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MATHEMATICAL MODELING AND STRESS ANALYSIS OF WIRE
ROPES UNDER CERTAIN LOADING CONDITIONS

SUMMARY

Wire ropes found wide application area in the industry and daily life for ages.
Analytical solutions in the literature are only available for simplified geometrical and
physical considerations using the cross-section of a rope due to complex geometrical
and physical constraints.

The aim of this thesis is to develop mathematical model of the complex geometry of
wire ropes, solid modeling of the real 3-D geometry without length limitation, and
solve the model numerically under certain loading conditions. For the sake of this
aim, mathematical model of wire rope theory is investigated to find analytical
solutions for comparisons with numerical results. Analytical results are obtained for
axially loaded straight wire strand and independent wire rope cores (IWRC).
Generated numerical models are solved by using finite element analysis and
numerical results are compared to both analytical results and available test results.

One of the well-known classical treatise of Love is used as the starting point of the
theory of wire ropes. Analytical solutions derived by Costello are proved in a
different sense and numerical results are compared to the analytical solutions. As a
result, it has been concluded that numerical and analytical results are in good
agreement.

Throughout the literature search, it has been observed that most of the researchers
intended not to take into account properties such as contact, friction, sliding, and
length of wire strand/rope because of the difficulties arising from mathematical and
geometrical complexities. In addition, most of the analytical studies and results rely
on the cross-sectional part of a wire strand/rope and there is a lack of real 3-D
analysis present at the literature for the complex wire ropes such as IWRC or Seale
IWRC. Therefore, an exact 3-D solid model of wire strand/rope is constructed by
using parametric formulations of single and nested helical wires. Mathematical
formulations of the both single and nested helical wires are analyzed and a code is
generated to create these helical geometries by using control points. The code is
generated to find the location of a helical path where the centerline of the single and
nested helical wires lies. Then helical wires are created in 3-D sense and wrapped
around a straight wire to construct a simple straight strand, and strands generated
before by using nested helical geometry are wrapped around a straight strand to build
a solid wire rope model.

Numerical analyses are conducted over a simple straight strand at first. The
numerical models are considered both by frictionless and frictional behaviors.
Comparisons of both frictionless and frictional numerical results of the simple
straight strand showed good agreement to the analytical and available test results.
Then 3-D solid model of an IWRC for different lay types are analyzed under axial
loading conditions. The results are in good agreement with the theory. Another
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complicated analysis is conducted on an IWRC, which is under forced rotation.
Under a constant strain, IWRCs are rotated and the obtained results are presented. In
addition, a numerical model of a wire strand bent over a sheave problem is proposed.
The results show the general behavior of a wire strand in the real application area.
Parallelization of the numerical solution is conducted over the bending problem and
results are argued. Then solid modeling of a Seale IWRC is developed using the
proposed modeling technique. A wire-by-wire analysis result for Seale IWRC is
presented as a consequence of the proposed modeling and analysis scheme. At the
end, contact interactions over a wire strand are defined. Line of contact between core
wire and outer helical wires are plotted in 3-D model by using the obtained
numerical results. Deformations occurred due to contact between wires are
investigated and wire radius contraction is shown by using contact interactions. One
of the important benefits of the proposed method is to create solid wire rope model
without length limitation. This issue is shown by generating 1m-5m wire strands and
their numerical analysis. Numerically obtained analysis results are presented in wire-
by-wire basis. The benefits of the proposed numerical model enable one to probe
over the intended parts of a 3-D numerical model. As an industrial inquiry, length of
wires necessary to compose a 6x19 Seale IWRC is computed using the parametric
equations of single and nested helical wires.

In this thesis, solid wire rope modeling procedure is clearly developed for such
complicated geometry. A wire rope code named Wire Rope Skeleton (WRS) is
developed which is able to create both basic single helical and complicated nested
(double) helical wire geometry. Then it is developed to run as a stand-alone code and
named as Wire Rope Model and Mesh Generator (WRMMG). A meshed wire rope
model is created by using the proposed method ready and error free to analyze using
the finite element codes. The proposed scheme is applied successifully to wide range
of wire ropes such as; simple straight wire strands, IWRCs and Seale IWRCs. It has
been shown that with the proposed modeling methodology, wire ropes can be build
without length limitation. This is also examined over a 1m-5m wire strand models.
Analyses over long wire ropes are conducted using supercomputers and accurate
results are obtained. From the analysis results of 1m-5m wire strands, it can be
concluded that to obtain correct stress distribution over a long wire rope, model mesh
plays an important role and should be increased to obtain accurate results. Contact
interactions over wire ropes are included and a very fine mesh is build over a wire
strand to show the interactions between core-outer wires and between individual
outer wires. Deformations of the wires over the cross section of a wire strand are
shown. As a result, a deep analysis model for wire rope geometries are developed,
and wire-by-wire analysis results are found using the proposed method. The results
are compared both with theory and available test results and shows good aggreement.
Finally this modeling scheme and numerical method could be applied to wide range
of complicated application areas of wire ropes such as, damage analysis, cycling
loading, life expectancy, bird caging and reverse bending problems.
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BELIiRLi KOSULLAR ALTINDA TEL HALATLARIN MATEMATIK
MODELLENMESI VE GERILIM ANALIiZi

OZET

Tel halatlar endiistri ve giinliik yasamda asirlardir genis kullanim alan1 bulmaktadir.
Literatiirde yer alan analitik ¢oziimler sadece basitlestirilmis geometrik ve fiziksel
kabuller gtz Oniinde bulundurularak, ara kesit yiizeyleri iizerinde karmasik
geometrik ve fizikler sinirlandirmalar1 6ngorecek bicimde gerceklestirilmistir.

Bu tezin amaci; tel halatlarin kompleks geometrisinin matematiksel modelinin
gelistirilmesi, gercek 3-D geometrik kati modelinin uzunluk sinirlamasi olmadan
olusturulmasi ve belirli yiikleme kosullari altinda modelin niimerik ¢6ziimlerinin
bulunmasidir. Bu maksatla, tel halat teorisinin matematiksel modeli arastirilarak
karsilastirma yapmak maksadiyla analitik sonuglar tiiretilmistir. Analitik sonuclar
eksenel yiiklii diiz tel demet ve bagimsiz tel halat cekirdegi (BTHC) igin
hesaplanmistir. Olusturulan niimerik modeller sonlu eleman analizi ile ¢6ziilmiis ve
niimerik sonuclar analitik ve mevcut test sonuglari ile karsilagtinnlmstir.

Love’nin yazmis oldugu iyi bilinen bir bilimsel incelemesi tel halatlar teorisi igin
baslangi¢ noktasi olarak kullanilmistir. Costello tarafindan tiiretilen analitik sonuglar
farkli bir yorumla kanitlanmis ve niimerik sonuglar ile analitik sonuglarin
karsilastirilmast yapilmistir. Sonug olarak niimerik ve analitik sonuglarin iyi uyum
gosterdikleri goriilmiistiir.

Literatiir incelemesi boyunca arastirmacilarin bir ¢cogunun temas, siirtiinme, kayma,
tel demet/halat boyu gibi 6zellikleri matematiksel ve geometrik karmagikliklarindan
oturii dikkate almadiklar1 goriilmektedir. Ayn1 zamanda analitik calismalarin ve
sonuglarin ¢ogu bu sebeple tel demet/halat arakesiti lizerine dayandirilmaktadir ve
literatiirde BTHC ve Seale tipi BTHC icin gercek bir 3-D analize rastlanmamaktadir.
Bu nedenle gercek bir 3-D tel demet ve tel halat kati modeli tek ve ¢ift helisel telin
parametrik formiilasyonu kullanilarak olusturulmustur. Tek ve c¢ift helisel tellerin her
ikisinin matematiksel formiilasyonu analiz edilerek kontrol noktalari yardimiyla
helisel yollarin tespit ve cizimini yapan bir kod gelistirilmistir. Bu kod tek ve cift
helisel tellerin merkez helisel yollarinin yerlesimini hesaplamaktadir. Daha sonra 3-
D anlayisiyla olusturulan teller diiz bir tel {izerine sarilarak diiz bir demet ve daha
once cift helisel tel geometrisini olusturan kod yardimu ile elde edilen demetler ise
diiz bir demet iizerine sarilarak tel halat kat1 modeli olusturulmustur.

Ik olarak niimerik analizler basit diiz bir demet iizerinde gergeklestirilmistir.
Niimerik modeller hem siirtiinmesiz hemde siirtiinmeli davramiglar1 dikkate
almaktadir. Siirtiinmesiz ve siirtiinmeli modellerin basit diiz demet icin yapilan
karsilastirmalarinda analitik ve test sonucglariyla iyi bir uyum saglandig
gosterilmistir. Daha sonra farkli sarim tipleri i¢in olusturulan iic boyutlu BTHC
modeli eksenel yiikleme kosullar altinda analiz edilmistir. Bulunan sonuglar teori ile
iyi uyum gostermistir. Bagka bir karmagik analiz ¢alismasi zorlanmig donme kosulu
altindaki BTHC {iizerinde gerceklestirilmistir. Sabit bir uzama degerinde, BTHC
dondiiriilerek hesaplanan sonuglar sunulmustur. Ek olarak bir tel demetinin tanbur
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izerine egilmesi problemine ait niimerik model onerisi olusturulmustur. Sonuglar bir
tel demetin gercek bir uygulama alanindaki genel davramisimi gostermektedir.
Niimerik ¢oziimiin paralellestirilmesi egilme problemi kullamilarak yapilmis ve
paralellestirmeye iliskin elde edilen sonuclar tartisilmigtir. Daha sonar Seale BTHC
kat1 modeli onerilen modelleme teknigi kullanilarak gelistirilmistir. Seale BTHC i¢in
bulunan tel bazinda analiz sonuglar1 6nerilen modelleme ve analiz semasinin bir
sonucu olarak sunulmustur. Sonunda bir tel demet iizerinde temas iligkileri
tanimlanmistir. Merkez tel ile helisel teller arasinda olusan temas hatti elde edilen
sayisal sonuglar kullanilarak 3-D c¢izdirilmistir. Teller arasindaki temas durumundan
otiirii kaynaklanan deformasyon incelenmis ve tel yaricapindaki azalmanin degisimi
temas iliskileri kullanilarak gosterilmistir. Onerilen metodun dnemli bir faydasi kat:
halat modelinin uzunluk sinirlamasi olmadan olusturulmasidir. Bu sézii edilen husus
Im-5m uzunlugunda tel demetleri olusturularak ve analizleri yapilarak
gerceklestirilmistir. Niimerik analizler boyunca elde edilen sonuglar tel bazinda elde
edilerek sunulmustur. Onerilen niimerik modelin faydasi iic boyutlu tel halat modeli
tizerinde istenilen parcalar {iizerinde arastirma yapmaya imkan saglamasidir.
Endiistriyel alandan gelen bir soru iizerine 6x19 Seale BTHC nin olusturulmasi igin
her telin uzunlugu, tek ve cift helisel tellerin parametric denklemleri kullanilarak
hesaplanmustir.

Bu tezde, kat1 tel halat modeli yontemi acik bir bi¢imde karmasik geometriler i¢in
gelistirilmistir. Tel Halat Iskeleti (THI) ad1 verilen bir tel halat kodu gelistirilmistir.
THI kodu ile basit tek helisel tel ile karmasik cift helisel tel geometrileri
olusturulabilmektedir. Daha sonar bu kod gelistirilerek tek basina ¢aligabilen bir kod
olan Tel Halat Model ve Mesh Ureteci (THMMU) adli kod yazilmistir. Onerilen
yontem ile mesh yapisi kurulmus hatasiz ve analize hazir tel halat kati modelinin
olusturulmasi saglanmstir. Onerilen yontem basit diiz tel demet, BTHC ve Seale tipi
BTHC gibi genis bir alandaki kat1 halat modellerinin olusturulmasinda ve analizinde
basar1 ile kullamilmistir. Burada oOnerilen metodoloji ile tel halatlarmn uzunluk
sinirlamasi olmaksizin modellenebilecegi gosterilmistir. Ayrica bu durum 1m-5m
uzunluklarindaki demetlerin modellenmesi ve analizi uygulamasiyla ger¢eklenmistir.
Uzun tel halatlar iizerinde yapilan analiz calismalarinda siiperbilgisayarlar
kullanilarak hassas sonuglar elde edilmistir. 1m -5Sm uzunlugundaki tel demetleri i¢in
yapilan analiz sonug¢larindan uzun halat yapilarindaki gerilme dagilimlarinin dogru
bir bicimde elde edilebilmesinde modelin mesh biiyiikliigii onemli bir role sahip olup
dogru sonuglar elde etmek i¢in mesh biiyiikliigii artirilmalidir. Tel halatlar iizerindeki
temas iligkileri merkez tel ile dis teller arasinda ve dis tellerin birbirleri arasinda
kurulmus ve temas analizi i¢in ¢ok ince bir mesh yapisi olusturulmustur. Bir tel
demetin arakesit bolimil tizerinde tellerin deformasyonlar1 gosterilmistir. Sonug
olarak tel halat geometrileri i¢in derin bir analiz modeli gelistirilmis ve tel bazinda
analiz sonuclan elde edilmistir. Elde edilen sonuglar teorik sonuglar ile mevcut test
sonuclar1 kullanilarak karsilastirilmis ve uyumlu olduklar1 sonucuna varilmistir. Son
olarak, bu modelleme metodu ve niimerik ¢oziimleme yontemi tel halatlarin
kullanildigr genis uygulama alanlarinda kullanilabilece§i ©ngoriilmektedir. Bu
alanlar arasinda tel halatlarin; hasar analizi, tekrarli yiiklemeler, 6miir tahmini, kus
kafesi ve ters egilme problemleri drnek olarak sayilabilir.
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1. INTRODUCTION

Theory of wire ropes relies on equilibrium equations, which are derived by Love in
his well-known classical treaties. Most of the analytical solutions in the literature
based on the solution of this equilibrium equations in connection with the boundary
conditions and physical aspects of the present problem. Because of the complex
geometry, most of the researches are based on the analytical solutions of the cross-
sections of a single straight strand, and the theory is extended to the multi-lay strands
and ropes. Different aspects of wire ropes are analyzed in theoretical studies. Most of
them excluded frictional and contact effects. By using the solid modeling and finite
element analysis, it is possible to include friction, contact, and different boundary
conditions and material properties. In this thesis, more realistic 3-D solid model of a
wire rope is developed by considering the mathematical models. Analysis process is
conducted by considering this modeling scheme and considering the important

working conditions of wire ropes.

In the second chapter, historical and structural roots of wire ropes and application
areas are presented. Various components of wire ropes are described and different
lay types are explained. Some of the most popular type of strands such as Seale,

Filler, and Warrington are included in this chapter.

In chapter three, a survey to the literature is presented to show the researches about
wire rope analysis in different aspects from the past to the present. Bases of the
theory of wire ropes are explained at first. Then history of works on wire rope theory
is mentioned. Four different theoretical models are presented and described. Among
them helical rod model is extensively investigated and an enhanced literature survey
is conducted on this theoretical model. Numbers of available test results are reported
in the literature. These papers are summarized also in this chapter. At the end of this

chapter, recent publications about wire ropes are investigated and presented.

In chapter four, wire rope theory using rod theory is investigated over a helical
spring. The angular velocity and curvature relations acting over a thin wire is

derived. Deformations over a rod and relations with a helical spring are investigated.



Axial loading problem over a simple straight strand is defined analytically. The
general equilibrium equation, which describes the axial loads and twisting moments
acting over a rope, is derived. General strain and rotation relation due to load and
moments over a simple straight strand is explained. At the end of this chapter,
contacts and interactions between core wire and the outer single helical wires are

described.

In chapter five, equilibrium equations, for only bending moment, is defined and
proved using Mapple®. Frictional effects over a strand are defined and static
response of an independent wire rope core (IWRC) is investigated. The relation
between the sheave and IWRC diameter is investigated for bending problem
analytically. General theoretical formulation of an IWRC using the homogenization

method is derived.

In chapter six, modeling of wire rope geometry, which is a complicated issue because
of the complex nature of the wires, is investigated. General definition of helices and
a special form of a helix is described at first. Then the nested helical system also
known as double helical geometry is investigated. A moving trihedron and plane
construction over a helical wire geometry is defined using Frenet-Serret frames. A
single or nested helical wire solid model construction is described. Then complex
wire structures are modeled. Various computer aided design (CAD) codes are used to
examine a good solid wire model without length limitation and the results are
compared. A new code is developed using mathematical considerations of the single
helical and nested helical wire geometry. A simple straight wire strand and an IWRC
modeling is investigated and different lay types of IWRCs are presented. In addition,
element selection for finite element analysis (FEA) and material properties

definitions are prescribed in this chapter.

In chapter seven, numerical results using FEA over a simple straight wire strand,
IWRC and Seale IWRC are presented respectively. General considerations of the
analysis models are defined first. Then a simple straight wire strand and an IWRC for
a range of helix angles are modeled and analyzed under axial loading conditions for
both elastic and plastic problems. In addition, wire radial contraction behavior over
an IWRC is investigated. Complicated problems such as forced torsion and bending
over a sheave are modeled and analyzed in this chapter. Bending over a sheave

problem is solved using parallel computations and obtained results show the efficient



number of CPUs necessary to use with respect to CPU time. Using the proposed
solid modeling scheme, a Seale IWRC is modeled and analyzed under axial loading
conditions. A graphical user interface (GUI) code is developed which gathers all
geometry modeling schemes of wire ropes. The code is named as Wire Rope
Skeleton (WRS) and a brief explanation of the code is given. Later WRS code is
developed and a new GUI code is implemented called as Wire Rope Model and
Mesh Generator (WRMMG). It is designed to run as a stand-alone code and
produces whole wire rope geometry automatically. At the end of this chapter, contact
analysis of a simple straight strand is described and presented. Contacts interaction
between wires are prescribed and included in the numerical models. Deformations
takes place due to contact interactions between wires in a strand and a helical line of
contact is maintained between wires. Wire radiuses are contracted due to contacts
and the variation of wire radiuses with respect to strain is presented. Mesh size
increament effect over a simple straight wire strand is analyzed and results are
compared. One of the benefits of the proposed modeling scheme enables one to
model wire ropes without length limitation. Using this modeling feature 1m-5m
length wire strands are generated. Numerical analyses over these models are
conducted and their discussions are presented in this chapter. Wire strand behaviors
for steel and aluminum materials are compared also. During the numerical analysis,
wire-by-wire basis investigations are conducted and the numerically obtained results
are presented and compared with the theory and available test results. As an
industrial inquery, wire lengths to manufacture a specific wire rope composition are

computed by using mathematical consideration of each wire within a wire rope.

As a result, more realistic 3-D solid model of the wire ropes for different lay types is
constructed without length limitation. Modeling issue is achieved by a new scheme,
which is based on the generation of each wire (center straight, single helical or nested
helical wires) centerline with a written code using the parametrical definition of
single and nested helical wire geometry. A numerical model using the wire-by-wire
based analysis method is designed and the numerical results are compared with the
theory and available test results in the literature. The application of the proposed
scheme is applied to the bending over a sheave problem. In addition, modeling of a
Seale IWRC is achieved which is a more complex type of wire rope. At the end,

contact analysis over a wire strand is achieved and wire contraction is demonstrated.



Using the proposed modeling scheme 1m-5m wire strands are modeled and analyzed.
This modeling scheme with the use of finite element analysis gives opportunity to

analyze mechanical behavior of long wire ropes under various application areas.



2. ROPE HISTORY AND WIRE ROPE STRUCTURE

2.1 Ancient history of ropes

Ropes made of hides, hair or plant materials from part of the earliest achievements of
human civilization. The oldest illustrations of ropes are dated from approximately
12000 to 9000 BC. Remnants of ropes found in Finland are supposed to be from the
Mesolithic period (9000-3000 BC); others found in Egypt and made of camel hair are
more than 4000 years old. Some mural paintings in Egypt (ca. 2000 BC) show the

production of ropes made of papyrus, leather or palm fibers as in Figure 2.1.
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Figure 2.1: Rope production in Egypt 2000 BC.

Ropes were used for making fishing nets or traps, but also for lifting and dragging
heavy loads. Figure 2.2 shows about 200 men dragging a colossal statue on a sledge

with the help of four ropes.

Leonardo da Vinci, the technological genius of the 15™ and the 16™ century, made

two sketches of machines for the production of ropes.
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Figure 2.2: Rope application in Egypt 2000 BC.

In 1586, the papal master-builder Frederico Fontana supervises the erection of an
obelisk in St.Peter's Square in Rome. After months of planning the stone weighing
327tons is erected by the fantastically concerted action of more than 900 men, 75
horses and with the help of a great number of reeving systems shown in Figure 2.3

[1].

Figure 2.3: Erecting the obelisk in St.Peter's Square in 1586.

2.2 Early German and English Ropes

The first operative wire ropes of the modern era in 1834 by Wilhelm August; “Julius
Albert” a 49-year-old mining engineer at Clausthal in the German silver mines Harz
Mountains from 1834 to 1854. He proposed the use of ropes made from steel wires
and described how to make them. The wires used were 3.5mm in diameter. Four
wires were twisted to form a strand; three strands were twisted into the finished rope.
Both strands and ropes were twisted in the same direction, i.e. they were ‘lang lay’

by today’s terminology. The rope was dipped into a pan containing a mixture of 1/3



oil and 2/3 resin from coniferous trees. This was, as Mr. Albert stated, to protect the
steel against rusting in the humid mine shafts. At the end of the production process,
the ropes were formed into coils for shipment to the mine hoists. These handmade
ropes, known as Albert Ropes were not very flexible because the wires were

relatively large and stiff [2].

2.3 Wire Ropes and American Railroads

In Pennsylvania, a cross-country transportation system known as the Allegheny
Portage RR agreed to test a handmade wire rope in 1842 as a substitute for hemp

ropes.

Roebling twisted the wires together by hand, like the Albert ropes, adopted the six-
strand-plus-core arrangement favored by Smith and Newall. Roebling's ropes,
however, were made entirely of wire, utilizing a core that was identical to the six
outer strands, each comprised of 19 wires. Roebling gave up surveying to

concentrate on rope making, building a large factory in Trenton, N.J., in 1849.

In San Francisco, the dilemma of short-rope service was tackled by Thomas Seale,
whose solution soon became the accepted answer to the problem of severe outerwear
combined with multiple reverse bending over small-diameter sheaves. Seale's patent
(#315,077 April 7, 1885) is based upon rearranging the three wire sizes into an
entirely different pattern so that all the largest wire sizes are side-by-side on the
exterior of the strand. James Stone's patent (#416,189 December 3, 1889) described

what is now known as 6x25 filler wire construction [3].

