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ESTIMATION OF MATERIAL COEFFICIENTS OF SOFT TISSUES USING 

EXPERIMENTAL DATA AND INVERSE FINITE ELEMENT METHOD 

SUMMARY 

In this thesis a set of indentation experiments conducted on bovine liver and on a 

synthetic material are presented and the material coefficients of the materials are  

computed using the test data via inverse finite elments algorithm.  

The literature in this area has been in need of determined material coefficients of soft 

biological tissues. There are already published values for various soft tissues, 

however, testing environments and conditions affect the results because soft 

biological tissues display different behaviour with respect to the vitality, the storage 

conditions, or the boundary conditions. Also, determining the accurate material 

model of the tissue is important; since the coefficients of the material model that is 

assigned to the tissue are computed in this process. On the other hand, the synthetic 

material was involved in the study with a prediction that it would present similar 

mechanical properties with soft biological tissues. Artificial materials eases the 

validation of the simulation models by providing any data for any condition if they 

are mechanically similar to the subject tissue. 

In this study, static indentation experiments and relaxation experiments are 

performed on the synthetic gel which is Aquaflex Ultrasound Gel Pad and on bovine 

liver. The experiements on bovine liver are performed ex-vivo. The data obtained 

from the experiments are used to determine the coefficients for various material 

models by either curve fitting or by inverse finite element algorithm. For the 

Aquaflex Ultrasound Gel, the static indentation test data is fitted to the Mooney-

Rivlin and Yeoh type material models and the related coefficients are computed. The 

ramp-hold test data is fitted to the Prony series expansion of the relaxation function 

for the viscoelastic model and the coefficients are computed. Both data is also used 

for coefficient determination via inverse finite element method. For this purpose, the 

simulation models of the materials and the experiments for each case are constructed 

by a finite element modeling software. These processes are also repeated with the 
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data obtained from the bovine liver tests. In order to anaylze the axial differences in 

terms of mechanical behaving, the liver is subjected to axial static indentation tests in 

which the same tests are performed on different faces of a bovine liver piece. The 

results of each axes are compared. Another comparison is done in order to see the 

effect testing condition on the soft biological tissue; the test data gathered from the 

liver stored in the serum liquid and the liver kept bare is compared. 

The inverse finite element method is a numerical approach in which an optimization 

algorithm is coupled with a finite element analysis in order to find the optimum 

coefficients of the material model defined in the finite element model. The finite 

element model is the simulation of the experimental process in which the physical 

and mechanical properties of the experimented material are assigned and the 

mechanical response of the material is obtained. In our model, the material is 

constructed as isotropic and nonlinear hyperelastic and linear viscoelastic.  The FE 

data is pass on to the optimization procedure in which the nonlinear least squares 

method is used. 

To conclude, all the results found by any method mentioned above are presented 

with comparisons. The results belonging to the synthetic material showed that it is 

mechanically similar to a soft biological tissue in terms of nonlinearity and 

viscoelasticity but, it's not in a similar range with the bovine liver.  The keeping 

condition of the liver is also seen to make a sense becuase the data obtained from the 

liver kept in serum liquid gave a different force range with a more smooth data. The 

inverse FE method is run for the Yeoh hyperelastic material model and lineer 

viscoelastic model and by this way, the coefficients of the materials used in this 

study are provided for soft tissue simulations. 
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YUMUġAK DOKULARIN MALZEME KATSAYILARININ DENEYSEL 

VERĠLER VE TERSĠNE SONLU ELEMANLAR YÖNTEMĠ 

KULLANILARAK HESAPLANMASI 

ÖZET 

Bu tezde, sığır karaciğeri ve sentetik bir malzeme üzerinde yapılan bir takım basma 

deneyleri sunulmuş ve deney verileri kullanılarak, tersine sonlu elemanlar metodu ile 

malzemelere ait malzeme katsayıları hesaplanmıştır. 

Literatür, yumuşak biyolojik dokulara ait tespit edilmiş malzeme katsayılarına 

ihtiyaç olagelmiştir. Farklı yumuşak dokular için yayınlanmış değerler mevcuttur 

fakat, deney koşulları ve deney ortamı sonuçları etkiler. Çünkü yumuşak biyolojik 

dokular canlılığa, korunma koşullarına ya da sınır koşullarına göre değişen mekanik 

tepkiler gösterebilir. Ayrıca, doğu mekanik modeli saptamak da önemlidir zira, 

malzemeye atanmış malzeme modeline ait olan katsayılar hesaplanır. Öte yandan, 

sentetik malzeme, yumuşak biyolojik dokulara yakın mekanik özellikler göstermesi 

öngörüsüyle bu çalışmaya dahil edilmiştir. Yapay malzeme, simüle edilen yumuşak 

dokuyla benzer mekanik özellikler taşıdığı sürece, farklı deney şartları için deney 

datası sağlayarak simülasyon modellerinin doğrulanmasına katkı sağlar. 

Bu çalışmada, hem Aquaflex Ultrasound Gel Pad isimli sentetik malzeme üzerinde 

hem de sığır karaciğeri üzerinde statik basma deneyleri ve gevşeme deneyleri 

yapılmıştır. Karaciğer deneyleri cansız ortamda gerçekleştirilmiştir. Deneylerden 

elde edilen veriler eğri oturtma ve tersine sonlu elemanlar yöntemleri ile çeşitli 

malzeme modellerine ait ksatsayıları bulmak üzere kullanılmıştır. Aquaflex 

Ultrasound Gel malzemesi için, statik basma deney verileri Mooney-Rivlin ve Yeoh 

tipi malzeme modellerine oturtulmuş ve katsayılar elde edilmiştir. Gevşeme 

deneyleri verileri ise gevşeme fonksiyonu için kullanılan Prony seri açılımına 

oturtulmuştur. Her iki tip tersine sonlu elamanlar yönteminde de katsayı tespit etmek 

üzere kullanılmıştır. Bu amaçla, malzeme ve deneyi simüle eden sonu elemanlar 

modelleri bir sonlu elemanlar yazılımı aracılığıyla her durum için oluşturulmuştur. 

Bütün bu işlemler sığır karaciğeri deneylerinden elde edilen verilere de 
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uygulanmıştır. Mekanik davranış bakımından eksenel farklılıkları tespit etmek 

amacıyla, bir karaciğer parçasının farklı eksenlerdeki yüzlerinde aynı basma deneyini 

tekrarlanmış ve sonuçlar kıyaslanmıştır. Başka bir karşılaştırma da, karaciğerin 

saklanma koşullarının veriye yansımasını görmek amacıyla, deney öncesi serum 

içince saklanan ve saklanmayan dokularda yapılan deneylerin sonuçlarına bakılarak 

yapılmıştır. 

Tersine sonlu elemanlar yöntemi, doğru katsayıları bulmak amacıyla bir en iyileme 

algoritması ile malzemenin model içinde tanımlandığı bir sonlu elemanlar analizinin 

birlikte çalıştırıldığı sayısal bir yaklaşımdır. Sonlu elemanlar modelinde malzemenin 

fiziksel ve mekanik özellikleri girilir ve malzemenin simülasyon sonundaki mekanik 

cevabı elde edilir. Bu çalışmadaki modelde malzeme izotropik, doğrusal olmayan 

hiperelastik ve doğrusal vizkoelastik olarak tanımlanmıştır. Sonlu elemanlar 

analizinden elde edilen veriler ise doğrusal olmayan en küçük kareler yönteminin 

çalıştırıldığı en iyileme sürecine katılır. 

Sonuç olarak, yukarıda bahsi geçen tüm metodlarla elde edilen tüm veriler çalışmada 

sunulmuştur. Sentetik malzemeden elde edilen veriler, bu malzemenin, doğusal 

olmayan ve vizkoelastik davranış sergilemesi bakımından yumuşak biyolojik 

dokulara benzerliğini ortaya koymuş ancak, sonuçların sığır karaciğerinden elde 

edilenler ile aynı aralık civarında olmadığı görülmüştür. Yumuşak dokuyu saklama 

koşullarının etkin olduğu sonucuna varılmıştır, zira, serum sıvısı içinde korunmuş 

karaciğerden elde edilen veri aralığının farklı olduğu ve bu koşulun daha düzgün 

eğriler verdiği görülmüştür. Tersine sonlu elemanlar yöntemi, Yeoh hiperelastik 

malzeme modeli ve lineer vizkoelastik malzeme modeli için çalıştırılmış ve sonraki 

simülasyonlarda da kullanılabilecek katsayılar sunulmuştur. 
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1.  INTRODUCTION 

1.1 Purpose of the Thesis 

The main objective of this thesis is the determining the material parameters of soft 

biological tissues by using appropriate material models in order to allow realistic 

force response in material model simulations. 

Modeling deformation behavior of soft tissues under known boundary conditions and 

forces is a fruitful research area of engineering and biomedical  that finds place in 

various applications such as virtual surgery, blood flow simulations, implant 

operations, etc. Accurate modeling of the deformation behavior is strictly related to 

the mathematical power of the proposed model and accurate determination of the 

coefficients that are used in the material model to project its characteristics. 

For this reason, it is aimed in this study, that a specific soft tissue bovine liver, has 

been subjected  to a series of experiments and its material coefficients have been 

computed via Inverse Finite Element Method. On the way of this work, it has been 

observed that precise validation of these material models was also a challange and 

required further study. Therefore, not only bovine liver but also a synthetic, soft 

tissue-like material which was predicted to be so, was used in order to discover its 

deformation behavior and obtain its material coefficients. Laboratory experiments 

which are performed on synthetic materials will contribute to the development of 

some physical standarts for the verification process of the proposed models, when 

isotropy and homogeneity of the synthetic materials and the advantage to be able to 

repeat the experiments under constant conditions are considered. 
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1.2 Literature Review 

There are various methods such as finite element, spring-mass systems, and particle-

based systems in order to model the deformation behaviours of soft tissues under 

physical conditions. The precise determination of material coefficients is of great 

importance in modelling. Literature of biomechanics or of similar areas contains 

many studies about the parameter determination of soft tissues but, each of them 

differs in some way that the parameters found strictly depend on that specific work‟s 

conditions. Some differ by the method and assumptions used to model the material 

behaviour, some differ by the chosen material model, some differ in the subject soft 

tissue on which the material tests are conducted, and some differ by the experimental 

environments. Real time modelling applications such as virtual surgery simulators 

can cause mislearning because of wrong material coefficients. Since coefficient 

determination depends on material tests, testing environment and conditions should 

be taken into consideration as well as the methods used to determine the material 

coefficients 

The first step for the determination of material coefficients of any material is 

performing material tests; these tests can vary as uniaxial, biaxial, tension or 

compression tests and more, which will show the deformation characteristics of the 

material. In order to find out the coefficients of tissues of living things, numerous 

experiments have been conducted on different organs in different conditions. Some 

were performed in vivo, which literally means „in life‟, and is a way of 

experimentation using a whole, living organism in its natural environment. Some 

were performed ex vivo, which literally means „out of the living‟. Ex vivo refers to 

experimentation or measurements done in or on tissue in an artificial environment 

outside the organism with the minimum alteration of natural conditions. Ex vivo 

conditions allow experimentation under more controlled conditions than possible in 

the intact organism. Another experimentation technique is in vitro experimentation, 

which means doing the tests on the living organism but in the artificial laboratory 

conditions. Also, there are examples of soft tissue researchers who have established 

their own environments to enhance the quality of the measurements as will be 

described below. 

The first in vivo indentation experiments conducted on human liver were done by 

Carter [1] in 1999. Carter et al. performed several indentation tests both on human 
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liver in vivo and on swine liver and spleen ex vivo. All the results demonstrated 

highly nonlinear stress-strain behaviour. Swine spleen was compared to swine liver 

which was found to be stiffer. The mean elastic modulus for the right lobe of human 

liver was found about 0.27 MPa with one exceptional case of a diseased liver with an 

elastic modulus of 0.74 MPa. It was shown in the paper that an exponential stress-

strain law could accurately fit the uniform stress test data [1]. 

A wide range of experiments are performed on animal organs of which tissues are 

assumed to be closely similar to that of humans. Kim and Srinivasan did in vivo 

experiments on swine liver and kidney and analyzed the data by inverse finite 

element method in order to model the quasilinear viscoelastic and hyperelastic 

behaviour [2]. 

While in vivo tests are difficult to perform, ex vivo tests are known to give 

unrealistic data due to the death of the organ which results changes in the structure 

and mechanical behaviour despite the easier setup of the experiments. Kerdok [3] 

designed a special mechanism that maintains an in vivo-like environment for a 

nonliving organ outside the animal body. In order to preserve the viscoelastic 

behaviour which is thought to be induced by the blood perfusion system, Kerdok 

made the mechanism so as to simulate the surface humidity, inner body temperature 

and blood circulation [3]. This experimental setup and results were later used in 

another work that explores the effects of perfusion provided in laboratory 

environment. 

