there is no 

allowance for stationary stochastic seasonality. In this section, under this framework 

mentioned above, the discussion will be on more general types of processes (Ghysels & 

Osborn, 2001, p. 30).   

 

4.4.1. Canova-Hansen (CH) Test    

       The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests of 

the null hypothesis of no unit roots at seasonal frequencies against the alternative of a 

unit root at either a specific seasonal frequency or a set of selected seasonal frequencies. 

So the test statistics of CH are derived from the LM principle that necessitates only the 

estimation of the model under the null using least square techniques and they are fairly 

simple functions of the residuals. These tests are also a framework for testing seasonal 

stability. CH tests complement the tests of Dickey, Hasza and Fuller (DHF) (1984) and 

Hylleberg, Engle, Granger and Yoo (HEGY) (1990) that examine the null of seasonal 

unit roots at one or more seasonal frequencies. So, it is clear that contrary to these 

seasonal unit root tests, the null hypothesis of CH test is that the process is stationary 

(that is, stationary seasonality rather than nonstationary seasonality). Here the rejection 

of the null hypothesis would imply the nonstationarity of the data. Although the null of 

CH test is stationary seasonality, for simplicity they refer to their tests as seasonal unit 

root tests. On the other hand, Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1992) 

suggest an LM statistic for the null of stationarity against the alternative of a unit root at 

the zero frequency. Tanaka (1990) and Saikkonen and Luukkonen (1993) have 
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developed tests with the null hypothesis of a moving average unit root which have an 

analogue structure with the KPSS test. As HEGY have generalized the Dickey-Fuller 

(DF) framework from zero frequency to the seasonal frequencies, by the same token 

Canova and Hansen have generalized the KPSS framework from the zero frequency to 

the seasonal frequencies. Since seasonal intercepts stand for the deterministic 

components of seasonality and they are assumed to be constant over the sample, under 

the null hypothesis of stationarity the tests by Canova and Hansen can also be 

introduced as the tests for constancy of seasonal intercepts over time. In this context, 

Canova and Hansen adopt the methodology of Nyblom (1989) and Hansen (1990) who 

designed LM tests for parameter instability. What is interesting is that the LM test for 

joint instability of the seasonal intercepts numerically shows equivalence to the LM 

tests for unit roots at all seasonal frequencies. Therefore CH tests can also be considered 

as a test for seasonal unit roots or a test for instability in the seasonal pattern. Since the 

asymptotic distribution is not unaffected by any trending regressors such as a unit root 

process or a deterministic trend, Canova and Hansen exclude such variables from the 

regression and they also require that the dependent variable be used as free of trends and 

thus assume an appropriately transformed data in order to eliminate unit roots at the 

zero frequency. In their study, Canova and Hansen (1995) deal with Monte Carlo 

experiments, derive an asymptotic distribution theory for their tests and examine the 

power of them. The large sample distributions of their test statistics are not standard but 

they are free from nuisance parameters and affiliated with only one “degrees-of- 

freedom” parameter. Canova and Hansen compare the power and size properties of their 

tests with a test for the presence of stochastic (stationary) seasonality and the HEGY 

tests for seasonal unit roots. As a result, they point out to their tests with reasonable size 

and power properties. They examine three data sets for their tests: the first one is the 

data set originally used by Barsky and Miron (1989) asserting the hypothesis that 

quarterly seasonal fluctuations in U.S. macro variables can be well characterized by 

deterministic patterns. So, Canova and Hansen have been interested in detecting if this 

hypothesis is appropriate or not. The second data set is the set of quarterly European 

industrial production indexes used by Canova (1993) and third one is the set on stock 

returns on value weighted indexes for seven industrialized countries. As a result of their 

test applications to these three seasonal variables, Canova and Hansen show us that the 

seasonal patterns of these variables in most cases display important instabilities and 

therefore nonstationarity (Canova & Hansen, 1995, pp. 237-238). 
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       The approach of Canova and Hansen (1995) is fundamentally based on the 

trigonometric representation of deterministic seasonality. Here we show this 

representation in a different notation as: 

                                                    
tstt

S

s

St zBFy 






1

                                              (4.36) 

where the 1 x S vector 


SF  is the sth row of the matrix R expressed in (4.13) for 

quarterly case, ).,,.........,,( ,2/11
 tSttttB   and tz  are disturbances. The assumption 

is that tz  are normally distributed and stationary, but not necessarily uncorrelated over 

time. If tB  becomes identical to B for all t values, then this equation will be equivalent 

to (4.6). Canova and Hansen base their theories for this test on all elements of B 

evolving according to a (vector) random walk: 

                                                         ttt VBB  1                                                     (4.37) 

                                                              



t

i

iVB
1

0
 

where the disturbance term  tV  is i.i.d. with HwVVE tt

2)( 


 where H is a known 

positive definite matrix and tV is independent of tz . 

       Under the null hypothesis of 02 w , B is unchanged over time and therefore there 

exists deterministic seasonality. The alternative one which is 02 w  says that there are 

unit roots in each element of tB  that are related with the zero and seasonal frequencies. 

So this alternative hypothesis is also an implication that is equivalent to the 

nonstationarity of ty  at both zero and seasonal frequencies. In other words, we can say 

that under the alternative hypothesis, the process is seasonally integrated. 

       For this test proposed by Canova and Hansen, under the null hypothesis of 

deterministic seasonality, DGP of (4.36) and (4.37) can be written in vector notation: 

                                                    ZBRZY  .                                  (4.38) 

where ),,.........( 1
  SyyY  is the vector of observations for year   and the 

disturbance process Z  is stationary with zero mean and its covariance matrix denoted 

as )(


 ttZ ZZE  and R matrix is the same as the one discussed in subsection 4.2.2.  

The columns of this matrix are mutually orthogonal. That is, when the vector iR  

represents the ith column of R, then 0


ji RR  for .ji   This information makes us 
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guarantee that DRR   is a diagonal matrix. By multiplying equation (4.38) by R , we 

get  

                                                      ZRBDYR  .                                                (4.39) 

with RRRZZRE ZRZ 


 )(  . Because D is known to be diagonal, BD.  becomes 

a scaled version of B. For instance, for quarterly case )4,2,2,4(. 211
 BD or in a 

more explicit way: 
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In order to get a test statistic free of nuisance parameters, the covariance matrix H of tV  

in (4.37) and used in the CH test is assumed to be associated with the covariance matrix 

of ZR such that .
1

 RZH  

       As discussed before, the dummy variable and trigonometric representations are 

equivalent to each other. So, in this case we have identical OLS (ordinary least squares) 

residuals for both (4.1) and (4.36) models. In order to build the test statistics, OLS 

residuals under the null of 02 w  are utilized. From the OLS residuals, 

).,,.........1(ˆ Ttzt   form the S x 1 vectors of partial sums 
a

tẐ , where 





 t

j

Sjjj

t

j

j

a

t zzZ
1

1

1

)ˆ,........,ˆ(ˆ   for Tt .,,.........1  aggregating over time periods to t  

the residuals for each of the season s. So, sth element of 
a

tẐ  shows the aggregated 

residuals for season s. 

       Canova and Hansen propose an LM test statistic as follows: 

                    




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t ZZ
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1

1

2
ˆˆˆ                         (4.40)      

       In order to find out its asymptotic distribution, it should be noted that for the annual 

disturbance vector Z , the elements of ZZ

2/1)(   are mutually independent with the 

assumption of normality. If we sum up over years 1 to  , we will get 









1

2/1)(
j

jZ ZX  as a vector of independent I(1) processes, each having a 

disturbance with a variance of unity and zero starting value. Then in a similar fashion to 

(4.25),  
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                                                      )(
1

rWX
T

x



                                               (4.41) 

where  )(rW x  is an S x 1 vector of independent standard Brownian motions (see 

Appendix A1-A2).  Continuing with the same logic of (4.28), 

                                          




1

01
2

)()(
1

drrWrWXX
T

xx
T

j







                                  (4.42) 

Here there are T observations for TST /  years and it should be noted that the 

summation over t implies ST . 

       Under the null hypothesis, (4.40) will converge to a distribution very closely 

associated with (4.42): 

                                

1

0

)]1()([])1()([ drrWrWrWrWL xxxx
                          (4.43) 

In this result, a subtraction of )1(xrW  term can be considered as a correction of the 

vector Brownian motion )(rW x  to estimate B in (4.39); see Nyblom (1989). The 

distribution of (4.43) is nonstandard. The description of the limit distribution occurs by 

an integral over a Brownian bridge (see Appendix A3) starting at zero for 0r  and 

coming down to zero again for 1r (Kunst, 2012). This S x 1 vector )(rW x  is 

sometimes called the Von-Mises distribution with S degrees of freedom or VM(S). This 

asymptotic distribution is tabulated by Nyblom (1989) and Canova and Hansen (1995).  

       For this test of Canova and Hansen, the rejection of the null hypothesis is possible 

for large values of L. Under the alternative hypothesis, the residuals from (4.1) that 

construct the test statistic show random walk behavior in tB . Then, the partial sums 

expressed in (4.40) emphasize this behavior. 

       It is obvious here that the number of possible unit roots under test results is the 

degrees of freedom for the Von-Mises distribution. Therefore it can be realized that if 

the overall mean is excluded while testing deterministic seasonality, then under the 

alternative hypothesis, S – 1 seasonal unit roots will be taken into consideration and the 

asymptotic distribution of L becomes VM(S – 1) (Ghysels & Osborn, 2001, pp. 31-34).  

       There are some theorems regarding LM test statistic. Let 
d
  denote convergence in 

distribution: 

Theorem 1: Under 0H , )(aVML
d
 . 
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       This theorem says that the large sample distribution of the L statistic does not 

depend on any nuisance parameters other than a  (the rank of A that will be given in 

equation (4.46)) which explains the number of elements that are being tested for 

constancy. 

       Let 
fL  denote the test statistic for joint test for unit roots at all seasonal 

frequencies: 

Theorem 2: Under 0H , )1(  SVML
d

f
. 

       According to this theorem, the large sample distribution of the test for unit roots at 

all seasonal frequencies is given by Von-Mises distribution with S – 1 degrees of 

freedom (d.f.). Hence for quarterly data, in the table for Von-Mises critical values given 

in Canova and Hansen (1995) the appropriate critical values are found in this table by 

using the row corresponding to 31 Sp ; if worked with monthly data, 

111 Sp . 

       Now let 
qjL /  be the test statistic to test for a seasonal unit root at frequency 

)/( qj  (for 2/sq   and qj ,....,1 ) and L  be the one to test for a seasonal unit root 

at frequency  : 

Theorem 3: Under 0H ,  1) for ,qj   )2(/ VML dqj   

                                         2) L )1(VMd . 

       As well known, for quarterly data there are two seasonal frequencies: 
2


 (annual) 

and  (biannual). This theorem says that for frequencies which are different from  , 

the large sample distributions of the tests for seasonal unit roots are given by the 

generalized Von-Mises distribution with 2 d.f. and for frequency  , the large sample 

distribution is given with 1 d.f.  

       For testing the stability of the tha  seasonal intercept (where sa 1 ), choose A to 

be the unit vector with a 1 in the tha element and zeros elsewhere. In that case, let aL  be 

the test statistic for testing for instability in an individual season: 

Theorem 4: Under 0H , )1(VML da   for each sa ,........,1 . 

       This theorem states that for this test statistic, critical values are given in the first 

row of the table for Von-Mises critical values. Since the tha  dummy variable is zero for 

all but one in out of every s observations, the test statistic  aL  can be calculated using 

only the residuals from the tha  season (Canova & Hansen, 1995, pp. 241-242). 
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       To obtain 
Z̂ , Canova and Hansen suggest a nonparametric kernel estimator 

proposed by Newey and West (1987). Their form of kernel estimated enables 

explanatory variables. However, while their opinion is based on that these explanatory 

variables should contain a lagged dependent variable 1ty , according to Hylleberg 

(1995) they should not include 1ty . Since 1ty  may display at least some of the effect 

of the seasonal unit root of -1. If the test statistic includes zero frequency, then 1ty  may 

similarly show the effect of zero frequency unit root of +1. Also, longer lagged 

dependent variables should not take place. Because these may capture one or more 

seasonal unit roots and therefore the tests may have no power. To sum up, the approach 

proposed by Canova and Hansen is most suitable one amongst the others. Since all 

serial correlation is overcome in a nonparametric way. So, there is no need to include 

any lagged dependent variables in the test regression (Ghysels & Osborn, 2001, p.34).  

       In order to describe the data generating processes of Monte Carlo experiments by 

Canova and Hansen (1995), we can express their regression models in a somewhat 

different way: 

                                                 iiiii efxy 





                                            (4.44) 

with  

                                                         iii u 1                                                      (4.45) 

where ix  is a k x 1 vector of explanatory variables which are not collinear with iif 


, 

if  is an s–1 vector with )))/sin((),)/(cos(( iqjiqjf ji 


 for 2/sq   and qj   and 

i

ji if )1()cos(    for qj   where this latter expression holds since )sin( i is 

identically zero for all integer i. The components of if  represent the cyclical processes 

at the seasonal frequencies: )/( qj , qj ,....,1  and the coefficients i  stand for the 

contribution of each cycle to the seasonal process iS . The formulation (4.44) is useful 

in terms of allowing seasonality to be interpreted as cyclical. Here the specification for 

the deterministic seasonal component is written as 





q

j

jjii fS
1

 . Note also that i  is 

an s–1 vector. To allow for unit roots potentially at only a subset of the seasonal 

frequencies, equation (4.45) is modified as: 

                                                      iii uAA 
1                                                 (4.46) 
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where A is a (s – 1) x (s – 1) matrix with rank equal to a  and a  is the number of roots 

for testing stationarity. Most of the elements in A matrix are zero excluding the 

elements on the diagonal which correspond to the elements in i  for the stationarity 

test. For instance, on quarterly data, in order to test for the presence of all seasonal unit 

roots set 31 IIA s   (here, DGP has no unit roots if 0  but has unit roots at both 

seasonal frequencies when 0 ), set 1AA   to test for the presence of roots ±i (here 

the test 2/L  is designed: so that in the case of 0 , there exist no unit roots; but if 

0 , this implies a pair of complex conjugate roots at frequency 2/ ) and set 

2AA   to test for the presence of root -1 (here L test is designed: when 0 , there 

are no unit roots, but when 0 , there exists a unit root at frequency ) where 

31 IIA s   , 1A  and 2A  are defined as  
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       In short, under the null hypothesis of :0H 02 w , iS  is purely deterministic and 

stationary; thus the series is stationary and iu  is a vector of zero ( 0)( 


iiuuE ). But if 

iy  has all seasonal unit roots, 0)( 


iiuuE  (Canova & Hansen, 1995, pp. 239-240, 243-

245). 

 

Example: The Simplest Quarterly Case 

       Let’s  take  the case of quarterly data for which R is given as  (4.13). For the sake of  

simplicity, assume that errors are not autocorrelated ( ttz  ) and not heteroscedastic 

(that is, 
SIZZE 2)(   ). As a result )( RZZRERZ 

  becomes equal to  

                                               DRRRZ

22    
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2                                              (4.47) 

If the disturbance ttz   satisfies the standard properties expressed here under the null 

hypothesis, then the optimal choice is to estimate the deterministic seasonal component 

by OLS. For this, assume that we apply to equation (4.1) and OLS residuals are 
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 St
ˆˆ  , where  S

ˆ  is a notation for season s of year  . In order to keep the analysis as 

simple as possible, there is a simplifying assumption that period t is the fourth quarter of 

year  , then      
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            (4.48) 

       More generally, for a t which corresponds to season 4s  of year  , the 

summations will be up to year 1  for quarters 4,.....,1s  since these are following t.  

       With all assumptions given above, by using equations (4.47) and (4.48), CH test 

statistic as given in (4.40) can be written as: 
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                 (4.49) 

or  

                                                        LLLL  2/0                                               (4.50) 

Here DRZ

2~ˆ   and 2~  stands for the usual OLS estimator of 2 . 0L , 2/L  and L

test statistics which are relevant to the 0, 2/  and   frequencies are given in the first, 

second and third lines of equation (4.49) respectively (in each case aggregated over 

Tt ,........,1  and scaled by division by 22 ~T ). 

       With some straightforward algebra, the CH test statistic can be written in 

accordance with the form given in the second line in (4.40) as  
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           (4.51) 

which refers to the statistic in terms of separate squared partial sums for each of the four 

quarters. 

       Since the number of possible unit roots is four under the overall null hypothesis, L

~ )4(VM . When the constant   is excluded, the test statistic would be distributed as 

)3(VM . If we apply for separate tests at the spectral frequencies of 2/  and  , under 

the null hypothesis of deterministic seasonality they would be distributed as )2(VM  and 

)1(VM  respectively. 

       For the general quarterly case if the disturbances of (4.36) are not i.i.d. ),0( 2 , then 

the summation of the separate test statistics of (4.50) cannot be performed. In this case, 

the test statistics at different frequencies are not mutually independent anymore 

(Ghysels & Osborn, 2001, pp. 34-36).       

 

4.4.2. The Caner Test 

       Caner (1998) adopts the CH framework. However, instead of the nonparametric 

Newey-West correction to autocorrelation adopted by Canova and Hansen (1995) he 

proposes a parametric autoregressive augmentation. Hence, in the Caner test the 

disturbances are assumed to be i.i.d. Although his test excludes the overall constant 

from consideration, the null hypothesis model of deterministic seasonality can be 

generalized by including this overall   as follows: 

                                                
tstt

S

s

st BFyL  



1

)(                                           (4.52) 

where  tB  is constant over t.  

       By making suitable assumptions about the starting values, this process given in 

(4.52) is also equivalent to  

                                                     ttS LyL  )()(                                                (4.53) 

with 
SLL 1)( . Because of its better properties near the invertibility boundary, 

generally for MA processes the exact ML procedure is preferred (Ansley & Newbold, 

1980).  That is why Caner mostly proposes the use of ML estimation for )(L  instead 

of least squares. The alternative hypothesis is that tL  )(  in (4.53) represents a general 
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MA(S) process [not 
t

SL )1(  ]. So, this alternative implies that tB  includes one or 

more unit roots (therefore ty  is nonstationary). In the case of including exactly S unit 

roots, it becomes ttL  )(  (so, S will remove the nonstationarity). 

       Caner test statistic is given as: 

                                           


 
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                               (4.54) 

where 2~  is a consistent estimator of )(2

tVar    and 
a

tÊ  is obtained using the 

residuals of (4.52). Under the null hypothesis, )(SVML  . As in (4.50), the 

decomposition of this statistic is likely to be expressed as the sum of statistics that test 

the null hypothesis for the zero frequency and for each of the seasonal frequencies and 

therefore if the overall mean is excluded, deterministic seasonality is tested with the test 

statistic given by )3(2/ VMLL   (Ghysels & Osborn, 2001, pp. 36-37). 

 

4.4.3. Tam-Reinsel Test 

       Tam and Reinsel (1997) also consider the validity for the null hypothesis of 

deterministic seasonality. Taking annual differences in the dummy variable 

representation in (4.1), their test is based on the null of 1S  in 

                                  StSttS zzy   ,       Tt ,........,1                                        (4.55) 

Here the initial assumption is that ttz  ~ i.i.d. ),0( 2 . When (4.55) is compared with 

the Caner’s representation (4.53), the approach is seen to be similar to that of Caner 

(1998). 

       Tam and Reinsel consider their test as LBIU and present two equivalent forms for 

their   test   statistic.  The   first  approach   is  realized  through  (4.55).  Under  the  null  

hypothesis, the equation with i.i.d. disturbance assumption and 1S  can be written as  

                                                  
1,    sssS y ,                                                  (4.56) 

In (4.56) it is obvious that only observations and disturbances for season s are 

considered. The vector of the differenced values relating to year   is given as 

),......,( 1
  SSSS yyY  and for this vector, the covariance properties when the null 

hypothesis is true are: 
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If the consideration is directed to the complete sample period vector (that is, 

),.......,( 1


TSSs YYY ), in that case, under the null hypothesis T x T covariance 

matrix is known. If Y denotes )( YYE SS
  for 1S , the test statistic for the null 

hypothesis of 1S  against the invertible seasonal moving average alternative 

hypothesis 1S  is written as: 
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                                     (4.58) 

and of course, the rejection of the null hypothesis is possible for large values of MAL . 

     When it comes to the second approach for test statistic, it makes use of equivalence 

between deterministic seasonality and the seasonally differenced process with 1S  as 

expressed in Bell (1987) and discussed in subsection (4.3.3.). So, instead of (4.56) with 

seasonal MA representation, corresponding representation becomes 

                                  ,
1





S

s

tststy    TSt ,,.........1,........,1                (4.59) 

In this second approach, for the equivalence of Bell it is crucially needed to contain the 

starting values. So, the period starts at year .0  When OLS procedure is applied to 

all T+S observations of (4.59), t̂  becomes equal to  s
ˆ  and the test statistic becomes 
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where 2~ is the OLS estimator of 2 and 
a

E
ˆ  represents the vector of accumulated 

season-specific residuals at the end of year    


 

 
1 11 )),.......,((

j j sjj

a
E . 

However, since only end of year values are considered in the first approach for test 

statistic, this approach applies to St  over  T,........,1,0 . 

       When we compare test statistics, Tam Reinsel approach essentially constructs the 

overall test statistic by examining each of the seasons while the test statistic proposed 

by Caner has a decomposition allowing for each of the seasonal frequencies to be 

examined separately. Therefore, the Tam Reinsel form has a practical use in order to 
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examine about whether deviation from the null hypothesis process of constant 

deterministic components is associated with, say, only one or two specific seasons. So it 

can be said that the form of the test statistic to be used should depend on the issues of 

interest in a specific case. One difference between CH and Tam-Reinsel approaches in 

terms of test statistic is that while the Tam-Reinsel statistic sums over years, the former 

sums over all observations. The precise relationship between these statistics is 

L
TS

T
LMA .

)1( 




 . This relation refers to the overall test statistic for the null hypothesis 

of constancy of the parameters s ,.......,, 21  of the deterministic component of (4.1) 

over time. On the other hand, when the scaling in test statistics is taken into account, the 

tabulated asymptotic critical values in Canova and Hansen (1995) and in Tam and 

Reinsel (1997) are seen to be very similar (Ghysels & Osborn, 2001, pp.39-40).  

       Tam and Reinsel (1997) also consider their analysis with the disturbances in (4.55) 

having  a  stationary  and  invertible  ARMA  process  given  as  again  with  the  null of  

1S : 

                                     ,)1)(()()( *

t

S

SttS LLLyL                                (4.61)   

(in that case tz  in (4.55) will be equal to  )()( *1 LL 
) and with a consistent estimator 

under both null and alternative hypotheses, the asymptotic distribution becomes 

unaffected by the use of a parametric correction which depends on the estimates of 

)(L  and )(* L (Ghysels & Osborn, 2001, pp. 37-39). 
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CHAPTER V 

INTRODUCTION TO SEASONAL UNIT ROOT PROCESSES 

       Time series models with unit roots are of great importance in terms of 

understanding the responses of economic systems to shocks. First suggestion for 

univariate unit root tests was realized by Fuller (1976) and Dickey and Fuller (1979). 

The paper of Hylleberg et al. (1990) deals with tests for unit roots at seasonal 

frequencies which have a modulus of one. In this study, besides having the modulus of 

one the interest is on the root which is precisely one and therefore corresponding to a 

zero frequency peak in the spectrum
2
. Since many economic time series display 

substantial seasonality, it is very likely to have unit roots at seasonal frequencies. 

 

 

5.1. Seasonal Time Series Processes 

       There are a lot of possible models to take seasonality into consideration that could 

differ across economic time series with crucial seasonal components. A seasonal series 

is a series with a spectrum having distinct peaks at the seasonal frequencies ,
2

s

j
ws


  

2/,........,1 sj   where s is the number of time periods in a year supposing that s is an 

even number. For example, if we are dealing with quarterly data, s is equal to 4 and for 

monthly data s is then 12. 

       According to Hylleberg et al. (1990), there are three classes of time series models 

prevalently used in order to model seasonality as follows: 

a) Purely deterministic seasonal processes 

b) Stationary seasonal processes 

c) Integrated seasonal processes  

       The first type of process is one generated by seasonal dummy variables (as 

mentioned in subsection (4.2.1.) and could be expressed in the case of quarterly series in  

 

                                                           
2
 The spectrum of a time series is the distribution of variance of the series as a function of frequency and 

the spectral analysis aims to estimate the spectrum. Actually, the mathematical computation of spectrum 

is possible through transformation of the auto covariance function (acvf). While spectrum contains 

information on the variance in the frequency domain, the latter summarizes this information in the time 

domain (“Spectrum”, 2015).  
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the following form: 

                                           ,3322110 tttt SmSmSmmx                                       (5.1) 

       The second type of process can be expressed in an autoregression form of 

ttxB  )(  with t  i.i.d. and all roots of 0)( B  lying outside the unit circle. For 

quarterly data, this stationary process is represented as  

                                                        ttt xx   4                                                       (5.2) 

with a peak at both 
2

1


w (one cycle per year) and 2w  (two cycles per year) 

frequencies as well as at zero frequency (zero cycles per year).  

       On the other hand, a series tx  has a third type of process if a seasonal unit root 

takes place in its AR representation and generally this integrated process is denoted as 

tx  ~ )(dI  with integration order d at   frequency. The study of Hylleberg et al. 

(1990) examines the case of d=1. An example for the quarterly integrated process at   

frequency is  

                                                        ttt xx  1                                                      (5.3) 

and at  /2 frequency is  

                                                        ttt xx  2                                                       (5.4)     

       Box and Jenkins (1970) have proposed a very-well recognized seasonal 

differencing operator. Subsequent to them, Grether and Nerlove (1970) and Bell and 

Hillmer (1984) have made use of this operator as a seasonal process. For quarterly case 

it can be factorized as, 

                                         
tt xLLLLxL ).1).(1()1( 324   

              
tt xiLiLLLxLLL ).1).(1).(1).(1()..1).(1).(1( 2        

                                                          txLSL ).().1(                                      (5.5) 

where )1).(1()( 2LLLS  and i represents an imaginary part of a complex number 

such that 12 i . 

       According to this factorization, there are four roots with modulus of one for 

quarterly stochastic seasonal unit root process: one is )1( L denoting zero frequency 

which removes the trend. Amongst other three roots which are )1(),1( iLL  and 

)1( iL  and which eliminate the seasonal form, the first root is at 2 cycles per year and 

the other two roots are complex pairs at 1 cycle per year (Charemza & Deadman, 1997, 

p. 108). 
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       Since in (5.5), txL)..1(   implies zero frequency root and the stochastic difference 

equations of (5.3) and (5.4) express the roots at seasonal frequencies which are 2/  

and  ; the homogenous solutions to equations ttxL  ).1( , (5.3) and (5.4) become 

respectively, 
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jtts  ,    for zero frequency root, 

                 
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ts  ,    for the two cycle per year root (  frequency), 

            

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0

23 )1(
t

j

jtts  ,    for the one cycle per year root ( /2 frequency),     (5.6) 

where L 1  and ]int[z means the largest integer in z . 

       The variances of the ,1ts ts2 and ts3  series are all the same with 2t (that is, linearly 

increasing variances) given as 

                                            )( 1tsV )( 2tsV 2

3 )( tsV t                                         (5.7)  

and therefore it is valid for all unit roots that the variance has an inclination to go 

infinity with evolving process. In the case of being stimulated by the same  t  and 

when t  is divisable by four, all the covariances of the series become zero. For other 

values of t , the covariances are at most ,2  thus the series are asymptotically 

uncorrelated as well as being uncorrelated in finite samples for entire years of data. 

       A more general case of linear time series models which may exhibit complex forms 

of seasonality as a combination of seasonally integrated, deterministic or stationary 

seasonals can be written as: 

                                                  tttxBaBd   )).(().(                                            (5.8) 

where the first term )(Bd represents an integrated seasonal process in which all roots of 

0)( zd  lie on the unit circle, )(Ba includes stationary seasonality and other stationary 

elements of x  with all roots of 0)( za  lying outside the unit circle and deterministic 

seasonal component is incorporated into t  when there are no seasonal unit roots in 

)(Bd (implying that there is no seasonal unit root in AR representation of tx ) 

(Hylleberg et al., 1990, pp. 215-220). 
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5.2. Testing Seasonal Integration 

       As well known, a series generated by a unit root process can wander widely over 

time not having any inclination to return to its underlying mean value and thus not 

having any tendency to return to a deterministic pattern. In that case, with the values 

wandering to a great extent for the seasons, any basic relationships between the 

expected values for the different seasons remain beside the point in practice. It is 

already outlined in the subsection (4.3.5.) that in the presence of seasonal unit roots, 

summer may become winter. From this point of view, in this section, a number of 

testing procedures will be mentioned in order to test the null hypothesis of seasonal 

integration and thus the implications of seasonal unit root processes will be handled in 

more detail. 

Definition: The nonstationary stochastic process ty , observed at S equally spaced time 

intervals per year, is said to be seasonally integrated of order d, denoted ty  ~ )(dSI , if 

t

d

S y  is a stationary, invertible ARMA process. 

       Here S  denotes the seasonal differencing filter. The implication of the definition 

is that if ty  becomes a stationary and invertible process after annual differencing, then 

ty  ~ )1(SI . Generally the case of 1d  is not observed prevalently in practice. In 

subsection (4.3.3.), we had discussed the equivalance between deterministic seasonality 

and seasonal unit root process which requires seasonal differencing (in the special case 

of 1S ). However, the implication of this equivalence is not that the deterministic 

seasonal process is seasonally integrated. The underlying reason is that applying 

seasonal differencing to a deterministic seasonal process prompts the existence of first 

order annual differencing operator S  in the MA operator and this will lead to non-

invertibility of MA operator. Therefore, a deterministic seasonal process and a 

seasonally integrated process are not identical processes (Ghysels & Osborn, 2001, pp. 

42-43).   

     Another definition for a seasonally integrated series is a simplified version of the 

definition given by Engle, Granger and Hallman (1989) for a seasonally integrated 

series can be given as: 

Definition: A nonstationary series is said to be seasonally integrated of order ),( Dd , 

denoted ),( DdSI s , If it can be transformed to a stationary series by applying s-
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differences D times and then differencing the resulting series d  times using first 

differences. 

       In a simple manner, a seasonal difference is the difference between an observation 

and its value for the corresponding season one year before. If the series is measured s 

times per annum (for quarterly data, 4s  and for monthly data 12s ) and it displays 

a seasonal pattern, then the differencing to remove seasonality should be s rather than 

one. So, the type of operator to be applied here is stt xx   (representing seasonal 

difference) instead of 1 tt xx . Here, the transaction to get these variables is called 

seasonal differencing or s-differencing. Generally, it is very rare to use s-differencing 

more than once in order to remove seasonality. Taking seasonal differences transforms a 

linear trend with an additive seasonal effect to a constant (that is, to a variable with no 

trend or seasonal pattern). If this transaction is applied to a quadratic trend (where the 

trend is nonlinear) with additive seasonality, it brings about a series still including a 

trend component but with no seasonal pattern. So, in order to make such a series is 

stationary, first differencing of the s-differences may be required (Charemza & 

Deadman, 1992, pp. 53, 129-130). Seasonal differencing may be in additive or 

multiplicative form. An additive form of a seasonal difference at a seasonal lag – such 

as )1( sL – can be expressed as 
tt eCyL  )1( 4 . On the other hand, as implied by 

its name a multiplicative form of seasonal difference requires the multiplication of the 

nonseasonal by the seasonal differencing factors. So, in this form, getting a stationary 

series requires the multiplication of the first regular (nonseasonal) factor by the seasonal 

factor to obtain the differencing for the series. A multiplicative differencing in a 

multiplicative SARIMA model is expressed in the form of 
tt

sd eCyLL  )1)(1( , 

where ty  is the undifferenced series variable, d  is the order of regular differencing and 

s is the order of seasonal differencing (Yaffee & McGee, 2000, pp. 161-162). As 

mentioned before, a clear definition of a multiplicative SARIMA process is available in 

subsection 3.5. 