2.4 Wire rope structure

The general geometry of a wire rope is given in Figure 2.4. Helical shaped wires are
used to compose strands. Wire rope is composed by wrapping a core strand with a
number of outer strands. The strands themselves have a center wire, which is the
axial member around which the individual metallic wires are wrapped helically. It
should be mentioned that the major portion of the load acting on a rope is carried by
the strands. The main purpose of the core is to provide proper support for the strands

under normal bending and loading conditions.



Core Strand

Figure 2.4: Various components of a wire rope.

Generally the wire ropes are identified by the way its strands have been laid around
the core; a right regular lay, a left regular lay, a right lang lay and a left lang lay wire

cores as shown in Figure 2.5.

(a) sZ (b) zS (c) zZ (d) sS

Figure 2.5: Lay types for a wire rope: (a) Right Regular Lay, (b) Left Regular Lay,
(c) Right Lang Lay, (d) Left Lang Lay.

Right lang lay rope is composed by a center straight strand with right lay wrapped by

a right lay outer strand. In the right regular lay rope, the lay of the wires in the outer

strand is left lay, which is in opposite direction to the core strand [4]. The basic



element of all these cables is a simple straight strand, which is made of a core and
one layer of helical wires [1]. The centre wire lay stretched in that strand whereas the
other wires formed a helix. As a result, the rope elements were of different lengths
and had a different shape in the rope. Moreover, it was not possible any more to
inspect all the wires because the centre wire remained concealed from any angle. In
Figure 2.6, a strand is composed with a straight center wire wrapped around with six

helical wires as shown.

Figure 2.6: (1+6) wire strand.

Figure 2.7 shows cross sectional constructions of the basic strands: Seale, Filler, and
Warrington types. In Figure 2.8 a 6x36 Warrington-Seale wire rope with steel
independent wire rope core (IWRC) is presented. Figure 2.9 shows a rotation-
resistant wire rope that has a steel core, which is an independent rope, closed in the
opposite direction to the outer strands. Under load, the core tries to twist the rope in

one direction; the outer strands try to twist it in the opposite direction.

TR

(a) Seale 19 (b) Filler strand (c) Warrington strand

Figure 2.7: Cross sectional constructions of the basic strands.



Figure 2.8: Wire rope with steel core (6x36 Warrington-Seale IWRC).

Figure 2.9: Rotation resistant rope.
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3. SURVEY TO THE LITERATURE

3.1 Bases of the theory of wire ropes

Steel wire ropes have been widely employed for many different applications like, in
particular, bridges and pre-stressed structures. This is why they constitute a natural
field of research in civil engineering and mechanical engineering. Late 1970’s wire
rope theory has been widely investigated by a number of researchers because of its

complex usage area.

The most analyses of wire ropes are based on the well-known classical treatise on
elasticity by Love in 1944. A general theory of thin rods are included and
investigated extensively by Love. General equilibrium equations of a thin rod on arc

length s is derived and presented in [5].

The analytical and numerical solutions of wire ropes are based on the equilibrium
equations as the starting point for the solutions in most of the papers included in the

literature.

The mechanical behaviors of the wire ropes are investigated in a valuable reference
book, which is written by Timoshenko. The reference [6] is included a chapter based
on torsion and shed light to the bending analysis of the open-coiled helical springs in

axial plane by bending moment and lateral load.

Green and Laws in general theory of rods [7] mentioned to a restricted and linearized

form to determine stresses in helical constituent wires in cables.

Hruska’s [8] pioneering study in 1951 is possibly the first paper in the literature
investigating the mechanical behavior of wire ropes using the simplest constraints.

However, it shed a big light to other researchers beginning from 1970’s.

3.2 History of works on wire rope theory

In consequence of its complex shapes, it is a difficult task to analyze each wire in a

strand to see stress and load distributions along the ropes. To cope with this difficulty
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number of papers have been published which mentions the analytical solution of the
wire rope theory. Pioneering works of Hruska [8-10] date back to the early fifties. He
worked out a simple theory for wire ropes in tension and torsion, considering that the
wires are only subjected to pure tensile forces and neglecting the clamping
conditions. As a result, he did not deal with the actual contact stresses. Since then,
Costello [11], and later, Utting and Jones [12,13] have followed a more fundamental
approach. They treat each wire within a wire rope as a helically curved rod but make
differing assumptions relative to the rope geometry or the interwire contacts. The
different theories produce results, which remain close to the experimental values
presented by Utting and Jones [12-13], but the question of the actual relative
displacements and forces within a rope is nevertheless still open. In addition, there

were numbers of theoretical studies conducted and underway.

On the other hand, at the beginning of the seventies, the finite element method used
for the study of rope by Carlson and Kasper [14], who built a simplified model for
armored ropes. Then, Cutchins et al. [15] dealt with the study of damping isolators.
The usefulness of wire rope in shock and vibration isolation is briefly reviewed and
its modeling, for the purpose of vibration analysis, is addressed in [16]. Chiang [17]
modeled a small length of a single strand wire rope for geometric optimization
purposes. A theoretical insight is given into the non-linear free bending
characteristics of axially preloaded and large diameter sheathed spiral strands
experiencing high external hydrostatic pressure in [18]. Various design
methodologies of wire rope based systems are investigated in [19-22]. Analytical
models of wire rope theory are compared in [23]. Finite extension of an elastic strand
with a central core surrounded by a single layer of helical wires is subjected to axial
forces and twisting moments. Huang uses theory of slender curved rods in his study
[24]. The effect of wire rope mechanics on the material properties of cord
composites, compressive loading conditions are presented in [25-28]. The bending of
cord composite plates, cord composite laminate cylindrical shells, and cord
composite cylindrical shells investigated respectively in [29-31]. The theoretical
results are utilized to obtain analytical expressions for the maximum contact stresses
induced in the multilayered strands with metallic wire core in [32]. Jiang et al. [33]
proposed a concise finite element model for wire ropes using three-dimensional solid

brick elements, which takes benefit from the structural and loading symmetries. The
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model takes into account the combined effects of tension, shear, bending, torsion,
contact, friction, and local plastic yielding in axially loaded simple straight strands
nevertheless it cannot be generalized to the case of bending or more complex
loadings. Nawrocki [34] et al., modeled simple straight wire rope strands using finite

element method, which considers every possible interwire motion.

Mainly four theoretical models, which are important and appeared in the literatures,

are presented with a brief summary.

3.3 Theoretical models

Mechanical models of helical strands are listed as follows,
e Purely tensile or fiber model,
e Semi-continuous strand model,
e Theory of thin rods model,
e Helical rod model.

Purely tensile or fiber model is due to Hruska [8], based on the most simple
hypotheses; no end condition effects, contact mode is purely radial, radial
contradiction is neglected, pure tensile forces are applied, there is no moments,
friction can be neglected and the global strand strain is assumed small. Afterward,

this theory extended to include compressible core by Knapp [35].

The analysis of fiber-core wire rope with multilayered strands developed that the
rope is subjected to both an axial force and an axial twisting moment. Linear theory
for helically shaped wires is used and the equations governing compliance of the
fiber core are formulated in a linear fashion. The resultant linear equations are solved
easily and the theory is applied to a 6x19 Seale fiber-core wire rope. A load-
deformation curve for a Seale fiber-core wire rope is obtained experimentally. The
theoretically predicted effective modulus of elasticity and the predicted effective

Poisson’s ratio of the rope compare favorably with the experimental results in [36].

Semi-continuous strand model known as orthotropic sheet model (OSM) is fist
introduced by Hobbs and Raoof in 1982 [37], developed and applied in variety of
problems in the literature in a number of papers [38-50]. Essentially the layers of

wires in a strand are modeled as a series of cylindrical orthotropic sheets, prestressed
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by the action of a mean axial load, for which the buildup of the clench forces from
the outside layer inwards is obtained by solving a sequence of compatibility
conditions. The properties of the orthotropic sheets can be established for the whole
range between two clear limiting cases; for small load perturbations, no line-contact
slip occurs, while for large enough disturbances, where fully developed slip takes
place, interwire friction forces become negligible compared to force changes in the

wires themselves [38].

Two semicontinuous models for wire strand analysis compared that use
semicontinuous approach to predict the behavior of multilayered wire strands under
axial and bending loads. Hobbs and Raoof in 1982, Jolicoeur and Cordou in 1996
develop these models. Theoretical differences and similarities between the two
models are highlighted. Static stiffness results are obtained for a seven-wire steel
strand and for a multilayered electric overhead conductor. In bending stiffness two
discrete models referenced, Lanteigne’s model [51] is accepted as an upper bound

while Costello’s model [11] accepted as a lower bound for bending stiffness [52].

Theory of thin rod is first introduced by Ramsey in 1988. It is based on the direct
approach of Green and Laws [7], derived and applied in a restricted and linearized
form to determine stresses in helical constituent wires in cables. Uniform extension,

twisting, and bending of cables are considered [53].

Helical rod model is introduced by Phillips and Costello [54] based on the
equilibrium equations given by Love [5]. Costello et al. investigated different aspects
of wire ropes and presented them in a number of papers [54-73], and in 1990,
Costello wrote a monograph summarizing these papers [11]. Recently Jiang [74] has

proposed a general formulation of this theory for multi-strand ropes.

A brief survey to the literature for helical rod model is done. The literatures

considered important are summarized in sorted order according to publication dates.

The solution of the problem of a helical spring subjected to an axial force and an

axial twisting moment is presented in the work of Love [5].

The method of separating the cable into thin wires and solving the general nonlinear
equations for the bending and twisting of a thin rod subjected to line loads. Phillips
and Costello took this point of view and examined the six nonlinear equations of

equilibrium for each wire. It is assumed that the cable is loaded by an axial force and
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twisting moment. There are no frictional forces between the wires, and in the initial
unloaded configuration of the cable, the wires are just touching each other. It is
further assumed that the cable consists of a single layer of wires, and that, if the cable
has a central core, the core is relatively soft in comparison to the cable wires, or it is
undersized. So the radial force exerted by the core on the wires may be neglected. An
exact solution for the deformed wire configuration is presented, from which all the

stresses, bending, twisting, axial loading, and contact can be calculated [54].

Taking advantage of geometric considerations explicit expressions for the
determination of axial force, bending and twisting moments in the helical wires, and
for the axial force and twisting moment in the core of a 7-wire strand subjected to
axial and torsional displacements are given. Each helical wire assumed to be in
contact with the two adjacent wires, with the core, or with both core and adjacent
wires. The analytical expressions for axial force, bending moment, twisting moment
and contact forces between wires are presented. At the end, experimental and
theoretical findings are compared. The small lay angle and consequent large helix
radius of the model produces only a small contact force, and so a small friction force.
This helps to explain the agreement with the theory, which neglects frictional forces
[75].

In the papers [54,64], the cable is separated into thin helical wires, and the general
nonlinear equations of equilibrium for each wire, including the effects of contact line
loads are solved. Friction is neglected, and the wires are assumed inextensible.
Costello neglected friction again, but the inextensibility assumption is removed so
the wire strain becomes a new independent variable. Although the wire strain is
assumed to be small, it is still possible to have large cable strains if the change in
helix-angle is large. In addition, a prediction of the effective modulus of twisted wire
cables by investigating the load-deflection curves at zero loads for two common

types of end-condition is given in [63].

The spring which is considered curved thin rod, can suffer large deformations. The
solution is exact in those six nonlinear equations of equilibrium given in [5] and
satisfied. If the spring is not permitted to expand radially by some type of cylindrical
constraint, the spring stiffness will increase. Costello investigated the pure bending

of a helical spring with large deflections in [56].
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Costello presents static behavior of wire rope with a frictionless theory. The solution
shows that it is valid for complex cross sections that are usually found in practice

[61].

Wires of a strand, which is wound in different directions, is considered for the static
response by Costello. In the right lay-regular lay rope under tension, a tightening up
of wires in the strand is produced. Numerical results for two cases presented; (i)
ropes with zero end-moment and (ii) ropes restraint against rotation. The usage
conditions for lang lay rope and regular lay ropes are compared. A lang lay rope

should never be used where the ends of the rope are free to rotate [4].

The initial configuration of a rope, consisting of a left lay rope and a right lay outer
rope, which will not rotate under axial loading, is determined in [62]. Friction is
neglected and results are produced for a 1x19 rope. The theory can be applied to

ropes with various other cross sections.

The static response of wire rope subjected to tension, torsion and bending which
occurs frequently in ropes wrapped around sheaves is analyzed. Since the rope is
generally restraint against rotation, a twisting moment is developed in the rope in

addition to the tension and bending in [58].

Velinsky presents a theory that will predict the axial static response of a wire rope
with complex cross sections such as a 6x19 scale IWRC. The results show that, if the
rope is not allowed to rotate, the maximum tensile stress occurs in the center wire

[60,76].

The mechanical behavior of ACSR (aluminum conductor steel reinforced)
conductors under static-loading conditions, which may comprise any combination of
tension, torsion and bending, is concerned. A stiffness matrix is developed and
relations are presented for axial, torsional, and flexural rigidities and for coupling
parameters. Results obtained for bending is compared with Costello [59] and found

in good relation [51].

The length, measured from the fractured end of a wire, in which the wire will be able
to carry its appropriate share of the load, is determined in [71]. This effective length
estimation is based on the contact loads between the wires, Coulomb type friction,
and Saint-Venant’s principle. A simple straight strand is considered and the result

indicate that a broken center wire picks up its appropriate load in less that 1.25 times
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the pitch of the outer six wires. In the Seale IWRC wire rope, an outer wire picks up
its share of the load in less than 1.18 times the pitch of the strands. The theory
indicates that this effective length to the pitch of the outer strand is a constant for a

given type cross section [71].

Stresses in the individual wires of complex wire rope are determined for rope
constructions having an internal-wire-rope-core. The ropes may be pulled, twisted,
and bent over a sheave or a drum. The effects of friction are neglected. Specific
results for a 6x25 filler-wire IWRC rope that is prevented from twisting indicate that
the maximum stresses are typically 1.5 to 3 times as large as the nominal rope stress
based on rope load and total metallic area. In addition, predicted values of the
“effective modulus” are slightly higher than given in the literature for the IWRC. The
results may be extended by superposition to include the important case of loaded

ropes pulled over a sheave or bent around a drum [73].

A general nonlinear theory has been developed to analyze complex wire ropes by
Velinsky. The nonlinear equations of equilibrium for bending and twisting of thin
rods are applied to a 6x19 Seale wire rope with an IWRC. The results of the
nonlinear theory are compared to the recently developed linear theory and found to
be nearly identical in the load range in which the most wire ropes are used. At the
end, it has been concluded in [77] that the nonlinear theory for complex wire rope

has no significant advantage over the linear theory.

Closed-form solutions are developed for elastic deformation characteristics of
multilayered strands under tensile and torsional loads. These analytical results are
applied to obtain expressions for the effective extensional and torsional moduli of
rigidity for the strands. The effects of the layout of layers, number of wires in each
layer, and of course, the direction and magnitude of lay angles on these important
deformation characteristics are clearly described. The examples considered in the
paper demonstrate the computational ease and effectiveness with which the closed-

form solution can be utilized in various studies [78].

Velinsky presents a design methodology for wire strand geometry based on a
detailed geometrical analysis. The nonlinear geometric equations were solved
numerically and then, the solutions were curve fit such that strand design could be

accomplished by merely substituting values into polynomial expressions [79].
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Different types of cores; independent wire-rope-core (IWRC), fiber core (FC), and
wire-strand-core (WSC) are examined and the mechanics of wire ropes described

respectively. Various parameters in the design of wire ropes are examined in [80].

Jiang presents a general formulation of the nonlinear and linear analysis of wire
ropes. In the formulation, wires, strands, and wire ropes are all considered as a kind
of identical structure, which is characterized by seven stiffness and deformation
constants, and they can be used in the same way, as component elements in some
layered general structures. Based on this point, the general formulation given to
analyze; wire ropes of various complex cross sections and simple wire strands as

well in [74].

A symmetric linear elastic model for helical wire strand has been derived using
discrete thin rod theory by Sathikh et al. A strand with a rigid core and one layer of
helical wires having only core-to-wire contact (resting lay) has been analyzed taking
into account the wire tension, twist and bending together, for its response under
axisymmetric axial tension and torsion. The authors derive the symmetric stiffness
matrix. Analysis of the derived model showed that earlier models, in spite of lacking
symmetry of the stiffness matrix, do not cause any significant error over a wide range
of helical angles. It has also seen that Costello’s model [63] is much closer to the test
measurements in spite of lack of symmetric stiffness matrix. Also a brief comparison

of models given in the literature in [8,35,63,51,75,78,81] are compared [82].

Numbers of thesis are conducted over the wire rope theory and analysis. A theory is
developed which is capable of analyzing the static response of wire ropes with
complex cross sections. The basis of the theory is the linearization of the solution to
the non-linear equations of equilibrium, which the individual wires in the rope are

examined in [76].

A geometrically nonlinear formulation for forces on wire ropes is presented which

includes the coupling between the axial and torsional behavior of the ropes in [83].

By analyzing the stresses of individual wires for a loaded and bent 6x19 Seale
IWRC, (D/d)6,on/E - Oma/Onom diagram is plotted. When the sheave diameter, rope
diameter and load are known, an estimate of the stresses of individual wires for a

6x19 Seale IWRC can be determined by using the related diagram [84].
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The formulation of helically symmetric boundary conditions is used and a general
strand model using the finite element method is presented for a basic sector of a

simple straight strand in [85].

3.4 Experimental studies

Stress distribution and load transfer on wire strands subjected to various loading
conditions is tested experimentally. General considerations on geometry of the strand
are; ideal strand, variations from the ideal case and non-linear behavior is expressed.
The four important loads considered and presented are; axial load with the ends of
the strand restrained from rotation, axial load with the ends free to rotate, torsion and
bending. The deviations from the theoretically predicted ideal behavior are
surprisingly large, and the experimental results show non-linear elastic behavior.
Those deviations may be due to initial irregularities in geometry of the strand, e.g.,

gaps between wires, different length of wires, etc [86].

Utting and Jones report experimental tests on wire rope strands subjected to static
axial loads. The wire rope strands are held with a polyester resin and silica filler in
conical end grips, which are capable of full end fixity, partial restraint, or zero
torsional resistance (free ends). Strain gauge load cells monitor the tensile load and
the associated twisting moment developed in a strand, which is restrained at both
ends. A new instrument ‘extrometer’ designed to record simultaneously the extension
and rotation over a predetermined gauge length. Strain gauges are used to measure
the surface strains on the wires in the outer layer of the strand. Preliminary tests on
seven-wire strands demonstrated that the extrometer instrument provides reliable

results [87].

A series of carefully instrumented tests on straight steel strands of seven-wire
construction having a range of practical lay angels are presented in [12]. Details of
the tests are given in the article and a new mathematical model for the strand
response is presented which takes account to friction between the individual wires,

Poisson ratio effects and flattening of the individual wires in Part I [12].

Part II [13] is a companion paper to part I of [12]. Theoretical predictions with
previously published analytical work and the corresponding experimental results

reported for the following situations. Torque generated in a strand under axial
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loading found to be larger in strands with smaller helix angles. The strand extension
under a given load is greater for strands with less torsional restraint on the end
terminations. The strand rotation under a given loading found to be greater with less
torsional restraint on the end terminations and is larger for strands with a lower helix
angle. The numerical predictions for the surface strains on the helical wires, which
take account of interwire friction, are closer to the experimental results at the mid-
strand. The surface strains measured on the helical wires reveal an unevenness of
loading between the wires that is more pronounced for small torsional restraints on

the strand ends [13].

Raoof and Hobbs reported torsional characteristics of substantial structural strands.
Experimental results for an old and fully bedded-in 39mm diameter, 91-wire spiral
strand and some theoretical predictions are given. The theory treats the individual
layers of wires in a strand as orthotropic sheets and, via established results in contact
stress theory, takes full account of the frictional interactions between wires. Static
and dynamic torsional stiffness and hysteresis data are presented for axially

preloaded strands [88].

3.5 Recent publications about wire ropes

A finite element model of a seven-wire strand is considered to establish the
termination effects. The cyclic symmetric features of the strand are taken into
account to reduce the length of the model. In addition, the fixed-end termination
effects over the contact forces and the relative movements between wires along the

contact line are considered using frictional effects in the spiral strands in [89].

A concise finite element model, which takes full advantage of the helical symmetry
features of a strand, has been developed for a simple straight strand in [90]. Taking
the advantage of the helical symmetry of a strand, a slice of 1/12 of a 7-wire strand
has been considered as the basic sector for the analysis with ANSYS program.
Three-dimensional solid brick elements used for structural discretization. In the
implementation of the finite element analysis, precise boundary conditions were
established and hence more accurate are obtained. The results are compared with
elasticity theory of Costello [11] and experimental data of Utting and Jones [12,13],
and shows excellent agreement in the determination of the global responses of a

simple straight wire rope strand [33]. Also as a continuous study, a three-layered
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form to show axial loadings of a simple straight strand is presented in [90]. The
formulation of helically symmetric boundary conditions for finite element modeling

is explained in [91].

Nawrocki has given a finite element model of a simple straight strand based on a
Cartesian isoparametric formulation. Every possible interwire motion is taken into
account. Interwire pivoting is shown to be the most important and rules the axial
strand behavior, and interwire sliding is predominant in bending. Comparisons with
experimental data showed that pivoting could be considered as free in a real strand.
A variational and then a finite element formulation of the problems are given. It has

been shown that bending has no influence on the core tension [34].

For simulating the mechanical response of a wire rope with an IWRC, a new model,
which fully considers the double-helix configuration of individual wires within the
wound strand in contrast to the previous models that, considers the effective response
of wound strand. This enables directly to relate the wire level stress to the overall
applied load at rope level. The model assumes a fiber response of individual wires

[92].

The modeling of the axial behavior of synthetic ropes is presented. The structures
considered are simple straight strand cables consisting of six helical wires wrapped
around a straight core. The loading consists of an axial force and torque. The
objectivity of the study is to determine the validity domain of the two analytical
models developed by Costello and Labrosse for the predictions of the corresponding
four stiffness matrix components. Reference results are obtained from SAMCEF
finite element code. The validity of this model is limited to small helix angles but for

typical synthetic rope constructions, these are within range [94].

