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OZET

MEVSIMSEL ZAMAN SERILERININ EKONOMETRIK ANALIZi:
BAZI MAKROIKTiSADI DEGISKENLER UZERINE UYGULAMALAR

Sera SANLI

Yiiksek Lisans Tezi, Ekonometri Ana Bilim Dah
Damsman: Doc. Dr. Mehmet OZMEN
Agustos 2015, 217 sayfa

Bu calismada temel olarak enflasyon, biiylime, issizlik, tliiketim, gayri safi yurt
ici hasila, ihracat gibi bazi1 makroiktisadi zaman serilerinin mevsimsellik durumunda
yapisal ozelliklerini degerlendirmek i¢in bu seriler {izerinde analizler yaparak zaman
serilerinin mevsimsellik boyutunu tiim yonleriyle ele almak amaglanmistir. Calismada
Mevsimsel Otoregresif Biitiinlesik Hareketli Ortalama (SARIMA) modellemesi,
lImakunnas (1990)’in ¢alismasina dayanan mevsimsel biitiinlesme testleri, ¢esitli
yardimci regresyon modelleri kullanilarak g¢eyreklik ve aylik frekanstaki veriler i¢in
mevsimsel birim kok testleri, deterministik-stokastik mevsimsellik testleri ve mevsimsel
esbiitiinlesme analizlerine yer verilmistir. Mevsimsel birim kok analizleri; OCSB, DHF
testlerinin yanisira temelde Hylleberg, Engle, Granger ve Yoo tarafindan gelistirilen en
popiiler yaklasim olan HEGY yaklasimiyla ele alinacaktir. Bu analizler, bize (sifir
frekansin yani sira) hangi mevsimsel frekanslarda birim kokiin mevcut olup olmadigi
bilgisini edinmemize imkan saglayacaktir. Uygulamalardan elde edilen sonuglar
gostermistir ki bir seri hangi frekanslarda birim kok iceriyorsa, seriyi duraganlastirmak
i¢in yapilacak doniisiimlerde bu frekanslara karsilik gelen filtreler uygulanmalidir. Ote
yandan, ayllk HEGY mevsimsel birim kok uygulamalari, aylik bazli verilerin
mevsimsel frekanslarda higbir mevsimsel birim kok icermeyebilecegini ortaya
koymustur. Ayrica, Tiirkiye icin ele alinan makroiktisadi serilerin yalnizca tek tiir
mevsimsel davranis sergiledigi kesin degildir. Bu makroiktisadi seriler, hem

deterministik hem de stokastik bir yap1 igerebilir.

Anahtar kelimeler: HEGY yaklasimi, mevsimsel birim kokler, deterministik-stokastik

mevsimsellik, mevsimsel biitiinlesme, mevsimsel esbiitiinlesme.



ABSTRACT

THE ECONOMETRIC ANALYSIS OF SEASONAL TIME SERIES:
APPLICATIONS ON SOME MACROECONOMIC VARIABLES

Sera SANLI

Master Thesis, Department of Econometrics
Supervisor: Assoc. Prof. Mehmet OZMEN

August 2015, 217 pages

In this paper, it has been mainly aimed to treat the scope of the seasonality -
which is an important component of time series - in all its bearings by making analyses
on some macroeconomic time series (such as inflation, growth, unemployment,
consumption, gdp, exports etc.) to evaluate the structural properties of these series under
seasonality. The conducted analyses include Seasonal Autoregressive Integrated
Moving Average (SARIMA) modelling, seasonal integration tests based on the study of
liImakunnas (1990), seasonal unit root tests for quarterly and monthly data under the
various auxiliary regression models, deterministic and stochastic seasonality tests and
seasonal cointegration. The analyses of seasonal unit roots have been conducted
fundamentally with the most popular approach developed by Hylleberg, Engle, Granger
and Yoo called HEGY apart from the OCSB, DHF tests. There are some important
implications of the results obtained for these applications: firstly, if a series has unit
roots at which frequencies, filters corresponding to those frequencies should be applied
to the series in interest in order to make it stationary. On the other hand, monthly HEGY
seasonal unit root applications have revealed that even though the data are available on
monthly basis, they may not include any seasonal unit roots at seasonal frequencies. In
addition, it is not certain to say that all Turkish macroeconomic series display only one
type of seasonal behaviour. Thus, they can have both a deterministic and stochastic

structure.

Keywords: HEGY procedure, seasonal unit roots, deterministic-stochastic seasonality,

seasonal integration, seasonal cointegration.
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CHAPTER |

INTRODUCTION

1.1. Statement of the Problem

Economic time series are generally recorded at some fixed interval. When we are
dealing with macroeconomic time series, seasonal models are mostly available at
monthly or quarterly frequency and for instance, for a variable with quarterly frequency,
time series plotting of each quarter as a separate curve gives a useful insight about
describing the seasonal behaviour of a series. Such plots are available in Hylleberg
(1986). However, if studied with financial time series, our interest is often directed to
the seasonal patterns at the daily level. So, seasonality may have many different
manifestations and it is a widespread phenomenon observed in many econometric time
series (Ghysels & Osborn, 2001, p.3).

The problem of the research is concerned with the concept of seasonality. However,
there is no simple answer about what seasonality is. There are some factors underlying
the source of seasonal variations like production cycle characteristics, calendar effects
(the timing of certain public holidays-such as Christmas and Easter), timing decisions
(the timing of school vacations, ending of university sessions etc.) repeating every year
in the same month or quarter and differing in magnitude from year to year even the
seasonal variations occur regularly (Hansda, 2012, p.1673).

According to Hylleberg (1992), the definition of seasonality in economics is given
as:

Seasonality is the systematic, although not necessarily regular, intra-year
movements caused by the changes of the weather, the calendar and timing of
decisions, directly or indirectly through the production and consumption
decisions made by the agents of the economy. These decisions are influenced by
endowments, the expectations and preferences of the agents, and the production
techniques available in the economy (Hylleberg, 1992, p.4).

All the studies regarding time series methods are useful only in case the series in
interest do not display seasonal patterns. That is why it is of great importance to take the
time series properties of the series like seasonal patterns or trends into account while
dealing with economic time series data and the research on what form of seasonality

exists in the data in interest and thus the way of modelling seasonality is also crucial.



Seasonality could be viewed as deterministic or stochastic. The difference between
these two types of seasonality can be explained in that way: while in the deterministic
seasonal model shocks die out in the long run, in the stochastic seasonal model shocks

have a permanent effect. Therefore, in the stochastic seasonal model a positive shock at
time t will not only increase the value of a Y, series, but also the value of VY, s, Yi o6

etc. (Ozcan, 1994, p.64). Taking seasonal differences can remove the seasonal pattern.
However, in the case of deterministic seasonal variation which can be modelled as a
deterministic function of time plus stationary noise, this transaction is not required.
Since a deterministic seasonal pattern that is subject to differencing results in a
noninvertible series; in other words, it contains a unit root in the Moving Average (MA)
operator. There are some tests relating to testing the presence of deterministic
seasonality which are the Canova-Hansen (CH) Test, the Caner Test and the Tam-
Reinsel Test. While Canova and Hansen (1995) adopt a nonparametric approach in
handling of autocorrelation problem, Caner (1998) and Tam and Reinsel (1997) adopt a
parametric approach and the Monte Carlo study conducted by Caner (1998) has
revealed that his proposed test with the parametric approach provides better size and
power properties than Canova and Hansen. On the other hand, while Caner (1998)
advocates to estimate the deterministic seasonal model in seasonal differences; the
others estimate this model in the levels of the series in interest that will be mentioned
later. Contrary to the deterministic seasonality, in the case of stochastic seasonality the
seasonal differences generate a stationary and invertible process. However, if seasonal
differencing is not applied to the series having stochastic seasonality, the series
continues to be nonstationary. Therefore, it is of great importance to determine which
type of seasonality the series in question displays because nonstationarity and non-
invertibility situations create difficulties in parameter estimation and forecasting (Tam
& Reinsel, 1997, p.725). In case seasonal time series have unit roots, these roots repeat
themselves depending on the seasonal frequencies. As opposed to the conventional unit
root tests, in the case of seasonal unit roots taking differences as the number of
repeating unit roots in series will remain the series as non-stationary and this application
will be able to convert the series into very complex models. In that case, the knowledge

of whether unit root in a series is seasonal or not is very crucial (Tire & Akdi, 2005,
p.3).



The perception of many econometricians directed at the fact that seasonal variation
is often larger and more irregular than being considered and making inference in
dynamic models like integration and cointegration tests is disrupted by using seasonal
adjustment. All these create a stimulating effect to deal with modelling seasonality. On
the other hand, the study of seasonality is tied closely to the study of business cycles.
Many analysts tend to work with current data to make inferences about changes in
overall economy. The aim is to identify changes in the trend of economic activity from
movements in certain indicators, such as data on prices or interest rates, or some other
index of economic activity that is reported very frequently (Jaditz, 1994, p.17). In this
respect, inferences about the business cycles could be interpreted in a complicate way in
the presence of seasonal pattern. This is another justification in order to deal with

seasonality.

1.2. The Aim of the Research

In this paper, it has been mainly aimed to treat the scope of the seasonality in all its
bearings by making analyses on some macroeconomic time series, to evaluate the
structural properties of these series under seasonality and to present the methods that
have been suggested and/or employed in the literature including modelling seasonality-
what form of seasonality exists in the data worked, deterministic or stochastic-, seasonal
integration, seasonal unit root analyses and so on. Since many time series display
substantial seasonality, the presence of unit roots corresponding to other frequencies
(like seasonal ones) rather than zero is highly possible. The analyses of seasonal unit
roots will be conducted with the most popular approach developed by Hylleberg, Engle,
Granger and Yoo called HEGY by working with different models that include trends,
constants and seasonal dummy variables and with a variety of approaches other than
HEGY. These analyses will enable us to understand whether there exist unit roots at
seasonal frequencies or not.

It is remarkable to say that the aim in separating of the total variation of a time
series into seasonal and other components is to obtain identification of underlying
patterns and causal relationships and to lower the possibility of being ill-informed by
spurious correlations created by systematic and independent effects (Fromm, 1978,
p.26).



1.3. The Importance of the Research

It is very crucial to handle pure analysis of seasonality and determine it exactly in
the deterministic time series indicators of the economic system in order to choose a
proper policy analysis and carrying it for the economy of the country in question. So,
the removal of the knowledge on seasonal factors of an economic variable (i.e. seasonal
adjustment procedure) enables the policy maker to differentiate between the seasonal
changes and long run changes in a variable and thereby design appropriate policy
responses (Hansda, 2012, p.1673).

If necessary to give an example to why seasonality is important to be understood,
assume that whether there is an expansion or recession in the economy, there is a
significant drop in industrial production in the first quarter of the year. Therefore, it is
significant for analysts to make inference about whether a first quarter dip is caused by
seasonal factors that will vanish next quarter or whether the decline is an indicator for a
change in the business cycle from boom to bust (Jaditz, 1994, p.17).

If we ignore the presence of this seasonality in the series although a series is
seasonal in fact, both the knowledge of a description of seasonal fluctuation and a
description of the variation in the series with the seasonal fluctuation removed may be
disregarded in making useful administrative or policy decisions. Without a prior
description, misspecification of the models and incorrect forecasts are highly possible.
On the other hand, the knowledge on the amount of seasonal fluctuations may be in
great importance for policy makers and administrators for allocating resources in a
suitable way. For instance, in case more people are sentenced to prison in the fall, this
knowledge will enable the prison administrator to arrange for more beds in the fall
months. In addition, in case a nonseasonal series is seasonally adjusted by assuming that
this series follows a seasonal pattern, this analysis will also be erroneous and a complex
model to be constructed under this assumption will give rise to a misspecified model
with an “overadjustment” of seasonality depending on the removal of seasonal
fluctuations that are not present in any way (Block, 1983, pp.3-7).

In this research, the results which will be obtained with applications of seasonality
analyses on some macroeconomic series will give us an insight about which pattern
these series exhibit for a given period at any frequency and whether they are in

accordance with the real world expectations or not.



CHAPTER I

LITERATURE REVIEW

2.1. Studies on Seasonal Patterns

There exists a vast literature on seasonality. Nerlove (1964) utilizes the spectral and
cross-spectral techniques in order to analyse the effects of seasonal adjustment
procedures and mention about a slowly changing and stochastic seasonal pattern to
uncover itself in the spectrum of an economic time series through a set of peaks
occurring at certain frequencies. Following the work of Box and Jenkins (1970),
seasonal ARMA models have been estimated by many time series practitioners. In the
paper by Kitagawa and Gersch (1984), it is dealt with a smoothness priors —Kalman
Filter-Akaike Information Criterion (AIC)- approach to the modelling of time series
with trend and seasonality. Kitagawa and Gersch (1984) have supported the usage of a
state-space approach with a specific unobservable seasonal component. Through a state-
space representation, Thorburn and Tongur (2014) consider the issue of whether
seasonal decomposition should be used prior to or after aggregation of time series and
have an argument on that the preferable succession order between aggregation and
seasonal decomposition must depend on the covariance structure of the series.
Hylleberg (1986) provides an extensive discussion of definitions of seasonality. Hasza
and Fuller (1982) and Li (1991) discuss the tests for normal and seasonal unit roots on
the autoregressive operator. The studies by Otto and Wirjanto (1990), Ghysels, Lee and
Siklos (1994b), McDougall (1995) indicate the presence of significant seasonal patterns
on many macroeconomic time series. Bell (1987) refers to the discussion that series

featuring seasonal unit roots and pure seasonal dummy processes are not regarded as

distinct from a practical view of point when &, =1 in equation (4.31). Eiurridge and

Wallis (1990) mention about how seasonal patterns in variance should be modelled in
the context of Kalman Filter.

Sims (1974) considers the seasonal components of economic time series as “errors
in variables”, examines the nature of asymptotic biases in least squares estimates of lag
distributions in the case of availability of seasonal noise and analyses procedures for

correcting for seasonal bias.



When looked at seasonality from economic viewpoint, Barsky and Miron (1987)
outline the estimates of the seasonal patterns in a set of standard macroeconomic
variables including consumption, investment, government purchases, employment and
money stock concluding that a crucial source of the non-trend variation comes from
seasonal fluctuations. Comparing the seasonal cycle to the business cycle, they show the
U.S. (United States) economy to display a “seasonal business cycle” and express that it
has the significant qualitative features that reflect closely the identical picture of the
characteristics of the conventional business cycle. That is, besides the business cycle
frequencies, at seasonal frequencies output movements are found to act together across
broadly defined sectors and nominal money and real output are found to have a strong
correlation.

The paper by Miron (1990) presents some stylized facts about seasonal fluctuations
in U.S. and other economies which convey the crucial information about the nature of
the business cycle. The results show that the preference shifts have more considerable
importance than technology shifts in explaining the important properties of observed
seasonal patterns and seasonal cycles and business cycles are closely related. Miron
(1990) also discusses the possible welfare implications of seasonal cycles.

In the paper by Beaulieu and Miron (1992a), the cross country variations in
seasonal patterns are utilized to describe the basic sources of seasonal cycles. It is
shown that a fourth quarter boom in output, a July or August trough in manufacturing
production and a first quarter trough in almost every aspect of economic activity
constitute the most significant characteristics of seasonal patterns. Even though the
model proposed by Beaulieu and Miron (1992a) is in coherence with the stationary
stochastic seasonality, only deterministic seasonality is analysed in the study based on
the justification that seasonal unit roots and stationary stochastic seasonality are not of
quantitative importance whenever dummies have been excluded.

In Jaditz (2000), testing for seasonal components in variance is expressed to be
analogous to testing a stationary time series for seasonality in the mean. In the article,
all nine common macro time series have been examined to find out if they display
seasonality in variance and all series are found to display significant seasonality in
variance. Since seasonal variation structures are very crucial to businesses and policy
makers with regard to including important signs about the current situation of the
economy, from this result it is inferred that the variance of macro time series seems to

have a significant seasonal component.



Franses (1992b) presents a general-to-simple test procedure for seasonality which is
established upon the tests for parameter restrictions that are associated with seasonal
behaviour in a general periodic model. In the study, this procedure is applied to the
quarterly U.K. (United Kingdom) stock price index for the period 1963:Q1-1988:Q4
and the U.S. CLI index for the period 1948:Q1-1987:Q4 and it is concluded that
cyclical and trend behaviour vary per quarter for CLI index while the U.K. stock price
series does not exhibit seasonal patterns.

The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests of
the null hypothesis of no unit roots at seasonal frequencies denoting the presence of
deterministic seasonality contrary to the tests of Dickey, Hasza and Fuller (DHF) (1984)
and Hylleberg, Engle, Granger and Yoo (HEGY) (1990) tests dealing with the null of
presence of seasonal unit roots. They generalize the Kwiatkowski, Phillips, Schmidt,
and Shin (KPSS) (1992) test framework.

With Monte Carlo experiments applied to three data sets which are the quarterly
seasonal fluctuations in U.S. macro variables originally used by Barsky and Miron
(1989), quarterly European industrial production indexes used by Canova (1993) and
stock returns on value weighted indexes for seven industrialized countries, they draw
attention to the instable and therefore nonstationary seasonal pattern properties of these
variables in most cases. The paper proposed by Canova (1993) presents a methodology
for modelling and forecasting the series with common patterns at seasonal and/or other
frequencies and attaches the concept of common patterns to a Bayesian Autoregression
tradition developed by Litterman (1980), Doan, Litterman and Sims (1984) and Sims
(1989) at origin.

In their paper, Raynauld and Simonato (1993) aim to assess a possible alternative
based on the adaptation of the Bayesian Vector Autoregressive (BVAR) approach
popularized by Litterman (1979, 1984, 1986), Doan, Litterman and Sims (1984) and
Sims (1989) to the context of seasonal time series. The forecasting performance of the
seasonal BVAR models has been evaluated in the context of a monthly model of the
U.S. economy including both seasonal and nonseasonal variables. In the paper proposed
by Shaarawy and Ali (2015), it has been aimed basically to develop an approximate
Bayesian technique to identify the orders of any seasonal multivariate autoregressive
processes and numerical results obtained point out to the sufficiency of using the
proposed technique in identifying the orders of seasonal multivariate autoregressive

processes for moderate and large sample size in an efficient manner.



In their study, Ghysels and Perron (1996) examine the effects of seasonal
adjustment filters on the statistical properties of different tests involving structural
changes through theoretical discussions and Monte Carlo simulations. The adverse
effects of linear filtering in the case of structural change are demonstrated using
historical series of economic activity covering the Great Depression. The results
indicate that the non-rejection of the unit root null hypothesis with seasonally adjusted
series can be grounded on the smoothing properties of many filters requiring a power
loss.

Tam and Reinsel (1997) examine the locally best invariant unbiased (LBIU) and
point optimal invariant (POI) test procedures for a unit root in the seasonal moving
average (SMA) operator for seasonal autoregressive integrated moving average models
(SARIMA) and make use of the monthly non-agricultural industry employment series
for males age 16-19 modelled by Hillmer, Bell and Tiao (1983). The results for
conducted simulations have revealed that for this series, seasonality is stochastic and
therefore seasonal differencing is appropriate. They also apply their tests to different
types of seasonal time series data and find some of these series to have deterministic
seasonality.

In order to distinguish stochastic seasonality from deterministic seasonal pattern,
Tam and Reinsel (1998) also examine the LBIU and POI tests for a unit root in SMA
model in the presence of a deterministic linear trend and their test is an extension of the
framework proposed by Tanaka (1990) and Saikkonen and Luukkonen (1993)
nonseasonal MA unit root tests to the seasonal frequencies. The test procedures are
applied to the monthly average total ozone data at Boulder, Colorado from 1966 to 1991
and as associated with non-rejection of the null hypothesis, they decide on that
modelling seasonality as deterministic is appropriate rather than stochastic.

The article proposed by Caner (1998) suggests a locally best invariant test with the
null of seasonal stationarity and the test is derived from the framework of King and
Hillier (1985). It is also a generalization of the unit root test proposed by Leybourne and
McCabe (1994) from zero frequency case to the seasonal frequency. When compared
with the CH test, contrary to it Caner takes the autocorrelation into account in a
parametric way and conducted Monte Carlo simulations revealed that his proposed test
has better finite sample performance with good power properties than the CH test in an
AR type of autocorrelation. Also, in the same manner to Caner (1998), Busetti and

Harvey (2003) extend the test procedure proposed by Canova and Hansen (1995) and



propose a parametric version of the test. One crucial practical finding from Monte Carlo
experiments is that for most economic time series taking first differences can be a good
strategy. In addition, they consider a test for breaks in seasonal patterns, also a general
test versus any kind of permanent seasonality, deterministic or stochastic.

Lenten and Moosa (1999) aim to model the trend and seasonal behaviour of the
alcoholic beverages consumption in the U.K. over the period 1964-1995 by means of
the univariate version of Harvey’s (1989) basic structural time series model. Using
quarterly seasonally adjusted data, they have found the consumption of beer and wine to
display stochastic seasonality and the consumption of spirits to display deterministic
seasonality. Also, these three series are expressed to include stochastic trends.
According to the goodness of fit measures and diagnostic test statistics, the model with
stochastic trend and seasonality has been found to be the most suitable one when
compared to other models. Harvey and Scott (1994) examine the implications of explicit
modelling of seasonality as an unobserved component which facilitates the dynamic
modelling by seperating non-seasonal components from seasonal ones using the
consumption model of Davidson, Hendry, Srba and Yeo (1978).

In their paper, Cheung and Coutts (1999) make use of logarithmic daily returns of
the Hang Seng Index on the Hong Kong Stock Exchange over the period 1 January
1985 through 30 June 1997 in order to search for a January effect or monthly
seasonality. Contrary to the previous studies regarding other stock indices which
discover the presence of some type of monthly seasonality in most cases, their study
shows strangely that there is no evidence of a January effect or monthly seasonality for
the Hang Seng Index over the period in question.

Fang (2000) presents a broad characterization of the presence of significant
seasonal patterns in estimated daily and hourly return volatilities using high frequency
data for three exchange rates which are mark/dollar, yen/dollar and yen/mark and points
out to that disregarding such patterns will result in a biased and insignificant empirical
analysis.

In the study by Lim and McAleer (2000), the presence of stochastic seasonality is
examined to clarify the nonstationary quarterly international tourist arrivals from Hong
Kong and Singapore to Australia from 1975:Q1 to 1996:Q4 using HEGY (1990)
procedure. Since the presence of seasonal unit roots gives an insight into a varying
seasonal pattern that is against a constant seasonal pattern, the Box Jenkins Seasonal

Autoregressive Integrated Moving Average (SARIMA) process is possible to be a more
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suitable model for tourist arrivals rather than a deterministic seasonal model with
seasonal dummy variables.

Seong, Ahn and Jeon (2008) deal with the spurious regression problem in a model
including two different types of nonstationary seasonal time series, stochastic and
deterministic. With a diverging conventional regression t ratio and an increasing sample
size, the conducted Monte Carlo study shows the existence of the phenomenon of
spurious regression.

Halim and Bisono (2008) propose a forecasting program for an automatic seasonal
nonstationary homogenous forecasting which enables to get the knowledge of the best
time series model in the sense of minimum AIC.

In their paper, Chang and Liao (2010) have aimed to forecast the monthly outbound
tourism departures of three major destinations from Taiwan to Hong Kong, Japan and
U.S.A. respectively using the SARIMA model.

Saz (2011) examines the efficacy of SARIMA models for forecasting Turkish
inflation rates from 2003 to 2009 and presents a methodological approach for a
combination of a systematic SARIMA forecasting structure and the stepwise selection
procedure of the Hyndman-Khandakar (HK) algorithm. This combination is expressed
to give rise to choosing a best single SARIMA model which is SARIMA(0,0,0)(1,1,1)
model with one degree of seasonal integration, one seasonal AR and one seasonal MA
part. According to a structural break analysis, the Turkish inflation rates have been
found to display a range of structural breaks with the latest being in mid-2003 and
stochastic nature of Turkish inflation has been found to outweigh its deterministic

nature.

2.2. Studies on Seasonal Unit Roots, Seasonal Integration and Cointegration

So far, there have been many applications of unit root tests. Univariate unit root
tests were first proposed by Fuller (1976) and Dickey and Fuller (1979) whose unit root
test is known as the most prominent one. These tests were applied to a number of
macroeconomic data by Nelson and Plosser (1982). In their paper, Nelson and Plosser
(1982) state that stochastic variation due to real factors lies at the core of
macroeconomic fluctuations. They make use of long historical time series for U.S. and
application results fail to reject the hypothesis that the series are nonstationary

stochastic processes.
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As associated with the unit root concept, the relationship between cointegration and
error correction models was first suggested by Granger (1981) and then it was also
introduced by Granger and Weiss (1983). Engle and Granger (1987) also offer a
theorem based on Granger (1983) which associates the moving average (MA),
autoregressive (AR) and error correction representations for cointegrated systems and
estimation methods. Engle, Granger and Hallman (1989) and Hylleberg, et al. (1990)
introduce the concept of seasonal cointegration in their papers. Lee (1992) and Johansen
and Schaumburg (1999) examine the seasonal cointegration relationships that are based
on maximum likelihood (ML) estimation. Joyeux (1992) has dealt with testing for
seasonal cointegration using principal components. Kunst (1993) tries to evaluate the
effects of modelling seasonal cointegration on predictive accuracy for German and U.K.
macroeconomic series. In their study, Ahn and Reinsel (1994) handle the connection
between the partially non-stationary vector autoregressive model with seasonal
behaviour and seasonal cointegration and the error correction model.

Reimers (1997) analyses the forecasting performance of seasonally cointegrated
processes through simulating different data generating processes and using the ML
approach proposed by Lee (1992). In this study, there has been made a comparison
between forecasts of cointegrated models in fourth differences and first differences
including seasonal dummies. The simulation study has shown that the models in first
differences with seasonal dummies yield lower forecast errors in the short term than the
seasonally cointegrated models for forecast horizons up to four quarters and for larger
horizons, the models in fourth differences have been found to outperform the models in
first differences.

In their paper, Kunst and Franses (1998) deal with the impact of deleting,
restricting or not restricting seasonal constants on forecasting seasonally cointegrated
time series for Austria, Germany and the U.K.

Cubadda (2001) introduces the complex error correction model for seasonally
cointegrated variables and suggests a reduced rank estimator and a Trace (TR) Test to
determine the cointegration rank at frequencies that are different from zero and 7.

In the study by Lof and Lyhagen (2002), the comparison of the forecasting
performance of the seasonally cointegrated model of Johansen and Schaumburg (1999)
and of the specification proposed by Lee (1992) with a parameter restriction included at
the annual frequency has been covered. For three data sets from Austria, Germany and

U.K., each including six variables: gross domestic product (GDP), private consumption,
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gross fixed investment, goods exports, real wages and the real interest rate; it is also
dealt with how the inclusion of restricted or unrestricted seasonal dummies may have an
influence in the seasonal cointegration models. Since the semi-annual frequency for
Austria appears to have full rank and the U.K. data set shows a rather weak
cointegration evidence at the seasonal frequencies, only the German data are used in the
forecasting example. Through Monte Carlo study, Lof and Lyhagen (2002) have found
some evidence that for the smaller sample sizes the specification of Johansen and
Schaumburg (1999) may result in worse forecasts in the case of the inclusion of more
cointegrating relations and for larger sample sizes the study results have been found to
favour of this specification.

In their study, Herwartz and Reimers (2003) examine the stochastic nature of the
variables in the German money demand equation over the sample period from 1975:1 to
1995:4 by using seasonal unit root tests and prediction tests for structural change are
presented for testing the stability of the process subsequent to the German Monetary
Union. Depending on the existence of seasonal unit roots, it is concluded that the
specification of the German money demand function should be in annual differences.
From this point of view, according to a seasonal cointegration analysis the evidence
shows the presence of long-run relationships among the included variables for the zero
and the seasonal frequencies.

Darné (2004) extends the ML seasonal cointegration procedure proposed by
Johansen and Schaumburg (1999) to monthly observed time series.

Cubadda and Omtzigt (2005) introduce iterative reduced rank regression
procedures that permit a simultaneous modelling of the cointegration restrictions at the
conjugate complex unit root frequencies and examine the small-sample properties using
simulations. According to a Monte Carlo study, it is concluded that their new tests for
the cointegration rank at the annual frequency perform better than the TR test in
Cubadda (2001) for small samples.

Seong, Cho and Ahn (2006) introduce the Maximum Eigenvalue (ME) test for
seasonal cointegrating ranks making use of the Cubadda’s (2001) approach and make a
comparison between the performances of ME test and the TR test in the seasonal case.
In the paper by Seong, Cho and Ahn (2007), the inference of seasonal cointegration
with common linear restrictions among cointegrating vectors at possibly different
frequencies of seasonal unit roots is handled, in order to accommodate linear restrictions
in the Gaussian reduced rank (GRR) estimation of Ahn, Cho and Chan Seong (2004) the
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necessary methods are presented and the related asymptotic distributions are
established.

Seong (2009) presents two types of complex error correction models which are the
extensions of the complex error correction model of Cubadda (2001) and obtains the
limiting distribution of the Likelihood Ratio (LR) test to identify the seasonal
cointegrating rank in these two models.

Seong (2013) considers a bootstrap algorithm for identifying seasonal cointegration
ranks as an extension of Swensen (2006) who proposes a bootstrap algorithm to test and
determine the cointegration rank in a reduced rank VAR (Vector Autoregression) model
and Monte Carlo simulations show that the bootsrap algorithm can improve size
distortions of the LR test in an efficient manner.

Mert and Demir (2014) have aimed to examine the seasonal patterns to detect if
seasonal cointegration relationship exists between export and import series over the
1969:1-2014:1 quarterly periods. Two series have been found to be cointegrated at %
and ¥ frequencies with one cointegrating vector and not cointegrated at zero (long-run)
frequency. The results have shown that error correction mechanism works at
frequency and the coefficient is negative in accordance with expectations. However, at
% frequency, because of the error correction term is positive signed contrast to the
expectations, the error correction mechanism has been determined not to operate. In this
case, the return to equilibrium of deviations occurring in imports series at % frequency
has been expressed not to be fulfilled in the short term.

On the other hand, it is extremely common to come across seasonal economic time
series displaying nonstationary stochastic seasonality. This situation has brought about
the evolution of several seasonal unit root tests. Dickey, Hasza and Fuller (DHF) (1984)
propose a test called DHF which is the extension of the well-known Dickey-Fuller (DF)
procedure for the zero frequency unit root case to seasonal time series. They also extend
the test to the case of higher-order stationary dynamics. The assumption of DHF test is
that the true data generating process (DGP) displays a seasonal autoregressive process
of order one or SAR(1) process and thus, seasonal integration is expressed to be tested
with the alternative hypothesis of stationary seasonality. One main disadvantage of this
test is that it does not allow for unit roots at some but not all of the seasonal frequencies.

The analysis of seasonal unit roots is fundamentally conducted with the most
popular HEGY approach developed by Hylleberg et al. (1990) by working with

different models that include trends, constants and seasonal dummies and in this paper it
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iIs mentioned about that when deterministic components are available in the regression
model although not included in the data, the limiting distributions change. HEGY test
has originally been derived for quarterly seasonality and extended to data with different
frequencies. Contrary to the DHF test proposed by Dickey et al. (1984), HEGY
procedure enables to test for unit roots at each seasonal frequency as well as the zero
frequency separately and the techniques are applied to quarterly U.K. data for the period
1955:1 to 1984:4 in order to examine the cointegration relationship between
consumption and income variables at different frequencies. As a result of application,
Hylleberg et al. (1990) find the unit elasticity error correction model to be invalid at any
frequency. The asymptotic distributions of the t-statistics from their testable model have
been analysed by Chan and Wei (1988). In their paper, Chan and Wei (1988)
characterize the limiting distributions of the least square estimates as a functional of
stochastic integrals.

Osborn and Smith (1989) examine the performance of periodic autoregressive
models in forecasting seasonal (quarterly) U.K. consumption and in the study, the
preference between a periodic or non-periodic specification is stated to affect the
resulting dynamic properties.

Osborn (1990) examines whether the seasonal component in each variable displays
stochastic nonstationarity in quarterly data for 30 important U.K. macroeconomic
variables including real GDP and its basic components, employment, price/earning
indices, the rate of interest and the exchange rate and she reports that only interest rates
and the exchange rate display no significant seasonality and a seasonal unit root exists
in only six variables.

Franses (1990) deals with testing for seasonal unit roots in monthly observations.
Franses (1994) proposes a seasonal unit root test that grounds on the multivariate
representation of univariate seasonal processes. In his paper, the VQ (vectors of
quarters) approach which considers an autoregressive model for the vector including
annual observations per season is adopted and this approach is expressed to be able to
regard as the most appropriate tool for univariate data analysis. The application of
Johansen’s ML cointegration method shows an extension of HEGY procedure by taking
periodically varying coefficients into consideration.

Ghysels, Hall and Lee (1996) suggest their approach as a generalization of the
Hylleberg et al. (1990) testing procedure to take the presence of unit roots into account

at the zero and seasonal frequencies in periodic AR models as in the approach by
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Franses (1994) who considers the seasonal integration hypothesis in a periodic context
and a Monte Carlo simulation evidence sheds light upon the advantages of taking
periodicity into consideration in testing for unit roots in seasonal time series. In Franses
and Vogelsang (1995), the problems of testing for seasonal unit roots (as the extension
of HEGY procedure) in the presence of a single break in each season in a specific year
are considered. If mean shifts are not included, it is expressed that there is an evidence
of seasonal unit root at the bi-annual frequency. However, if seasonal unit roots are
tested in the AO (additive outlier) or 10 (innovative outlier) model, the evidence for
seasonal unit root is said to vanish for quarterly U.S. industrial production data. Smith
and Otero (1995) mention about how exogenous changes in the level or seasonal pattern
of a series have an influence on the HEGY testing procedure for seasonal integration. In
this study, it is expressed that the relative position of the “break” can influence the
power of the seasonal unit root test statistic substantially and a change in the seasonal
pattern has an adverse effect on the seasonal unit roots while a change in the level of the
process does not affect them. As the size of the break increases, the ability of a unit root
test to discriminate stationarity from nonstationarity is expressed to weaken. In addition,
it is specified that for the sample size that is greater than or equal to 100 (T >100), the
power of the seasonal unit root test to reject the null hypothesis is 100% because the
spectrum of the series at seasonal frequency is not influenced from this.

Kawasaki and Franses (1996) propose an alternative approach to determine the
number of seasonal unit roots for a large set of quarterly macroeconomic variables by
analysing versions of the basic structural model. Through Monte Carlo simulations, they
conclude that their method operates very well with regard to having good size and
power properties and has a tendency to detect more seasonal unit roots compared to the
HEGY method.

Franses and Hobjin (1997) present critical values for a variety of unit root tests in
seasonal time series by considering the extensions of Hylleberg et al. (1990) and
Osborn, Chui, Smith and Birchenhall (OCSB) (1988) procedures that concern time
series with increasing seasonal variation and structural breaks in the seasonal means (in
the case of known break point).

Alexander and Jorda (1997) present an empirical research concerning the presence
of seasonal unit roots at different frequencies in trade variables for Germany, France,
the U.K. and Italy with both quarterly and monthly data by applying to the HEGY test.

The findings have shown that the presence of unit roots at most seasonal frequencies is
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rejected more often in quarterly data than in monthly data; there has been a weak
evidence of seasonal unit roots on German trade balance and French industrial
production series; no seasonal unit roots have been found in the U.K. series and Italy
has been shown as the only country displaying seasonal unit roots in all its three
variables. As a conclusion; although the presence of seasonal unit roots appears more
apparently in monthly data than in quarterly data, it is expressed that it cannot be
referred to the presence of a strong seasonal integration in trade variables of countries in
question.

Leong (1997) presents an empirical study focusing on the nature of the seasonality
and testing for the presence of seasonal unit roots using HEGY procedure for quarterly
observed Australian macroeconomic data (total exports, total imports, expenditure-
based GDP, retail trade turnover, total unemployed persons and manufacturers’ actual
sales for clothing and footwear) and finds that although total exports and total imports
include seasonal unit roots, other analysed macroeconomic variables do not have a
seasonal unit root and it is seen that the variables exhibit deterministic fluctuations
besides stochastic seasonality.

Breitung and Franses (1998) propose a semiparametric “Phillips-Perron (PP) type”
extension of the HEGY testing procedure in order to account for serially autocorrelated
errors. By following Schmidt and Phillips (1992), Breitung and Franses (1998) have
covered score-type tests for integration at seasonal frequencies. As a result of their
Monte Carlo simulations it is concluded that since the semiparametric version may
suffer from an enormous size bias for some situations, these tests cannot be preferred
for general use; from another point of view, in case the parametric tests necessitate a
high augmentation lag it is stated that the semiparametric version may be more powerful
than the parametric test of HEGY.

Paap, Franses and Hoek (1997) deal with choosing between the deterministic
seasonal mean shift model and the seasonal unit root model from a forecasting
perspective and the effects of neglecting and allowing for seasonal mean shifts on the
forecasting performance through simulation. According to simulation results, it is
shown that taking possible deterministic seasonal mean shifts into consideration can
create an improved forecasting performance.

In the paper proposed by Rodrigues and Osborn (1999), the empirical performances
of Dickey et al. (DHF) (1984), Osborn et al. (OCSB) (1988) and Hylleberg et al.
(HEGY) (1990) tests are examined for monthly time series. Although the DHF and
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OCSB tests impose restrictions on the autoregressive processes which are not tested
explicitly, in case these restrictions are true these tests are said to improve power
properties and become preferable with respect to size and power. Balcombe (1999)
presents the extensions of the HEGY testing procedures following the sequential
approach of Zivot and Andrews (1992) and expresses that the traditional HEGY tests
can give rise to low power under the alternative of a zero frequency unit root with
structurally unstable deterministic seasonality. An application of the sequential tests to
U.S. agricultural price data and macroeconomic data has pointed out to the rejection of
seasonal unit roots in all series in question. Rodrigues and Osborn (1999) suggest
pretesting the restrictions before applying the seasonal unit root tests. However, since
there is no certainty about whether the usual distributions will operate under the
seasonal unit root null hypothesis, this pretesting is expressed to entail a further study.
Gil-Alana (1999) considers the different versions of tests of Robinson (1994) in
order to test for unit roots and other fractionally integrated hypotheses being settled at

the zero and/or at the seasonal frequencies on the interval [0, 7] with monthly data. A

Monte Carlo experiment conducted to control the power of the tests against different
fractional alternatives shows that in case there are adequately large numbers of
observations, the tests work well in a reasonable manner and an application to the CPI
in Spain implies the presence of a single unit root at the zero frequency.

Psaradakis (2000) suggests bootstrap tests for unit roots in a seasonal
autoregressive model and the finite sample performance of these tests are examined
through simulations.

Shin and Oh (2000) present semiparametric tests that are the extensions of the
seasonal unit root tests for the model of Dickey et al. (1984) and based on the feasible
generalized least squares estimator instead of the ordinary least squares estimator.

Hamori and Tokihisa (2000) have aimed to analyse whether there exists seasonal
integration in Japanese macro data or not for the targeted variables of GDP and its
components from 1955:Q2 to 1996:Q1. It is concluded that if the seasonal integration
test is applied without allowing for a structural break, the existence of seasonal
integration is more likely in terms of the real variables and the evidence is in the
direction that no noteworthy seasonality exists in the deflators when compared with the
real variables. In their paper, Hamori and Tokihisa (2001) analyse the stability of
Japanese money demand function using seasonal integration and seasonal cointegration

and they find that there exist unit roots in money balances, interest rates and real GDP
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series in different cycles. Because of the rejection of seasonal cointegration in every
case, it is also expressed that there is no stable relationship between money supply and
the real economy for the period under consideration.

Gil-Alana and Robinson (2001) discuss the seasonal behaviour of quarterly U.K.
and Japanese consumption and income series from an autoregressive unit root viewpoint
using the tests of Robinson (1994). They conclude that resorting to seasonal fractional
integration is a reasonable alternative for modelling these series.

The article proposed by Taylor and Smith (2001) deals with the problem of testing
for a nonstochastic seasonal unit root in a seasonally observed time series process
against a randomized seasonal unit root hypothesis (in other saying, a seasonal
heteroscedastic integrated alternative).

Harvey, Leybourne and Newbold (2001b) have tried to analyse the behaviour of
AO and 10 tests for seasonal unit roots in the presence of seasonal mean shifts under the
null hypothesis for quarterly data using Monte Carlo simulation. Simulation studies are
expressed to show that the use of innovational outlier test with a break date selection
that is based on the significance of shift dummy variables may result in an erroneously
estimated break point, leading to spurious rejection of the null. Also, Ghysels (1994)
presents a study on the effect of seasonal mean shifts on seasonal unit root testing.

Harvey, Leybourne and Newbold (2001a) have analysed the performance of unit
root tests that allow for an endogenously determined break in level.

da Silva Lopes (2001) presents a comparison of the power properties of the tests
proposed by Dickey et al. (1984), Osborn et al. (1988) and Hylleberg et al. (1990) for
the seasonal differencing filter in the presence of seasonal mean shifts.

Rubia (2001) presents the extension of HEGY testing procedure to analyse the
weekly seasonality of the daily electricity demand series quoted in several deregulated
electricity markets and the evidence shows that the Spanish, Argentine and Australian
electricity markets exhibit different seasonal patterns.

Kunst and Reutter (2002) present a combination of seasonal unit root tests in which
some of them have absence of unit roots while other tests employ the presence of unit
roots as their null hypothesis and they evaluate the outstanding qualities of such
seasonal unit root test combinations founded upon a pseudo-Bayesian structure which
strayed from the cited study of Hatanaka (1996) or Hylleberg (1995).

Osborn and Rodrigues (2002) present a general approach for derivation of the

asymptotic distributions of various seasonal unit root tests, including those of Dickey et
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al. (1984), Osborn et al. (1988), Hylleberg et al. (1990), Franses (1994), Ghysels et al.
(1996) and Kunst (1997). Their unifying approach reveals that the asymptotic
distributions of all these test procedures depend on the same vector of Wiener processes
(i.e., the elements of the vector Brownian motions which are composed of the s distinct
processes implied by the null hypothesis that the s observations within each year follow
independent integrated processes in an asymptotical manner). This dependence leads to
the conclusion that in order to generate all critical values, linear transformations of a
single set of replications of the underlying process can be utilized instead of applying
separate Monte Carlo simulations for each test. In addition, in this paper the OCSB and
DHF test regressions are referred to be restricted forms of the Kunst and HEGY
regressions which require nonstandard distributions and F-tests from the latter ones are
shown to be exactly equivalent.

In her paper, Caglayan (2003) investigates the presence of seasonal unit root for the
monthly series of personal consumption expenditures made to non-durable and semi-
durable goods and services, per capita disposable income and stock market returns that
are concerned with the life-long permanent income hypothesis over the period 1988:01-
2000:04 and examines if cointegration exists among given variables by using HEGY
procedure. In her study, the presence of seasonal unit root has been found in
consumption expenditures and disposable income series for both 0 and "2 frequencies
and in stock market returns series for 4 frequency. Also, it is concluded that
consumption expenditures and disposable income variables are cointegrated at zero
frequency.

Kadilar and Erdemir (2003) focus on the problem of determining the lag number of
multivariate seasonal models and express that in the case of seasonal patterns, using
AIC gives rise to a poor performance in order to select the order of the seasonal vector
autoregressive (SVAR) models. To overcome this problem, they develop a seasonally
modified AIC which performs better than the usual AIC.

Gil-Alana (2003) has tried to construct confidence intervals for the seasonal
fractional differencing parameter for several measures of the U.S. monetary aggregate
by means of fractionally integrated techniques following the tests of Robinson (1994).
In the study, it is utilized from quarterly and seasonally unadjusted time series data for
the period of 1960Q1:1998Q4 and it is expressed that the conclusion is in the direction

of the rejection of seasonal unit roots in favour of smaller integration degrees.
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Gil-Alana (2004) introduces a version of the tests of Robinson (1994) that enable to
test different orders of integration at zero and each seasonal frequencies applying to the
Italian consumption and income series and in the study results it has been given
emphasis to the importance of the long run (zero) frequency for both consumption and
income series but the seasonal frequency 7 in case of the differences.

da Silva Lopes and Montanes (2005) analyse the behaviour of HEGY seasonal unit
root tests for quarterly time series in the presence of seasonal mean shifts.

Lucey and Whelan (2004) investigate the monthly and half-yearly seasonality of
the Irish equity market in the long term and show that the Irish equity market displays a
month-of-the-year effect with a January peak, in addition April effect and semi-annual
seasonality.

Rodrigues and Franses (2005) introduce a sequential seasonal unit root testing
procedure for high frequency data focusing on quarterly and monthly data. According to
simulation results, it is shown that their new sequential approach is more powerful than
the traditional HEGY procedure, particularly in small samples.