       Ilmakunnas (1990) has tried to illustrate a testing sequence in order to test the 

appropriate order of differencing in quarterly data. Introducing this testing sequence 

requires two alternative definitions of seasonal integration. According to the first 

definition which is the one defined by Osborn et al. (1988), a time series is said to be 

integrated of order ),( Dd , denoted ),( DdI  if the series becomes stationary subsequent 
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to first-differencing d  times and seasonally differencing D  times. In other saying; if 

t

D

S

d

t

DSd xxLL  )1()1(  becomes stationary, tx  is said to be ),( DdI . In the paper 

proposed by Ilmakunnas (1990), since the focus is on the quarterly time series )4( s , 

it is concerned with the case where )1,1(I  is the maximum order of integration. The 

second alternative definition for seasonal integration comes from  Engle, Granger and 

Hallman (1989) that has already been mentioned above. To this definition; if 

t

Dd

t

Dd xLSxLSL )()()1(   is stationary, tx  is said to be seasonally integrated of 

orders d  and D  expressed as ),( DdSI  where )(LS  is a seasonal filter used in 

transforming the variables to moving sums. In the case of quarterly data, seasonal filter 

is stated as 
321)( LLLLS   and it takes place in the decomposition of 

).1)(1)(1)(1()()1(4 iLiLLLLSL   Since 4  is decomposed as 

)()1( 2 LSL  or )1)(1()]()1)[(1( 4LLLSLL  , )1,2(SI and )1,1(I  are the same. In 

the same manner, )0,1(SI  is the same as )0,1(I  and also )1,1(SI and )1,0(I are the same.  

       To illustrate the testing sequence for quarterly data, starting point is taken as the 

maximum order of seasonal integration, i.e. the case )1,2(SI . This testing sequence is 

shown as follows: 

                                                           )1,2(SI  ))1,1((I    

 

 

                   )0,2(SI                                              )1,1(SI  ))1,0((I  

 

 

 

                                              )0,1(SI  ))0,1((I                             )1,0(SI  

 

 

                                )0,0(SI ))0,0((I  

Figure 4. The  testing  sequence  for  determining  the  appropriate  seasonal  integration     

                order in quarterly data 

(Source: Ilmakunnas, 1990). 

 

       The representation in Figure 4 pursues the view proposed by Dickey and Pantula 

(1987). According to their view, if it is mentioned about multiple unit roots, the best 

thing is to start the testing sequence from the maximum number of unit roots in hand 

and in this case the nominal test size is preserved. Therefore, it can be expressed that 



79 

 

determining the suitable integration order is based on the starting point of the testing 

sequence (Ilmakunnas, 1990, pp. 79-81). Ilmakunnas (1990) mentions about how to 

handle unit root testing in a seasonal context considering the initial test of the )1,2(SI

null hypothesis. In the study, it is expressed that )1,2(SI  is tested against )0,2(SI , 

)1,1(SI  and )0,1(SI  alternatives using the HEGY test regression applied to tX  rather 

than to tX  as will be shown in Table 5. In case we reject the null hypothesis in favour 

of either )1,1(SI  or )0,1(SI  alternatives, we have to check the presence of zero 

frequency unit root against )1,0(SI  or )0,0(SI  processes, respectively continuing for 

testing against lower orders of integration (Ghysels & Osborn, 2001, p. 76). 

       In Table 5, it is shown that which hypotheses can be tested with each given test in 

the testing sequence: 

 

Table 5 

Seasonal Integration Tests for Different Hypotheses 

            Description of the tests 
Null 

Hypothesis 

Alternative 

Hypothesis 
Remarks 

ADF: t-statistics of   in 




 
p

j

tjtjtt uXXX
1

1   

 

  SI(1,0) 

 

  SI(0,0) 
 

ADF for   series: t-statistics of   in 




 
p

j

tjtjtt uXXX
1

2

1

2   

 

  SI(2,0) 

 

  SI(1,0) 
 

ADF for 4  series: t-statistics of   in 




 
p

j

tjtjtt uXXX
1

4144   

 

  SI(2,1) 

 

  SI(1,1) 
 

ADF for )(LS  series: t-statistics of   in 




 
p

j

tjtjtt uXXLSX
1

414 )(   

 

  SI(1,1) 

 

  SI(0,1) 
 

DHF: t-statistic for   in 




 
p

j

tjtjtt uXZX
1

444   

where 



p

j

jtjtt XXZ
1

 and 
j  is the 

coefficient of 
jtX 4
 from a regression of tX4  

on its p lagged values. 

 

    

 

 

  SI(1,1) 

 

    

 

 

  SI(0,0) 
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Table 5 (Continued) 

            Description of the tests                                

DHF for   series: t-statistic for   in          




 
p

j

tjtjtt uXZX
1

4

*

44   

where 



p

j

jtjtt XXZ
1

 and 
j  is the 

coefficient of 
jtX  4
 from a regression of tX4  

on its p lagged values. 

 

    

 

    

SI(2,1) 

 

 

 

SI(1,0) 

 

HEGY: t-statistics for 1  and 2  and F-statistic for 

testing 043    (or t-statistics sequentially for 

4  (two-sided test) and 3 ) in 

t

p

j

jtj

ttttt

uX

ZZZZX












1

4

1,342,331,221,114





 

where     



p

j

jtjtt XXLSZ
1

1 ))((  ,      

               





p

j

jtjtt XXLLLZ
1

32

2 ))(1(  , 

               



p

j

jtjtt XXLZ
1

2

3 ))(1(   

and  
j  are obtained as in DHF. 

 

 

SI(1,1) 

 

 

 

SI(1,0) 

 

 

 

SI(1,1) 

 

 

 

SI(1,1) 

 

 

 

SI(0,1) 

 

SI(1,0) 

 

 

 

SI(0,0) 

 

 

 

SI(0,0) 

 

 

 

SI(0,1) 

 

 

 

SI(0,0) 

432 ,,  tested, 

      01   

 

   1  tested; 

 0,, 432   

 

  4321 ,,,        

        tested 

 

   1  tested; 

0432    

 

432 ,,   tested, 

        01   

HEGY for   series: t-statistics for 1  and 2  and 

F-statistic for testing 043    (or t-statistics 

sequentially for 4  (two-sided test) and 3 ) in 

t

p

j

jtj

ttttt

uX

ZZZZX












1

4

*

1,34

*

2,33

*

1,22

*

1,114





 

where   



p

j

jtjtt XXZ
1

44

*

1 )(  , 

                  

             





p

j

jtjtt XXLLLZ
1

32*

2 ))(1(  , 

             



p

j

jtjtt XXLZ
1

2*

3 ))(1(   

and  
j  are obtained as in DHF for   series. 

 

 

SI(2,1) 

 

 

 

 

SI(2,0) 

 

 

 

 

SI(2,1) 

 

 

 

 

SI(2,1) 

 

 

SI(2,0) 

 

 

 

 

SI(1,0) 

 

 

 

 

SI(1,0) 

 

 

 

 

SI(1,1) 

 

432 ,,   tested, 

        01   

 

 

      1  tested; 

  0,, 432   

 

 

  4321 ,,,        

        tested 

 

 

    1  tested; 

0432    
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Table 5 (Continued)  

            Description of the tests    

OCSB: t-statistics for 1  and 2  in    




 
p

j

tjtjttt uXZZX
1

44,521,414   

where   



p

j

jtjtt XXZ
1

444  , 

             



p

j

jtjtt XXZ
1

5   

and  
j  are obtained as in DHF for   series. 

 

SI(2,1) 

 

 

SI(2,1) 

 

 

 

SI(1,0) 

 

 

SI(1,1) 

 

SI(1,0) 

 

 

SI(1,1) 

 

 

 

SI(0,0) 

 

 

SI(0,0) 

2  tested;

01   

 

1  tested;

02   

 

1  tested;

02   

 

2  tested;

01   

  (Source: Ilmakunnas, 1990, pp. 82-83). 

5.2.1. Dickey-Hasza-Fuller Test 

     One of the simplest testing procedures for seasonal integration possibly belongs to 

the one proposed by Dickey, Hasza and Fuller (1984) and modified by Osborn et al. 

(1988), denoted DHF. It can be regarded as a generalization of the Augmented Dickey 

Fuller test (ADF) and it is the first test of the null hypothesis ty ~ )1(SI .Using DHF test 

for seasonal integration is identical to testing for stochastic seasonality. Supposing that 

the process is known to be a SAR(1) ][ tstst yy    , then the DHF test can be 

parameterized as 

                                                      tststs yy                                                     (5.9) 

where )1( ss   . Here the null hypothesis of seasonal integration is 0s  and the 

alternative of a stationary stochastic seasonal process implies 0s (Baltagi, 2001, p. 

661). Under the null hypothesis, t statistic becomes 
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̂ )             (5.10)      

and the asymptotic distribution of the DHF statistic is given by 
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82 

 

which is nonstandard, but it has a similar type to the DF t distribution. It is very well 

known that the DF t statistic is not symmetric about zero. In terms of (5.11), the 

denominator is always positive and therefore ])(Pr[ 2 SS   shows the probability that 

)ˆ( st   is negative. Fuller (1996) comments that the asymptotically the probability of 

0ˆ
1   (that is, 1ˆ

1  ) is 0,68 for the nonseasonal random walk, since the probability of 

1)1(2   is 0,68. On the other hand, for a seasonal random walk with quarterly data, 

59,0]4)4(Pr[ 2   and with monthly data, 55,0]12)12(Pr[ 2  . Hence, it can be 

inferred from these values that the predominance of negative test statistics is expected to 

decrease as S  increases. From this expression, it is apparent to see that the distribution 

for the DHF t-statistic depends on S which represents the frequency with which 

observations are made within each year. The limit distributions shown as functions of 

Brownian motions can also be found in Chan (1989), Boswijk and Franses (1996) and 

Osborn and Rodrigues (1998). Here the numerator involves the sum of S such terms that 

are mutually independent and therefore 

                              
 


S

s

S

s

sss SSWrdWrW
1

2

1

0 1

2 )(
2

1
]1)1({[

2

1
)()(                   (5.12)   

which is half the difference between a )(2 S  statistic and its mean of S (Baltagi, 2001, 

p. 662; Ghysels & Osborn, 2001, pp. 53-54). For more information about this 

distribution, see Appendix A4. 

       In Charemza and Deadman (1992), it is shown that for a series measured s times for 

each year, this test is build on the Student-t statistic for the OLS estimate of the 

parameter   in the following regression: 

                                           


 
k

i

titsistts yzy
1

..                                      (5.13) 

where the variable stz   is constructed in that way: first, the regression of ts y  (where, 

)sttts yyy   is run on its own lagged values which are lagged up to k periods and 

the following equation is estimated: 

                                                


 
k

i

titsits yy
1

.                                          (5.14) 

Then, use the OLS estimates of k ,........,, 21 (denoted as s̂ ) to create the variable tz  

from kttt yyy  ,......,, 1  as: 
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it

k

i

itt yyz 



 .ˆ

1

                                                  (5.15)  

 and substitute the lagged value of tz  expressed as stz   into (5.13), estimate the 

equation and compute the Student-t statistic for   (however it should be noted that here 

instead of ts z  proposed actually by Dickey, Hasza and Fuller (1984), Charemza and 

Deadman (1992) covered the view adopted by Osborn et al. (1988) and used ts y  as 

the dependent variable in equation (5.13). The critical values for the test are available in 

Dickey, Hasza and Fuller (1984). Here, the null hypothesis implies the presence of a 

seasonally integrated process and the alternative hypothesis says about either absence or 

nonexistence of stochastic seasonality which can be removed by using s-differences. In 

the case of significantly negative estimate of  , the null hypothesis may be rejected in 

favour of the alternative hypothesis. If it is not rejected, we need to consider the order of 

nonseasonal differencing required for achieving stationarity; since it is not common to 

face with higher orders of seasonal differencing and general expectations for most 

economic series are in the direction of that they are )1,0(),0,0( II  or )1,(dI  so that using 

s-differences once at most is expected to eliminate seasonal nonstationarity. Therefore, 

if we cannot reject the null hypothesis [ )0(  in (5.13)] saying that the variable is 

)1,0(I (or )1,1(SI ), for the next step we need to consider whether the variable is )1,1(I  

(or )1,2(SI ), instead of )1,0(I  with the former standing for the new null hypothesis  and 

the latter the new alternative one. For these new hypotheses, the model which should be 

established and estimated like ADF test is given as: 

                                     ,.. 1   

i

titsitsts yyy                                  (5.16) 

Here in the same way whether   is significantly negative or not is examined. So, if the 

null that the variable is )1,1(I  cannot be rejected, then this expression becomes the next 

alternative hypothesis for the null which then says that the variable is )1,2(I (or )1,3(SI

),  for the following equation: 

                                  ,.. 1   

i

titsitsts yyy                              (5.17) 

and so on. It should be noted that the constructed tz  variable is used only for the DHF 

test, so not used for testing the order of nonseasonal integration. 
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       As a simple version of the DHF test, DF or ADF tests can be generalized. sty   can 

take the place of the constructed variable stz   in (5.13) and if the assumption is that all 

the si  are equal to zero, the test turns into the Dickey-Fuller seasonal integration test 

(DFSI) examining again the significant negativity or otherwise of parameter   for the 

following regression: 

                                                       tstts yy   .                                               (5.18) 

Otherwise it becomes the Augmented Dickey-Fuller seasonal integration test (ADFSI) 

based on the following regression: 

                                            
t

k

i

itsistts yyy     ..                                     (5.19) 

and the critical values for the DFSI and ADFSI tests are the same as for the DHF test 

(Charemza & Deadman, 1992, pp. 136-140)). 

 

5.2.2. Testing a Unit Root of -1 

       It is necessary to handle how to test “nonstandard” unit roots. Recall that the 

factorization of s = )1( sL  operator which is shown in (5.5) for quarterly data enables 

us to handle tests for a unit root of -1 depending on )1( L  and for pairs of complex unit 

roots depending on  )1( 2L . Here the discussion will be on a root of -1 and complex 

unit roots will be taken place in the next subsection. For a detailed discussion regarding 

such tests, see Ahtola and Tiao (1987), Chan and Wei (1988) or Chan (1989). 

       The case of a unit root of -1 can be covered through the process: 

                                                        ttt vyy  

*

1

*
                                                 (5.20) 

The generalization of this process with starting value 0
*

0 y  becomes 

                                                        jt

t

j

j

t vy 





 
1

0

*
)1(                                               (5.21) 

For these equations, our assumption is that tv  ~ i.i.d. ),0( 2 . Now, a test of the unit 

root can be applied as a test of the null hypothesis 0*   against 0*   in 

                                  ,)1(
*

1

**

ttt vyyL      Tt .,,.........1                                 (5.22) 

Estimating by OLS procedure, the usual t ratio for *̂  under the null hypothesis 

becomes as:                    
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Obviously, (5.20) is no longer a random walk process. However, there exists a “mirror 

image” relationship between the two processes [see, e.g. Fuller (1996) or Chan & Wei 

(1988)]. When we consider the process 
*

ty  of (5.20) and the random walk process 

ttt yy  1   in  the  case of  
t

t

t v)1( , this “mirror image” relationship implies that 

                                                ,
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tt yyv                                                 (5.24) 

Obtaining this relationship is possible through using (5.21) in order to substitute for *

1ty  

and therefore, also substituting for tv  in terms of t , 
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       (5.24) is of great significance in terms of expressing that as long as t  and tv  are 

symmetrically distributed around zero, they are identically distributed. Therefore, with 

reference to testing a unit root of -1; 




T

t

tt yv
1

*

1
 has the same distributional properties 

with 
1

1





 t

T

t

t y  when ty  displays a random walk process.  

       Hence, when the unit root of -1 is taken into consideration (4.27) is replaced by  
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Notice also that the variables 
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same distributional properties because any sign change is unrelated to squaring. As a 

result, (4.28) continues to be valid for a process with unit root of -1. When both 

numerator and denominator of (5.23) are scaled by division by T, then it becomes 
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which is the mirror image of the familiar DF t distribution. The implication of this 

conclusion is that in the case of not including a drift term, with a simple change of sign 

the DF tables can also be used while testing a unit root of -1 (Ghysels & Osborn, 2001, 

pp. 54-56).  
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5.2.3. Testing Complex Unit Roots             

       Before examining the procedure proposed by Hylleberg et al. (1990), it will be 

beneficial to mention about testing complex unit roots. The simplest process including a 

pair of complex roots is: 

                                                        
ttt vyy  

*

2

*                                                   (5.28) 

with tv  ~ i.i.d. ),0( 2 . So, the complex unit root case can be considered as a seasonal 

process with S=2 seasons per year and the process can be equivalently written as: 

                                              sss vyy  
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*
,  .2,1s                                           (5.29)    

Here, notice that the seasonal patterns reverse each year. With starting values 

0*

1

*

0  yy , the process can be generalized to 
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It should be noted that *

sy  ( 2,1s ) are two independent nonstationary processes. In a 

similar fashion to the DHF test, testing the unit root process given in (5.28) is possible 

through the computed t ratio for *

2̂  in   
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where the null hypothesis is 0*

2   with the alternative of stationarity implying 0*

2 

. Then with the double subscript notation, under the null hypothesis, 
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After scaling both numerator and denominator by 
1

T , it follows that 
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where )(rWs  again represents standard Brownian motion processes. (5.33) has a very 

significant implication that with a simple change of sign, the DHF tables with S=2 

seasons per year are also applicable for testing 0*

2   in (5.31) as in the case of a unit 

root -1 discussed above.  

       Under the DGP given in (5.28), it is also likely to apply to testing the null 

hypothesis concerning with the omitted one-period lag, namely 0*

1   against the 

alternative of 0*

1   with the test regression given in (5.34): 
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ttt vyyL  

*

1

*

1

*2 )1(                                                 (5.34) 

       This test is not a unit root test in a strict manner, because the implication of the unit 

coefficient on 2L  in (5.34) is that the process has two roots of modulus one, regardless 

of the value of *

1 . Now, express the roots of quadratic 2*

11 LL   as i21    for the 

case of complex roots. 1  and 2  are affected by the value of *

1 . However, the 

modulus of the pair of the roots is not influenced by it since 1
2

2

2

1  . The values 

of 1  and 2  also give rise to the spectral frequency connected to the complex unit root 

process. 01   and 12   values are related to the frequency 2/  by yielding the 

roots i . Therefore, the test of 0*

1   is a test of the null hypothesis that the unit root 

process occurs at spectral frequency 2/ . That is, the process includes a half-cycle 

every S=2 periods and therefore a full cycle every four periods. Also, because we do not 

have a priori information about the periodicity of the process under the alternative, the 

suitable alternative hypothesis becomes two-sided. For the test regression (5.34), 
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In order to deal with this case, we need some generalizations of (4.27) and (4.28). These 

generalizations are 

               
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respectively [see, e.g., Hamilton (1994)]. By dividing numerator and denominator of 

(5.35) by 
1

T , using  1

*

1,1

*

1 vyy    and also taking the generalizations given above 

into consideration, (5.35) follows that 
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Because )(1 rW  and )(2 rW  are identically distributed, )ˆ( *

1t  is symmetrically 

distributed around zero.  
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       On the other hand, the results for the distributions of the test statistics given in 

(5.31) and (5.34) also remain valid for the following test regression: 

                                           
tttt vyyyL  

*

2

*

2

*

1

*

1

*2 )1(                                      (5.39) 

since the regressors *

1ty  and *

2ty  are asymptotically orthogonal. For more details, see 

Ahtola and Tiao (1987) or Chan and Wei (1988)) (Baltagi, 2001, pp. 663-666; Ghysels 

& Osborn, 2001, pp. 51, 56-58). 

 

5.2.4. HEGY Test             

       As mentioned before, Dickey, Hasza and Fuller (1984) have followed the work 

suggested by Dickey and Fuller for the zero frequency unit root case. However, one 

main disadvantage of this test is that it does not take into account unit roots at some but 

not all of seasonal frequencies and the alternative is that all the roots have the same 

modulus (Hylleberg et al., 1990, p. 221). Since many time series display substantial 

seasonality, the presence of unit roots corresponding to other frequencies (like seasonal 

ones) rather than zero is highly possible. The analysis of seasonal unit roots is 

fundamentally conducted with the most popular approach developed by Hylleberg et al. 

(1990) called HEGY by working with different models that include trends, constants 

and seasonal dummies in order to determine the type of seasonality. Contrary to the 

Dickey, Hasza and Fuller (1984), Hylleberg et al. (1990) suggest a general testing 

strategy looking at unit roots at all seasonal frequencies as well as at the zero frequency. 

So, one apparent advantage of HEGY procedure over DHF is that it enables to test for 

unit roots at each frequency separately without maintaining that there are unit roots at 

some or all other frequencies (Ghysels, Lee & Noh, 1994a, p. 416). Hylleberg et al. 

(1990) have introduced a factorization of the seasonal differencing polynomial 

4

4 )1( L  for quarterly data using lag operator L, where jtt

j yyL   and developed 

a testing procedure for seasonal unit roots that could be estimated by OLS in the 

following way: 
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,4                        (5.40) 

where k is the number of lagged terms included to ensure that residuals are white noise, 
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the tiD ,  are seasonal dummy variables and the tiY , variables are constructed from the 

series on ty  as: 

                             tt yLLY ).1)(1( 2

,1   321   tttt yyyy                           (5.41)    

                             tt yLLY ).1)(1( 2

,2   321   tttt yyyy                      (5.42) 

                             tt yLLY ).1)(1(,3   2 tt yy                                             (5.43) 

                             tt yLLLY ).1)(1)((,4   1,3  tY  = 31   tt yy                        (5.44) 

(Charemza & Deadman, 1992, p. 141). 

 

       The HEGY regression in the most general and a more explicit form could be 

written as follows: 

tit
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itttt

i

tiit ycYYYYDty   








1

41,342,331,221,11

3

1

,4  (5.45)      

We mostly apply seasonal differencing to remove nonstationarity in seasonal data, so 

that we should use  44  ttt yyy  in quarterly data. 

       In equation (5.45), the choice of lag parameter k could be done using a variety of 

lag selection criteria. For instance, while Osborn (1990) deals with the significance of 

LM test in order to choose the 'best' model, Lee and Siklos (1991) use the most popular 

AIC and Schwarz information criterion (SIC). According to Engle et al. (1993), the 

power and size of the unit root tests depend on the 'right' augmentation that will be used.  

     Ghysels et al. (1994a) point out to that DHF testing procedure seems unable to 

separate unit root at zero frequency or at one of seasonal frequencies of data generating 

processes with nonstationarity induced by the (1 – L
4
) factor and therefore HEGY is a 

more advantageous procedure. However, when looked at the results of their Monte 

Carlo studies, it is seen that there exist some problems with available seasonal unit root 

tests regarding near-cancellation problem of a unit root in the AR polynomial with an 

MA root. That is, in seasonal time series models, this problem is said to be very 

common and to lead to adverse size distortions. Even if there are no size distortions, 

Monte Carlo study results indicate the weak power properties of DHF and HEGY tests 

especially in the case of absence of seasonal dummies. 

       The null hypothesis of the HEGY test is that the variable in question is seasonally 

integrated. Hence, if the null hypothesis of stochastic seasonality is true rather than 

deterministic seasonality, in this case in equation (5.40) all the si  will be equal to 

each other and all the si  will be equal to zero. In the case of different si  and at least 
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one of the si  that is nonzero, there exists a combination of both deterministic and 

stochastic seasonality. The interpretation of each negative i  is different from each 

other. Let’s say, only 1  is negative, in this case there is no non-seasonal stochastic 

stationary component. If only 2  is negative, then there exists no bi-annual cycle. On 

the other hand,  3  and 4  are related to the annual cycle and testing them jointly is 

possible. Critical values of these tests are provided in the Hylleberg et al. (1990) paper.  

       The factorization of the expression 4

4 )1( L  could say somethings relating to 

roots: )1)(1)(1)(1()1)(1)(1()1( 24 LiLiLLLLLL   where i is an 

imaginary part of a complex number such that 12 i . When looked at this 

factorization, it is seen that a quarterly stochastic seasonal unit root process has four 

roots of modulus one. One root )1( L  described as being at ‘zero frequency’ (in the 

case of 01  ) removes the trend. The other three roots which remove the seasonal 

structure imply stochastic cycles of biannual and annual periodicity. An elegant 

introduction to complex numbers and complex number dynamics could be found in 

Dhrymes (1970) (Charemza & Deadman, 1992, pp. 141-142). In this case, the unit roots 

are 1, - 1, i, and -i which correspond to zero frequency, 
2

1
cycle per quarter or 2 cycles 

per year, and 
4

1
 cycle per quarter or one cycle per year. The last root, -i, is identical to 

the one at i with quarterly data and therefore it is also interpreted as the annual cycle. 

Now we can test the following hypotheses: 

 

1) H0: 01                2)  H0: 02             3)   H0: 043    

H1: 01                  H1: 02                    H1: 043                       (5.46) 

           (t statistic)                   (t statistic)                (F statistic) 

 

Here,  0: 1 AH          → the existence of nonseasonal unit root          

           0: 2 BH         → the existence of biannual unit root  

           0: 43 CH → the existence of annual unit root  

 

       As seen in (5.46), the first two hypotheses AH  and BH  are tested by using one-

sided t tests against the hypothesis that 0i . The other hypothesis which is CH  is 

tested with an F test. For a series to include no seasonal unit roots, both 02   and the 
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joint F test which is 3 = 4 =0 should be rejected. That is, 2  and either 3  or 4  

should be different from zero. On the other hand, in conclusion to find out that a series 

is stationary and thus includes no unit roots at all (including at zero frequency), we must 

establish that each of the  ’s is different from zero (in other words, each of the t test of 

021    and the joint F test of 3 = 4 =0 should be rejected in order to have a 

stationary series) (Hylleberg et al., 1990, pp. 221-223). 

       In Table 6, a summary of long-run and seasonal frequencies has been presented for 

quarterly data: 

 

Table 6 

Long Run and Seasonal Frequencies for Seasonal Unit Root Tests in Quarterly Data 

Frequency Period Cycles/year Root Filter 
Tested hypothesis 

:0H Unit Root 

0 

Long run 
  0 1 )1( L  01   

2

3
,

2


 

Annual 
3

4
;4  1; 3 i  )1( 2L  043   

  

Semiannual 
2 2 -1 )1( L  02   

Note. The  information on  first  five columns  have  been  obtained  from  Dıaz-Emparanza & López-de-   

           Lacalle (2006, p.7).  

 

       In equation (5.40), si  represent a deterministic structure while si  represent a 

stochastic structure. In order to test whether a series follows a deterministic or 

stochastic seasonal pattern, the hypotheses to be constructed are the null hypothesis 0H  

which implies the presence of stochastic seasonality and the alternative hypothesis 1H  

which implies the presence of deterministic seasonality. There are two conditions for 

the acceptance of stochastic seasonality: The first condition is the acceptance of the 

hypothesis in which all   coefficients are equal to each other and the second condition 

is the acceptance of the hypothesis in which all   coefficients are equal to zero. Thus, 

the null and alternative hypotheses can be expressed in the following way: 

1
st
 Condition: 43210 :  H         2

nd
 Condition:   0: 43210  H                                                                                                                                                                                                                                                                                                                                                                                                                                     

                       43211 :  H                                    :1H at least one of i s 0                             

                  

In order to be able to test the first condition,   coefficients are tested in doubles and 

those following six hypotheses are tested: 
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2101 :  H , 3102 :  H , 4103 :  H , 3204 :  H , 4205 :  H , 4306 :  H . 

These hypotheses are tested by t-test with degrees of freedom )( kn   and test statistic 

is given as: 

                               
)ˆˆ(2)ˆ()ˆ(

)ˆˆ()ˆˆ(
)(
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t

ji
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
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       The second condition is tested by using Q statistic that has an F-distribution with 

degrees of freedom ))1(,(  knp  and Q statistic is calculated in the following way: 

                                              
p

kn

URSS

URSSRSS
Q

)1(
.


  

where RSS is the residual sum of squares of restricted regression, URSS is the residual 

sum of squares of unrestricted regression, p is the number of restrictions, n is the 

number of observations and k is the number of independent variables. If these two 

conditions mentioned above are satisfied, it is concluded that stochastic seasonality 

exists in the series in question. In case the presence of stochastic seasonality is not 

accepted, whether the series follows a deterministic seasonality or not is investigated. In 

other saying, frequencies corresponding to seasonal unit roots are tested. In order to be 

able to detect at which frequencies seasonal unit root exists, the hypotheses given in 

(5.46) should be tested for the necessary auxiliary HEGY regressions that will be just 

mentioned (Ayvaz, 2006, pp. 74-75).  

       There are five auxiliary regressions to be run in order to decide about the choice of 

a proper HEGY regression. These are (Mert & Demir, 2014, p. 14): 

1) regression with no deterministic component (no intercept, no seasonal dummy, 

no trend): 

tit

k

i

ittttt ycYYYYy   



 
1

41,342,331,221,114                   (5.47) 

2) regression with only intercept (no seasonal dummy, no trend): 

           tit
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ittttt ycYYYYy   
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 
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41,342,331,221,114             (5.48) 

3) regression with intercept and seasonal dummy (no trend): 
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tiit ycYYYYDy   
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41,342,331,221,11
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,4        (5.49) 

4) regression with intercept and trend (no seasonal dummy): 

tit

k

i

ittttt ycYYYYty   


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1

41,342,331,221,114          (5.50) 
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5) regression with intercept, seasonal dummy and trend: 

tit

k

i

itttt

i

tiit ycYYYYDty   


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
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41,342,331,221,11
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,4   (5.51) 

       Because HEGY test is easily affected by the inclusion of deterministic components, 

the most appropriate model selection amongst five models given above is based on the 

significance of the deterministic components (Habibullah, 1998, p. 119). For such 

models, Chan and Wei (1988) examined the asymptotic distribution of t statistics.  

       As in the ADF test, adding augmentation terms (in order to make sure about that the 

residuals are white noise) has no effect on the distribution of the statistics and the 

critical values that will be used in the augmentation case are not different from the case 

of without augmentation (Charemza & Deadman, 1997, p. 109). 