Ghoreishi et al have developed a non-linear elastic continuum model for the analysis
of the overall axial stiffness of fibrous structures with a large number of twisted
components. By contrast with multilayered approaches, the structure under
consideration is depicted as a set of coaxial helixes only characterized by their
external lay angle and corresponding radius. The constitutive material is assumed
linear. Static monotonic axial loads are considered, the inter-fiber friction effects are
not taken into account. Moreover, the studied structures exhibiting small lay angles,
the overall diametric contractions are neglected, which may contribute to the

overestimation of stiffness. The analytical model developed leads to useful closed-
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form expressions thus allowing rope constructions to be optimized. The model
compared with models of the literature. The results obtained, have shown that all the
models give results that agree reasonably well with each other, except with respect to

the torsion stiffness, for which there is a significant difference [95].

Ghoreishi et al have developed a linear elastic model for the computation of the
elastic axial stiffness terms of a fibrous structure, made of six helical strands
wrapped around a straight core (1+6 wire structure). A model designed for metallic
cables has been modified for synthetic fiber ropes applications. The bending
moments and shear forces are neglected. The elastic tensile and torsion behavior of
constituents are taken into account, with coupling which appears from the
construction effect. The approach developed by the authors leads to analytical
closed-form expressions. The model has first compared with Leech’s model
implemented in FRM software and gave to provide similar results, except with

respect to the torsion term, for which there is a significant difference [96].

Throughout the literature search, Jiang et. al. investigated simple straight strands
numerical models considering only basic sectors and analyzed by using the finite
element method in [33,89-91]. In addition, Nawrocki-Labrosse studied all the
possible interwire motions by writing a code using finite element method. Elata et.al.
gave an illustration for an IWRC model using double helical parametric equations
and conducted an analytical model in their study [92]. There were no realistic 3-D
IWRC solid modeling scheme is available in the literature. One of the aims of this
thesis is to give an insight to model a complex shaped design of wire rope such as
IWRC and Seale IWRC using the advantage of the nested (double) helical geometry.
In addition, different loading conditions are investigated using 3-D solid models.
Various lay types of IWRCs are modeled and analyzed numerically. Through this
research, modeling nested helical wires are found to be complicated via CAD
software’s and a new code is written to accomplish this issue. In addition, the length
limitation of the current CAD tools are confronted as a problem and a solution
strategy is developed for modeling complex wire ropes. An extensive literature
search is given in this study. Validity of the proposed modeling approach is provided
by the comparison of numerical, analytical, and available test results in literature. An
application of the proposed modeling scheme is applied to wire rope bent over

sheave problem. While bending problem solution process, reaction force distribution
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over the encastre boundary is investigated. In addition, stress distribution over the
IWRC is presented. Finally, a 6x19 wire Seale IWRC model is constructed and
analyzed. Wire behavior under axial loading condition on a Seale IWRC is
investigated. At the end a simple straight strand solid model for 1m-5m is created and
an axial loading analysis is conducted to show the proposed solid modeling schemes
accuracy to analyze wire ropes without lack of any length limitation. In this aspect
wire rope behavior is analysed with different lay lengths using 1m-5m wire strand
models. In addition, interactions between wires, which brings contact force and
contact pressure is analyzed over a wire strand. Due to contact interactions, there
occurs a deformation in each wire within a strand. Wire contraction is measured with

respect to strain and results are presented.
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4. WIRE ROPE THEORY

In this chapter, a general wire rope theory is presented. First of all the kinematics of a
thin wire is derived, subsequently general equilibrium equations are given and

proved over a thin wire.

4.1 Deformations over a rod and relations with a helical spring

A coordinate system, with a standard basis {61,62,6’3} is defined over an undeformed

straight rod, which can be predicted as a cylinder in 3-D system. Position vector of a

material particle at the reference configuration is x=uxe,, where x, =x,=0
corresponds to the centroid of the cross section which is a circle, and x; is the height

above the base of the cylinder. After deformation, the axis of the cylinder lies on a

smooth curve and the point x = x,e, moves to a new position x"=r(x,). Deformed
cross-section are shown by a new basis which is {v,,v,,v;} and, v, is chosen to be
parallel to the axis of the deformed rod, v, is parallel to the line of material points at
the cross section and perpendicular to v,, and it should be impressed that the new
basis vectors are all functions of x,. Deformed cross-section and its representation

by using {v,,v,,v,} basis are related with the Euler angles (6,9,y). Euler angles are

a means of representing the spatial orientation of any frame of the space as a

composition of rotations from a reference frame. In the following, the fixed system is

denoted by {e,,e,,e,} and the rotated system is denoted by {v,,v,,v,} . The definition

is static. The intersection of ee, and v, coordinate planes is called the line of

nodes (Q) and given in Figure 4.1.

e ¢ is the angle between the e, -axis and the line of nodes Q,
e @ is the angle between the e, -axis and the v, -axis,

ey isthe angle between the line of nodes Q and the v, -axis.
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Figure 4.1: Euler angles and cylindrical coordinates over a cross-section.

Let s denote the arc length of the rod in deformed configuration and velocity vector

L d g L .
is given by V =% Rate of rotation of the rod is given by the angular velocity

@= @v, of the basis {v,,v,,v,} and it is related by velocity vector V and the twist ¥

by,
dv
O=v,X—+Yv,.
ds
Over the deformed curve; tangent vector, normal vector and curvature, and binormal
vector are defined respectively as,

g Gr_drdg dr _ dv, dx

= = —V3, Kn = > b:txn’
ds dx, ds ds dx, ds

where n is a unit vector. These vectors correspond to a basis of {z,n,b} and known

) ) . ! db .
as Frenet-Serret triad. The torsion of the curve is defined as 7= —nd—. Relation of
s

{e,.e,,e;} and {v,,v,,v,} basis with respect to Euler angles are given in equation

4.1),
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v, =(cosycosBcosp—sinysin B) e, +(cosy cos@sin g+siny cos)e,
—cosy sin fe;,

v, =—(cosysing+siny cos@cos@)e, +(cosy cosp—siny cossing)e, (4.1)
+siny sin fe;,

v, = sin 8(cos ge, +sin ge, ) + cos e, .

The basis {v,,v,,v,} moves through the deformed rod. In this aspect the basis vector

{v,,v,,v;} is rotated with an angular velocity which depends on curvature and twist

along the deformed rod. The system of axes constructed is called as the “principal
torsion-flexure axes” of the wire at any point on the deformed state. Curvature vector

is characterized the rate of change with arc-length and defined with respect to the

basis vectors {v,,v,,v,}, as K =kv,, and similar to an angular velocity vector. The

. . dv,
curvature vector is related to the rate of change of v, with s by d—‘ = Kk'Xv,, and can
s

be written for i =1,2,3 as,

dv dv dv
—L =k Ky, —E=KV, -k, ——=—KV, + KV, 4.2)
ds T ds ; ds

i

.. dv ) .
The derivatives, d_ with respect to s, can be computed in terms of the Euler
s

angles. The following equation shows the derivative of v, with respect to s,

vy _ cos ﬁﬁ(cos e, +sin ge, ) +sin O (—sin de, + cos e, )d—¢—sin Gﬁ% . 4.3)
ds ds ds ds

In addition, it is straightforward to find the derivatives with respect to i =1,2. After

the derivatives are computed as in equation (4.3), one can construct a system of

equations relating these derivatives by using equations given in (4.2) with curvatures

k;, k, and the twist k, by putting the equation (4.1) in (4.2) to relate the {v,,v,,v,}
basis with the {e,,e,,e,} basis. One can solve these systems of equations to find

unknown curvatures k;, k, and the twist x; related to the Euler angles as follows,
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K :sinl//ﬁ—cosy/sinﬁﬂ,
ds
K, =cos y/ﬁ+sinl//sin 6?@, 4.4
ds ds
K, :d—l//+cos 9@.
ds ds

Arc length s along the rod’s centerline is related to the position vector of the rod’s

ds _ [ardr ws
dx, dx, dx, |

4.2 Rod bent and twisted into a single helix

axis by,

Consider an initially straight and unstressed rod with a circular cross-section. Then it
is subjected to forces F and moments M on its ends to bend and twist it into a

helical shape with helix radius r, helix angle ¢, pitch length of the helix is given as

p and related to helix angle « as, tanazzi. The deformed rod geometry is
r

easily explained by using the cylindrical coordinate system (r, é,z) and basis

{e,.e,.e.} as shown in Figure 4.2.

Figure 4.2: Cylindrical coordinate system (r,é, z) and basis {e,,¢,.e_}.
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Tangent and binormal vectors are written in terms of basis vectors as,

t=v,=cosae, tsinae,,
. (4.6)
b=-sinae, +cosae,.

Taking f=z=0at s=0, cylindrical polar coordinates are related to arc-length by,

A S .
f@=—cosa, z=ssinc, 4.7)
r

and the basis vectors are also satisfies,

de, _, 4o __, de_ 4.8)
de dé de
Using the relations given in equations (4.7) and (4.8) derivatives &, e and de,
ds ds ds
are given in the following form,
der:cosa'eg’ &:_cosa’er’ deZ:O. 4.9)
ds r ds r ds
The position vector of a point on the axis of the rod is given as,
r=re +ze,, (4.10)

and the tangent vector v, can be written with respect to this position vector as,

ar_,de &, 4.11)
ds ds ds
which gives,
t=v, =cosae, t+sinae,. 4.12)

4.3 Curvatures and twist definition over a helical spring

Over a helical spring using the preceding theory, choosing v, and v, parallel to the

normal vector n and binormal vector b of the undeformed spring respectively gives

the relation,
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v, =—e, 4.13)
v, =—sinae, +cose,, (4.14)
and v, as can be written from the equation (4.12) as,

Vv, =Ccos e, +sinae, . (4.15)

Taking the derivatives of equation (4.13)-(4.15) with respect to s gives the

following,
iy = —&, an =—sin a%+cos a&, vy =cos a&+sin a&. (4.16)
ds ds ds ds ds ds ds ds
Using the relations given in equation (4.9),
. il 2
ﬂ:_cosaew &:smacosaer’ %: cos aer' 4.17)
ds r ds r ds r

The equations given in (4.13)-(4.15) can be put in equations (4.2) to find the relations
of this derivatives with Euler angles and simplifying the equations will give the

relations as follow,

dv, . .

o (—k, cosa— K, sina)e, +(—k, sinax+k, cos ) e,,

dv .

—Xr=Ke, +K cose, + K, sinae._, (4.18)
3 2

ds

dv .

— =—K,e, + k; sinae, — k; cos e,

ds )

The equations given in (4.17) and (4.18) constructs a pair for each derivatives of v,

and could be solved for the curvatures x;, k, and the twist x; as,

cos’ o sin @ cos &
K, = K=" —7

; 4.19)
r r

These curvatures and twist (&, k,,k;) are named as (k;,k,,7,) in the proceeding

sections while the angular velocity is defined as,
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R 27
a)O

0k, (4.20)

2rr, /cos o, I

where k is the unit vector in the direction of z as shown in Figure 4.3, o, 1is the
helix angle with (x,,y,) plane, r, is the helix radius. The curvatures and twist is

defined in the initial condition as,

k=0, & and 7, =0 %CB5% 4.21)

Ty )

Xy

Figure 4.3: Undeformed helical spring and torsion-flexural axis.

4.4 Loads and moments acting on a thin wire

A loaded thin wire, with the force distribution over it, is shown in Figure 4.4.

Figure 4.4: L.oads and moments over a thin wire.
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The arc length is described by the variable s over the thin wire. The direction

cosines of the forces N+dN, N +dN’ and T +dT with the x, y and z axes are

given in Table 4.1.

Table 4.1: Direction cosines for the forces.

Direction cosines N +dN N +dN’ T +dT
! 1 ~tds K ds
m T 1 —Kds
n —Kds K'ds 1

Summation of the forces in the x direction gives z Fx =0, resulting,
N+dN—N + Xds+ (T +dT)x’ds + (N’ +dN’)(~7)ds =0, (4.22)

where dsdT =0 and dsdN =0 can be taken such that, due to the small value of ds,
dT and dN’, and their multiplication can be neglected for this reason here. If the

necessary simplifications are made in equation (4.22), it becomes to,

Xds+dN +Tx'ds—N'tds =0. (4.23)
In a similar way, summation of the forces in y direction gives Z Fy =0, resulting,

Ntds+dNtds+ N +dN'—Tkds—xdTds+Yds—N =0, 4.24)

where dsdN and dsdT are taken as zero because of the assumption of small values
of each multiplier considered in the same way. If the necessary simplifications are

made in equation (4.24), it becomes to the form,
Yds+dN —Tkds+Ntds =0. 4.25)

At the end, the same procedure can be applied to the summation of the forces in z

direction which gives, Z Fz =0, resulting,

—N'K’ds—dNK'ds+ N'kds+dN'kds+T +dT —T + Zds =0, (4.26)
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where dsdN and dsdN’ are taken as zero. If the necessary simplifications are made

in equation (4.26), it becomes to the form,
Zds+dT — NK'ds + N'kds = 0. 4.27)

If equations (4.23), (4.25) and (4.27) are divided by ds in x, y and z directions

respectively, the following equations are obtained,

d—N—N'z'+TK’+X =0, (4.28)
ds

di—TmNHY:o, (4.29)
S

cjl—T—NK"+N'K'+Z ~0. (4.30)
\)

Similarly the same element length ds with the couples G+dG, G'+dG" and

H +dH makes the same angles with x, y and z axes as in the previous loads. In

the same way using Table 4.1 and taking into account the right hand rule, the

following equations for the moments in x axes can be written as,
G+dG -G+ Kds—1G'ds—1dGds + K’ Hds + K’dHds — N'ds =0 . 4.31)
Simplifying the equation (4.31), the following is found,
dG-G'tds+ Hx'ds— N'ds + Kds =0. 4.32)

In a similar way, the moments by summations over y and z axes in a simplified

manner yields,
dG —Hkds+Grds+Nds + K'ds =0, (4.33)
dH —GK'ds +G'kds +@ds = 0. (4.34)
Again dividing by ds and rearranging equations (4.32)-(4.34) gives,

d—G—G'T+HK'—N'+K:O, (4.35)
s

33



’

Zﬁ—HK+Gr+N+K’:O, (4.36)
S

(Z—H—GK"+G’K‘+®=O. 4.37)
S

These equations, (4.28)-(4.30) and (4.35)-(4.37), are the six differential equations
which constitutes the equations of equilibrium for the thin wire loaded and shown in

Figure 4.4.

4.5 Relations between loads and deformations

The changes in curvature and twist per unit length to the internal loads are given by

the expression below [11],

G=El (k-k)); G =EI (¥-k); and H=C(r-1)), (4.38)

where the thin wire is assumed elastic with cross-sectional moments of inertia / and
I,. The torsional rigidity and the modulus of elasticity of the wire material are

denoted by C and E respectively. When the wire cross section is circular, with
radius R, the equation (4.38) becomes to the following formulation,
_ 7R _ 7R’

4
6="R p-x), ="K Ew-x) ana m=TRE
4 4 41+v)

(t-1,),4.39)

where v is Poisson’s ratio for the wire material. The tension 7T in the wire is given

by the expression,
T = AE¢, (4.40)

where A is the cross-sectional area of the wire and & is the axial wire strain. For a

circular cross section, A =7R?, and the equation (4.40) becomes to,

T =7R’E¢. (4.41)
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4.6 Geometric consideration of a straight strand

A loaded simple straight strand is shown in Figure 4.5. Configuration and cross

section of this strand consists initially of a straight center wire of radius R,
surrounded by m =6 helical wires of radius R,. Center wire radius is chosen

sufficiently such that to prevent outer wires touching each other. This is the general

aim to decrease frictional effects due to bending of the strand.

o

F,
$u
Figure 4.5: Axially loaded simple straight strand

The initial helix radius of an outside wire is given by,
=R +R,. 4.42)

Minimum value for R, which will prevent the outer wires to touch each other should

be found. To do this, first consider m helical wires in a strand just touching each
other. Cross-section perpendicular to the strand is shown in Figure 4.6. Radius of the
helix, the wire radius and the helix angle are denoted by r, R and « respectively.
The cross-section is assumed elliptical and hence the equation for this cross-section

can be given as,

(—p, ] +(ij =1, (4.43)
R/sinx R



where (p,q) shows a point on the ellipse. From equation (4.43) the following

equation can be written for ¢,

2+ 2
) p sin“a ),
1 =(1_TJR’

and it is found to be,

g=+JR* - p*sin*a. (4.44)

The slope of ? is represented by differentiating the equation given for g as,
P

d

)
q_4 psin” &

(4.45)

E ) 2
R 1_(psm0!j
R

=

R (1-v&)

sinoa

(=) ()

R(-v&)

Figure 4.6: Cross section of a strand perpendicular to the strand axis.

From the Figure 4.6 the slope at the point (p,,q,) is equal to -tan (% —Ej and from
m

equation (4.45) tan (% - ZJ can be denoted as,
m
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. 2
tan(f—sz psn & (4.46)

%—z can be denoted by @, and solving equation (4.46) for p, and g, respectively
m

gives the following equations,

. 2
psin®@=R /1—(%@] tan 6,

psin* a@=(R*> - psin® @)tan* 6,

2 R’ tan’ 6

sin® a/(sin® @+ tan” 8) ’

P

and hence p, is derived as follows,

R T T 1
p,=———tan (— ——j . (4.47)
sin 2 m \/ 5 2[7; ;z-j
sin“a+tan”| ———
2 m
From the equation (4.43), g, can be solved as,
p 2
2 1 2
=|]1-———|R
4 [ R?/sin? a'j
) R’ tan’ @ . 2
=R —— — ——sin"
sin” a(sin” & +tan” 6)
_ R*sin*«
(sin’ o +tan’ @)’
so g, can be written in the form of,
Rsi
Sina (4.48)

q, = .
. (r
sin” & +tan —_——

\/ (2 mJ

From Figure 4.6, one can write b, as,
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b=p, tan(gij, (4.49)

m
and r can be represented by

r=b+4, (4.50)
which can be derived using equations (4.48) and (4.49) as,

Rsin«o
r=p tan@+

\/sin2 o +tan’ @

= R tan @ ! tan @+ RSy

sin & Vsin> @ +tan* @ Vsin® a+tan* @

R (‘[an26?+sin2 0{]

\/sin2a+tan20 sin

RA/sin’® o+ tan* @

sin &

tan” 0

N s
sin’ o

=R,1+

and hence r can be written as,

reR\14— 2 ™) (4.51)

Equation (4.51) yields the radius of the wire helix in which the wires are just
touching each other. Hence, in the simple straight strand, if the outside wires are not

touching each other the equation given below holds,

RA1+——=—"2 <R +R,. (4.52)

4.7 Axially loaded simple straight strand

A simple straight strand with the given cross section as in Figure 4.6 is taken into

account. The helix angle of an outside strand, &, , is found by the relation,
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tan a, = 21;’[ L (4.53)
2

where p, is the pitch of an outside wire. The initial curvature and the twist per unit

length are given as,

K, =0, & and 7,=0%CS% (4.54)

r r

Let the wires in the strand are deformed under action of the total axial force F, and
the total axial twisting moment M, . Under the loads, it is assumed that the outside
wires are deformed into a new helix, which has the following components of
curvature and twist per unit length,

_ _, _cos’@, _sin@, cos @,

k=0, &=—"2and T, =202 (4.55)

r r

where the bar symbols over the quantities shows the deformed states here and during

the scope of this thesis.

To keep the general formulation of the equilibrium equations, it is assumed that an

outside wire is not subjected to external bending moments per unit length in each

direction, K, = K, =0®, =0. Components of the external line load per unit length of
the centerline in y and z directions are assumed to be zero, Y, =Z, =0, and the

axial wire tension 7, is assumed to be constant along the length of the wire. Using

the equations (4.39), (4.54) and (4.55) the equilibrium equations given before in
equations (4.28)-(4.30) and (4.35)-(4.37) becomes to the following form,

. 2
_SNE 8% N7 (5)+ S5 L1 (5)+ X, () =0, (4.56)
7 r
dN; (=0, @.57)
ds
% o, (4.58)
ds
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dG,(s) sina,cosa, Gl(s)+ cos’ @,
- s
2

H,(s)—N,(s)=0, 4.59)
ds r T

dG,(s) | Sinay cosa G, (5)=0, (4.60)
ds r

dH,(s) cos’
ds r

% G,(s)=0, (4.61)

where subscript 2 refers to the outside wires. Figure 4.7 shows the loads acting on a

helical wire. The system of equations (4.56) through (4.61) is solved using Maple®,

and found that,
g 2r s . N 2r s
Gl(s)=C, - sin2a,e - sin2a,e c., 4.62)
J2-2cos2a,) J2-2cos2a,)
G(s)=e 7 Jc,+e 7 gy, (4.63)
N,(s)=C,, (4.64)
T,(s)=Cs, (4.65)
[ms] {_\/W S]
. 2 2r 2 2r
H,(s)=C, sin@, 2cos” a,e - 2cos” a,e c,
cosa, J2-2cos2ar,) J2-2cos2a,) (4.66)
+ ’; C,,
cos” &,
X, (s) = sin 2, c,- 1+cos2a, C.. (4.67)
2r 2r

Equations (4.62) through (4.67) can be rewritten for G; ,G,, H,, X, as,

. iks : —iks
sin2a,e c. 5 2a,e

Gi(s)=C, - C,, (4.68)

. 2 .
2icosa, 2icosa,

G,(s)= e"’“cz + e_”“C3 , 4.69)
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sin@, 2cos’ a,e™ 2cos” e ™™ r ,
H,(s)=C, L+——2—C,—-————C,+—5—N,(s), (4.70)
cosa,  2icosa, 2icosa, cos” &,

Xz(s):MNz’(s)_MTz(s)_ 4.71)
2r 2r
Equations (4.69) can be written as,
G,(s)=(C,+C;)cosks +i(C, —C,)sinks. 4.72)

»

Figure 4.7: Loads and moments over a single helical wire.

Using equations (4.54) and (4.55) in equation (4.39) gives the result, G(s) =0. Using

the result G(s) =0, and taking s =0 simultaneously, equation (4.72) will yield,
G, +C =0. (4.73)

As in the same way, using the equation (4.73), and G(s) =0 in equation (4.72) give

the following result,
C,-C,=0. 4.74)

Solving equations (4.73) and (4.74) simultaneously gives the results, C, =C, =0.

Using these values the equation (4.68) yields,
C, =G,(s). 4.75)
Substituting these coefficients in equation (4.70), one can find,
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_ Sin 0{2 G; " r N; ' (4.76)

H, >
cos cos” a,

Equations (4.76) and (4.71) are reorganized to find N, and X, as follows,

N, = cos’ @, H, - S0C08% (o 4.77)
r r
X, = sina, cos @, N, - cos’ a, T,. 4.78)
r r

The results found and given in equations (4.77) and (4.78) are harmonious with the
equations found by Costello [11].