The investigation was made by Ottensmeyer et al. [4] in 2004, to present the effects 

of testing environment on the viscoelastic properties of soft tissues. It is declared in 

that paper that mechanical properties of biological tissues change outside the living 

body, due to the alterations in both the physical and environmental conditions. 

However, most of the biological data in the literature have been acquired from ex 

vivo tests which can be conducted more easily [4]. The study compares the results of 

the tests conducted on liver in four different conditions: in vivo, ex vivo with a 

perfusion mechanism, ex vivo unperfused, and untreated. It is found that the data 

showed >50% differences in steady state stiffness between the in vivo and ex vivo 

unperfused conditions, this difference decreased to 17% between in vivo and ex vivo 

perfused conditions. Variations were also detected in the time domain and frequency 

domain responses for all testing conditions [4]. 
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There is also one study in this area on the validation side of soft tissue models. 

Kerdok et al. [5] aimed to find a better way of validation due to the intrinsic 

limitations of FEM models by making up a database of relevant information so as to 

be used for validation of real-time soft tissue deformation. Teflon beads were 

embedded with an exact pattern into a simple 8 cm silicone rubber cube and this cube 

was subjected to uniaxial compression tests while CT images were taken and 

experimental results were also compared to the results of finite element 

computations. Truth cube project was the first in this area; a synthetic material was 

first used for validation soft tissue simulations, the constructed cube had been 

resulted in a structure with a modulus of elasticity in the range of soft biological 

tissues [5]. However, viscoelasticity, which is one of the most distinguishing 

properties of soft tissues and which is the biggest challenge for soft tissue 

experiments, was not present in the truth cube. 

As mentioned before, the material coefficients are searched to be used in deformation 

behaviour simulations, and there have been modelling studies either including 

parameter detection or alone. Dogan and Celebi presented their work on real-time 

deformation simulation of non-linear viscoelastic soft tissues using the existing 

material parameters in literature [6]. A new hybrid method was proposed and the 

results of deformation simulation of viscoelastic soft tissue were compared to the 

linear approach and it was deduced that the outcome of the deformation simulation of 

a human liver based on nonlinear QLV was more accurate and convenient than that 

of the linear approach [6]. 

1.3 Scope of the Present Work 

This thesis can be divided into two main parts: material testing of an artificial 

material and liver, and computation of material parameters for both materials and 

additionally it includes s brief information about the continuum mechanics on which 

the soft tissue material models are based. 

The aim of the study, the outline of the thesis and literature review are given in the 

first chapter. The second chapter makes the introduction to the continuum mechanics 

giving the fundemental information about the concept of continuum, motion 

description, stress and strain components. Mechanical properties of soft biological 

tissues are also summarized in this chapter, by giving basic information about stress-
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strain relationship and viscoelasticity of soft tissues. Lastly, mathematical models, 

classified as hyperelasticity and viscoelasticity models, are explained in the chapter. 

In the third chapter, after a brief information about material testing, details of our 

experimental setup and the materials used in this study are described. The 

experiments, conducted on both artificial gel pad and liver and grouped as static 

indentation and ramp-hold tests, are presented graphically. 

Fourth chapter explains our finite element model built to simulate the material tests. 

Contact model is  seperately discussed as it is the main part of such compression 

simulations constructed via finite element tools. 

Fifth chapter is about the computation part of the thesis since the inverse finite 

element method is explained in this chapter; inverse finite element algorithm is 

described and the optimization methods used in the inverse FE method are 

represented. Mainly, three optimization algorithms are taken into consideration: 

Gauss-Newton, Levenberg-Marquardt, and trust region methods. 

Sixth chapter is the last chapter and in this chapter all the results obtained from the 

inverse FE computations are presented and the results, including the experimental 

data are discussed. 
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2.  CONTINUUM MECHANICS FOR SOFT TISSUES 

2.1 Fundamentals of Continuum Mechanics 

Physical objects of the real world consist of molecules of atomic and subatomic 

particles. This microscopic system of the objects can be investigated in atomic levels 

in order to understand some physical phenomena that take part in each micro 

structure. However, not every time the search in microscopic level is useful in 

engineering. Continuum mechanics is a method to analyse the pysical phenomena in 

macroscopic level without getting into the detailed molecular level structure of 

objects and by generalizing the properties by gathering the effects of micro structures 

as much as possible. Therefore, it is an approximation in which a few quantities that 

are small enough to present the microstructural effects show the averages over 

dimensions and the continuum theory can be applied to all materials regardless of the 

microstructures included [7].  

The scope of continuum mechanics can be summarized as 

- Kinematics (motion and deformation), 

- Stress in a continuum and 

- The mathematical description of the motion of a continuum [7]. 

In order to build the physical laws of continuum mechanics mathematically, it is 

essential to comprehend the basic concepts related to motion, deformation and stress 

in a continuum. 

A continuum body or shortly continuum, is the body of an object in which the 

discrete structure of molecules, the gaps between the molecules are ignored and the 

body is assumed continuous or piecewise continuous by a zoomed out view. 

Although a continuum body is said to represent a continuous structure, it is actually 

composed of continuum particles. The term continuum particle doesn‟t refer to a 

particle in the atomic level and is not related to the point mass of Newtonian 

mechanics.  
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It is the tiniest continuum part of the continuum body which reflects the collective 

behavior of the microstructures that it consists of and on which the rules of 

continuum mechanics work. The mass and volume of a continuum is also considered 

continuous (or piecewise continuous) [7]. 

2.1.1 Motion Description 

The configuration of the displacement of a continuum particle is shown in Figure 2.1. 

Let 0  be the boundary of the undeformed body 0  and   be the boundary of the 

deformed body  .  

 

Figure 2.1 : The configuration of the deformed and undeformed positions of  

                                 a continuum [23]. 

The position vector of an arbitrary point on a continuum before displacement is 

defined by the vector 1 2 3[ ]TX X XX  and the position vector of that point after 

displacement is defined by the vector 1 2 3[ ]Tx x xx . The positions before and after 

displacement has such a relationship that  

 x X u  (2.1) 

where 1 2 3[ ]Tu u uu is the displacement vector and all three vectors are in the same 

global coordinate system and this motion is defined by the function ( , )X t .  

The coordinates of the undeformed state, X , is called the Lagrangian coordinates 

whereas the coordinates of the deformed state, x , is called the Eulerian coordinates. 

Even though, both set of coordinates can be used in kinematic or dynamic equations, 
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Lagrangian description is preferred for solid mechanics because the deformation 

history is meaningful in solid kinematics [8]. 

In order to define the basic strain variables of the continuum mechanics, the 

deformation on the length of a line element is used. For that element, if the 

deformation is known that is, when the change of the distance between any two 

points on the line element is known, change in volume or area for that element can 

also be calculated. A differential line element notated as above can be expressed as 

d d d


 


x
x X J X

X
 (2.2) 

by means of the matrix of position vector gradients, also called the Jacobian matrix. 

The expansion of J  is as follows: 

1 2 3

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

[ ]X X X

x x x

X X X

x x x
x x x

X X X

x x x

X X X

   
 
   
   

   
   
   
 
   

x
J

X

∂

∂
 (2.3) 

When there are no displacements in all three dimensions, J  becomes identity matrix 

with a positive determinant that is equal to 1 and then dx  equals dX . 

A physically possible continuous deformation is necessarily and sufficiently 

provided by the condition that the Jacobian is positive definite, that is the 

determinant of the Jacobian is greater than zero. This condition should be valid for 

the transformation from the reference configuration to the current configuration too. 

In the case  in which this condition is provided on every particle of the material body, 

the transformation from the Eulerian description to the Lagrangian description or 

vice versa is possible [8]. 

2.1.2 Strain Components 

Strain is the change of length of a body and its components are derived from the 

elongation of the line element. If the original length of the element is defined as ol  
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and the deformed length is defined as dl , the following equalities can be written 

using the squares of the defined lengths. 

2( ) T

ol d d X X  (2.4) 

2( ) T T T

dl d d d d x x X J J X  (2.5) 

2 2( ) ( ) ( )T T T T T

d ol l d d d d d d    X J J X X X X J J I X  (2.6) 

Equation 2.6 can be rewritten by substituting the Green-Lagrange strain tensor,   as 

below: 

1
( )

2

T J J I  (2.7) 

2 2( ) ( ) 2 T

d ol l d d  X X  (2.8) 

As we now the expansion of the Jacobian, the Green-Lagrange strain tensor can be 

written explicitly by means of gradient vectors 
iXx  as follows: 

1 1 1 2 1 3

1 2 2 2 2 3

1 3 2 3 3 3

( 1)
1

( 1)
2

( 1)

T T T

X X X X X X

T T T

X X X X X X

T T T

X X X X X X

x x x x x x

x x x x x x

x x x x x x

 
 

  
 

  

  (2.9) 

In order to rewrite the strain tensor in terms of the displacement vector gradient, dJ , 

the relation d J J I  is substituted and the following expression is obtained: 

 3

, , , ,1

1
, , 1,2,3

2
ij i j j i k i k jk

u u u u i j


     (2.10) 

where ij  are the elements of the tensor   and ,i j i ju u X    ( , 1,2,3i j  ). 

Equations 2.9 and 2.10 clearly show that the Green-Lagrange strain components are 

nonlinear. 

The strain tensor is obviously symmetric (Equation 2.9), thus the following six 

independant components of the tensor can be written as a vector as follows: 
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11 22 33 12 13 23[ ]T

v        (2.11) 

Here, ij  is called normal strains when i j  and called shear strains when i j . 

Because the gradient vectors 
iXx  define the rate of change along the direction iX , 

normal strains are the elements that reflects the length change along the axes; shear 

strains are the measures of the change of the relative orientation between axes. 

There are other simplified calculation methods of strain components. For simple 

cases, the geometric interpretation is formed as follows and it is called engineering 

strain or Cauchy strain. 

( )d o

o

l l

l



  

(2.12) 

Natural or Logarithmic strain is defined as (1 )d ol l  . Another definition related 

to strain is stretch ratio. It is the measure of the extensional or normal strain of a 

differential line element, which can be defined at either the undeformed 

configuration or the deformed configuration. Denoted by ,  the stretch ratio is 

defined as .d ol l  

2.1.2.1 Right and Left Cauchy-Green Deformation Tensors 

Alternative to the Lagrangian and Eulerian strain tensors, there are other deformation 

expressions that are invariant under a rigid-body motion. Right Cauchy-Green 

deformation tensor and left Cauchy-Green deformation tensor are some of these. 

Right Cauchy-Green tensor, which is in literature generally referred to as Green 

deformation tensor [7], is defined as  

T

r C J J , (2.13) 

and left Caucy-Green tensor is defined as 

T

l C JJ . (2.14) 

Equation 2.7 can be rewritten in terms of Green deformation tensor, since they have 

a linear relationship. Similarly, Eularian description can be rewritten in terms of right 

Cauchy-Green deformation tensor. 
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1
( )

2
r C I  (2.15) 

2.1.3 Principal Strains and Strain Invariants 

Principal directions of the strain tensor   can be obtained by an eigenvalue problem. 

( ) 0 I Y  (2.16) 

where   is the eigenvalue and Y  is the eigenvector of the matrix  . 

Equation 2.16 is solved by equalizing the determinant  I  to 0 . Since the strain 

tensor is symmetric, the equation has three real roots, 1 2 3, ,  and    , in three 

dimensional case.  

( ) 0, 1,2,3i iI Y i     (2.17) 

Considering that the eigenvectors iY  are orthogonal unit vectors, Equation 2.17 

yields to the following solution: 

, 1,2,3T

i i iY Y i   (2.18) 

0 0

0 0

0 0

T







 
 


 
  

Y Y  (2.19) 

iY  are called the principal directions and i  are called the principal normal strains. 

The following definitions are used the constitutive equations of continuum 

mechanics and are called the principal strain invariants. 

 

1

2 2

2

3

( ),

1
( ( )) ( ) ,

2

det( )

I tr

I tr tr

I



 

 



 

 

, (2.20) 
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For the case of symmetric strain tensor, the invariants are  

1 1 2 3

2 1 2 1 3 2 3

3 1 2 3

,

,

.

I

I

I

  

     

  

  

  



 (2.21) 

2.1.4 Stress and Stress Components 

Stress is the measure of pressure in the theory of continuum mechanics and it is 

related to the strenght of the material, since it indicates the magnitude of the internal 

forces the material can sustain [9].  