     Hylleberg et al. (1990) show how the limiting distributions relate to the standard unit 

root tests: testing for 1 =0 in the case of 2 = 3 = 4 =0 will have the familiar DF 

distribution. Because the model can be expressed as  

                                                      
ttt YY   1,111 )1(                                           (5.52) 

In a similar manner, testing for a root of -1 when the other  ’s are zero will have the 

mirror image of the DF distribution. So, if tY2  is regressed on 
1,2  tY  as follows: 

                                                     
ttt YY   1,222 )1(                                         (5.53) 

the standard DF distribution will be suitable and third test can be written as                                

                                                     
ttt YY   2,333 )1(                                         (5.54) 

with an assumption of 04  . So, by the same logic in (5.53) testing for biannual 

seasonality has the mirror image of Dickey-Hasza-Fuller distribution. 

       The distribution of the test statistics will not be influenced by the addition of a 

variable with a zero coefficient which is orthogonal to the added variables. For instance; 

in the case of testing 01   assume that 02  , however 2Y  is still contained in the 

regression. In this situation, 1Y  and 2Y  will be asymptotically uncorrelated because of 

having unit roots at different frequencies and also both of them will be asymptotically 

uncorrelated with lags of y4  that is stationary. Therefore, irrespective of whether 2Y  

is incorporated into the regression, the limiting distribution to test for 01   will be 

unchanged. This can be generalized to other cases with similar arguments. However; 

apart from these when deterministic components are available in the regression model 

although not included in the data, the limiting distributions change. The intercept and 
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trend components affect only the distribution of 1 . The reason for this is that they have 

all their spectral mass at zero frequency. In spite of the fact that the remaining three 

seasonal dummies do not have any influence on the limiting distribution of 1  when the 

intercept is included in the regression, the distributions of 2 , 3  and 4  are influenced 

by the seasonal dummies. 

       The Monte Carlo values for the one sided t tests on 1 , 2  and 3  and the joint F 

test on 043   which are very close to the Monte Carlo values from Dickey-Fuller 

and Dickey-Hasza-Fuller are presented in Hylleberg et al. (1990) (see, pp. 226-227). It 

is seen that when seasonal dummies are not included in the auxiliary regression, the 

distribution of the t statistic is very akin to a standard normal. In the same manner, the 

distribution for the F statistic looks like an F distribution. However; if seasonal 

dummies are present in the regression, for both t and F statistics distributions will be 

fatter-tailed
3
. 

 

5.2.4.1. Extensions of the HEGY Procedure                                      

       Recall that the DHF test statistic deals with the testing for the null of unit roots at 

,0  2/   and    frequencies jointly. A similar HEGY-type  test  corresponds  to an F 

statistic on 1 , 2 , 3  and 4 . Following the work by Engle, Granger, Hylleberg and 

Lee (1993), the derivation  of the asymptotic distribution for this test is feasible. For the 

simplest HEGY regression given as tttttt YYYYy    1,342,331,221,114 , we  

have the following F statistic:
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                                                                                                                                    (5.55) 

where denotes weak convergence in distribution and )(rWi  for 4,...,1i  stands for 

independent standard Brownian motions. It is remarkable to call attention to that 1234F  

                                                           
3
 The probability of extreme events (higher probability at the tail ends) –i.e. events that fall on the tail 

ends of a statistical distribution and are the most likely not to occur– cannot always be accurately 

described by the bell shaped curve . This kind of activity is usually described using fat-tailed distributions 

(Mello, (n.d.), p.1).   
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statistic in (5.55) and the sum of the squared t statistics for i  ( 4,...,1i ) have the 

same asymptotic distributions. 

       On the other hand, testing for presence of unit roots at all seasonal frequencies 

jointly without regarding the zero frequency is associated with the F statistic for the null 

hypothesis of 2 = 3 = 4 =0 and the asymptotic distribution of this statistic can be 

expressed as follows: 
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This test statistic has also the same limiting distribution as the sum of the corresponding 

squared t statistics (Ghysels et al., 1994a, pp. 418-419). For the proofs of distributions 

given above and the critical values for 1234F  and 234F , see Appendix A and Appendix C 

respectively in Ghysels et al. (1994a). 

 

5.2.4.2.  Testing for Seasonal Unit Roots in Monthly Data                                                                          

       Franses (1990) makes an extension of HEGY procedure to monthly data. In this 

case, the differencing operator 12  will have 12 roots lying on the unit circle (

01 12  L ) such that  

   ]2/)3(1][2/)3(1[)1)(1)(1)(1(1 12 LiLiiLiLLLL   

                                                        ]2/)3(1][2/)3(1[ LiLi   

                                                            ]2/)3(1][2/)3(1[ LiLi                (5.57) 

                                                        ]2/)3(1][2/)3(1[ LiLi      

where all terms except (1–L) define the seasonal unit roots (Maddala & Kim, 1998, p. 

368). Note that this factorization of )1( 12L can also be expressed as 

)........1)(1( 112 LLLL  . However; on the purpose of being more practical in test 

equation, the factorization in (5.57) is preferred.  

        Beaulieu and Miron (1992b) also examine the HEGY testing procedure for 

monthly data. As mentioned in the quarterly case, assume that ty  is the series of interest  

having a DGP with a general autoregression form given as 

                                                            ttyL  )(                                                     (5.58) 
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where )(L  is a polynomial in the lag operator form and t  represents the usual white 

noise process. For simplicity, it is supposed that deterministic terms are not available in 

the ty  process. It is already known that in the case of 
S

j


2
  )1,.......,1(  Sj  which 

shows the frequency associated with a particular root, a root is seasonal (S is the 

number of observations per year). For monthly data, the seasonal unit roots are given as 

follows: 

                   ;1  ;i  );31(
2

1
i );31(

2

1
i );3(

2

1
i )3(

2

1
i                    (5.59) 

These roots are associated with 6,3,9,8,4,2,10,7,5,1 and 11 cycles per year respectively 

and the corresponding frequencies for these roots are 
6

5
,

3
,

3

2
,

2
,


    and 

6


  

respectively. Notice that the root 1 does not take place in (5.59). Since it is not a 

seasonal unit root, rather it defines the long run or zero frequency unit root. Here, what 

is tried to find out is that whether the polynomial )(L  has roots that are equal to one in 

absolute value at the zero or seasonal frequencies. 

       With this HEGY procedure developed for monthly case, the polynomial )(L  is 

linearized around the zero frequency unit root plus the S–1 unit roots given in (5.59) 

and so, )(L  is expressed as  

                                       )()(
)(

)(1
)()( *

1

LL
L

L
LL

k

k
S

k

k 



 






                         (5.60) 

where  

               ,
1

1)( LL
k

k


         ,
)(

)(

kjkj

k
k







        )()(

1

LL k

S

k




 ,       

)(* L  is a polynomial associated with roots that are outside the unit circle and the k  

are the zero frequency unit root plus the S–1 seasonal unit roots. As seen obviously 

from the definition of k , the polynomial )(L  will have a root at k  if and only if the 

corresponding k  is equal to zero (Franses, 1991, p. 96).  Now, if we substitute (5.60) 

into (5.58), it becomes 

                                                


 
12

1

1,13

*)(
k

ttkkt yyL                                        (5.61) 

where,  

tt yLLLLLLLLLLLy )1( 111098765432

,1   

tt yLLLLLLLLLLLy )1( 111098765432

,2   

tt yLLLLLLy )( 119753

,3   



97 

 

tt yLLLLLy )1( 108642

,4   

tt yLLLLLLLLLLLy )22221(
2

1 111098765432

,5   

tt yLLLLLLLy )1(
2

3 1097643

,6   

tt yLLLLLLLLLLLy )22221(
2

1 111098765432

,7   

tt yLLLLLLLy )1(
2

3 1097643

,8   

tt yLLLLLLLLLy )233233(
2

1 1110976543

,9                   (5.62) 

tt yLLLLLLLLLy )3233231(
2

1 109876432

,10          

tt yLLLLLLLLLy )233233(
2

1 1110976543

,11   

tt yLLLLLLLLLy )3233231(
2

1 109876432

,12   

tt yLy )1( 12

,13   

(Beaulieu & Miron, 1992b, pp. 2-4). 

       The test equation for the presence of seasonal unit roots given in (5.61) takes a 

somewhat different form in Franses (1991) as follows  

tttttt

ttttttttt

yyyy

yyyyyyyyyL













2,7121,7112,6101,69

2,581,572,461,452,341,331,221,11,8

* )(

                                                                                                                                    (5.63)  

where )(* L  is some polynomial function of L, t  represents the deterministic 

component which may include a constant, seasonal dummies or a trend, and 

ttt yLLLyLLLLy )......1()1)(1)(1( 112842

,1   

tt yLLLLy )1)(1)(1( 842

,2   

tt yLLLy )1)(1( 842

,3   

tt yLLLLLy )1)(31)(1( 4224

,4   

tt yLLLLLy )1)(31)(1( 4224

,5                                                               (5.64) 

tt yLLLLLy )1)(1)(1( 2424

,6   

tt yLLLLLy )1)(1)(1( 2424

,7   

tt yLy )1( 12

,8     (Franses, 1991, p. 100; Maddala & Kim, 1998, p. 368).   

       It is remarkable to say that in order to make the residuals white noise, augmented 

lagged values of 
ty ,8
 should be used in (5.63). With these transformations ( ,iy s) of ty  
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in (5.64), the seasonal unit roots are excluded at given frequencies while they are 

preserved at remaining frequencies. To give an example, consider the ty1  

transformation. While it eliminates the seasonal unit roots, it preserves the long-run or 

zero frequency unit root. In table 7, the outline of long run and seasonal frequencies has 

been presented. 

 

Table 7 

Long Run and Seasonal Frequencies for Seasonal Unit Root Tests in Monthly Data 

Frequency Period Cycles/year Root Filter Tested 

hypothesis 

:0H Unit Root 

0 

Long run 
  0 1 )1( L  01   

6

11
,

6


 

Annual 

12; 1.09 1; 11 
)3(

2

1
i  

)31( 2LL   01211   

3

5
,

3


 

Semiannual 

6; 1.2 2; 10 
)31(

2

1
i  

)1( 2LL   087   

2

3
,

2


 4; 

3

4
 

3; 9 i  )1( 2L  043   

3

4
,

3

2 
 

Quarterly 

3; 1.5 4; 8 
)31(

2

1
i  

)1( 2LL   065   

6

7
,

6

5 
 

2.4; 1.7 5; 7 
)3(

2

1
i  

)31( 2LL   0109   

  

Bimonthly 

2 6 -1 )1( L  02   

Note. The information on first five columns have been obtained from  Dıaz-Emparanza & López-de-   

          Lacalle (2006, p.7).  

 

       Applying OLS procedure to (5.63) gives estimates of the i . By the same logic in 

quarterly case; if 2  through 12  are significantly different from zero (the case in which 

the null hypothesis of stochastic seasonality is not true), then there will be no seasonal 

unit roots and the pattern that the data display becomes deterministic or constant 

seasonal. Therefore, in this situation the dummy variable representation can be applied 

for modelling this pattern. The implication of the statement just given is that if there are 

seasonal unit roots, the corresponding i  are zero. Due to the fact that pairs of complex 

unit root are conjugates, these roots will exist only in case pairs of s'  are jointly equal 

to zero. For instance, the roots i  and i  are only present if 3  and 4  are 
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simultaneously equal to zero. If 1  through 12  are all unequal to zero, we experience a 

stationary seasonal pattern and seasonal dummy variables can be used to model such a 

pattern. At the same time, when the coefficient for a given   is statistically not 

different from zero, then it can be said that data have a varying seasonal pattern. If 

01  , we cannot reject the presence of root 1 with long-run frequency and if all i  

are equal to zero, it becomes suitable to apply the )1( 12L  filter. If only some pairs of 

s'  are zero, the relevant operators can be used. In Abraham and Box (1978), it is 

exemplified that sometimes these operators may be adequate.  

        Either t tests or F tests can be employed in order to test for seasonal unit roots at 

the pertinent seasonal frequencies. The t-ratios corresponding to the estimates of 1  and 

2  which represent long-run and semi-annual frequencies respectively track the DF 

distributions. All critical values of the test have a non-standard distribution. So, critical 

values are generated by Monte Carlo simulations (Franses, 1991, p. 101; Maddala & 

Kim, 1998, p. 370; Sørensen, 2001, p. 77 ).   

       On the other hand, Beaulieu and Miron (1992b) explain the testing hypotheses 

about unit roots in their paper. They implement the HEGY procedure as different from 

Franses (1990) in that the set of regressors in (5.61) are mutually orthogonal and this 

leads to the derivation of the asymptotic distribution to become easier. In (5.61), for 

frequencies 0 and  , the null hypothesis that is associated with the relevant t statistic 

becomes 0k  while the alternative one says that 0k . For the other roots, the 

alternative of testing the null of 0k  where k  is even becomes a two-sided test. 

Thus, the even coefficient may be positive or negative. If 0k  cannot be rejected, 

then one tests 01 k  against the alternative of 01 k . Here, depending on the 

sensible alternative saying that the series has a root lying outside the unit circle, the test 

becomes one-sided rather than two-sided. Since, as known the true coefficient is less 

than zero under the stationarity condition. In addition, applying to an F statistic for 

testing 01  kk   is another strategy. In case there is no unit root at any seasonal 

frequency, k  must not be equal to zero for 2k  and for at least one member of each 

of the sets }12,11{},10,9{},8,7{},6,5{},4,3{  (Beaulieu & Miron, 1992b, pp. 4-5). 

5.2.4.3.  Testing for Seasonal Unit Roots in Bimonthly Time Series 
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       Franses (1992a) examines seasonal unit roots in bimonthly time series in his paper. 

Therefore, it is required to consider the operator )1( 6L corresponding to bimonthly 

time series. Franses (1992a) presents the decomposition of this polynomial as follows: 

        )1)(1()1)(1)(1(1 4222226 LLLLLLLLL    

                  )1)(1( 5432 LLLLLL                                      

                   ))13(
2

1
1)(1)(1( LiLL ))13(

2

1
1)()13(

2

1
1( LiLi   

                                                                           ))13(
2

1
1( Li                     (5.65) 

and the test equation in order to test seasonal unit roots in this type of data is given as

ttttttttt yyyyyyyL    1,462,451,342,331,221,11,5

* )(      (5.66) 

where  

                                               tt yLLLy )1)(1( 42

,1   

                                            tt yLLLy )1)(1( 42

,2   

                                               tt yLLLy )1)(1( 22

,3                                        (5.67)                     

                                            tt yLLLy )1)(1( 22

,4   

                                            tt yLy )1( 6

,5   

The tables for critical t-values of the individual i  and for F-tests of 043    and 

065    in this testing procedure can be obtained from Appendix part in Franses 

(1992a). As in the quarterly data; the tests for 1  and 2  are one-sided, the tests for 4  

and 6  are two- sided and for 3  and 5  they are one-sided (Franses, 1992a, p. 411). 

For more, see Franses (1992a). 

 

5.2.4.4.  Testing for Weekly Seasonal Unit Roots 

       When we take a series including a weekly seasonal component into consideration, 

the assumed DGP belonging to such a type of series is 
ttyL  )1( 7  ~ i.i.d. 

2
,0(  ); 

Tt ,......,1 . Here, the characteristic polynomial )1( 7L  can be decomposed as 

).........1)(1( 6LLL   where the second factor represents the SMA filter. The 

auxiliary regression for testing weekly roots is constructed through the expansion of the 

characteristic polynomial just given as follows: 

      
 










7

2 1

7

7

1

1,

7

2

7

j

p

r

trtr

j

tjjjtj

j

jtjt yztDDty                  (5.68)        
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         t  ~ i.i.d. 
2

,0(  ) 

where  
jtD  is a zero/one seasonal dummy variable corresponding to the j-th day of the 

week and the regressors 
tjz ,
 are described as 

                            



7

1

1

,1 )0cos(
j

t

j

t yLjz = ).........1( 6LL  ty  

                           



7

1

1

,2 )cos(
j

t

j

tk yLkjwz                                                         (5.69) 

                          




 
7

1

1

,12 )sin(
j

t

j

tk yLkjwz ; 

 

       Since we are concerned with the weekly seasonal unit roots, this requires taking 

seven roots into consideration. Hence, the assumption under the null hypothesis is that 

the series includes one unit root at the zero frequency and three pairs of complex roots 

at the seasonal frequencies 
s

k2
, for 3,2,1k  and 7s  where k  is the number of 

cycles per week of each frequency.  

       The most general specification for testing weekly roots under the alternative 

hypothesis of stationarity is given in (5.68) with the deterministic components given as 

a drift, a linear time trend, deterministic seasonal variables and seasonal drifts. As an 

alternative to this specification, different combinations of these deterministic 

components can be incorporated into the auxiliary regression (5.68). The correct 

determination of this specification is of great importance with regard to affecting the 

power of the test. Also, another point is that in the similar manner to the ADF test 

procedure, augmented lagged values of ty7  are included in (5.63) to remove serial 

correlation in the error term.   

       A noteworthy characteristic of the HEGY procedure is the representation of the 

series ty  as a linear combination of the regressors 
tjz ,
, 7,........,1j  and when a linear 

filtering process is applied to ty , all unit roots excluding the one associated with the 

specific frequency of the relevant one of these regressors are removed. To give a simple 

example, 
tz ,1
 is the result of applying the SMA filter ).........1( 6LL   to ty . In that 

case, all the seasonal unit roots are subtracted and only the long-run zero-frequency unit 

root becomes available in this regressor.  

       The asymptotically mutually orthogonality feature of the regressors enables the 

results of testing the unit root hypothesis in a given frequency and the ones in the 
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remaining frequencies not to be influenced by one another. So, this also implies that the 

HEGY procedure enables to test whether there is a unit root in some, all or none of the 

frequencies analysed.  

       The estimation of each 
j  parameters is possible when OLS procedure is applied to 

(5.68) or to any other alternative model specification of it including some deterministic 

components or none and if the null hypothesis of 01   is not rejected against the 

alternative of 01  , then it is said that the series contains a long-run zero frequency 

unit root. The distribution of this test statistic follows the DF distribution. In addition, 

the null hypothesis for complex unit roots on each seasonal frequency implies the 

equivalence of two test statistics belonging to the same seasonal frequency to zero and 

is expressed as 0122  kk   that is a joint F test. As an alternative, testing this 

complex unit root hypothesis is also feasible via a two-sided t test for 12 k . If 012 k  

cannot be rejected, then one tests 02 k  against the alternative of 02 k  which 

implies a one-sided t test. However, generally the first testing approach is chosen 

because of better statistical properties (Ghysels et al., 1994a). Since, the critical values 

of the t statistics and F statistics have a non-standard distribution, they are generated by 

Monte Carlo simulations for different sample sizes and the distributions differ 

depending on which combinations of deterministic components are incorporated into 

the auxiliary regression (Rubia, 2001, pp. 7-9). For the critical values and more see 

Rubia (2001). 

 

5.2.4.5.  Testing for Seasonal Unit Roots in Semi-Annual Data                                             

       Feltham and Giles (1999) examine the properties of HEGY procedure on the semi-

annual data. As in usual way, let ty  be the series of interest displaying a stochastic 

seasonal process in the autoregression form of (5.58). For the semi-annual case, now the 

polynomial )(L  in (5.60) is expressed with 2s  as  

                            )()(
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k 
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By looking at the roots of 0)( L , one can detect whether the series is stationary or 

not. Here the k s are the zero frequency unit root plus the S–1 seasonal unit roots. 

Therefore, in the case of semi-annual data, we have one zero-frequency unit root which 

is 11   and one seasonal unit root (S–1 = 2–1 = 1) which is 12  . So, 

)1()(1 LL   and )1()(2 LL  . In that case, the difference operator )(L  becomes 

)1()1)(1()( 2LLLL  . As a consequence of substituting the expressions just 

given into (5.70), we get 

                               )()1()1)(()1)(()( *2

21 LLLLLLL                    (5.71) 

Then, let 11    and 22   . Substituting the right hand side of (5.71) into the 

autoregression equation ttyL  )(  gives 

                         tttt yLLyLLyLL   )()1()1)(()1)(( *2

21               (5.72) 

This expression can be rewritten in the form of testing equation for the presence of 

semi-annual unit roots as 

                                 tttt yyyL    1,221,11,3

* )(                                             (5.73) 

where 

                                
1,1 )1(  tttt yyyLy   

                                  )()1( 1,2  tttt yyyLy                                                 

(5.74) 

                                2

2

,3 )1(  tttt yyyLy      ),......,3,2,1( nt  . 

In (5.73) for simplicity it is assumed that the DGP ty  is free of any deterministic 

components. In order to obtain the estimates of 1  and 2 , the OLS procedure is 

applied to (5.73). For testing a zero-frequency unit root, the null hypothesis becomes 

01   against the alternative of stationarity 01  . In a similar manner, the presence 

of a unit root at the   frequency is tested with the null hypothesis of 02   against the 

alternative one that is 02  . Furthermore, for testing if the series is seasonally 

integrated (implied as the presence of unit roots at both frequencies concurrently), the 

F-statistic for 021    may be used in order to test whether there are unit roots at 

both frequencies simultaneously (Feltham & Giles, 1999, pp. 3-4). The critical values 

for the nonstandard t and F statistics, asymptotic null distributions and more are given in 

Feltham & Giles (1999). 

5.2.5. Kunst Test                                               
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       Kunst (1997) suggests a general )(sAR  model in order to test )1( sL  and it is 

described as    

                                tststtstt yyyyy    ......2211                           (5.75) 

For testing the null hypothesis of tstt yy   , after applying to OLS procedure in 

(5.75) and estimating each  , Kunst has made a comparison of the F-statistic for the 

test of 0.......21  s  with the critical value obtained through conducted Monte 

Carlo simulations. Kunst’s test bears resemblance to the DHF test in that it only detects 

the presence of all seasonal unit roots. However, under the Kunst’s alternative 

hypothesis which is more general than the alternative of the DHF test, the series 

displays any )(sAR  model except the model under the null while the alternative of DHF 

is the presence of s roots in the series all having the same modulus bigger than one. In 

addition, Osborn and Rodrigues (2002) have indicated that the Kunst F-test statistic and 

the HEGY overall F-statistic have the same asymptotic distributions. 

       The DHF regression model in (5.9) can be regarded as the reduced form of the 

Kunst model. The reason for this is that there is only one lag variable ( sty  ) in the DHF 

test while s lagged terms are available ),.......,( 1 stt yy   in Kunst’s model and under the 

null hypothesis, the asymptotic distributions of sty   obtained from both models differ 

extremely. On the other hand, the augmented Kunst model can be expressed as      

        ts y
tptsptsststt yyyyy    ............ 112211
             (5.76) 

When 4s (that is, for quarterly time series), the Kunst test regression is given as 

                       ty4 tttt yyy    43311 ...... ,   ( Tt ,......,1 )                   (5.77) 

which is an F-type test given as 

                                       )ˆˆ/()ˆˆˆˆ)(4( 00

*
ˆ,ˆ,....,ˆ 31




 TF                                  (5.78) 

where 0̂  and 1̂  vectors represent the estimated residuals under the null             

0...: 310  H  and alternative hypotheses respectively (El Montasser, 2011, 

p. 27; Zhang, 2008, pp. 9-10). 
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5.2.6. OCSB Test                                               

        Osborn, Chui, Smith and Birchenhall (OCSB) (1988) have modified the Hasza and  

Fuller (1982) test framework to detect  the presence of multiplicative differencing filter  

s1 . That is, the OCSB test investigates whether )1( L  or )1( sL operators or both 

of them or none of them should be applied to data. The OCSB regression model in the 

original form is expressed as  

                                tsttsts yyy    12111                                   (5.79) 

and this model is used to test whether s1  is a factor of )(L  in (5.58). This model 

can be generalized with deterministic components as follows: 

                                  tsttstts yyyL    12111)(                            (5.80) 

where )(L is an AR polynomial (lag polynomial with roots outside the unit circle), 

)1(),1( 1 LLs

s   and  

                                      









1

1

1

1

,0,0

S

s

S

s

tsstsst tDtD                                   (5.81) 

 

Here, t is a deterministic trend. In the original study, the seasonal trend is not given 

place in t  i.e. 0s  for  s. However, Franses and Koehler (1998) suggest the 

model (5.80) with the   parameters not being equal to zero in t  so that the test 

becomes applicable to ty  series showing increasing seasonal variation. In order to find 

out which filter is suitable for ty , the significances of 1  and 2  are tested. When both 

1  and 2  are equal to zero ( 1 02  ), using s1  filter is suitable. When 01   

and 02  , 1  filter should be selected; when 01   and 02  , s  filter is suitable. 

If both 1  and 2  are unequal to zero ( 1 02  ), in that case no differencing filter is 

required.  

       By the same logic just given above, in the case of quarterly data OCSB testing 

regression is given as  

t

k

i

ititttttt yyyDDDy  


 
1

41412141,33,22,11041
      (5.82) 

       The  necessary  joint  hypothesis  about  the  usefulness  of  the  41   operator  is  

021321   . If 02   with 01  , the 4  filter is needed and if 01    
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and 02  , the 1  filter should be applied to data. For these three hypotheses, critical  

values  are  available only for  a sample size of 136  in Osborn (1990) (Franses, 1998, p.  

563; Maddala & Kim, 1998, p. 366; Zhang, 2008, p. 11; Platon, 2010, pp. 2-3). 

 

5.3. Seasonal Cointegration                                               

       The concept of seasonal cointegration is valid for models including stochastic 

seasonals just as the concept of cointegration showing itself in models including 

stochastic trends (Maddala & Kim, 1998, p. 362). As mentioned before, one advantage 

of HEGY test procedure is that it enables to test for unit roots at each frequency 

separately. So, concerning quarterly data including the four roots which are 1, 1 , i ; 

Engle et al. (1993) propose different levels of seasonal cointegration. Assume that ty  

and tz  series are seasonally cointegrated so that ty4  and tz4  are stationary. When 

these two series have a common non-seasonal unit root (that is, they are cointegrated at 

long-run zero frequency – at root 1), we have the error term 

                                 
ttt zLLLyLLLu )1()1( 32

1

32                           (5.83) 

which is stationary. If seasonal cointegration exists at frequency ½ corresponding to 

unit root –1, we have 

                                 
ttt zLLLyLLLv )1()1( 32

2

32                           (5.84) 

which is stationary (so, it does not require )1( L  filter to be stationary) and finally if 

seasonal cointegration exists at frequency ¼ corresponding to unit roots i  and 

)1( 2L  filter we have 

                     
1

2

51

2

4

2

3

2 )1()1()1()1(   ttttt zLyLzLyLw             (5.85) 

is stationary. In case all three series tu , tv  and tw  are stationary, the seasonal 

cointegration model is represented in a simple form as  

                            tttttt wwvuy 13412311211114                                      

                               tttttt wwvuz 23422321221214                          (5.86) 

 

where  s represent the error correction terms. In addition; constant, seasonal dummies 

and trend variables can be incorporated into these equations. This method with two-step 

proposed by Engle et al. (1993) is similar to the Engle-Granger approach applied for 

nonseasonal time series: in the first step, equations (5.83) to (5.85) are estimated by 

OLS procedure and in the second step ADF unit root tests are applied to tû , tv̂  and tŵ  
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(in other words, this transaction allows us to check if estimated residuals tû  to tŵ  are 

stationary). The tests for tû  and tv̂  have the same critical values as those in Engle and 

Granger (1987). However, critical values for testing tŵ  are different. For this case, the 

critical values are tabulated in Engle et al. (1993). In her comments on the paper of 

Engle et al. (1993), Osborn discusses the implication of (5.86) to be varying equilibrium 

relations between ty  and tz  series depending on the lag (that is, the long-run relation at 

time )1( t differs from that at time )2( t ). She considers a more reasonable model 

which has changing coefficients with seasons and this results in the periodic 

cointegration model which will not be discussed here (Maddala & Kim, 1998, pp. 375-

376).  

 

5.3.1. Seasonal Cointegration-Single Equation 

       As mentioned above, subsequent to estimating 1  to 5  by OLS for bivariate time 

series  involving ty  and tz , the stationarity condition is checked for estimated residuals 

tû  to tŵ . This is executed by using the following auxiliary regressions: 

                             


 
1

1

11
ˆ)1(ˆˆ)1(

l

i

tititt uLuuL    

                             


 
2

1

12
ˆ)1()ˆ(ˆ)1(
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tititt vLvvL                 (5.87) 

                             


 
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2 ˆ)1()ˆ()ˆ(ˆ)1(
l

i

titittt wLwwwL          

 (Löf, 2001, p .10).            

       As seen here, the lagged dependent variables may be added to these auxiliary 

regressions given above. To detect the cointegration at the zero and semi-annual 

frequencies, t-statistic values of 1  and 2  should be compared to the critical values in 

the paper of Engle and Yoo (1987) and the null hypotheses of no cointegration at zero 

frequency and no cointegration at ½ frequency should be tested for the first two 

auxiliary regressions in (5.87). On the other hand, for ¼ (and ¾ frequencies), F(

043   ) test statistic value should be compared to the critical values which take 

place in the paper of Engle et al. (1993) and here the null hypothesis should be 
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constructed as :0H  No cointegration at ¼ (and ¾) frequencies for the third auxiliary 

regression given in (5.87) (Mert & Demir, 2014, p. 16). 

        

5.3.2. Seasonal Cointegration-Multiple Equations          

       Lee (1992) presents a testing procedure for seasonal cointegration using an 

extension of Johansen approach with the ML estimator. Assuming that t  are i.i.d. n- 

dimensional Gaussian random vectors with zero mean and a variance-covariance matrix 

  whereas tY  is an n-dimensional vector of I(1) variables with ),......,,( 21 nttt yyy  and 

assume that the process tY  can be described by the VAR process. With the lag length p

, for quarterly data the estimation model can be written in the form of   

 

tptptttttt YYYYYYY   4441411,342,331,221,114 ........         (5.88) 

 

where                              

                                       tt YLLLY )1( 32

,1   

                                       tt YLLLY )1( 32

,2                                               (5.89) 

                                       tt YLY )1( 2

,3    

(5.88) looks like (5.47) except that the lower case y  implies univariate processes while 

the capital letter Y  implies multivariate processes. Since the coefficient matrices 

41,....,  convey information about the long-run behaviour of the series, it is of great 

importance to analyse their characteristics in depth. The ranks of the matrices 1 , 2

and 3  determine the number of cointegrating vectors at zero, ½ and ¼ frequencies. If 

the matrix k  has full rank, then at the relevant frequency all series considered are 

stationary. In case k  has a zero rank, there is no seasonal cointegration among the 

variables at the corresponding frequency. On the other hand, the implication of the case 

of nrrank k  )(0  is that at the relevant frequency a linear combination of non-

stationary variables becomes stationary. 

       In order to put the seasonal cointegration tests into practice, Lee suggests four tests 

pertinent to the rank of k . That is to say, a cointegration test at frequency 0w , 

2/1w , 4/1w  and the joint test of 4/1w  and 4/3w . Lee draws attention to 

that the distribution of the ML cointegration test statistics and the asymptotic 
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distributions belonging to these statistics may extremely differ. As a matter of fact, our 

tendency is generally in the direction of rejecting the true null hypothesis more often 

than implied by the asymptotic distribution. However, this bias decreases in very large 

samples. The regularity conditions for using the Johansen approach necessitates that 

DGP does not have unit roots other than the zero frequency. Contrary to this, Ghysels et 

al. (1994a) express in their paper that seasonal unit roots do not give rise to a 

complication in the use of the Johansen approach (Huang & Shen, 1999, pp. 114-115 ;  

Maddala & Kim, 1998, pp. 376-377).  

