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MATHEMATICAL MODELING AND STRESS ANALYSIS OF WIRE 
ROPES UNDER CERTAIN LOADING CONDITIONS 

SUMMARY 

Wire ropes found wide application area in the industry and daily life for ages. 
Analytical solutions in the literature are only available for simplified geometrical and 
physical considerations using the cross-section of a rope due to complex geometrical 
and physical constraints.  

The aim of this thesis is to develop mathematical model of the complex geometry of 
wire ropes, solid modeling of the real 3-D geometry without length limitation, and 
solve the model numerically under certain loading conditions. For the sake of this 
aim, mathematical model of wire rope theory is investigated to find analytical 
solutions for comparisons with numerical results. Analytical results are obtained for 
axially loaded straight wire strand and independent wire rope cores (IWRC). 
Generated numerical models are solved by using finite element analysis and 
numerical results are compared to both analytical results and available test results.  

One of the well-known classical treatise of Love is used as the starting point of the 
theory of wire ropes. Analytical solutions derived by Costello are proved in a 
different sense and numerical results are compared to the analytical solutions. As a 
result, it has been concluded that numerical and analytical results are in good 
agreement.  

Throughout the literature search, it has been observed that most of the researchers 
intended not to take into account properties such as contact, friction, sliding, and 
length of wire strand/rope because of the difficulties arising from mathematical and 
geometrical complexities. In addition, most of the analytical studies and results rely 
on the cross-sectional part of a wire strand/rope and there is a lack of real 3-D 
analysis present at the literature for the complex wire ropes such as IWRC or Seale 
IWRC. Therefore, an exact 3-D solid model of wire strand/rope is constructed by 
using parametric formulations of single and nested helical wires. Mathematical 
formulations of the both single and nested helical wires are analyzed and a code is 
generated to create these helical geometries by using control points. The code is 
generated to find the location of a helical path where the centerline of the single and 
nested helical wires lies. Then helical wires are created in 3-D sense and wrapped 
around a straight wire to construct a simple straight strand, and strands generated 
before by using nested helical geometry are wrapped around a straight strand to build 
a solid wire rope model. 

Numerical analyses are conducted over a simple straight strand at first. The 
numerical models are considered both by frictionless and frictional behaviors. 
Comparisons of both frictionless and frictional numerical results of the simple 
straight strand showed good agreement to the analytical and available test results. 
Then 3-D solid model of an IWRC for different lay types are analyzed under axial 
loading conditions. The results are in good agreement with the theory. Another 



 xviii 

complicated analysis is conducted on an IWRC, which is under forced rotation. 
Under a constant strain, IWRCs are rotated and the obtained results are presented. In 
addition, a numerical model of a wire strand bent over a sheave problem is proposed. 
The results show the general behavior of a wire strand in the real application area. 
Parallelization of the numerical solution is conducted over the bending problem and 
results are argued. Then solid modeling of a Seale IWRC is developed using the 
proposed modeling technique. A wire-by-wire analysis result for Seale IWRC is 
presented as a consequence of the proposed modeling and analysis scheme. At the 
end, contact interactions over a wire strand are defined. Line of contact between core 
wire and outer helical wires are plotted in 3-D model by using the obtained 
numerical results. Deformations occurred due to contact between wires are 
investigated and wire radius contraction is shown by using contact interactions. One 
of the important benefits of the proposed method is to create solid wire rope model 
without length limitation. This issue is shown by generating 1m-5m wire strands and 
their numerical analysis. Numerically obtained analysis results are presented in wire-
by-wire basis. The benefits of the proposed numerical model enable one to probe 
over the intended parts of a 3-D numerical model. As an industrial inquiry, length of 
wires necessary to compose a 6x19 Seale IWRC is computed using the parametric 
equations of single and nested helical wires. 

In this thesis, solid wire rope modeling procedure is clearly developed for such 
complicated geometry. A wire rope code named Wire Rope Skeleton (WRS) is 
developed which is able to create both basic single helical and complicated nested 
(double) helical wire geometry. Then it is developed to run as a stand-alone code and 
named as Wire Rope Model and Mesh Generator (WRMMG). A meshed wire rope 
model is created by using the proposed method ready and error free to analyze using 
the finite element codes. The proposed scheme is applied successifully to wide range 
of wire ropes such as; simple straight wire strands, IWRCs and Seale IWRCs. It has 
been shown that with the proposed modeling methodology, wire ropes can be build 
without length limitation. This is also examined over a 1m-5m wire strand models. 
Analyses over long wire ropes are conducted using supercomputers and accurate 
results are obtained. From the analysis results of 1m-5m wire strands, it can be 
concluded that to obtain correct stress distribution over a long wire rope, model mesh 
plays an important role and should be increased to obtain accurate results. Contact 
interactions over wire ropes are included and a very fine mesh is build over a wire 
strand to show the interactions between core-outer wires and between individual 
outer wires. Deformations of the wires over the cross section of a wire strand are 
shown. As a result, a deep analysis model for wire rope geometries are developed, 
and wire-by-wire analysis results are found using the proposed method. The results 
are compared both with theory and available test results and shows good aggreement. 
Finally this modeling scheme and numerical method could be applied to wide range 
of complicated application areas of wire ropes such as, damage analysis, cycling 
loading, life expectancy, bird caging and reverse bending problems. 
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BELİRLİ KOŞULLAR ALTINDA TEL HALATLARIN MATEMATİK 
MODELLENMESİ VE GERİLİM ANALİZİ 

ÖZET 

Tel halatlar endüstri ve günlük yaşamda asırlardır geniş kullanım alanı bulmaktadır. 
Literatürde yer alan analitik çözümler sadece basitleştirilmiş geometrik ve fiziksel 
kabuller göz önünde bulundurularak, ara kesit yüzeyleri üzerinde karmaşık 
geometrik ve fizikler sınırlandırmaları öngörecek biçimde gerçekleştirilmiştir.  

Bu tezin amacı; tel halatların kompleks geometrisinin matematiksel modelinin 
geliştirilmesi, gerçek 3-D geometrik katı modelinin uzunluk sınırlaması olmadan 
oluşturulması ve belirli yükleme koşulları altında modelin nümerik çözümlerinin 
bulunmasıdır. Bu maksatla, tel halat teorisinin matematiksel modeli araştırılarak 
karşılaştırma yapmak maksadıyla analitik sonuçlar türetilmiştir. Analitik sonuçlar 
eksenel yüklü düz tel demet ve bağımsız tel halat çekirdeği (BTHÇ) için 
hesaplanmıştır. Oluşturulan nümerik modeller sonlu eleman analizi ile çözülmüş ve 
nümerik sonuçlar analitik ve mevcut test sonuçları ile karşılaştırılmıştır.  

Love’nin yazmış olduğu iyi bilinen bir bilimsel incelemesi tel halatlar teorisi için 
başlangıç noktası olarak kullanılmıştır. Costello tarafından türetilen analitik sonuçlar 
farklı bir yorumla kanıtlanmış ve nümerik sonuçlar ile analitik sonuçların 
karşılaştırılması yapılmıştır. Sonuç olarak nümerik ve analitik sonuçların iyi uyum 
gösterdikleri görülmüştür. 

Literatür incelemesi boyunca araştırmacıların bir çoğunun temas, sürtünme, kayma, 
tel demet/halat boyu gibi özellikleri matematiksel ve geometrik karmaşıklıklarından 
ötürü dikkate almadıkları görülmektedir. Aynı zamanda analitik çalışmaların ve 
sonuçların çoğu bu sebeple tel demet/halat arakesiti üzerine dayandırılmaktadır ve 
literatürde BTHÇ ve Seale tipi BTHÇ için gerçek bir 3-D analize rastlanmamaktadır. 
Bu nedenle gerçek bir 3-D tel demet ve tel halat katı modeli tek ve çift helisel telin 
parametrik formülasyonu kullanılarak oluşturulmuştur. Tek ve çift helisel tellerin her 
ikisinin matematiksel formülasyonu analiz edilerek kontrol noktaları yardımıyla 
helisel yolların tespit ve çizimini yapan bir kod geliştirilmiştir. Bu kod tek ve çift 
helisel tellerin merkez helisel yollarının yerleşimini hesaplamaktadır. Daha sonra 3-
D anlayışıyla oluşturulan teller düz bir tel üzerine sarılarak düz bir demet ve daha 
önce çift helisel tel geometrisini oluşturan kod yardımı ile elde edilen demetler ise 
düz bir demet üzerine sarılarak tel halat katı modeli oluşturulmuştur. 

İlk olarak nümerik analizler basit düz bir demet üzerinde gerçekleştirilmiştir. 
Nümerik modeller hem sürtünmesiz hemde sürtünmeli davranışları dikkate 
almaktadır. Sürtünmesiz ve sürtünmeli modellerin basit düz demet için yapılan 
karşılaştırmalarında analitik ve test sonuçlarıyla iyi bir uyum sağlandığı 
gösterilmiştir. Daha sonra farklı sarım tipleri için oluşturulan üç boyutlu BTHÇ 
modeli eksenel yükleme koşulları altında analiz edilmiştir. Bulunan sonuçlar teori ile 
iyi uyum göstermiştir. Başka bir karmaşık analiz çalışması zorlanmış dönme koşulu 
altındaki BTHÇ üzerinde gerçekleştirilmiştir. Sabit bir uzama değerinde, BTHÇ 
döndürülerek hesaplanan sonuçlar sunulmuştur. Ek olarak bir tel demetinin tanbur 
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üzerine eğilmesi problemine ait nümerik model önerisi oluşturulmuştur. Sonuçlar bir 
tel demetin gerçek bir uygulama alanındaki genel davranışını göstermektedir. 
Nümerik çözümün paralelleştirilmesi eğilme problemi kullanılarak yapılmış ve 
paralelleştirmeye ilişkin elde edilen sonuçlar tartışılmıştır. Daha sonar Seale BTHÇ 
katı modeli önerilen modelleme tekniği kullanılarak geliştirilmiştir. Seale BTHÇ için 
bulunan tel bazında analiz sonuçları önerilen modelleme ve analiz şemasının bir 
sonucu olarak sunulmuştur. Sonunda bir tel demet üzerinde temas ilişkileri 
tanımlanmıştır. Merkez tel ile helisel teller arasında oluşan temas hattı elde edilen 
sayısal sonuçlar kullanılarak 3-D çizdirilmiştir. Teller arasındaki temas durumundan 
ötürü kaynaklanan deformasyon incelenmiş ve tel yarıçapındaki azalmanın değişimi 
temas ilişkileri kullanılarak gösterilmiştir. Önerilen metodun önemli bir faydası katı 
halat modelinin uzunluk sınırlaması olmadan oluşturulmasıdır. Bu sözü edilen husus 
1m-5m uzunluğunda tel demetleri oluşturularak ve analizleri yapılarak 
gerçekleştirilmiştir. Nümerik analizler boyunca elde edilen sonuçlar tel bazında elde 
edilerek sunulmuştur. Önerilen nümerik modelin faydası üç boyutlu tel halat modeli 
üzerinde istenilen parçalar üzerinde araştırma yapmaya imkan sağlamasıdır. 
Endüstriyel alandan gelen bir soru üzerine 6x19 Seale BTHÇ’nin oluşturulması için 
her telin uzunluğu, tek ve çift helisel tellerin parametric denklemleri kullanılarak 
hesaplanmıştır. 

Bu tezde, katı tel halat modeli yöntemi açık bir biçimde karmaşık geometriler için 
geliştirilmiştir. Tel Halat İskeleti (THİ) adı verilen bir tel halat kodu geliştirilmiştir. 
THİ kodu ile basit tek helisel tel ile karmaşık çift helisel tel geometrileri 
oluşturulabilmektedir. Daha sonar bu kod geliştirilerek tek başına çalışabilen bir kod 
olan Tel Halat Model ve Mesh Üreteci (THMMÜ) adlı kod yazılmıştır. Önerilen 
yöntem ile mesh yapısı kurulmuş hatasız ve analize hazır tel halat katı modelinin 
oluşturulması sağlanmıştır. Önerilen yöntem basit düz tel demet, BTHÇ ve Seale tipi 
BTHÇ gibi geniş bir alandaki katı halat modellerinin oluşturulmasında ve analizinde 
başarı ile kullanılmıştır. Burada önerilen metodoloji ile tel halatların uzunluk 
sınırlaması olmaksızın modellenebileceği gösterilmiştir. Ayrıca bu durum 1m-5m 
uzunluklarındaki demetlerin modellenmesi ve analizi uygulamasıyla gerçeklenmiştir. 
Uzun tel halatlar üzerinde yapılan analiz çalışmalarında süperbilgisayarlar 
kullanılarak hassas sonuçlar elde edilmiştir. 1m -5m uzunluğundaki tel demetleri için 
yapılan analiz sonuçlarından uzun halat yapılarındaki gerilme dağılımlarının doğru 
bir biçimde elde edilebilmesinde modelin mesh büyüklüğü önemli bir role sahip olup 
doğru sonuçlar elde etmek için mesh büyüklüğü artırılmalıdır. Tel halatlar üzerindeki 
temas ilişkileri merkez tel ile dış teller arasında ve dış tellerin birbirleri arasında 
kurulmuş ve temas analizi için çok ince bir mesh yapısı oluşturulmuştur. Bir tel 
demetin arakesit bölümü üzerinde tellerin deformasyonları gösterilmiştir. Sonuç 
olarak tel halat geometrileri için derin bir analiz modeli geliştirilmiş ve tel bazında 
analiz sonuçları elde edilmiştir. Elde edilen sonuçlar teorik sonuçlar ile mevcut test 
sonuçları kullanılarak karşılaştırılmış ve uyumlu oldukları sonucuna varılmıştır. Son 
olarak, bu modelleme metodu ve nümerik çözümleme yöntemi tel halatların 
kullanıldığı geniş uygulama alanlarında kullanılabileceği öngörülmektedir. Bu 
alanlar arasında tel halatların; hasar analizi, tekrarlı yüklemeler, ömür tahmini, kuş 
kafesi ve ters eğilme problemleri örnek olarak sayılabilir. 
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1. INTRODUCTION 

Theory of wire ropes relies on equilibrium equations, which are derived by Love in 

his well-known classical treaties. Most of the analytical solutions in the literature 

based on the solution of this equilibrium equations in connection with the boundary 

conditions and physical aspects of the present problem. Because of the complex 

geometry, most of the researches are based on the analytical solutions of the cross-

sections of a single straight strand, and the theory is extended to the multi-lay strands 

and ropes. Different aspects of wire ropes are analyzed in theoretical studies. Most of 

them excluded frictional and contact effects. By using the solid modeling and finite 

element analysis, it is possible to include friction, contact, and different boundary 

conditions and material properties. In this thesis, more realistic 3-D solid model of a 

wire rope is developed by considering the mathematical models. Analysis process is 

conducted by considering this modeling scheme and considering the important 

working conditions of wire ropes. 

In the second chapter, historical and structural roots of wire ropes and application 

areas are presented. Various components of wire ropes are described and different 

lay types are explained. Some of the most popular type of strands such as Seale, 

Filler, and Warrington are included in this chapter.  

In chapter three, a survey to the literature is presented to show the researches about 

wire rope analysis in different aspects from the past to the present. Bases of the 

theory of wire ropes are explained at first. Then history of works on wire rope theory 

is mentioned. Four different theoretical models are presented and described. Among 

them helical rod model is extensively investigated and an enhanced literature survey 

is conducted on this theoretical model. Numbers of available test results are reported 

in the literature. These papers are summarized also in this chapter. At the end of this 

chapter, recent publications about wire ropes are investigated and presented.  

In chapter four, wire rope theory using rod theory is investigated over a helical 

spring. The angular velocity and curvature relations acting over a thin wire is 

derived. Deformations over a rod and relations with a helical spring are investigated. 
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Axial loading problem over a simple straight strand is defined analytically. The 

general equilibrium equation, which describes the axial loads and twisting moments 

acting over a rope, is derived. General strain and rotation relation due to load and 

moments over a simple straight strand is explained. At the end of this chapter, 

contacts and interactions between core wire and the outer single helical wires are 

described. 

In chapter five, equilibrium equations, for only bending moment, is defined and 

proved using Mapple®. Frictional effects over a strand are defined and static 

response of an independent wire rope core (IWRC) is investigated. The relation 

between the sheave and IWRC diameter is investigated for bending problem 

analytically. General theoretical formulation of an IWRC using the homogenization 

method is derived. 

In chapter six, modeling of wire rope geometry, which is a complicated issue because 

of the complex nature of the wires, is investigated. General definition of helices and 

a special form of a helix is described at first. Then the nested helical system also 

known as double helical geometry is investigated. A moving trihedron and plane 

construction over a helical wire geometry is defined using Frenet-Serret frames. A 

single or nested helical wire solid model construction is described. Then complex 

wire structures are modeled. Various computer aided design (CAD) codes are used to 

examine a good solid wire model without length limitation and the results are 

compared. A new code is developed using mathematical considerations of the single 

helical and nested helical wire geometry. A simple straight wire strand and an IWRC 

modeling is investigated and different lay types of IWRCs are presented. In addition, 

element selection for finite element analysis (FEA) and material properties 

definitions are prescribed in this chapter. 

In chapter seven, numerical results using FEA over a simple straight wire strand, 

IWRC and Seale IWRC are presented respectively. General considerations of the 

analysis models are defined first. Then a simple straight wire strand and an IWRC for 

a range of helix angles are modeled and analyzed under axial loading conditions for 

both elastic and plastic problems. In addition, wire radial contraction behavior over 

an IWRC is investigated. Complicated problems such as forced torsion and bending 

over a sheave are modeled and analyzed in this chapter. Bending over a sheave 

problem is solved using parallel computations and obtained results show the efficient 
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number of CPUs necessary to use with respect to CPU time. Using the proposed 

solid modeling scheme, a Seale IWRC is modeled and analyzed under axial loading 

conditions. A graphical user interface (GUI) code is developed which gathers all 

geometry modeling schemes of wire ropes. The code is named as Wire Rope 

Skeleton (WRS) and a brief explanation of the code is given. Later WRS code is 

developed and a new GUI code is implemented called as Wire Rope Model and 

Mesh Generator (WRMMG). It is designed to run as a stand-alone code and 

produces whole wire rope geometry automatically. At the end of this chapter, contact 

analysis of a simple straight strand is described and presented. Contacts interaction 

between wires are prescribed and included in the numerical models. Deformations 

takes place due to contact interactions between wires in a strand and a helical line of 

contact is maintained between wires. Wire radiuses are contracted due to contacts 

and the variation of wire radiuses with respect to strain is presented. Mesh size 

increament effect over a simple straight wire strand is analyzed and results are 

compared. One of the benefits of the proposed modeling scheme enables one to 

model wire ropes without length limitation. Using this modeling feature 1m-5m 

length wire strands are generated. Numerical analyses over these models are 

conducted and their discussions are presented in this chapter. Wire strand behaviors 

for steel and aluminum materials are compared also. During the numerical analysis, 

wire-by-wire basis investigations are conducted and the numerically obtained results 

are presented and compared with the theory and available test results. As an 

industrial inquery, wire lengths to manufacture a specific wire rope composition are 

computed by using mathematical consideration of each wire within a wire rope. 

As a result, more realistic 3-D solid model of the wire ropes for different lay types is 

constructed without length limitation. Modeling issue is achieved by a new scheme, 

which is based on the generation of each wire (center straight, single helical or nested 

helical wires) centerline with a written code using the parametrical definition of 

single and nested helical wire geometry. A numerical model using the wire-by-wire 

based analysis method is designed and the numerical results are compared with the 

theory and available test results in the literature. The application of the proposed 

scheme is applied to the bending over a sheave problem. In addition, modeling of a 

Seale IWRC is achieved which is a more complex type of wire rope. At the end, 

contact analysis over a wire strand is achieved and wire contraction is demonstrated. 
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Using the proposed modeling scheme 1m-5m wire strands are modeled and analyzed. 

This modeling scheme with the use of finite element analysis gives opportunity to 

analyze mechanical behavior of long wire ropes under various application areas. 
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2. ROPE HISTORY AND WIRE ROPE STRUCTURE 

2.1 Ancient history of ropes 

Ropes made of hides, hair or plant materials from part of the earliest achievements of 

human civilization. The oldest illustrations of ropes are dated from approximately 

12000 to 9000 BC. Remnants of ropes found in Finland are supposed to be from the 

Mesolithic period (9000-3000 BC); others found in Egypt and made of camel hair are 

more than 4000 years old. Some mural paintings in Egypt (ca. 2000 BC) show the 

production of ropes made of papyrus, leather or palm fibers as in Figure 2.1. 

 

Figure 2.1: Rope production in Egypt 2000 BC. 

Ropes were used for making fishing nets or traps, but also for lifting and dragging 

heavy loads. Figure 2.2 shows about 200 men dragging a colossal statue on a sledge 

with the help of four ropes. 

Leonardo da Vinci, the technological genius of the 15th and the 16th century, made 

two sketches of machines for the production of ropes. 
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Figure 2.2: Rope application in Egypt 2000 BC. 

In 1586, the papal master-builder Frederico Fontana supervises the erection of an 

obelisk in St.Peter's Square in Rome. After months of planning the stone weighing 

327tons is erected by the fantastically concerted action of more than 900 men, 75 

horses and with the help of a great number of reeving systems shown in Figure 2.3 

[1].  

 

Figure 2.3: Erecting the obelisk in St.Peter's Square in 1586. 

2.2 Early German and English Ropes  

The first operative wire ropes of the modern era in 1834 by Wilhelm August; “Julius 

Albert” a 49-year-old mining engineer at Clausthal in the German silver mines Harz 

Mountains from 1834 to 1854. He proposed the use of ropes made from steel wires 

and described how to make them. The wires used were 3.5mm in diameter. Four 

wires were twisted to form a strand; three strands were twisted into the finished rope. 

Both strands and ropes were twisted in the same direction, i.e. they were ‘lang lay’ 

by today’s terminology. The rope was dipped into a pan containing a mixture of 1/3 
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oil and 2/3 resin from coniferous trees. This was, as Mr. Albert stated, to protect the 

steel against rusting in the humid mine shafts. At the end of the production process, 

the ropes were formed into coils for shipment to the mine hoists. These handmade 

ropes, known as Albert Ropes were not very flexible because the wires were 

relatively large and stiff [2]. 

2.3 Wire Ropes and American Railroads 

In Pennsylvania, a cross-country transportation system known as the Allegheny 

Portage RR agreed to test a handmade wire rope in 1842 as a substitute for hemp 

ropes. 

Roebling twisted the wires together by hand, like the Albert ropes, adopted the six-

strand-plus-core arrangement favored by Smith and Newall. Roebling's ropes, 

however, were made entirely of wire, utilizing a core that was identical to the six 

outer strands, each comprised of 19 wires. Roebling gave up surveying to 

concentrate on rope making, building a large factory in Trenton, N.J., in 1849.  

In San Francisco, the dilemma of short-rope service was tackled by Thomas Seale, 

whose solution soon became the accepted answer to the problem of severe outerwear 

combined with multiple reverse bending over small-diameter sheaves. Seale's patent 

(#315,077 April 7, 1885) is based upon rearranging the three wire sizes into an 

entirely different pattern so that all the largest wire sizes are side-by-side on the 

exterior of the strand. James Stone's patent (#416,189 December 3, 1889) described 

what is now known as 6x25 filler wire construction [3]. 

2.4 Wire rope structure 

The general geometry of a wire rope is given in Figure 2.4. Helical shaped wires are 

used to compose strands. Wire rope is composed by wrapping a core strand with a 

number of outer strands. The strands themselves have a center wire, which is the 

axial member around which the individual metallic wires are wrapped helically. It 

should be mentioned that the major portion of the load acting on a rope is carried by 

the strands. The main purpose of the core is to provide proper support for the strands 

under normal bending and loading conditions.  
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Figure 2.4: Various components of a wire rope. 

Generally the wire ropes are identified by the way its strands have been laid around 

the core; a right regular lay, a left regular lay, a right lang lay and a left lang lay wire 

cores as shown in Figure 2.5.  

     

 (a) sZ   (b) zS             (c) zZ   (d) sS 

Figure 2.5: Lay types for a wire rope: (a) Right Regular Lay, (b) Left Regular Lay, 
(c) Right Lang Lay, (d) Left Lang Lay. 

Right lang lay rope is composed by a center straight strand with right lay wrapped by 

a right lay outer strand. In the right regular lay rope, the lay of the wires in the outer 

strand is left lay, which is in opposite direction to the core strand [4]. The basic 
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element of all these cables is a simple straight strand, which is made of a core and 

one layer of helical wires [1]. The centre wire lay stretched in that strand whereas the 

other wires formed a helix. As a result, the rope elements were of different lengths 

and had a different shape in the rope. Moreover, it was not possible any more to 

inspect all the wires because the centre wire remained concealed from any angle. In 

Figure 2.6, a strand is composed with a straight center wire wrapped around with six 

helical wires as shown. 

 

Figure 2.6: (1+6) wire strand. 

Figure 2.7 shows cross sectional constructions of the basic strands: Seale, Filler, and 

Warrington types. In Figure 2.8 a 6x36 Warrington-Seale wire rope with steel 

independent wire rope core (IWRC) is presented. Figure 2.9 shows a rotation-

resistant wire rope that has a steel core, which is an independent rope, closed in the 

opposite direction to the outer strands. Under load, the core tries to twist the rope in 

one direction; the outer strands try to twist it in the opposite direction. 

 

  (a) Seale 19  (b)  Filler strand  (c) Warrington strand 

Figure 2.7: Cross sectional constructions of the basic strands. 
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Figure 2.8: Wire rope with steel core (6x36 Warrington-Seale IWRC). 

 
 
 

 

Figure 2.9: Rotation resistant rope. 
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3. SURVEY TO THE LITERATURE 

3.1 Bases of the theory of wire ropes 

Steel wire ropes have been widely employed for many different applications like, in 

particular, bridges and pre-stressed structures. This is why they constitute a natural 

field of research in civil engineering and mechanical engineering. Late 1970’s wire 

rope theory has been widely investigated by a number of researchers because of its 

complex usage area. 

The most analyses of wire ropes are based on the well-known classical treatise on 

elasticity by Love in 1944. A general theory of thin rods are included and 

investigated extensively by Love. General equilibrium equations of a thin rod on arc 

length s is derived and presented in [5]. 

The analytical and numerical solutions of wire ropes are based on the equilibrium 

equations as the starting point for the solutions in most of the papers included in the 

literature. 

The mechanical behaviors of the wire ropes are investigated in a valuable reference 

book, which is written by Timoshenko. The reference [6] is included a chapter based 

on torsion and shed light to the bending analysis of the open-coiled helical springs in 

axial plane by bending moment and lateral load. 

Green and Laws in general theory of rods [7] mentioned to a restricted and linearized 

form to determine stresses in helical constituent wires in cables. 

Hruska’s [8] pioneering study in 1951 is possibly the first paper in the literature 

investigating the mechanical behavior of wire ropes using the simplest constraints. 

However, it shed a big light to other researchers beginning from 1970’s.  

3.2 History of works on wire rope theory 

In consequence of its complex shapes, it is a difficult task to analyze each wire in a 

strand to see stress and load distributions along the ropes. To cope with this difficulty 
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number of papers have been published which mentions the analytical solution of the 

wire rope theory. Pioneering works of Hruska [8-10] date back to the early fifties. He 

worked out a simple theory for wire ropes in tension and torsion, considering that the 

wires are only subjected to pure tensile forces and neglecting the clamping 

conditions. As a result, he did not deal with the actual contact stresses. Since then, 

Costello [11], and later, Utting and Jones [12,13] have followed a more fundamental 

approach. They treat each wire within a wire rope as a helically curved rod but make 

differing assumptions relative to the rope geometry or the interwire contacts. The 

different theories produce results, which remain close to the experimental values 

presented by Utting and Jones [12-13], but the question of the actual relative 

displacements and forces within a rope is nevertheless still open. In addition, there 

were numbers of theoretical studies conducted and underway. 

On the other hand, at the beginning of the seventies, the finite element method used 

for the study of rope by Carlson and Kasper [14], who built a simplified model for 

armored ropes. Then, Cutchins et al. [15] dealt with the study of damping isolators. 

The usefulness of wire rope in shock and vibration isolation is briefly reviewed and 

its modeling, for the purpose of vibration analysis, is addressed in [16]. Chiang [17] 

modeled a small length of a single strand wire rope for geometric optimization 

purposes. A theoretical insight is given into the non-linear free bending 

characteristics of axially preloaded and large diameter sheathed spiral strands 

experiencing high external hydrostatic pressure in [18]. Various design 

methodologies of wire rope based systems are investigated in [19-22]. Analytical 

models of wire rope theory are compared in [23]. Finite extension of an elastic strand 

with a central core surrounded by a single layer of helical wires is subjected to axial 

forces and twisting moments. Huang uses theory of slender curved rods in his study 

[24]. The effect of wire rope mechanics on the material properties of cord 

composites, compressive loading conditions are presented in [25-28]. The bending of 

cord composite plates, cord composite laminate cylindrical shells, and cord 

composite cylindrical shells investigated respectively in [29-31]. The theoretical 

results are utilized to obtain analytical expressions for the maximum contact stresses 

induced in the multilayered strands with metallic wire core in [32]. Jiang et al. [33] 

proposed a concise finite element model for wire ropes using three-dimensional solid 

brick elements, which takes benefit from the structural and loading symmetries. The 
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model takes into account the combined effects of tension, shear, bending, torsion, 

contact, friction, and local plastic yielding in axially loaded simple straight strands 

nevertheless it cannot be generalized to the case of bending or more complex 

loadings. Nawrocki [34] et al., modeled simple straight wire rope strands using finite 

element method, which considers every possible interwire motion.  

Mainly four theoretical models, which are important and appeared in the literatures, 

are presented with a brief summary. 

3.3 Theoretical models 

Mechanical models of helical strands are listed as follows, 

• Purely tensile or fiber model, 

• Semi-continuous strand model, 

• Theory of thin rods model, 

• Helical rod model. 

Purely tensile or fiber model is due to Hruska [8], based on the most simple 

hypotheses; no end condition effects, contact mode is purely radial, radial 

contradiction is neglected, pure tensile forces are applied, there is no moments, 

friction can be neglected and the global strand strain is assumed small. Afterward, 

this theory extended to include compressible core by Knapp [35]. 

The analysis of fiber-core wire rope with multilayered strands developed that the 

rope is subjected to both an axial force and an axial twisting moment. Linear theory 

for helically shaped wires is used and the equations governing compliance of the 

fiber core are formulated in a linear fashion. The resultant linear equations are solved 

easily and the theory is applied to a 6x19 Seale fiber-core wire rope. A load-

deformation curve for a Seale fiber-core wire rope is obtained experimentally. The 

theoretically predicted effective modulus of elasticity and the predicted effective 

Poisson’s ratio of the rope compare favorably with the experimental results in [36]. 

Semi-continuous strand model known as orthotropic sheet model (OSM) is fist 

introduced by Hobbs and Raoof in 1982 [37], developed and applied in variety of 

problems in the literature in a number of papers [38-50]. Essentially the layers of 

wires in a strand are modeled as a series of cylindrical orthotropic sheets, prestressed 
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by the action of a mean axial load, for which the buildup of the clench forces from 

the outside layer inwards is obtained by solving a sequence of compatibility 

conditions. The properties of the orthotropic sheets can be established for the whole 

range between two clear limiting cases; for small load perturbations, no line-contact 

slip occurs, while for large enough disturbances, where fully developed slip takes 

place, interwire friction forces become negligible compared to force changes in the 

wires themselves [38]. 

Two semicontinuous models for wire strand analysis compared that use 

semicontinuous approach to predict the behavior of multilayered wire strands under 

axial and bending loads. Hobbs and Raoof in 1982, Jolicoeur and Cordou in 1996 

develop these models. Theoretical differences and similarities between the two 

models are highlighted. Static stiffness results are obtained for a seven-wire steel 

strand and for a multilayered electric overhead conductor. In bending stiffness two 

discrete models referenced, Lanteigne’s model [51] is accepted as an upper bound 

while Costello’s model [11] accepted as a lower bound for bending stiffness [52]. 

Theory of thin rod is first introduced by Ramsey in 1988. It is based on the direct 

approach of Green and Laws [7], derived and applied in a restricted and linearized 

form to determine stresses in helical constituent wires in cables. Uniform extension, 

twisting, and bending of cables are considered [53]. 

Helical rod model is introduced by Phillips and Costello [54] based on the 

equilibrium equations given by Love [5]. Costello et al. investigated different aspects 

of wire ropes and presented them in a number of papers [54-73], and in 1990, 

Costello wrote a monograph summarizing these papers [11]. Recently Jiang [74] has 

proposed a general formulation of this theory for multi-strand ropes. 

A brief survey to the literature for helical rod model is done. The literatures 

considered important are summarized in sorted order according to publication dates. 

The solution of the problem of a helical spring subjected to an axial force and an 

axial twisting moment is presented in the work of Love [5]. 

The method of separating the cable into thin wires and solving the general nonlinear 

equations for the bending and twisting of a thin rod subjected to line loads. Phillips 

and Costello took this point of view and examined the six nonlinear equations of 

equilibrium for each wire. It is assumed that the cable is loaded by an axial force and 
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twisting moment. There are no frictional forces between the wires, and in the initial 

unloaded configuration of the cable, the wires are just touching each other. It is 

further assumed that the cable consists of a single layer of wires, and that, if the cable 

has a central core, the core is relatively soft in comparison to the cable wires, or it is 

undersized. So the radial force exerted by the core on the wires may be neglected. An 

exact solution for the deformed wire configuration is presented, from which all the 

stresses, bending, twisting, axial loading, and contact can be calculated [54]. 

Taking advantage of geometric considerations explicit expressions for the 

determination of axial force, bending and twisting moments in the helical wires, and 

for the axial force and twisting moment in the core of a 7-wire strand subjected to 

axial and torsional displacements are given. Each helical wire assumed to be in 

contact with the two adjacent wires, with the core, or with both core and adjacent 

wires. The analytical expressions for axial force, bending moment, twisting moment 

and contact forces between wires are presented. At the end, experimental and 

theoretical findings are compared. The small lay angle and consequent large helix 

radius of the model produces only a small contact force, and so a small friction force. 

This helps to explain the agreement with the theory, which neglects frictional forces 

[75]. 

In the papers [54,64], the cable is separated into thin helical wires, and the general 

nonlinear equations of equilibrium for each wire, including the effects of contact line 

loads are solved. Friction is neglected, and the wires are assumed inextensible. 