Beyond the limits of the material‟s strength, stress can lead to a permanent shape 

change or a physical failure on the material. For a continuum body with a cross-

sectional area of A , if the force that acts into the body is F , then stress,  , is 

calculated as  

F A  . (2.22) 

The dimension of stress is the same with that of pressure and the unit stress is Pascal 

(Pa), which is 21N m , in the International System of Units. 

The equalibrium of forces acting on a continuum body is considered to obtain the 

stress formulations in continuum mechanics.  

Let‟s consider a deformable continuum body shown in Figure 2.2.  

Here in Figure 2.2, t  is the force measured per unit surface area for the deformed 

configuration and is called the Cauchy (true) traction vector, ds  is the unit surface 

area, and n  is the normal vector of surface S . The capitalized notations represent 

the same values for the undeformed configuration. T  is called the first Piola-

Kirchhoff (nominal) traction vector. 
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Figure 2.2 : Traction forces acting on infinitesimal surface elements with  

                         outward unit normals. 

Using these notations, the following equation can be written for every infinitesimal 

surface element: 

df d d t s T S . (2.23) 

According to the Cauchy’s Stress Theorem, there exist unique second-order tensor 

fields   and P  so that  

( , , ) ( , ) or ,

( , , ) ( , ) or

a ab b

AB AB B

t t t n

t t T P N

 

 

t x n x n

T X N P X N


. (2.24) 

where   is a symmetric tensor called the Cauchy (true) stress tensor (simply the 

Cauchy stress) and P  is called the first Piola-Kirchhoff (nominal) stress tensor 

(simply the Piola stress) [7]. Cauchy stress can also be written in matrix form. 

11 12 13

21 22 23

31 32 33

  

  

  

 
 


 
  

 . (2.25) 

The elements of this matrix, ab  is called the stress components of the Cauchy stress 

tensor. Since the Cauchy stress tensor is symmetric, 12 21 13 31 23 32, ,        . 
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Figure 2.3 : Positive stress components of the traction vectors acting on the  

                       faces of a cube [24]. 

2.2 Mechanical Properties of Soft Biological Tissues 

Soft biological tissues have complex inhomogeneous structures, thus they show 

complex mechanical behaviors which can be summarized as nonlinearity, anisotropy 

and viscoelasticity. The stress-strain relation of most soft biological tissues are 

nonlinear. When the mechanical properties change axially, this is called anisotropy 

and soft biological tissues are anisotropic structures. Water and other fluid that they 

contain give them viscosity and thus, soft biological tissues show viscoelastic 

behavior which is a time-dependant property and which also depends on vitality and 

perfusion of the tissue. Also, soft biological tissues are considered as incompressible. 

These mechanical properties is explained in details in the subsequent sections. 

2.2.1 Stress - Strain Relation of Soft Biological Tissues 

The stress-strain relation which shows a material‟s mechanical properties have been 

found as nonlinear for soft biological tissues according to the materials tests 

performed up to now. Nonlinearity of the stress-strain relation is a general 

characteristic of all soft tissues.  
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However, as each soft tissue has its specific relation, this relation also depends on the 

location of the tissue on which the tests are conducted. That is, the mechanical 

properties of one tissue also varies within the tissue and should not be handled as 

homogeneous. Also because of anisotropic structure, the stress-strain relation differs 

for loading to each axis.  

It has been experimentally found that for most materials, the measured strains are 

proportional to the applied forces, provided that the load doesn‟t exceed the elastic 

limit which causes the destruction of the material. This experimental observation 

states that the stress components at any point in the body are a linear function of the 

strain components. This relationship between stress and strain, called the 

generealization of the Hooke‟s law: . E   It doesn‟t apply to viscoelastic, plastic, 

or viscoplastic materials. Hooke‟s law is explained in details under Section 2.3.1. 

If the case is the nonlinear relation between stress and strain, then Hooke‟s law fail 

again. The strains are, for this case, not a linear function of the stresses but a 

nonlinear function. And if the work done by the stresses is independent of the 

deformation path, the relationship is expressed as a function of this stored energy, 

which is the strain energy density function for hyperelastic materials. 

The following figure summarizes the formulation of the stress-strain relationship 

with respect to the linearity of the relation, where ( )f   in Figure 2.4 is an 

undetermined non-linear function. 

 

Figure 2.4 : Types of idealized material behaviour. On the left is the elastic  

                             nonlinear stress-strain curve and on the right is the general              

                             nonlinear stress-strain curve [25]. 
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2.2.2 Viscoelasticity of Soft Biological Tissues 

Viscoelasticity is a property of a material exhibiting both elasticity and viscosity 

when it is deformed. Elastic materials strain instantaneously when they‟re stretched 

or compressed and when the stress is removed, they return to their original shape. On 

the other hand, viscosity is a measure of resistance of fluids to deformation caused by 

a shear or tensile stress. 

There are some phenomena that are seen in viscolastic materials and some 

definitions are made on these phenomena. When a material body is suddenly strained 

and the strain is held constant, the stress applied into the body, that causes the 

deformation, gradually decrease to a limit value. This behavior is called stress 

relaxation (simply relaxation). If a sudden stress is induced into the body and held 

constant for some time, it is measured that the body continues to deform. This 

behavior is called creep. Another feature is hysteresis. If the body is subjected to 

cyclic loading, the stress-strain relation that is recorded during loading differs from 

the relation in the unloading process. An amount of energy loss is observed between 

the stress-strain curves of the loading and unloading processes at each cycle. 

Relaxation, creep and hysteresis are features of viscoelastic materials and these 

features reflects the time dependancy of  deformation of viscolelastic materials in 

contrast with elastic materials.  

Different mechanical models have been developed to reflect the viscoelastic 

properties of materials in constitutive equations. Where elastisity is modeled by 

linear springs in order to produce an instantaneous deformation proportional to the 

load, viscosity is modeled by dashpots in order to produce a velocity proportional to 

the load at any instant. Three basic mechanical models of viscoelastisity, composed 

of linear springs with spring constant k  and dashpots with viscosity coefficient  , 

are presented by Maxwell, Voigt and Kelvin (Figure 2.5). 
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Figure 2.5 : Mechanical models for a viscoelastic material: Maxwell model,  

                       Voigt model and Kelvin model (also called a standart linear    

                       solid) (The image is re-generated from a picture in [26]). 

If F is the force applied to the linear spring and caused an elongation of u , then 

.F ku  If F is applied on a system with a dashpot and produced a deflection velocity 

u , then .F u   

In Maxwell model, the force is transmitted from the spring to the dashpot and the 

system is modeled as below: 

F F
u

k 
   (2.26) 

If the force is suddenly applied, the spring will react but the initial deflection of the 

dashpot will be zero because dashpots deforms in time; thus the following initial 

condition will be valid for the case at 0t  . 

0
0

F
u

k
  (2.27) 

In Voigt model, the spring and the dashpot have the same displacement; they share 

the force applied to the system. Voigt model can be written as below: 

F ku u   (2.28) 

A sudden loading will create no displacement because the reaction of the spring is 

dependant to the dashpot and the displacement of the dashpot at 0t   is zero. The 

initial condition will be as follows: 

0 0u   (2.29) 

In Kelvin model, there is a parallel connection between a linear spring and system 

that is composed of a spring and dashpot connected serially. If the previous approach 
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used for Maxwell and Voigt models is applied, the following equation is obtained for 

Kelvin model: 

2
2

1 2 1

1
k

F F k u u
k k k

   
      

  
 (2.30) 

The sudden loading case with the applied force 
0F  and the displacement 

0u  gives the 

following initial condition: 

2
0 0

1 1

1
k

F u
k k



 

  
 

 (2.31) 

The term 
1k




  is called the relaxation time for constant strain and the term 

2

2 1

1
k

k k





 
  

 
 is called the relaxation time for constant stress. 

If the equations 2.26, 2.28 and 2.30 are solved seperately for the deformation, the 

creeping behavior of a material, which presents the elongation produced by a sudden 

loading of a constant force, are found. Creep functions are given in the following 

equations 2.32, 2.33 and 2.34 respectively for Maxwell, Voigt and standart linear 

solid (Kelvin) models. 

1 1
( ) 1( )c t t t

k 

 
  
 

 (2.32) 

( )1
( ) (1 )1( )k tc t e t

k

   (2.33) 

2

1
( ) 1 1 1( )

t
c t e t

k









  

    
  

 (2.34) 

Here, the solutions are based on the assumption that ( )F t  is a unit-step function 1( )t  

and 1( )t  is defined as 
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0 if 0,

1( ) 1 2 if 0,

1 if 0.

t

t t

t




 
 

 (2.35) 

Solving the equations 2.26, 2.28 and 2.30 for the force applied and assuming the 

deformation ( ) 1( )u t t , relaxation functions are obtained. Relaxation functions give 

us the force to be applied in order to save the unit elongation of the suddenly 

deformed material. The following equations 2.36, 2.37 and 2.38 are the relaxation 

functions ( )g t , for Maxwell, Voigt and standart linear solid (Kelvin) models 

respectively: 

( )( ) 1( )k tg t ke t  (2.36) 

( ) 0 for  0 and 0,

( ) ( ) (0) for 0.

(  is an arbitrary function continuous at 0)

( ) ( ) 1( ), ( )

t t t

f t t dt f

f t

g t t k t t



   









  

 



  

 

(2.37) 
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  

    
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 (2.38) 

The illustrations of creep and relaxation functions of these models are given in 

Figure 2.6 and Figure 2.7, respectively. 

 

Figure 2.6 : Creep functions of Maxwell, Voigt and Kelvin models including  

                      the unloading phases [9]. 
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Figure 2.7 : Relaxation functions of Maxwell, Voigt and Kelvin models [9]. 

The illustrations reflects  that for the Maxwell solid, sudden loading causes an 

immediate elongation by the linear elastic spring  and the creep of the dashpot 

follows it (Figure 2.6). Sudden deformation produces an immediate reaction force 

and a decrease in force, that is stress relaxation, follows it (Figure 2.7). 

For the Voigt model, the sudden loading doesn‟t produce an immediate deflection 

because the parallelly connected dashpot damps it; there occurs a gradual deflection 

where more of the force applied is taken by the spring (Figure 2.7). 

For the Kelvin model, the relaxation function shows that the dashpot completely 

relaxes in time and the load remains constant as the effect of the spring which is 

characterized by the spring constant 2k (Figure 2.7). Therefore, this constant is called 

the relaxed elastic modulus. 

2.3 Mathematical Models of Soft Biological Tissues  

Before explaining the mathematical models of soft biological tissues, constitutive 

equation concept should be known. An equation which describes a property of a 

material is called a constitutive equation of that material.When a piece of material is 

stretched by a force, stresses and strains develop at all points within the material. 

Stress–strain relationship is the constitutive relationship that describes the 

mechanical properties of a material, such as elasticity, plasticity, and linearity. 
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In order to be able to distinguish between different materials, the force-displacement 

relationship or equivalently the stress-strain relationship is required. To complete the 

specification of the mechanical properties of a material, additional set of equations , 

the constitutive equations, are needed. The form of the constitutive equations must be 

objective, and should not lead to change in the work and energy of the stresses under 

an arbitrary motion. 

If the constitutive equations of a material depend only on the current state of 

deformation, th behavior is called elastic. Because elasticity is the property of a 

material to return to its original state after  the load is removed. A special case of 

Cauchy elastic materials, in which the stress-strain relationship can be derived from 

the stored energy function (strain energy density function), and the material returns 

to its original state after the load is removed but linear elasticity do not describe this 

behavior, is termed hyperelastic or Green elastic material. Such materials have 

nonlinear stress-strain relationships but the work done by the stresses during 

deformation is path independent. Cauchy elastic materials are the ones for which the 

stresses cannot be derived from a stored energy function because the work done by 

the stresses depend on the path of the deformation. For viscoelastic materials, the 

work done by the stresses during deformation is path dependent due  to the energy 

loss. The constitutive equations of viscoelastic materials are formulated in terms of 

rate of deformation measures in order to account for the energy loss. 

Different material models have been developed based upon the constitutive equations 

mentioned above. Material models also vary for small deformation cases and large 

deformation cases and also compressibility makes sense in these models. Here in this 

section, the generalized Hooke‟s Law which is built to describe a general linear 

stress-strain relationship will be introduced, and while most of the material models 

used for soft biological tissues will be briefly mentioned, material models that are 

used in this study will be explained in details. 