Ayvaz (2006) investigates the seasonal behaviours of Gross National Product
(GNP), consumption, export and import series in Turkish Economy using HEGY
procedure and tries to detect the presence of stochastic or deterministic seasonality for
these quarterly data for the period 1989:Q1-2004:Q4. The evidence has shown that
consumption series displays stochastic seasonality, GNP and export series include
seasonal unit roots at semi-annual and annual frequencies. In addition, imports series is
expressed to have a non-seasonal unit root (at zero frequency).

Cosar (2006) has tried to examine the seasonal properties of the Turkish consumer
price index (CPI) through Beaulieu and Miron’s (1993) extension of the classical
HEGY test developed by Hylleberg et al. (1990) and the LM-type CH seasonal unit root
test procedures with the aim to specify the seasonality accurately in econometric
models. In the Cosar’s (2006) study, there has been an evidence of both deterministic
and nonstationary stochastic seasonality in the CPI series of Turkey.

Gagea (2007) studies the identification methods of the nature of the seasonal
component of Romania’s quarterly exports between 1990-2006 by using HEGY
seasonal unit root testing procedure. Conducted test shows that the seasonal component

may be deterministic, stochastic or mixed and since the deterministic seasonal
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component situation seems to be rather weak; the appropriate filter to eliminate seasonal
variations is expressed to be the seasonal difference operator (1—L*).

Otero, Smith and Giulietti (2007) deal with testing for seasonal unit roots in
heterogeneous panels in the presence of cross section dependence.

In their study, Caporale and Gil-Alana (2008) introduce a version of the tests of
Robinson’s (1994) procedure that is appropriate for testing the integration order of the
trend and seasonal components of a time series at the same time. The tests enable to test
for both unit and fractional degrees of integration. An application of the tests to monthly
non-seasonally adjusted data on four U.S. monetary aggregates results in the presence
of a unit root at the zero frequency together with possibly fractional values for the
monthly component for all series.

Tasseven (2008) presents the extension of HEGY procedure based on an 10 model
for testing seasonal unit roots by considering seasonal mean shifts in more than one year
with exogenous break points. Following the study of Franses and Vogelsang (1995),
Tasseven (2008) applies to double break points considering the 1994 and 2001 major
financial crises. Apart from seasonal unit roots, the study allows for the effects of
shocks to the system such as policy interventions or other crises which can affect the
domestic macroeconomic developments. Based on the empirical money demand model
for Turkish economy for the 1986:1 — 2003:1 period; the GDP deflator, real M2 and the
expected inflation variables are found to contain seasonal unit roots and in case the
possible structural changes are taken into consideration, seasonal unit roots are seen to
disappear for the real M1 balances. Proietti (2002) introduces a class of seasonal
specific structural time series models in the context of unobserved components
framework focusing on the time domain representation rather than the frequency
domain.

Jiménez-Martin and Flores de Frutos (2009) propose a new equilibrium model of
the exchange rates which takes seasonal shocks in preferences into account for five
industrialized countries using seasonally unadjusted data and which makes a
generalization of standard dynamic equilibrium models of exchange rates. The proposed
model explains how agents smooth seasonal movements in fundamental variables for
their investment decisions although the fundamental variables explaining exchange rates

exhibit seasonal fluctuations.
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Shin and Oh (2009) deal with testing for seasonal unit roots for each seasonal
frequency in panel models of cross-sectionally correlated time series in the basis of the
instrumental variable estimation.

Khedhiri and EI Montasser (2010) try to build up the asymptotic theory of the test
of Lyhagen (2006) -who presents an extension of the KPSS framework to the seasonal
case- in the time domain in the presence of AO. According to Monte Carlo studies
conducted to examine the finite-sample performance of the seasonal KPSS test, it is
concluded that the seasonal KPSS test has good power properties.

Harvey (2011) deals with modelling the inflation-output gap relationship by using
unobserved components.

Kunst and Franses (2011) deal with the problem of testing for seasonal unit roots in
monthly panel data through the generalization of the quarterly cross-sectionally
augmented HEGY test to the monthly case.

In her study, Ayvaz Kizilgél (2011) has examined if GDP, export, consumption and
investment series have seasonal unit roots and display a seasonal cointegration
relationship by using quarterly series for the period 1987Q1-2007Q3. For this aim,
Ayvaz Kizilgol (2011) has utilized from HEGY (1990) and Engle, Granger, Hylleberg
and Lee (1993) tests. In the study, it is concluded that there is no seasonal cointegration
relationship between series at zero and biannual frequencies. However, a seasonal
cointegration relationship has been detected between gross domestic product and
consumption series at ¥4 (and % frequency) for the model with intercept and seasonal
dummy variables.

In the paper suggested by Chirico (2012), Italian daily electricity price data in the
years 2008-2011 are analysed in order to detect the type of seasonality for the
application of ARIMA (Autoregressive Integrated Moving Average) modelling. When
HEGY test is performed on the sub-periods 2008-2009 and 2010-2011, it is concluded
that 2008-2009 prices are seen to display a random walk movement contrary to 2010-
2011 daily prices that do not include such a movement. In addition, the seasonality
features non-stochasticity in both sub-periods pointing out to the absence of seasonal
unit roots and thus the presence of deterministic seasonality in the short run.

In their study, Giirel and Tiryakioglu (2012) have analysed the seasonal patterns of
the seasonally unadjusted quarterly Turkish Industrial Production Index estimated by
the Turkish Statistical Institute (TURKSTAT) and the sub-sectors of the mining

industry, the manufacturing industry and electricity, gas and water sectors at constant
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1997 prices over the period 1977:1-2008:4 by using the HEGY approach. The main
findings have shown that all these four series contain seasonal unit roots at long-run
(zero) frequency indicating to the presence of non-seasonal unit roots and the electricity
and total industry production series are not stationary at each seasonal frequency.
According to the evidence, the presence of both deterministic and non-stationary
stochastic seasonality has been detected in the Turkish manufacturing industry series.

Tirasoglu (2012) has carried out HEGY procedure for the series that are composed
of CPI and its expenditure groups. Important results of the study are those: all series
have unit roots at zero frequency and at semi-annual frequency unit root exists for CPI
and its some expenditure groups.

The aim of the paper proposed by Meng and He (2012) is to propose a HEGY-type
test based on the study by Hylleberg, Engle, Granger and Yoo (1990) in order to test
seasonal unit roots in data with other frequencies not studied until that time such as
hourly and daily data. In their study, Meng and He (2012) present the asymptotic
distributions of the HEGY-type test statistics by following the work of Beaulieu and
Miron (1992b), Chan and Wei (1988) and Hamilton (1994) and critical values for
hourly and daily data at different frequencies. The study reveals that the HEGY -type
test for hourly data suffers from the size distortion problem depending on the presence
of the negative strong seasonal MA component in the series. Meng and He (2012) have
tried to detect the presence of seasonal unit roots in hourly wind power production data
in Sweden in warm season and cold season separately for 2008-2009 years and compare
the performance of their test when deterministic components are included or not. For
these separate two series, they conclude that are no seasonal unit roots in both series;
however, zero frequency unit root exists in both. Regarding the size and power
properties of the HEGY test, they also show that the smallest size distortion is satisfied
when lag augmentations in auxiliary regression are included without lag elimination and
tests with seasonal dummies included in auxiliary regression have more power than the
tests without seasonal dummies.

Meng (2013) proposes corrected test statistics in order to test seasonal unit roots in
the case of serially correlated residuals of the HEGY test equation following the
commonly used PP unit root test technique. As a result of the simulation studies, Meng
(2013) compares the corrected statistics and commonly used HEGY test statistics and

expresses that the former for monthly data has more power when compared to the latter.
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In Rodrigues, Rubia and Valle e Azevedo (2013), the finite sample properties of the
frequency-domain test suggested by Robinson (1994) and its time-domain equivalent
suggested by Hassler, Rodrigues and Rubia (2009) are compared in order to test for
seasonal integration in fractional context. Montasser (2011) focuses on the performance
of the overall Fisher statistics of the Kunst and HEGY tests for seasonal integration by
utilizing from the procedure introduced by Osborn and Rodrigues (2002) when the DGP
exhibits a non-stationary alternative treated by del Barrio Castro (2006). According to
simulation results, Kunst F-type statistic has been found to keep up high power in case
all unit roots implied by the filter in question are not present. In the study, it is also
concluded that the augmentation of the regression model of the test with lagged
dependent variables maintains these high power properties. For the frequency-domain
test, Rodrigues et al. (2013) make an extension of the analysis in Gil-Alana (2000).

In their study, Hindrayanto, Aston, Koopman and Ooms (2013) have tried to
examine the dynamic properties of the frequency-specific basic structural models for
seasonal time series in which the time-varying trigonometric terms associated with
distinct seasonal frequencies have different variances for their disturbances.

Cellini and Cuccia (2014) investigate the seasonal processes that the Euro-U.S.
dollar exchange rate exhibit over the period January 1999 (starting from birth of Euro)
to December 2012. This study indicates to the statistical significance of specific month
effects in the first-difference form of exchange rate and heterogeneity in their variance
across months to a noteworthy extent. The evidence shows the presence of significant
seasonality in the form of both day effect and month effect. In the study, U.S. dollar has
been found to be inclined to appreciate with respect to the Euro in January while the
Euro-Dollar exchange rate displays higher daily variability in December and lower
variability in January, other things being equal. On the other hand, there has been no
evidence of structural instability in the exchange rate level dynamics.

Alves (2014) considers the scope to which seasonal variations are present in the
performances of 5349 Equity Europe or Equity Eurozone investment funds. Considering
worldwide, results of the study indicate to the greater performance in the intermediate
and final months of each quarter when compared to the first month.

del Barrio Castro, Osborn and Taylor (2014) have tried to discover the small
sample performance of diverse methods in order to detect the lag augmentation
polynomial in a HEGY seasonal unit root test regression using Monte Carlo methods

and whether the results are improved by using seasonal generalized least squares
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detrending developed by Rodrigues and Taylor (2007) or not. They have made an
extension of the modified information criteria of Ng and Perron (2001) to the seasonal
unit root testing context applying for lag specification with both ordinary least squares
(OLS) and generalized least squares (GLS) detrending. In the study, it is concluded that
in the proper use MAIC (modified AIC) and AIC present more reliable size compared
to the lag selection methods on the basis of hypothesis testing or BIC (Bayesian
Information Criterion) and the presence of seasonal unit roots at the semi-annual and
annual frequencies is rejected very often by the results with OLS detrending than the
ones with GLS detrending. On the other hand, Kunst (2014) has presented a paper
considering a combined nonparametric test for seasonal unit roots.

Ben Zaied and Binet (2015) deal with modelling seasonal effects of residential
water demand for quarterly data from 1980 to 2007 utilizing from seasonal integration
and cointegration. As a result, they touch on the important role of seasonality in

modelling residential water demand.
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CHAPTER 11

METHODOLOGY

3.1. Introduction to the Concept of Time Series

Before referring to the concept of seasonality which is a component of time series,

the concept of time series and its components will be introduced.

A time series is a set of random variables indexed in time, { X;, X, ,....., X; }. From
this point of view, an observed time series is denoted by { X, X, ,....., X; }, where the sub-
index represents the time to which the observation X, is relevant. For instance, the first
observed value X; gives the realization of the random variable X, and in the same

manner, X, is the realization of X, and so on. The characterization of a T-dimensional

vector of random variable is possible by different probability distribution (Cholette &
Dagum, 2006, p. 15). Time series are measured at regular intervals of time, generally
monthly or quarterly, over relatively long periods (they are also mentioned as raw data,
non-adjusted or original series). This enables us to reveal and analyse the behaviour of
patterns and establish the current estimates in a more meaningful and historical
perspective (Central Bureau of Statistics, 2011, chap. 2). Examples are available in
various fields: the annual crop yield of sugar beets and their price per ton for instance
are recorded in agriculture; daily stock prices, weekly interest rates or monthly
unemployment rates are reported on newspapers’ business sections; social sciences
make researches on annual death and birth rates, the number of accidents in the home
and various forms of criminal activities; meteorology reports hourly wind speeds, daily
maximum and minimum temperatures and so on. Time series analyses contain methods
that attempt to have a better understanding of the data generating mechanism or to
predict future events based on known past events (Falk et al., 2011, p. 1).

Generally, methods for time series analyses are separated into three classes as
descriptive methods, time domain methods and frequency domain methods. Descriptive
methods include the decomposition of an observed time series into trend, seasonal,
cyclical and irregular components (lwueze, Nwogu, Johnson & Ajaraogu, 2011, p. 633).
Although time domain and frequency domain approaches operate in a distinct way, they
are complementary procedures which are related mathematically. In time domain

methods, data series are tried to be characterized in the same terms in which they are
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observed and reported and characterization of relationships between data values is
feasible through the autocorrelation function (ACF). Also, different time domain
procedures are available for discrete and continuous data (Wilks, 2006, p. 339).
Frequency domain methods centre on spectral analysis which is a procedure to estimate
the spectral density function. This type of function is helpful in describing how the
variation in a time series may be accounted for by cyclic components at different
frequencies (Chatfield, 2004, p. 8). So, in frequency-domain analysis the overall time
series is considered to emerge from the combined effects of a collection of sine and
cosine waves oscillating at different rates. The original data is generated by the sum of
these waves. However, the primary interest is on the relative strengths of the individual
component waves. Briefly, frequency-domain analyses occur in the mathematical space
described by this aggregation of sine and cosine waves (Wilks, 2006, p. 339). For the
relation between frequency-domain and time-domain analyses also see Warner (1998).
A time series has a characteristic feature that the data are not generated
independently. Data are frequently under the control of a trend effect and contain cyclic
components. Hence, statistical methods assuming independent and identically
distributed data are removed from the time series analysis. For this reason, proper
methods are needed under the heading of time series analysis (Falk et al., 2011, p. 1).

3.1.1. Components of Time Series

The components of a time series consist of various elements that can be separated
from the observed data. These components can be classified in a wide manner as shown
in Figure 1. Briefly, a time series includes four components:

1) Secular Trend (T): Trend or secular trend shows the long term-tendency of the
time series to move in an upward or downward direction and reflects how its behaviour
is over the entire period being analysed. It does not contain any short term variations
such as seasonality, irregularity etc. (Jain & Jhunjhunwala, 2007, pp. 8.2-8.3). In case a
time series does not include any trend component, then the data is said to be stationary
(Gaynor & Kirkpatrick, 1994, p. 80).

2) Seasonal Variations (S): These variations are the part of the variations in a time
series which indicate the regular periodic changes occurring within a period of less than
a year and which may be observed as daily, weekly, monthly or quarterly (Jain &

Jhunjhunwala, 2007, p. 8.3). Therefore, the fluctuations recurring every year with more
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COMPONENTS OF TIME SERIES
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Figure 1. Components of time series (Source: Jain & Jhunjhunwala, 2007, p. 8.2)

or less the same timing and intensity generate a seasonal pattern. To give an example,
the demand for cold beverages becomes low during the winter, starts to increase during
the spring, peaks during the summer months and then starts to decline in the autumn or
pizza delivery peaks on the weekends (Collier & Evans, 2010, p. 196). Systematic
calendar related effects as one type of component of a time series include both seasonal
and calendar effects. Seasonal fluctuations can be stemmed from climatic variations like
summer, winter or rainfalls; administrative or legal measures like starting and ending
dates of school year or fiscal year; social/cultural/traditional/religious and calendar-
related effects (e.g., the timing of certain public holidays such as Christmas, Valentine’s
Day; variation in the length of months and quarters depending on the nature of the
calendar). Other calendar effects are associated with the factors not necessarily
happening in the same month (or quarter) each year (Central Bureau of Statistics, 2011,
chap. 2). These effects are given as trading day effects and moving holidays:

* Trading Day Effects: It is well known that from year to year the number of
weekdays of months differs so that there are always four of each weekday and a few
additional days in each month. Therefore, some days recur more often than others and
the availability of such an effect (how often each of the seven days of the week occurs
in each month) has an influence on the volume of economic activity, particularly in
retail sales and stock market activities. For instance, the retail grocery sales volume in
U.S. is smaller on Mondays, Tuesdays and Wednesdays than on days later in the week.
So, in a year in which March, say, has an excess of early weekdays and higher when
March has five Thursdays, Fridays and Saturdays; there will be proportionately low

sales volume sales in this month in a year. Besides this, since the length of February is
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not the same in each year, this leap year effect which is not incorporated into the
seasonal component comprises trading day effects along with recurring day-of-week
effects and when these effects are disregarded in case they have significant size,
modelling and forecasting are obstructed to an extreme degree. For this reason, it is of
great importance to detect, estimate and remove such effects during the seasonal
adjustment process (see Bleikh & Young, 2014, p. 45; Soukup & Findley, 2000)

* Moving Holidays: These are holidays like New Year celebrations and religious
holidays whose exact timing shift over the year by affecting economic activity and
should be taken into consideration in time series analysis and forecasting. One example
to this is Easter which can happen in either March or April (Bleikh & Young, 2014, p.
45). It can be said that calendar-related systematic effects related to the dates of moving
holidays are not considered as seasonal, since they happen in different calendar months
depending on the dates of the holidays (Central Bureau of Statistics, 2011, chap. 2).

2.1) Stable and Moving Seasonality: During the period being analysed, in case
seasonal pattern is unchanged or it remains virtually the same in time, in magnitude and
shape; the series in question is said to display stable seasonality. If the seasonal pattern
changes gradually over time in amplitude or shape, or both, the series is said to have
moving seasonality. The causes for this type of seasonality may be a gradually evolving
seasonal pattern as economic behaviour, economic structures, technological advances,
and institutional and social arrangements change. To give an example, the magnitude of
the seasonal component for agriculture series may show a gradual decrease which is
stemmed from the technological changes that reduce the effect of weather on growth
and sales of fruits and vegetables (Central Bureau of Statistics, 2011, chap. 2 - p. 5). In
case there is too much moving seasonality, this could lead to inaccurate estimation of
the seasonal component of the series (Branch & Mason, 2006, p. 14).

3) Cyclical Variations (C): These variations have a longer duration than a year and
extend over long periods of two to fifteen years. However, they may not exhibit a
regular periodicity. Generally, they are referred to as business cycles, which are the
periodic movements in the time series around the trend line. These cycles do not occur
at a uniform frequency. A cyclical variation consists of four phases: (i) prosperity (ii)
recession (iii) depression (iv) recovery. Starting from prosperity phase, all economic
activities are inclined to be at their peak (output, employment prices, investment, profit,
etc. increase). After prosperity phase, these activities begin to fall and recession starts.

And then this fall comes to the lowest level, namely depression level. In this level, the
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production of goods and services, employment, income, prices etc. show a significant
drop. Then, the recovery phase starts for economic activities. Therefore, the cycle
becomes completed from period of one boom to another boom. It should be noted that
business cycles do not have a regular period as the period of various seasons. For this
reason, they are called cyclical fluctuations rather than periodic fluctuations. The study
of business cycles enables us to frame suitable policies for stabilizing the level of
business activity, examine the characteristics of fluctuations of a business and forecast

and estimate the future behaviour.

Table 1
Distinctions between Seasonal Variations and Cyclical Variations
Basis of Distinction Seasonal Variations Cyclical Variations

1. Causes The causes of seasonal variations  The causes of cyclical
are seasons, festivals, weather variations are disparity
conditions, customs, traditions. between demand and supply,

working of the economic
system.

2. Duration These variations occur during These variations occur during
less than a year. different periods of two to

fifteen years.

3. Area of occurrence These variations happen in any These variations generally
economy. occur in capitalists economy.

4. Periodicity These variations are less These variations are more
powerful. powerful.

5. Degree of Accuracy These variations can be These variations cannot be
estimated with a high degree of accurately estimated because
accuracy. of lack of their regularity.

6. Regularity There is regular periodicity in There is no regularity in the
these variations. periodicity of these variations.

7. Activities of Preceding These variations do not depend These variations depend upon

Variations on the activities of preceding the activities of preceding
period. period.

Source: Jain & Jhunjhunwala, 2007, p. 8.4.; Jain & Sandhu, 2006-07, pp. 8.5-8.6.

4) Irregular or Random Variations (1) (sometimes called white noise): These
are erratic fluctuations in a time series which do not have a definable pattern. They are
mostly stemmed from the effect of “outside” events on the data and occur at once or
unexpectedly in a time series. Thus, the main causes can be considered as strikes,
floods, wars, earthquakes etc. Since there is no regularity in their periodicity, they are
called random or chance fluctuations and so they are unpredictable by their nature. To a
usual extent, they indicate short term variations and because of their irregular structure,
isolating these variations from the time series completely becomes complicated.
(Gaynor & Kirkpatrick, 1994, p. 80; Jain & Sandhu, 2006-07, p. 8.6).
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3.1.2. Time Series Models

The relationship among the different time series components can be expressed
through either the additive or multiplicative models:
1. Additive Model: According to the additive model, all the components of time series
are not affected by one another and they are expressed in absolute values. Let Y be
represented as observed value in a given time series (original data). In this case, Y can

be expressed as a sum of four components in the following way:

Y=T+C+S+I (3.1)

Decomposition of additive time series
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Figure 2. Decomposition of additive time series (Source: Using R for Time Series
Analysis)

2. Multiplicative Model: A multiplicative model assumes that the trend, seasonal,
cyclical and irregular components are represented by a multiplicative function. This
model is widely used in practice. Its assumption is that all the four components
mentioned above are not necessarily independent and they can be influenced by one
another. In this model, only the trend (T) component is expressed in absolute value
while other components are expressed as rate or percentage. Therefore, Y is modelled
by:

Y=TxCxSxlI (3.2)
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Figure 3. Graphical representations of additive and multiplicative seasonality
(Source: Forecasting Society, 2014).

To summarize, diverging aspects of two types of models from one another is given as:

Table 2
Distinctions between Additive and Multiplicative Seasonality Models
Basis of distinction Additive Model Multiplicative Model
1. Basic Assumptions It assumes that all the four It assumes that all the four
components of time series are components of time series are
independent of each other. due to different causes but
they are not necessarily
independent and they can
affect one another.
2. Expression Y=T+C+S+I Y=T*C=*S=*|
3. Absolute values/rates All components of a time Only trend (T) is expressed
series are expressed as absolute as an absolute value while
values. other components (S,C,1) are
expressed as rate  or
percentages.

Source: Jain & Jhunjhunwala, 2007, p. 8.5.

Note: Unfortunately, many real-life time series are not classified as additive or
multiplicative models. It is usual to come across a time series corresponding to a
multiplicative model. However, it should not be multiplied with some type of irregular
component. In this case, a more realistic model is given as a mixed multiplicative model
with an addition of the irregular component to other components, namely a pseudo
additive model in equation (3.3):

Y =(TxCxS)+I (3.3)
Apart from the pseudo additive model given above, a pseudo multiplicative model is
also likely to fit some real-life data most closely given as:

Y=Tx(C+S+1) (3.4)
(Davis & Pecar, 2013, p. 189).
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3.2. The Definition of Seasonality

Seasonality is a widespread phenomenon observed in many economic time series.
Everyone knows what it is. However, it is not common to think about an applicable
definition of it. It is certain for the concept of seasonality that there should be something
like ‘a systematic intra-year movement’ in its definition. At this point, it is of great
importance to consider the causes of such a systematic movement with regard to finding
out how systematic it is. In Hylleberg (1992), the concept of seasonality is defined as:
“Seasonality is the systematic, although not necessarily regular, intra-year movement
caused by the changes of the weather, the calendar, and timing of decisions, directly or
indirectly through the production and consumption decisions made by the agents of the
economy. These decisions are influenced by endowments, the expectations and
preferences of the agents, and the production techniques available in the economy.”

(Hylleberg, 1992, pp. 3-4).

3.2.1. What is Seasonal Adjustment?

The most well-known statistics like Balance of Payments (BOP) and Gross
Domestic Product (GDP) are regular time series. By analysing those series, it is tried to
get an idea about the general pattern of the data, the long term movements, and whether
any unusual occurrences have had major effects on the series. However, this type of
analysis is not free from ambiguity when studied with original series. Since, some short-
term effects associated with the time of the year which obscure other movements are
inevitable to occur. For instance, retail sales rise each December depending on
Christmas. The main aim in applying to seasonal adjustment is to remove common
seasonal fluctuations and typical calendar effects in the time series mentioned. Or in
other saying, we can say that the nonseasonal fluctuations are filtered from the raw data
with seasonal adjustment. The seasonally adjusted series are frequently made available
to the public and mentioned in financial press. Getting a seasonally adjusted series
requires subtracting from (or divide) the raw series (by) an estimate of the seasonal
component. When we adjust the original data for these effects, this makes the
comparisons between consecutive time periods more effectively. (Ghysels & Osborn,
2001, pp. 1-2; Office for National Statistics, 2007, chap. 2). The concept of seasonal
adjustment brings with it an important question of whether unit root tests should be


http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/time-series-analysis/guide-to-seasonal-adjustment.pdf%20and%20(;%20Ghysels&Osborn,%202001,%20pp.1-2)).%20The
http://www.ons.gov.uk/ons/guide-method/method-quality/general-methodology/time-series-analysis/guide-to-seasonal-adjustment.pdf%20and%20(;%20Ghysels&Osborn,%202001,%20pp.1-2)).%20The

34

applied to seasonally adjusted or seasonally unadjusted data. In their study, Ghysels and
Perron (1993) draw attention to that although correlation in the data at seasonal
frequencies is removed by seasonal adjustment, seasonal adjustment introduces a bias in
the ACF at lags less than the seasonal period which does not disappear even
asymptotically. Therefore, in case seasonally adjusted (or filtered) data are used, there
will be a bias in ADF and PP statistics toward non-rejection of the unit root. Briefly, in
an asymptotical manner if worked with unadjusted data rather than adjusted data, the

unit root tests are expected to be more powerful (Maddala & Kim, 1998, pp. 364-365).

3.2.2. Tests for Seasonality

In their paper, Cellini and Cuccia (2011) deal with the seasonality of monthly time
series of bilateral nominal exchange rates. In order to detect the presence of seasonality,

for each of the considered monthly time series, they examine the following tests:

1) The D8 F-test for evaluating the presence of stable seasonality, F¢ ; Fs is a one-
way analysis-of-variance test which measures the degree of stability of the seasonal
component of a time series. Basically, this test is based on the quotient of two variances:

the between-month variance and the residual variance and it checks for the equality of

monthly means with the hypotheses given as,

Ho:m =m, =...... =m,
H, :m, = m, for at least one pair (p,q) (3.5)
where m,,....... ,m,, are the monthly means of the seasonal irregular (SI) component (the

detrended series) taken place in table D8. The assumption of this test is that SI values
are independently normally distributed with means denoted by m; and common
standard deviation given by o . This assumption could be true to a certain extent for the
underlying true Sl ratios in a conceptual manner. However, it does not hold for the
estimates of the Sl ratios which are in fact dependent and heteroscedastic and thus has
an influence on the behaviour of the resulting F-statistic. A traditional solution to this
issue is using a cut-off value of 7 as critical value rather than using a critical value from
the F-distribution (Lytras, Feldpausch & Bell, 2007, p. 848; US Census Bureau, 2010,

p. 2). In case Fg is greater than 7.0, the null hypothesis of no stable seasonality is

rejected and the series is regarded as seasonal (presence of stable seasonality). As a
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consequence, the series will be seasonally adjusted. By contrast, in case Fg is less than

7.0 this results in the acceptance of the null hypothesis (for instance, for quarterly time
series this indicates that all four quarterly seasonal means are equal) implying that there
is no seasonal variability in the data. In this case, the series will not be seasonally
adjusted.

2) The Kruskall-Wallis statistic, K, which examines the equality of median values
across different months (the implication of a value of this statistic falling into the
rejection region is that median values are not constant across months). The Kruskal-

Wallis test statistic, K is given as:

12 &R°

i=1
where the k seasons are first ordered and assigned ranks (R; ) and
R. is the rank total for the i season;
N. is the number of observations in the i" season;

N is the total number of observations; and

k is the number of seasons.

This test statistic has an approximate Chi-square distribution on k — 1 degrees of
freedom (Paquette, 2009, pp. 17-18.)

3) The F-test for evaluating the presence of moving seasonality, F,, ; this test is

applied to the sum of the seasonal and irregular components of the time series (that is,
the series without trend and cyclical components) and is based on the quotient of two
variances, the variance between years and the residual variance. With the null
hypothesis of no moving seasonality, a test value falling into the rejection region
indicates that the seasonal irregular component of the series is not stable across years;
that is, the seasonal component is moving over years. Since moving seasonality can lead
to distortions, this situation complicates the process of disentangling seasonality. On the
other hand, the acception of the null means that identifiable stable seasonality is
present.

All tests mentioned above are computed by the X-12- ARIMA program, which is a
widely used program in applied economic analyses and provided by the U.S. Census
Bureau for seasonal adjustment and this program is an enhanced version of the X-11
Variant of the Census Method 1.
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Getting a statistically efficient estimate of the seasonal component of a series may
not be possible even in case a series is found to be seasonal according to the results of F
test for evaluating stable seasonality. In other saying, this seasonal component may not
be identifiable in a statistical manner. For deciding about the identifiability situation and
evaluating the goodness of the de-seasonal procedure (or in other saying for deciding
whether to seasonally adjust a series), apart from the F statistic for stable seasonality
Fs , analysts use some quality control measures as guidelines like M7 statistic and Q
statistic. M7 is one of the quality assessment statistics developed by Statistics Canada in
the 1970s (see Lothian & Morry, 1978) and commonly preferred in applied economic
researches. This statistic is calculated by using F; and F,, statistics which represent
the D8 F-statistics for stable seasonality and moving seasonality respectively (see
Ladiray & Quenneville, 2001) and given as

M7= |2 L, Fu (3.7)
2\F,  F

(Lytras et al., 2007, pp. 848-849). It varies over the interval [0,3] and the values that are

smaller than 1 are an indicator for an accurate de-seasonal procedure (that is, the series
has identifiable seasonality). Another quality measure is Q statistic. The Q statistic is a
weighted average of 11 M statistics (that is, 11 quality measures from M1 to M11
describing the extent to which the seasonal decomposition is successful) that test for
different kinds of problems concerning the overall quality of the seasonal adjustment
like large variances, and the nonexistence of randomness in the irregular component.
Evaluating estimates of the irregular and seasonal components is the main aim with the
use of M-statistics. Both calculation and interpretation of all M values are given in
detail in Lothian and Morry (1978). An irregular component of the series which is
statistically random and neither too large nor too small relative to the remaining
components and the series entirely and a stable seasonal component are preferred to be
able to measure the seasonal component of a series precisely. Six of the M-statistics
which are M1, M2, M3, M4, M5 and M6 measure the size of the irregular component
compared to the other components. More obviously, M3 and M5 measure the size of the
irregular component compared to the trend component. M4 measures the
autocorrelation in the irregular component. M7 measures the extent to which the
seasonal effect is identifiable. M8 to M11 quality measures deal with the extent to

which the seasonal pattern changes. The smaller the value of a quality measure, the
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better the seasonal decomposition scores. The M statistics are normalized to 1.0. The
implication of the values of M7 and Q that are less than 1.0 together is that the
seasonality of a series being analysed is identifiable. A value of M7 that is greater than
1.0 is a sign of substantial moving seasonality. A value of Q that is greater than 1.0
indicates some kind of problems such as large variances, the absence of randomness in
the irregular component or too much change in the seasonal component. In either case,
we could not measure the seasonality of the series. Therefore, it can be said that in order
to conclude that the deseasonal series is acceptable, it is necessary for Q statistic to be
lower than 1 and M values that are smaller than 1.0 indicate that the seasonal
adjustment may be considered as successful (Branch & Mason, 2006, pp. 14,18; Cellini
& Cuccia, 2011, pp. 44-45; Van Velzen, Wekker & Ouwehand, 2011, pp. 16-18).

3.2.3. Combined Test for the Presence of Identifiable Seasonality

The test for identifiable seasonality is also feasible to be performed by combining
the F tests for stable and moving seasonality along with a Kruskal-Wallis test for stable

seasonality. The following description is based on Lothian and Morry (1978). Recall
that F; and F,, stand for the F value for the stable and moving seasonality tests

respectively. This combined test operates in the following way:

1. If the null hypothesis in the stable seasonality test cannot be rejected at the
0.10% significance level (,001), then since the series is said to be not seasonal, PROC
X12 (X12 Seasonal Adjustment Procedure) displays "ldentifiable Seasonality Not
Present."

2. In case the null hypothesis is rejected in the first step, the quantities given below
are calculated:

T,=—, T,= 3.8
1 F, 2 F, (3.8)
Let T represent the simple average of T, and T,:
T
T=- _(H; 2) (39)

If the null hypothesis of no moving seasonality is rejected at the 5% significance level
(,05) and in the case of T >1.0, this means that we fail to reject the null hypothesis of
identifiable seasonality not present and PROC X12 displays "ldentifiable Seasonality

Not Present."
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3. If the null hypothesis of identifiable seasonality not present is not accepted,
however T, 21.0, T, 21.0, or the Kruskal-Wallis chi-squared test cannot reject at the
0.10% significance level (,001), then PROC X12 displays “Identifiable Seasonality
Probably Not Present”.

4. Incase the null hypotheses of no stable seasonality that are related to Fs and
Kruskal-Wallis chi-squared tests are rejected and if none of the combined measures
expressed in steps 2 and 3 fail, then we reject the null hypothesis of identifiable
seasonality not present, and PROC X12 displays “Identifiable Seasonality Present”
(Statistical Analysis Software).

3.3. Seasonality in the Mean

In this section, we will have a look at a class of time series processes in which
seasonal mean behaviour can be modelled. This class consists of deterministic seasonal
mean shifts, stochastic stationary and nonstationary processes and unobserved
components ARIMA models. Each class will be mentioned in details in Chapter 4.
Here, there will be a brief introduction only to stochastic processes which appear more

difficult to be understood than other processes for creating a basic understanding.

3.3.1. Linear Stationary Seasonal Processes (Stochastic Stationary Processes)

Stochastic seasonality can be mostly depicted by the autoregressive — moving
average (ARMA) processes. A famous example for this class of processes is represented

by the first order seasonal autoregressive (SAR) process:

Yo =Y T & (3.10)
where & ~ i.i.d. (0,0,%) with |@,|<1 (i.i.d.: Independent and Identically Distributed).

With a use of lag operator (L* Y. = VYei), (3.10) can be written as

A-4L)y, = ¢ (3.11)
Since there is no intercept in this process, the unconditional mean of the process
regardless of the season becomes equal to zero. However in the deterministic seasonal

process, this property differs as will be seen later. On the other hand, the mean

conditional on past Y, is not equal to zero and it displays seasonal patterns:
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E(yt |yt—l1 """ ) = ¢s yt—s (312)
and ACF for the process is represented by
p(kS) =g, k=12,......, (3.13)

and p(k) =0 for all other k values. As implied by (3.13), we can mention about the
presence of autocorrelation only for seasonal lags and the magnitude of this
autocorrelation diminishes over time. In conclusion, the only pattern in Y, is connected
to seasonality. But, since the series is mean reverting toward its expected value of zero
regardless of the season, this seasonality in Y, has a transitory characteristic. With

seasonal MA polynomials, the case of first order SAR process can be extended to higher

order processes, namely
¢5(Ls)yt = QS(LS)gt (314)
where ¢S(Ls)zl—zip=1¢5isLis and GS(LS)El—Z?:lHiSLiS, where the roots of both

polynomials lie outside the unit circle and both polynomials have no common roots.
Such processes are namely seasonal ARMA processes. For the ACFs of such processes,
see Box, Jenkins and Reinsel (2008) (Ghysels & Osborn, 2001, pp. 8-9).

3.3.2. Nonstationary Unit Root Processes

A typical characteristic of most economic time series is that they display unit root
nonstationarity. This characteristic is also possible to be observed in the seasonal.
Seasonal random walk process is the simplest one showing those features:

AgY, =& (3.15)
where Ag = (1-L°) stands for the seasonal differencing operator. Because this process
can be obtained from (3.10) with ¢, =1, it is also namely a seasonal unit root process.

Again, taking the stationary case as basis with the assumption of Y_,; =....=Y, =0,
there will be no seasonality in the mean. However, the seasonality becomes persistent in

the case of ¢, =1 in (3.12) in the sense that

ECY Y1) = EQrass|Yer) = Yoor k=120 (3.16)

Therefore we can say that mean reversion does not apply to this process (Ghysels &
Osborn, 2001, pp. 11-12).
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3.4. Seasonal Moving Average (SMA) Model
SMA model can be specified by:

Y, =(1-6,L")¢, =&, —6,¢, (3.17)
where 6, is the parameter of interest which is on or near the unit circle, L is the lag
operator and & ~ i.i.d. (0,0%). Here, the null hypothesis H,:€=1 implies the

presence of seasonal MA unit root against the alternative of H,:0<1. Tam and

Reinsel (1997) have also mentioned in their paper about testing for deterministic
seasonality to be identical to testing for seasonal MA unit root in the ARIMA model and
expressed that seasonal differencing for a deterministic seasonal series results in a
seasonal unit root in the MA operator (Tam & Reinsel, 1997, p. 727). By using the

parameterization6, = (1—y/T), where T is the sample size, Davis, Chen and Dunsmuir
(1996) have tried to build up the convergence in distribution of the maximum likelihood
(ML) estimator of 6, (Davis et al., 1996, pp. 160-161). For more information, see
Davis et al. (1996) or Tam and Reinsel (1998).

3.5. Seasonal ARIMA Models (SARIMA)

The characterization of seasonal series occurs by a strong serial correlation at the
seasonal lag. As known, the classical decomposition of the time series consists of a
trend component, a seasonal component and a random noise component. But, in practice
it may not be logical to assume that the seasonality component repeats itself exactly in
the same way cycle after cycle. SARIMA models allow for randomness in the seasonal
pattern from one cycle to the next (Brockwell & Davis, 2006, p. 320).

Box and Jenkins (1970) presents an extension of the ARIMA model in order to take
seasonal effects into consideration. At the core of idea for adding this seasonal

component, trying to adjust a cyclical effect takes place. For example, in the case of

monthly data, the observation Yy, may depend in part on Y,_;, accounting for an annual

effect. In the same manner, for daily data, the dependence may be realized through Y,_,

representing a weekly effect. Coping with these dependencies in order to remove the
seasonal effect in question may be possible via differencing the data. However, one can
also specify AR or MA relationships at the seasonal interval in question. For this case,

Box and Jenkins (1970) define a general multiplicative SARIMA model shown as
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ARIMA (p,d,q)x(P,D,Q),, where the lower-case letters p,d,q indicate the

nonseasonal orders and the upper-case letters P, D,Q indicate the seasonal orders of the

process with period s (that is, s is the number of observations per year). The parentheses
mean that the seasonal and nonseasonal elements are multiplied (Hamaker & Dolan,
2009, pp. 198-199, Pankratz, 1983, p. 281).

Before giving a clear definition for SARIMA, assume that X, (t=0,£1%2,.....)is

an ARMA (p,q) process if { X, } is stationary and if for every t,

Xy =X — s P X, =L +OL +6,Z, (3.18)
where {Z,} ~ WN(0,5?) . (3.18) can be written symbolically as
HL)X, =0(L)Z,, (t=0+1+2,......) (3.19)
where ¢ and 6 arethe p" and q" degree polynomials
#(2)=1-¢z—...... ~-¢,2° (3.20)
and
0(z) =1+6,z+.......... +0,2° (3.21)

and L is the backward shift operator defined by L'X, = X i, J=0x1%2...... These

¢ and @ polynomials are mentioned as the autoregressive (AR) and moving average
(MA) polynomials respectively of the difference equations (3.19) (Brockwell & Davis,
2006, p. 78). If we fit an ARMA(p,q) model ¢(L)Y, =E(L)Z, to the differenced series

Y,=@-L)X,, then the model for the original series becomes
#(L)A-L)X, =6(L)Z, . This is a special case of the general SARIMA model which

will be defined as follows:

Definition: If d and D are nonnegative integers, then { X, } is a seasonal ARIMA
(p,d,q)x(P,D,Q), process with period s if the differenced series Y, = (1-L)°(1-L*)° X,

is a causal ARMA process defined by

HLYD(L)Y, =0(L)O(L*)Z,, {Z,}~WN(0,0%) (3.22)
where @(z)=1-D,;z—.......... —®,z" (seasonal AR(P) characteristic polynomial),
0(z) =1+0,2+.......... +®QZQ (seasonal MA(Q) characteristic polynomial) with #(z)

and 6(z) expressed in (3.20) and (3.21) respectively (Brockwell & Davis, 2002, p. 203).
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On the other hand, a more general multiplicative SARIMA model can be expressed by
adding a constant term & to take the case of a deterministic trend into consideration as

follows:
H(L)YD(L°)Y, =5 +6(L)O(L°)Z, (3.23)
and substituting Y, = (1—L)? 01— L*)° X, = A;"A° X, into (3.23), it becomes
H(L)D(L)ALCA X, =5 +6(L)O(L%)Z, (3.24)
(Shumway & Stoffer, 2011, p. 157).

As seen in the definition given above, derivation of {Y,} comes from the original
series { X, } using both simple differencing (in order to remove trend) and seasonal
differencing A, =1-L° to remove seasonality. For instance, when d =D =1 and
s=12, then Y, becomes

Y, =AALX, =ALX, —ALX
=(X, =X )~ (X =X, 43) (3.25)
Now take a SARIMA model of order (1,0,0)x(0,11),,. Then this model can be written
in the following equation:
A-A)Y, =(1+a)Z, (3.26)
where Y, = A, X,. Then we find

Xt = Xt—12 + ¢(Xt—l - Xt—lS) + Zt + gzt—lZ (3-27)

so that X, depends on X,,,X,;, and X, ;5 as well as the innovation at time (t—12)
(Chatfield, 1996, p. 60).
Now, let us take an ARIMA (0,01)x(0,11), process with a periodicity of four

(since, s=4) as an example. Here, D = 1 implies that Y, is differenced once by length

four. With d = 0, it can be inferred that there is no seasonal differencing. There is one
seasonal MA term at lag 4 (Q = 1) and one nonseasonal MA term at lag 1 (g = 1).
Moreover, the two MA operators are multiplied by each other. Using lag operator, this

model can be written as

1- L)X, =(1+6,L)1+0,L4Z, (3.28)
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As another example, take the case of ARIMA (1,0,0)x(1,01),, process with a
periodicity of length 12 (since, s=12). In this example, it is obvious that X, does not
require seasonal and nonseasonal differencing at all since d =0 and D=0. On the
other hand, the seasonal part of the process is composed of one AR (P =1) and one MA
(Q =1) component at lag 12. In addition, there is a nonseasonal AR termat lag 1 (p =1)

. The multiplication of the two AR operators in the lag operator form can be expressed

as
1-gL)1-®, )X, =(1+0,1?)Z, (3.29)

(Pankratz, 1983, p. 281).
In identifying SARIMA model, the first task is to find values d and D which
reduce the series to stationarity and remove most of the seasonality. Then, we need to

assess the values of p,P,gand Q by examining the sample ACF and partial

autocorrelation function (PACF) of the differenced series at lags which are multiples of
s and choosing a SARIMA model in which ACF and PACF have a similar shape.
Ultimately, the model parameters may be estimated through an appropriate iterative
procedure. For details, see Box and Jenkins (1970, chap. 9) (Chatfield, 1996, pp. 60-61)
(all AR and MA polynomial representations have been taken from Brockwell & Davis,
2006, p. 78).

3.5.1. Stationarity and Invertibility Conditions
Representing a model in a multiplicative form is a big convenience in terms of

expressing the seasonal and nonseasonal components separately and controlling the
stationarity and invertibility conditions. For instance, take an ARIMA (2,0,1) x (10,2),
model and express it in a lag operator form as follows:

A-¢L—¢,)1-D,L5)X, =1+ 0,5 +O,L*)1+6,L)Z, (3.30)
The stationary requirement applies only to the AR coefficients. The nonseasonal part of

(3.30) has the same stationarity conditions as for an AR(2): |¢2| <1l ¢,-¢ <1 and

¢, +¢ <1. Now we need to apply a seperate stationary condition for the AR seasonal
part. It is the same as for a nonseasonal AR(1) model, except in this case we have a

(seasonal) AR(1),component; so the condition becomes |CI>1| <1.
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As in the case of stationarity, we need to consider invertibility condition which
applies only to the MA part of (3.30) for nonseasonal and seasonal components

separately. For the nonseasonal part, the condition is |6’1| <1. The conditions on the
seasonal part are the same as for a nonseasonal MA(2) model, except in this case there

exists an MA(2), component. Therefore the joint conditions are given as |®2|<1,

0,-0,<1 and ©,+0, <1 (Pankratz, 1983, p. 285). (AR and MA polynomial

representations have been taken from Brockwell & Davis, 2006, p. 78).

