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ESTIMATION OF MATERIAL COEFFICIENTS OF SOFT TISSUES USING
EXPERIMENTAL DATA AND INVERSE FINITE ELEMENT METHOD

SUMMARY

In this thesis a set of indentation experiments conducted on bovine liver and on a
synthetic material are presented and the material coefficients of the materials are

computed using the test data via inverse finite elments algorithm.

The literature in this area has been in need of determined material coefficients of soft
biological tissues. There are already published values for various soft tissues,
however, testing environments and conditions affect the results because soft
biological tissues display different behaviour with respect to the vitality, the storage
conditions, or the boundary conditions. Also, determining the accurate material
model of the tissue is important; since the coefficients of the material model that is
assigned to the tissue are computed in this process. On the other hand, the synthetic
material was involved in the study with a prediction that it would present similar
mechanical properties with soft biological tissues. Artificial materials eases the
validation of the simulation models by providing any data for any condition if they

are mechanically similar to the subject tissue.

In this study, static indentation experiments and relaxation experiments are
performed on the synthetic gel which is Aquaflex Ultrasound Gel Pad and on bovine
liver. The experiements on bovine liver are performed ex-vivo. The data obtained
from the experiments are used to determine the coefficients for various material
models by either curve fitting or by inverse finite element algorithm. For the
Aguaflex Ultrasound Gel, the static indentation test data is fitted to the Mooney-
Rivlin and Yeoh type material models and the related coefficients are computed. The
ramp-hold test data is fitted to the Prony series expansion of the relaxation function
for the viscoelastic model and the coefficients are computed. Both data is also used
for coefficient determination via inverse finite element method. For this purpose, the
simulation models of the materials and the experiments for each case are constructed

by a finite element modeling software. These processes are also repeated with the
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data obtained from the bovine liver tests. In order to anaylze the axial differences in
terms of mechanical behaving, the liver is subjected to axial static indentation tests in
which the same tests are performed on different faces of a bovine liver piece. The
results of each axes are compared. Another comparison is done in order to see the
effect testing condition on the soft biological tissue; the test data gathered from the
liver stored in the serum liquid and the liver kept bare is compared.

The inverse finite element method is a numerical approach in which an optimization
algorithm is coupled with a finite element analysis in order to find the optimum
coefficients of the material model defined in the finite element model. The finite
element model is the simulation of the experimental process in which the physical
and mechanical properties of the experimented material are assigned and the
mechanical response of the material is obtained. In our model, the material is
constructed as isotropic and nonlinear hyperelastic and linear viscoelastic. The FE
data is pass on to the optimization procedure in which the nonlinear least squares

method is used.

To conclude, all the results found by any method mentioned above are presented
with comparisons. The results belonging to the synthetic material showed that it is
mechanically similar to a soft biological tissue in terms of nonlinearity and
viscoelasticity but, it's not in a similar range with the bovine liver. The keeping
condition of the liver is also seen to make a sense becuase the data obtained from the
liver kept in serum liquid gave a different force range with a more smooth data. The
inverse FE method is run for the Yeoh hyperelastic material model and lineer
viscoelastic model and by this way, the coefficients of the materials used in this

study are provided for soft tissue simulations.
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YUMUSAK DOKULARIN MALZEME KATSAYILARININ DENEYSEL
VERILER VE TERSINE SONLU ELEMANLAR YONTEMIi
KULLANILARAK HESAPLANMASI

OZET

Bu tezde, sigir karacigeri ve sentetik bir malzeme iizerinde yapilan bir takim basma
deneyleri sunulmus ve deney verileri kullanilarak, tersine sonlu elemanlar metodu ile

malzemelere ait malzeme katsayilar1 hesaplanmistir.

Literatlir, yumusak biyolojik dokulara ait tespit edilmis malzeme katsayilarina
ihtiya¢ olagelmistir. Farkli yumusak dokular i¢in yaymlanmis degerler mevcuttur
fakat, deney kosullar1 ve deney ortami sonuclar1 etkiler. Ciinkii yumusak biyolojik
dokular canliliga, korunma kosullarina ya da sinir kosullarina gore degisen mekanik
tepkiler gosterebilir. Ayrica, dogu mekanik modeli saptamak da onemlidir zira,
malzemeye atanmis malzeme modeline ait olan katsayilar hesaplanir. Ote yandan,
sentetik malzeme, yumusak biyolojik dokulara yakin mekanik 6zellikler gdstermesi
Ongoriisiiyle bu caligmaya dahil edilmistir. Yapay malzeme, simiile edilen yumusak
dokuyla benzer mekanik ozellikler tasidig: siirece, farkli deney sartlart i¢in deney

datasi1 saglayarak simiilasyon modellerinin dogrulanmasina katki saglar.

Bu calismada, hem Aquaflex Ultrasound Gel Pad isimli sentetik malzeme iizerinde
hem de sigir karacigeri iizerinde statik basma deneyleri ve gevseme deneyleri
yapilmistir. Karaciger deneyleri cansiz ortamda gerceklestirilmistir. Deneylerden
elde edilen veriler egri oturtma ve tersine sonlu elemanlar yontemleri ile cesitli
malzeme modellerine ait ksatsayilar1 bulmak {izere kullanilmistir. Aquaflex
Ultrasound Gel malzemesi igin, statik basma deney verileri Mooney-Rivlin ve Yeoh
tipi malzeme modellerine oturtulmus ve katsayilar elde edilmistir. Gevseme
deneyleri verileri ise gevseme fonksiyonu i¢in kullanilan Prony seri agilimina
oturtulmustur. Her iki tip tersine sonlu elamanlar yonteminde de katsay1 tespit etmek
tizere kullanilmistir. Bu amagla, malzeme ve deneyi simiile eden sonu elemanlar
modelleri bir sonlu elemanlar yazilimi araciligiyla her durum ig¢in olusturulmustur.

Biitin bu islemler sigir karacigeri deneylerinden elde edilen verilere de
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uygulanmistir. Mekanik davranis bakimindan eksenel farkliliklari tespit etmek
amaciyla, bir karaciger parcasinin farkli eksenlerdeki yiizlerinde ayni basma deneyini
tekrarlanmis ve sonuclar kiyaslanmistir. Bagka bir karsilastirma da, karacigerin
saklanma kosullarinin veriye yansimasini gormek amaciyla, deney Oncesi serum
icince saklanan ve saklanmayan dokularda yapilan deneylerin sonuglarina bakilarak

yapilmustir.

Tersine sonlu elemanlar yontemi, dogru katsayilari bulmak amaciyla bir en iyileme
algoritmasi ile malzemenin model i¢inde tanimlandig1 bir sonlu elemanlar analizinin
birlikte ¢alistirildigt sayisal bir yaklagimdir. Sonlu elemanlar modelinde malzemenin
fiziksel ve mekanik 6zellikleri girilir ve malzemenin simiilasyon sonundaki mekanik
cevabi elde edilir. Bu calismadaki modelde malzeme izotropik, dogrusal olmayan
hiperelastik ve dogrusal vizkoelastik olarak tanimlanmistir. Sonlu elemanlar
analizinden elde edilen veriler ise dogrusal olmayan en kii¢iik kareler yonteminin

calistirildigi en iyileme siirecine katilir.

Sonug olarak, yukarida bahsi gecen tiim metodlarla elde edilen tiim veriler ¢calismada
sunulmustur. Sentetik malzemeden elde edilen veriler, bu malzemenin, dogusal
olmayan ve vizkoelastik davranig sergilemesi bakimindan yumusak biyolojik
dokulara benzerligini ortaya koymus ancak, sonuclarin sigir karacigerinden elde
edilenler ile aynmi aralik civarinda olmadig gortilmiistiir. Yumusak dokuyu saklama
kosullariin etkin oldugu sonucuna varilmistir, zira, serum sivisi i¢inde korunmus
karacigerden elde edilen veri araliginin farkli oldugu ve bu kosulun daha diizgiin
egriler verdigi goriilmiistiir. Tersine sonlu elemanlar yontemi, Yeoh hiperelastik
malzeme modeli ve lineer vizkoelastik malzeme modeli i¢in g¢alistirilmis ve sonraki

simiilasyonlarda da kullanilabilecek katsayilar sunulmustur.
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1. INTRODUCTION

1.1 Purpose of the Thesis

The main objective of this thesis is the determining the material parameters of soft
biological tissues by using appropriate material models in order to allow realistic

force response in material model simulations.

Modeling deformation behavior of soft tissues under known boundary conditions and
forces is a fruitful research area of engineering and biomedical that finds place in
various applications such as virtual surgery, blood flow simulations, implant
operations, etc. Accurate modeling of the deformation behavior is strictly related to
the mathematical power of the proposed model and accurate determination of the
coefficients that are used in the material model to project its characteristics.

For this reason, it is aimed in this study, that a specific soft tissue bovine liver, has
been subjected to a series of experiments and its material coefficients have been
computed via Inverse Finite Element Method. On the way of this work, it has been
observed that precise validation of these material models was also a challange and
required further study. Therefore, not only bovine liver but also a synthetic, soft
tissue-like material which was predicted to be so, was used in order to discover its
deformation behavior and obtain its material coefficients. Laboratory experiments
which are performed on synthetic materials will contribute to the development of
some physical standarts for the verification process of the proposed models, when
isotropy and homogeneity of the synthetic materials and the advantage to be able to

repeat the experiments under constant conditions are considered.



1.2 Literature Review

There are various methods such as finite element, spring-mass systems, and particle-
based systems in order to model the deformation behaviours of soft tissues under
physical conditions. The precise determination of material coefficients is of great
importance in modelling. Literature of biomechanics or of similar areas contains
many studies about the parameter determination of soft tissues but, each of them
differs in some way that the parameters found strictly depend on that specific work’s
conditions. Some differ by the method and assumptions used to model the material
behaviour, some differ by the chosen material model, some differ in the subject soft
tissue on which the material tests are conducted, and some differ by the experimental
environments. Real time modelling applications such as virtual surgery simulators
can cause mislearning because of wrong material coefficients. Since coefficient
determination depends on material tests, testing environment and conditions should
be taken into consideration as well as the methods used to determine the material

coefficients

The first step for the determination of material coefficients of any material is
performing material tests; these tests can vary as uniaxial, biaxial, tension or
compression tests and more, which will show the deformation characteristics of the
material. In order to find out the coefficients of tissues of living things, numerous
experiments have been conducted on different organs in different conditions. Some
were performed in vivo, which literally means ‘in life’, and is a way of
experimentation using a whole, living organism in its natural environment. Some
were performed ex vivo, which literally means ‘out of the living’. Ex vivo refers to
experimentation or measurements done in or on tissue in an artificial environment
outside the organism with the minimum alteration of natural conditions. Ex vivo
conditions allow experimentation under more controlled conditions than possible in
the intact organism. Another experimentation technique is in vitro experimentation,
which means doing the tests on the living organism but in the artificial laboratory
conditions. Also, there are examples of soft tissue researchers who have established
their own environments to enhance the quality of the measurements as will be

described below.

The first in vivo indentation experiments conducted on human liver were done by

Carter [1] in 1999. Carter et al. performed several indentation tests both on human



liver in vivo and on swine liver and spleen ex vivo. All the results demonstrated
highly nonlinear stress-strain behaviour. Swine spleen was compared to swine liver
which was found to be stiffer. The mean elastic modulus for the right lobe of human
liver was found about 0.27 MPa with one exceptional case of a diseased liver with an
elastic modulus of 0.74 MPa. It was shown in the paper that an exponential stress-
strain law could accurately fit the uniform stress test data [1].

A wide range of experiments are performed on animal organs of which tissues are
assumed to be closely similar to that of humans. Kim and Srinivasan did in vivo
experiments on swine liver and kidney and analyzed the data by inverse finite
element method in order to model the quasilinear viscoelastic and hyperelastic

behaviour [2].