Equations (4.77) and (4.78) can be regarded as determining the values of N, and X,
required to hold an outside helical wire in equilibrium for given values of &@,, 7, and
T, . It should be noted that normally the equations of equilibrium ((4.28)-(4.30) and

(4.35)-(4.37)) and equation (4.39) constitute a set of nonlinear equations and are
valid for large deflections. Large deflections could occur, for instance, in the case of

a thin wire helical spring in which the value of «, is generally small. In the case of
wire rope, however, the value of ¢, is generally large and the change in «,, which is

denoted by Ac,,
Aa,=0,-a,, 4.79)

is small [11]. This reality is taken into account while simplifying the solution

throughout the rest of this part.

The axial strain € of a straight strand is defined as,

h—h
E=——, 4.80
) (4.80)
where /4 is the original length of the strand and h is the final length of the strand.

Figure 4.8 shows a developed view of the centerline of an outer wire, indicates the

length A and & .
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Ld+&) o

Figure 4.8: Undeformed and deformed view of an outer wire centerline.

The rotational strain £, of an outer wire is defined as,

4 6,-6,)

ﬂzz h

, (4.81)

where 6, and 6_?2 are initial and final angle respectively, that an outer wire sweeps

out in a plane perpendicular to the axis of the strand. The angle of twist per unit

length 7, of the strand is defined by,

T =—(62_92).

4.82
s 5 (4.82)

Using the configuration shown in Figure 4.8 an analysis of this configuration yields
that, 7 = L(1+ &,)sin@,, and from the equation (4.80) the axial strain can be written
in the form of,

. L(+¢))sina, — Lsin e,
Lsina, '

Therefore, the axial strain can be written in the following form,

sin &,

e=& =(1+&) 1. (4.83)

sina,
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Starting from the equation (4.82) and using the trigonometric relations obtained from

Figure 4.8 the following results can be obtained for 8,, 6, and 7,,

6, = Lcosa, ’
h
—~  L(1+¢&))cos@,
0, =—"7"5"——,
h

; L(1+¢&,)cos@, Lcosa,

s

rnLsina, nLsina,
From the equations (4.81) and (4.82), one can find,

cosd, cosd,

By=rt, =2(+&) "2 2222 (4.84)
7 sin, sina,
by using the equation (4.83) (1+¢&,) can be written such that,
A+&)=20% (14 ), (4.85)
sin &,
The equation (4.84) using the equation (4.85) will give,
By=(14&) 2 SN% CO, S8
i sind, sing, sina,
and finally rearranging £, will yield,
_nlte) 1 (4.86)

r, tanQ, tana,

where ¢ is the axial strain in the center wire (£=¢,), and &, is the axial strain in an

outer wire. Here |Aa’2| is defined as,

Aa,| =|a, —a,| <<1, (4.87)
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which is valid for most metallic strands. The trigonometric representation of the

sin &, can be defined as,
sin&, =sin(a, + Aa,) =sin &, cos(Aa,) +sin(Aa, ) cos .

Using the equation (4.87), cos(Aa,) =1, sin(Ac,) =Ae,, and neglecting the higher-

ordered terms, sin &, can be written as,
sina, =sina, + A, cos . (4.88)
Starting with equation (4.83) and using the equation (4.88), & can be written as,

sina, +Aa, cosa, |

& =01+¢) :
sina,
=1+ AL +§2+Aa—2§2—1,
tan &, tan @,

where higher ordered term Aa,¢, is vanished, & and ¢, are assumed to be small. So

the relation below is found,

Ac,
tan o,

&=&+ =& 4.89)
Equation (4.86) is transformed to a new formulation in a similar way. Equation
(4.83) can be rewritten as,

sin &,

S+1=(0+&)—=, (4.90)

sina,

and both sides of equation (4.90) can be divided by tan &, which gives,

ol gy E)S8% (4.91)
tan &, sina,

Here cosa, can be written as,

cos@, =cos(a, +Aa,) = cos &, cos(Aa,) —sin &, sin(Aa, ) ,
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and again using equation (4.87), cos(Aa,) =1, sin(Aa,) = Ac,, and neglecting the

higher-ordered terms cos &, can be written as,
cos, =cosa, —Aa, sina,. (4.92)
Using equation (4.92) in equation (4.91) the following equation is derived,

é:l—l_—l = 1+é:2 _Aaz_Aazé:z’ (4.93)
tana, tana,

where Aa,&, =0. The equation (4.93) becomes to,

a+l =ﬁ—m2. (4.94)
tana, tana,

Equation (4.94) and (4.86) combined and new form of £, can be written as,

B = Q(ﬁ—m@j b (4.95)

n, \ tan o, tan &, .
As a result of Poisson’s ratio effect v, the final radius 7 becomes to,
r=R(1-v&)+R,(1-VE), (4.96)

where the contact deformations in the center and outer wires are neglected. The

representation for r, /7, can be derived as,

no_ R +R,

72 R1+R2_V(R1‘§1+R2§2)
_ 1
1_V(R1§I+R2§2)

R +R,
1y RETRE)
R+R,

from the descriptions given above r, /7, can be written as,

Bty (RG +R,S) ' (4.97)

r r
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The equation (4.97) can be put into the equation (4.95) and gives the following

result,

,32 =(1+V(R1§1+R2§2)j( 1+§2 _Aazj 1

R +R, tan a, tan a,
1+ RG +R RS +R 1
— §2 _Aaz +v ( lél 252) (1+§2)—AQZV ( lél 2§2) _ .
tan @, (R +R))tanq, R +R, tan @,

By using the relation; &¢&, <<1, &¢& <<1, Aa, ¢ <<1, Aa,¢, <<1, the equation for

B, is written as,

S —Aa, +v (RS + Rzé:z)‘ (4.98)

b, =nt, =
tan &, r, tan &,

The change in curvature Ax” and the change in twist per unit length Az, can also be

linearized. Using the change in curvature Ax’, RZAK‘; can be written as,

2 2
, a a R ]
R,AK, =R, (COS 2 % j =2 (—? cos” @, —cos’ 0{2] : (4.99)

r r nLA\h

cos? o, written as,
cos’ @, = cos’ a, + (Aa,)’ sin” &, — 2Aa, sin &, cos &,
and taking (Aa2)2 << 1, small enough, cos’ O, can be given as follows,
cos’ @, = cos’ a, —2Aa, sin @, cos &, .

This new formulation of cos® &, can be put into equation (4.99) gives,
7 R2 rz 2 . 2
RAK, =— j(cos o, —2Aa, sina, cos a, ) —cos” &, |. (4.100)

hLAhL

As well, r, /r, given in equation (4.97) can be put in (4.100) and gives,
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RAK, = L} ([1 +Vv Mj (cos” @, - 2Aq, sin ar, cos @, ) — cos’ azj .
n n
Making the necessary simplifications, such as A, <<1, &,Aa, <<1, the following

equation for R,Ax} is found,

2
A, +y Bt Roy)cos “2]. (4.101)

r r

—2sin @, cos &,

R,AK, = R{

For R,A7, a similar procedure can be followed. Using equations (4.54) and (4.55)

R,A7, can be written as,

RAT, =R, sin ﬁz_cos a, sina,cosa,
2 4 (4.102)

—sina, cos 0!2}.

_R,| (sina, +Aay, cos @, )(cos &, —Aat, sin @, )1,
h B

Using the property (Aa,)’ <<1, a portion of equation (4.102) can be presented as,

(sin @, + Aa, cosa, )(cos &, —Aa, sina,) =sin @, cos &, — A, sin” @, + Aa, cos” @,
and using r, /7, from the equation (4.97) simplifies the equation (4.102). R,A7, can

be written in the following form,

(sine, cosar, — Aq, sin” @, + A, cos” a, )[1 +v

R
_y
R AT, =— r
| —sing, cos @,

. . RS +R
sin @, cos @, +sin &, cos &,V Ro+Roty) +
R, h
. RS +R .
Aa,(cos’ a, —sin’ az)VM— sin, cos
2

where §Aa, <<1 and &,Aq, <<1. Making simplifications finally gives R,A7, as,

1-2sin” & RE +R,E) sina, cosa
R2A12=R2#Aa2+v&( 1§1r ,6,) sin 2rcos )
2 2 2

(4.103)
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The following equations can now be written for an outside wire using equations
(4.39) and from the solution of the equilibrium equations found in equations (4.77)

and (4.78) as,

, T ,
G2 — Z ER24AK2 , (4.104)
2T 41+y) Y .
) .
N; _ COS 0!2 H2 _ Sin 0{2 COS 0{2 G; i (4.106)
r r
7,2 — ﬂé:zERzz , (4.107)
) 2
X2 r Sin &, COS &, N; _cos a, T2 , 4.108)

r

where the displacements are assumed to be small.

A projection of the forces, acting on the outside wires, in the axial direction of the

strand yields F,, which is the total axial force in the strand acting on m, outer wires

is given in the following form,
F, =m,[T,sina, + N, cosa, |. (4.109)
The total axial twisting moment M, acting on the outside wires is given as,
M,=m,[H,sina, +G,cosa, +T,Er,cosa, — NEr,sina,|.  (4.110)

The preceding theory represents the behavior of a right lang lay rope shown in Figure
2.5-(c). The response of the left lay rope can be obtained from the response of the
right lay rope. If a left lay rope is acted upon by a positive axial force F, and a

positive axial twisting moment M as in Figure 4.5, the rotational strain S and the

axial strain &, can be determined by loading a right lay rope with the same axial
force F, and an axial twisting moment —M . The axial strain then computed for the
right lay rope will be the same as that for the left lay rope but the rotational strain
computed for the right lay rope will be minus that of the left lay rope [4]. Thus if the

rope is a right regular lay equations (4.81) and (4.110) becomes to,
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. (6,-6,)

=— 4.111
ﬁZ 2 h 4 ( )

M, =m,[-H,sina, +G,cosa, +T,Er,cos@, — N,Er,sina,|.  (4.112)

The axial force and the axial twisting moment acting on the center wire are given

with the symbols, F, and M, respectively, by the expressions,

F, = ER’, (4.113)
and
=" ER'r. 4.114)
A0+v)

The total axial force F and the total axial twisting moment M, acting on the strand

can be written as [11],

F=F+F,, (4.115)

M =M +M,. (4.116)

Analytical examples and solutions related to the theory are presented in Appendix A

for convenience.

4.8 Stresses over a simple straight strand

The stresses caused by the loads acting on a simple straight strand are investigated in

this section. The axial wire stress on the center wire can be given by,

L4
o, = , (4.117)
U 2R}
and the maximum shearing stress on the cross section is,
2M,
= . (4.118)
MU aR?
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The outside wires, in addition to the shearing load N,, are subjected to axial,
bending, and torsional loadings. The stresses caused by the shearing force N, are in

general very small and neglected. The axial stress caused by the load 7, is,

T
70, = ﬂ'Kizz . 4.119)

The maximum normal stress on an outside wire due to bending moment G; 18,

_4G
R}’

(4.120)

G'O-z

and the maximum shearing stress on an outside wire due to the twisting moment H,

18,

£ 4.121)

o, = .
H™2
7TR;

4.9 General strain and rotation relation due to load and moments over a

simple straight strand

The behavior of a strand is given in a general formulation by using the total axial

force F, and the total axial twisting moment M as in the following equations,

F
=Ce+C.p. 4.122)

MI
i C,e+C,p[, (4.123)
where A represents the total area of the strand and given by,
A=>"7R’. (4.124)

R. is the radius of i’th wire of the strand, C,,...,C, are the unknown constants (which
can be determined analytically), € is the axial strain, and £ is the rotational strain of

the strand defined by the equation,
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B=Rz,, (4.125)

s

where R is the radius of the strand and 7, is the angle of twist per unit length of the

strand. Equations (4.122) and (4.123) relates the total axial force F, and the total

axial twisting moment M, , with the axial and rotational strain of the strand.

The problem here is to find the constant values defined in equations (4.122) and

(4.123). To do this first of all S is taken as zero and & =¢,. Then equations (4.115)
and (4.116) are used to find F and M, . In this way F, M,, € and S are known,
using equations (4.122) and (4.123) the constant values of C, and C; can be found
with using f=0 and €={¢ conditions. In a similar way, on the second part of the
solution procedure, € can be chosen as zero, f is defined, and then F and M, are
computed. Using equations (4.122) and (4.123), C, and C, constants can be found.

The analytical solution, basically explained above, can be extended to the multi-

layered strands to find the total axial force F', and the total axial twisting moment

M, , acting on each strand as in equation (4.122).

4.10 Contact stresses

Contact of two semicircular disks will be assumed as a starting point for the contact
analysis. As an initial condition, two disks are assumed in contact at a point. As
material properties, two disks are assumed homogeneous, isotropic, and elastic. Two
disks are pressed together with forces F. Before applying the force, boundaries of
two disks are smooth curves. R, and R shows the minimum and maximum radius of
curvatures on the first disk, R, and R, shows the same radiuses for the second disk
at the point of contact as shown in Figure 4.9-(a).

The load F applied along the centerline of two disks makes them pressed. Friction is
not included which ensures that disks will not slide at the point of contact. The lines
V, and V, makes the angle & and lie in the plane sections containing the minimum
radiuses R, and R, respectively. As a result of the load F, two disks are in contact

and deformed elastically near the contacting point with a contact area which is

shaped as an elliptical region as shown in Figure 4.9-(b). Contact stresses over each
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disk are the purpose to derive at any point over the contact region caused by the load

applied along the z-axes in this theory.

(a) Initial contact (b) Contact region after loading

Figure 4.9: Two semicircular disks in contact before and after axial loading.

At the contact area before contact, distances z between corresponding points on any

two surfaces can be defined by the following equation,
7=Ax"+By’. (4.126)

It can be easily seen from the equation (4.126) that for the constant values of z it

corresponds to an ellipse.

When the loads F applied to the disks, there will be a contact area due to the
deformation over the each disk. This small contact area will be constructed by the
points, which are equidistant before loading. These equidistant points on the surfaces

of the two disks lie on an ellipse as given in equation (4.126) and its equation is,

x2 y2
?+?:1. 4.127)
Derivation of the equation (4.126) is investigated in [97]. Constants A and B can be

derived as,
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> .
1 I 1 11 11 I 1),
- — = || === 4| ———= || ———|sin" &

4 R R R, R, R R )\R, R,

(4.128)

(4.129)

If the lines v, and v, are parallel then angle o¢=0" and equations (4.128) and

(4.129) are reduced to,
g1, 1)
2| R, R,
acl(i,1)
2R R,
If the angle @ =90° then equations (4.128) and (4.129) are reduced to,
pol(1,1)
2|R R
sl
2\ R R,

4.10.1 Line contact between two surfaces

(4.130)

(4.131)

Two circular cylindrical bodies can be put in contact along a straight-line element as

shown in Figure 4.10. Stresses over these two bodies in contact, which is a line

contact and loads, are applied in the normal direction to the contact area.

In the cylinders shown in Figure 4.10, the maximum radiuses of R/ and R, are each

indefinitely large so that, 1/R; and 1/R, are each equal to zero and also the angle

a =0’ . Therefore, from equation (4.130) B and A are found as follows,

s (1) 4l
2\ R R,

54

(4.132)



Indefinitely long cylinders

A F 3

ST B
= °

\Tangent line of contact

of the two cylinders

Figure 4.10: Line contact between two cylindrical surfaces.

Here a and b shows the semi-major axis and semi-minor axis of the area of contact

respectively and semi-major axis of the area of contact a is indefinitely large in this

line of contact. The area of contact when a load of ¢ per unit length is applied along

the contact line, the contact stresses are written as follows,

> | >

1

Furthermore, b can be given as in the following,

o, . =—

where ¢ is the load per unit length of the contact area and A is given as,
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(4.135)

(4.136)



A=

! o 14 (4.137)
[ + [
2R, 2R,
while R and R, are the radius of curvature of the cylindrical surfaces as shown in

Figure 4.10. E,, E,, u,, W, are the parameters found from the test results of the

material.

The values of the stresses at a point on the line of contact are obtained from

equations (4.133)-(4.135) by taking z/b=0 and maximum principal stresses becomes

to,
b
o =-2v (—j , (4.138)
A
b
o ==, 4.139
=T ( )
b
gl=—2 4.140
2 (4.140)

4.10.2 Contact stresses of a simple straight strand

Simple straight strand geometry consists of a straight wire surrounded by six outer
single helical wires. Thus, the line of contact between the center wire and the outer

single helical wire is a helix with the radius of R, as shown in Figure 4.11. Contact

stresses can be found only if the contact force is known. Because of the theory of

Costello, contact force per unit length X, is calculated for the centerline of the outer

single helical wire and it should therefore to be computed along the contact line. This

results an approximate equation, which is as follows [11],

X,/ pi+(27R) = —Xz\/ pi+[27(R+R,)] . (4.141)

where X, is the contact force per unit length along the line of contact.

A cross sectional view of the strand is given in Figure 4.11 where the outside wire
cross-section is circular. Meanwhile the cross-section of the center wire is elliptical

and the radius of curvature of the center wire at the contact point is defined as,

p =R 4.142)

) :
sin’
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Circular shaped outer
wire cross-section

Elliptical shaped
Cross-section of
Center wire

Figure 4.11: Contact between center straight and outer single helical wires.

Contact stress is assumed to be same as in the two cylindrical bodies in line contact

determined in equation (4.140). Hence, the maximum contacts stress is given by,

o =2 (4.143)

Owing to the same material is used in each wire E, =E, = E shows the elasticity

modulus, and g, = 1, =v shows the Poisson’s ratio for the wire material. Under this

circumstance using equation (4.137) one can write A as,

1,2
A==V (4.144)
pl RZ
and b using the equation (4.136) as,
b= 2X.A . (4.145)
T

4.10.3 Contact between helical wires in a strand

It is assumed that each wire in a strand has the same radius. In this aspect, outer
wires of a simple straight strand are in contact with each other because of the helical
shape of the outer wires. Figure 4.12 shows the elliptical view of the projection of an

outer wire on a plane, which is perpendicular to the strand.

Cross sectional view of the outer single helical wires are elliptical in this case and
wire to wire contact gives a helical line of contact with radius d which is given by

[11],
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R, tan(z - l)
m,

d= (4.1406)
. T T . T T
sina, cos(———) sin’ a, + tan’ (= — )
2 m, 2 m,
Q Q
Line of \“‘Line of
Contact Contact
sina,
Figure 4.12: Line of contact between two outer wires.
The contact angle A4 can be given by,
T T
tan® (= —-—)
m
cos y=— 1+ —
cos” &, sin” «,
T T 1 :
— |tan* (= ——){1+ +sin* a,
m T T . T T
: tan’ @, cos’ (= ———)| sin’ @, + tan* (= ——)
2 m, 2 m,
Normal contact force over an outer wire per unit length is given by,
X
Q=- . 4.147)
2cosy
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5. BENDING OF A SIMPLE STRAND AND IWRC OVER A SHEAVE

In this section, first a simple straight strand subjected to a bending moment m_ is

investigated. Then the equilibrium equations for the bending moment are solved and

the bending moment m; derived. Bending of a loaded strand over a sheave is

investigated, and the relation between wire rope diameter and sheave diameter are
presented. A frictional effect of a strand is mentioned. Construction and static
response of an IWRC is presented and generalized solution of IWRC and bending

over a sheave problem is considered at the end of this section.

5.1 Equilibrium equations for the bending moment

Bending moment is applied perpendicular to the original axis of the spring and the
helix angle of the spring is denoted by «. The initial curvatures and the twist per
unit length are given by the following equations,

and 7= SMECOSE (5.1)

r r

where r is the radius of the helix. The spring given in Figure 5.1 subjected to

bending moment only. Considering this the following result occurs,
X=Y=Z=K=K'=0=N=N'=T=0. (5.2)

The equations of the equilibrium given in (4.28)-(4.30) and (4.35)-(4.37), while only

the bending applied to a simple straight strand, becomes to the following form,

dG(S) _ ¢ 6/(s)+ kH(s) =0, (5.3)
ds
dG'(s) _ KH(s)+7,G(s)=0, (5.4)
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dH (s)
ds

~KG(s)+ KG(5) =0, (5.5)

where &, k{ and 7, are the final curvatures and twist per unit length. &;, &/ and

are used in equation (4.39) as final values and equation (5.1) is used as the initial
values. Under these circumstances, the equation (4.39) is transformed to the

following form,

4 4
G(s)="R Bk — 1) =Rk,
, ZR* , ,  7mR* , cos’a
G(s)= E(x— k)= E(KI_T)’
ZR'E ZR'E sin ¢ cos &
H(s)=———(1,—-7,) = (7, - ).
4(1+v) 4(1+v) r
a:
k
4

Figure 5.1: Bending applied to a helical spring.

Finally x;, & and 7, can be obtained as,
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4

K= G(s), 5.6
TR () (5.6)
, 4 , cos’ o

K=—-—G(s)+ , 5.7
' ZR'E () r (5.7)

4(1+v) sin@cos
= H(s)+—. 5.8
" ZR'E () r (5:8)

Putting these representations of the curvatures and twist per unit length in equations

(5.3)-(5.5) results to three nonlinear equations,

. 2
dG(s)_ 4\: G,(S)H(s)_smacosaG,(s)+cos aH(S):O, (5.9)
ds ZTRE
dG’(s) 4y sin @ cos &
+ G s H s +—G Ky :O, 5.10
ds 7rR4E()() r © >

dH(s) cos’a

s r G(s)=0. (5.11)

Equations (5.9)-(5.11) constitutes first order nonlinear ordinary differential
equations, and can be solved by a numerical method. However, to do this an initial
condition is required. This system will be solved by using Poisson’s ratio v=0, as
the initial condition at first. Then the solution found for v=0 is used as the initial
condition to solve this first order nonlinear ordinary differential equation by one of
the well-known numerical method, Picard’s method. For v=0 the equations (5.9)-

(5.11) becomes to,

2

dG(s) sinacosa cos“

G'(s)+ H(s)=0, (5.12)
ds
dG'(s) N sin ¢ cos & G(s)=0, (5.13)
ds r
2
dH(s) _cos’a@ o (5.14)

ds r

Equations (5.12) through (5.14) constitutes a system of linear ordinary differential

equations and solved by using Maple®, and the following results are found,
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Gis)y=e 7 o+ T gy, (5.15)
G'(5)=C+| (— sin 2a G(s)j ds, (5.16)
r

r dG(s)+sin0! ,

H(s)=— G'(s). (5.17)

cos’a ds cosa
Equation (5.15) can be regarded as,
G(s) = Acos(ks)+ Bsin(ks) . (5.18)

Using the equation (5.18), representations for the equations given in (5.16) and

(5.17) can be found with respect to G'(s) and H(s) as,

G'(s)=— Sl;kz"‘ (Asin(ks)— Bcos(ks)) +C, . (5.19)
r
)
H(s)= "; (Asin(ks)— Beos(ks))— 2% ( Asin(ks) — B cos(ks))

cos" o r

. (5.20)
n sin @ Cl,
cosa

Applying a bending moment in x direction; G =m_, zero bending moment in y
direction; G'=0, and twisting moment; H =0, with s =0, equations (5.18) through

(5.20) results respectively,

A=m,, (5.21)
0=sin(2a)B + 2krC,, (5.22)

and
0:(sin2a'cosza—kzrz)B+krsina'cosaC1. (5.23)

Multiplying equation (5.22) by sin &zcos /2 and adding to equation (5.23) yields,

B=0,C =0. (5.24)
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Using equations (5.21) and (5.24), equations (5.18)-(5.20) results such that,
G(s)=m, cos(ks),

m, sin(ks) = —m, sin &sin(ks) ,

kr sin’ @

cos’a  kr

H(s)= ( Jms sin(ks) = m_ cos asin(ks),
where k=r/cosa. As a result, the solution of the first order linear differential
equation can be written, which will be the initial conditions while solving the

nonlinear part of the problem when the Poisson’s ratio v # 0, as follows,

G(s) =m, cos(ks), (5.25)
G'(s) =—m, sin arsin(ks) , (5.26)
H(s)=m_cosasin(ks). (5.27)

Furthermore solutions of equation (5.12)-(5.14) given in equations (5.25)-(5.27) are

harmonious with the solutions of Costello given in reference [11].