 

5.4. An Extension of Seasonal Cointegration 

       By following equations (5.41), (5.42) and (5.43) in HEGY testing procedure, the 

given polynomials are shown in the following notations: 

                                   )1()1)(1( 322

1 LLLLLZ                                     (5.90) 

                                   )1()1)(1( 322

2 LLLLLZ                                (5.91) 

                                   )1()1)(1( 2

3 LLLZ                                                (5.92) 

When HEGY (1990) procedure is applied to the time series ty , HEGY testing equation 

can be expressed as 

   
134233122111,44,33,22,11

4 .)1(   ttttttttt yZyZyZyZtDDDDyL   

                    


 
p

i

ititi yL
1

4 )1(                                                                            (5.93) 

With the polynomial filters defined above, seasonal cointegration at seasonal cycles for 

quarterly data can be expressed in the following ways: 

Definition 1:  Cointegration at the single period cycle 

       ty  is cointegrated at the long run (corresponding to the root of 1 with the factor of 

)1( L ) if there is a cointegrating vector 1 such that the residuals tu  from  

                                                          tt uyZ 
11                                                       (5.94) 

are stationary. 

Definition 2:  Cointegration at the two period cycles 

       ty  is cointegrated at the two period (or biannual) cycle (corresponding to the root 

of -1 with the factor of )1( L ) if there is a cointegrating vector 2 such that the 

residuals tv  from  

                                                          tt vyZ 
22                                                      (5.95) 
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are stationary. 

       It is very hard to establish the cointegration at the four period (or annual) cycle 

because of the fact that the effects of complex roots are indistinguishable in quarterly 

case. According to Yoo (1986), the cointegration should be constructed on the basis of 

lags in any vector (namely, a polynomial cointegrating vector) which tries to decrease 

the order of integration at the annual cycle. 

Definition 3:  Cointegration at the four period cycles 

       ty  is cointegrated at the four period (or annual) cycle (corresponding to the 

complex roots of i  and i  with the factor of )1( 2L ) if there is a cointegrating 

vector L.43    such that the residuals tw  from  

                                                    tt wyZL  343 )(                                             (5.96) 

are stationary.  

       In order to establish an error correction model including all these cointegration 

cases at different cycles, there are two criteria that must hold. First, a term 

corresponding to all the various possible cases of cointegration mentioned briefly above 

must be available in an error correction model. Second, all the variables which take 

place in the final error correction equation should be integrated of order zero (that is, 

)0(I ). To satisfy this criterion, pre-filtered data itZ  (not the original vector time series) 

should be used in the specification of the terms in the error correction equation.  

       The general form of the error correction representation in which all existing terms 

are stationary and all possible cases of cointegration at different cycles are included is 

developed by Hylleberg et al. (1990) and Engle, Granger, Hylleberg and Lee (1990) and 

the equation is given as 

                            
ttttt wLvuyLL    1431211

4 ).()1)((                    (5.97) 

where i  and the cointegrating parameters, i  may be different at different frequencies. 

Both the   and   coefficients should be estimated to estimate equation (5.97). If there 

are specific values for the cointegrating parameters, i  proposed by an economic 

theory in interest, the estimation of (5.97) becomes easy to handle. Otherwise, 

Hylleberg et al. (1990) and Engle et al. (1990) suggest a generalisation of the two stage 

procedure proposed by Engle and Granger (1987) (Hurn, 1993, pp. 313-315). 
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5.4.1. Three Bivariate Error Correction Models 

       An application of seasonal cointegration may be useful in the context of monetary 

policy. To present an application concerning seasonal cointegration, Hurn (1993) uses 

South African monetary data in this context. To predict the future path of nominal 

income, it is focused on the ability of monetary aggregates. Therefore, the monetary 

aggregate is counted as the leading indicator of nominal income.   

       Consider the two variables case of (5.97) with nominal income ty , and a monetary 

aggregate, tm  with the normalization with respect to the former: 

 
 
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                     ttttt mZyZmZyZL 12342234113321343 ))(.(             (5.98) 

       This equation represents the full seasonal error correction model. If there is 

cointegration at all cycles by the same cointegrating parameter or in other saying if the 

following restrictions hold  

                                         322212 ,  04241                                    (5.99) 

 

the error correction model reduces to the simple error correction representation (Engle 

& Granger, 1987; Granger, 1986) specified in terms of the original variables. In Hurn 

(1993) it is also expressed that the model draws apart from the original version of the 

error correcting equation when the error correcting term )( 11   tt my  may be included 

in the equation up to a maximum of four lags to capture the four unit roots to be 

removed (Hylleberg et al., 1990). The estimable equation becomes in the following 

way: 
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   (5.100) 

 

       Another practical type of the general model (5.98) is realized when cointegration 

exists at the single period cycle by filtered (seasonally adjusted) variables and at all 

other cycles by one cointegrating parameter. The restrictions on the s' are given as 

                                 12 ,   s  3222 ,   04241                               (5.101)  

 

 

 

 



112 

 

and the equation to be estimated becomes 
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                            (5.102)   

       Since the common error correcting relation in terms of the differenced variables 

appears as a maximum lag of three in the equation (5.102), there are three coefficients 

to be estimated on the seasonal error correction term. It is apparent from the general 

error correction model (5.98) and this specific restricted model that the aim in using 

seasonal cointegration is to augment the short-run dynamics of the model and the long-

run solution remains the same as in the original simple error correction model. To sum 

up, the equations (5.98), (5.100) and (5.102) form three seasonal error correction 

models and the estimation of these models may be feasible by making use of the Engle-

Granger two-step procedure (Hurn, 1993, pp. 315-317). 
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CHAPTER 6 

ECONOMETRIC APPLICATIONS RELATED TO ECONOMIC TIME SERIES 

6.1. Modelling Monthly Inflation Rates in Turkey 

       In terms of policy makers, it is of great importance to have a reliable inflation rate 

forecast. In this context, the most suitable model should be accessed using SARIMA. 

Since SARIMA models reveal more effective results in terms of handling the seasonal 

component of the series apart from the non-seasonal one when compared to the 

traditional ARIMA models. In this application, it has been aimed to find the best model 

for monthly inflation rates and therefore monthly (not seasonally adjusted) CPI data 

have been utilized for Turkish economy over the period 1995:01-2015:03 (Index 

2010=1.00). Data have been obtained from Organization for Economic Co-operation 

and Development. This application has been carried out at the R Project for Statistical 

Computing-version 3.1.3. by using “forecast” and “uroot” packages. Since inflation is 

measured by the percentage change in CPI, inflation rates have been calculated by using 

the following transformation:  

100.
1

1






t

tt

CPI

CPICPI
INF  

where INF denotes inflation rate, tCPI  denotes consumer price index at time t and 

1tCPI  denotes consumer price index at time t-1.  

       In modelling monthly inflation rates that are very crucial to design effective 

economic strategies, choosing a suitable seasonal ARIMA model which includes both 

seasonal and non-seasonal behaviours is not an easy task. Since such models give point 

to the recent past rather than distant past, primarily they are convenient for short term 

forecasting and this implies that long-term forecasts from ARIMA models are less 

reliable than short term forecasts (Aidoo, 2010, p. 3). The graph of inflation data has 

been presented in Figure 5: 
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 Figure 5. Graph of inflation series against time  

 

       It is very apparent to see from Figure 5 that inflation data are nonstationary with a 

non-constant mean and unsteady variance and follow some seasonal pattern. For this 

reason, first of all the series should be checked for seasonal unit roots at all seasonal 

frequencies and if INF series includes all seasonal unit roots, seasonal differencing 

operator has to be applied to this series. If INF series has seasonal unit roots only at 

some frequencies, filters corresponding to available unit roots at each given frequency 

have to be applied. Briefly, before constructing a suitable ARIMA model for our 

seasonal series, we should make a data transformation in a way to make the series 

stationary by taking Box-Jenkins methodology into consideration (see Appendix B for 

Box-Jenkins technique).  

       This study has mainly focused on searching for the best-fitted SARIMA model for 

the monthly inflation rates in order to provide the best forecast. Therefore, following the 

Box-Jenkins approach, at first model identification and estimation of parameters will be 

presented. Subsequent to this, diagnostic checking results based on the residuals of the 

possible model will be given place in order to make certain about the white-noise 

characteristic of residuals which becomes a vital assumption for a good ARIMA model.  

       Before the model identification, in order to detect at which frequencies INF series 

has unit roots and to decide about the appropriate order of differencing filter, we should 

recourse to HEGY monthly seasonal unit root test apart from CH test. As expressed in 

chapter 4 and 5, the null hypotheses differ for CH and HEGY tests. In the former, the 

null hypothesis implies the stationarity case at all seasonal cycles while the latter 

implies the presence of seasonal unit root (nonstationarity case).  

       Figure 6 and Figure 7 show the ACF and PACF of the original inflation series for 

maximum lag numbers of 48 respectively. When looked at the correlogram of series in 
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Figure 6, the autocorrelation coefficient is seen to decline very slowly towards zero with 

increasing  lag  length  implying  that  the  series  is  nonstationary. On  the  other  hand,  

 
Figure 6. ACF of inflation series (for lag.max=48) 

 

 
Figure 7. PACF of inflation series (for lag.max=48) 

 

seasonal lags (12 24, 36,48) are clear to be significant. Thus, the presence of any 

seasonal unit root other than a zero (long-run) frequency unit root has to be detected.  

       Detailed explanations for testing monthly seasonal unit roots have been given place 

in Chapter 5 and Table 7 has presented long-run and seasonal frequencies for monthly 

series in details. In this study, the monthly seasonal unit root analysis has been carried 

out by using three different lag order selection methods. First, significant lags have been 

added to the four deterministic regressions (with only constant; constant and trend; 

constant and dummies; constant, trend and dummies) and one regression with no 

deterministic components in order to make certain about that the residuals are white 

noise (that is, insignificant lags have been removed until all selected lags become 
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significant). These test results have been given in Table 8 and subsequent to this, 

selected lags for HEGY regressions in Table 8 have been shown in Table 9. As 

mentioned before, the first two hypotheses which are  01   and 02   are tested by 

t-test and the other five joint hypotheses which are 043   , 065   , 

087   , 0109   and 01211    are tested by F-test. 

 

Table 8 

HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using 

Significant Lags)  

 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model 

with 

Constant 

 

Estimates 

for the 

Model 

with 

Constant 

and Trend 

Estimates 

for the 

Model with 

Constant 

and 

Dummies 

Estimates 

for the 

Model with 

Constant, 

Trend and 

Dummies 

Estimates 

for the 

Model with 

No 

Constant, 

No Trend 

and No 

Dummies 

01   0 -1.537* -0.288* -1.294* -1.548* -2.762 

02     -2.348 -2.313 -3.588 -3.608 -2.347 

043    2/  6.966 6.761 20.174 20.222 6.960 

065    3/2  4.220 4.008 14.163 14.297 4.208 

087    3/  1.675* 1.606* 9.036 9.132 1.668* 

0109   6/5  12.656 12.342 22.248 22.352 12.662 

01211    6/  5.461 5.236 14.104 14.524 5.435 

Note. 
1 
* denotes insignificant estimates (*p>.05) at 5% significance level 

          
2
 See Monthly HEGY Critical Values in Appendix C . 

 

 

Table 9 

Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by 

Using Significant Lags) 

 

Models Selected Lags Estimate Standard Error t-value Prob ( t ) 

C Lag.12 -0.213 0.065 -3.304 0.001 

C,T Lag.12 -0.221 0.067 -3.302 0.001 

C,D - - - - - 

C,D,T - - - - - 

- Lag.12 -0.216 0.064 -3.377 0.001 
Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables and    

          “-” denotes no deterministic component. 

 

       It can be inferred from Table 9 results that no lagged variable has been added to 

C,D and C,D,T models. However, for other three models (C; C,T and -) 12
th

 lag has 

been added as significant lag. When looked at Table 8, the results for the hypothesis 
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01   have revealed that the presence of the zero (non-seasonal or long-run) frequency 

unit root is accepted depending on the non-rejection of the null hypothesis 01   at all 

deterministic models (except no deterministic component model). Thus, original INF 

series is not stationary at zero frequency. Having examined the other hypotheses, all 

other hypotheses implying the presence of a unit root at seasonal frequency except the 

hypothesis 087    are seen to be rejected for all deterministic models and 

therefore it is concluded that there are no seasonal unit roots at 
6

5
,

3

2
,

2
,


   and 

6


  frequencies. In other saying, there are conjugate complex seasonal unit roots only at 

3


  frequencies corresponding to (2, 10) cycles per year for “Constant”, “Constant and 

Trend” and “No Deterministic Components” models. From this point of view, seasonal 

cycles can be said to follow mostly a deterministic structure.   

 

Table 10 

HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using AIC for 

Lags) 

 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates for 

the Model 

with 

Constant 

 

Estimates 

for the 

Model with 

Constant 

and Trend 

Estimates 

for the 

Model with 

Constant 

and 

Dummies 

Estimates 

for the 

Model with 

Constant, 

Trend and 

Dummies 

Estimates for 

the Model 

with No 

Constant, No 

Trend and 

No Dummies 

01   0 -1.546* -0.579* -1.417* -0.935* -2.542 

02     -2.541 -2.515 -2.978 -2.991 -2.534 

043    2/  4.938 4.905 18.391 18.360 4.937 

065    3/2  3.373 3.310 7.305 7.267 3.359 

087    3/  1.212* 1.197* 5.727* 5.756* 1.207* 

0109   6/5  14.009 13.633 20.506 20.451 13.975 

01211    6/  3.897 3.842 13.631 13.624 3.860 

  Note. 
1 
* denotes insignificant estimates (*p>.05) at 5% significance level 

            
2
  See Monthly HEGY Critical Values in Appendix C . 

 

       Table 10 presents monthly HEGY seasonal unit root test results based on AIC. The 

results are almost the same as Table 8 with regard to statistical significance: Since the 

hypothesis 01   could not be rejected at 5% significance level (meaning that non-

rejection of the presence of root 1 ), the presence of the zero frequency (non-seasonal) 
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unit root has been accepted. Thus, inflation series is nonstationary and seasonal unit 

roots have been detected only at 
3


  frequencies for all five models given in Table 10. 

In addition, estimate results regarding lagged values added to the auxiliary regressions 

have been presented in Table 11. Evaluating the results has revealed that 12
th

 lag has 

been given place in all five auxiliary regression models.  

 

Table 11 

Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by 

Using AIC for Lags) 

 

Models Selected Lags Estimate 
Standard 

Error 
t-value Prob ( t ) 

C 
Lag.2 0.107 0.065 1.639 0.103 

Lag.12 -0.210 0.064 -3.260 0.001 

C,T 
Lag.2 0.106 0.067 1.574 0.117 

Lag.12 -0.212 0.067 -3.161 0.002 

C,D 
Lag.6 -0.162 0.072 -2.251 0.026 

Lag.12 0.007 0.070 0.100 0.920 

C,D,T 
Lag.6 -0.157 0.073 -2.151 0.033 

Lag.12 0.014 0.072 0.188 0.851 

- 
Lag.2 0.105 0.065 1.615 0.108 

Lag.12 -0.213 0.064 -3.346 0.001 

 Note. “C”  denotes constant term, “T”  denotes  trend, “D”  denotes  seasonal dummy  variables   

            and  “-” denotes no deterministic component. 

 

 

Table 12 

HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using BIC for 

Lags) 

 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model 

with 

Constant 

 

Estimates for 

the Model 

with 

Constant and 

Trend 

Estimates for 

the Model 

with 

Constant and 

Dummies 

Estimates for 

the Model 

with 

Constant, 

Trend and 

Dummies 

Estimates for 

the Model 

with No 

Constant, No 

Trend and 

No Dummies 

01   0 -1.537* -0.288* -1.499* -1.315* -2.762 

02     -2.348 -2.313 -3.232 -3.278 -2.347 

043    2/  6.966 6.761 15.593 15.816 6.960 

065    3/2  4.220 4.008 9.534 9.773 4.208 

087    3/  1.675* 1.606* 6.756 6.956 1.668* 

0109    6/5  12.656 12.342 17.772 17.988 12.662 

01211    6/  5.461 5.236 10.906 11.126 5.435 

  Note. 
1 
* denotes insignificant estimates (*p>.05) at 5% significance level 

            
2
   See Monthly HEGY Critical Values in Appendix C . 
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       Table 12 considers the results of monthly HEGY seasonal unit root test based on 

BIC (Bayesian Information Criterion) and which lags have been added to the five 

auxiliary regressions is shown in Table 13 with given estimate results of these lags. 

Table 12 and Table 8 results do not differ. In conclusion, three methods discussed in 

terms of lag criteria (Significant lags, AIC and BIC) have revealed only the presence of 

conjugate complex seasonal unit roots at 
3


  frequencies corresponding to (2, 10) 

cycles per year. The presence of all other seasonal unit roots with 
6

5
,

3

2
,

2
,


   and 

6


 has been rejected and it has been concluded that seasonal cycles mostly display a 

deterministic structure. Therefore, there is no need to take the seasonal difference of 

INF series. However, because of the presence of zero (non-seasonal) frequency unit root 

cannot be denied it has been needed to take the first difference of INF series. In that 

case, INF series is not seasonally integrated and thus applying the seasonal difference 

filter )1( 12L  to the series is not required. Beaulieu and Miron (1992b, p.18) have also 

explained more clearly why applying )1( 12L  filter to the series is not required in that 

way: “The appropriateness of applying the filter )1( dL to a series with a seasonal 

component, as advocated by Box and Jenkins (1970) depends on the series being 

integrated at zero and all of the seasonal frequencies”.  Briefly, this explanation holds 

since the presence of all seasonal unit roots has not been accepted and there is weak 

evidence of seasonal unit roots on monthly series. 

 

Table 13 

Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by 

Using BIC for Lags) 

 

Models Selected Lags Estimate 
Standard 

Error 
t-value Prob ( t ) 

C Lag.12 -0.213 0.065 -3.304 0.001 

C,T Lag.12 -0.221 0.067 -3.302 0.001 

C,D Lag.12 -0.046 0.066 -0.697 0.486 

C,D,T Lag.12 -0.03 0.07 -0.422 0.673 

- Lag.12 -0.216 0.064 -3.377 0.001 
  Note. “C”  denotes  constant  term,  “T”  denotes  trend,  “D”  denotes  seasonal  dummy  variables  and    

             “-” denotes no deterministic component. 
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Table 14 

CH Test Results for Inflation Series 

 

 

 

       

After applying to HEGY test, now Table 14 presents CH test results in order to make 

inference about the seasonal behaviour of INF series. As mentioned before, contrary to 

the HEGY test, the null hypothesis of CH is the stationarity of all seasonal cycles 

(indicating to the presence of deterministic seasonality) while the alternative hypothesis 

is the presence of seasonal unit root (indicating to the presence of stochastic 

seasonality). According to the results, since calculated L-statistic (2.005) is smaller than 

not only 5% critical value (2.75) but also 1% (3.27) and 10% (2.49) critical values, we 

fail to reject the null hypothesis saying that seasonal pattern is deterministic. Therefore 

it can be said that the result of CH test is consistent with the result of HEGY test and 

once again there is no need for seasonal differencing operator. However, there is one 

important thing that since the presence of only conjugate complex seasonal unit roots 

with 
3


  frequencies has been determined with the adoption of the hypothesis

087   , INF series should be transformed by the necessary filters corresponding to 

these frequencies. Filters corresponding to all frequencies have been presented in Table 

7 (in sub-section 5.2.4.2.). Therefore, the necessary filter corresponding to 
3




frequencies has been expressed as )1( 2LL  . On the other hand, as expressed before, 

since the series includes zero (non-seasonal) frequency unit root, the first difference 

operator )1( L  should also be applied. So, the necessary transformation that will be 

made in INF series will be )1)(1( 2LLL  . More precisely, if the new series to be 

obtained is called “ inff ” (meaning filtered inflation), inff  will be formed as follows: 

                         ))2()1(()1(inf 2  INFINFINFLLf  

                                    )3()2(2)1(2  INFINFINFINF  

The ACF function of the “ inff ” series obtained after this transformation given above 

for maximum lags of 48 is given in Figure 8 and PACF function is given in Figure 9: 

    Tested Frequencies          L-Statistic          Critical Values 

   1%    5%   10% 

     

  


,
6

5
,

3

2
,

2
,

3
,

6
 

2.005   3.27   2.75   2.49 
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Figure 8. ACF of filtered inflation series ( inff ) for lag.max=48 

 

 

Figure 9. PACF of filtered inflation series ( inff ) for lag.max=48 

 

       As seen in Figure 8 and Figure 9, the significant spikes at lag 1 in both ACF and 

PACF suggest a non-seasonal MA(1) and non-seasonal AR(1) components. When 

looked at the PACF correlogram, there has been found no significant spikes at seasonal 

lags 12, 24, 36, 48. However, 6
th  

lag is seen to be significant. Therefore, it can be said 

again that series follows a semi-annual seasonal pattern (corresponding to the filter 

)1( 2LL   and thus to the hypothesis 087  ) as consistent with monthly seasonal 

unit root results and since three are no significant spikes at seasonal lags in PACF, once 

again it can be said that seasonal differencing is not required for the series. 

       “Forecast” package in R software offers us a very practical formula concerned with 

determining the order of both seasonal differencing and first-degree differencing 

benefiting from OCSB and CH tests. By running the following codes in “forecast” 
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package of version R.3.1.3., we can compare the results that will obtained through these 

codes with the results described above: 

 

Table 15 

R Codes and Outputs for Determining the Order of Seasonal Differencing by Using 

OCSB and CH Tests 

 

                                R Codes and Outputs 

>nsdiffs(INF,12,test=”ocsb”) 

[1] 0 

>nsdiffs(INF,12,test=”ch”) 

[1] 0 

Note. 
1
The function “nsdiffs” estimates the order of seasonal differencing in a series to satisfy stationarity  

            condition. Here “12” indicates  the length of seasonal period of the series and  “test”  expresses the  

            kind of seasonal unit root test to be applied (OCSB or CH).  

          
2
For more information, see (Hyndman, 2015). 

          
3
For  OCSB  test, the  null hypothesis  is :0H Seasonal unit root exists while :0H Seasonal cycles   

            are stationary (deterministic seasonality) for CH test. 

 

       As seen in Table 15, the result “[1] 0” reveals the number of seasonal differencing 

for inflation series as “0 (zero)” as a result of carrying out both OCSB test and CH test. 

Thus, there has been no need to take any seasonal difference. These results show 

consistency with the results expressed before. Now with the codes given in Table 16 

similar to Table 15, let us verify that original inflation (INF) series is not stationary at 

zero frequency: 

 

Table 16 

R Codes and Outputs for Determining the Number of First Differences by Using KPSS 

and ADF Tests 

 

                                R Codes and Outputs 

>ndiffs(INF,test=”kpss”) 

[1] 1 

>ndiffs(INF,test=”adf”) 

[1] 1 

Note. 
1 
The  function  “ndiffs”   estimates  the  number  of  first  differences  in  order  to  make  the  series                

            stationary. Here “test” expresses the kind of unit root test to be applied.  

          
2 
For more information, see  (Hyndman, 2015). 

          
3
For  KPSS test,  the  null  hypothesis  implies  the stationarity of series (or the absence of unit root)   

            while the null of ADF test implies the non-stationarity case of series in interest at the non-seasonal   

            level (or the presence of unit root). 
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       The results of practical codes that take place in Table 16 tell us that INF series 

should be first-degree differenced. ADF and KPSS test results can be clearly given as 

follows: 

 

Table 17 

ADF Test Results for INF Series in Level Form with Constant Added 

 
  t-statistic    Prob.*

 
                  Critical Values 

      1%      5%      10% 

   ADF Test Statistic -1.695814   0.4321 -3.458719 -2.873918 -2.573443 

Note. 
1 
Lag length has been chosen as 11 amongst max.lag=12 (based on SIC) 

          
2 
* denotes MacKinnon (1996) one-sided p-values 

       

Table 18 

ADF Test Results for INF Series in Level Form with Constant and Trend Added 

 
  t-statistic    Prob.*

 
                  Critical Values 

      1%      5%      10% 

ADF Test Statistic -1.585679   0.7959 -3.998457 -3.429484 -3.138243 

Note. 
1 
Lag length has been chosen as 11 amongst max.lag=12 (based on SIC) 

          
2 
* denotes MacKinnon (1996) one-sided p-values 

 
 

Table 19 

KPSS Test Results for INF Series in Level Form with Constant Added 

 
   LM-Stat.           Asymptotic Critical Values* 

      1%      5%      10% 

Kwiatkowski-Phillips-Schmidt-

Shin Test Statistic 

 1.721708  0.739000  0.463000  0.347000 

Note. 
* 
Kwiatkowski-Phillips-Schmidt-Shin (1992). 

          

Table 20 

KPSS Test Results for INF Series in Level Form with Constant and Trend Added 

   LM-Stat.          Asymptotic Critical Values* 

      1%      5%      10% 

Kwiatkowski-Phillips-Schmidt-

Shin Test Statistic 

 0.422944  0.216000  0.146000  0.119000 

Note. 
* 
Kwiatkowski-Phillips-Schmidt-Shin (1992). 
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       Since ADF test statistics calculated at both constant model and constant-trend 

model in Table 17 and Table 18 have been found to be insignificant (that is, calculated 

ADF statistics lie outside the critical region) when compared to 1%, 5% and 10% 

critical values, we fail to reject the null hypothesis and it is concluded that INF series is 

not stationary at the zero frequency. On the other hand, Since KPSS test statistics 

calculated at both constant model and constant-trend model in Table 19 and Table 20 

have been found to be significant (calculated KPSS statistics lie inside the critical 

region) when compared to 1%, 5% and 10% critical values, the null hypothesis saying 

that the original series is stationary has been rejected and it has been concluded that INF 

series is not stationary at the zero frequency. 

     Now, in order to show that the series should be first-degree differenced, let us test 

the first-degree difference of the series (In this case, the null hypothesis for KPSS will 

be the stationarity of the first-differenced series rather than the original series and the 

null for ADF will be non-stationarity of the first-differenced series): 

 

Table 21 

ADF Test Results for INF Series in First-Difference Form with Constant Added 

 
  t-statistic    Prob.*

 
                  Critical Values 

      1%      5%      10% 

ADF Test Statistic -9.402136   0.0000 -3.458719 -2.873918 -2.573443 

 
Note. 

1 
Lag length has been chosen as 10 amongst max.lag=12 (based on SIC) 

          
2 
* denotes MacKinnon (1996) one-sided p-values 

 

Table 22 

ADF Test Results for INF Series in First-Difference Form with Constant and Linear 

Trend Added 

 
  t-statistic    Prob.*

 
                  Critical Values 

      1%      5%      10% 

ADF Test Statistic -9.455364   0.0000 -3.998457 -3.429484 -3.138243 

Note. 
1 
Lag length has been chosen as 10 amongst max.lag=12 (based on SIC) 

          
2 
* denotes MacKinnon (1996) one-sided p-values 

 

       According to ADF test results with both “constant” added and “constant and linear 

trend” added in Table 21 and Table 22, the null hypotheses of nonstationarity of the first 

differenced  series  are  rejected  at  1%,  5%  and 10%  significance levels and therefore  
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meaning that first-difference of the series is stationary. 

 

Table 23 

KPSS Test Results for INF Series in First-Difference Form with Constant Added 

 
 LM-Stat. 

 

Asymptotic Critical Values* 

1% 5% 10% 

Kwiatkowski-Phillips-Schmidt-

Shin Test Statistic 

0.154848 0.739000 0.463000 0.347000 

   Note. 
* 
Kwiatkowski-Phillips-Schmidt-Shin (1992). 

 

Table 24 

KPSS Test Results for INF Series in First-Difference Form with Constant and Linear 

Trend Added 

 
 LM-Stat. 

 

Asymptotic Critical Values* 

1% 5% 10% 

Kwiatkowski-Phillips-  

Schmidt-Shin Test Statistic 

0.118458 0.216000 0.146000 0.119000 

      Note. 
* 
Kwiatkowski-Phillips-Schmidt-Shin (1992). 

 

       According to KPSS test results with both “constant” added and “constant and linear 

trend” added in Table 23 and Table 24,  the null hypotheses of stationarity of the first 

differenced series cannot be rejected at 1%, 5% and 10% significance levels and 

therefore we conclude that to make the series stationary, the series should be in (non-

seasonal) first-differenced form. 

       Another simple method in order to determine the optimal order of differencing 

comes from Box-Jenkins rule of thumb: The optimum order of differencing is the one 

with the smallest standard deviation (Akuffo & Ampaw, 2013, p. 15). In order to detect 

the optimal order, standard deviations corresponding to different orders of differencing 

are given in Table 25: 

 

Table 25 

Standard Deviations for Detecting the Optimal Order of Differencing by Box-Jenkins 

Rule of Thumb 

 
Order of Differencing Non First Second Third 

Standard Deviations 2.243578 1.492247 2.274733 3.806330 
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Hence, the minimum standard deviation is realized in first-degree differenced form with 

a value of 1.492247. Hence, once gain we have verified the optimum order as 1.  

       Now after the orders of seasonal and non-seasonal differences are determined in 

order to satisfy the stationarity condition of original series (since the series should be 

stationary for SARIMA modelling), we should determine AR, SAR, MA and SMA 

(seasonal moving average) orders to construct the best model.  