Costello neglected friction again, but the inextensibility assumption is removed so 

the wire strain becomes a new independent variable. Although the wire strain is 

assumed to be small, it is still possible to have large cable strains if the change in 

helix-angle is large. In addition, a prediction of the effective modulus of twisted wire 

cables by investigating the load-deflection curves at zero loads for two common 

types of end-condition is given in [63]. 

The spring which is considered curved thin rod, can suffer large deformations. The 

solution is exact in those six nonlinear equations of equilibrium given in [5] and 

satisfied. If the spring is not permitted to expand radially by some type of cylindrical 

constraint, the spring stiffness will increase. Costello investigated the pure bending 

of a helical spring with large deflections in [56]. 



 16 

Costello presents static behavior of wire rope with a frictionless theory. The solution 

shows that it is valid for complex cross sections that are usually found in practice 

[61]. 

Wires of a strand, which is wound in different directions, is considered for the static 

response by Costello. In the right lay-regular lay rope under tension, a tightening up 

of wires in the strand is produced. Numerical results for two cases presented; (i) 

ropes with zero end-moment and (ii) ropes restraint against rotation. The usage 

conditions for lang lay rope and regular lay ropes are compared. A lang lay rope 

should never be used where the ends of the rope are free to rotate [4]. 

The initial configuration of a rope, consisting of a left lay rope and a right lay outer 

rope, which will not rotate under axial loading, is determined in [62]. Friction is 

neglected and results are produced for a 1x19 rope. The theory can be applied to 

ropes with various other cross sections. 

The static response of wire rope subjected to tension, torsion and bending which 

occurs frequently in ropes wrapped around sheaves is analyzed. Since the rope is 

generally restraint against rotation, a twisting moment is developed in the rope in 

addition to the tension and bending in [58]. 

Velinsky presents a theory that will predict the axial static response of a wire rope 

with complex cross sections such as a 6x19 scale IWRC. The results show that, if the 

rope is not allowed to rotate, the maximum tensile stress occurs in the center wire 

[60,76]. 

The mechanical behavior of ACSR (aluminum conductor steel reinforced) 

conductors under static-loading conditions, which may comprise any combination of 

tension, torsion and bending, is concerned. A stiffness matrix is developed and 

relations are presented for axial, torsional, and flexural rigidities and for coupling 

parameters. Results obtained for bending is compared with Costello [59] and found 

in good relation [51]. 

The length, measured from the fractured end of a wire, in which the wire will be able 

to carry its appropriate share of the load, is determined in [71]. This effective length 

estimation is based on the contact loads between the wires, Coulomb type friction, 

and Saint-Venant’s principle. A simple straight strand is considered and the result 

indicate that a broken center wire picks up its appropriate load in less that 1.25 times 
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the pitch of the outer six wires. In the Seale IWRC wire rope, an outer wire picks up 

its share of the load in less than 1.18 times the pitch of the strands. The theory 

indicates that this effective length to the pitch of the outer strand is a constant for a 

given type cross section [71]. 

Stresses in the individual wires of complex wire rope are determined for rope 

constructions having an internal-wire-rope-core. The ropes may be pulled, twisted, 

and bent over a sheave or a drum. The effects of friction are neglected. Specific 

results for a 6x25 filler-wire IWRC rope that is prevented from twisting indicate that 

the maximum stresses are typically 1.5 to 3 times as large as the nominal rope stress 

based on rope load and total metallic area. In addition, predicted values of the 

“effective modulus” are slightly higher than given in the literature for the IWRC. The 

results may be extended by superposition to include the important case of loaded 

ropes pulled over a sheave or bent around a drum [73]. 

A general nonlinear theory has been developed to analyze complex wire ropes by 

Velinsky. The nonlinear equations of equilibrium for bending and twisting of thin 

rods are applied to a 6x19 Seale wire rope with an IWRC. The results of the 

nonlinear theory are compared to the recently developed linear theory and found to 

be nearly identical in the load range in which the most wire ropes are used. At the 

end, it has been concluded in [77] that the nonlinear theory for complex wire rope 

has no significant advantage over the linear theory. 

Closed-form solutions are developed for elastic deformation characteristics of 

multilayered strands under tensile and torsional loads. These analytical results are 

applied to obtain expressions for the effective extensional and torsional moduli of 

rigidity for the strands. The effects of the layout of layers, number of wires in each 

layer, and of course, the direction and magnitude of lay angles on these important 

deformation characteristics are clearly described. The examples considered in the 

paper demonstrate the computational ease and effectiveness with which the closed-

form solution can be utilized in various studies [78]. 

Velinsky presents a design methodology for wire strand geometry based on a 

detailed geometrical analysis. The nonlinear geometric equations were solved 

numerically and then, the solutions were curve fit such that strand design could be 

accomplished by merely substituting values into polynomial expressions [79]. 



 18 

Different types of cores; independent wire-rope-core (IWRC), fiber core (FC), and 

wire-strand-core (WSC) are examined and the mechanics of wire ropes described 

respectively. Various parameters in the design of wire ropes are examined in [80]. 

Jiang presents a general formulation of the nonlinear and linear analysis of wire 

ropes. In the formulation, wires, strands, and wire ropes are all considered as a kind 

of identical structure, which is characterized by seven stiffness and deformation 

constants, and they can be used in the same way, as component elements in some 

layered general structures. Based on this point, the general formulation given to 

analyze; wire ropes of various complex cross sections and simple wire strands as 

well in [74]. 

A symmetric linear elastic model for helical wire strand has been derived using 

discrete thin rod theory by Sathikh et al. A strand with a rigid core and one layer of 

helical wires having only core-to-wire contact (resting lay) has been analyzed taking 

into account the wire tension, twist and bending together, for its response under 

axisymmetric axial tension and torsion. The authors derive the symmetric stiffness 

matrix. Analysis of the derived model showed that earlier models, in spite of lacking 

symmetry of the stiffness matrix, do not cause any significant error over a wide range 

of helical angles. It has also seen that Costello’s model [63] is much closer to the test 

measurements in spite of lack of symmetric stiffness matrix. Also a brief comparison 

of models given in the literature in [8,35,63,51,75,78,81] are compared [82]. 

Numbers of thesis are conducted over the wire rope theory and analysis. A theory is 

developed which is capable of analyzing the static response of wire ropes with 

complex cross sections. The basis of the theory is the linearization of the solution to 

the non-linear equations of equilibrium, which the individual wires in the rope are 

examined in [76].  

A geometrically nonlinear formulation for forces on wire ropes is presented which 

includes the coupling between the axial and torsional behavior of the ropes in [83]. 

By analyzing the stresses of individual wires for a loaded and bent 6x19 Seale 

IWRC, (D/d)σnom/E - σmax/σnom diagram is plotted. When the sheave diameter, rope 

diameter and load are known, an estimate of the stresses of individual wires for a 

6x19 Seale IWRC can be determined by using the related diagram [84]. 
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The formulation of helically symmetric boundary conditions is used and a general 

strand model using the finite element method is presented for a basic sector of a 

simple straight strand in [85]. 

3.4 Experimental studies 

Stress distribution and load transfer on wire strands subjected to various loading 

conditions is tested experimentally. General considerations on geometry of the strand 

are; ideal strand, variations from the ideal case and non-linear behavior is expressed. 

The four important loads considered and presented are; axial load with the ends of 

the strand restrained from rotation, axial load with the ends free to rotate, torsion and 

bending. The deviations from the theoretically predicted ideal behavior are 

surprisingly large, and the experimental results show non-linear elastic behavior. 

Those deviations may be due to initial irregularities in geometry of the strand, e.g., 

gaps between wires, different length of wires, etc [86]. 

Utting and Jones report experimental tests on wire rope strands subjected to static 

axial loads. The wire rope strands are held with a polyester resin and silica filler in 

conical end grips, which are capable of full end fixity, partial restraint, or zero 

torsional resistance (free ends). Strain gauge load cells monitor the tensile load and 

the associated twisting moment developed in a strand, which is restrained at both 

ends. A new instrument ‘extrometer’ designed to record simultaneously the extension 

and rotation over a predetermined gauge length. Strain gauges are used to measure 

the surface strains on the wires in the outer layer of the strand. Preliminary tests on 

seven-wire strands demonstrated that the extrometer instrument provides reliable 

results [87]. 

A series of carefully instrumented tests on straight steel strands of seven-wire 

construction having a range of practical lay angels are presented in [12]. Details of 

the tests are given in the article and a new mathematical model for the strand 

response is presented which takes account to friction between the individual wires, 

Poisson ratio effects and flattening of the individual wires in Part I [12]. 

Part II [13] is a companion paper to part I of [12]. Theoretical predictions with 

previously published analytical work and the corresponding experimental results 

reported for the following situations. Torque generated in a strand under axial 
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loading found to be larger in strands with smaller helix angles. The strand extension 

under a given load is greater for strands with less torsional restraint on the end 

terminations. The strand rotation under a given loading found to be greater with less 

torsional restraint on the end terminations and is larger for strands with a lower helix 

angle. The numerical predictions for the surface strains on the helical wires, which 

take account of interwire friction, are closer to the experimental results at the mid-

strand. The surface strains measured on the helical wires reveal an unevenness of 

loading between the wires that is more pronounced for small torsional restraints on 

the strand ends [13]. 

Raoof and Hobbs reported torsional characteristics of substantial structural strands. 

Experimental results for an old and fully bedded-in 39mm diameter, 91-wire spiral 

strand and some theoretical predictions are given. The theory treats the individual 

layers of wires in a strand as orthotropic sheets and, via established results in contact 

stress theory, takes full account of the frictional interactions between wires. Static 

and dynamic torsional stiffness and hysteresis data are presented for axially 

preloaded strands [88]. 

3.5 Recent publications about wire ropes 

A finite element model of a seven-wire strand is considered to establish the 

termination effects. The cyclic symmetric features of the strand are taken into 

account to reduce the length of the model. In addition, the fixed-end termination 

effects over the contact forces and the relative movements between wires along the 

contact line are considered using frictional effects in the spiral strands in [89]. 

A concise finite element model, which takes full advantage of the helical symmetry 

features of a strand, has been developed for a simple straight strand in [90]. Taking 

the advantage of the helical symmetry of a strand, a slice of 1/12 of a 7-wire strand 

has been considered as the basic sector for the analysis with ANSYS program. 

Three-dimensional solid brick elements used for structural discretization. In the 

implementation of the finite element analysis, precise boundary conditions were 

established and hence more accurate are obtained. The results are compared with 

elasticity theory of Costello [11] and experimental data of Utting and Jones [12,13], 

and shows excellent agreement in the determination of the global responses of a 

simple straight wire rope strand [33]. Also as a continuous study, a three-layered 



 21 

form to show axial loadings of a simple straight strand is presented in [90]. The 

formulation of helically symmetric boundary conditions for finite element modeling 

is explained in [91]. 

Nawrocki has given a finite element model of a simple straight strand based on a 

Cartesian isoparametric formulation. Every possible interwire motion is taken into 

account. Interwire pivoting is shown to be the most important and rules the axial 

strand behavior, and interwire sliding is predominant in bending. Comparisons with 

experimental data showed that pivoting could be considered as free in a real strand. 

A variational and then a finite element formulation of the problems are given. It has 

been shown that bending has no influence on the core tension [34]. 

For simulating the mechanical response of a wire rope with an IWRC, a new model, 

which fully considers the double-helix configuration of individual wires within the 

wound strand in contrast to the previous models that, considers the effective response 

of wound strand. This enables directly to relate the wire level stress to the overall 

applied load at rope level. The model assumes a fiber response of individual wires 

[92]. 

The modeling of the axial behavior of synthetic ropes is presented. The structures 

considered are simple straight strand cables consisting of six helical wires wrapped 

around a straight core. The loading consists of an axial force and torque. The 

objectivity of the study is to determine the validity domain of the two analytical 

models developed by Costello and Labrosse for the predictions of the corresponding 

four stiffness matrix components. Reference results are obtained from SAMCEF 

finite element code. The validity of this model is limited to small helix angles but for 

typical synthetic rope constructions, these are within range [94]. 

Ghoreishi et al have developed a non-linear elastic continuum model for the analysis 

of the overall axial stiffness of fibrous structures with a large number of twisted 

components. By contrast with multilayered approaches, the structure under 

consideration is depicted as a set of coaxial helixes only characterized by their 

external lay angle and corresponding radius. The constitutive material is assumed 

linear. Static monotonic axial loads are considered, the inter-fiber friction effects are 

not taken into account. Moreover, the studied structures exhibiting small lay angles, 

the overall diametric contractions are neglected, which may contribute to the 

overestimation of stiffness. The analytical model developed leads to useful closed-
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form expressions thus allowing rope constructions to be optimized. The model 

compared with models of the literature. The results obtained, have shown that all the 

models give results that agree reasonably well with each other, except with respect to 

the torsion stiffness, for which there is a significant difference [95]. 

Ghoreishi et al have developed a linear elastic model for the computation of the 

elastic axial stiffness terms of a fibrous structure, made of six helical strands 

wrapped around a straight core (1+6 wire structure). A model designed for metallic 

cables has been modified for synthetic fiber ropes applications. The bending 

moments and shear forces are neglected. The elastic tensile and torsion behavior of 

constituents are taken into account, with coupling which appears from the 

construction effect. The approach developed by the authors leads to analytical 

closed-form expressions. The model has first compared with Leech’s model 

implemented in FRM software and gave to provide similar results, except with 

respect to the torsion term, for which there is a significant difference [96]. 

Throughout the literature search, Jiang et. al. investigated simple straight strands 

numerical models considering only basic sectors and analyzed by using the finite 

element method in [33,89-91]. In addition, Nawrocki-Labrosse studied all the 

possible interwire motions by writing a code using finite element method. Elata et.al. 

gave an illustration for an IWRC model using double helical parametric equations 

and conducted an analytical model in their study [92]. There were no realistic 3-D 

IWRC solid modeling scheme is available in the literature. One of the aims of this 

thesis is to give an insight to model a complex shaped design of wire rope such as 

IWRC and Seale IWRC using the advantage of the nested (double) helical geometry. 

In addition, different loading conditions are investigated using 3-D solid models. 

Various lay types of IWRCs are modeled and analyzed numerically. Through this 

research, modeling nested helical wires are found to be complicated via CAD 

software’s and a new code is written to accomplish this issue. In addition, the length 

limitation of the current CAD tools are confronted as a problem and a solution 

strategy is developed for modeling complex wire ropes. An extensive literature 

search is given in this study. Validity of the proposed modeling approach is provided 

by the comparison of numerical, analytical, and available test results in literature. An 

application of the proposed modeling scheme is applied to wire rope bent over 

sheave problem. While bending problem solution process, reaction force distribution 
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over the encastre boundary is investigated. In addition, stress distribution over the 

IWRC is presented. Finally, a 6x19 wire Seale IWRC model is constructed and 

analyzed. Wire behavior under axial loading condition on a Seale IWRC is 

investigated. At the end a simple straight strand solid model for 1m-5m is created and 

an axial loading analysis is conducted to show the proposed solid modeling schemes 

accuracy to analyze wire ropes without lack of any length limitation. In this aspect 

wire rope behavior is analysed with different lay lengths using 1m-5m wire strand 

models. In addition, interactions between wires, which brings contact force and 

contact pressure is analyzed over a wire strand. Due to contact interactions, there 

occurs a deformation in each wire within a strand. Wire contraction is measured with 

respect to strain and results are presented. 
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4. WIRE ROPE THEORY 

In this chapter, a general wire rope theory is presented. First of all the kinematics of a 

thin wire is derived, subsequently general equilibrium equations are given and 

proved over a thin wire. 

4.1 Deformations over a rod and relations with a helical spring 

A coordinate system, with a standard basis { }1 2 3, ,e e e  is defined over an undeformed 

straight rod, which can be predicted as a cylinder in 3-D system. Position vector of a 

material particle at the reference configuration is x i ix e= , where 1 2 0x x= =  

corresponds to the centroid of the cross section which is a circle, and 3x  is the height 

above the base of the cylinder. After deformation, the axis of the cylinder lies on a 

smooth curve and the point 3 3x x e=  moves to a new position 3x ( )r x′ = . Deformed 

cross-section are shown by a new basis which is { }1 2 3, ,v v v  and, 3v  is chosen to be 

parallel to the axis of the deformed rod, 1v  is parallel to the line of material points at 

the cross section and perpendicular to 3v , and it should be impressed that the new 

basis vectors are all functions of 3x . Deformed cross-section and its representation 

by using { }1 2 3, ,v v v  basis are related with the Euler angles ( ), ,θ φ ψ . Euler angles are 

a means of representing the spatial orientation of any frame of the space as a 

composition of rotations from a reference frame. In the following, the fixed system is 

denoted by { }1 2 3, ,e e e  and the rotated system is denoted by { }1 2 3, ,v v v . The definition 

is static. The intersection of 1 2e e  and 1 2v v  coordinate planes is called the line of 

nodes (Q) and given in Figure 4.1. 

• φ  is the angle between the 1e -axis and the line of nodes Q , 

• θ  is the angle between the 3e -axis and the 3v -axis, 

• ψ  is the angle between the line of nodes Q  and the 1v -axis.  
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Figure 4.1: Euler angles and cylindrical coordinates over a cross-section. 

Let s  denote the arc length of the rod in deformed configuration and velocity vector 

is given by V
dr

dt
= . Rate of rotation of the rod is given by the angular velocity 

i ivω ω=  of the basis { }1 2 3, ,v v v  and it is related by velocity vector V and the twist ψ  

by, 

3 3

Vd
v v

ds
ω ψ= × + . 

Over the deformed curve; tangent vector, normal vector and curvature, and binormal 

vector are defined respectively as, 

3 3 3
3

3 3

,     ,    ,
dx dv dxdr dr dt

t v n b t n
ds dx ds ds dx ds

κ= = = = = = ×  

where n  is a unit vector. These vectors correspond to a basis of { }, ,t n b  and known 

as Frenet-Serret triad. The torsion of the curve is defined as 
db

n
ds

τ = − . Relation of 

{ }1 2 3, ,e e e  and { }1 2 3, ,v v v  basis with respect to Euler angles are given in equation 

(4.1), 
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 (4.1) 

The basis { }1 2 3, ,v v v  moves through the deformed rod. In this aspect the basis vector 

{ }1 2 3, ,v v v  is rotated with an angular velocity which depends on curvature and twist 

along the deformed rod. The system of axes constructed is called as the “principal 

torsion-flexure axes” of the wire at any point on the deformed state. Curvature vector 

is characterized the rate of change with arc-length and defined with respect to the 

basis vectors { }1 2 3, ,v v v , as i ivκ κ= , and similar to an angular velocity vector. The 

curvature vector is related to the rate of change of 
iv  with s  by i

i

dv
v

ds
κ= × , and can 

be written for 1,2,3i =  as, 

 31 2
2 3 3 2 1 3 3 1 1 2 2 1,  ,  .

dvdv dv
v v v v v v

ds ds ds
κ κ κ κ κ κ= − + = − = − +  (4.2) 

The derivatives, idv

ds
 with respect to s , can be computed in terms of the Euler 

angles. The following equation shows the derivative of 3v  with respect to s , 

   ( ) ( )3
1 2 1 2 3cos cos sin sin sin cos sin

dv d d d
e e e e e

ds ds ds ds

θ φ θ
θ φ φ θ φ φ θ= + + − + − . (4.3) 

In addition, it is straightforward to find the derivatives with respect to 1,2i = . After 

the derivatives are computed as in equation (4.3), one can construct a system of 

equations relating these derivatives by using equations given in (4.2) with curvatures 

1 2,  κ κ  and the twist 3κ  by putting the equation (4.1) in (4.2) to relate the { }1 2 3, ,v v v  

basis with the { }1 2 3, ,e e e  basis. One can solve these systems of equations to find 

unknown curvatures 1 2,  κ κ  and the twist 3κ  related to the Euler angles as follows, 
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1

2

3

sin cos sin ,

cos sin sin ,

cos .

d d

ds ds

d d

ds ds

d d

ds ds

θ φ
κ ψ ψ θ

θ φ
κ ψ ψ θ

ψ φ
κ θ

= −

= +

= +

 (4.4) 

Arc length s  along the rod’s centerline is related to the position vector of the rod’s 

axis by, 

 
3 3 3

ds dr dr

dx dx dx
= . (4.5) 

4.2 Rod bent and twisted into a single helix 

Consider an initially straight and unstressed rod with a circular cross-section. Then it 

is subjected to forces F  and moments M  on its ends to bend and twist it into a 

helical shape with helix radius r , helix angle α , pitch length of the helix is given as 

p  and related to helix angle α  as, tan
2

p

r
α

π
= . The deformed rod geometry is 

easily explained by using the cylindrical coordinate system ( )ˆ, ,r zθ  and basis 

{ }, ,r ze e eθ  as shown in Figure 4.2. 

 

Figure 4.2: Cylindrical coordinate system ( )ˆ, ,r zθ  and basis { }, ,r ze e eθ . 
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Tangent and binormal vectors are written in terms of basis vectors as, 

 3 cos sin ,

sin cos .
z

z

t v e e

b e e

θ

θ

α α

α α

= = +

= − +
 (4.6) 

Taking ˆ 0zθ = =  at 0s = , cylindrical polar coordinates are related to arc-length by, 

 ˆ cos ,  sin ,
s

z s
r

θ α α= =  (4.7) 

and the basis vectors are also satisfies, 

 ,  ,  0.
ˆ ˆ ˆ
r z

r

dede de
e e

d d d

θ
θ

θ θ θ
= = − =  (4.8) 

Using the relations given in equations (4.7) and (4.8) derivatives ,  and r z
dede de

ds ds ds

θ  

are given in the following form, 

 
cos cos

,  ,  0r z
r

dede de
e e

ds r ds r ds

θ
θ

α α
= = − = . (4.9) 

The position vector of a point on the axis of the rod is given as, 

 r r zre ze= + , (4.10) 

and the tangent vector 3v  can be written with respect to this position vector as, 

 
dr

,
ds

r
z

de dz
r e

ds ds
= +  (4.11) 

which gives, 

 3 cos sin .zt v e eθα α= = +  (4.12) 

4.3 Curvatures and twist definition over a helical spring 

Over a helical spring using the preceding theory, choosing 1v  and 2v  parallel to the 

normal vector n  and binormal vector b  of the undeformed spring respectively gives 

the relation, 
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 1 rv e= −  (4.13) 

 2 sin cos ,zv e eθα α= − +  (4.14) 

and 3v  as can be written from the equation (4.12) as, 

 3 cos sin zv e eθα α= + . (4.15) 

Taking the derivatives of equation (4.13)-(4.15) with respect to s  gives the 

following, 

 31 2,  sin cos ,  cos sin .r z z
de dv dedv de dv de de

ds ds ds ds ds ds ds ds

θ θα α α α= − = − + = +  (4.16) 

Using the relations given in equation (4.9), 

 
2

31 2cos sin cos cos
,  ,  .r r

dvdv dv
e e e

ds r ds r ds r
θ

α α α α−
= − = =  (4.17) 

The equations given in (4.13)-(4.15) can be put in equations (4.2) to find the relations 

of this derivatives with Euler angles and simplifying the equations will give the 

relations as follow, 

 

( ) ( )1
2 3 2 3

2
3 1 1

3
2 1 1

cos sin sin cos ,

cos sin ,

sin cos .

z

r z

r z

dv
e e

ds

dv
e e e

ds

dv
e e e

ds

θ

θ

θ

κ α κ α κ α κ α

κ κ α κ α

κ κ α κ α

= − − + − +

= + +

= − + −

 (4.18) 

The equations given in (4.17) and (4.18) constructs a pair for each derivatives of iv  

and could be solved for the curvatures 1 2,  κ κ  and the twist 3κ  as, 

 
2

1 2 3

cos sin cos
0,  ,  .

r r

α α α
κ κ κ= = =  (4.19) 

These curvatures and twist ( )1 2 3, ,κ κ κ  are named as ( )0 0 0, ,κ κ τ′  in the proceeding 

sections while the angular velocity is defined as, 
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 0
0

0 0 0

cos2
,

2 / cos
k k

r r

απ
ω

π α
= =

� ��
 (4.20) 

where k
�

 is the unit vector in the direction of z  as shown in Figure 4.3, 0α  is the 

helix angle with ( 1x , 1y ) plane, 0r  is the helix radius. The curvatures and twist is 

defined in the initial condition as, 

 
2

0 0 0
0 0 0

0 0

cos sin cos
0;       and   .

r r

α α α
κ κ τ′= = =  (4.21) 

 

Figure 4.3: Undeformed helical spring and torsion-flexural axis. 

4.4 Loads and moments acting on a thin wire 

A loaded thin wire, with the force distribution over it, is shown in Figure 4.4.  

 

Figure 4.4: Loads and moments over a thin wire. 
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The arc length is described by the variable s  over the thin wire. The direction 

cosines of the forces N dN+ , N dN′ ′+  and T dT+  with the x , y  and z  axes are 

given in Table 4.1.  

Table 4.1: Direction cosines for the forces. 

Direction cosines N dN+  N dN′ ′+  T dT+  

l  1 dsτ−  dsκ ′  

m  τ  1 dsκ−  

n  dsκ ′−  dsκ ′  1 

Summation of the forces in the x  direction gives 0,Fx =∑  resulting, 

 ( ) ( )( ) 0,N dN N Xds T dT ds N dN dsκ τ′ ′ ′+ − + + + + + − =  (4.22) 

where 0dsdT =  and 0dsdN ′ =  can be taken such that, due to the small value of ds , 

dT  and dN ′ , and their multiplication can be neglected for this reason here. If the 

necessary simplifications are made in equation (4.22), it becomes to, 

 0Xds dN T ds N dsκ τ′ ′+ + − = . (4.23) 

In a similar way, summation of the forces in y  direction gives 0Fy =∑ , resulting, 

 0N ds dN ds N dN T ds dTds Yds Nτ τ κ κ′ ′ ′+ + + − − + − = , (4.24) 

where dsdN  and dsdT  are taken as zero because of the assumption of small values 

of each multiplier considered in the same way. If the necessary simplifications are 

made in equation (4.24), it becomes to the form, 

 0Yds dN T ds N dsκ τ′+ − + = . (4.25) 

At the end, the same procedure can be applied to the summation of the forces in z  

direction which gives, 0Fz =∑ , resulting, 

 0N ds dN ds N ds dN ds T dT T Zdsκ κ κ κ′ ′ ′ ′ ′− − + + + + − + = , (4.26) 
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where dsdN  and dsdN ′  are taken as zero. If the necessary simplifications are made 

in equation (4.26), it becomes to the form, 

 0.Zds dT N ds N dsκ κ′ ′+ − + =  (4.27) 

If equations (4.23), (4.25) and (4.27) are divided by ds  in x , y  and z  directions 

respectively, the following equations are obtained, 

 0
dN

N T X
ds

τ κ′ ′− + + = , (4.28) 

 0
dN

T N Y
ds

κ τ
′
− + + = , (4.29) 

 0
dT

N N Z
ds

κ κ′ ′− + + = . (4.30) 

Similarly the same element length ds  with the couples G dG+ , G dG′ ′+  and 

H dH+  makes the same angles with x , y  and z  axes as in the previous loads. In 

the same way using Table 4.1 and taking into account the right hand rule, the 

following equations for the moments in x  axes can be written as, 

 0G dG G Kds G ds dG ds Hds dHds N dsτ τ κ κ′ ′ ′ ′ ′+ − + − − + + − = . (4.31) 

Simplifying the equation (4.31), the following is found, 

 0.dG G ds H ds N ds Kdsτ κ′ ′ ′− + − + =  (4.32) 

In a similar way, the moments by summations over y  and z  axes in a simplified 

manner yields, 

 0,dG H ds G ds Nds K dsκ τ′ ′− + + + =  (4.33) 

 0.dH G ds G ds dsκ κ′ ′− + + Θ =  (4.34) 

Again dividing by ds  and rearranging equations (4.32)-(4.34) gives, 

 0
dG

G H N K
ds

τ κ′ ′ ′− + − + = , (4.35) 
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 0
dG

H G N K
ds

κ τ
′

′− + + + = , (4.36) 

 0.
dH

G G
ds

κ κ′ ′− + + Θ =  (4.37) 

These equations, (4.28)-(4.30) and (4.35)-(4.37), are the six differential equations 

which constitutes the equations of equilibrium for the thin wire loaded and shown in 

Figure 4.4. 

4.5 Relations between loads and deformations 

The changes in curvature and twist per unit length to the internal loads are given by 

the expression below [11], 

 0 0 0( ); ( ); ( )x yG EI G EI and H Cκ κ κ κ τ τ′ ′ ′= − = − = − , (4.38) 

where the thin wire is assumed elastic with cross-sectional moments of inertia xI  and 

yI . The torsional rigidity and the modulus of elasticity of the wire material are 

denoted by C and E  respectively. When the wire cross section is circular, with 

radius R , the equation (4.38) becomes to the following formulation, 

 
4 4 4

0 0 0( ); ( ); ( )
4 4 4(1 )

R R R E
G E G E and H

v

π π π
κ κ κ κ τ τ′ ′ ′= − = − = −

+
, (4.39) 

where v  is Poisson’s ratio for the wire material. The tension T  in the wire is given 

by the expression, 

 ,T AEξ=  (4.40) 

where A  is the cross-sectional area of the wire and ξ  is the axial wire strain. For a 

circular cross section, 2
A Rπ= , and the equation (4.40) becomes to, 

 2 .T R Eπ ξ=  (4.41) 
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4.6 Geometric consideration of a straight strand 

A loaded simple straight strand is shown in Figure 4.5. Configuration and cross 

section of this strand consists initially of a straight center wire of radius 1R , 

surrounded by 6m =  helical wires of radius 2R . Center wire radius is chosen 

sufficiently such that to prevent outer wires touching each other. This is the general 

aim to decrease frictional effects due to bending of the strand.  

 

Figure 4.5: Axially loaded simple straight strand 

The initial helix radius of an outside wire is given by, 

 2 1 2.r R R= +  (4.42) 

Minimum value for 1R  which will prevent the outer wires to touch each other should 

be found. To do this, first consider m  helical wires in a strand just touching each 

other. Cross-section perpendicular to the strand is shown in Figure 4.6. Radius of the 

helix, the wire radius and the helix angle are denoted by r , R  and α  respectively. 

The cross-section is assumed elliptical and hence the equation for this cross-section 

can be given as, 

 
2 2

1,
/ sin

p q

R Rα

   
+ =   

   
 (4.43) 
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where ( , )p q  shows a point on the ellipse. From equation (4.43) the following 

equation can be written for q , 

 
2 2

2 2

2

sin
1 ,

p
q R

R

α 
= − 
 

 

and it is found to be, 

 2 2 2sin .q R p α= ± −  (4.44) 

The slope of 
dq

dp
 is represented by differentiating the equation given for q  as, 

 
2

2

sin
.

sin
1

dq p

dp p
R

R

α

α
= ±

 
−  
 

 (4.45) 

 

Figure 4.6: Cross section of a strand perpendicular to the strand axis. 

From the Figure 4.6 the slope at the point 1 1( , )p q  is equal to - tan -
2 m

π π 
 
 

 and from 

equation (4.45) tan -
2 m

π π 
 
 

 can be denoted as, 
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2

1

2

1

sin
tan .

2 sin
1

p

m p
R

R

απ π

α

 
− = 

   
−  
 

 (4.46) 

2 m

π π
−  can be denoted by θ , and solving equation (4.46) for 1p  and 1q  respectively 

gives the following equations, 

 
2

2 1
1

sin
sin 1 tan ,

p
p R

R

α
α θ

 
= −  

 
 

 2 4 2 2 2 2
1 1sin ( sin ) tan ,p R pα α θ= −  

 
2 2

2
1 2 2 2

tan
,

sin (sin tan )

R
p

θ

α α θ
=

+
 

and hence 1p  is derived as follows, 

 1

2 2

1
tan

sin 2
sin tan

2

R
p

m

m

π π

α π π
α

 
= − 

   
+ − 

 

. (4.47) 

From the equation (4.43), 1q  can be solved as, 

 

2
2 21

1 2 2

2 2
2 2

2 2 2

2 2

2 2

1
/ sin

tan
     sin

sin (sin tan )

sin
      ,

(sin tan )

p
q R

R

R
R

R

α

θ
α

α α θ

α

α θ

 
= − 
 

= −
+

=
+

 

so 1q  can be written in the form of, 

 1

2 2

sin

sin tan
2

R
q

m

α

π π
α

=
 

+ − 
 

. (4.48) 

From Figure 4.6, one can write 1b  as, 
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 1 1 tan
2

b p
m

π π 
= − 

 
, (4.49) 

and r  can be represented by 

 1 1r b q= + , (4.50) 

which can be derived using equations (4.48) and (4.49) as, 

 

1 2 2

2 2 2 2

2 2

2 2

2 2

2

2

sin
tan

sin tan

1 sin
  tan tan

sin sin tan sin tan

tan sin
  

sinsin tan

sin tan
  

sin

tan
  1 ,

sin

R
r p

R R

R

R

R

α
θ

α θ

α
θ θ

α α θ α θ

θ α

αα θ

α θ

α

θ

α

= +
+

= +
+ +

 +
=  

+  

+
=

= +

 

and hence r  can be written as, 

 

2

2

tan
2

1
sin

m
r R

π π

α

 
− 

 = + . (4.51) 

Equation (4.51) yields the radius of the wire helix in which the wires are just 

touching each other. Hence, in the simple straight strand, if the outside wires are not 

touching each other the equation given below holds, 

 

2

2 1 22

tan
2

1
sin

m
R R R

π π

α

 
− 

 + < + . (4.52) 

4.7 Axially loaded simple straight strand 

A simple straight strand with the given cross section as in Figure 4.6 is taken into 

account. The helix angle of an outside strand, 2α , is found by the relation, 
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 2
2

2

tan ,
2

p

r
α

π
=  (4.53) 

where 2p  is the pitch of an outside wire. The initial curvature and the twist per unit 

length are given as, 

 
2

2 2 2
2 2 2

2 2

cos sin cos
0; .and

r r

α α α
κ κ τ′= = =  (4.54) 

Let the wires in the strand are deformed under action of the total axial force F , and 

the total axial twisting moment tM . Under the loads, it is assumed that the outside 

wires are deformed into a new helix, which has the following components of 

curvature and twist per unit length, 

 
2

2 2 2
2 2 2

2 2

cos sin cos
0; ,and

r r

α α α
κ κ τ′= = =  (4.55) 

where the bar symbols over the quantities shows the deformed states here and during 

the scope of this thesis. 