2.3.1 Generalized Hooke’s Law 

It has been found as the result of experiments that for most materials the measured 

strains are related to the applied forces. Hooke’s law gives this relationship for the 

elastic materials, stating that the stress components at any point in the body are linear 
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function of the strain components. This law, shown in Equation 2.39 in vector and 

matrix notations, does not apply to viscoelastic, plastic, or viscoplastic materials [8]. 

v m v E   (2.39) 

Here, , ,v v mE   are respectively, stress components, strain components, and matrix 

of elastic coefficients. In a case of a general material, the matrix of elastic 

components has 36 coefficients as in Equation 2.40 and each coefficient define the 

material elastic properties when the behavior is linear. 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

m

e e e e e e

e e e e e e

e e e e e e

e e e e e e

e e e e e e

e e e e e e

 
 
 
 

  
 
 
 
  

E  (2.40) 

The number of independent coefficients change if the material exhibits special 

characteristics such as material symmetry, isotropy, orthotropy, or anisotropy. For 

the linearly elastic materials, the matrix is symmetric, therefore has 21 independent 

elements for the case of anisotropy. Anisotropy is a feature of a material to exhibit 

different mechanical properties in all 3 axes. For orthotropic materials, which show 

the same properties in two directions but show a different bahevior in the third 

direction, this number reduces to 9. If the material is isotropic, that is if the 

material‟s mechanical properties remain invariant independently from the loading 

axis, this number reduces to 2 and this two independent coefficients are denoted by 

and   (Lame‟s constants). Below is the coefficient matrix for the homogeneous 

isotropic linearly elastic material. 

2

2

2

0 0 0 2

0 0 0 0 2

0 0 0 0 0 2

m
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 

  

   







 
 


 
 

  
 
 
 
 

E  (2.41) 
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When the relationship between stress and strain is written explicitly using the 

Equation 2.39,  the following equations are obtained. 

 11 22 33

1
(1 ) ( ) , 1,2,3

1
,

ij ii

ij ij

i
E

i j
E

      


 

     

 
  
 

 (2.42) 

Here, , , and E   are, respectively, shear modulus, Young’s modulus(modulus of 

elasticity), and Poisson’s ratio, where 

and 2 (1 ).
2( )

E


  
 

  


 (2.43) 

Poisson‟s ration cannot exceed 0.5. If the Poisson‟s ratio becomes close to 0.5, the 

elastic coefficient associated with the dillatation ( 11 22 33    ) becomes very large 

and produces high stiffness that tends to resist any volume change. 

2.3.2 Material Models For Large Deformations 

Not all materials exhibit a linear deformation described as in the previous section. 

Due to the variety of material behaviors under deformation, various material models 

that cover nonlinearity and large deformation cases have been offered. Some of these 

material models are listed below. 

- Neo-Hookean 

- Mooney-Rivlin 

- Yeoh 

- Ogden 

- Polynomial 

- Arruda-Boyce 
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Neo-Hookean material model is the extension of Hooke‟s law for isotropic linear 

material to large deformation. Mooney-Rivlin model is a model used for the large 

deformation cases of nonlinear incompressible materials such as rubber. Yeoh model 

is for hyperelastic nearly incompressible materials too. For polymeric substances 

Arruda-Boyce model can be used. The material model that are used in this study are 

mooney-Rivlin and Yeoh models. 

2.3.2.1 Mooney-Rivlin Material Model 

Mooney-Rivlin material model describes the hyperlastic material behavior. The 

strain energy density function of this model, denoted by ,W  is written in the 

following form for the incompressible materials: 

10 1 01 2( 3) ( 3)W C I C I     (2.44) 

1 2and I I  are strain invariants that are explained before, and 10 01and C C  are material 

parameters having dimensions of stress but no direct physical interpretation. The 

incompressibility condition eliminates the third invariant from the equation, since 

2

3 1I J   for incompressible materials and the term related to compressibility is 

1( 1).D J    

This material model was built with the goal of finding a simple form of W  that 

yields a nonlinear stress-strain relationship in extension but a linear behavior in shear 

[10]. 

This material model can also be written in terms of Cauchy stress and principle 

stretches by expressing the principle invariants in terms of stretch ratio ( ) , which 

is the ratio of the undeformed length to the deformed length. 

1 compression

1 1 unstretched 

1 extension    



  


     
   

 (2.45) 

For the uniaxial extension of an incompressible material, stretch ratios for the 3 

directions are calculated as below: 
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 (2.46) 
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 (2.47) 

Substituting these invariants in Equation 2.44, the following equation is obtained: 

2

10 01 2

2 1
( 3) (2 3)W C C      

 
 (2.48) 

For the simple tension, 11 22 330 and 0     .  

11 1 33 2

1 2

,
W W

 
 

   
 

 
(2.49) 

2

11 33 10 01 2

1 1
2 ( ) 2 ( )C C      

 
 (2.50) 

Since 33 0  , the Cauchy stress is obtained as the following equation: 

201
11 10

2 1
2

C
C

  
     

   
 (2.51) 

As the experimental data contians the true stress and stretch values, the material 

coefficients for the Mooney-Rivlin material model can also be found by fitting the 

data to the equation obtained in Equation 2.51. This equation is used to determine the 

coefficients in this study and the coefficients found by this way will be given in the 

results section. 

2.3.2.2 Yeoh Material Model 

The Yeoh hyperelastic model is a model for the deformation of almost 

incompressible nonlinear elastic materials. 



 
27 

The elastic properties of the material is described using a strain energy density 

function that is a power series function of the strain invariant only 1.I  Yeoh model is 

also named as reduced polynomial model because a polynomial form of the strain 

energy density function is used but all the three invariants of the left Cauchy-Green 

deformation tensor are not used. 

The strain energy density function of the Yeoh model is as follows: 

2 3

10 1 20 1 30 1( 3) ( 3) ( 3)W C I C I C I       (2.52) 

The true stress equation for this material model can be obtained too, from its energy 

density function, by a similar way it is done for the Mooney-Rivlin model in the 

previous section.  

With the assumption of 22 33 0    for the simple tension of an incompressible in 

one direction, the true stresses are calculated as in the following equations: 

22 33

1 1

2 2
0

W W
p p

I I
 

 
      

   
 

(2.53) 
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(2.54) 
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(2.55) 

Substituting Equation 2.55 in Equation 2.54 gives the true stress equation of the 

Yeoh material model (Equation 2.56). 

2

2 2 2

11 10 20 30

1 2 2
2 4 3 6 3C C C
      

                
         

 (2.56) 

This equation is also used to determine the coefficients in this study and the 

coefficients found by this way will be given in the results section. 

2.3.3 Viscoelasticity Models 

2.3.3.1 Linear Viscoelasticity 

Linear viscoelasticity is expressed in terms of the Boltzmann integral, 
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0
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t g t d
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 
  


   (2.57) 

where ( )g t  is the relaxation function, ( )t  is stress, ( )t  is strain, depending on 

time t  and   is the integtaion variable in terms of time [11]. The form of the 

relaxation function and how it is constructed are explained in Section 2.2.2. 

2.3.3.2 Nonlinear Viscoelasticity 

Nonlinear viscoelasticity models feature the dependence of relaxation function on the 

strain level as can be seen in the following equation: 

0

( )
( , ) ( , ( ))

t d
t g t d

d

 
     


   (2.58) 

2.3.3.3 Quasilinear Viscoelasticity 

Fung [9] proposed the quasilinear viscolasticity which is again dependent on both 

time and strain as in nonlinear viscoelasticity, but it is formulated as the product of 

two seperate functions: a function of time and a function of strain. 

( , ) ( ) ( )rg t g t h   (2.59) 

0
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( , ) ( )

t

r

d d
t g t d

d d

  
   

 
   (2.60) 

It is obvious that stress depends on strian, however time dependence of stress is 

independent of strain. Therefore, this formulation is called quasilinear. This 

approach has been seen to fit the experimental data showing the relaxation response 

of soft tissues quite well [11]. 
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3.  UNIAXIAL COMPRESSION EXPERIMENTS 

3.1 Mechanical Testing of Soft Tissues 

Constitutive equtions presented in the previous section are to abstract the natural behavior of 

soft, more specifically bovine liver. Even though fluid and solid mechanics mostly base on 

these definitions and equations, soft biological tissues behave more complicatedly when 

compared to the industrial (artificial or synthetic) materials. Therefore, simplifications made 

to construct the constitutive equations need to be compensated by an accurate determination 

of the coefficients in the equations. These coefficients, which are also called material 

coefficients, material parameters or material constants, are obtained by a series of material 

tests. 

The methods of testing the mechanical properties of biological tissues do not significantly 

differ from testing the industrial materials. Material tests for both types of materials can be 

classified as compression tests, tension tests or cycling tests and these tests also can be 

conducted uniaxially or biaxially. Uniaxial tests are applied on one single axis where biaxial 

tests have two perpendicular directions; decision should be  made according to the material 

structure whether it is isotropic, anisotropic or orthotropic. Compression and tension tests 

basically make difference by the sign of the strain. But some aspects of soft tissues which 

make them more complicated to model, should be taken into account for the experimental 

setup. These aspects are mainly the heterogenity of soft tissues and deterioration of soft 

tissues in vitro conditions. Therefore, the evaluation of results of the experiments and the 

computations based on them need to be done by considering the type of the tested material, 

the method of testing, calibration of the testing device and other testing environments that 

may effect the test data. 

Up to now, as also mentioned in the literature review section, so many experiments are 

performed on different soft tissues in different conditions and by different methods and 

devices, all trying to have the best results in their own conditions by paying attention to the 
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above mentioned matters. For example, Carter (2001) carried out his indentation experiments 

uniaxially in vivo during an open surgery operation on human liver by using a hand-held 

probe [1]. Kerdok (2006) aimed to obtain more realistic material parameters for in-vitro swine 

liver by building such an experimental setup that the blood circulation was simulated by a 

perfusion mechanism [3]. 

3.2 Experimental Setup and the Testing Device 

3.2.1 The LFPlus Material Testing Machine 

The following figure is of the device that all the experiments are performed by. 

 

Figure 3.1 : Material testing machine. 

It is the single column bench mounted LFPlus materials testing machine of Lloyd 

Instruments™. Its force capacity is 1kN, speed range is between 0.05 and 1270 mm/min (with 

maximum 0.2% accuracy at steady state), minimum load resolution is 0.00001 N (with <0.5% 

load cell accuracy), extension resolution is smaller than 2 microns, data sampling rate is 8 

kHz and load measuring system is EN ISO 7500:2004 Class 0.5 ASTM E4.  
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Its operating temperature range is 5˚ to 35˚C. Test data is collected by a software named 

NEXYGENPlus to the computer connected to the testing machine. 

3.2.2 Materials: Aquaflex Ultrasound Gel Pad & Bovine Liver 

The experiments are conducted on two different materials. One is an artificial medical 

material, Aquaflex® Ultrasound Gel Pad, which is originally used in therapeutic ultrasound 

procedures. The second material is bovine liver. Aquaflex® Ultrasound Gel Pad is a plate-

shaped circular pad with a 90 mm diameter and 20 mm height. It is not viscous as can be seen 

in Figure 3.2 even though it is named as a gel. Its density is 1.03 g/cc and it can be stored 

safely between 5˚C and 57˚C. The reason that this gel material is chosen to detect its material 

properties is that it is foreseen to have a viscoelastic behavior. The tests are performed, first to 

see whether it shows nonlinear and viscoelastic deformation and second to determine the 

material constants using the experimental data if the first aim is achieved. The main goal to 

determine the characteristics of this material is to be able use it as a control material beside 

real soft tissues. Material tests on biological tissues, face with very important problems such 

as unclear boundary conditions, heterogeneous structure of the material or the ambiguousness 

of the applied force which lead to unrepeatability of the experiments in desired conditions. On 

the other hand, in virtual surgery simulations, doing simplifications on the model and/or some 

assumptions on the solution process, for they are expected to work real-time, cause the model 

to diverge from reality. In this case, it becomes difficult to compare the model results to the 

real behavior. Because the experiments cannot be carried out in all conditions that can be 

simulated by the mathematical models, even though the models are constructed by the soft 

tissue‟s constants, the results of the simulations and the accuracy of the constitutive equations 

cannot be validated with the limited number of experiments conducted on that soft tissue. 

Unlimited number of experiments in numerous different conditions can be conducted on an 

artificial easy-to-find material by benefiting from its well-defined geometric dimensions and 

boundary conditions. This provides us to obtain data for the desired deformations but 

certainly if the coefficients of the material is close to the subject soft tissue‟s coefficients in an 

allowable degree.  

In this study, this artificial material is exposed to indentation experiments to detect its 

similarity with liver.  
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Figure 3.2 : Experimental setup with Aquaflex® Ultrasound Gel Pad. 

 

Figure 3.3 : Experimental setup with Aquaflex® Ultrasound Gel Pad. 