While in vivo tests are difficult to perform, ex vivo tests are known to give
unrealistic data due to the death of the organ which results changes in the structure
and mechanical behaviour despite the easier setup of the experiments. Kerdok [3]
designed a special mechanism that maintains an in vivo-like environment for a
nonliving organ outside the animal body. In order to preserve the viscoelastic
behaviour which is thought to be induced by the blood perfusion system, Kerdok
made the mechanism so as to simulate the surface humidity, inner body temperature
and blood circulation [3]. This experimental setup and results were later used in
another work that explores the effects of perfusion provided in laboratory

environment.

The investigation was made by Ottensmeyer et al. [4] in 2004, to present the effects
of testing environment on the viscoelastic properties of soft tissues. It is declared in
that paper that mechanical properties of biological tissues change outside the living
body, due to the alterations in both the physical and environmental conditions.
However, most of the biological data in the literature have been acquired from ex
vivo tests which can be conducted more easily [4]. The study compares the results of
the tests conducted on liver in four different conditions: in vivo, ex vivo with a
perfusion mechanism, ex vivo unperfused, and untreated. It is found that the data
showed >50% differences in steady state stiffness between the in vivo and ex vivo
unperfused conditions, this difference decreased to 17% between in vivo and ex vivo
perfused conditions. Variations were also detected in the time domain and frequency
domain responses for all testing conditions [4].



There is also one study in this area on the validation side of soft tissue models.
Kerdok et al. [5] aimed to find a better way of validation due to the intrinsic
limitations of FEM models by making up a database of relevant information so as to
be used for validation of real-time soft tissue deformation. Teflon beads were
embedded with an exact pattern into a simple 8 cm silicone rubber cube and this cube
was subjected to uniaxial compression tests while CT images were taken and
experimental results were also compared to the results of finite element
computations. Truth cube project was the first in this area; a synthetic material was
first used for validation soft tissue simulations, the constructed cube had been
resulted in a structure with a modulus of elasticity in the range of soft biological
tissues [5]. However, viscoelasticity, which is one of the most distinguishing
properties of soft tissues and which is the biggest challenge for soft tissue

experiments, was not present in the truth cube.

As mentioned before, the material coefficients are searched to be used in deformation
behaviour simulations, and there have been modelling studies either including
parameter detection or alone. Dogan and Celebi presented their work on real-time
deformation simulation of non-linear viscoelastic soft tissues using the existing
material parameters in literature [6]. A new hybrid method was proposed and the
results of deformation simulation of viscoelastic soft tissue were compared to the
linear approach and it was deduced that the outcome of the deformation simulation of
a human liver based on nonlinear QLV was more accurate and convenient than that

of the linear approach [6].

1.3 Scope of the Present Work

This thesis can be divided into two main parts: material testing of an artificial
material and liver, and computation of material parameters for both materials and
additionally it includes s brief information about the continuum mechanics on which

the soft tissue material models are based.

The aim of the study, the outline of the thesis and literature review are given in the
first chapter. The second chapter makes the introduction to the continuum mechanics
giving the fundemental information about the concept of continuum, motion
description, stress and strain components. Mechanical properties of soft biological

tissues are also summarized in this chapter, by giving basic information about stress-



strain relationship and viscoelasticity of soft tissues. Lastly, mathematical models,
classified as hyperelasticity and viscoelasticity models, are explained in the chapter.

In the third chapter, after a brief information about material testing, details of our
experimental setup and the materials used in this study are described. The
experiments, conducted on both artificial gel pad and liver and grouped as static
indentation and ramp-hold tests, are presented graphically.

Fourth chapter explains our finite element model built to simulate the material tests.
Contact model is seperately discussed as it is the main part of such compression

simulations constructed via finite element tools.

Fifth chapter is about the computation part of the thesis since the inverse finite
element method is explained in this chapter; inverse finite element algorithm is
described and the optimization methods used in the inverse FE method are
represented. Mainly, three optimization algorithms are taken into consideration:
Gauss-Newton, Levenberg-Marquardt, and trust region methods.

Sixth chapter is the last chapter and in this chapter all the results obtained from the
inverse FE computations are presented and the results, including the experimental

data are discussed.






2. CONTINUUM MECHANICS FOR SOFT TISSUES

2.1 Fundamentals of Continuum Mechanics

Physical objects of the real world consist of molecules of atomic and subatomic
particles. This microscopic system of the objects can be investigated in atomic levels
in order to understand some physical phenomena that take part in each micro
structure. However, not every time the search in microscopic level is useful in
engineering. Continuum mechanics is a method to analyse the pysical phenomena in
macroscopic level without getting into the detailed molecular level structure of
objects and by generalizing the properties by gathering the effects of micro structures
as much as possible. Therefore, it is an approximation in which a few quantities that
are small enough to present the microstructural effects show the averages over
dimensions and the continuum theory can be applied to all materials regardless of the

microstructures included [7].
The scope of continuum mechanics can be summarized as
- Kinematics (motion and deformation),
- Stress in a continuum and
- The mathematical description of the motion of a continuum [7].

In order to build the physical laws of continuum mechanics mathematically, it is
essential to comprehend the basic concepts related to motion, deformation and stress

in a continuum.

A continuum body or shortly continuum, is the body of an object in which the
discrete structure of molecules, the gaps between the molecules are ignored and the
body is assumed continuous or piecewise continuous by a zoomed out view.
Although a continuum body is said to represent a continuous structure, it is actually
composed of continuum particles. The term continuum particle doesn’t refer to a
particle in the atomic level and is not related to the point mass of Newtonian

mechanics.



It is the tiniest continuum part of the continuum body which reflects the collective
behavior of the microstructures that it consists of and on which the rules of
continuum mechanics work. The mass and volume of a continuum is also considered

continuous (or piecewise continuous) [7].

2.1.1 Motion Description

The configuration of the displacement of a continuum particle is shown in Figure 2.1.

Let I', be the boundary of the undeformed body Q, and I" be the boundary of the
deformed body Q.

Figure 2.1 : The configuration of the deformed and undeformed positions of
a continuum [23].

The position vector of an arbitrary point on a continuum before displacement is

defined by the vector X =[X, X, X,]" and the position vector of that point after

displacement is defined by the vector x =[x X, x,]". The positions before and after

displacement has such a relationship that
X=X+u (2.1)

where u=[u,u,u,]"is the displacement vector and all three vectors are in the same
global coordinate system and this motion is defined by the function ®(X,t).
The coordinates of the undeformed state, X, is called the Lagrangian coordinates

whereas the coordinates of the deformed state, X, is called the Eulerian coordinates.

Even though, both set of coordinates can be used in kinematic or dynamic equations,



Lagrangian description is preferred for solid mechanics because the deformation

history is meaningful in solid kinematics [8].

In order to define the basic strain variables of the continuum mechanics, the
deformation on the length of a line element is used. For that element, if the
deformation is known that is, when the change of the distance between any two
points on the line element is known, change in volume or area for that element can
also be calculated. A differential line element notated as above can be expressed as

OX
dx Za—XdX =JdX (22)

by means of the matrix of position vector gradients, also called the Jacobian matrix.

The expansion of J is as follows:

ox 0% 0%
X, X, X,
OX | OX, OX, OX
J=—"1=| -2 2 2 =[x, X, X
X | aX, OX, 08X, Do, X, %] (2.3)
OX; OX3  OXg
| OX, X, X,

When there are no displacements in all three dimensions, J becomes identity matrix

with a positive determinant that is equal to 1 and then dx equals dX .

A physically possible continuous deformation is necessarily and sufficiently
provided by the condition that the Jacobian is positive definite, that is the
determinant of the Jacobian is greater than zero. This condition should be valid for
the transformation from the reference configuration to the current configuration too.
In the case in which this condition is provided on every particle of the material body,
the transformation from the Eulerian description to the Lagrangian description or

vice versa is possible [8].

2.1.2 Strain Components

Strain is the change of length of a body and its components are derived from the

elongation of the line element. If the original length of the element is defined as |



and the deformed length is defined as |,, the following equalities can be written

using the squares of the defined lengths.

(1)> =dXTdX 2.4
(1,)2 = dx"dx = dX" 37 JdX 25)
(1,)2 = (1.)? =dXTITIdX —dX"dX =dX" (I7J — 1)dX 2.6)

Equation 2.6 can be rewritten by substituting the Green-Lagrange strain tensor, ¢ as

below:
S=%(JTJ—|) (2.7)
(13)° = (1,)? = 2dX " gdX 2.8)

As we now the expansion of the Jacobian, the Green-Lagrange strain tensor can be

written explicitly by means of gradient vectors x, as follows:

T T T
(Xx, Xx, —1) Xy, Xx, Xy, Xx,
_ T T T
£= 3 Xy, Xx, (Xx,Xx, —1) Xy, Xx, (2.9)
T T T
Xy, Xx, Xy, Xx, (Xx, Xx, —1)

In order to rewrite the strain tensor in terms of the displacement vector gradient, J,,

the relation J =J, + | is substituted and the following expression is obtained:

1 3 ..
& :E(u” +U, +Zk:luk’iuk,j), i,j=12,3 (2.10)

where &; are the elements of the tensor ¢ and u,; =0y /0X; (i,j=123).

Equations 2.9 and 2.10 clearly show that the Green-Lagrange strain components are

nonlinear.

The strain tensor is obviously symmetric (Equation 2.9), thus the following six

independant components of the tensor can be written as a vector as follows:
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.
&, =len &y &5 &, 613 6] (2.11)

Here, ¢; is called normal strains when i=j and called shear strains when i# j.
Because the gradient vectors x, define the rate of change along the direction X;,
normal strains are the elements that reflects the length change along the axes; shear

strains are the measures of the change of the relative orientation between axes.

There are other simplified calculation methods of strain components. For simple
cases, the geometric interpretation is formed as follows and it is called engineering
strain or Cauchy strain.

_ (Id _Io)
=T (2.12)

0

Natural or Logarithmic strain is defined as 1, = (1+¢&)l,. Another definition related

to strain is stretch ratio. It is the measure of the extensional or normal strain of a
differential line element, which can be defined at either the undeformed

configuration or the deformed configuration. Denoted by A, the stretch ratio is

defined as 1, /I, .

2.1.2.1 Right and Left Cauchy-Green Deformation Tensors
Alternative to the Lagrangian and Eulerian strain tensors, there are other deformation
expressions that are invariant under a rigid-body motion. Right Cauchy-Green

deformation tensor and left Cauchy-Green deformation tensor are some of these.

Right Cauchy-Green tensor, which is in literature generally referred to as Green

deformation tensor [7], is defined as

C,=J"J, (2.13)
and left Caucy-Green tensor is defined as

C =47 (2.14)

Equation 2.7 can be rewritten in terms of Green deformation tensor, since they have
a linear relationship. Similarly, Eularian description can be rewritten in terms of right

Cauchy-Green deformation tensor.

11



1
£=2C -1 (2.15)

2.1.3 Principal Strains and Strain Invariants

Principal directions of the strain tensor ¢ can be obtained by an eigenvalue problem.

where A is the eigenvalue and Y is the eigenvector of the matrix ¢ .

Equation 2.16 is solved by equalizing the determinant |g—/II| to 0. Since the strain

tensor is symmetric, the equation has three real roots, 4,4, and 4,, in three

dimensional case.
(e-A41Y;=0, =123 (2.17)

Considering that the eigenvectors Y; are orthogonal unit vectors, Equation 2.17

yields to the following solution:

YTeY. =A, =123 (2.18)
20 0

Ye¥ =|0 4 0 (2.19)
00 A

Y, are called the principal directions and A, are called the principal normal strains.

The following definitions are used the constitutive equations of continuum

mechanics and are called the principal strain invariants.

I, =tr(e),

1 2 2
B :E{(tr(g)) —tr(’)}., (2.20)
|, =det(e) =|¢|
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For the case of symmetric strain tensor, the invariants are

|y =4+ 4, + 4,
I, =44 + A + s, (2.21)
I, =444,

2.1.4 Stress and Stress Components

Stress is the measure of pressure in the theory of continuum mechanics and it is
related to the strenght of the material, since it indicates the magnitude of the internal

forces the material can sustain [9].

Beyond the limits of the material’s strength, stress can lead to a permanent shape
change or a physical failure on the material. For a continuum body with a cross-
sectional area of A, if the force that acts into the body is F, then stress, o, is

calculated as

o=F/A. (2.22)

The dimension of stress is the same with that of pressure and the unit stress is Pascal

(Pa), which is 1N/m? , in the International System of Units.