To keep the general formulation of the equilibrium equations, it is assumed that an 

outside wire is not subjected to external bending moments per unit length in each 

direction, 2 2 2 0K K ′= = Θ = . Components of the external line load per unit length of 

the centerline in y  and z  directions are assumed to be zero, 2 2 0Y Z= = , and the 

axial wire tension 2T  is assumed to be constant along the length of the wire. Using 

the equations (4.39), (4.54) and (4.55) the equilibrium equations given before in 

equations (4.28)-(4.30) and (4.35)-(4.37) becomes to the following form, 

 
2

2 2 2
2 2 2

2 2

sin cos cos
( ) ( ) ( ) 0N s T s X s

r r

α α α
′− + + = , (4.56) 

 2 ( ) 0
dN

s
ds

′
= , (4.57) 

 2 ( ) 0
dT

s
ds

= , (4.58) 
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2

2 2 2 2
2 2 2

2 2

( ) sin cos cos
( ) ( ) ( ) 0

dG s
G s H s N s

ds r r

α α α
′ ′− + − = , (4.59) 

 2 2 2
2

2

( ) sin cos
( ) 0

dG s
G s

ds r

α α′
+ = , (4.60) 

 
2

2 2
2

2

( ) cos
( ) 0

dH s
G s

ds r

α
− = , (4.61) 

where subscript 2  refers to the outside wires. Figure 4.7 shows the loads acting on a 

helical wire. The system of equations (4.56) through (4.61) is solved using Maple®, 

and found that, 

 

2 2-2-2cos(2 ) -2-2cos(2 )
s s

2 2

2 2
2 1 2 3

2 2

sin 2 sin 2
( )

-2-2cos(2 ) -2-2cos(2 )

r r
e e

G s C C C

α α

α α

α α

   
   −
   
   

′ = − + , (4.62) 

 

2 2-2-2cos(2 ) -2-2cos(2 )
s s

2 2

2 2 3( )
r r

G s e C e C

α α   
   −
   
   = + , (4.63) 

 2 4( )N s C′ = , (4.64) 

 2 5( )T s C= , (4.65) 

 

2 2-2-2cos(2 ) -2-2cos(2 )
s s

2 22 2
2 2 2

2 1 2 3

2 2 2
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2

sin 2cos 2cos
( )

cos -2-2cos(2 ) -2-2cos(2 )

,
cos

r r
e e

H s C C C

r
C

α α

α α α

α α α

α

   
   −
   
   

= + −

+

 (4.66) 

 2 2
2 4 5

sin 2 1 cos 2
( )

2 2
X s C C

r r

α α+
= − . (4.67) 

Equations (4.62) through (4.67) can be rewritten for 2G′ , 2G , 2H , 2X  as, 

 2 2
2 1 2 3

2 2

sin 2 sin 2
( )

2 cos 2 cos

iks iks
e e

G s C C C
i i

α α

α α

−

′ = − + , (4.68) 

 2 2 3( ) iks iks
G s e C e C

−= + , (4.69) 
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2 2

2 2 2
2 1 2 3 22

2 2 2 2

sin 2cos 2cos
( ) ( )

cos 2 cos 2 cos cos

iks iks
e e r

H s C C C N s
i i

α α α

α α α α

−

′= + − + , (4.70) 

 2 2
2 2 2

sin 2 1 cos 2
( ) ( ) ( )

2 2
X s N s T s

r r

α α+
′= − . (4.71) 

Equations (4.69) can be written as, 

 2 2 3 2 3( ) ( )cos ( )sinG s C C ks i C C ks= + + − . (4.72) 

 

Figure 4.7: Loads and moments over a single helical wire. 

Using equations (4.54) and (4.55) in equation (4.39) gives the result, ( ) 0.G s =  Using 

the result ( ) 0G s = , and taking 0s =  simultaneously, equation (4.72) will yield, 

 2 3 0.C C+ =  (4.73) 

As in the same way, using the equation (4.73), and ( ) 0G s =  in equation (4.72) give 

the following result, 

 2 3 0.C C− =  (4.74) 

Solving equations (4.73) and (4.74) simultaneously gives the results, 2 3 0C C= = . 

Using these values the equation (4.68) yields, 

 1 2 ( )C G s′= . (4.75) 

Substituting these coefficients in equation (4.70), one can find,  
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 2
2 2 22

2 2

sin

cos cos

r
H G N

α

α α
′ ′= + . (4.76) 

Equations (4.76) and (4.71) are reorganized to find 2N ′  and 2X  as follows, 

 
2

2 2 2
2 2 2

cos sin cos
N H G

r r

α α α
′ ′= − , (4.77) 

 
2

2 2 2
2 2 2

sin cos cos
X N T

r r

α α α
′= − . (4.78) 

The results found and given in equations (4.77) and (4.78) are harmonious with the 

equations found by Costello [11]. 

Equations (4.77) and (4.78) can be regarded as determining the values of 2N ′  and 2X  

required to hold an outside helical wire in equilibrium for given values of 2 2,  rα  and 

2T . It should be noted that normally the equations of equilibrium ((4.28)-(4.30) and 

(4.35)-(4.37)) and equation (4.39) constitute a set of nonlinear equations and are 

valid for large deflections. Large deflections could occur, for instance, in the case of 

a thin wire helical spring in which the value of 2α  is generally small. In the case of 

wire rope, however, the value of 2α  is generally large and the change in 2α , which is 

denoted by 2α∆ , 

 2 2 2α α α∆ = − , (4.79) 

is small [11]. This reality is taken into account while simplifying the solution 

throughout the rest of this part. 

The axial strain ε  of a straight strand is defined as, 

 ,
h h

h
ε

−
=  (4.80) 

where h  is the original length of the strand and h  is the final length of the strand. 

Figure 4.8 shows a developed view of the centerline of an outer wire, indicates the 

length h  and h .  
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Figure 4.8: Undeformed and deformed view of an outer wire centerline. 

The rotational strain 2β  of an outer wire is defined as, 

 2 2
2 2

( )
,r

h

θ θ
β

−
=  (4.81) 

where 2θ  and 2θ  are initial and final angle respectively, that an outer wire sweeps 

out in a plane perpendicular to the axis of the strand. The angle of twist per unit 

length 
sτ , of the strand is defined by, 

 2 2( )
.s

h

θ θ
τ

−
=  (4.82) 

Using the configuration shown in Figure 4.8 an analysis of this configuration yields 

that, 2 2(1 )sinh L ξ α= + , and from the equation (4.80) the axial strain can be written 

in the form of, 

 2 2 2

2

(1 )sin sin

sin

L L

L

ξ α α
ε

α

+ −
= . 

Therefore, the axial strain can be written in the following form, 

 2
1 2

2

sin
(1 ) 1.

sin

α
ε ξ ξ

α
= = + −  (4.83) 
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Starting from the equation (4.82) and using the trigonometric relations obtained from 

Figure 4.8 the following results can be obtained for 2 2 2,   and θ θ τ , 

 2
2

2

cos
,

L

r

α
θ =  

 2 2
2

2

(1 ) cos
,

L

r

ξ α
θ

+
=  

 2 2 2

2 2 2 2

(1 )cos cos

sin sins

L L

r L r L

ξ α α
τ

α α

+
= − . 

From the equations (4.81) and (4.82), one can find, 

 2 2 2
2 2 2

2 2 2

cos cos
(1 ) .

sin sins

r
r

r

α α
β τ ξ

α α
= = + −  (4.84) 

by using the equation (4.83) 2(1 )ξ+  can be written such that, 

 2
2 1

2

sin
(1 ) (1 ).

sin

α
ξ ξ

α
+ = +  (4.85) 

The equation (4.84) using the equation (4.85) will give, 

 2 2 2 2
2 1

2 2 2 2

sin cos cos
(1 ) ,

sin sin sin

r

r

α α α
β ξ

α α α
= + −  

and finally rearranging 2β  will yield, 

 2 1
2

2 2 2

(1 ) 1
,

tan tan

r

r

ξ
β

α α

+
= −  (4.86) 

where 1ξ  is the axial strain in the center wire ( )1ε ξ= , and 2ξ  is the axial strain in an 

outer wire. Here 2α∆  is defined as, 

 2 2 2 1,α α α∆ = − <<  (4.87) 
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which is valid for most metallic strands. The trigonometric representation of the 

2sinα  can be defined as, 

 2 2 2 2 2 2 2sin sin( ) sin cos( ) sin( )cos .α α α α α α α= + ∆ = ∆ + ∆  

Using the equation (4.87), 2 2 2cos( ) 1, sin( )α α α∆ = ∆ = ∆ , and neglecting the higher-

ordered terms, 2sinα  can be written as, 

 2 2 2 2sin sin cos .α α α α= + ∆  (4.88) 

Starting with equation (4.83) and using the equation (4.88), 1ξ  can be written as, 

 

2 2 2
1 2

2

2 2 2
2

2 2

sin cos
(1 ) 1

sin

1 1,
tan tan

α α α
ξ ξ

α

α α ξ
ξ

α α

+ ∆
= + −

∆ ∆
= + + + −

 

where higher ordered term 2 2α ξ∆  is vanished, 1ξ  and 2ξ  are assumed to be small. So 

the relation below is found, 

 2
1 2

2

.
tan

α
ξ ξ ε

α

∆
= + =  (4.89) 

Equation (4.86) is transformed to a new formulation in a similar way. Equation 

(4.83) can be rewritten as, 

 2
1 2

2

sin
1 (1 )

sin

α
ξ ξ

α
+ = + , (4.90) 

and both sides of equation (4.90) can be divided by 2tanα  which gives, 

 1 2
2

2 2

1 cos
(1 ) .

tan sin

ξ α
ξ

α α

+
= +  (4.91) 

Here 2cosα  can be written as, 

 2 2 2 2 2 2 2cos cos( ) cos cos( ) sin sin( )α α α α α α α= + ∆ = ∆ − ∆ , 
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and again using equation (4.87), 2 2 2cos( ) 1, sin( )α α α∆ = ∆ = ∆ , and neglecting the 

higher-ordered terms 2cosα  can be written as, 

 2 2 2 2cos cos sinα α α α= − ∆ . (4.92) 

Using equation (4.92) in equation (4.91) the following equation is derived, 

 1 2
2 2 2

2 2

1 1
,

tan tan

ξ ξ
α α ξ

α α

+ +
= − ∆ − ∆  (4.93) 

where 2 2 0α ξ∆ = . The equation (4.93) becomes to, 

 1 2
2

2 2

1 1

tan tan

ξ ξ
α

α α

+ +
= − ∆ . (4.94) 

Equation (4.94) and (4.86) combined and new form of 2β  can be written as, 

 2 2
2 2

2 2 2

1 1
.

tan tan

r

r

ξ
β α

α α

 +
= − ∆ − 

 
 (4.95) 

As a result of Poisson’s ratio effect v , the final radius r  becomes to, 

 1 1 2 2(1 ) (1 )r R Rνξ νξ= − + − , (4.96) 

where the contact deformations in the center and outer wires are neglected. The 

representation for 2 2/r r  can be derived as, 

 

2 1 2

2 1 2 1 1 2 2

1 1 2 2

1 2

1 1 2 2

1 2

( )

1
   

( )
1

( )
   1 ,

r R R

r R R R R

R R

R R

R R

R R

ν ξ ξ

ξ ξ
ν

ξ ξ
ν

+
=

+ − +

=
+

−
+

+
= +

+

 

from the descriptions given above 2 2/r r  can be written as, 

 2 1 1 2 2

2 2

( )
1 .

r R R

r r

ξ ξ
ν

+
= +  (4.97) 
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The equation (4.97) can be put into the equation (4.95) and gives the following 

result, 

1 1 2 2 2
2 2

1 2 2 2

2 1 1 2 2 1 1 2 2
2 2 2

2 1 2 2 1 2 2

( ) 1 1
1

tan tan

1 ( ) ( ) 1
    (1 ) .

tan ( ) tan tan

R R

R R

R R R R

R R R R

ξ ξ ξ
β ν α

α α

ξ ξ ξ ξ ξ
α ν ξ α ν

α α α

  + +
= + − ∆ −  

+  

+ + +
= − ∆ + + − ∆ −

+ +

 

By using the relation; 1 2 2 2 2 1 2 21,  1,  1,  1ξ ξ ξ ξ α ξ α ξ<< << ∆ << ∆ << , the equation for 

2β  is written as, 

 2 1 1 2 2
2 2 2

2 2 2

( )
.

tan tans

R R
r

r

ξ ξ ξ
β τ α ν

α α

+
= = − ∆ +  (4.98) 

The change in curvature κ ′∆  and the change in twist per unit length 2τ∆  can also be 

linearized. Using the change in curvature κ ′∆ , 2 2R κ ′∆  can be written as, 

 
2 2

2 22 2 2 2
2 2 2 2 2

2 2 2 2

cos cos
cos cos

R r
R R

r r r r

α α
κ α α

   
′∆ = − = −   

   
. (4.99) 

2
2cos α  written as, 

 2 2 2 2
2 2 2 2 2 2 2cos cos ( ) sin 2 sin cos ,α α α α α α α= + ∆ − ∆  

and taking 2
2( ) 1α∆ << , small enough, 2

2cos α  can be given as follows, 

 2 2
2 2 2 2 2cos cos 2 sin cos .α α α α α= − ∆  

This new formulation of 2
2cos α  can be put into equation (4.99) gives, 

 ( )2 22 2
2 2 2 2 2 2 2

2 2

cos 2 sin cos cos
R r

R
r r

κ α α α α α
 

′∆ = − ∆ − 
 

. (4.100) 

As well, 2 2/r r  given in equation (4.97) can be put in (4.100) and gives, 
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 ( )2 22 1 1 2 2
2 2 2 2 2 2 2

2 2

( )
1 cos 2 sin cos cos

R R R
R

r r

ξ ξ
κ ν α α α α α

  +
′∆ = + − ∆ −   

  
. 

Making the necessary simplifications, such as 1 2 1,ξ α∆ <<  2 2 1,ξ α∆ <<  the following 

equation for 2 2R κ ′∆  is found, 

 
2

2 2 1 1 2 2 2
2 2 2 2 2

2 2

2sin cos ( )cos
.

R R
R R

r r

α α ξ ξ α
κ α ν

 − +
′∆ = ∆ + 

 
 (4.101) 

For 2 2R τ∆  a similar procedure can be followed. Using equations (4.54) and (4.55) 

2 2R τ∆  can be written as, 

2 2 2 2
2 2 2

2 2

2 2 2 2 2 2 2 2
2 2

2 2

sin cos sin cos

(sin cos )(cos sin )
          sin cos .

R R
r r

R r

r r

α α α α
τ

α α α α α α
α α

 
∆ = − 

 

 + ∆ − ∆
= − 

 

 (4.102) 

Using the property 2
2( ) 1,α∆ <<  a portion of equation (4.102) can be presented as, 

2 2
2 2 2 2 2 2 2 2 2 2 2 2(sin cos )(cos sin ) sin cos sin cos ,α α α α α α α α α α α α+ ∆ − ∆ = − ∆ + ∆

and using 2 2/r r  from the equation (4.97) simplifies the equation (4.102). 2 2R τ∆  can 

be written in the following form, 

 

( )2 2 1 1 2 2
2 2 2 2 2 22

2 2 2
2

2 2

1 1 2 2
2 2 2 2

22

2 2 1 1 2 22
2 2 2 2 2

2

( )
sin cos sin cos 1

sin cos

( )
sin cos sin cos

          ,
( )

(cos sin ) sin cos

R R
R

R r
r

R R

rR

R Rr

r

ξ ξ
α α α α α α ν

τ

α α

ξ ξ
α α α α ν

ξ ξ
α α α ν α α

  +
− ∆ + ∆ +  

∆ =   
 − 

+ 
+ + 

 =
+ 

∆ − − 
 

 

where 1 2 1ξ α∆ <<  and 2 2 1.ξ α∆ <<  Making simplifications finally gives 2 2R τ∆  as, 

 
2

2 1 1 2 2 2 2
2 2 2 2 2

2 2 2

1 2sin ( ) sin cos
.

R R
R R R

r r r

α ξ ξ α α
τ α ν

− +
∆ = ∆ +  (4.103) 
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The following equations can now be written for an outside wire using equations 

(4.39) and from the solution of the equilibrium equations found in equations (4.77) 

and (4.78) as, 

 4
2 2 24

G ER
π

κ′ ′= ∆ , (4.104) 

 4
2 2 24(1 )

H ER
v

π
τ= ∆

+
, (4.105) 

 
2

2 2 2
2 2 2

cos sin cos
N H G

r r

α α α
′ ′= − , (4.106) 

 2
2 2 2T ERπξ= , (4.107) 

 
2

2 2 2
2 2 2

sin cos cos
X N T

r r

α α α
′= − , (4.108) 

where the displacements are assumed to be small. 

A projection of the forces, acting on the outside wires, in the axial direction of the 

strand yields 2F , which is the total axial force in the strand acting on 2m  outer wires 

is given in the following form, 

 [ ]2 2 2 2 2 2sin cosF m T Nα α′= + . (4.109) 

The total axial twisting moment 2M  acting on the outside wires is given as, 

 [ ]2 2 2 2 2 2 2 2 2 2 2 2sin cos cos sinM m H G T Er N Erα α α α′ ′= + + − . (4.110) 

The preceding theory represents the behavior of a right lang lay rope shown in Figure 

2.5-(c). The response of the left lay rope can be obtained from the response of the 

right lay rope. If a left lay rope is acted upon by a positive axial force F , and a 

positive axial twisting moment M  as in Figure 4.5, the rotational strain β  and the 

axial strain ε , can be determined by loading a right lay rope with the same axial 

force F , and an axial twisting moment – M . The axial strain then computed for the 

right lay rope will be the same as that for the left lay rope but the rotational strain 

computed for the right lay rope will be minus that of the left lay rope [4]. Thus if the 

rope is a right regular lay equations (4.81) and (4.110) becomes to, 
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 2 2
2 2

( )
,r

h

θ θ
β

−
= −  (4.111) 

 [ ]2 2 2 2 2 2 2 2 2 2 2 2sin cos cos sinM m H G T Er N Erα α α α′ ′= − + + − . (4.112) 

The axial force and the axial twisting moment acting on the center wire are given 

with the symbols, 1F  and 1M  respectively, by the expressions, 

 2
1 1 1F ERπξ= , (4.113) 

and 

 4
1 1 .

4(1 )
sM ER

v

π
τ=

+
 (4.114) 

The total axial force F  and the total axial twisting moment tM  acting on the strand 

can be written as [11], 

 1 2F F F= + , (4.115) 

 1 2.tM M M= +  (4.116) 

Analytical examples and solutions related to the theory are presented in Appendix A 

for convenience. 

4.8 Stresses over a simple straight strand 

The stresses caused by the loads acting on a simple straight strand are investigated in 

this section. The axial wire stress on the center wire can be given by, 

 1
1 2

1

,F

F

R
σ

π
=  (4.117) 

and the maximum shearing stress on the cross section is, 

 1
1 3

1

2
.M

M

R
σ

π
=  (4.118) 
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The outside wires, in addition to the shearing load 2N ′ , are subjected to axial, 

bending, and torsional loadings. The stresses caused by the shearing force 2N ′  are in 

general very small and neglected. The axial stress caused by the load 2T  is, 

 2
2 2

2

.T

T

R
σ

π
=  (4.119) 

The maximum normal stress on an outside wire due to bending moment 2G′  is, 

 2
2 3

2

4
,G

G

R
σ

π
′

′
=  (4.120) 

and the maximum shearing stress on an outside wire due to the twisting moment 2H  

is, 

 2
2 3

2

2
.H

H

R
σ

π
=  (4.121) 

4.9 General strain and rotation relation due to load and moments over a 

simple straight strand 

The behavior of a strand is given in a general formulation by using the total axial 

force F , and the total axial twisting moment M  as in the following equations, 

 1 2

F
C C

AE
ε β= + , (4.122) 

 3 43
tM

C C
ER

ε β= + , (4.123) 

where A  represents the total area of the strand and given by, 

 2.iA Rπ=∑  (4.124) 

iR  is the radius of i’th wire of the strand, 1 4,...,C C  are the unknown constants (which 

can be determined analytically), ε  is the axial strain, and β  is the rotational strain of 

the strand defined by the equation, 
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 sRβ τ= , (4.125) 

where R  is the radius of the strand and 
sτ  is the angle of twist per unit length of the 

strand. Equations (4.122) and (4.123) relates the total axial force F , and the total 

axial twisting moment 
tM , with the axial and rotational strain of the strand. 

The problem here is to find the constant values defined in equations (4.122) and 

(4.123). To do this first of all β  is taken as zero and 1ε ξ= . Then equations (4.115) 

and (4.116) are used to find F  and tM . In this way F , tM , ε  and β  are known, 

using equations (4.122) and (4.123) the constant values of 1 3 and C C  can be found 

with using 0β =  and 1ε ξ=  conditions. In a similar way, on the second part of the 

solution procedure, ε  can be chosen as zero, β  is defined, and then F  and tM  are 

computed. Using equations (4.122) and (4.123), 2 4 and C C  constants can be found. 

The analytical solution, basically explained above, can be extended to the multi-

layered strands to find the total axial force F , and the total axial twisting moment 

tM , acting on each strand as in equation (4.122). 

4.10 Contact stresses 

Contact of two semicircular disks will be assumed as a starting point for the contact 

analysis. As an initial condition, two disks are assumed in contact at a point. As 

material properties, two disks are assumed homogeneous, isotropic, and elastic. Two 

disks are pressed together with forces F. Before applying the force, boundaries of 

two disks are smooth curves. 1R  and 1R′  shows the minimum and maximum radius of 

curvatures on the first disk, 2R  and 2R′  shows the same radiuses for the second disk 

at the point of contact as shown in Figure 4.9-(a).  

The load F applied along the centerline of two disks makes them pressed. Friction is 

not included which ensures that disks will not slide at the point of contact. The lines 

1V  and 2V  makes the angle α  and lie in the plane sections containing the minimum 

radiuses 1R  and 2R  respectively. As a result of the load F, two disks are in contact 

and deformed elastically near the contacting point with a contact area which is 

shaped as an elliptical region as shown in Figure 4.9-(b). Contact stresses over each 
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disk are the purpose to derive at any point over the contact region caused by the load 

applied along the z-axes in this theory.  

 
(a) Initial contact  (b) Contact region after loading 

Figure 4.9: Two semicircular disks in contact before and after axial loading. 

At the contact area before contact, distances z between corresponding points on any 

two surfaces can be defined by the following equation, 

 2 2z Ax By= + . (4.126) 

It can be easily seen from the equation (4.126) that for the constant values of z it 

corresponds to an ellipse. 

When the loads F applied to the disks, there will be a contact area due to the 

deformation over the each disk. This small contact area will be constructed by the 

points, which are equidistant before loading. These equidistant points on the surfaces 

of the two disks lie on an ellipse as given in equation (4.126) and its equation is, 

 
2 2

2 2
1

x y

a b
+ = . (4.127) 

Derivation of the equation (4.126) is investigated in [97]. Constants A and B can be 

derived as, 
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4
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, (4.128) 
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1 1 2 2 1 1 2 2

1 1 1 1 1

4

1 1 1 1 1 1 1 1 1
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4

A
R R R R

R R R R R R R R
α

 
= + + + 

′ ′ 

       
− − + − − − −       

′ ′ ′ ′       

. (4.129) 

If the lines 1v  and 2v  are parallel then angle 0α = �  and equations (4.128) and 

(4.129) are reduced to, 

 
1 2

1 2

1 1 1
,

2

1 1 1
.

2

B
R R

A
R R

 
= + 

 

 
= + 

′ ′ 

 (4.130) 

If the angle 90α = �  then equations (4.128) and (4.129) are reduced to, 

 
1 2

1 2

1 1 1
,

2

1 1 1
.

2

B
R R

A
R R

 
= + 

′ 

 
= + 

′ 

 (4.131) 

4.10.1 Line contact between two surfaces 

Two circular cylindrical bodies can be put in contact along a straight-line element as 

shown in Figure 4.10. Stresses over these two bodies in contact, which is a line 

contact and loads, are applied in the normal direction to the contact area. 

In the cylinders shown in Figure 4.10, the maximum radiuses of 1R′  and 2R′  are each 

indefinitely large so that, 11/ R′  and 21/ R′  are each equal to zero and also the angle 

0α = � . Therefore, from equation (4.130) B and A are found as follows, 

 
1 2

1 1 1
, 0.

2
B A

R R

 
= + = 

 
        (4.132) 
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Figure 4.10: Line contact between two cylindrical surfaces. 

Here a and b shows the semi-major axis and semi-minor axis of the area of contact 

respectively and semi-major axis of the area of contact a is indefinitely large in this 

line of contact. The area of contact when a load of q per unit length is applied along 

the contact line, the contact stresses are written as follows, 

 
2

2 1x

z z b

b b
σ µ

   = − + − 
∆   

, (4.133) 
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σ

     + −      = −
  ∆  +  
  
 

 (4.134) 

 
2

1
.

1

z

b

z

b

σ = −
∆ 

+  
 

 (4.135) 

Furthermore, b can be given as in the following, 

 
2q

b
π

∆
= , (4.136) 

where q  is the load per unit length of the contact area and ∆  is given as, 
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2 2
1 2

1 2

1 2

1 11
,

1 1

2 2

E E

R R

µ µ − −
∆ = + 

   + 
 

 (4.137) 

while 1R  and 2R  are the radius of curvature of the cylindrical surfaces as shown in 

Figure 4.10. 1E , 2E , 1µ , 2µ  are the parameters found from the test results of the 

material. 

The values of the stresses at a point on the line of contact are obtained from 

equations (4.133)-(4.135) by taking z/b=0 and maximum principal stresses becomes 

to, 

 2x

b
vσ
 

= −  
∆ 

, (4.138) 

 
y

b
σ = −

∆
, (4.139) 

 
z

b
σ = −

∆
. (4.140) 

4.10.2 Contact stresses of a simple straight strand 

Simple straight strand geometry consists of a straight wire surrounded by six outer 

single helical wires. Thus, the line of contact between the center wire and the outer 

single helical wire is a helix with the radius of 1R  as shown in Figure 4.11. Contact 

stresses can be found only if the contact force is known. Because of the theory of 

Costello, contact force per unit length 2X  is calculated for the centerline of the outer 

single helical wire and it should therefore to be computed along the contact line. This 

results an approximate equation, which is as follows [11], 

 ( ) ( )
222 2

2 1 2 2 1 22 2
c

X p R X p R Rπ π+ = − + +   , (4.141) 

where cX  is the contact force per unit length along the line of contact.  

A cross sectional view of the strand is given in Figure 4.11 where the outside wire 

cross-section is circular. Meanwhile the cross-section of the center wire is elliptical 

and the radius of curvature of the center wire at the contact point is defined as, 

 1
1 2

2

.
sin

R
ρ

α
=  (4.142) 
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Figure 4.11: Contact between center straight and outer single helical wires. 

Contact stress is assumed to be same as in the two cylindrical bodies in line contact 

determined in equation (4.140). Hence, the maximum contacts stress is given by, 

 .c

b
σ = −

∆
 (4.143) 

Owing to the same material is used in each wire 1 2E E E= =  shows the elasticity 

modulus, and 1 2 vµ µ= =  shows the Poisson’s ratio for the wire material. Under this 

circumstance using equation (4.137) one can write ∆  as, 

 
2

1 2

4(1 )

1 1

v

E
Rρ

−
∆ =

 
+ 

 

, (4.144) 

and b using the equation (4.136) as, 

 
2

c
X

b
π

∆
= . (4.145) 

4.10.3 Contact between helical wires in a strand 

It is assumed that each wire in a strand has the same radius. In this aspect, outer 

wires of a simple straight strand are in contact with each other because of the helical 

shape of the outer wires. Figure 4.12 shows the elliptical view of the projection of an 

outer wire on a plane, which is perpendicular to the strand. 

Cross sectional view of the outer single helical wires are elliptical in this case and 

wire to wire contact gives a helical line of contact with radius d which is given by 

[11], 
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. (4.146) 

 
 

 

Figure 4.12: Line of contact between two outer wires. 

The contact angle λ  can be given by, 
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. 

Normal contact force over an outer wire per unit length is given by,  

 .
2cos

X
Q

γ
= −  (4.147) 
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5. BENDING OF A SIMPLE STRAND AND IWRC OVER A SHEAVE 

In this section, first a simple straight strand subjected to a bending moment sm  is 

investigated. Then the equilibrium equations for the bending moment are solved and 

the bending moment sm  derived. Bending of a loaded strand over a sheave is 

investigated, and the relation between wire rope diameter and sheave diameter are 

presented. A frictional effect of a strand is mentioned. Construction and static 

response of an IWRC is presented and generalized solution of IWRC and bending 

over a sheave problem is considered at the end of this section.  

5.1 Equilibrium equations for the bending moment 

Bending moment is applied perpendicular to the original axis of the spring and the 

helix angle of the spring is denoted by α . The initial curvatures and the twist per 

unit length are given by the following equations, 

 
2cos sin cos

0, and
r r

α α α
κ κ τ′= = = , (5.1) 

where r  is the radius of the helix. The spring given in Figure 5.1 subjected to 

bending moment only. Considering this the following result occurs, 

 0.X Y Z K K N N T′ ′= = = = = Θ = = = =  (5.2) 

The equations of the equilibrium given in (4.28)-(4.30) and (4.35)-(4.37), while only 

the bending applied to a simple straight strand, becomes to the following form, 

 1 1

( )
( ) ( ) 0

dG s
G s H s

ds
τ κ′ ′− + = , (5.3) 

 1 1

( )
( ) ( ) 0

dG s
H s G s

ds
κ τ

′
− + = , (5.4) 
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 1 1

( )
( ) ( ) 0,

dH s
G s G s

ds
κ κ′ ′− + =  (5.5) 

where 1 1 1,  and κ κ τ′  are the final curvatures and twist per unit length. 1 1 1,  and κ κ τ′  

are used in equation (4.39) as final values and equation (5.1) is used as the initial 

values. Under these circumstances, the equation (4.39) is transformed to the 

following form, 

4 4

1 0 1( ) ( ) ,
4 4

R R
G s E E

π π
κ κ κ= − =  

4 4 2

1 0 1

cos
( ) ( ) ( ),

4 4

R R
G s E E

r

π π α
κ κ κ′ ′ ′ ′= − = −  

 
4 4

1 0 1

sin cos
( ) ( ) ( ).

4(1 ) 4(1 )

R E R E
H s

v v r

π π α α
τ τ τ= − = −

+ +
 

 

Figure 5.1: Bending applied to a helical spring. 

Finally 1 1 1,  and κ κ τ′  can be obtained as, 
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 1 4

4
( ),G s

R E
κ

π
=  (5.6) 

 
2

1 4

4 cos
( ) ,G s

R E r

α
κ

π
′ ′= +  (5.7) 

 1 4

4(1 ) sin cos
( ) .

v
H s

R E r

α α
τ

π

+
= +  (5.8) 

Putting these representations of the curvatures and twist per unit length in equations 

(5.3)-(5.5) results to three nonlinear equations, 

 
2

4

( ) 4 sin cos cos
( ) ( ) ( ) ( ) 0

dG s v
G s H s G s H s

ds R E r r

α α α

π
′ ′− − + = , (5.9) 

 
4

( ) 4 sin cos
( ) ( ) ( ) 0

dG s v
G s H s G s

ds R E r

α α

π

′
+ + = , (5.10) 

 
2( ) cos

( ) 0
dH s

G s
ds r

α
− = . (5.11) 

Equations (5.9)-(5.11) constitutes first order nonlinear ordinary differential 

equations, and can be solved by a numerical method. However, to do this an initial 

condition is required. This system will be solved by using Poisson’s ratio 0v = , as 

the initial condition at first. Then the solution found for 0v =  is used as the initial 

condition to solve this first order nonlinear ordinary differential equation by one of 

the well-known numerical method, Picard’s method. For 0v =  the equations (5.9)-

(5.11) becomes to, 

 
2( ) sin cos cos

( ) ( ) 0
dG s

G s H s
ds r r

α α α
′− + = , (5.12) 

 
( ) sin cos

( ) 0
dG s

G s
ds r

α α′
+ = , (5.13) 

 
2( ) cos

( ) 0.
dH s

G s
ds r

α
− =  (5.14) 

Equations (5.12) through (5.14) constitutes a system of linear ordinary differential 

equations and solved by using Maple®, and the following results are found, 
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-2-2cos(2 ) -2-2cos(2 )
s s

2 2

2 3( )
r r

G s e C e C

α α   
−      

   = + , (5.15) 

 1

sin 2
( ) ( )

2
G s C G s ds

r

α 
′ = + − 

 
∫ , (5.16) 

 
2

( ) sin
( ) ( )

cos cos

r dG s
H s G s

ds

α

α α
′= − + . (5.17) 

Equation (5.15) can be regarded as, 

 ( ) cos( ) sin( )G s A ks B ks= + . (5.18) 

Using the equation (5.18), representations for the equations given in (5.16) and 

(5.17) can be found with respect to ( )G s′  and ( )H s  as, 

 ( ) 1

sin 2
( ) sin( ) cos( )

2
G s A ks B ks C

kr

α
′ = − − + , (5.19) 

 
( ) ( )

2

2

1

sin
( ) sin( ) cos( ) sin( ) cos( )

cos
sin

.
cos

kr
H s A ks B ks A ks B ks

kr

C

α

α
α

α

= − − −

+

 (5.20) 

Applying a bending moment in x  direction; sG m= , zero bending moment in y  

direction; 0G′ = , and twisting moment; 0,  with 0,H s= =  equations (5.18) through 

(5.20) results respectively, 

 sA m= , (5.21) 

 10 sin(2 ) 2B krCα= + , (5.22) 

and 

 2 2 2 2
10 (sin cos ) sin cosk r B kr Cα α α α= − + . (5.23) 

Multiplying equation (5.22) by sin cos / 2α α  and adding to equation (5.23) yields, 

 10 , 0.B C= =  (5.24) 



 63 

Using equations (5.21) and (5.24), equations (5.18)-(5.20) results such that, 

 ( ) cos( )sG s m ks= , 

 
sin 2

( ) sin( ) sin sin( )
2 s sG s m ks m ks

kr

α
α′ = − = − , 

 
2

2

sin
( ) sin( ) cos sin( )

cos s s

kr
H s m ks m ks

kr

α
α

α

 
= − = 
 

, 

where / cosk r α= . As a result, the solution of the first order linear differential 

equation can be written, which will be the initial conditions while solving the 

nonlinear part of the problem when the Poisson’s ratio 0,v ≠  as follows, 

 ( ) cos( )sG s m ks= , (5.25) 

 ( ) sin sin( )sG s m ksα′ = − , (5.26) 

 ( ) cos sin( ).sH s m ksα=  (5.27) 

Furthermore solutions of equation (5.12)-(5.14) given in equations (5.25)-(5.27) are 

harmonious with the solutions of Costello given in reference [11]. 

