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HYPERSPECTRAL DATA CLASSIFICATION USING CONTOURLET 

TRANSFORM 

SUMMARY 

For many years, Wavelet Transform was the major feature extraction method for 

image classification. Since the means of feature extraction process directly affects 

the performance of the classification, it is vital to choose an appropriate method for 

different types of images. Although the Wavelet Transform provides a basic and 

generic method for this, recent techniques are being studied that can capture further 

image properties hidden from the Wavelet Transform. 

One of the alternatives to the Wavelet Transform is the Contourlet Transform, also 

known as the Pyramidal Directional Filter Banks. The Contourlet Transform 

performs better on detecting the smoothness along the edges which is encountered on 

the boundaries of smooth regions of the image. Furthermore, it has more 

directionality than the Wavelet counterpart that can improve classification 

performance significantly when the image has classes with many different directions. 

This graduate thesis applies the Contourlet Transform and its variations to the 

classification of the AVIRIS image data taken from Indiana’s Indian Pine test site in 

June 1992. The data is hyperspectral in nature and hence this work additionally 

provides new research results on hyperspectral data classification by using also the 

directionality properties of the image classes. 
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CONTOURLET DÖNÜŞÜMÜ İLE HİPERSPEKTRAL VERİ 

SINIFLANDIRMA 

ÖZET 

Dalgacık Dönüşümü yıllardır görüntü sınıflandırmasında kullanılan öznitelik çıkarım 

yöntemlerinden biridir. Öznitelik çıkarım yöntemleri sınıflandırma başarısında büyük 

rol oynadığından, görüntülerin çeşidine uygun bir yöntem seçmek önem 

taşımaktadır. Dalgacık Dönüşümü temel ve genellenebilir bir yöntem sağlamakta, 

bununla beraber Dalgacık Dönüşümü’nün ortaya çıkaramadığı özellikleri de 

saptayabilen daha yeni yöntemler araştırılmaktadır. 

Dalgacık Dönüşümü’nün alternatiflerinden biri de aynı zamanda Piramit Yönlü Filtre 

Bankası olarak da bilinen Contourlet Dönüşümü’dür. Contourlet Dönüşümü 

görüntülerin yumuşak bölgelerinin sınırlarında karşılaşılan kenar yumuşaklıklarını 

saptamada daha başarılıdır. Bunlara ek olarak Dalgacık Dönüşümü’nden daha fazla 

yöne duyarlıdır. Bu özelliği, görüntünün birçok farklı yönlerde sınıflara sahip olduğu 

durumlarda sınıflandırma başarısını yükseltmektedir. 

Bu yüksek lisans tezi Contourlet Dönüşümü ve çeşitlerini Haziran 1992 tarihinde 

alınan Indiana’daki Indian Pine AVIRIS görüntüsünün sınıflandırılmasında 

kullanmaktadır. Görüntü veri yapısı itibariyle hiperspektraldır ve bu nedenle çalışma 

aynı zamanda görüntü sınıflarının yön bilgilerini de kullanarak hiperspektral veri 

sınıflandırması konusunda yeni araştırma sonuçları sağlamaktadır. 
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1.  INTRODUCTION 

Image processing is the major area of research in remote sensing since it is a vital 

part of the information extraction of remote objects. The image processing 

techniques vary in their purpose such that they can be used to enhance the image 

quality, combine two or more of the different instances of the same image, compress 

the image to reduce its size, detect and recognize the objects in the image or classify 

the regions on the image. These different tasks are named in the terminology as the 

image enhancement/denosing, the image fusion, image coding/compression, object 

detection/recognition and image classification respectively. 

To be able to carry out these tasks, one will need image information called the 

features. The extraction methods of these features vary and the most widely accepted 

methods are the transform based methods due to their ease of implementation where 

the features hidden in the spatial domain can be extracted from the transformed 

frequency domain. 

Over the last three decades, the Wavelet Transform has been the major transform 

method for these tasks mentioned above. Mallat proposed the Wavelet Transform 

which enables a scale-invariant pyramidal decomposition/reconstruction utilizing 

orthogonal/biorthogonal Wavelets [1][2]. Shensa combined later the Wavelet 

Transform with the A Trous algorithm to propose the Nonsubsampled Wavelet 

Transform; also known as the Stationary Wavelet Transform; and achieve less shift-

sensitivity and redundancy [3]. 

Despite its many advantages like multiresolution nature, critical sampling property 

and localization in both spatial and frequency domain, it has few directionality and 

lacks detection of the smoothness along the contours which are encountered on the 

boundaries between objects. Due to these facts, new transform methods were and are 

still being researched. Bamberger and Smith proposed the Directional Filter Bank 

which enabled image decomposition into as many directions as one wishes [4]. The 

method was then improved by Park, Smith and Mersereau but it was still not the 

ultimate alternative to the Wavelet Transform due to the poor directionality on low 
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frequencies [5]. Do and Vetterli proposed later the Pyramidal Directional Filter 

Bank, which was later renamed as the Contourlet Transform [6], where the Laplacian 

Pyramid proposed by Burt and Adelson [7] and the Directional Filter Bank are 

combined to compensate each other’s disadvantages and serve as a multiresolution 

representation[8]. 

The lack of multidirectional properties on the Wavelet Transform forced the 

researchers on the Wavelet Domain to propose new types of Wavelet Transforms and 

as a result, the Directional Wavelet Transform, also known as the Steerable Wavelet 

Transform, was introduced by Antoine, Carrette, Murenzi and Piette utilizing the 

linear combination of two orthogonal Wavelets [9]. The Complex Directional 

Wavelet Transform was proposed by Kingsbury to enable shift-invariant analysis of 

the images which was not possible using the Contourlet Transform [10]. In the mean 

time, another transform method called the Curvelet Transform was pioneered by 

Candes and Donoho combining the subband decomposition with the Ridgelet 

Transform defined in the polar coordinate system [11]. The Curvelet Transform was 

and is still being compared with the Contourlet Transform due to their similar 

application areas like detection of the smooth contours and boundaries but its 

implementation is limited by its high redundancy and difficult implementation 

[12][13]. 

The more recent works during the last decade propose combination of the known 

transform methods to introduce new techniques and also concentrate on the high 

redundancy and shift/rotation invariance. Li and Taylor showed that the combination 

of the features provide better texture classification results than the individual usage 

of the ones extracted by the Wavelet and the Contourlet Transform [14]. Duan, Man 

and Chen applied a special type of the Directional Filter Bank to achieve high 

classification performance of both non-rotated and rotated images [15]. Eslami and 

Radha proposed the Wavelet Based Contourlet Transform to overcome the remaining 

small redundancy of the Contourlet Transform and provide more efficient image 

coding [16]. Later, they enhanced this concept and introduce the Hybrid Wavelets 

and Directional Filter Bank Transform family where they employ Wavelets for the 

subband decomposition and use modified versions of the Directional Filter Bank to 

achieve small redundancy [17]. Cunda, Zhou and Do proposed the Nonsubsampled 

Contourlet Transform to achieve a fully shift-invariant, multiscale and 
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multidirectional expansion and designed nonsubsampled counterparts of the Pyramid 

Filter Bank and Fan Filter Bank [18]. Hu, Hou, Wang and Jiao introduced the 

Stationary Wavelet Based Contourlet Transform and showed that it outperforms all 

the other known alternative texture classification methods due to its high redundancy 

[19]. Tanaka, Ikehara and Nguyen proposed the combination of the 1-D, 2-D 

Directional Filter Bank with the Quincunx Filter Bank [20]. 

Considering the literature so far, there are few number of research results on the 

hyperspectral data classification. Tadjudin and Landgrebe classified AVIRIS 

hyperspectral data using different classifiers including the covariance estimator with 

limited number of training samples [21]. Benediktsson, Garcia, Waske, Chanussot, 

Sveinsson and Fauvel used ensemble methods for the classification of the same data 

[22]. Mojaradi, Emami, Varshosaz and Jamali utilized novel band selection method 

for the classification of the same data [23]. 
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2.  DISCRETE WAVELET AND STATIONARY WAVELET TRANSFORM 

The Wavelet Transform (WT) gained popularity in the last three decades due to its 

flexibility on the Multiresolution Analysis (MRA). The WT is highly inspired from 

the Short Time Fourier Transform (STFT), also known as the Windowed Fourier 

Transform (WFT). Unlike the STFT and its predecessor, the Fourier Transform (FT) 

which utilizes sinusoidals having infinite duration and constant frequencies, the WT 

uses window functions with variable scaling factors. These window functions are 

typically a pulse that continues for a period of time and vanishes outside its interval. 

They are called the Wavelets that satisfy the following admissibility condition: 

 (2.1) 

which means that the Wavelet Ψ has zero mean, i.e. it has no DC components. 