3.5.2. The Expanded Model

It should be noted that all multiplicative SARIMA models can be telescoped out
into an ordinary ARMA (p, q) model in the variable

Y, Z ACAYX, (3.31)
For instance, consider that the series {x,}, follows a SARIMA (0,1L1) x(12,0,1,1) or
ARIMA (0,1,1) x(0,1,1),, model. For this process, we have
A-L?)A-L)X, =(1+6,L)1+06,1?)Z, (3.32)
and it becomes
Y, =(1+6,L+0,L"”+0,0,1°)Z, (3.33)

where Y, = (L—L"*)(1-L)X,. Hence, it can be said that this multiplicative SARIMA

def
model has an ARMA(0,13) representation where only the coefficients 6,, 6,, = ®, and

def
6,, = 6,0, are not zero and all other coefficients of the MA polynomial are equal to

zero. So, if the model in question is SARIMA (0,11) x (12,0,1,1) given in (3.32), only the
two coefficients which are 6, and ®, have to be estimated. However, for the
ARMA(0,13), instead we have to estimate the three coefficients which are 6,, 6,, and
0,5. Therefore, it is apparent that SARIMA models take a parsimonious model structure

into account and a model specification such as (3.33) is called an expanded model. In
addition, we can say that only an expanded multiplicative model can be estimated
directly (Chen, Schulz & Stephan, 2003, pp. 233-234).
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3.5.3. Theoretical ACFs and PACFs for Seasonal Processes

In SARIMA models, estimated acfs and pacfs display the same expected
behaviours as in the structure of nonseasonal models. For seasonal time series data,
observations s time periods apart (Z,,Z,,Zs: Zi_ps» Ziyps----) have characteristics in

common. So, observations s periods apart are expected to be correlated and in this
manner, acfs and pacfs for seasonal series should have nonzero coefficients at one or

more multiples of lag s (s,2s,3s,......). If we observe nonseasonal and purely seasonal

acfs and pacfs, it is seen that the coefficients appearing at lags 1,2,.... in the former

appear at lags s,2s,3s,...... in the latter. For instance, theoretical acf of a nonseasonal
AR(1) process having ¢, =0,7 tails off exponentially in this manner (where K is the lag

length and p, represents the autocorrelation coefficient):

Table 3
Behaviour of the Theoretical ACF of a Non-seasonal Process
k P
1 P1= 0.7
2 p, =0.49
3

p, =034

For instance, for quarterly data (that is, s=4), a stationary seasonal process
including one seasonal AR coefficient also has a theoretical acf decaying in an

exponential manner, however at the seasonal lags (4,8,12,.....) which are multiples of 4,

the representation becomes as shown in Table 4.
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Behaviour of the Theoretical ACF of a Seasonal Process
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Pk
py=0
p, =0
Ps =

Py =07
Ps =
ps =0
Pr =

pg =0.49
Py =

P10 =0

P =

This similarity between nonseasonal and seasonal acfs and pacfs makes the

seasonal analysis simpler. So, having knowledge of nonseasonal acfs and pacfs helps

give a description of identical patterns occurring at multiples of lag s (Pankratz, 1983,
pp. 270-271). For more details, see Box and Jenkins (1976, chap. 9).
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CHAPTER IV

DETERMINISTIC SEASONALITY

4.1. Introduction to Deterministic Seasonality

Deterministic seasonality gives a description of varying unconditional mean
behaviour with the season of the year. It is the known part of the seasonal cycle when
“the process is started” and is limited to time constant seasonal means or time constant
growth rates that show differences across quarters/months (Kunst, 2012). In this section,
deterministic seasonality will be handled in detail with its dummy variable and
trigonometric representations. It would be unfair to consider recent developments
associated with deterministic seasonality apart from the issues surrounding stochastic,
and especially nonstationary stochastic seasonality. Therefore a further analysis will be
realized on various types of seasonal processes and finally some tests will be proposed
in order to distinguish between deterministic and nonstationary stochastic seasonality by
testing the null hypothesis that seasonality is of the deterministic type. When we
consider topics pertaining to seasonality, it is mostly convenient to realize the season
and the year to which a specific observation t relates in an explicit manner. For this
realization, it is preferable to use two subscripts for a variable with the first one
referring to the season and the second to the year. From the knowledge of the season in
which the initial observation falls, we can infer about the season for all subsequent
values of t. By making a simple assumption that t =1 corresponds to the first season of
a year (that is, the first quarter for quarterly data or January for monthly data as s =1)

and S denotes the season in which observation t falls, the series of observations

Yir Yoreeemeen 1 Yoo Ysurremmenn could be written in the double subscript notation as
Vit Yorseemeeen s Yrr Yigreeesees » Yo Yigreeeees . Generally, Y, could be written as identical to
Y., where s=1+[(t—1)mod S] (that is, S, is one plus the integer remainder obtained

when t-1 is divided by S that denotes the number of observations per year) and

7 =1+int[(t —1)/S] which is a notation for the year in which a specific observation t
falls with “int” denoting the integer part. In the case of that Y, includes T observations,

we will assume that there are exactly T, years of data, so that T, =T /S (Ghysels &

Osborn, 2001, pp. 6, 19).
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4.2. Representations of Deterministic Seasonality

There are two representations of deterministic seasonality which will be mentioned
in following sections:
1. The Dummy Variable Representation

2. The Trigonometric Representation

4.2.1. The Dummy Variable Representation

The most frequently used dummy variable representation of seasonality can be

expressed as follows:
S
Ve =D 70 +2,, t=Lo. T, (4.1)
s=1

where Y, is a univariate process, J is a seasonal dummy variable that takes the value
one in season s (that is, d,=1if S, =S for s = 1,......S) and is zero otherwise and

finally the process Z, is a weakly stationary stochastic process with mean zero. Thus,
for season s of year 7,
E(Y,)=7.,5=Lcecne. ,S 4.2)

This property is of primary interest with respect to implying that the process has a
seasonally shifting mean. This time varying mean gives information about

nonstationarity of process. Since it is very easy to remove this nonstationarity position
of the process so that the deviations Yy, —E(Y,) =12z, are weakly stationary, this

nonstationarity is often ignored. The disadvantage of this dummy representation in (4.2)

Is that it cannot distinguish seasonality from the overall mean when the latter becomes

nonzero. The overall mean of Y, is given as:
1 S
E(yt)=ﬂ=§2ys (4.3)
s=1

The deterministic seasonal effect for season s denoted by M, is found by subtracting

this overall mean. That is, m; =y, — . It is very clear from this equation that when

observations are summed over a year, there will be no deterministic seasonality. Since

S
this equation comes with a restriction of st =0. If the level of the series (here
s=1

denoted as ) is isolated from the seasonal component, it will take the form of
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s
Yi :/U+st§st +Z (4.4)
s=1

This equation can be reformulated in a way to include a trend component that is
unchanged over the seasons by putting £, + 4t instead of x. A further reformulation

is realized by writing separate trends for each season:

S
yt = luo + lult + Z(mOS + mlst)é‘st + Zt (45)

s=1

S

S
Here, we encounter again with same restrictions that are ZmOS =ZmlS =0
s=1 s=1

mentioned above. However, this type of trending deterministic seasonality has such an
implication that observations for seasons of the year diverge over time and that is why it
may seem unrealistic for many applications. For both (4.4) and (4.5) processes, each

observation deviates from its respective seasonal mean with a constant variance over
both s and 7 as implied by stationarity for z, =y, —E(Y,) = ¥, —E(Y,,) . This result

points out to that when we have a deterministic seasonal process, the observations
cannot wander too far from their underlying mean (Ghysels & Osborn, 2001, pp. 20-
21).

4.2.2. The Trigonometric Representation

A deterministic seasonal process with period S can also be equivalently written in

terms of sines and cosines corresponding to (4.4) as follows:

S/2
Yo =u+ | o cos[z—”ktj + B, sin(z—ﬂktj +2, (4.6)
k=L S S
where
S S/2
D Sym, = Z{ak cos(z—ﬂktj + B, sin(z—ﬂktﬂ fort=1,.....,T (4.7)
s=1 k=1 S S
with
s .
o = 2 m, cos(z—ﬂkjj , k=12..... § (4.8)
S S 2
13 .
Qgjp = gzms COS(”]) (4.9)

s .
B = ézms Sm(z—ﬂkjj ., k=12,.... ,%—1 (4.10)
S
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Thus, both dummy variable representation and trigonometric representation will be the
same. However, the trigonometric representation is seen to be more useful in separating

seasonality from the overall mean x than the dummy variable representation. In

: . . S
equation (4.7), «a, is considered only for k=12,... > and S, only for

S . . . .
k=12,..... ,E—l. Because, fs;, multiplies a sine term that is always zero. This

representation provides a basis to spectral analysis of seasonality and seasonal
adjustment (see Hannan, Terrel & Tuckwell, 1970).

If we took the case of quarterly data, as an implication of equation (4.6) the
seasonal dummy variable coefficients of equation (4.1) are connected with the

deterministic components of the trigonometric representation in the following way:

n=u+tp—-a,
Vo =H—O0 T
Va=H—-P—a, (4.11)

Via=Hto T,
For quarterly data (that is, S = 4), the trigonometric components can easily be
expressed in a clear way:

4
For k=1, cos 2 = COS ad =0,-101,....So0, o, ZEZmS cos| & :1(—m2 +m,)
4 2 2 2 2

4nt 13 1
k=2, cos| == | = cos(nt) = -1+ -1+1,.... a,= szs cos(s7)= Z(—m1 +m, —m, +m,)

s=1

. (2nt . ( 13 (sz) 1
k=1, sinf — |=sin| — |=10,-10,.... =— > mssinf— |=—=(m —m
[4j (zj h=32 (2j o (M=)
k=2, sin[4—ﬂt} =0
4
with a;and p, denoting the annual wave and o, denoting the half-year component

(Kunst, 2012).

As seen above, the coefficients a; and B, are related with the spectral frequency

the values 1, 0, -1, O; it can be inferred that «; and S, have a half-cycle every two
periods and a full cycle every four periods even though «; is associated with the second

and fourth quarters while S, is associated with the first and third quarters). By the same
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logic, it is obvious that «, is related with the spectral frequency =, since it multiplies
cos(t) for t =12,........ in (4.6). Also because the terms of cos(zt) alternate between -1
and 1, «, displays a full cycle every two periods. In the case of quarterly data, these
spectral frequencies also mean the seasonal frequencies; since any deterministic

seasonal pattern over the four quarters of the year can be specified as a linear function

of terms at these % and /4 frequencies, such that

a, cos(tr/2)+ B, sin(tz/2) + e, cos(tzr). By construction of these functions, in an

essential manner the seasonal pattern sums to zero over any four sequential values of t.

(4.11) can also be represented in a different notation as:

I'=RB, (4.12)
where I' = (y,,7,.75.74) » B=(u,,, B, ;)" and
1 0 1 -1
A 1 -1 0 1 (4.13)
1 0 -1 -1
11 0 1

This 4x4 non-singular matrix handles the one-to-one relationship between the
dummy variable representation expressed in (4.1) and the trigonometric representation
(4.6) for the quarterly case. Equation (4.12) can also be applied for data at sampled
other frequencies. For instance, if we take monthly data with S=12, then the seasonal

. 27 5 - .
frequencies become LRI and 7. For monthly data, it is also possible to

6'3'2 36
express any deterministic seasonal pattern by using the trigonometric cosine and sine
functions at these spectral frequencies. However, recall one more time that the
representation holds the overall mean x separate from the deterministic component
with the latter necessarily summing to zero over any twelve successive values of t. Now
return to the general case of S seasons. There are some good properties concerned with
matrix R in (4.13). When g is included in the vector B, the matrix R becomes a square
matrix and must be non-singular because there is a one-to-one relationship between the
seasonal dummy and trigonometric representations. The columns of the matrix R are

orthogonal to each other meaning that when the vector R, represents the ith column, so

that R =(R,......,Rg), then Ri'Rj =0,i # j. This quality of R assures that RRR=D isa

diagonal matrix. So, if the ith diagonal element of D is shown as d,, then
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RY=|y4 (4.14)

so that the inverse of R becomes the transpose of itself. For instance, let’s verify this in

the quarterly case:

025 025 025 0.25

0 -05 0 05
_ (4.15)
05 0 -05 0

-025 025 -0.25 0.25
Thus, it should be noted that the first column of R includes a vector of ones. In this case,

Rll R, =d, =S and consequently, each element of the first row of R™ corresponds to
S

1/S and this inverse provides us a definitional relationship = (1/8)27/5 It is also
s=1

remarkable to say that equations (4.8) and (4.10) - which describe the coefficients «,

and B, as cosine and sine functions - efficiently reveal the elements of R™.

Sometimes, it is very practical to identify the overall mean with the zero spectral

frequency. So, u can be expressed with respect to trigonometric functions as

a, cos(27kt/S) with k =0 and (4.6) becomes equivalent to

Y, = f{ak cos(%ﬂktj + By sin(%ﬂktﬂ +2, (4.16)

k=0

since sin(0)=0. It is realized that the overall mean g has a spectral interpretation, so it is
convenient to write it as x and therefore use the representation (4.6) in preference to
(4.112).

Even if not explicitly stated here, it is obvious that the trend coefficients in the
seasonally varying trend model can also be expressed by using a trigonometric
representation and then with suitable definitions of the elements of I',Rand B in (4.12),
the relationships between the trend coefficients in the dummy variable and
trigonometric representations can easily be observed (Ghysels & Osborn, 2001, pp. 21-
24).
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4.3. Stochastic and Deterministic Seasonality
4.3.1. Stochastic Seasonal Processes

The discussion on previous section dealing with deterministic seasonality which has

an unconditional mean, E(y,,). In this section, we will cover stochastic seasonality.
Let’s take the case of first order seasonal autoregressive AR(1) process for z,:

2, =2, 1+ &, S=L...... S, 7=12,....... T (4.17)

where g, = ¢, isi.i.d. (0,c57). This seasonal AR(1) process puts emphasis on that the
autoregressive relationship for z__ in season s is associated with the same season in the

preceding year. The process can be written in a more general form using starting value

as follows:
-1 i
Zsr = ¢STZSO + Z¢slgs,r—j (418)
j=0

In the model defined here, there are two sources of seasonality: the first one is the

unobserved starting value for season s, z,,, which influences the subsequent

observations for that season through ¢,"z,,. The second one is that z,, is affected by

disturbances for the specific season s in previous years (¢ for j>0), so that

s,7—]
patterns that occur by chance through the disturbances are inclined to be repeated. On

the other hand, in both cases ¢, should be greater than zero for these repeating patterns.

If the process is also stationary (0 < ¢, <1), the effects of z,, and of any specific ¢ __;

diminish over time.
The variance of (4.17) is expressed as follows:
71 i
Var(z,,) = ¢,”"Var(z,,) + o> Y ¢, (4.19)
j=0
If —1< ¢, <+1 or in other words if the process is stationary and Var(z,,) =Var(z,),

the variance becomes:

62

L-¢.2)

which is constant over both seasons s =1,.......... ,S and years7t =1.2,......... i

Var(z,,) = (4.20)

For the case of quarterly data, the seasonal autoregression process in (4.17) can be

expressed as:
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Z, =2, +&,, S=L...,4 t=12,... T

ST

(4.21)

So, the model can be written as (1—¢,L*)z, = &, and decomposition of the polynomial

operator for this seasonal AR(1) process is given as:

1- g, L") = @1—4/p, L)A+4/4, L)A+2[g, L) (4.22)
Here the first component (1—‘{/¢5_4 L) represents a nonseasonal factor and other two
components namely (1+ ‘{/¢_4 L) and (1+ 2\/¢_4 L*) contribute to seasonality. We can say

that AR processes (1+ ‘{/¢_4 L)y, =& and (1+ 2\/415_4 L*)y, =&, have peaks at frequencies
72. - - - -, . 2

7 and > respectively in their spectral densities. The term (1+ 2\/¢5_4L ) can also be

decomposed as (1+i4/¢, L).(1—i4/¢, L) where i =+/—1. However, we cannot separate

this complex pair of factors with % frequency, because they should be together to have

a real-valued process. On the other hand in the case of monthly data, the factorization
becomes (1—¢,,L**) with ¢, >0. As analogous to the quarterly case, this polynomial

operator can be factorized to a nonseasonal factor and eleven seasonal factors and the

seasonal factors consist of five complex pairs that are related to the seasonal frequencies

Z,Z,Z,Z—”and > (these can be obtained by using z—ﬂl, where s=12 and
6 32 3 6 S
j=12,...,8/2 or j=12,...,6) together with a real factor associated with the

frequency 7 (Ghysels & Osborn, 2001, pp. 24-26).

4.3.2. The Seasonal Random Walk

In the case of ¢, =1 in (4.17), we refer to the seasonal random walk process and

the observed process y,, will be y, =y, , +&,, or by expressing it with a starting

value, we get
Yoo = Yoo T D& (4.23)
j=L
This seasonal random walk process will include S random walks since s=1,......... ,S.

Because the disturbances are independent over the seasons, these S random walks (for S
seasons of the year) are also independent of each other. Therefore, any linear

combination of these processes can itself be exhibited as a random walk. The
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accumulation of disturbances enables the differences to wander far from the mean over
time, leading to the phenomenon that “summer may become winter” (Baltagi, 2001, p.
657).

Contrary to the stationary stochastic seasonal process, here the effects of the

starting value for season s which is y,, and of any specific disturbance for season s
(g,) do not diminish over time as 7 increases. Hence, in the case of E(y, )=y, #0

for all 7, E(y,,) becomes equal to y,. More clearly, any deterministic seasonal

component in the starting value for the seasonal random walk in season s is carried over
to all following observations associated with that season’. It should be noted that a

significant distinction between the deterministic seasonal process mentioned previously
and seasonal random walk process exists so that in the first case, Var(y,,) is constant
over both s and 7. However, in equation (4.23), Var(y,,) =Var(y,,) + 7o’ and as seen,

it linearly increases with 7. So, one more time we can state that with this increasing

variance, Yy, can wander far from its unconditional mean y. over time (Ghysels &

Osborn, 2001, pp. 26-27).

4.3.2.1. Asymptotic Properties of a Seasonal Random Walk

If we are to mention about asymptotic properties of a seasonal random walk
process, firstly we assume that the initial values of the data generating process (DGP)

are equal to zero (y,, =0 for s=1,......... ,S). In that case, S independent partial sum

processes can be obtained as:
Yo = &y (for s=1..... ,S) (4.24)

As T, —oc, then the behaviour of each scaled partial sum converges to a Brownian

motion. That is,

' Sometimes, it may be misleading to think that the seasonal random walk has no deterministic

component. Because for simplicity, there is an assumption often made such as y =0 or at least
E(y,,)=0. Therefore even though the seasonal random walk process does not explicitly include
deterministic seasonal effects, these are implicitly included when E(y, ) is nonzero (see Baltagi, 2001, p.

657).
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R 1
T e = =Y. = W, (1) (4.25)
&
where = indicates convergence in distribution and W_(r) for s=1...... ,Sare

independent standard Brownian motions, derived from an i.i.d. (0,1) disturbance (see
also Baltagi, 2001, p. 659). Then while the DGP is the seasonal random walk with

initial values equal to zero, as T, —oc

T,
) TNy, = o[ W0dr, =1 (4.26)
=1

1
2% 2 2t 2 _
3) T, Zl:y >0 IO[WS(r)] dr, s=L.....,S (4.28)
(see Banerjee, Lumsdaine, & Stock, 1992).
Note that the disturbance terms & underlying Brownian motions are independent

over seasons and for this reason W, (r) are independently distributed over s =1,......... 'S

as well.
An extension of seasonal random walk process of (4.23) to a more general seasonal

unit root process in which A_y, =z, is a stationary and invertible ARMA process

(Ghysels & Osborn, 2001, pp. 27-28).

4.3.3. Deterministic Seasonality versus Seasonal Unit Roots

Recent discussions on seasonality so far have focused on whether an observed
series should be modelled as a deterministic seasonal process or a seasonal unit root
process. For both cases, it is possible to have a stationary stochastic seasonal
component. In later sections, we will discuss the tests of the deterministic seasonality
null hypothesis. Before handling these tests, it is remarkable to mention about the
relationship between the competing hypotheses. According to Bell (1987), the two

competing processes are the simple deterministic seasonality model which is

Yo, =V + &, S=1..... S, r=1.... T, (4.29)
and the process of
Ay, =(1-6,%)e,., s=1..... S, 7=1..... T (4.30)

These two specifications are equivalent in the special case of 65 =1. It is very
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straightforward to get this result: if ¢, is replaced by (1-6,L°%)¢,. in (4.23), then the
implication of the annual differenced process (4.30) implies

ysr = ys,r—l + (1_ 08 LS )8

st

=Yy + D, (1 6sL%)ey, (4.31)

i=L

For 6; =1, (4.31) becomes
Ys: = Yso +Z(8sj _8s,j—l)’
j=L

=Y €50 T &,
=y e

st

when Yy, =y, +&,. As well known, this last line is the deterministic seasonality
equation. So, using a simplified assumption about the starting values which is
Yoo =¥ + &5, the two processes of (4.29) and (4.30) with a special case of &5 =1 are
equivalent for any vy, .

Sometimes, to discriminate between deterministic seasonality and a seasonal unit

root process may be hard. There is a prevalent view about the cancellation of the

seasonal differencing operator A, and the noninvertible MA operator 1—L° in (4.30)
with 65 =1. The extension of this logic also occurs when there is “near cancellation”

situation with &5 close to but less than unity in (4.30). In this case, in an empirical

manner the properties of the seasonal unit root process for finite T values become
similar to the properties of the deterministic seasonal process given in (4.29). Therefore,
generally it may be a hard task to distinguish a deterministic seasonal process from a

seasonal unit root process (Ghysels & Osborn, 2001, pp. 28-29).

4.3.4. Unobserved Components Approach

Observed time series are assumed to be a function of several components which are
trends, cycles, seasonality and irregularity. Traditionally, these components are accepted
to be separately generated and this idea takes place at the core of the seasonal
adjustment. A linear unobserved component model is expressed in that way:

A A AR ARAY (4.32)
where the superscripts respectively denote the trend, business cycle, seasonal and

irregular components which are mutually independent and there is no general consensus
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about the nature of these components. However, for some specific cases, some simple
decompositions are available. For example, for a seasonal random walk process an
unobserved component model can be written as:
@-L)y" =&",
Q+L+...+LYy’ =¢°, (4.33)

where y," denotes the nonseasonal component of y, which is composed of y,", y,°

and yti. The first line of (4.33) displays a nonseasonal random walk and therefore
includes the zero frequency component of the seasonal random walk. It is very common

to decompose the operator A, into (1 L) and (1+L+....+L°™) in testing of seasonal
unit roots that will be discussed later. However, there is no unique decomposition of y,

into separate orthogonal components (see, Bell & Hilmer, 1984) and seasonal
adjustment methods for the time series require to be established on a specific
decomposition (Ghysels & Osborn, 2001, p. 12).

Harvey (1989) specifies the seasonal component summed over a year as random

with a zero mean rather than summing to zero over the year in a deterministic way

given in (4.1). Thus, the second line of (4.33) which is (L+L+....+L° ")y =&’ is
taken as basis with &,° being i.i.d. (0,w?) and independent of the disturbances driving

the other components. With w? =0, the deterministic seasonal model becomes a
special case of the second line of (4.33). If disturbance term has a nonzero variance, in
that case the unobserved components approach enables seasonality to evolve over time.
However, in that case the addition of a disturbance term with nonzero variance has a

drawback in terms of specifying a seasonal component transformed into a nonstationary
process. Indeed, for autoregressive process in (L+ L +.....+ L>™")y,” = &° there will be S

— 1 unit roots occurring at seasonal frequencies.

A different type of unobserved components approach for a nonstationary stochastic
seasonal component is available in the case of allowing « and g coefficients which
take place in the trigonometric representation in subsection 4.2.2. to evolve as random
walks so that

Ay =y +1, kK=1...,S/2
B = Bira e » K=1....,(8/2) -1 (4.34)

where 7, and 77k1* are i.i.d. (0O,w?) processes. This generalization also underlies
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the Canova and Hansen (1995) framework. So, at each seasonal frequency %
S

(k=1,......,S/2), seasonality evolves over time and available nonstationarity observed

in (4.34) is directly associated with the corresponding seasonal frequencies for any
given k. The implication of the unobserved components approach which makes the
generalization of deterministic seasonality and allows it to evolve over time is that with
this evolvement, seasonality displays a nonstationary stochastic process with unit roots
available at all seasonal frequencies. However, what we are trying to mention here is
not that an unobserved components model can never be expressed with stationary
seasonality (such models are covered to some extent by Nerlove, Grether, & Carvalho
1995), rather in recent studies unobserved components models of interest are based on
nonstationary seasonality. Whether the unobserved components approach is in the form
of the second line of (4.33) or (4.34), it also shows a typical nonstationary stochastic
process for the nonseasonal component and this process is simply specified as the

random walk by which the nonseasonal component is y," = z, with

My =My + gtns (4.35)
(Ghysels & Osborn, 2001, pp. 29-30).

4.3.5. A Summary of Seasonality Models

As mentioned above, there exist two basic types of seasonality:

1) Deterministic Seasonality features time-constant seasonal means: These are
nonstationary, however when looked at sub-series for seasons, they are stationary. The
nature of this seasonality can be expressed with “summer remains summer”. Since
stochastic models generally include deterministic parts, deterministic can be seen as a
special case of stochastic and so it does not mean that deterministic seasonality is non-
stochastic. However, in current usage, stochastic seasonality is described with stationary
patterns and deterministic seasonality is described with complete dummy patterns.

2) Stochastic Seasonality is separated into two parts:

a. Stationary Stochastic Seasonality features time-constant means (not so good
models)
b. Unit Root Seasonality implies nonstationarity. This type of seasonality has evolving

seasonal means over time.
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In stochastic seasonality, we can say that “summer may become winter” (Kunst,

2012).

4.4. Testing Deterministic Seasonality

It is very crucial to test about whether seasonality of a series is of this type or not.

In this respect, Harvey (1989) handles the subject of unobserved components model in

the context of (L+L+...+L°7)y’ =&’ with &°being ii.d. (0,w?) and suggests

testing the null hypothesis of deterministic seasonality by means of a test of w* =0

against w® >0. Although this approach is attractive in its simplicity, it is also
restrictive in terms of depending on the assumption that the specified unobserved

components model sufficiently represents the DGP for y,. Especially, there is no

allowance for stationary stochastic seasonality. In this section, under this framework
mentioned above, the discussion will be on more general types of processes (Ghysels &
Osborn, 2001, p. 30).

4.4.1. Canova-Hansen (CH) Test

The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests of
the null hypothesis of no unit roots at seasonal frequencies against the alternative of a
unit root at either a specific seasonal frequency or a set of selected seasonal frequencies.
So the test statistics of CH are derived from the LM principle that necessitates only the
estimation of the model under the null using least square techniques and they are fairly
simple functions of the residuals. These tests are also a framework for testing seasonal
stability. CH tests complement the tests of Dickey, Hasza and Fuller (DHF) (1984) and
Hylleberg, Engle, Granger and Yoo (HEGY) (1990) that examine the null of seasonal
unit roots at one or more seasonal frequencies. So, it is clear that contrary to these
seasonal unit root tests, the null hypothesis of CH test is that the process is stationary
(that is, stationary seasonality rather than nonstationary seasonality). Here the rejection
of the null hypothesis would imply the nonstationarity of the data. Although the null of
CH test is stationary seasonality, for simplicity they refer to their tests as seasonal unit
root tests. On the other hand, Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1992)
suggest an LM statistic for the null of stationarity against the alternative of a unit root at

the zero frequency. Tanaka (1990) and Saikkonen and Luukkonen (1993) have
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developed tests with the null hypothesis of a moving average unit root which have an
analogue structure with the KPSS test. As HEGY have generalized the Dickey-Fuller
(DF) framework from zero frequency to the seasonal frequencies, by the same token
Canova and Hansen have generalized the KPSS framework from the zero frequency to
the seasonal frequencies. Since seasonal intercepts stand for the deterministic
components of seasonality and they are assumed to be constant over the sample, under
the null hypothesis of stationarity the tests by Canova and Hansen can also be
introduced as the tests for constancy of seasonal intercepts over time. In this context,
Canova and Hansen adopt the methodology of Nyblom (1989) and Hansen (1990) who
designed LM tests for parameter instability. What is interesting is that the LM test for
joint instability of the seasonal intercepts numerically shows equivalence to the LM
tests for unit roots at all seasonal frequencies. Therefore CH tests can also be considered
as a test for seasonal unit roots or a test for instability in the seasonal pattern. Since the
asymptotic distribution is not unaffected by any trending regressors such as a unit root
process or a deterministic trend, Canova and Hansen exclude such variables from the
regression and they also require that the dependent variable be used as free of trends and
thus assume an appropriately transformed data in order to eliminate unit roots at the
zero frequency. In their study, Canova and Hansen (1995) deal with Monte Carlo
experiments, derive an asymptotic distribution theory for their tests and examine the
power of them. The large sample distributions of their test statistics are not standard but
they are free from nuisance parameters and affiliated with only one “degrees-of-
freedom” parameter. Canova and Hansen compare the power and size properties of their
tests with a test for the presence of stochastic (stationary) seasonality and the HEGY
tests for seasonal unit roots. As a result, they point out to their tests with reasonable size
and power properties. They examine three data sets for their tests: the first one is the
data set originally used by Barsky and Miron (1989) asserting the hypothesis that
quarterly seasonal fluctuations in U.S. macro variables can be well characterized by
deterministic patterns. So, Canova and Hansen have been interested in detecting if this
hypothesis is appropriate or not. The second data set is the set of quarterly European
industrial production indexes used by Canova (1993) and third one is the set on stock
returns on value weighted indexes for seven industrialized countries. As a result of their
test applications to these three seasonal variables, Canova and Hansen show us that the
seasonal patterns of these variables in most cases display important instabilities and

therefore nonstationarity (Canova & Hansen, 1995, pp. 237-238).
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The approach of Canova and Hansen (1995) is fundamentally based on the
trigonometric representation of deterministic seasonality. Here we show this

representation in a different notation as:

S '
m:Zaa%+; (4.36)

s=1

where the 1 x S vector F; is the sth row of the matrix R expressed in (4.13) for
quarterly case, B, = (14, @y, Bipreeeeenen- ,0s,,,) and z, are disturbances. The assumption
Is that z, are normally distributed and stationary, but not necessarily uncorrelated over

time. If B, becomes identical to B for all t values, then this equation will be equivalent

to (4.6). Canova and Hansen base their theories for this test on all elements of B

evolving according to a (vector) random walk:

B, =B +V, (4.37)
t
=B, + >V,
i=1
where the disturbance term V, is i.i.d. with E(VtVt’) =w’H where H is a known
positive definite matrix and V, is independent of z,.
Under the null hypothesis of w? =0, B is unchanged over time and therefore there

exists deterministic seasonality. The alternative one which is w® > 0 says that there are

unit roots in each element of B, that are related with the zero and seasonal frequencies.

So this alternative hypothesis is also an implication that is equivalent to the

nonstationarity of y, at both zero and seasonal frequencies. In other words, we can say

that under the alternative hypothesis, the process is seasonally integrated.
For this test proposed by Canova and Hansen, under the null hypothesis of
deterministic seasonality, DGP of (4.36) and (4.37) can be written in vector notation:

Y, =T+Z =RB+Z, (4.38)
where Y. = (Y, oeeeen ,Ys,) is the vector of observations for year 7z and the

disturbance process Z_ is stationary with zero mean and its covariance matrix denoted

as Q, =E(Z,Z,) and R matrix is the same as the one discussed in subsection 4.2.2.

The columns of this matrix are mutually orthogonal. That is, when the vector R,

represents the ith column of R, then R; R; =0 for i= j. This information makes us
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guarantee that RR=D is a diagonal matrix. By multiplying equation (4.38) by R’, we
get

RY =DB+R'Z, (4.39)
with E(R’ZTZT'R) =Q., =R'Q,R. Because D is known to be diagonal, D.B becomes

a scaled version of B. For instance, for quarterly case D.B = (4u,2¢,,2/3,,4,) Or in a

more explicit way:

400 0 400 0] [u

: 0200 020 0| |a

R R = D = and DB = = (4ﬂ!2a112ﬁ1’4a2),
0020 002 0| A
0 0 0 4 000 4], .12,

In order to get a test statistic free of nuisance parameters, the covariance matrix H of V,
in (4.37) and used in the CH test is assumed to be associated with the covariance matrix
of R'Z_suchthat H=Q_, .

As discussed before, the dummy variable and trigonometric representations are
equivalent to each other. So, in this case we have identical OLS (ordinary least squares)
residuals for both (4.1) and (4.36) models. In order to build the test statistics, OLS

residuals under the null of w?=0 are utilized. From the OLS residuals,

Z,(t=1...... ,T) form the S x 1 vectors of partial sums Zta, where

n t

Z" =(Q.2;0) e 2 2;0g) for t=1,........ ,T aggregating over time periods to t
j=1

the residuals for each of the season s. So, sth element of 2ta shows the aggregated

residuals for season s.

Canova and Hansen propose an LM test statistic as follows:

ST 1 ayrA~ = 1= a ST"a"‘f"a
L=T—ZZ(R Z)Qn '(RZ, )=T—222t Q,77, (4.40)
t=1 t=1

In order to find out its asymptotic distribution, it should be noted that for the annual

disturbance vector Z_, the elements of (©2,)™*?Z_ are mutually independent with the

assumption of normality. If we sum up over years 1 to 7, we will get

Xr:(QZ)‘l’zsz as a vector of independent I(1) processes, each having a
j=1

disturbance with a variance of unity and zero starting value. Then in a similar fashion to
(4.25),
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Loy, swr (4.41)

JT
where  W*(r) is an S x 1 vector of independent standard Brownian motions (see
Appendix A1-A2). Continuing with the same logic of (4.28),

T, , 1
Tizz X, X, = [WX(ryw* (r)dr (4.42)
=1 0

T

Here there are T observations for T/S =T_ years and it should be noted that the
summation over t implies ST, .

Under the null hypothesis, (4.40) will converge to a distribution very closely
associated with (4.42):

L:>j.[\NX(r)—rWX(l)]'[WX(r)—rWX(l)]dr (4.43)

In this result, a subtraction of rW*(1) term can be considered as a correction of the

vector Brownian motion W*(r) to estimate B in (4.39); see Nyblom (1989). The
distribution of (4.43) is nonstandard. The description of the limit distribution occurs by
an integral over a Brownian bridge (see Appendix A3) starting at zero for r =0 and
coming down to zero again for r=1(Kunst, 2012). This S x 1 vector W”*(r) is
sometimes called the VVon-Mises distribution with S degrees of freedom or VM(S). This
asymptotic distribution is tabulated by Nyblom (1989) and Canova and Hansen (1995).

For this test of Canova and Hansen, the rejection of the null hypothesis is possible
for large values of L. Under the alternative hypothesis, the residuals from (4.1) that
construct the test statistic show random walk behavior in B, . Then, the partial sums
expressed in (4.40) emphasize this behavior.

It is obvious here that the number of possible unit roots under test results is the
degrees of freedom for the Von-Mises distribution. Therefore it can be realized that if
the overall mean is excluded while testing deterministic seasonality, then under the
alternative hypothesis, S — 1 seasonal unit roots will be taken into consideration and the
asymptotic distribution of L becomes VM(S — 1) (Ghysels & Osborn, 2001, pp. 31-34).

There are some theorems regarding LM test statistic. Let e denote convergence in

distribution:

Theorem 1: Under H,, L?VM (a@).
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This theorem says that the large sample distribution of the L statistic does not
depend on any nuisance parameters other than a (the rank of A that will be given in
equation (4.46)) which explains the number of elements that are being tested for
constancy.

Let L, denote the test statistic for joint test for unit roots at all seasonal

frequencies:

Theorem 2: Under H,, L, ?VM (5-1).

According to this theorem, the large sample distribution of the test for unit roots at
all seasonal frequencies is given by Von-Mises distribution with S — 1 degrees of
freedom (d.f.). Hence for quarterly data, in the table for Von-Mises critical values given
in Canova and Hansen (1995) the appropriate critical values are found in this table by
using the row corresponding to p=S-1=3; if worked with monthly data,
p=S-1=11.

Now let L, . be the test statistic to test for a seasonal unit root at frequency

(j/q)xr (for gq=s/2 and j=1...,q)and L_ be the one to test for a seasonal unit root
at frequency 7z :
Theorem 3: Under H,, 1) for j<q, L, =4 VM(2)

2) L. —, VM().

As well known, for quarterly data there are two seasonal frequencies: % (annual)

and = (biannual). This theorem says that for frequencies which are different from
the large sample distributions of the tests for seasonal unit roots are given by the
generalized VVon-Mises distribution with 2 d.f. and for frequency 7, the large sample

distribution is given with 1 d.f.
For testing the stability of the a™ seasonal intercept (where 1< a <s), choose A to
be the unit vector with a 1 in the a" element and zeros elsewhere. In that case, let L, be

the test statistic for testing for instability in an individual season:

Theorem 4: Under H,, L, —», VM (1) for each a=1,........ ,S.
This theorem states that for this test statistic, critical values are given in the first

row of the table for Von-Mises critical values. Since the a™ dummy variable is zero for

all but one in out of every s observations, the test statistic L, can be calculated using

only the residuals from the a™ season (Canova & Hansen, 1995, pp. 241-242).
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To obtain ©,, Canova and Hansen suggest a nonparametric kernel estimator
proposed by Newey and West (1987). Their form of kernel estimated enables
explanatory variables. However, while their opinion is based on that these explanatory

variables should contain a lagged dependent variable vy, ,, according to Hylleberg
(1995) they should not include v, ,. Since y, , may display at least some of the effect

of the seasonal unit root of -1. If the test statistic includes zero frequency, then vy, , may

similarly show the effect of zero frequency unit root of +1. Also, longer lagged
dependent variables should not take place. Because these may capture one or more
seasonal unit roots and therefore the tests may have no power. To sum up, the approach
proposed by Canova and Hansen is most suitable one amongst the others. Since all
serial correlation is overcome in a nonparametric way. So, there is no need to include
any lagged dependent variables in the test regression (Ghysels & Osborn, 2001, p.34).

In order to describe the data generating processes of Monte Carlo experiments by
Canova and Hansen (1995), we can express their regression models in a somewhat
different way:

Yi :ﬂ+xi’ﬁ+ fi,7i +€ (4.44)

with
Vi =7ia Ty (4.45)
where x; is a k x 1 vector of explanatory variables which are not collinear with fi';/i,
f, is an s—1 vector with fji' = (cos((j/q)m),sin((j/q)x)) for q=s/2 and j<qg and
f, =cos(d) =(-1)" for j=q where this latter expression holds since sin()is
identically zero for all integer i. The components of f, represent the cyclical processes
at the seasonal frequencies: (j/q)z, j=1...,q and the coefficients y, stand for the

contribution of each cycle to the seasonal process S,. The formulation (4.44) is useful

in terms of allowing seasonality to be interpreted as cyclical. Here the specification for
q ’

the deterministic seasonal component is written as S; = Z f; 7; . Note also that y, is
j=1

an s-1 vector. To allow for unit roots potentially at only a subset of the seasonal

frequencies, equation (4.45) is modified as:

Ay =Ny +U (4.46)
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where A is a (s — 1) x (s — 1) matrix with rank equal to a and a is the number of roots
for testing stationarity. Most of the elements in A matrix are zero excluding the

elements on the diagonal which correspond to the elements in y, for the stationarity

test. For instance, on quarterly data, in order to test for the presence of all seasonal unit

roots set A=1_, =1,(here, DGP has no unit roots if @ =0 but has unit roots at both
seasonal frequencies when @ #0), set A=A to test for the presence of roots +i (here
the test L_,, is designed: so that in the case of @ =0, there exist no unit roots; but if

@ # 0, this implies a pair of complex conjugate roots at frequency 7/2) and set

A=A, to test for the presence of root -1 (here L_test is designed: when =0, there
are no unit roots, but when @ =0, there exists a unit root at frequency 7)where

A=1_,=1;, A and A, are defined as

1 00 100 0 0O
A=1_,=1,=/0 1 0f A=|0 1 0| andA,=|{0 0 O
0 01 0 0O 0 01
In short, under the null hypothesis of H, =0, S, is purely deterministic and

stationary; thus the series is stationary and u; is a vector of zero (E(u,u; ) =0). But if

y, has all seasonal unit roots, E(uiui') >0 (Canova & Hansen, 1995, pp. 239-240, 243-
245).

Example: The Simplest Quarterly Case

Let’s take the case of quarterly data for which R is given as (4.13). For the sake of
simplicity, assume that errors are not autocorrelated (z, = ¢,) and not heteroscedastic
(thatis, E(Z,Z!)=0c"l,). Asaresult Qp, =E(R'Z.Z'R) becomes equal to

Q,, =6’RR=0°D
4 0 00
(0200 (4.47)
0020
0 0 0 4
If the disturbance z, = ¢, satisfies the standard properties expressed here under the null

hypothesis, then the optimal choice is to estimate the deterministic seasonal component

by OLS. For this, assume that we apply to equation (4.1) and OLS residuals are
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A

g, =&, Where & is anotation for season s of year 7. In order to keep the analysis as

simple as possible, there is a simplifying assumption that period t is the fourth quarter of

year 7, then
11 1 17| 2aé
R peeo| O L0 12
1 0 -1 03 4,
101 -1 1% .
_Zj:lg‘”_

B T A T A T A T A ]

Zj:lglj +Z,-=1‘921 +Z,-=1‘931 +Zj=184j
T A T A~

S S

_ j=174] j=192]

= T S (4.48)

Zj:lglj _Z,—=1531

T A T A T A T A

_Zj:184i _Zj:183j +Zj:1821 _ijlglj_

More generally, for a t which corresponds to season S<4 of year 7, the

summations will be up to year 7 —1 for quarters s +1,.....,4 since these are following t.

With all assumptions given above, by using equations (4.47) and (4.48), CH test

statistic as given in (4.40) can be written as:

B 2
T T T T

(E élj+§ézj+§é3j+§é4jJ +
j=1 j=1 j=1 j=1

t=1

2 2
1 T T R T R T R T R
L=THZ 2(2541.—252,} +2(Zglj—253].] (4.49)
< j=1 i=1 i=1 i1

2
T T T T
+(Z‘94J SR N —Zelj}
=i i i =

or
L=L,+L,,+L, (4.50)

Here Q,, =&°D and & stands for the usual OLS estimator of o. L,, L_,, and L,
test statistics which are relevant to the 0, 7/2 and 7z frequencies are given in the first,
second and third lines of equation (4.49) respectively (in each case aggregated over
t=1..... ,T and scaled by division by T?5?).

With some straightforward algebra, the CH test statistic can be written in

accordance with the form given in the second line in (4.40) as
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I_:T24”2 il(iéMJ J{iénj +[2531J J{iéu)} (4.51)
O =\ = -1 i

which refers to the statistic in terms of separate squared partial sums for each of the four

quarters.
Since the number of possible unit roots is four under the overall null hypothesis, L

~ VM (4). When the constant x is excluded, the test statistic would be distributed as
VM (3) . If we apply for separate tests at the spectral frequencies of 7/2 and 7, under
the null hypothesis of deterministic seasonality they would be distributed as VM (2) and
VM (1) respectively.

For the general quarterly case if the disturbances of (4.36) are not i.i.d. (0,c?), then

the summation of the separate test statistics of (4.50) cannot be performed. In this case,
the test statistics at different frequencies are not mutually independent anymore
(Ghysels & Osborn, 2001, pp. 34-36).

4.4.2. The Caner Test

Caner (1998) adopts the CH framework. However, instead of the nonparametric
Newey-West correction to autocorrelation adopted by Canova and Hansen (1995) he
proposes a parametric autoregressive augmentation. Hence, in the Caner test the

disturbances are assumed to be i.i.d. Although his test excludes the overall constant
from consideration, the null hypothesis model of deterministic seasonality can be
generalized by including this overall 4 as follows:

S '
¢(L)yt = Z Fs Btast + & (4-52)

s=1
where B, is constant over t.
By making suitable assumptions about the starting values, this process given in

(4.52) is also equivalent to

#(L)Asy, =0(L)e, (4.53)
with @(L)=1-L°. Because of its better properties near the invertibility boundary,
generally for MA processes the exact ML procedure is preferred (Ansley & Newbold,

1980). That is why Caner mostly proposes the use of ML estimation for #(L) instead

of least squares. The alternative hypothesis is that 8(L)e, in (4.53) represents a general
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MA(S) process [not (L-L°)e,]. So, this alternative implies that B, includes one or
more unit roots (therefore y, is nonstationary). In the case of including exactly S unit
roots, it becomes &(L)¢s, = ¢, (S0, A will remove the nonstationarity).

Caner test statistic is given as:
S - e ayr~-1 e a
L=—— > (RE’)D(RE"), (4.54)
o' T° 3

where &° is a consistent estimator of &% =Var(e,) and Eta is obtained using the
residuals of (4.52). Under the null hypothesis, L=VM(S). As in (4.50), the

decomposition of this statistic is likely to be expressed as the sum of statistics that test
the null hypothesis for the zero frequency and for each of the seasonal frequencies and

therefore if the overall mean is excluded, deterministic seasonality is tested with the test

statistic given by L_,, + L = VM (3) (Ghysels & Osborn, 2001, pp. 36-37).