3.3 Experiments 

Two types of experiments are performed on both materials: static indentation tests and ramp-

hold tests. Steel probes with 2, 4, 6 and 8 mm radii are attached to the testing machine in 

order to do the pressing to the material.  

For the artificial material (Aquaflex® Ultrasound Gel Pad), water, which is the component 

that gives its viscous property, is conserved by covering the material with a thin stretch film. 

Experiments are conducted in-vitro. 
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3.3.1 Static Indentation Tests 

Static indentation tests are the tests that the material is pressed to a defined depth with a 

defined constant speed.  

Aquaflex® Ultrasound Gel Pad tests are done at two different speeds 0.1 mm/s and 0.5 mm/s 

by the probes with the radii of 2, 4 and 6 mm where deformation depth is chosen as 2, 4, 6, 8 

and 10 mm. Tests are repeated twice and each of them are conducted on a different location 

on the gel in a limited centeral area in order to eliminate the misleading effects of deformation 

history. The data obtained from these tests are graphed as below (Figures 3.4, 3.5, and 3.6). 

 

Figure 3.4 : The load-time and displacement-time curves of the indentations of 2, 4, 6 and 8           

                      mm depths with the probe of 2mm radius and strain rate of 0.1 mm/s. 

  

Figure 3.5 : The load-time curves of the indentation tests with threee different probes (2, 4    

                       and 6 mm radii) at 2, 4 and 6 mm depths respectively and with the strain rate   

                       of  0.1 mm/s. 
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Figure 3.6 : The load differences for the same indentation depth but different strain rates, 0.1  

                     and 0.5 mm/s. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.7 : Load-time curves of liver constructed from the static indentation tests with  

                      probes of r = 2, 4 and 6 mm at (a) 4 mm, (b) 6 mm, (c) 8 mm and (d) 10 mm  

                          depths. 

Bovine liver was also exposed to in-vitro static indentation tests. The livers were stored in the 

serum solution right after removing it from the animal and before using for material testing. 

Two livers were exposed to material testing; one was used as a whole for the standart static 
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indentation and ramp-hold tests, the other one was used for axial tests in order to determine 

whether or not its material properties depend on the application axis. 

The static indentation tests conducted on the complete liver were done with the 2, 4 and 6 

mm-radius probes to the depths of 4, 6, 8 and 10 mm, repeating each test twice and measuring 

the thickness of each indentation point. Results are shown in the Figures 3.7 and 3.8. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.8 : Stress-strain curves constructed from the static indentation tests conducted on  

                     liver with the probes of  r=2, 4 and 6 mm at (a) 4 mm, (b) 6 mm, (c) 8 mm and  

                       (d) 10 mm depths. 

3.3.1.1 Axial Material Tests on Bovine Liver 

In order to obtain the anisotropic behavior of the liver, there is a need to conduct the axial 

tests. Axial tests were static indentation tests conducted on the cube-like liver parts cut out 

from the bovine liver. It is important to note that each axis of the cubic-like part are marked 

and tests are conducted on each face of the cubic geometry based on three different axes. 

First, one cube-like part was tested on its three different axes. Secondly three cube-like liver 

parts are excised and tests are conducted on each part on a different direction. The membrane 

on the surface on one part was removed to get rid of its extra effect because the other two 

parts had no membranes. 
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First type axial tests, static indentations, were performed on one cube-like liver part with a 

strain rate of 0.1 mm/s with the 2 mm-radius probe to the depths of 4 and 8 mm. Tests were 

repeated twice and each test was conducted on a different location provided that the thickness 

was measured. The measurements are graphed as below (Figure 3.9). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9 : Load-time curves constructed from the axial static indentation tests conducted on  

                   liver with the probe of 2 mm radius at (a and b) 4 mm depth and (c and d) 8 mm  

                     depth. 

The second type axial tests, which were done on 3 different cubes, were static indentations to 

a depth of 5 mm, which was chosen to be appropriate according to the dimensions of the 

cubes, with the 2 mm-radius probe. The measurements are visualized as below (Figure 3.10). 
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Figure 3.10 : Load-time curves constructed from the axial static indentation tests conducted  

                     on three different cube-like liver parts, with the probe of 2 mm radius at 5 mm  

                        depth. 

3.3.2 Ramp – Hold Tests 

Ramp-hold tests are performed to detect the relaxation behavior of materials. The materials 

are deformed to a defined depth and the deformation is held for a while to record the change 

in loading which would be a decrease for the case of viscoelasticity. 

 

Figure 3.11 : The load-time curves constructed from the  4 mm displacement tests conducted  

                    on the gel with probes of  2 and 4 mm radii; indented in 1 s and held for 600 s 

Ramp-hold tests are conducted on Aquaflex® Ultrasound Gel Pad in the same experimental 

conditions. The gel is deformed to depths of 2, 4 and 6 mm with 2, 4 and 6 mm radii-probes 

and the deformation is kept constant for 600 seconds. Each test is conducted on a different 

location in a limited central area again as in the static deformation tests. Figure 3.11 and 

Figure 3.12 present the gel‟s behavior under deformation obtained as the result of these 

material tests. 



 
38 

.  

Figure 3.12 : The load-time curves of the relaxation tests at 2,4 and 6 mm depths conducted  

        on the gel with 2mm-radius-probe; indented in 1 s and held for 600 s. 

In-vitro relaxation tests on the bovine liver were performed on a whole liver. The same 

experimental setup and tools are used for the experiments.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.13 : Load-time curves constructed from the ramp-hold tests conducted on liver with  

              the probes of 2, 4, and 6 mm radii at (a) 4 mm depth, (b) 6 mm depth, (c) 8  

                 mm depth. (d) shows the curves at all depths with the three different probes. 

Probes with radii of 2, 4 and 6 mm are used. Indentation depth was chosen to be 4, 6 and 8 

mm where each indentation was performed with a certain strain rate so that the indentation 

was completed in 1 second. Tests were repeted twice on different points for precision and 
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thickness values were taken for strain measurement. Test data is graphed in Figure 3.13 and 

figure 3.14. 

 
(a) 

 
(b) 

Figure 3.14 : Stress-strain curves constructed from the ramp-hold tests conducted on liver  

                         with the probes of 2, 4, and 6 mm radii at (a) 8 mm depth, and at (b) 4, 6, and    

                          8 mm depths.
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4.  FINITE ELEMENT MODELING 

This thesis aims to find the material coefficients via inverse Finite Element Method 

(inverse FEM). Inverse FEM, which necessitates to construct the FE models of the 

experiments, is explained in details in the next section; here in this section the 

construction of the testing models are explained. For the FE models of this study, the 

commercial finite element software Abaqus (Version 6.7) is used.  

4.1 Finite Element Analysis 

Finite Element Analysis (FEA) is a numerical method to solve engineering problems 

that seek, for example, the stress distribution, the temperature change or the 

displacements of each point on a part. When the geometry, the boundary and loading 

conditions of the problem get more complex, it becomes harder, even impossible, to 

solve the problem analytically, therefore, it becomes necessary to use this finite 

element or a similar numerical approach. 

The finite element method is first developed to calculate the stress distributions on 

the aircrafts [22], however now it is used for various fields of continuum mechanics 

such as biomechanics. 

In finite element analysis, a virtual model of the real structure is created; the structure 

is modeled as the combination of small pieces which are called finite elements. The 

term finite is used to prevent confliction with the infinitesimal elements of the 

calculus. These finite elements connect to each other at points which are called 

nodes. The combination of some elements makes the finite element structure and a 

particular arrangement of the elements is called a mesh [22]. The finite element mesh 

of a structure is shown in Figure 4.1. 
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Figure 4.1 : The finite element mesh of a structure [27]. 

In the FEA, the values of the field variables on the elements are approximated by 

polynomial functions that can simulate the real, more complicated variations of those 

variables. And the governing differential equations or integral expressions are 

transformed into a set of linear algebraic equations [22].  

 

Figure 4.2 : An axisymmetric quadrilateral linear element [22]. 

The FEA formulation can be constructed by using etiher a differential equation 

formulation method or a variational formulation method. Displacement method, 
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force method and displacement-force method are the differential equation 

formulation methods; principle of minimum potential energy, principle of minimum 

complementary energy and principle of stationary Reissner energy are the variational 

formulation methods. Below is the summary of the basic FE formulation [22]. 

In a finite element analysis, a number of basic equations must be satisfied: equations 

of strain displacement relations, governing equations, equilibrium equations 

compatibility equations and boundary conditions. Let‟s consider the formulation for 

an axisymmetric quadrilateral linear element (Figure 4.2). 

The generic displacements for any point on the axisymmetric element are: 

   
T

u w  (4.1) 

The nodal displacement vector is: 

  1 1 4 4 1 2 8[ ] [ ]T Tu w u w q q q   (4.2) 

Using the interpolation functions (shape functions) 1 2 3 4, , and N N N N , displacements 

can be expressed with the following displacement functions: 

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

u N u N u N u N u

w N w N w N w N w

   

   
 (4.3) 

in which the shape functions, in terms of dimensionless coordinates, are as follows: 

1

2

3

4

(1 4) (1 )(1 )

(1 4) (1 )(1 )

(1 4) (1 )(1 )

(1 4) (1 )(1 )

N

N

N

N

 

 

 

 

  

  

  

  

 (4.4) 

In the matrix form: 

 

1

1 2 3 4 2

1 2 3 4

8

0 0 0 0

0 0 0 0

q

N N N N qu

N N N Nw

q

 
 

    
     
     

  

  (4.5) 

Concisely: 
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      ( 1,2,3,4)
i ii

i N q  (4.6) 

iu  and iw  are the translations in the r  and z directions, respectively. For this is an 

axisymmetric element that forms the solid by revolution, the translation v  in the   

direction is zero; the shearing strains r  and z  are zero.  

The non-zero strain components are as follows: 

  [ ]T

r z rz ii      (4.7) 

The strain-displacement relation is as follows: 

0

0

1
0

r

z

i

rz i

r

uz

w

r

z r











 
 
     
     

    
    

    
  
 
  

 (4.8) 

             
i i i ii i
    N q B q   (4.9) 

      

0

0

where  and .
1

0
i i

r

z

r

z r

 
 
 

 
 

    
 
 
  
 
  

B N  (4.10) 

The radius r  in Equation 4.10 is calculated as: 

4

1 i ii
r N r


  (4.11) 

The four stress components corresponding to the strain components are: 
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  [ ]T

r z rz ii      (4.12) 

The shearing stresses r  and z  are also zero. Then, the governing relation for a 

linear elastic material, which is the stress-strain relationship, is given in matrix form 

as below: 

    
i i
 E   (4.13) 

Here,  E  is the matrix of elasticity constants (Young‟s modulus), that is already 

explained in the second section. 

11 12 13 14

22 23 24

33 34

44.

r r

z z

rz rzi i

E E E E

E E E

E E

sym E

 

 

 

 

 

     
     
       

    
         

 (4.14) 

The strain energy of a linear elastic body is defined as 

 
1

[ ]{ }
2

T

V
U dV  E   (4.15) 

On the other hand, the total potential energy of the element can be expressed with the 

stiffness matrix [ ]k  as follows: 

 
1

[ ]{ }
2

T

V
dV q k q  (4.16) 

From Equation 4.15 and 4.16, it can be derived that [ ] [ ] [ ][ ]T

V
dV k B E B , by 

substituting Equation 4.9 into Equation 4.15. 

As the stiffness matrix is obtained, the basic equation, Hooke‟s law of elasticity, is 

ready to be solved in order to find the displacements: 

F kx  (4.17) 

For our problem, the nodel displacement vector { }q  is calculated by the following 

equation: 
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 

1 1

2 2

8 8

f q

f q

f q

   
   
   

   
   
      

k  (4.18) 

The solution process for an axisymmetric quadrilateral linear element can be 

summarized with the previous computational steps. However, the size of the vectors 

and matrices, the shape of the functions change according the element type while the 

main procedure do not change. The number of nodes and the degree of the shape 

function may be increased for a different element type as well as the dimension of 

the element alters the number of variables. 

For the element used in our model, the compatibility conditions, that is, the nodal 

number of equations and unknowns are as follows: 

Displacements: ,u w    Equilibrium equations = 2 

Strains: , , ,r z rz       Strain-displacement relations = 4 

Stresses: , , ,r z rz      Constitutive relations = 4 

Total  equations = 10    Total unknowns = 10 

4.2 The FE Model of the Experiments and the Contact Model 

One model is created to simulate the static indentation tests with a hyperelastic 

material model. Another model is created to simulate the same tests with a 

viscoelastisity assumption. Two new models are created by modifying them so as to 

simulate the relaxation tests. 