Examples of the basic Wavelet Functions are shown in Figures 2.1 and 2.2. 

  

  

Figure 2.1 : Examples of Wavelet Functions – Part 1. 
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Figure 2.2 : Examples of Wavelet Functions – Part 2. 

 

Figure 2.3 : Multiresolution Analysis. 

Scaling of a Wavelet can be regarded as changing its width. The time-frequency 

resolutions  and  are not fixed, instead they change accordingly so that the ratio 

of  over f remains constant to achieve the MRA. 
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2.1 Continuous Wavelet Transform 

The forward and backward WT; also known as the analysis or the decomposition; for 

1-D signals are defined as: 

 (2.2) 

where  are the scaled versions of the Mother Wavelet  as follows: 

 (2.3) 

where  

The Inverse WT; also known as the synthesis of the reconstruction; for 1-D signals 

are defined as: 

 (2.4) 

where  for the perfect reconstruction is: 

 (2.5) 

During the Continuous WT Analysis, the signal is decomposed into a family of 

analyzing signals by changing the scale and the position of the Mother Wavelets. 

This results in the redundant information in the reconstruction case. 

2.2 Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is derived by using discrete scaling and 

time-shifting parameters a and b respectively. Then the DWT for 1-D signals 

becomes: 
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 (2.6) 

where  

The synthesis equation of the signal is the following: 

 (2.7) 

The Dyadic WT is a special case where the scaling is performed in the powers of 2. 

 (2.8) 

The reconstruction equation shows that the signal itself is the linear combination of 

the basis vectors, the shifted versions of the Mother Wavelet, over the basis vector 

space B. If the set  is orthonormal and complete, then the space B is orthonormal, 

hence the basis and its dual are the same. The Haar, Daubechies-4 and Daubechies-6 

Wavelets are some examples of the orthonormal Wavelets. 

2.3 Discrete Wavelet Coefficients 

The WT can be implemented by using the Filter Bank approach where the signal is 

the decomposed representation of the shifted versions of the scaling function: 

 (2.9) 

for  

where the signal at resolution  is the following: 

 (2.10) 

The lower resolution scaling function filter can be derived by the weighted linear 

combination of the shifted versions of the next higher resolution as the following: 
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 (2.11) 

The Mother Wavelet can also be constructed as follows: 

 (2.12) 

where g and h are Low-Pass and High-Pass Wavelet Filters respectively which have 

the following relation: 

 (2.13) 

Then, the DWT for the 1-D signal can be rewritten as: 

 (2.14) 

where  and  are the approximation and detail coefficients respectively. 

It is shown that the Discrete Wavelet Coefficients at scale j-1 are related to the ones 

at scale j by the following relations: 

 (2.15) 

 (2.16) 

where  

This relation makes the cascaded Filter Bank approach possible and hence the higher 

scale Discrete Wavelet Coefficients can be calculated from the lower scale ones. 

2.4 2-D Discrete Wavelet Decomposition 

The High-Pass Filter (HPF) and Low-Pass Filter (LPF) for the 2-D Discrete Wavelet 

Decomposition (DWD) can be either separable or non-separable. For separable 
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cases, the decomposition is performed first on the rows, then on the columns of the 

signal which results in the decomposition of the signal into one approximation and 

directional coefficients in three different directions; horizontal, vertical and diagonal 

ones. Since the HPF and LPF disregards the half of the frequency response of the 

row and column signal, the half of the information is also lost in the spatial domain. 

To eliminate the redundant spatial information, the downsampling operations in 

horizontal and vertical directions are performed. 

For the decomposition into more than one level, The DWD is performed in the 

Pyramidal fashion. The Pyramidal Decomposition assumes that the most of the 

energy of a signal exists in the low frequency portion and the next level of 

decomposition should be performed using the approximation coefficients. So, the 

overall process becomes: 

 

Figure 2.4 : 2-D Discrete Wavelet Decomposition. 

Beginning from the first level, the input image can be considered as the 

approximation image. First, the rows of the image are filtered by the High-Pass and 

Low-Pass Wavelet Decomposition Filters. Both resultant filtered rows do not contain 

the half of the frequency band so they can be downsampled to avoid redundancy. 

After the row-wise filtering, the column-wise filtering is performed, following with 

the downsampling of the rows and columns. The resulting images after one level 

decomposition are the four subband images. , ,  are 
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the horizontally, vertically and diagonally decomposed subband images, whereas 

 is the approximated image that will be carried into the next level of 

decomposition. 

 

Figure 2.5 : Frequency Division of the 2-D 2-Level DWD. 

The frequency division of the 2-D 2-Level DWD is presented in the Figure 2.5. The 

frequency plane is divided into 4 diagonal, 2 vertical and 2 horizontal regions on 

every level whereas there is one approximation region on the last level. 
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As an example, the 2-D 3-Level DWD of an image is the following: 

 

Figure 2.6 : 2-D 3-Level Discrete Wavelet Decomposition. 

The 3-Level DWD inherently produces 12 subbands including 3 approximation 

subbands. The information from the approximation subbands of the first and the 

second level are carried into the next level since they will be decomposed into 4 

subbands on the next level. Due to this fact, the smallest subset of the subbands for 

perfect reconstruction includes all the subband images/coefficients from the last level 

and the remaining directional subband images/coefficients from the upper remaining 

levels. This property is considered during the feature set selection to avoid 

unnecessary redundant information. 

The inverse operation of the DWD is called the Discrete Wavelet Reconstruction 

which can be performed by using the inverse LPF/HPF and upsampling the 

rows/columns after each reconstruction level. 

 

 

    

    

 

 

    



 
13 

2.5 Stationary Wavelet Transform 

The Stationary Wavelet Transform (SWT) is the high redundant counterpart of the 

DWT. Redundancy is useful in image processing such as during edge detection, 

denoising and image reconstruction. In fact, after a certain level of the DWT 

depending on the initial signal size, the subbands gets so narrow so that the local 

features of the same class differ significantly. This results in the increased 

misclassification on higher levels. Due to the redundant information, the SWT 

outperforms the DWT in texture analysis and classification on higher levels. 

The downsampling and upsampling operations during the SWT decomposition and 

reconstruction respectively are omitted to avoid information loss. Instead, the LPF 

and HPF are upsampled by a factor  in the Nth level where the expansion of the 

Wavelet filters occur due to the inserted zeros between every consecutive filter 

coefficients. 

 (2.17) 

 (2.18) 

 (2.19) 

 (2.20) 

where N denotes the current level of decomposition and  are the indices of the 

LPF/HPF. 

2.6 2-D Stationary Wavelet Decomposition 

The HPF and LPF for the 2-D Stationary Wavelet Decomposition (SWD) can be 

either separable or non-separable. For separable cases, the decomposition is 

performed first on the rows, then on the columns of the signal which results in the 

decomposition of the signal into one approximation and directional coefficients in 

three different directions; horizontal, vertical and diagonal ones. Since the SWD does 

not downsample the filtered rows and columns, the subband images have the same 
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dimensions as the input image. The HPFs and LPFs are upsampled after each 

consecutive level to achieve coarse subband decomposition. 

 

Figure 2.7 : 2-D Stationary Wavelet Decomposition. 

As in the DWD, the input image can be considered as the approximation image on 

the first level. First, the rows of the image are filtered by the High-Pass and Low-

Pass Wavelet Decomposition Filters that are upsampled after each level. After the 

row-wise filtering, the column-wise filtering is performed. The resulting images after 

one level decomposition are the four subband images. , , 

 are the horizontally, vertically and diagonally decomposed subband 

images, whereas  is the approximated image that will be carried into the 

next level of decomposition. 

 

Figure 2.8 : Frequency Division of the 2-D 2-Level SWD. 
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As seen in the Figure 2.9, the frequency division of the 2-D 2-Level SWD is the 

same as the 2-D 2-Level DWD case. The frequency plane is divided into 4 diagonal, 

2 vertical and 2 horizontal regions on every level whereas there is one approximation 

region on the last level. 

As an example, the 2-D 3-Level SWD of an image is the following: 

 

Figure 2.9 : 2-D 3-Level Stationary Wavelet Decomposition. 

The 3-Level SWD inherently produces 12 subbands with the original input image 

dimensions including 3 approximation subbands. As in the DWD, the smallest subset 

of the subbands for perfect reconstruction includes all the subband 

images/coefficients from the last level and the remaining directional subband 

images/coefficients from the upper remaining levels. 

The inverse operation of the SWD is called the Stationary Wavelet Reconstruction 

which can be performed by using the inverse LPF and HPF that are downsampled 

after each reconstruction level. 
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3.  CONTOURLET AND NONSUBSAMPLED CONTOURLET TRANSFORM 

The Contourlet Transform (CT) consists of two cascaded operations; the sub-band 

decomposition and the directional decomposition. The main advantage of the CT is 

that features in desirable number of directions can be extracted depending on the 

number of directions used on each level. 