4.4.3. Tam-Reinsel Test

Tam and Reinsel (1997) also consider the validity for the null hypothesis of
deterministic seasonality. Taking annual differences in the dummy variable
representation in (4.1), their test is based on the null of 5 =1 in

Ay, =2,-652, ¢, t=1... T (4.55)
Here the initial assumption is that z, = &, ~ i.i.d. (0,0%). When (4.55) is compared with
the Caner’s representation (4.53), the approach is seen to be similar to that of Caner
(1998).

Tam and Reinsel consider their test as LBIU and present two equivalent forms for

their test statistic. The first approach is realized through (4.55). Under the null

hypothesis, the equation with i.i.d. disturbance assumption and 6; =1 can be written as

AgY, =& —Eg s (4.56)
In (4.56) it is obvious that only observations and disturbances for season s are
considered. The vector of the differenced values relating to year z is given as
AY, =(AgYy, ...y AgYs,)" and for this vector, the covariance properties when the null

hypothesis is true are:
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20%l,, 1,=1,
E(AY ALY =1-0%lg, 1,=1,%1 (4.57)
0, otherwise

If the consideration is directed to the complete sample period vector (that is,

AY =(AgY),....., AGYT)'), in that case, under the null hypothesis T x T covariance
matrix is known. If Q, denotes E(AJYAY') for 6 =1, the test statistic for the null
hypothesis of 6, =1 against the invertible seasonal moving average alternative
hypothesis 65 <1 is written as:

~ LAY ALY
T.AYIQ, ALY

(4.58)

MA

and of course, the rejection of the null hypothesis is possible for large values of L,,,.
When it comes to the second approach for test statistic, it makes use of equivalence
between deterministic seasonality and the seasonally differenced process with 6; =1 as

expressed in Bell (1987) and discussed in subsection (4.3.3.). So, instead of (4.56) with
seasonal MA representation, corresponding representation becomes

S
Yo =2 70y +&, t=—S+L.l. T (4.59)

s=1
In this second approach, for the equivalence of Bell it is crucially needed to contain the
starting values. So, the period starts at year 7 =0. When OLS procedure is applied to

all T+S observations of (4.59), &, becomes equal to £_, and the test statistic becomes

1 LA
:—%Z(Era)’Era, (4.60)
where G2is the OLS estimator of o?and E,* represents the vector of accumulated
. . a z r '
season-specific residuals at the end of year 7 (E°= (ijlglj, ....... 12,-:1551))-
However, since only end of year values are considered in the first approach for test

statistic, this approach appliesto t =Sz over 7 =01,........ T

T

When we compare test statistics, Tam Reinsel approach essentially constructs the
overall test statistic by examining each of the seasons while the test statistic proposed
by Caner has a decomposition allowing for each of the seasonal frequencies to be

examined separately. Therefore, the Tam Reinsel form has a practical use in order to
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examine about whether deviation from the null hypothesis process of constant
deterministic components is associated with, say, only one or two specific seasons. So it
can be said that the form of the test statistic to be used should depend on the issues of
interest in a specific case. One difference between CH and Tam-Reinsel approaches in
terms of test statistic is that while the Tam-Reinsel statistic sums over years, the former
sums over all observations. The precise relationship between these statistics is

T : : . .
=———="—.L. This relation refers to the overall test statistic for the null hypothesis

Ly S(TT 1)

of constancy of the parameters 7,,7,,...... ,7, Of the deterministic component of (4.1)
over time. On the other hand, when the scaling in test statistics is taken into account, the
tabulated asymptotic critical values in Canova and Hansen (1995) and in Tam and
Reinsel (1997) are seen to be very similar (Ghysels & Osborn, 2001, pp.39-40).

Tam and Reinsel (1997) also consider their analysis with the disturbances in (4.55)
having a stationary and invertible ARMA process given as again with the null of
05 =1:

P(L)A Y, =0(L)e, =0 (L)A-0,L%)e,, (4.61)
(in that case z, in (4.55) will be equal to ¢#(L)™0"(L)¢ ) and with a consistent estimator
under both null and alternative hypotheses, the asymptotic distribution becomes
unaffected by the use of a parametric correction which depends on the estimates of

#(L) and @” (L) (Ghysels & Osborn, 2001, pp. 37-39).
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CHAPTER V

INTRODUCTION TO SEASONAL UNIT ROOT PROCESSES

Time series models with unit roots are of great importance in terms of
understanding the responses of economic systems to shocks. First suggestion for
univariate unit root tests was realized by Fuller (1976) and Dickey and Fuller (1979).
The paper of Hylleberg et al. (1990) deals with tests for unit roots at seasonal
frequencies which have a modulus of one. In this study, besides having the modulus of
one the interest is on the root which is precisely one and therefore corresponding to a
zero frequency peak in the spectrum?. Since many economic time series display

substantial seasonality, it is very likely to have unit roots at seasonal frequencies.

5.1. Seasonal Time Series Processes

There are a lot of possible models to take seasonality into consideration that could

differ across economic time series with crucial seasonal components. A seasonal series

IS a series with a spectrum having distinct peaks at the seasonal frequencies w, = —ﬂ],
S
j=1....... ,S/2 where s is the number of time periods in a year supposing that s is an

even number. For example, if we are dealing with quarterly data, s is equal to 4 and for
monthly data s is then 12.

According to Hylleberg et al. (1990), there are three classes of time series models
prevalently used in order to model seasonality as follows:

a) Purely deterministic seasonal processes

b) Stationary seasonal processes

c) Integrated seasonal processes

The first type of process is one generated by seasonal dummy variables (as

mentioned in subsection (4.2.1.) and could be expressed in the case of quarterly series in

? The spectrum of a time series is the distribution of variance of the series as a function of frequency and
the spectral analysis aims to estimate the spectrum. Actually, the mathematical computation of spectrum
is possible through transformation of the auto covariance function (acvf). While spectrum contains
information on the variance in the frequency domain, the latter summarizes this information in the time

domain (“Spectrum”, 2015).
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the following form:
X, =M, +m,S, +m,S,, +m,S,,, (5.1)
The second type of process can be expressed in an autoregression form of

@(B)x, =&, with ¢, i.i.d. and all roots of ¢(B) =0 lying outside the unit circle. For

quarterly data, this stationary process is represented as

Xp = Py T & (5.2)
with a peak at both w;, :%(one cycle per year) and w, =7z (two cycles per year)

frequencies as well as at zero frequency (zero cycles per year).

On the other hand, a series X, has a third type of process if a seasonal unit root

takes place in its AR representation and generally this integrated process is denoted as

x, ~ 1,(d) with integration order d at @ frequency. The study of Hylleberg et al.

(1990) examines the case of d=1. An example for the quarterly integrated process at =
frequency is
X, ==X 4 +& (5.3)
and at 7z /2 frequency is
X, ==X, + & (5.4)
Box and Jenkins (1970) have proposed a very-well recognized seasonal
differencing operator. Subsequent to them, Grether and Nerlove (1970) and Bell and
Hillmer (1984) have made use of this operator as a seasonal process. For quarterly case
it can be factorized as,
A-L*)x =@1—-L).+ L+ L%+ L%).x,
=(1-L).A+L).A+L%).x =@Q-L).A+L).(L—iL).L+iL).x,
=(1-L).S(L).x, (5.5)

where S(L) = (1+L).(L+L?)and i represents an imaginary part of a complex number
such that i* =—1.

According to this factorization, there are four roots with modulus of one for

quarterly stochastic seasonal unit root process: one is (1—L)denoting zero frequency
which removes the trend. Amongst other three roots which are (1+L),(1—iL)and
(1+iL) and which eliminate the seasonal form, the first root is at 2 cycles per year and

the other two roots are complex pairs at 1 cycle per year (Charemza & Deadman, 1997,
p. 108).
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Since in (5.5), (1—-L)..x, implies zero frequency root and the stochastic difference

equations of (5.3) and (5.4) express the roots at seasonal frequencies which are 7/2

and = ; the homogenous solutions to equations (1-L).x, =¢,, (5.3) and (5.4) become

respectively,

t-1

Sy = Zet_ ;» for zero frequency root,
j=0

t-1 )

Sy = Z(—l)’etfj , for the two cycle per year root (7 frequency),
j=0
int[(t-1)/2]
Sy = Z(—l)AgF2 i, forthe one cycle per year root (/2 frequency), (5.6)

j=0
where A=1-L and int[z] means the largest integer in z.
The variances of the s,,, s,, and s,, series are all the same with to*(that is, linearly

increasing variances) given as

V(sy) =V (Sy) =V (sy)=to? (5.7)
and therefore it is valid for all unit roots that the variance has an inclination to go
infinity with evolving process. In the case of being stimulated by the same {g,} and
when t is divisable by four, all the covariances of the series become zero. For other
values of t, the covariances are at most o2, thus the series are asymptotically

uncorrelated as well as being uncorrelated in finite samples for entire years of data.
A more general case of linear time series models which may exhibit complex forms
of seasonality as a combination of seasonally integrated, deterministic or stationary

seasonals can be written as:

d(B).a(B).(x, — 1) = &, (5.8)
where the first term d(B) represents an integrated seasonal process in which all roots of
d(z) =0 lie on the unit circle, a(B) includes stationary seasonality and other stationary
elements of x with all roots of a(z) =0 lying outside the unit circle and deterministic
seasonal component is incorporated into g, when there are no seasonal unit roots in
d(B) (implying that there is no seasonal unit root in AR representation of Xx,)

(Hylleberg et al., 1990, pp. 215-220).
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5.2. Testing Seasonal Integration

As well known, a series generated by a unit root process can wander widely over
time not having any inclination to return to its underlying mean value and thus not
having any tendency to return to a deterministic pattern. In that case, with the values
wandering to a great extent for the seasons, any basic relationships between the
expected values for the different seasons remain beside the point in practice. It is
already outlined in the subsection (4.3.5.) that in the presence of seasonal unit roots,
summer may become winter. From this point of view, in this section, a number of
testing procedures will be mentioned in order to test the null hypothesis of seasonal
integration and thus the implications of seasonal unit root processes will be handled in
more detail.

Definition: The nonstationary stochastic process Y,, observed at S equally spaced time
intervals per year, is said to be seasonally integrated of order d, denoted y, ~ SI(d), if
A%y, is a stationary, invertible ARMA process.

Here A4 denotes the seasonal differencing filter. The implication of the definition
is that if y, becomes a stationary and invertible process after annual differencing, then
y, ~ SI(1). Generally the case of d>1 is not observed prevalently in practice. In

subsection (4.3.3.), we had discussed the equivalance between deterministic seasonality
and seasonal unit root process which requires seasonal differencing (in the special case

of 6; =1). However, the implication of this equivalence is not that the deterministic

seasonal process is seasonally integrated. The underlying reason is that applying

seasonal differencing to a deterministic seasonal process prompts the existence of first

order annual differencing operator A in the MA operator and this will lead to non-

invertibility of MA operator. Therefore, a deterministic seasonal process and a
seasonally integrated process are not identical processes (Ghysels & Osborn, 2001, pp.
42-43).

Another definition for a seasonally integrated series is a simplified version of the
definition given by Engle, Granger and Hallman (1989) for a seasonally integrated
series can be given as:

Definition: A nonstationary series is said to be seasonally integrated of order (d, D),

denoted Sl (d,D), If it can be transformed to a stationary series by applying s-
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differences Dtimes and then differencing the resulting series d times using first
differences.

In a simple manner, a seasonal difference is the difference between an observation
and its value for the corresponding season one year before. If the series is measured s
times per annum (for quarterly data, s =4 and for monthly data s=12) and it displays
a seasonal pattern, then the differencing to remove seasonality should be s rather than

one. So, the type of operator to be applied here is X, — X, , (representing seasonal
difference) instead of x, —X,,. Here, the transaction to get these variables is called

seasonal differencing or s-differencing. Generally, it is very rare to use s-differencing
more than once in order to remove seasonality. Taking seasonal differences transforms a
linear trend with an additive seasonal effect to a constant (that is, to a variable with no
trend or seasonal pattern). If this transaction is applied to a quadratic trend (where the
trend is nonlinear) with additive seasonality, it brings about a series still including a
trend component but with no seasonal pattern. So, in order to make such a series is
stationary, first differencing of the s-differences may be required (Charemza &
Deadman, 1992, pp. 53, 129-130). Seasonal differencing may be in additive or

multiplicative form. An additive form of a seasonal difference at a seasonal lag — such
as (L-L°)— can be expressed as (L- L")y, =C +e,. On the other hand, as implied by

its name a multiplicative form of seasonal difference requires the multiplication of the
nonseasonal by the seasonal differencing factors. So, in this form, getting a stationary
series requires the multiplication of the first regular (nonseasonal) factor by the seasonal
factor to obtain the differencing for the series. A multiplicative differencing in a

multiplicative SARIMA model is expressed in the form of (1-L*)1-L°)y, =C +e,,
where 'y, is the undifferenced series variable, d is the order of regular differencing and

s is the order of seasonal differencing (Yaffee & McGee, 2000, pp. 161-162). As
mentioned before, a clear definition of a multiplicative SARIMA process is available in
subsection 3.5.

IImakunnas (1990) has tried to illustrate a testing sequence in order to test the
appropriate order of differencing in quarterly data. Introducing this testing sequence
requires two alternative definitions of seasonal integration. According to the first
definition which is the one defined by Osborn et al. (1988), a time series is said to be

integrated of order (d, D), denoted I(d, D) if the series becomes stationary subsequent
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to first-differencing d times and seasonally differencing D times. In other saying; if
(1-L)*@-L%)"x, = A"A%x, becomes stationary, x, is said to be 1(d, D). In the paper
proposed by Ilmakunnas (1990), since the focus is on the quarterly time series (s =4),
it is concerned with the case where 1(11) is the maximum order of integration. The

second alternative definition for seasonal integration comes from Engle, Granger and

Hallman (1989) that has already been mentioned above. To this definition; if
(L-L)!S(L)°x, = AS(L)°x, is stationary, X, is said to be seasonally integrated of
orders d and D expressed as SI(d,D) where S(L) is a seasonal filter used in
transforming the variables to moving sums. In the case of quarterly data, seasonal filter
is stated as S(L)=1+L+L*+L® and it takes place in the decomposition of
A, =@1-L)S(L)=1-L)@+L)@+iL)@—-iL). Since AA, is decomposed as
(1-L)?S(L) or (1-L)[1-L)S(L)]=(-L)@-L"), SI(21) and I(L1) are the same. In
the same manner, SI(1,0) is the same as 1(1,0) and also SI(11)and 1(0,1) are the same.

To illustrate the testing sequence for quarterly data, starting point is taken as the
maximum order of seasonal integration, i.e. the case SI(2,1). This testing sequence is

shown as follows:
SI(2) (1Y)

S1(2,0) SILD (1(0D)

SI(1,0)_(1(10))

S1(0,0) (1(0,0))

Figure 4. The testing sequence for determining the appropriate seasonal integration
order in quarterly data
(Source: llmakunnas, 1990).

The representation in Figure 4 pursues the view proposed by Dickey and Pantula
(1987). According to their view, if it is mentioned about multiple unit roots, the best
thing is to start the testing sequence from the maximum number of unit roots in hand

and in this case the nominal test size is preserved. Therefore, it can be expressed that
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determining the suitable integration order is based on the starting point of the testing
sequence (llmakunnas, 1990, pp. 79-81). llmakunnas (1990) mentions about how to

handle unit root testing in a seasonal context considering the initial test of the SI(2,1)
null hypothesis. In the study, it is expressed that SI(2,1) is tested against SI(2,0),
SI(L1) and SI(1,0) alternatives using the HEGY test regression applied to AX, rather
than to X, as will be shown in Table 5. In case we reject the null hypothesis in favour
of either SI(L1) or SI(1,0) alternatives, we have to check the presence of zero
frequency unit root against SI(0,1) or SI(0,0) processes, respectively continuing for

testing against lower orders of integration (Ghysels & Osborn, 2001, p. 76).
In Table 5, it is shown that which hypotheses can be tested with each given test in

the testing sequence:

Table 5
Seasonal Integration Tests for Different Hypotheses

Null Alternative

Description of the tests Hypothesis Hypothesis

Remarks

ADF: t-statistics of g in

p
AX, = X, +Zaijt_j +U,
-1

ADF for A series: t-statistics of £ in

p SI(2,0) SI(1,0)
AP X = PAX 4+ D a N X+,

j=1
ADF for A, series: t-statistics of £ in

SI(1,0)  SI(0,0)

p SI(2,1) SI(1,1)
AN X, = BA X +ZajAA4XH +U,
j=1
ADF for S(L) series: t-statistics of g in
p SI(1,1) SI(0,1)
AX =L)X+ D aA X, +U,

j=L

DHF: t-statistic for g in
p

AXy=BL,+ D ;A X +U,
j=1

P . SI(1,1 SI1(0,0
where Z, =X, ->.6,X,;and @, is the (L1) 0.0)
i1

coefficient of A, X,_; from a regression of A, X,
on its p lagged values.
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Table 5 (Continued)

Description of the tests

DHF for A series: t-statistic for £ in

p
AN X, = BLI,+ D AN X +U,
=
5 SI(2,1)  SI(1,0)
where Z, = AX, —ZGJAXH and @; is the
j=L
coefficient of AA, X, ; from a regression of AA X,

on its p lagged values.

HEGY:: t-statistics for 77, and 7, and F-statistic for TT,, 7T, T, tested,
: - . SI(1,1)  SI(1,0)
testing 7, =7, = O (or t-statistics sequentially for 7, =0

7, (two-sided test) and 7;) in

7T, tested;
A X =mly + 7Ly +75lgy p+ 7, Ls, SI(1,0)  SI(0,0) !

: Ty 703,70y # 0
+ZajA4Xt_j +U,
=t S sioo) v T2 e T
0 tested
where  Z; = S(L)(X, —ZHJ-XH)’
j=L

7, tested;
SI(1,1) SI(0,1) 7. =7 =1, =0
p 2 T3 T T
Zy =—(1-L+L =L)X, - >.0,X.,).
=1 Ty, 7Ty, 7T, tested,
S1(0,1)  SI(0,0)

P
Zy =—(1- LZ)(xt_Zejxt—j) 7 #0
j=1

and 49j are obtained as in DHF.

HEGY for A series: t-statistics for 7, and 7, and

F-statistic for testing 7, =, =0 (or t-statistics SI(2,1)  SI(2,0) 731703, 7Ty teSted,

sequentially for 7, (two-sided test) and 7,) in m =0
AN XK =700 L3y + 7Ly + 3l gy + 70450
p 7T, tested,
SI(2,0)  SI(1,0)
+Z;‘051.AA4Xt_J.+ut 7,070,700
J:

p
where Z, = (A, X, —ZHjA4Xt_j),

i SI1)  SiLo) a7’
tested
P
Zy =—(-L+L=L°)AX, =D 0,AX ), 7, tested;
i1 sI(2,1)  SI(1,1)

) w,=ny=m,=0
Zy =—(1-L*)(AX, - ) 6,AX,))
j=1
and 6’j are obtained as in DHF for A series.
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Table 5 (Continued)

Description of the tests

OCSB: t-statistics for g, and £, in

P p, tested;
AA X =Bl + Polsiy +ZajAA4Xt—j +Ue SI1(2,1) SI(1,0) B, =0
j=1 1
p
Z, =A,X, — A X :
where 2, = A, X, ]Z_;el S si1) sl A tested;
D B, =0
Ly = AX, _ZajAXH'
=1 P, tested;
and @, are obtained as in DHF for A series. SI(1,0) S1(0,0) B, #0
2

si(L,Y)  sI0,0) P tested;
S, =0

(Source: llmakunnas, 1990, pp. 82-83).
5.2.1. Dickey-Hasza-Fuller Test

One of the simplest testing procedures for seasonal integration possibly belongs to
the one proposed by Dickey, Hasza and Fuller (1984) and modified by Osborn et al.
(1988), denoted DHF. It can be regarded as a generalization of the Augmented Dickey

Fuller test (ADF) and it is the first test of the null hypothesis y,~SI (1) .Using DHF test

for seasonal integration is identical to testing for stochastic seasonality. Supposing that

the process is known to be a SAR(1) [y, =4.Y, . +&,], then the DHF test can be
parameterized as

Ay, =ay,  +¢& (5.9)
where o, =—(1-¢,) . Here the null hypothesis of seasonal integration is , =0 and the
alternative of a stationary stochastic seasonal process implies o < 0 (Baltagi, 2001, p.

661). Under the null hypothesis, t statistic becomes

3 3 [W, (raw, (1)

s=1

t(a,) = = — (and, <&, = - ) (5.10)
5{TZZ ytzs} > JWE (rydr
t=1 s=1¢

and the asymptotic distribution of the DHF statistic is given by

t(é,) = {ijvvs (r)aw, (r)}/{[i][ws (r)ﬂdr} } (5.11)

s=1 o s=1 o
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which is nonstandard, but it has a similar type to the DF t distribution. It is very well
known that the DF t statistic is not symmetric about zero. In terms of (5.11), the

denominator is always positive and therefore Pr[y*(S) < S] shows the probability that

t(c,) is negative. Fuller (1996) comments that the asymptotically the probability of
@, <0 (that is, 4, <1) is 0,68 for the nonseasonal random walk, since the probability of
7°(@) <1 is 0,68. On the other hand, for a seasonal random walk with quarterly data,

Pr[x*(4) < 4]=0,59 and with monthly data, Pr[y*(12) <12]=0,55. Hence, it can be
inferred from these values that the predominance of negative test statistics is expected to
decrease as S increases. From this expression, it is apparent to see that the distribution
for the DHF t-statistic depends on S which represents the frequency with which
observations are made within each year. The limit distributions shown as functions of
Brownian motions can also be found in Chan (1989), Boswijk and Franses (1996) and
Osborn and Rodrigues (1998). Here the numerator involves the sum of S such terms that

are mutually independent and therefore

> W, ()W, (1) = - S, 0 -1 =24 (9) -5} (5.12)

which is half the difference between a y?(S) statistic and its mean of S (Baltagi, 2001,
p. 662; Ghysels & Osborn, 2001, pp. 53-54). For more information about this
distribution, see Appendix A4.

In Charemza and Deadman (1992), it is shown that for a series measured s times for

each year, this test is build on the Student-t statistic for the OLS estimate of the

parameter o in the following regression:

k
A, =06.Z,_, +Z§i ALY, +&, (5.13)

i=1

where the variable z, . is constructed in that way: first, the regression of A_y, (where,

t-s
Ay, =Y, —Y,) isrun on its own lagged values which are lagged up to k periods and

the following equation is estimated:
k
A, :Zﬂ“i Ay +6 (5-14)
i=1

Then, use the OLS estimates of A, 4,,........ , 4, (denoted as Js) to create the variable Z,

from Y., Y, 1o Yoi 8S:
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k A
Z,=Y, - DAY (5.15)
i=1

and substitute the lagged value of z, expressed as z, . into (5.13), estimate the

equation and compute the Student-t statistic for 6 (however it should be noted that here

instead of Az, proposed actually by Dickey, Hasza and Fuller (1984), Charemza and
Deadman (1992) covered the view adopted by Osborn et al. (1988) and used A.y, as

the dependent variable in equation (5.13). The critical values for the test are available in
Dickey, Hasza and Fuller (1984). Here, the null hypothesis implies the presence of a
seasonally integrated process and the alternative hypothesis says about either absence or
nonexistence of stochastic seasonality which can be removed by using s-differences. In
the case of significantly negative estimate of ¢, the null hypothesis may be rejected in
favour of the alternative hypothesis. If it is not rejected, we need to consider the order of
nonseasonal differencing required for achieving stationarity; since it is not common to
face with higher orders of seasonal differencing and general expectations for most
economic series are in the direction of that they are 1(0,0),1(0,1) or 1(d,1) so that using
s-differences once at most is expected to eliminate seasonal nonstationarity. Therefore,
if we cannot reject the null hypothesis [ (6 =0)in (5.13)] saying that the variable is
1(0,2) (or SI(1))), for the next step we need to consider whether the variable is 1(11)
(or SI(2)), instead of 1(0,1) with the former standing for the new null hypothesis and
the latter the new alternative one. For these new hypotheses, the model which should be
established and estimated like ADF test is given as:

AAY, =SAY  + D 6.0 Y, +&,, (5.16)
Here in the same way whether ¢ is significantly negative or not is examined. So, if the
null that the variable is 1(L1) cannot be rejected, then this expression becomes the next
alternative hypothesis for the null which then says that the variable is 1(2,1) (or SI(31)
), for the following equation:

AAA Y, = 5'AAsytfl +25i 'AAAsytfi + & (5-17)

and so on. It should be noted that the constructed z, variable is used only for the DHF

test, so not used for testing the order of nonseasonal integration.
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As a simple version of the DHF test, DF or ADF tests can be generalized. y, ( can

take the place of the constructed variable z,_. in (5.13) and if the assumption is that all

t-s
the o,s are equal to zero, the test turns into the Dickey-Fuller seasonal integration test
(DFSI) examining again the significant negativity or otherwise of parameter 6 for the
following regression:

AY, =0.Y, ( +¢& (5.18)
Otherwise it becomes the Augmented Dickey-Fuller seasonal integration test (ADFSI)
based on the following regression:

k
Ay, =06.Y, +Z§i A (5.19)

and the critical values for the DFSI and ADFSI tests are the same as for the DHF test
(Charemza & Deadman, 1992, pp. 136-140)).

5.2.2. Testing a Unit Root of -1

It is necessary to handle how to test “nonstandard” unit roots. Recall that the
factorization of A,=(1—L") operator which is shown in (5.5) for quarterly data enables

us to handle tests for a unit root of -1 depending on (1+ L) and for pairs of complex unit

roots depending on (1+ L?). Here the discussion will be on a root of -1 and complex

unit roots will be taken place in the next subsection. For a detailed discussion regarding
such tests, see Ahtola and Tiao (1987), Chan and Wei (1988) or Chan (1989).

The case of a unit root of -1 can be covered through the process:

Vi ==Yei +V, (5.20)
The generalization of this process with starting value y, =0 becomes
t-1 )
Y :Z(_l)Jthj (5.21)
j=0
For these equations, our assumption is that v, ~ i.i.d. (0,c%). Now, a test of the unit

root can be applied as a test of the null hypothesis o~ =0 against o™ >0 in
A+L)y, =a’y,, +V, t=Ll..... T (5.22)

A

Estimating by OLS procedure, the usual t ratio for & under the null hypothesis

becomes as: t(@’) = (ivt yflj/{c{i(yfl)z} } (5.23)
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Obviously, (5.20) is no longer a random walk process. However, there exists a “mirror

image” relationship between the two processes [see, e.g. Fuller (1996) or Chan & Wei
(1988)]. When we consider the process yt* of (5.20) and the random walk process

Y, =Y, +& in the case of & =(-1)'v,, this “mirror image” relationship implies that

T T
th Yia = _Z EYra (5.24)
t=1 t=1

Obtaining this relationship is possible through using (5.21) in order to substitute for y, ,

and therefore, also substituting for v, in terms of ¢,,

T T2 _ T =2 - -
th Yia = th Z(_l) : Vija = Z(_l)t & Z(_l)J (_1)t_J_1gt—J—1’
t=1 t=1  j=0 t=1 i=0
T t2 T
= & 61 =D &Y (5.25)
=1 j=0 t=1

(5.24) is of great significance in terms of expressing that as long as ¢, and v, are

symmetrically distributed around zero, they are identically distributed. Therefore, with

.
reference to testing a unit root of -1; > v,y , has the same distributional properties
t=1

.
with — th Y., When vy, displays a random walk process.
t=1

Hence, when the unit root of -1 is taken into consideration (4.27) is replaced by

T 1
T vy, = -0 j W (r)dw (r) (5.26)
t=1 0

-1 . 2 -1 2
Notice also that the variables (y,)’ :{Z(—l)‘vtﬂ} and (y,)? =|:Z£t_j:| have the
j=0 j=0
same distributional properties because any sign change is unrelated to squaring. As a
result, (4.28) continues to be valid for a process with unit root of -1. When both

numerator and denominator of (5.23) are scaled by division by T, then it becomes
1 1 1/2
t(&") = —[ j W(r)dW(r)}/{{ j [\N(r)]zdr} } (5.27)
0 0

which is the mirror image of the familiar DF t distribution. The implication of this
conclusion is that in the case of not including a drift term, with a simple change of sign
the DF tables can also be used while testing a unit root of -1 (Ghysels & Osborn, 2001,
pp. 54-56).
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5.2.3. Testing Complex Unit Roots
Before examining the procedure proposed by Hylleberg et al. (1990), it will be
beneficial to mention about testing complex unit roots. The simplest process including a

pair of complex roots is:

Yo ==Yeo +V, (5.28)
with v, ~i.i.d. (0,6%). So, the complex unit root case can be considered as a seasonal
process with S=2 seasons per year and the process can be equivalently written as:

Yoo == Yera +Ver, $=12. (5.29)
Here, notice that the seasonal patterns reverse each year. With starting values

Y, =Y., =0, the process can be generalized to

-1 .
Yoo =2 (D, (5.30)
j=0
It should be noted that y. (s=12) are two independent nonstationary processes. In a
similar fashion to the DHF test, testing the unit root process given in (5.28) is possible
through the computed t ratio for &, in
A+ L)y, =y, Y, (5.31)
where the null hypothesis is «, =0 with the alternative of stationarity implying «, >0
. Then with the double subscript notation, under the null hypothesis,
. 2 Tz . _ 2 T, . 172
t(CXZ) = (ZZVST yS,le/ O-|:22(ys,rl)2:| . (532)
s=1 7=1 s=1 =1
After scaling both numerator and denominator by T.™, it follows that

t(é;) = {i [w, (raw, (r)H{i [w, (r)]Zdr} } (5.33)

s=1 s=10

where W, (r) again represents standard Brownian motion processes. (5.33) has a very
significant implication that with a simple change of sign, the DHF tables with S=2
seasons per year are also applicable for testing «, =0 in (5.31) as in the case of a unit

root -1 discussed above.

Under the DGP given in (5.28), it is also likely to apply to testing the null

hypothesis concerning with the omitted one-period lag, namely «, =0 against the

alternative of a, = 0 with the test regression given in (5.34):
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@+L)Y, =y +Y, (5.34)
This test is not a unit root test in a strict manner, because the implication of the unit

coefficient on L? in (5.34) is that the process has two roots of modulus one, regardless
of the value of «; . Now, express the roots of quadratic 1—a; L+ L? as &, + i for the
case of complex roots. x, and x, are affected by the value of «, . However, the
modulus of the pair of the roots is not influenced by it since x,° +x,> =1. The values
of x, and «, also give rise to the spectral frequency connected to the complex unit root
process. x, =0 and x, =1 values are related to the frequency 7/2 by yielding the
roots +i. Therefore, the test of o, =0 is a test of the null hypothesis that the unit root

process occurs at spectral frequency 7 /2. That is, the process includes a half-cycle
every S=2 periods and therefore a full cycle every four periods. Also, because we do not
have a priori information about the periodicity of the process under the alternative, the

suitable alternative hypothesis becomes two-sided. For the test regression (5.34),

T T,
A S Ve Vi + Vo, vi ]
t=1 7=

5{:21(3/?_1)2}1/2 _ 5{2 ;. .) + (yil)z]}l/2

In order to deal with this case, we need some generalizations of (4.27) and (4.28). These

t(é) =

(5.35)

generalizations are

Tf
T, Ve Ygra = GZEWq (AW, (r); g,s =1,......... S (5.36)
=1
T,
T.23 Yy, Vg = o° j:ws(r)wq (r)dr; q,S=L..........S (5.37)
=1

respectively [see, e.g., Hamilton (1994)]. By dividing numerator and denominator of
(5.35) by T,’l, using y,. = —ny +V,, and also taking the generalizations given above
into consideration, (5.35) follows that

jwz(r)dwl(r)—fwl(r)dwz(r)
t(a) =2 :

(5.38)

{i [ [ws(r)]Zdr}

s=1 o
Because W,(r) and W,(r) are identically distributed, t(q;) is symmetrically

distributed around zero.
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On the other hand, the results for the distributions of the test statistics given in
(5.31) and (5.34) also remain valid for the following test regression:

A+L)Y =Y + oY, +Y, (5.39)
since the regressors y, , and y, , are asymptotically orthogonal. For more details, see

Ahtola and Tiao (1987) or Chan and Wei (1988)) (Baltagi, 2001, pp. 663-666; Ghysels
& Osborn, 2001, pp. 51, 56-58).

5.2.4. HEGY Test

As mentioned before, Dickey, Hasza and Fuller (1984) have followed the work
suggested by Dickey and Fuller for the zero frequency unit root case. However, one
main disadvantage of this test is that it does not take into account unit roots at some but
not all of seasonal frequencies and the alternative is that all the roots have the same
modulus (Hylleberg et al., 1990, p. 221). Since many time series display substantial
seasonality, the presence of unit roots corresponding to other frequencies (like seasonal
ones) rather than zero is highly possible. The analysis of seasonal unit roots is
fundamentally conducted with the most popular approach developed by Hylleberg et al.
(1990) called HEGY by working with different models that include trends, constants
and seasonal dummies in order to determine the type of seasonality. Contrary to the
Dickey, Hasza and Fuller (1984), Hylleberg et al. (1990) suggest a general testing
strategy looking at unit roots at all seasonal frequencies as well as at the zero frequency.
So, one apparent advantage of HEGY procedure over DHF is that it enables to test for
unit roots at each frequency separately without maintaining that there are unit roots at
some or all other frequencies (Ghysels, Lee & Noh, 1994a, p. 416). Hylleberg et al.

(1990) have introduced a factorization of the seasonal differencing polynomial
A, =(1—-L)* for quarterly data using lag operator L, where L'y, = Y._; and developed

a testing procedure for seasonal unit roots that could be estimated by OLS in the

following way:

4 4 K
ALY, = ZaiDi,t +Z”iYi,t4 +ZCiA4yt—i + & (5.40)
i1

i=1 i=1

where k is the number of lagged terms included to ensure that residuals are white noise,
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the D, are seasonal dummy variables and the Y, variables are constructed from the

series on y, as:

Y =@+ L)@+ L)Y, =V, +Yea + Yoo + Vg (5.41)
Y, =—(1-L)A+ L)Y, ==Y, + Y1 — Yeo + Yea (5.42)
Yy =—(A-L)A+L).y, ==Yy, + VY, (5.43)
Y, =—(DA-L)A+L).Y, =Y ==Y +VYis (5.44)

(Charemza & Deadman, 1992, p. 141).

The HEGY regression in the most general and a more explicit form could be

written as follows:
3 k

Ay =a+ [+ Zai Diy + 7 Yia + 705000 + Y500 + 7,30 + ZCiA4 Yei & (5.49)
i=1 i=1

We mostly apply seasonal differencing to remove nonstationarity in seasonal data, so

that we should use A,y, =Y, -V, inquarterly data.

In equation (5.45), the choice of lag parameter k could be done using a variety of
lag selection criteria. For instance, while Osborn (1990) deals with the significance of
LM test in order to choose the 'best' model, Lee and Siklos (1991) use the most popular
AIC and Schwarz information criterion (SIC). According to Engle et al. (1993), the
power and size of the unit root tests depend on the 'right’ augmentation that will be used.

Ghysels et al. (1994a) point out to that DHF testing procedure seems unable to
separate unit root at zero frequency or at one of seasonal frequencies of data generating
processes with nonstationarity induced by the (1 — L*) factor and therefore HEGY is a
more advantageous procedure. However, when looked at the results of their Monte
Carlo studies, it is seen that there exist some problems with available seasonal unit root
tests regarding near-cancellation problem of a unit root in the AR polynomial with an
MA root. That is, in seasonal time series models, this problem is said to be very
common and to lead to adverse size distortions. Even if there are no size distortions,
Monte Carlo study results indicate the weak power properties of DHF and HEGY tests
especially in the case of absence of seasonal dummies.

The null hypothesis of the HEGY test is that the variable in question is seasonally

integrated. Hence, if the null hypothesis of stochastic seasonality is true rather than

deterministic seasonality, in this case in equation (5.40) all the ;s will be equal to

each other and all the z;s will be equal to zero. In the case of different «;s and at least
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one of the z;s that is nonzero, there exists a combination of both deterministic and
stochastic seasonality. The interpretation of each negative =, is different from each
other. Let’s say, only =, is negative, in this case there is no non-seasonal stochastic
stationary component. If only =, is negative, then there exists no bi-annual cycle. On
the other hand, 7, and =z, are related to the annual cycle and testing them jointly is
possible. Critical values of these tests are provided in the Hylleberg et al. (1990) paper.
The factorization of the expression A, =(1—L)* could say somethings relating to
roots: (1-L)*=(1-L)1+L)A+L)=@1-L)@A+L)—i-L)A+i-L) where i is an
imaginary part of a complex number such that i®=—1. When looked at this

factorization, it is seen that a quarterly stochastic seasonal unit root process has four

roots of modulus one. One root (1—L) described as being at ‘zero frequency’ (in the
case of 7, =0) removes the trend. The other three roots which remove the seasonal

structure imply stochastic cycles of biannual and annual periodicity. An elegant
introduction to complex numbers and complex number dynamics could be found in
Dhrymes (1970) (Charemza & Deadman, 1992, pp. 141-142). In this case, the unit roots

. - 1
are 1, - 1, i, and -i which correspond to zero frequency, Ecycle per quarter or 2 cycles

1 .
per year, and " cycle per quarter or one cycle per year. The last root, -i, is identical to

the one at i with quarterly data and therefore it is also interpreted as the annual cycle.
Now we can test the following hypotheses:

1) H0:7Z1=0 2) H0:7Z'2:O 3) H0:7Z'3 =7, =0
Hi:z, <0 Hi:z, <0 Hizm, =7, #0 (5.46)
(t statistic) (t statistic) (F statistic)
Here, H,:7, =0 — the existence of nonseasonal unit root
Hg:7,=0 — the existence of biannual unit root

H. : 7, = 7, =0— the existence of annual unit root

As seen in (5.46), the first two hypotheses H, and H are tested by using one-
sided t tests against the hypothesis that =, < 0. The other hypothesis which is H. is

tested with an F test. For a series to include no seasonal unit roots, both 7z, =0 and the
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joint F test which is 7,=7,=0 should be rejected. That is, 7=, and either =, or z,
should be different from zero. On the other hand, in conclusion to find out that a series
Is stationary and thus includes no unit roots at all (including at zero frequency), we must
establish that each of the 7 ’s is different from zero (in other words, each of the t test of
7, =m, =0 and the joint F test of 7,=x,=0 should be rejected in order to have a
stationary series) (Hylleberg et al., 1990, pp. 221-223).

In Table 6, a summary of long-run and seasonal frequencies has been presented for
quarterly data:

Table 6
Long Run and Seasonal Frequencies for Seasonal Unit Root Tests in Quarterly Data

] ] Tested hypothesis
Frequency Period Cycles/year Root Filter

H, :Unit Root
0
Long run 00 0 1 1-L) 7, =0
7 3 4
2" 9 4;g 1;3 +i 1+L%) N, =0
Annual
/4
Semiannual 2 2 1 (d+L) 7, =0

Note. The information on first five columns have been obtained from Diaz-Emparanza & Lopez-de-
Lacalle (2006, p.7).

In equation (5.40), «;s represent a deterministic structure while 7z,s represent a

stochastic structure. In order to test whether a series follows a deterministic or

stochastic seasonal pattern, the hypotheses to be constructed are the null hypothesis H,

which implies the presence of stochastic seasonality and the alternative hypothesis H,

which implies the presence of deterministic seasonality. There are two conditions for
the acceptance of stochastic seasonality: The first condition is the acceptance of the
hypothesis in which all « coefficients are equal to each other and the second condition
is the acceptance of the hypothesis in which all 7 coefficients are equal to zero. Thus,
the null and alternative hypotheses can be expressed in the following way:

1% Condition: H,: e, =, =, =, 2" Condition: H,:7z, =z, =z, =, =0

H o, #a, #a; #q, H, :at least one of 7,5 #0

In order to be able to test the first condition, a coefficients are tested in doubles and

those following six hypotheses are tested:
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Hoyiay=a,, Hy, o =a;, Hy,ia, =a,, Hy, o, =a,, Hyta, =a,,Hy o, =0,
These hypotheses are tested by t-test with degrees of freedom (n—k) and test statistic
IS given as:

(di _dj)_ E(di _dj)
JVar(é;) +Var(a;) —2Cov(a;a;)

The second condition is tested by using Q statistic that has an F-distribution with

(ai—aj)

degrees of freedom (p,(n—k —1)) and Q statistic is calculated in the following way:
Q- RSS —URSS (n—k -1)

URSS ~ p
where RSS is the residual sum of squares of restricted regression, URSS is the residual

sum of squares of unrestricted regression, p is the number of restrictions, n is the
number of observations and k is the number of independent variables. If these two
conditions mentioned above are satisfied, it is concluded that stochastic seasonality
exists in the series in question. In case the presence of stochastic seasonality is not
accepted, whether the series follows a deterministic seasonality or not is investigated. In
other saying, frequencies corresponding to seasonal unit roots are tested. In order to be
able to detect at which frequencies seasonal unit root exists, the hypotheses given in
(5.46) should be tested for the necessary auxiliary HEGY regressions that will be just
mentioned (Ayvaz, 2006, pp. 74-75).

There are five auxiliary regressions to be run in order to decide about the choice of
a proper HEGY regression. These are (Mert & Demir, 2014, p. 14):

1) regression with no deterministic component (no intercept, no seasonal dummy,

no trend):

k
Ay =Yg + 7Y 00 + Y50 5 + 7, Yay + Z CiALYei + & (5.47)

i=1
2) regression with only intercept (no seasonal dummy, no trend):

k
Ay =+ g + 7Y + g Ya o + 70, Y500 + ZCiAA Yii T & (5.48)
=)

3) regression with intercept and seasonal dummy (no trend):

ALY, =a+ Zsllai Di + 7Yy + 7Y g + Y, Y+ ZkllciA Yo T E (5.49)
4) regress_ion with intercept and trend (no seasonal dummyi:
Ay =a+pt+rY o +m,Y,  +mYy , Y+ iciA Yo TE (5.50)

i=1
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5) regression with intercept, seasonal dummy and trend:

3 k
Ay =a+ft+ Zai Diy + 7 Yia + 705 o0 + Y500 + 7,30 + ZCiA4 Yei +& (5.51)

i=1 i1
Because HEGY test is easily affected by the inclusion of deterministic components,

the most appropriate model selection amongst five models given above is based on the
significance of the deterministic components (Habibullah, 1998, p. 119). For such
models, Chan and Wei (1988) examined the asymptotic distribution of t statistics.

As in the ADF test, adding augmentation terms (in order to make sure about that the
residuals are white noise) has no effect on the distribution of the statistics and the
critical values that will be used in the augmentation case are not different from the case
of without augmentation (Charemza & Deadman, 1997, p. 109).

Hylleberg et al. (1990) show how the limiting distributions relate to the standard unit
root tests: testing for =, =0 in the case of z,=7,=7x,=0 will have the familiar DF
distribution. Because the model can be expressed as

Yo =Q+7m)Y, L, +& (5.52)
In a similar manner, testing for a root of -1 when the other 7 ’s are zero will have the

mirror image of the DF distribution. So, if Y, is regressed on -, _, as follows:

Yy =+ 70,)Y, 4 + &, (5.53)
the standard DF distribution will be suitable and third test can be written as

Yy = —(+7,)Y;, + & (5.54)
with an assumption of 7, =0. So, by the same logic in (5.53) testing for biannual

seasonality has the mirror image of Dickey-Hasza-Fuller distribution.
The distribution of the test statistics will not be influenced by the addition of a
variable with a zero coefficient which is orthogonal to the added variables. For instance;

in the case of testing 7, =0 assume that z, =0, however Y, is still contained in the
regression. In this situation, Y, and Y, will be asymptotically uncorrelated because of
having unit roots at different frequencies and also both of them will be asymptotically
uncorrelated with lags of A,y that is stationary. Therefore, irrespective of whether Y,
Is incorporated into the regression, the limiting distribution to test for 7z, =0 will be

unchanged. This can be generalized to other cases with similar arguments. However;
apart from these when deterministic components are available in the regression model

although not included in the data, the limiting distributions change. The intercept and
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trend components affect only the distribution of 7z, . The reason for this is that they have
all their spectral mass at zero frequency. In spite of the fact that the remaining three

seasonal dummies do not have any influence on the limiting distribution of 7, when the
intercept is included in the regression, the distributions of r,, 7, and x, are influenced

by the seasonal dummies.

The Monte Carlo values for the one sided t tests on 7,,7, and 7, and the joint F

test on 7z, Nz, =0 which are very close to the Monte Carlo values from Dickey-Fuller

and Dickey-Hasza-Fuller are presented in Hylleberg et al. (1990) (see, pp. 226-227). It
IS seen that when seasonal dummies are not included in the auxiliary regression, the
distribution of the t statistic is very akin to a standard normal. In the same manner, the
distribution for the F statistic looks like an F distribution. However; if seasonal
dummies are present in the regression, for both t and F statistics distributions will be

fatter-tailed®.