To explain the main structure of the model, an axisymmetric contact model 

consisting of two different parts, the indentor and the deformed material are used. 

The indentor is defined as a 2D analytical rigid shell part where the other part is 

chosen to be a deformable solid which is contructed by a transformation from shell to 

solid as a requirement of the FE modeling software. To set the contact relation 

between these two parts, an interaction between each material‟s contacting surfaces, 

a rigid body constraint for the indentor and an interaction property that holds the 
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information about the friction are defined. The interaction property is set to “rough” 

which means that no slip will occur once the points are in contact. 

The contact is based on the finite-sliding formulation where seperation and sliding of 

finite amplitude and arbitrary rotation of the surfaces may arise. The finite-sliding 

rigid contact procedure works by a family of contact elements that are automatically 

generated with respect to the data associated with the defined contact pairs. At each 

integration point these elements construct a measure of overclosure (the penetration 

of the point on the surface of the deforming body (master surface) into the rigid 

surface) and measures of relative shear sliding. These kinematic measures are then 

used in appropriate Lagrange multiplier techniques to present the appropriate surface 

contact and friction theories [12].  

Finite-sliding formulation allows arbitrary motion of the surfaces. Contact conditions 

are implemented on the surface of the slave (surface on the indentor) not at discrete 

points or at slave nodes. This leads to the possibility of observing some penetration at 

individual nodes; however, large, undetected overclosures do not occur with this 

discretization [12]. 

 

Figure 4.3 : Comparison of contact enforcement for node-to-surface and surface-to- 

                      surface contact discretizations [12]. 
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Figure 4.4 : Axisymmetric finite element contact model. 

Our FE contact model for undeformed shape is shown in Figure 4.4. The rectangular 

part is the axisymmetric model of the circular gel pad. To the center of the gel pad, 

an axisymmetric analytical rigid structure, which is created to simulate the probe, is 

placed. 

 

Figure 4.5: The deformed shape of the finite element contact model, showing the  

                   stress distribution in the y direction for a ~20% (3.9 mm) deformation                 

                      (deformation scale factor is 1).
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5.  INVERSE METHOD 

To solve the simulation problem, finite element tools require the material type and 

material coefficients to be defined in the model. Here, the most important point that 

requires attention besides constructing the model properly, is to set the accurate 

material type and coefficients. The closer to the exact values the parameters of the  

material model are, the more realistic the solution is. There are several numerical 

methods that can be found in literature to approximate or determine the material 

coefficients of a material with a specific type. Curve fitting is an option in which the 

material model stress equations are fitted to the experimental stress data. However, 

previous studies show that a better approximation can be done by another numerical 

approach named inverse finite element method. 

5.1 Inverse Finite Element Algorithm 

Inverse finite element method is an algorithm that runs the model with an initial 

parameter set and compares the FE result to the experimental data and improves the 

parameter set with respect to the computed error and pre-defined error tolerance. 

This procedure continues iteratively until the error between the model and the 

experiment data is small enough. This algorithm can be built to find any parameter of 

the model as well as the material coefficients. In details, it is a coupling process of 

the FE tool with an optimization algorithm; FE tool solves the model using the given 

parameters, where the optimization tool gets the FE results, makes a better estimation 

of parameters after computing the error with respect to the test data and sets the new 

parametrers to the FE model. The flow chart of the algorithm is illustrated as in 

Figure 5.1. The scripts coded to perform this algorithm is given in Appendix A.1. 

5.2 Optimization Methods 

Any optimization method can be used in the algorithm as soon as it fits the problem. 

Some optimization methods are local solvers while some are global. Local solvers 

stop when a local minimum of the objective function is found, however global 
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solvers aim to find the minimum of all minima, which is the global minimum of the 

objective function. However, a global solver doesn‟t guarantee to find the global 

minimum; because global methods work so as to reduce the objective function in 

each optimization step, the method cannot promise to converge for the global 

minimum, it requires the initial parameters to be very close to real values for a good 

solution [13]. 

 

Figure 5.1 : The inverse FE algorithm. 

The optimization part of this study is minimizing the residual vector ( iR ) which 

holds the differences between the model data ( modelf ) and experimental data ( expf ). 
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The expression to be minimized is given in equation (5.1) where i is the number of 

discretized data, t is time and p is the parameter set to be determined. 

( ) ( , ) ( )i model i exp iR p f p t f t   (5.61) 

2

1
min ( ( ))

n

iip
R p

  
(5.62) 

In this study, some of the optimization methods such as Gauss-Newton, Levenberg-

Marquardt, Trust Region and simplex search method are evaluated. Because our 

objective function is nonlinear, numerical methods for nonlinear optimization are 

considered. 

5.2.1 Theory of the Gauss-Newton Method 

For the problem of fitting a function of n parameters to a data vector d , a nonlinear 

system of equations ( )G m d is tried to be achieved by optimizing the parameters 

m and minimizing the 2-norm of the residuals [14]. 

2

1
( ) ( ( ) )

n

i ii
f m G m d


   (5. 3) 

If we let 

( ) ( ) 1,2,...,i i if m G m d i n    (5.4) 

and  

1( )

( )

( )n

f m

m

f m

 
 


 
  

F  (5.5) 

we can write  

2

1
( ) ( ) .

n

ii
f m f m


  (5.6) 

The gradient of ( )f m  can be written as 
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2

1

1

( ) ( ( ) )

2 ( ) ( )

2 ( ) ( )

n

ii

n

i ii

T

f m f m

f m f m

m m




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




J F



 (5.7) 

where ( )mJ  is the Jacobian. 

Similarly, the matrix of second derivatives, the Hessian is obtained as follows: 

2

( )

( ) 2 ( ) ( ) 2 ( ( ) ( ))T T

m

f m m m m m  

Q

J J J F  
(5.8) 

The Gauss-Newton (GM) method omits the ( )mQ term [14] thus 

obtains the Hessian as in equation 5.9. 
 

2 ( ) 2 ( ) ( )Tf m m m J J  (5.9) 

The GN optimization method converges to a solution when ( ) 0f m   is achieved 

[3]. That is, 

( ) ( ) ( ) ( ).T Tm m m m m J J J F  (5.10) 

Here, if the ( )if m  terms are reasonably small, then it is a reasonable approximation. 

But if the terms are large wich means in other words, that ( ) ( )T m mJ J  is singular, 

then the optimization doesn‟t converge, the Gauss-Newton method fails. The GN 

method necessitates the term ( ) ( )T m m mJ J  to be positive semi-definite and 

symmetric [14]. 

5.2.2 Theory of the Levenberg-Marquardt Method 

Levenberg-Marquardt algorithm (LM algorithm) [14] improves the Gauss-Newton 

method by adding an extra term to the Hessian matrix of the 2nd derivatives of the 

function in order to eliminate the risk of singularity. 

2 ( ) ( ( ) ( ) ) , 0Tf m m m m m     J J I  (5.11) 

The positive term I  ensures that the matrix is not singular. It is adjusted at each 

iteration of the computation so as to provide convergence. Since the matrix in right 
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hand side of the equation 5.11 is positive-semidefinite and symmetric, the system can 

be solved via Cholesky factorization [14]. 

If   is large, m becomes a steepest-descent step (Equation 5.13); the method 

moves down-gradient to reduce ( )f m , which means a slow yet certain convergence. 

In contrast, if the additional term is very small, the LM method reverts to the GN 

method that provides fastness but uncertainity for convergence [14]. 

( ) ( )T m m  J J II   (5.12) 

1
( )m f m


      (5.13) 

5.2.3 Theory of the Trust Region Methods 

Trust region algorithm makes a further improvement by evolving the Levenberg-

Marquardt algortihm. In the case of negative curvature, that is, when the Hessian 

matrix is negative, Gauss-Newton fails and L-M algorithm follows a perturbated and 

approximate direction of research of m  based on an arbitrary perturbation of the 

Hessian. In LM algorithm, choosing a large   makes the Hessian part of the 

expression (Equation 5.12) ineffective but, more importantly it has an effect as 

reducing the step size m . Trust Region algorithm focuses on this effect and  

imposes a proper limitation on the step size as in Equation 5.14 and by this way, 

succeeds the global convergence even if the approximation of the Hessian matrix is 

indefinite [15]. 

(trust region radius)tn    (5.62) 

The computation of t  is another constraint minimization of a quadratic expression 

and this increases the complexity of the Trust Region algorithms (Eq. 5.14) [15]. 

 ( ) min( ( )) subject to t
n

f m n f m n n


       
(5.63) 

In Trust Region methods, the Hessian matrix is obtained numerically in several 

ways, by the well-known BFGS formulae, by the multivariate polynomial 

interpolation or by the finite difference approximation. Although the multivariate 

polynomial interpolation is the best to determine the 2nd derivatives, it is a very 
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time-consuming algorithm [15]. Because Matlab routines is used in this study for 

optimization, finite difference approximation is preferred in the trust region 

algorithm as the choice of the Matlab routine. 

5.3 Validation of the Inverse Method 

Our inverse finite element algorithm is first checked by a simple finite element 

model that involves a beam element made of steel. Parameters to be found is 

Young‟s modulus for the case of known Poisson‟s ratio. The beam model together 

with the visualisation of the deformed shape is shown in Figure 5.2. 

 

Figure 5.2 : The deformed and undeformed states of the beam model. 

The material in the beam model is steel and its elasticity modulus is 209000  GPa. 

The inverse method program is run with the initial value of 100000  for the elasticity 

modulus and the direct search routine of Matlab is chosen as the optimization method 

since there is only one constant to modify. The program tries to make a fit to the fake 

experimental data generated manually witht the constant 209000  as illustrated in 

Figure 5.1. In these conditions are inverse FE program, starting from 100000,  

converged to the value of 208999.76. The quality of the fit with the inversely found 

constant is given in Figure 5.3. 
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Figure 5.3 : The experimental stress-time data generated manually by the FE tool   

                  compared to the stress-time data obtained from the FE model using  

                        the inversely determined constant. 

The algorithm is also tested for the hyperelasticity case for the Yeoh material model 

and this time the nonlinear least squares routine of Matlab is used. 10 0.000115,C   

20C -0.00007, and 30C 0.00115  are submitted as the initial coefficients of the 

Yeoh hyperelastic model and the program is run so as to fit the fake experimental 

data constructed by using the target parameters 10 0.0001,C   20C -0.0001,  and 

30C 0.001.  The ceofficients found as the result of the convergence of the program 

are 10 0.00010426,C  20 -0.00009456,C   and 30 0.00092719.C   The following 

figure (Figure 5.4) shows the fit of the inversely found stress curve to the fake 

experiemental data. 

 

Figure 5.4 : The graph shows the fit of the stress data obtained via inverse FE  

                           method to the fake experimental data.
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6.  RESULTS 

The inverse FE jobs are run parallelly on the clusters of the Informatics Institute of 

ITU. The jobs are submitted to maximum 32 processors. The finite element model 

codes and the scripts written for the optimization process are given in Appendix A.1 

as ready to run on a local machine. The codes given in Appendix A.1 were modified 

for parallelism. 

6.1 AquaFlex Ultrasound Gel Pad 

6.1.1 Hyperelastic Model Results 

Here in this section, the data obtained from the experiments conducted on the gel pad 

and the computed parameters of that material both by the inverse FE method and 

other methods are presented. 

For the Aquaflex Ultrasound Gel, the parameters of hyperelasticity are worked out 

from the static indentation data by four different ways: using Lee & Radok‟s 

equation [16], fitting curves to the true stress expressions of Mooney-Rivlin and 

Yeoh material models and lastly using the inverse finite element method. 

Lee and Radok suggested the following equation for the shear modulus: 

3 / (16 )G F R   (6.1) 

Here, G  is the shear modulus,   is the indentation depth and R  is the probe radius. 

Modulus of elasticity, E  can also be obtained subsequently, assuming 0.5   since 

the material is assumed to be incompressible via the following relation: 

2(1 )

E
G





 (6.2) 

Using the equations 6.1 and 6.2, Young‟s modulus values which can be seen in Table 

6.1, are obtained from the data of indentations done with three different probes at 

four different depths. 
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Table 6.1: Young‟s (Elastic) modulus of the gel material for various probe radii and  

                  displacements. 

E (kPa) Displacement (mm) 

Radius (mm) 2 4 6 8 

2 48.4 36.7 45.5 42.1 

4 53.9 53.9 61.0 - 

6 55.2 57.5 57.2 - 

It should be noted that the equation Lee and Radok proposed (Equation 6.1) gives 

more realistic results in the small deformation cases where 1R  [16]. However, 

these results also are thought to give an idea about the material‟s elastic range and 

assumed to be useful to make an initial approximation of the constants. 