3.1 Laplacian Pyramid Decomposition 

The Laplacian Pyramid Decomposition (LPD) is the application of a LPF on the 

signal and subsampling the low frequency portion for each level desired. The LPF 

can be a variety of filters including the Gaussian LPF and the Wavelet LPF. The 

high-pass portion of the signal is the redundant part of this level and its information 

will not be passed into the coarse levels. As in the DWD, the low-pass filtered image 

contains unnecessary information that can be avoided by downsampling operation 

[7]. 

 

Figure 3.1 : 2-D Laplacian Pyramid Decomposition. 

The HPF  is actually not needed for the decomposition; instead the 

difference of the input signal from its low-pass filtered one can be used [7]. 

 (3.1) 

 (3.2) 
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Noting that after each level, the frequency characteristics of the signal are separated 

into high and low frequency portions and hence, many subbands occur dividing the 

low frequency portions into finer scales. As a result, the frequency response of the 

signal is decomposed into one high frequency band, N-1 subbands and one remaining 

low frequency band. The main advantage of this approach is that the resolution of the 

low frequency portions is increased after each level. 

 

Figure 3.2 : Frequency Division of the 2-D 2-Level LPD. 

The frequency division of the 2-D 2-Level LPD is presented in the Figure 3.2. The 

frequency plane is divided into one high frequency region on every level whereas 

there is one approximation region on the last level. 
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The 2-D 3-Level LPD is given as: 

 

Figure 3.3 : 2-D 3-Level Laplacian Pyramid Decomposition. 

The 2-D 3-Level LPD inherently produces 3 high-pass and 3 low-pass subbands. The 

information from the low-pass subbands on the first and the second level are carried 

into the next level since they will be decomposed into 2 subbands on the next level. 

Due to this fact, the smallest subset of the subbands for perfect reconstruction 

includes all the subband images from the last level and the remaining high-pass 
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subband images from the upper remaining levels. This property is considered during 

the feature set selection to avoid unnecessary redundant information. 

The inverse operation of the LPD is called the Laplacian Pyramid Reconstruction 

and can be performed by upsampling the low frequency decompositions and using 

the inverse LPF/HPF. 

3.2 Directional Filter Bank Decomposition 

The Directional Filter Bank Decomposition (DFBD) is the method used for dividing 

the frequency response of the signal into wedge shaped slices. An N Level 

Directional Filter Bank (DFB) divides the frequency response of the signal into  

wedges. An immediate observation is that the DFB does not perform well on low 

frequencies. The low frequency portions are diverted into many directions whereas 

the directional distinction between the individual high frequency portions can be 

obtained more easily. So, the DFB performs poor on low frequencies but it captures 

the directionality on high frequencies [5]. 

 

Figure 3.4 : Directional Filter Bank Decomposition on the first two levels. 

On the first two levels, the above structure can be used where 

 and . The Hourglass Filter (HF) can be 

used if the modulator is omitted such that  and 

 [5]. 

 

Figure 3.5 : Directional Filter Bank Decomposition on the remaining levels. 
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On the remaining levels, the above structure can be used where  and 

 are one of the Parallelogram Filters from  to  if 

the modulator was used in the first 2 levels. If the modulator was omitted, the filters 

from  to  and from  to 

 can be used [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 : Directional Filter Bank Decomposition Filters. 

The  is the Quincunx Downsampling Filter (QDF) which downsamples and 

rotates the image 45 degrees counter-clockwise and is defined as the following [5]: 

 (3.3) 

is typically used for the first 2 levels. For the remaining levels, the QDF will be 

defined by using the following equations [5]: 

 (3.4) 

 (3.5) 

The is the Resampling Matrix defined as [5]: 

 (3.6) 

The  is the Backsampling Matrix defined as [5]: 
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 (3.7) 

 (3.8) 

 (3.9) 

 (3.10) 

 

Figure 3.7 : Frequency Division of the 3-Level DFBD. 

The frequency division of the 3-Level DFBD is presented in the Figure 3.7. The 

frequency plane is divided into  wedges that represent the directionalities in  

directions. 
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Then, the 3-Level DFBD can be constructed by omitting the modulator as the 

following: 

 

Figure 3.8 : 3-Level Directional Filter Bank Decomposition. 

The 3-Level DFBD inherently produces 14 subbands. The input image is first 

directionally decomposed into 2 directions resulting in 4 slices in the frequency 

domain. On the second level, the number of directions doubles and becomes 4 

resulting in 8 slices in the frequency domain. The last level produces 8 directional 

subbands that divide the frequency domain in 16 slices. 

The first 2 levels utilize the HFs whereas the last level uses specially designed filters 

presented in the Figure 3.6. Cascading an HF with a QDF results in a filtering 

operation with checkerboard support and filtering with an HF again on the second 
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level enables the division of the frequency domain into 4 directions. The special 

filters used at the third and last level gets input images filtered with supports in 4 

different directions and the outputs are as a result 8 different directional subbands. 

The smallest subset of the subbands for perfect reconstruction includes only the 

directional subband decompositions on the last level. 

The inverse operation of the DFBD is called the DFB Reconstruction and can be 

performed by using the inverse DFBD filters. 

3.3 Contourlet Transform 

The CT is basically the resulting transform of applying multiscale decomposition by 

the Laplacian Pyramid (LP) and cascading the output with the DFB. The DFB 

divides the frequency band of the image into wedge-shaped slices and performs well 

on capturing the high frequency components in a direction but the low frequency 

components are miscaptured due to decreased resolution. To avoid this disadvantage, 

the LP is applied first to the image which divides the image frequency band into a 

low-pass and as many as desired subband decompositions, which are fed into the 

DFB. The number of directions increases as the number of subbands increase and by 

this, the same accuracy of capturing the frequency components of each resulting 

regions are achieved [6][8]. 

 

Figure 3.9 : Contourlet Decomposition. 

Beginning from the first level, the input image is decomposed into high-pass and 

low-pass subbands. The resultant high-pass subband is decomposed into directional 
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subbands since the DFB performs better on high frequencies. The low-pass subband 

will be downsampled and passed into the next level. The common practice is to 

decompose the high-pass subbands into many directions on the first levels and into 

fewer directions on the coarse levels, since the frequency domain will be divided into 

smaller chunks on the coarse levels [6][8]. 

 

Figure 3.10 : Frequency Division of the 2-Level Contourlet Decomposition. 

The frequency division of the 2-Level CD is presented in the Figure 3.10. The 

frequency plane is divided into 8 directional regions on the first level whereas there 

are 4 directional regions and one approximation region on the last level. 
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The 3-Level Contourlet Decomposition (CD) can be structured as the following: 

 

Figure 3.11 : 3-Level Contourlet Decomposition. 

The 3-Level CD inherently produces  subbands. 

 are the redundant subbands whereas the smallest subset of the 

subbands for the perfect reconstruction is the low-pass subband from the last level 

and the directional subband decompositions from all levels. Only the high-pass 

portions of the LPD are directionally decomposed by the DFB since it performs 

better on high frequencies [5]. 

The inverse operation of the CD is called the Contourlet Reconstruction which can 

be performed by using both the LP and the DFB Reconstruction. 
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3.4 Nonsubsampled Laplacian Pyramid Decomposition 

The Nonsubsampled Laplacian Pyramid Decomposition (NSLPD) is similar to its 

subsampled counterpart except that the upsamplers and downsamplers are omitted 

and it utilizes the application of a LPF on the signal where the LPF is upsampled by 

the factor of  in the Nth level. After each level, the expansion of the LPF occurs 

due to the inserted zeros between every consecutive LPF coefficients [18]. 

 (3.11) 

 (3.12) 

where N denotes the current level of decomposition and  are the indices of the 

LPF. 

 

Figure 3.12 : 2-D Nonsubsampled Laplacian Pyramid Decomposition. 

Like in the LPD, the HPF or the high-pass filtered input can be deduced from the 

LPF or the low-pass filtered input respectively [7]. 

 (3.13) 

 (3.14) 
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Figure 3.13 : Frequency Division of the 2-D 2-Level NSLPD. 

As seen in the Figure 3.13, the frequency division of the 2-D 2-Level NSLPD is the 

same as the 2-D 2-Level LPD case. The frequency plane is divided into one high 

frequency region on every level whereas there is one approximation region on the 

last level. 
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Then, the 2-D 3-Level NSLPD is the following: 

 

Figure 3.14 : 2-D 3-Level NSLPD. 

The 2-D 3-Level NSLPD inherently produces 3 high-pass and 3 low-pass subbands. 