5.2.4.1. Extensions of the HEGY Procedure

Recall that the DHF test statistic deals with the testing for the null of unit roots at
0, #/2 and = frequencies jointly. A similar HEGY-type test corresponds to an F
statistic on z,,7,,7, and x,. Following the work by Engle, Granger, Hylleberg and
Lee (1993), the derivation of the asymptotic distribution for this test is feasible. For the
simplest HEGY regression givenas Ay, =Y, +7,Y, 4 + Y5, , + 1,5, + &, We

have the following F statistic:

(WO (WY (WL + W, W7 (W W, — [, )

0 0 0 0

1 + 1 +
W, (r)*dr W, (r)*dr W, (r)%dr + |W,(r)*dr
e | |

S

F1234 -

(5.55)
where — denotes weak convergence in distribution and W, (r) for i =1,...,4 stands for

independent standard Brownian motions. It is remarkable to call attention to that F,.,

% The probability of extreme events (higher probability at the tail ends) —i.e. events that fall on the tail
ends of a statistical distribution and are the most likely not to occur— cannot always be accurately
described by the bell shaped curve . This kind of activity is usually described using fat-tailed distributions
(Mello, (n.d.), p.1).



95

statistic in (5.55) and the sum of the squared t statistics for z; (i=1...,4) have the

same asymptotic distributions.
On the other hand, testing for presence of unit roots at all seasonal frequencies
jointly without regarding the zero frequency is associated with the F statistic for the null

hypothesis of z,=7,=7,=0 and the asymptotic distribution of this statistic can be

expressed as follows:

1 1 1 1 1

(JW ()W,)? (W (r)dW, + [W, ()W, )? + (W, (r)dw, - [W, (r)aw;)?
0 L0 0 0 0 (5.56)

sz(r)zdr jWa(r)zdr+jW4(r)2dr

0 0

F234 -

w |

This test statistic has also the same limiting distribution as the sum of the corresponding
squared t statistics (Ghysels et al., 1994a, pp. 418-419). For the proofs of distributions

given above and the critical values for F,,;, and F,,,, see Appendix A and Appendix C

respectively in Ghysels et al. (1994a).

5.2.4.2. Testing for Seasonal Unit Roots in Monthly Data

Franses (1990) makes an extension of HEGY procedure to monthly data. In this
case, the differencing operator A,, will have 12 roots lying on the unit circle (
1- 1" =0) such that

1- 12 = (1- L)@+ L)A—iL)L+iL) x[1+ (V3 +i)L/2][L+ (V3 —i)L/2]
x[L— (/3 +i)L/2][Ll- (W3 -i)L/2]
x[L+ (/3 +i)L/2][L— (V3 —i)L/2] (5.57)
x[1— (3 +i)L/2][L+ (V3 —i)L/2]

where all terms except (1-L) define the seasonal unit roots (Maddala & Kim, 1998, p.

368). Note that this factorization of (1—L'*)can also be expressed as

A-L)A+L+L+....... + ') . However; on the purpose of being more practical in test
equation, the factorization in (5.57) is preferred.

Beaulieu and Miron (1992b) also examine the HEGY testing procedure for
monthly data. As mentioned in the quarterly case, assume that vy, is the series of interest

having a DGP with a general autoregression form given as

(L)Y, = & (5.58)
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where ¢@(L) is a polynomial in the lag operator form and ¢, represents the usual white

noise process. For simplicity, it is supposed that deterministic terms are not available in
the 'y, process. It is already known that in the case of « = 2?721 (j=1..... ,S —1) which

shows the frequency associated with a particular root, a root is seasonal (S is the
number of observations per year). For monthly data, the seasonal unit roots are given as
follows:

1 ti; —%(11 J3i): %(u J3i): —%(Jéi i: %(\/51 i (5.59)

These roots are associated with 6,3,9,8,4,2,10,7,5,1 and 11 cycles per year respectively
and the corresponding frequencies for these roots are ﬂ,i%,+?,i§,+g and J_rg

respectively. Notice that the root 1 does not take place in (5.59). Since it is not a
seasonal unit root, rather it defines the long run or zero frequency unit root. Here, what
is tried to find out is that whether the polynomial ¢(L) has roots that are equal to one in
absolute value at the zero or seasonal frequencies.

With this HEGY procedure developed for monthly case, the polynomial ¢(L) is
linearized around the zero frequency unit root plus the S—1 unit roots given in (5.59)

and so, ¢(L) is expressed as

1-5,(L)

o(L) = Zﬂ, A(L)——~2 5.0 +A(L)p" (L) (5.60)
where
B 1 _ @(0,) _ >
5k(|_)_1—a|_, lk_—l'ljikc?,-(@k)' A(L)_lk:!é‘k(L),

¢ (L) is a polynomial associated with roots that are outside the unit circle and the 6,

are the zero frequency unit root plus the S—1 seasonal unit roots. As seen obviously
from the definition of A, , the polynomial ¢(L) will have a root at 8, if and only if the

corresponding A, is equal to zero (Franses, 1991, p. 96). Now, if we substitute (5.60)
into (5.58), it becomes

P(L) Yig = 27%&/“_1 +&, (5.61)
where, )
Vi =@+ L+ + 0+ + L+ L+ L+ L%+ L2+ L%+ LMYy,
Yo =—(@-L+L -+ -+ - +L°-L +L° -y,
Yoo =—(L—L*+L° —L" +L° — L'y,
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Yoo =—@A-L+ L —L° +L° - L%y,

Vs, =_%(1+ L-2L% + P+ L -2 + P+ L' —2L° + L’ + L' - 2Ly,

Yau =%(1—L—2L2 P+ 20+ U -2 - L+ L0+ 2Ly,

Yer = —§(1+ L-LC-L*+L°+L - -1y,
Yoi = _%(@‘ L+ L — /3L +2L° — 3L + L7 —L° +/3L° - 2Ly, (5.62)

Yior =%(1—\/§L+2L2—\/§L3+L4—L6+ L7 —2L° +4/3L° - L)y,
Vi =2 (34 L =B ~2L° —3L° — L +L° +/3L° + 2Ly
11t 2 )
Yior = —%(1+ VBL+ 2L +4/31° + L - L° —4/3L7 - 2L° —/3L° - L)y,

Yizt = - le)yt
(Beaulieu & Miron, 1992b, pp. 2-4).
The test equation for the presence of seasonal unit roots given in (5.61) takes a

somewhat different form in Franses (1991) as follows

¢ (L) Yor =1 Y1iaa T Yo10 T 3Yai0 T TaYa10 T s Yara T T Yaro T 7 Y50 T Mg Y50

T Yo T ToYei—2 T 1Y 70a T Y70 T 1+ &
(5.63)

where ¢ (L) is some polynomial function of L, s, represents the deterministic
component which may include a constant, seasonal dummies or a trend, and
Vie =@+ LA+ L)+ L + L)y, =@+ L+ L+ + L)y,
Yo, =—(@- L)@+ L)@+ L + L)y,
i =—(1- L)@+ L'+ L)y,
Yar = —(1—LYA-BL+ 21+ L2 + LYy,
Vs = —(L—L)(@++/3L+ L2)(A+ L2 + LYy, (5.64)
—(1-LYA- L2 +LHA- L+ L)y,
Yoo =—A—LHL- L2 + L)L+ L+ L)y,
Ve, =(@—L"?)y, (Franses, 1991, p. 100; Maddala & Kim, 1998, p. 368).
It is remarkable to say that in order to make the residuals white noise, augmented

<
o
I

lagged values of y,, should be used in (5.63). With these transformations ( y;,s) of y,
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in (5.64), the seasonal unit roots are excluded at given frequencies while they are
preserved at remaining frequencies. To give an example, consider the vy,
transformation. While it eliminates the seasonal unit roots, it preserves the long-run or
zero frequency unit root. In table 7, the outline of long run and seasonal frequencies has

been presented.

Table 7
Long Run and Seasonal Frequencies for Seasonal Unit Root Tests in Monthly Data
Frequency Period  Cycles/year Root Filter Tested
hypothesis
H, :Unit Root
0 o0 0 1 @1-L1) 7, =0
Long run
E’ﬁ 12;1.09 1,11 1(\/§i i) (1—\/§L+ L2) 7w, Ny =0
6 6 2
Annual
6;1.2 2; 10 ] _ 2 =
115_7[ l(li\@l) (1 L+L) TT; M7y 0
3 3 2
Semiannual _
z 3 4-ﬂ 39 i (1+L%) my N, =0
2' 2 '3
3;15 4;8 ] 2 =
2_”,4_” —l(li\/§|) @1+L+L%) s Mg =0
3 3 2
Quarterly
6 6 2
V4 2 6 -1 (1+L) 7, =0
Bimonthly

Note. The information on first five columns have been obtained from Diaz-Emparanza & Lopez-de-
Lacalle (2006, p.7).

Applying OLS procedure to (5.63) gives estimates of the 7z, . By the same logic in

quarterly case; if 7, through 7, are significantly different from zero (the case in which

the null hypothesis of stochastic seasonality is not true), then there will be no seasonal
unit roots and the pattern that the data display becomes deterministic or constant
seasonal. Therefore, in this situation the dummy variable representation can be applied

for modelling this pattern. The implication of the statement just given is that if there are
seasonal unit roots, the corresponding ; are zero. Due to the fact that pairs of complex
unit root are conjugates, these roots will exist only in case pairs of z's are jointly equal

to zero. For instance, the roots i and —i are only present if =, and 7, are



99

simultaneously equal to zero. If 7, through 7z, are all unequal to zero, we experience a

stationary seasonal pattern and seasonal dummy variables can be used to model such a
pattern. At the same time, when the coefficient for a given =z is statistically not
different from zero, then it can be said that data have a varying seasonal pattern. If

7, =0, we cannot reject the presence of root 1 with long-run frequency and if all =,

are equal to zero, it becomes suitable to apply the (1—L*?) filter. If only some pairs of

z's are zero, the relevant operators can be used. In Abraham and Box (1978), it is
exemplified that sometimes these operators may be adequate.
Either t tests or F tests can be employed in order to test for seasonal unit roots at

the pertinent seasonal frequencies. The t-ratios corresponding to the estimates of 7, and
7, which represent long-run and semi-annual frequencies respectively track the DF

distributions. All critical values of the test have a non-standard distribution. So, critical
values are generated by Monte Carlo simulations (Franses, 1991, p. 101; Maddala &
Kim, 1998, p. 370; Serensen, 2001, p. 77 ).

On the other hand, Beaulieu and Miron (1992b) explain the testing hypotheses
about unit roots in their paper. They implement the HEGY procedure as different from
Franses (1990) in that the set of regressors in (5.61) are mutually orthogonal and this
leads to the derivation of the asymptotic distribution to become easier. In (5.61), for
frequencies 0 and 7, the null hypothesis that is associated with the relevant t statistic

becomes 7z, =0 while the alternative one says that 7z, <0. For the other roots, the
alternative of testing the null of 7, =0 where k is even becomes a two-sided test.
Thus, the even coefficient may be positive or negative. If z, =0 cannot be rejected,
then one tests z, , =0 against the alternative of 7, , <0. Here, depending on the

sensible alternative saying that the series has a root lying outside the unit circle, the test
becomes one-sided rather than two-sided. Since, as known the true coefficient is less

than zero under the stationarity condition. In addition, applying to an F statistic for

testing 7, , =, =0 is another strategy. In case there is no unit root at any seasonal

frequency, 7, must not be equal to zero for k =2 and for at least one member of each
of the sets {3,4},{5,6},{7,8},{9,10},{11,12} (Beaulieu & Miron, 1992b, pp. 4-5).

5.2.4.3. Testing for Seasonal Unit Roots in Bimonthly Time Series
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Franses (1992a) examines seasonal unit roots in bimonthly time series in his paper.
Therefore, it is required to consider the operator (1—L°)corresponding to bimonthly
time series. Franses (1992a) presents the decomposition of this polynomial as follows:

1-L°=(1-)1-L+)A+L+ ) =@1-)A+L* +LY

=1-L)A+L+L+L+L"+L°)

=(1-L)(1+ L)(1—%(\/§i +1)L) x (1+%(\/§i ~1) L)(1+%(\/§i +1)L)

x 1—%(\@ ~1)L) (5.65)

and the test equation in order to test seasonal unit roots in this type of data is given as

(0* (L) Ysi =T Yiia T Y010 T3Y31 0 T84 Y300 T A5 Yar0 T WY + M T & (5.66)
where
Yie = (1+ L)(1+ L + L4)yt

Yo, =—(1-L)Q+L*+ L")y,
Yar = —@- L)@+ L+ L)y, (5.67)
Yoo =—(1-L*)1-L+L%)y,

Y5 = (1_ Le)yt
The tables for critical t-values of the individual 7; and for F-tests of 7, =z, =0 and

7 =75 =0 in this testing procedure can be obtained from Appendix part in Franses
(1992a). As in the quarterly data; the tests for 7, and 7, are one-sided, the tests for =,
and r, are two- sided and for 7, and . they are one-sided (Franses, 1992a, p. 411).

For more, see Franses (1992a).

5.2.4.4. Testing for Weekly Seasonal Unit Roots

When we take a series including a weekly seasonal component into consideration,
the assumed DGP belonging to such a type of series is (L1— L")y, =&, ~i.i.d. (0’052)?
t=1,....,T. Here, the characteristic polynomial (1-L') can be decomposed as

@A-L)A+L+......... +L°) where the second factor represents the SMA filter. The

auxiliary regression for testing weekly roots is constructed through the expansion of the

characteristic polynomial just given as follows:

7 7 7 p
AYo=a+ B+ aDy+ Dy Dit+ > 72,4+ D B A Y, & (5.68)
=2 i =1 r-1
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g ~iid. (0,0,%)
where D, is a zero/one seasonal dummy variable corresponding to the j-th day of the

week and the regressors z,, are described as

,
z,, = > cos(0)Ly, =1+ L +........ +L°) y,
-1

7 .
Zyo = 2 cos(kiw)Ly, (5.69)

j=1

7 .
e —Zsin(kjw) I—Hyt ;
j=1
Since we are concerned with the weekly seasonal unit roots, this requires taking
seven roots into consideration. Hence, the assumption under the null hypothesis is that

the series includes one unit root at the zero frequency and three pairs of complex roots
.2 .
at the seasonal frequencies —ﬂk for k =1,2,3 and s=7 where k is the number of
s

cycles per week of each frequency.

The most general specification for testing weekly roots under the alternative
hypothesis of stationarity is given in (5.68) with the deterministic components given as
a drift, a linear time trend, deterministic seasonal variables and seasonal drifts. As an
alternative to this specification, different combinations of these deterministic
components can be incorporated into the auxiliary regression (5.68). The correct
determination of this specification is of great importance with regard to affecting the
power of the test. Also, another point is that in the similar manner to the ADF test

procedure, augmented lagged values of A,y, are included in (5.63) to remove serial

correlation in the error term.
A noteworthy characteristic of the HEGY procedure is the representation of the

series y, as a linear combination of the regressors z,, j=1........ ,7 and when a linear
filtering process is applied to y,, all unit roots excluding the one associated with the
specific frequency of the relevant one of these regressors are removed. To give a simple
example, z,, is the result of applying the SMA filter (1+L+......... +L°%) to v,. In that

case, all the seasonal unit roots are subtracted and only the long-run zero-frequency unit
root becomes available in this regressor.
The asymptotically mutually orthogonality feature of the regressors enables the

results of testing the unit root hypothesis in a given frequency and the ones in the
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remaining frequencies not to be influenced by one another. So, this also implies that the
HEGY procedure enables to test whether there is a unit root in some, all or none of the
frequencies analysed.

The estimation of each z; parameters is possible when OLS procedure is applied to

(5.68) or to any other alternative model specification of it including some deterministic

components or none and if the null hypothesis of 7, =0 is not rejected against the
alternative of 7, <0, then it is said that the series contains a long-run zero frequency

unit root. The distribution of this test statistic follows the DF distribution. In addition,
the null hypothesis for complex unit roots on each seasonal frequency implies the
equivalence of two test statistics belonging to the same seasonal frequency to zero and

Is expressed as 7, =7, =0 that is a joint F test. As an alternative, testing this
complex unit root hypothesis is also feasible via a two-sided t test for =,,.,. If 7, ,, =0

cannot be rejected, then one tests 7, =0 against the alternative of z, <0 which

implies a one-sided t test. However, generally the first testing approach is chosen
because of better statistical properties (Ghysels et al., 1994a). Since, the critical values
of the t statistics and F statistics have a non-standard distribution, they are generated by
Monte Carlo simulations for different sample sizes and the distributions differ
depending on which combinations of deterministic components are incorporated into
the auxiliary regression (Rubia, 2001, pp. 7-9). For the critical values and more see
Rubia (2001).

5.2.4.5. Testing for Seasonal Unit Roots in Semi-Annual Data

Feltham and Giles (1999) examine the properties of HEGY procedure on the semi-

annual data. As in usual way, let y, be the series of interest displaying a stochastic

seasonal process in the autoregression form of (5.58). For the semi-annual case, now the

polynomial ¢(L) in (5.60) is expressed with s=2 as

o(L) = szm)%wu(p*u) (5.70)

where

S(L)=1-11 k=12), A = v(6.)

=% A =TT,
0, M50y ~O-11a0
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By looking at the roots of ¢(L) =0, one can detect whether the series is stationary or
not. Here the @, s are the zero frequency unit root plus the S—1 seasonal unit roots.
Therefore, in the case of semi-annual data, we have one zero-frequency unit root which
iIs 6,=1 and one seasonal unit root (S-1 = 2-1 = 1) which is 6, =-1. So,
0,(L)=(@1-L) and J,(L)=(@+L). In that case, the difference operator A(L) becomes
A(L)=(1-L)(1+L)=(@1-L?. As a consequence of substituting the expressions just
given into (5.70), we get

o(L) = A (L)A+ L) +4,(-L)A- L)+ 1~ L*)e (L) (5.71)
Then, let 7, =-4, and =, =—A4,. Substituting the right hand side of (5.71) into the

autoregression equation ¢(L)y, = &, gives

- (LA+ L)y, -7, (-L)A- L)y, +@-L)o (L)y, =¢, (5.72)
This expression can be rewritten in the form of testing equation for the presence of

semi-annual unit roots as

o (L) Yar =7 Y1ea T Yo T & (5.73)
where
Yie =@+ L)Y =Y + Vs
Yor = _(1_ I—) Yy = _(yt - yt—l)
(5.74)

Var ==Ly, =¥, -V, (t=123....,n).
In (5.73) for simplicity it is assumed that the DGP vy, is free of any deterministic
components. In order to obtain the estimates of z, and =z,, the OLS procedure is
applied to (5.73). For testing a zero-frequency unit root, the null hypothesis becomes
m, =0 against the alternative of stationarity 7, <0. In a similar manner, the presence

of a unit root at the 7 frequency is tested with the null hypothesis of 7z, =0 against the

alternative one that is 7, <0. Furthermore, for testing if the series is seasonally
integrated (implied as the presence of unit roots at both frequencies concurrently), the
F-statistic for 7, = 7, =0 may be used in order to test whether there are unit roots at
both frequencies simultaneously (Feltham & Giles, 1999, pp. 3-4). The critical values
for the nonstandard t and F statistics, asymptotic null distributions and more are given in
Feltham & Giles (1999).

5.2.5. Kunst Test
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Kunst (1997) suggests a general AR(s) model in order to test (1—L°) and it is
described as

Ve =Y =0, 1 +60,Y, 5+ Oy, + &, (5.75)

For testing the null hypothesis of vy, -y, . =&, after applying to OLS procedure in

(5.75) and estimating each &, Kunst has made a comparison of the F-statistic for the
testof 6, =6, =....... =@, =0 with the critical value obtained through conducted Monte
Carlo simulations. Kunst’s test bears resemblance to the DHF test in that it only detects
the presence of all seasonal unit roots. However, under the Kunst’s alternative
hypothesis which is more general than the alternative of the DHF test, the series

displays any AR(s) model except the model under the null while the alternative of DHF

Is the presence of s roots in the series all having the same modulus bigger than one. In
addition, Osborn and Rodrigues (2002) have indicated that the Kunst F-test statistic and
the HEGY overall F-statistic have the same asymptotic distributions.

The DHF regression model in (5.9) can be regarded as the reduced form of the

Kunst model. The reason for this is that there is only one lag variable (y, ) in the DHF
test while s lagged terms are available (y,,,......., ¥,.) in Kunst’s model and under the
null hypothesis, the asymptotic distributions of y, . obtained from both models differ
extremely. On the other hand, the augmented Kunst model can be expressed as

AYy =0y, +0,Y 5+ O Y K AY e FKAY (5.76)
When s =4 (that is, for quarterly time series), the Kunst test regression is given as

AY, =Y g+t Y, s+ ¥+, (1=1....T) (5.77)

which is an F-type test given as

s = (T —=8(Egé, —£€)I(£7€) (5.78)

*

F.

20

where &, and & vectors represent the estimated residuals under the null
H, o, =...=a; =0 =0 and alternative hypotheses respectively (EI Montasser, 2011,

p. 27; Zhang, 2008, pp. 9-10).
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5.2.6. OCSB Test

Osborn, Chui, Smith and Birchenhall (OCSB) (1988) have modified the Hasza and
Fuller (1982) test framework to detect the presence of multiplicative differencing filter

AA,. That is, the OCSB test investigates whether (1—L) or (1—L°)operators or both

of them or none of them should be applied to data. The OCSB regression model in the

original form is expressed as
AAY, = BAY,  + LAY, +& (5.79)
and this model is used to test whether A A, is a factor of ¢(L) in (5.58). This model
can be generalized with deterministic components as follows:
n(L)AAY, =t + 7 A Y g 70 Y, + & (5.80)
where 7(L)is an AR polynomial (lag polynomial with roots outside the unit circle),

A, =@-L°),A,=(1-L) and

S-1 S-1
Hy =Gy +Zast,t +ﬂ0t+ZﬂSDs,tt (581)
s=1 s=1

Here, t is a deterministic trend. In the original study, the seasonal trend is not given

place in g, ie. B, =0 for Vs. However, Franses and Koehler (1998) suggest the
model (5.80) with the g parameters not being equal to zero in g, so that the test
becomes applicable to y, series showing increasing seasonal variation. In order to find
out which filter is suitable for y,, the significances of y, and y, are tested. When both
y, and y, are equal to zero (y, = y, =0), using A,A filter is suitable. When y, =0
and y, =0, A, filter should be selected; when y, #0 and y, =0, A, filter is suitable.

If both », and y, are unequal to zero (y, # y, #0), in that case no differencing filter is

required.
By the same logic just given above, in the case of quarterly data OCSB testing
regression is given as
k
AAY =ay+ayDi +a,Dy + 3Dy + 71 ALY 70 Y + Z¢iA1A4 Yii T (5.82)
i=1
The necessary joint hypothesis about the usefulness of the A A, operator is

o, =a,=a,=y,=y,=0.1f y, =0 with y, <0, the A, filteris needed and if y, =0
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and y, <0, the A, filter should be applied to data. For these three hypotheses, critical

values are available only for a sample size of 136 in Osborn (1990) (Franses, 1998, p.
563; Maddala & Kim, 1998, p. 366; Zhang, 2008, p. 11; Platon, 2010, pp. 2-3).

5.3. Seasonal Cointegration

The concept of seasonal cointegration is valid for models including stochastic
seasonals just as the concept of cointegration showing itself in models including
stochastic trends (Maddala & Kim, 1998, p. 362). As mentioned before, one advantage
of HEGY test procedure is that it enables to test for unit roots at each frequency
separately. So, concerning quarterly data including the four roots which are 1, —1, +i;

Engle et al. (1993) propose different levels of seasonal cointegration. Assume that Yy,

and z, series are seasonally cointegrated so that A,y, and A,z, are stationary. When
these two series have a common non-seasonal unit root (that is, they are cointegrated at
long-run zero frequency — at root 1), we have the error term

U =@+L+ L+ L)y, —a, A+ L+ L%+ L%z (5.83)
which is stationary. If seasonal cointegration exists at frequency 2 corresponding to

unit root —1, we have
Vv, =(1-L+L* -y, —a,@d-L+L*-L%z (5.84)
which is stationary (so, it does not require (1+L) filter to be stationary) and finally if

seasonal cointegration exists at frequency Y corresponding to unit roots +i and
(1—L?) filter we have

w, =Q1-L)yY, —a,0- %)z, —a,1- L)y, , —a.1- L)z, (5.85)
is stationary. In case all three series u,, v, and w, are stationary, the seasonal
cointegration model is represented in a simple form as

A4 yt = ﬂllut—l + ﬁZth—l + ﬂBth—Z + ﬂ41Wt—3 + S

A42'[ = ﬂZlut—l + IBZZVt—l + ﬂBZWt—Z + IB4ZWt—3 + th (586)

where £'s represent the error correction terms. In addition; constant, seasonal dummies

and trend variables can be incorporated into these equations. This method with two-step
proposed by Engle et al. (1993) is similar to the Engle-Granger approach applied for
nonseasonal time series: in the first step, equations (5.83) to (5.85) are estimated by

OLS procedure and in the second step ADF unit root tests are applied to U,, v, and W,
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(in other words, this transaction allows us to check if estimated residuals U, to W, are
stationary). The tests for U, and V, have the same critical values as those in Engle and
Granger (1987). However, critical values for testing W, are different. For this case, the

critical values are tabulated in Engle et al. (1993). In her comments on the paper of
Engle et al. (1993), Osborn discusses the implication of (5.86) to be varying equilibrium
relations between vy, and z, series depending on the lag (that is, the long-run relation at
time (t —1)differs from that at time (t—2)). She considers a more reasonable model

which has changing coefficients with seasons and this results in the periodic
cointegration model which will not be discussed here (Maddala & Kim, 1998, pp. 375-
376).

5.3.1. Seasonal Cointegration-Single Equation

As mentioned above, subsequent to estimating «, to «. by OLS for bivariate time
series involving y, and z,, the stationarity condition is checked for estimated residuals

U, to W,. This is executed by using the following auxiliary regressions:
l
@-L)a, =m0, + Z?/i @-L)a.; +¢&
i=1

I,
QA+ L), = 7,(-V,_,) + Z i+ L)V, +& (5.87)

i=1

s
(1+ LZ)Wt =73 (_Wtfz) T 7y (_Wt—l) + Zyi (1+ LZ)V'VH + &
i=1

(L&f, 2001, p .10).

As seen here, the lagged dependent variables may be added to these auxiliary
regressions given above. To detect the cointegration at the zero and semi-annual
frequencies, t-statistic values of 7z, and 7, should be compared to the critical values in
the paper of Engle and Yoo (1987) and the null hypotheses of no cointegration at zero
frequency and no cointegration at % frequency should be tested for the first two
auxiliary regressions in (5.87). On the other hand, for % (and % frequencies), F(

7y, =, =0) test statistic value should be compared to the critical values which take

place in the paper of Engle et al. (1993) and here the null hypothesis should be
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constructed as H, : No cointegration at Y (and %) frequencies for the third auxiliary

regression given in (5.87) (Mert & Demir, 2014, p. 16).

5.3.2. Seasonal Cointegration-Multiple Equations

Lee (1992) presents a testing procedure for seasonal cointegration using an
extension of Johansen approach with the ML estimator. Assuming that ¢, are i.i.d. n-
dimensional Gaussian random vectors with zero mean and a variance-covariance matrix
Q whereas Y, is an n-dimensional vector of 1(1) variables with (Y, Yooy ¥ir) @nd
assume that the process Y, can be described by the VAR process. With the lag length p
, for quarterly data the estimation model can be written in the form of

AN =TLY, o +TLY, o +T1Y; L, +T1,Y, o + DAY+, +T, AN s T & (5.88)

t—p+4

where
Y, =@+L+L+L%)Y,

Y, =—(@1-L+L*-L%)Y, (5.89)
Y, =—(1-L2)Y,
(5.88) looks like (5.47) except that the lower case y implies univariate processes while

the capital letter Y implies multivariate processes. Since the coefficient matrices

I1,,....,IT, convey information about the long-run behaviour of the series, it is of great
importance to analyse their characteristics in depth. The ranks of the matrices I1,,IT,
and IT, determine the number of cointegrating vectors at zero, > and % frequencies. If
the matrix II, has full rank, then at the relevant frequency all series considered are
stationary. In case II, has a zero rank, there is no seasonal cointegration among the
variables at the corresponding frequency. On the other hand, the implication of the case
of 0<rank(IT,) =r <n is that at the relevant frequency a linear combination of non-
stationary variables becomes stationary.

In order to put the seasonal cointegration tests into practice, Lee suggests four tests
pertinent to the rank of IT,. That is to say, a cointegration test at frequency w=0,

w=1/2, w=1/4 and the joint test of w=1/4 and w=23/4. Lee draws attention to

that the distribution of the ML cointegration test statistics and the asymptotic
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distributions belonging to these statistics may extremely differ. As a matter of fact, our
tendency is generally in the direction of rejecting the true null hypothesis more often
than implied by the asymptotic distribution. However, this bias decreases in very large
samples. The regularity conditions for using the Johansen approach necessitates that
DGP does not have unit roots other than the zero frequency. Contrary to this, Ghysels et
al. (1994a) express in their paper that seasonal unit roots do not give rise to a
complication in the use of the Johansen approach (Huang & Shen, 1999, pp. 114-115 ;
Maddala & Kim, 1998, pp. 376-377).

5.4. An Extension of Seasonal Cointegration

By following equations (5.41), (5.42) and (5.43) in HEGY testing procedure, the

given polynomials are shown in the following notations:

Z =(1+L)@+L)=1+L+L*+ L% (5.90)
Z,=—(1-L)1+L%)=—(1-L+L12-L%) (5.91)
Z, = —(1- L)L+ L) =—(1-L?) (5.92)

When HEGY (1990) procedure is applied to the time series y,, HEGY testing equation
can be expressed as

a- L4)yt =a,D, +a,D, + 3Dy + o, Dy + 04+ Ly Y, + 7,2, Y, A T3L5Y, o, 7, L5Y

p
+Z¢i Q- L4)yt—i + & (5.93)
i=1
With the polynomial filters defined above, seasonal cointegration at seasonal cycles for
quarterly data can be expressed in the following ways:
Definition 1: Cointegration at the single period cycle
y, is cointegrated at the long run (corresponding to the root of 1 with the factor of
(L-L)) if there is a cointegrating vector ¢, such that the residuals u, from
Yy, =\, (5.94)
are stationary.

Definition 2: Cointegration at the two period cycles

y, is cointegrated at the two period (or biannual) cycle (corresponding to the root
of -1 with the factor of (1+L)) if there is a cointegrating vector «,such that the
residuals v, from

AZ,Y, =V, (5.99)
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are stationary.
It is very hard to establish the cointegration at the four period (or annual) cycle

because of the fact that the effects of complex roots are indistinguishable in quarterly
case. According to Yoo (1986), the cointegration should be constructed on the basis of
lags in any vector (namely, a polynomial cointegrating vector) which tries to decrease
the order of integration at the annual cycle.

Definition 3: Cointegration at the four period cycles

y, Is cointegrated at the four period (or annual) cycle (corresponding to the

complex roots of +i and —i with the factor of (1+L%)) if there is a cointegrating
vector a; +a,.L such that the residuals w, from

(a3 +a,L)Z,y, =W, (5.96)
are stationary.

In order to establish an error correction model including all these cointegration
cases at different cycles, there are two criteria that must hold. First, a term
corresponding to all the various possible cases of cointegration mentioned briefly above
must be available in an error correction model. Second, all the variables which take
place in the final error correction equation should be integrated of order zero (that is,

1(0)). To satisfy this criterion, pre-filtered data Z, (not the original vector time series)

should be used in the specification of the terms in the error correction equation.

The general form of the error correction representation in which all existing terms
are stationary and all possible cases of cointegration at different cycles are included is
developed by Hylleberg et al. (1990) and Engle, Granger, Hylleberg and Lee (1990) and
the equation is given as

HLYA-LY)Y, = 7Uy + 7,V + (75 + 7 LW, + & (5.97)
where y, and the cointegrating parameters, «; may be different at different frequencies.

Both the o and y coefficients should be estimated to estimate equation (5.97). If there
are specific values for the cointegrating parameters, «; proposed by an economic

theory in interest, the estimation of (5.97) becomes easy to handle. Otherwise,
Hylleberg et al. (1990) and Engle et al. (1990) suggest a generalisation of the two stage
procedure proposed by Engle and Granger (1987) (Hurn, 1993, pp. 313-315).
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5.4.1. Three Bivariate Error Correction Models

An application of seasonal cointegration may be useful in the context of monetary
policy. To present an application concerning seasonal cointegration, Hurn (1993) uses
South African monetary data in this context. To predict the future path of nominal
income, it is focused on the ability of monetary aggregates. Therefore, the monetary
aggregate is counted as the leading indicator of nominal income.

Consider the two variables case of (5.97) with nominal income y,, and a monetary

aggregate, m, with the normalization with respect to the former:

@-LYy, = Zﬁ. @-Ly,, + z5i Q=LYMy 4+ 7120y = @,ZiM) + 75 (25 Y = @0pZ,My )
i1 i—0

+ (73 + 723y — UaZsMyy —apnZsy, p — UgpZsM ;) + &y (5.98)
This equation represents the full seasonal error correction model. If there is
cointegration at all cycles by the same cointegrating parameter or in other saying if the

following restrictions hold

Oy =0y =0y =0, Ay =0y =0 (5.99)

the error correction model reduces to the simple error correction representation (Engle
& Granger, 1987; Granger, 1986) specified in terms of the original variables. In Hurn
(1993) it is also expressed that the model draws apart from the original version of the
error correcting equation when the error correcting term (y, , —am, ;) may be included
in the equation up to a maximum of four lags to capture the four unit roots to be
removed (Hylleberg et al., 1990). The estimable equation becomes in the following

way:

ALy, = A A- L)y + 3 6,A- LM+ DL (s —am, )+, (5100

Another practical type of the general model (5.98) is realized when cointegration
exists at the single period cycle by filtered (seasonally adjusted) variables and at all
other cycles by one cointegrating parameter. The restrictions on the «'Sare given as

U =0, Oy =0y =0, 0y =0, =0 (5.101)
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and the equation to be estimated becomes

(1_ L4)yt = Zﬂ (1_ L4)yt—i + 25i (1_ L4)mt—i + 71(Zlyt—1 - azlmt—l)
i=1 i=0

+ i 7LIA-L)y, —a,@-L)m ]+, (5.102)

Since the common error correcting relation in terms of the differenced variables
appears as a maximum lag of three in the equation (5.102), there are three coefficients
to be estimated on the seasonal error correction term. It is apparent from the general
error correction model (5.98) and this specific restricted model that the aim in using
seasonal cointegration is to augment the short-run dynamics of the model and the long-
run solution remains the same as in the original simple error correction model. To sum
up, the equations (5.98), (5.100) and (5.102) form three seasonal error correction
models and the estimation of these models may be feasible by making use of the Engle-

Granger two-step procedure (Hurn, 1993, pp. 315-317).
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CHAPTER 6

ECONOMETRIC APPLICATIONS RELATED TO ECONOMIC TIME SERIES

6.1. Modelling Monthly Inflation Rates in Turkey

In terms of policy makers, it is of great importance to have a reliable inflation rate
forecast. In this context, the most suitable model should be accessed using SARIMA.
Since SARIMA models reveal more effective results in terms of handling the seasonal
component of the series apart from the non-seasonal one when compared to the
traditional ARIMA models. In this application, it has been aimed to find the best model
for monthly inflation rates and therefore monthly (not seasonally adjusted) CPI data
have been utilized for Turkish economy over the period 1995:01-2015:03 (Index
2010=1.00). Data have been obtained from Organization for Economic Co-operation
and Development. This application has been carried out at the R Project for Statistical
Computing-version 3.1.3. by using “forecast” and “uroot” packages. Since inflation is
measured by the percentage change in CPI, inflation rates have been calculated by using
the following transformation:

CPI, —CPl,, o,
CPI,,

INF =

where INF denotes inflation rate, CPI, denotes consumer price index at time t and

CPI,_, denotes consumer price index at time t-1.

In modelling monthly inflation rates that are very crucial to design effective
economic strategies, choosing a suitable seasonal ARIMA model which includes both
seasonal and non-seasonal behaviours is not an easy task. Since such models give point
to the recent past rather than distant past, primarily they are convenient for short term
forecasting and this implies that long-term forecasts from ARIMA models are less
reliable than short term forecasts (Aidoo, 2010, p. 3). The graph of inflation data has

been presented in Figure 5:
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Figure 5. Graph of inflation series against time

It is very apparent to see from Figure 5 that inflation data are nonstationary with a
non-constant mean and unsteady variance and follow some seasonal pattern. For this
reason, first of all the series should be checked for seasonal unit roots at all seasonal
frequencies and if INF series includes all seasonal unit roots, seasonal differencing
operator has to be applied to this series. If INF series has seasonal unit roots only at
some frequencies, filters corresponding to available unit roots at each given frequency
have to be applied. Briefly, before constructing a suitable ARIMA model for our
seasonal series, we should make a data transformation in a way to make the series
stationary by taking Box-Jenkins methodology into consideration (see Appendix B for
Box-Jenkins technique).

This study has mainly focused on searching for the best-fitted SARIMA model for
the monthly inflation rates in order to provide the best forecast. Therefore, following the
Box-Jenkins approach, at first model identification and estimation of parameters will be
presented. Subsequent to this, diagnostic checking results based on the residuals of the
possible model will be given place in order to make certain about the white-noise
characteristic of residuals which becomes a vital assumption for a good ARIMA model.

Before the model identification, in order to detect at which frequencies INF series
has unit roots and to decide about the appropriate order of differencing filter, we should
recourse to HEGY monthly seasonal unit root test apart from CH test. As expressed in
chapter 4 and 5, the null hypotheses differ for CH and HEGY tests. In the former, the
null hypothesis implies the stationarity case at all seasonal cycles while the latter
implies the presence of seasonal unit root (nonstationarity case).

Figure 6 and Figure 7 show the ACF and PACF of the original inflation series for

maximum lag numbers of 48 respectively. When looked at the correlogram of series in
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Figure 6, the autocorrelation coefficient is seen to decline very slowly towards zero with
increasing lag length implying that the series is nonstationary. On the other hand,
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Figure 6. ACF of inflation series (for lag.max=48)
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Figure 7. PACF of inflation series (for Iag.m;;g:48)
seasonal lags (12 24, 36,48) are clear to be significant. Thus, the presence of any
seasonal unit root other than a zero (long-run) frequency unit root has to be detected.
Detailed explanations for testing monthly seasonal unit roots have been given place
in Chapter 5 and Table 7 has presented long-run and seasonal frequencies for monthly
series in details. In this study, the monthly seasonal unit root analysis has been carried
out by using three different lag order selection methods. First, significant lags have been
added to the four deterministic regressions (with only constant; constant and trend;
constant and dummies; constant, trend and dummies) and one regression with no
deterministic components in order to make certain about that the residuals are white

noise (that is, insignificant lags have been removed until all selected lags become
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significant). These test results have been given in Table 8 and subsequent to this,
selected lags for HEGY regressions in Table 8 have been shown in Table 9. As

mentioned before, the first two hypotheses which are 7, =0 and =z, =0 are tested by
t-test and the other five joint hypotheses which are 7z,=7x,=0, 7, =x,=0,
7w, =my =0, 7y =m,,=0and z, =, =0 are tested by F-test.

Table 8

HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using
Significant Lags)

Estimates
Estimates  Estimates Estimates Estimates for the
Auxiliary for the for the for the for the Model with
Regression Seasonal Model Model Model with  Model with No
Null Frequency with with Constant Constant, Constant,
Hypotheses Constant  Constant and Trend and No Trend
and Trend  Dummies Dummies and No
Dummies
7, =0 0 -1.5637* -0.288* -1.294* -1.548* -2.762
7, =0 T -2.348 -2.313 -3.588 -3.608 -2.347
7wy =m,=0 /2 6.966 6.761 20.174 20.222 6.960
e =g =0 2713 4.220 4.008 14.163 14.297 4.208
., =1y =0 7l3 1.675* 1.606* 9.036 9.132 1.668*
g =m,,=0 5716 12.656 12.342 22.248 22.352 12.662
7y, =7, =0 w16 5.461 5.236 14.104 14.524 5.435

Note. © * denotes insignificant estimates (*p>.05) at 5% significance level
% See Monthly HEGY Critical Values in Appendix C .

Table 9
Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by
Using Significant Lags)

Models  Selected Lags Estimate  Standard Error  t-value  Prob (> |t])
C Lag.12 -0.213 0.065 -3.304 0.001
cT Lag.12 0.221 0.067 -3.302 0.001
CD i i i - :
C.DT : : : : :
- Lag.12 -0.216 0.064 -3.377 0.001

Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables and
“-” denotes no deterministic component.

It can be inferred from Table 9 results that no lagged variable has been added to
C,D and C,D,T models. However, for other three models (C; C,T and -) 12" lag has
been added as significant lag. When looked at Table 8, the results for the hypothesis
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7, =0 have revealed that the presence of the zero (non-seasonal or long-run) frequency
unit root is accepted depending on the non-rejection of the null hypothesis 7, =0 at all
deterministic models (except no deterministic component model). Thus, original INF
series is not stationary at zero frequency. Having examined the other hypotheses, all
other hypotheses implying the presence of a unit root at seasonal frequency except the
hypothesis 7, =7, =0 are seen to be rejected for all deterministic models and

27  5r

therefore it is concluded that there are no seasonal unit roots at ,t ?,J_r?

.t and

NN

+ — frequencies. In other saying, there are conjugate complex seasonal unit roots only at

oY

+ — frequencies corresponding to (2, 10) cycles per year for “Constant”, “Constant and

w|y

Trend” and “No Deterministic Components” models. From this point of view, seasonal

cycles can be said to follow mostly a deterministic structure.

Table 10
HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using AIC for
Lags)

Estimates for  Estimates Estimates Estimates Estimates for
Auxiliary for the for the the Model
. the Model for the . . i
Regression Seasonal - . Model with Model with with No
with Model with
Null Frequency Constant Constant, Constant, No
Constant Constant
Hypotheses and Trend and Trend and
and Trend . . .
Dummies Dummies No Dummies
T, = 0 0 -1.546* -0.579* -1.417* -0.935* -2.542
T, = 0 T -2.541 -2.515 -2.978 -2.991 -2.534
wy=m, =0 7l?2 4.938 4.905 18.391 18.360 4.937
Ty =Ty = 0 2713 3.373 3.310 7.305 7.267 3.359
T, =Ty = 0 7l3 1.212* 1.197* 5.727* 5.756* 1.207*
Ty =Ty = 0 5716 14.009 13.633 20.506 20.451 13.975
T =Ty =0 716 3.897 3.842 13.631 13.624 3.860

Note. ' * denotes insignificant estimates (*p>.05) at 5% significance level
2 See Monthly HEGY Critical Values in Appendix C .

Table 10 presents monthly HEGY seasonal unit root test results based on AIC. The
results are almost the same as Table 8 with regard to statistical significance: Since the
hypothesis 7z, =0 could not be rejected at 5% significance level (meaning that non-

rejection of the presence of root +1), the presence of the zero frequency (non-seasonal)
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unit root has been accepted. Thus, inflation series is nonstationary and seasonal unit

roots have been detected only at i% frequencies for all five models given in Table 10.

In addition, estimate results regarding lagged values added to the auxiliary regressions

have been presented in Table 11. Evaluating the results has revealed that 12" lag has

been given place in all five auxiliary regression models.

Table 11

Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by
Using AIC for Lags)

Models  Selected Lags Estimate Stép;i:rrd tvalue  Prob (> |t])
C Lag.2 0.107 0.065 1.639 0.103
Lag.12 -0.210 0.064 -3.260 0.001
cT Lag.2 0.106 0.067 1.574 0.117
’ Lag.12 -0.212 0.067 -3.161 0.002
cD Lag.6 -0.162 0.072 -2.251 0.026
’ Lag.12 0.007 0.070 0.100 0.920
CDT Lag.6 -0.157 0.073 -2.151 0.033
” Lag.12 0.014 0.072 0.188 0.851
Lag.2 0.105 0.065 1.615 0.108
) Lag.12 -0.213 0.064 -3.346 0.001

Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables
and “-” denotes no deterministic component.