5.2 Bending moment derivation using the strain energy 

The strain energy U  in the spring can be written as [56], 

 2 2 2
1 1 1

0

1
( ) ( ) ( )

2

l

U A A C dsκ κ κ κ τ τ′ ′ = − + − + − ∫ , (5.28) 

where 4 4/ 4 and C= / 4(1 )A R E R E vπ π= + , For the Poisson’s ratio 0v = , results in 

A C= , and equation (5.28) is integrated such that, 

 
2

2 2 2 2

0 0

1 1 1
,

2 2 2

l l

s
s

m l
U G G H ds m ds

A A A
′ = + + = = ∫ ∫  (5.29) 

where l  is the length of the wire. When the work done by the bending moment sm  is 

equated to the strain energy, the result is, 



 64 

 
2

0

( ) .
2

s
s

m l
m d

A

φ

φ φ =∫  (5.30) 

Differentiating equation (5.30) yields, 

 ,s s
s

m l dm
m

A dφ
=  (5.31) 

and also, an integration of equation (5.31) yields, since (0) 0sm = , 

 .
s

A
m

l

φ
=  (5.32) 

The length of the spring h is equated as, 
sin( )

sin( ),  
a

h l a l
h

= = , and equation (5.32) 

becomes to, 

 
1

.
sin( )

sm

A a h

φ

ρ
= =  (5.33) 

The exact solution of the nonlinear equations (5.12)-(5.14), found in equations (5.25)

-(5.27), is used as the first approximation in Picard’s method. Substituting 

( ),  ( ) and ( )G s G s H s′ , which are found in equations (5.25)-(5.27), into the nonlinear 

equations (5.9)-(5.11) and making the necessary trigonometric simplifications will 

yield, 

 2 2( ) 1 1 cos( )
sin( )cos( ) sin ( ) sin( )s s

dG s
m ks m ks

ds A C r

α
α α

 
= − − 
 

, (5.34) 

 2( ) 1 1 sin cos
cos sin( ) cos( ) cos( )s s

dG s
m ks ks m ks

ds A C r

α α
α

′  
= − − 
 

, (5.35) 

 
2( ) cos ( )

cos( )s

dH s
m ks

ds r

α
= . (5.36) 

Using the initial conditions; (0) sG m= , (0) 0G′ =  and (0) 0H = , for the first 

approximation of Picard’s method in equations (5.34)-(5.36) results in, 
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 21 1 sin( ) cos( ) sin(2 )
( ) cos( )

2 2s s

ks
G s m s m ks

A C k

α α   
= − − +   
   

, (5.37) 

 2 21 1 cos( )
( ) sin ( ) sin( )sin( )

2 s sG s m ks m ks
A C k

α
α

 
′ = − − 

 
, (5.38) 

 ( ) cos( )sin( )sH s m ksα= . (5.39) 

The strain energy U , can be written for the spring as, 

 
2 2 2

0

1

2

l
G G H

U ds
A A C

′ 
= + + 

 
∫ , 

and computed as follows, 

( )
2 2

3 3 2 4

3 2 3

3

3 2 3

2 2 2 2 2 2 2

3 2 3

cos ( ) 4 5 4
4 cos ( )

32 3 2 3

( ) 32 64
sin(2 ) sin( ) cos( )

32 3 3

1
16 8( ) cos ( ) ,

32

s

s

s

C A a
U a m

A C k

C A
ACk a kAC a a m

A C k

A C k C A Ck A a m
A C k

φ φ φ φ

φ φ

− +     
= + + − −    

    

− +  
+ − 

 

 + + − + 

 

where .klφ =  

As a result of the trigonometric simplifications, coefficient of the 3
sm  vanishes and 

assuming the spring has n  coils, 2 nφ π= , the equation above becomes to, 

2 2
3 3 2 4

3 3

2 2

cos ( ) 32 4
8 ( ) 5 ( ) (1 sin ( ))

32 3 3

2 ( )cos ( ) .
2

s

s

v a
U n n n n a m

A k

n
C C A a m

ACk

π π π π

π

  
= + + − − −  

  

 + + − + 

 

Replacing 
(1 )

A
C

v
=

+
 in the equation given above will yield the final form of U  as, 

 

( )

2 2 2
2 4

3 3

2 2

1 cos ( ) 3 5 (2 )
2 sin ( )

8 8 8 3

1
2 2 cos ( ) .

4

s

s

v a n
U n a m

A k

n v a m
Ak

π
π

π

  
= + +   

  

+ +

 (5.40) 
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The equation given in (5.40) is identical with the given equation in reference [56] 

and can be written in the form of, 

 4 2
1 2s sU m mλ λ= + , (5.41) 

where 

 
2 2 2

2
1 3 3

1 cos ( ) 3 (2 ) 5
2 sin ( )

8 8 3 8

v a n
n a

A k

π
λ π

  
= + +  

  
, (5.42) 

and 

 2
2

1
2 2 cos ( )

4
n v a

Ak
λ π  = +  . (5.43) 

Equating the work done by strain energy to the bending moment sm  gives, 

 4 2
1 2

0

( )s s sm m m d

φ

λ λ φ φ+ = ∫ , (5.44) 

and differentiation of equation (5.44) with respect to φ  after necessary 

simplifications yields, 

 2
1 2(4 2 ) 1.s

s

dm
m

d
λ λ

φ
+ =  (5.45) 

Again integrating back equation (5.45) will yield, 

 3
1 2

4
2

3 s s
m mλ λ φ+ = . (5.46) 

Considering φ  and k  as; sin( ) /l aφ ρ=  and cos( ) /k rα= , and using 1λ  and 2λ  

given in equations (5.42) and (5.43) into the equation (5.46) yields, 

 
32 2 2 2

21 3 (2 ) 5 2 cos ( )
sin ( )

6sin( ) 8 3 8 2sin( )
s sm mv r n v a

a
a EI a EI

π

ρ

   +
= + + +  

  
, (5.47) 

where 4 / 4.I Rπ=  
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In most practical cases, the term involving 3
sm  in equation (5.47) can be neglected in 

comparison with the term involving sm  due to its small effect to the curvature 1/ ρ . 

The result for curvature 1/ ρ  can be obtained in this aspect as, 

 
21 2 cos ( )

2sin( )
smv a

a EIρ

+
= , (5.48) 

which is also harmonious with the angular deflection (curvature) given in [6]. The 

bending moment 
sm  can be written using equation (5.48) in the following form, 

 
4

2

1 2sin( )

4 2 cos ( )
s

ER a
m

v a

π

ρ
=

+
. (5.49) 

Equation (5.48) provides a result that is valid for large rotations provided with 0v = . 

An application of Picard’s method shows that, for the first approximation, in the case 

of large rotations and 0v ≠ , equation (5.48) yields valid results for most practical 

cases. An extension of Picard’s method would yield a power series in 
sm  for the 

curvature 1/ ρ  in which the coefficient sm  remains the same. For most practical 

applications, the resulting series converges very rapidly and it is felt that equation 

(5.48) would also yield excellent results for the curvature for relatively large 

rotations and 0v ≠  [56]. 

5.3 Bending stiffness of a simple straight strand 

When a simple straight strand bent over a circle of radius ρ , as in Figure 5.1 by a 

bending moment of bM , bending stiffness *A  of this strand is approximated by 

summing the bending stiffness of each wire in the strand [11]. During this process, 

friction is neglected and while bending outer wires are assumed to act independently. 

The bending moment bM  of a simple straight strand can be written by summing the 

bending stiffness of the center wire plus the multiplicity lm  of the number of outer 

wires where l  represents the layer number and bM  is, 

 
*

4 42 2
2 12

2

2 sin( ) 1

4 2 cos ( )b

m aE A
M R R

v a

π

ρ ρ

 
= + = 

+ 
, (5.50) 
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where *A  is the bending stiffness of a simple straight strand which can be written as, 

 * 4 42 2
2 12

2

2 sin( )

4 2 cos ( )

m aE
A R R

v a

π  
= + 

+ 
. (5.51) 

5.4 Frictional effects of a strand 

The general equilibrium equations are given in (4.28)-(4.30) and (4.35)-(4.37) with 

the curvatures given in equations (4.39). Assuming under sufficient axial loading 

condition over a simple straight strand, contact occurs between an outer wire and the 

center wire. If the wire strand is bent only while the contact condition is maintained, 

an external load can be applied to the outer wire only through the line of contact 

between any two cross sections. In Figure 5.2, a force applied to a boundary section 

of a wire with radius R. Transforming the force on the boundary to an equivalent 

force and couple acting along the centerline of the wire the following equations can 

be written, 

 0 0 0 0cos sin ,Zds Z ds Y dsβ β= −  (5.52) 

 0 0 0 0sin cos ,Yds Z ds Y dsβ β= +  (5.53) 

 0,K =  (5.54) 

 ,K ZR′ = −  (5.55) 

and, 

 ,YRΘ =  (5.56) 

where 0 0 and Y Z  are the forces per unit length acting along the contact curve, β  is 

the angle shown in Figure 5.2, 0ds  is a differential length along the contact curve 

corresponding to a differential length ds  along the centerline of an outside wire, and 

,  ,  and K K ′ Θ  are the components of the external moments per unit length along the 

centerline of an outside wire.  

The bending moment and twisting moment in the wire can be expressed as in 

equation (4.39). The equilibrium equations (4.28)-(4.30), (4.35)-(4.37) and equations 

(5.54)-(5.56) considered together to find the following system of equations, 
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 0
dN

N T X
ds

τ κ′ ′− + + = , (5.57) 

 0
dN

T N Y
ds

κ τ
′
− + + = , (5.58) 

 0
dT

N N Z
ds

κ κ′ ′− + + = , (5.59) 

 0
dG

G H N
ds

τ κ′ ′ ′− + − = , (5.60) 

 0
dG

H G N RZ
ds

κ τ
′
− + + − = , (5.61) 

 0.
dH

G G RY
ds

κ κ′ ′− + + =  (5.62) 

 

Figure 5.2: Loads over an outer wire with differential element length of ds. 

The original curvature and twist for an outside wire are given in equation (4.54). It is 

assumed that the initially straight center wire is deformed into a circle of radius ρ  

and the relation between α  and ρ  is known as, tan / rα ρθ φ= . Deformed states of 

the curvature and twist can be written as, 

 

2 2sin cos sin
cos ,     sin ,

sin cos sin cos
       sin .

r

r

α α α
κ φ κ φ

ρ ρ

α α α α
τ φ

ρ

′= = −

= +

 (5.63) 

Zds

z
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Xds

Yds

Y0ds0

y

R
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Z0ds0

β
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X0ds0

x

Zds

z

Center line

Xds

Yds

Y0ds0

y

R

β

Z0ds0

β

Line of contact
X0ds0
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Solving equations (4.35)-(4.37) yields,  

 
( ) 2 2 2cos sin sin sin

sin cos
A C

N
r

α φ α φ
α α

ρ ρ

−  
′ = + 

 
, (5.64) 

 
( ) 2

2
sin cos sin cos

A C
RZ N α α φ φ

ρ

−
= + , (5.65) 

 
( ) 2sin cos cos
A C

RY
r

α α φ
ρ

−
= , (5.66) 

where 
4 4

;
4 4(1 )

ER ER
A C

v

π π
= =

+
 and 

cos

r
s φ

α
= . Equation (5.64) results in, 

 
( ) 2 2

2 cos sin
sin cos 2 sin cos

A CdN dN d

ds d ds r r

φ α α
α α φ φ

φ ρ ρ

−′ ′  
= = − + 

 
. (5.67) 

A combination of the equations (4.29), (4.30) , (5.64)-(5.67) yields, 

 
( )

2 2

2

2 2

2

2 2

2

cos sin sin

(cos )

cos 1 sin

cos sin sin

cos 2sin sin

* sin sin cos .

1 sin

r r

RdT r
T

d r

A C r r r

r R

r r

Rr

r

α α φ
ρ

φ
φ ρ

α φ
ρ

α α φ
ρ ρ ρ

α α φ
ρ

α φ φ
ρ

φ
ρ

 
− + 

 +
 

+ 
 

−  
= − − + 

 

  
− +  

  − 
  +    

 (5.68) 

Letting / 1r ρ �  equation (5.68) becomes to, 

 
( ) 2

2 2

2 2
cos (cos ) cos cos ,

cos

A CdT r r r r
T

d R r R
α φ α φ

φ ρ α ρ

−   
+ − = −      

 (5.69) 

and the solution of equation (5.69) gives [98], 

 
1

3 2
sin

1
C

C C
T

e C
φ

= + , (5.70) 
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where, 

 
( )

2
1 2

2

2
2 2

cos ,
cos

cos ,

r r
C

R

A C r
C

r R

α
ρ α

α

 
= −  

−  
= −  

 (5.71) 

in addition, 3C  is an arbitrary constant, which is determined by the following 

equation, 

 
2

0

0.Td

π

φ =∫  (5.72) 

Equation (5.72) indicates that the change in length because of bending of an outer 

wire in one lay length is assumed zero when the strand is subjected to bending. 

Although this change in length may not be zero, it is certainly small, and the value of 

3C  will not be significantly changed by assuming equation (5.72) is valid. Since 

1 1C � , equation (5.72) yields, 

 2
3

1

.
C

C
C

= −  (5.73) 

The equation (5.70) can be written with these constants as, 

 
24

2

2
cos sin .

4 (1 )

ER r v r
T

r v R

π
α φ

ρ

 
= − +  

 (5.74) 

According to equations (5.64)-(5.66) and the previous definitions of forces and 

couples, the following results can be written down, 

 
4 sin

cos
4

ER
G

π α
φ

ρ
= , (5.75) 

 
4 2sin

sin
4

ER
G

π α
φ

ρ
′ = − , (5.76) 

 
4 sin cos

sin
4(1 )

ER
H

v

π α α
φ

ρ
=

+
, (5.77) 
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4

2sin cos cos
4 (1 )

ER v
Y

R r v

π
α α φ

ρ
=

+
, (5.78) 

 
4

3sin cos sin
4 (1 )

ER v
N

r v

π
α α φ

ρ
′ = −

+
, (5.79) 

 
4 21 cos

cos cos
4 (1 )

ER v
N

v R r

π α
α φ

ρ

 
= − − 

+  
, (5.80) 

 
4 21 cos

cos cos
4 (1 )

ER v
Z

R v R r

π α
α φ

ρ

 
= − − 

+  
, (5.81) 

 
24

2 2

2
cos (1 2cos ) sin .

4 (1 )

ER v r r
X

r v R R

π
α α φ

ρ

  
= − + −  

+    
 (5.82) 

The foregoing equations are for the bending only under the curvatures and twist 

given in equation (5.63).  

5.5 Construction and static response of an IWRC 

A simple straight seven wire (1+6) strand is surrounded by six seven wire (1+6) 

strand and its cross section is given in Figure 5.3. Strand 2 is deformed into the 

single helical shape over the strand 1, which composes a well-know core type named 

IWRC. No external loads are applied to these strands and they are in unloaded 

preformed shapes. Here again the bending stiffness of the strand 2 will be written as 

in equation (5.50). By summing the bending stiffness of the each wire of the strand 2, 

 2

* 4 44 4
4 32

4

2 sin( )

4 2 cos ( )

m aE
A R R

v a

π  
= + 

+ 
, (5.83) 

where 4a  is the helix angle of an outer wire in strand 2. Helix angle of the strand 2 is 

denoted by *
2α  and its loaded form can be denoted by *

2α . The angle of twist for the 

strand 2 is represented by *
2τ∆  which is, 

 
* * * *

* 2 2 2 2
2 * *

2 2

sin cos sin cos
,

r r

α α α α
τ∆ = −  (5.84) 

where *
2 1 2 3 42 2r R R R R= + + + . 
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Figure 5.3: An IWRC cross sectional view. 

Because of the Poisson’s ratio effect, 

 * *
2 2 1 1 2 2 3 3 4 4( 2 2 )r r R R R Rν ξ ξ ξ ξ= − + + + , (5.85) 

where iξ  are the axial wire strains for 1,.., 4i = . Following equations can be written 

for strand 2 as, 

 
*
2

1 3 *
2

,
tan

α
ξ ξ

α

∆
= +  (5.86) 

 4
3 4

4

,
tan

α
ξ ξ

α

∆
= +  (5.87) 

 

*
* *32

2 2* * *
2 2 2

*3 1 1 2 2 3 3 4 4
2* * *

2 2 2

1 1

tan tan

( 2 2 )
     ,

tan tan

r
r

r

R R R Rv

r

ξ
τ α

α α

ξ ξ ξ ξ ξ
α

α α

 +
= − ∆ − 

 

+ + +
= − ∆ +

 (5.88) 

 ( )

* 3 3 4 44
3 4 2 4

4 3 4 4

2 * *
2 2

3 4
* * *1 1 2 2 3 3 4 4

2 2 2*
2

( )
( )

tan ( ) tan

1 2sin
( )

,( 2 2 )
sin cos

R R
R R v

R R

R R
R R R R

r v
r

ξ ξξ
τ α

α α

α α

ξ ξ ξ ξ
α α

+
+ ∆ = − ∆ +

+

 − ∆
 +

= + + + 
+ 
 

 (5.89) 
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where τ  is the twist of the rope and *
2τ∆  is the angle of twist of the strand 2. Also, 

 

( )

2
1 2

2

2 1 1 2 2
1 2 2

2 1 2 2

,
tan

( )
,

tan ( ) tan

R R
R R

R R

α
ξ ξ

α

ξ ξ ξ
τ α ν

α α

∆
= +

+
+ = − ∆ +

+

 (5.90) 

for strand 1. The rotational strain for the rope can be written as, 

 Rβ τ= , (5.91) 

where 1 2 3 42 2 4R R R R R= + + + . 

The following procedure will give the axial response of a wire rope shown in Figure 

5.3. Axial strain ξ , and rotational strain β  are chosen. Taking into account that 

1ξ ξ=  and Rβ τ= , 2ξ  and 2α∆  can be found by solving equations (5.90). 3ξ , 4ξ , 

*
2α∆  and 4α∆  can be found by solving equations (5.86)-(5.89). 

Using equation (5.89), *
2τ∆  can be determined, *

2T  and *
2H  can be computed for 

strand 2 by equations (4.105) and (4.107) respectively. Bending moment *
2G′  for 

strand 2 is given by, 

 
2 * 2 *

* * * * 2 2
2 2 2 2 * *

2 2

cos cos
G A A

r r

α α
κ

 
′ = ∆ = − 

 
, (5.92) 

which can be linearized and found that, 

 
( )

( )
2 *

2
1 1 2 2 3 3 4 42*

2* * * *
2 2 2 2

* *
*2 2
2*

2

cos
2 2

.
2sin cos

v R R R R
r

G A A

r

α
ξ ξ ξ ξ

κ
α α

α

 
+ + + 

 ′ = ∆ =  
 − ∆
  

 (5.93) 

Using equation (4.106) *
2N ′  can be computed as in, 

 
2 * * *

* * *2 2 2
2 2 2* *

2 2

cos sin cos
N H G

r r

α α α
′ ′= − . (5.94) 
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Axial force and axial twisting moment over strand 2 can be written as, 

 * * * * *
2 2 2 2 2 2sin cos ,F m T Nα α′ = +   (5.95) 

 * * * * * * * * * * *
2 2 2 2 2 2 2 2 2 2 2 2sin cos cos sin .

t
M m H G T Er N Erα α α α′ ′ = + + −   (5.96) 

The total axial force F  and the axial twisting moment 
tM  is derived as follows [11], 

 * *
1 2F F F= +  (5.97) 

 * *
1 2t tM M M= + . (5.98) 

5.6 Generalized solution of IWRC and bending over a sheave 

Axial behavior of a strand can be analyzed using the same equilibrium equations for 

the axial behavior of a helical wire given in equations (4.28)-(4.30) and (4.35)-(4.37). 

It is assumed that the generalized forces are independent of s , and wires are not 

subjected to bending moments thus 0K K ′= = , also T  is assumed to be constant 

along the wire. The equilibrium equations are independent of the position and will be 

in the following form [63], 

 X N Tτ κ′ ′= − , (5.99) 

and, 

 N G Hτ κ′ ′ ′= − + , (5.100) 

where ,   and κ κ τ′  are defined in initial condition as in equation (4.21). Considering 

a helical wire in a strand under axial loading, it will be depend on an axial strain and 

twisting. The elements of wire rope are considered using the indices given in Table 

5.1.  

The initial forms of the normal and binormal curvatures and twist of each wire are, 

 
2cos sin cos

0; and .si si si
si si si

si sir r

α α α
κ κ τ′= = =  (5.101) 
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Table 5.1: Indices of a wire within a strand. 

s  Strand number 

s
m  Number of strands in the s ’th layers of wire rope 

s
l  Within a strand shows the number of layers of helically wrapped wires 

i  Wire layer number 

si
m  Number of identical wires in the i ’th layer 

si
R  Wire radiuses of the individual wire within a strand s  in layer i  

si
α  Helix angle of the individual wire within a strand s  in layer i  

si
r  Helix radius of the individual wire within a strand s  in layer i  

 

Pulling and twisting results strain siξ  and change in the binormal curvature and twist 

siκ ′∆ , siτ∆  respectively in each wire in a strand. There will be no change in the 

normal curvature 
siκ , which results in 0siG = . Wire loads depending on these 

changes can be written as,  

 2
si si siT Rπ ξ= , (5.102) 

 
4

4
si

si si

ER
G

π
κ′ ′= ∆ , (5.103) 

 
4

4(1 )
si

si si

ER
H

v

π
τ= ∆

+
. (5.104) 

Caused by the small changes in sir  and siα  there will be small changes in curvature 

and twist. It can be shown by partial differentiation of equations (5.101) that, 

 22 tan ( ) (tan 1)( )si
si si si si si si

si

r
r r

r
α τ α κ

∆
′= − ∆ + − ∆ , (5.105) 

 ( ) tan ( ).si si si si si sir rα τ α κ ′∆ = ∆ − ∆  (5.106) 

While pulling and twisting a straight strand, an axial strain sξ  and a change in twist 

sτ∆  occurs. Wire layers should be act according to these strains and adjacent wire 

layers must remain in contact with each other. Three compatibility conditions take 

places. First two conditions are comes from the extension and change in twist of the 
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strand. A small change in strain siξ  and in helix angle siα∆  makes change in the 

axial strain of the strand 
sξ , 

 cots si si siξ ξ α α= + ∆ . (5.107) 

In addition, change in strand twist 
sτ∆  is given by, 

 
1

cot .si
s si si si

si si

r

r r
τ α ξ α

  ∆
∆ = − + − ∆  

  
 (5.108) 

The last condition comes from the idea that the wires in the i ’th layer of a strand is 

in contact in the ( 1)i − ’th layer of the same strand. The helix radius sir  can be written 

in terms of wire radius 
sjR  as, 

 
1

i

si sij sj

j

r Rη
=

=∑ , (5.109) 

where 
sijη  are known dimensionless weighting factors (0 or 1) or they are 

complicated depending on the helix angle 
siα  [73]. Change in helix radius 

sir∆  is 

depended on the Poisson contraction of all the wires in the strand and is written as, 

 p

si si sii si sir r v Rη ξ∆ = ∆ − , (5.110) 

where p

sir∆  is, 

 
1

1

i
p

si sij sj sj

j

r v Rη ξ
−

=

∆ = − ∑ . (5.111) 

Three compatibility conditions to determine generalized wire strains siξ , siκ ′∆  and 

siτ∆  can be determined in terms of generalized strand strains sξ , sτ∆  and p

sir∆  

using the equations (5.107), (5.108), (5.110) with equation (5.105), (5.106). These 

relations can be written in matrix form as, 
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( ) ( )

( )

2 2

2

1 cot 1

cot 1 cot

/ cot 2cot 1 cot

                                                                ,

cot /

si si

si si si si

si sisii si si si si si

s

si s

p

si si si

r

rv R r

r

r r

α ξ

α α τ

κη α α α

ξ

τ

α

 −  
   

∆   
   ′∆− −    

 
 

= ∆ 
 
 ∆ 

 (5.112) 

and solved by using Cramer’s rule for cot 0.siα ≠  Generalized forces on a strand sT  

can be computed by, 

 
1

sin cos
sl

s si si si si si

i

T m T Nα α
=

′ = + ∑ , (5.113) 

while the torque 
sH  is, 

 ( ) ( )
1

sin cos cos sin
sl

s si si si si si si si si si si

i

H m H G r T Nα α α α
=

 ′ ′= + + − ∑ , (5.114) 

where siT , siG′ , siH  and siN ′  are computed using the equations (5.102)-(5.104) and 

(5.100) respectively once equation (5.112) is solved for 1,..., si l= . A value for the 

strand binormal bending moment sG′  for a well-lubricated frictionless case can be 

written as [73], 

 
4

21

sin
1 41 cos
2

sl

si
s si s

i
si

ER
G m

v

α π
κ

α=

 
 

′ ′= ∆ 
 +
 

∑ . (5.115) 

For a wire rope with an IWRC let sR  is the radius of a strand in the s ’th strand layer. 

If number of wire layers 
sl  and the outermost wire layer is numbered as 

sl ’th layer in 

this strand then for si l= , 

 
s si siR r R= + . (5.116) 

The helix radius will be of the form that, 
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 0
1

s

s st t

t

r Rη
=

=∑  (5.117) 

where 0stη  are integers. Rope radius of R  is given by for s l= , 

 s sR r R= + , (5.118) 

where l  is the number of strand layers in the rope. Each strand in the rope has its 

own twist sτ  and curvature sκ ′  given by, 

 
2sin cos cos

 and s s s
s s

s sr r

α α α
τ κ ′= = , (5.119) 

where sα  is the helix angle of the strand within the rope. There are three 

compatibility conditions for wire ropes as in strands. Two of them is similar to the 

strands given in equation (5.107) and (5.108). The last condition is about the change 

in strand radius. Strands in the s ’th strand layer remain in contact with those in the 

( 1)s − ’th strand layer. Using equations (5.109) and (5.116) with the Poisson 

contraction of the wires within a strand sR∆  can be defined as, 

 0
1

sl

s s j sj sj

j

R v Rη ξ
=

∆ = − ∑ , (5.120) 

and the 0s jη  are known weighting factors and sjξ  are the strains in the individual 

wires of a strand. sjξ  are linear functions of both sξ  and sτ∆  that, 

 sj sj

sj s s

s s

ξ ξ
ξ ξ τ

ξ τ

∂ ∂
= + ∆

∂ ∂∆
, (5.121) 

where the partial derivatives can be computed numerically by the previously 

developed solutions for wires within a loaded strand. Change in sr∆  can be shown by 

using the equations (5.117), (5.120) and (5.121) by, 

 0 0
p s s

s s ss s ss s

s s

R R
r r η ξ η τ

ξ τ

∂ ∂
∆ = ∆ + + ∆

∂ ∂∆
, (5.122) 
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where p

sr∆  can be represented by, 

 
1

0
1

s
p t t

s st t t

t t t

R R
r η ξ τ

ξ τ

−

=

 ∂ ∂
∆ ≡ + ∆ 

∂ ∂∆ 
∑ . (5.123) 

Using the fundamental relation given in (5.105) which gives the change in helix 

radius sr∆  as a function of the change in twist sτ∆  and the change in curvature sκ ′∆ . 

Applying this relation and multiplying with 2cot /s srα  and making the definitions, 

 0 0,   ,s s
s ss s ss

s s

R R
C C

ξ τη η
ξ τ

∆∂ ∂
≡ ≡

∂ ∂∆
 (5.124) 

equation (5.122) becomes to, 

 

2 2

2
2

cot cot
2cot ( )

cot
(1 cot )( ) .

s s
s s s s s s

s s

ps
s s s s

s

C C r
r r

r r
r

ξ τα α
ξ α τ

α
α κ

∆ 
− + − − ∆ 

 

′+ − ∆ = ∆

 (5.125) 

Three compatibility conditions are ready with equation (5.125) and writing them into 

a matrix form gives, 

 
( ) ( ) ( )

( )

2 2 2

2

1 cot 1

cot 1 cot

cot / 2cot cot / 1 cot

                                                     . .

cot /

s

s s

s s s s s s s s

s

s s s

p
s s s s s

r C r C

r r

r r r

ξ τ

α

α α

α α α α

ξ ξ

τ τ

κ α

∆

 −
 
 
 
− − − −  

     
∆ = ∆  

  ′∆  ∆   

 (5.126) 

It can be seen easily that this matrix form is similar to the equations (5.112). Solving 

equation (5.126) for each strand in the rope one can find the tensile force sT , the 

twisting moment sH  and the bending moment sG′  acting for each strand. Total force 

T  and twisting moment H  for the rope can be written in a similar way as in strands 

in equations (5.113) and (5.114) respectively and can be given as, 
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1

sin cos
l

s s s s s

s

T m T Nα α
=

′ = + ∑ , (5.127) 

 ( ) ( )
1

sin cos cos sin
l

s s s s s s s s s s

s

H m H G r T Nα α α α
=

 ′ ′= + + − ∑ . (5.128) 

5.7 Bending a loaded rope over a sheave 

When axially loaded straight wire rope bent over a sheave, it is subjected to 

additional bending loads. It has been shown that the maximum change in normal 

curvature siκ∆  in a helical wire in a straight strand is smaller then in strand curvature 

sκ∆  by the following equation [73], 

 
2

sin
1

1 cos
2

si
si s

siv

α
κ κ

α
∆ = ∆

+

. (5.129) 

The maximum change in strand curvature 
sκ∆  is found by the axis of a straight 

strand bent over a sheave with radius D/2 as, 

 
2

sin 1
.

1 / 21 cos
2

s
s

s

D
v

α
κ

α
∆ =

+

 (5.130) 

The maximum bending stresses B

siσ  for the wires within a strand is predicted by 

using equations (5.118), (5.129) and (5.130) together, because of sheave curvature 

depending on /D d  parameter as, 

 
1

2 2

sin sin
= .

1 1
1 cos 1 cos

2 2

B si s si
si si si

s si

R D
ER E

R d
v v

α α
σ κ

α α

−
 

= ∆  
 + +

, (5.131) 

where 2d R= . The factors /siR R  in equation (5.131) suggests that, for a given 

/D d  ratio, stresses owing to bending over a sheave can be minimized by using a 

rope having a large number of very fine wires [73]. Due to the change in twist is zero 

0τ∆ = , the shearing stresses by reason of the twisting moments 
siH  and the 
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transverse shear forces siN ′  are also negligible. The maximum tensile stress on the 

cross section of a given wire, the axial extension of a straight rope is given by, 

 
2 4

2

sin1
1/ 4 1 cos
2

T si si si
si si si s

si si
si

R ER
T G

R R
v

α
σ κ

π π α

′ ′= + + ∆

+

, (5.132) 

where the last term comes from bending stresses induced in strand wires when the 

strand subjected to change in curvature using equation (5.115). The resulting data 

can be scaled for ropes with identical constructions for different rope diameter d. 

Force results will vary as 2
d  whereas moment results will vary as 3

d . Nominal 

stress nomσ  is defined as, 

 
nom

T

A
σ ≡ , (5.133) 

where A  is the metallic area of the rope and given by, 

 2

1 1

sll

s si si

s i

A m m Rπ
= =

=∑ ∑ . (5.134) 

The non-dimensional ratio or straight rope factor T

siz  is given by, 

 
T

T si
si

nom

z
σ

σ
≡ . (5.135) 

This ratio is always greater than or equal to unity. Actually it is sufficient to compare 

the term 
siEξ  with the term 

effE ε , where 
effE  is the effective modulus of the rope. 

Effective modulus is given by, 

 nom
eff

T
E

A

σ

ε ε
≡ = . (5.136) 

The values of siξ  are consistently greater than ( / )effE E ε  and thus the axial wire 

stresses consistently exceed the nominal rope stress. 

When a loaded straight rope under a nominal stress nomσ  is bent over a sheave of 

diameter D , additional bending stresses given by equation (5.131) are imposed. By 
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superposition, the maximum stress siσ  in an arbitrary wire may be represented in a 

non-dimensional form as, 

 
T B

si si si

nom nom nom

σ σ σ

σ σ σ
= + , (5.137) 

and it can be written with respect to T

siz  and B

siz  as follows, 

 
1

.T Bsi nom

si si

nom

D
z z

d E

σ σ

σ

−
 

= +  
 

, (5.138) 

where the bending factor B

siz  is given by, 

 
2 2

sin sin
. .

1 1
1 cos 1 cos

2 2

B si s si
si

s si

R
z

R
v v

α α

α α
=

+ +

. (5.139) 

Both T

siz  and B

siz  are independent of E  and nomσ . When siσ  is normalized with 

respect to nomσ , nomσ  appears in the parameter multiplying B

siz  because the bending 

stresses owing to sheave curvature are actually independent of nomσ  [73]. 

Recommended values of /D d  for sheaves lie between about 60 and about 100, 

depending on the rope diameter, the rope construction, and the type of application. 

As an example of the preceding discussion, geometric parameters of such a lang lay 

IWRC given in Figure 5.3, are presented in Table 5.2. 

Computed values of straight rope factor T

siz  and bending factor B

siz  are given in Table 

5.3. Variation of the normalized maximum stresses for the lang lay IWRC with the 

bending parameter / /nomD d Eσ⋅  according to equation (5.138) are plotted in Figure 

5.4 using the geometric consideration given in Table 5.2 and corresponding results in 

Table 5.3.  

Consider a 6x7 wire lang lay IWRC with a metallic area of 21 inch  and an axial load 

of 10 tons. The nominal stress of the IWRC is, 

10*2000
20000

1nom psiσ = = . 
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Table 5.2: Geometric parameters of an IWRC. 

Strand data Wire data 

Layer No Angle Factors Layer No Angle Radius 
Type of 

rope 

s  
s

m  
s

α  t =  
0 st

η  l  
si

m  
si

α  
si

R  

1 1 90.0 °  1 0 
1 

2 

1 

6 

90.0 °  

83.5 °  

0.343 

0.305 

IWRC 

2 6 82.8 °  
1 

2 

1 

1 

1 

2 

1 

6 

90.0 °  

84.4 °  

0.292 

0.267 

Ratio of sheave and rope diameter is / 30D d =  and value of / /nomD d Eσ⋅  is, 

6

20000
. 30. 0.02

30*10
nomD

d E

σ
= = . 

From the Figure 5.4, max / nomσ σ  ratio can be read corresponding to 0.02 as 1.41, and 

the maximum stress in the center wire of the IWRC can be computed as, 

21.41*20000 28200 194.43 /psi N mmσ = = = . 