The equalibrium of forces acting on a continuum body is considered to obtain the

stress formulations in continuum mechanics.
Let’s consider a deformable continuum body shown in Figure 2.2.

Here in Figure 2.2, t is the force measured per unit surface area for the deformed
configuration and is called the Cauchy (true) traction vector, ds is the unit surface
area, and n is the normal vector of surface S. The capitalized notations represent
the same values for the undeformed configuration. T is called the first Piola-

Kirchhoff (nominal) traction vector.
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Figure 2.2 : Traction forces acting on infinitesimal surface elements with
outward unit normals.

Using these notations, the following equation can be written for every infinitesimal

surface element:

df =tds=Tds. (2.23)

According to the Cauchy’s Stress Theorem, there exist unique second-order tensor

fields o and P so that

t(x,t,n)=c(x,t)n or
T(X,t;N)=P(X,t)N or

ta :Gabnb’ 294
TAB = PABNB (2.24)

where o is a symmetric tensor called the Cauchy (true) stress tensor (simply the
Cauchy stress) and P is called the first Piola-Kirchhoff (nominal) stress tensor

(simply the Piola stress) [7]. Cauchy stress can also be written in matrix form.

01 Op O3

O =0, Opn Oyl

(2.25)

O3 Oz O

The elements of this matrix, o, is called the stress components of the Cauchy stress

tensor. Since the Cauchy stress tensor is symmetric, o,, = 0,,,0,;3 = 03,0, =0y -
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Figure 2.3 : Positive stress components of the traction vectors acting on the
faces of a cube [24].

2.2 Mechanical Properties of Soft Biological Tissues

Soft biological tissues have complex inhomogeneous structures, thus they show
complex mechanical behaviors which can be summarized as nonlinearity, anisotropy
and viscoelasticity. The stress-strain relation of most soft biological tissues are
nonlinear. When the mechanical properties change axially, this is called anisotropy
and soft biological tissues are anisotropic structures. Water and other fluid that they
contain give them viscosity and thus, soft biological tissues show viscoelastic
behavior which is a time-dependant property and which also depends on vitality and

perfusion of the tissue. Also, soft biological tissues are considered as incompressible.

These mechanical properties is explained in details in the subsequent sections.

2.2.1 Stress - Strain Relation of Soft Biological Tissues

The stress-strain relation which shows a material’s mechanical properties have been
found as nonlinear for soft biological tissues according to the materials tests
performed up to now. Nonlinearity of the stress-strain relation is a general

characteristic of all soft tissues.
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However, as each soft tissue has its specific relation, this relation also depends on the
location of the tissue on which the tests are conducted. That is, the mechanical
properties of one tissue also varies within the tissue and should not be handled as
homogeneous. Also because of anisotropic structure, the stress-strain relation differs

for loading to each axis.

It has been experimentally found that for most materials, the measured strains are
proportional to the applied forces, provided that the load doesn’t exceed the elastic
limit which causes the destruction of the material. This experimental observation
states that the stress components at any point in the body are a linear function of the
strain components. This relationship between stress and strain, called the
generealization of the Hooke’s law: o = Eé&. It doesn’t apply to viscoelastic, plastic,

or viscoplastic materials. Hooke’s law is explained in details under Section 2.3.1.

If the case is the nonlinear relation between stress and strain, then Hooke’s law fail
again. The strains are, for this case, not a linear function of the stresses but a
nonlinear function. And if the work done by the stresses is independent of the
deformation path, the relationship is expressed as a function of this stored energy,

which is the strain energy density function for hyperelastic materials.

The following figure summarizes the formulation of the stress-strain relationship

with respect to the linearity of the relation, where f(g) in Figure 2.4 is an

undetermined non-linear function.

Figure 2.4 : Types of idealized material behaviour. On the left is the elastic
nonlinear stress-strain curve and on the right is the general
nonlinear stress-strain curve [25].
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2.2.2 Viscoelasticity of Soft Biological Tissues

Viscoelasticity is a property of a material exhibiting both elasticity and viscosity
when it is deformed. Elastic materials strain instantaneously when they’re stretched
or compressed and when the stress is removed, they return to their original shape. On
the other hand, viscosity is a measure of resistance of fluids to deformation caused by
a shear or tensile stress.

There are some phenomena that are seen in viscolastic materials and some
definitions are made on these phenomena. When a material body is suddenly strained
and the strain is held constant, the stress applied into the body, that causes the
deformation, gradually decrease to a limit value. This behavior is called stress
relaxation (simply relaxation). If a sudden stress is induced into the body and held
constant for some time, it is measured that the body continues to deform. This
behavior is called creep. Another feature is hysteresis. If the body is subjected to
cyclic loading, the stress-strain relation that is recorded during loading differs from
the relation in the unloading process. An amount of energy loss is observed between
the stress-strain curves of the loading and unloading processes at each cycle.
Relaxation, creep and hysteresis are features of viscoelastic materials and these
features reflects the time dependancy of deformation of viscolelastic materials in

contrast with elastic materials.

Different mechanical models have been developed to reflect the viscoelastic
properties of materials in constitutive equations. Where elastisity is modeled by
linear springs in order to produce an instantaneous deformation proportional to the
load, viscosity is modeled by dashpots in order to produce a velocity proportional to
the load at any instant. Three basic mechanical models of viscoelastisity, composed
of linear springs with spring constant k and dashpots with viscosity coefficient 4,

are presented by Maxwell, Voigt and Kelvin (Figure 2.5).
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Figure 2.5 : Mechanical models for a viscoelastic material: Maxwell model,
Voigt model and Kelvin model (also called a standart linear
solid) (The image is re-generated from a picture in [26]).

If F is the force applied to the linear spring and caused an elongation of u, then
F =ku. If F is applied on a system with a dashpot and produced a deflection velocity

u, then F = Au.

In Maxwell model, the force is transmitted from the spring to the dashpot and the

system is modeled as below:

. F
U=—+— (2.26)

If the force is suddenly applied, the spring will react but the initial deflection of the
dashpot will be zero because dashpots deforms in time; thus the following initial

condition will be valid for the case at t=0.

F

0

Up =" (2.27)

In Voigt model, the spring and the dashpot have the same displacement; they share

the force applied to the system. Voigt model can be written as below:
F=ku+Au (2.28)

A sudden loading will create no displacement because the reaction of the spring is
dependant to the dashpot and the displacement of the dashpot at t =0 is zero. The

initial condition will be as follows:

U, =0 (2.29)

In Kelvin model, there is a parallel connection between a linear spring and system
that is composed of a spring and dashpot connected serially. If the previous approach
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used for Maxwell and Voigt models is applied, the following equation is obtained for

Kelvin model:

A A K, |.
F+k—F—k2(u+k_2(l+k_JuJ (230)

1 1

The sudden loading case with the applied force F, and the displacement u, gives the

following initial condition:

Ao K,
k—lFO —/’i[l‘i-k—l}uo (231)

The term i:rg is called the relaxation time for constant strain and the term
1

A k , o
k—(1+ —Zj =7 Is called the relaxation time for constant stress.
2

1

If the equations 2.26, 2.28 and 2.30 are solved seperately for the deformation, the
creeping behavior of a material, which presents the elongation produced by a sudden
loading of a constant force, are found. Creep functions are given in the following
equations 2.32, 2.33 and 2.34 respectively for Maxwell, Voigt and standart linear

solid (Kelvin) models.

1 1
ot)={ 3+ 3¢ v 32)
o(t) = = (1— e M1t
= (2.33)
)= 2| 1-[1- %= | 1)
C - (2.34)

Here, the solutions are based on the assumption that F(t) is a unit-step function 1(t)

and 1(t) is defined as
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0 if t<Q,

1(t)=11/2 if t=0, (2.35)
1 if t>0.

Solving the equations 2.26, 2.28 and 2.30 for the force applied and assuming the
deformation u(t) =1(t), relaxation functions are obtained. Relaxation functions give
us the force to be applied in order to save the unit elongation of the suddenly
deformed material. The following equations 2.36, 2.37 and 2.38 are the relaxation

functions g(t), for Maxwell, Voigt and standart linear solid (Kelvin) models

respectively:

g(t) = ke () (2.36)

o(t)=0 for t<0 and t>0,
gt)=A0(t)+k1(t), o) = jfgf(t)é(t)dtzf(O) for &>0.

2.37
(f isan arbitrary function continuous at t=0 ( )

9(t) =ki{1—[1—j—aje*/f»}1(t) (2.38)

2 &

The illustrations of creep and relaxation functions of these models are given in

Figure 2.6 and Figure 2.7, respectively.

Maxwell Voigt Kebnin
c
o
=
B
o
&
@
e
(=]
e

Time Time Time

Figure 2.6 : Creep functions of Maxwell, VVoigt and Kelvin models including
the unloading phases [9].
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Figure 2.7 : Relaxation functions of Maxwell, Voigt and Kelvin models [9].

The illustrations reflects that for the Maxwell solid, sudden loading causes an
immediate elongation by the linear elastic spring and the creep of the dashpot
follows it (Figure 2.6). Sudden deformation produces an immediate reaction force

and a decrease in force, that is stress relaxation, follows it (Figure 2.7).

For the Voigt model, the sudden loading doesn’t produce an immediate deflection
because the parallelly connected dashpot damps it; there occurs a gradual deflection

where more of the force applied is taken by the spring (Figure 2.7).

For the Kelvin model, the relaxation function shows that the dashpot completely
relaxes in time and the load remains constant as the effect of the spring which is

characterized by the spring constant k, (Figure 2.7). Therefore, this constant is called

the relaxed elastic modulus.

2.3 Mathematical Models of Soft Biological Tissues

Before explaining the mathematical models of soft biological tissues, constitutive
equation concept should be known. An equation which describes a property of a
material is called a constitutive equation of that material. When a piece of material is
stretched by a force, stresses and strains develop at all points within the material.
Stress—strain relationship is the constitutive relationship that describes the

mechanical properties of a material, such as elasticity, plasticity, and linearity.
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In order to be able to distinguish between different materials, the force-displacement
relationship or equivalently the stress-strain relationship is required. To complete the
specification of the mechanical properties of a material, additional set of equations ,
the constitutive equations, are needed. The form of the constitutive equations must be
objective, and should not lead to change in the work and energy of the stresses under

an arbitrary motion.

If the constitutive equations of a material depend only on the current state of
deformation, th behavior is called elastic. Because elasticity is the property of a
material to return to its original state after the load is removed. A special case of
Cauchy elastic materials, in which the stress-strain relationship can be derived from
the stored energy function (strain energy density function), and the material returns
to its original state after the load is removed but linear elasticity do not describe this
behavior, is termed hyperelastic or Green elastic material. Such materials have
nonlinear stress-strain relationships but the work done by the stresses during
deformation is path independent. Cauchy elastic materials are the ones for which the
stresses cannot be derived from a stored energy function because the work done by
the stresses depend on the path of the deformation. For viscoelastic materials, the
work done by the stresses during deformation is path dependent due to the energy
loss. The constitutive equations of viscoelastic materials are formulated in terms of

rate of deformation measures in order to account for the energy loss.

Different material models have been developed based upon the constitutive equations
mentioned above. Material models also vary for small deformation cases and large
deformation cases and also compressibility makes sense in these models. Here in this
section, the generalized Hooke’s Law which is built to describe a general linear
stress-strain relationship will be introduced, and while most of the material models
used for soft biological tissues will be briefly mentioned, material models that are
used in this study will be explained in details.

2.3.1 Generalized Hooke’s Law

It has been found as the result of experiments that for most materials the measured
strains are related to the applied forces. Hooke’s law gives this relationship for the

elastic materials, stating that the stress components at any point in the body are linear
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function of the strain components. This law, shown in Equation 2.39 in vector and

matrix notations, does not apply to viscoelastic, plastic, or viscoplastic materials [8].

o, =E.é, (2.39)

Here, o,, &,, E, are respectively, stress components, strain components, and matrix

of elastic coefficients. In a case of a general material, the matrix of elastic
components has 36 coefficients as in Equation 2.40 and each coefficient define the

material elastic properties when the behavior is linear.