Table 12
HEGY Monthly Seasonal Unit Root Test Results for Inflation Series (by Using BIC for
Lags)
Estimates Estimates for  Estimates for Estimates for  Estimates for
Auxiliary for the the Model the Model
. the Model the Model - f
Regression Seasonal Model - - with with No
. with with
Null Frequency with Constant, Constant, No
Constantand  Constant and
Hypotheses Constant . Trend and Trend and
Trend Dummies - -
Dummies No Dummies
T = 0 0 -1.537* -0.288* -1.499* -1.315* -2.762
T, = 0 T -2.348 -2.313 -3.232 -3.278 -2.347
my=m,=0 wl2 6.966 6.761 15.593 15.816 6.960
m=1,=0  27/3 4.220 4.008 9.534 9.773 4.208
m, =1y =0 ml3 1.675* 1.606* 6.756 6.956 1.668*
my=m,=0  57/6 12.656 12.342 17.772 17.988 12.662
Ty =1, =0 wl6 5.461 5.236 10.906 11.126 5.435

Note. > * denotes insignificant estimates (*p>.05) at 5% significance level

2 See Monthly HEGY Critical Values in Appendix C .
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Table 12 considers the results of monthly HEGY seasonal unit root test based on
BIC (Bayesian Information Criterion) and which lags have been added to the five
auxiliary regressions is shown in Table 13 with given estimate results of these lags.
Table 12 and Table 8 results do not differ. In conclusion, three methods discussed in

terms of lag criteria (Significant lags, AIC and BIC) have revealed only the presence of
conjugate complex seasonal unit roots at J_r% frequencies corresponding to (2, 10)

. . 27 |5
cycles per year. The presence of all other seasonal unit roots with z,+— ,i—” ,J_r—” and

2 3 6

S

i%has been rejected and it has been concluded that seasonal cycles mostly display a

deterministic structure. Therefore, there is no need to take the seasonal difference of
INF series. However, because of the presence of zero (non-seasonal) frequency unit root
cannot be denied it has been needed to take the first difference of INF series. In that
case, INF series is not seasonally integrated and thus applying the seasonal difference

filter (1— L") to the series is not required. Beaulieu and Miron (1992b, p.18) have also
explained more clearly why applying (1— L) filter to the series is not required in that

way: “The appropriateness of applying the filter (1—L°)to a series with a seasonal

component, as advocated by Box and Jenkins (1970) depends on the series being
integrated at zero and all of the seasonal frequencies”. Briefly, this explanation holds
since the presence of all seasonal unit roots has not been accepted and there is weak

evidence of seasonal unit roots on monthly series.

Table 13
Selected Lags Estimates for HEGY Monthly Seasonal Unit Test on Inflation Series (by

Using BIC for Lags)

Models  Selected Lags Estimate Sté?gg:d t-value Prob (> t|)
C Lag.12 -0.213 0.065 -3.304 0.001
C,T Lag.12 -0.221 0.067 -3.302 0.001
C,D Lag.12 -0.046 0.066 -0.697 0.486
C,D,T Lag.12 -0.03 0.07 -0.422 0.673
- Lag.12 -0.216 0.064 -3.377 0.001

Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables and
“-” denotes no deterministic component.
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Table 14
CH Test Results for Inflation Series

Tested Frequencies L-Statistic Critical Values
1% 5% 10%

T 1w 2m 57 2.005 3.27 2.75 2.49
T

After applying to HEGY test, now Table 14 presents CH test results in order to make
inference about the seasonal behaviour of INF series. As mentioned before, contrary to
the HEGY test, the null hypothesis of CH is the stationarity of all seasonal cycles
(indicating to the presence of deterministic seasonality) while the alternative hypothesis
is the presence of seasonal unit root (indicating to the presence of stochastic
seasonality). According to the results, since calculated L-statistic (2.005) is smaller than
not only 5% critical value (2.75) but also 1% (3.27) and 10% (2.49) critical values, we
fail to reject the null hypothesis saying that seasonal pattern is deterministic. Therefore
it can be said that the result of CH test is consistent with the result of HEGY test and
once again there is no need for seasonal differencing operator. However, there is one
important thing that since the presence of only conjugate complex seasonal unit roots

with J_r% frequencies has been determined with the adoption of the hypothesis

7, =y =0, INF series should be transformed by the necessary filters corresponding to

these frequencies. Filters corresponding to all frequencies have been presented in Table

7 (in sub-section 5.2.4.2.). Therefore, the necessary filter corresponding to J_r%

frequencies has been expressed as (L—L + L*). On the other hand, as expressed before,
since the series includes zero (non-seasonal) frequency unit root, the first difference
operator (1—L) should also be applied. So, the necessary transformation that will be
made in INF series will be (1—L)(1—L+L?). More precisely, if the new series to be
obtained is called “ f inf ” (meaning filtered inflation), f inf will be formed as follows:
finf = A(L— L+ L?) = A(INF — INF(=1) + INF(-2))
= INF — 2INF(=1) + 2INF (-2) — INF(-3)
The ACF function of the “ f inf ” series obtained after this transformation given above

for maximum lags of 48 is given in Figure 8 and PACF function is given in Figure 9:
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Figure 8. ACF of filtered inflation series ( f inf ) for lag.max=48
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Figure 9. PACF of filtered inflation series ( f inf ) for lag.max=48

As seen in Figure 8 and Figure 9, the significant spikes at lag 1 in both ACF and
PACF suggest a non-seasonal MA(1) and non-seasonal AR(1) components. When
looked at the PACF correlogram, there has been found no significant spikes at seasonal
lags 12, 24, 36, 48. However, 6" lag is seen to be significant. Therefore, it can be said
again that series follows a semi-annual seasonal pattern (corresponding to the filter
(1- L+ L?) and thus to the hypothesis 7, "z, =0) as consistent with monthly seasonal
unit root results and since three are no significant spikes at seasonal lags in PACF, once
again it can be said that seasonal differencing is not required for the series.

“Forecast” package in R software offers us a very practical formula concerned with
determining the order of both seasonal differencing and first-degree differencing

benefiting from OCSB and CH tests. By running the following codes in “forecast”
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package of version R.3.1.3., we can compare the results that will obtained through these
codes with the results described above:

Table 15
R Codes and Outputs for Determining the Order of Seasonal Differencing by Using
OCSB and CH Tests

R Codes and Outputs
>nsdiffs(INF,12,test="ocsb”)
[1]0
>nsdiffs(INF,12,test="ch”)
[1]10

Note. 'The function “nsdiffs” estimates the order of seasonal differencing in a series to satisfy stationarity
condition. Here “12” indicates the length of seasonal period of the series and “test” expresses the
kind of seasonal unit root test to be applied (OCSB or CH).

“For more information, see (Hyndman, 2015).

*For OCSB test, the null hypothesis is H, :Seasonal unit root exists while H , : Seasonal cycles
are stationary (deterministic seasonality) for CH test.

As seen in Table 15, the result “[1] 0” reveals the number of seasonal differencing
for inflation series as “0 (zero)” as a result of carrying out both OCSB test and CH test.
Thus, there has been no need to take any seasonal difference. These results show
consistency with the results expressed before. Now with the codes given in Table 16
similar to Table 15, let us verify that original inflation (INF) series is not stationary at

zero frequency:

Table 16
R Codes and Outputs for Determining the Number of First Differences by Using KPSS
and ADF Tests

R Codes and Outputs
>ndiffs(INF,test="kpss”)
[1]1
>ndiffs(INF, test=""adf)
[1]1

Note. ' The function “ndiffs” estimates the number of first differences in order to make the series
stationary. Here “test” expresses the kind of unit root test to be applied.
2 For more information, see (Hyndman, 2015).
*For KPSS test, the null hypothesis implies the stationarity of series (or the absence of unit root)
while the null of ADF test implies the non-stationarity case of series in interest at the non-seasonal
level (or the presence of unit root).
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The results of practical codes that take place in Table 16 tell us that INF series
should be first-degree differenced. ADF and KPSS test results can be clearly given as

follows:
Table 17
ADF Test Results for INF Series in Level Form with Constant Added
t-statistic Prob.* Critical Values
1% 5% 10%
ADF Test Statistic -1.695814 0.4321 -3.458719 -2.873918 -2.573443

Note. T Lag length has been chosen as 11 amongst max.lag=12 (based on SIC)

2* denotes MacKinnon (1996) one-sided p-values

Table 18
ADF Test Results for INF Series in Level Form with Constant and Trend Added
t-statistic Prob.* Critical Values
1% 5% 10%
ADF Test Statistic -1.585679 0.7959 -3.998457 -3.429484 -3.138243

Note. T Lag length has been chosen as 11 amongst max.lag=12 (based on SIC)

2* denotes MacKinnon (1996) one-sided p-values

Table 19
KPSS Test Results for INF Series in Level Form with Constant Added
LM-Stat. Asymptotic Critical Values*
1% 5% 10%

Kwiatkowski-Phillips-Schmidt-  1.721708 0.739000 0.463000 0.347000
Shin Test Statistic
Note. ~ Kwiatkowski-Phillips-Schmidt-Shin (1992).

Table 20
KPSS Test Results for INF Series in Level Form with Constant and Trend Added
LM-Stat. Asymptotic Critical Values*
1% 5% 10%

Kwiatkowski-Phillips-Schmidt-  0.422944 0.216000 0.146000 0.119000
Shin Test Statistic
Note. - Kwiatkowski-Phillips-Schmidt-Shin (1992).
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Since ADF test statistics calculated at both constant model and constant-trend
model in Table 17 and Table 18 have been found to be insignificant (that is, calculated
ADF statistics lie outside the critical region) when compared to 1%, 5% and 10%
critical values, we fail to reject the null hypothesis and it is concluded that INF series is
not stationary at the zero frequency. On the other hand, Since KPSS test statistics
calculated at both constant model and constant-trend model in Table 19 and Table 20
have been found to be significant (calculated KPSS statistics lie inside the critical
region) when compared to 1%, 5% and 10% critical values, the null hypothesis saying
that the original series is stationary has been rejected and it has been concluded that INF
series is not stationary at the zero frequency.

Now, in order to show that the series should be first-degree differenced, let us test
the first-degree difference of the series (In this case, the null hypothesis for KPSS will
be the stationarity of the first-differenced series rather than the original series and the
null for ADF will be non-stationarity of the first-differenced series):

Table 21
ADF Test Results for INF Series in First-Difference Form with Constant Added
t-statistic Prob.* Critical Values
1% 5% 10%
ADF Test Statistic -9.402136 0.0000 -3.458719 -2.873918 -2.573443

Note. * Lag length has been chosen as 10 amongst max.lag=12 (based on SIC)

2% denotes MacKinnon (1996) one-sided p-values

Table 22
ADF Test Results for INF Series in First-Difference Form with Constant and Linear
Trend Added

t-statistic Prob.* Critical Values
1% 5% 10%
ADF Test Statistic -9.455364 0.0000 -3.998457 -3.429484 -3.138243

Note. ' Lag length has been chosen as 10 amongst max.lag=12 (based on SIC)

2* denotes MacKinnon (1996) one-sided p-values

According to ADF test results with both “constant” added and “constant and linear
trend” added in Table 21 and Table 22, the null hypotheses of nonstationarity of the first

differenced series are rejected at 1%, 5% and 10% significance levels and therefore
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meaning that first-difference of the series is stationary.

Table 23
KPSS Test Results for INF Series in First-Difference Form with Constant Added
LM-Stat. Asymptotic Critical Values*
1% 5% 10%

Kwiatkowski-Phillips-Schmidt- 0.154848 0.739000 0.463000 0.347000
Shin Test Statistic
Note. ~ Kwiatkowski-Phillips-Schmidt-Shin (1992).

Table 24
KPSS Test Results for INF Series in First-Difference Form with Constant and Linear
Trend Added

LM-Stat. Asymptotic Critical Values*
1% 5% 10%
Kwiatkowski-Phillips- 0.118458 0.216000 0.146000 0.119000

Schmidt-Shin Test Statistic
Note. - Kwiatkowski-Phillips-Schmidt-Shin (1992).

According to KPSS test results with both “constant” added and “constant and linear
trend” added in Table 23 and Table 24, the null hypotheses of stationarity of the first
differenced series cannot be rejected at 1%, 5% and 10% significance levels and
therefore we conclude that to make the series stationary, the series should be in (non-
seasonal) first-differenced form.

Another simple method in order to determine the optimal order of differencing
comes from Box-Jenkins rule of thumb: The optimum order of differencing is the one
with the smallest standard deviation (Akuffo & Ampaw, 2013, p. 15). In order to detect
the optimal order, standard deviations corresponding to different orders of differencing

are given in Table 25:

Table 25
Standard Deviations for Detecting the Optimal Order of Differencing by Box-Jenkins
Rule of Thumb

Order of Differencing Non First Second Third
Standard Deviations 2.243578 1.492247 2.274733 3.806330
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Hence, the minimum standard deviation is realized in first-degree differenced form with
a value of 1.492247. Hence, once gain we have verified the optimum order as 1.

Now after the orders of seasonal and non-seasonal differences are determined in
order to satisfy the stationarity condition of original series (since the series should be
stationary for SARIMA modelling), we should determine AR, SAR, MA and SMA
(seasonal moving average) orders to construct the best model.

In the model identification, possible best models have been tried to be discovered by
“auto.arima” function in “forecast” package of R software. The method for selecting the
best-fitted model is based on choosing AIC, AICc (Corrected Akaike Information
Criterion) and BIC with minimum values. Mostly, the model that provides minimum
AIC (or AICc) rather than BIC is a candidate to be selected as the best-fitted one. In
Table 26, suggested ARIMA models by utilizing from OCSB and ADF tests have been
presented with AlICc and AIC information criteria given:

Table 26
AICc and AIC Values for Suggested ARIMA Models of INF Series by Using Stepwise
Selection

Suggested ARIMA models AlCc AIC
ARIMA(2,1,2)(1,0,1)[12] with drift Inf Inf
ARIMA(0,1,0) with drift 2560.113 2560.063
ARIMA(1,1,0)(1,0,0)[12] with drift 2494.328 2494.158
ARIMA(0,1,1)(0,0,1)[12] with drift 2466.34 2466.17
ARIMA(0,1,0) 2558.086 2558.069
ARIMA(0,1,1)(1,0,1)[12] with drift Inf Inf
ARIMA(0,1,1) with drift 2495.07 2494.969
ARIMA(0,1,1)(0,0,2)[12] with drift 2449.736 2449.481
ARIMA(1,1,1)(0,0,2)[12] with drift 2440.443 2440.084
ARIMA(1,1,0)(0,0,2)[12] with drift 2505.766 2505.511
ARIMA(1,1,2)(0,0,2)[12] with drift 2441.56 2441.079
ARIMA(0,1,0)(0,0,2)[12] with drift 2532.184 2532.015
ARIMA(2,1,2)(0,0,2)[12] with drift 2444814 2444.194
ARIMA(1,1,1)(0,0,2)[12] 2440.654 2440.398
ARIMA(1,1,1)(1,0,2)[12] with drift 2405.964 2405.484
ARIMA(1,1,1)(1,0,1)[12] with drift Inf Inf
ARIMA(1,1,1)(0,0,1)[12] with drift 2453.309 2453.054
ARIMA(0,1,1)(1,0,2)[12] with drift Inf Inf
ARIMA(2,1,1)(1,0,2)[12] with drift Inf Inf
ARIMA(1,1,0)(1,0,2)[12] with drift Inf Inf
ARIMA(1,1,2)(1,0,2)[12] with drift Inf Inf
ARIMA(0,1,0)(1,0,2)[12] with drift 2498.705 2498.449
ARIMA(2,1,2)(1,0,2)[12] with drift Inf Inf
ARIMA(1,1,1)(1,0,2)[12] Inf Inf

ARIMA(L,1,1)(2,0,2)[12] with drift Inf Inf
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As shown in Table 26, the best model under the stepwise-selection method among
other models has been chosen as ARIMA(1,1,1)(1,0,2)[12] model with drift with the
smallest AICc value 2405.964 and the smallest AIC value 2405.484. All the other

models which have greater AIC values have been provided only for comparison

purposes. After selecting the best model based on AIC and AICc, we need to estimate

the significance of parameters:

Table 27

Estimates of Parameters for ARIMA (1,1,1)(1,0,2)[12] Model with Drift

AR(1) MA(L) SAR(1) SMA(1) SMA(2) DRIFT
Estimate 0.1750 20.8857 0.8862 -0.7102 01813  -0.9323
St;?fcf‘rrd 0.0763 0.0375 0.0537 0.0847 00746  1.3789

Sigma”2 estimated: 1233 log likelihood: -1194.59 AIC: 2405.48 AICc: 2405.96 BIC: 2429.88

As clearly seen in Table 27, the coefficients of ARIMA (1,1,1)(1,0,2)[12] Model with

Drift are significantly different from zero.

Table 28

BIC Values for Suggested ARIMA Models of INF Series by Using Stepwise Selection

Suggested ARIMA models BIC
ARIMA(2,1,2)(1,0,1)[12] with drift Inf
ARIMA(0,1,0) with drift 2567.032
ARIMA(1,1,0)(1,0,0)[12] with drift 2508.098
ARIMA(0,1,1)(0,0,1)[12] with drift 2480.11
ARIMA(0,1,0) 2561.554
ARIMA(0,1,1)(1,0,1)[12] with drift Inf
ARIMA(0,1,1) with drift 2505.423
ARIMA(0,1,1)(0,0,2)[12] with drift 2466.905
ARIMA(1,1,1)(0,0,2)[12] with drift 2460.993
ARIMA(1,1,0)(0,0,2)[12] with drift 2522.935
ARIMA(1,1,2)(0,0,2)[12] with drift 2465.473
ARIMA(0,1,0)(0,0,2)[12] with drift 2545.954
ARIMA(2,1,2)(0,0,2)[12] with drift 2472.072
ARIMA(1,1,1)(0,0,2)[12] 2457.822
ARIMA(1,1,1)(1,0,2)[12] Inf
ARIMA(1,1,1)(0,0,1)[12] 2467.839
ARIMA(0,1,1)(0,0,2)[12] 2462.758
ARIMA(2,1,1)(0,0,2)[12] 2464.79
ARIMA(1,1,0)(0,0,2)[12] 2517.457
ARIMA(1,1,2)(0,0,2)[12] 2462.153
ARIMA(0,1,0)(0,0,2)[12] 2540.471
ARIMA(2,1,2)(0,0,2)[12] 2469.057
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Table 28 presents BIC values for each suggested ARIMA model. If we take only BIC
into account, the best model is seen to be ARIMA(1,1,1)(0,0,2)[12] model with a
minimum value of 2457.822. The estimates of parameters of ARIMA(1,1,1)(0,0,2)[12]

model are given in Table 29:

Table 29
Estimates of Parameters for ARIMA (1,1,1)(0,0,2)[12] Model

AR(1) MA(1) SMA(1) SMA(2)
Estimate 0.2412 -0.9183 0.2685 0.2295
Standard Error 0.0701 0.0249 0.0690 0.0569

Sigma”2: 1435 log-likelihood: -1219.39 AIC: 2448.78 AlCc: 2449.03 BIC: 2466.2

If ARIMA(1,1,1)(1,0,2)[12] model with drift chosen by AIC (or AICc) in Table 26 and
ARIMA(1,1,1)(0,0,2)[12] model chosen by BIC in Table 28 are compared,
ARIMA(1,1,1)(1,0,2)[12] model with drift is chosen because of having smaller
information criteria.

For selecting the best-fitted model (to find out how well the model fits the data), we
need to continue with the examination of residuals diagnostics (or Diagnostic Checking)
in order to find out whether the residuals display a White noise process which is a vital
assumption of a good ARIMA model (zero mean, constant variance, no serial
correlation). In this stage, first we will have a look at Box-Ljung Test results in order to
make sure about residuals have no remaining autocorrelation. The null and alternative
hypotheses are given respectively as follows:

H, : The residuals are random (independently distributed)

H, : The residuals are not random (not independently distributed, displaying serial

correlation)

Table 30

Box-Ljung Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift at Seasonal
Lags

Seasonal Lags X-squared Statistics p-value
12 10.6567 0.1543
24 21.996 0.2845
36 30.6726 0.4828

48 39.8145 0.6102
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Table 30 presents the autocorrelation check results for the residuals of
ARIMA(1,1,1)(1,0,2)[12] with drift model at seasonal lags and according to given
results, we cannot reject the null hypothesis saying that residuals are independent and
hence conclude about the absence of autocorrelation problem depending on the
statistically insignificant chi-squared statistics (since p-values for Box-Ljung statistic
are greater than 5% significance level for all seasonal lags 12,24,36,48). Therefore, this
model can be said to fit the data well. This result is also verified by looking at the
correlogram of residuals shown in Figure 10. All acf and pacf values in Figure 10 are
within the significance limits and mean of the residuals seem to be randomly distributed
around zero. Thus, the residuals appear to be White noise.
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Figure 10. ACF and PACF plots of the residuals of ARIMA(1,1,1)(1,0,2)[12] model
with drift

Now let us check the normality of ARIMA(1,1,1)(1,0,2)[12] model with drift residuals.

Table 31
Jarque-Bera Normality Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift

X-squared Statistic Asymptotic p-value
3.2092 0.201

Table 31 shows the Jarque-Bera Test Results. As well known, the null hypothesis for
the test is that residuals are normally distributed and the alternative hypothesis is that

residuals are not normally distributed. Insignificant X-squared statistic in Table 31 with
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an asymptotic p-value of 0.201 that is greater than 5% significance level reveals that the
null hypothesis cannot be rejected concluding that residuals are normally distributed.

Table 32
ARCH-LM Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift
Chi-squared p-Value
14.7563 0.255

After checking the normality assumption, now ARCH-LM (Autoregressive Conditional
Heteroscedasticity-Lagrange Multiplier) test results are presented in Table 32 to find out
if there is a heteroscedasticity problem. For this test, the null hypothesis says that there
are no ARCH (Autoregressive Conditional Heteroscedasticity) effects (indicating to the
constant variance). From ARCH-LM test results with the number of lags chosen as 12,
it can be inferred that since p-value (0.255) exceeds 5% significance level, the null
hypothesis of no ARCH effect (homoscedasticity) in the residuals of
ARIMA(1,1,1)(1,0,2)[12] with drift model cannot be rejected and therefore concluding
that the residuals of ARIMA(1,1,1)(1,0,2)[12] with drift model are homoscedastic (that
is, the residuals have constant variance). Briefly, it can be said that all assumptions
regarding diagnostic checking (no serial correlation, normality of residuals, constant
variance) hold for this model.

Table 33
Forecast Accuracy Measures for ARIMA(1,1,1)(1,0,2)[12] Model with Drift

ME RMSE MAE MPE MAPE MASE

-0.3333779 34.08106 25.34299 -49.62708 70.50063 0.73495

Note.  ME: Mean Error
RMSE: Root Mean Squared Error
MAE: Mean Absolute Error
MPE: Mean Percentage Error
MAPE: Mean Absolute Percentage Error
MASE: Mean Absolute Scaled Error
(For more information about the accuracy measures, see Ord & Fildes, 2013, chap. 2).

In Table 33, various forecast accuracy measures for ARIMA(1,1,1)(1,0,2)[12] with
drift model that is chosen under the stepwise-selection method have been presented.
Afterwards, these results will be compared to the model that will be chosen under the
non-stepwise selection method.

Subsequent to applying (faster) stepwise-selection method which provides a short-
cut for selecting the best-fitted model, now let us try the same thing under the (slower)
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non-stepwise selection method which searches for all possible models. By benefiting
from “auto.arima” function in “forecast” package of R as previously, the best choice
under the nonstepwise-selection method has been determined to be
ARIMA(1,1,1)(2,0,0)[12] with drift model for inflation series. The estimates of

parameters of this new model are given in Table 34:

Table 34
Estimates of Parameters for ARIMA (1,1,1)(2,0,0)[12] Model with Drift
AR(1) MA(1) SAR(1) SAR(2) DRIFT
Estimate 0.2202 -0.9273 0.2961 0.3136 -0.4393
Standard Error 0.0752 0.0336 0.0610 0.0633 0.5195

Sigma”2: 1270 log-likelihood: -1200.75 AIC: 2413.51 AICc: 2413.87 BIC: 2434.42

As it is apparent in Table 34, the coefficients of ARIMA (1,1,1)(2,0,0)[12] Model with

Drift are seen to be significant.
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Figure 11. ACF and PACEF plots of the residuals of ARIMA(1,1,1)(2,0,0)[12] model
with drift

When looked at Figure 11, mean of the residuals of ARIMA(1,1,1)(2,0,0)[12]
model with drift is seen to be distributed around zero. However, acf and pacf values are
within the significance limits only up to 12 and 24 seasonal lags. Even though the
absence of autocorrelation at seasonal lag 12 is sufficient to make a positive inference

about no serially correlated residuals (since we are dealing with monthly inflation rates
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in which the length of seasonal period is 12), a spike is realized at 36" lag and therefore
not all acf values are seen to take place within the significance limits because of this
36" lag. If ARIMA(L,1,1)(2,0,0)[12] model with drift is compared to ARIMA
(1,1,1)(1,0,2)[12] model with drift that does not enable such a spike at 36™ lag apart
from other seasonal lags as observed in Figure 10, the latter (with stepwise-selection
method) can be said to be a stronger model than the former (with non-stepwise selection
method). Let us verify this with an examination on Box-Ljung test statistics at seasonal

lags:

Table 35
Box-Ljung Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift at Seasonal Lags
Based on the Non-stepwise Selection

Seasonal Lags X-squared Statistics p-value
12 12.6478 0.1246
24 25.7961 0.1727
36 46.7037 0.04507
48 58.2202 0.07392

Table 35 presents the autocorrelation check results for the residuals of
ARIMA(1,1,1)(2,0,0)[12] with drift model at seasonal lags based on the non-stepwise
selection. According to both the plot of ACF in Figure 11 and Table 35 results, no serial
correlation has been detected except 36th lag with a probability value (p-value) of
0.04507 which is smaller than 5% significance level. Therefore p-values for Box-Ljung
statistics at seasonal lags 12, 24, 48 are greater than 5% significance level indicating to
the non-rejection of the null hypothesis of independently distributed residuals at these
seasonal lags. Only 36™ lag creates serially correlated residuals depending on the
rejection of the null. Now let us check the normality of ARIMA(1,1,1)(2,0,0)[12] model

with drift residuals:

Table 36
Jarque-Bera Normality Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift

X-squared Statistic Asymptotic p-value
1.0074 0.6043

According to the Jarque-Bera test results given in Table 36, we fail to reject the null

hypothesis saying that the residuals are normally distributed with an insignificant X-
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squared statistic having an asymptotic p-value of 0.6043 that is greater than 5%

significance level.

Table 37
ARCH-LM Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift
Chi-squared p-Value
15.6521 0.2077

From the ARCH-LM test results, it can be inferred that the null hypothesis of no ARCH
effect (homoscedasticity) in the residuals of ARIMA(1,1,1)(2,0,0)[12] model with drift
cannot be rejected and hence the residuals of this model are said to be homoscedastic.
Briefly, all assumptions regarding normality of residuals, and constant variance hold for
this model except autocorrelation check for 36" lag. Residuals of
ARIMA(1,1,1)(2,0,0)[12] model with drift are independently distributed up to seasonal

lags 12 and 24, however not independently distributed for seasonal lag 36.
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Figure 12. Plot of ARIMA(1,1,1)(2,0,0)[12] with drift residuals against time

Table 38
Forecast Accuracy Measures for ARIMA(1,1,1)(2,0,0)[12] Model with Drift

ME RMSE MAE MPE MAPE MASE
-0.3060675 35.49517 27.12352 -60.00625 80.78677 0.7865855

Note. For more information about the accuracy measures, see Ord & Fildes, 2013, chap. 2.

In Table 38, forecast accuracy measures for ARIMA(1,1,1)(2,0,0)[12] with drift model

that is based on the non-stepwise selection method have been presented.
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Now that we have identified two models based on both stepwise and non-stepwise
selection, we can provide a summary of final results: In this application,
ARIMA(1,1,1)(1,0,2)[12] with drift model chosen by using (faster) stepwise selection
method and ARIMA(1,1,1)(2,0,0)[12] with drift model chosen by using (slower) non-
stepwise selection which seeks for all possible models have been compared. Although
we expect the latter model with non-stepwise selection to be better (since, stepwise
selection offers short-cuts in selecting the best model), the results have showed that the
former model with stepwise-selection is better as the best-fited SARIMA model. A

summary of the comparison of both models are given in Table 39:

Table 39
Comparison of ARIMA(1,1,1)(1,0,2)[12] with Drift and ARIMA(1,1,1)(2,0,0)[12] with
Drift Models

ACF of Residuals

Accuracy Significancy of . ARCH- (Autocorrelation
Models Measures Coefficients AlCc Normality LM check for
residuals)
RMSE: 34.08106 All seasonal and There is no spike
Model MAE: 25.34299 non-seasonal AR 2405.96 ok ok (no autocorrelation
1 MAPE: 70.50063  and MA coefficients ' at all seasonal lags
MASE: 0.73495 are significant. 12,24,36,48.)
RMSE: 35.49517 Al seasonal and Theresgh"‘fp'ke at
Model  MAE: 27.12352 non-seasonal AR 10 o ok ok (autocorr:‘g tion
2 MAPE: 80.78677 and MA coefficients ' roblem exists at
MASE: 0.7865855 are significant. P 36" 1ag)

Note. Model 1 represents ARIMA(1,1,1)(1,0,2)[12] with Drift.
Model 2 represents ARIMA(1,1,1)(2,0,0)[12] with Drift.

As seen in Table 39, forecast accuracy measures of model 1 are smaller than the
ones of model 2. In the light of given information, it is possible to say that model 1
satisfies all the necessary assumptions (no serial correlation, constant variance and
normality) and is better in all respects than model 2 with the smallest AICc, significant
parameters, no spike at ACF etc. Therefore having satisfied all the model assumptions,
model 1 can be regarded as the best-fitted model for forecasting monthly inflation rates
in Turkish economy.
In order to verify once again that model 1 is the best model for forecasting, we can

utilize from Diebold-Mariano test for predictive accuracy.
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Table 40
Diebold-Mariano Test Results of ARIMA(1,1,1)(1,0,2)[12] with Drift and
ARIMA(1,1,1)(2,0,0)[12] with Drift Models for Predictive Accuracy

Diebold-Mariano Test for Model 1 ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) and
Model 2 ARIMA(1,1,1)(2,0,0)[12] with drift (non-stepwise)
Tested Alternative

Hypotheses DM Statistic p-value
Two-sided -2.0771 0.03885
Less -2.0771 0.01943
Greater -2.0771 0.9806

The Diebold-Mariano test provides a comparison of the forecast accuracy of two
forecast methods by using forecast errors from two models in interest. This test is tested
using three different alternative hypotheses with the null hypothesis saying that the two
methods have the same forecast accuracy. The alternative “less” says that method 2 is
less accurate than method 1. The alternative “greater” says that method 2 is more
accurate than method 1. The alternative “two-sided” says that method 1 and method 2
have different levels of accuracy (this alternative is expressed as the default hypothesis
among others) (Hyndman, 2015, pp. 20-21).

According to the results of two-sided alternative hypothesis in Table 40, it is clear
to see that the null hypothesis is easily rejected at 5% significance level when looked at
the prob value of 0.03885. Thus, method 1 and method 2 are considered to have
different levels of accuracy. According to the results of the alternative hypothesis
“less”, it is seen once again that the null hypothesis is rejected at 5% level with a p-
value of 0.01943 concluding that method 2 is less accurate than method 1 (in other
saying, method 1 - ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise)- is more accurate).
On the other hand, the results of the alternative hypothesis “greater” say that the null
hypothesis fails to be rejected at 5% level with a p-value of 0.9806. The evaluation of
the results given by the tested hypotheses reveals that except the alternative “greater”,
two methods have different accuracy levels and method 1 (ARIMA(1,1,1)(1,0,2)[12]
with drift (stepwise)) is more accurate than method 2 (ARIMA(Z,1,1)(2,0,0)[12] with
drift (non-stepwise)) (Apart from all necessary checks mentioned in this application, a
good SARIMA model should also satisfy causality, stationarity and invertibility
conditions. Of course, our ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model

satisfies these conditions. About this, see Appendix D).
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6.2. Seasonal Integration Tests and a Different Look at Cointegration Relationship

between Quarterly Inflation Rates and Growth

Inflation is one of the most important facts in our daily life referring to a sustained
increase in consumer prices and it can be measured through CPI, producer price index
(PPI1) or GDP deflator. However, it is generally measured as a change in the harmonized
index of consumer prices (HICP) that has been harmonized across all European Union
member states. Holmes (2014) has presented the definition of HICP as “The HICP is the
measure of inflation which the governing council uses to define and assess price
stability in the Euro area as a whole in quantitave terms.” (p.16).

In this part, first seasonal integration tests will be applied in a unified approach for
inflation rates and growth variables and after determining the seasonal integration
orders of these variables, the cointegration relationship between them will be
M.mo asin

t-1

GDR ~GDR. 100
DR,

investigated. Inflation data have been derived through INF =

section 6.1 and real gdp growth rates have been obtained by GR =

transformation where INF denotes inflation rate, CPI, denotes consumer price index at

time t and CPI,_, denotes consumer price index at time t-1, GR denotes real gdp growth

rate and GDP denotes real GDP. For deriving inflation data, we have utilized from
quarterly HICP data (with Index 2010=100) as CPI for Turkey and HICP data have
been obtained from Organization for Economic Co-operation and Development. On the
other hand, GDP data have been collected from Central Bank of the Republic of Turkey
(CBRT). The separate graphs of GR and INF variables have been given in Figure 13. It
is likely from the graphs to see the seasonal patterns clearly. In addition, in Figure 14
these two variables have been presented in the same graph in terms of giving a clue
about their cointegrating relations. Since it is seen that they are moving together in the
graph, they are highly possible to be cointegrated.

In this application, seasonal integration tests will be applied for quarterly data on
the real gdp growth rates and inflation over 1998q1:2014q4 period by taking the study
of llmakunnas (1990) as basis. When looked at the graphs in Figure 13, it is apparent to
see the seasonal behaviours of both INF and GR variables. In ADF and HEGY test
applications, constant term and seasonal dummies have been included in the regressions

to be applied and seasonal means have not been removed in DHF and OCSB tests.
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Figure 13. Graphs of quarterly growth rates (a) and inflation rates (b) against time over
1998Q1-2014Q4 period
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Figure 14. Graph of quarterly growth rates and inflation rates together

As seen in Figure 14, a decrease (increase) in gdp growth is generally matched by a
corresponding increase (decrease) in inflation. As clear from graph (a) in Figure 13,
seasonal movements in growth series are very marked and inflation series in graph (b)
also displays some seasonal pattern. Depending on the clear seasonal patterns of these
two series, we can recourse to seasonal differencing procedure in order to capture such

patterns. Because two series have quarterly frequency, seasonally differenced variables
have been obtained by using (1— L*) operator. Therefore our transformed series that will
be called D4INF and D4GR respectively for inflation and growth can be expressed as
D4INF = INF, — INF,_, and D4GR =GR, —GR,_,. As a result of these transformations,
D4INF and D4GR variables which are seasonally integrated of order SI(Ll) (or
integrated of order 1(0,1) ) have been graphed together in Figure 15 (in order to see the
difference between SI(d,D) and I(d,D), see subsection 5.2):
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Figure 15. Graph of seasonally differenced growth rates and inflation rates together
Figure 15 also shows that these seasonally differenced two series are moving together,
but at an opposite direction. Thus, it supports the idea that they seem to be cointegrated.

Table 41
Seasonal Integration Test Results for Inflation and Growth Series

Test Statistic for VVariable

Test Lag
GR Length INF Lag Length (p)
()
ADF -3.689032 4 -1.553273 4
*
**
**k%k
ADF for A Series -5.028365 7 -7.782215 3
ADF for A, Series -6.711397 3 -2-82*6763 4
**
ADF for S(L) Series -3.751048 1 -1.981335 5
*
**
*kk
DHF -4.801168 1 -3.146821 5

*
**

*k%

DHF for A Series -2.539052 5 -5.068007 9
*

**

*k*k




Table 41
(Continued)

Test Statistic for Variable

Test Lag Lag
GR Length INF Length
(p) (P)
. -2.412879
HEGY 7 3.689032 L
*%*
*%k%
, -2.104948 -2.797232
* *
*% **
*k*k
s -3.082795 p=1 6117571 p=3
*
**
*k*k
T, -0.287342 -2.678279
* *
**
**k%*
T, N7, 4.804014 22.65265
*
*%*
**k%*
_ HEGY ju -1.916769 -5.872822
(with 7, =0) 2 *
**
*k*k
Ty -1.4911104 p=>5 -7.031611 p=1
*%*
**k%*
7, -0.561135 -5.095386
*
*%*
*k*k
T, N7, 1.273491 37.99593
*

**

*k*
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Table 41 (Continued)
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Test Statistic for Variable

Test Lag Lag
GR Length INF Length
() ()
HEGY
(with
t,=1,=1,=0) 7 see ADF for S(L) Series
- -2.582364
HEGY T, 1.0511247 >
for A Series *k sk
(Wlth = 0 ) Kk *kk
y/ -1.126513 -5.468436
*
**
*kek p=8 p=4
. 0.980675 2.412156
4 * *
** **
*k*k *kk
Ty MTT, 1.148816 20.04481
*
**
*k*k
HEGY
for A Series
(with T, see ADF for A, Series
7w, =my=m,=0)
T, -5.028365 -7.782215
HEGY
for A Series , -1.916769 5.872822
*
**
*k*k
7 -1.447264 -8.504117
*
*k p= 4 p= 0
*k*k
T 0.639263 0.814304
4 * *
** **
*k*k *k*k
o OIT 1.273491 37.99593
3 4 .

**

*k*
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Table 41 (Continued)

Test Statistic for Variable

Test Lag Lag
GR Length INF Length
(p) (2)
p -5.553677 -3.604473
OCSsB 1 =3 5=0
5, -1.798949 -10.06257
*
*%*
OCsB
with 3, =0) B, see DHF for A Series
=
OCsB
(with S, =0) B see ADF for A, Series

Note: * denotes insignificant values at 1% significance level
** denotes insignificant values at 5% significance level
*** denotes insignificant values at 10% significance level.
Table 41 presents the results of different seasonal integration tests in order to decide
about integration orders of both INF and GR variables. In this application, the

selection of lags (p) has been made in a way not to have autocorrelation and

heteroscedasticity problems apart from the examination of correlogram of residuals.
First, it is necessary to choose appropriate integration orders for inflation and growth by
utilizing from the given information in Table 41. In Table 41, the column GR presents
the estimates of growth variable and the column for INF gives the estimates for inflation
variable under the different regression models. The null and alternative hypotheses
corresponding to different models have been mentioned in Table 5. Therefore, we have
three (null) hypotheses that will be used as the starting point of testing sequence:
starting point may be either SI(2,1), SI(1,1) or SI(1,0). As a conclusion of a thorough
evaluation on Table 41, the results of these three cases are given in Table 42 along with

the accepted hypotheses shown in bold type.
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Table 42
A Summary of Null and Alternative Hypotheses to be Used under the Starting Points
SI(2,1), SI(1,1) or SI(1,0)

Case 1: If the starting point is S1(2,1) Null Hypothesis Alternative Hypothesis

ADF for A,

SI(2,1) SI(1,1)
DHF for A sI2,1) SI(1,0)
HEGY for A:
while 7z, =0, 7,,7,, 7, tested sI(2,1) s1(2,0)
T, T, 7Ty, T, tested SI(2,1) SI(1,0)
while 7, =7, =7, =0, 7, tested SI(2,1) SI(1,1)

Case 2: If the starting point is SI(1,1) Null Hypothesis Alternative Hypothesis

ADF for S(L)

SI(1,1) S1(0,1)
DHF SI(1,1) S1(0,0)
HEGY:
while 7, =0, 7,,7,,7, tested SI(1,1) SI(1,0)
T, TT,, 7Ty, T, tested SI(1,1) S1(0,0)
while 7, =7, =x, =0, 7, tested SI(1,1) SI1(0,1)
OCSB: S1(0.0
B, #0, p, tested SI(1,1) 0.0)
Case 3: If SI(1,0) is tested Null Hypothesis Alternative Hypothesis
ADF SI(1,0) $1(0,0)
HEGY:
while 7,, 74,7, #0, 7, tested SI(1,0) S1(0,0)
OCSB:

while g, =0, f, tested S1(1,0) S1(0,0)
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Table 43

Accepted Hypotheses in Seasonal Integration Tests for INF and GR series

Case 1: If the starting point is GR(growth) INF (inflation)

S1(2,1),

ADF for A, SI(1,1) SI(2,1) may be accepted for 1% and

%5 levels (and SI(1,1) may be
accepted for 10% level).

DHF for A SI(2,1) SI(1,0)
HEGY for A:
while 7, =0, iken 7,, 74,7, S1(2,1) S1(2,1) can be accepted because of
tested the presence of unit roots at 7,and
T,
7Ty, Ty, Ty, 70, tested SI1(2,1) SI(1,0) may be accepted since there

is no biannual and annual unit roots.

while 7, =73 =7, =0, 7, tested SI(1,1) (See ADF for A, )

*The results of the case “while 7, =73 =7, = 0, 7, tested” in HEGY test for A are the same as

ADF for A, results. The results for two series are not certain if the starting point is SI(2,1). However in

most cases the hypothesis SI(2,1) cannot be rejected for growth series and inflation series may be accepted
as either SI(2,1) or SI(1,0).

Case 2: If the starting point is GR(growth) INF (inflation)
SI(1,1),
ADF for S(L) S1(0,1) SI(1,1)
DHF S1(0,0) SI(1,1)
HEGY:
while 7z, =0, =,,7;, 7, tested SI(1,1) SI(1,0)
7T, T, 7Ty, T, tested S1(1,1) For %1 level, S1(1,1) may be
accepted.
while 7, =7, =7, =0, m,

tested S1(0,2) SI(1,1)

OCSB: SI(1,1) S1(0,0)

B, =0, B, tested

*The results of the case “while 7, =7, =7, = 0, 7, tested” in HEGY test are the same as ADF for
S(L) results. As it is seen obviously, the result of two variables may be in the form of SI(1,1) dominates.

Case 3: If SI(1,0) is tested, GR(growth) INF (inflation)
ADF S1(0,0) SI(1,0)
HEGY:

7T, 74,7, %0 iken 7, tested S1(0,0) S1(1,0)
OCSB: S, # 0Oiken p, tested S1(0,0) S1(0,0)

Note. * Bold expressions have been used to highlight mostly accepted hypotheses under the starting point
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in interest.

2 For 1998Q1-2014Q4 period (that is, 68 observations), in most cases, N=100 (observations) has
been taken as basis in critical values tables.

® ADF critical values have been considered as -3.51 for 1%, -2.89 for 5% and -2.58 for 10%
significance level for the model with constant and no trend (N=100) (Critical values have been
cited from Fuller (1976, p. 373)).

* DHF critical values have been cited from table 7 (percentiles, the studentized statistic for the
seasonal means model) in Dickey et al.(1984, p. 362). For quarterly data, d has been considered
as 4 and for DHF test, n=md (total number of observations) has been taken as 80 (seasonal means
have not been removed). Percentiles of the studentized statistic for the seasonal means model are
given as: -4.78 for 1%, -4.11 for 5% and -3.78 for 10%.

®Critical values have been obtained from Osborn et al. (1988, p. 376) for OCSB test (with no
seasonal mean subtraction).

® Critical values for HEGY test have been taken from Hylleberg et al. (1990, pp. 226-227) for the

model with intercept and seasonal dummies. See Appendix E.

Table 43 presents the accepted hypotheses of growth and inflation variables under
the different forms of ADF, DHF, HEGY and OCSB tests. The second “GR” column
gives the accepted hypotheses for this variable under the given tests and third column
“INF” presents the accepted hypotheses for this variable under the given tests. In
addition, the mostly accepted hypotheses for two variables when they are considered
together are shown in bold type in Table 43 so that if the starting point is SI(2,1), mostly
SI(2,1) has been accepted for two variables and if the starting point is SI(1,1), mostly
SI(1,1) has been accepted.

As llmakunnas (1990) expressed, the conclusion on the appropriate order of
integration depends on the starting point of testing sequence . If starting from the most
general model (case 1 in Table 43), the result is that in most cases the growth variable is
stationary after both first differencing and quarterly differencing (in most cases, the null
of SI(2,1) is accepted against the other alternative hypotheses) and according to this
starting point, it may be concluded that inflation series may be either S1(2,1) or SI(1,0)
(given in “INF” column). If the starting point is case 2 in Table 43 (or quarterly
differencing (that is, SI(1,1)), we cannot obtain accurate results for variables: While INF
series may be accepted as SI(1,1) in most cases, GR series may be S1(0,1), SI(1,1) or
S1(0,0).

When looked at the DHF test result in Case 2 where the null hypothesis is SI(1,1)
and the alternative is SI(0,0), GR variable can be said to reach full stationarity with
S1(0,0) seasonal integration order. The other tests apart from DHF in Case 2 imply that
seasonal frequency unit roots clearly can be accepted (or cannot be rejected) for GR
variable. However, the evidence is not certain for INF series (it may also be SI(1,0) or
SI(0,0) other than SI(1,1) — in other words, it may not include seasonal unit roots).
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It is worth mentioning about some equivalences between the tests when 8, =0

(taking place in Table 5). In case the main hypothesis to be tested is the presence of

seasonal frequency unit roots, i.e. 7, =7, =x, =0 in the HEGY test, the test
regression does not differ from ADF test for seasonally averaged (S(L)) data. In a
similar manner, in the case of 7, =7, =z, =0 in the HEGY test for first differenced

data, the test regression is the same as the ADF test for seasonally differenced data. This
Is also the same as the OCSB test with S, =0. At last, the OCSB test with £, =0 is the
same as the DHF test for first-differenced data (Ilmakunnas, 1990, p. 81).