 

Figure 5.4: Variation of normalized maximum stresses for a lang lay IWRC with the 
bending parameter / /nomD d Eσ⋅ . 
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6. MODELING WIRE ROPE  

Helix is one of the interesting curves among the space curves in 3-D spaces. Screws, 

Slinky, DNA molecules, wires, and ropes have helical substructures. The general 

form of a helix can be called as a single helix. Most of the CAD software are capable 

of constructing a single helical geometry and solid part easily. Coiling a helix around 

another helix creates a new geometry, which can be called double helix or nested 

helical structure. The word double helix is not defined explicitly now. Double helix 

is used mostly for the DNA molecules and structures in the literature [99-105]. A 

double helix typically consists of two similar helices with the same axis, differing by 

starting angle along the axis. Intertwined helices with different radii, i.e. successive 

layers will vary in their radii, to guarantee the maximum possible geometric distance 

in DNA molecules. Single helices are disconnected and inside one another and with 

an offset of half a winding to maximize the distance [99]. For this reason, this new 

type of complicated helix, which is nested over a single helix, will be called as nested 

helix (NH) throughout to distinguish these two helical geometry. Also the structure 

produced using NH will be called as nested helical structures (NHS). NHSs are 

difficult geometries to construct by using CAD software’s and there is no available 

tool at present to produce such geometries. 

6.1 General definition of helices and a special form 

A helix can be defined that, tangent line at any point makes a constant angle with a 

fixed line. It can be viewed as a kind of 3-D spiral. A single helix can be represented 

in the parametric form as, 

 

cos( ),

sin( ),

,

s s s

s s s

s s

x r

y r

z h

θ

θ

θ

=

=

=

 (6.1) 

where h represents the length of the helix, sθ  is the helix angle. The Slinky toy, 

which is invented by Richard James, is an interesting geometry because it can move 
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with preserving the startup energy. Its modified parametric representation can be 

written in the following form [106], 

 

[ cos( )]cos ,

[ cos( )]sin ,

sin( ),

x b a t t

y b a t t

z ht a t

ω

ω

ω

= +

= +

= +

 (6.2) 

where real constants a, b, ω  and the part [ cos( )]b a tω+  is the parametric form for a 

circle, as a defines the radius while b shows the height and ω  shows the number of 

wings, and the rest of the equation moves this circle around the helix. This 

parametric form also generates a logarithmic spiral moving around a helix, which is 

presented in Figure 6.1. 
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Figure 6.1: Slinky: a spiral nested over a helix. 

The importance of Slinky is that, it is one of the special forms of nested helical 

geometry defined over a single helix. However, it cannot be used while modeling a 

double or nested helical geometry. For this reason, a nested helical structure, which 

can be nested over another helix, is necessary for solid modeling of a wire rope 

structure.  
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A single helix nested by another helix creates a NH, which is defined as a double 

helix in [92] and shown in Figure 6.2 with a moving trihedron. 
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Figure 6.2: Nested helix (double helix) with Frenet-Serret frame. 

6.2 Nested helical system 

To define the location of a single helix centerline, Cartesian coordinate system 

( , , )x y z  with the Cartesian frame { }, ,
x y z

e e e  is used and the location along the 

centerline of a single helix is, 

 

cos( ),

sin( ),

tan( ) ,

s s s

s s s

s s s s

x r

y r

z r

θ

θ

α θ

=

=

=

 (6.3) 

where ze  shows the axis where the helix lies, sr  is the radius of the single helix, sα  

is the single helix laying angle and 0 .sθ θ θ= +  Free angle θ  defines the location of 

the wire around the rope axis ze  relative to xe . The single helix phase angle is 

defined as 0 ( 0)zθ θ == . The outer nested helix is wound around a single helix with 
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using the location along the centerline of a single helix given in equation (6.3). 

Location of the nested helix centerline can be written in the following form [92], 

 

( ) cos( ) cos( ) sin( )sin( )sin( ),

( ) cos( )sin( ) sin( ) cos( )sin( ),

                        sin( ) cos( ),

d s s d d s d d s s

d s s d d s d d s s

d s d d s

x x r r

y y r r

z z r

θ θ θ θ θ α

θ θ θ θ θ α

θ α

= + −

= + +

= −

 (6.4) 

where 0d s dθ ηθ θ= +  and 
dr  shows the distance along the NH centerline and single 

helix centerline respectively as shown in Figure 6.3, η  is the construction parameter 

which shows the frequency of the wire along the helix length and 0dθ  is the wire 

phase angle.  

 

Figure 6.3: Nested helical wire path definitions. 

The construction parameter η  is a ratio of the angle of a nested helical wire rotation 

to the angle of the outer helical strand rotation. This ratio is dependent on the angles 

of both helices when both helical radii are fixed, so it is a constant value. It is 

considered important in characterizing the rope structure, specifically the relationship 

between the wire and strand helices, and is called the "relative rotation". The relative 
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rotation will be positive for lang lay ropes and negative for regular lay ropes. 

Centroidal axes of both strand and wire can be considered lying on right circular 

cylinders, which can be developed into a plane as shown in Figure 6.4. 

  

(a) Strand helix         (b) Nested wire helix  

Figure 6.4: Developed view of strand helix and nested helical wire. 

Using the developed view of the strand helix given in Figure 6.4-(a) the relationships 

between the length of rope 
rS , length of strand 

sS  and the angle of strand rotation 

can be obtained as, 

 tan ,r s s sS rθ α=  (6.5) 

 ,
cos

s s
s

s

r
S

θ

α
=  (6.6) 

where sr , sθ  and sα  shows radius of the strand, angle of the strand rotation and 

strand helix angle respectively. Similarly, the relationships between the length of 

strand sS , length of wire dS  and the angle of wire rotation also can be obtained by 

using the developed view of the wire helix given in Figure 6.4-(b) as, 

 tans d d dS r θ α=  (6.7) 

 
cos

d d
d

d

r
S

θ

α
=  (6.8) 

where dr , dθ  and dα  shows radius of the wire helix, angle of the wire rotation and 

wire helix angle respectively. Because the length of strand obtained from the wire 
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helix must equal that obtained from the strand helix for a given length of rope, a new 

term η  is defined to be the ratio of the angle of nested helical wire rotation 
dθ  to the 

angle of strand rotation sθ , which can be obtained from equations (6.6) and (6.7) as 

[107-108], 

 
tan cos

d s

s d d s

r

r

θ
η

θ α α
= = , (6.9) 

where η  shows the ratio of the angle of nested helical wire rotation to the angle of 

strand rotation. The ratio of η  is important wile modeling the nested helical wires. 

This parameter computed and used as a constant parameter while modeling all the 

nested helical wires along an outer strand. 

According to equation (6.4) a right lay NH can be constructed. To construct a left lay 

NH, it is enough to negate one of the coordinate values of 
dx , 

dy  or 
dz  given in 

equation (6.4). 

6.3 A moving trihedron and plane construction 

Frenet-Serret expressions describe the kinematic properties of a particle, which 

moves along a continuous, differentiable curve in 3-D Euclidean space 3
R  [109-

110]. Frenet-Serret frame is used to construct a normal plane perpendicular to the 

single helical or NHS to construct a 3-D solid part. 

Let I R⊂  be an interval, and 3: I Rψ →  be a parameterized space curve, assumed 

regular and free of points of inflection. The trajectory of a particle moving through 3-

D space is defined by ( )ψ θ . The moving trihedron, as known the Frenet-Serret 

frame, corresponds to an orthonormal basis of 3-vectors; ( ),  ( ) and ( )T N Bθ θ θ . The 

unit tangent vector ( )T θ , the unit binormal vector ( )B θ  and the unit normal vector 

( )N θ  can be defined respectively as in the following, 

 
( ) ( ) ( ) ( ) ( )

( ) ,     ( ) ,     ( ) .
( ) ( ) ( ) ( ) ( )

B
T B N

B

ψ θ ψ θ ψ θ θ ψ θ
θ θ θ

ψ θ ψ θ ψ θ θ ψ θ

′ ′ ′′ ′× ×
= = =

′ ′ ′′ ′× ×
 (6.10) 
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The line ( ) ( )tTψ θ θ+  is the tangent line at ( )ψ θ . Here t R∈  represents a parameter 

corresponding to create the tangent line in a given range. The binormal vector ( )B θ  

is perpendicular to both ( )ψ θ′  and ( )ψ θ′′ , and hence perpendicular to the osculating 

plane. The line ( ) ( )tBψ θ θ+  is the binormal line at ( )ψ θ . Finally, the normal vector 

is the vector perpendicular to both tangent and binormal vectors with its direction 

determined by the right-handed system. The line ( ) ( )tNψ θ θ+  is the normal line at 

( )ψ θ . Therefore, tangent vector ( )T θ , normal vector ( )N θ  and binormal vector 

( )B θ  form a coordinate system with origin ( )ψ θ . The tangent line, normal line and 

binormal line are the three coordinate axes with positive directions given by the TNB 

vectors respectively. These three vectors are usually referred to as the moving 

trihedron or triad at point ( )ψ θ . 

6.4 Frenet-Serret frames for single helical and NH wires 

Using the single helix expression as described in equation (6.1), the single helix 

curve ( )sψ θ  is given by, 

 ( ) ( cos( ), sin( ), ).s s s s s sr r hψ θ θ θ θ=  (6.11) 

The tangent, binormal and normal vectors for a single helical wire can be found 

using Frenet-Serret formulas as follows; 
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N
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θ ψ θ θ θ
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 (6.14) 

The location of the single helix is defined in equation (6.3) and the location of the 

NH is defined as in equation (6.4). The helix curve ( )wψ θ  can be written in the 

following vector form, 
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(

)

( ) ( ) cos( ) cos( ) sin( )sin( )sin( ) ,

               ( ) cos( ) sin( ) sin( ) cos( )sin( ),
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 (6.15) 

The tangent, binormal and normal vectors of a NH for the Frenet-Serret frame can be 

written as, 
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The Frenet-Serret frames can be calculated by equations (6.12)-(6.14) for the single 

helix and by equations (6.16)-(6.18) for NH. The tangent line ( )( ) ( )tTψ θ θ+ , the 

normal line ( )( ) ( )tNψ θ θ+  and the binormal line ( )( ) ( )tBψ θ θ+  can be written with 

respect to sθ  and dθ  respectively by using their given tangent, normal and binormal 

vectors for single helix and NH respectively. Therefore, using these lines one can 

obtain three points to construct a circle in a plane, which will be perpendicular to the 

single helix or NH body. 
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In the subsequent section, a solid part construction using single helix or NH, and 

analysis over this solid part will be discussed. 

6.5 A single helical or NH solid part construction 

The idea of using the single helix or NH geometry to construct a solid part is based 

on the difficulties experienced at the modeling and analysis stages of wire ropes. 

Single helical geometry design can be accomplished by using the well-known CAD 

software’s easily, while NH is not available as a tool at present. NHS is mostly 

encountered in rope constructions at first glance. To have a NHS, it is enough to 

wrap a strand over another one in a helical route. To perform the numerical analysis 

over this kind of construction, one should prepare the fully defined model of the 

problem first and convert it to an acceptable form for numerical analysis. There 

exists some problematic areas while conducting, modeling and analysis stages such 

as, 

• It is not possible to model NH and NHS using CAD tools directly for the 

moment, 

• Exporting NH geometry to an importable format by FEA software destroys 

the solid structures, even the single helical solid structures includes problems 

at their surfaces after imported for analysis purposes, 

• Meshing is not successful due to the irregularities faced on the surfaces of 

NH geometries. 

To illustrate the above-mentioned problems, a single helix and NH geometry are 

modeled in a 300mm and 1000mm lengths by using SolidWorks®, and transferred to 

finite element software Abaqus/CAE® using IGES and Parasolid file formats. It 

should be emphasized that, the procedures mentioned here are evaluated by using 

different modeling and analysis tools such as CATIA® and ANSYS®, and also the 

similar results are found for the helical geometries. 

Single helical parts are modeled using helix tools available at the SolidWorks and 

solid parts are meshed in Abaqus/CAE. NHs are modeled using parametric equations 

of nested helices given in equation (6.4). Script language interface of SolidWorks is 

used to write the proposed code of the NH geometry. helical parts which are 

constructed using the proposed method are presented in Figure 6.5 and Figure 6.6. 
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Column (a) represents helices created in SolidWork, column (b) and (c) represents 

imported forms of IGES format and Parasolid format in Abaqus/CAE respectively, 

and column (d) represents the helical geometry created with the parametric equations 

using HyperMesh®. 

The proposed script is written to create the meshed models with the help of 

HyperMesh. In these scripts, single helical/NH wire locations are defined with the 

control nodes. A spline is generated using these control nodes then a normal plane 

perpendicular to the spline curve centerline is created by using the Frenet-Serret 

frame defined in equations (6.12)-(6.14) and equations (6.16)-(6.18) respectively. A 

circle is created over this plane and swept along the single helical/NH spline. This 

method creates the meshed solid part in HyperMesh which is presented in column (d) 

of Figure 6.5 and Figure 6.6. When the numbers of control nodes and the wire length 

are increased, it has been concluded that the created solid geometry is spoiled out 

more. This situation is demonstrated by comparing the cross sections of the solid 

parts presented in columns (b) and (c) with item numbers (1) and (3) in Figure 6.5 

and Figure 6.6 respectively. It can be seen that the solid structures are worse when 

the part lengths increased from a 300mm to 1000mm. A comparison of the solid parts 

and meshed parts quality scale is given at the last columns of Figure 6.5 and Figure 

6.6. It can be seen that the NH mesh quality is the best among the others. In fact, 

there is no distortion at the NH geometry, which can be seen clearly while using the 

NH meshed solid parts with FEA software. 

While meshing the solid parts, FEA software gives error due to the complex 

geometry of the mesh region for sweep meshing. It has been observed that the 

meshed parts are in unusable quality. In fact, this situation shows the main problem 

area while meshing NHS. This problem do not occurs while using the proposed 

script for modeling solid wires in HyperMesh. To see the problematic meshed 

surfaces closely, enlarged front view of item 4-column (b) of Figure 6.6 is 

represented in Figure 6.7. The meshed surface is split out, and it is unusable for FEA 

anymore. Using the proposed script, single helical and NH meshed solid parts are 

generated in HyperMesh and shown in Figure 6.8. It can be clearly seen that the 

meshed surfaces have no problems at the surfaces and precisely defined. It can be 

concluded that the NH meshed parts for each length is the best choice to use in FEA 

purposes. 
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Figure 6.7: Zoomed front view of a NH wire. 

 
 

 

 

 

 

(a) Single helical solid wire mesh (b) NH solid wire mesh 

Figure 6.8: Single helical and NH meshed parts in Abaqus/CAE. 

 
 



 100 

6.6 Construction of a complex single helical and NH wire mesh 

During the modeling issue, it has been concluded that FEA software needs smooth 

and precisely defined solid meshed surfaces. Meanwhile commercial CAD softwares 

are not suitable to construct NH geometry because of the early mentioned 

irregularities at the meshing stage. FEA code first of all needs a precise meshed solid 

structure of the model. The idea of designing meshed model of a single helical or NH 

wire is proposed for this reason. An algorithm to develop a meshed model of a single 

or NH wire is given in Figure 6.9. The algorithm includes mainly four stages; 

• Geometry generation, 

• Solid part and mesh generation, 

• Model generation, 

• Analysis result post processing. 

 

Figure 6.9: Generation of the NH wire solid model and analysis algorithm. 

In the geometry generation stage a new code is generated to find the single helical 

control nodes using equation (6.1) and NH control nodes using equation (6.1) and 
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equations (6.3)-(6.4). To construct the solid geometry, a normal plane which should 

be perpendicular to the single helical or NH spline is needed. Frenet-Serret frame is 

constructed over the single helix and NH using the equations (6.12)-(6.14) and 

equations (6.16)-(6.18) respectively. Using the Frenet-Serret equations tangent, 

normal and binormal lines as depicted in Figure 6.2 are defined and three points are 

generated to construct a plane perpendicular to the helical spline. At the end of the 

geometry generation stage, the control nodes to construct single or NH wire and the 

nodes to build a plane which is perpendicular to the single helical or NHS are written 

to an output file in Abaqus/CAE format as illustrated in Figure 6.10. 

In the solid part and mesh generation stage, the meshed helical wire models are 

produced that are the main elements used to construct the wire strand or rope 

assembly. The control nodes generated in the first stage, which is in Abaqus/CAE 

model file format, is imported in HyperMesh as temporary nodes. A spline is 

constructed using these control nodes which corresponds to a single or NH wire. 

Using the three control nodes, which is created to define the normal plane by the help 

of Frenet-Serret formulas, a circle is generated over this plane which is perpendicular 

to the helical wire centerline. The surface of this 2-D circle geometry is divided by 

quadratic brick elements and these elements are dragged along the helical wire path 

to construct a meshed single helical or NH wire geometry. The generated shape is 

constituted with meshes and known as orphan mesh in Abaqus/CAE. At the end of 

this operation, meshed helical wire geometry is exported to finite element model file 

format, which can be imported by Abaqus/CAE. 

 

Figure 6.10: Geometry definition in Abaqus/CAE file format. 

In the model generation stage, the orphan mesh geometry is imported in 

Abaqus/CAE, which is constructed by HyperMesh as explained previously. It can be 

concluded that the wires developed by using the written scripts gives perfect results 

even for the wires with longer lengths than 300mm and there were no problems 
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encountered with FEA software. This gives the opportunity to model the NH 

geometry without any length limitations and surface irregularities. In this way, FEA 

software will not be responsible to mesh the NH model. While defining the contacts 

between wires using the mesh created by IGES format and Parasolid format, there 

were errors because of the conflicts between the wires due to irregular meshed 

surfaces. The new meshed NH solid model get rids of such problems, defining 

precise surfaces, which never conflicts with the other wires in a strand or a rope. 

Analysis stage can be conducted with safe definitions made over the solid meshed 

geometry. 

 

Figure 6.11: (1+6) wire straight strand model. 

Generated meshed solid parts are assembled together and as a result a wire strand or 

a wire rope is constructed. A straight wire is wrapped around with identical six single 

helical wires to compose a simple straight strand model and shown in Figure 6.11. 

To compose an IWRC in addition to the wires used to compose a simple straight 

strand, a single outer helical six outer NH wires are imported which are modeled 

using HyperMesh before. Using these two outer wires an outer strand is assembled 

and it is wrapped around the core simple straight strand to obtain final form of the 

IWRC model as shown in Figure 6.12. It can be clearly seen that the wire rope 

structure includes 36 NH wire and this makes the analysis enormously complicated. 

Boundary conditions, load definitions, material properties and contact controls for 

the problem are defined in Abaqus/CAE to compose a job which is submitted for the 

analysis of the proposed problem. Finally, the analysis result file is ready to read by 

the Abaqus/CAE viewer to obtain the numerical results. 

This process removes the surface irregularities encountered over the complex helical 

structures and generates precise geometries. Data loses are obstructed while 
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transferring solid parts between CAD and FEA software by the proposed modeling 

strategy and algorithm. At the same time, the length limitation problem is left behind 

by the given method. 

 

Figure 6.12: A left lang lay meshed wire rope structure. 

6.7 IWRC modeling depending on different lay types 

The term lay refers to the direction of the twist of the wires in a strand and to the 

direction that the strands are laid in the rope. In some instances, both the wires in the 

strand and the strands in the rope are laid in the same direction, and in other 

instances, the wires are laid in one direction and the strands are laid in the opposite 

direction depending on the intended use of the rope. Four different lay types are 

modeled and presented for an IWRC is presented in Figure 6.13. 

• Right Lang Lay: The wires in the strands and the strands in the rope are laid 

in the same direction; in this instance, the lay is to the right.  

• Left Lang Lay: The wires in the strands and the strands in the rope are also 

laid in the same direction; in this instance, the lay is to the left.  

• Right Regular Lay: The wires in the strands are laid to the left, while the 

strands are laid to the right to form the wire rope.  

• Left Regular Lay: The wires in the strands are laid to the right, while the 

strands are laid to the left to form the wire rope. In this lay, each step of 

fabrication is exactly opposite from the right regular lay.  
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The lay of a rope affects its operational characteristics. Regular lay is more stable 

and more resistant to crushing than lang lay. While lang lay is more fatigue resistant 

and abrasion resistant, use is normally limited to single layer spooling and when the 

rope and load are restrained from rotation. 

    

(a) Right Lang Lay (RLL-zZ)  (b) Left Lang Lay (LLL-sS) 

       

(c) Right Regular Lay (RRL-sZ)  (d) Left Regular Lay (LRL-zS) 

Figure 6.13: IWRC modeled in four different lay types. 

Strands wrapped around center strand are shown in Figure 6.14 and a nested helical 

wire without and with indentations are shown in Figure 6.15. The tightening nature 

of the regular lay wire ropes are depends on these indentations and can be clearly 

seen from the Figure 6.14. Some other cross-sectional views are presented in 

Appendix B for different lay types of IWRCs for convenience. 
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(a) Right Lang Lay (RLL)   (b) Left Lang Lay (LLL) 

  

(c) Right Regular Lay (RRL)   (d) Left Regular Lay (LRL) 

Figure 6.14: Strand wrapping for RLL, LLL, RRL and LRL IWRCs. 

 

(a) Right Lang Lay (RLL)   (b) Left Lang Lay (LLL) 

 

(c) Right Regular Lay (RRL)   (d) Left Regular Lay (LRL) 

Figure 6.15: Nested helical wires without indentations for RLL and LLL IWRC, and 
with indentations for RRL and LRL IWRC. 
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6.8 Fundamentals of FEA with virtual work 

8-node linear hexahedral brick element is presented in Figure 6.16, Cartesian 

coordinates of x,y,z showing global space while , ,ξ η ζ  shows parametric space over 

the element. The mapping function for the 8-node volume element can be written as 

[111], 

 1 2 3 4 5 6 7 8x a a a a a a a aξ η ζ ξη ηζ ξζ ξηζ= + + + + + + + . (6.19) 

Mapping the global element to the parent can be established as, 

(1, 1, 1) ,

(1,   1, 1) ,

...

( 1, 1,1) .

a

b

h

x x

x x

x x

− − =

− =

− − =

 

 

Figure 6.16: Eight-node linear hexahedral (brick) element definition. 

It can be expressed in matrix form as, 

 

1

2

8

1 1 1 1 ... 1

1 1 1 1 ... 1

1 1 1 1 ... 1

a

b

h

a x

a x

a x

− −     
    − −      =   

     
     − −     

� ��
. (6.20) 

Following the similar procedure the unknown 'ia s  in (6.20) are determined and 

substituted in (6.19) and the resulting equation gives the interpolation function for 

( , , )x ξ η ζ  with the eight shape functions as given below, 
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1 2

3 4

5 6

7 8

1 1
(1 )(1 )(1 ),  (1 )(1 )(1 ),

8 8
1 1

(1 )(1 )(1 ),  (1 )(1 )(1 ),
8 8
1 1

(1 )(1 )(1 ),  (1 )(1 )(1 ),
8 8
1 1

(1 )(1 )(1 ),  (1 )(1 )(1 ).
8 8

N N

N N

N N

N N

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

= − − − = + − −

= + + − = − + −

= − − + = + − +

= + + + = − + +

 (6.21) 

Mapping functions for the y and z coordinate values can also found with the same 

procedure as, 

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

( , , ) ,

( , , ) ,

( , , ) .

a b c d e f g h

a b c d e f g h

a b c d e f g h

x N x N x N x N x N x N x N x N x

y N y N y N y N y N y N y N y N y

z N z N z N z N z N z N z N z N z

ξ η ζ

ξ η ζ

ξ η ζ

= + + + + + + +

= + + + + + + +

= + + + + + + +

 

The same interpolation functions can be used for displacements as, 

 

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

( , , ) ,

( , , ) ,

( , , ) .

a b c d e f g h

a b c d e f g h

a b c d e f g h

u N u N u N u N u N u N u N u N u

v N v N v N v N v N v N v N v N v

w N w N w N w N w N w N w N w N w

ξ η ζ

ξ η ζ

ξ η ζ

= + + + + + + +

= + + + + + + +

= + + + + + + +

 (6.22) 

For the isoparametric volume element with 8-node brick elements, the element 

stiffness matrix B must be specified. Six strain components are relevant in full three-

dimensional analysis. The strain matrix following the standard notation of 

Timoshenko’s elasticity text can be given as, 

 { }

xx

yy

zz

xy

yz

zx

u

x

v

y

w

z

u v

y x

v w

z y

w u

x z

ε

ε

ε
ε

γ

γ

γ

∂ 
 ∂
 

∂ 
   ∂
  

∂  
   ∂   

= =   ∂ ∂   +
∂ ∂   

   
∂ ∂     +

 ∂ ∂
 

∂ ∂ +
 ∂ ∂ 

 (6.23) 
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The first strain term of 
xx

u

x
ε

∂
=

∂
 in x coordinate can be computed by submitting 

( , , )u ξ η ζ  from equation (6.22) as, 

 ( )1 2 3 4 5 6 7 8xx a b c d e f g h

u
N u N u N u N u N u N u N u N u

x x
ε

∂ ∂
= = + + + + + + +

∂ ∂
 (6.24) 

To find the derivative of u with respect to x, chain rule is used as, 

 
u x u y u z u

x y zξ ξ ξ ξ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
. (6.25) 

In the same manner derivative of y and z can be obtained as, 

 
u x u y u z u

x y zη η η η

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
, (6.26) 

 
u x u y u z u

x y zζ ζ ζ ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
. (6.27) 

Equations (6.25)-(6.27) can be established in matrix form as, 

 [ ]   

u x y zu u

x x

u u x y z u
J

y y

u x y zu u

z z

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

   ∂ ∂ ∂ ∂   ∂ ∂
      ∂ ∂ ∂ ∂∂ ∂      
   ∂ ∂ ∂ ∂ ∂ ∂   

= =      ∂ ∂ ∂ ∂ ∂ ∂      
      ∂ ∂ ∂ ∂∂ ∂
      ∂ ∂ ∂ ∂∂ ∂      

. (6.28) 

xx

u

x
ε

∂
=

∂
 can be obtained by multiplying the both side of equation (6.28) with the 

inverse matrix of the [ ]J  giving, 

 1
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x

u u
J

y
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z

ξ

η

ζ

−

 ∂ ∂
   ∂∂   
 ∂ ∂ 

 =    ∂ ∂   
   ∂∂
   

∂∂   

 (6.29) 
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In the same manner derivatives of v and w with respect to x,y,z can be found as, 

 1

vv

x

v v
J

y

vv

z

ξ

η

ζ

−

 ∂ ∂
   ∂∂   
 ∂ ∂ 

 =    ∂ ∂   
   ∂∂
   

∂∂   

 (6.30) 

 1
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z
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   ∂∂   
 ∂ ∂ 

 =    ∂ ∂   
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∂∂   

 (6.31) 

The strain vector in terms of a strain-displacement matrix can be represented in, 

 { } [ ]{ }e
B dε =  (6.32) 

Remembering the equation (6.23), right hand side of the strain vector can be 

presented using the equations of (6.28)-(6.31) in terms of the strain-displacement 

matrix as, 

 [ ]{ },e

u

x

v

y

w

z
B d

u v

y x

v w

z y

w u

x z

∂ 
 ∂
 

∂ 
 ∂
 

∂ 
 ∂ 

= ∂ ∂ +
∂ ∂ 

 
∂ ∂ +

 ∂ ∂
 

∂ ∂ +
 ∂ ∂ 

 (6.33) 

The general form of the strain-displacement matrix given in equation (6.33) can be 

expressed as in follows, 
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 { } [ ]{ } [ ]{ }1 2 3 4 5 6 7 8
e e

B d B B B B B B B B dε = =  (6.34) 

in which [112], 
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, for i=1,…,8. (6.35) 

The strain-displacement matrix can be obtained as a 6x24 for total of 24 nodal 

displacement variables (8 nodes times 3 variables per node). A general representation 

can be shown for the [ ]B  matrix as follows, 
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. (6.36) 

The stress-strain relations for an isotropic homogeneous material are given as follows 

[113], 
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 (6.37) 

where E and v are Young’s modulus and Poisson’s ratio of the wire material. Stress-

strain law given in equation (6.37) can be written in a simpler form as, 

 { } [ ]{ }.Dσ ε=  (6.38) 

Applying the virtual work principle on the element level one can write, 

 e eU Wδ δ= , (6.39) 

where, eUδ  is the virtual energy of internal stresses, and eWδ  is the virtual work of external 

forces acting through the virtual displacements. Displacement within the element and node 

point displacements is related by the following equation, 

 { } [ ]{ }e
u N d= , (6.40) 

where { }u  are the field displacement components, { } { }
T

u u v w= , [ ]N  are the element 

interpolation functions, and { }e
d  are the node displacement component values for the 

element. Strain displacement can be given for any point as, 

 { } [ ]{ }e
B dε = , (6.41) 

where [ ]B  is the strain-displacement matrix and { }e
d  is the nodal displacement vector of 

the element defined as in equation (6.36) for 8-node brick elements. 

The stress in the member follows from the stress-strain relation is given as, 

 { } [ ]{ } [ ][ ]{ }.e
D D B dσ ε= =  (6.42) 
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For any given set of small virtual displacements { }e
dδ  the internal virtual strain energy and 

eUδ  is defined by [113], 

 ( ) ,e

V

U dVδ δε σ= ∫  (6.43) 

where δε  is the virtual strain produced by the small virtual displacements, σ  is the stress 

level at equilibrium, and dV indicates the differential volume element of the member. 

The external virtual work of nodal forces is, 

 { } { }
T

e

e
W d fδ δ= , (6.44) 

where { }f  are the nodal forces. Using the principle of virtual work, 

 { } { }( )
T

e

V

dV d fδε σ δ=∫ , (6.45) 

and hence, 

 [ ]{ }[ ][ ]{ } { } { }
T

e e e

V

B d D B d dV d fδ δ=∫ , (6.46) 

 { } [ ] [ ][ ]{ } { } { }
T TTe e e

V

d B D B d dV d fδ δ=∫ . (6.47) 

From both sides of equation (6.47), { }
T

e
dδ  is canceled and element equation is found as, 

 [ ]{ } { }e
k d f= , (6.48) 

where the element stiffness matrix is given by, 

 [ ] [ ] [ ][ ]
T

V

k B D B dV= ∫ . (6.49) 

For the volume of the integral, 

 [ ]( )detdV dxdydz J d d dξ η ζ= = , (6.50) 
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and [k] can be written as, 

 [ ] [ ] [ ][ ] [ ]( )
1 1 1

1 1 1

det
T

k B D B J d d dξ η ζ
+ + +

− − −

= ∫ ∫ ∫ . (6.51) 

The stiffness matrix of the element can be obtained by numerical integration using 

Gauss quadrature formula. 

Because of the complicated geometry of the wire ropes and the interactions between 

wires in a wire rope, manual solution of the stiffness matrices for analyzing wire 

ropes is not straightforward, cost effective, and fast. In addition, problems including 

fine mesh size with higher number of DOF require more computational time and 

have to be solved using parallelization processes. For this reasons, FEA code is 

preferred to use during this study while solving the stiffness matrices to find stress, 

strain, reaction force, reaction moment and shape alteration values by using 

capabilities of High Performance Computing Laboratory (HPC Lab.) located in 

Informatics Institute. 

6.9 Element selection and property definitions during FEA 

The element type and the mesh size are very important at the analysis stage. If the 

mesh is coarse, then problem could not converge and there will be no solution for 

this reason. To find accurate results at the analysis stage, C3D20R: A-20 node 

quadratic brick and C3D8R: A-8 node linear brick reduced integration hourglass 

control type elements are used. Triangular and tetrahedral elements are geometrically 

versatile and are used in many automatic meshing algorithms. It is very convenient to 

mesh a complex shape with triangles or tetrahedra, and the second-order and 

modified triangular and tetrahedral elements in Abaqus/CAE are suitable for general 

usage. However, a good mesh of hexahedral (brick) elements usually provides a 

solution of equivalent accuracy at less cost. Quadrilaterals and hexahedra have a 

better convergence rate than triangles and tetrahedra. For this reason, brick elements 

are preferred to use. The material density, elasticity, plasticity, friction and Poisson’s 

ratio are defined according to the material and problem model used during the 

analysis. General contact controls and surface-to-surface contact behavior are 

defined because each wire in a strand is in interaction with the center and 

corresponding neighbor wires in the strand. Abaqus/Standard is used while 
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frictionless analysis of the models with C3D20R. Nevertheless, while frictional and 

plastic effects are brought into the models explicit analysis is needed and C3D20R 

type elements are not supported during explicit analysis. For this reason, C3D8R 

elements are used during explicit analysis with Abaqus/Explicit. 

6.10 Axial loading and bending problem models 

The constructional difficulties of the wire strand and wire rope model enters to a new 

position when the analysis stage starts. For the axial loading problems, the analysis 

model is designed with defining one edge of the strand to be stand stood by defining 

encastre boundary condition while the other edge is loaded with force or applied 

displacement boundary condition. Analysis procedure can be accomplished using 

only one-step for axial loading problems with Abaqus/Explicit. Load and mesh 

definition of a seven (7) wire strand is represented in Figure 6.17. 

 

  

    (a) Loads on a seven wire rope strand  (b) Mesh of the seven wire rope strand 

Figure 6.17: Loads and mesh of a seven wire rope strand. 

Bending problem structure differs from axial loading. Generally, bending problems 

arise when strand or rope runs over a sheave. To construct the bending problem a 

straight wire strand/rope and a rigid body sheave is assembled as shown in Figure 

6.18. 

To wrap the edges of the strand over the sheave, first a displacement boundary 

condition is defined at the first step of the analysis. With the help of this analysis 

stage, first a wire strand/rope is bent over a sheave, which is the starting point of the 

analysis in fact. Wire strand bent over a sheave problem is represented in Figure 

6.19. At the second step of the analysis procedure, load/displacement boundary 



 115 

condition is applied to the wire strand/rope to see the stress and displacement 

distributions over the wire strand/rope.  

 

Figure 6.18: Meshed model of a wire strand prepared to bend over a sheave. 

 

 

Figure 6.19: Wire strand bent over a 180mm diameter sheave. 
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6.11 Material properties 

Density for steel is normally 30.00785 /g mmρ = . However, because of the great 

carbon content of wires used for wire ropes, it is to use 30.00780 /g mmρ = .  

Total extension of steel wires for ropes amounts to about 1.5 4%tε = −  and the yield 

strength 0.2pR  is about 75-95% of the measured tensile strength mR . For wires taken 

out of ropes and straightened, the total extension is about 1.4 2.9%tε = −  and the 

yield strength 0.2pR  is about 85-99% of the tensile strength
mR , Schneider (1973). 