Following the elastic approach, the gel data is used in hyperelastic material models. 

First approach is the Mooney-Rivlin material model of which the strain energy 

density function is expressed in terms of the first two principal invariants and 

involves two constants for the incompressible material case (Equation 2.44). The 

equation is written in terms of true stress as below; how it is transformed is explained 

in Section 2.3.2.1. The engineering stress (force per unit reference area) is obtained 

by dividing the true stress by the stretch ratio (Equation 6.4). 

201
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2 1
2

C
C

  
     

   
 (6.3) 

01
10 2

2 1
2eng
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C

  
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In this equation, 10 01 and C C  are the material coefficients, and 1 2 and I I  are the 

invariants of the deformation tensor. These coefficients are computed by fitting the 

static indentation data to the stress expression (Equation 6.3) and the results are 

given in Table 6.2. One of the fits for which the data was gathered using the 6 mm 

radius-probe at 6 mm depth is shown in Figure 6.1. 
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Figure 6.1 : Static indentation test data, conducted by 6 mm radius-probe at 6 

        mm depth, is fitted to the Mooney-Rivlin material model. 

Table 6.2: Coefficients of the strain energy density function for the Mooney-Rivlin   

                  material model. 

 2R mm                                4R mm                        6R mm  

 
d=2 

mm 

d=4 

mm 

d=6 

mm 

d=8 

mm 

d=2 

mm 

d=4 

mm 

d=6 

mm 

d=2 

mm 

d=4 

mm 

d=6 

mm 

01
( )C MPa  -0.3075 -0.1802 -0.0859 -0.0478 -0.0874 -0.0644 -0.0498 -0.0452 -0.0459 -0.0376 

10
( )C MPa  0.2953 0.1667 0.0493 0.0057 0.08 0.0542 0.0354 0.0408 0.0413 0.0324 

Mooney-rivlin type strain energy function coefficients are found at both positive and 

negative values. Negative parameters for this material model are not considered to be 

physically valid, but there are other studies presenting negative values for the 

Mooney-Rivlin material model [17]. This may lead to the idea that the strain energy 

density function is not stable for certain loading conditions since Mooney-Rivlin 

model best describes rubber-like materials, but here-found negative coefficients fit 

well to our experimental conditions. However, other hyperelastic material models 

should be considered. Yeoh material model better reflects the nonlinearity, therefore 

the curve fitting procedure is also performed for Yeoh material model, using the 

engineering stress expression (Equation 6.7) which is obtained by dividing the true 

stress by the stretch ratio (Equation 6.6). Yeoh type strain energy density function is 

shown in Equation 6.5. 

2 3

10 1 20 1 30 1( 3) ( 3) ( 3)W C I C I C I       (6.5) 
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 (6.7) 

The results are shown in Table 6.3, Table 6.4, and Table 6.5 for different probe sizes 

and different depths. 

Table 6.3: Coefficients of the strain energy density function of the Yeoh material  

                  model, obtained from the test data of 2mm radius probe. 

 2R mm  

 2d mm  4d mm  6d mm  8d mm  

10
( )C MPa  5.424e-06 1.14e-06 3.66e-10 3.01e-10 

20
( )C MPa  -1.65 -0.4213 -0.2434 -0.1161 

30
( )C MPa  22.48 1.313 0.358 0.08816 

Table 6.4: Coefficients of the strain energy density function of the Yeoh material  

                  model, obtained from the test data of 4mm radius probe. 

 4R mm  

 2d mm  4d mm  6d mm  

10
( )C MPa  1.201e-04 2.221e-05 1.532e-06 

20
( )C MPa  -0.6852 -0.2149 -0.1089 

30
( )C MPa  10.05 0.7258 0.153 

Table 6.5: Coefficients of the strain energy density function of the Yeoh material  

                  model, obtained from the test data of 6mm radius probe. 

 6R mm  

 2d mm  4d mm  6d mm  

10
( )C MPa  1.525e-04 4.391e-07 1.288e-05 

20
( )C MPa  -0.3898 -0.1201 -0.05704 

30
( )C MPa  5.725 0.3811 0.07412 

The goodness of one of the fits which is the fit to the static indentation data of the 

test performed by the 6mm radius probe at 6mm depth, is shown in Figure 6.2. 
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Figure 6.2 : The graph showing the Yeoh material model type curve fitting to  

                 the test data of the static indentation with 6mm radius probe at  

       6mm depth (on the aqua gel), and the residuals of the fit. 

6.1.1.1 Inverse FE Method Results 

Some constraints are applied for curve fitting; the first coefficient is restricted to be 

greater than zero, because a negative 10C  value is not accepted by the finite element 

tool, causes the bad material definition error.  

The last method to determine the material results is the inverse algortihm, which is 

the main subject of this thesis. The results above are aimed to be used in this 

algorithm in order to set good initial parameters since initial parameters have a key 

role in convergence of the inverse algorithm. However, this approach didn‟t work for 

all cases, so the initial parameters were set regardless of the curve fitting results for 

some cases. 

 Compuatations using the 2 , 4R mm d mm   static indentation data: 

The resultant coefficients of curve fitting are clearly different from the coefficients 

found vie the inverse FE method, and the inversey found coefficients also show great 

differences. This may be caused by some theoretical difference of the finite element 

tool in defining the material model, which was chosen Yeoh for this case, if the curve 

fitting results are compared to the inverse method results. 
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Table 6.6: The coefficients found via inverse FE method, starting with the given      

                  initial values, and the coefficients found via curve fitting method. 

 
10C  20C  30C  

Initial coefficients - case 1 0.001 0.001 0.001 

Inverse FE results - case 1 0.001376 0.004173 0.002524 

Initial coefficients - case 2 0.01 0.01 0.01 

Inverse FE results - case 2 0.003554 -0.011223 0.020003 

Initial coefficients - case 3 0.000021 0.000199 0.000331 

Inverse FE results - case 3 0.001456 0.003688 0.003028 

Curve fitting results 1.14e-06 -0.4213 1.313 

One more point that should be noted is that the solution is not unique for these kind 

of fitting problems and in the inverse method it is highly related to the initial values. 

Though, the following graph shows how well the stres-time curve generated by using 

the coefficients found via the inverse FE method fits to the curve of the experimental 

data (Figure 6.3). 

 

Figure 6.3 : The graph comparing the stress-time curve generated with the inversely  

                    found coefficients (case 1) to the real (obtained from experimental data)  

                     stress-time curve. 

The following graph (Figure 6.4) also illustrates the results for the same conditions, 

but for case 2, in which the inital values were set different than those of case 1. 
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Figure 6.4 : The graph comparing the stress-time curve generated with the inversely  

                    found coefficients (case 2) to the real (obtained from experimental data)  

                     stress-time curve. 

Case 3 also presents different coefficients; the goodness of the fit is shown below in 

Figure 6.5. 

 

Figure 6.5 : The graph comparing the stress-time curve generated with the inversely  

                    found coefficients (case 3) to the real (obtained from experimental data)  

                     stress-time curve. 

 Compuatations using the 2 , 8R mm d mm   static indentation data: 

Figure 6.6 is the graph showing the inverse fit that uses the coefficients in Table 6.7 

and the experimental data. 
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Table 6.7: The coefficients found via inverse FE method, starting with the given  

                  initial values, and the coefficients found via curve fitting method. 

 
10C  20C  30C  

Initial coefficients  0.01 0.0001 0.0001 

Inverse FE results  0.008285 -0.001175 0.000405 

Curve fitting results 3.01e-10 -0.1161 0.08816 

 

Figure 6.6 : The graph comparing the stress-time curve generated with the inversely  

                  found coefficients to the real (obtained from experimental data) stress  

                      time curve. 

 Compuatations using the 4 , 6R mm d mm   static indentation data: 

Table 6.8: The coefficients found via inverse FE method, starting with the given  

                  initial values, and the coefficients found via curve fitting method. 

 
10C  20C  30C  

Initial coefficients  0.001 0.001 0.001 

Inverse FE results  0.001311 0.006561 -0.000795 

Curve fitting results 1.532e-06 -0.1089 0.153 

Below is the graph showing the inverse fit that uses the coefficients in Table 6.8 and 

the experimental data (Figure 6.7). 
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Figure 6.7 : The graph comparing the stress-time curve generated with the inversely  

                  found coefficients to the real (obtained from experimental data) stress  

                      time curve. 

The degree difference in the results which is about 3(10 )O  is thought to be caused by 

the unit of density set in the abaqus model. The unit is used as 3/kg mm , however it 

would be more precise to set it in the unit of 3/tonne mm  when the other units are 

chosen as , ,N mm  and .MPa  

6.1.2 Viscoelastic Model Results 

The materials are assumed as linearly viscoelastic because the finite element solver 

can only handle linear viscoelasticity. Linear viscoelasticity is explained in Section 

2.3.2 and the model is given in Equation 2.57. 

Most commonly used relaxation function that is embedded in the viscoleastic models 

is Prony series approach; the relaxation fuction expressed as Prony series is given in 

the following equation: 

/

0 1
( ) (1 (1 ))i

n t

ii
g t E p e




    (6.8) 

In Equation 6.8, 0E  is the instantaneous modulus of the material, that is the modulus 

of elasticity, ip  is the i‟th Prony constant ( 1,2,...),i   and i  is the i‟th Prony 

retardation time constant ( 1,2,...)i   [18]. The values for 0E  are taken from the 

Table 6.1. 
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Using this approach, relaxation test data is fitted to the Prony series function with 

2i   and the above defined parameters are determined.  

Table 6.9: Coefficients of the relaxation function for various probe radii and  

                  displacements. 

 2

2

R mm

d mm




 

4

2

R mm

d mm




 

4

4

R mm

d mm




 

1( )p MPa  0.2023 0.0725 0.115 

2( )p MPa  0.2795 0.7325 0.6349 

1( )s  13.72 0.5407 1.011 

2 ( )s  302.2 168.6 149.4 

Below is the graph showing the goodness of fit for two cases; the Prony series is 

expanded with 2 set of unknowns for the first, and expanded with 3 set of unknowns 

for the second case. Here, these unknowns are the coefficients that are aimed to be 

determined. 

 

Figure 6.8 : Nonlinear curve fitting with the 2 and 3-parameter Proney series model,  

                    fitted to the relaxation test data; probe radius is 2mm, indentation depth  

                     is 2mm and the hold time is 600 s. 
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6.2 Bovine Liver 

6.2.1 The Effect of Storing The Liver in Serum Liquid 

The results of the experiments are illustrated in the third chapter; however the effect 

of storage conditions of the liver is not given yet. The static indentation and ramp-

hold test results given in the previous chapter belong to the liver which had been kept 

in a serum liquid right after it was removed from the animal until it was subjected to 

material testing. We also have test data of a liver which hadn‟t been kept in the fluid 

before testing. The following figures show the difference in the data caused by the 

storage conditions. 

 
(a) 

 
(b) 

Figure 6.9 : The static indentation data of the tests conducted by the probe of 4mm  

                     radius to the depth of 10mm, on the liver stored (a) not within serum,  

                     and (b) within serum. 
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(a) 

 
(b) 

Figure 6.10 : The static indentation data of the tests conducted by the probe of 6mm  

                       radius to the depth of 10mm, on the liver stored (a) not within serum,  

                       and (b) within serum. 

At both group of tests, that is, at the tests with the probe of 4mm radius or 6mm 

radius, the curves demonstrate that there is a difference in the force response between 

the liver stored in the serum liquid and the one not stored in it; the force response of 

the liver stored in the liquid is clearly greater. However, the fact that each distinct 

liver taken out from a different animal may feature difference in structure and in 

mechanical properties should be in mind, even if they are from the same species. 

6.2.2 Hyperelastic Model Results 

The method that had been proposed by Lee and Radok [16] is used again with the 

static indentation data gathered from the liver material tests. Equation 6.1 and 

Equation 6.2 are used; the results are presented in Table 6.10. 
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Table 6.10: Young‟s (Elastic) modulus of the bovine liver for various probe radii   

                    and displacements. 

E (kPa) Displacement (mm) 

Radius (mm) 4 6 8 10 

2 5.809 5.014 5.551 5.227 

4 4.768 4.259 4.121 5.097 

6 3.930 5.783 5.690 5.726 

The data shown in Table 6.10, when compared to the data in Table 6.1, briefly 

demonstrates that the elastic response of bovine liver and the ultrasound aquaflex gel 

do not look alike since the estimated elastic moduli are not in a similar range. 