€1 Cp €3 €y €5
€n €n €y €y €y €y
E = €1 € €3 €3y €y (2.40)
€1 Cpn € €y €5 €4 '
€1 €2 €3 & G G
11 €2 €3 € € €

The number of independent coefficients change if the material exhibits special
characteristics such as material symmetry, isotropy, orthotropy, or anisotropy. For
the linearly elastic materials, the matrix is symmetric, therefore has 21 independent
elements for the case of anisotropy. Anisotropy is a feature of a material to exhibit
different mechanical properties in all 3 axes. For orthotropic materials, which show
the same properties in two directions but show a different bahevior in the third
direction, this number reduces to 9. If the material is isotropic, that is if the
material’s mechanical properties remain invariant independently from the loading
axis, this number reduces to 2 and this two independent coefficients are denoted by

Aand ¢ (Lame’s constants). Below is the coefficient matrix for the homogeneous

isotropic linearly elastic material.

[A+2u |
A A+2u symmetric
E - A A A+2u
mTl 0 0 24 (2.41)
0 0 0 0 24
| O 0 0 0 0 2u|
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When the relationship between stress and strain is written explicitly using the
Equation 2.39, the following equations are obtained.

1 .
Gij :_[(1"'7)0'"_7(0'11"'0'22"'0'33)]: =123

E

1+y o (2.42)
gij = ? O'ij, 1+ ]

Here, 4, E, and y are, respectively, shear modulus, Young’s modulus(modulus of

elasticity), and Poisson’s ratio, where

A

y:m and E=2u(l+y). (2.43)

Poisson’s ration cannot exceed 0.5. If the Poisson’s ratio becomes close to 0.5, the

elastic coefficient associated with the dillatation ( o, + o,, + 05;) becomes very large

and produces high stiffness that tends to resist any volume change.

2.3.2 Material Models For Large Deformations

Not all materials exhibit a linear deformation described as in the previous section.
Due to the variety of material behaviors under deformation, various material models
that cover nonlinearity and large deformation cases have been offered. Some of these
material models are listed below.

- Neo-Hookean

- Mooney-Rivlin
- Yeoh

- Ogden

- Polynomial

- Arruda-Boyce
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Neo-Hookean material model is the extension of Hooke’s law for isotropic linear
material to large deformation. Mooney-Rivlin model is a model used for the large
deformation cases of nonlinear incompressible materials such as rubber. Yeoh model
is for hyperelastic nearly incompressible materials too. For polymeric substances
Arruda-Boyce model can be used. The material model that are used in this study are

mooney-Rivlin and Yeoh models.

2.3.2.1 Mooney-Rivlin Material Model
Mooney-Rivlin material model describes the hyperlastic material behavior. The

strain energy density function of this model, denoted by W, is written in the

following form for the incompressible materials:
W =Cy(l,-3)+Cy (I, -3) (2.44)

I,and 1, are strain invariants that are explained before, and C,,and C,, are material
parameters having dimensions of stress but no direct physical interpretation. The
incompressibility condition eliminates the third invariant from the equation, since

I,=J%=1 for incompressible materials and the term related to compressibility is

D, (J -1).

This material model was built with the goal of finding a simple form of W that
yields a nonlinear stress-strain relationship in extension but a linear behavior in shear
[10].

This material model can also be written in terms of Cauchy stress and principle

stretches by expressing the principle invariants in terms of stretch ratio (A), which

is the ratio of the undeformed length to the deformed length.
A <1= compression

A=1-¢ ¢ A=1= unstretched (2.45)
A >1= extension

For the uniaxial extension of an incompressible material, stretch ratios for the 3

directions are calculated as below:
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A=A,
N AN} =1
1422423 —

I1:Af+A§+A§=A2+%
252 242 242 1 (2.47)
IZ:A1A2+A1A3+A2A3:2A+P

Substituting these invariants in Equation 2.44, the following equation is obtained:

2 1
W =C,(A° +X_3)+C01(2A+P_3) (2.48)

For the simple tension, o;, #0 and o,, =0, =0.

W W

oy=M\ on,’ O =12 oA, (2.49)

1 1
Oy — Oy = 2C(A” ~ X) —2Cy, (P —A) (2.50)

Since o,, =0, the Cauchy stress is obtained as the following equation:

2C 1
Ou= (ZCm +T01](A2 _Xj (2.51)

As the experimental data contians the true stress and stretch values, the material

coefficients for the Mooney-Rivlin material model can also be found by fitting the

data to the equation obtained in Equation 2.51. This equation is used to determine the

coefficients in this study and the coefficients found by this way will be given in the

results section.

2.3.2.2 Yeoh Material Model

The Yeoh hyperelastic model is a model for the deformation of almost

incompressible nonlinear elastic materials.
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The elastic properties of the material is described using a strain energy density

function that is a power series function of the strain invariant only 1,. Yeoh model is

also named as reduced polynomial model because a polynomial form of the strain
energy density function is used but all the three invariants of the left Cauchy-Green

deformation tensor are not used.

The strain energy density function of the Yeoh model is as follows:
W =C,(I,-3)+C, (I, —3)* +C,(l,—3)° (2.52)

The true stress equation for this material model can be obtained too, from its energy
density function, by a similar way it is done for the Mooney-Rivlin model in the
previous section.

With the assumption of o,, = o,, =0 for the simple tension of an incompressible in

one direction, the true stresses are calculated as in the following equations:

oo —pt 2N L 2
oW 2 oW oW
o =—p+2A2 2L = oy =————+2A"——
11 p 8I1 11 A 8|l all (254)
oW 2 2
- =Cu*2Cx (A2 +4-3)+3Cy, (A2 + -3)? (2.55)

1

Substituting Equation 2.55 in Equation 2.54 gives the true stress equation of the
Yeoh material model (Equation 2.56).

1 2 2_4)
oy = [AZ —le:ZClo +4C,, (Az +X—3j+ 6C4 (AZ +X _BJ } (2.56)

This equation is also used to determine the coefficients in this study and the

coefficients found by this way will be given in the results section.

2.3.3 Viscoelasticity Models

2.3.3.1 Linear Viscoelasticity
Linear viscoelasticity is expressed in terms of the Boltzmann integral,
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o(t) = j; at-n) 30y,

(2.57)

where g(t) is the relaxation function, o(t) is stress, &(t) is strain, depending on
time t and r is the integtaion variable in terms of time [11]. The form of the

relaxation function and how it is constructed are explained in Section 2.2.2.

2.3.3.2 Nonlinear Viscoelasticity
Nonlinear viscoelasticity models feature the dependence of relaxation function on the

strain level as can be seen in the following equation:

(T)

ot,e)=[ g(t-7.6(2)) (2.58)

2.3.3.3 Quasilinear Viscoelasticity
Fung [9] proposed the quasilinear viscolasticity which is again dependent on both
time and strain as in nonlinear viscoelasticity, but it is formulated as the product of

two seperate functions: a function of time and a function of strain.
9(t,2) = g, (Oh(e) (2.59)

ott,e)=[0,0-) 2 = (2.60)

It is obvious that stress depends on strian, however time dependence of stress is
independent of strain. Therefore, this formulation is called quasilinear. This
approach has been seen to fit the experimental data showing the relaxation response

of soft tissues quite well [11].

28



3. UNIAXIAL COMPRESSION EXPERIMENTS

3.1 Mechanical Testing of Soft Tissues

Constitutive equtions presented in the previous section are to abstract the natural behavior of
soft, more specifically bovine liver. Even though fluid and solid mechanics mostly base on
these definitions and equations, soft biological tissues behave more complicatedly when
compared to the industrial (artificial or synthetic) materials. Therefore, simplifications made
to construct the constitutive equations need to be compensated by an accurate determination
of the coefficients in the equations. These coefficients, which are also called material
coefficients, material parameters or material constants, are obtained by a series of material

tests.

The methods of testing the mechanical properties of biological tissues do not significantly
differ from testing the industrial materials. Material tests for both types of materials can be
classified as compression tests, tension tests or cycling tests and these tests also can be
conducted uniaxially or biaxially. Uniaxial tests are applied on one single axis where biaxial
tests have two perpendicular directions; decision should be made according to the material
structure whether it is isotropic, anisotropic or orthotropic. Compression and tension tests
basically make difference by the sign of the strain. But some aspects of soft tissues which
make them more complicated to model, should be taken into account for the experimental
setup. These aspects are mainly the heterogenity of soft tissues and deterioration of soft
tissues in vitro conditions. Therefore, the evaluation of results of the experiments and the
computations based on them need to be done by considering the type of the tested material,
the method of testing, calibration of the testing device and other testing environments that
may effect the test data.

Up to now, as also mentioned in the literature review section, so many experiments are
performed on different soft tissues in different conditions and by different methods and

devices, all trying to have the best results in their own conditions by paying attention to the
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above mentioned matters. For example, Carter (2001) carried out his indentation experiments
uniaxially in vivo during an open surgery operation on human liver by using a hand-held
probe [1]. Kerdok (2006) aimed to obtain more realistic material parameters for in-vitro swine
liver by building such an experimental setup that the blood circulation was simulated by a

perfusion mechanism [3].

3.2 Experimental Setup and the Testing Device

3.2.1 The LFPlus Material Testing Machine

The following figure is of the device that all the experiments are performed by.

Figure 3.1 : Material testing machine.

It is the single column bench mounted LFPlus materials testing machine of Lloyd
Instruments™, Its force capacity is 1kN, speed range is between 0.05 and 1270 mm/min (with
maximum 0.2% accuracy at steady state), minimum load resolution is 0.00001 N (with <0.5%
load cell accuracy), extension resolution is smaller than 2 microns, data sampling rate is 8
kHz and load measuring system is EN ISO 7500:2004 Class 0.5 ASTM E4.
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Its operating temperature range is 5° to 35°C. Test data is collected by a software named
NEXYGENTPIus to the computer connected to the testing machine.

3.2.2 Materials: Aquaflex Ultrasound Gel Pad & Bovine Liver

The experiments are conducted on two different materials. One is an artificial medical
material, Aquaflex® Ultrasound Gel Pad, which is originally used in therapeutic ultrasound
procedures. The second material is bovine liver. Aquaflex® Ultrasound Gel Pad is a plate-
shaped circular pad with a 90 mm diameter and 20 mm height. It is not viscous as can be seen
in Figure 3.2 even though it is named as a gel. Its density is 1.03 g/cc and it can be stored
safely between 5°C and 57°C. The reason that this gel material is chosen to detect its material
properties is that it is foreseen to have a viscoelastic behavior. The tests are performed, first to
see whether it shows nonlinear and viscoelastic deformation and second to determine the
material constants using the experimental data if the first aim is achieved. The main goal to
determine the characteristics of this material is to be able use it as a control material beside
real soft tissues. Material tests on biological tissues, face with very important problems such
as unclear boundary conditions, heterogeneous structure of the material or the ambiguousness
of the applied force which lead to unrepeatability of the experiments in desired conditions. On
the other hand, in virtual surgery simulations, doing simplifications on the model and/or some
assumptions on the solution process, for they are expected to work real-time, cause the model
to diverge from reality. In this case, it becomes difficult to compare the model results to the
real behavior. Because the experiments cannot be carried out in all conditions that can be
simulated by the mathematical models, even though the models are constructed by the soft
tissue’s constants, the results of the simulations and the accuracy of the constitutive equations
cannot be validated with the limited number of experiments conducted on that soft tissue.
Unlimited number of experiments in numerous different conditions can be conducted on an
artificial easy-to-find material by benefiting from its well-defined geometric dimensions and
boundary conditions. This provides us to obtain data for the desired deformations but
certainly if the coefficients of the material is close to the subject soft tissue’s coefficients in an

allowable degree.

In this study, this artificial material is exposed to indentation experiments to detect its

similarity with liver.
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Figure 3.2 : Experimental setup with Aquaflex® Ultrasound Gel Pad.

Figure 3.3 : Experimental setup with Aquaflex® Ultrasound Gel Pad.