For straightened wires from wire ropes, Wolf (1987) evaluated a mean elasticity 

module 2199.000 /E N mm= . For new wires, Häberle (1995) found the mean 

elasticity module 2195.000 /E N mm= . Together with other measurements –after 

loading the wires close to the breaking point– a mean elasticity module has been 

evaluated for the stress field of practical usage. The mean elasticity module of rope 

wires made of carbon steel is 2196.000 /E N mm=  [110]. 
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7. NUMERICAL RESULTS 

In this section, first of all an illustrative analytical example is given to show the force 

and moment acting along a simple straight wire strand. There are many analytical 

results are obtained using the theories presented in the literature. Some of the 

analytical results are also presented at the Appendix A for convenience.  

Numerical examples are introduced to show deformation and stress distribution both 

over a simple straight strand, right regular lay and right lang lay IWRCs. Analytical 

results are obtained by solving the theory given in the literature via MatlabTM. 

Analytical, finite element analysis results, and available test data are compared at the 

end. 

In finite element analysis, wire-by-wire geometry construction is taken into account 

as in the analytical models developed by Elata et. al. in [92-93] and used by Usabiaga 

& Pagalday in [115] for an IWRC. Wire by wire insight of the wire strand and IWRC 

is obtained with FEA results. In addition, wire contraction effect over the IWRC is 

analyzed for Poisson’s ratios, v=0 and v=0.3 respectively.  

Bending of a wire rope strand over a sheave problem is taken into account lately. The 

structure of the problem and the solution are given. Figures show the stress and 

deformation distribution over the wire strand bent over a sheave. With the 

complicated nature of the bending problem, parallel solution of the problem is 

investigated and the parallelization results are presented. 

A graphical user interface (GUI) code is generated based on the parametric 

mathematical equations of single and nested helical wires. It is named as Wire Rope 

Skeleton (WRS) and used to find control nodes of each wire within a wire rope and 

writes the nodes in a file which is processed by using HyperMesh as described early 

in Chapter 6. Later on the GUI code is developed to produce full-assembled wire 

rope solid model without using HyperMesh. Last version of the code is named as 

Wire Rope Model and Mesh Generator (WRMMG). It produces wire rope meshed 

model ready for analysis using Abaqus/CAE. 
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Contact analysis is conducted over a wire strand. Surface to surface interactions 

defined between wires within a wire strand. Deformations between wires force the 

wire radius to contract. In addition, mesh size of the wire strand is increased and their 

effects over the results are presented. Using the proposed modeling technique 1 

through 5 meter length wire strands are modeled and analyzed under axial loading 

conditions. Analysis results are compared with using different helix angles and 

material types. The effect of mesh size also investigated. 

7.1 Example showing the analytical solution of a simple straight strand 

Consider a simple straight strand cross-section given in Figure 6.11 with the 

parameters [11]; 1 2.6162R = mm , 2 2.5654R = mm , 2 247.65p = mm , 

196497.52E = 2/N mm , 0.25v =  and 2 6m = . Outside wires are assumed not to 

touch each other and 2 1 2 5.1816r R R mm= + = , o
2 82.510641α = . The angle of twist 

per unit length of the strand is 0sτ = , which means that the strand is not allowed to 

rotate and 1 0.003ξ ε= = . 2 2R κ ′∆  and 2 2R τ∆  can be computed as, 

2 2 0.00005564R κ ′∆ = − , 

2 2 0.0001838R τ∆ = − . 

Finally forces F and moments Mt acting over the center wire and helical wire within 

a simple straight strand is computed and presented as follows, 

1 2 12675.65 70970.48 83646.12F F F N= + = + = , 

1 2 45877.83tM M M Nmm= + = . 

7.2 FEA of a simple straight strand and an IWRC subjected to axial loading 

FEA are conducted for both a simple straight strand and an IWRC. By the proposed 

modeling strategy, wire-by-wire analysis give informations about the axial forces 

carried over each wire in a strand or rope. In the literature one of the most important 

test results are presented by Utting and Jones in [12]. Jiang et.al. created a finite 

element model for a simple straight strand and solved the axial loading problem over 

a cross-sectional part in [33]. In this thesis FEA of both a simple straight strand and 
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an IWRC are carried over a more realistic 3-D solid model taking into account 

friction and contact between wires thus wire-by-wire insight is obtained. 

7.2.1 General considerations for the analysis models 

Numerical examples of axially loaded, a 14mm length, (1+6) wires simple straight 

strand, and an 18mm length (6x7) IWRC are considered. The agreements of the 

proposed numerical model with other available models are shown by comparison. 

Geometrical design parameters are given in Table 7.1 and Table 7.2 respectively for 

both a simple straight strand and an IWRC models.  

Table 7.1: Design parameters of the simple straight strand. 

Parameter Value 

Strand diameter 11.4mm 

Center wire diameter, R1 3.94mm 

Outer wire diameter, R2 3.73mm 

Strand length used in the model, h 14mm 

Pitch length, p 115mm 

Helix angle of the strand, α 78.2o 

 

Table 7.2: Design parameters of the IWRC. 

Parameter Value 

IWRC diameter 29.80mm 

Core strand center wire diameter, R1 3.94mm 

Core strand outer wire diameter, R2 3.73mm 

Outer strand center wire diameter, R3 3.20mm 

Outer strand nested helical wire diameter, R4 3.00mm 

IWRC length used in the model, h 18mm 

Pitch length for core strand inner helical wire, p2 70mm 

Pitch length for outer strand center wire, p*
2 193mm 

Pitch length for nested helical wire, p4 70mm 

Helix angle for core strand inner helical wire, α2 71.01o 

Helix angle for outer strand center wire, a*
2 71.46o  

Helix angle for nested helical wire, α4 74.45o 

The same material properties are used for both model as defined in Table 7.3. 

Quadratic hexahedral finite elements are preferred to analyze nonlinear effects of the 

complex geometry of a wire strand and an IWRC during the frictionless FEA. A 
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simple straight strand and an IWRC are meshed using 3584 and 18387 quadratic 

hexahedral elements of type C3D20, with 18039 and 94405 nodes respectively.  

The boundary conditions applied to the model under axial loading are harmonious 

with the boundary conditions of Costello’s model. In Costello’s analytical model, 

force and moment are applied to the both ends of the simple straight strand and the 

analysis is carried over a cross-section A-A as illustrated in Figure 4.5. In this 

numerical model, half-length of the model is considered. Section A-A is considered 

as one end for the analysis model under the encastre boundary condition while the 

other end is restrained not to rotate in x  and y  directions. The axial strain of 

0,...,0.015ε =  is applied to the free end of the model for analysis.  

Table 7.3: Material properties of the wire. 

Young’s modulus, E 188000 N/mm
2 

Plastic modulus 24600 N/mm
2 

Yield stress 1540 N/mm
2 

Limit stress 1800 N/mm
2 

Poisson’s ratio 0.3 

Friction coefficient 0.115 

To simulate and compare with Costello’s theoretical model, 3D FEA models are 

constructed using the critical length of the geometry. Critical length is defined as 3 to 

9 percent of the pitch length. The contact load increases from zero to the uniform 

value in the middle of the strand [89]. This leads to construct the validation model to 

be within 3 to 9 percent of the pitch length. 

To build the wire geometry a code is developed in Matlab™. This code generates the 

control points of helical geometries using parametric mathematical equations of both 

single and nested helices (NH) given in equations (6.3) and (6.4). Matlab code to 

demonstrate how to create a NH wire is presented in Appendix C. The generated 

helical paths are used to create the desired 3-D mesh of single and NH wires of the 

proposed model using HyperMesh™. Helical paths used to create the outer wires of 

the outer strand are illustrated in Figure 6.3. 

Using this developed code both a right regular lay and a right lang lay IWRCs are 

generated. Instead of geometry modeling and meshing of the wire rope, it is preferred 

to create meshed complete wire rope model due to encountered overlapping and 
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discontinuity problems during meshing and analysis stages. This procedure enables 

to construct models accurately for FEA purposes without length limitations. The 

main body of the wire rope model has been assembled in finite element solver 

Abaqus™. Both frictionless and frictional behavior of a simple straight strand and an 

IWRC analysis are accomplished using wire-by-wire bases with success, and the 

results are compared with theory and test results reported earlier. During the analysis 

von-Mises criteria and stress-strain relation is used which is defined in Figure 7.1 as 

material behavior curve according to the material properties given in Table 7.3. 

 

Figure 7.1: Material behavior curve. 

7.2.2 Elastic analysis of simple straight strand for different helix angles 

The angle between the tangent to the centroidal axis of the undeformed spring and 

x1-y1 plane is shown as α0 and the radius of the wire helix is r0 in Figure 4.3. During 

the construction of the FEA model, helix angles are selected between 65° and 84°. 

Wire strand behaves like parallel rods for the helix angle higher than 84°. In Figure 

7.2, it can be seen that pitch length change of the strand near to helix angle 65° 

minimizes while pitch lengths are dramatically increased after 78°. Thus, helix 

angles are applied between 65°-84° for both modeling and numerical analysis of wire 

strand. 
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Figure 7.2: Variation of pitch length with helix angle for a wire strand. 

The aim of this section is to gather analytical and numerical results considering the 

model without friction. For this purpose variation of reaction force with axial strain 

and variation of twisting moment with axial strain are compared in the following 

figures using the theoretical model of Costello with FEA results. Design parameters 

and material properties of a simple straight strand are given in Table 7.1 and Table 

7.3 respectively. Boundary conditions are defined for each end of the strand. One end 

of the strand is fixed while the other end is constraint with no rotation. Axial strain of 

0.015ε =  is applied to the free end of the strand.  
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Figure 7.3: Variation of reaction force with axial strain. 
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The variation of reaction force with axial strain for various helix angles are plotted in 

Figure 7.3. It can be clearly seen that numerical results of reaction force with axial 

strain are in good agreement with theoretical ones for all cases.  

The variation of twisting moment with axial strain for various helix angles are 

plotted in Figure 7.4. It can be clearly seen that numerical results of twisting moment 

with axial strain have the same trend with theoretical ones for all cases.  
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Figure 7.4: Variation of twisting moment with axial strain. 

7.2.3 Plastic analysis of simple straight strand for different helix angles 

For the finite element plastic analysis model, helix angles are selected between 65° 

and 84°. Wire strand behaves like parallel rods for the helix angle higher than 84°. In 

Figure 7.2, it can be seen that pitch length change of the strand near to helix angle 

65° minimizes while pitch lengths are dramatically increased after 78°. Thus, helix 

angles are applied between 65°-84° for both modeling and numerical plastic analysis 

of wire strand. 

The aim of this section is to gather numerical results considering the model with 

frictional effect. For this purpose variation of reaction force with axial strain, 

variation of twisting moment with axial strain and variation of reaction force with 

twisting moment are compared in the following figures according to the FEA results 

obtained from frictional model. Design parameters and material properties of a 

simple straight strand are used from Table 7.1 and Table 7.3 respectively. Boundary 
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conditions are defined for each end of the strand. One end of the strand is fixed while 

the other end is constraint with no rotation. Axial strain of 0.015ε =  is applied to the 

free end of the strand. 

The variation of reaction force with the axial strain for various helix angles are 

plotted in Figure 7.5. Reaching the value of applied strain 0.008ε = , the simple 

straight strand starts to show plastic behavior for all cases. 

The variation of twisting moment with axial strain for various helix angles are 

plotted in Figure 7.6. Reaching the value of applied strain 0.008ε = , the simple 

straight strand starts to show plastic behavior for all cases. 
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Figure 7.5: Variation of reaction force with axial strain in elastic-plastic analysis. 
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Figure 7.6: Twisting moment change with axial strain in elastic-plastic analysis. 
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von-Mises stress distribution over a simple straight strand with helix angles between 

65° to 84° is presented by contour plots given in Figure 7.7. From the figure close 

fitting of the outer single helical wires over the straight center wire can be easily seen 

for α=65°. While the degree of helix angle increases the close fitting nature of the 

outer wires are changed and when the helix angle increases to α=84°, outer single 

helical wires are nearly parallel to the center wire strand. After the angle of α=84° 

FEA gives unreliable results.  

 
α=65°      α=70° 

 

 
α=75°      α=80° 

 

 
α=84° 

Figure 7.7: von-Mises stress distribution over the simple straight strand. 
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7.2.4 Simple straight strand FEA results 

14mm  length (1+6) wires simple straight strand is considered which is defined 

geometrically in Table 7.1 [33] and numerically obtained results are compared with 

both Costello’s [11] model and test results reported by Utting & Jones [12,13]. 

Elastic frictionless and elastic-plastic frictional numerical models are developed. 

Wire material properties are obtained from [89] and given in Table 7.3 for elastic and 

plastic behaviors. Axial loading behavior of a simple straight strand is investigated. 

An axial strain ε  of 0.015, was applied in increments of 0.001 in the analysis using 

the displacement equivalent to the axial strain computed by the equation 

( ) /h h hε = − , where h  is the original length of the strand and h  is the final length 

of the strand. Rotation restrained, 0Θ = , constant axial deformation results are 

illustrated in Figure 7.8 for the straight strand. It can be seen from the figure that the 

frictionless behavior of both theory of Costello and FEA results are in good 

agreement. The frictional plastic behavior of the strand is compared with the test 

results of Utting&Jones [12,13] given in the literature. Plastic behavior of the model 

is found to be in very good agreement with the available test results. In addition, 

FEA result of Jiang is compared. It can be seen from the Figure 7.8 that the present 

numerical FEA result is better than the FEA result of Jiang. 

 

Figure 7.8: Force-Strain results for the straight strand; theory of Costello, test of 
Utting&Jones, frictionless elastic & frictional elastic-plastic FEA. 
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Figure 7.9 shows the variation of axial force with twisting moment. From this figure 

theory, test and finite element analysis results shows good agreement.  

 

Figure 7.9: Force-Moment results for the straight strand; theory of Costello, test of 
Utting&Jones, frictionless elastic & frictional elastic-plastic FEA. 

Figure 7.10 shows the wire-by-wire analysis comparison of theory with FEA. Wires 

are titled as CW corresponds to center wire and OH1-OH6 corresponds to outer 

single helical wires 1 through 6. 

 

Figure 7.10: Wire by wire analysis for the simple straight strand, theory, and FEA 
comparison. 
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It can be seen that, from the computed numerical results, center wire of the strand is 

loaded with 17.1% of the total axial load while an outer wire is loaded with an 

average 13.82% of the total axial load. These results show that center wire carries the 

big portion of the axial load over the simple straight strand. The proposed model 

fully accounts the frictional and plastic behavior of the wire strand. Rotationally 

restrained numerical model for frictionless analysis shows reasonable agreement with 

Costello’s [11] model and the frictional elastic-plastic model has in good agreement 

with both analytical results of Costello and the test results of Utting & Jones [12-13] 

for the application of tensile force. 

7.2.5 Elastic analysis of an IWRC for different helix angles 

The aim of this section is to gather analytical and numerical results considering the 

IWRC model without friction. For this purpose variation of reaction force with axial 

strain and variation of twisting moment with axial strain are compared in the 

following figures according to the theoretical model of Costello with the FEA results. 

All theoretical results and FEA results presented in these figures are obtained from 

frictionless models. Design parameters and material properties of an IWRC are used 

from Table 7.2 and Table 7.3 respectively. Boundary conditions are defined for each 

end of the IWRC. One end of the IWRC is fixed while the other end is constraint 

with no rotation. Axial strain of 0.015ε =  is applied to the free end of the IWRC. 

An IWRC model includes three type of helical wires; inner single helical wire 

wrapped around the straight core wire, outer single helical wire which is also the 

center wire of the outer strand and finally the nested helical wire which is the outer 

wire of the outer strand. This construction is clearly shown in Figure 7.11. Three type 

of helical wire pitch lengths are denoted as *
2 2 4,   and p p p  respectively for inner 

single helical wire, outer center single helical wire and outer nested helical wire 

respectively. The helix angle for inner single helical wire and the outer strand center 

single helical wire are arranged to be similar as 71.01° and 71.46°. Taking care of 

this situation, the angles corresponding to pitch lengths *
2 2 4,   and p p p  are optimized 

and the results are presented for different lay lengths in Table 7.4 and change of pitch 

length with helix angle given in Figure 7.12. Constant parameter η , called relative 

rotation, is given in Table 7.4. This parameter decreases while the pitch length 

increases. For pitch length of 230, the constant η  starts to increase back. In addition, 
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the results for pitch length of 230 gives unreliable results and not included in the 

analysis presented here. 

 

Figure 7.11: An IWRC model with inner and outer strand compositions. 

 

Table 7.4: Helix angle changes for an IWRC. 

Inner strand 

single helical wire 

Outer strand 

single center helical wire 

Outer strand 

nested helical wire 

Angle 

2
α (degree) 

Pitch length 

2
[ ]p (mm) 

Angle 

*

2
α  (degree) 

Pitch 

length 

*
2[ ]p  (mm) 

Angle 

4
α  (degree) 

Pitch 

length 

4
[ ]p  (mm) 

Constant 

parameter 

η  

64.27 50 64.71 137 68.72 50 3.03 

71.01 70 71.46 193 74.45 70 2.91 

75.01 90 75.49 250 77.79 90 2.87 

80.23 140 80.67 394 82.08 140 2.85 

84.02 230 84.47 669 85.16 230 2.92 
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Figure 7.12: Variation of pitch length with helix angle for an IWRC. 

The variation of reaction force with axial strain for various helix angles are plotted in 

Figure 7.13. It can be clearly seen that numerical results of reaction force with axial 

strain are in good agreement with theoretical ones for all cases. However, especially 

for the case of pitch length p2=70, very good agreement is obtained. 
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Figure 7.13: Variation of reaction force with axial strain. 

The variation of twisting moment with axial strain for various helix angles are 

plotted in Figure 7.14. It can be seen that numerical results of twisting moment with 

axial strain have separated for the theory and numerical solutions for all cases. 
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Figure 7.14: Variation of twisting moment with axial strain. 

7.2.6 Plastic analysis of an IWRC for different helix angles 

For the finite element plastic analysis model, helix angles are selected between 

64.27° and 80.23°. In Figure 7.12, it can be seen that pitch length change of the 

IWRC near to helix angle 64.27° minimizes while pitch lengths are dramatically 

increased after 80.23°. Thus, helix angles were applied between 64.27°-80.23° for 

both modeling and numerical plastic analysis of an IWRC. 

The aim of this section is to gather numerical results considering the model with 

frictional effect. For this purpose variation of reaction force with axial strain and 

variation of twisting moment with axial strain are compared in the following figures 

according to the FEA results obtained from frictional model. Design parameters and 

material properties of an IWRC are used from Table 7.2 and Table 7.3 respectively. 

Boundary conditions are defined for each end of the IWRC. One end of the strand is 

fixed while the other end is constraint no rotation. Axial strain of 0.015ε =  is 

applied to the free end of the IWRC. 

The variation of reaction force with axial strain for various helix angles are plotted in 

Figure 7.13. Reaching the value of applied strain 0.008ε = , IWRC shows plastic 

behavior for all cases. 
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Figure 7.15: Variation of reaction force with axial strain in elastic-plastic FEA. 

The variation of twisting moment with axial strain for various helix angles are 

plotted in Figure 7.16. Reaching the value of applied strain 0.008ε = , the IWRC 

shows plastic behavior for all cases. 
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Figure 7.16: Twisting moment change with axial strain in elastic-plastic FEA. 

Figure 7.17 shows the 3-D structure of the IWRC with the contour plots of the stress 

distribution over different helix pitch lengths. The helix pitch lengths are defined in 

Table 7.4. From the figure close fitting of the outer nested helical wires over the 

outer single center wires can be easily seen for p2=50mm. While the helix length 
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increases the close fitting nature of the outer wires are changed and when the helix 

length increases to p2=140mm, center strand single helical wires are nearly parallel to 

the center straight wire. This situation effects the behavior of the IWRC and center 

wire strand behaves like parallel rods, which reflects to the whole solution of the 

IWRC. 
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Figure 7.17: von-Mises stress distribution over a right regular lay IWRC. 

7.2.7 IWRC wire contraction results using FEA 

An 18mm length (6x7) wire of a three dimensional numerical IWRC model is 

considered. The geometrical parameters are given in Table 7.2, material properties 

are described in Table 7.3 and the comparison of the results are given in Figure 7.18 

for both regular lay, and lang lay IWRCs. Frictionless contact controls are developed 

and tensile loading and twisting moments of an IWRC are proposed. A mean axial 

strain, ε  of 0.006, was applied in increments of 0.001 in the analysis using the 

displacement equivalent to the axial strain ε , while rotation is restrained by 0Θ = . 

Theoretical results are obtained by solving the well-known analytical model of 

Velinsky-Costello [60-11] model for a regular and lang lay IWRCs. The results are 
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obtained both numerically by FEA and using the theory of Costello [11] for the 

elasticity modulus of 188000 N/mm
2 and Poisson’s ratio of ν=0 and v=0.3, where 

wire radial contraction has been neglected and considered respectively. From the 

obtained results, it can be concluded that the wire contraction plays a very little role 

over the whole model analysis as discussed in [115]. Tensile forces obtained from 

proposed model have a good agreement with Costello’s [11] results for both regular 

lay and lang lay rope constructions. However, twisting moments gives better 

agreement for regular lay construction than for the lang lay one when compared with 

Costello’s [11] results. 
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    Figure 7.18: Radial contraction results of an IWRC, frictionless elastic, rotation 
restrained tensile test for 0,...,0.006ε = , 0Θ = . 

7.2.8 Wire by wire elastic-plastic FEA of IWRCs under axial loading 

A frictional elastic-plastic finite element analysis is done over the geometrical model 

prescribed as an 18mm length (6x7) wire, for both regular lay and lang lay IWRCs 

defined in Table 7.2 and analysis results are given in Figure 7.19. For the frictional 

elastic-plastic analysis, wire material properties such as yield stress and friction 

values are given in Table 7.3. Surface to surface contact controls are developed and 

tensile loading and twisting moments of an IWRC are proposed. Axial strain ε  of 

0.015, was applied in increments of 0.001 in the analysis using the displacement 
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equivalent to the axial strain ε , while rotation is restrained by defining the boundary 

condition 0Θ = . Theoretical results of Velinsky-Costello [60-11] models for a 

regular and lang lay IWRCs are compared with the finite element analysis results for 

the Poisson’s ratio of ν=0.3, where wire radial contraction has been considered. It 

can be easily concluded from Figure 7.19 that theoretical and frictionless behaviors 

are in good agreement both for regular and lang lay IWRCs.  
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     Figure 7.19: Regular lay and lang lay IWRCs, frictional elastic-plastic, rotation 
restrained tensile test for 0,...,0.015ε = , 0Θ = . 

It can be clearly seen by comparing Table 7.1 and Table 7.2 that the simple straight 

strand given in Table 7.1 is used as the core strand of the IWRCs, and the validity of 

the plastic behavior of the simple straight strand is presented in Figure 7.8 before. 

For this reason, when the plastic behavior of both simple straight strand given in 

Figure 7.8 and IWRCs given in Figure 7.19 are considered together, the plasticity 

results for both analysis shows the similar behavior. Figure 7.20 and Figure 7.21 

shows the variation of axial force with moment of both right regular lay and right 

lang lay IWRCs. The results of a right regular lay IWRC is in good aggrement with 

theory of Costello for frictionless FEA while a right lang lay IWRC results shows 

similar trend with the theory of Costello. 
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Figure 7.20: Force-moment results comparison of a right regular lay IWRC. 
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Figure 7.21: Force-moment results comparison of a right lang lay IWRC. 

Figure 7.22 shows the von-Mises stress distribution of wire-by-wire analysis of a 

right lang lay IWRC. From the figure, it can be seen that the stresses over the center 

wires are the most among the other wires. 
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Figure 7.22: Wire-by-wire FEA of von-Mises stress for a right lang lay IWRC. 

The insight of the wire-by-wire axial loading of the right lang lay IWRC is shown in 

Figure 7.23. Core and outer strand wire titles shown in Figure 7.23 are described in 

Table 7.5. Axial forces of a right lang lay IWRC is shown in wire by wire bases. The 

theoretical result of Costello and FEA results shows good agreement among the 

elastic area. After elastic behavior is finished, plastic behavior of the material affects 

the analysis as shown in Figure 7.23. 

 

Figure 7.23: Wire-by-wire analysis, theory and FEA comparison of RLL IWRC. 
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A wire-by-wire loading is investigated by the analysis of a right lang lay IWRC and 

load percentage values for each wire are given in Table 7.5. When the loads are 

sorted according to their percentage magnitudes, center wire of the core strand 

carries the maximum axial load. In turn, inner helical wires IH1-IH6 and center wire 

of the outer strand (OCW) load value percentages follows the CW of the core strand 

in IWRC. Nested helical wires, which are located near to the center strand (NH3, 

NH4, and NH5) carries higher amount of the loads and among them NH4 has the 

maximum axial load. If the axial loads compared between the core strand and the 

outer strand of the IWRC, core strand has an average 20.18% of the total axial load, 

while the outer strand has an average 13.30% of the total axial load. 

Table 7.5: Wire-by-wire axial loading percentages of the IWRC. 

Wire code Strand Title of the wires in an IWRC Load (%) 

CW Core Center straight wire 3.86 

IH1-6 Core Inner single helical wire 1-6 2.72 

OCW Outer Center wire (single helix) 2.21 

NH1 Outer Nested helical wire 1 1.69 

NH2 Outer Nested helical wire 2 1.74 

NH3 Outer Nested helical wire 3 1.90 

NH4 Outer Nested helical wire 4 2.02 

NH5 Outer Nested helical wire 5 1.96 

NH6 Outer Nested helical wire 6 1.79 

7.3 Wire rope analysis under forced torque 

Wire rope behavior under forced torque condition is investigated in this section. Both 

a simple straight strand and an IWRC are modeled and analyzed using finite 

elements. Constant strain is applied while varying rotation during the analysis. 

Frictionless and frictional elastic and plastic behavior of the models are compared 

with the theoretical results. 

7.3.1 Forced rotation of a simple straight strand 

A simple straight strand of seven wires, 14mm  length is considered under forced 

rotation. The geometrical and material properties of the simple straight strand are 
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given in Table 7.1 and Table 7.3 respectively. Proposed model is solved and 

compared with the theoretical results of Costello’s [11] model. Surface to surface, 

nodal contacts are defined under the frictional analysis with a friction coefficient of 

0.115. During FEA, a constant axial strain ε  of 0.001 is applied, while a varying 

torque of Θ  between -0.0002 to 0.001 with a constant increment 0.0002, and the 

force-strain and moment-strain results are given in Figure 7.24.  

 
(a)  vs. F Θ              (b)  vs. M Θ  

               Figure 7.24: Forced torsion under constant deformation, 0.001ε = ; 
42.10 ,...,0.001−Θ = − . 

As a result of the small axial strain ε  of 0.001, frictionless elastic and frictional 

plastic FEA results shows linear behavior under forced rotation because of not 

reaching to the plasticity modulus of the material properties. Therefore, plasticity is 

considered applying a constant strain ε  of 0.015, while the rotation of the strand is 

changed between -0.005 to 0.025 with 0.005 rad/mm increases in each step. Figure 

7.25 shows the plastic behavior of the forced rotation and when the presented result 

is compared with the force-strain analysis presented in Figure 7.8, the plastic 

behavior of the strand can be seen clearly.  

 
(a)  vs. F Θ              (b)  vs. M Θ  

Figure 7.25: Forced torsion under constant deformation, 0.015ε = ; 
35.10 ,...,0.025−Θ = − . 
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7.3.2 IWRC under constant strain and varying rotation constraint 

An 18mm length (6x7) wires lang lay IWRC under constant axial strain is forced to 

rotate. One side of the model is constrained to be fixed, while the other side is rotated 

in the z  direction. The geometrical and material properties are given in Table 7.2 

and Table 7.3 respectively. Proposed FEA solution is compared with the theoretical 

results of Velinsky-Costello [60-11] model. Surface to surface, nodal contacts are 

defined under the frictional analysis with a friction coefficient of 0.115. During the 

FEA, a constant axial strain ε  of 0.001 is applied while a varying torque of Θ  

between -0.0002 to 0.001 with a constant increment 0.0002, and the force-strain and 

moment-strain results are given in Figure 7.26.  

 
(a)  vs. F Θ              (b)  vs. M Θ  

      Figure 7.26: Forced torsion under constant deformation for a lang lay IWRC, 

0.001ε = ; 42.10 ,...,0.001−Θ = − . 

Due to the small axial strain ε  of 0.001, both frictionless elastic and frictional plastic 

FEA results shows linear behavior under forced rotation, because of not reaching to 

the plasticity modulus of the material properties. For this reason, the plastic behavior 

is investigated under a constant strain ε  of 0.015, while the rotation varies between  

-0.005 to 0.025 with 0.005rad/mm increase in each step. Figure 7.27 shows the 

plastic behavior of the forced rotation. When the presented result is compared with 

the force-strain analysis of a lang lay IWRC presented in Figure 7.19, it can be seen 

clearly that the plasticity behavior is harmonious in each analysis. 
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(a)  vs. F Θ              (b)  vs. M Θ  

      Figure 7.27: Forced torsion under constant deformation for a lang lay IWRC, 

0.015ε = ; 35.10 ,...,0.025−Θ = − . 

7.4 Strain and von-Mises stress distribution over a simple straight strand in a 

3-D numerical model 

Encastre boundary condition is given to one side of the wire rope strand which 

prohibits the strand to rotate 0β = . On the other side, each of the outer wires is 

loaded with force 11828.6N  and the center wire is loaded with 12677.4N  according 

to Costello’s work. Wire material is selected as steel with the Young’s modulus of 

2196497.52 /E N mm=  and the Poisson’s ratio has been taken as 0.25v = . In 

addition, the wires are constrained at the loaded side with another boundary 

condition, which allows the strain and displacements can occur only in the 3( )u z  

directions. The other directions are prohibited to strain/displacement affects in 1( )u z  

and 2 ( )u z  directions. 

The proposed model is solved and resulting contour plots of the deformation and 

von-Mises stress distribution is presented in Figure 7.28 (a-b) respectively. It can be 

concluded that strain distribution along the strand is harmonious with the general 

behavior of a wire rope strand and in a good agreement with the analytical solution 

of 0.003 strain given in Costello’s work. Strains are going to be stable near to the 

encastre side of the strand and shows a good von-Mises stress distribution along the 

wire rope strand. 
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(a) Deformation over a straight wire rope strand,  (b) von-Mises stress distribution 

Figure 7.28: Strain and von-Mises stress distribution on a wire rope strand. 

7.5 Laying type effects of a 300mm IWRC FEA 

Various lay types of IWRCs are modeled and shown in Figure 6.13. In this section a 

300mm length (6x7) wire IWRCs are analyzed for different lay types; right lang lay 

(RLL), left lang lay (LLL), right regular lay (RRL) and left regular lay (LRL). 

Number of nodes and elements used in the analysis are shown in Table 7.6. During 

the FEA analysis, explicit method is used with linear hexahedral elements of type 

C3D8R. The geometrical and material properties are given in Table 7.2 and Table 

7.3 respectively. Surface to surface contact is defined with the friction coefficient 

0.115µ = .  

Table 7.6: Number of nodes and elements used in various IWRC models. 

Lay types Number of nodes Number of elements 

RLL 164492 126816 

LLL 164492 126816 

RLR 164000 126432 

LRL 164000 126432 

For different laying options of the IWRCs, one side of the rope is constraint to be 

fixed while the other end is constraint not to rotate. An axial strain of 0.015 is 

applied to the nonrotating end. Axial force variation with strain comparisons of the 

IWRCs for different lays are given in Figure 7.29 for fixed end.  
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From these figures, it can be seen that the behavior of the CW and IH 1-6 wires are 

in similar manner. Nested helical wires in a regular lay type IWRC loaded more than 

a lang lay type IWRCs. In addition, the force distributions are close to each other 

over the nested helical wires for regular lay types than the lang lay type IWRCs. 

Similar analysis are conducted for the non-rotating end conditions and results are 

presented in Appendix-D for convenience. von-Mises stress distribution over the 

fixed end IWRCs for different lay types are shown in Figure 7.30. From these 

figures, it can be concluded that the regular lay type IWRC stresses are close to each 

other while the stresses over the lang lay type IWRC are distributed in a larger band. 

In addition, nested helical wire stresses are got closer to the center wire stresses at 

the plastic area of the analysis. 

Total reaction force comparisons given in Figure 7.31 for fixed end condition shows 

that the maximum reaction force is obtained at the LRL IWRC while the minimum 

reaction force is obtained at the RLL IWRC. When the LRL and RLL types IWRC 

are considered given in Figure 6.14 and Figure 6.15, it can be seen that the 

differences of the lay directions are important while force distributions within a rope. 

In LRL IWRC wires in the strands are laid to the right while the strands are laid to 

the left. Considereing the geometry of the LRL IWRC the axial force distribution 

given in Figure 7.31 is clearly understood. 

 

Figure 7.31: A 300mm fixed end total reaction force comparison for RLL, LLL, 
RRL and LRL type IWRCs. 
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Strands within an IWRC are compared next. Center strand comparisons for fixed end 

boundary conditions are shown in Figure 7.32. It can be concluded that the center 

strand force distributions are similar with small differences for each lay types. Outer 

strand comparisons for fixed end conditions are given in Figure 7.33. LRL takes 

maximum reaction force while RRL takes minimum reaction force values as depicted 

in Figure 7.31 due to the geometrical composition of the wires within an outer 

strands of the IWRCs. Figures for non-rotating end conditions for different lay types 

of IWRCs are presented in Appendix D for convenience. 

 

    Figure 7.32: A 300mm fixed end center strand reaction force comparison for RLL, 
LLL, RRL and LRL type IWRCs. 

 

Figure 7.33: A 300mm fixed end outer strand reaction force comparison for RLL, 
LLL, RRL and LRL type IWRCs. 
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Reaction force percentages for each wire in the IWRCs for fixed end boundary 

conditions are presented in Figure 7.34. It can be seen that nested helical wires have 

closer percentages in regular lay type IWRCs. 
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Figure 7.34: Reaction force (%) values for each wire in IWRCs. 

It is interesting to compare the behavior of an 18mm length and a 300mm length right 

lang lay IWRCs with the same properties and under the same loading conditions. The 

resulting reaction force variations with strain at the fixed end of each model are 

presented in Figure 7.35.  

Both models are constrained to be fixed at one end, and axial strain of ε=0.015 is 

applied to both IWRCs. From Figure 7.35, it can be concluded that the reaction 

forces over the nested helical wires are relaxed while the distance of the rope is 

increased. This situation shows that the center strands are faced to more load than the 

outer strands. 
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(a) 18mm length 

 
 (b) 300mm length 

Figure 7.35: Wire by wire reaction force over the fixed end RLL IWRC. 