5.2 Bending moment derivation using the strain energy

The strain energy U in the spring can be written as [56],
1 1
U ZEI[A(KI—K)2+A(K;—K’)2+C(q ~7)° Jds . (5.28)
0
where A=7R'E/4 and C=xR"E/4(1+v), For the Poisson’s ratio v=0, results in

A=C, and equation (5.28) is integrated such that,

1 m’l

1 1 i 1
U= E‘:Z[G2+G2+H2]d :almfdp o (5.29)

N | —

where [ is the length of the wire. When the work done by the bending moment m, is

equated to the strain energy, the result is,
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Ims (P)dgp = ”21:1 L (5.30)
Differentiating equation (5.30) yields,
m, = ml % (5.31)
© A do
and also, an integration of equation (5.31) yields, since m_(0)=0,
m, = A—¢ (5.32)

The length of the spring h is equated as, & =1Isin(a), [ = sin(a)

, and equation (5.32)

becomes to,

m___§_

1
Asin(a) ;

(5.33)

The exact solution of the nonlinear equations (5.12)-(5.14), found in equations (5.25)
-(5.27), is used as the first approximation in Picard’s method. Substituting

G(s), G'(s) and H(s), which are found in equations (5.25)-(5.27), into the nonlinear

equations (5.9)-(5.11) and making the necessary trigonometric simplifications will

yield,
dG(s) _ (l ) lj sin(@) cos(a)m,” sin’ (ks) — cox@) m,sin(ks),  (5.34)
ds A C ‘ |
dG (s) _ (l _ij m? cos asin(ks) cos(ks) ~ % m, cos(ks) . (5.35)
ds A C) d |
2
dH (s) _ cos™(a) m, cos(ks) . (5.36)

ds r

Using the initial conditions; G(0)=m , G(0)=0 and H(0)=0, for the first

approximation of Picard’s method in equations (5.34)-(5.36) results in,
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G(s)= (l —ijw m? (S __sin(2ks)

A C j +m, cos(ks) , (5.37)

2 2k
, 1 1)\cos(ex) , ., . .
= ——— - 5.
G(s) (A Cj K m;_ sin” (ks) —m_sin(a)sin(ks), (5.38)
H(s)=m_cos(x)sin(ks) . (5.39)

The strain energy U , can be written for the spring as,

U==[|Z+Z—+=us,

1¢G* G* H?
Z[A A C

0

and computed as follows,

_(—C+A)2c052(a) ( 4 3) (_é 4 3) , \
U= 32A3C2k3 4¢+ 3 ¢ + B ¢ 3 ¢ COS ((1) ms
(=C+4) (32 o 64 .
+ - nTE ( B ACksin(2a) 3 kAC sin(a) cos(a)jms

1
+—
324A°CK°

[16p4°C°k* +8(~C + A)CK> A’pcos’ (a) | m!,
where ¢ =kl.

As a result of the trigonometric simplifications, coefficient of the m’ vanishes and
assuming the spring has n coils, ¢ =27zn, the equation above becomes to,
v? cos’(a) 32 5 4 3 ) 4
=——7——|8mn+—(xn) +| -San——(7n)’ |(1-sin"(a)) |m
AL 3 (7n) 3( )" |( (@) |m,

n
2ACk

[ZC +(-C+A) cosz(a)] m.

Replacing C =

) in the equation given above will yield the final form of U as,
v

2 2 2
L CUE Y I R L A
8 Ak 8 |8 3

(5.40)
+ﬁ27m(2+vcosz(a))mf.

65



The equation given in (5.40) is identical with the given equation in reference [56]

and can be written in the form of,

U =Am]+4,m;, (5.41)
where
y) :lwzym[g+{%+éjsinz(a)} , (5.42)
8 Ak 8 3 8
and
A= ﬁZﬂn[2+vcosz(a)] . (5.43)

Equating the work done by strain energy to the bending moment m_ gives,

[
A+ 2om? = [m,($)dg, (5.44)

and differentiation of equation (5.44) with respect to ¢ after necessary

simplifications yields,

dm

AAm> +2 = =1, (5.45
@hmt +22)° )
Again integrating back equation (5.45) will yield,
4, 5
3+ 24m, =9. (5.46)

Considering ¢ and k as; ¢=Isin(a)/p and k =cos(a)/r, and using 4 and 4,
given in equations (5.42) and (5.43) into the equation (5.46) yields,

2.2 2 3 2
l: v. r §+ (27n) +§ sin’(a) &+ 2+v'cos (a) m, , (5.47)
p 6sin(a)| 8 3 8 EI 2sin(a) EI

where I = zR"* /4.
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In most practical cases, the term involving m’ in equation (5.47) can be neglected in
comparison with the term involving m_ due to its small effect to the curvature 1/ p.

The result for curvature 1/ p can be obtained in this aspect as,

1 _2+vcos’(a) m,

) 5.48
P 2sin(a) EI ( )

which is also harmonious with the angular deflection (curvature) given in [6]. The

bending moment m_ can be written using equation (5.48) in the following form,

_lft’ER4 2sin(a)
p 4 2+4vcosi(a)

(5.49)

s

Equation (5.48) provides a result that is valid for large rotations provided with v=0.
An application of Picard’s method shows that, for the first approximation, in the case
of large rotations and v #0, equation (5.48) yields valid results for most practical
cases. An extension of Picard’s method would yield a power series in m_ for the

curvature 1/p in which the coefficient m; remains the same. For most practical

applications, the resulting series converges very rapidly and it is felt that equation
(5.48) would also yield excellent results for the curvature for relatively large

rotations and v # 0 [56].

5.3 Bending stiffness of a simple straight strand

When a simple straight strand bent over a circle of radius p, as in Figure 5.1 by a
bending moment of M, , bending stiffness A" of this strand is approximated by

summing the bending stiffness of each wire in the strand [11]. During this process,
friction is neglected and while bending outer wires are assumed to act independently.

The bending moment M, of a simple straight strand can be written by summing the
bending stiffness of the center wire plus the multiplicity m, of the number of outer

wires where [ represents the layer number and M, is,

= TE| 2masin(ds) o el _A (5.50)
4 | 2+vcos(a,) o

67



where A’ is the bending stiffness of a simple straight strand which can be written as,

R:+R'|. (5.51)

2 1

A = ZE| 2m,sin(a,)
4 | 2+vcos’(a,)

5.4 Frictional effects of a strand

The general equilibrium equations are given in (4.28)-(4.30) and (4.35)-(4.37) with
the curvatures given in equations (4.39). Assuming under sufficient axial loading
condition over a simple straight strand, contact occurs between an outer wire and the
center wire. If the wire strand is bent only while the contact condition is maintained,
an external load can be applied to the outer wire only through the line of contact
between any two cross sections. In Figure 5.2, a force applied to a boundary section
of a wire with radius R. Transforming the force on the boundary to an equivalent

force and couple acting along the centerline of the wire the following equations can

be written,
Zds = Zds, cos f—Y,ds, sin j3, (5.52)
Yds = Zds, sin f+Y,ds, cos f, (5.53)
K =0, (5.54)
K’ =-ZR, (5.55)
and,
®=1R, (5.56)

where Y, and Z; are the forces per unit length acting along the contact curve, S is
the angle shown in Figure 5.2, ds, is a differential length along the contact curve
corresponding to a differential length ds along the centerline of an outside wire, and
K, K’, and @ are the components of the external moments per unit length along the
centerline of an outside wire.

The bending moment and twisting moment in the wire can be expressed as in

equation (4.39). The equilibrium equations (4.28)-(4.30), (4.35)-(4.37) and equations
(5.54)-(5.56) considered together to find the following system of equations,
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N N+ TH+X =0, (5.57)

ds
dl—TK‘+NT+Y=0, (5.58)
A)
9T Nk +Nk+Z =0, (5.59)
ds
d—G—G'T+ Hx'-N =0, (5.60)
ds
dﬁ—HK‘+GT+N—RZ=O, (5.61)
A)
d—H—GK'+G'K+ RY =0. (5.62)
ds
X
2%00Sg

Line of contact

Center line

Figure 5.2: Loads over an outer wire with differential element length of ds.

The original curvature and twist for an outside wire are given in equation (4.54). It is

assumed that the initially straight center wire is deformed into a circle of radius p
and the relation between & and p is known as, tana = p@/r¢ . Deformed states of

the curvature and twist can be written as,

sin & , cos’a sin‘a
K= cos@g, K = —
r p

sincosa sin@cosd .
T= + sin @.

sin @,
(5.63)

r
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Solving equations (4.35)-(4.37) yields,

A—C 2 . 2 < 2
N':( sinacosa[cos asm¢+sm asin” ¢ , (5.64)
P r P
A-C
RZ=N+ ( 5 )sin2 acosasingcos @, (5.65)
P
A-C
RY = ) sin @ cos? acosg, (5.66)
pr
4 4
where A= ZER ; C= ZER and s = ! ¢ . Equation (5.64) results in,
4 41 +v) cosa

’ ’ A_C 2 2
dN” _ dN Qz( )sinacosza _Gos @ ,sm asin(/‘) cos@. (5.67)
ds d¢ ds rp r P

A combination of the equations (4.29), (4.30) , (5.64)-(5.67) yields,

r ro. .
{R—cos2 a+—sin” asin (,75}

Z_T+L (cos )T
o P cos’ a'[l +Lsin 4
P
= ———{L —cos® a+~-sin? asin 4 (5.68)
p

r T .
{—cos2 a+—2sin’ asmg/ﬁ}

+d L sin? arsing— cos @.
p {1+rsin 4
0

Letting r/ p <1 equation (5.68) becomes to,

A-C ?
d_T+ r2 |:L—COSZ a}(oos(}’)T:( 3 )L|:L—COSZ a} COS¢, (5.69)
d¢ pcos"a| R r PLR

and the solution of equation (5.69) gives [98],

T= +—= (5.70)
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where,

C —;{L—cos2 0{},

b pcos” | R
5 (5.71)
(A B C) { r 2 }
G = — | ——cos |,
r R
in addition, C, is an arbitrary constant, which is determined by the following
equation,
2
[rag=o. (5.72)
0

Equation (5.72) indicates that the change in length because of bending of an outer
wire in one lay length is assumed zero when the strand is subjected to bending.
Although this change in length may not be zero, it is certainly small, and the value of

C, will not be significantly changed by assuming equation (5.72) is valid. Since

C, <1, equation (5.72) yields,
C,=——=. (5.73)

The equation (5.70) can be written with these constants as,

4 2
T=@LL{L—C082 0{} sin @. (5.74)

4r° p(A+v)| R
According to equations (5.64)-(5.66) and the previous definitions of forces and

couples, the following results can be written down,

4 .
G:ﬂER sino 0s@, (5.75)
4
, 7ER* sin’ « .
G =- sing, (5.76)
4
4 .
o = 7ER smacosasinqj, (5.77)
4(1+v) Yo
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_ 7ER*

= sinacos’ acos @, (5.78)
4Rpr (1+v)
4
N =-TER V. Gnacos’ asing, (5.79)
4pr (1+v)
4 2
=— 7ER 4 l s a coscos g, (5.80)
4p (1+v)| R r
4 2
=— 7ER 4 l s a cos cos g, (5.81)
4Rp (1+v)| R r
4 2
X :—ﬂ d cos’ r +L(1—20052 Q) |sin @. (5.82)
4pr- (1+v) R R

The foregoing equations are for the bending only under the curvatures and twist

given in equation (5.63).

5.5 Construction and static response of an IWRC

A simple straight seven wire (1+6) strand is surrounded by six seven wire (1+6)
strand and its cross section is given in Figure 5.3. Strand 2 is deformed into the
single helical shape over the strand 1, which composes a well-know core type named
IWRC. No external loads are applied to these strands and they are in unloaded
preformed shapes. Here again the bending stiffness of the strand 2 will be written as

in equation (5.50). By summing the bending stiffness of the each wire of the strand 2,

A =T 2msinta,) p +R34}, (5.83)

4 | 2+vcos’(a,)
where q, is the helix angle of an outer wire in strand 2. Helix angle of the strand 2 is
denoted by @, and its loaded form can be denoted by &,. The angle of twist for the

strand 2 is represented by A7, which is,

. _sind, cos@, sina,cosd, (5.84)

r, r

AT

2

where r, =R +2R, + R, + 2R, .
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& strand 1z wound around Strand 1
in counterclockwise direction

Strand 1

Strand 2

Figure 5.3: An IWRC cross sectional view.

Because of the Poisson’s ratio effect,
7, =r —V(RE+2RE +RE +2RE), (5.85)

where & are the axial wire strains for i =1,..,4. Following equations can be written

for strand 2 as,

A
§ =&+ -, (5.86)
tan ,
Ac,
& =&, ! (5.87)
tan ,
5 \ tan, tan ¢, 559
S ag sV (REHIRG +RG +2RE,)
tan @, Py and, ,
(R, +R4)AT; = i—Ac(4 +VM
an a, (R, +R,)tan ¢,
(1—2sin2 a;)Aa; (5.89)
_(R;+R,)) R S2RE AR E IR
rz* +V( 1§1+ 2 2"; 3 3+ 4 4)Sinazcosa;

r
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where 7 is the twist of the rope and A7, is the angle of twist of the strand 2. Also,

=6+
tan a, (5.90)
(R+R)7 & -Aq, +1/—(Rlfl +Roty) ,
tan o, (R +R))tanq,
for strand 1. The rotational strain for the rope can be written as,
B=Rrt, (5.91)

where R=R, +2R, +2R, +4R,.

The following procedure will give the axial response of a wire rope shown in Figure

5.3. Axial strain &, and rotational strain £ are chosen. Taking into account that
& =¢ and f=Rr, & and Aa, can be found by solving equations (5.90). &, &,,

Ac, and A, can be found by solving equations (5.86)-(5.89).

Using equation (5.89), A7, can be determined, 7, and H, can be computed for

strand 2 by equations (4.105) and (4.107) respectively. Bending moment G, for

strand 2 is given by,

. cos" @, cos Otzj, (5.92)

G;*:AQAK'Z:A;( -

r r
which can be linearized and found that,

COS a
( 1§1 + 2R2§2 + R3‘§3 + 2R4‘§4)

G = AAK = A, (=) . (5.93)

231r10{ cosa
-— 2 Ax

14

rz

Using equation (4.106) N, can be computed as in,

»  COS’ @,

sin C( COS C(
N, = LAk

H

rz rz

26} (5.94)
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Axial force and axial twisting moment over strand 2 can be written as,

*

F, =m, [T; sina, + N cos 0{;], (5.95)
M, =m, [Hz* sind, +G, cosa, +T, Er," cosa, — N} Er," sin 0{;] (5.96)

The total axial force F and the axial twisting moment M, is derived as follows [11],

F=F +F, (5.97)

M=M,+M,. (5.98)

5.6 Generalized solution of IWRC and bending over a sheave

Axial behavior of a strand can be analyzed using the same equilibrium equations for
the axial behavior of a helical wire given in equations (4.28)-(4.30) and (4.35)-(4.37).
It is assumed that the generalized forces are independent of s, and wires are not
subjected to bending moments thus K =K' =0, also T is assumed to be constant
along the wire. The equilibrium equations are independent of the position and will be

in the following form [63],
X=N7-TK, (5.99)
and,
N =-Gt+H«K, (5.100)

where &, k" and 7 are defined in initial condition as in equation (4.21). Considering

a helical wire in a strand under axial loading, it will be depend on an axial strain and
twisting. The elements of wire rope are considered using the indices given in Table

5.1.

The initial forms of the normal and binormal curvatures and twist of each wire are,

sin@.cosa. .
p— St Sl
si and Tsi - .

r. I

i Si

(5.101)
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Table 5.1: Indices of a wire within a strand.

s Strand number

m Number of strands in the s ’th layers of wire rope

I Within a strand shows the number of layers of helically wrapped wires
i Wire layer number

m. Number of identical wires in the i ’th layer

R Wire radiuses of the individual wire within a strand s in layer i

o Helix angle of the individual wire within a strand s in layer i

r Helix radius of the individual wire within a strand s in layer i

Pulling and twisting results strain ¢, and change in the binormal curvature and twist

AK

si 2

AT, respectively in each wire in a strand. There will be no change in the
normal curvature x,;, which results in G, =0. Wire loads depending on these

changes can be written as,

T, =R, (5.102)
4
G, = @ AK,, (5.103)
4
i = JER, AT, . (5.104)
T 40y

Caused by the small changes in r, and ¢, there will be small changes in curvature

and twist. It can be shown by partial differentiation of equations (5.101) that,

ﬂ =—2tana, (r,At;)+ (tanz a; = 1)(”5-1'AK;’) ’ (5.105)

K

Aa,; =(r,At;)—tana, (rsiAK;i )- (5.106)

While pulling and twisting a straight strand, an axial strain £, and a change in twist
A7, occurs. Wire layers should be act according to these strains and adjacent wire

layers must remain in contact with each other. Three compatibility conditions take

places. First two conditions are comes from the extension and change in twist of the
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strand. A small change in strain &, and in helix angle A, makes change in the

axial strain of the strand &, ,
fs = gsi +cot O'ISiAO',si * (5'107)

In addition, change in strand twist A7, is given by,

I I,

si i

AT, :i{cot a, (—ﬂﬁﬁj—mﬁ}. (5.108)

The last condition comes from the idea that the wires in the i ’th layer of a strand is

in contact in the (i —1) "th layer of the same strand. The helix radius r, can be written

in terms of wire radius st as,

r, =Zlns,<,Rs,, (5.109)

where 77 are known dimensionless weighting factors (0 or 1) or they are

sij
complicated depending on the helix angle ¢, [73]. Change in helix radius Ar, is

depended on the Poisson contraction of all the wires in the strand and is written as,

Ar, =Ar] —vn,R.E, (5.110)

Sii” si

where Ar! is,
i—1
Arl =—vY n.R.E. . (5.111)
j=1

Three compatibility conditions to determine generalized wire strains &, Ax’, and

A7, can be determined in terms of generalized strand strains &, A7, and Ar?

using the equations (5.107), (5.108), (5.110) with equation (5.105), (5.106). These

relations can be written in matrix form as,
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1 cota, -1 g,

COt asi 1 cot asi ’;riATsi
VI] i (Rsi / T ) cot” a; —2cot a; (1 —cot’ a; ) T AK‘;
(5.112)
= rsi A Ts ’

(cot2 o, rﬂ.)Arj

and solved by using Cramer’s rule for cote,; # 0. Generalized forces on a strand 7,

can be computed by,

1.‘
T.=) m, [Tsi sina,, + N, cos 0!“,] J (5.113)

i=1
while the torque H | is,

H, = lsti [(Hsi sina, +G, cos @, ) +r, (Ts,- cosa,— N, sina, )] , (5.114)

s
i=1

’
Gsi ’

where T,

si?

H, and N/ are computed using the equations (5.102)-(5.104) and
(5.100) respectively once equation (5.112) is solved for i=1,...,[ . A value for the
strand binormal bending moment G/ for a well-lubricated frictionless case can be
written as [73],

G = [chi sina,  7wER' |, ,

= Ak .
: 1 :

(5.115)

si

, 1
i=1 1+§vcos2a

For a wire rope with an IWRC let R, is the radius of a strand in the s ’th strand layer.
If number of wire layers [ and the outermost wire layer is numbered as [/ ’th layer in

this strand then for i =1 ,
R =r,+R,. (5.116)

The helix radius will be of the form that,
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r=> 1R, (5.117)
t=1

where 177, are integers. Rope radius of R is given by for s =1,
R=r+R_, (5.118)

where [ is the number of strand layers in the rope. Each strand in the rope has its

own twist 7, and curvature k. given by,

. 2
SIn&_ CoS Ccos™ &,
=P and K = : (5.119)

I I,

N s

where ¢, 1is the helix angle of the strand within the rope. There are three

compatibility conditions for wire ropes as in strands. Two of them is similar to the
strands given in equation (5.107) and (5.108). The last condition is about the change
in strand radius. Strands in the s ’th strand layer remain in contact with those in the

(s—1)’th strand layer. Using equations (5.109) and (5.116) with the Poisson

contraction of the wires within a strand AR, can be defined as,

I,
AR, = —vz Mo,8.R, . (5.120)
j=1

and the 77, are known weighting factors and & are the strains in the individual

wires of a strand. £ are linear functions of both & and A7, that,

E  dE,
. £ +im§ : (5.121)
A& 7 oAT,

fsj =

where the partial derivatives can be computed numerically by the previously

developed solutions for wires within a loaded strand. Change in Ar, can be shown by

using the equations (5.117), (5.120) and (5.121) by,

R 7 (5.122)

oR
Ar.=Ar" +n, —¢& +n, —AT,
s K 770sa afg f_s 77033 aATT K
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where Ar can be represented by,

= oR oR
Ar? = —* —A7 |. 5.123
’TY ;n()‘vt(aé é+aATt th ( )

Using the fundamental relation given in (5.105) which gives the change in helix

radius Ar, as a function of the change in twist Az, and the change in curvature Ax’.