3.3 Experiments

Two types of experiments are performed on both materials: static indentation tests and ramp-
hold tests. Steel probes with 2, 4, 6 and 8 mm radii are attached to the testing machine in
order to do the pressing to the material.

For the artificial material (Aquaflex® Ultrasound Gel Pad), water, which is the component

that gives its viscous property, is conserved by covering the material with a thin stretch film.

Experiments are conducted in-vitro.
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3.3.1 Static Indentation Tests

Static indentation tests are the tests that the material is pressed to a defined depth with a

defined constant speed.

Aquaflex® Ultrasound Gel Pad tests are done at two different speeds 0.1 mm/s and 0.5 mm/s
by the probes with the radii of 2, 4 and 6 mm where deformation depth is chosen as 2, 4, 6, 8
and 10 mm. Tests are repeated twice and each of them are conducted on a different location
on the gel in a limited centeral area in order to eliminate the misleading effects of deformation

history. The data obtained from these tests are graphed as below (Figures 3.4, 3.5, and 3.6).

Lowd (M)
1
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Displacement (mmm)
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Figure 3.4 : The load-time and displacement-time curves of the indentations of 2, 4, 6 and 8
mm depths with the probe of 2mm radius and strain rate of 0.1 mm/s.

i " H H " H H i " H
o 5 10 15 =20 o 10 =0 a0 < o =20 40 (18]
Tima (2]

Figure 3.5 : The load-time curves of the indentation tests with threee different probes (2, 4
and 6 mm radii) at 2, 4 and 6 mm depths respectively and with the strain rate
of 0.1 mm/s.
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Figure 3.6 : The load differences for the same indentation depth but different strain rates, 0.1
and 0.5 mm/s.
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Figure 3.7 : Load-time curves of liver constructed from the static indentation tests with
probes of r =2, 4 and 6 mm at (a) 4 mm, (b) 6 mm, (c) 8 mm and (d) 10 mm
depths.

Bovine liver was also exposed to in-vitro static indentation tests. The livers were stored in the
serum solution right after removing it from the animal and before using for material testing.

Two livers were exposed to material testing; one was used as a whole for the standart static
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indentation and ramp-hold tests, the other one was used for axial tests in order to determine

whether or not its material properties depend on the application axis.

The static indentation tests conducted on the complete liver were done with the 2, 4 and 6

mm-radius probes to the depths of 4, 6, 8 and 10 mm, repeating each test twice and measuring

the thickness of each indentation point. Results are shown in the Figures 3.7 and 3.8.
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Figure 3.8 : Stress-strain curves constructed from the static indentation tests conducted on
liver with the probes of r=2, 4 and 6 mm at (a) 4 mm, (b) 6 mm, (c) 8 mm and

(d) 10 mm depths.

3.3.1.1 Axial Material Tests on Bovine Liver

In order to obtain the anisotropic behavior of the liver, there is a need to conduct the axial

tests. Axial tests were static indentation tests conducted on the cube-like liver parts cut out
from the bovine liver. It is important to note that each axis of the cubic-like part are marked

and tests are conducted on each face of the cubic geometry based on three different axes.

First, one cube-like part was tested on its three different axes. Secondly three cube-like liver

parts are excised and tests are conducted on each part on a different direction. The membrane

parts had no membranes.
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First type axial tests, static indentations, were performed on one cube-like liver part with a
strain rate of 0.1 mm/s with the 2 mm-radius probe to the depths of 4 and 8 mm. Tests were
repeated twice and each test was conducted on a different location provided that the thickness
was measured. The measurements are graphed as below (Figure 3.9).
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Figure 3.9 : Load-time curves constructed from the axial static indentation tests conducted on

liver with the probe of 2 mm radius at (a and b) 4 mm depth and (c and d) 8 mm
depth.

The second type axial tests, which were done on 3 different cubes, were static indentations to
a depth of 5 mm, which was chosen to be appropriate according to the dimensions of the

cubes, with the 2 mm-radius probe. The measurements are visualized as below (Figure 3.10).
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Figure 3.10 : Load-time curves constructed from the axial static indentation tests conducted

on three different cube-like liver parts, with the probe of 2 mm radius at 5 mm
depth.

3.3.2 Ramp — Hold Tests

Ramp-hold tests are performed to detect the relaxation behavior of materials. The materials
are deformed to a defined depth and the deformation is held for a while to record the change

in loading which would be a decrease for the case of viscoelasticity.

1] 100 200 300 400 500 &00
Tine (5]

Figure 3.11 : The load-time curves constructed from the 4 mm displacement tests conducted
on the gel with probes of 2 and 4 mm radii; indented in 1 s and held for 600 s

Ramp-hold tests are conducted on Aquaflex® Ultrasound Gel Pad in the same experimental
conditions. The gel is deformed to depths of 2, 4 and 6 mm with 2, 4 and 6 mm radii-probes
and the deformation is kept constant for 600 seconds. Each test is conducted on a different
location in a limited central area again as in the static deformation tests. Figure 3.11 and

Figure 3.12 present the gel’s behavior under deformation obtained as the result of these

material tests.
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Figure 3.12 : The load-time curves of the relaxation tests at 2,4 and 6 mm depths conducted
on the gel with 2mm-radius-probe; indented in 1 s and held for 600 s.

In-vitro relaxation tests on the bovine liver were performed on a whole liver. The same

experimental setup and tools are used for the experiments.
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Figure 3.13 : Load-time curves constructed from the ramp-hold tests conducted on liver with
the probes of 2, 4, and 6 mm radii at (a) 4 mm depth, (b) 6 mm depth, (c) 8
mm depth. (d) shows the curves at all depths with the three different probes.

Probes with radii of 2, 4 and 6 mm are used. Indentation depth was chosen to be 4, 6 and 8
mm where each indentation was performed with a certain strain rate so that the indentation

was completed in 1 second. Tests were repeted twice on different points for precision and
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thickness values were taken for strain measurement. Test data is graphed in Figure 3.13 and
figure 3.14.
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Figure 3.14 : Stress-strain curves constructed from the ramp-hold tests conducted on liver
with the probes of 2, 4, and 6 mm radii at (a) 8 mm depth, and at (b) 4, 6, and
8 mm depths.
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4. FINITE ELEMENT MODELING

This thesis aims to find the material coefficients via inverse Finite Element Method
(inverse FEM). Inverse FEM, which necessitates to construct the FE models of the
experiments, is explained in details in the next section; here in this section the
construction of the testing models are explained. For the FE models of this study, the

commercial finite element software Abaqus (Version 6.7) is used.

4.1 Finite Element Analysis

Finite Element Analysis (FEA) is a numerical method to solve engineering problems
that seek, for example, the stress distribution, the temperature change or the
displacements of each point on a part. When the geometry, the boundary and loading
conditions of the problem get more complex, it becomes harder, even impossible, to
solve the problem analytically, therefore, it becomes necessary to use this finite

element or a similar numerical approach.

The finite element method is first developed to calculate the stress distributions on
the aircrafts [22], however now it is used for various fields of continuum mechanics

such as biomechanics.

In finite element analysis, a virtual model of the real structure is created; the structure
is modeled as the combination of small pieces which are called finite elements. The
term finite is used to prevent confliction with the infinitesimal elements of the
calculus. These finite elements connect to each other at points which are called
nodes. The combination of some elements makes the finite element structure and a
particular arrangement of the elements is called a mesh [22]. The finite element mesh

of a structure is shown in Figure 4.1.

41



AR
oo, Pl

i

il
i
i

SRERSH

2
K

AVhed
VA

S

i e

S Ak T e
RV

ry
fﬂ‘ﬁ n

1

L7

./

5
i

N
P

W

/

R o

R

SERESERN
SO

vy,

S

Yy
Ay

N A
S e
SRR
Pavaiin,
QR

Figure 4.1 : The finite element mesh of a structure [27].

In the FEA, the values of the field variables on the elements are approximated by

polynomial functions that can simulate the real, more complicated variations of those

variables. And the governing differential equations or integral expressions are

transformed into a set of linear algebraic equations [22].

(]1

T

5
L4

Figure 4.2 : An axisymmetric quadrilateral linear element [22].

The FEA formulation can be constructed by using etiher a differential equation

formulation method or a variational formulation method. Displacement method,

42



force method and displacement-force method are the differential equation
formulation methods; principle of minimum potential energy, principle of minimum
complementary energy and principle of stationary Reissner energy are the variational

formulation methods. Below is the summary of the basic FE formulation [22].

In a finite element analysis, a number of basic equations must be satisfied: equations
of strain displacement relations, governing equations, equilibrium equations
compatibility equations and boundary conditions. Let’s consider the formulation for

an axisymmetric quadrilateral linear element (Figure 4.2).

The generic displacements for any point on the axisymmetric element are:

{6)=[u w]' (4.1)
The nodal displacement vector is:
{5} = [ul W U, W4]T = [ql 9 --- QS]T (4.2)

Using the interpolation functions (shape functions) N,,N,,N,and N, displacements

can be expressed with the following displacement functions:

u=Nu, +N,u, + N,u, +N,u,
w = N,W, + Now, + Now, + N,w, (4.3)

in which the shape functions, in terms of dimensionless coordinates, are as follows:

N, = /4) L E)(L-7)
N, = (i/4) A+ E)(L-7)
N, = (i/4) L+ E)A+7) (4.4)
N, = (/4) - E)(L+7)

In the matrix form:

o
u] [N, 0 N, 0 N, 0 N, 07|q,
{6}=1 = : (4.5)
w o N O N 0N 0 NI
s

Concisely:
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{5}i :[N]i {q}i (i =1’2’3’4) (4-6)

u;, and w, are the translations in the r and z directions, respectively. For this is an
axisymmetric element that forms the solid by revolution, the translation v in the 6

direction is zero; the shearing strains y,, and y,, are zero.

The non-zero strain components are as follows:
{efi=le. & & 7.k (4.7)

The strain-displacement relation is as follows:

9 9
or
gl’
g 9
&, _ oz u
g, E . w/ (4.8)
Yeli | T
9 9
L0z oOr |

{g}i 2[8] {5}i :[a][N]i {q}i - [B]i {q}i (4.9

9
or
9 9
0z
where [0]=| | and [B], =[2][N];. (4.10)
-0
[
9 9
|0z oOr

The radius r in Equation 4.10 is calculated as:

4

r=2 ., Nif (4.11)

i=1

The four stress components corresponding to the strain components are:
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{o},=lo, o, o, 7,1 (4.12)

The shearing stresses 7,, and z,, are also zero. Then, the governing relation for a

linear elastic material, which is the stress-strain relationship, is given in matrix form

as below:
{O-}i :[E]{g}i (4.13)

Here, [E] is the matrix of elasticity constants (Young’s modulus), that is already

explained in the second section.

O _ E, Ex Eul|le 114
Oy Ex Eullé (4.14)
yrz i Sym' E44 Z-rz i
The strain energy of a linear elastic body is defined as
LJ=1j{gf[EH;mv
2 v (4.15)

On the other hand, the total potential energy of the element can be expressed with the

stiffness matrix [k] as follows:
1 T
> )0} [KKajav (4.16)

From Equation 4.15 and 4.16, it can be derived that [k]=IV[B]T[E][B]dV, by
substituting Equation 4.9 into Equation 4.15.

As the stiffness matrix is obtained, the basic equation, Hooke’s law of elasticity, is

ready to be solved in order to find the displacements:

F =kx (4.17)

For our problem, the nodel displacement vector {q} is calculated by the following

equation:
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f, Oy
f q
=Lkl (4.18)

mal cee
[ee]

O

The solution process for an axisymmetric quadrilateral linear element can be
summarized with the previous computational steps. However, the size of the vectors
and matrices, the shape of the functions change according the element type while the
main procedure do not change. The number of nodes and the degree of the shape
function may be increased for a different element type as well as the dimension of
the element alters the number of variables.

For the element used in our model, the compatibility conditions, that is, the nodal

number of equations and unknowns are as follows:

Displacements: u,w —> Equilibrium equations = 2
Strains: &,,¢,,8,,7, -> Strain-displacement relations = 4
Stresses: o,,0,,0,,7, -> Constitutive relations = 4

Total equations = 10 -> Total unknowns = 10

4.2 The FE Model of the Experiments and the Contact Model

One model is created to simulate the static indentation tests with a hyperelastic
material model. Another model is created to simulate the same tests with a
viscoelastisity assumption. Two new models are created by modifying them so as to

simulate the relaxation tests.