       In the model identification, possible best models have been tried to be discovered by 

“auto.arima” function in “forecast” package of R software. The method for selecting the 

best-fitted model is based on choosing AIC, AICc (Corrected Akaike Information 

Criterion) and BIC with minimum values. Mostly, the model that provides minimum 

AIC (or AICc) rather than BIC is a candidate to be selected as the best-fitted one. In 

Table 26, suggested ARIMA models by utilizing from OCSB and ADF tests have been 

presented with AICc and AIC information criteria given: 

 

Table 26 

AICc and AIC Values for Suggested ARIMA Models of INF Series by Using Stepwise 

Selection 

 

Suggested ARIMA models AICc AIC 

ARIMA(2,1,2)(1,0,1)[12] with drift Inf Inf 

ARIMA(0,1,0) with drift 2560.113 2560.063 

ARIMA(1,1,0)(1,0,0)[12] with drift 2494.328 2494.158 

ARIMA(0,1,1)(0,0,1)[12] with drift 2466.34 2466.17 

ARIMA(0,1,0) 2558.086 2558.069 

ARIMA(0,1,1)(1,0,1)[12] with drift Inf Inf 

ARIMA(0,1,1) with drift 2495.07 2494.969 

ARIMA(0,1,1)(0,0,2)[12] with drift 2449.736 2449.481 

ARIMA(1,1,1)(0,0,2)[12] with drift 2440.443 2440.084 

ARIMA(1,1,0)(0,0,2)[12] with drift 2505.766 2505.511 

ARIMA(1,1,2)(0,0,2)[12] with drift 2441.56 2441.079 

ARIMA(0,1,0)(0,0,2)[12] with drift 2532.184 2532.015 

ARIMA(2,1,2)(0,0,2)[12] with drift 2444.814 2444.194 

ARIMA(1,1,1)(0,0,2)[12] 2440.654 2440.398 

ARIMA(1,1,1)(1,0,2)[12] with drift 2405.964 2405.484 

ARIMA(1,1,1)(1,0,1)[12] with drift Inf Inf 

ARIMA(1,1,1)(0,0,1)[12] with drift 2453.309 2453.054 

ARIMA(0,1,1)(1,0,2)[12] with drift Inf Inf 

ARIMA(2,1,1)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,0)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,2)(1,0,2)[12] with drift Inf Inf 

ARIMA(0,1,0)(1,0,2)[12] with drift 2498.705 2498.449 

ARIMA(2,1,2)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,1)(1,0,2)[12] Inf Inf 

ARIMA(1,1,1)(2,0,2)[12] with drift Inf Inf 
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       As shown in Table 26, the best model under the stepwise-selection method among 

other models has been chosen as ARIMA(1,1,1)(1,0,2)[12] model with drift with the 

smallest AICc value 2405.964 and the smallest AIC value 2405.484. All the other 

models which have greater AIC values have been provided only for comparison 

purposes. After selecting the best model based on AIC and AICc, we need to estimate 

the significance of parameters: 

Table 27 

Estimates of Parameters for ARIMA (1,1,1)(1,0,2)[12] Model with Drift 

 
 AR(1) MA(1) SAR(1) SMA(1) SMA(2) DRIFT 

Estimate 0.1750 -0.8857 0.8862 -0.7102 0.1813 -0.9323 
Standard 

Error 
0.0763 0.0375 0.0537 0.0847 0.0746 1.3789 

 

Sigma^2 estimated: 1233  log likelihood: -1194.59  AIC: 2405.48  AICc: 2405.96   BIC: 2429.88 

 

As clearly seen in Table 27, the coefficients of ARIMA (1,1,1)(1,0,2)[12] Model with 

Drift are significantly different from zero. 

   

Table 28 

BIC Values for Suggested ARIMA Models of INF Series by Using Stepwise Selection 

     

Suggested ARIMA models BIC 

ARIMA(2,1,2)(1,0,1)[12] with drift Inf 

ARIMA(0,1,0) with drift 2567.032 

ARIMA(1,1,0)(1,0,0)[12] with drift 2508.098 

ARIMA(0,1,1)(0,0,1)[12] with drift 2480.11 

ARIMA(0,1,0) 2561.554 

ARIMA(0,1,1)(1,0,1)[12] with drift Inf 

ARIMA(0,1,1) with drift 2505.423 

ARIMA(0,1,1)(0,0,2)[12] with drift 2466.905 

ARIMA(1,1,1)(0,0,2)[12] with drift 2460.993 

ARIMA(1,1,0)(0,0,2)[12] with drift 2522.935 

ARIMA(1,1,2)(0,0,2)[12] with drift 2465.473 

ARIMA(0,1,0)(0,0,2)[12] with drift 2545.954 

ARIMA(2,1,2)(0,0,2)[12] with drift 2472.072 

ARIMA(1,1,1)(0,0,2)[12] 2457.822 

ARIMA(1,1,1)(1,0,2)[12] Inf 

ARIMA(1,1,1)(0,0,1)[12] 2467.839 

ARIMA(0,1,1)(0,0,2)[12] 2462.758 

ARIMA(2,1,1)(0,0,2)[12] 2464.79 

ARIMA(1,1,0)(0,0,2)[12] 2517.457 

ARIMA(1,1,2)(0,0,2)[12] 2462.153 

ARIMA(0,1,0)(0,0,2)[12] 2540.471 

ARIMA(2,1,2)(0,0,2)[12] 2469.057 
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Table 28 presents BIC values for each suggested ARIMA model. If we take only BIC 

into account, the best model is seen to be ARIMA(1,1,1)(0,0,2)[12] model with a 

minimum value of 2457.822. The estimates of parameters of ARIMA(1,1,1)(0,0,2)[12] 

model are given in Table 29: 

 

Table 29 

Estimates of Parameters for ARIMA (1,1,1)(0,0,2)[12] Model 

 

 AR(1) MA(1) SMA(1) SMA(2) 

Estimate 0.2412 -0.9183 0.2685 0.2295 

Standard Error 0.0701 0.0249 0.0690 0.0569 

 

Sigma^2: 1435  log-likelihood: -1219.39  AIC: 2448.78  AICc: 2449.03  BIC: 2466.2 

 

If ARIMA(1,1,1)(1,0,2)[12] model with drift chosen by AIC (or AICc) in Table 26 and 

ARIMA(1,1,1)(0,0,2)[12] model chosen by BIC in Table 28 are compared, 

ARIMA(1,1,1)(1,0,2)[12] model with drift is chosen because of having smaller 

information criteria.  

       For selecting the best-fitted model (to find out how well the model fits the data), we 

need to continue with the examination of residuals diagnostics (or Diagnostic Checking) 

in order to find out whether the residuals display a White noise process which is a vital 

assumption of a good ARIMA model (zero mean, constant variance, no serial 

correlation). In this stage, first we will have a look at Box-Ljung Test results in order to 

make sure about residuals have no remaining autocorrelation. The null and alternative 

hypotheses are given respectively as follows: 

   :0H The residuals are random (independently distributed) 

   :1H The residuals are not random (not independently distributed, displaying serial 

correlation) 

       

Table 30 

Box-Ljung Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift at Seasonal     

Lags 

 
Seasonal Lags X-squared Statistics p-value 

12 10.6567 0.1543 

24 21.996 0.2845 

36 30.6726 0.4828 

48 39.8145 0.6102 
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       Table 30 presents the autocorrelation check results for the residuals of 

ARIMA(1,1,1)(1,0,2)[12] with drift model at seasonal lags and according to given 

results, we cannot reject the null hypothesis saying that residuals are independent and 

hence conclude about the absence of autocorrelation problem depending on the 

statistically insignificant chi-squared statistics (since p-values for Box-Ljung statistic 

are greater than 5% significance level for all seasonal lags 12,24,36,48). Therefore, this 

model can be said to fit the data well. This result is also verified by looking at the 

correlogram of residuals shown in Figure 10. All acf and pacf values in Figure 10 are 

within the significance limits and mean of the residuals seem to be randomly distributed 

around zero. Thus, the residuals appear to be White noise. 

  

Figure 10. ACF  and  PACF  plots of the residuals of  ARIMA(1,1,1)(1,0,2)[12]  model                        

                  with drift 

 

Now let us check the normality of ARIMA(1,1,1)(1,0,2)[12] model with drift residuals. 

 

Table 31 

Jarque-Bera Normality Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift 

 

X-squared Statistic Asymptotic p-value 

3.2092 0.201 

 

Table 31 shows the Jarque-Bera Test Results. As well known, the null hypothesis for 

the test is that residuals are normally distributed and the alternative hypothesis is that 

residuals are not normally distributed. Insignificant X-squared statistic in Table 31 with 
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an asymptotic p-value of 0.201 that is greater than 5% significance level reveals that the 

null hypothesis cannot be rejected concluding that residuals are normally distributed. 

 

Table 32 

ARCH-LM Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift 

 
        Chi-squared           p-Value 

           14.7563            0.255 

 

After checking the normality assumption, now ARCH-LM (Autoregressive Conditional 

Heteroscedasticity-Lagrange Multiplier) test results are presented in Table 32 to find out 

if there is a heteroscedasticity problem. For this test, the null hypothesis says that there 

are no ARCH (Autoregressive Conditional Heteroscedasticity) effects (indicating to the 

constant variance). From ARCH-LM test results with the number of lags chosen as 12, 

it can be inferred that since p-value (0.255) exceeds 5% significance level, the null 

hypothesis of no ARCH effect (homoscedasticity) in the residuals of 

ARIMA(1,1,1)(1,0,2)[12] with drift model cannot be rejected and therefore concluding 

that the residuals of ARIMA(1,1,1)(1,0,2)[12] with drift model are homoscedastic (that 

is, the residuals have constant variance). Briefly, it can be said that all assumptions 

regarding diagnostic checking (no serial correlation, normality of residuals, constant 

variance) hold for this model. 

Table 33 

Forecast Accuracy Measures for ARIMA(1,1,1)(1,0,2)[12] Model with Drift 

 
ME RMSE MAE MPE MAPE MASE 

-0.3333779 34.08106 25.34299 -49.62708 70.50063 0.73495 
Note.      ME: Mean Error 

          RMSE: Root Mean Squared Error 

            MAE: Mean Absolute Error 

             MPE: Mean Percentage Error 

         MAPE: Mean Absolute Percentage Error 

          MASE: Mean Absolute Scaled Error 

(For more information about the accuracy measures, see Ord & Fildes, 2013, chap. 2). 

 

     In Table 33, various forecast accuracy measures for ARIMA(1,1,1)(1,0,2)[12] with 

drift model that is chosen under the stepwise-selection method have been presented. 

Afterwards, these results will be compared to the model that will be chosen under the 

non-stepwise selection method.   

       Subsequent to applying (faster) stepwise-selection method which provides a short-

cut for selecting the best-fitted model, now let us try the same thing under the (slower) 
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non-stepwise selection method which searches for all possible models. By benefiting 

from “auto.arima” function in “forecast” package of R as previously, the best choice 

under the nonstepwise-selection method has been determined to be 

ARIMA(1,1,1)(2,0,0)[12] with drift model for inflation series. The estimates of 

parameters of this new model are given in Table 34: 

  

Table 34 

Estimates of Parameters for ARIMA (1,1,1)(2,0,0)[12] Model with Drift 

 
 AR(1) MA(1) SAR(1) SAR(2) DRIFT 

Estimate 0.2202 -0.9273 0.2961 0.3136 -0.4393 

Standard Error 0.0752 0.0336 0.0610 0.0633 0.5195 

Sigma^2: 1270  log-likelihood: -1200.75  AIC: 2413.51  AICc: 2413.87  BIC: 2434.42 

        

As it is apparent in Table 34, the coefficients of ARIMA (1,1,1)(2,0,0)[12] Model with 

Drift are seen to be significant. 

 

Figure 11. ACF and PACF plots of the residuals of ARIMA(1,1,1)(2,0,0)[12] model      

                  with drift 

 

       When looked at Figure 11, mean of the residuals of ARIMA(1,1,1)(2,0,0)[12] 

model with drift is seen to be distributed around zero. However, acf and pacf values are 

within the significance limits only up to 12 and 24 seasonal lags. Even though the 

absence of  autocorrelation at seasonal lag 12 is sufficient to make a positive inference 

about no serially correlated residuals (since we are dealing with monthly inflation rates 
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in which the length of seasonal period is 12), a spike is realized at 36
th

 lag and therefore 

not all acf values are seen to take place within the significance limits because of this 

36
th

 lag. If ARIMA(1,1,1)(2,0,0)[12] model with drift is compared to ARIMA 

(1,1,1)(1,0,2)[12] model with drift that does not enable such a spike at 36
th 

lag apart 

from other seasonal lags as observed in Figure 10, the latter (with stepwise-selection 

method) can be said to be a stronger model than the former (with non-stepwise selection 

method). Let us verify this with an examination on Box-Ljung test statistics at seasonal 

lags: 

 

Table 35 

Box-Ljung Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift at Seasonal Lags 

Based on the Non-stepwise Selection 

 
Seasonal Lags X-squared Statistics p-value 

12 12.6478 0.1246 

24 25.7961 0.1727 

36 46.7037 0.04507 

48 58.2202 0.07392 

 

       Table 35 presents the autocorrelation check results for the residuals of 

ARIMA(1,1,1)(2,0,0)[12] with drift model at seasonal lags based on the non-stepwise 

selection. According to both the plot of ACF in Figure 11 and Table 35 results, no serial 

correlation has been detected except 36th lag with a probability value (p-value) of 

0.04507 which is smaller than 5% significance level. Therefore p-values for Box-Ljung 

statistics at seasonal lags 12, 24, 48 are greater than 5% significance level indicating to 

the non-rejection of the null hypothesis of independently distributed residuals at these 

seasonal lags. Only 36
th 

lag creates serially correlated residuals depending on the 

rejection of the null. Now let us check the normality of ARIMA(1,1,1)(2,0,0)[12] model 

with drift residuals: 

 

Table 36 

Jarque-Bera Normality Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift 

 
X-squared Statistic Asymptotic p-value 

1.0074 0.6043 

 

According to the Jarque-Bera test results given in Table 36, we fail to reject the null 

hypothesis saying that the residuals are normally distributed with an insignificant X-
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squared statistic having an asymptotic p-value of 0.6043 that is greater than 5% 

significance level.  

 

Table 37 

ARCH-LM Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift 

 
        Chi-squared           p-Value 

           15.6521            0.2077 

 

From the ARCH-LM test results, it can be inferred that the null hypothesis of no ARCH 

effect (homoscedasticity) in the residuals of ARIMA(1,1,1)(2,0,0)[12] model with drift 

cannot be rejected and hence the residuals of this model are said to be homoscedastic. 

Briefly, all assumptions regarding normality of residuals, and constant variance hold for 

this model except autocorrelation check for 36
th

 lag. Residuals of 

ARIMA(1,1,1)(2,0,0)[12] model with drift are independently distributed up to seasonal 

lags 12 and 24, however not independently distributed for seasonal lag 36. 

 

Figure 12. Plot of ARIMA(1,1,1)(2,0,0)[12] with drift residuals against time 

 

Table 38 

Forecast Accuracy Measures for ARIMA(1,1,1)(2,0,0)[12] Model with Drift 

 
ME RMSE MAE MPE MAPE MASE 

-0.3060675 35.49517 27.12352 -60.00625 80.78677 0.7865855 
Note. For more information about the accuracy measures, see Ord & Fildes, 2013, chap. 2. 

 

In Table 38, forecast accuracy measures for ARIMA(1,1,1)(2,0,0)[12] with drift model 

that is based on the non-stepwise selection method have been presented. 

Time

AR
IM

A(
1,

1,
1)

(2
,0

,0
)[1

2]
w

ith
 d

rif
t r

es
id

ua
ls

1995 2000 2005 2010 2015

-1
00

-5
0

0
50

10
0



134 

 

       Now that we have identified two models based on both stepwise and non-stepwise 

selection, we can provide a summary of final results: In this application, 

ARIMA(1,1,1)(1,0,2)[12] with drift model chosen by using (faster) stepwise selection 

method and ARIMA(1,1,1)(2,0,0)[12] with drift model chosen by using (slower) non-

stepwise selection which seeks for all possible models  have been compared. Although 

we expect the latter model with non-stepwise selection to be better (since, stepwise 

selection offers short-cuts in selecting the best model), the results have showed that the 

former model with stepwise-selection is better as the best-fitted SARIMA model. A 

summary of the comparison of both models are given in Table 39: 

 

Table 39 

Comparison of ARIMA(1,1,1)(1,0,2)[12] with Drift and ARIMA(1,1,1)(2,0,0)[12] with 

Drift Models 

 

Models 
Accuracy 

Measures 

Significancy of 

Coefficients 
AICc Normality 

ARCH- 

LM 

ACF of Residuals 

(Autocorrelation 

check for 

residuals) 

Model 

1 

RMSE: 34.08106 

MAE: 25.34299 

MAPE: 70.50063 

MASE: 0.73495 

All seasonal and 

non-seasonal AR 

and MA coefficients 

are significant. 

2405.96 ok ok 

There is no spike 

(no autocorrelation 

at all seasonal lags 

12,24,36,48.) 

Model 

2 

RMSE: 35.49517 

MAE: 27.12352 

MAPE: 80.78677 

MASE: 0.7865855 

All seasonal and 

non-seasonal AR 

and MA coefficients 

are significant. 

2413.87 ok ok 

There is a spike at 

36th lag 

(autocorrelation 

problem exists at 

36th lag). 

Note. Model 1 represents ARIMA(1,1,1)(1,0,2)[12] with Drift. 

          Model 2 represents ARIMA(1,1,1)(2,0,0)[12] with Drift. 

 

           As seen in Table 39, forecast accuracy measures of model 1 are smaller than the 

ones of model 2. In the light of given information, it is possible to say that model 1 

satisfies all the necessary assumptions (no serial correlation, constant variance and 

normality) and is better in all respects than model 2 with the smallest AICc, significant 

parameters, no spike at ACF etc. Therefore having satisfied all the model assumptions, 

model 1 can be regarded as the best-fitted model for forecasting monthly inflation rates 

in Turkish economy. 

       In order to verify once again that model 1 is the best model for forecasting, we can 

utilize from Diebold-Mariano test for predictive accuracy. 
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Table 40 
Diebold-Mariano Test Results of ARIMA(1,1,1)(1,0,2)[12] with Drift and 

ARIMA(1,1,1)(2,0,0)[12] with Drift Models for Predictive Accuracy  

Diebold-Mariano Test for Model 1 ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) and 

                                   Model 2 ARIMA(1,1,1)(2,0,0)[12] with drift (non-stepwise) 

Tested Alternative 

Hypotheses 
DM Statistic p-value 

Two-sided -2.0771 0.03885 

Less -2.0771 0.01943 

Greater -2.0771 0.9806 

 

     The Diebold-Mariano test provides a comparison of the forecast accuracy of two 

forecast methods by using forecast errors from two models in interest. This test is tested 

using three different alternative hypotheses with the null hypothesis saying that the two 

methods have the same forecast accuracy. The alternative “less” says that method 2 is 

less accurate than method 1. The alternative “greater” says that method 2 is more 

accurate than method 1. The alternative “two-sided” says that method 1 and method 2 

have different levels of accuracy (this alternative is expressed as the default hypothesis 

among others) (Hyndman, 2015, pp. 20-21).  

       According to the results of two-sided alternative hypothesis in Table 40, it is clear 

to see that the null hypothesis is easily rejected at 5% significance level when looked at 

the prob value of 0.03885. Thus, method 1 and method 2 are considered to have 

different levels of accuracy. According to the results of the alternative hypothesis 

“less”, it is seen once again that the null hypothesis is rejected at 5% level with a p-

value of 0.01943 concluding that method 2 is less accurate than method 1 (in other 

saying, method 1 - ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise)- is more accurate). 

On the other hand, the results of the alternative hypothesis “greater” say that the null 

hypothesis fails to be rejected at 5% level with a p-value of 0.9806. The evaluation of 

the results given by the tested hypotheses reveals that except the alternative “greater”, 

two methods have different accuracy levels and method 1 (ARIMA(1,1,1)(1,0,2)[12] 

with drift (stepwise)) is more accurate than method 2 (ARIMA(1,1,1)(2,0,0)[12] with 

drift (non-stepwise)) (Apart from all necessary checks mentioned in this application, a 

good SARIMA model should also satisfy causality, stationarity and invertibility 

conditions. Of course, our ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model 

satisfies these conditions. About this, see Appendix D). 
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6.2. Seasonal Integration Tests and a Different Look at Cointegration Relationship   

        between Quarterly Inflation Rates and Growth 

       Inflation is one of the most important facts in our daily life referring to a sustained 

increase in consumer prices and it can be measured through CPI, producer price index 

(PPI) or GDP deflator. However, it is generally measured as a change in the harmonized 

index of consumer prices (HICP) that has been harmonized across all European Union 

member states. Holmes (2014) has presented the definition of HICP as “The HICP is the 

measure of inflation which the governing council uses to define and assess price 

stability in the Euro area as a whole in quantitave terms.” (p.16).  

       In this part, first seasonal integration tests will be applied in a unified approach for 

inflation rates and growth variables and after determining the seasonal integration 

orders of these variables, the cointegration relationship between them will be 

investigated. Inflation data have been derived through  100.
1

1






t

tt

CPI

CPICPI
INF  as in 

section 6.1 and real gdp growth rates have been obtained by 100.
1

1






t

tt

GDP

GDPGDP
GR

transformation where INF denotes inflation rate, tCPI  denotes consumer price index at 

time t and 1tCPI  denotes consumer price index at time t-1, GR denotes real gdp growth 

rate and GDP denotes real GDP. For deriving inflation data, we have utilized from 

quarterly HICP data (with Index 2010=100) as CPI for Turkey and HICP data have 

been obtained from Organization for Economic Co-operation and Development. On the 

other hand, GDP data have been collected from Central Bank of the Republic of Turkey 

(CBRT). The separate graphs of GR and INF variables have been given in Figure 13. It 

is likely from the graphs to see the seasonal patterns clearly. In addition, in Figure 14 

these two variables have been presented in the same graph in terms of giving a clue 

about their cointegrating relations. Since it is seen that they are moving together in the 

graph, they are highly possible to be cointegrated.  

       In this application, seasonal integration tests will be applied for quarterly data on 

the real gdp growth rates and inflation over 1998q1:2014q4 period by taking the study 

of Ilmakunnas (1990) as basis. When looked at the graphs in Figure 13, it is apparent to 

see the seasonal behaviours of both INF and GR variables. In ADF and HEGY test 

applications, constant term and seasonal dummies have been included in the regressions 

to be applied and seasonal means have not been removed in DHF and OCSB tests. 
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(a)                                                                (b) 

Figure 13. Graphs of quarterly growth rates (a) and inflation rates (b) against time over  

                   1998Q1-2014Q4 period 

                                                    
Figure 14. Graph of quarterly growth rates and inflation rates together 

 

As seen in Figure 14, a decrease (increase) in gdp growth is generally matched by a 

corresponding increase (decrease) in inflation. As clear from graph (a) in Figure 13, 

seasonal movements in growth series are very marked and inflation series in graph (b) 

also displays some seasonal pattern. Depending on the clear seasonal patterns of these 

two series, we can recourse to seasonal differencing procedure in order to capture such 

patterns. Because two series have quarterly frequency, seasonally differenced variables 

have been obtained by using )1( 4L operator. Therefore our transformed series that will 

be called D4INF and D4GR respectively for inflation and growth can be expressed as 

44  tt INFINFINFD  and 44  tt GRGRGRD . As a result of these transformations, 

D4INF and D4GR variables which are seasonally integrated of order SI )1,1(  (or 

integrated of order )1,0(I ) have been graphed together in Figure 15 (in order to see the 

difference between SI(d,D) and I(d,D), see subsection 5.2): 
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Figure 15. Graph of seasonally differenced growth rates and inflation rates together 

 

Figure 15 also shows that these seasonally differenced two series are moving together, 

but at an opposite direction. Thus, it supports the idea that they seem to be cointegrated. 

        

Table 41 

Seasonal Integration Test Results for Inflation and Growth Series 

 

Test 

Test Statistic for Variable 

 

GR 

Lag 

Length 

(p) 

INF Lag Length (p) 

ADF -3.689032 4 
 

-1.553273 

* 

** 

*** 

4 

ADF for   Series 

 

-5.028365 7 -7.782215 3 

ADF for 4  Series -6.711397 3 -2.826763 

* 

** 

4 

ADF for )(LS Series -3.751048 1 -1.981335 

* 

** 

*** 

5 

DHF -4.801168 1 -3.146821 

* 

** 

*** 

5 

DHF for   Series -2.539052 

* 

** 

*** 

5 -5.068007 9 
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Table 41 

(Continued) 

Test 

Test Statistic for Variable 

 

GR 

Lag 

Length 

(p) 

           INF 

Lag  

Length 

 (p) 

 
 

HEGY 1  -3.689032 
 
 
 
 
 
 
 
 

  1p  

-2.412879 

* 

** 

*** 

 
 
 
 
 
 
 
 
 

3p  

2  -2.104948 

* 

** 

*** 

-2.797232 

* 

** 

3  -3.082795 

* 

** 

*** 

-6.117571 

4  -0.287342 

* 

** 

*** 

-2.678279 

* 

43    4.804014 

* 

** 

*** 

22.65265 

 

 

HEGY 

(with 01  ) 

 

 

2  

 

-1.916769 

* 

** 

*** 

 

 

 
 
 
 
 

   
5p  

 

-5.872822 

 

 

 
 
 
 
 

1p  3  -1.491104 

* 

** 

*** 

-7.031611 

4  -0.561135 

* 

** 

*** 

-5.095386 

43    1.273491 

* 

** 

*** 

37.99593 
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   Table 41 (Continued) 

  Test 

Test Statistic for Variable 

 

   GR 

      Lag       

  Length 

(p) 

            INF 

             Lag  

              Length 

              (p) 

HEGY 

(with 

) 

 
 

 

 

 

                   see ADF for Series 

HEGY                      

for  Series               

(with ) 

 

 

 

-1.081247 

* 

** 

*** 

       

 

 

-2.582364 

* 

** 

*** 

    

 

-1.126513 

* 

** 

*** 

      -5.468436 

 

0.980675 

* 

** 

*** 

2.412156 

* 

** 

*** 

   1.148816 

* 

** 

*** 

       20.04481 

 

HEGY 

for  Series 

(with 

) 

 

 

 

 

                  see ADF for  Series 

HEGY                  

for  Series 

 

 

 

-5.028365 

        

 

-7.782215 

      

 

 

-1.916769 

* 

** 

*** 

       -5.872822 

 

-1.447264 

* 

** 

*** 

-8.504117 

 

0.639263 

* 

** 

*** 

0.814304 

* 

** 

*** 

 

1.273491 

* 

** 

*** 

37.99593 

 

0432   1 )(LS



01 

2

8p 4p

3

4

43  



0432  
1 4



1

4p 0p

2

3

4

43  
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Table 41 (Continued) 

 

  Test 

Test Statistic for Variable 

 

   GR 

      Lag       

  Length 

(p) 

              INF 

             Lag  

              Length 

              (p) 

      OCSB 
 

-5.553677  

   
-3.604473  

 
 

-1.798949 

* 

** 

-10.06257 

     OCSB 

      (with ) 
        

 

                 see DHF for  Series 

     OCSB 

      (with ) 
 

 

                 see ADF for  Series 

 

Note:   * denotes insignificant values at 1% significance level 

          ** denotes insignificant values at 5% significance level 

        *** denotes insignificant values at 10% significance level. 

 

       Table 41 presents the results of different seasonal integration tests in order to decide  

about  integration  orders  of both INF and GR variables. In this application, the 

selection of lags )( p  has been made in a way not to have autocorrelation and 

heteroscedasticity problems apart from the examination of correlogram of residuals. 

First, it is necessary to choose appropriate integration orders for inflation and growth by 

utilizing from the given information in Table 41. In Table 41, the column GR presents 

the estimates of growth variable and the column for INF gives the estimates for inflation 

variable under the different regression models. The null and alternative hypotheses 

corresponding to different models have been mentioned in Table 5. Therefore, we have 

three (null) hypotheses that will be used as the starting point of testing sequence: 

starting point may be either SI(2,1), SI(1,1) or SI(1,0). As a conclusion of a thorough 

evaluation on Table 41, the results of these three cases are given in Table 42 along with 

the accepted hypotheses shown in bold type. 

 

 

 

 

 

 

 

 

 

 

1
3p 0p

2

01  2 

02  1 4
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Table 42 

A Summary of Null and Alternative Hypotheses to be Used under the Starting Points 

SI(2,1), SI(1,1) or SI(1,0) 

 

 

  Case 1: If the starting point is SI(2,1) 

 

Null Hypothesis Alternative Hypothesis 

ADF for 4  

 
SI(2,1) SI(1,1) 

DHF for   

 
SI(2,1) SI(1,0) 

HEGY for  : 

while 01  , 2 , 3 , 4  tested 

1 , 2 , 3 , 4  tested 

while 0432   , 1  tested 

 

SI(2,1) 

SI(2,1) 

SI(2,1) 

 

 

SI(2,0) 

SI(1,0) 

SI(1,1) 

 

 

Case 2: If the starting point is SI(1,1) 

 

Null Hypothesis Alternative Hypothesis 

ADF for )(LS  

 
SI(1,1) SI(0,1) 

DHF 

 
SI(1,1) SI(0,0) 

 

HEGY: 

while 01  , 2 , 3 , 4  tested 

1 , 2 , 3 , 4  tested 

while 0432   , 1  tested 

 

 

SI(1,1) 

SI(1,1) 

SI(1,1) 

 

SI(1,0) 

SI(0,0) 

SI(0,1) 

OCSB: 

01  , 2  tested 

 

SI(1,1) 

 

SI(0,0) 

 

 

Case 3: If SI(1,0) is tested 

 

Null Hypothesis Alternative Hypothesis 

ADF 

 
SI(1,0) SI(0,0) 

HEGY: 

while 0,, 432  , 1  tested 
 

SI(1,0) 

 

SI(0,0) 

OCSB: 

while 02  , 1  tested 

 

SI(1,0) 

 

SI(0,0) 
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Table 43  

Accepted Hypotheses in Seasonal Integration Tests for INF and GR series 

 
Case 1: If the starting point is 

SI(2,1), 

 

    GR(growth)                      INF (inflation) 

ADF for 4             SI(1,1)    SI(2,1) may be accepted for 1% and 

%5 levels (and SI(1,1) may be 

accepted for 10% level). 

DHF for               SI(2,1)                          SI(1,0) 

HEGY for  : 

while 01  , iken 2 , 3 , 4      

                   tested 

 

 

1 , 2 , 3 , 4  tested         

 

 while 0432   , 1  tested 

 

        

        SI(2,1)      

         

         

 

        SI(2,1)      
         

        SI(1,1)      

 

SI(2,1) can be accepted because of 

the presence of unit roots at 2 and 

4 . 

SI(1,0) may be accepted since there 

is no biannual and annual unit roots. 

         (See ADF for 4  )                   

 

*The results of the case “while 0432   , 1  tested” in HEGY test for   are the same as 

ADF for 4  results. The results for two series are not certain if the starting point is SI(2,1). However in 

most cases the hypothesis SI(2,1) cannot be rejected for growth series and inflation series may be accepted 

as either SI(2,1) or SI(1,0). 

Case 2: If the starting point is 

SI(1,1), 

     GR(growth) 

  

                 INF (inflation) 

ADF for )(LS             SI(0,1)                          SI(1,1) 

DHF          SI(0,0)                          SI(1,1) 

HEGY: 

while 01  , 2 , 3 , 4  tested 

 

1 , 2 , 3 , 4  tested 

 

while 0432   , 1  

tested 

 

 

        SI(1,1) 

         

        SI(1,1) 

         

        SI(0,1) 

 

 

                         SI(1,0) 

 

   For %1 level, SI(1,1) may be 

accepted. 

                         SI(1,1) 
  

OCSB: 

01  , 2  tested 
        SI(1,1)                          SI(0,0) 

*The results of the case “while 0432   , 1  tested” in HEGY test are the same as ADF for 

)(LS results. As it is seen obviously, the result of two variables may be in the form of SI(1,1) dominates. 

Case 3: If SI(1,0) is tested, 

 

    GR(growth) 

 

                   INF (inflation) 

ADF          SI(0,0)                          SI(1,0) 

HEGY: 

0,, 432   iken 1  tested 

 

        SI(0,0) 

 

                         SI(1,0) 

OCSB: 02  iken 1  tested SI(0,0)                          SI(0,0) 

Note. 
1 
Bold expressions have been used to  highlight mostly accepted  hypotheses under the starting point   
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            in interest. 

          
2 
For 1998Q1-2014Q4 period (that is,  68 observations),  in  most cases, N=100 (observations)  has  

             been taken as basis in critical values tables. 