Applying this relation and multiplying with cot’ e, / r, and making the definitions,

oR . oR,
Cf = n()ss a_g 2 CsA = n()ss aA—T 2 (5.124)

N

equation (5.122) becomes to,

2 2
R e +[—200t a, —Mcﬁfjmw
I I
: L (5.125)
H(1—cot® a)(rAx) =2 % ppr.
I,

R

Three compatibility conditions are ready with equation (5.125) and writing them into

a matrix form gives,

1 cota, -1
cota, 1 cota,
—(cot2 ol ) C° —2cota, — (cot2 alr, ) Ccx (1 —cot’ @, )
(5.126)
S 9
| rAT, |= r AT

rAK; (Cot2 alr, )Arf

It can be seen easily that this matrix form is similar to the equations (5.112). Solving

equation (5.126) for each strand in the rope one can find the tensile force 7,, the
twisting moment H, and the bending moment G, acting for each strand. Total force

T and twisting moment H for the rope can be written in a similar way as in strands

in equations (5.113) and (5.114) respectively and can be given as,
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T= Z[: m,| T sina, + N cosa, |, (5.127)

s=1

H = Z[:ms [(HS sine, +G. cos @, )+ r, (TS cosa, — N sine, )] . (5.128)

s=1

5.7 Bending a loaded rope over a sheave

When axially loaded straight wire rope bent over a sheave, it is subjected to
additional bending loads. It has been shown that the maximum change in normal

curvature Ak, in a helical wire in a straight strand is smaller then in strand curvature
Ak, by the following equation [73],

Ak, =— & A (5.129)

si s

1
1+ ) veos® @,
The maximum change in strand curvature Ak, is found by the axis of a straight
strand bent over a sheave with radius D/2 as,

sin. 1
AKx = s

1+;vcoszas br2

(5.130)

The maximum bending stresses o’ for the wires within a strand is predicted by

using equations (5.118), (5.129) and (5.130) together, because of sheave curvature

depending on D/d parameter as,

. . -1
O'S _ ER”,AK;’. —F R;i 1Sln c{; ) 1Sln ayi (2} , (5.131)
1+§vcos2as 1+5vc0520{ﬂ. d

where d =2R. The factors R;/R in equation (5.131) suggests that, for a given

D/d ratio, stresses owing to bending over a sheave can be minimized by using a
rope having a large number of very fine wires [73]. Due to the change in twist is zero

At=0, the shearing stresses by reason of the twisting moments H, and the
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transverse shear forces N, are also negligible. The maximum tensile stress on the

cross section of a given wire, the axial extension of a straight rope is given by,
T 1 R, | , ER sina,

o, = T, + : , 5.132
Y ZRL Y mRLI4TT ( )

|Ax!

s

1+ vcos’ @,
5 ‘

where the last term comes from bending stresses induced in strand wires when the
strand subjected to change in curvature using equation (5.115). The resulting data

can be scaled for ropes with identical constructions for different rope diameter d.
Force results will vary as d> whereas moment results will vary as d’. Nominal

stress 0, is defined as,

m

T
o, =, 5.133
nom A ( )
where A is the metallic area of the rope and given by,
! A
A=>"m Y m.zR:. (5.134)
s=1 i=1
The non-dimensional ratio or straight rope factor z.. is given by,
T
7= (5.135)
Gm)m

This ratio is always greater than or equal to unity. Actually it is sufficient to compare

the term E¢; with the term E, &, where E,, is the effective modulus of the rope.

Effective modulus is given by,

E =%m_T (5.136)

The values of & are consistently greater than (E,, /E)¢ and thus the axial wire

stresses consistently exceed the nominal rope stress.

When a loaded straight rope under a nominal stress ¢, is bent over a sheave of

nom

diameter D, additional bending stresses given by equation (5.131) are imposed. By
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superposition, the maximum stress ¢, in an arbitrary wire may be represented in a

non-dimensional form as,

Oy _Ou , Ou (5.137)

and it can be written with respect to z., and z. as follows,

o Do,
si_ ZZ; + Zf = Znom , (5.138)
nom d E
where the bending factor z. is given by,
5 R, sina, sina,

;= 5.139
= e ( )

si

H—lvcos2 o 1+1vcosza
2 2

Both 7!, and z. are independent of E and o

nom *

When o, is normalized with

respect to O, o,,, appears in the parameter multiplying z’ because the bending

nom nom

stresses owing to sheave curvature are actually independent of o [73].

Recommended values of D/d for sheaves lie between about 60 and about 100,

depending on the rope diameter, the rope construction, and the type of application.

As an example of the preceding discussion, geometric parameters of such a lang lay

IWRC given in Figure 5.3, are presented in Table 5.2.

Computed values of straight rope factor z'. and bending factor z” are given in Table

5.3. Variation of the normalized maximum stresses for the lang lay IWRC with the

bending parameter D/d - o

nom

/ E according to equation (5.138) are plotted in Figure

5.4 using the geometric consideration given in Table 5.2 and corresponding results in

Table 5.3.

Consider a 6x7 wire lang lay IWNRC with a metallic area of 1inch® and an axial load

of 10 tons. The nominal stress of the IWRC is,

*
= 10%2000 =20000psi .

nom
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Table 5.2: Geometric parameters of an IWRC.

Strand data Wire data
Type of Layer | No | Angle Factors Layer | No | Angle Radius
rope
s m.‘ a.‘ t = 770 st l msi asi R.u'
1 1 | 90.0° 0.343
1 1 90.0° 1 0
2 6 83.5° 0.305
IWRC
1 1 1 1 90.0° 0.292
2 6 82.8°
2 1 2 6 84.4° 0.267

Ratio of sheave and rope diameter is D/d =30 and value of D/d -0, /E is,

nom

20000 ~002.

D Guom _ 39, 200
dE " 30%10

From the Figure 5.4, o, /0, ratio can be read corresponding to 0.02 as 1.41, and

m

the maximum stress in the center wire of the IWRC can be computed as,

o =1.41%20000 = 28200 psi =194.43N / mm” .

2 T T T T T T T T T
—6— Core Wire H H :

= # - Bingle Helical wire
.| ===0uter Strand core g
*+ - Outer Nested Helical wire

Normalized max. tensile wire stressg  fo

o k] 002 003 004 00s 0.08 007 008 009 01

Figure 5.4: Variation of normalized maximum stresses for a lang lay IWRC with the
bending parameter D/d-o,,, /E.
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6. MODELING WIRE ROPE

Helix is one of the interesting curves among the space curves in 3-D spaces. Screws,
Slinky, DNA molecules, wires, and ropes have helical substructures. The general
form of a helix can be called as a single helix. Most of the CAD software are capable
of constructing a single helical geometry and solid part easily. Coiling a helix around
another helix creates a new geometry, which can be called double helix or nested
helical structure. The word double helix is not defined explicitly now. Double helix
is used mostly for the DNA molecules and structures in the literature [99-105]. A
double helix typically consists of two similar helices with the same axis, differing by
starting angle along the axis. Intertwined helices with different radii, i.e. successive
layers will vary in their radii, to guarantee the maximum possible geometric distance
in DNA molecules. Single helices are disconnected and inside one another and with
an offset of half a winding to maximize the distance [99]. For this reason, this new
type of complicated helix, which is nested over a single helix, will be called as nested
helix (NH) throughout to distinguish these two helical geometry. Also the structure
produced using NH will be called as nested helical structures (NHS). NHSs are
difficult geometries to construct by using CAD software’s and there is no available

tool at present to produce such geometries.

6.1 General definition of helices and a special form

A helix can be defined that, tangent line at any point makes a constant angle with a
fixed line. It can be viewed as a kind of 3-D spiral. A single helix can be represented

in the parametric form as,
x, =r,c0s(8,),
y, =r1,sin(6,), 6.1)
Zs = hev ’

where h represents the length of the helix, & is the helix angle. The Slinky toy,

which is invented by Richard James, is an interesting geometry because it can move
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with preserving the startup energy. Its modified parametric representation can be

written in the following form [106],

x=[b+acos(wr)]cost,
y=[b+acos(ax)]sint, (6.2)
z=ht+asin(axr),

where real constants a, b, @ and the part [b+acos(at)] is the parametric form for a
circle, as a defines the radius while » shows the height and @ shows the number of
wings, and the rest of the equation moves this circle around the helix. This
parametric form also generates a logarithmic spiral moving around a helix, which is

presented in Figure 6.1.

Figure 6.1: Slinky: a spiral nested over a helix.

The importance of Slinky is that, it is one of the special forms of nested helical
geometry defined over a single helix. However, it cannot be used while modeling a
double or nested helical geometry. For this reason, a nested helical structure, which
can be nested over another helix, is necessary for solid modeling of a wire rope

structure.
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A single helix nested by another helix creates a NH, which is defined as a double

helix in [92] and shown in Figure 6.2 with a moving trihedron.

0.12

0.1

Single helix
0.08

~ 0.06

0.04

Nested helix

0.02

Figure 6.2: Nested helix (double helix) with Frenet-Serret frame.

6.2 Nested helical system

To define the location of a single helix centerline, Cartesian coordinate system

(x,y,z) with the Cartesian frame {ex,e‘,,ez} is used and the location along the
centerline of a single helix is,
x, =r,c0s(8,),

y, =r,sin(6,), 6.3)
Zs = f'; tan(a',s )es 4

where e, shows the axis where the helix lies, r, is the radius of the single helix, o,
is the single helix laying angle and 8, =, + 6. Free angle @ defines the location of
the wire around the rope axis e, relative to e . The single helix phase angle is

defined as 6, =6,__, . The outer nested helix is wound around a single helix with
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using the location along the centerline of a single helix given in equation (6.3).

Location of the nested helix centerline can be written in the following form [92],

x, =x,(6,)+r,cos(8,)cos(8,)—r,sin(8,)sin(b,)sin(, ),
v, =¥,(8,)+r,cos(8,)sin(8,) +r, sin(6,) cos(8,) sin(, ), (6.4)
z, =2, —1,sin(d,)cos(c,),

where 8, =16 +86,, and r, shows the distance along the NH centerline and single
helix centerline respectively as shown in Figure 6.3, 7 is the construction parameter
which shows the frequency of the wire along the helix length and 8,, is the wire

phase angle.

Wire phase angle
8= /3 ry

Nested helix

Nested helical path

Path control
nodes

Figure 6.3: Nested helical wire path definitions.

The construction parameter 7} is a ratio of the angle of a nested helical wire rotation
to the angle of the outer helical strand rotation. This ratio is dependent on the angles
of both helices when both helical radii are fixed, so it is a constant value. It is
considered important in characterizing the rope structure, specifically the relationship

between the wire and strand helices, and is called the "relative rotation". The relative
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rotation will be positive for lang lay ropes and negative for regular lay ropes.
Centroidal axes of both strand and wire can be considered lying on right circular

cylinders, which can be developed into a plane as shown in Figure 6.4.

/ 2
s, -7 l
ra -1
r'd . S
~ 7 Centroidal |“s
i axis of wire l
.~ e

“ a0i |

(a) Strand helix (b) Nested wire helix

Figure 6.4: Developed view of strand helix and nested helical wire.

Using the developed view of the strand helix given in Figure 6.4-(a) the relationships

between the length of rope §,, length of strand S, and the angle of strand rotation

can be obtained as,

S =rb tanc,, (6.5)
s =19 6.6)
cos,

where r,, 6, and «, shows radius of the strand, angle of the strand rotation and

strand helix angle respectively. Similarly, the relationships between the length of

strand S, length of wire S, and the angle of wire rotation also can be obtained by

using the developed view of the wire helix given in Figure 6.4-(b) as,

S, =r6, tane, (6.7)
L/ (6.8)
cos

where r,, 8, and ¢, shows radius of the wire helix, angle of the wire rotation and

wire helix angle respectively. Because the length of strand obtained from the wire
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helix must equal that obtained from the strand helix for a given length of rope, a new

term 77 is defined to be the ratio of the angle of nested helical wire rotation 8, to the

angle of strand rotation &, , which can be obtained from equations (6.6) and (6.7) as

[107-108],

LR — (6.9)
0 rtang,cosq,

s

77:

where 17 shows the ratio of the angle of nested helical wire rotation to the angle of
strand rotation. The ratio of 7 is important wile modeling the nested helical wires.
This parameter computed and used as a constant parameter while modeling all the
nested helical wires along an outer strand.

According to equation (6.4) a right lay NH can be constructed. To construct a left lay

NH, it is enough to negate one of the coordinate values of x,, y, or z, given in

equation (6.4).

6.3 A moving trihedron and plane construction

Frenet-Serret expressions describe the kinematic properties of a particle, which

moves along a continuous, differentiable curve in 3-D Euclidean space R’ [109-
110]. Frenet-Serret frame is used to construct a normal plane perpendicular to the

single helical or NHS to construct a 3-D solid part.

Let / c R be an interval, and ¥ : 1 — R’ be a parameterized space curve, assumed

regular and free of points of inflection. The trajectory of a particle moving through 3-

D space is defined by y(6). The moving trihedron, as known the Frenet-Serret
frame, corresponds to an orthonormal basis of 3-vectors; T (8), N(€) and B(€). The
unit tangent vector 7(€), the unit binormal vector B(#) and the unit normal vector

N(6) can be defined respectively as in the following,

10)=Y O g YOV O i BOYO) 64,
lw'(6) ' &)xw”(©)| |B&)xy(6)]
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The line w(8)+¢T () is the tangent line at (6) . Here r€ R represents a parameter
corresponding to create the tangent line in a given range. The binormal vector B(8)
is perpendicular to both y’(8) and w”(€), and hence perpendicular to the osculating
plane. The line w(8)+tB(0) is the binormal line at ¥ (#) . Finally, the normal vector

is the vector perpendicular to both tangent and binormal vectors with its direction

determined by the right-handed system. The line y(8)+tN(8) is the normal line at
v (0) . Therefore, tangent vector 7(€), normal vector N(8) and binormal vector
B(0) form a coordinate system with origin ¥(8) . The tangent line, normal line and

binormal line are the three coordinate axes with positive directions given by the TNB
vectors respectively. These three vectors are usually referred to as the moving

trihedron or triad at point (9) .

6.4 Frenet-Serret frames for single helical and NH wires

Using the single helix expression as described in equation (6.1), the single helix

curve y/(6,) is given by,
w(6,) = (r,cos(6,),r,sin(6,), hb,). (6.11)

The tangent, binormal and normal vectors for a single helical wire can be found

using Frenet-Serret formulas as follows;

v'(6) —rsin(@) rcos(8.) h
T )=7r—"== £ < , (6.12)
‘ |l//(0s) (\/r2+h2 N \/r2+h2j
w(@)xy (@) [hrsin(8) —hrcos(8) 1’ J
@)=7—-— = =, -, ,  (6.13)
(ACRRACN (\/r2+h2 N N e
B(6)xy'(8.) -cos(8.) -sin(@.)
N@) =2V O oy 2 ol (6.14
@) |B(B)xy(6,) (\/r2+h2 Ny J )

The location of the single helix is defined in equation (6.3) and the location of the

NH is defined as in equation (6.4). The helix curve y(6,) can be written in the

following vector form,
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w(8,)=(x,(6,)+r,cos(8,)cos(8,)—r, sin(6,)sin(8, ) sin(a, ),
v,(8.)+r,cos(8,)sin(8,) +r, sin(8,) cos(8, ) sin(c, ), (6.15)

z,—r,sin(6,)cos(c,)).

The tangent, binormal and normal vectors of a NH for the Frenet-Serret frame can be

written as,

= (r, sin(g,) cos(8,) + r, cos(8,) sin(6,) sin(e,), (6.16)
-1, sin(@,) sin(8,) + r, cos(6,) cos(6.) sin(e,),

-r, cos(8,) cos(a,)),

B(g,) = Y OIXVO)

lw'6,)xw"(6,)|

:((—sin(ﬁd) sin(@,) + cos(8,) cos(8,) sin(e,)) sin(8,) cos(,)
+ cos(8,) cos(e,) (-cos(d,) sin(8,) - sin(d,) cos(d,) sin(,)),
-cos(8,) cos(a,) (cos(8,) cos(8,) - sin(8,) sin(8,) sin(c,)) (6.17)
- (sin(@,) cos(8.) + cos(8,) sin(8,) sin(ex,)) sin(8,) cos(«,),
(sin(8,) cos(8,) + cos(8,) sin(8,) sin(e,)) (-cos(8,) sin(6,)
- sin(g,) cos(6,) sin(e,)) - sin(8,) sin(6,) sin(c,))
- (-sin(@,) sin(6,) + cos(8,) cos(8,) sin(e,)) (cos(b,) cos(HS)),

B©6,)xy'(6,)

|1B@)>xy@6,)|

=(cos(8,) cos(8,) - sin(8,) sin(6,) sin(«, ), (6.18)
-cos(8,) sin(6,) - sin(8,) cos(8,) sin(,),

sin(8,) cos(a,))).

N(ed):

The Frenet-Serret frames can be calculated by equations (6.12)-(6.14) for the single
helix and by equations (6.16)-(6.18) for NH. The tangent line (y(8)+tT(8)), the
normal line (¥(8)+tN(6)) and the binormal line (¥(8)+tB(6)) can be written with

respect to 8, and 6, respectively by using their given tangent, normal and binormal

vectors for single helix and NH respectively. Therefore, using these lines one can
obtain three points to construct a circle in a plane, which will be perpendicular to the

single helix or NH body.
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In the subsequent section, a solid part construction using single helix or NH, and

analysis over this solid part will be discussed.

6.5 A single helical or NH solid part construction

The idea of using the single helix or NH geometry to construct a solid part is based
on the difficulties experienced at the modeling and analysis stages of wire ropes.
Single helical geometry design can be accomplished by using the well-known CAD
software’s easily, while NH is not available as a tool at present. NHS is mostly
encountered in rope constructions at first glance. To have a NHS, it is enough to
wrap a strand over another one in a helical route. To perform the numerical analysis
over this kind of construction, one should prepare the fully defined model of the
problem first and convert it to an acceptable form for numerical analysis. There
exists some problematic areas while conducting, modeling and analysis stages such

as,

e Jt is not possible to model NH and NHS using CAD tools directly for the

moment,

e Exporting NH geometry to an importable format by FEA software destroys
the solid structures, even the single helical solid structures includes problems

at their surfaces after imported for analysis purposes,

e Meshing is not successful due to the irregularities faced on the surfaces of

NH geometries.

To illustrate the above-mentioned problems, a single helix and NH geometry are
modeled in a 300mm and 1000mm lengths by using SolidWorks®, and transferred to
finite element software Abaqus/CAE® using IGES and Parasolid file formats. It
should be emphasized that, the procedures mentioned here are evaluated by using
different modeling and analysis tools such as CATIA® and ANSYS®, and also the

similar results are found for the helical geometries.

Single helical parts are modeled using helix tools available at the SolidWorks and
solid parts are meshed in Abaqus/CAE. NHs are modeled using parametric equations
of nested helices given in equation (6.4). Script language interface of SolidWorks is
used to write the proposed code of the NH geometry. helical parts which are

constructed using the proposed method are presented in Figure 6.5 and Figure 6.6.
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Column (a) represents helices created in SolidWork, column (b) and (c) represents
imported forms of IGES format and Parasolid format in Abaqus/CAE respectively,
and column (d) represents the helical geometry created with the parametric equations

using HyperMesh®.

The proposed script is written to create the meshed models with the help of
HyperMesh. In these scripts, single helical/NH wire locations are defined with the
control nodes. A spline is generated using these control nodes then a normal plane
perpendicular to the spline curve centerline is created by using the Frenet-Serret
frame defined in equations (6.12)-(6.14) and equations (6.16)-(6.18) respectively. A
circle is created over this plane and swept along the single helical/NH spline. This
method creates the meshed solid part in HyperMesh which is presented in column (d)
of Figure 6.5 and Figure 6.6. When the numbers of control nodes and the wire length
are increased, it has been concluded that the created solid geometry is spoiled out
more. This situation is demonstrated by comparing the cross sections of the solid
parts presented in columns (b) and (c) with item numbers (1) and (3) in Figure 6.5
and Figure 6.6 respectively. It can be seen that the solid structures are worse when
the part lengths increased from a 300mm to 1000mm. A comparison of the solid parts
and meshed parts quality scale is given at the last columns of Figure 6.5 and Figure
6.6. It can be seen that the NH mesh quality is the best among the others. In fact,
there is no distortion at the NH geometry, which can be seen clearly while using the

NH meshed solid parts with FEA software.

While meshing the solid parts, FEA software gives error due to the complex
geometry of the mesh region for sweep meshing. It has been observed that the
meshed parts are in unusable quality. In fact, this situation shows the main problem
area while meshing NHS. This problem do not occurs while using the proposed
script for modeling solid wires in HyperMesh. To see the problematic meshed
surfaces closely, enlarged front view of item 4-column (b) of Figure 6.6 is
represented in Figure 6.7. The meshed surface is split out, and it is unusable for FEA
anymore. Using the proposed script, single helical and NH meshed solid parts are
generated in HyperMesh and shown in Figure 6.8. It can be clearly seen that the
meshed surfaces have no problems at the surfaces and precisely defined. It can be
concluded that the NH meshed parts for each length is the best choice to use in FEA

purposes.
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Figure 6.7: Zoomed front view of a NH wire.

(a) Single helical solid wire mesh (b) NH solid wire mesh

Figure 6.8: Single helical and NH meshed parts in Abaqus/CAE.
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6.6 Construction of a complex single helical and NH wire mesh

During the modeling issue, it has been concluded that FEA software needs smooth
and precisely defined solid meshed surfaces. Meanwhile commercial CAD softwares
are not suitable to construct NH geometry because of the early mentioned
irregularities at the meshing stage. FEA code first of all needs a precise meshed solid
structure of the model. The idea of designing meshed model of a single helical or NH
wire is proposed for this reason. An algorithm to develop a meshed model of a single

or NH wire is given in Figure 6.9. The algorithm includes mainly four stages;
® Geometry generation,
e Solid part and mesh generation,
e Model generation,

¢ Analysis result post processing.

Geometry Solid Part and Mesh Tlodel Amnalysis
Generation # Crenieration ¢ Generation Result processing
l * inp file l * inp file l l
format format
Matlab Hypethdesh AbaqusCAE Read the results
by viewer
Bingle helicalNHE
Pamrm.atex Read control nodes and
Definitions Frenet-Serret Frame
generated by Latlab
with Abagus format Import the mesh of the
l NHS in Abaqus/CAE

Single helix Nested Helical Define a spline passing

Location definition Location definition through control nodes Compose the proposed

Assembly using meshed parts
{ Seeeqnil) I { See eqns 3-4) I
¥
Diefine a circle on the plane - L —
which is petpendicular to NH Define the boundary conditions,
using the Frenet-Serret frame Loads, contact controls
Generate Frenet-Serret frame to find and material propetties
aplane perpendicular to the helical spline l
Create a sutface mesh
owvet this circle Create the job and
Generate helical Submit the analysis
control nodes
Change phase angle,
inctease single

helix N H mamber Drag this meshed surface

along the spline which Create the resulting odb file
defines the NHS

ustber of helical
definition finished?