The static indentation data obtained from tests on liver are again used in stress 

expression of the Yeoh type hyperelastic material model (Equation 6.7) as it is done 

for the ultrasound aqua gel material. The stretch ratios are calculated using the liver 

thickness data which had been measured and recorded at each indentation, since the 

dimensions of liver were not constant at each point differently from the gel. 

The following tables (Table 6.11, Table 6.12, and Table 6.13) shows the coefficients 

found by the curve fitting method using the stress expression in Equation 6.7: 

The graphs in Fgure 6.11 shows the goodness of the fit for one test case. 

Table 6.11: Coefficients of the strain energy density function of the Yeoh material  

                    model, obtained from the test data of 2mm radius probe. 

 2R mm  

 4d mm  6d mm  8d mm  10d mm  

10
( )C MPa  2.225e-14 2.22e-14 3.945e-06 1.782e-06 

20
( )C MPa  -5.534 -2.865 -2.203 -0.5836 

30
( )C MPa  442.2 72.59 31.31 2.573 

Table 6.12: Coefficients of the strain energy density function of the Yeoh material  

                    model, obtained from the test data of 4mm radius probe. 

 4R mm  

 4d mm  6d mm  8d mm  10d mm  

10
( )C MPa  2.22e-14 4.01e-05 4.436e-07 7.923e-07 

20
( )C MPa  1.86 -0.8747 -0.4574 -0.3588 

30
( )C MPa  137.1 23.3 5.531 2.528 
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Table 6.13: Coefficients of the strain energy density function of the Yeoh material  

                    model, obtained from the test data of 6mm radius probe. 

 6R mm  

 4d mm  6d mm  8d mm  10d mm  

10
( )C MPa  0.0001376 1.636e-05 1.33e-05 1.256e-06 

20
( )C MPa  -1.017 -0.591 -0.3906 -0.2949 

30
( )C MPa  70.57 15.94 5.4 2.309 

 

 

Figure 6.11 : The graph showing the Yeoh material model type curve fitting  

                         to the test data of the static indentation with 6mm radius probe  

                                    at 10mm depth (on liver), and the residuals of the fit. 

6.2.2.1 Inverse FE Method Results 

For the inverse finite element method jobs the constraint that keeps the first 

coefficient of the Yeoh material model is again used, because a negative 10C  value 

causes the bad material definition error by the finite element tool. 

The FE model is reconstructed, because the thickness of the bovine liver changed at 

each case. The FE model is altered according to thickness, which is directly 

invlolved in strain definiton. 
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Below is the result of the inverse FEM; the coefficients computed via inverse FEM 

are shown in the table and the fit is graphed. 

 Compuatations using the 4 , 4R mm d mm   static indentation data: 

Table 6.14: The coefficients found via inverse FE method, starting with the given  

                    initial values, and the coefficients found via curve fitting method. 

 
10C  20C  30C  

Initial coefficients  0.001 0.001 0.001 

Inverse FE results  0.000149 -0.000160 0.013708 

Curve fitting results 2.22e-14 1.86 137.1 

 

Figure 6.12 : The graph comparing the stress-time curve generated with the   

                            inversely found coefficients to the experimental stress-time curve   

            of the bovine liver, for the case of 4 , 4 .R mm d mm   

Figure 6.12 is the graph showing the inverse fit that uses the coefficients in Table 

6.14 and the experimental data. 

 Compuatations using the 4 , 6R mm d mm   static indentation data: 

Table 6.15: The coefficients found via inverse FE method, starting with the given  

                    initial values, and the coefficients found via curve fitting method. 

 
10C  20C  30C  

Initial coefficients  0.00001 0.00008 0.00233 

Inverse FE results  0.000119 -0.0000003 0.002396 

Curve fitting results 4.01e-05 -0.8747 23.3 
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Below is the graph showing the inverse fit that uses the coefficients in Table 6.15 

and the experimental data (Figure 6.13).  

 

Figure 6.13 : The graph comparing the stress-time curve generated with the  

                             inversely found coefficients to the experimental stress-time curve   

             of the bovine liver, for the case of 4 , 6 .R mm d mm   

6.2.3 Viscoelastic Model Results 

The Prony series relaxation function approach for the viscoelastic model is also used 

with the liver test data. Curve fitting is done using the Prony series expansion with 3 

parameter sets (Equation 6.8). 

The calculated parameters are given in tables below. The following table gives the 

parameters for the test case performed by the 2mm-radius probe. The indentation 

depths for that case are 4mm, 6mm, and 8mm. 

Table 6.16: Coefficients of the relaxation function for various probe radii and  

                    displacements for the case of 2R   of bovine liver tests. 

 4d mm  6d mm  8d mm  

1( )p MPa  0.613 -3.069 -6.263 

2( )p MPa  1.579 3.286 6.38 

3( )p MPa  -1.411 -3.867 -7.061 

1( )s  0.1245 0.1245 0.1245 

2 ( )s  76.28 79.57 80.05 

3( )s  0.067 0.067 0.067 



 
73 

Table 6.17 presents the parameters for the 4mm-radius case at which the tests are 

conducted to the 4mm, 6mm, and 8mm depths on the bovine liver. 

Table 6.17: Coefficients of the relaxation function for various probe radii and  

                    displacements for the case of 4R   of bovine liver tests. 

 4d mm  6d mm  8d mm  

1( )p MPa  0.09031 -0.6603 -1.696 

2( )p MPa  0.9256 1.526 2.387 

3( )p MPa  -0.7076 -1.458 -2.493 

1( )s  0.1245 0.1245 0.1245 

2 ( )s  21.38 45.06 79.93 

3( )s  0.067 0.067 0.067 

Table 6.18 gives the parameters for the 6mm-radius case at which the tests are 

conducted to the 4mm, 6mm, and 8mm depths on the bovine liver. 

Table 6.18: Coefficients of the relaxation function for various probe radii and  

                    displacements for the case of 6R   of bovine liver tests. 

 4d mm  6d mm  8d mm  

1( )p MPa  0.4253 0.3522 -0.05648 

2( )p MPa  0.6685 0.6581 0.8614 

3( )p MPa  -0.3726 -0.4457 -0.8543 

1( )s  0.1245 0.1245 0.1245 

2 ( )s  10.58 14.49 44.71 

3( )s  0.067 0.067 0.067 

The goodness of the fits are illustrated in the graphs below. 
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Figure 6.14 : Prony series approach for the relaxation function is fitted to the ramp  

                         hold data of the bovine liver for the case of 4 .d mm  

 

 

Figure 6.15 : Prony series approach for the relaxation function is fitted to the ramp  

                         hold data of the bovine liver for the case of 6 .d mm  
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Figure 6.16 : Prony series approach for the relaxation function is fitted to the ramp  

                         hold data of the bovine liver for the case of 8 .d mm  

6.3 Comparing the Mechanical Properties of Aquaflex Ultrasound Gel and      

      Bovine Liver 

Even though, the method that Lee and Radok had proposed had been constructed for 

small deformation cases [16], the obvious difference between the data given in Table 

6.1 and Table 6.10 can inform us that the synthetic material that was subjected to 

material testing in this study, do not resemble mechanically to the bovine liver. The 

effective elastic modulus of the bovine liver seems averagely one order of magnitude 

smaller than that of the synthetic material. 
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7.  CONCLUSION 

The method of estimating the material coefficients of soft biological tissues by 

inverse finite element method is dealed in this study and the resources of the inverse 

finite element method is provided with an experimental work. The experiments are 

designed as static indentation tests and ramp-hold tests. Tests are performed on two 

materials; one is a synthetic material, Aquaflex Ultrasound Gel Pad, the second one 

is the bovine liver. The data obtained from the material tests are used in the 

computations of the material coefficients that take place in the equations of the 

material models, which are chosen as Yeoh type hyperelastic and linear viscoelastic. 

The tests on the synthetic material demonstrated the mechanical properties of the 

material; it is seen to have a nonlinear stress-strain relation. The ramp-gold tests 

showed the relaxation characteristic of the material and this property lead us to 

model it as viscoelastic. The bovine liver is already known for its nonlinear 

viscoelastic behaviour as it is a soft biological tissue. 

Another set of material tests are performed in order to examine the axial 

differentiation in the mechanical behaviour of the bovine liver. The static indentation 

tests conducted on the orthogonal faces of a cubic bovine liver part showed the 

anisotropy of the tissue by exhibiting different force responses for the same test 

cases. However, the heterogenity of the tissue is also seen as an important parameter 

to consider since the replicated tests on the same face but on different points could 

produced different data. 

Other than the material test data of the bovine liver that is used in this study for 

coefficient estimation, a previous data set that had been obtained from another 

bovine liver which had not been kept in serum fluid, is used for the comparison of 

these two groups of data, resulting that the storing condition made sense. 

The coefficients are calculated via both curve fitting and inverse FE method. It has 

been concluded that the results obtained from the inverse FE method is strictly 

depend on the initial parameters given to the algorithm. Curve fitting results helped 
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to decide the initial parameters for some cases but not for all. There have been an 

obvious degree difference between the results of the curve fitting method and inverse 

FEM which is later understood to have been caused by the inconsistent unit usage for 

the density. 

Some parts of the work done during this thesis, the experimental work and the curve 

fitting results, are published in some conferences both national and international. 

These proceedings are referenced in [19], [20], and [21]. 

In this study, the overall structure of the  inverse FE method is constructed; finite 

element models are created, the algorithm is coded, the program converged and 

computed the coefficients. It can be seen that the the results of the curve fitting 

method differ from the results of the inverse FEM. This suggests that the parameter 

estimation by both methods needs further improvement in terms of finite element 

modeling and in terms of material description. The overall model can be improved 

for the case of nonlinear viscoelastic materials. The results already show that not 

every hyperlastic material model fit to the soft tissue materials; it is seen in this study 

that Yeoh model is more suitable than Mooney-Rivlin model however Yeoh also 

fails to give a good fit in case of large deformations. Therefore, choosing a more 

suitable hyperleastic material model or defining a new material model can be 

performed as a future improvement.  
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APPENDICES 

 

APPENDIX A.1 : The inverse finite element method codes: 

 

submit_matlab.m:   The Matlab script that starts the algorithm and runs the      

                                   optimization routine. 

myresiduals.m:        The Matlab function that runs the finite element model job  

                                   and computes the residuals between the experimental data  

                                   and model data. 

litcount.m:                The Matlab function that embeds the new parameters into  

                                   the Abaqus input file. 

openodb.py:              The python script that selects the required data from the  

                                   finite element model database file. 
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APPENDIX A.1  

 

myresiduals.m :       
function err = myresiduals_p(params) 

  
format long 
fid = fopen('params.txt','a'); 
measfile = ('liver_r6d4.dat'); 
h_meas = load(measfile); 
h_abaqus = load('s22_abaqus.dat'); 
err = h_meas-h_abaqus 

     
fprintf(fid, '%.15f %.15f %.15f %.15f %.15f %.15f\n', params(1), 

params(2), params(3), 0, 0, 0); 

     
fclose(fid); 
end 

 

 

submit_matlab.m : 
clear; clc; 

  
params = [0.001, 0.001, 0.001]; 
options = optimset('TolX', 1e-8, 'TolFun', 1e-8, 'MaxIter', 

1000); 

  
[res_params,fval,exitflag,output] = lsqnonlin(@myresiduals, 

params, [0, -Inf, 0], [], options); 
res_params 
fval 
exitflag 
output 

 

 

litcount.m : 
function litcount(filename, literal, params) 

  
% Search for a string   
format long; 
fid = fopen(filename); 
[newF,message]=fopen('test_tmp.inp','w'); 
tline = fgetl(fid); 

  
while ischar(tline) 
   matches = strfind(tline, literal); 
   num = length(matches); 

  
    if num > 0 
        fprintf(newF, '*Hyperelastic, yeoh\n'); 
        fprintf(newF, '%.33f, %.33f, %.33f, %f, %f, %f\n', 

params(1), params(2), params(3), 0, 0, 0); 
        fgetl(fid); 
    else 
        fprintf(newF,tline); 
        fprintf(newF,'\n'); 
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    end 
    tline = fgetl(fid); 
end 
fclose(newF); 
copyfile('test_tmp.inp', filename); 
fclose(fid); 

end 

 

 

openodb.py :            
from odbAccess import * 

  
odb = openOdb(path='job1.odb') 
file = open('s22_abaqus.dat','w') 

  
myframes=odb.steps['Step-1'].frames 

 
# values[99] is the 100st element in the model 
# data[1] gives the 2nd stress component(S22) in the y-direction 
for i in myframes: 
    s22data = (-1)*(i.fieldOutputs['S'].values[99].data[1]) 
    file.write(str(s22data) + '\n') 

     
file.close() 
odb.close() 
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