The information from the low-pass subbands on the first and the second level are 

carried into the next level since they will be decomposed into 2 subbands on the next 

level. Due to this fact, the smallest subset of the subbands for perfect reconstruction 

includes all the subband images from the last level and the remaining high-pass 

subband images from the upper remaining levels. This property is considered during 

the feature set selection to avoid unnecessary redundant information. 

The inverse operation of the NSLPD is called the NSLP Reconstruction and can be 

performed by using the inverse LPF/HPF that are downsampled after each 

reconstruction level. 
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3.5 Nonsubsampled Directional Filter Bank Decomposition 

The Nonsubsampled Directional Filter Bank Decomposition (NSDFBD) is similar to 

its subsampled counterpart except that the Modulator, QDFs are omitted and 

different special Directional Filters are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 : Nonsubsampled Directional Filter Bank Decomposition Filters. 

Upsampled versions of the filters  and  are used on the 

second level whereas the special filters , , , 

, , ,  and  are upsampled by 

the factor of  on the third level [18][36]. 

 

Figure 3.16 : Nonsubsampled Directional Filter Bank Decomposition. 
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For all the levels, the above structure can be used where  and 

 are the HFs, Checker-Board Filters (CBFs), special Directional Filters 

on the first, second and third level respectively [18][36]. 

The upsampling of the Directional Filters is necessary and critical to avoid the 

phenomena called as the Aliasing Effect due to the imperfection of the Directional 

Filters. Without the upsampling, the transition bands of the Directional Filters 

coincide with the coarser upsampled LP subbands and will cause distortion of the 

signal output [18]. This effect is studied in detail by Nguyen and Oraintara[24]. 

 

Figure 3.17 : Frequency Division of the 3-Level NSDFBD. 

As seen in the Figure 3.17, the frequency division of the 3-Level NSDFBD is the 

same as the 2-Level DFBD case. The frequency plane is divided into  wedges that 

represent the directionalities in  directions. 
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The 3-Level NSDFBD is as the following: 

 

Figure 3.18 : 3-Level NSDFBD. 

The 3-Level NSDFBD inherently produces 14 subbands. The input image is first 

directionally decomposed into 2 directions resulting in 4 slices in the frequency 

domain. On the second level, the number of directions doubles and becomes 4 

resulting in 8 slices in the frequency domain. The last level produces 8 directional 

subbands that divide the frequency domain in 16 slices. 

The first level utilizes the HFs, the second one uses the CBFs whereas the last level 

utilizes the specially designed filters presented in the Figure 3.15. Cascading an HF 

with the CBFs results in the division of the frequency domain into 4 directions. The 

special filters used on the third and last level gets input images filtered with supports 

in 4 different directions and the outputs are as a result 8 different directional 

subbands. The smallest subset of the subbands for perfect reconstruction includes 

only the directional subband decompositions from the last level. 

The inverse operation of the NSDFBD is called the NSDFB Reconstruction and can 

be performed by using the inverse NSDFBD filters. 
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3.6 Nonsubsampled Contourlet Transform 

The Nonsubsampled Contourlet Transform (NSCT) is similar to the subsampled 

counterpart except the omitted upsamplers/downsamplers and upsampling of both the 

LP and the DFBD Filters successively after each level. In other words, the NSCT is 

obtained by cascading the NSLP with the Nonsubsampled Directional Filter Bank 

(NSDFB) [18]. 

 

Figure 3.19 : Nonsubsampled Contourlet Decomposition. 

Beginning from the first level, the input image is decomposed into high-pass and 

low-pass subbands. The resultant high-pass subband is decomposed into directional 

subbands since the DFB performs better on high frequencies [5]. The low-pass 

subband will be downsampled and passed into the next level. The common practice 

is to decompose the high-pass subbands into many directions on the first levels and 

into fewer directions on the coarse levels, since the frequency domain will be divided 

into smaller chunks on the coarse levels. 

As seen in the Figure 3.20, the frequency division of the 2-Level NSCD is the same 

as the 2-Level CD case. The frequency plane is divided into 8 directional regions on 

the first level whereas there are 4 directional regions and one approximation region 

on the last level. 

The 3-Level Nonsubsampled Contourlet Decomposition (NSCD) can be constructed 

as in the Figure 3.21. 
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Figure 3.20 : Frequency Division of the 2-Level NSCD. 

 

Figure 3.21 : 3-Level Nonsubsampled Contourlet Decomposition. 
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The 3-Level NSCD inherently produces  subbands. 

 are the redundant subbands whereas the smallest subset of the 

subbands for perfect reconstruction is the low-pass subband from the last level and 

the directional subband decompositions from all levels. Only the high-pass portions 

of the NSLPD are directionally decomposed by the NSDFB since it performs better 

on high frequencies [5]. 

The inverse operation of the NSCD is called the Nonsubsampled Contourlet 

Reconstruction which can be performed by using both the NSLP and the NSDFB 

Reconstruction. 
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4.  HYBRID CONTOURLET TRANSFORMS 

The fashion of combining or cascading the different transform methods began with 

the introduction of the CT. Whereas the CT is the resulting transform of the 

combination of the rather simpler transforms, the more advanced and complex 

combinations were and are recently being researched. The major purpose of this 

strategy is to achieve better feature extraction by eliminating the individual 

weaknesses of each cascaded transform methods through compensation. The Hybrid 

Contourlet Transforms are one of the important members of this Hybrid Transform 

Families [16][17]. 

4.1 Wavelet Based Contourlet Transform 

The Wavelet Based Contourlet Transform (WBCT) is achieved by utilizing the DWT 

for subband decomposition and reconstruction, followed by the DFB for directional 

decomposition and reconstruction. During the decomposition, the Discrete Wavelet 

approximation signal is passed into the next level whereas the directional subbands 

are directionally decomposed [16][17]. 

The Wavelet Based Contourlet Decomposition (WBCD) is performed by using the 

DWD instead of the LPD to achieve directional decompositions on low-pass portions 

as well. Only the approximated image is passed into the next level, whereas the 

horizontal, vertical and diagonal subbands are decomposed by the DFB [16][17]. 

The block diagram for single level WBCD and its frequency division are shown in 

Figures 4.1 and 4.2 respectively. 
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Figure 4.1 : Wavelet Based Contourlet Decomposition. 

 

Figure 4.2 : Frequency Division of the 2-Level WBCD. 
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The frequency division of the 2-Level WBCD is presented in the Figure 4.2. The 

frequency plane is divided into 24 directional regions on the first level whereas there 

are 16 directional regions and one approximation region on the last level. 

The 3-Level WBCD is constructed as in the Figure 4.3. The decomposition 

inherently produces  subbands. All the DWD subbands 

except  are the redundant subbands whereas the smallest subset of the subbands 

for perfect reconstruction contains  and all the directional subbands produced by 

DFBs on all levels. Horizontal, vertical and diagonal portions of the DWDs are 

directionally decomposed by the DFB since it performs better on high frequencies 

[5]. 

The inverse operation of the WBCD is called the Wavelet Based Contourlet 

Reconstruction which can be performed by using both the Discrete Wavelet and the 

NSDFB Reconstruction. 
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Figure 4.3 : 3-Level Wavelet Based Contourlet Decomposition.
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4.2 Stationary Wavelet Based Contourlet Transform 

The Stationary Wavelet Based Contourlet Transform (SWBCT) is achieved by 

utilizing the SWT for subband decomposition and reconstruction, followed by the 

DFB decomposition and reconstruction. During the decomposition, the SWT 

approximation is passed into the next level whereas the directional subbands are 

directionally decomposed [19]. 

 

Figure 4.4 : Stationary Wavelet Based Contourlet Decomposition. 

The Stationary Wavelet Based Contourlet Decomposition (SWBCD) is performed by 

using the SWD instead of the NSLPD to achieve directional decompositions on low 

pass portions as well. Only the approximated image is passed into the next level, 

whereas the horizontal, vertical and diagonal subbands are decomposed by the 

NSDFB [19]. 

The 3-Level SWBCD is constructed as in the Figure 4.4. The decomposition 

inherently produces  subbands. All the SWD subbands except 

 are the redundant subbands whereas the smallest subset of the subbands for 

perfect reconstruction contains  and all the directional subbands produced by 
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NSDFBs on all levels. Horizontal, vertical and diagonal portions of the SWDs are 

directionally decomposed by the NSDFB since it performs better on high frequencies 

[5]. 

 

Figure 4.5 : Frequency Division of the 2-Level SWBCD. 

As seen in the Figure 4.5, the frequency division of the 2-Level SWBCD is the same 

as the 2-Level WBCD case. The frequency plane is divided into 24 directional 

regions on the first level whereas there are 16 directional regions and one 

approximation region on the last level. 