To explain the main structure of the model, an axisymmetric contact model
consisting of two different parts, the indentor and the deformed material are used.
The indentor is defined as a 2D analytical rigid shell part where the other part is
chosen to be a deformable solid which is contructed by a transformation from shell to
solid as a requirement of the FE modeling software. To set the contact relation
between these two parts, an interaction between each material’s contacting surfaces,

a rigid body constraint for the indentor and an interaction property that holds the
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information about the friction are defined. The interaction property is set to “rough”

which means that no slip will occur once the points are in contact.

The contact is based on the finite-sliding formulation where seperation and sliding of
finite amplitude and arbitrary rotation of the surfaces may arise. The finite-sliding
rigid contact procedure works by a family of contact elements that are automatically
generated with respect to the data associated with the defined contact pairs. At each
integration point these elements construct a measure of overclosure (the penetration
of the point on the surface of the deforming body (master surface) into the rigid
surface) and measures of relative shear sliding. These kinematic measures are then
used in appropriate Lagrange multiplier techniques to present the appropriate surface

contact and friction theories [12].

Finite-sliding formulation allows arbitrary motion of the surfaces. Contact conditions
are implemented on the surface of the slave (surface on the indentor) not at discrete
points or at slave nodes. This leads to the possibility of observing some penetration at
individual nodes; however, large, undetected overclosures do not occur with this

discretization [12].

Node-to-Surface Contact Node-to-Surface Contact

4

,/
master ~

slave .
VO

Surace-to-Surface Contact Surace-to-Surface Contact

master <

e slave
masier. hald
~

Figure 4.3 : Comparison of contact enforcement for node-to-surface and surface-to-
surface contact discretizations [12].
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Figure 4.4 : Axisymmetric finite element contact model.

Our FE contact model for undeformed shape is shown in Figure 4.4. The rectangular
part is the axisymmetric model of the circular gel pad. To the center of the gel pad,

an axisymmetric analytical rigid structure, which is created to simulate the probe, is
placed.
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Figure 4.5: The deformed shape of the finite element contact model, showing the

stress distribution in the y direction for a ~20% (3.9 mm) deformation
(deformation scale factor is 1).
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5. INVERSE METHOD

To solve the simulation problem, finite element tools require the material type and
material coefficients to be defined in the model. Here, the most important point that
requires attention besides constructing the model properly, is to set the accurate
material type and coefficients. The closer to the exact values the parameters of the
material model are, the more realistic the solution is. There are several numerical
methods that can be found in literature to approximate or determine the material
coefficients of a material with a specific type. Curve fitting is an option in which the
material model stress equations are fitted to the experimental stress data. However,
previous studies show that a better approximation can be done by another numerical

approach named inverse finite element method.

5.1 Inverse Finite Element Algorithm

Inverse finite element method is an algorithm that runs the model with an initial
parameter set and compares the FE result to the experimental data and improves the
parameter set with respect to the computed error and pre-defined error tolerance.
This procedure continues iteratively until the error between the model and the
experiment data is small enough. This algorithm can be built to find any parameter of
the model as well as the material coefficients. In details, it is a coupling process of
the FE tool with an optimization algorithm; FE tool solves the model using the given
parameters, where the optimization tool gets the FE results, makes a better estimation
of parameters after computing the error with respect to the test data and sets the new
parametrers to the FE model. The flow chart of the algorithm is illustrated as in
Figure 5.1. The scripts coded to perform this algorithm is given in Appendix A.1.

5.2 Optimization Methods

Any optimization method can be used in the algorithm as soon as it fits the problem.
Some optimization methods are local solvers while some are global. Local solvers

stop when a local minimum of the objective function is found, however global

49



solvers aim to find the minimum of all minima, which is the global minimum of the
objective function. However, a global solver doesn’t guarantee to find the global
minimum; because global methods work so as to reduce the objective function in
each optimization step, the method cannot promise to converge for the global
minimum, it requires the initial parameters to be very close to real values for a good
solution [13].

Experimental Results

Static Indentation Static Indentation FEM Analysis
Results Results

Constitutive Model which
uses Hyperelastic,

Relaxation Test Relaxation Test Viscoelastic, Isotropic,etc.
Results Results material parameters
Simulation
Results

Optimization Tools

Regression,
Levenberg—Marquardt algorithm,
Genetic algorithm, etc. New
Parameters
YES Converged? NO

Material Parameters

Figure 5.1 : The inverse FE algorithm.

The optimization part of this study is minimizing the residual vector (R;) which

holds the differences between the model data ( f_.,) and experimental data ( f

model exp ) '
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The expression to be minimized is given in equation (5.1) where iis the number of

discretized data, tis time and p is the parameter set to be determined.

Ri ( p) = fmodel ( p’ti) - fe><p (tl) (561)

min 3", (R (p))’ (5.62)

In this study, some of the optimization methods such as Gauss-Newton, Levenberg-
Marquardt, Trust Region and simplex search method are evaluated. Because our
objective function is nonlinear, numerical methods for nonlinear optimization are

considered.

5.2.1 Theory of the Gauss-Newton Method

For the problem of fitting a function of n parameters to a data vector d, a nonlinear

system of equations G(m)=d is tried to be achieved by optimizing the parameters

m and minimizing the 2-norm of the residuals [14].

fm)=>",G(m) —d)’ (5. 3)
If we let
f(m)=G(m),-d, i=12,.,n (5.4)
and
f,(m)
Fm=| (5.5)
f,(m)
we can write
fm)=>", fi(m)’. (5.6)

The gradient of f(m) can be written as
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v(m)=>"" V(fi(m)?*)

=>"" 2vf,(m)f,(m) (5.7)
=2J(m)" F(m)

where J(m) is the Jacobian.

Similarly, the matrix of second derivatives, the Hessian is obtained as follows:

VZE(m)=23(m)" I(m)+2v(I(m)' F (m))

o (5.8)
The Gauss-Newton (GM) method omits the Q(m)term [14] thus
obtains the Hessian as in equation 5.9.
VZf(m) =237 (m)J(m) (5.9)

The GN optimization method converges to a solution when Vf(m)=0 is achieved
[3]. That is,

JT (M) (m)Am =-J(m)" F(m). (5.10)

Here, if the f.(m) terms are reasonably small, then it is a reasonable approximation.

But if the terms are large wich means in other words, that J"(m)J(m) is singular,
then the optimization doesn’t converge, the Gauss-Newton method fails. The GN
method necessitates the term J'(m)J(m)Am to be positive semi-definite and

symmetric [14].

5.2.2 Theory of the Levenberg-Marquardt Method

Levenberg-Marquardt algorithm (LM algorithm) [14] improves the Gauss-Newton
method by adding an extra term to the Hessian matrix of the 2nd derivatives of the

function in order to eliminate the risk of singularity.
VAE(mAm= 3" (mJI(m)+A1)Am, A1>0 (5.11)

The positive term A1 ensures that the matrix is not singular. It is adjusted at each

iteration of the computation so as to provide convergence. Since the matrix in right
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hand side of the equation 5.11 is positive-semidefinite and symmetric, the system can
be solved via Cholesky factorization [14].

If A is large, Ambecomes a steepest-descent step (Equation 5.13); the method

moves down-gradient to reduce f(m), which means a slow yet certain convergence.

In contrast, if the additional term is very small, the LM method reverts to the GN

method that provides fastness but uncertainity for convergence [14].

JT(m)I(Mm)+ Al = Al (5.12)

1
Am =~V (m) (5.13)

5.2.3 Theory of the Trust Region Methods

Trust region algorithm makes a further improvement by evolving the Levenberg-
Marquardt algortihm. In the case of negative curvature, that is, when the Hessian
matrix is negative, Gauss-Newton fails and L-M algorithm follows a perturbated and
approximate direction of research of Am based on an arbitrary perturbation of the
Hessian. In LM algorithm, choosing a large A4 makes the Hessian part of the
expression (Equation 5.12) ineffective but, more importantly it has an effect as
reducing the step size Am. Trust Region algorithm focuses on this effect and
imposes a proper limitation on the step size as in Equation 5.14 and by this way,
succeeds the global convergence even if the approximation of the Hessian matrix is
indefinite [15].

An < A, (trust region radius) (5.62)

The computation of A, is another constraint minimization of a quadratic expression

and this increases the complexity of the Trust Region algorithms (Eq. 5.14) [15].

f(m+An) = rran(f (m+ An)) subject to An < A, (5.63)
In Trust Region methods, the Hessian matrix is obtained numerically in several
ways, by the well-known BFGS formulae, by the multivariate polynomial
interpolation or by the finite difference approximation. Although the multivariate

polynomial interpolation is the best to determine the 2nd derivatives, it is a very
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time-consuming algorithm [15]. Because Matlab routines is used in this study for
optimization, finite difference approximation is preferred in the trust region

algorithm as the choice of the Matlab routine.

5.3 Validation of the Inverse Method

Our inverse finite element algorithm is first checked by a simple finite element
model that involves a beam element made of steel. Parameters to be found is

Young’s modulus for the case of known Poisson’s ratio. The beam model together

with the visualisation of the deformed shape is shown in Figure 5.2.

0ODB: deform.odb.  Abaqus/Explicit Yersion 6.:8-1 Thu Dec16 14:12:14 GTE Standard

Figure 5.2 : The deformed and undeformed states of the beam model.

The material in the beam model is steel and its elasticity modulus is 209000 GPa.
The inverse method program is run with the initial value of 100000 for the elasticity
modulus and the direct search routine of Matlab is chosen as the optimization method
since there is only one constant to modify. The program tries to make a fit to the fake
experimental data generated manually witht the constant 209000 as illustrated in

Figure 5.1. In these conditions are inverse FE program, starting from 100000,

converged to the value of 208999.76. The quality of the fit with the inversely found
constant is given in Figure 5.3.
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experimental stress-time data generated manually by the FE tool
compared to the stress-time data obtained from the FE model using

the inversely determined constant.

The algorithm is also tested for the hyperelasticity case for the Yeoh material model

and this time the nonlinear least squares routine of Matlab is used. C,, =0.000115,

C,, =-0.00007,and C,, =0.00115 are submitted as the initial coefficients of the

Yeoh hyperelastic

data constructed by using the target parameters C,, =0.0001, C,, =-0.0001, and
C,, =0.001. The ceofficients found as the result of the convergence of the program
are C, =0.00010426, C,, =-0.00009456, and C,, =0.00092719. The following

figure (Figure 5.4) shows the fit of the inversely found stress curve to the fake

model and the program is run so as to fit the fake experimental

experiemental data.

Stress (WPa)
I

Figure 5.4 : The graph shows the fit of the stress data obtained via inverse FE

oI S S fake experimental data
' : : | =——FE tmodel
1

0 0.5 1 1.5 2 2.3 3 35 4

Time (2)

method to the fake experimental data.

55






6. RESULTS

The inverse FE jobs are run parallelly on the clusters of the Informatics Institute of
ITU. The jobs are submitted to maximum 32 processors. The finite element model
codes and the scripts written for the optimization process are given in Appendix A.1
as ready to run on a local machine. The codes given in Appendix A.1 were modified

for parallelism.

6.1 AquaFlex Ultrasound Gel Pad

6.1.1 Hyperelastic Model Results

Here in this section, the data obtained from the experiments conducted on the gel pad
and the computed parameters of that material both by the inverse FE method and
other methods are presented.

For the Aquaflex Ultrasound Gel, the parameters of hyperelasticity are worked out
from the static indentation data by four different ways: using Lee & Radok’s
equation [16], fitting curves to the true stress expressions of Mooney-Rivlin and
Yeoh material models and lastly using the inverse finite element method.