7.6 A simple straight strand bending over a sheave illustrative example 

One of the most important application areas of wire ropes is known as bending over a 

sheave problem. A straight wire strand is considered for this problem. Geometrical 

and numerical analysis model parameters are defined in Table 7.7 and Table 7.8. A 

simple straight wire strand with the given parameters and a 12mm diameter sheave is 

modeled. The sheave is placed to be tangent to the straight wire strand at the mid 
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point in the first step of the analysis. Then a 20mm displacement boundary condition 

is applied to the each side of the strand to bend the wire strand around the sheave in 

the first step. 

Table 7.7: Design parameters of a strand for bending problem. 

Parameter Value 

Strand diameter 2.35mm 

Center wire diameter R1 0.83mm 

Outer wire diameter R2 0.76mm 

Pitch length p 18.8mm 

Helix angle of the strand α 75.12o 

Strand length used in the model h 45mm 

Sheave diameter 12mm 

Table 7.8: Material properties of steel wire within a strand for bending problem. 

Properties Value 

Elasticity modulus 190000 N/mm
2 

Poisson’s ratio 0.29 

Friction coefficient 0.2 

Minimum break load 6011 N 

Applied force 1000 N 

 

At the second step of the analysis one of the edges of the strand is fixed by defining 

encastre boundary conditions while 1000N concentrated force is applied to the other 

side of the strand. Thus pulling one of the edges of the strand is analyzed in this 

example. Figure 7.36 shows the contour plot of the von-Mises distribution over the 

bent wire strand and Figure 7.37 shows the contour plot of the displacement 

distribution over the wire strand.  

From Figure 7.36, it can be easily seen that maximum stress value is reached at the 

upper midpoint position of the sheave. Maximum displacement value is reached at 

the fixed side of the strand as depicted in Figure 7.37. Wires are numbered as 

represented in Figure 7.37 and analysis results for the maximum stresses are 8605, 

8358, 8760, 8668, 8847, 8686, 8039 N/mm
2 for wires W1 through W6 and 8039 

N/mm
2 for the center wire. According to the analysis, W5 has the maximum von-

Mises stress value.  
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Figure 7.36: von-Mises stress distribution on a wire strand bent over sheave. 

 

Figure 7.37: Deformation distribution on a wire strand bent over sheave. 

As a second example, a 30mm wire strand is bent over a 6mm sheave. In this 

example, wire strand is bent over the sheave at first step of the FEA. At the second 

step, 1000N load is applied to one end while the other is constraint to be fixed end 

boundary conditions. Contour plots presented in Figure 7.38 shows the stress 

distribution over each wire of the strand. Variation of the von-Mises stress 

distribution with true distance for each wire is presented in Figure 7.39. 
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    Figure 7.38: Stress distribution of each wire in a 30mm strand bent over a 6mm 
sheave. 
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Figure 7.39: Variation of von-Mises stress over each wire with true distance. 

7.7 Bending an IWRC over a sheave 

Bending over a sheave problem for an IWRC is modeled and the FEA results are 

presented in wire-by-wire manner in this section. For the definition of the problem, 

the design parameters and material properties previously defined in Table 7.2 and 

Table 7.3 are considered. Two different lengths of IWRCs are analyzed for bending 

problem, a 9mm and a 300mm lengths respectively. The IWRC diameter and cross 

sectional area are 29.8mm and 380.48mm
2. According to the standards, sheave 

diameter should be minimum 30 times to the rope diameter. Sheave diameter is 

computed as an 894mm with respect to the geometrical design parameters of the 

IWRC. It is constructed as a rigid body with encastre boundary conditions. The 

sheave is placed tangent to the IWRC at the mid point while constructing the bending 

problem geometry. 

Boundary conditions of the IWRC is defined as fixed end over the sheave where the 

IWRC is tangent at the mid upper point of the sheave and free end boundary 

condition over the other side is defined. The analysis over a 9mm IWRC is processed 

for 0.2 second with two consecutive steps. An axial strain of 0.008ε =  is applied for 

the first step of the analysis which will not extend beyond the elastic region of the 

material properties defined in Table 7.3. At the second step, the displacement 

boundary condition is defined and run for 0.1 second. Due to the length of the IWRC 

is very small in the first numerical analysis, only 1mm displacement is considered. 
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Due to the geometry of bending over a sheave problem and wire position within the 

IWRC geometry, variation of axial force with respect to time shows differences 

between wires within the IWRC. Numerical results are obtained in wire-by-wire 

bases for reaction force and presented in Figure 7.40 for a 9mm IWRC that is bent 

over a sheave. The variation of the total reaction force with respect to time is 

presented in Figure 7.41. In the figures, only the results obtained at the second step 

of the analysis are considered and presented. From the figures, it can be seen that, 

while IWRC is displaced to bend over the sheave the value of reaction force 

increases with a slope and takes steady state after 0.18 seconds. 

 

Figure 7.40: A 9mm IWRC bent over an 894mm diameter sheave. 

 

Figure 7.41: Variation of axial force with time for 9mm IWRC bent over sheave. 
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On the second bending problem, a 300mm IWRC and an 894mm diameter sheave are 

modeled and analyzed. An axial strain of 2.4e-4ε =  is applied to the free end of the 

IWRC as shown in Figure 7.42. Secondly, 90mm displacement boundary condition is 

applied to the free end of the IWRC, which bends the rope over the sheave as 

depicted in Figure 7.42. Outer strands are labeled as S1,...,S6 and core strand is 

labeled as C and shown in Figure 7.43. 

 

Figure 7.42: Fixed and free ends of a 300mm RLL IWRC bending over a sheave. 

    
              (a) Fixed end of the IWRC        (b) Free end of the IWRC 

Figure 7.43: Strand numbers over the ends of an IWRC. 

The analysis process is conducted using explicit scheme. Wire-by-wire results for 

each strand are presented in Figure 7.44 and Figure 7.45.  
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From these figures, it can be seen that the single helical core wires of each outer 

strand are loaded higher than the nested helical wires wrapped around the core wires. 

However, the load distribution over the core strand is regular with respect to the 

outer strands within an IWRC.  

Reaction force variations with respect to displacement for strands are compared in 

Figure 7.46. It can be seen from the figure that the center strand has the maximum 

reaction force. Strands S3&S4, S2&S5 and S1&S6 behaves together and their positions 

within the IWRC affects their load distribution. Figure 7.43-(a) and Figure 7.43-(b) 

should be considered together with Figure 7.46. As an example, strands S3 and S4 are 

placed over the outer part of the IWRC with respect to sheave surface as it can be 

seen from Figure 7.43-(a). According to the bending analysis results, it can be seen 

from the Figure 7.46 that strand S3 and S4 are loaded more than the other strands and 

their reaction force distributions are in similar fashion. Analogous conclusions can be 

done for the other strands also. This shows that the compositions of the strands are 

effecting the load distributions of the strands. The closer strands to the bending area 

over the sheaves surface are loaded higher than the other strands during the bending 

over the sheave process. 

In Figure 7.47 the total reaction force variation with displacement of the IWRC is 

presented. When the Figure 7.46 and Figure 7.47 are investigated together, reaction 

forces over each strand are increased during the bending process until application of 

the approximately 72mm displacement as depicted in Figure 7.42. Then the reaction 

forces begin to decrease slightly after this point is passed. In the literature there is no 

numerical result for bending over a sheave problem exists for the moment. For this 

reason it is not possible to compare these results with the previously obtained neither 

theoretical nor test results. However, the current numerical analysis encourages that 

bending analysis could be carried over 3-D wire rope models with success. The 

validity of the axial loading problems is analyzed previously, and the behavior of the 

IWRC during the bending process shows valuable results for further researches on 

this area. 

von-Mises stress distribution over the IWRC is illustrated in Figure 7.48. From these 

contour plots, it can be seen that stress distribution over the center wire strand is 

much higher than the outer strands. This behavior can be explained as the 
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superposition rule used at the theoretical analysis. The wire rope behavior can be 

thought as a simple straight strand while bending process. The inner and outer 

strands in an IWRC can be expressed as center straight wire and outer single helical 

wires of a simple straight strand respectively. When the IWRC is bent over the 

sheave by superposition rule, core stand is loaded more than the outer strands and 

this situation can validate the stress distribution presented in Figure 7.48. 
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  Figure 7.46: Reaction force variation with displacement comparison for strands on 

the bending problem of a 300mm IWRC. 
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Figure 7.47: Variation of reaction force with displacement for a 300mm IWRC. 
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      Figure 7.48: von-Mises stress distribution of a 300mm IWRC bent over an 
894mm diameter sheave. 

7.7.1 Parallel solution of the IWRC bending over a sheave problem 

Bending an IWRC over a sheave problem is solved using FEA. During the analysis, 

a 300mm length of IWRC with C3D8R; 8-node linear brick, reduced integration with 

hourglass control elements are used to mesh the solid model. Total number of 17005 

nodes, 135324 elements, and 531078 DOF of variables are exists in the model. FEA 

are conducted using the HPC Laboratory in Informatics Institute. CN02 system is 

used for the parallel FEA of the problems. System specifications are listed in Table 

7.9. Problem solution with the given degrees of freedom (DOF) takes 2889 minutes 

using one CPU. Because of this difficulty, parallelization of the proposed model is 

taken into account. Parallelization of the bending over sheave problem using 1, 2, 4, 

8, 16, and 32 CPU is done. Each trial is reported in Figure 7.49. It can be seen that 
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parallelization of the wire rope model works up to 16 CPU. From the figure, it can be 

concluded that increasing the number of CPU used beyond 16 CPU has no additional 

improvements while solving the considered wire rope problem. 

Table 7.9: System specifications used for parallel FEA. 

Orion host architecture  
HP DL360 (thin) host group: 
34 number of 2x3.4 GHz Intel Xeon 
‐ 14 number of 2x2 GB RAM 
‐ 20 number of 2x4 GB RAM 
2 x 160 GB (IDE) HDD 
 

HP DL380 (thin) host group: 
10 number of 2x3.0 GHz Intel Xeon 
2x4 GB RAM 
 

HP DL580 (fat) host group: 
41 number of 4x3.16 GHz Intel Xeon 
‐ 36 number of 8x1 GB RAM 
‐ 4 number of 8x2 GB RAM 
‐ 1 number of 8x4 GB RAM 
2 x 147 GB (SCSI) HDD 
 

Total shared disk capacity: 27 TB 

 

 

    Figure 7.49: CPU time variation with number of CPUs for parallelization of the 
bending problem. 
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7.8 A 6x19 Seale IWRC solid model and FEA results 

A Seale IWRC is one of the complicated types of wire rope. Modeling and numerical 

analysis of a 6x19 Seale IWRC is investigated. A cross section of the 6x19 Seale 

IWRC is given in Figure 7.50. Wires are numbered as Wij, i indices indicates strand 

number while j indices indicates wire number starting from the center wire of a 

strand to the outer wire of the same strand as presented in Figure 7.51. The 

geometrical properties and wire lengths are presented in Table 7.10 and Table 7.11 

respectively. 

 

Figure 7.50: A 6x19 Seale IWRC cross section. 

 

Figure 7.51: Wire numbers over a cross section of the 6x19 Seale IWRC strands. 
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Titles given in Table 7.10 and Table 7.11 are corresponds to the radius of strand 

helix rs, radius of wire helix rw, angle of strand helix αs, angle of wire helix αw, lay 

length of strand Ls, lay length of wire Lw, rotation of nested helix over a single helix 

η, Length of strand Ss, length of wire Sw respectively. 

Table 7.10: Geometrical parameters of the 6x19 Seale IWRC. 

S.No No of 
Wires 

Radius rs αs Ls rw αw Lw η 

1xW10 0.8014 0 0 0 0 0 0 0 
1 

6xW11 0.7347 1.5361 1.2864 33.0228 0 0 0 0 
1xW20 0.7042 4.2864 1.2362 77.4703 0 0 0 0 

2 
6xW21 0.6557 4.2864 1.2362 77.4703 1.3599 1.4149 54.3555 1.5089 
1xW30 1.4557 11.4443 1.2259 200.1544 0 0 0 0 
9xW31 0.7125 11.4443 1.2259 200.1544 2.1682 1.7849 62.6550 -3.3944 3 
9xW32 1.2682 11.4443 1.2259 200.1544 3.8741 1.9414 62.6551 -3.3944 

Table 7.11: Strand and wire lengths of the 6x19 Seale IWRC. 

Strand 
No 

Wires Ls Sw Wire to rope 
length ratio 

W10 0 0 1 
1 

W11 33.0228 34.4043 1.0418 
W20 77.4703 82.0183 1.0587 

2 
W21 77.4703 83.0255 1.0717 
W30 200.1544 212.6789 1.0626 
W31 200.1544 217.6483 1.0874 3 
W32 200.1544 228.1653 1.1399 

Wire paths for both single and nested helical wires in cross sectional and side views 

are presented in Figure 7.52, Figure 7.53 and Figure 7.54 for the corresponding 

strands of the 6x19 Seale IWRC. 

 
(a) Helices in Strand #1 and #2, (b) Helices in Strand #3 

Figure 7.52: 6x19 Seale IWRC wire centerline plots. 
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Figure 7.53: 6x19 Seale IWRC helical wire centerlines for Strand #1 and #2. 

 

Figure 7.54: Paths of helical wire centerlines on 6x19 Seale IWRC for Strand #3. 

Cross-sectional views of a 6x19 Seale IWRC for RRL and LRL types are presented 

in Figure 7.55. 
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(a) RRL     (b) LRL 

Figure 7.55: A 6x19 Seale IWRC cross sectional views. 

For the FEA, one side of the 6x19 Seale IWRC is constraint with the encastre 

boundary condition as a fixed end, a displacement boundary condition is applied to 

the other side of the 6x19 Seale IWRC corresponding to a strain value of 0.015. 

Variation of reaction force with strain results for strands #1, #2 and #3 in wire-by-

wire basis are presented in Figure 7.56, Figure 7.57 and Figure 7.58 respectively. 
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Figure 7.56: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #1. 
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Figure 7.57: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #2. 
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Figure 7.58: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #3. 

It can be seen from the Figure 7.56 that core wire W0 of strand #1 is loaded with the 

maximum axial force, while outer wires in the same strand are loaded in similar 

manner. For the strand #2, core wire is also loaded highly, but differs than the typical 

behavior of the outer strands of the IWRC as presented in Figure 7.57. Wires in the 

second layer of the Seale part which corresponds to the strand #3, are loaded with 

higher reaction force corresponding to the wires placed in the third layer. Possible 

reason for this difference is based on the wire radiuses and positions of second and 

third layer wires with respect to the core wire of the Seale part as shown in strand #3. 
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As a complicated wire rope model, a Seale IWRC is also shows similar behaviors 

during axial loading problem. Various analyses can be conducted over the Seale 

IWRC to see different behavior under dissimilar circumstances. 

7.9 GUI implementations for wire rope model generation 

Wire ropes needs special treatment to implement solid models because of the 

complex constructional difficulties included to create each individual wire. For the 

construction of a wire strand, only a simple straight wire and single helical wires are 

needed. However, more complex rope models such as a Seale IWRC needs several 

different type of wires within the model. For a Seale IWRC; straight wire, single 

helical wire, double or nested helical wire are necessarily needed while rotation of a 

wire with respect to the others should be considered within a strand. In addition, for 

each wire within a wire rope, proposed solid modeling algorithm defined in Figure 

6.9 needs to be followed in a systematic way. The first step of this algorithm consists 

of geometry generation and ir becomes a little bit cumbersome issue for complex 

wire ropes such as Seale IWRC. Model generation part of the analysis is considered 

to be time consuming and two graphical user interfaces are developed. First one is 

named as Wire Rope Skeleton (WRS) and the second one which is rely on the WRS 

is called as Wire Rope Model & Mesh Generator (WRMMG). Brief introductions of 

these two GUI implementations are given in the following parts. 

7.9.1 Wire Rope Skeleton (WRS) GUI code 

Seperately written code files corresponding to produce temporary nodes necessary to 

build individual wire centerline are gothered on WRS GUI code. To generate one of 

the wire centerline using this code one has to enter necessary wire radiuses and helix 

pitch lengths of the wire rope geometry at the beginning of the process. User also 

defines wire rope length. After these parameters are entered, user is responsible to 

choose the correct wire and wire rope type using the popup menus. At present WRS 

is designed to build wire rope geometry of a WS, an IWRC and a 6x19 Seale IWRC. 

The user also can select lay types during this process. To complete the generation of 

the wire centerline nodes user should select one of the wire rope types available. As a 

result, a file is produced including the locations of the centerline of the wire 

geometry in 3-D space. This file is imported using HyperMesh and the same 
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procedure explained widely in the algorithm defined in Figure 6.9 is applied starting 

from the solid part and mesh generation module. To this point, WRS GUI 

implementation makes it easy to generate temporary nodes required to construct a 

solid wire. It reduces time need for the geometry generation process and user 

interferance requirement is removed. 

The interfacing GUI code main screen is presented in Figure 7.59. It is coded to be 

user friendly and produced wire centerline and Frenet-Serret triad is shown in its 

main screen as depicted in Figure 7.60. 

 

Figure 7.59: Wire Rope Skeleton GUI code user interface screen. 

 

Figure 7.60: Wire Rope Skeleton GUI screen after geometry generation. 
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7.9.2 Wire Rope Model and Mesh Generator (WRMMG) GUI code 

WRMMG GUI code is based on the precedessor WRS GUI code. The geometry and 

mesh generation process is done by the code automatically and a model file is 

generated ready to use for analysis. User has the responsibility to define the 

parameters of the wire rope to be modeled. A geometry generation process is 

simulation screen shot is presented in Figure 7.61. A wire strand model generated by 

using WRMMG is imported using Abaqus/CAE and presented in Figure 7.62.  

With this new GUI code, any user interference during model and mesh generation 

stages are prevented by the code. Different from the WRS, this GUI code does the 

meshing of the wires and assembles them to generate the model automatically 

without usage of mesh generator such as HyperMesh. From this point of view, 

WRMMG GUI code solves the model generation problem with a practical approach. 

Mesh refinement is also possible using this GUI code. In addition, WRMMG code 

has improved with a tool, which gives user a very usefull data necessarily used at 

production level. This tool computes the wire lengths required to produce a wire rope 

according to the wire rope type. Depending of the wire type lengths of the wires are 

computed. As an illustrative example, 1m length 6x19 Seale IWRC wire lengths are 

computed with the prescribed radiuses and wire lengths are presented in Table 7.12. 

The capability of defining wire lengths reduces the production time costs of the 

producers. From this point of view, one can compute necessary lengths for each wire 

at the production time and arrange the production process according to these datas. 

 

Figure 7.61: WRMMG GUI code screen shot. 
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Figure 7.62: A wire strand model created using WRMMG GUI code. 

Table 7.12: Wire length computation for a 1000m Seale IWRC. 

Wire 
title/ 

Wire 
radius (mm) 

Pitch Length 
(degree) 

Length of 
Wire (m) 

Total Wire length 
needed (m) 

CW 0.8014 0.00 1000.00 1000.00 

IH 0.7347 73.71 1041.84 6251.02 

OCW 0.7042 70.83 1064.66 6387.99 

ODH 0.6557 81.07 1083.95 39022.29 

SOCW 1.4557 70.24 1062.57 6375.45 

SDH1 0.7125 102.27 1092.69 59005.11 

SDH2 1.2682 111.23 1156.26 62437.81 

7.10 Contact analysis of a simple straight strand 

Center wire radius of a wire strand is chosen sufficiently such that to prevent outer 

wires touching each other. This is the general aim to decrease frictional effects due to 

bending of the strand. Outer wires of a simple straight strand are in contact with only 

the center wire at the initial position as shown in Figure 7.63. This phenomenon 

produces a line of contact between the center and outer wires of a strand which is a 

single helical contact line as presented in Figure 7.64. Using the design parameters 

defined in Table 7.1, a wire strand solid model is created. Strand length is selected, 

enough to guarantee contacts between center and outer wires of the strand, to be 

quarter of the pitch length of the strand as 28.75mm. Boundary conditions are defined 
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as in Figure 7.64; one side is constrained to be encastre (fixed end) while the other 

side is constrained for rotation along the z-axes (free end).  

 

Figure 7.63: Contact points over the cross sectional view of a straight strand. 

Surface to surface contact interactions between center and six outer single helical 

wires and between six helical wires are defined individually. During the numerical 

FEA, tangential and normal contact properties are defined. Contact property of 

tangential behavior with penalty frictional formulation is used with friction 

coefficient of 0.115µ = , defined as in Table 7.1. 

 

Figure 7.64: Helical line of contact and applied boundary conditions. 
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Contact property of normal behavior with “hard contact” pressure-over closure is 

defined as the second interaction property. During the numerical analysis, a strain of 

0.015ε =  is applied to the free end of the strand. FEA results for different contact 

modes; without contact, with tangential contact and with tangential/normal contact 

interactions are analyzed and results are presented in Figure 7.65. As it can be seen 

from the Figure 7.65 that FEA result without the contact definitions gives slightly 

lower axial force variation with strain. Tangential and normal contact interaction 

definitions gives harmonious result with the test result of Utting&Jones by keeping 

the elastic-plastic properties of the wire material. This behavior of the contact 

interactions shows the validity of the proposed FEA model with contact definitions. 

 

     Figure 7.65: Axial force variation with strain comparison of a wire strand FEA 
results; with and without contact interactions. 

Line of contact between center and outer single helical wires can be easily seen from 

the contour plot of the wires given in Figure 7.66. Fine mesh is used for the contact 

analysis presented here to see the interactions between wires and line of contact 

between core and outer wires shown in Figure 7.66. Total number of nodes used is 

213690, while the total number of linear hexahedral elements of type C3D8R used is 

196524, to model the contact behavior of the simple straight strand. 
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Figure 7.66: Line of contact over center and outer helical wires. 

Contact and deformation between wires over a strand cross section is shown in 

Figure 7.67, which validates the preceding contact points shown in Figure 7.63. 

 

Figure 7.67: Cross sectional view of a contacting area. 

An exaggerated representation of Figure 7.67 is presented in Figure 7.68. From this 

figure, deformations between wires within a wire strand can be clearly seen. There 

are 477 numbers of elements present in each wire cross section and 196524 elements 

exist in the whole model. Element length is defined to be 0.5mm for each wire along 

the wire strand. Increasing the mesh size makes it possible to clearly understand the 

deformations at the contact points. 
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Figure 7.68: Cross sectional view of a contacting area. 

 

Contact forces between wires are presented in Figure 7.69, contact pressure between 

wires are given in Figure 7.70 and wire stresses for each wire are given in Figure 

7.71. These figures give insight about wire-by-wire behavior of individual wire along 

the wire strand. 

 

 

Figure 7.69: Contact force variation with strain of a simple straight strand. 
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Figure 7.70: Contact pressure variation with strain of a simple straight strand. 

 

 

       Figure 7.71: Stress variation with strain over wires of a simple straight strand 
considering contact interactions. 

Variation of center wire diameter and helical wire diameter with strain are given in 

Figure 7.72. Diameters of the center and outer helical wires are reduced 1.16% and 

0.92% respectively. This shows that while the wires are elongated, reduction occurs 

in wire diameters due to axial loading. As the center wire is loaded with the higher 

amount of total load, also the center wire diameter reduces more than the outer wires 
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in a strand. Wire diameter reduction for center wire and helical wire is computed as 

2.1% and 1.81% respectively and shown in Figure 7.73. 

 
Figure 7.72: Wire diameter change with strain for a wire strand. 

 

Figure 7.73: Wire diameter change with wire length change for a wire strand. 

In this part of the analysis mesh sizes of the wire strand is increased and results for 

finer meshes are compared with coarser meshes. A 28.75mm simple straight wire 

strand model is used to investigate the importance of mesh size. Number of surface 

elements used on the cross section of a wire within a wire strand is presented on the 

first column of Table 7.13. Element lengths along a 28.75mm wire strand is defined 



 176 

in decreasing order; 1mm, 0.5mm and 0.25mm respectively to generate finer meshes. 

von-Mises stress variation for strain value of 0.015 is compared for different mesh 

sizes and approximated error values are computed and listed in Table 7.13. von-

Mises stress value for a wire strand with 0.25mm element length is accurately 

computed and the approximated error value of 0.004% is obtained as a result which 

shows the accuracy of the proposed model mesh size for FEA. 

Table 7.13: Mesh sizes for a 28.75mm wire strand for various element lengths. 

 Element lengths along the wire strand 
 1mm 0.5mm 0.25mm 

Number of 
elements on 
wire cross 

section 

Number of 
Total 

Elements 

Approx. 
Error (%) 

Number of 
Total 

Elements 

Approx. 
Error (%) 

Number of 
Total 

Elements 

Approx. 
Error (%) 

32 6496 - 13184 - 26144 - 
48 9744 2.1972 19776 1.0466 39216 0.0334 
73 14819 0.8649 30076 0.4488 59641 0.0242 
81 16443 0.7625 33372 0.3688 66177 0.0101 
104 21112 0.4926 42848 0.1082 84968 0.0043 

 

Variation of von-Mises stress and axial force with strain for element sizes of 1mm, 

0.5mm and 0.25mm presented in Figure 7.74 and Figure 7.75 respectively. Both von-

Mises stress distribution and axial force distribution converges while the quality of 

the wire strand mesh increased from total of 6496 elements to 84968 elements and 

approximated error value decreases to 2.19% to 0.0043% as presented in Table 7.13. 

As a result, it is enough to increase mesh size up to 104 elements on the cross section 

of a wire within a wire strand while the element length along the wire strand can be 

selected as 0.25mm. Increasing the mesh quality more than these values will increase 

the computational time and its benefit will be argued at that point. In addition, while 

the length of wire strand increased the mesh size should be carefully considered to 

control the computational difficulty of the problem for FEA. 
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(a) Element size = 1mm 

 
(b) Element size = 0.5mm 

 
(c) Element size = 0.25mm 

    Figure 7.74: von-Mises stress variation with strain for a 28.75mm WS with 
element length=1mm, 0.5mm and 0.25mm. 
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(a) Element size = 1mm 

 
(b) Element size = 0.5mm 

 
(c) Element size = 0.25mm 

      Figure 7.75: Axial force variation with strain for a 28.75mm WS with element 
length=1mm, 0.5mm and 0.25mm. 
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Comparison of von-Mises stress and axial force variation with strain for element 

sizes of 1mm, 0.5mm and 0.25mm with defining number of 104 elements in each wire 

cross section is presented in Figure 7.76 and Figure 7.77 respectively. As a result, it 

can be easily seen that total 84968 elements with element size of 0.25mm gives 

accurate results during the finite element analysis. 

 

 Figure 7.76: Comparison of von-Mises stress variation with strain for a 28.75mm 
WS with element lengths 1mm, 0.5mm and 0.25mm. 

 

  Figure 7.77: Comparison of axial force variation with strain for a 28.75mm WS 
with element lengths 1mm, 0.5mm and 0.25mm. 

During the dynamic explicit FEA in Abaqus/CAE, process time is selected to be 1 

second for the analysis. Solution time is increased to 3 and than 5 seconds 
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respectively to see the effect of solution time to the results. It can be seen from 

Figure 7.78 and Figure 7.79 both stress and force distributions are in good agreement 

while the solution time is increased. As a result, it is enough to use 1 second as the 

solution time for the dynamic explicit analysis. 

 

    Figure 7.78: von-Mises stress variation with strain for dynamic explicit analysis 
with solution time 1, 3 and 5 seconds. 

 

    Figure 7.79: Axial force variation with strain for dynamic explicit analysis with 
solution time 1, 3 and 5 seconds. 

7.11 Discussion on wire rope length effect 

Because of the preceding proposed wire rope solid modeling method, it has been 

mentioned that it is possible to conduct FE analysis over long wire ropes. In this part 

1m to 5m length wire strands are modeled and analyzed. Contact interactions are 
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defined over each individual wire as described before. Surface to surface contact 

with tangential and normal properties are proposed. Material properties are selected 

as in Table 7.1. 

Surface-to-surface contact interactions between center and outer single helical wires, 

between six individual helical wires are defined. During the numerical FEA, 

tangential and normal contact properties are used. Contact property of tangential 

behavior with penalty frictional formulation is used with friction coefficient of 

0.115µ = , defined as in Table 7.1. Contact property of normal behavior with “hard 

contact” pressure-overclosure is defined as the second interaction property. 

Boundary conditions for wire strands are defined to be encastre condition to one end 

while the other side is constraint to rotate through z-axes. The cross sectional area of 

the wire strand is computed as 77.77mm
2 and an axial load of 140000N is applied to 

the free end of the strand for the FEA. There are 32 elements in each wire cross 

sections and element lengths are selected to be 5mm along the wire strand. Number 

of nodes and elements defined over the wire strands are presented in Table 7.14. The 

analysis is conducted over 1m-5m wire strands using the prescribed boundary 

conditions and loads to see the behavior of long wires under these conditions. Stress 

distributions with distances for 1m to 5m strands are shown in Figure 7.80-Figure 

7.84 respectively. It can be seen that stress is distributed along the wire strands and 

high oscillations along the stress distribution can be seen from the figures. 

von-Mises stress distribution is homogeneous along 1m length wire strand for 

straight core wire and oscillates for outer helical wires along its length. von-Mises 

stress distributions are in sinusoidal manner because of the helical structures of the 

outer wires as shown in Figure 7.80. Similar stress distributions are presented for 2m-

4m wire strands during their analysis in Figure 7.81 through Figure 7.83. When the 

4m and 5m wire strands are examined given in Figure 7.83 and Figure 7.84 

respectively, it can be seen that wire stresses are increased from one side to the other 

side stabilized at the end section. This behavior depends on the weight of the wire 

strand. Both core wire and outer helical wires von-Mises stress distribution shows 

similar behavior. It can be concluded from the present analysis that, to obtain correct 

stress distribution over a long wire rope whole model of the problem should be 

considered. In this way, necessary informations on any part of the wire rope can be 

obtained with confidence. 
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Table 7.14: Number of nodes and elements used in 1m-5m wire strand models. 

Length Total number of nodes 
Total number of elements 

linear hexahedral elements of 
type C3D8R 

1m 73,431 57,088 

2m 120,745 94,016 

3m 180,851 140,928 

4m 241,203 188,032 

5m 301,309 234,944 

 

This analysis scheme gives insight about the behavior of long wire strands under the 

axial loading conditions. With this analysis, it has been shown that the proposed 

scheme can be applied to the long wire ropes. In this aspect, it is possible to model 

and analyze wire ropes without length limitation, which gives opportunity to 

establish real application models for wire ropes. 

 

Figure 7.80: von-Mises stress variation with true distance for 1m wire strand. 
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Figure 7.81: von-Mises stress variation with true distance for 2m wire strand. 

 

 

Figure 7.82: von-Mises stress variation with true distance for 3m wire strand. 
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Figure 7.83: von-Mises stress variation with true distance for 4m wire strand. 

 

Figure 7.84: von-Mises stress variation with true distance for 5m wire strand. 

Furthermore, when the stress distributions along 1m-5m length wire strands are 

considered, high oscillations are encountered and it is confusing to understand the 

general behavior of the wire strand clearly. To discard the oscillatory behavior, 1m 

length wire strand is analyzed for different helix pitch lengths and finer mesh sizes 

defined as in Table 7.15. 
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Table 7.15: Number of nodes and elements used to construct 1m wire strand. 

Helix pitch lengths 

100mm 110mm 115mm 

Num. of 
Nodes 

Num. of 
Elements 

Num. of 
Nodes 

Num. of 
Elements 

Num. of 
Nodes 

Num. of 
Elements 

1,773,273 1,528,594 1,741,257 1,497,610 1,738,329 1,495,090 

 

The analysis of 1m wire strand is conducted with the design parameters of a simple 

straight strand given in Table 7.1 and wire material properties is defined as in Table 

7.3. Encastre boundary condition is applied on one side of the wire strand while the 

other side is constraint not to rotate in x, y and z directions. Axial strain of 0.008ε =  

is applied to the free end of the strand. Variation of von-Mises stress with true 

distance for 1m Steel wire strand for helix pitch lengths of 100mm, 110mm, and 

115mm are presented in Figure 7.85 respectively. To plot the stress distributions 

along the center and outer wires within strand nodes over the outer surfaces of 

individual wire is used and a path is generated. Helical path over the wire strand is 

defined and it is depicted at the bottom of Figure 7.85. These paths are used to probe 

values along the wire strand. For 1m length wire strand it can be seen from the Figure 

7.85 that stress distribution over the center wire is still oscillating but in a much 

smoother manner while inner helical wire is oscillating with a period. To measure 

this period distance values belongs to the pick points are noted as in Table 7.16 and 

distances between consequtive pick points are computed. Average values for the 

distances of the pick points are listed below each column. From these average values, 

it can be seen that the oscillations are repeated approximately in every 106.5mm for 

100mm pitch length wire strand, 116mm for 110mm pitch length wire strand and 

120.14mm for 115mm pitch length wire strand respectively. Values of the oscillations 

show similar behavior and correlated with the pitch lengths of the wire strands. 
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Figure 7.85: Variation of von-Mises stress with distance for 1m steel wire strand. 

 

Table 7.16: Oscillation measure for helical wire along 1m steel wire strand. 

Pick points 
along 100mm 

WS (mm) 

Distance 
between pick 
points (mm) 

Pick points 
along 110mm 

WS (mm) 

Distance 
between pick 
points (mm) 

Pick points 
along 115mm 

WS (mm) 

Distance 
between pick 
points (mm) 

106 — 116 — 124 — 

212 106 233 117 242 118 

319 107 349 116 361 119 

426 107 464 115 483 122 

532 106 580 116 604 121 

638 106 697 117 724 120 

744 106 812 115 846 122 

851 107 928 116 965 119 

958 107 — — — — 

Avarage 
distance (mm) 

106.5 — 116.0 — 120.14 

Percent (mm) 6.5% — 5.5% — 4.7% 

 

A similar analysis for 1m aluminum wire strand with 115mm pitch length is 

investigated and the obtained results for wire strands with increased mesh sizes are 

presented in Figure 7.86. Material properties of the aluminum alloy are obtained 
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from [116]; density, elasticity and Poison’s ratio are defined as 2.7e-9, 70000 and 

0.33 respectively. 

 

   Figure 7.86: Variation of von-Mises stress with distance for 1m Aluminum wire 
strand. 

For 1m aluminum wire strand with 115mm pitch length, it has been obtained that 

osciallation periods are increased extremely over the center straight wire. Hovewer 

oscillation over the helical wire is again in periodical manner as in steel wire strand 

and repeated in every 119.25mm. When compared with the steel wire strand with the 

same pitch length as presented in Figure 7.87, oscillation periods and oscillation 

distances are seen to be in good agreement for stell and aluminum wire strand 

models. 
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Figure 7.87: Variation of von-Mises stress with distance for 1m Steel and Aluminum 
wire strands. 
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8. CONCLUSION 

In this thesis, a more realistic 3-D solid wire rope model is generated successfully 

and the finite element analysis is established by means of the generated models. 