The inverse operation of the SWBCD is called the Stationary Wavelet Based 

Contourlet Reconstruction which can be performed by using both the Stationary 

Wavelet and the DFB Reconstruction. 
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Figure 4.6 : 3-Level Stationary Wavelet Based Contourlet Decomposition. 
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5.  FEATURE EXTRACTION AND CLASSIFICATION 

5.1 Introduction 

Classification falls into one of the subsets of machine learning which is a vast area of 

research closely relevant to the artificial intelligence. Classification has basically 

three steps. First, the features of the signal are extracted. Then, the classification 

algorithm is trained using a training set. Finally, the features are fed into the trained 

classification algorithm which decides upon the classes based on these extracted 

features [25][26]. 

5.2 Feature Extraction 

The simplest feature extraction method would be using the data itself. For most of 

the cases, this does not suffice and methods should be used, which extract features 

that are specifically suitable for the classification problem [25][26]. 

Generally, types of features can be divided into the following categories: 

5.2.1 Spectral Features 

For some classification problems, one is not interested in the spatial domain of the 

image. Instead, the features on the frequency domain are needed. The most used 

methods are the colour histogram and the cumulative colour histogram [27]. 

5.2.2 Shape Features 

For object recognition and classification, most widely used techniques are the edge 

detection algorithms. Some are Nevati and Babu’s Technique, Hysteretic Threshold, 

Shape Models, Canny’s Procedure, Deriche’s Procedure and Morphologic Features 

[27]. 
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5.2.3 Texture Features 

Textures are images which have more or less periodic characteristics in the spatial 

domain [27]. Since they have repeated patterns over the spatial domain, the more 

successful feature extraction methods should also cover the frequency domain of the 

image. Therefore, most widely used methods involve analysis methods using 2-D 

transforms like WFT, DWT and CT. In this work, six different feature extraction 

methods of this kind are used. 

5.3 Classification Algorithms 

There are many classification algorithms in the literature. To briefly summarize, the 

classification algorithms can be categorized by its training strategies and decision 

approaches. 

5.3.1 Supervised and Unsupervised Learning 

When a classification algorithm is trained by a smaller subset of samples, a 

supervised training feeds the classification algorithm with both the feature vectors 

and the target values. The target values are the correctly assigned classes of the 

training set so they need to be known before the classification phase. An 

unsupervised classification however does not require the target values so it only uses 

the feature vectors [25][26]. 

5.3.2 Discriminative and Generative Approaches 

Discriminative approach based classification algorithms separate classes from each 

other by forming decision boundaries; also known as hyperplanes; between them. 

This can be achieved by parametric methods. Parametric methods assume a prior 

distribution of the classes which is for most of the cases a Gaussian Distribution. 

After that, the parameters of the distribution are estimated by using the training set. 

Logistic Discriminants, Support Vector Machines (SVM), Relevance Vector 

Machines (RVM) and Linear Discriminants, despite its name which can act non-

linear as well by utilizing non-linear basis function, use this kind of approach 

[25][26].  
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In contrast, the generative approach; also known as the Bayesian approach; does not 

assume a prior distribution. It lets the data speak itself and applies well known 

Bayesian Theorem to calculate the posterior probability of the classes [25][26]. 

5.3.2.1 Bayesian Theorem 

For  mutually exclusive and exhaustive classes; , ; the prior 

probability, the likelihood and the evidence are defined as [25][26]: 

 (5.1) 

 (5.2) 

 (5.3) 

 (5.4) 

 (5.5) 

Bayesian Networks and K-Nearest Neighbour (KNN) are based upon this generative 

approach [25][26]. 

Besides these algorithms, there is another algorithm called Neural Networks (NN); 

also known as the Multilayer Perceptrons (MLP); which does not assume prior 

distribution of the classes but estimate its weight parameters according to the training 

set [25][26]. 

As a rule of thumb, Bayesian approach is used when there are lots of both training 

and sample set data available, since the generalization will be more accurate. 

Furthermore, on the contrary to the discriminative approach, the Bayesian approach 

does not need to estimate and correct its parameters for every training set data fed; 

hence it produces results in much less time. Discriminative approach is used in those 

cases when the training set data is scarce and therefore the generalization is 

performed directly by the distribution assumption [25][26]. 
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5.4 K-Nearest Neighbour Algorithm 

KNN algorithm is one of the simplest classification algorithms due to its robustness 

and easy implementation. The KNN estimator is defined as [26]: 

 (5.6) 

where  is the number of neighbours out of the k nearest that belong to the class  

and  is the volume of the d-dimensional hypersphere centered at x with radius 

 where  is the k-th nearest observation to x. 

Then the KNN classifier becomes using the Bayesian Theorem 

 (5.7) 

KNN classifier assigns the input to the class having most of examples among the k-

neighbours from the training set. Ties can be broken randomly or using weightened 

vote. The distance to determine the proximity of the neighbours can be Euclidean 

Distance, Cosine Similarity, Correlation or Hamming Distance. 

A special case of the KNN classifier is the Nearest Neighbour classifier where K is 

chosen to be 1. This results in the division of the space in the form of the Voronoi 

Tessellation, also known as the Thyssen Polygons [26]. 

This work uses the KNN classification algorithm with different K values varying 

from 1 to 5. 

5.5 Textures 

Textures are defined in literature as the images that have measurable characteristics 

like smoothness, coarseness and regularity which results in regular patterns or 

distributions of these measurable properties in the spatial domain [27]. 

The textures can be categorized into the followings. 

5.5.1 Regular Textures 

Regular textures are the ones that have not necessarily exactly but more or less the 

same spatial patterns that repeat themselves. Their features are constant or slightly 
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vary over a frame in the spatial domain. The classification of these texture types is 

very easy since they have more or less the same repeated features over the spatial 

domain and require less number of training samples [27]. 

5.5.2 Statistical Textures 

Statistical textures are textures that do not have repeated patterns over most of the 

spatial domain but the distribution of their features can be fit into a statistical 

function with an acceptable error margin [27]. 

5.5.3 Synthetic Textures 

Synthetic Textures are the ones that have exactly the same spatial patterns that repeat 

themselves or can be synthesized using predefined distribution functions. The former 

ones are also considered as regular textures and hence their classification can be 

performed easily [27]. 

5.5.4 Natural Textures 

Natural textures are textures that are taken directly from the observations of the 

nature. This type of textures can be both regular or statistical but due to the random 

nature of the universe, their feature distribution can be fit into a statistical function 

with an acceptable error margin [27]. 

5.6 Brodatz Textures 

Phil Brodatz has published a photographic album in 1966 which have 112 different 

textures called since then as the Brodatz Textures (BT) [28]. The BT cover both 

regular and statistical natural textures. Each BT has unique individual features which 

make BT very suitable for testing the feature extraction and classification algorithm 

performances. 

In this work, 4 different regular BT are combined as a matrix. The individual textures 

were 320 by 320 pixel images and they were downsampled to 160 by 160 pixel 

images before the combination. The resulted BT Matrix and its prefect segmentation 

are presented in Figures 5.1 and 5.2 respectively. 
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Figure 5.1 : 4 Class Brodatz Textures Matrix. 

 

Figure 5.2 : Perfectly Segmented 4 Class Brodatz Textures Matrix. 
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5.7 Brodatz Texture Matrix Classification Algorithm 

The classification algorithm for the BT Matrix can be divided into the following 

steps some of which have variable inputs: 

 

Figure 5.3 : 4 Class Brodatz Textures Matrix Classification Algorithm. 

1. The BT Matrix size needs to be extended so that the used window has values 

during traversing the image near its sides. The offset size is directly 

determined by the size of the window, i.e. the offset is upper rounded value of 

the half of the window size. The missing pixel values are populated by using 

the mirror values from the first left and the right image side, then from the top 

and the bottom image side. 

Extend The BT Matrix 

to include the Offset 

Normalize The BT Matrix 

Save Feature Vector Matrix 

Extract Features for each pixel 

Calculate Success Percentage and 

Save Classification Result Image 

KNN Classification for each pixel 

   Offset 

   Decomposition Method 

   Waveform 
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   K 

   Training Coordinates 
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2. The image pixel values are normalized so that image contrast is enhanced. 

3. The features are extracted using the Transform Based Decomposition 

Methods; DWT, SWT, CT, NSCT, WBCT and SWBCT Decompositions. 

The image is traversed by the used window with predefined size 16 by 16, 

starting from the left-upper corner and ending on the right-lower corner pixel 

of the original image. The extracted features are the means and variances of 

each subband decompositions on every level. The level of decompositions is 

2; 1- and 3-level decompositions did not provide satisfactory and consistent 

results and thus will not be presented in this work. Haar, Daubechies-4 and 

Daubechies-6 Wavelets are used as waveforms in order to compare the 

performances of different feature extraction methods more precisely. The 

formed feature vector represents the features of the pixel on the coordinates 

(8,8) of the used window. After the traverse of the whole image, the feature 

matrix is constructed using each feature vector as its rows. 