Lee and Radok suggested the following equation for the shear modulus:

G =3F / (165+RS) (6.1)

Here, G is the shear modulus, ¢ is the indentation depth and R is the probe radius.
Modulus of elasticity, E can also be obtained subsequently, assuming v =0.5 since

the material is assumed to be incompressible via the following relation:

E
®=20) (6.2)

Using the equations 6.1 and 6.2, Young’s modulus values which can be seen in Table
6.1, are obtained from the data of indentations done with three different probes at

four different depths.
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Table 6.1: Young’s (Elastic) modulus of the gel material for various probe radii and
displacements.

E (kPa) Displacement (mm)
Radius (mm) 2 4 6 8
2 48.4 36.7 45.5 42.1
4 53.9 53.9 61.0 -
6 55.2 57.5 57.2 -

It should be noted that the equation Lee and Radok proposed (Equation 6.1) gives

more realistic results in the small deformation cases where /R <<1[16]. However,

these results also are thought to give an idea about the material’s elastic range and

assumed to be useful to make an initial approximation of the constants.

Following the elastic approach, the gel data is used in hyperelastic material models.
First approach is the Mooney-Rivlin material model of which the strain energy
density function is expressed in terms of the first two principal invariants and
involves two constants for the incompressible material case (Equation 2.44). The
equation is written in terms of true stress as below; how it is transformed is explained
in Section 2.3.2.1. The engineering stress (force per unit reference area) is obtained
by dividing the true stress by the stretch ratio (Equation 6.4).

2C,, , 1
02(2(:10 +TJ(A —X] (63)

2C 1
ceu = 200500 45 64)

In this equation, C,, and C,, are the material coefficients, and I, and |, are the

invariants of the deformation tensor. These coefficients are computed by fitting the
static indentation data to the stress expression (Equation 6.3) and the results are
given in Table 6.2. One of the fits for which the data was gathered using the 6 mm

radius-probe at 6 mm depth is shown in Figure 6.1.
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Figure 6.1 : Static indentation test data, conducted by 6 mm radius-probe at 6
mm depth, is fitted to the Mooney-Rivlin material model.

Table 6.2: Coefficients of the strain energy density function for the Mooney-Rivlin
material model.

R =2mm R =4mm R=6mm

d=2 | d=4 | d=6 | d=8 | d=2 | d=4 | d=6 | d=2 | d=4 | d=6
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm

COl(MPa) -0.3075 | -0.1802 | -0.0859 | -0.0478 | -0.0874 | -0.0644 | -0.0498 | -0.0452 | -0.0459 | -0.0376

C,(MPa) | 02953 | 01667 | 0.0493 | 0.0057 | 008 | 00542 | 0.0354 | 0.0408 | 0.0413 | 0.0324

Mooney-rivlin type strain energy function coefficients are found at both positive and
negative values. Negative parameters for this material model are not considered to be
physically valid, but there are other studies presenting negative values for the
Mooney-Rivlin material model [17]. This may lead to the idea that the strain energy
density function is not stable for certain loading conditions since Mooney-Rivlin
model best describes rubber-like materials, but here-found negative coefficients fit
well to our experimental conditions. However, other hyperelastic material models
should be considered. Yeoh material model better reflects the nonlinearity, therefore
the curve fitting procedure is also performed for Yeoh material model, using the
engineering stress expression (Equation 6.7) which is obtained by dividing the true
stress by the stretch ratio (Equation 6.6). Yeoh type strain energy density function is

shown in Equation 6.5.

W =C,(I,-3)+Cyy (1, —3)2 +Cy (1, — 3)° (6.5)
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1 2 2 .Y
(AZ —XJ{ZQO +4C,, (AZ +X—3j+6C30 (AZ +X—3j } (6.6)

1 2 2 _4)
g = (A—FJ{ZCN +4C,, (AZ +X_3)+6C30 (Az +X—3) } (6.7)

The results are shown in Table 6.3, Table 6.4, and Table 6.5 for different probe sizes
and different depths.

Table 6.3: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 2mm radius probe.

R =2mm
d =2mm d =4mm d =6mm d =8mm
C,(MPa) 5.424e-06 1.14e-06 3.66e-10 3.01e-10
C,,(MPa) -1.65 -0.4213 -0.2434 -0.1161
C,,(MPa) 22.48 1.313 0.358 0.08816

Table 6.4: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 4mm radius probe.

R =4mm
d =2mm d =4mm d =6mm
C,(MPa) 1.201e-04 2.221e-05 1.532e-06
C,,(MPa) -0.6852 -0.2149 -0.1089
C,,(MPa) 10.05 0.7258 0.153

Table 6.5: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 6mm radius probe.

R =6mm
d =2mm d =4mm d =6mm
C,(MPa) 1.525e-04 4.391e-07 1.288e-05
C,,(MPa) -0.3898 -0.1201 -0.05704
C,,(MPa) 5.725 0.3811 0.07412

The goodness of one of the fits which is the fit to the static indentation data of the

test performed by the 6mm radius probe at 6mm depth, is shown in Figure 6.2.
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Figure 6.2 : The graph showing the Yeoh material model type curve fitting to
the test data of the static indentation with 6mm radius probe at
6mm depth (on the aqua gel), and the residuals of the fit.

6.1.1.1 Inverse FE Method Results

Some constraints are applied for curve fitting; the first coefficient is restricted to be

greater than zero, because a negative C,, value is not accepted by the finite element

tool, causes the bad material definition error.

The last method to determine the material results is the inverse algortihm, which is
the main subject of this thesis. The results above are aimed to be used in this
algorithm in order to set good initial parameters since initial parameters have a key
role in convergence of the inverse algorithm. However, this approach didn’t work for
all cases, so the initial parameters were set regardless of the curve fitting results for

some cases.
e Compuatations using the R =2mm, d =4mm static indentation data:

The resultant coefficients of curve fitting are clearly different from the coefficients
found vie the inverse FE method, and the inversey found coefficients also show great
differences. This may be caused by some theoretical difference of the finite element
tool in defining the material model, which was chosen Yeoh for this case, if the curve

fitting results are compared to the inverse method results.
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Table 6.6: The coefficients found via inverse FE method, starting with the given
initial values, and the coefficients found via curve fitting method.

ClO C20 CSO
Initial coefficients - case 1 0.001 0.001 0.001
Inverse FE results - case 1 0.001376 0.004173 0.002524
Initial coefficients - case 2 0.01 0.01 0.01
Inverse FE results - case 2 0.003554 -0.011223 0.020003
Initial coefficients - case 3 0.000021 0.000199 0.000331
Inverse FE results - case 3 0.001456 0.003688 0.003028
Curve fitting results 1.14e-06 -0.4213 1.313

One more point that should be noted is that the solution is not unique for these kind
of fitting problems and in the inverse method it is highly related to the initial values.
Though, the following graph shows how well the stres-time curve generated by using
the coefficients found via the inverse FE method fits to the curve of the experimental
data (Figure 6.3).
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Figure 6.3 : The graph comparing the stress-time curve generated with the inversely
found coefficients (case 1) to the real (obtained from experimental data)
stress-time curve.

The following graph (Figure 6.4) also illustrates the results for the same conditions,

but for case 2, in which the inital values were set different than those of case 1.
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Figure 6.4 : The graph comparing the stress-time curve generated with the inversely
found coefficients (case 2) to the real (obtained from experimental data)
stress-time curve.

Case 3 also presents different coefficients; the goodness of the fit is shown below in

Figure 6.5.
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Figure 6.5 : The graph comparing the stress-time curve generated with the inversely
found coefficients (case 3) to the real (obtained from experimental data)
stress-time curve.

e Compuatations using the R =2mm, d =8mm static indentation data:

Figure 6.6 is the graph showing the inverse fit that uses the coefficients in Table 6.7

and the experimental data.
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Table 6.7: The coefficients found via inverse FE method, starting with the given
initial values, and the coefficients found via curve fitting method.

ClO C20 CSO
Initial coefficients 0.01 0.0001 0.0001
Inverse FE results 0.008285 -0.001175 0.000405
Curve fitting results 3.01e-10 -0.1161 0.08816
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Figure 6.6 : The graph comparing the stress-time curve generated with the inversely

found coefficients to the real (obtained from experimental data) stress
time curve.

e Compuatations using the R =4mm, d =6mm static indentation data:

Table 6.8: The coefficients found via inverse FE method, starting with the given
initial values, and the coefficients found via curve fitting method.

C10 CZO C30
Initial coefficients 0.001 0.001 0.001
Inverse FE results 0.001311 0.006561 -0.000795
Curve fitting results 1.532e-06 -0.1089 0.153

Below is the graph showing the inverse fit that uses the coefficients in Table 6.8 and
the experimental data (Figure 6.7).
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Figure 6.7 : The graph comparing the stress-time curve generated with the inversely
found coefficients to the real (obtained from experimental data) stress
time curve.

The degree difference in the results which is about O(10%) is thought to be caused by
the unit of density set in the abaqus model. The unit is used as kg / mm?®, however it

would be more precise to set it in the unit of tonne/mm® when the other units are

chosen as N,mm, and MPa.

6.1.2 Viscoelastic Model Results

The materials are assumed as linearly viscoelastic because the finite element solver
can only handle linear viscoelasticity. Linear viscoelasticity is explained in Section

2.3.2 and the model is given in Equation 2.57.

Most commonly used relaxation function that is embedded in the viscoleastic models
is Prony series approach; the relaxation fuction expressed as Prony series is given in

the following equation:
g =E,(1- p(—e") 6.8)

In Equation 6.8, E; is the instantaneous modulus of the material, that is the modulus
of elasticity, p, is the i’th Prony constant (i=12,...), and 7, is the i’th Prony
retardation time constant (i=1,2,...) [18]. The values for E, are taken from the

Table 6.1.
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Using this approach, relaxation test data is fitted to the Prony series function with

i =2 and the above defined parameters are determined.

Table 6.9: Coefficients of the relaxation function for various probe radii and
displacements.

R=2mm R=4mm R=4mm

d =2mm d =2mm d =4mm
p,(MPa) 0.2023 0.0725 0.115
p, (MPa) 0.2795 0.7325 0.6349
7,(9) 13.72 0.5407 1.011
7,(S) 302.2 168.6 149.4

Below is the graph showing the goodness of fit for two cases; the Prony series is
expanded with 2 set of unknowns for the first, and expanded with 3 set of unknowns
for the second case. Here, these unknowns are the coefficients that are aimed to be

determined.
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Figure 6.8 : Nonlinear curve fitting with the 2 and 3-parameter Proney series model,

fitted to the relaxation test data; probe radius is 2mm, indentation depth
is 2mm and the hold time is 600 s.
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6.2 Bovine Liver

6.2.1 The Effect of Storing The Liver in Serum Liquid

The results of the experiments are illustrated in the third chapter; however the effect

of storage conditions of the liver is not given yet. The static indentation and ramp-

hold test results given in the previous chapter belong to the liver which had been kept

in a serum liquid right after it was removed from the animal until it was subjected to

material testing. We also have test data of a liver which hadn’t been kept in the fluid

before testing. The following figures show the difference in the data caused by the

storage conditions.

Load (N)

Time 150:!:(!1;!
(@)

Load M)

x
Time (Sacands)

(b)

Figure 6.9 : The static indentation data of the tests conducted by the probe of 4mm
radius to the depth of 20mm, on the liver stored (a) not within serum,
and (b) within serum.
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Figure 6.10 : The static indentation data of the tests conducted by the probe of 6mm
radius to the depth of 20mm, on the liver stored (a) not within serum,
and (b) within serum.

At both group of tests, that is, at the tests with the probe of 4mm radius or 6mm
radius, the curves demonstrate that there is a difference in the force response between
the liver stored in the serum liquid and the one not stored in it; the force response of
the liver stored in the liquid is clearly greater. However, the fact that each distinct
liver taken out from a different animal may feature difference in structure and in

mechanical properties should be in mind, even if they are from the same species.

6.2.2 Hyperelastic Model Results

The method that had been proposed by Lee and Radok [16] is used again with the
static indentation data gathered from the liver material tests. Equation 6.1 and

Equation 6.2 are used; the results are presented in Table 6.10.
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Table 6.10: Young’s (Elastic) modulus of the bovine liver for various probe radii
and displacements.