          
3
 ADF critical values  have  been  considered  as  -3.51 for  1%,  -2.89  for  5%  and  -2.58  for 10%  

             significance level for  the  model with constant and  no  trend  (N=100) (Critical values have been   

             cited from Fuller (1976, p. 373)). 

          
4
 DHF  critical values  have  been  cited from  table 7 (percentiles,  the  studentized  statistic for  the   

             seasonal  means  model)  in Dickey et al.(1984, p. 362). For quarterly data, d has been considered   

             as 4 and for DHF test, n=md (total number of observations) has been taken as 80 (seasonal means  

             have not been removed). Percentiles of the studentized statistic for the seasonal means model are  

             given as: -4.78 for 1%, -4.11 for 5% and -3.78 for 10%. 

          
5 
Critical values  have  been  obtained  from  Osborn et al. (1988, p. 376)  for  OCSB  test (with  no  

              seasonal mean subtraction). 

          
6
 Critical values  for HEGY test have been taken from Hylleberg et al. (1990, pp. 226-227)  for  the  

              model with intercept and seasonal dummies. See Appendix E. 

 

       Table 43 presents the accepted hypotheses of growth and inflation variables under 

the different forms of ADF, DHF, HEGY and OCSB tests. The second “GR” column 

gives the accepted hypotheses for this variable under the given tests and third column 

“INF” presents the accepted hypotheses for this variable under the given tests. In 

addition, the mostly accepted hypotheses for two variables when they are considered 

together are shown in bold type in Table 43 so that if the starting point is SI(2,1), mostly 

SI(2,1) has been accepted for two variables and if the starting point is SI(1,1), mostly 

SI(1,1) has been accepted. 

       As Ilmakunnas (1990) expressed, the conclusion on the appropriate order of 

integration depends on the starting point of testing sequence . If starting from the most 

general model (case 1 in Table 43), the result is that in most cases the growth variable is 

stationary after both first differencing and quarterly differencing (in most cases, the null 

of SI(2,1) is accepted against the other alternative hypotheses) and according to this 

starting point, it may be concluded that inflation series may be either SI(2,1) or SI(1,0) 

(given in “INF” column). If the starting point is case 2 in Table 43 (or quarterly 

differencing (that is, SI(1,1)), we cannot obtain accurate results for variables: While INF 

series may be accepted as SI(1,1) in most cases, GR series may be SI(0,1), SI(1,1) or 

SI(0,0). 

       When looked at the DHF test result in Case 2 where the null hypothesis is SI(1,1) 

and the alternative is SI(0,0), GR variable can be said to reach full stationarity with 

SI(0,0) seasonal integration order. The other tests apart from DHF in Case 2 imply that 

seasonal frequency unit roots clearly can be accepted (or cannot be rejected) for GR 

variable. However, the evidence is not certain for INF series (it may also be SI(1,0) or 

SI(0,0) other than SI(1,1) – in other words, it may not include seasonal unit roots). 
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       It is worth mentioning about some equivalences between the tests when 0j  

(taking place in Table 5). In case the main hypothesis to be tested is the presence of 

seasonal frequency unit roots, i.e. 0432    in the HEGY test, the test 

regression does not differ from ADF test for seasonally averaged ( )(LS ) data. In a 

similar manner, in the case of 0432    in the HEGY test for first differenced 

data, the test regression is the same as the ADF test for seasonally differenced data. This 

is also the same as the OCSB test with 02  . At last, the OCSB test with 01   is the 

same as the DHF test for first-differenced data (Ilmakunnas, 1990, p. 81). 

       One of the most important problems in applying integration tests is the appropriate 

choice of the value of lag length p to be used: too low a value gives rise to invalid 

statistics due to autocorrelation left in the residuals; on the other hand, the implication 

of an extremely high lag length is a reduction in power (Osborn et al., 1988, p. 365).     

In this application, in selecting the appropriate lag lengths, LM test statistics for residual 

autocorrelation have been calculated and examined up to order four for all test 

regressions. Lag lengths have been increased one by one until detecting no significant 

autocorrelations at the 5% level. All applications in this section have been carried out in 

R.3.1.3. version and Eviews 7. 

       Now we will have a different look at cointegration relationship between INF and 

GR series for growth equation in which dependent variable is economic growth (GR) 

and independent variable is inflation (INF). Table 44 shows the cointegration results for 

growth equation. Since there are two variables in our model, at most 1 cointegrating 

relation can be found. When the growth equation is taken into consideration, it can be 

said that the resulted statistics can be used to give a clue about whether the variables are 

cointegrated or not at seasonal frequencies. For the first three models in Table 44 which 

are given in level form, seasonally averaged form and seasonally differenced form, 

respectively; all tests of the residuals (DW, DF, ADF) strongly suggest that the 

variables are cointegrated (where the null hypothesis is :0H no cointegration and the 

alternative one is :1H cointegration exists) (in other saying, the evidence against no-

cointegration is said to be very strong). 

       When we look at the first differenced ( )  and twice differenced variables ( 2 ), it 

is seen that the evidence of cointegration is strong when differenced variables are 

considered with significant i  estimates at seasonal frequencies. However in the twice 
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differenced form, since 3  and 4  estimates regarding annual unit root are not 

significant, we cannot strictly say that twice differenced variables are cointegrated at 

seasonal frequencies even though only 2  is significant.  

 

Table 44 

Cointegration Results for Growth Equation 

 
Form of the variables in the regression (Dependent Variable=GR) 

Estimated 

Coefficients 

 

Levels Seasonally 

Averaged 

)(LS  

(
321)( LLLLS  ) 

Seasonally 

Differenced 

( 4 ) 

Differenced 

( ) 

Twice 

Differenced 

(
2 ) 

 

INF -0.083274 

(Constant+ 

Dummies 

Model) 

“Significant” 

 

-0.049137 

(Constant Model) 

“Significant” 

 

-0.258978 

(Model with No 

Deterministic 

Component) 

 

-0.394322 

(Constant+ 

Dummies 

Model) 

 

-0.409318 

(Constant+ 

Dummies 

Model) 

 

 

Test of the Residuals 

Test Statistics      

 

DW 

 

DF 

 

ADF(p) 

 

 

1.999220* 

 

-8.059352* 

 

-3.648481(4)* 

 

 

%5Critical 

Values: 

-1.945823(for 

DF) 

-1.946161(for 

ADF(p)) 

 

0.492387* 

 

-2.996607* 

 

-3.838019(1)* 

 

%5Critical Values: 

-1.946072 (DF) 

-1.946161(ADF(p)) 

1.662716* 

 

-6.732354* 

 

-6.713961(3)* 

%5Critical 

Values: 

-1.946161(DF) 

-1.946447(ADF(p)) 

 

  

 

 

 

 

 

 

 

 

      

HEGY Test Results 

 

1  

2  

3  

4  

43 &  

(Model with 

No 

Deterministic 

Component) 

 

 

 

 

 

 

 

-6.486017* 

-2.762810* 

-2.558021* 

1.536945 

4.772130* 

 

)0( p  

 

-7.636372* 

-2.464176* 

-0.253216 

0.923592 

0.466443 

 

)4( p  

Note. 
1
 * denotes significant values at 5% level. 

          
2
 Critical values for HEGY test have been obtained from Hylleberg et al. (1990, pp. 226-227). 

          
3
 Critical values for DW statistic have been taken from  Engle & Yoo (1987, p. 158) for  N=2  

             variables.   

 

       Level form regression results show the existence of one cointegrating relation with 

significant residual test statistics which are Durbin-Watson (DW), DF and ADF test 
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statistics. The seasonally averaged form results (S(L)) also support this result with 

significant ADF, DW statistics obtained for the residuals of given regressions. 

       Empirical results reveal that all forms of the variables except twice-differenced ( 2

) form show the sign of cointegration. Therefore, this analysis in which GR is dependent 

variable and INF is independent variable has revealed that the variables in question are 

SI(1,1). Since seasonally averaged ( )(LS ) variables have been found to be cointegrated 

of order 1 at zero (non-seasonal) frequency and first differenced variables ( ) have 

been found to be cointegrated at seasonal frequencies. Thus, it can be said that in 

growth-inflation model, it would be suitable to incorporate the variables in 4  form 

into the regression. 

       At the core of this analysis, how different seasonal integration tests can be carried 

out in a unified approach lies. Seasonal integration results imply that growth and 

inflation variables may be either SI(2,1) or SI(1,1) in the dominant sense. Therefore we 

have taken five cointegration regressions in the level, seasonally averaged (S(L)), 

quarterly differenced ( 4 ), first differenced ( ) and twice differenced ( 2 ) forms. In 

the level form, GR series has been regressed on INF series. In the level, differenced and 

twice differenced forms; a constant and three seasonal dummies have been included and 

in the seasonally averaged form, a constant has been added.  In Table 44, “p” shows the 

necessary lag numbers that will be included in the regressions applied. Surely, the 

analysis reveals that both series in their level forms are cointegrated. 

       When the results of regression analyses are considered in terms of economic 

interpretation, the inflation-growth relationship in Turkey has been understood to be in 

an opposite direction. This has been confirmed by the negative sign of the coefficient of 

INF variable in any case. According to the results of regression analyses applied, each 

percentage point increase in inflation reduces economic growth over 1998Q1-2014Q4 

period. This result indicates that primarily there should be further reductions in inflation 

in order to increase the average growth rate declining gradually in recent years.  

       Most empirical studies on the inflation-growth relationship show that these two 

series are negatively related. However, these studies are mostly based on the periodical 

cross section data of a group of countries and its validity is questionable. Some authors 

assert that in analyses executed by such data; country in interest, time considered and 

the selection of variables discussed in the given model affect the achieved results 

significantly. Therefore, it has been recommended that the relationship between 
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inflation and growth should be investigated through the time series analysis. However, 

studies conducted by time series analysis have failed to reveal a clear result so far 

(Karaca, 2003, p. 254). 

       As well known, first of all the series in interest must be stationary in time series 

analysis. When worked with non-stationary time series, it may be faced with spurious 

regression problem. In this case the results obtained by the regression analysis do not 

reflect the actual relation. Because these test statistics do not display a standard 

distribution, they lose their validity. The regression analyses conducted with non-

stationary time series can reflect the real relationship only if a cointegration relationship 

exists between the series in interest (Kızılgöl & Erbaykal, 2008, p. 355). To summarize, 

this application addresses the cointegrating relationship between inflation and growth 

from a different view by taking the concept of seasonality into consideration.  

       Whether the data contain seasonality or not plays an important role in determining 

integration orders of the series. Thus, if seasonality is present (this case is possible for 

our series, because they have been expressed in quarterly frequency), series should be 

referred to as seasonal integrated series. In this application, various seasonal integration 

tests have been carried out in order to detect the appropriate order of seasonal 

integration. As a result of the application, two series have been found to have the same 

degree of seasonal integration as SI(1,1). Thus, by knowing that the two series have the 

same integration order (both are SI(1,1)) and applying various tests (DW, DF, ADF, 

HEGY) to the residuals obtained from the regression equations formed by using 

difference operators and raw data, whether there is a long-term relationship between the 

series or not has been examined through the cointegration analysis. As a result, the 

presence of a cointegrating relationship has been determined between two variables and 

this means a real long-term relationship. 

 

6.3. Seasonal Cointegration Test Application for Turkey  

       In this application, it has been aimed to investigate the existence of co-integration 

relationship between quarterly gross domestic product (GDP), final consumption 

expenditures of resident households (CONS), exports of goods and services (EXP), 

government final consumption expenditures (GOV) and private sector machinery-

equipment (PRIEQ) series for the period 1998Q1-2014Q4. Data that are based on 
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expenditure based GDP time series at fixed 1998 prices have been obtained from 

CBRT.  

       First, in order to linearize the exponential growth in these series, their logarithms 

have been taken. Since by taking logarithm, variance is stabilized and the effects 

 

(a)                                                            (b) 

  

                                 (c)                                                                 (d) 

                                    

                                                                      (e) 

Figure 16. Graphs of logarithmic and seasonally unadjusted macroeconomic variables 
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of outliers are reduced (Türe & Akdi, 2005, p. 6). In Figure 16, graphs of logarithmic 

GDP, CONS, EXP, GOV and PRIEQ series have been presented respectively from (a) 

to (e).   

Table 45 

HEGY Seasonal Unit Root Test Results for Quarterly Macroeconomic Series 

 
  Variables Auxiliary 

Regressions 

Lags t (
1 ) t (

2 ) t (
3 ) t (

4 ) F

),( 43   

LNGDP 

 

Intercept 2 -0.374639* -1.658963* -1.568273* -1.650405* 2.681313* 

 Intercept +  

Dummies 

 

2 -0.352000* -2.284324* -2.049658* -2.370408 5.446632* 

 Intercept + 

 Dummies 

+ Trend 

 

2 -2.528751* -2.394737* -1.809312* -2.278266 4.629866* 

LNCONS Intercept 

 
1 -1.108130* -2.087701 -2.413501 -1.715589 4.330118 

 Intercept +  

Dummies 

 

2 -0.624776* -2.256329* -2.649649* -3.690152 12.64432 

 Intercept + 

 Dummies 

+ Trend 

 

2 -2.329712* -2.341915* -2.498616* -3.514822 11.17496 

LNPRIEQ Intercept 

 

0 -1.048793* -3.006195 -4.078979 -6.309589 45.08480 

 Intercept +  

Dummies 

 

1 -1.255175* -4.758546 -2.938663* -5.416084 19.21220 

 Intercept+ 

Dummies 

+ Trend 

 

0 -2.739185* -5.277844 -3.066718* -5.066384 23.55738 

LNGOV Intercept 1 1.037847* 

 

-0.672012* -0.941324* -0.406816* 0.522808* 

 Intercept + 

Dummies 

 

0 0.719595* -3.616989 -3.364203* -0.412796* 5.776124* 

 Intercept + 

Dummies 

+ Trend 

 

0 0.745482* -0.608322* 0.013417* -0.235981* 6.278467* 

LNEXP Intercept 

 
2 -1.033219* -2.208915 -1.552280* -0.795612* 1.551227* 

 Intercept+ 

Dummies 

 

0 -0.119803* -3.880223 -2.968691* -3.321427 12.04958 

 Intercept + 

Dummies 

+ Trend 

2 -2.661086* -3.188178 -1.732976* -2.357943 4.688940* 

Note.  
1
 * denotes insignificant values at 5% level. 

           
2
 t-statistic  for  

1 )( 1t  shows  whether  there is a unit root or not at zero frequency )0:( 10 H . t-   

             statistic for 
2 )( 2t  tests  the presence of the semi-annual unit  root )0:( 20 H . F  statistic  for    

             
43    )),(( 43 F  tests whether there is a unit root at quarterly frequency or not.   

                 3 
Critical values have been taken from HEGY (1990, pp. 226-227) for N=100 observations and 5%  

              level. For  zero frequency, critical values  are -2.88, -2.95, -3.53 and  for semi-annual frequency,  

              they    are     -1.95,     -2.94,     -2.94     respectively     for     “intercept”,     “intercept+dummies”,   
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             “intercept+dummies+trend” models.  

       In order to determine which series have a cointegrating relationship, it is necessary 

to find out at which frequencies series are integrated of the same order (or at which 

frequencies unit roots are present). For each series, three different models including 

“constant (C)”, “constant+dummies (C, D)” and “constant+dummies+trend (C, D, T)” 

have been constructed. Also, the lagged values of the dependent variable have been 

added into these models. Since the series discussed are at quarterly frequency, seasonal 

unit root test results of the series at 
4

3
,

2

1
,

4

1
,0 frequencies have been presented in 

Table 45.  

       In Table 45, lag augmentation by lagged values of the dependent variable has been 

made in the auxiliary regressions including deterministic components in order to make 

sure about the whitened residuals. As expressed in Engle et al. (1993), this 

augmentation does not affect the distribution under the null hypothesis as is the case 

with DF procedure; but, the power and size of the test may depend critically on the 

‘right’ augmentation being used (p.279). In the application for seasonal unit root test, 

the appropriate lag length has been chosen in that way: Regression equation has been 

estimated first with Lag 1 and it has been investigated if first order and fourth order 

autocorrelations exist between residuals. For this investigation, it has been utilized from 

LM test statistics (thus for first order: LM(1) and for fourth order: LM(4)). If any one of 

the null hypotheses of :0H  There is no 1
st
 order autocorrelation and :0H  There is no 

4
th

 order autocorrelation is rejected, lag length has been increased by one and LM test 

has been applied again. This process has been continued until the null hypothesis cannot  

be rejected for each order and homoscedastic residuals are obtained. LM(1) and LM(4) 

statistics results have been presented in Table 46: 

Table 46 

LM(1) and LM(4) Statistics for Quarterly Macroeconomic Series 
VARIABLES AUXILIARY 

REGRESSIONS 

LAGS LM(1) LM(4) 

LNGDP Intercept 2 2.285563 

(0.1306) 

8.015350 

(0.0910) 

 Intercept + Dummies 2 0.728109 

(0.3935) 

4.011422 

(0.4045) 

 Intercept + Dummies 

+ Trend 

 

2     0.018672           

    (0.8913) 
 

5.215494 

(0.2659) 

LNCONS Intercept 1 1.470532 

(0.2253) 

5.879280 

(0.2083) 

 Intercept + Dummies 2 0.377129 

(0.5391) 

5.110070 

(0.2762) 

 Intercept + Dummies 

+ Trend 

2 0.461174 

(0.4971) 

6.520621 

(0.1635) 
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Table 46 (Continued) 

VARIABLES AUXILIARY 

REGRESSIONS 

LAGS LM(1) LM(4) 

LNPRIEQ Intercept 0 0.130705 

(0.7177) 

8.780591 

(0.0668) 

 Intercept + Dummies 1 0.468251 

(0.4938) 

1.220068 

(0.8748) 

 Intercept+Dummies 

+ Trend 

 

0 0.693561 

(0.4050) 

4.515437 

(0.3407) 

LNGOV Intercept 1 0.364082 

(0.5462) 

4.615978 

(0.3290) 

 Intercept + Dummies 0 0.798644 

(0.3715) 

2.349286 

(0.6718) 

 Intercept + Dummies 

+ Trend 

 

0 0.294179 

(0.5876) 

1.192969 

(0.8793) 

LNEXP Intercept 2 0.924163 

(0.3364) 

9.401415 

(0.0518) 

 Intercept+Dummies 0 0.875675 

(0.3494) 

4.337515 

(0.3623) 

 Intercept + Dummies 

+ Trend 
2 0.039849 

(0.8418) 

1.551871 

(0.8174) 

         Note. LM(1) and LM(4) represent LM test statistics investigating the presence of 1
st
 and  4

th
 order     

                     autocorrelations and the values given in parentheses indicate the significance levels. 

 

       As is clear from Table 46 that for selected lags, there are no first order and fourth 

order autocorrelation problems for all macroeconomic series. 

       If looked at the Table 45 results, it is seen that the presence of a unit root at zero 

frequency has been accepted for all variables in all three auxiliary regression models. 

When t (
1 ), t (

2 ) and F ),( 43   columns are examined, it is concluded that the null 

hypotheses that there is a (non-seasonal) unit root at zero frequency and there are 

seasonal unit roots at other seasonal frequencies cannot be rejected for three auxiliary 

regression models of LNGDP series at 5% significance level. Thus, LNGDP series has a 

non-seasonal unit root at zero frequency and seasonal unit roots at semi-annual (
2

1
 

frequency) and quarterly frequencies. While both LNCONS and LNPRIEQ series have 

the zero frequency unit root for three models with deterministic components given in 

Table 45, according to the results they both do not include any annual unit root (at 

quarterly frequency). For LNCONS series, the presence of semi-annual unit root has 

been accepted for two models except the “intercept” model. However, no semi-annual 

unit root has been detected in any model for LNPRIEQ series. When looked at the 

LNGOV and LNEXP series, both series are seen to include the zero frequency unit root. 
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However, while LNGOV series has a seasonal unit root at semi-annual frequency for 

two models except the “intercept+dummies” model, LNEXP series rejects the presence 

of the semi-annual unit root for all three models. Finally, while LNGOV series has 

annual unit roots at quarterly 








4

3

4

1
 frequencies for all deterministic models, LNEXP 

series has seasonal unit roots at quarterly frequencies for two models except only 

“intercept+dummies” model. In conclusion, cointegration relationship will be analysed 

at frequencies in which these series are both integrated at the same order. In this case, it 

is necessary to determine which series are integrated of the same order at which 

frequencies. In all series, the presence of the zero frequency unit root has been detected 

in common. LNGDP, LNCONS and LNGOV series have been found to include 

seasonal unit root at semi-annual frequency. On the other hand, it has been determined 

that LNGDP, LNGOV and LNEXP series include seasonal unit roots at the quarterly 

frequencies 








4

3

4

1
. The results of seasonal cointegration analyses of the series at 0, ½ 

and ¼ (and ¾) frequencies have been presented in Table 47, Table 48 and Table 49 

respectively.  

       In this application, regression models obtained from the linear components of the 

variables that are integrated at the same frequency have been estimated through OLS 

procedure. Before applying to cointegration analysis, it is necessary to give the 

transformations of variables that will be used in cointegration models. As a matter of 

example, it will be sufficient to present only LNGDP series (the other series will be 

transformed in the same way with LNGDP): 

                               LNGDPLLLLNGDPt )1( 32

1                        

                               LNGDPLLLLNGDP t )1( 32

2   

                               LNGDPLLNGDP t )1( 2

3   

                               LNGDPLLNGDP t )1( 4

4   

       Now let us mention about the cointegration models to be used. Seasonal 

cointegration has been mentioned in section 5.3 (also look at the sub-section 5.3.1). In 

addition, as also summarized by Ayvaz Kızılgöl (2011, p. 18),  in cointegration analysis 

the regression model to be estimated for all variables that are integrated of the same 

order at the zero frequency is ttt uZY  111  . The residuals ( tu ) obtained from this 

cointegration model will be used in order to estimate auxiliary regression model at the 

zero frequency. For semi-annual (½) frequency, the cointegration model to be used is 
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ttt vZY  222   and for quarterly frequencies, it is 
tttt wZZY  1,32313  . Also, the 

residuals obtained from these models ( tv  and tw ) will be used for estimating auxiliary 

regressions at specified frequencies respectively.      

 

Table 47 

Cointegration Test Results at Zero (Long Run) Frequency 

 

 
Cointegration Analysis: 

LGDP and LCONS 

Auxiliary 

Regression 

 

Tests for Unit Roots 

in Residuals 

Regressand 

Coefficient 

Regressor 

LGDP1t 

Deterministic 

Components 

Included 
       

2R   Augmentation DW 
t statistic 

t ( 1 ) 

LCONS1t 
0.981403 

(80.95842) 
C 0.990479 1, 4, 5 1.998160 -1.936136 

LCONS1t 

0.981366 

(79.04407) 

C, D 

 
0.990498 1 1.890828 -2.615745 

LCONS1t 
1.006343 

(16.64040) 

C, D, T 

 
0.990526 1 1.892945 -2.725444 

 
Cointegration Analysis: 

LGDP and LPRIEQ 

Auxiliary 

Regression 

 

Tests for Unit Roots 

in Residuals 

Regressand 

Coefficient 

Regressor 

LGDP1t 

Deterministic 

Components 

Included 
        

2R   Augmentation DW 
t statistic 

t ( 1 ) 

LPRIEQ1t 
1.951163 

(21.48804) 
C 0.879940 1, 4, 5 2.139510 -3.405938 

LPRIEQ1t 

1.951973 

(20.98828) 

C, D 

 
0.880156 1, 2, 4 1.934590 -1.932861 

LPRIEQ1t 
4.817088 

(19.58387) 

C, D, T 

 
0.964776 1, 4, 5, 8 2.240764 -2.182390 

 
Cointegration Analysis: 

LGDP and LGOV 

Auxiliary 

Regression 

 

Tests for Unit Roots 

in Residuals 

Regressand 

Coefficient 

Regressor 

LGDP1t 

Deterministic 

Components 

Included 
         

2R   Augmentation DW 
t statistic 

t ( 1 ) 

LGOV1t 
0.938623 

(32.05764) 
C 0.942239 1, 3, 4 1.969561 -1.531071 

LGOV1t 

0.938442 

(31.27638) 

C, D 

 
0.942281 1, 3 1.935207 -2.273428 

LGOV1t 
0.096085 

(1.020667) 

C, D, T 

 
0.976126 1 1.998045 -1.664541 

 
Cointegration Analysis: 

LGDP and LEXPORT 

    Auxiliary 

Regression 

 

Tests for Unit Roots 

in Residuals 

Regressand 

Coefficient 

Regressor 

LGDP1t 

Deterministic 

Components 

Included 
        

2R   Augmentation DW 
t statistic 

t ( 1 ) 

LEXPORT1t 
1.304336 

(47.43188) 
C 0.972760 1, 2, 4 1.982701 -3.079903 

LEXPORT1t 

1.304245 

(46.27101) 

C, D 

 

0.972768 

 
1, 2, 4 1.989971 -3.085921 

LEXPORT1t 
0.825112 

(6.772424) 

C, D, T 

 
0.978622 1, 2 2.070897 -3.329934 

Note.  
1 
These tests at zero frequency are based on the (ADF) auxiliary regression model   

             


 
k

j

tjtjtt eubuu
1

11    (here   without   deterministic  components)   where   tu     

              represents the residuals obtained from cointegration model that are used to estimate this auxiliary  

              regression model. The  distribution of  ‘t’ statistic  is as characterized in Engel & Granger (1987)    
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              and  Engle & Yoo (1987)  (Engle et  al., 1993, p. 289).  As  it  is  clear,  the  necessary significant   

              lagged values of the dependent variable tu  have been added into auxiliary regression model in   

              order   to   whiten   the   residuals   (the  lagged  variables   with  insignificant coefficients  at  5%    

              significance level have been removed from the model).  

           
2
 The values in parentheses are t-statistics.  

           
3
 C, D and T denote constant, seasonal dummies and trend terms respectively. 

           
4
 The basic hypothesis to be tested is :0H There is no cointegration at zero frequency )0( 1  .  

           
5
 Critical values have been obtained from Engle and Yoo (1987). See Appendix F. 

 

      As mentioned before, in order to detect the long-run equilibrium relationship 

between the series, first of all it is necessary to determine the stationarity order of the 

series. In this application, for investigating the presence of seasonal cointegration 

relationship between the series, firstly seasonal unit root test has been applied in order 

to make inference about at which frequencies there are unit roots if they exist. The 

series discussed here have quarterly frequencies. Therefore, HEGY seasonal unit root 

test which is developed by Hylleberg et al. (1990) has been applied in order to detect 

seasonal unit roots and general results have been presented in Table 45 for three models 

with deterministic components that are “C”, “C,D”, “C,D,T”. Now, Table 47 presents 

the cointegration test results at zero frequency. As a result, when cointegration test 

results are evaluated at the zero frequency, although the explanatory variables that take 

place in the cointegrating regression have been found to be statistically significant, no 

cointegrating relationship has been found between LNGDP and LNCONS, LNGDP and 

LNPRIEQ, LNGDP and LNGOV, LNGDP and LNEXP at 5% significance level in the 

long-run. 

       LNGDP and LNCONS series have been found to be integrated of the same order 

for “C,D” and “C,D,T” models at ½ frequency. Also, LNGDP and LNGOV series have 

been found to be integrated of the same order for “C” and “C,D,T” models at ½ 

frequency. Therefore, cointegration analysis results at ½ frequency have been shown in 

Table 48 for LNGDP, LNCONS and LNGOV series. 
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Table 48 

Seasonal Cointegration Test Results at Semi-Annual ( ½) Frequency 

 
 Cointegration Analysis: 

LGDP and LCONS 

Auxiliary 

Regression 

 

Analysis of the residuals 

Regressand Coefficient 

Regressor 

LGDP2t 

Deterministic 

Components 

Included 

      
2R  

 

Augmentation 

 

 DW 

t statistic 

t ( 2 ) 

LCONS2t 0.734494 

(5.536534) 

C, D 

 

0.339386 1, 4 1.926116 -1.649370 

LCONS2t 0.743244 

(5.543788) 

C, D, T 

 

0.343757 1, 4 1.904166 -1.607737 

 Cointegration Analysis: 

LGDP and LGOV 

Auxiliary 

Regression 

 

Analysis of the residuals 

Regressand Coefficient 

Regressor 

LGDP2t 

Deterministic 

Components 

Included 

       
2R  

 

Augmentation 

 

 DW 

t statistic 

t ( 2 ) 

LGOV2t -3.577777  

(-3.598662) 

C 0.170511 1, 2, 4 1.993776 -1.179657 

LGOV2t 0.096323 

(0.537327) 

C, D, T 

 

0.979684 0 2.073641 -3.411280 

Note.  
1
 In   lag  augmentations,  only  significant  lags  have  been  added   into  the  auxiliary  regressions  

             (insignificant lags have been removed) in order to get white noise residuals. 

           
2 
These tests at semi-annual frequency are based on the auxiliary regression 

              


 
k

j

tjtjtjttt eb
1

1121 )()()(    (here without deterministic components)  where t    

              represents  the  residuals  obtained   from  cointegration  model   that   are  used   to  estimate  the     

              auxiliary  regression  models.  The  distribution  of   ‘t’   statistic  is  as characterized  in Engel &  

              Granger (1987)  and  Engle  & Yoo (1987)  (Engle et  al., 1993, p. 290).  For  critical  values  see    

              Appendix F. 

           
3 
The  basic  hypothesis  to  be  tested  is :0H There  is  no cointegration at semi-annual frequency   

             )0( 2  . 

 

       When Table 48 results are compared to the Engle and Yoo (1987) critical values for 

5% significance level, no cointegration relationship has been found between LNGDP & 

LNCONS series and LNGDP & LNGOV series at ½ frequency. Thus, these series in 

interest do not seem to be cointegrated at the semi-annual frequency.   

       Table 49 presents seasonal cointegration test results at quarterly ¼ (¾) frequencies. 

According to the Table 49 results, it can be said that there has been found a 

cointegration relationship between LNGDP and LNGOV series at quarterly frequencies 

¼ (and ¾) for only the model with constant and seasonal dummies (“C,D”). In other 

saying, the null hypothesis saying that there is no cointegration at quarterly frequencies 

has been rejected with a significant joint F statistic of 12.19361. On the other hand, no 

cointegration relationship has been detected for no models between LNGDP and 

LNEXP series at ¼ (and ¾) frequencies.   
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Table 49 

Seasonal Cointegration Test Results at ¼ ( ¾ ) Frequencies 

 
 Cointegration Analysis: 

LGDP and LGOV 

Auxiliary 

Regression 

 

Analysis of the 

residuals 

Regressand Coefficient 

Regressor 

Deterministic 

Components 

Included 

 

 
2R  

Augmenta- 

tion 

 

t statistic 

t (
3 ) 

t statistic 

t ( 4 ) 

F 

statistic 

43    LGDP3t LGDP3t-1 

LGOV3t 0.786609 

(11.53730) 

0.903772 

(13.53999) 

C 

 

0.841278 1 -2.712937 -1.646483 5.045242 

LGOV3t 0.532680 

(4.450165) 

-0.182431 

(-1.536042) 

C, D 

 

0.949005 1, 2 -4.866891* 0.559515 12.19361* 

LGOV3t 0.780067 
(11.52444) 

0.896061 
(13.55706) 

- 
 

0.839207 1, 2 -2.887014 -1.199424 5.244342 

 Cointegration Analysis: 

LGDP and LEXPORT 

Auxiliary 

Regression 

 

Analysis of the Residuals 

‘HEGY’  test 

Regressand Coefficient 

Regressor 

Deterministic 

Components 

Included 

 

 
2R  

Augmenta- 

tion 

t statistic 

t (
3 ) 

t statistic 

t ( 4 ) 

F 

statistic 

43    LGDP3t LGDP3t-1 

LEXPORT3t 1.108250 

(21.79906) 

-0.007793 

(-0.156570) 

C 0.884680 1, 4, 6, 8 -2.497336 -1.769538 5.254946 

LEXPORT3t 0.901760 

(5.869706) 

-0.073642 

(-0.483110) 

C, D 

 

0.890232 1, 4 -2.542985 -2.241085* 5.692280 

LEXPORT3t 1.111528 
(22.10056) 

-0.003930 
(-0.080016) 

- 
 

0.884001 1, 4, 5, 6 -2.312909 -1.327629 3.454144 

Note. 1 These tests at  ¼ (and ¾ ) frequencies are based on the auxiliary regression  

           


 
k

j

tjtjtjtttt ewwbwwww
1

214232 )()()()(   (here  without  deterministic  components)    

            where tw  represents the residuals obtained from cointegration model that are used to estimate the   

            auxiliary regression models (Engle et al., 1993, p. 290). 