One of the most important problems in applying integration tests is the appropriate
choice of the value of lag length p to be used: too low a value gives rise to invalid
statistics due to autocorrelation left in the residuals; on the other hand, the implication
of an extremely high lag length is a reduction in power (Osborn et al., 1988, p. 365).
In this application, in selecting the appropriate lag lengths, LM test statistics for residual
autocorrelation have been calculated and examined up to order four for all test
regressions. Lag lengths have been increased one by one until detecting no significant
autocorrelations at the 5% level. All applications in this section have been carried out in
R.3.1.3. version and Eviews 7.

Now we will have a different look at cointegration relationship between INF and
GR series for growth equation in which dependent variable is economic growth (GR)
and independent variable is inflation (INF). Table 44 shows the cointegration results for
growth equation. Since there are two variables in our model, at most 1 cointegrating
relation can be found. When the growth equation is taken into consideration, it can be
said that the resulted statistics can be used to give a clue about whether the variables are
cointegrated or not at seasonal frequencies. For the first three models in Table 44 which
are given in level form, seasonally averaged form and seasonally differenced form,
respectively; all tests of the residuals (DW, DF, ADF) strongly suggest that the

variables are cointegrated (where the null hypothesis is H, :no cointegration and the

alternative one is H, :cointegration exists) (in other saying, the evidence against no-
cointegration is said to be very strong).

When we look at the first differenced (A) and twice differenced variables ( A%), it
is seen that the evidence of cointegration is strong when differenced variables are

considered with significant 7z, estimates at seasonal frequencies. However in the twice
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differenced form, since 7, and =z, estimates regarding annual unit root are not

significant, we cannot strictly say that twice differenced variables are cointegrated at

seasonal frequencies even though only =, is significant.

Table 44
Cointegration Results for Growth Equation

Form of the variables in the regression (Dependent Variable=GR)

Estimated Levels Seasonally Seasonally Differenced Twice
Coefficients Averaged Differenced (A) Differenced
S(L) (A,) (A%)
(S(L)=1+L+L2+L%)
INF -0.083274 -0.049137 -0.258978 -0.394322 -0.409318
(Constant+ (Constant Model) (Model with No (Constant+ (Constant+
Dummies “Significant” Deterministic Dummies Dummies
Model) Component) Model) Model)
“Significant”
Test of the Residuals
Test Statistics
DW 1.999220* 0.492387* 1.662716*
DF -8.059352* -2.996607* -6.732354*
ADF(p) -3.648481(4)* -3.838019(1)* -6.713961(3)*
%5Critical
%>5Critical %5Critical Values: Values:
Values: -1.946072 (DF) -1.946161(DF)
-1.945823(for -1.946161(ADF(p)) -1.946447(ADF(p))
DF)
-1.946161(for
ADF(p))
HEGY Test Results
T -6.486017*  -7.636372*
1
-2.762810*  -2.464176*
7T,
-2.558021* -0.253216
73
T 1.536945 0.923592
4 4.772130* 0.466443
7w, &,
(Model with (p=0) (p=4)
No
Deterministic
Component)

Note. * * denotes significant values at 5% level.

? Critical values for HEGY test have been obtained from Hylleberg et al. (1990, pp. 226-227).
® Critical values for DW statistic have been taken from Engle & Yoo (1987, p. 158) for N=2

variables.

Level form regression results show the existence of one cointegrating relation with

significant residual test statistics which are Durbin-Watson (DW), DF and ADF test
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statistics. The seasonally averaged form results (S(L)) also support this result with
significant ADF, DW statistics obtained for the residuals of given regressions.

Empirical results reveal that all forms of the variables except twice-differenced (A®
) form show the sign of cointegration. Therefore, this analysis in which GR is dependent
variable and INF is independent variable has revealed that the variables in question are

SI(1,1). Since seasonally averaged (S(L)) variables have been found to be cointegrated
of order 1 at zero (non-seasonal) frequency and first differenced variables (A) have
been found to be cointegrated at seasonal frequencies. Thus, it can be said that in

growth-inflation model, it would be suitable to incorporate the variables in A, form

into the regression.

At the core of this analysis, how different seasonal integration tests can be carried
out in a unified approach lies. Seasonal integration results imply that growth and
inflation variables may be either SI(2,1) or SI(1,1) in the dominant sense. Therefore we

have taken five cointegration regressions in the level, seasonally averaged (S(L)),
quarterly differenced (A,), first differenced (A) and twice differenced (A*) forms. In

the level form, GR series has been regressed on INF series. In the level, differenced and
twice differenced forms; a constant and three seasonal dummies have been included and
in the seasonally averaged form, a constant has been added. In Table 44, “p” shows the
necessary lag numbers that will be included in the regressions applied. Surely, the
analysis reveals that both series in their level forms are cointegrated.

When the results of regression analyses are considered in terms of economic
interpretation, the inflation-growth relationship in Turkey has been understood to be in
an opposite direction. This has been confirmed by the negative sign of the coefficient of
INF variable in any case. According to the results of regression analyses applied, each
percentage point increase in inflation reduces economic growth over 1998Q1-2014Q4
period. This result indicates that primarily there should be further reductions in inflation
in order to increase the average growth rate declining gradually in recent years.

Most empirical studies on the inflation-growth relationship show that these two
series are negatively related. However, these studies are mostly based on the periodical
cross section data of a group of countries and its validity is questionable. Some authors
assert that in analyses executed by such data; country in interest, time considered and
the selection of variables discussed in the given model affect the achieved results

significantly. Therefore, it has been recommended that the relationship between
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inflation and growth should be investigated through the time series analysis. However,
studies conducted by time series analysis have failed to reveal a clear result so far
(Karaca, 2003, p. 254).

As well known, first of all the series in interest must be stationary in time series
analysis. When worked with non-stationary time series, it may be faced with spurious
regression problem. In this case the results obtained by the regression analysis do not
reflect the actual relation. Because these test statistics do not display a standard
distribution, they lose their validity. The regression analyses conducted with non-
stationary time series can reflect the real relationship only if a cointegration relationship
exists between the series in interest (Kizilgol & Erbaykal, 2008, p. 355). To summarize,
this application addresses the cointegrating relationship between inflation and growth
from a different view by taking the concept of seasonality into consideration.

Whether the data contain seasonality or not plays an important role in determining
integration orders of the series. Thus, if seasonality is present (this case is possible for
our series, because they have been expressed in quarterly frequency), series should be
referred to as seasonal integrated series. In this application, various seasonal integration
tests have been carried out in order to detect the appropriate order of seasonal
integration. As a result of the application, two series have been found to have the same
degree of seasonal integration as SI(1,1). Thus, by knowing that the two series have the
same integration order (both are SI(1,1)) and applying various tests (DW, DF, ADF,
HEGY) to the residuals obtained from the regression equations formed by using
difference operators and raw data, whether there is a long-term relationship between the
series or not has been examined through the cointegration analysis. As a result, the
presence of a cointegrating relationship has been determined between two variables and

this means a real long-term relationship.

6.3. Seasonal Cointegration Test Application for Turkey

In this application, it has been aimed to investigate the existence of co-integration
relationship between quarterly gross domestic product (GDP), final consumption
expenditures of resident households (CONS), exports of goods and services (EXP),
government final consumption expenditures (GOV) and private sector machinery-
equipment (PRIEQ) series for the period 1998Q1-2014Q4. Data that are based on
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expenditure based GDP time series at fixed 1998 prices have been obtained from
CBRT.

First, in order to linearize the exponential growth in these series, their logarithms

have been taken. Since by taking logarithm, variance is stabilized and the effects
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Figure 16. Graphs of logarithmic and seasonally unadjusted macroeconomic variables
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of outliers are reduced (Tiire & Akdi, 2005, p. 6). In Figure 16, graphs of logarithmic
GDP, CONS, EXP, GOV and PRIEQ series have been presented respectively from (a)

to (e).
Table 45
HEGY Seasonal Unit Root Test Results for Quarterly Macroeconomic Series
Variables Auxiliary Lags t(z,) t(z,) t(r,) t(z,) F
R .
egressions (72.3 , 7[4)
LNGDP Intercept 2 -0.374639*  -1.658963*  -1.568273*  -1.650405*  2.681313*
Intercept + 2 -0.352000*  -2.284324*  -2.049658* -2.370408 5.446632*
Dummies
Intercept + 2 -2.528751*  -2.394737*  -1.809312*  -2.278266  4.629866*
Dummies
+ Trend
LNCONS Intercept 1 -1.108130* -2.087701 -2.413501 -1.715589 4.330118
Intercept + 2 -0.624776*  -2.256329*  -2.649649*  -3.690152 12.64432
Dummies
Intercept + 2 -2.329712*  -2.341915*  -2.498616* -3.514822 11.17496
Dummies
+ Trend
LNPRIEQ Intercept 0 -1.048793* -3.006195 -4.078979 -6.309589 45.08480
Intercept + 1 -1.255175* -4.758546 -2.938663* -5.416084 19.21220
Dummies
Intercept+ 0 -2.739185*  -5.277844  -3.066718*  -5.066384  23.55738
Dummies
+ Trend
LNGOV Intercept 1 1.037847*  -0.672012*  -0.941324*  -0.406816*  0.522808*
Intercept + 0 0.719595* -3.616989  -3.364203*  -0.412796*  5.776124*
Dummies
Intercept + 0 0.745482* -0.608322* 0.013417* -0.235981*  6.278467*
Dummies
+ Trend
LNEXP Intercept 2 -1.033219* -2.208915 -1.552280*  -0.795612*  1.551227*
Intercept+ 0 -0.119803* -3.880223 -2.968691* -3.321427 12.04958
Dummies
Intercept + 2 -2.661086*  -3.188178  -1.732976*  -2.357943  4.688940*
Dummies
+ Trend

Note. ! * denotes insignificant values at 5% level.
? t-statistic for 7, t(7,) shows whether there is a unit root or not at zero frequency (H, : z, =0) . t-

statistic for , t(r,) tests the presence of the semi-annual unit root (H, : r, =0). F statistic for

7y x, (F(m,,7,)) tests whether there is a unit root at quarterly frequency or not.

¥ Critical values have been taken from HEGY (1990, pp. 226-227) for N=100 observations and 5%
level. For zero frequency, critical values are -2.88, -2.95, -3.53 and for semi-annual frequency,
“intercept+dummies”,

they are

-1.95,

-2.94,

-2.94  respectively

for

“intercept”,
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“intercept+dummies-+trend” models.
In order to determine which series have a cointegrating relationship, it is necessary

to find out at which frequencies series are integrated of the same order (or at which
frequencies unit roots are present). For each series, three different models including
“constant (C)”, “constant+dummies (C, D)” and “constant+dummies+trend (C, D, T)”
have been constructed. Also, the lagged values of the dependent variable have been

added into these models. Since the series discussed are at quarterly frequency, seasonal
. . 113 . .
unit root test results of the series at 0 = O,Z,E,Zfrequenmes have been presented in

Table 45.

In Table 45, lag augmentation by lagged values of the dependent variable has been
made in the auxiliary regressions including deterministic components in order to make
sure about the whitened residuals. As expressed in Engle et al. (1993), this
augmentation does not affect the distribution under the null hypothesis as is the case
with DF procedure; but, the power and size of the test may depend critically on the
‘right’ augmentation being used (p.279). In the application for seasonal unit root test,
the appropriate lag length has been chosen in that way: Regression equation has been
estimated first with Lag 1 and it has been investigated if first order and fourth order
autocorrelations exist between residuals. For this investigation, it has been utilized from
LM test statistics (thus for first order: LM(1) and for fourth order: LM(4)). If any one of

the null hypotheses of H, : There is no 1% order autocorrelation and H, : There is no

4™ order autocorrelation is rejected, lag length has been increased by one and LM test
has been applied again. This process has been continued until the null hypothesis cannot
be rejected for each order and homoscedastic residuals are obtained. LM(1) and LM(4)
statistics results have been presented in Table 46:

Table 46
LM(1) and LM(4) Statistics for Quarterly Macroeconomic Series
VARIABLES AUXILIARY LAGS LM(1) LM(4)
REGRESSIONS
LNGDP Intercept 2 2.285563 8.015350
(0.1306) (0.0910)
Intercept + Dummies 2 0.728109 4.011422
(0.3935) (0.4045)
'”terceft{;eagmm'es 2 0.018672 5.215494
(0.8913) (0.2659)
LNCONS Intercept 1 1.470532 5.879280
(0.2253) (0.2083)
Intercept + Dummies 2 0.377129 5.110070
(0.5391) (0.2762)
Intercept + Dummies 2 0.461174 6.520621

+ Trend (0.4971) (0.1635)
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Table 46 (Continued)

VARIABLES AUXILIARY LAGS LM(2) LM(4)
REGRESSIONS
LNPRIEQ Intercept 0 0.130705 8.780591
(0.7177) (0.0668)
Intercept + Dummies 1 0.468251 1.220068
(0.4938) (0.8748)
Intercept+Dummies 0 0.693561 4.515437
+ Trend (0.4050) (0.3407)
LNGOV Intercept 1 0.364082 4.615978
(0.5462) (0.3290)
Intercept + Dummies 0 0.798644 2.349286
(0.3715) (0.6718)
Intercept + Dummies 0 0.294179 1.192969
+ Trend (0.5876) (0.8793)
LNEXP Intercept 2 0.924163 9.401415
(0.3364) (0.0518)
Intercept+Dummies 0 0.875675 4.337515
(0.3494) (0.3623)
Intercept + Dummies 2 0.039849 1551871
+ Trend (0.8418) (0.8174)

Note. LM(1) and LM(4) represent LM test statistics investigating the presence of 1% and 4™ order
autocorrelations and the values given in parentheses indicate the significance levels.

As is clear from Table 46 that for selected lags, there are no first order and fourth
order autocorrelation problems for all macroeconomic series.

If looked at the Table 45 results, it is seen that the presence of a unit root at zero
frequency has been accepted for all variables in all three auxiliary regression models.

When t(r,), t(x,) and F(z,,7,) columns are examined, it is concluded that the null

hypotheses that there is a (non-seasonal) unit root at zero frequency and there are
seasonal unit roots at other seasonal frequencies cannot be rejected for three auxiliary

regression models of LNGDP series at 5% significance level. Thus, LNGDP series has a
. . : 1
non-seasonal unit root at zero frequency and seasonal unit roots at semi-annual (E

frequency) and quarterly frequencies. While both LNCONS and LNPRIEQ series have
the zero frequency unit root for three models with deterministic components given in
Table 45, according to the results they both do not include any annual unit root (at
quarterly frequency). For LNCONS series, the presence of semi-annual unit root has
been accepted for two models except the “intercept” model. However, no semi-annual
unit root has been detected in any model for LNPRIEQ series. When looked at the

LNGOV and LNEXP series, both series are seen to include the zero frequency unit root.
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However, while LNGOV series has a seasonal unit root at semi-annual frequency for
two models except the “intercept+dummies” model, LNEXP series rejects the presence

of the semi-annual unit root for all three models. Finally, while LNGOV series has

annual unit roots at quarterly %Gj frequencies for all deterministic models, LNEXP

series has seasonal unit roots at quarterly frequencies for two models except only
“intercept+dummies” model. In conclusion, cointegration relationship will be analysed
at frequencies in which these series are both integrated at the same order. In this case, it
IS necessary to determine which series are integrated of the same order at which
frequencies. In all series, the presence of the zero frequency unit root has been detected
in common. LNGDP, LNCONS and LNGOV series have been found to include
seasonal unit root at semi-annual frequency. On the other hand, it has been determined
that LNGDP, LNGOV and LNEXP series include seasonal unit roots at the quarterly

frequencies%(%). The results of seasonal cointegration analyses of the series at 0, 2

and % (and %) frequencies have been presented in Table 47, Table 48 and Table 49
respectively.

In this application, regression models obtained from the linear components of the
variables that are integrated at the same frequency have been estimated through OLS
procedure. Before applying to cointegration analysis, it is necessary to give the
transformations of variables that will be used in cointegration models. As a matter of
example, it will be sufficient to present only LNGDP series (the other series will be
transformed in the same way with LNGDP):

LNGDR, = (1+ L+ L* + L*)LNGDP
LNGDPR, = —(1— L+ L? — L*)LNGDP
LNGDP, =—(1— L*)LNGDP
LNGDR, =(1- L")LNGDP
Now let us mention about the cointegration models to be used. Seasonal

cointegration has been mentioned in section 5.3 (also look at the sub-section 5.3.1). In
addition, as also summarized by Ayvaz Kizilgol (2011, p. 18), in cointegration analysis
the regression model to be estimated for all variables that are integrated of the same

order at the zero frequency is Y,, = o, Z,, +U,. The residuals (u,) obtained from this

cointegration model will be used in order to estimate auxiliary regression model at the

zero frequency. For semi-annual (}2) frequency, the cointegration model to be used is
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Y, =a,Z, +V, and for quarterly frequencies, itis Y, = 8,7, + 5,Z,,, +W,. Also, the

residuals obtained from these models (v, and w,) will be used for estimating auxiliary

regressions at specified frequencies respectively.

Table 47

Cointegration Test Results at Zero (Long Run) Frequency

Cointegration Analysis: I?e U)'(_:J;groyn Tests for Unit Roots
LGDP and LCONS g in Residuals
Coefficient Deterministic t statistic
Regressand Regressor Components R2 Augmentation DW t (7))
LGDP;; Included 1
LCONS; (goggéggg) C 0.990479 1,4,5 1.998160 -1.936136
LCONS,, (géggﬁg% c.D 0.990498 1 1800828  -2.615745
LCONS,, (iéogigig) ¢.DT 0.990526 1 1892945  -2.725444
Cointegration Analysis: Ffé U);:alésizyn Tests for Unit Roots
LGDP and LPRIEQ 9 in Residuals
Coefficient Deterministic t statistic
Regressand Regressor Components R? Augmentation DW t ()
LGDP;; Included 1
LPRIEQ élgiéégi) Cc 0.879940 1,4,5 2.139510  -3.405938
LPRIEQ,, é'oggég;g) ¢.D 0.880156 1,2, 4 1934500  -1.932861
LPRIEQ,, éf;ggg% ¢.b.T 0.964776 1,4,5,8 2240764  -2.182390
Cointegration Analysis: Fﬁe m;g;;zyn Tests for Unit Roots
LGDP and LGOV g in Residuals
Coefficient Deterministic t statistic
Regressand Regressor Components R 2 Augmentation DW t (7))
LGDP;, Included 1
LGOV,, (g'zggg%i) c 0.942239 1,3,4 1969561  -1.531071
LGOVy, (glgggggg) ¢.D 0.942281 1,3 1.935207 -2.273428
LGOVy (gggggg% ¢.b.T 0.976126 1 1.998045 -1.664541
Cointegration Analysis: Q:Xrlgsa}sggn Tests for Unit Roots
LGDP and LEXPORT g in Residuals
Coefficient Deterministic t statistic
Regressand Regressor Components R 2 Augmentation DW t(r
LGDP;; Included (773)
LEXPORT (41173%?32) C 0.972760 1,2,4 1.982701 -3.079903
LEXPORT,, (411632171%3?) C.Db 0.972768 1,2,4 1989971  -3.085921
LEXPORT,, (gg?ggi) ¢bT 0.978622 1,2 2070897  -3.329934

Note. ' These tests at zero frequency are based on the (ADF) auxiliary regression model

k
AU, = U, , +ijAut—j + €, (here without deterministic components) where U,

=

represents the residuals obtained from cointegration model that are used to estimate this auxiliary
regression model. The distribution of ‘t’ statistic is as characterized in Engel & Granger (1987)
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and Engle & Yoo (1987) (Engle et al., 1993, p. 289). As it is clear, the necessary significant
lagged values of the dependent variable AU, have been added into auxiliary regression model in

order to whiten the residuals (the lagged variables with insignificant coefficients at 5%
significance level have been removed from the model).

2 The values in parentheses are t-statistics.

C, D and T denote constant, seasonal dummies and trend terms respectively.

* The basic hypothesis to be tested is H o - There is no cointegration at zero frequency (z, =0).
® Critical values have been obtained from Engle and Yoo (1987). See Appendix F.

As mentioned before, in order to detect the long-run equilibrium relationship
between the series, first of all it is necessary to determine the stationarity order of the
series. In this application, for investigating the presence of seasonal cointegration
relationship between the series, firstly seasonal unit root test has been applied in order
to make inference about at which frequencies there are unit roots if they exist. The
series discussed here have quarterly frequencies. Therefore, HEGY seasonal unit root
test which is developed by Hylleberg et al. (1990) has been applied in order to detect
seasonal unit roots and general results have been presented in Table 45 for three models
with deterministic components that are “C”, “C,D”, “C,D,T”. Now, Table 47 presents
the cointegration test results at zero frequency. As a result, when cointegration test
results are evaluated at the zero frequency, although the explanatory variables that take
place in the cointegrating regression have been found to be statistically significant, no
cointegrating relationship has been found between LNGDP and LNCONS, LNGDP and
LNPRIEQ, LNGDP and LNGOV, LNGDP and LNEXP at 5% significance level in the
long-run.

LNGDP and LNCONS series have been found to be integrated of the same order
for “C,D” and “C,D,T” models at 2 frequency. Also, LNGDP and LNGOYV series have
been found to be integrated of the same order for “C” and “C,D,T” models at 2

frequency. Therefore, cointegration analysis results at /2 frequency have been shown in

Table 48 for LNGDP, LNCONS and LNGOV series.
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Table 48
Seasonal Cointegration Test Results at Semi-Annual ( /) Frequency
Cointegration Analysis: Auxiliary Analysis of the residuals
LGDP and LCONS Regression
Regressand Coefficient Deterministic R?2 t statistic
Regressor Components Augmentation DW t(7,)
LGDP,, Included 2

LCONS,; 0.734494 C,D 0.339386 1,4 1.926116 -1.649370
(5.536534)

LCONS,; 0.743244 C,D,T 0.343757 1,4 1.904166 -1.607737
(5.543788)

Cointegration Analysis: Auxiliary Analysis of the residuals

LGDP and LGOV Regression
Regressand Coefficient Deterministic R?2 t statistic
Regressor Components Augmentation DW t(r7,)
LGDPy Included 2

LGOVy -3.577777 C 0.170511 1,2,4 1.993776 -1.179657
(-3.598662)

LGOVy 0.096323 C.D,T 0.979684 0 2.073641 -3.411280
(0.537327)

Note. *In lag augmentations, only significant lags have been added into the auxiliary regressions
(insignificant lags have been removed) in order to get white noise residuals.
®These tests at semi-annual frequency are based on the auxiliary regression

k
(v, +ut_1)=7z2(—ut_1)+2bj (Ut—j +Ut—j—l)+et (here without deterministic components) where v,
j=1
represents the residuals obtained from cointegration model that are used to estimate the
auxiliary regression models. The distribution of ‘t’ statistic is as characterized in Engel &

Granger (1987) and Engle & Yoo (1987) (Engle et al., 1993, p. 290). For critical values see
Appendix F.

*The basic hypothesis to be tested is H, :There is no cointegration at semi-annual frequency
(7[2 =0).

When Table 48 results are compared to the Engle and Yoo (1987) critical values for
5% significance level, no cointegration relationship has been found between LNGDP &
LNCONS series and LNGDP & LNGOV series at % frequency. Thus, these series in
interest do not seem to be cointegrated at the semi-annual frequency.

Table 49 presents seasonal cointegration test results at quarterly % (%) frequencies.
According to the Table 49 results, it can be said that there has been found a
cointegration relationship between LNGDP and LNGOV series at quarterly frequencies
Y4 (and %) for only the model with constant and seasonal dummies (“C,D”). In other
saying, the null hypothesis saying that there is no cointegration at quarterly frequencies
has been rejected with a significant joint F statistic of 12.19361. On the other hand, no
cointegration relationship has been detected for no models between LNGDP and
LNEXP series at %4 (and %) frequencies.
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Table 49
Seasonal Cointegration Test Results at % (74 ) Frequencies
Cointegration Analysis: Auxiliary Analysis of the
LGDP and LGOV Regression residuals
Regressand Coefficient Deterministic Augmenta- t statistic t statistic F
Regressor Components 2 tion statistic
Included R t(73) t(z,)
LGDPg3; LGDP3:.1 T3 M TT,
LGOV3 0.786609 0.903772 Cc 0.841278 1 -2.712937 -1.646483 5.045242
(11.53730)  (13.53999)
LGOV3 0.532680 -0.182431 C,D 0.949005 1,2 -4.866891* 0.559515 12.19361*
(4.450165)  (-1.536042)
LGOV3 0.780067 0.896061 - 0.839207 1,2 -2.887014 -1.199424 5.244342
(11.52444)  (13.55706)
Cointegration Analysis: Auxiliary Analysis of the Residuals
LGDP and LEXPORT Regression ‘HEGY’ test
Regressand Coefficient Deterministic Augmenta- t statistic t statistic F
Regressor Components 2 tion statistic
Included R t(7;) t(z,)
LGDPy LGDPy4 Ty N7,
LEXPORT,  1.108250 -0.007793 Cc 0.884680 1,4,6,8 -2.497336 -1.769538 5.254946
(21.79906)  (-0.156570)
LEXPORTs;  0.901760 -0.073642 C,D 0.890232 1,4 -2.542985  -2.241085*  5.692280
(5.869706)  (-0.483110)
LEXPORT 3 1.111528 -0.003930 - 0.884001 1,4,56 -2.312909 -1.327629 3.454144

(22.10056)  (-0.080016)

Note. ! These tests at ' (and % ) frequencies are based on the auxiliary regression
k
(W, +W,_,) =7 (-W,,) + 7, (W) + ij (W, +W_;,)+e, (here without deterministic components)
j=L

where W, represents the residuals obtained from cointegration model that are used to estimate the

auxiliary regression models (Engle et al., 1993, p. 290).
2"C” denotes constant, “D” denotes seasonal dummies and “— denotes no deterministic component.
¥ denotes significant values at 5% significance level.
* Critical values have been obtained from Engle et al. (1993). See Appendix F for critical values.

®>The basic hypothesis to be tested is H, :There is no cointegration at % (and %) frequencies

(myn 1, =0).

6.4. Determining the Type of Seasonality for Quarterly Turkish Unemployment
Series

In this application, it has been tried to make inference about whether the seasonal
pattern of quarterly total harmonized unemployment series (units: persons) for Turkey is
deterministic or stochastic. The unemployment series (namely UNEMP here) will be
examined over 1988Q1-2014Q4 period (108 observations) and the unemployment data
have been obtained from Organisation for Economic Co-operation and Development as

not-seasonally adjusted.
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UNEMP
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Figure 17. Graph of total harmonised unemployment series

In Figure 17, UNEMP series has been graphed against years. In order to obtain
healthy results, the transaction of taking logarithm has been applied to the series and
this new logarithmic UNEMP series (namely LOGUNEMP) has been given in Figure
18.
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Figure 18. Graph of logarithmic unemployment series

It can be observed that logarithmic UNEMP series seems to display some seasonal
pattern. In order to find out if UNEMP series displays deterministic or stochastic
seasonality, t-statistics and Q-statistics which take place in subsection (5.2.4.) have been

examined. As mentioned before, for testing if a series follows a deterministic or

stochastic seasonal pattern, the hypotheses to be constructed are the null hypothesis H,

which implies the presence of stochastic seasonality and the alternative hypothesis H,
which implies the presence of deterministic seasonality. For the acceptance of stochastic
seasonality, there are two conditions that should hold: the first one is the acceptance of
the hypothesis saying that all « coefficients (in equation 5.40) are equal to each other

and the second one is the acceptance of the hypothesis in which all 7z coefficients (in
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equation 5.40) are equal to zero. In case these two conditions are satisfied, it is
concluded that there is stochastic seasonality in the series.

Table 50
HEGY Stochastic Seasonality Test for Unemployment Series

Unrestricted Model
Dependent Variable:

Y4t (: Yi— yt—4)

Restricted Model:
Dependent Variable

Y4t (: Yi— yt—4)

Variables Coefficient t-statistic Coefficient t-statistic
D1 1.085887 1.976383 0.006065 0.346905
D2 0.987717 1.793923 0.000907 0.052881
D3 1.069343 1.950722 0.008263 0.481820
D4 1.071505 1.952493 0.005868 0.341765
A -0.018080 -1.910056
Y, 4 -0.403887 -3.820225
Ysis -0.339509 -3.469135
\ -0.370895 -3.830075
A 0.266355 2.630320 0.818124 13.70320
Sum Squared Resid 0.486572 0.746470
n 103 103
Q 12.55231
taﬂY2 =3.816143 taras =-3.18582
tal_% =0.639368 taz_aA =-3.29757
tar% = 0.550436 tar% =—-0.08282

Note. * Y, represents logarithmic unemployment series.

2 For @ =5% significance level, critical t-value and F value have been taken as 1.984 and
2.46 respectively for T=100 observations.
®n shows the number of observations; D1, D2, D3 and D4 are seasonal dummies for

quarterly series. The coefficients of Y, ,, Y, ,, Y;,and Y, , are 7y, 7,,75, 7,

values.

* Maximum lag number has been taken as 4 in lag augmentation and only significant lags
among four lags have been included into the regressions and insignificant lags have been
removed. In the models given in this table, only one lagged value of the dependent

variable (Y, ;) has been added.

Table 50 presents HEGY stochastic seasonality test results by using unrestricted

and restricted models. In the table, equality of « coefficients has been tested by

calculating t, .t t t t t

ay ' tay—ag T o=y O~y ) O —0, ' 03—,

, statistics and restricted model has
been formed by the equality =, =z, =7, =7, =0. Since some t-values (testing o

coefficients in doubles) are significant and some are not (briefly, not all of t-values are

insignificant), the first condition saying that all « coefficients are equal to each other
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has not been satisfied for unemployment series. At the same time, since Q statistic
(Q=12.55231) is greater than F critical value, the second condition saying that all 7z ’s
are equal to zero does not hold. Therefore, according to the test results stochastic
seasonality does not exist in this series (that is, the rejection of the null hypothesis).

In this case, we should detect the presence of deterministic seasonality and if there
are seasonal unit roots or not. The test results for this examination have been given in
Table 51 and Table 52.

Table 51
Unrestricted Models for Deterministic Seasonality in Unemployment Series

Unrestricted Models- Dependent Variable Y, (= Y, — Y, 4)

Variables Model 1 Model 2 Model 3
Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic
C 0.668284 1.058282 1.071505 1.952493 3.140335 3.861960
Ylt—l -0.011401 -1.047051 -0.018080 -1.910056 -0.054956 -3.842289
Y2 1 -0.186721 -2.128281 -0.403887 -3.820225 -0.359729 -3.548019
Y3 s -0.176010 -2.148737 -0.339509 -3.469135 -0.337346 -3.625700
Y3 1 -0.169071 -2.042294 -0.370895 -3.830075 -0.299038 -3.161835
D1 0.014382 0.550283 0.017476 0.702829
D2 -0.083788 -3.295832 -0.072619 -2.975929
D3 -0.002161 -0.082726 -0.004297 -0.172932
t 0.001198 3.317023
Y4 1 0.599778 6.079347 0.266355 2.630320 0.338956 3.433257
Y, s -0.164306 -2.611528
Sum 0.541177 0.486572 0.435097
Squared
Resid
n 100 103 103

Note. " t denotes trend term.
2Model 1 includes only constant term, Model 2 includes both constant and seasonal dummies and
Model 3 includes constant, seasonal dummies and trend.
®First and fourth lagged values of the dependent variable have been added into Model 1 and only
first lagged value of the dependent variable has been added into both Model 2 and Model 3.
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Table 52
Restricted Models for Deterministic Seasonality in Unemployment Series

Restricted Models - Dependent Variable Y, (=Y, — Y, 4)

Variables Model 1 Model 2 Model 3
Coefficient  t-statistic Coefficient t-statistic Coefficient  t-statistic
C 0.645069 0.991028 1.367346 2.246100 3.831040 4.422681
Y, -0.010992  -0.979343 -0.023884 -2.279054 -0.067730  -4.456102
Y, -0.170174  -1.880700 -0.411364 -3.468801 -0.355139  -3.166997
D1 0.046257 1.756732 0.040051 1.619330
D2 -0.004276 -0.190925 -0.003297  -0.157027
D3 0.049303 1.879366 0.043377 1.760631
T 0.001470 3.779968
Y, 4 0.795275 10.64539 0.626631 7.600825 0.670017 8.577214
Yiia -0.213220  -3.407657
Sum Squared 0.590563 0.625524 0.543744
Resid
N 100 103 103
4.243434 13.42195 11.6114

Note. I First and fourth lagged values of the dependent variable have been added into Model 1 and only
first lagged value of the dependent variable has been added into both Model 2 and Model 3.

Z In this table, restricted models have been formed by assuming 7, =z, =0.

Table 53
Decision Table for Unemployment Series
T, Critical T, Critical Q statistic Critical
t--statistic value t-statistic value value
Model 1 -1.047051 -2.88 -2.128281 -1.95 4.243434 3.08
H, :ACCEPT H, :REJECT H, :REJECT
Model 2 -1.910056 -2.95 -3.820225 -2.94 13.42195 6.57
H, :ACCEPT H, :REJECT H, :REJECT
Model 3 -3.842289 -3.53 -3.548019 -2.94 11.6114 6.60
H, :REJECT H, :REJECT H, :REJECT

Note. Critical values have been obtained from Hylleberg et al. (1990, pp. 226-227) for 5% significance
level and N=100.

t-values for z, and 7, in Table 53 have been taken from the unrestricted models in

Table 51 for three models in order to test the presence of non-seasonal (zero frequency)
and semi-annual ( %2 frequency) unit roots, respectively. Q statistics that take place in

Table 53 have been taken from the restricted models in Table 52 (In Table 52, models

are called “restricted” because of assuming 7, =7, =0 in order to test annual unit

roots at quarterly frequencies %Gj jointly). According to the Table 53, while the
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presence of nonseasonal unit root (7, =0) in unemployment series is accepted for

Model 1 (constant) and Model 2 (constant and seasonal dummies), no semi-annual and
annual seasonal unit roots have been detected for no models. Hence, seasonal
fluctuations in the series have not been able to emerge in the six-month and one-year
intervals. In other saying, there is a non-seasonal unit root in the series.

Apart from the t-statistics and Q statistics, it can also be looked at CH Test results
in Table 54 to decide about the seasonal pattern of the series. As known, the null
hypothesis of CH test is the stationarity of all seasonal cycles (indicating to the
deterministic seasonality) and the alternative one is the presence of seasonal unit root
(indicating to the presence of stochastic seasonality). The results reveal that since
calculated L-statistic (1.496) is greater than all 1%, 5% and 10% critical values (known
that the distribution of L-statistic is Von Mises distribution), the null hypothesis is
rejected and thus it is concluded that seasonal pattern is not deterministic (indicating to
the presence of seasonal unit root) which is completely a different conclusion when
compared to the previous analysis which is based on the restricted and unrestricted

models with t and Q statistics saying that there is no stochastic seasonality in the series.

Table 54
CH Test Results for Unemployment Series

Tested Frequencies L-Statistic Critical Values
1% 5% 10%
T 1.496 1.35 1.01 0.846
J— , 72'
2

As a result, it can be said that two methods say different things for detecting the
type of seasonal pattern of the unemployment series. It is not certain to say only one
type of seasonal behaviour for the series. Unemployment series may have both a
deterministic and stochastic structure.

6.5. Modelling Quarterly Gross Domestic Product in Turkey

In this application, it has been aimed to decide about which seasonal pattern GDP
series displays over 1998Q1-2014Q4 by recoursing to different tests. Quarterly Turkish
real GDP series (expenditure based) has been taken in millions of national currency (at
constant 1998 prices). Data for GDP have been obtained from CBRT. In order to
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linearize exponential growth, the logarithm of the series has been taken (namely, Ingdp).
The raw and logarithmic real GDP series have been graphed in Figure 19.

GDP LNGDP
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Figure 19. Graphs of original (a) and logarithmic (b) gdp series
Logarithmic graph (b) in Figure 19 is the indicator for an upward trend implying
that this series is not stationary (it includes a unit root) under the given period. In
addition, the presence of seasonal components can be easily detected from this graph. In

that case, in order to remove the growth trend from the series, the first difference of the

logarithmic GDP series can be taken in the form of Alngdp =Ingdp—In gdp(-2).

Differenced LNGDP
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Figure 20. Graph of first-differenced Ingdp series

The graph of first-differenced Ingdp series in Figure 20 implies once again the

presence of some seasonal pattern of Turkish real gdp series.
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LNGDP by Season
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Figure 21. Seasonal means of Ingdp series

We can also compare four seasons for Ingdp series. It is clear to see from the Figure
21 that the seasonal peak is observed in the third quarter. Quarters two and four seem as
if they yield approximately the same amount of output. The difference between the four
seasons can be clearly seen from the Figure 21: Seasonal mean in quarter 1 is the
lowest, while the mean for quarter 2 and 4 are in the middle and that of quarter 3 is the

highest.

LNGDP by Season
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Figure 22. Graph of Ingdp series

On the other hand, it can be said that Figure 22 implies that a seasonal deterministic
model may seem not to be suitable for Turkish real GDP series over the given period

because of not having a time constant mean for all of the four quarters.
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FD by Season
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Figure 23. Graph of first-differenced Ingdp series

In Figure 23, first-differenced Ingdp series (namely, FD) has been graphed. For
Figure 23, it can be said that quarterly means may be accepted as stationary and with
this first-differencing, the growth trend effect has been removed from the gdp series.
Depending on these, a seasonal deterministic model with time constant means for all of
the four quarters may be accepted as a suitable one for the first differenced real gdp
series. Thus, primarily it has been aimed to adopt a seasonal deterministic model for this
transnformed gdp series.

As mentioned in Chapter 4.2, there are two representations of a deterministic
seasonal model: Dummy variable representation and trigonometric representation.
Firstly, by using the most frequently used dummy variable representation which takes
place in subsection 4.2.1 and is shown as in Equation (4.1)

Y, =gy555t + 2, ’ t=1..... T 4.1)
we are trying to investigate about the presence of deterministic seasonality. This
analysis has been executed for the first-differenced real gdp series (dependent variable:
dingdp=Ingdp-Ingdp(-1) ). Application results of (4.1) have been presented in Table 55.
Accrding to the results in Table 55, all the seasonal dummy variables from D1 to D4 for
each of the four quarters have been found to be highly significant. R-squared value of
0.884956 reveals that the explanatory power of the model is very good as a measure of
goodness of fit since it is very close to 1. In addition, DW statistic (1.972045) that is
close to 2 shows that there is almost no autocorrelation problem. Therefore, it can be
concluded that a dummy variable representation as a seasonal deterministic model can

be appropriate for Turkish GDP series.
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Table 55
Dummy Variable Representation of GDP Series

Dependent Variable: DLNGDP

Variable Coefficient Std. Error t-statistic Prob.
D1 -0.109426 0.009930 -11.01963 0.0000
D2 0.080682 0.009634 8.375044 0.0000
D3 0.145937 0.009634 15.14865 0.0000
D4 -0.079901 0.009634 -8.293962 0.0000

R-squared: 0.884956  Adjusted R-squared: 0.879478  DW stat: 1.972045

Now, let us have a look at the trigonometric representation for GDP series. Recall that

trigonometric representation had been given in Equation (4.6) as

S/2
Y, = g+ Z{ak cos(%ﬂkt] + B, sin[%ﬂktﬂ +2,
k=1

and the relationship between the parameters of dummy variable and trigonometric

representation can be associated as in Equation (4.11) as follows:

n=ut+p-a
Vo= H—O0 T,
Vs=u—p—a,

Vo =HTO T,
Equation (4.11) can also be represented in a different notation as in Equation (4.12):

I'=R.B,
1 0 1 -1
, , 1 -1 0 1
where I'=(y,,7,,75.74) » B=(w, ey, B,2,)" and R= .
1 0 -1 -1
1 1 0 1

Here T =(y,,7,.7s,7,) matrix is composed of the seasonal means in the dummy

variable representation for any season s.
By looking at the Table 55, T" matrix which gives the seasonal means in the dummy

variable representation can be expressed as,

%) (—0.109426
|7 |_| oo08oss2
7. | | 0.145937
7.) | -0.079901

Given R in quarterly case in (4.13), and the matrix of the parameters, B that is

associated with the trigonometric representation can be calculated as:
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u 025 025 025 0.25|(-0.109426 0.009323
B - a | R = 0 -05 0 0.5 | 0..080682 _ —0.0802915

B 0.5 0 -05 O 0.145937 —-0.1276815

a, -025 025 -0.25 0.25|\ -0.079901 —0.0089325

Now, let us verify this result by calculating seasonal means matrix I":

7, = 1+ B, —a, =0.009323 + (-0.1276815) — (—0.0089325) = —0.109426
v, = H—a, +a, =0.009323 - (-0.0802915) + (—0.0089325) = 0.080682
73 = u— P —a, =0.009323 - (-0.1276815) — (—0.0089325) = 0.145937
V. = U+a, +a, =0.009323 + (—0.0802915) + (—0.0089325) = —0.079901
And now we can verify the value of overall mean x of y, in (4.1). As mentioned

before, the expected value of y, had been given in the form of:

1 S
E(yt) =ﬂ=§z}/s
s=1

Thus, the overall mean is calculated as:

E(y,) = %(—0.109426 +0.080682 + 0.145937 — 0.079901) = 0.009323.

After all these, let us calculate the deterministic seasonal effect for season s which is

denoted by m, and is found by using the formula m, =y, —x and verify that

S
summation of deterministic seasonal effects Z m, = 0 are zero:
s=1

m, =y, —u =-0.109426 — 0.009323 = -0.118749
m, =y, — 1 =0.080682 —0.009323 = 0.071359
m, =y, — 1 =0.145937 — 0.009323 = 0.136614
m, =y, — x =-0.079901-0.009323 = —0.08922

With a summation of deterministic seasonal effects getting to zero that is shown as

m, +m, + m, +m, =-0.118749+0.071359 + 0.136614 — 0.08922 =0,

these deterministic seasonal effects can be used to assess and verify the parameters

a,,a, and £, (which had been found in B matrix) in that way:
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4
a, = %st cos[%) — %(—m2 +m,) = %(—0.071359 +(~0.08922)) = —0.0802915
=1
13 1
a, = Zst cos(sz)= Z(—m1 +m, —m, +m,)
=1
_ %(—(—0.118749) +0.071359 — 0.136614 + (~0.08922)) = —0.0089325

4
B = %Z m, sin(%) = %(ml -m,) = %(—0.118749 —0.136614) = —0.1276815.
s=1

Table 56
DHF Test Results for Quarterly GDP Series

Dependent Variable: D4Z

Variable Coefficient Std. Error t-statistic Prob.
D1 0.264860 0.378433 0.699884 0.4869

D2 0.251822 0.380409 0.661977 0.5108

D3 0.252065 0.383114 0.657936 0.5133

D4 0.262699 0.381165 0.689201 0.4936
LNGDP(-4) -0.014497 0.022497 -0.644416 0.5220
D4Z(-1) 1.024267 0.126176 8.117793 0.0000
D4Z(-2) -0.339303 0.123893 -2.738689 0.0083

R-squared: 0.645741  Adjusted R-squared: 0.607095 DW stat: 2.030687

In Table 56, DHF test results have been presented for quarterly GDP series. As
recalled from Chapter 5, DHF test can be parameterized as in Equation (5.9):
AY, = oy, +&
Here the null hypothesis of seasonal integration is o, =0 and the alternative of a
stationary stochastic seasonal process implies «, <0 (Baltagi, 2001, p. 661). Here, the

dependent variable has been given as D4Z (LNGDPR —LNGDR_,). LNGDP(-4)

variable represents y, , in Equation (5.9). Dummy variables, first and second lagged

values of the dependent variable D4Z (which are D4Z(-1) and D4Z(-2)) have been
added into the DHF test regression as shown in Table 56 and lags have been determined
in a way to get white noise residuals (firstly, it has been started from the Lag 1 and lags
have been increased by one until the autocorrelation and heteroscedasticity problems are
resolved). Here, critical t-value of the DHF test statistic has been taken as equal to the
ADF test statistic. Thus, ADF critical value that is -1.95 has been used. According to
this critical value, since t-value of LNGDP(-4) variable which is -0.644416 is very small

in absolute value when compared to the critical value -1.95, it is concluded that the null
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hypothesis cannot be rejected (where the null hypothesis is H, :y, ~ SI(2) (Seasonal
integration of order one, meaning that simultaneous existence of all four roots in
quarterly series), while the alternative one is H, : y, is a stationary stochastic seasonal

process). Therefore, DHF test results show that GDP series has a seasonal integration of
order one process. Based on this result, it can be said that GDP series can also be
modelled as a SARIMA model.