E (kPa) Displacement (mm)
Radius (mm) 4 6 8 10
2 5.809 5.014 5.551 5.227
4 4.768 4.259 4121 5.097
6 3.930 5.783 5.690 5.726

The data shown in Table 6.10, when compared to the data in Table 6.1, briefly
demonstrates that the elastic response of bovine liver and the ultrasound aquaflex gel

do not look alike since the estimated elastic moduli are not in a similar range.

The static indentation data obtained from tests on liver are again used in stress
expression of the Yeoh type hyperelastic material model (Equation 6.7) as it is done
for the ultrasound aqua gel material. The stretch ratios are calculated using the liver
thickness data which had been measured and recorded at each indentation, since the

dimensions of liver were not constant at each point differently from the gel.

The following tables (Table 6.11, Table 6.12, and Table 6.13) shows the coefficients

found by the curve fitting method using the stress expression in Equation 6.7:
The graphs in Fgure 6.11 shows the goodness of the fit for one test case.

Table 6.11: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 2mm radius probe.

R =2mm
d =4mm d =6mm d =8mm d =10mm
C,,(MPa) 2.225e-14 2.22¢e-14 3.945e-06 1.782e-06
C,,(MPa) -5.534 -2.865 -2.203 -0.5836
C,,(MPa) 442.2 72.59 31.31 2.573

Table 6.12: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 4mm radius probe.

R =4mm
d =4mm d =6mm d =8mm d =10mm
C,(MPa) 2.22¢e-14 4.01e-05 4.436e-07 7.923e-07
C,,(MPa) 1.86 -0.8747 -0.4574 -0.3588
C,,(MPa) 137.1 23.3 5.531 2.528
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Table 6.13: Coefficients of the strain energy density function of the Yeoh material
model, obtained from the test data of 6mm radius probe.

R =6mm
d =4mm d =6mm d =8mm d =10mm
C,(MPa) 0.0001376 1.636e-05 1.33e-05 1.256e-06
C,,(MPa) -1.017 -0.591 -0.3906 -0.2949
C,,(MPa) 70.57 15.94 5.4 2.309
w10 Data and Fits

Stress (WPa)

: : :
0 0.0 0.04 0.06 0.0a 0.1

Figure 6.11 : The graph showing the Yeoh material model type curve fitting
to the test data of the static indentation with 6mm radius probe
at 10mm depth (on liver), and the residuals of the fit.

6.2.2.1 Inverse FE Method Results

For the inverse finite element method jobs the constraint that keeps the first

coefficient of the Yeoh material model is again used, because a negative C,, value

causes the bad material definition error by the finite element tool.

The FE model is reconstructed, because the thickness of the bovine liver changed at
each case. The FE model is altered according to thickness, which is directly

invlolved in strain definiton.
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Below is the result of the inverse FEM; the coefficients computed via inverse FEM

are shown in the table and the fit is graphed.

e Compuatations using the R =4mm, d =4mm static indentation data:

Table 6.14: The coefficients found via inverse FE method, starting with the given
initial values, and the coefficients found via curve fitting method.

ClO C20 CSO

Initial coefficients 0.001 0.001 0.001

Inverse FE results 0.000149 -0.000160 0.013708

Curve fitting results 2.22e-14 1.86 137.1
x10°
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Figure 6.12 : The graph comparing the stress-time curve generated with the
inversely found coefficients to the experimental stress-time curve
of the bovine liver, for the case of R =4mm, d =4mm.

Figure 6.12 is the graph showing the inverse fit that uses the coefficients in Table

6.14 and the experimental data.

e Compuatations using the R =4mm, d =6mm static indentation data:

Table 6.15: The coefficients found via inverse FE method, starting with the given
initial values, and the coefficients found via curve fitting method.

ClO C20 CSO
Initial coefficients 0.00001 0.00008 0.00233
Inverse FE results 0.000119 -0.0000003 0.002396
Curve fitting results 4.01e-05 -0.8747 23.3
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Below is the graph showing the inverse fit that uses the coefficients in Table 6.15

and the experimental data (Figure 6.13).
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Figure 6.13 : The graph comparing the stress-time curve generated with the
inversely found coefficients to the experimental stress-time curve
of the bovine liver, for the case of R=4mm, d =6mm.

6.2.3 Viscoelastic Model Results

The Prony series relaxation function approach for the viscoelastic model is also used
with the liver test data. Curve fitting is done using the Prony series expansion with 3

parameter sets (Equation 6.8).

The calculated parameters are given in tables below. The following table gives the
parameters for the test case performed by the 2mm-radius probe. The indentation

depths for that case are 4mm, 6mm, and 8mm.

Table 6.16: Coefficients of the relaxation function for various probe radii and
displacements for the case of R =2 of bovine liver tests.

d =4mm d =6mm d =8mm
p, (MPa) 0.613 -3.069 -6.263
p,(MPa) 1.579 3.286 6.38
p,(MPa) -1.411 -3.867 -7.061
z,(s) 0.1245 0.1245 0.1245
z,(s) 76.28 79.57 80.05
75(5) 0.067 0.067 0.067
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Table 6.17 presents the parameters for the 4mm-radius case at which the tests are

conducted to the 4mm, 6mm, and 8mm depths on the bovine liver.

Table 6.17: Coefficients of the relaxation function for various probe radii and
displacements for the case of R =4 of bovine liver tests.

d =4mm d =6mm d =8mm
p,(MPa) 0.09031 -0.6603 -1.696
p, (MPa) 0.9256 1.526 2.387
p,(MPa) -0.7076 -1.458 -2.493
7,(9) 0.1245 0.1245 0.1245
7,(9) 21.38 45.06 79.93
7,5(S) 0.067 0.067 0.067

Table 6.18 gives the parameters for the 6mm-radius case at which the tests are

conducted to the 4mm, 6mm, and 8mm depths on the bovine liver.

Table 6.18: Coefficients of the relaxation function for various probe radii and
displacements for the case of R =6 of bovine liver tests.

d =4mm d =6mm d =8mm
p,(MPa) 0.4253 0.3522 -0.05648
p,(MPa) 0.6685 0.6581 0.8614
p,(MPa) -0.3726 -0.4457 -0.8543
7,(S) 0.1245 0.1245 0.1245
7,(S) 10.58 14.49 44.71
7,(S) 0.067 0.067 0.067

The goodness of the fits are illustrated in the graphs below.
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Figure 6.14 : Prony series approach for the relaxation function is fitted to the ramp
hold data of the bovine liver for the case of d =4mm.
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Figure 6.15 : Prony series approach for the relaxation function is fitted to the ramp
hold data of the bovine liver for the case of d =6mm.
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Figure 6.16 : Prony series approach for the relaxation function is fitted to the ramp
hold data of the bovine liver for the case of d =8mm.

6.3 Comparing the Mechanical Properties of Aquaflex Ultrasound Gel and

Bovine Liver

Even though, the method that Lee and Radok had proposed had been constructed for
small deformation cases [16], the obvious difference between the data given in Table
6.1 and Table 6.10 can inform us that the synthetic material that was subjected to
material testing in this study, do not resemble mechanically to the bovine liver. The
effective elastic modulus of the bovine liver seems averagely one order of magnitude

smaller than that of the synthetic material.
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7. CONCLUSION

The method of estimating the material coefficients of soft biological tissues by
inverse finite element method is dealed in this study and the resources of the inverse
finite element method is provided with an experimental work. The experiments are
designed as static indentation tests and ramp-hold tests. Tests are performed on two
materials; one is a synthetic material, Aquaflex Ultrasound Gel Pad, the second one
is the bovine liver. The data obtained from the material tests are used in the
computations of the material coefficients that take place in the equations of the

material models, which are chosen as Yeoh type hyperelastic and linear viscoelastic.

The tests on the synthetic material demonstrated the mechanical properties of the
material; it is seen to have a nonlinear stress-strain relation. The ramp-gold tests
showed the relaxation characteristic of the material and this property lead us to
model it as viscoelastic. The bovine liver is already known for its nonlinear

viscoelastic behaviour as it is a soft biological tissue.

Another set of material tests are performed in order to examine the axial
differentiation in the mechanical behaviour of the bovine liver. The static indentation
tests conducted on the orthogonal faces of a cubic bovine liver part showed the
anisotropy of the tissue by exhibiting different force responses for the same test
cases. However, the heterogenity of the tissue is also seen as an important parameter
to consider since the replicated tests on the same face but on different points could

produced different data.

Other than the material test data of the bovine liver that is used in this study for
coefficient estimation, a previous data set that had been obtained from another
bovine liver which had not been kept in serum fluid, is used for the comparison of

these two groups of data, resulting that the storing condition made sense.

The coefficients are calculated via both curve fitting and inverse FE method. It has
been concluded that the results obtained from the inverse FE method is strictly

depend on the initial parameters given to the algorithm. Curve fitting results helped
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to decide the initial parameters for some cases but not for all. There have been an
obvious degree difference between the results of the curve fitting method and inverse
FEM which is later understood to have been caused by the inconsistent unit usage for

the density.

Some parts of the work done during this thesis, the experimental work and the curve
fitting results, are published in some conferences both national and international.
These proceedings are referenced in [19], [20], and [21].

In this study, the overall structure of the inverse FE method is constructed; finite
element models are created, the algorithm is coded, the program converged and
computed the coefficients. It can be seen that the the results of the curve fitting
method differ from the results of the inverse FEM. This suggests that the parameter
estimation by both methods needs further improvement in terms of finite element
modeling and in terms of material description. The overall model can be improved
for the case of nonlinear viscoelastic materials. The results already show that not
every hyperlastic material model fit to the soft tissue materials; it is seen in this study
that Yeoh model is more suitable than Mooney-Rivlin model however Yeoh also
fails to give a good fit in case of large deformations. Therefore, choosing a more
suitable hyperleastic material model or defining a new material model can be

performed as a future improvement.
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APPENDICES

APPENDIX A.1 : The inverse finite element method codes:

submit_matlab.m: The Matlab script that starts the algorithm and runs the
optimization routine.

myresiduals.m: The Matlab function that runs the finite element model job
and computes the residuals between the experimental data
and model data.

litcount.m: The Matlab function that embeds the new parameters into
the Abaqus input file.
openodb.py: The python script that selects the required data from the

finite element model database file.
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APPENDIX A.1

myresiduals.m :
function err = myresiduals p(params)

format long

fid = fopen('params.txt','a');
measfile = ('liver reédd.dat');

h meas = load(measfile);

h abaqus = load('s22 abaqus.dat');
err = h meas-h abaqus

fprintf (£fid, '%.15f $.15f %.15f
params (2), params(3), 0, 0, 0);

oo
oo

fclose (fid) ;
end

submit_matlab.m :
clear; clc;

params = [0.001, 0.001, 0.0011];
options = optimset ('TolX', 1le-8, 'TolFun', le-8, 'MaxIter',
1000) ;

[res params, fval,exitflag,output] = lsgnonlin(@myresiduals,
params, [0, -Inf, O], [], options);

res_params

fval

exitflag

output

litcount.m :
function litcount(filename, literal, params)

% Search for a string

format long;

fid = fopen(filename) ;
[newF,message]=fopen('test tmp.inp','w');
tline = fgetl (fid);

while ischar (tline)
matches = strfind(tline, literal);
num = length (matches);

if num > O
fprintf (newF, '*Hyperelastic, yeoh\n');
fprintf (newF, '%$.33f, %$.33f, %.33f, %f, %f, %f\n',
params (1), params(2), params(3), 0, 0, 0);
fgetl (fid);
else
fprintf (newF, tline);
fprintf (newF, "\n"'");
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end
tline = fgetl (fid);
end
fclose (newF) ;
copyfile('test tmp.inp', filename);
fclose (fid) ;
end

openodb.py :

from odbAccess import *

odb = openOdb (path="jobl.odb"')
file = open('s22 abaqus.dat','w')

myframes=odb.steps['Step-1'].frames

# values[99] is the 100st element in the model
# data[l] gives the 2nd stress component (S22) in the y-direction
for i in myframes:
s22data = (-1)*(i.fieldOutputs['S'].values[99].datal[l])
file.write(str(s22data) + '\n')

file.close()
odb.close ()
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