Export the control nodes in *.inp
format goto Mesh Generator

Expott the meshin
* inp format to Abagqus

Figure 6.9: Generation of the NH wire solid model and analysis algorithm.

In the geometry generation stage a new code is generated to find the single helical

control nodes using equation (6.1) and NH control nodes using equation (6.1) and

100



equations (6.3)-(6.4). To construct the solid geometry, a normal plane which should
be perpendicular to the single helical or NH spline is needed. Frenet-Serret frame is
constructed over the single helix and NH using the equations (6.12)-(6.14) and
equations (6.16)-(6.18) respectively. Using the Frenet-Serret equations tangent,
normal and binormal lines as depicted in Figure 6.2 are defined and three points are
generated to construct a plane perpendicular to the helical spline. At the end of the
geometry generation stage, the control nodes to construct single or NH wire and the
nodes to build a plane which is perpendicular to the single helical or NHS are written

to an output file in Abaqus/CAE format as illustrated in Figure 6.10.

In the solid part and mesh generation stage, the meshed helical wire models are
produced that are the main elements used to construct the wire strand or rope
assembly. The control nodes generated in the first stage, which is in Abaqus/CAE
model file format, is imported in HyperMesh as temporary nodes. A spline is
constructed using these control nodes which corresponds to a single or NH wire.
Using the three control nodes, which is created to define the normal plane by the help
of Frenet-Serret formulas, a circle is generated over this plane which is perpendicular
to the helical wire centerline. The surface of this 2-D circle geometry is divided by
quadratic brick elements and these elements are dragged along the helical wire path
to construct a meshed single helical or NH wire geometry. The generated shape is
constituted with meshes and known as orphan mesh in Abaqus/CAE. At the end of
this operation, meshed helical wire geometry is exported to finite element model file

format, which can be imported by Abaqus/CAE.

*NODE

1. -0.0024960000, -0.0005455786, 0.0001871124
2, 00025937438, -0.0002398581, 0.00083352452
3. 00026489732, 0.0000844312. 0.0014814629
Bingle or NH control nodes
60, -0.0023603958, -0.0008267729. 00391639295
61, -0.0024960000, -0.0003455786, 00398141124
62, -0.0023937458, -0.0002398581, 0.0404622452
63, -0.0003068671, -0.0021929485, 0.0410464273
64, 0.0040518237, 0.0067364359, 0.0378376927
63, -0.0023937458, -0.0002398581, 0.0404622452

EESE s

Puoitits to define a plane using
Frefet-Jerret formulae

Figure 6.10: Geometry definition in Abaqus/CAE file format.

In the model generation stage, the orphan mesh geometry is imported in
Abaqus/CAE, which is constructed by HyperMesh as explained previously. It can be
concluded that the wires developed by using the written scripts gives perfect results

even for the wires with longer lengths than 300mm and there were no problems
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encountered with FEA software. This gives the opportunity to model the NH
geometry without any length limitations and surface irregularities. In this way, FEA
software will not be responsible to mesh the NH model. While defining the contacts
between wires using the mesh created by IGES format and Parasolid format, there
were errors because of the conflicts between the wires due to irregular meshed
surfaces. The new meshed NH solid model get rids of such problems, defining
precise surfaces, which never conflicts with the other wires in a strand or a rope.
Analysis stage can be conducted with safe definitions made over the solid meshed

geometry.

Core Wire Helix angle
Six helical wires

Figure 6.11: (1+6) wire straight strand model.

Generated meshed solid parts are assembled together and as a result a wire strand or
a wire rope is constructed. A straight wire is wrapped around with identical six single
helical wires to compose a simple straight strand model and shown in Figure 6.11.
To compose an IWRC in addition to the wires used to compose a simple straight
strand, a single outer helical six outer NH wires are imported which are modeled
using HyperMesh before. Using these two outer wires an outer strand is assembled
and it is wrapped around the core simple straight strand to obtain final form of the
IWRC model as shown in Figure 6.12. It can be clearly seen that the wire rope
structure includes 36 NH wire and this makes the analysis enormously complicated.
Boundary conditions, load definitions, material properties and contact controls for
the problem are defined in Abaqus/CAE to compose a job which is submitted for the
analysis of the proposed problem. Finally, the analysis result file is ready to read by

the Abaqus/CAE viewer to obtain the numerical results.

This process removes the surface irregularities encountered over the complex helical

structures and generates precise geometries. Data loses are obstructed while
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transferring solid parts between CAD and FEA software by the proposed modeling
strategy and algorithm. At the same time, the length limitation problem is left behind

by the given method.

Core strand
Straight wire

Single helices

il
]

o T
/f////////,///;’}

‘ Ml
/ ////////;ljll"{\

W didngi
il 2

7/ 7//////%//////// ////// % /

Figure 6.12: A left lang lay meshed wire rope structure.

6.7 IWRC modeling depending on different lay types

The term lay refers to the direction of the twist of the wires in a strand and to the
direction that the strands are laid in the rope. In some instances, both the wires in the
strand and the strands in the rope are laid in the same direction, and in other
instances, the wires are laid in one direction and the strands are laid in the opposite
direction depending on the intended use of the rope. Four different lay types are

modeled and presented for an IWRC is presented in Figure 6.13.

° Right Lang Lay: The wires in the strands and the strands in the rope are laid

in the same direction; in this instance, the lay is to the right.

. Left Lang Lay: The wires in the strands and the strands in the rope are also

laid in the same direction; in this instance, the lay is to the left.

° Right Regular Lay: The wires in the strands are laid to the left, while the

strands are laid to the right to form the wire rope.

o Left Regular Lay: The wires in the strands are laid to the right, while the
strands are laid to the left to form the wire rope. In this lay, each step of

fabrication is exactly opposite from the right regular lay.
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The lay of a rope affects its operational characteristics. Regular lay is more stable
and more resistant to crushing than lang lay. While lang lay is more fatigue resistant
and abrasion resistant, use is normally limited to single layer spooling and when the

rope and load are restrained from rotation.

(c) Right Regular Lay (RRL-sZ) (d) Left Regular Lay (LRL-zS)
Figure 6.13: IWRC modeled in four different lay types.

Strands wrapped around center strand are shown in Figure 6.14 and a nested helical
wire without and with indentations are shown in Figure 6.15. The tightening nature
of the regular lay wire ropes are depends on these indentations and can be clearly
seen from the Figure 6.14. Some other cross-sectional views are presented in

Appendix B for different lay types of IWRCs for convenience.
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(a) Right Lang Lay (RLL) (b) Left Lang Lay (LLL)

(c) Right Regular Lay (RRL) (d) Left Regular Lay (LRL)
Figure 6.14: Strand wrapping for RLL, LLL, RRL and LRL IWRCs.

O

(a) Right Lang Lay (RLL) (b) Left Lang Lay (LLL)

<}

(c) Right Regular Lay (RRL) (d) Left Regular Lay (LRL)

Figure 6.15: Nested helical wires without indentations for RLL and LLL IWRC, and
with indentations for RRL and LRL IWRC.
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6.8 Fundamentals of FEA with virtual work

8-node linear hexahedral brick element is presented in Figure 6.16, Cartesian

coordinates of x,y,z showing global space while &,77,{ shows parametric space over

the element. The mapping function for the 8-node volume element can be written as

[111],

x=ar“%§+%ﬂ+%§+%§ﬂ+%ﬂ§+aﬁf+a$ﬂ§- (6.19)

Mapping the global element to the parent can be established as,

x(L,-1,-1) =x,,
x(1, L-D=x,
x(=1,-L1)=x,.

(1,1,-1)

=~ (1,1.7)

(1!_1!_1)
=-=ra

d (1-11)

Figure 6.16: Eight-node linear hexahedral (brick) element definition.

It can be expressed in matrix form as,

I 1 -1 -1 .. 1]]aq X,
1 1 1 -1 -11|a, X,

=3 (6.20)
1 -1 -1 1 .. 1]|a X,

Following the similar procedure the unknown ¢,'s in (6.20) are determined and

substituted in (6.19) and the resulting equation gives the interpolation function for

x(&,n,¢) with the eight shape functions as given below,
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N, =%<1—§><1—m<1—§), N, =%(l+§)(l—n)(l—§),

N, :é<l+§><1+m<1—§>, N, =%(l—§)(1+77)(1—§),

N, =é<l—§><1—m<1+§>, N, =%<1+§)<1—n><1+§>,

(6.21)

N, =é(l+§)(l+f7>(l+§), N, =%(l—§)(l+n)(l+§).

Mapping functions for the y and z coordinate values can also found with the same

procedure as,

x(&,n,)=Nx,+N,x, +N,x, + N,x, + Nyx, + Ngx, +N,x, + Ngx,,
Y&, =Ny, + N, 3, + Nyy. + Ny, + N5y, + Noy, + Ny y, + Ny,
2(&n.8)= Nz, +N,z,+ N;z, + Nz, + Nyz, +N6Zf +N7Zg + Ngz,.

The same interpolation functions can be used for displacements as,

u(&,n,{)=Nu,+Nu, +Nu, +Nu,+Nu,+ Ngut, +Nju, + Ngu,,
v(&,n,{)=Ny,+N,v, + Ny, +N,v,+N,v, +Ngv, + Ny, + Ngv,, (6.22)
w(&,n,{)=Nw,+N,w,+N,w.+N,w, + Now, + New, + N,w, + Ngw,.

For the isoparametric volume element with 8-node brick elements, the element
stiffness matrix B must be specified. Six strain components are relevant in full three-
dimensional analysis. The strain matrix following the standard notation of

Timoshenko’s elasticity text can be given as,

ou

ox

v

. dy
i aw

e} = ;W . auajav (6.23)

7, dy Jx
V) |9V 9w
dz dy

ow du
o 0z
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: : ou . : o
The first strain term of & :8_ in x coordinate can be computed by submitting
X

u(&,n, ) from equation (6.22) as,

ou d
w =0 :a(Nﬂa + Nyu, + Nju, +Nu, +Nsu, + Nu, +Nou, +N8uh) (6.24)

To find the derivative of u with respect to x, chain rule is used as,

Ou _dxou dydu dzou (6.25)
9F 0Edx OEdy  OF oz

In the same manner derivative of y and z can be obtained as,

ou Jdx du dyodu 9z du
=Y ey

L , (6.26)
on dnox dndy 9In oz
Ou _dxdu dydu 0z du 6.27)
0 d¢ ox d{dy 9¢ 0z
Equations (6.25)-(6.27) can be established in matrix form as,
al (o) [ar dv %] (o
oG ox| |95 9§ 9¢ ||ox
Sul _yfQel_| 9x 9y 9z [dul (6.28)
on dy on dn dn ||dy
ool ol |ax dy o ||ou
o dz) | 9¢ 9¢ 94 |loz

£, =E;_u can be obtained by multiplying the both side of equation (6.28) with the
X

inverse matrix of the [J] giving,

Ju du
ox o0&
ou 1| ou
—=|J — 6.29
5 [ ]877 (6.29)
w| |
oz o
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In the same manner derivatives of v and w with respect to x,y,z can be found as,

w [
ox Cl4
v 1| ov
—=|J — 6.30
ol LA 1 e (6.30)
w |
0z o
w [
ox a&
ow 1] ow
—=|J — 6.31
5 | ]877 (6.31)
wl o
oz ol

The strain vector in terms of a strain-displacement matrix can be represented in,
{e}=[B]{a} (6.32)

Remembering the equation (6.23), right hand side of the strain vector can be
presented using the equations of (6.28)-(6.31) in terms of the strain-displacement

matrix as,

B_Lt

o0x

@

dy

a_w

0z

Jdu v
_+_
dy ox
v ow
_+_
dz dy
ow du

%az

=[B){d‘}. (6.33)

The general form of the strain-displacement matrix given in equation (6.33) can be

expressed as in follows,
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{e}=[B|{a‘}=[B, B, B, B, B, B, B, B{d‘} (6.34)

in which [112],

[ ON.
i 0 0
ox
ON,
O — 0
dy
0 0 %
— Z y—
B = v, . ,fori=1,...,8. (6.35)
dy Ox
) WA,
dz 9y
wo oo,
L Jz ox |

The strain-displacement matrix can be obtained as a 6x24 for total of 24 nodal

displacement variables (8 nodes times 3 variables per node). A general representation

can be shown for the [B] matrix as follows,

uu

va

_Blll 0 0 B, 0 ] W,

0 B, O o - 0 u,

Bl=| O 0 P O B g a2l L (636)

By, B, 0 By, - 0 Wy

0 By, Bs; 0 o By, '

| By 0 By, By, By, | u,

Vi

Wi

The stress-strain relations for an isotropic homogeneous material are given as follows

[113],
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1=y v % 0 0 0 |
o, v 1-v v 0 0 0 £,
o, 1 v 1-v 0 0 0 £,
ol_ E o o o 22 0o 1% 6am)
2 o
7o A+v)(1-2v) Yy
T, o 0 0 o ! _22V 0 |7
T\ _ yyz
O 0 0 0 0o 1 22V

where E and v are Young’s modulus and Poisson’s ratio of the wire material. Stress-

strain law given in equation (6.37) can be written in a simpler form as,
{O'} :[D]{S}. (6.38)
Applying the virtual work principle on the element level one can write,

SU, =6W,, (6.39)

where, 0U, is the virtual energy of internal stresses, and W, is the virtual work of external

forces acting through the virtual displacements. Displacement within the element and node

point displacements is related by the following equation,
{u}=[N]{a‘}. (6.40)

where {u} are the field displacement components, {u} = {u % W}T , [N ] are the element

interpolation functions, and {de} are the node displacement component values for the

element. Strain displacement can be given for any point as,
{e}=[Bl{a‘}. (6.41)

where [B] is the strain-displacement matrix and {d "} is the nodal displacement vector of
the element defined as in equation (6.36) for 8-node brick elements.

The stress in the member follows from the stress-strain relation is given as,

{o}=[P{e}=[p][B]{a"}. (6.42)
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For any given set of small virtual displacements {5d e} the internal virtual strain energy and

oU, is defined by [113],

U, = [(se)odV, (6.43)

where O is the virtual strain produced by the small virtual displacements, & is the stress

level at equilibrium, and dV indicates the differential volume element of the member.

The external virtual work of nodal forces is,
T
oW, ={éa*} {r}, (6.44)

where { f } are the nodal forces. Using the principle of virtual work,

[@eroav ={sa<} {r}. (6.45)

and hence,
[[B){a*}[D][B]{a*}av ={sa°} {£}. (6.46)
{62} (B [D)[B)fa-Jav ={oa} {£}. (6.47)

T
From both sides of equation (6.47), {§d "'} is canceled and element equation is found as,

[k]{a“}={r}. (6.48)

where the element stiffness matrix is given by,

[k]=[[B] [D][BlvV . (6.49)

For the volume of the integral,

dV = dxdydz = (det[J])dédnd{ (6.50)
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and [k] can be written as,

+14+1+1

[]=[ [ (8] [D][B](der[]) agnag (6.51)
—1-1-1
The stiffness matrix of the element can be obtained by numerical integration using

Gauss quadrature formula.

Because of the complicated geometry of the wire ropes and the interactions between
wires in a wire rope, manual solution of the stiffness matrices for analyzing wire
ropes is not straightforward, cost effective, and fast. In addition, problems including
fine mesh size with higher number of DOF require more computational time and
have to be solved using parallelization processes. For this reasons, FEA code is
preferred to use during this study while solving the stiffness matrices to find stress,
strain, reaction force, reaction moment and shape alteration values by using
capabilities of High Performance Computing Laboratory (HPC Lab.) located in

Informatics Institute.

6.9 Element selection and property definitions during FEA

The element type and the mesh size are very important at the analysis stage. If the
mesh is coarse, then problem could not converge and there will be no solution for
this reason. To find accurate results at the analysis stage, C3D20R: A-20 node
quadratic brick and C3D8R: A-8 node linear brick reduced integration hourglass
control type elements are used. Triangular and tetrahedral elements are geometrically
versatile and are used in many automatic meshing algorithms. It is very convenient to
mesh a complex shape with triangles or tetrahedra, and the second-order and
modified triangular and tetrahedral elements in Abaqus/CAE are suitable for general
usage. However, a good mesh of hexahedral (brick) elements usually provides a
solution of equivalent accuracy at less cost. Quadrilaterals and hexahedra have a
better convergence rate than triangles and tetrahedra. For this reason, brick elements
are preferred to use. The material density, elasticity, plasticity, friction and Poisson’s
ratio are defined according to the material and problem model used during the
analysis. General contact controls and surface-to-surface contact behavior are
defined because each wire in a strand is in interaction with the center and

corresponding neighbor wires in the strand. Abaqus/Standard is used while
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frictionless analysis of the models with C3D20R. Nevertheless, while frictional and
plastic effects are brought into the models explicit analysis is needed and C3D20R
type elements are not supported during explicit analysis. For this reason, C3D8R

elements are used during explicit analysis with Abaqus/Explicit.

6.10 Acxial loading and bending problem models

The constructional difficulties of the wire strand and wire rope model enters to a new
position when the analysis stage starts. For the axial loading problems, the analysis
model is designed with defining one edge of the strand to be stand stood by defining
encastre boundary condition while the other edge is loaded with force or applied
displacement boundary condition. Analysis procedure can be accomplished using
only one-step for axial loading problems with Abaqus/Explicit. Load and mesh

definition of a seven (7) wire strand is represented in Figure 6.17.

(a) Loads on a seven wire rope strand  (b) Mesh of the seven wire rope strand

Figure 6.17: Loads and mesh of a seven wire rope strand.

Bending problem structure differs from axial loading. Generally, bending problems
arise when strand or rope runs over a sheave. To construct the bending problem a
straight wire strand/rope and a rigid body sheave is assembled as shown in Figure

6.18.

To wrap the edges of the strand over the sheave, first a displacement boundary
condition is defined at the first step of the analysis. With the help of this analysis
stage, first a wire strand/rope is bent over a sheave, which is the starting point of the
analysis in fact. Wire strand bent over a sheave problem is represented in Figure

6.19. At the second step of the analysis procedure, load/displacement boundary
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Figure 6.19: Wire strand bent over a 180mm diameter sheave.
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6.11 Material properties

Density for steel is normally p =0.00785g /mm’. However, because of the great

carbon content of wires used for wire ropes, it is to use p =0.00780g / mm’.

Total extension of steel wires for ropes amounts to about & =1.5-4% and the yield
strength R, is about 75-95% of the measured tensile strength R, . For wires taken

out of ropes and straightened, the total extension is about & =1.4—2.9% and the

yield strength R, is about 85-99% of the tensile strength R, , Schneider (1973).

m°

For straightened wires from wire ropes, Wolf (1987) evaluated a mean elasticity
module E =199.000N /mm?*. For new wires, Hiberle (1995) found the mean

elasticity module E =195.000N /mm’. Together with other measurements —after
loading the wires close to the breaking point— a mean elasticity module has been

evaluated for the stress field of practical usage. The mean elasticity module of rope

wires made of carbon steel is E =196.000N / mm* [110].
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7. NUMERICAL RESULTS

In this section, first of all an illustrative analytical example is given to show the force
and moment acting along a simple straight wire strand. There are many analytical
results are obtained using the theories presented in the literature. Some of the

analytical results are also presented at the Appendix A for convenience.

Numerical examples are introduced to show deformation and stress distribution both
over a simple straight strand, right regular lay and right lang lay IWRCs. Analytical
results are obtained by solving the theory given in the literature via Matlab™.
Analytical, finite element analysis results, and available test data are compared at the

end.

In finite element analysis, wire-by-wire geometry construction is taken into account
as in the analytical models developed by Elata et. al. in [92-93] and used by Usabiaga
& Pagalday in [115] for an IWRC. Wire by wire insight of the wire strand and IWRC
1s obtained with FEA results. In addition, wire contraction effect over the IWRC is

analyzed for Poisson’s ratios, v=0 and v=0.3 respectively.

Bending of a wire rope strand over a sheave problem is taken into account lately. The
structure of the problem and the solution are given. Figures show the stress and
deformation distribution over the wire strand bent over a sheave. With the
complicated nature of the bending problem, parallel solution of the problem is

investigated and the parallelization results are presented.

A graphical user interface (GUI) code is generated based on the parametric
mathematical equations of single and nested helical wires. It is named as Wire Rope
Skeleton (WRS) and used to find control nodes of each wire within a wire rope and
writes the nodes in a file which is processed by using HyperMesh as described early
in Chapter 6. Later on the GUI code is developed to produce full-assembled wire
rope solid model without using HyperMesh. Last version of the code is named as
Wire Rope Model and Mesh Generator (WRMMG). It produces wire rope meshed
model ready for analysis using Abaqus/CAE.
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Contact analysis is conducted over a wire strand. Surface to surface interactions
defined between wires within a wire strand. Deformations between wires force the
wire radius to contract. In addition, mesh size of the wire strand is increased and their
effects over the results are presented. Using the proposed modeling technique 1
through 5 meter length wire strands are modeled and analyzed under axial loading
conditions. Analysis results are compared with using different helix angles and

material types. The effect of mesh size also investigated.

7.1 Example showing the analytical solution of a simple straight strand

Consider a simple straight strand cross-section given in Figure 6.11 with the
parameters [11]; R =2.6162 mm, R, =2.5654 mm, p, =247.65 mm,
E=196497.52 N/mm’, v=0.25 and m, =6. Outside wires are assumed not to
touch each other and r, =R +R, =5.1816 mm, «, =82.510641°. The angle of twist
per unit length of the strand is 7, =0, which means that the strand is not allowed to

rotate and & =£=0.003. R,Ax} and R,A7, can be computed as,
R,Ax, =-0.00005564,

R,A7, =—0.0001838.

Finally forces F and moments M, acting over the center wire and helical wire within

a simple straight strand is computed and presented as follows,

F=F+F, =12675.65+70970.48 =83646.12 N,

M, =M, +M, =45877.83 Nmm .

7.2 FEA of a simple straight strand and an IWRC subjected to axial loading

FEA are conducted for both a simple straight strand and an IWRC. By the proposed
modeling strategy, wire-by-wire analysis give informations about the axial forces
carried over each wire in a strand or rope. In the literature one of the most important
test results are presented by Utting and Jones in [12]. Jiang et.al. created a finite
element model for a simple straight strand and solved the axial loading problem over

a cross-sectional part in [33]. In this thesis FEA of both a simple straight strand and
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an IWRC are carried over a more realistic 3-D solid model taking into account

friction and contact between wires thus wire-by-wire insight is obtained.