         
2 “

C” denotes constant, “D” denotes seasonal dummies and “–“ denotes no deterministic component.  

         
3
 * denotes significant values at 5% significance level. 

         
4  

Critical values have been obtained from Engle et al. (1993). See Appendix F for critical values.  

         
5
 The  basic  hypothesis  to  be  tested  is :0H There  is  no cointegration  at ¼ (and ¾)  frequencies    

           )0( 43  . 

 

6.4.  Determining  the Type  of  Seasonality for  Quarterly Turkish  Unemployment   

        Series  

 

       In this application, it has been tried to make inference about whether the seasonal 

pattern of quarterly total harmonized unemployment series (units: persons) for Turkey is 

deterministic or stochastic. The unemployment series (namely UNEMP here) will be 

examined over 1988Q1-2014Q4 period (108 observations) and the unemployment data 

have been obtained from Organisation for Economic Co-operation and Development as 

not-seasonally adjusted.  
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Figure 17. Graph of total harmonised unemployment series 

       In Figure 17, UNEMP series has been graphed against years. In order to obtain 

healthy results, the transaction of taking logarithm has been applied to the series and 

this new logarithmic UNEMP series (namely LOGUNEMP) has been given in Figure 

18.   

 

Figure 18. Graph of logarithmic unemployment series 

       It can be observed that logarithmic UNEMP series seems to display some seasonal 

pattern. In order to find out if UNEMP series displays deterministic or stochastic 

seasonality, t-statistics and Q-statistics which take place in subsection (5.2.4.) have been 

examined. As mentioned before, for testing if a series follows a deterministic or 

stochastic seasonal pattern, the hypotheses to be constructed are the null hypothesis 0H  

which implies the presence of stochastic seasonality and the alternative hypothesis 1H  

which implies the presence of deterministic seasonality. For the acceptance of stochastic 

seasonality, there are two conditions that should hold: the first one is the acceptance of 

the hypothesis saying that all  coefficients (in equation 5.40) are equal to each other 

and the second one is the acceptance of the hypothesis in which all  coefficients (in 
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equation 5.40) are equal to zero. In case these two conditions are satisfied, it is 

concluded that there is stochastic seasonality in the series.  

 

Table 50 

HEGY Stochastic Seasonality Test for Unemployment Series  

 
 Unrestricted Model 

Dependent Variable:  

)( 44  ttt yyY  

Restricted Model: 

Dependent Variable 

)( 44  ttt yyY  

Variables Coefficient t-statistic Coefficient t-statistic 

D1 1.085887 1.976383 0.006065 0.346905 

D2 0.987717 1.793923 0.000907 0.052881 

D3 1.069343 1.950722 0.008263 0.481820 

D4 1.071505 1.952493 0.005868 0.341765 

1,1 tY  -0.018080 -1.910056   

1,2 tY  -0.403887 -3.820225   

2,3 tY  -0.339509 -3.469135   

1,3 tY  -0.370895 -3.830075   

1,4 tY  0.266355 2.630320 0.818124 13.70320 

Sum Squared Resid 0.486572 0.746470 

n 103 103 

Q                                      12.55231 

 816143.3
21
t  18582.3

32
t   

 639368.0
31
t  29757.3

42
t   

 550436.0
41
t  08282.0

43
t   

            Note. 
1
 ty  represents logarithmic unemployment series. 

                      
2  

For  5% significance level, critical t-value and F value have been taken as 1.984 and   

                        2.46 respectively for T=100 observations. 

                      
3  

n  shows  the  number of  observations;  D1,  D2,  D3 and  D4  are  seasonal  dummies  for  

                         quarterly  series. The coefficients  of  
1,1 tY , 

1,2 tY , 
1,3 tY  and  

1,4 tY  are 4321 ,,,               

                         values. 

                      
4  

Maximum lag  number has  been taken as  4 in  lag augmentation and only significant lags       

                         among  four  lags have been included into the regressions and insignificant lags have been   

                         removed. In  the  models  given  in  this  table,  only  one  lagged  value  of  the dependent   

                         variable   (
1,4 tY ) has been added.    

 

       Table 50 presents HEGY stochastic seasonality test results by using unrestricted 

and restricted models. In the table, equality of   coefficients has been tested by 

calculating 
21  t ,

31  t ,
41  t ,

32  t ,
42  t ,

43  t statistics and restricted model has 

been formed by the equality 04321   . Since some t-values (testing   

coefficients in doubles) are significant and some are not (briefly, not all of t-values are 

insignificant), the first condition saying that all  coefficients are equal to each other 
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has not been satisfied for unemployment series. At the same time, since Q statistic 

(Q=12.55231) is greater than F critical value, the second condition saying that all  ’s 

are equal to zero does not hold. Therefore, according to the test results stochastic 

seasonality does not exist in this series (that is, the rejection of the null hypothesis).  

       In this case, we should detect the presence of deterministic seasonality and if there 

are seasonal unit roots or not. The test results for this examination have been given in 

Table 51 and Table 52.    

 

Table 51 

Unrestricted Models for Deterministic Seasonality in Unemployment Series  

Unrestricted Models- Dependent Variable )( 44  ttt yyY  

Variables Model 1 Model 2 Model 3 

 Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic 

C 0.668284 1.058282 1.071505 1.952493 3.140335 3.861960 

1,1 tY  -0.011401 -1.047051 -0.018080 -1.910056 -0.054956 -3.842289 

1,2 tY  -0.186721 -2.128281 -0.403887 -3.820225 -0.359729 -3.548019 

2,3 tY  -0.176010 -2.148737 -0.339509 -3.469135 -0.337346 -3.625700 

1,3 tY  -0.169071 -2.042294 -0.370895 -3.830075 -0.299038 -3.161835 

D1   0.014382 0.550283 0.017476 0.702829 

D2   -0.083788 -3.295832 -0.072619 -2.975929 

D3   -0.002161 -0.082726 -0.004297 -0.172932 

t     0.001198 3.317023 

1,4 tY  0.599778 6.079347 0.266355 2.630320 0.338956 3.433257 

4,4 tY  -0.164306 -2.611528     

Sum 

Squared 

Resid 

0.541177 0.486572 0.435097 

n 100 103 103 

Note. 
1
 t denotes trend term.  

          
2 
Model 1  includes  only constant term,  Model 2 includes both constant and seasonal dummies and  

            Model 3 includes constant, seasonal dummies and trend.  

          
3 
First and fourth lagged values  of  the dependent  variable have been added  into Model 1 and only 

            first lagged value of the dependent variable has been added into both Model 2 and Model 3. 
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Table 52 

Restricted Models for Deterministic Seasonality in Unemployment Series  

Restricted Models - Dependent Variable )( 44  ttt yyY  

Variables Model 1 Model 2 Model 3 

    

 Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic 

C 0.645069 0.991028 1.367346 2.246100 3.831040 4.422681 

1,1 tY  -0.010992 -0.979343 -0.023884 -2.279054 -0.067730 -4.456102 

1,2 tY  -0.170174 -1.880700 -0.411364 -3.468801 -0.355139 -3.166997 

D1   0.046257 1.756732 0.040051 1.619330 

D2   -0.004276 -0.190925 -0.003297 -0.157027 

D3   0.049303 1.879366 0.043377 1.760631 

T     0.001470 3.779968 

1,4 tY  0.795275 10.64539 0.626631 7.600825 0.670017 8.577214 

4,4 tY  -0.213220 -3.407657     

Sum Squared 

Resid 

0.590563 0.625524 0.543744 

N 100 103 103 

Q 4.243434 13.42195 11.6114 

Note. 
1 
First and fourth lagged values of the dependent variable have been added into Model 1 and only  

            first lagged value of the dependent variable has been added into both Model 2 and Model 3. 

          
2  

In this table, restricted models have been formed by assuming 043  . 

 

Table 53 

Decision Table for Unemployment Series 

 
 :1  

t--statistic 

Critical 

value 
       :2  

   t-statistic 

Critical 

value 

Q statistic Critical 

value 

Model 1 -1.047051 -2.88 -2.128281 -1.95 4.243434 3.08 

          :0H ACCEPT :0H REJECT :0H REJECT 

Model 2 -1.910056 -2.95 -3.820225 -2.94 13.42195 6.57 

 :0H ACCEPT :0H REJECT :0H REJECT 

Model 3 -3.842289 -3.53 -3.548019 -2.94 11.6114 6.60 

 :0H REJECT :0H REJECT :0H REJECT 

Note. Critical values have been obtained from Hylleberg et al. (1990, pp. 226-227) for  5%  significance  

          level and N=100. 

 

       t-values for 1  and 2  in Table 53 have been taken from the unrestricted models in 

Table 51 for three models in order to test the presence of non-seasonal (zero frequency) 

and semi-annual ( ½ frequency) unit roots, respectively. Q statistics that take place in 

Table 53 have been taken from the restricted models in Table 52 (In Table 52, models 

are called “restricted” because of assuming 043    in order to test annual unit 

roots at quarterly frequencies 








4

3

4

1
 jointly). According to the Table 53, while the 
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presence of nonseasonal unit root ( 01  ) in unemployment series is accepted for 

Model 1 (constant) and Model 2 (constant and seasonal dummies), no semi-annual and 

annual seasonal unit roots have been detected for no models. Hence, seasonal 

fluctuations in the series have not been able to emerge in the six-month and one-year 

intervals. In other saying, there is a non-seasonal unit root in the series.  

       Apart from the t-statistics and Q statistics, it can also be looked at CH Test results 

in Table 54 to decide about the seasonal pattern of the series. As known, the null 

hypothesis of CH test is the stationarity of all seasonal cycles (indicating to the 

deterministic seasonality) and the alternative one is the presence of seasonal unit root 

(indicating to the presence of stochastic seasonality). The results reveal that since 

calculated L-statistic (1.496) is greater than all 1%, 5% and 10% critical values (known 

that the distribution of L-statistic is Von Mises distribution), the null hypothesis is 

rejected and thus it is concluded that seasonal pattern is not deterministic  (indicating to 

the presence of seasonal unit root) which is completely a different conclusion when 

compared to the previous analysis which is based on the restricted and unrestricted 

models with t and Q statistics saying that there is no stochastic seasonality in the series.   

 

Table 54 

CH Test Results for Unemployment Series 

 

 

 

 

       As a result, it can be said that two methods say different things for detecting the 

type of seasonal pattern of the unemployment series. It is not certain to say only one 

type of seasonal behaviour for the series. Unemployment series may have both a 

deterministic and stochastic structure. 

 

6.5.  Modelling Quarterly Gross Domestic Product in Turkey 

       In this application, it has been aimed to decide about which seasonal pattern GDP 

series displays over 1998Q1-2014Q4 by recoursing to different tests. Quarterly Turkish 

real GDP series (expenditure based) has been taken in millions of national currency (at 

constant 1998 prices). Data for GDP have been obtained from CBRT. In order to 

Tested Frequencies L-Statistic Critical Values 

1% 5% 10% 

     

              


,
2

 
        1.496 1.35 1.01 0.846 
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linearize exponential growth, the logarithm of the series has been taken (namely, lngdp). 

The raw and logarithmic real GDP series have been graphed in Figure 19. 

 

                                      (a)                                                               (b)   

Figure 19. Graphs of original (a) and logarithmic (b) gdp series 

       Logarithmic graph (b) in Figure 19 is the indicator for an upward trend implying 

that this series is not stationary (it includes a unit root) under the given period. In 

addition, the presence of seasonal components can be easily detected from this graph. In 

that case, in order to remove the growth trend from the series, the first difference of the 

logarithmic GDP series can be taken in the form of )1(lnlnln  gdpgdpgdp . 

 

Figure 20. Graph of first-differenced lngdp series 

       The graph of first-differenced lngdp series in Figure 20 implies once again the 

presence of some seasonal pattern of Turkish real gdp series.  
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Figure 21. Seasonal means of lngdp series 

       We can also compare four seasons for lngdp series. It is clear to see from the Figure 

21 that the seasonal peak is observed in the third quarter. Quarters two and four seem as 

if they yield approximately the same amount of output. The difference between the four 

seasons can be clearly seen from the Figure 21: Seasonal mean in quarter 1 is the 

lowest, while the mean for quarter 2 and 4 are in the middle and that of quarter 3 is the 

highest.  

 

Figure 22. Graph of lngdp series 

       On the other hand, it can be said that Figure 22 implies that a seasonal deterministic 

model may seem not to be suitable for Turkish real GDP series over the given period 

because of not having a time constant mean for all of the four quarters.  
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Figure 23. Graph of first-differenced lngdp series 

       In Figure 23, first-differenced lngdp series (namely, FD) has been graphed. For 

Figure 23, it can be said that quarterly means may be accepted as stationary and with 

this first-differencing, the growth trend effect has been removed from the gdp series. 

Depending on these, a seasonal deterministic model with time constant means for all of 

the four quarters may be accepted as a suitable one for the first differenced real gdp 

series. Thus, primarily it has been aimed to adopt a seasonal deterministic model for this 

transnformed gdp series.  

       As mentioned in Chapter 4.2, there are two representations of a deterministic 

seasonal model: Dummy variable representation and trigonometric representation. 

Firstly, by using the most frequently used dummy variable representation which takes 

place in subsection 4.2.1 and is shown as in Equation (4.1) 

                                           
  ,                                            (4.1) 

we are trying to investigate about the presence of deterministic seasonality. This 

analysis has been executed for the first-differenced real gdp series (dependent variable: 

dlngdp=lngdp-lngdp(-1) ). Application results of (4.1) have been presented in Table 55. 

Accrding to the results in Table 55, all the seasonal dummy variables from D1 to D4 for 

each of the four quarters have been found to be highly significant. R-squared value of 

0.884956 reveals that the explanatory power of the model is very good as a measure of 

goodness of fit since it is very close to 1. In addition, DW statistic (1.972045) that is 

close to 2 shows that there is almost no autocorrelation problem. Therefore, it can be 

concluded that a dummy variable representation as a seasonal deterministic model can 

be appropriate for Turkish GDP series. 
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Table 55 

Dummy Variable Representation of GDP Series 

 
Dependent Variable: DLNGDP 

Variable Coefficient Std. Error t-statistic Prob. 

D1 -0.109426 0.009930 -11.01963 0.0000 

D2 0.080682 0.009634 8.375044 0.0000 

D3 0.145937 0.009634 15.14865 0.0000 

D4 -0.079901 0.009634 -8.293962 0.0000 

   R-squared: 0.884956      Adjusted R-squared: 0.879478      DW stat: 1.972045 

 

 

Now, let us have a look at the trigonometric representation for GDP series. Recall that 

trigonometric representation had been given in Equation (4.6) as 

                                       

and the relationship between the parameters of dummy variable and trigonometric 

representation can be associated as in Equation (4.11) as follows:                                             

                                                   

                                                   

                                                                                                                                                             

                                                    

Equation (4.11) can also be represented in a different notation as in Equation (4.12): 

                                                         BR. ,                                                                                                                          

where ),,,( 4321
   ,  ),,,( 211

 B   and  


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





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





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


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1101
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R .                                                                                                       

Here ),,,( 4321
   matrix is composed of the seasonal means in the dummy 

variable representation for any season s.  

       By looking at the Table 55, matrix which gives the seasonal means in the dummy 

variable representation can be expressed as,  

                            

Given R in quarterly case in (4.13), and the matrix of the parameters, B  that is 

associated with the trigonometric representation can be calculated as: 
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Now, let us verify this result by calculating seasonal means matrix  : 

     109426.0)0089325.0()1276815.0(009323.0211    

     080682.0)0089325.0()0802915.0(009323.0212    

     145937.0)0089325.0()1276815.0(009323.0213    

     079901.0)0089325.0()0802915.0(009323.0214    

And now we can verify the value of overall mean   of ty  in (4.1). As mentioned 

before, the expected value of ty  had been given in the form of: 

                                                           

Thus, the overall mean is calculated as: 

009323.0)079901.0145937.0080682.0109426.0(
4

1
)( tyE . 

After all these, let us calculate the deterministic seasonal effect for season s which is 

denoted by  and is found by using the formula  and verify that 

summation of deterministic seasonal  effects  are zero: 

              118749.0009323.0109426.011  m  

              071359.0009323.0080682.022  m  

              136614.0009323.0145937.033  m  

                            08922.0009323.0079901.044  m  

With a summation of deterministic seasonal effects getting to zero that is shown as     

008922.0136614.0071359.0118749.04321  mmmm ,  

these deterministic seasonal effects can be used to assess and verify the parameters 

21,  and 1  (which had been found in B matrix) in that way: 
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Table 56 

DHF Test Results for Quarterly GDP Series 

 
Dependent Variable: D4Z 

Variable Coefficient Std. Error t-statistic Prob. 

D1 0.264860 0.378433 0.699884 0.4869 

D2 0.251822 0.380409 0.661977 0.5108 

D3 0.252065 0.383114 0.657936 0.5133 

D4 0.262699 0.381165 0.689201 0.4936 

LNGDP(-4) -0.014497 0.022497 -0.644416 0.5220 

D4Z(-1) 1.024267 0.126176 8.117793 0.0000 

D4Z(-2) -0.339303 0.123893 -2.738689 0.0083 

R-squared: 0.645741      Adjusted R-squared: 0.607095     DW stat: 2.030687 

 

   In Table 56, DHF test results have been presented for quarterly GDP series. As 

recalled from Chapter 5, DHF test can be parameterized as in Equation (5.9): 

                                                  tststs yy     

Here the null hypothesis of seasonal integration is 0s  and the alternative of a 

stationary stochastic seasonal process implies 0s (Baltagi, 2001, p. 661).  Here, the 

dependent variable has been given as D4Z ( 4 tt LNGDPLNGDP ). LNGDP(-4) 

variable represents 4ty  in Equation (5.9). Dummy variables, first and second lagged 

values of the dependent variable D4Z (which are D4Z(-1) and D4Z(-2)) have been 

added into the DHF test regression as shown in Table 56 and lags have been determined 

in a way to get white noise residuals (firstly, it has been started from the Lag 1 and lags 

have been increased by one until the autocorrelation and heteroscedasticity problems are 

resolved). Here, critical t-value of the DHF test statistic has been taken as equal to the 

ADF test statistic. Thus, ADF critical value that is -1.95 has been used. According to 

this critical value, since t-value of LNGDP(-4) variable which is -0.644416 is very small 

in absolute value when compared to the critical value -1.95,  it is concluded that the null 
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hypothesis cannot be rejected (where the null hypothesis is )1(~:0 SIyH t (Seasonal 

integration of order one, meaning that simultaneous existence of all four roots in 

quarterly series), while the alternative one is :1H  ty  is a stationary stochastic seasonal 

process). Therefore, DHF test results show that GDP series has a seasonal integration of 

order one process. Based on this result, it can be said that GDP series can also be 

modelled as a SARIMA model. 

 

Table 57 

HEGY Test Results for Quarterly GDP Series 

 
Dependent Variable: D4Z 

Variable Coefficient Std. Error t-statistic Prob. 

C 0.094024 0.345823 0.271886 0.7868 

D1 0.003348 0.032161 0.104109 0.9175 

D2 0.062682 0.040941 1.531031 0.1318 

D3 0.088378 0.029407 3.005341 0.0041 

Z11 -0.001789 0.005081 -0.352000 0.7263 

Z21 -0.364257 0.159460 -2.284324 0.0265 

Z31 -0.187522 0.091489 -2.049658 0.0455 

Z41 -0.214609 0.090537 -2.370408 0.0215 

D4Z(-1) 0.542410 0.175555 3.089690 0.0032 

D4Z(-2) -0.212251 0.125955 -1.685133 0.0980 

R-squared: 0.729045      Adjusted R-squared: 0.682149     DW stat: 2.037153 

 

       Table 57 presents HEGY test results for quarterly GDP series. As is seen clearly, 

first and second lagged values of the dependent variable have been added into the 

regression in order to get white-noise residuals. Here, the null hypothesis for HEGY test 

means that all four roots are simultaneously equal to zero (simultaneous existence of 

four roots, that is 04321   ). The hypotheses to be tested in the HEGY test 

equation have been given in Equation (5.46). In Table 57, coefficients for Z11, Z21, 

Z31, Z41 give 4321 ,,,   values. In order to decide about seasonal integration of 

order one, all of the four hypotheses ( 0,0,0,0 4321   ) have to be accepted 

separately. For T=100 observations, critical HEGY values have been obtained from 

Hylleberg et al. (1990, pp. 226-227) for constant, seasonal dummies and no trend 

models at 5% significance level. These critical values are -2.95, -2.94, -3.44 and -1.96 

respectively for 321 ,,   and 4 . When t-statistics for 321 ,,   and 4  are 

compared to the critical values, it is concluded that 0,0,0 321   hypotheses 

cannot be rejected among four hypotheses. Only 04   hypothesis is rejected. In other 
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saying, we can mention about the presence of unit roots at 0, ½ and ¼ frequencies. 

However, there is no ¾ frequency unit root in the series. Hence, since not all four unit 

roots exist according to the HEGY test results (the presence of all of the four roots is not 

accepted), it can be said that GDP series cannot be described by a seasonal integration 

of order one process. Therefore, the results for DHF test and HEGY test have differed. 

       When looked at the seasonal deterministic model representations and DHF and 

HEGY test results, the general result can be expressed as modelling first-differenced 

real GDP series as a seasonal deterministic model would be more suitable compared to 

a SARIMA model. Even though the results for dummy variable representation are 

positive for first-differenced GDP series, Figure 21 and Figure 22 imply that a seasonal 

deterministic model for GDP may not be suitable. Nevertheless, it is not certain to say 

about the seasonal pattern of GDP series, since DHF and HEGY test results also differ. 

According to the final results, it can be said that GDP series can be represented in both 

deterministic and stochastic structures depending on this uncertainty. 

 

6.6. Monthly HEGY Seasonal Unit Root Test Application for Exports and Imports  

  in Turkey 

 

       In this application, it has been aimed to detect at which frequencies seasonal unit 

roots exist for seasonally unadjusted monthly exports and imports series for 1975M1-

2015M1 period. Data for the value of exports of goods and imports of goods have been 

obtained from IMF/IFS (International Monetary Fund/International Financial Statistics) 

and taken in units of Dollars. 

       Testing monthly seasonal unit roots have been summarized in Table 7 of Chapter 5. 

In this analysis, only significant lags have been added into the five auxiliary regression 

models (with only constant; constant and trend; constant and dummies; constant, trend 

and dummies; no deterministic components) to get white-noise residuals (that is, 

insignificant lags have been removed until all selected lags become significant). 

       Monthly HEGY seasonal unit root test results for exports series have been given in 

Table 58 and selected lags for HEGY regressions in Table 58 have been presented in 

Table 59. As well known, the hypotheses of 01   and 02   are tested by t-test and 

the other five hypotheses which are 043   , 065   , 087   , 

0109   and 01211    are tested jointly by F-test. 
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Table 58 

HEGY Monthly Seasonal Unit Root Test Results for the Value of Exports of Goods 

Series  

 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates for 

the Model 

with 

Constant 

 

Estimates for 

the Model 

with 

Constant and 

Trend 

Estimates for 

the Model 

with 

Constant and 

Dummies 

Estimates 

for the 

Model with 

Constant, 

Trend and 

Dummies 

Estimates for 

the Model 

with No 

Constant, No 

Trend and 

No Dummies 

01   0 -1.682* -2.150* -1.539* -1.988* 4.659 

02     -4.861 -4.823 -5.541 -5.558 -4.831 

043    2/  10.079 9.725 18.870 18.874 10.089 

065    3/2  16.058 15.879 35.386 35.858 15.867 

087    3/  14.574 14.960 42.536 43.278 14.418 

0109   6/5  15.591 14.920 27.114 26.721 15.521 

01211    6/  8.334 8.543 9.236 9.392 8.267 

Note. 
1 
* denotes insignificant estimates (*p>.01 and .05) at both 1% and 5% significance levels 

          
2
 See Monthly HEGY Critical Values in Appendix G . 

 

 

Table 59 

Selected Lags  for HEGY Monthly Seasonal Unit Root Test on Exports Series  

 

Models Selected Lags Estimate Standard Error t-value Prob ( ) 

C 

Lag.1 0.346 0.047 7.418 0.000 

Lag.2 0.148 0.046 3.230 0.001 

Lag.6 0.083 0.037 2.272 0.024 

Lag.11 -0.144 0.031 -4.654 0.000 

C,T 

Lag.1 0.345 0.047 7.416 0.000 

Lag.2 0.151 0.046 3.305 0.001 

Lag.6 0.095 0.037 2.561 0.011 

Lag.11 -0.130 0.032 -4.106 0.000 

C,D 

Lag.1 0.314 0.042 7.505 0.000 

Lag.6 0.119 0.036 3.353 0.001 

Lag.9 -0.086 0.041 -2.125 0.034 

Lag.11 -0.179 0.046 -3.897 0.000 

Lag.12 0.106 0.041 2.598 0.010 

C,D,T 

Lag.1 0.314 0.042 7.520 0.000 

Lag.6 0.127 0.036 3.544 0.000 

Lag.9 -0.080 0.041 -1.960 0.051 

Lag.11 -0.175 0.046 -3.804 0.000 

Lag.12 0.112 0.041 2.747 0.006 

- 

Lag.1 0.351 0.047 7.498 0.000 

Lag.2 0.150 0.046 3.258 0.001 

Lag.6 0.081 0.037 2.195 0.029 

Lag.11 -0.136 0.031 -4.432 0.000 

Note. “C”  denotes   constant   term,  “T”  denotes  trend,  “D”  denotes  seasonal  dummy  variables  and    

           “-” denotes no deterministic components. 

 

t
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       If Table 58 is examined thoroughly, the results for the hypothesis 01   show that 

the presence of the zero (non-seasonal) frequency unit root (the null hypothesis of 

01  ) cannot be rejected at 1% and 5% significance levels for all deterministic models 

(except no deterministic component model). Thus, it can be said that exports series is 

non-stationary at zero (long-run) frequency. When the results for other hypotheses 

except 01   are examined, these hypotheses implying the presence of a unit root at 

seasonal frequency are seen to be rejected for all deterministic models for 1%, 5% and 

10% significance levels and hence the conclusion is that there are no seasonal unit roots 

at 
6

5
,

3
,

3

2
,

2
,


   and 

6


  seasonal frequencies. 

 

Table 60 

HEGY Monthly Seasonal Unit Root Test Results for the Value of Imports of Goods 

Series 

 
Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model 

with 

Constant 

 

Estimates 

for the 

Model 

with 

Constant 

and 

Trend 

Estimates for 

the Model 

with Constant 

and Dummies 

Estimates for 

the Model with 

Constant, 

Trend and 

Dummies 

Estimates for 

the Model with 

No Constant, 

No Trend and 

No Dummies 

01   0 -0.199* -3.338* -0.279* -3.246* 3.727 

02     -3.681 -4.618 -4.740 -4.501 -3.679 

043    2/  11.863 14.277 30.709 30.905 11.889 

065    3/2  9.843 13.497 32.676 30.831 9.847 

087    3/  13.570 15.494 51.398 51.756 13.583 

0109   6/5  13.317 14.459 18.876 19.606 13.318 

01211    6/  18.707 25.713 39.387 38.754 18.728 

Note. 
1 
* denotes insignificant estimates (*p>.01 and .05) at both 1% and 5% significance levels 

          
2
 See Monthly HEGY Critical Values in Appendix G . 

 

       Monthly HEGY seasonal unit root test results for imports series have been 

presented in Table 60 and selected lags for HEGY regressions in Table 60 have been 

presented in Table 61. Table 60 results are the same as Table 58 results. It is clear to see 

that as in the case of exports series, once again the unit root hypothesis with zero 

frequency (that is, 01  ) cannot be rejected for all deterministic models (except no 

deterministic component model). Thus, imports series is also not stationary and with an 

examination of other hypotheses except 01   in Table 60, it is concluded that there 

are no seasonal unit roots at no seasonal frequency as in the exports series as a result of 
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F-calculated values being greater than the critical table values (therefore, the null 

hypotheses are rejected).   

 

Table 61 

Selected Lags for HEGY Monthly Seasonal Unit Root Test on Imports Series 

 

Models Selected Lags Estimate Standard 

Error 

t-value Prob ( t ) 

C 

Lag.1 0.151 0.048 3.129 0.002 

Lag.2 0.172 0.046 3.696 0.000 

Lag.12 -0.110 0.031 -3.602 0.000 

C,T 

Lag.1 0.169 0.048 3.543 0.000 

Lag.2 0.195 0.047 4.152 0.000 

Lag.7 -0.073 0.037 -1.969 0.050 

C,D 
Lag.1 0.106 0.047 2.244 0.025 

Lag.7 -0.094 0.032 -2.959 0.003 

C,D,T 

Lag.1 0.118 0.047 2.497 0.013 

Lag.7 -0.081 0.039 -2.063 0.040 

Lag.12 0.046 0.035 1.308 0.191 

- 

Lag.1 0.151 0.048 3.132 0.002 

Lag.2 0.172 0.046 3.694 0.000 

Lag.12 -0.111 0.030 -3.648 0.000 

 Note. “C”  denotes  constant  term,  “T”  denotes  trend,  “D”  denotes  seasonal  dummy  variables  and    

           “-” denotes no deterministic components. 

 

       If we take both exports and imports series into consideration, it can be concluded 

that both series include a non-seasonal unit root and no seasonal unit roots. Based on 

this, seasonal differencing is not required for two series and since they are non-

stationary, their first differences have to be taken. Briefly, there is no need to apply the 

seasonal difference filter )1( 12L for two series and seasonal cycles are mostly in a 

deterministic structure. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions  

       In this study, various seasonality analyses have been conducted for some 

macroeconomic variables. In the first part of the study, why the concept of seasonality 

is important, what the negative aspects of ignoring the presence of seasonality are, what 

the structural features of the series that are subject to seasonality are will be examined; 

the importance of detecting what kind of seasonality (deterministic or stochastic) exists 

in the data worked in modelling seasonality for conducted analyses, methods related to 

seasonal integration and seasonal unit root analyses will be presented. Since most time 

series display seasonality feature substantially and seasonal unit root analyses will be 

conducted through HEGY procedure which is the most popular approach of seasonal 

unit root analyses have been expressed. 