This step applies pixel by pixel shifting of the used window in both horizontal 

and vertical directions to avoid misclassification on both horizontal and 

vertical class boundaries. Pixel by pixel shifting is computationally more 

exhaustive compared to the vertical and horizontal window shifting which 

however may cause misclassification on the horizontal and vertical class 

boundaries respectively. 

4. The formed feature matrix is stored as a binary file so that it can be used 

multiple times without having to calculate it over and over again. 

5. The feature matrix is read from the file and The KNN Classifier is fed with 

10 training feature vectors for each class and the feature vectors of the 

candidate pixels. The KNN Classifier assigns each pixel to a single class. The 

classification were performed for K varying from 1 to 5 and the most 

successful results were achieved for K=1 and K=2. Another approach would 

be using The Nearest Neighbour Classifier where the mean of each feature 

vectors of the same class we calculated and fed into the classifier. Its results 

were unsatisfactory and will not be presented in this work. 

6. The resultant segmented image and the classification performance are saved 

as separate files. 
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The overall process can be programmed in MATLAB using built-in and custom 

toolboxes [29][30][31]. Using the MATLAB Parallel Computing Toolbox, this 

process with different input values can be performed in parallel [32]. 

5.7.1 Discrete Wavelet Decomposition Features 

The feature vector for BT-DWT classification includes the mean and standard 

deviations of the directional subband images on the first level and the mean and 

standard deviations of both the directional subband and approximation images on the 

second level. 

 (5.8) 

 (5.9) 

 (5.10) 

The resultant feature vector for a single image pixel contains 14 elements. 

5.7.2 Stationary Wavelet Decomposition Features 

The feature vector for BT-SWT classification includes the mean and standard 

deviations of the directional subband images on the first level and the mean and 

standard deviations of both the directional subband and approximation images on the 

second level. 

 (5.11) 

 (5.12) 

 (5.13) 

The resultant feature vector for a single image pixel contains 14 elements. 
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5.7.3 Contourlet Decomposition Features 

The feature vector for BT-CT classification includes the mean and standard 

deviations of the directional subband images produced by the DFB on the first level 

and the mean and standard deviations of the subband images produced by the LP on 

the second level. The number of directions of the DFB on the first level is 8 whereas 

there is no directional decomposition performed by the DFB on the second level. 

 (5.14) 

 (5.15) 

 (5.16) 

The resultant feature vector for a single image pixel contains 20 elements. 

5.7.4 Nonsubsampled Contourlet Decomposition Features 

The feature vector for BT-NSCT classification includes the mean and standard 

deviations of the directional subband images produced by the NSDFB on the first 

level and the mean and standard deviations of the subband images produced by the 

NSLP on the second level. The number of directions of the NSDFB on the first level 

is 8 whereas there is no directional decomposition performed by the NSDFB on the 

second level. 

 (5.17) 

 (5.18) 

 (5.19) 

The resultant feature vector for a single image pixel contains 20 elements. 
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5.7.5 Wavelet Based Contourlet Decomposition Features 

The feature vector for BT-WBCT classification includes the mean and standard 

deviations of the directional subband images produced by the DFB on the first level 

and the mean and standard deviations of both the directional subband and 

approximation images produced by the DWD on the second level. The number of 

directions of the DFB on the first level is 8 whereas there is no directional 

decomposition performed by the DFB on the second level. 

 (5.20) 

 (5.21) 

 (5.22) 

The resultant feature vector for a single image pixel contains 56 elements. 

5.7.6 Stationary Wavelet Based Contourlet Decomposition Features 

The feature vector for BT-SWBCT classification includes the mean and standard 

deviations of the directional subband images produced by the DFB on the first level 

and the mean and standard deviations of both the directional subband and 

approximation images produced by the SWD on the second level. The number of 

directions of the DFB on the first level is 8 whereas there is no directional 

decomposition performed by the DFB on the second level. 

 (5.23) 

 (5.24) 

 (5.25) 

The resultant feature vector for a single image pixel contains 56 elements. 
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5.8 AVIRIS Indiana’s Indian Pine Hyperspectral Data 

As the hyperspectral data, the hyperspectral image taken from the AVIRIS satellite in 

June 1992 is used [33]. The data are composed of the 128 byte image header 

containing the version, the data type, the number of bands and the pixel dimensions; 

followed by the non-normalized pixel values of the first line of the image data 

consequently on each hyperspectral bands, then by the non-normalized pixel values 

of the second line and so on. The data have 220 bands of 145 by 145 pixel images 

and the bands are about 10 nm apart from 0.4 to 2.45  with a spatial resolution of 

20 m. The ground truth (GT) is available on a separate file containing single assigned 

class for each pixel. The number of total classes is 17 including the background 

terrain class stone-steel towers [33]. 

  

Figure 5.4 : AVIRIS Data on Band 32 and its GT. 

  

Figure 5.5 : AVIRIS Data GT before and after the class reduction. 
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Considering that the data contains many classes that have small number of counts 

compared to the ones with large counts, the classes with small counts are removed 

and assigned to the background class stone-steel towers. The removed classes are 1, 

4, 5, 7, 9, 13, 15 and 16. In addition to that, the bands [104-108], [150-163], 220 are 

marked in the GT file as the water absorption bands and there are fifteen noisy bands 

[1-3], 103, [109-112], [148-149], [164-165], [217-219]. These bands will not be 

considered during the feature extraction routines [33]. 

The original and modified class pixel counts are shown on Table 5.1. 

Table 5.1 : AVIRIS Hyperspectral Data Classes. 

Class No Class Name Count (Original) Count (Modified) 

1 Corn-no till 54 0 

2 Corn-min till 1434 1434 

3 Corn 834 834 

4 Soybeans-no till 234 0 

5 Soybeans-no till2 497 0 

6 Soybeans-min till 747 747 

7 Soybeans-clean till 26 0 

8 Alfalfa 489 489 

9 Grass/Pasture 20 0 

10 Grass/Trees 968 968 

11 Grass/Pasture-mowed 2468 2468 

12 Hay-windrowed 614 614 

13 Oats 212 0 

14 Wheat 1294 1294 

15 Woods 380 0 

16 Bldg-Grass-Tree-Drives 95 0 

17 Stone-steel towers 10659 12177 
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5.9 AVIRIS Hyperspectral Data Classification Algorithm 

The classification algorithm for the AVIRIS Hyperspectral Data is similar to the BT 

Matrix classification and can be divided into the following steps some of which have 

variable inputs: 

 

Figure 5.6 : AVIRIS Hyperspectral Data Classification Algorithm. 
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1. The visual inspection of the single-band images and class reduction are 

performed. The AVIRIS Indiana’s Indian Pine data has unignorable number 

of water absorption and additional noisy bands; some classes of it have small 

number of pixels that can be ignored due to the resulting insufficient number 

of training samples. The twenty water absorption bands [104-108], [150-163], 

220 marked in the GT file and the fifteen noisy bands [1-3], 103, [109-112], 

[148-149], [164-165], [217-219] observed by the visual inspection are not 

considered during the feature extraction. 

2. The single-band image size needs to be extended so that the used window has 

values during traversing the image near its sides. The offset size is directly 

determined by the size of the window, i.e. the offset is upper rounded value of 

the half of the window size. The missing pixel values are populated by using 

the mirror values from the first left and the right image side, then from the top 

and the bottom image side. 

3. The image pixel values are normalized so that image contrast is enhanced. 

4. The features are extracted using the Transform Based Decomposition 

Methods; DWT, SWT, CT, NSCT, WBCT and SWBCT Decompositions. 

The image is traversed by the used window with predefined size 16 by 16, 

starting from the left-upper corner and ending on the right-lower corner pixel 

of the original image. The extracted features are the means and variances of 

each subband decompositions on every level. The level of decompositions is 

2; 1- and 3-level decompositions did not provide satisfactory and consistent 

results and thus will not be presented in this work. Haar, Daubechies-4 and 

Daubechies-6 Wavelets are used as waveforms in order to compare the 

performances of different feature extraction methods more precisely. The 

formed feature vector represents the features of the pixel on the coordinates 

(8,8) of the used window. After the traverse of the whole image, the feature 

matrix is constructed using each feature vector as its rows. 

This step applies pixel by pixel shifting of the used window in both horizontal 

and vertical directions to avoid misclassification on both horizontal and 

vertical class boundaries. Pixel by pixel shifting is computationally more 

exhaustive compared to the vertical and horizontal window shifting which 
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however may cause misclassification on the horizontal and vertical class 

boundaries respectively. 

5. The formed feature matrix is stored as a binary file so that it can be used 

multiple times without having to calculate it over and over again. 