Mainly three solid wire rope models are studied; a simple straight wire strand (WS), 

an independent wire rope core (IWRC) and a Seale IWRC. The main aims of this 

study are to model a 3-D solid wire rope without length limitations by using the 

parametric equations of the nested helical geometry, to analyze reaction force, stress 

distribution in wire-by-wire basis under different loading conditions, to model, and 

analyze bending problem defined over the solid wire rope models respectively. In 

addition, contact behavior of wire ropes are modeled and analyzed. By using the 

proposed modeling method, analysis of long wire ropes are conducted successifully. 

At first using the rod theory deformations over a rod and relations with a helical 

spring investigated. The angular velocity and curvatures acting over a wire is derived 

using the loads and moments acting over a thin wire. Using the geometric 

consideration of a simple straight strand general behavior of a strand is presented. An 

analytical solution for axial loading problem is proved for the governing equilibrium 

equations with Mapple in a different way. Afterward, general analytical formulation 

of a wire rope is established using relation between axial loading and twisting 

moment. 

Equilibrium equations for only bending moment is defined and proved using Mapple. 

Frictional effects over a strand are defined and static response of an IWRC is 

investigated. The relation between a sheave and an IWRC diameter is investigated 

for bending problem analytically. General theoretical formulation of an IWRC using 

the homogenization method is derived and presented.  

Wire rope geometry modeling is a complicated issue because of the complex nature 

of the wires. (1+6) wire simple straight strand is composed by using a straight core 

wire, which is wrapped by six outer single helical wires. To construct a more 

complicated model, which is an IWRC, six strands are wrapped around a simple 

straight wire strand in helical manner. However, these six strands have a more 
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complex geometry then the simple straight strand. Core wires of these six strands are 

single helical shaped solid wires while the outer wires are nested helical shaped solid 

wires. That is why the outer nested helical wires need to be generated using special 

treatment. Parametric representations of these outer nested helical wires have to be 

used during the solid modeling process. 

To make a realistic 3-D solid modeling of a complex wire strand/rope, it has been 

determined that there are problems while modeling single/nested helical solid wires. 

Definition of the nested helical wire and length limitation are encountered problems 

at first glance. There is no ready to use tools for defining a nested helical wire 

centerline in commercial CAD software’s. A computer code is written to define 

control points of the centerline for each single and nested helical wires using Matlab. 

During the simple straight wire strand generation, a single helical wire wraps a 

straight wire. However, while an IWRC design, a nested helical wire is wrapped 

around a single helical wire. The angle of rotation between nested helical wires and 

single helical wires are in significant importance. This relation is carefully 

established via the written Matlab code to produce nested helical wires. The code is 

adapted to CAD software’s by using the available macro script languages. At the end 

of this study, written codes are built to form two GUI codes called WRS and 

WRMMG respectively. 

Length limitation is occurred while CAD software’s used, because of the number of 

control points necessary to define the helical path of the wires. In fact, when the 

construction is done using the CAD software’s such as SolidWorks, it seems that 

there is no problem with the construction of the wire geometry. When the wire 

geometry is exported to the analysis software such as Abaqus/CAE, the 

constructional problems are arised because of the control points used to define 

splines. When the length of the wire rope is increased, numbers of control points 

have to be increased also. However, analysis packages cannot capable of handling 

sweep operation accurately using these increased number of control points. This 

leads to unwanted and unusable geometrical shapes at the analysis stage. Meshing 

problems appears and solid model of the wire rope cannot be established at the 

beginning of the design stage. It has been concluded that the 3-D models constructed 

by using only the CAD software’s capability, such as Solidworks or CATIA, can be 

used for finite element analysis approximately at a maximum length of 300mm. 
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When the length of wire strand/rope is increased beyond this, aforementioned 

problems are confronted. To overcome this difficulty two different procedures are 

tried. First, a pitch length of a helical wire is created by using parametric 

mathematical functions and splines. Then, number of revolutions has to be computed 

to construct a wire in its intended length. At the end, numbers of revolutions times 

pitch length of wires are connected by using tie constraints via the analysis tools. 

This scheme is conducted to construct such a long wires necessary to build wire 

ropes for the intended length. However, during the analysis stage it has been seen 

that there are oscillations in the results at the connection points. For this reason, this 

scheme is not adequate for the analysis. 

Another procedure is investigated to overcome the length limitation problem. The 

second method is proposed to construct wires long enough at the modeling stage by 

using CAD software’s, such as SolidWorks, and then meshing the solid part by a 

meshing tool, such as HyperMesh. By the way, using this procedure, wire ropes are 

built only for limited lengths that can be analyzed correctly. When the wire rope 

length is increased, meshing and analyzing problems are encountered again. 

Therefore, this strategy is also failed and abandoned. 

At the end, using the generated Matlab code, control nodes are found for the 

centerline of the wires. Meanwhile three points are generated to construct a plane, 

which is intended to be perpendicular to the centerline of each wire. This plane is 

constructed by considering the Frenet-Serret triad. Control nodes for the centerline 

and three points for defining Frenet-Serret plane are exported to the HyperMesh by 

an interfacing code. A spline is created using the control nodes for defining the 

centerline of the wire. In addition, a circle is generated using the three points on the 

Frenet-Serret plane. This circle is sweeped along the centerline curve to produce 

solid mesh of the wire. Furthermore, generated solid meshed wires are exported to a 

file using Abaqus input file format. Each solid wire is imported in Abaqus/CAE to 

build the final 3-D wire rope model. The main contribution made here is to construct 

a solid wire rope model without length limitation and without any meshing problems. 

Wire rope model produced by using this last scheme generates ready to use meshed 

models, which can be used in finite element analysis. Using the proposed solid wire 

rope modeling scheme, an IWRC model for different lay types such as right lang lay, 

left lang lay, right regular lay and left regular lay can be constructed. 
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The benefit of the proposed solid wire-modeling scheme enables ones to construct a 

realistic 3-D solid model of a wire rope. This leads to analyze different types of wire 

ropes under prescribed conditions by using finite element codes easily. During the 

proposed modeling strategies, information about each wire within a wire rope can be 

obtained by means of wire-by-wire basis. As well maximum stress distribution over 

the wire strand/rope can be probed at the specified point for the specific wires. 

In the numerical analysis chapter, finite element analyses are conducted on a simple 

straight wire strand, an IWRC and a Seale IWRC respectively. First, a simple straight 

wire strand model is analyzed under axial loading condition. Both frictionless and 

frictional behaviors are investigated while changing the helix angles between 65° and 

84°. Wire strand behaves like parallel rods, for the helix angle higher than 84°. It can 

be seen that the change of the pitch length of the strand near to helix angle 65° 

minimizes, while the pitch lengths are dramatically increased after 78°.  

An 14mm  length, (1+6) wires, simple straight strand is considered under axial 

loading. Elastic frictionless and elastic-plastic frictional numerical models are 

developed. An axial strain ε  of 0.015, was applied in increments of 0.001 in the 

analysis. The frictionless behavior of both theory of Costello and FEA results are in 

good agreement under axial loading conditions. The frictional plastic behavior of the 

strand is compared with the test results of Utting&Jones [12,13] given in the 

literature. Plastic behavior of the model is found to be in very good agreement with 

the test results. 

An 18mm length, (6x7) wire IWRC of a three dimensional numerical model is 

considered. Elastic frictionless and elastic-plastic frictional numerical models are 

developed for different lay lengths. Axial strain of 0.015ε =  is applied to the free 

end of the IWRC. Especially for the case of pitch length 2 70p = , very good 

agreement is obtained between theory and FEA results. 

Wire radial contraction is analyzed over an IWRC for Poisson’s ratio of ν=0 and 

v=0.3. From the obtained results, it can be concluded that the wire contraction plays a 

very little role over the whole wire rope model analysis. Tensile forces obtained from 

the proposed model have a good agreement with Costello’s results for both regular 

lay and lang lay rope constructions. However, twisting moments gives better 

agreement for regular lay construction than for the lang lay one when compared with 
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Costello’s results. These analyses are conducted over a wire rope with the length of 

9% pitch length. A wire-by-wire loading is investigated by the analysis of a right 

lang lay IWRC. The theoretical result of Costello and FEA results shows good 

agreement in wire-by-wire basis. 

Using the same numerical models, forced torque is analyzed over the both simple 

straight strand and IWRC. Harmonious results are found for both models. In 

addition, elasto-plastic behaviors of the models are investigated under forced torque 

conditions. 

By using the proposed modeling procedure, a 300mm length IWRC is modeled for 

each lay type and analyzed. In addition, the stress distributions over each lay type 

and wire-by-wire based reaction forces over fixed end are analyzed. An axial strain 

of 0.015 is applied to both an 18mm length and a 300mm length RLL IWRCs and 

reaction forces are compared in wire-by-wire basis. The proposed model enables one 

to analyze and see the differences of the reaction forces between small and long 

length IWRCs. 

On the other hand, two different lengths of IWRCs are analyzed for bending 

problem, a 9mm and a 300mm lengths respectively. IWRC diameter and cross 

sectional area are 29.8mm and 380.48mm
2 respectively. According to the test 

standards, sheave diameter should be minimum 30 times the rope diameter. Sheave 

diameter is computed as 894mm. An IWRC is axially loaded in first step and then 

bent over the sheave with 90mm displacement boundary condition. Reaction forces 

over each strand are increased during the bending process after 72mm displacement 

is applied. Wire-by-wire basis analysis results shows that the core strand of the 

IWRC holds much more loads while bending over a sheave. Meanwhile the strands 

located near to the sheave are loaded more than the other strands beyond the wire 

rope composition. This numerical analysis gives information about the wires and 

strands, forced to bend over a sheave. In addition, using the benefits of the computer 

technology, parallelization of the wire rope problem is accomplished, and it has been 

seen that for a specific bending over a sheave problem, 16 CPUs is enough to 

conduct analysis for parallel execution.  

In this thesis basis of the modeling and numerical analyzes are discussed. A more 

realistic 3-D solid wire rope model is developed. This study can be used as a guide to 
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model and analyze wire ropes under different loading conditions. Analytical 

solutions are available in the literature and can be used for comparison purposes. 

Numerical analysis scheme is clearly defined and can be modeled easily without any 

length limitation. Boundary conditions can be defined depending on the 

requirements, and new problems can be defined for further research purposes. Using 

the mentioned FEA procedures, simulations of special conditions or specific 

arrangements can be constructed and analyzed. The proposed scheme is used to 

model a more complex rope known as Seale IWRC. Numerical results are presented 

in wire-by-wire basis for each wire of a 6x19 Seale IWRC.  

Wire rope modeling scheme defined during this study is used to develop two GUI 

implementations. First one is called as WRS and it is used to generate control nodes 

corresponding to the centerline of a specific wire. Using these control nodes, meshed 

solid wire geometry is constructed by using HyperMesh. Wire rope model generation 

process is completed by repeating the same procedure for each wire. Second one is 

called as WRMMG and it is an improved form of the WRS. The main difference is 

that the new GUI code generates the complete wire rope model automatically with a 

stand-alone manner. No user interference is needed and meshed wire rope assembly 

is generated readily with only defining the necessary wire parameters such as radius, 

pitch lengths and wire rope length. In addition, it has been improved with a tool, 

which computes wire lengths. This tool makes it easy to compute wire lengths 

necessary to produce a wire rope and reduces production costs. 

Using the benefits of the proposed numerical model, contact interactions are defined 

and included in FEA analysis. Deformations between wires are obtained and wire 

radius reduction is computed. During the contact analysis, accuracy of the model is 

validated by using finer mesh definitions. The response of the problem, depending on 

the number of elements used, is considered. As a result, it has been obtained that 

accuracy of FEA results are improved by using finer meshes. It should be considered 

that while mesh size is increased computational complexity of the problem is also 

increased. During the dynamic explicit FEA in Abaqus/CAE, job processing time 

effect is investigated. Job process time is applied to be 1, 3 and 5 seconds. The 

analysis results are compared with each other and it has been obtained that 1 second 

is enough to use as job processing time. It should be emphasized that increasing job-

processing time also increases the computational cost of the problem. 
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In addition, a wire rope construction without length limitation is accomplished by 

modeling and analyzing 1m-5m wire strands. von-Mises stress variation with true 

distance is presented in number of figures. It has been seen that there are number of 

oscillations along wire lengths, which confuses to understand the wire strand 

behavior correctly. To solve this problem finer mesh sizes are used for the analysis of 

long wire strands. Increasing the mesh size reduces the oscillations of the von-Mises 

distribution along the wire to a meaningful size. As a result, it has been obtained that 

the oscillation period is approximately 4.5%-6.5% larger than the helical wire pitch 

length. The analysis is repeated using aluminum material on the same wire strand 

model and the results are compared with steel wire rope. It has been concluded that 

the wire rope model with both material behaves in a similar manner. Pitch lengths are 

found to be effective over the stress oscillations along the wire strands. As a result, 

one of the most important issues of wire rope modeling and analysis without length 

limitation is accomplished accurately with obtaining detailed understanding of wire 

strand behavior. 

Future studies can be conducted in special applications of wire ropes such as; reverse 

bending problems, cycling loading problems, fatigue analysis and wire rope fracture 

condition during bending problems can be studied by using the proposed numerical 

modeling method. Besides, a proposal for the service life expectancy can be studied 

with numerical analysis. Wire rope accidents can be modeled by using the damage 

processes as a future study. Wearing of wire ropes can also be another important 

application area of the numerical analysis of wire ropes. Non-rotational wire rope 

configuration can be investigated using finite element analysis as a future study also. 

In addition, by using the proposed solid modeling scheme, structures including 

nested helical shapes such as synthetic or nylon fibers can be modeled and analyzed. 
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APPENDICES 

APPENDIX A: Numerical Examples 

 
 

A.1 Example 1 

Consider a simple straight strand with the parameters given as;  

1 2.6162R = mm , 2 2.5654R = mm , 2 247.65p = mm , 196497.52E = 2/N mm , 

0.25v = , 2 6m = . 

Outside wires are assumed not touching each other. Equation (4.42) yields, 

2 1 2 5.1816r R R mm= + = . 

The helix angle 2α  is determined by equation (4.53); hence, 

o
2 2

247.65
tan 7.606670 82.510641

2 *5.1816
α α

π
= = ⇒ = . 

The following values are then computed; 

2 2
2 2 2 2

2
2 2

2

sin =0.991469, sin =0.983011, cos =0.130342, cos =0.016989, 

r
sin cos =0.129230 and 2.019802.

R

α α α α

α α =
 

The outside wires are checked to determine if they are touching each other. From the 

equation (4.52) yields for 2 6m =  that, 

2 2

2
2 2

1 2

tan - tan -
2 2 6

1 2.5654 1
sin 0.983011

5.163946   5.181600  

m
R

mm mm R R

π π π π

α

   
   
   + = +

= < = +

, 
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which shows that the outside wires do not touch each other. Now equations (4.89) 

and (4.98) are prepared by letting the angle of twist per unit length of the strand 

0sτ = , which means that the strand is not allowed to rotate, and letting 

1 0.003ξ ε= =  as follows, 

2
1 2

2tan

α
ξ ξ ε

α

∆
= + = , 

 2
20.003

7.606670

α
ξ

∆
= + , (A.1) 

and, 

 2 1 1 2 2
2 2 2

2 2 2

( )

tan tans

R R
r

r

ξ ξ ξ
β τ α ν

α α

+
= = − ∆ + , 

 2 2
2

(2.6162*0.003 2.5654 )
0 0.25

7.606670 2.5654*7.606670

ξ ξ
α

+
= − ∆ + . (A.2) 

If equation (A.1) and (A.2) are solved together for 2 2 ,andξ α∆  we found that 

2 2 0.002936 and 0.000483596.ξ α= ∆ =  From the equations (4.101) and (4.103), the 

values of 2 2R κ ′∆  and 2 2R τ∆  can be computed as follows, 

2
2 2 1 1 2 2 2

2 2 2 2 2

2 2 2

2sin cos ( ) cos

2(0.99147)(0.13034)
2.5654 0.00048359

5.1816
(0.103*0.003 0.101*0.002936) 0.016989

0.25*2.5654
5.1816 5.1816

0.00005564,

R R
R R R

r r r

α α ξ ξ α
κ α ν

− +
′∆ = ∆ +

−
= +

+

= −

 

2
2 1 1 2 2 2 2

2 2 2 2 2

2 2 2

1 2sin ( ) sin cos

1 2*0.98301
2.5654 *0.00048359

5.1816
(0.103*0.003 0.101*0.002936) (0.99147*0.13034)

0.25
5.1816 5.1816

0.0001838,

R R
R R R

r r r

α ξ ξ α α
τ α ν

− +
∆ = ∆ +

−
= +

+

= −
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Equations (4.104) through (4.116) yields, 

2
2 23

2

*( 0.00005564) -0.00004370
4 4

G
R

ER

π π
κ

′
′= ∆ = − = , 

2
2 23

2

*( 0.0001838) 0.00011549
4(1 ) 4(1 0.25)

H
R

ER v

π π
τ= ∆ = − = −

+ +
, 

2
2 2 2 2 2 2

2 22 3 3
2 2 2 2 2

cos sin cos

0.016989
2.5654*( 0.00011549)

5.1816
(0.99147*0.13034)

2.5654*0.00004370 0.000001825,
5.1816

N H G
R R

ER ER r ER r

α α α′ ′
= −

= −

− =

 

2
22

2

*0.002936 0.00922505
T

ER
πξ π= = = , 

2
2 2 2 2 2 2

2 22 2
2 2 2 2 2

sin cos cos

(0.99147*0.13034)
2.5654*0.000001825

5.1816
0.016989

2.5654*0.00922505 0.000077474,
5.1816

X N T
R R

ER ER r ER r

α α α′
= −

=

− = −

 

[ ]

2 2 2
2 2 22 2 2

2 2 2

sin cos

6* 0.00922505*0.99147 0.000001825*0.13034

0.054879,

F T N
m

ER ER ER
α α

 ′
= + 

 

= +

=

 

2 2 2 2 2 2 2
2 2 2 2 23 3 3 2 2

2 2 2 2 2 2 2

sin cos cos sin

0.00011549*0.99147 -0.00004370*0.13034

6 5.1816 5.1816
0.00922505* *0.13034 0.000001825* *0.99147

2.5654 2.5654

0.013828,

M H G T r N r
m

ER ER ER ER R ER R
α α α α

 ′ ′
= + + − 

 

− + + 
 =
 −
 

=

 

1
12

1

*0.003 0.00942478
F

ER
πξ π= = = , 
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1
13

1

2.6162*0 0
4(1 ) 4(1 0.25)s

M
R

ER v

π π
τ= = =

+ +
, 

2 2
1 2 1 2*0.00942478 *0.054879

12675.65 70970.48 83646.12 ,

F F F ER ER

N

= + = +

= + =
 

3
1 2 20 *0.013828 45877.83tM M M ER Nmm= + = + = . 

Since the above equations are linear, a reduction or increase in the axial strain, with 

0sτ = , would correspond to a similar decrease or increase in the loads. For example, 

with 0.0015ε =  and 0sτ = , the total axial force would be 41813.3 N , and the total 

axial moment would be 902.989 Nmm . This shows that while the strain ε  is 

decreased by half, total axial force and total axial moment also decreased by half of 

its value. 

A.2 Example 2 

The same strand used in example 1 is considered again. Let the strand subjected to an 

axial load of 83646.12 N  and not allowed to rotate ( )0sτ = . Using the results of 

example 1 and the equations (4.117)-(4.121) gives the following results, 

 21
1 2 2

1

12675.65
589.49 / ,

*2.6162F

F
N mm

R
σ

π π
= = =  

 21
1 13

1

2
0 / ,  due to M 0 M

M
N mm

R
σ

π
= = = , 

 22
2 2 2

2

11929.88
577 / ,

*2.5654T

T
N mm

R
σ

π π
= = =  

 22
2 3 3

2

4 4*144.98
10.93 / ,

*2.5654G

G
N mm

R
σ

π π
′

′
= = =  

 22
2 3 3

2

2 2*383.15
14.44 /

*2.5654H

H
N mm

R
σ

π π
= = = . 
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The shearing force can be computed by using equation (4.106) and the result from 

example 1, 

 

2
2

2

2
2 2

0.000001825

0.000001825*

0.000001825*1293204.63

2.35 .

N

ER

N ER

N

′
=

′⇒ =

=

�

 

The maximum normal tensile stress can be computed by adding the axial stress 

caused by the load 2T  and the maximum normal stress due to the bending moment 

2G′  such that, 

2
2 2 577 10.93 587.93 / ,T G N mmσ σ′+ = + =  

and this stress occurs on the inside of an outer wire (due to the sign of 2G′ ). These 

results shows that the center wire is depend on a slightly greater stress than the outer 

wires as shown in this example. 

A.3 Example 3 

In this example, the load deformation relation of the given simple straight strand is 

computed for the strand defined in example 1, and using the computed values from 

example 2. The constant values of 1 4,...,C C  is computed as defined in equations 

(4.122) and (4.123). The cross sectional area of the given strand is, 

2 2 2 2*2.6162 6 *2.5654 145.5567iA R mmπ π π= = + =∑ , 

and R  can be computed as, 

2.6162 2*2.5654 7.747R mm= + = . 

Taking 0β =  and 1ε ξ= , using the results of example 2, equations given in (4.122) 

and (4.123) can be computed to yield 1 3 and C C  as follows, 

1 0.975
F

C
AEε

= = , 
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and 

3 3
0.167.tM

C
ER ε

= =  

Now assume that 1 0ξ ε= =  and 1 0.001.ξ =  Using the equation (4.89) we can find, 

2
1 2

2

2

,
tan

0 0.001 .
7.6067

α
ξ ξ

α

α

∆
= +

∆
= +

 

Solving the equation above yields 2 0.0076067α∆ = − . From the equation (4.98), 

2 1 1 2 2
2 2 2

2 2 2

( )

tan tans

R R
r

r

ξ ξ ξ
β τ α ν

α α

+
= = − ∆ + , 

0.001 2.5654*0.001
5.1816 0.0076067 0.25

7.6067 5.1816*7.6067s
τ = + + , 

which results in 0.038012sτ =  and from equation (4.125), sRβ τ=  which results, 

7.747*0.038012 0.011593.β = =  

Now equations (4.101), (4.103) through (4.116) can be solved and the following 

results are obtained, 

2
2 2 1 1 2 2 2

2 2 2 2 2

2 2 2

2sin cos ( ) cos

2*0.12923*0.0076067
2.5654 *( 0.0076067)

5.1816
(2.5654*0.001) 0.016989

0.25*2.5654 0.00097442,
5.1816 5.1816

R R
R R R

r r r

α α ξ ξ α
κ α ν

− +
′∆ = ∆ +

−
= −

+ =

2
2 1 1 2 2 2 2

2 2 2 2 2

2 2 2

1 2sin ( ) sin cos

1 2*0.98301
2.5654 *( 0.0076067)

5.1816
(2.5654*0.001) 0.12923*0.0076067

0.25*2.5654
5.1816 5.1816

0.0036460,

R R
R R R

r r r

α ξ ξ α α
τ α ν

− +
∆ = ∆ +

−
= −

+

=
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2
2 23

2

*(0.00097442) 0.0007653
4 4

G
R

ER

π π
κ

′
′= ∆ = = , 

2
2 23

2

*0.0036460 0.0022908
4(1 ) 4(1 0.25)

H
R

ER v

π π
τ= ∆ = =

+ +
, 

2
2 2 2 2 2 2

2 22 3 3
2 2 2 2 2

cos sin cos

0.016989
2.5654*0.0022908*

5.1816
(0.99147*0.13034)

2.5654*0.0007653* 0.00002970,
5.1816

N H G
R R

ER ER r ER r

α α α′ ′
= −

=

− = −

 

2
22

2

*0.001 0.0031416,
T

ER
πξ π= = =  

2
2 2 2 2 2 2

2 22 2
2 2 2 2 2

sin cos cos

(0.99147*0.13034)
2.5654*0.00002970*

5.1816
0.016989

2.5654*0.0031416* 0.00002832,
5.1816

X N T
R R

ER ER r ER r

α α α′
= −

= −

− = −

 

[ ]

2 2 2
2 2 22 2 2

2 2 2

sin cos

6* 0.0031416*0.99147 0.00002970*0.13034

0.018665,

F T N
m

ER ER ER
α α

 ′
= + 

 

= −

=

 

2 2 2 2 2 2 2
2 2 2 2 23 3 3 2 2

2 2 2 2 2 2 2

sin cos cos sin

0.0022908*0.99147 0.0007653*0.13034

6 5.1816 5.1816
0.0031416* *0.13034 0.00002970* *0.99147

2.5654 2.5654

0.019546,

M H G T r N r
m

ER ER ER ER R ER R
α α α α

 ′ ′
= + + − 

 

+ + 
 =
 +
 

=

 

1
12

1

*0 0
F

ER
πξ π= = = , 
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1
13

1

*2.6162*0.038012 0.00246
4(1 ) 4(1 0.25)s

M
R

ER v

π π
τ= = =

+ +
, 

2 2
1 2 1 2*0 *0.018665 24138.34 F F F ER ER N= + = + = , 

1 2 8655.76+64844.25=73500.01tM M M Nmm= + = . 

The general equations of the strand given in (4.122) and (4.123) can be organized to 

find 2C  and 4C , 

1 2

2

*0 ,

0.0728,

F
C C

AE

F
C

AE

β

β

= +

⇒ = =

 

3 43

4 3

*0 ,

0.0694.

t

t

M
C C

ER

M
C

ER

β

β

= +

⇒ = =

 

Finally, equations of the strand can be written as, 

0.975* 0.0728*
F

AE
ε β= + , 

3
0.167* 0.0694*tM

ER
ε β= + . 
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APPENDIX B: IWRC cross-sections for different lay types 

 
 

 

(a) Right Lang Lay (RLL)    (b) Left Lang Lay (LLL) 

 

 

(c) Right Regular Lay (RRL)   (d) Left Regular Lay (LRL) 

Figure B.1: Cross-sectional view of IWRCs for different lay types. 
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(a) Right Lang Lay (RLL)    (b) Left Lang Lay (LLL) 

 

 

(c) Right Regular Lay (RRL)   (d) Left Regular Lay (LRL) 

    Figure B.2: Wrapping nested helical wires; (a,b) without indentations, (c,d) with 
indentations over a simple straight core strand. 
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APPENDIX C: Matlab code to construct a nested helical wire 

 
 
% This code creates the nested helix to construct an IWRC and three points perpendicular to the wire 
centerline.  
% All nodes are written in a text file. 
clear all 
format long 
    telyaricaplari(1) = 1.970 ;   %'R1 
    telyaricaplari(2) = 1.865  ;   %'R2 
    telyaricaplari(3) = 1.600 ;   %'R3 
    telyaricaplari(4) = 1.500  ;   %'R4 
% Right Lang Lay IWRC     
%    oshw_sign=1; odhw_sign=1; 
% Left Lang Lay IWRC     
%    oshw_sign=1; odhw_sign=-1; 
% Right Regular Lay IWRC     
%    oshw_sign=-1; odhw_sign=-1; 
% Left Regular Lay IWRC     
    oshw_sign=-1; odhw_sign=1; 
    bosluk1 = 0.05; 
    bosluk2 = 0.05; 
    nokta = 30; 
    p2 = 193; %                                          ' pitch lengt  
    uzunluk = 300; %                                      ' wire length 
    wirenumber= 6; 
    j = wirenumber-1; 
    % ' j=0,1,2,3,4,5 nested helix numbers 
    rs = telyaricaplari(1) + bosluk1 + 2 * telyaricaplari(2) + bosluk2 + 2 * telyaricaplari(4) + bosluk2 + 
telyaricaplari(3); 
    %' rs = R1+2*R2+2*R4+R3 
    tw0 = 0 * pi / 3;%                                          ' 0 * PI/3 to 5*PI/3 
    rw = telyaricaplari(4) + bosluk2 + telyaricaplari(3); %       ' rw = R4+R3 
%'   ********************************* 
    alfas = atan(p2 / (2 * pi * rs));%            ' radian 
%'   **************************************************************** 
%'   array length of nPtData is computed 
%'   **************************************************************** 
%'    rev = uzunluk / (2 * PI * rs * Tan(alfas)) 
    rev = uzunluk/p2; 
    i = 0; 
    for ts=0:pi/nokta:(2 * rev * pi) 
        i = i + 1; 
    end 
    rev = i / (2 * nokta); 
    i = 0; 
    for ts=0:pi/nokta:(2 * rev * pi) 
        i = i + 1; 
    end 
    indis = 3 * i - 1; 
%'   **************************************************************** 
    m = 1; 
    i = 1; 
    for ts=0:pi/nokta:(2 * rev * pi) 
        xyz(i) = oshw_sign*rs * cos(ts); 
        xyz(i + 1) = rs * sin(ts); 
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        xyz(i + 2) = rs * ts * tan(alfas); 
        i = i + 3 
    end 
%'    rw = 0.025815 * 25.4 + 0.1 + 0.027725 * 25.4 
%'    tw0 = 0 * PI / 3                                          ' 0 * PI/3 to 5*PI/3 
    for k=j:j 
    tw0 = k * pi / 3;%                                          ' 0 * PI/3 to 5*PI/3 
    i = 1; 
    for ts=0:pi/nokta:(2 * rev * pi) 
        tw = m * ts + tw0; 
        % - sign show regular lay otherwise it is lang lay 
%        nPtData(i) = (oshw_sign*xyz(i) + odhw_sign*( rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * 
sin(alfas))) / 1000; 
        nPtData(i) = odhw_sign*(xyz(i) + ( rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas))) / 
1000; 
%        nPtData(i) = (xyz(i) + rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas)) / 1000; 
        nPtData(i + 1) = (xyz(i + 1) + rw * cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas)) / 1000; 
        nPtData(i + 2) = (xyz(i + 2) - rw * sin(tw) * cos(alfas)) / 1000; 
        i = i + 3; 
    end 
    i = i - 3; 
       P3=[nPtData(i) nPtData(i+1) nPtData(i+2)]; 
    end 
n=max(size(nPtData)); 
j=1; 
for i=1:3:n 
    xw(j)=nPtData(i); 
    yw(j)=nPtData(i+1); 
    zw(j)=nPtData(i+2); 
    j=j+1; 
end 
plot3(xw,yw,zw,'k','linewidth',2); 
hold on 
maxelsay=max(size(xw)); 
sirano=1:1:maxelsay; 
xyz=[sirano' xw' yw' zw']; 
% file name for writing the nodes 
fid = fopen('helixpoint.inp','w'); 
fprintf(fid,'*NODE\n'); 
for i=1:maxelsay 
    fprintf(fid,'%3d, %15.10f, %15.10f, %15.10f\n',sirano(i),xw(i),yw(i),zw(i)); 
end 
%  ****************************************************************************** 
%  three points which are perpendicular to wire centerline 
% ************************************************************************* 
syms x y 
twyedek=tw; 
syms t tw  
%helix=[-(xyz(i) + rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas))/1000,(xyz(i + 1) + rw * 
cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas))/1000,(xyz(i + 2) - rw * sin(tw) * 
cos(alfas))/1000] 
helix=[(oshw_sign*xyz(i) + odhw_sign*(rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * 
sin(alfas)))/1000,(xyz(i + 1) + rw * cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas))/1000,(xyz(i 
+ 2) - rw * sin(tw) * cos(alfas))/1000] 
dhelix = diff(helix) 
ddhelix =diff(dhelix) 
realdot = @(u, v) u*transpose(v) 
veclength = @(v) sqrt(realdot(v,v)) 
binormal = cross(dhelix,ddhelix)/veclength(cross(dhelix,ddhelix)) 
normalvect= cross(binormal,dhelix)/veclength(cross(binormal,dhelix)) 
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tw=twyedek 
bval=eval(binormal) 
hval=eval(helix) 
hval=P3 
tval=eval(dhelix) 
nval=eval(normalvect) 
% ******************************************************************** 
% normal binormal and tangent lines 
grid on; 
xlabel('x'); ylabel('y'); zlabel('z') 
k=-5:0.1:5; 
plot3(hval(1)+k*tval(1),hval(2)+k*tval(2),hval(3)+k*tval(3),'m'); % tangent line 
tanpoints=[(hval(1)+k*tval(1))' (hval(2)+k*tval(2))' (hval(3)+k*tval(3))']; 
k=-0.01:0.001:0.01; 
plot3(hval(1)+k*bval(1),hval(2)+k*bval(2),hval(3)+k*bval(3)); % binormal line 
binormalpoints=[(hval(1)+k*bval(1))' (hval(2)+k*bval(2))' (hval(3)+k*bval(3))']; 
k=-0.01:0.001:0.005; 
plot3(hval(1)+k*nval(1),hval(2)+k*nval(2),hval(3)+k*nval(3),'g'); % normal line 
normalpoints=[(hval(1)+k*nval(1))' (hval(2)+k*nval(2))' (hval(3)+k*nval(3))']; 
% ************************************************************************ 
k=0.01; 
P0=[hval(1)+k*tval(1),hval(2)+k*tval(2),hval(3)+k*tval(3)] 
P1=[hval(1)+k*bval(1),hval(2)+k*bval(2),hval(3)+k*bval(3)] 
P2=[hval(1)+k*nval(1),hval(2)+k*nval(2),hval(3)+k*nval(3)] 
P0=tanpoints(5,:); 
P=[P0;P2;P3] 
plot3(P1(1),P1(2),P1(3),'ro','linewidth',1.5) 
plot3(P2(1),P2(2),P2(3),'ys','linewidth',1.5) 
plot3(P3(1),P3(2),P3(3),'g*','linewidth',1.5) 
sirano=[maxelsay+1;maxelsay+2;maxelsay+3]; 
xyz=[sirano P]; 
for i=1:3 
    fprintf(fid,'%3d, %15.10f, %15.10f, %15.10f\n',sirano(i),P(i,1),P(i,2),P(i,3)); 
end 
fprintf(fid,'*****\n'); 
fclose(fid) 
max(zw)*1000 
return 
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    Figure D.3: A 300mm non-rotating end, total reaction force variation with strain 
for RLL, LLL, RRL and LRL type IWRCs. 

 

 

    Figure D.4: A 300mm non-rotating end, center strand reaction force variation with 
strain for RLL, LLL, RRL and LRL type IWRCs. 
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     Figure D.5: A 300mm non-rotating end, outer strand, reaction force variation 
with strain for RLL, LLL, RRL and LRL type IWRCs. 
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