       In the second part of the study; various studies concerning seasonal patterns, 

seasonal cointegration and seasonal integration (seasonal unit roots), modelling seasonal 

behaviour of various macroeconomic series, the comparison of seasonal cycle and 

business cycle and the detection of deterministic and stochastic seasonality have been 

summarized. 

       In the third part of the study, the concept of time series has been introduced since 

seasonality is a component of time series and also what the seasonal adjustment is, 

various seasonality tests and theoretical structures of various seasonal processes 

(stochastic stationary seasonal processes, nonstationary unit root processes, SMA and 

SARIMA models and so on) have been explained. 

       In the fourth part; the concept of deterministic seasonality, its two representations 

which are dummy variable and trigonometric representations, deterministic seasonality 

tests which are CH test, Caner test and Tam Reinsel test, asymptotical features of 

seasonal random walk have been presented in details by considering deterministic and 

stochastic seasonality together.   

       In the fifth part; economic theory has been put forward in order to set light to the 

route to be followed in practice. Various tests concerning how seasonal integration 

orders will be determined have been presented by taking the study of Ilmakunnas (1990) 

as basis. In addition; various seasonal unit root tests (DHF, HEGY, KUNST, OCSB 
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etc.) based on quarterly-monthly-bimonthly-weekly-biannual data, frequencies of 

seasonal unit roots and filters and tested hypotheses corresponding these frequencies 

and seasonal cointegration have been given place in details. 

       In the sixth part, various seasonality analyses have been applied to some 

macroeconomic variables. In the first application of this part, it has been tried to model 

monthly inflation rates by utilizing from SARIMA approach that considers both 

seasonal and nonseasonal behaviour in Turkey for 1995:1-2015:3 period. When looked 

at the ACF and PACF of the series, seasonal lags (12, 24, 36, 48) have been found to be 

significant. Depending on this, in order to find the best-fitted SARIMA model, the 

presence of seasonal unit roots has been checked for the nonstationary inflation series. 

For the monthly HEGY seasonal unit root test, three different lag order selection 

methods have been used (selection of significant lags, AIC, BIC). As a result, all three 

methods have showed only the presence of conjugate complex seasonal unit roots at 

3


 frequencies corresponding to (2,10) cycles per year and it has been concluded that 

seasonal cycles mostly display a deterministic structure. Hence it is not required to 

apply seasonal difference operator )1( 12L to inflation series. Instead, depending on the 

3


  frequencies, inflation series has been transformed by the necessary filter 

corresponding to these frequencies which is )1( 2LL  and since it includes zero 

frequency unit root, transformation of the series has been )1)(1( 2LLL  . In 

addition, CH test results (with L statistic: 2.005) have also revealed that seasonal pattern 

is deterministic. This result is seen to be consistent with the HEGY result. According to 

the OCSB and CH tests, the order of seasonal differencing has been determined as zero 

and the number of first differences has been determined to be 1 according to KPSS and 

ADF test results. These results are consistent with the evidence given above. In the 

model identification, when all AICc, AIC and BIC criteria are taken into account 

together, the best model under the stepwise selection method among other suggested 

ARIMA models has been determined as ARIMA(1,1,1)(1,0,2)[12] model with drift with 

the smallest AIC value of 2405.484. Apart from the (faster) stepwise selection, the best 

model under the (slower) non-stepwise selection has been chosen as    

ARIMA(1,1,1)(2,0,0)[12] with drift model. For this model, all assumptions regarding 

normality of residuals and constant variance have been satisfied except the fact that 
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residuals are not independently distributed for seasonal lag 36. When stepwise and non-

stepwise results are compared with forecast accuracy measures, the model with stepwise 

selection has been regarded as the best-fitted model for forecasting monthly inflation 

rates in Turkey.     

       In the second application, different seasonal integration tests have been applied in a 

unified approach for inflation and growth series and after determining seasonal 

integration orders, the cointegration relationship between them has been examined. 

Based on the study of Ilmakunnas (1990), it has been expressed that the conclusion on 

the appropriate order of integration depends on the starting point of testing sequence. If 

starting point is SI(2,1), it can be said that growth variable becomes stationary mostly 

after 1
st
 differencing and seasonal differencing (that is, the null of SI(2,1) is accepted) 

and inflation series can be accepted as either SI(2,1) or SI(1,0). If starting point is the 

case of quarterly differencing (that is, SI(1,1)), the results are not certain for both 

variables: while inflation may be regarded as SI(1,1) in most cases, growth may be 

accepted as SI(0,1), SI(1,1) or SI(0,0). So, according to the starting points, the results 

have differed. Also, the cointegration relationship for growth equation in which 

economic growth is dependent variable while inflation is independent has been 

investigated in a different manner by taking the concept of seasonality into 

consideration. Empirical results have revealed that all forms of the variables (level 

form, seasonally averaged form, seasonally differenced form, first differenced form) 

except twice-differenced form show the sign of cointegration with the significant 

residual test statistics which are DW, DF and ADF tests. Thus, with this analysis, the 

variables have been found to be SI(1,1). Since seasonally averaged ( )(LS ) variables 

have been found to be cointegrated of order 1 at zero frequency and first-differenced 

variables have been found to be cointegrated at seasonal frequencies. Therefore, it is 

concluded that it would be suitable to incorporate the variables in 4  form into the 

regression.  

       In the third application, whether a cointegration relationship exists or not between 

quarterly GDP, CONS, EXP, GOV and PRIEQ series has been investigated. As a result 

of HEGY application, the presence of a zero frequency (nonseasonal) unit root has been 

detected for all series for the three models with “constant”, “constant+dummies” and 

“constant+dummies+trend”. LNGDP, LNCONS and LNGOV series have been found to 

include a seasonal unit root at semi-annual frequency. In addition, LNGDP, LNGOV 
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and LNEXP series have been detected to have seasonal unit roots at quarterly 








4

3

4

1
 

frequencies. It should be noted that cointegration analysis should be evaluated among 

the series having unit roots at the same frequency. When cointegration test results are 

evaluated thoroughly at the zero (long-run) frequency, there has been found no 

cointegrating relationship between LNGDP & LNCONS, LNGDP & LNPRIEQ, 

LNGDP & LNGOV, LNGDP & LNEXP at 5% significance level. Similarly, no 

cointegrating relationship has been detected between LNGDP&LNCONS series and 

LNGDP&LNGOV series at semi-annual (½) frequency. However, there has been found 

a cointegrating relationship between LNGDP & LNGOV series at quarterly 








4

3

4

1
 

frequencies for only the model with “constant+dummies”. On the other hand, no 

cointegrating relationship has been found between LNGDP & LNEXP series for no 

models at these quarterly frequencies.  

       In the fourth application, the kind of seasonality (whether it is deterministic or 

stochastic) has been tried to be determined for quarterly unemployment series over 

1988Q1-2014Q4 period.  According to t and Q statistics, since the first condition saying 

that   coefficients are equal to each other  and the second one saying that all s'  are 

equal to zero do not hold, it is concluded that stochastic seasonality does not exist in the 

series. While there is a zero frequency unit root in the series for the models with 

“constant” and “constant+dummies”, no biannual and annual unit roots have been found 

for no models. Hence, the general result is that seasonal fluctuations in the series have 

not been able to emerge in the six-month and one- year intervals.  However, CH test 

result shows that seasonal pattern is not deterministic (indicating to the presence of 

seasonal unit root) and this result is completely different from the previous result which 

is based on t and Q statistics saying that there is no stochastic seasonality in the series. 

So, it can be said that two methods say different things regarding the type of seasonal 

pattern in the series and it is not certain to say that unemployment series displays only 

one type of seasonal behaviour. Thus, it may have both deterministic and stochastic 

structure.  

       In the fifth application, it has been tried to detect the kind of seasonality of 

quarterly GDP series in Turkey over 1998Q1-2014Q4 period. While DHF test results 

show that GDP series can be described by a seasonal integration of order 1 process (that 

is, GDP series can be modelled as a SARIMA model), HEGY test results say the 
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opposite. On the other hand, all dummy variables have been found to be significant for 

dummy variable representation meaning that modelling first-differenced GDP series as 

a deterministic model can be more suitable. However, when all results are taken into 

account together, it is not certain to say that GDP series has only a deterministic 

structure. It can be said that the series can be represented in both deterministic and 

stochastic structures.    

       As a result, as summarized in fourth and fifth applications, generally it is possible 

to say that most macroeconomic series can display both a deterministic and stochastic 

structure.  

       In the sixth application, it has been tried to detect at which frequencies there are 

seasonal unit roots for monthly exports and imports series. According to the results, 

both series have been found to include a non-seasonal unit root and no seasonal unit 

roots. Depending on this evidence, it is concluded that seasonal differencing filter which 

is )1( 12L is not required for two series (but they should be in first-differenced form 

because of the zero frequency unit root) and seasonal cycles are said to be mostly in a 

deterministic structure. It can be inferred from this application that even though the data 

are available on monthly basis, they may not include any seasonal unit roots. Thus, we 

cannot say that data which are collected at monthly or quarterly or any other basis 

include surely seasonal unit roots.      

 

7.2. Recommendations 

       It is wrong to say that each time series collected at seasonal basis (quarterly, 

monthly etc.) includes seasonal unit roots. A series should be subject to the )1( sL

filter where s is the length of the period only if it includes unit roots at all frequencies. 

Otherwise, if this filter is applied to the series in question in case there is a unit root at 

only one frequency, inaccurate results can be obtained. Briefly, as expressed in Beaulieu 

and Miron (1992b), “The appropriateness of applying the filter )1( dL to a series with a 

seasonal component, as advocated by Box and Jenkins (1970) depends on the series 

being integrated at zero and all of the seasonal frequencies” (p.18). Therefore, if a series 

has unit roots at which frequencies, filters corresponding to those frequencies should be 

applied to the series in interest in order to make it stationary. 

       For all analyses conducted so far, all series have been taken as seasonally 

unadjusted. Since in case seasonally adjusted data are used, there will be a bias in ADF 
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and PP statistics toward non-rejection of the unit root. Therefore, it has been expected 

that unit root test are more powerful when worked with unadjusted data (Maddala & 

Kim, 1998, pp. 364-365).     
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APPENDICES 

 

APPENDIX A1: Brownian Motion 

       Botanist Robert Brown explained the motion of a pollen particle suspended in fluid 

in 1828 and the observations on these particle movements revealed that they move in an 

unsteady and random manner. In 1905, Albert Einstein derived the equations related to 

Brownian motion claiming that the movements are stemmed from bombardment of the 

particle by the molecules of the fluid. In 1900, Brownian motion was used by Louis 

Bachelier as a model for movement of stock prices and since the mathematical 

foundation of Brownian motion as a stochastic process is based on Norbert Wiener, it is 

also called the Wiener process (Klebaner, 2005, p. 56). 

       The concept of Brownian motion
 
is closely related to the normal distribution. It is 

well known that  a random variable has a normal distribution with mean   and variance 

2 , where  R and 0 , if the probability density function of a random variable  is 

2

2

2

)(

2

1
)( 










x

exf , then it is said that it has a normal distribution with mean   and 

variance 2 , where  R and 0 . 

Definition 1.1. A stochastic process }0:)({ ttB  is said to be a Brownian motion 

process with a variance parameter 02   if: 

(i) 0)0( B  

(ii) (independent increments) For each mttt  ......0 21 ,   

)()(),......,()(),( 1121  mm tBtBtBtBtB are independent random variables. 

(iii) (stationary increments)  For each ts 0 , )()( sBtB  has a normal distribution 

with mean zero and variance )(2 st  . 

       This process operates as a basic model for the cumulative effect of pure noise. If 

)(tB  is the position of a particle at time t, then the displacement )0()( BtB  gives the 

effect of noise over time t (Klebaner, 2005, p. 56). 

       If ,12   the stochastic process )(tB becomes a standard Brownian motion and if 

}0:)({ ttB  is a Brownian motion process with 02  , then }0:)({ 1  ttB  

represents a standard Brownian motion (this concept will also be mentioned in Wiener 

process). 
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Theorem 1.1. Now let }0:)({ ttB be a standard Brownian motion. Then, the 

probability density function of )(tB is given as: 

            t

x

tB e
t

xf 2
)(

2

2

1
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




 

(http://home.cc.umanitoba.ca/~thavane/ASS305/5bm.pdf). 

 

APPENDIX A2: Wiener Process 

       In mathematics, the Wiener process is a continuous-time stochastic process named 

in honour of Norbert Wiener. It is mostly called standard Brownian motion, after Robert 

Brown and it occurs frequently in pure and applied mathematics, economics, 

quantitative finance and physics. In applied mathematics, one of the reasons to use this 

process is to represent the integral of a Gaussian white noise process, and so is useful as 

a model of noise in electronics engineering (Wikipedia, 2010). This process is a kind of 

Markov stochastic process (The Markov stochastic process is a particular type of 

stochastic process where only the current value of a variable is relevant for predicting 

the future movement). Essentially, the Wiener process is a series of normally distributed 

random variables, and for later time points, the variances of these variables rise to bring 

as a consequence that it is more uncertain and therefore harder to predict the value of 

the process after a longer period
 

(http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%20or%20F

inancial%20Engineering%20(graduate%20level)/FE_Ch01%20Wiener%20Process.pdf)

. 

       Definition 2.1. A Gaussian, continuous parameter process characterized by mean 

value 0)( tm and covariance function tsts  },min{: , for any ],0[, Tts  , is 

called a Wiener process (denoted by }{ tW ).  

       It is remarkable to say that the next definition can also provide a more intuitive 

description of the fundamental properties of a process of this kind. 

       Definition 2.2. A stochastic process 0}{ ttW  is called a Wiener process if it satisfies 

the properties expressed below: 

     1. 00 W  

     2. The function tWt   is almost surely continuous in t (with probability 1). 

http://home.cc.umanitoba.ca/~thavane/ASS305/5bm.pdf
http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%20or%20Financial%20Engineering%20(graduate%20level)/FE_Ch01%20Wiener%20Process.pdf
http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%20or%20Financial%20Engineering%20(graduate%20level)/FE_Ch01%20Wiener%20Process.pdf
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     3. Wt  has stationary, independent increments with st WW  ~ ),0( stN   for

],0[, Tts  , with ts 0 [that is, the variance of the change is equal to the distance 

between points]. This implies that taking s=0, 0WWt   has ),0( tN  distribution. 

These two definitions are equivalent. 

Proof: 

)2.2()1.2(   

       The independence of increments is a usual consequence of the Gaussian structure of 

Wt. In actuality, Wt  and st WW   can be expressed as a linear combination of Gaussian 

random variables, 

                                         



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Furthermore, they are not correlated and therefore independent:
4
 

         0....)])([( 1111
  iiiittttjiij ttttWWWWEaa

jjii
  

 Now Wiener process can be written as: 

        )()()( )1(20

N

Nt

N

tN

N

t
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t

N

tt WWWWWWW    

then,   

        
N
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N

kt WW )1(   ~ ),0(
N

T
N  

)1.2()2.2(   

     On the other hand, the ‘shape’ of the increments distribution implies that a Wiener 

process is a Gaussian process. As expected, for any nttt  ........0 21 , a random 

vector ),......,,( 21 tntt WWW  has a normal probability distribution. Since it is a linear 

combination of the vector ),......,,( 1121  tntnttt WWWWW whose components are 

Gaussian by definition (Caiaffa, 2011-2012). 

 

Properties of a One Dimensional Wiener Process 

Basic properties: 

       The unconditional probability density function at a fixed time t is:   

                                                           
4
 It should be noted that under the assumption ts  , the relations 0)()(  tmWE t

. 

tttWVar t  },min{)( , 0)(  St WWE  and stsstWWE St  2])[( 2  are valid. 
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*The expectation is: 0][ tWE  

*The variance is: ][][)( 22

ttt WEWEWVar  tWEWE tt  ][0][
22

 

  The results obtained for the mean and variance follow from the definition that 

increments have a normal distribution centered at zero. Therefore, 

0WWW tt   ~ ),0( tN . 

*The covariance and correlation are:    

  ),min(),cov( tsWW ts  , 

),max(

),min(),min(),cov(
),(

ts

ts

st

ts

ww

WW
WWcor

ts

ts

ts 


 

  The results obtained for the covariance and correlation follow from the definition that 

non-overlapping increments are independent (they are uncorrelated). Assume that 21 tt 

. 

].[])][]).([[(),cov( 21221121 tttttttt WWEWEWWEWEWW   

Substituting 

1122 )( tttt WWWW  , we obtain: 

].[)].([)]).(([].[
2

1121112121 tttttttttt WEWWWEWWWWEWWE   

Since we know   )()()( 011 tWtWtW   and )()( 12 tWtW   are independent, 

0][].[)].([ 121121  tttttt WWEWEWWWE  and therefore,  

1

2

121 ][),cov( tWEWW ttt   

(Wikipedia, 2010). 

 

The Wiener Process as a Scaled Random Walk 

     Consider  a simple random walk NnnX }{  on the lattice of integers Z: 

              



n

k

knX
1

  

where Nkk }{  is a sequence of independently, identically distributed (i.i.d.) random 

variables with ± . According to the Central Limit Theorem (CLT),  kP (
2

1
)1 
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            is a Gaussian variable with mean zero and variance one in 

distribution as . This suggests defining the piecewise constant random function 

 on as follows: 

       , 

where   stands for the largest integer less than  and in order to be compatible 

with general notations for stochastic processes, here t is written as a subscript, i.e. 

. It can be said that as ,  converges in distribution to a 

stochastic process  denoting the Wiener process 

(https://www.cscamm.umd.edu/lectures/EVandenLectures_final.pdf).  

 

APPENDIX A3: Brownian Bridge 

       Definition 3.1. A standard Brownian bridge is a Gaussian process X with 

continuous paths, mean zero and covariance function  for 

.  

     A standard Brownian bridge over the interval  is a standard Brownian 

motion  given the condition that . If expressed in a clear way: 

 . 

     The variance of the Brownian bridge is which implies that the most 

uncertainty takes place in the middle of the bridge. Also, it should be noted that the 

increments in a Brownian bridge are not independent.  

     If is a standard Brownian motion ( for , normally distributed with 

expected value zero and variance t, and with stationary and independent increments), 

then Brownian bridge can be expressed as: 

. 

     Although a standard Wiener process satisfies  and so it is “tied down” to 

the origin, a Brownian bridge process requires not only , but also  

implying that this process is also “tied down” at time 1 to have the value zero. 

(Wikipedia, n.d.; Chang, 2007). 
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 APPENDIX A4: Distribution Theory for Autoregressive Unit Root Tests 

      Consider the following simple autoregressive AR(1) process: 

          with  where  ~  is a white noise process. 

In order to test for a unit root, the null and alternative hypothesis will be as in the 

following way: 

          (implies the existence of unit root – nonstationarity case)  

           (implies the presence of no unit root – stationarity case) 

 The test statistic becomes  where denotes the standard error of least 

squares estimate  and OLS estimation of  is given as . 

   

       First, assume that , so the process is stationary. In that case, the asymptotic 

results for stationary AR(1) process take place in the standard framework used for the 

basic linear regression model given as: 

 (Hamilton, 1994, p. 216) 

or 

 ~  and it follows that ~ . 

       In order to make inferences about the interested null hypothesis, a limiting 

distribution of a suitable standardized version of  should be available. However, there 

is a problem that under the unit root null, since  follows a nonstationary process 

(random walk) the basic assumptions underlying CLT fail to hold and therefore we have 

to rely on less-standard asymptotic theory based on the concepts like the Functional 

Central Limit Theorem (FCLT), the Continuous Mapping Theorem and Brownian 

motions in order to study the behavior of such a statistic.  When the variance of 

asymptotic result becomes zero which apparently does not make any sense (  

and therefore ). That is,  has no longer a standard distribution and the 

usual sample moments do not converge to fixed constants. Here it will be shown that 
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the statistic features a convergent distribution for the null hypothesis of a 

random walk. Because the resulting asymptotic distribution is not standard, it requires 

the Brownian motion process (It is a zero-mean normally distributed continuous process 

with independent increments i.e., loosely speaking, the continuous version of the 

discrete random walk (Dolado, Gonzalo & Marmol, 1999)). So, Phillips (1987) showed 

that the sample moments of  converge to random functions of Brownian motions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

     Replacing  given in  in OLS estimation of  given above,  

 

 ,  

we get, 

 

Now, first consider the asymptotic behavior of the nominator part. Under the null 

hypothesis, 

 

Then,  becomes 

 

Summing over  dividing by T and also supposing that the initial value  

                 

 

Let us have a look at the first term on the right side of the equation. Under the null 

hypothesis of   ~ (since,  is a random walk process: 

with ). So, ~N(0,1). 

Let us continue from the previous equation. Dividing it by we get 
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Again look at the first term on the right side, 

~  

and the second term  converges to  in probability (by the law of large 

numbers). Then the nominator converges to . 

Now in order to deal with the asymptotic behavior of a random process in the 

denominator part, we need to know about the Brownian Motions and FCLT. 

       Let { } be a sequence of i.i.d. random variables with mean zero and variance . 

Define a partial sum process  as . This partial sum process is a discrete 

process with values . Here the aim is to describe a standardized continuous 

process over the interval [0,1]. For this, the process should be redefined as a 

standardized discrete form over the points  as:  

. So, we standardized the  process by its total variance and 

adjusted the time scale in a way to go from 0 to 1. Now, in order to describe a 

continuous process from this discrete form, we introduce a notation  and let it be 

the integer part of . Then, the continuous process can be expressed as: 

    ,     

This function satisfies the whole conditions of the FCLT. 

       Definition: Let  be the continuous process expressed above. Then,  

converges to , a continuous time process known as standard Brownian motion.  

This definition tells us that the process constructed by adding more points eventually 

converges to a well-defined process. So, . 

     Now, in order to derive the asymptotic behaviour of denominator part , 

applying  the definition of  we can write  as follows: 

        

and squaring and dividing this expression by , we get 
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Because of the constancy and continuity of this expression for r in the interval 

, it can be rewritten as 

       

Since the denominator part has a summation, the summation form of this expression 

over t becomes 

       

According to FCLT, as   converges to the Brownian motion . In 

conclusion, the asymptotic behaviour of the denominator can be given as 

       

After cancelling , the limiting behaviour of  can be 

expressed as follows: 

      where  

It should be remembered that  depending on the assumption that the 

Brownian motion starts at zero and its square as a standard normal variable is a chi-

square variable with one degree of freedom. As a conclusion, it can be inferred that 

although the OLS-like statistic is not a standard one in fact, its appropriate 

standardization has a limiting distribution including Brownian motions (Escudero, 

2001; Unit Root Tests, n.d.) 
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APPENDIX B:  Schematic Representation of the Box-Jenkins Methodology

 

Source: Bigović, 2012, p. 6. 

 

 

APPENDIX C : Monthly HEGY Critical Values for 240 Observations 

Models        

C -2.79 -1.88 3.03 2.99 3.02 3.04 3.06 

C,T -3.32 -1.88 3.01 2.96 3.02 3.02 3.03 

C,D -2.76 -2.76 6.27 6.28 6.21 6.22 6.21 

C,D,T -3.29 -2.76 6.24 6.26 6.18 6.20 6.20 

- -1.91 -1.88 3.05 3.01 3.05 3.06 3.09 
Note.

   1  
Critical values   have  been  obtained   from  Franses  &  Hobjin  (1997)  for   S=12  and  for   5%  

               significance level (see pp. 29-33) for 20 years. 

           
2  

c  shows  constant,  t  denotes  trend,  d  denotes  seasonal  dummy  variables  and  “-”  shows  no  

              deterministic  components   (critical  values   have  been   searched   for  20  years –  that   is  240  

              observations)           
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APPENDIX D: Checking Causality, Stationarity and Invertibility Conditions for                       

                           ARIMA(1,1,1)(1,0,2)[12] Model with Drift 

 

R Codes and Outputs for Checking Causality, Stationarity and Invertibility: 

     “plot.Arima” in forecast package works in order to plot characteristic roots from 

ARIMA model. This function produces a plot of the inverse AR and MA roots of an 

ARIMA model. Inverse roots outside the unit circle are shown in red (Hyndman, 2015, 

p. 53). 

 polyroot(c(1,-0.1750)) #For Non-seasonal AR# 

                           [1] 5.714286+0i 

                           > Mod(polyroot(c(1,-0.1750)))>1 

                           [1] TRUE 

 polyroot(c(1,-0.8857)) #For Non-seasonal MA# 

                           [1] 1.12905+0i 

                           > Mod(polyroot(c(1,-0.8857)))>1 

                          [1] TRUE 
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    polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.8862))  #Seasonal AR# 

            [1]  0.5050593+0.8747883i -0.8747883+0.5050593i -0.5050593-0.8747883i 

              [4]  0.8747883-0.5050593i  0.0000000+1.0101186i -1.0101186-0.0000000i 

              [7]  0.0000000-1.0101186i  1.0101186+0.0000000i -0.5050593+0.8747883i 

             [10] -0.8747883-0.5050593i  0.5050593-0.8747883i  0.8747883+0.5050593i 

                       > Mod(polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.8862)))>1 

 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

 polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.7102,0,0,0,0,0,0,0,0,0,0,0,0.1813))  

#Seasonal MA# 

              [1]  0.5815120+0.9026442i -0.9549262+0.4909568i -0.5815120-0.9026442i 

              [4]  0.9549262-0.4909568i  0.4909568+0.9549262i -0.9026442+0.5815120i 

              [7] -0.4909568-0.9549262i  1.0724688-0.0522820i -0.0522820+1.0724688i 

             [10] -1.0724688+0.0522820i  0.0522820-1.0724688i  1.0724688+0.0522820i 

             [13]  0.0522820+1.0724688i -0.9549262-0.4909568i  0.4909568-0.9549262i 

             [16]  0.9549262+0.4909568i -0.4909568+0.9549262i -0.9026442-0.5815120i 

             [19]  0.5815120-0.9026442i  0.9026442+0.5815120i -0.5815120+0.9026442i 

             [22] -1.0724688-0.0522820i  0.9026442-0.5815120i -0.0522820-1.0724688i 

         > Mod( polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.7102,0,0,0,0,0,0,0,0,0,0,0,0.1813)))>1 

 

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

TRUE TRUE 

[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

Here, ”True” means that roots have modulus which are greater than 1 (>1). 

         For  ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model, apart from all required 

checks, we need to check also the causality, stationarity and invertibility condition. For  

ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model to be causal, stationary and 

invertible, all roots of the characteristic polynomial of AR, MA, SAR and SMA 

operators should be greater than 1 in absolute value. 
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          A causal invertible model should have all the roots outside the unit circle. Equiva-

lently, the inverse roots should lie inside the unit circle (Hyndman, 2014). Here, all 

inverse roots lie inside the unit circle as shown in the figures given above. 

 

APPENDIX E: Quarterly HEGY(1990) Critical Values for  Intercept and Seasonal                            

                           Dummies Model (for N=100)                                                                      

 

 

%1 %5 %10 

-3.55 -2.95 -2.63 

 

 

 

%1 %5 %10 

-3.60 -2.94 -2.63 

 

 

 

%1 %5 %10 

-4.06 -3.44 -3.14 

 

 

 

%1 %5 %10 

-2.78 -1.96 -1.53 

 

 

F:  

%99 %95 %90 

8.74 6.57 5.56 

 

(Source: Hylleberg et al., 1990, pp. 226-227) 

 

APPENDIX F: Critical Values for Seasonal Cointegration (for 100 Observations) 

 

Table F1  

Critical Values for Seasonal Cointegration at Zero and Semiannual Frequencies 

 

Number of Variables (k=5, N=100)  ve  

Significance Level 1% 5% 10% 

Critical Value 5.18 4.58 4.26 
Source: Engle & Yoo (1987, p. 157).  
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Table F2 

Critical Values for Seasonal Cointegration at  ¼  (and ¾ ) Quarterly Frequencies 

 

N=100    

Deterministic 

Components 

in Cointegrating 

Regression 

1% 5% 10% 1% 5% 10% 99% 95% 90% 

- -3.94 -3.30 -3.00 -3.01 -2.12 - 10.24 7.21 5.91 

C -3.86 -3.27 -2.95 -2.95 -2.08 - 10.15 7.10 5.83 

C, D -4.77 -4.12 -3.81 -3.02 -2.14 - 13.26 10.12 8.66 

Source: Engle et al., 1993, p. 293. 

 

APPENDIX G:  Monthly HEGY Seasonal Unit Root Test Critical Values (For  

                             S=12 and 40 years, that is 480 observations) 

 

Table G1 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
-2.51 -1.93 -1.59 

Constant -3.40 -2.82 -2.52 

Constant & Dummies -3.40 -2.81 -2.51 

Constant & Trend -3.93 -3.37 -3.09 

Constant, Trend & Dummies -3.91 -3.35 -3.08 

Source: Franses & Hobjin (1997), p. 29  

 

 

Table G2 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
-2.53 -1.94 -1.60 

Constant -2.54 -1.94 -1.60 

Constant & Dummies -3.34 -2.81 -2.51 

Constant & Trend -2.54 -1.94 -1.59 

Constant, Trend & Dummies -3.34 -2.81 -2.51 

Source: Franses & Hobjin (1997), p. 30.  
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Table G3 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
4.74 3.07 2.36 

Constant 4.72 3.07 2.36 

Constant & Dummies 8.40 6.35 5.45 

Constant & Trend 4.71 3.05 2.35 

Constant, Trend & Dummies 8.38 6.35 5.45 

Source: Franses & Hobjin (1997), p. 31.  

 

 

 

Table G4 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
4.61 3.06 2.38 

Constant 4.63 3.05 2.38 

Constant & Dummies 8.58 6.48 5.46 

Constant & Trend 4.60 3.05 2.38 

Constant, Trend & Dummies 8.55 6.48 5.46 

Note. Source: Franses & Hobjin (1997), p. 33.  

 

Table G5 

 Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
4.69 3.10 2.40 

Constant 4.70 3.09 2.39 

Constant & Dummies 8.39 6.33 5.32 

Constant & Trend 4.69 3.08 2.39 

Constant, Trend & Dummies 8.39 6.30 5.33 

 Source: Franses & Hobjin (1997), p. 33.  

 

Table G6 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
4.75 3.11 2.35 

Constant 4.73 3.09 2.34 

Constant & Dummies 8.56 6.41 5.46 

Constant & Trend 4.73 3.08 2.34 

Constant, Trend & Dummies 8.50 6.40 5.47 

 Source: Franses & Hobjin (1997), p. 33.  
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Table G7 

Monthly HEGY Critical Values for  

 

Models 1% 5% 10% 

No Constant, No Trend, No  

Dummies 
4.65 3.11 2.41 

Constant 4.65 3.10 2.40 

Constant & Dummies 8.76 6.47 5.36 

Constant & Trend 4.65 3.09 2.39 

Constant, Trend & Dummies 8.75 6.46 5.36 

 Source: Franses & Hobjin (1997), p. 33. 
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