6. The steps from 2 to 5 are performed until all the feature matrices of the 

selected bands are saved. The saved feature matrices of each selected bands 

are merged so that the feature vectors of the same pixel are concatenated one 

by one starting from the first selected band and ending at the last selected 

band. The final feature matrix is stored again as a binary file to be used 

multiple times. 

7. The final feature matrix is read from the file and The KNN Classifier is fed 

with 625 training feature vectors of the homogenously distributed pixels and 

the feature vectors of the candidate pixels. The KNN Classifier assigns each 

pixel to a single class. The classification were performed for K varying from 

1 to 5 and the most successful results were achieved for K=1 and K=2. 

Another approach would be using The Nearest Neighbour Classifier where 

the mean of each feature vectors of the same class we calculated and fed into 

the classifier. Its results were unsatisfactory and will not be presented in this 

work. 

8. The resultant segmented image and the classification performance are saved 

as separate files. 

This overall process can also be programmed in MATLAB using built-in and custom 

toolboxes where it desperately needs the utilization of parallel programming or GPU 

based computing due to the large number of used bands [29][30][31][32][34][35]. 

 Using the MATLAB Parallel Computing Toolbox, this process with different input 

values can be performed in parallel [32]. 

5.9.1 Discrete Wavelet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data DWT classification includes the 

mean and standard deviations of the directional subband images on the first level and 

the mean and standard deviations of both the directional subband and approximation 

images on the second level. 
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The sequence of the mean and standard deviations are the same as in the BT-DWT 

classification. The feature vectors for each used bands are concatenated in the 

increasing order of band number to form the final feature vector. 

 (5.26) 

 (5.27) 

 (5.28) 

 (5.29) 

The resultant feature vector for a single image pixel contains 2590 elements. 

5.9.2 Stationary Wavelet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data SWT classification includes the 

mean and standard deviations of the directional subband images on the first level and 

the mean and standard deviations of both the directional subband and approximation 

images on the second level. 

The sequence of the mean and standard deviations are the same as in the BT-SWT 

classification. The feature vectors for each used bands are concatenated in the 

increasing order of band number to form the final feature vector. 

 (5.30) 

 (5.31) 

 (5.32) 

 (5.33) 

The resultant feature vector for a single image pixel contains 2590 elements. 
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5.9.3 Contourlet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data CT classification includes the 

mean and standard deviations of the directional subband images produced by the 

DFB on the first level and the mean and standard deviations of subband images 

produced by the LP on the second level. The number of directions of the DFB on the 

first level is 8 whereas there is no directional decomposition performed by the DFB 

on the second level. 

The sequence of the mean and standard deviations are the same as in the BT-CT 

classification. The feature vectors for each used bands are concatenated in the 

increasing order of band number to form the final feature vector. 

 (5.34) 

 (5.35) 

 (5.36) 

 (5.37) 

The resultant feature vector for a single image pixel contains 3700 elements. 

5.9.4 Nonsubsampled Contourlet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data NSCT classification includes the 

mean and standard deviations of the directional subband images produced by the 

NSDFB on the first level and the mean and standard deviations of subband images 

produced by the NSLP on the second level. The number of directions of the NSDFB 

on the first level is 8 whereas there is no directional decomposition performed by the 

NSDFB on the second level. 

The sequence of the mean and standard deviations are the same as in the BT-NSCT 

classification. The feature vectors for each used bands are concatenated in the 

increasing order of band number to form the final feature vector. 

 (5.38) 

 (5.39) 
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 (5.40) 

 (5.41) 

The resultant feature vector for a single image pixel contains 3700 elements. 

5.9.5 Wavelet Based Contourlet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data WBCT classification includes the 

mean and standard deviations of the directional subband images produced by the 

DFB on the first level and the mean and standard deviations of both the directional 

subband and approximation images produced by the DWD on the second level. 

The sequence of the mean and standard deviations are the same as in the BT-WBCT 

classification. The feature vectors for each used bands are concatenated in the 

increasing order of band number to form the final feature vector. 

 (5.42) 

 (5.43) 

 (5.44) 

 (5.45) 

The resultant feature vector for a single image pixel contains 10360 elements. 

5.9.6 Stationary Wavelet Based Contourlet Decomposition Features 

The feature vector for AVIRIS Hyperspectral Data SWBCT classification includes 

the mean and standard deviations of the directional subband images produced by the 

DFB on the first level and the mean and standard deviations of both the directional 

subband and approximation images produced by the SWD on the second level. 

The sequence of the mean and standard deviations are the same as in the BT-

SWBCT classification. The feature vectors for each used bands are concatenated in 

the increasing order of band number to form the final feature vector. 

 (5.46) 
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 (5.47) 

 (5.48) 

 (5.49) 

The resultant feature vector for a single image pixel contains 10360 elements. 
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6.  RESULTS AND DISCUSSION 

The performance difference between the segmentation results can easily be seen for 

some transform methods whereas for some of them, reference to the performance 

percentage tables is recommended. 

The decomposition and feature extraction routines were run both during the BT 

Matrix and AVIRIS Hyperspectral Data classification by using the Haar, 

Daubechies-4 and Daubechies-6 Wavelet Filters for subband decomposition. 

The window sizes used during the pixel by pixel feature extraction were 12x12, 

16x16 and 20x20. The most satisfactory results were obtained by using the 16x16 

window size and the other two window sizes were left out due to this reason. 

The KNN classification algorithm was run by using K varying from 1 to 5 without 

taking the average of the training feature vectors belonging to the same classes. The 

most satisfactory results were demonstrated for K=1 and K=2, the results for other K 

values will not be shown. The Nearest Neighbour classification algorithm, which 

uses the average of the training feature vectors belonging to the same classes with 

K=1 produced inconsistent results and left out due to this reason. 

In overall, there were 6 different decomposition methods utilizing 3 different 

Wavelet Filters applied to 2 different images. Hence, there were 36 different feature 

sets which were classified using 2 different K values which at the end produced 72 

segmentation results. 
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6.1 Discrete Wavelet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.1 : DWT BT Segmentation Results.  
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6.2 Stationary Wavelet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.2 : SWT BT Segmentation Results.
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6.3 Contourlet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.3 : CT BT Segmentation Results.
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6.4 Nonsubsampled Contourlet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.4 : NSCT BT Segmentation Results.
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6.5 Wavelet Based Contourlet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.5 : WBCT BT Segmentation Results.
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6.6 Stationary Wavelet Based Contourlet Transform Brodatz Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.6 : SWBCT BT Segmentation Results.
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6.7 Brodatz Results and Discussion 

The common observations from the results for the BT are that there exist tolerable 

misclassification bands on the boundaries between the class regions and the top-

right, top-left and bottom-right class regions were classified most successfully. 

Additionally, the results demonstrate that there were small differences between the 

classification performances with different Wavelets. In general, the Daubechies-4 

and Daubechies-6 Wavelets performed equally as the most whereas the Haar 

Wavelet did as the least successful. The Hybrid Transform methods provided 

significantly worse results compared to the other ones and the nonsubsampled 

transform methods except the SWBCT resulted in much clustered segmentations 

compared to the subsampled ones. 

The DWT results for the BT demonstrate that the Daubechies-4 Wavelet performed 

as the most whereas the Haar Wavelet did as the least successful in this transform 

method. In all class regions, there were misclassified pixels belonging to all other 

classes. The most successful segmentations occurred on the top-right class region 

whereas the least successful segmentations occurred on the bottom-left class region. 

The SWT for the BT greatly outperformed the DWT counterpart. The redundancy of 

the SWT resulted in much clustered segmentations. There were almost no differences 

between the results with the Daubechies-4 and Daubechies-6 Wavelets whereas it is 

noticeable that more misclassified pixels occurred on the upper class regions with the 

Haar Wavelet. The Daubechies-6 Wavelet performed as the most whereas the Haar 

Wavelet did as the least successful in this transform method. The most successful 

segmentations occurred on the top-right class region having been classified better 

than the DWT counterpart whereas the least successful segmentations again occurred 

on the bottom-left class region. 

The CT for the BT performed better than the DWT counterparts except the Haar 

Wavelet one; whereas some additional pixels distributed over the class regions were 

misclassified as well. The reason for this is that since the CT has more directionality 

than the DWT counterparts, the training features were scattered over many 

directions, resulting in less successful segmentations on some parts as well, 

noticeably on the top-right and bottom-left class regions. The Daubechies-4 Wavelet 

performed as the most whereas the Haar Wavelet did as the least successful in this 
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transform method. The most successful segmentations occurred again on the top-

right class whereas the least successful segmentations again occurred on the bottom-

left class region. 