Table 57
HEGY Test Results for Quarterly GDP Series

Dependent Variable: D4Z

Variable Coefficient Std. Error t-statistic Prob.
C 0.094024 0.345823 0.271886 0.7868
D1 0.003348 0.032161 0.104109 0.9175
D2 0.062682 0.040941 1.531031 0.1318
D3 0.088378 0.029407 3.005341 0.0041
Z11 -0.001789 0.005081 -0.352000 0.7263
Z21 -0.364257 0.159460 -2.284324 0.0265
Z31 -0.187522 0.091489 -2.049658 0.0455
Z41 -0.214609 0.090537 -2.370408 0.0215
D4Z(-1) 0.542410 0.175555 3.089690 0.0032
D4Z(-2) -0.212251 0.125955 -1.685133 0.0980

R-squared: 0.729045  Adjusted R-squared: 0.682149 DW stat; 2.037153

Table 57 presents HEGY test results for quarterly GDP series. As is seen clearly,
first and second lagged values of the dependent variable have been added into the
regression in order to get white-noise residuals. Here, the null hypothesis for HEGY test
means that all four roots are simultaneously equal to zero (simultaneous existence of
four roots, that is 7, =7, = 7, = 7, =0). The hypotheses to be tested in the HEGY test
equation have been given in Equation (5.46). In Table 57, coefficients for Z11, Z21,

Z31, 741 give x,,7,, 74,7, values. In order to decide about seasonal integration of
order one, all of the four hypotheses (7, =0,7, =0,7, =0,7, =0) have to be accepted

separately. For T=100 observations, critical HEGY values have been obtained from
Hylleberg et al. (1990, pp. 226-227) for constant, seasonal dummies and no trend

models at 5% significance level. These critical values are -2.95, -2.94, -3.44 and -1.96

respectively for =,,7, 7, and x,. When t-statistics for =, 7,7, and =, are
compared to the critical values, it is concluded that =, =0, 7, =0, 7, = 0hypotheses

cannot be rejected among four hypotheses. Only 7, =0 hypothesis is rejected. In other
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saying, we can mention about the presence of unit roots at 0, 2 and ' frequencies.
However, there is no % frequency unit root in the series. Hence, since not all four unit
roots exist according to the HEGY test results (the presence of all of the four roots is not
accepted), it can be said that GDP series cannot be described by a seasonal integration
of order one process. Therefore, the results for DHF test and HEGY test have differed.
When looked at the seasonal deterministic model representations and DHF and
HEGY test results, the general result can be expressed as modelling first-differenced
real GDP series as a seasonal deterministic model would be more suitable compared to
a SARIMA model. Even though the results for dummy variable representation are
positive for first-differenced GDP series, Figure 21 and Figure 22 imply that a seasonal
deterministic model for GDP may not be suitable. Nevertheless, it is not certain to say
about the seasonal pattern of GDP series, since DHF and HEGY test results also differ.
According to the final results, it can be said that GDP series can be represented in both

deterministic and stochastic structures depending on this uncertainty.

6.6. Monthly HEGY Seasonal Unit Root Test Application for Exports and Imports
in Turkey

In this application, it has been aimed to detect at which frequencies seasonal unit
roots exist for seasonally unadjusted monthly exports and imports series for 1975M1-
2015M1 period. Data for the value of exports of goods and imports of goods have been
obtained from IMF/IFS (International Monetary Fund/International Financial Statistics)
and taken in units of Dollars.

Testing monthly seasonal unit roots have been summarized in Table 7 of Chapter 5.
In this analysis, only significant lags have been added into the five auxiliary regression
models (with only constant; constant and trend; constant and dummies; constant, trend
and dummies; no deterministic components) to get white-noise residuals (that is,
insignificant lags have been removed until all selected lags become significant).

Monthly HEGY seasonal unit root test results for exports series have been given in

Table 58 and selected lags for HEGY regressions in Table 58 have been presented in

Table 59. As well known, the hypotheses of 7, =0 and z, =0 are tested by t-test and
the other five hypotheses which are 7,=7,=0, 7y=7,=0, =n,=m,=0,

7y =7, =0 and 7, =, =0 are tested jointly by F-test.
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Table 58
HEGY Monthly Seasonal Unit Root Test Results for the Value of Exports of Goods
Series
. . . Estimates Estimates for
Auxiliary Estimates for  Estimates for  Estimates for for the the Model
. the Model the Model the Model . .
Regression Seasonal - - - Model with with No
with with with
Null Frequency Constant, Constant, No
Constant Constantand  Constant and
Hypotheses ] Trend and Trend and
Trend Dummies ; .
Dummies No Dummies
T, = 0 0 -1.682* -2.150* -1.539* -1.988* 4.659
T, = 0 T -4.861 -4.823 -5.541 -5.558 -4.831
Ty =7, = 0 wl?2 10.079 9.725 18.870 18.874 10.089
Ty =g = 0 2713 16.058 15.879 35.386 35.858 15.867
T, =g = 0 7l3 14574 14.960 42.536 43.278 14.418
Ty =T = 0 5716 15.591 14.920 27.114 26.721 15.521
my=m,=0  7/6 8.334 8.543 9.236 9.392 8.267

Note. * * denotes insignificant estimates (*p>.01 and .05) at both 1% and 5% significance levels
2 See Monthly HEGY Critical Values in Appendix G .

Table 59
Selected Lags for HEGY Monthly Seasonal Unit Root Test on Exports Series

Models  Selected Lags Estimate Standard Error  t-value Prob (> |t|)
Lag.1 0.346 0.047 7.418 0.000
Lag.2 0.148 0.046 3.230 0.001
Lag.6 0.083 0.037 2.272 0.024
Lag.11 -0.144 0.031 -4.654 0.000
Lag.1 0.345 0.047 7.416 0.000
cT Lag.2 0.151 0.046 3.305 0.001
Lag.6 0.095 0.037 2.561 0.011
Lag.11 -0.130 0.032 -4.106 0.000
Lag.1 0.314 0.042 7.505 0.000
CD Lag.6 0.119 0.036 3.353 0.001
Lag.9 -0.086 0.041 -2.125 0.034
Lag.11 -0.179 0.046 -3.897 0.000
Lag.12 0.106 0.041 2.598 0.010
Lag.1 0.314 0.042 7.520 0.000
CDT Lag.6 0.127 0.036 3.544 0.000
Lag.9 -0.080 0.041 -1.960 0.051
Lag.11 -0.175 0.046 -3.804 0.000
Lag.12 0.112 0.041 2.747 0.006
Lag.1 0.351 0.047 7.498 0.000
) Lag.2 0.150 0.046 3.258 0.001
Lag.6 0.081 0.037 2.195 0.029
Lag.11 -0.136 0.031 -4.432 0.000

Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables and

“-” denotes no deterministic components.
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If Table 58 is examined thoroughly, the results for the hypothesis 7z, =0 show that
the presence of the zero (non-seasonal) frequency unit root (the null hypothesis of
7, =0) cannot be rejected at 1% and 5% significance levels for all deterministic models
(except no deterministic component model). Thus, it can be said that exports series is
non-stationary at zero (long-run) frequency. When the results for other hypotheses
except 7z, =0 are examined, these hypotheses implying the presence of a unit root at

seasonal frequency are seen to be rejected for all deterministic models for 1%, 5% and

10% significance levels and hence the conclusion is that there are no seasonal unit roots

at ﬂ,iz,iz—”,iz,is—” and +~ seasonal frequencies.
2 3 3 6 6
Table 60

HEGY Monthly Seasonal Unit Root Test Results for the Value of Imports of Goods
Series

Auxiliary Seasonal Estimates Estimates  Estimates for Estimates for Estimates for
Regression Frequency for the for the the Model the Model with  the Model with
Null Model Model with Constant Constant, No Constant,
Hypotheses with with and Dummies Trend and No Trend and
Constant  Constant Dummies No Dummies
and
Trend
7. =0 0 -0.199* -3.338* -0.279* -3.246* 3.727
1
— T -3.681 -4.618 -4.740 -4.501 -3.679
7, =0
T, =7, = 0 rl2 11.863 14.277 30.709 30.905 11.889
Te =g = 0 2713 9.843 13.497 32.676 30.831 9.847
T, =7y = 0 713 13.570 15.494 51.398 51.756 13.583
Ty =My = 0 5716 13.317 14.459 18.876 19.606 13.318
M =T, = 0 7l6 18.707 25.713 39.387 38.754 18.728

Note. * * denotes insignificant estimates (*p>.01 and .05) at both 1% and 5% significance levels
% See Monthly HEGY Critical Values in Appendix G .

Monthly HEGY seasonal unit root test results for imports series have been
presented in Table 60 and selected lags for HEGY regressions in Table 60 have been
presented in Table 61. Table 60 results are the same as Table 58 results. It is clear to see
that as in the case of exports series, once again the unit root hypothesis with zero
frequency (that is, z; =0) cannot be rejected for all deterministic models (except no
deterministic component model). Thus, imports series is also not stationary and with an
examination of other hypotheses except z, =0 in Table 60, it is concluded that there

are no seasonal unit roots at no seasonal frequency as in the exports series as a result of
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F-calculated values being greater than the critical table values (therefore, the null
hypotheses are rejected).

Table 61
Selected Lags for HEGY Monthly Seasonal Unit Root Test on Imports Series

Models  Selected Lags Estimate Standard t-value Prob (> |t|)
Error

Lag.1 0.151 0.048 3.129 0.002
C Lag.2 0.172 0.046 3.696 0.000
Lag.12 -0.110 0.031 -3.602 0.000
Lag.1 0.169 0.048 3.543 0.000
CT Lag.2 0.195 0.047 4.152 0.000
Lag.7 -0.073 0.037 -1.969 0.050
cD Lag.1 0.106 0.047 2.244 0.025
’ Lag.7 -0.094 0.032 -2.959 0.003
Lag.1 0.118 0.047 2.497 0.013
CDT Lag.7 -0.081 0.039 -2.063 0.040
Lag.12 0.046 0.035 1.308 0.191
Lag.1 0.151 0.048 3.132 0.002
- Lag.2 0.172 0.046 3.694 0.000
Lag.12 -0.111 0.030 -3.648 0.000

Note. “C” denotes constant term, “T” denotes trend, “D” denotes seasonal dummy variables and
“-” denotes no deterministic components.

If we take both exports and imports series into consideration, it can be concluded
that both series include a non-seasonal unit root and no seasonal unit roots. Based on
this, seasonal differencing is not required for two series and since they are non-
stationary, their first differences have to be taken. Briefly, there is no need to apply the
seasonal difference filter (1—L'?)for two series and seasonal cycles are mostly in a

deterministic structure.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

In this study, various seasonality analyses have been conducted for some
macroeconomic variables. In the first part of the study, why the concept of seasonality
is important, what the negative aspects of ignoring the presence of seasonality are, what
the structural features of the series that are subject to seasonality are will be examined,
the importance of detecting what kind of seasonality (deterministic or stochastic) exists
in the data worked in modelling seasonality for conducted analyses, methods related to
seasonal integration and seasonal unit root analyses will be presented. Since most time
series display seasonality feature substantially and seasonal unit root analyses will be
conducted through HEGY procedure which is the most popular approach of seasonal
unit root analyses have been expressed.

In the second part of the study; various studies concerning seasonal patterns,
seasonal cointegration and seasonal integration (seasonal unit roots), modelling seasonal
behaviour of various macroeconomic series, the comparison of seasonal cycle and
business cycle and the detection of deterministic and stochastic seasonality have been
summarized.

In the third part of the study, the concept of time series has been introduced since
seasonality is a component of time series and also what the seasonal adjustment is,
various seasonality tests and theoretical structures of various seasonal processes
(stochastic stationary seasonal processes, nonstationary unit root processes, SMA and
SARIMA models and so on) have been explained.

In the fourth part; the concept of deterministic seasonality, its two representations
which are dummy variable and trigonometric representations, deterministic seasonality
tests which are CH test, Caner test and Tam Reinsel test, asymptotical features of
seasonal random walk have been presented in details by considering deterministic and
stochastic seasonality together.

In the fifth part; economic theory has been put forward in order to set light to the
route to be followed in practice. Various tests concerning how seasonal integration
orders will be determined have been presented by taking the study of llmakunnas (1990)
as basis. In addition; various seasonal unit root tests (DHF, HEGY, KUNST, OCSB
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etc.) based on quarterly-monthly-bimonthly-weekly-biannual data, frequencies of
seasonal unit roots and filters and tested hypotheses corresponding these frequencies
and seasonal cointegration have been given place in details.

In the sixth part, various seasonality analyses have been applied to some
macroeconomic variables. In the first application of this part, it has been tried to model
monthly inflation rates by utilizing from SARIMA approach that considers both
seasonal and nonseasonal behaviour in Turkey for 1995:1-2015:3 period. When looked
at the ACF and PACEF of the series, seasonal lags (12, 24, 36, 48) have been found to be
significant. Depending on this, in order to find the best-fitted SARIMA model, the
presence of seasonal unit roots has been checked for the nonstationary inflation series.
For the monthly HEGY seasonal unit root test, three different lag order selection
methods have been used (selection of significant lags, AIC, BIC). As a result, all three

methods have showed only the presence of conjugate complex seasonal unit roots at
J_r%frequencies corresponding to (2,10) cycles per year and it has been concluded that

seasonal cycles mostly display a deterministic structure. Hence it is not required to

apply seasonal difference operator (1— L*?) to inflation series. Instead, depending on the
J_r% frequencies, inflation series has been transformed by the necessary filter

corresponding to these frequencies which is (1—L+L?)and since it includes zero

frequency unit root, transformation of the series has been (1-L)(1—L+L?). In

addition, CH test results (with L statistic: 2.005) have also revealed that seasonal pattern
is deterministic. This result is seen to be consistent with the HEGY result. According to
the OCSB and CH tests, the order of seasonal differencing has been determined as zero
and the number of first differences has been determined to be 1 according to KPSS and
ADF test results. These results are consistent with the evidence given above. In the
model identification, when all AICc, AIC and BIC criteria are taken into account
together, the best model under the stepwise selection method among other suggested
ARIMA models has been determined as ARIMA(1,1,1)(1,0,2)[12] model with drift with
the smallest AIC value of 2405.484. Apart from the (faster) stepwise selection, the best
model under the (slower) non-stepwise selection has been chosen as
ARIMA(1,1,1)(2,0,0)[12] with drift model. For this model, all assumptions regarding

normality of residuals and constant variance have been satisfied except the fact that
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residuals are not independently distributed for seasonal lag 36. When stepwise and non-
stepwise results are compared with forecast accuracy measures, the model with stepwise
selection has been regarded as the best-fitted model for forecasting monthly inflation
rates in Turkey.

In the second application, different seasonal integration tests have been applied in a
unified approach for inflation and growth series and after determining seasonal
integration orders, the cointegration relationship between them has been examined.
Based on the study of IiImakunnas (1990), it has been expressed that the conclusion on
the appropriate order of integration depends on the starting point of testing sequence. If
starting point is SI(2,1), it can be said that growth variable becomes stationary mostly
after 1% differencing and seasonal differencing (that is, the null of SI(2,1) is accepted)
and inflation series can be accepted as either SI(2,1) or SI(1,0). If starting point is the
case of quarterly differencing (that is, SI(1,1)), the results are not certain for both
variables: while inflation may be regarded as SI(1,1) in most cases, growth may be
accepted as SI(0,1), SI(1,1) or SI(0,0). So, according to the starting points, the results
have differed. Also, the cointegration relationship for growth equation in which
economic growth is dependent variable while inflation is independent has been
investigated in a different manner by taking the concept of seasonality into
consideration. Empirical results have revealed that all forms of the variables (level
form, seasonally averaged form, seasonally differenced form, first differenced form)
except twice-differenced form show the sign of cointegration with the significant
residual test statistics which are DW, DF and ADF tests. Thus, with this analysis, the
variables have been found to be SI(1,1). Since seasonally averaged (S(L)) variables
have been found to be cointegrated of order 1 at zero frequency and first-differenced
variables have been found to be cointegrated at seasonal frequencies. Therefore, it is
concluded that it would be suitable to incorporate the variables in A, form into the

regression.

In the third application, whether a cointegration relationship exists or not between
quarterly GDP, CONS, EXP, GOV and PRIEQ series has been investigated. As a result
of HEGY application, the presence of a zero frequency (nonseasonal) unit root has been
detected for all series for the three models with “constant”, “constant+dummies” and
“constanttdummies+trend”. LNGDP, LNCONS and LNGOYV series have been found to
include a seasonal unit root at semi-annual frequency. In addition, LNGDP, LNGOV
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and LNEXP series have been detected to have seasonal unit roots at quarterly %Gj

frequencies. It should be noted that cointegration analysis should be evaluated among
the series having unit roots at the same frequency. When cointegration test results are
evaluated thoroughly at the zero (long-run) frequency, there has been found no
cointegrating relationship between LNGDP & LNCONS, LNGDP & LNPRIEQ,
LNGDP & LNGOV, LNGDP & LNEXP at 5% significance level. Similarly, no
cointegrating relationship has been detected between LNGDP&LNCONS series and
LNGDP&LNGOQV series at semi-annual (%) frequency. However, there has been found

a cointegrating relationship between LNGDP & LNGOV series at quarterly %Gj

frequencies for only the model with “constant+dummies”. On the other hand, no
cointegrating relationship has been found between LNGDP & LNEXP series for no
models at these quarterly frequencies.

In the fourth application, the kind of seasonality (whether it is deterministic or
stochastic) has been tried to be determined for quarterly unemployment series over
1988Q1-2014Q4 period. According to t and Q statistics, since the first condition saying
that o coefficients are equal to each other and the second one saying that all z's are
equal to zero do not hold, it is concluded that stochastic seasonality does not exist in the
series. While there is a zero frequency unit root in the series for the models with
“constant” and “constant+dummies”, no biannual and annual unit roots have been found
for no models. Hence, the general result is that seasonal fluctuations in the series have
not been able to emerge in the six-month and one- year intervals. However, CH test
result shows that seasonal pattern is not deterministic (indicating to the presence of
seasonal unit root) and this result is completely different from the previous result which
is based on t and Q statistics saying that there is no stochastic seasonality in the series.
So, it can be said that two methods say different things regarding the type of seasonal
pattern in the series and it is not certain to say that unemployment series displays only
one type of seasonal behaviour. Thus, it may have both deterministic and stochastic
structure.

In the fifth application, it has been tried to detect the kind of seasonality of
quarterly GDP series in Turkey over 1998Q1-2014Q4 period. While DHF test results
show that GDP series can be described by a seasonal integration of order 1 process (that
is, GDP series can be modelled as a SARIMA model), HEGY test results say the



178

opposite. On the other hand, all dummy variables have been found to be significant for
dummy variable representation meaning that modelling first-differenced GDP series as
a deterministic model can be more suitable. However, when all results are taken into
account together, it is not certain to say that GDP series has only a deterministic
structure. It can be said that the series can be represented in both deterministic and
stochastic structures.

As a result, as summarized in fourth and fifth applications, generally it is possible
to say that most macroeconomic series can display both a deterministic and stochastic
structure.

In the sixth application, it has been tried to detect at which frequencies there are
seasonal unit roots for monthly exports and imports series. According to the results,
both series have been found to include a non-seasonal unit root and no seasonal unit
roots. Depending on this evidence, it is concluded that seasonal differencing filter which
is (L—L**)is not required for two series (but they should be in first-differenced form
because of the zero frequency unit root) and seasonal cycles are said to be mostly in a
deterministic structure. It can be inferred from this application that even though the data
are available on monthly basis, they may not include any seasonal unit roots. Thus, we
cannot say that data which are collected at monthly or quarterly or any other basis

include surely seasonal unit roots.

7.2. Recommendations

It is wrong to say that each time series collected at seasonal basis (quarterly,
monthly etc.) includes seasonal unit roots. A series should be subject to the (1-L°)
filter where s is the length of the period only if it includes unit roots at all frequencies.

Otherwise, if this filter is applied to the series in question in case there is a unit root at
only one frequency, inaccurate results can be obtained. Briefly, as expressed in Beaulieu
and Miron (1992b), “The appropriateness of applying the filter (1— L") to a series with a
seasonal component, as advocated by Box and Jenkins (1970) depends on the series
being integrated at zero and all of the seasonal frequencies” (p.18). Therefore, if a series
has unit roots at which frequencies, filters corresponding to those frequencies should be
applied to the series in interest in order to make it stationary.

For all analyses conducted so far, all series have been taken as seasonally

unadjusted. Since in case seasonally adjusted data are used, there will be a bias in ADF
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and PP statistics toward non-rejection of the unit root. Therefore, it has been expected
that unit root test are more powerful when worked with unadjusted data (Maddala &
Kim, 1998, pp. 364-365).
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APPENDICES

APPENDIX Al: Brownian Motion

Botanist Robert Brown explained the motion of a pollen particle suspended in fluid
in 1828 and the observations on these particle movements revealed that they move in an
unsteady and random manner. In 1905, Albert Einstein derived the equations related to
Brownian motion claiming that the movements are stemmed from bombardment of the
particle by the molecules of the fluid. In 1900, Brownian motion was used by Louis
Bachelier as a model for movement of stock prices and since the mathematical
foundation of Brownian motion as a stochastic process is based on Norbert Wiener, it is
also called the Wiener process (Klebaner, 2005, p. 56).

The concept of Brownian motion is closely related to the normal distribution. It is

well known that a random variable has a normal distribution with mean x and variance

o®,where ueRand o >0, if the probability density function of a random variable is

(x—u)?
e 2°°  thenitis said that it has a normal distribution with mean x and

1
0= 2
variance o, where zeRand o >0.

Definition 1.1. A stochastic process {B(t):t >0} is said to be a Brownian motion
process with a variance parameter o® >0 if:

@  B0O)=0

(i)  (independent increments) For each 0<t <t, <...<t
B(t,),B(t,)-B(,),....., B(t,) — B(t,, ;) are independent random variables.

(iii)  (stationary increments) For each 0 <s<t, B(t) — B(s) has a normal distribution
with mean zero and variance o (t—s).

This process operates as a basic model for the cumulative effect of pure noise. If

B(t) is the position of a particle at time t, then the displacement B(t) — B(0)gives the
effect of noise over time t (Klebaner, 2005, p. 56).

If o2 =1, the stochastic process B(t) becomes a standard Brownian motion and if
{B(t):t >0} is a Brownian motion process with o° >0, then {o 'B(t):t>0}

represents a standard Brownian motion (this concept will also be mentioned in Wiener

process).
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Theorem 1.1. Now let {B(t):t>0}be a standard Brownian motion. Then, the

probability density function of B(t)is given as:

X2

1 X
foy(¥) =—=—=e *

Vot

(http://home.cc.umanitoba.ca/~thavane/ASS305/5bm.pdf).

APPENDIX A2: Wiener Process

In mathematics, the Wiener process is a continuous-time stochastic process named
in honour of Norbert Wiener. It is mostly called standard Brownian motion, after Robert
Brown and it occurs frequently in pure and applied mathematics, economics,
quantitative finance and physics. In applied mathematics, one of the reasons to use this
process is to represent the integral of a Gaussian white noise process, and so is useful as
a model of noise in electronics engineering (Wikipedia, 2010). This process is a kind of
Markov stochastic process (The Markov stochastic process is a particular type of
stochastic process where only the current value of a variable is relevant for predicting
the future movement). Essentially, the Wiener process is a series of normally distributed
random variables, and for later time points, the variances of these variables rise to bring
as a consequence that it is more uncertain and therefore harder to predict the value of
the process after a longer period
(http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%200r%20F
inancial%20Engineering%20(graduate%?20level)/FE_Ch01%20Wiener%20Process.pdf)

Definition 2.1. A Gaussian, continuous parameter process characterized by mean
value m(t) =0and covariance function:=min{s,t}=sAt, for anys,t [0, T], is
called a Wiener process (denoted by{W,}).

It is remarkable to say that the next definition can also provide a more intuitive
description of the fundamental properties of a process of this kind.
Definition 2.2. A stochastic process {W, },., is called a Wiener process if it satisfies
the properties expressed below:
1.W, =0

2. The function t — W, is almost surely continuous in t (with probability 1).


http://home.cc.umanitoba.ca/~thavane/ASS305/5bm.pdf
http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%20or%20Financial%20Engineering%20(graduate%20level)/FE_Ch01%20Wiener%20Process.pdf
http://homepage.ntu.edu.tw/~jryanwang/course/Financial%20Computation%20or%20Financial%20Engineering%20(graduate%20level)/FE_Ch01%20Wiener%20Process.pdf
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3. W; has stationary, independent increments with W, -W,~ N(O,t—s) for
Vs,t €[0,T], with 0<s <t [that is, the variance of the change is equal to the distance
between points]. This implies that taking s=0, W, —W, has N(0,t) distribution.

These two definitions are equivalent.
Proof:
(2.) = (2.2

The independence of increments is a usual consequence of the Gaussian structure of

Wt. In actuality, W; and W, =W, can be expressed as a linear combination of Gaussian

0\(W
-4 7Y

Furthermore, they are not correlated and therefore independent:*

Q =a; = E[(Wt, _Wt,,l)(WtJ _WtH N=.. =t -t +t, -t = 0

random variables,

Now Wiener process can be written as:
W, = (\NL W)+ (\Ng _WL) ...t (\Ng ~Winy)

N N N N N
then,
T
W _W(k—l)t ~ N(0,—)
NN N
(22)= (2.1

On the other hand, the ‘shape’ of the increments distribution implies that a Wiener

process is a Gaussian process. As expected, for any0<t, <t, <........ <t,, a random
vector (W,,,W,,,......W,,) has a normal probability distribution. Since it is a linear
combination of the vector (W,,W,, -W,,......W,, =W, ,)whose components are

Gaussian by definition (Caiaffa, 2011-2012).

Properties of a One Dimensional Wiener Process

Basic properties:

The unconditional probability density function at a fixed time t is:

“1t should be noted that under the assumption S <t the relations E(W,) = m(t) = 0.

Var(W,) =min{t,t}=t, E(W, ~W;) =0 and E[(W, W )?]=t—2s+s=t—s are valid.



204

X2

fw, (X) = —1 e_i

N2
*The expectation is: E[W,]=0

*The variance is: Var(W,) = E[W,”]- E?[W,] = E[W,*]-0 = E[W,*] =t
The results obtained for the mean and variance follow from the definition that
increments have a normal distribution centered at zero. Therefore,
W, =W, =W, ~ N(0,t).
*The covariance and correlation are:
cov(W,,W,) = min(s,t),

cov(W,,W,) _ min(s,t) [ min(s,t)
owow, st | max(st)

cor(W,,W,) =

The results obtained for the covariance and correlation follow from the definition that

non-overlapping increments are independent (they are uncorrelated). Assume thatt, <t,

COV(\Nu'Wtz) = E[(Vvtl - E[\Nu])-(\Ntz - E[VVtZ])] = E[\Ntl'vvtz]
Substituting

W,, = (W, -W,,) +W,,, we obtain:

EIW, W, 1= E[W, (W, —Wyy) +Wiy )] = E[W,. (W, =Wy )]+ E[thz]-

Since we know W (t,) =W(t,) -W(t,) and W(t,) —W (t,) are independent,
EMW,. (W, =W, )] = E[W, ].E[W,, —W,,] =0 and therefore,

COV(Vth’WIZ) = E[\Ntlz] =1
(Wikipedia, 2010).

The Wiener Process as a Scaled Random Walk

Consider asimple random walk {X},_, on the lattice of integers Z:

Xn :ifk

k=1

where {&,},.y is a sequence of independently, identically distributed (i.i.d.) random

. . 1 . ..
variables with P(&, =+1) = > According to the Central Limit Theorem (CLT),
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XN

JN

distribution as N —oc . This suggests defining the piecewise constant random function

— N(0,2) is a Gaussian variable with mean zero and variance one in

W," on t [0,x) as follows:
W = X i)
t \/W '

where \_th stands for the largest integer less than Nt and in order to be compatible
with general notations for stochastic processes, here t is written as a subscript, i.e.
W, =W"N(t). It can be said that as N —oc, W," converges in distribution to a
stochastic process W, denoting the Wiener process

(https://www.cscamm.umd.edu/lectures/EVVandenLectures final.pdf).

APPENDIX A3: Brownian Bridge

Definition 3.1. A standard Brownian bridge is a Gaussian process X with
continuous paths, mean zero and covariance function Cov(X(s), X(t)) =s.(1—t) for
0<s<t<1.

A standard Brownian bridge over the interval t<[01] is a standard Brownian
motion W (.) given the condition that W (1) = 0. If expressed in a clear way:

X, =W(t)/W@=0) .

The variance of the Brownian bridge is t(1—t) which implies that the most
uncertainty takes place in the middle of the bridge. Also, it should be noted that the
increments in a Brownian bridge are not independent.

If W(t)is a standard Brownian motion ( for t=0, normally distributed with
expected value zero and variance t, and with stationary and independent increments),
then Brownian bridge can be expressed as:

X (t) =W (t) —tW (1) .

Although a standard Wiener process satisfies W(0) =0 and so it is “tied down” to

the origin, a Brownian bridge process requires not only X(0)=0, but also X(1)=0

implying that this process is also “tied down” at time 1 to have the value zero.

(Wikipedia, n.d.; Chang, 2007).


https://www.cscamm.umd.edu/lectures/EVandenLectures_final.pdf
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APPENDIX A4: Distribution Theory for Autoregressive Unit Root Tests

Consider the following simple autoregressive AR(1) process:
V.=, +& witht=1........ ,T where &, ~ WN(0,6%) is a white noise process.

In order to test for a unit root, the null and alternative hypothesis will be as in the
following way:

H, : ¢ =1(implies the existence of unit root — nonstationarity case)

H,: |¢| <1 (implies the presence of no unit root — stationarity case)

- -1 ~
The test statistic becomes t,_; = S¢E—(¢0 where SE(¢) denotes the standard error of least

PRAS
Lattitl

Yia

squares estimate ¢ and OLS estimation of ¢ is given as ¢ =

First, assume that |¢5| <1, so the process is stationary. In that case, the asymptotic
results for stationary AR(1) process take place in the standard framework used for the
basic linear regression model given as:

. d )

VT (p—¢) > N(O,(L—¢%)) (Hamilton, 1994, p. 216)

or
¢ ~ N(¢,%(1—¢2)) and it follows that t,_, ~ N(01) .

In order to make inferences about the interested null hypothesis, a limiting
distribution of a suitable standardized version of ¢ should be available. However, there
is a problem that under the unit root null, since Y, follows a nonstationary process

(random walk) the basic assumptions underlying CLT fail to hold and therefore we have
to rely on less-standard asymptotic theory based on the concepts like the Functional
Central Limit Theorem (FCLT), the Continuous Mapping Theorem and Brownian

motions in order to study the behavior of such a statistic. When ¢ =1, the variance of
asymptotic result becomes zero which apparently does not make any sense (var(q?) =0

and therefore ﬁ(é—l) —0). That is, ¢ has no longer a standard distribution and the

usual sample moments do not converge to fixed constants. Here it will be shown that
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the statistic T(4—1) features a convergent distribution for the null hypothesis of a

random walk. Because the resulting asymptotic distribution is not standard, it requires
the Brownian motion process (It is a zero-mean normally distributed continuous process
with independent increments i.e., loosely speaking, the continuous version of the

discrete random walk (Dolado, Gonzalo & Marmol, 1999)). So, Phillips (1987) showed

that the sample moments of Y, converge to random functions of Brownian motions.

Replacing Y, givenin Y, =y, +¢&, in OLS estimation of ¢ given above,

Z YiYia Z(WH +&) Y _ ¢Z Yii+ Z Y&t
Z Ve z Yes Z Yes

A Z Ye €t 2 Z Vi€t
p=0¢+ —under ¢=1, p—-1=—=——
DVh DV

we get,

(1/T)z Yia&
WTHY v

Now, first consider the asymptotic behavior of the nominator part. Under the null

T($-1)=

hypothesis,
t2 =(Yeu + 5t)2 = yt2—1 +2y,6 + gtz
Then, Y,,&; becomes

1
Yiaé: = E(yt2 - yt2—l - gtz)

Summing over t, dividing by T and also supposing that the initial value y, =0
_ 1 2 2 2y _ 1 2 2 1 2
ZYt—15t —_(ZYt _Zyt—l _th ) === Yo )__zgt
t 29 t t 2 245
1 1 1
= ?Zt: Yiaér = oT YT2 _Eztzgtz

Let us have a look at the first term on the right side of the equation. Under the null

hypothesis of ¢=1, y, ~ N(0,0°T)(since, y; is a random walk process:

Yr
o T

Let us continue from the previous equation. Dividing it by o, we get

1 Ly 1 1 s
szzt:ytilt_zf\/_) ZZTZ

Y =& +E) . + &, +&rwith Y, =0). So, ~N(0,1).




208

Again look at the first term on the right side,

Y1 N2 2
(aﬁ) 2@

1 . -
and the second term ?ng — o converges to o? in probability (by the law of large

D
numbers). Then the nominator converges to TLZZ Y& _)%(le -1).
o

Now in order to deal with the asymptotic behavior of a random process in the
denominator part, we need to know about the Brownian Motions and FCLT.

Let { £} be a sequence of i.i.d. random variables with mean zero and variance o .

Define a partial sum process S; as S, = Zet . This partial sum process is a discrete
t=0

process with values i =1......, T . Here the aim is to describe a standardized continuous

process over the interval [0,1]. For this, the process should be redefined as a

: : . . : S,
standardized discrete form over the points /T as:X(r=i/T)=—=,
oJT
r=01/T,........ ,T/T . So, we standardized the S; process by its total variance and

adjusted the time scale in a way to go from 0 to 1. Now, in order to describe a

continuous process from this discrete form, we introduce a notation [Tr] and let it be

the integer part of Tr. Then, the continuous process can be expressed as:

[rr]

xT(r)=ZG‘3?, r e[04]

This function satisfies the whole conditions of the FCLT.

Definition: Let X, (r) be the continuous process expressed above. Then, X;(r)
converges to W(r), a continuous time process known as standard Brownian motion.
This definition tells us that the process constructed by adding more points eventually

converges to a well-defined process. So, X; (r) =W(r).
Now, in order to derive the asymptotic behaviour of denominator part T’Zny_l,
applying the definition of Y; (r) we can write Y, ; as follows:
Vo, =Y; (r)aﬁ

and squaring and dividing this expression by T?, we get
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QT , =Y (N IT
Because of the constancy and continuity of this expression for r in the interval

[(t—2)/T,t/T], it can be rewritten as

t/T
WT?)y = [Yi(r)o*dr

(t-1/T
Since the denominator part has a summation, the summation form of this expression

over t becomes

T T T 1
T2y, =Y j Y2(r)oldr = j Y2 (r)o%dr
t=1 t=1 (t-2)/7 0

According to FCLT, as t —>oc Y;(r) converges to the Brownian motion W(r). In

conclusion, the asymptotic behaviour of the denominator can be given as
T 1
TEY v = ot [W () dr
t=1 0

UMY yee
TV,

After cancelling o?, the limiting behaviour of T(¢3—1) can be

expressed as follows:

W2W@? -1 [Wrndw()

T($-1) = =
jW(r)zdr jW(r)Zdr

where Jl.W(r)dW(r) - % Ww@? -1

It should be remembered that W (1) =W (1) —W (0) depending on the assumption that the

Brownian motion starts at zero and its square as a standard normal variable is a chi-
square variable with one degree of freedom. As a conclusion, it can be inferred that
although the OLS-like statistic is not a standard one in fact, its appropriate
standardization has a limiting distribution including Brownian motions (Escudero,
2001; Unit Root Tests, n.d.)
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APPENDIX B: Schematic Representation of the Box-Jenkins Methodology

STEP | | IDENTIFICATION |
1.1 Transform data to —_————
stabilize variance 2.1. Examine data, ACF
1. Data preparation 2. Model selection |— and PACF to identify
1.2, Difference data o potential models
obiain stationary series
4.1. Check ACF/PACF of
STEP? | ESTIMATION AND TESTING | residuals
3.1. Estimate parametersin | — — — — —=
potential models q }
3. Estimtion 4. Diagnostics B ””"].j‘ﬁ.""m"'r'
3.2. Select best model RN
using suitable criterion
4.3 Are the residuals white
l l noise?
Yes No
Go to STEP 3 Return io STEP 1

sTEP 3 APPLICATION 5. Forecasting 5.1, Use mudel o forecast
S_I E S . | H H Y I DUE UJCU!"LL“\

Source: Bigovi¢, 2012, p. 6.

APPENDIX C : Monthly HEGY Critical Values for 240 Observations

Models 7, =0 7,=0 m=7,=0 m=7,=0 1m,=73=0 7y=7,=0 7=m,=0

Cc -2.79 -1.88 3.03 2.99 3.02 3.04 3.06
CT -3.32 -1.88 3.01 2.96 3.02 3.02 3.03
CD -2.76 -2.76 6.27 6.28 6.21 6.22 6.21

C,D,T -329 -2.76 6.24 6.26 6.18 6.20 6.20

- -1.91 -1.88 3.05 3.01 3.05 3.06 3.09

Note. * Critical values have been obtained from Franses & Hobjin (1997) for S=12 and for 5%
significance level (see pp. 29-33) for 20 years.
2 ¢ shows constant, t denotes trend, d denotes seasonal dummy variables and “-” shows no
deterministic components (critical values have been searched for 20 years — that is 240
observations)
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APPENDIX D: Checking Causality, Stationarity and Invertibility Conditions for
ARIMA(1,1,1)(1,0,2)[12] Model with Drift

Inverse AR roots Inverse MA roots
T * B ee
@ @ .. ..
® ® .0 0.
S0 - . o3 <
© ®©
E E
® e % .
@ @
e o — 2 [ L] b
— . _—
T T 1 I T 1
1 0 1 1 0 1
Real Real

R Codes and Outputs for Checking Causality, Stationarity and Invertibility:

“plot.Arima” in forecast package works in order to plot characteristic roots from
ARIMA model. This function produces a plot of the inverse AR and MA roots of an
ARIMA model. Inverse roots outside the unit circle are shown in red (Hyndman, 2015,

p. 53).

e polyroot(c(1,-0.1750)) #For Non-seasonal AR#
[1] 5.714286+0

> Mod(polyroot(c(1,-0.1750)))>1
[1] TRUE

e polyroot(c(1,-0.8857)) #For Non-seasonal MA#
[1] 1.12905+0i

> Mod(polyroot(c(1,-0.8857)))>1

[1] TRUE
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e polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.8862)) #Seasonal AR#
[1] 0.5050593+0.8747883i -0.8747883+0.5050593i -0.5050593-0.8747883i
[4] 0.8747883-0.5050593i 0.0000000+1.0101186i -1.0101186-0.0000000i
[7] 0.0000000-1.0101186i 1.0101186+0.0000000i -0.5050593+0.8747883i

[10] -0.8747883-0.5050593i 0.5050593-0.8747883i 0.8747883+0.5050593i
> Mod(polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.8862)))>1
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

e polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.7102,0,0,0,0,0,0,0,0,0,0,0,0.1813))
#Seasonal MA#
[1] 0.5815120+0.9026442i -0.9549262+0.4909568i -0.5815120-0.9026442i

[4] 0.9549262-0.4909568i 0.4909568+0.9549262i -0.9026442+0.5815120i
[7] -0.4909568-0.9549262i 1.0724688-0.0522820i -0.0522820+1.0724688i
[10] -1.0724688+0.0522820i 0.0522820-1.0724688i 1.0724688+0.0522820i
[13] 0.0522820+1.0724688i -0.9549262-0.4909568i 0.4909568-0.9549262i
[16] 0.9549262+0.4909568i -0.4909568+0.9549262i -0.9026442-0.5815120i
[19] 0.5815120-0.9026442i 0.9026442+0.5815120i -0.5815120+0.9026442i
[22] -1.0724688-0.0522820i 0.9026442-0.5815120i -0.0522820-1.0724688i
> Mod( polyroot(c(1,0,0,0,0,0,0,0,0,0,0,0,-0.7102,0,0,0,0,0,0,0,0,0,0,0,0.1813)))>1

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE TRUE

[16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Here, ”True” means that roots have modulus which are greater than 1 (>1).

For ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model, apart from all required
checks, we need to check also the causality, stationarity and invertibility condition. For
ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model to be causal, stationary and
invertible, all roots of the characteristic polynomial of AR, MA, SAR and SMA
operators should be greater than 1 in absolute value.
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A causal invertible model should have all the roots outside the unit circle. Equiva-

lently, the inverse roots should lie inside the unit circle (Hyndman, 2014). Here, all

inverse roots lie inside the unit circle as shown in the figures given above.

APPENDIX E: Quarterly HEGY(1990) Critical Values for Intercept and Seasonal

Dummies Model (for N=100)

7Ty
%1 %5 %10
-3.55 -2.95 -2.63
7T,

%1 %5 %10
-3.60 -2.94 -2.63
g
%1 %5 %10
-4.06 -3.44 -3.14
o
%1 %5 %10
-2.78 -1.96 -1.53
Frny,=7,=0
%99 %95 %90
8.74 6.57 5.56

(Source: Hylleberg et al., 1990, pp. 226-227)

APPENDIX F: Critical Values for Seasonal Cointegration (for 100 Observations)

Table F1

Critical Values for Seasonal Cointegration at Zero and Semiannual Frequencies

Number of Variables (k=5, N=100) 7, Ve r,
Significance Level 1% 5% 10%
Critical Value 5.18 4.58 4.26

Source: Engle & Yoo (1987, p. 157).
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Table F2
Critical Values for Seasonal Cointegration at % (and % ) Quarterly Frequencies

N:100 71-3 72'4 72-3 m 72.4
Deterministic
_ Components 1% 5%  10% 1% 5%  10% 99% 95% 90%
in Cointegrating
Regression
- -3.94 -3.30 -3.00 -3.01 -2.12 - 1024 721 591
C -3.86  -3.27 -2.95 -2.95 -2.08 - 1015 7.10 5.83
C,D -4.77 -4.12 -3.81 -3.02 -2.14 - 13.26 10.12 8.66

Source: Engle et al., 1993, p. 293.

APPENDIX G: Monthly HEGY Seasonal Unit Root Test Critical Values (For
S=12 and 40 years, that is 480 observations)

Table G1
Monthly HEGY Critical Values for t(z,)

Models 1% 5% 10%

No Constant, No Trend, No 251 1,03 159
Dummies

Constant -3.40 -2.82 -2.52

Constant & Dummies -3.40 -2.81 -2.51

Constant & Trend -3.93 -3.37 -3.09

Constant, Trend & Dummies -3.91 -3.35 -3.08

Source: Franses & Hobjin (1997), p. 29

Table G2
Monthly HEGY Critical Values for t(z,)

Models 1% 5% 10%

No Constant, No Trend, No 253 194 160
Dummies

Constant -2.54 -1.94 -1.60

Constant & Dummies -3.34 -2.81 -2.51

Constant & Trend -2.54 -1.94 -1.59

Constant, Trend & Dummies -3.34 -2.81 -2.51

Source: Franses & Hobjin (1997), p. 30.
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Table G3
Monthly HEGY Critical Values for F(z, nx,)

Models 1% 5% 10%

No Constant, Nc_) Trend, No 474 307 236
Dummies

Constant 4.72 3.07 2.36

Constant & Dummies 8.40 6.35 5.45

Constant & Trend 4,71 3.05 2.35

Constant, Trend & Dummies 8.38 6.35 5.45

Source: Franses & Hobjin (1997), p. 31.

Table G4
Monthly HEGY Critical Values for F(z, N 7g)

Models 1% 5% 10%

No Constant, Nq Trend, No 461 3.06 238
Dummies

Constant 4.63 3.05 2.38

Constant & Dummies 8.58 6.48 5.46

Constant & Trend 4.60 3.05 2.38

Constant, Trend & Dummies 8.55 6.48 5.46

Note. Source: Franses & Hobjin (1997), p. 33.

Table G5
Monthly HEGY Critical Values for F(z, ny)

Models 1% 5% 10%

No Constant, Nq Trend, No 469 310 240
Dummies

Constant 4.70 3.09 2.39

Constant & Dummies 8.39 6.33 5.32

Constant & Trend 4.69 3.08 2.39

Constant, Trend & Dummies 8.39 6.30 5.33

Source: Franses & Hobjin (1997), p. 33.

Table G6
Monthly HEGY Critical Values for F(z, N 7x,)

Models 1% 5% 10%

No Constant, Nq Trend, No 475 311 235
Dummies

Constant 4,73 3.09 2.34

Constant & Dummies 8.56 6.41 5.46

Constant & Trend 4.73 3.08 2.34

Constant, Trend & Dummies 8.50 6.40 5.47

Source: Franses & Hobjin (1997), p. 33.



Table G7

Monthly HEGY Critical Values for F (7, N 7,,)
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Models 1% 5% 10%

No Constant, Nq Trend, No 465 311 241
Dummies

Constant 4.65 3.10 2.40

Constant & Dummies 8.76 6.47 5.36

Constant & Trend 4.65 3.09 2.39

Constant, Trend & Dummies 8.75 6.46 5.36

Source: Franses & Hobjin (1997), p. 33.
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