The NSCT for the BT greatly outperformed the CT counterpart and its performance 

was also better than the SWT counterpart with the Haar Wavelet. The redundancy of 

the NSCT resulted in much clustered segmentations. There were almost no 

differences between the results with the Daubechies-4 and Daubechies-6 Wavelets 

whereas it is noticeable that less misclassified pixels occurred on the upper class 

regions with the Haar Wavelet. The Haar Wavelet performed as the most whereas the 

Daubechies-6 Wavelet did as the least successful in this transform method. The most 

successful segmentations occurred on the top-right class region having been 

classified better than with the DWT counterpart whereas there was still a tolerable 

band of misclassification on the boundary between this region and the top-left class 

region. The least successful segmentations again occurred on the bottom-left class 

region. 

The WBCT for the BT provided the worst results among all transform methods. The 

used Wavelets affected the segmentations of the most misclassified class region, the 

bottom-left one. The Daubechies-6 Wavelet performed as the most whereas the Haar 

Wavelet did as the least successful in this transform method. 

The SWBCT for the BT compensated the flaws of the WBCT counterpart marginally 

and its segmentation performances are almost independent of the Wavelets used. 

Still, it was not powerful enough to compete with the other Transform Methods. The 

Daubechies-6 Wavelet performed as the most whereas the Haar Wavelet did as the 

least successful in this transform method. 
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6.8 Discrete Wavelet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.7 : DWT AVIRIS Segmentation Results.
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6.9 Stationary Wavelet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.8 : SWT AVIRIS Segmentation Results.
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6.10 Contourlet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.9 : CT AVIRIS Segmentation Results.
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6.11 Nonsubsampled Contourlet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.10 : NSCT AVIRIS Segmentation Results.
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6.12 Wavelet Based Contourlet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.11 : WBCT AVIRIS Segmentation Results.
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6.13 Stationary Wavelet Based Contourlet Transform AVIRIS Results 

 

(a) using Haar Wavelet, K=1 

 

(b) using Haar Wavelet, K=2 

 

(c) using db4 Wavelet, K=1 

 

(d) using db4 Wavelet, K=2 

 

(e) using db6 Wavelet, K=1 

 

(f) using db6 Wavelet, K=2 

Figure 6.12 : SWBCT AVIRIS Segmentation Results.
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6.14 AVIRIS Results and Discussion 

The results for the AVIRIS Hyperpectral Data demonstrate even smaller differences 

between the classification performances with different Wavelets. In general, both the 

Daubechies-4 Daubechies-6 Wavelets performed equally as the most whereas the 

Haar Wavelet did as the least successful. Unlike the BT case, the misclassified pixels 

occurred on all the class regions belonged to a single class, the background class 17. 

It was also noticeable that the vanished classes after the class reduction process were 

partially detected and assigned to the nearest classes different than the background 

class. Finally, the Hybrid Transform methods did not face significant performance 

drops as in the BT case. In fact, the SWBCT provided the most successful results in 

all Wavelet choices. 

The DWT results for the AVIRIS Hyperpectral Data demonstrate that the best results 

were obtained using the Daubechies-6 Wavelet. The Haar and Daubechies-4 

Wavelets provided less successful results in this transform method. 

The SWT for the AVIRIS Hyperpectral Data outperformed the DWT counterpart due 

to its redundancy. The Haar Wavelet performed as the most whereas the Daubechies-

4 and Daubechies-6 Wavelets did equally less successful in this transform method. 

The CT for the AVIRIS Hyperpectral Data outperformed the DWT counterpart due 

to its increased directionality. The Daubechies-6 Wavelet performed as the most 

whereas the Haar Wavelet did as the least successful in this transform method. 

The NSCT for the AVIRIS Hyperpectral Data outperformed the CT counterpart due 

to its increased directionality. The Daubechies-6 Wavelet performed as the most 

whereas the Haar Wavelet did as the least successful in this transform method. 

The WBCT for the AVIRIS Hyperpectral Data outperformed the DWT counterpart 

due to its increased directionality. The Haar Wavelet performed as the most whereas 

the Daubechies-6 Wavelet did as the least successful in this transform method. 

The SWBCT for the AVIRIS Hyperpectral Data outperformed all the other transform 

methods due to its redundancy and increased directionality. The Daubechies-6 

Wavelet performed as the most whereas the Haar Wavelet did as the least successful 

in this transform method. 

The overall results are presented on Tables 6.1 and 6.2. 
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Table 6.1 : BT Classification Results. 

Waveform K DWT % SWT % CT % NSCT % WBCT % SWBCT % 

haar 1 84.63 89.81 84.21 90.43 72.79 75.30 

haar 2 84.63 89.81 84.21 90.43 72.79 75.30 

db4 1 85.04 90.52 86.17 90.33 74.00 76.88 

db4 2 85.04 90.52 86.17 90.33 74.00 76.88 

db6 1 84.26 90.76 85.80 90.30 76.54 77.66 

db6 2 84.26 90.76 85.80 90.30 76.54 77.66 

 

Table 6.2 : AVIRIS Hyperspectral Data Classification Results. 

Waveform K DWT % SWT % CT % NSCT % WBCT % SWBCT % 

haar 1 76.76 78.88 77.19 78.99 78.07 79.27 

haar 2 76.76 78.88 77.19 78.99 78.07 79.27 

db4 1 76.76 78.78 78.66 79.15 78.04 79.67 

db4 2 76.76 78.78 78.66 79.15 78.04 79.67 

db6 1 78.16 78.78 78.73 79.17 77.86 79.80 

db6 2 78.16 78.78 78.73 79.17 77.86 79.80 

 

At the first glance, the classification performances clearly show that the 

performances do not depend on the parameter K for the values 1 and 2. However, the 

omitted K values from 3 to 5 showed small variations during the simulations. Most 

importantly, the BT classification performances are superior to the AVIRIS 

Hyperspectral Data classification ones on all transform methods except the Hybrid 

Transform ones. 

As the second observation, the nonsubsampled transform methods greatly 

outperformed its nonsubsampled counterparts. The Hybrid Transform methods 

performed superior in AVIRIS Hyperspectral Data but fell short in BT case. The BT 

features have diverse frequency spectrum characteristics compared to the AVIRIS 

Hyperspectral Data and the Wavelet subband decomposition divides the frequency 

plane into smaller directional subbands than the LP/NSLP; hence, the BT features 

become scattered over many different directions, resulting in poor performance of 
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the DFB/NSDFB used by the Hybrid Transform methods. On the contrary, the 

AVIRIS Hyperspectral Data features stayed concentrated and in addition to that, the 

classes in the AVIRIS Hyperspectral Data case were closed to each other; thus, the 

used windows contained many different classes. The Hybrid Transform methods 

performed well in those cases. 

Finally and most importantly, the CT and NSCT performed better than the DWT and 

SWT respectively for all AVIRIS Hyperspectral Data cases and for some BT cases. 

Benefiting from increased directionality of the CT and famous performance of the 

DWT, the Hybrid Transform methods provided promising and encouraging results in 

hyperspectral data classification. 
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7.  RESULTS OVERVIEW AND CONCLUSION 

Considering the BT classification results, the CT outperforms the DWT with the 

Daubechies-4 and Daubechies-6 Wavelets; the NSCT outperforms the SWT with the 

Haar Wavelet. This shows that the classification algorithm benefits from increased 

directionality but the redundancy is more dominant. It is contradictory to this 

observation however, that the WBCT and the SWBCT perform poorer than all the 

other transform methods. The main reason for this is that the BT features are 

scattered over many different directions, resulting in poor performance of the Hybrid 

Transforms on those smaller chunks. 

Considering the AVIRIS Hyperspectral Data classification performance, the CT and 

NSCT outperform the DWT and SWT in all Wavelet choices. Unlike in the BT 

classification, the SWBCT performances are superior and the WBCT performs 

comparable to the other transform methods. In fact, the SWBCT is the best transform 

method for the hyperspectral data classification benefiting from the increased 

directionality and redundancy. The data difference between the BT and AVIRIS 

Hyperspectral Data clearly shows that the usage of the increased directionality 

property of the CT on more clustered and smooth class regions with decreased 

resolution, hence with many classes near the same regions, improves hyperspectral 

data classification performance. 

These results overall demonstrate that the extraction of the directional features during 

the classification of the single-band regular textures is crucial with the avoidance of 

the decomposition into too many directions, which is on the contrary desirable in the 

hyperspectral data classification. The Hybrid Transform family is to be considered as 

the promising successor of the CT benefiting from its advantages. 

As the next future work, modern Wavelet Transforms like the Directional Wavelet 

Transform can be added for comparisons; the CT and NSCT can be applied to 

RADARSAT images taken from UHUZAM and Haralick features like contrast, 

energy, entropy, local homogeneity etc. can be used to improve the classification 

performances [37]. 
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