7.2.1 General considerations for the analysis models

Numerical examples of axially loaded, a 14mm length, (1+6) wires simple straight
strand, and an 18mm length (6x7) IWRC are considered. The agreements of the
proposed numerical model with other available models are shown by comparison.
Geometrical design parameters are given in Table 7.1 and Table 7.2 respectively for

both a simple straight strand and an IWRC models.

Table 7.1: Design parameters of the simple straight strand.

Parameter Value
Strand diameter 11.4mm
Center wire diameter, R, 3.94mm
Outer wire diameter, R, 3.73mm
Strand length used in the model, / 14mm
Pitch length, p 115mm
Helix angle of the strand, a 78.2°

Table 7.2: Design parameters of the IWRC.

Parameter Value
IWRC diameter 29.80mm
Core strand center wire diameter, R; 3.94mm
Core strand outer wire diameter, R, 3.73mm
Outer strand center wire diameter, R 3.20mm
Outer strand nested helical wire diameter, R4 3.00mm
IWRC length used in the model, i 18mm
Pitch length for core strand inner helical wire, p, 70mm
Pitch length for outer strand center wire, p* 193mm
Pitch length for nested helical wire, p, 70mm
Helix angle for core strand inner helical wire, a, 71.01°
Helix angle for outer strand center wire, a*z 71.46°
Helix angle for nested helical wire, ay 74.45°

The same material properties are used for both model as defined in Table 7.3.
Quadratic hexahedral finite elements are preferred to analyze nonlinear effects of the

complex geometry of a wire strand and an IWRC during the frictionless FEA. A
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simple straight strand and an IWRC are meshed using 3584 and 18387 quadratic
hexahedral elements of type C3D20, with 18039 and 94405 nodes respectively.

The boundary conditions applied to the model under axial loading are harmonious
with the boundary conditions of Costello’s model. In Costello’s analytical model,
force and moment are applied to the both ends of the simple straight strand and the
analysis is carried over a cross-section A-A as illustrated in Figure 4.5. In this
numerical model, half-length of the model is considered. Section A-A is considered
as one end for the analysis model under the encastre boundary condition while the

other end is restrained not to rotate in x and y directions. The axial strain of

£=0,...,0.015 is applied to the free end of the model for analysis.

Table 7.3: Material properties of the wire.

Young’s modulus, £ 188000 N/mm’
Plastic modulus 24600 N/mm’
Yield stress 1540 N/mm’
Limit stress 1800 N/mm’
Poisson’s ratio 0.3
Friction coefficient 0.115

To simulate and compare with Costello’s theoretical model, 3D FEA models are
constructed using the critical length of the geometry. Critical length is defined as 3 to
9 percent of the pitch length. The contact load increases from zero to the uniform
value in the middle of the strand [89]. This leads to construct the validation model to

be within 3 to 9 percent of the pitch length.

To build the wire geometry a code is developed in Matlab™. This code generates the
control points of helical geometries using parametric mathematical equations of both
single and nested helices (NH) given in equations (6.3) and (6.4). Matlab code to
demonstrate how to create a NH wire is presented in Appendix C. The generated
helical paths are used to create the desired 3-D mesh of single and NH wires of the
proposed model using HyperMesh™. Helical paths used to create the outer wires of

the outer strand are illustrated in Figure 6.3.

Using this developed code both a right regular lay and a right lang lay IWRCs are
generated. Instead of geometry modeling and meshing of the wire rope, it is preferred

to create meshed complete wire rope model due to encountered overlapping and
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discontinuity problems during meshing and analysis stages. This procedure enables
to construct models accurately for FEA purposes without length limitations. The
main body of the wire rope model has been assembled in finite element solver
Abaqus™. Both frictionless and frictional behavior of a simple straight strand and an
IWRC analysis are accomplished using wire-by-wire bases with success, and the
results are compared with theory and test results reported earlier. During the analysis
von-Mises criteria and stress-strain relation is used which is defined in Figure 7.1 as

material behavior curve according to the material properties given in Table 7.3.

2250
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1500
1250
1000

750

Nominal Stress

500 -
250

O T T T T T T
0 0.004  0.008 0012 0.016 0.02 0.024  0.028

True Strain - ¢

Figure 7.1: Material behavior curve.

7.2.2 Elastic analysis of simple straight strand for different helix angles

The angle between the tangent to the centroidal axis of the undeformed spring and
x;-y; plane is shown as ay and the radius of the wire helix is 7y in Figure 4.3. During
the construction of the FEA model, helix angles are selected between 65° and 84°.
Wire strand behaves like parallel rods for the helix angle higher than 84°. In Figure
7.2, it can be seen that pitch length change of the strand near to helix angle 65°
minimizes while pitch lengths are dramatically increased after 78°. Thus, helix
angles are applied between 65°-84° for both modeling and numerical analysis of wire

strand.
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Figure 7.3
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The variation of reaction force with axial strain for various helix angles are plotted in
Figure 7.3. It can be clearly seen that numerical results of reaction force with axial

strain are in good agreement with theoretical ones for all cases.

The variation of twisting moment with axial strain for various helix angles are
plotted in Figure 7.4. It can be clearly seen that numerical results of twisting moment

with axial strain have the same trend with theoretical ones for all cases.
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Figure 7.4: Variation of twisting moment with axial strain.

7.2.3 Plastic analysis of simple straight strand for different helix angles

For the finite element plastic analysis model, helix angles are selected between 65°
and 84°. Wire strand behaves like parallel rods for the helix angle higher than 84°. In
Figure 7.2, it can be seen that pitch length change of the strand near to helix angle
65° minimizes while pitch lengths are dramatically increased after 78°. Thus, helix
angles are applied between 65°-84° for both modeling and numerical plastic analysis

of wire strand.

The aim of this section is to gather numerical results considering the model with
frictional effect. For this purpose variation of reaction force with axial strain,
variation of twisting moment with axial strain and variation of reaction force with
twisting moment are compared in the following figures according to the FEA results
obtained from frictional model. Design parameters and material properties of a

simple straight strand are used from Table 7.1 and Table 7.3 respectively. Boundary
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conditions are defined for each end of the strand. One end of the strand is fixed while
the other end is constraint with no rotation. Axial strain of £ =0.015 is applied to the

free end of the strand.

The variation of reaction force with the axial strain for various helix angles are
plotted in Figure 7.5. Reaching the value of applied strain £=0.008, the simple

straight strand starts to show plastic behavior for all cases.

The variation of twisting moment with axial strain for various helix angles are
plotted in Figure 7.6. Reaching the value of applied strain € =0.008, the simple

straight strand starts to show plastic behavior for all cases.
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Figure 7.5: Variation of reaction force with axial strain in elastic-plastic analysis.
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Figure 7.6: Twisting moment change with axial strain in elastic-plastic analysis.

124



von-Mises stress distribution over a simple straight strand with helix angles between
65° to 84° is presented by contour plots given in Figure 7.7. From the figure close
fitting of the outer single helical wires over the straight center wire can be easily seen
for a=65°. While the degree of helix angle increases the close fitting nature of the
outer wires are changed and when the helix angle increases to a=84°, outer single
helical wires are nearly parallel to the center wire strand. After the angle of a=84°

FEA gives unreliable results.
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Figure 7.7: von-Mises stress distribution over the simple straight strand.
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7.2.4 Simple straight strand FEA results

14mm length (146) wires simple straight strand is considered which is defined
geometrically in Table 7.1 [33] and numerically obtained results are compared with
both Costello’s [11] model and test results reported by Utting & Jones [12,13].
Elastic frictionless and elastic-plastic frictional numerical models are developed.
Wire material properties are obtained from [89] and given in Table 7.3 for elastic and
plastic behaviors. Axial loading behavior of a simple straight strand is investigated.
An axial strain € of 0.015, was applied in increments of 0.001 in the analysis using

the displacement equivalent to the axial strain computed by the equation
g=(h—h)/h, where h is the original length of the strand and /4 is the final length

of the strand. Rotation restrained, ® =0, constant axial deformation results are
illustrated in Figure 7.8 for the straight strand. It can be seen from the figure that the
frictionless behavior of both theory of Costello and FEA results are in good
agreement. The frictional plastic behavior of the strand is compared with the test
results of Utting&Jones [12,13] given in the literature. Plastic behavior of the model
is found to be in very good agreement with the available test results. In addition,
FEA result of Jiang is compared. It can be seen from the Figure 7.8 that the present

numerical FEA result is better than the FEA result of Jiang.
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Figure 7.8: Force-Strain results for the straight strand; theory of Costello, test of
Utting&Jones, frictionless elastic & frictional elastic-plastic FEA.
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Figure 7.9 shows the variation of axial force with twisting moment. From this figure

theory, test and finite element analysis results shows good agreement.
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Figure 7.9: Force-Moment results for the straight strand; theory of Costello, test of
Utting&Jones, frictionless elastic & frictional elastic-plastic FEA.

Figure 7.10 shows the wire-by-wire analysis comparison of theory with FEA. Wires
are titled as CW corresponds to center wire and OH1-OH6 corresponds to outer

single helical wires 1 through 6.
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Figure 7.10: Wire by wire analysis for the simple straight strand, theory, and FEA
comparison.
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It can be seen that, from the computed numerical results, center wire of the strand is
loaded with 17.1% of the total axial load while an outer wire is loaded with an
average 13.82% of the total axial load. These results show that center wire carries the
big portion of the axial load over the simple straight strand. The proposed model
fully accounts the frictional and plastic behavior of the wire strand. Rotationally
restrained numerical model for frictionless analysis shows reasonable agreement with
Costello’s [11] model and the frictional elastic-plastic model has in good agreement
with both analytical results of Costello and the test results of Utting & Jones [12-13]

for the application of tensile force.

7.2.5 Elastic analysis of an IWRC for different helix angles

The aim of this section is to gather analytical and numerical results considering the
IWRC model without friction. For this purpose variation of reaction force with axial
strain and variation of twisting moment with axial strain are compared in the
following figures according to the theoretical model of Costello with the FEA results.
All theoretical results and FEA results presented in these figures are obtained from
frictionless models. Design parameters and material properties of an IWRC are used
from Table 7.2 and Table 7.3 respectively. Boundary conditions are defined for each
end of the IWRC. One end of the IWRC is fixed while the other end is constraint

with no rotation. Axial strain of €=0.015 is applied to the free end of the IWRC.

An IWRC model includes three type of helical wires; inner single helical wire
wrapped around the straight core wire, outer single helical wire which is also the
center wire of the outer strand and finally the nested helical wire which is the outer
wire of the outer strand. This construction is clearly shown in Figure 7.11. Three type
of helical wire pitch lengths are denoted as p,, p, and p, respectively for inner
single helical wire, outer center single helical wire and outer nested helical wire
respectively. The helix angle for inner single helical wire and the outer strand center
single helical wire are arranged to be similar as 71.01° and 71.46°. Taking care of
this situation, the angles corresponding to pitch lengths p,, p, and p, are optimized
and the results are presented for different lay lengths in Table 7.4 and change of pitch
length with helix angle given in Figure 7.12. Constant parameter 77, called relative
rotation, is given in Table 7.4. This parameter decreases while the pitch length

increases. For pitch length of 230, the constant 77 starts to increase back. In addition,
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the results for pitch length of 230 gives unreliable results and not included in the

analysis presented here.

Quter strand

nested helical wire Outer helical

strand
Quter strand

single helical

center wire

Inner strand

single helical wire _
Tnner straight strand

Inner strand
center straight wire

Figure 7.11: An IWRC model with inner and outer strand compositions.

Table 7.4: Helix angle changes for an IWRC.

Inner strand Outer strand Outer strand
single helical wire single center helical wire nested helical wire Constant
. Pitch Pitch parameter
Angle Pitch length Angle Angle
length length n
a, (degree) [p,](mm) a; (degree) . o, (degree)
[py] (mm) [p,] (mm)
64.27 50 64.71 137 68.72 50 3.03
71.01 70 71.46 193 74.45 70 291
75.01 90 75.49 250 71.79 90 2.87
80.23 140 80.67 394 82.08 140 2.85
84.02 230 84.47 669 85.16 230 292
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angels v.s. pitch lengths

IWRC wire helical

Strain - £

Variation of reaction force with axial strain.
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Figure 7.13
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The variation of twisting moment with axial strain for various helix angles are
plotted in Figure 7.14. It can be seen that numerical results of twisting moment with

axial strain have separated for the theory and numerical solutions for all cases.
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Figure 7.14: Variation of twisting moment with axial strain.

7.2.6 Plastic analysis of an IWRC for different helix angles

For the finite element plastic analysis model, helix angles are selected between
64.27° and 80.23°. In Figure 7.12, it can be seen that pitch length change of the
IWRC near to helix angle 64.27° minimizes while pitch lengths are dramatically
increased after 80.23°. Thus, helix angles were applied between 64.27°-80.23° for

both modeling and numerical plastic analysis of an IWRC.

The aim of this section is to gather numerical results considering the model with
frictional effect. For this purpose variation of reaction force with axial strain and
variation of twisting moment with axial strain are compared in the following figures
according to the FEA results obtained from frictional model. Design parameters and
material properties of an IWRC are used from Table 7.2 and Table 7.3 respectively.
Boundary conditions are defined for each end of the IWRC. One end of the strand is
fixed while the other end is constraint no rotation. Axial strain of £€=0.015 is

applied to the free end of the IWRC.

The variation of reaction force with axial strain for various helix angles are plotted in
Figure 7.13. Reaching the value of applied strain £=0.008, IWRC shows plastic

behavior for all cases.
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Figure 7.15: Variation of reaction force with axial strain in elastic-plastic FEA.

The variation of twisting moment with axial strain for various helix angles are
plotted in Figure 7.16. Reaching the value of applied strain £=0.008, the IWRC

shows plastic behavior for all cases.
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Figure 7.16: Twisting moment change with axial strain in elastic-plastic FEA.

Figure 7.17 shows the 3-D structure of the IWRC with the contour plots of the stress
distribution over different helix pitch lengths. The helix pitch lengths are defined in
Table 7.4. From the figure close fitting of the outer nested helical wires over the

outer single center wires can be easily seen for p,=50mm. While the helix length
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increases the close fitting nature of the outer wires are changed and when the helix
length increases to p,=140mm, center strand single helical wires are nearly parallel to
the center straight wire. This situation effects the behavior of the IWRC and center
wire strand behaves like parallel rods, which reflects to the whole solution of the

IWRC.
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Figure 7.17: von-Mises stress distribution over a right regular lay IWRC.

7.2.7 IWRC wire contraction results using FEA

An 18mm length (6x7) wire of a three dimensional numerical IWRC model is
considered. The geometrical parameters are given in Table 7.2, material properties
are described in Table 7.3 and the comparison of the results are given in Figure 7.18
for both regular lay, and lang lay IWRCs. Frictionless contact controls are developed
and tensile loading and twisting moments of an IWRC are proposed. A mean axial
strain, £ of 0.006, was applied in increments of 0.001 in the analysis using the
displacement equivalent to the axial strain &, while rotation is restrained by @ =0.
Theoretical results are obtained by solving the well-known analytical model of

Velinsky-Costello [60-11] model for a regular and lang lay IWRCs. The results are
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obtained both numerically by FEA and using the theory of Costello [11] for the
elasticity modulus of 188000 N/mm’ and Poisson’s ratio of v=0 and v=0.3, where
wire radial contraction has been neglected and considered respectively. From the
obtained results, it can be concluded that the wire contraction plays a very little role
over the whole model analysis as discussed in [115]. Tensile forces obtained from
proposed model have a good agreement with Costello’s [11] results for both regular
lay and lang lay rope constructions. However, twisting moments gives better
agreement for regular lay construction than for the lang lay one when compared with

Costello’s [11] results.
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Figure 7.18: Radial contraction results of an IWRC, frictionless elastic, rotation
restrained tensile test for € =0,...,0.006, ®=0.

7.2.8 Wire by wire elastic-plastic FEA of IWRCs under axial loading

A frictional elastic-plastic finite element analysis is done over the geometrical model
prescribed as an 18mm length (6x7) wire, for both regular lay and lang lay IWRCs
defined in Table 7.2 and analysis results are given in Figure 7.19. For the frictional
elastic-plastic analysis, wire material properties such as yield stress and friction
values are given in Table 7.3. Surface to surface contact controls are developed and
tensile loading and twisting moments of an IWRC are proposed. Axial strain £ of

0.015, was applied in increments of 0.001 in the analysis using the displacement
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equivalent to the axial strain €, while rotation is restrained by defining the boundary
condition ®=0. Theoretical results of Velinsky-Costello [60-11] models for a
regular and lang lay IWRCs are compared with the finite element analysis results for
the Poisson’s ratio of v=0.3, where wire radial contraction has been considered. It
can be easily concluded from Figure 7.19 that theoretical and frictionless behaviors

are in good agreement both for regular and lang lay IWRCs.
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Figure 7.19: Regular lay and lang lay IWRC:s, frictional elastic-plastic, rotation

restrained tensile test for € =0,...,0.015, ®=0.
It can be clearly seen by comparing Table 7.1 and Table 7.2 that the simple straight
strand given in Table 7.1 is used as the core strand of the IWRCs, and the validity of
the plastic behavior of the simple straight strand is presented in Figure 7.8 before.
For this reason, when the plastic behavior of both simple straight strand given in
Figure 7.8 and IWRCs given in Figure 7.19 are considered together, the plasticity
results for both analysis shows the similar behavior. Figure 7.20 and Figure 7.21
shows the variation of axial force with moment of both right regular lay and right
lang lay IWRC:s. The results of a right regular lay IWRC is in good aggrement with
theory of Costello for frictionless FEA while a right lang lay IWRC results shows
similar trend with the theory of Costello.
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Figure 7.20
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Figure 7.21

Figure 7.22 shows the von-Mises stress distribution of wire-by-wire analysis of a

right lang lay IWRC. From the figure, it can be seen that the stresses over the center

wires are the most among the other wires.
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Wire by wire numetical results of a Right Lang Lay WRC
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Figure 7.22: Wire-by-wire FEA of von-Mises stress for a right lang lay IWRC.

The insight of the wire-by-wire axial loading of the right lang lay IWRC is shown in
Figure 7.23. Core and outer strand wire titles shown in Figure 7.23 are described in
Table 7.5. Axial forces of a right lang lay IWRC is shown in wire by wire bases. The
theoretical result of Costello and FEA results shows good agreement among the
elastic area. After elastic behavior is finished, plastic behavior of the material affects

the analysis as shown in Figure 7.23.
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Figure 7.23: Wire-by-wire analysis, theory and FEA comparison of RLL IWRC.
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A wire-by-wire loading is investigated by the analysis of a right lang lay IWRC and
load percentage values for each wire are given in Table 7.5. When the loads are
sorted according to their percentage magnitudes, center wire of the core strand
carries the maximum axial load. In turn, inner helical wires IH1-IH6 and center wire
of the outer strand (OCW) load value percentages follows the CW of the core strand
in IWRC. Nested helical wires, which are located near to the center strand (NH3,
NH4, and NHS) carries higher amount of the loads and among them NH4 has the
maximum axial load. If the axial loads compared between the core strand and the
outer strand of the IWRC, core strand has an average 20.18% of the total axial load,

while the outer strand has an average 13.30% of the total axial load.

Table 7.5: Wire-by-wire axial loading percentages of the IWRC.

Wire code Strand Title of the wires in an IWRC Load (%)

CwW Core  Center straight wire 3.86
IH1-6 Core  Inner single helical wire 1-6 2.72
OoCW Outer Center wire (single helix) 2.21
NH1 Outer Nested helical wire 1 1.69
NH2 Outer Nested helical wire 2 1.74
NH3 Outer Nested helical wire 3 1.90
NH4 Outer Nested helical wire 4 2.02
NHS5 Outer Nested helical wire 5 1.96
NH6 Outer Nested helical wire 6 1.79

7.3 Wire rope analysis under forced torque

Wire rope behavior under forced torque condition is investigated in this section. Both
a simple straight strand and an IWRC are modeled and analyzed using finite
elements. Constant strain is applied while varying rotation during the analysis.
Frictionless and frictional elastic and plastic behavior of the models are compared

with the theoretical results.

7.3.1 Forced rotation of a simple straight strand

A simple straight strand of seven wires, 14mm length is considered under forced

rotation. The geometrical and material properties of the simple straight strand are
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given in Table 7.1 and Table 7.3 respectively. Proposed model is solved and
compared with the theoretical results of Costello’s [11] model. Surface to surface,
nodal contacts are defined under the frictional analysis with a friction coefficient of
0.115. During FEA, a constant axial strain £ of 0.001 is applied, while a varying
torque of ® between -0.0002 to 0.001 with a constant increment 0.0002, and the

force-strain and moment-strain results are given in Figure 7.24.
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Figure 7.24: Forced torsion under constant deformation, € =0.001;
0=-2.10",...,0.001.

As a result of the small axial strain & of 0.001, frictionless elastic and frictional
plastic FEA results shows linear behavior under forced rotation because of not
reaching to the plasticity modulus of the material properties. Therefore, plasticity is
considered applying a constant strain £ of 0.015, while the rotation of the strand is
changed between -0.005 to 0.025 with 0.005 rad/mm increases in each step. Figure
7.25 shows the plastic behavior of the forced rotation and when the presented result
is compared with the force-strain analysis presented in Figure 7.8, the plastic

behavior of the strand can be seen clearly.
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Figure 7.25: Forced torsion under constant deformation, £ =0.015;
®=-5.10",...,0.025.
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7.3.2 IWRC under constant strain and varying rotation constraint

An 18mm length (6x7) wires lang lay IWRC under constant axial strain is forced to
rotate. One side of the model is constrained to be fixed, while the other side is rotated
in the z direction. The geometrical and material properties are given in Table 7.2
and Table 7.3 respectively. Proposed FEA solution is compared with the theoretical
results of Velinsky-Costello [60-11] model. Surface to surface, nodal contacts are
defined under the frictional analysis with a friction coefficient of 0.115. During the
FEA, a constant axial strain £ of 0.001 is applied while a varying torque of ©
between -0.0002 to 0.001 with a constant increment 0.0002, and the force-strain and

moment-strain results are given in Figure 7.26.
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(a) F vs.® (b) M vs. ®

Figure 7.26: Forced torsion under constant deformation for a lang lay IWRC,
£=0.001; ®=-2.10",...,0.001.
Due to the small axial strain € of 0.001, both frictionless elastic and frictional plastic
FEA results shows linear behavior under forced rotation, because of not reaching to
the plasticity modulus of the material properties. For this reason, the plastic behavior
is investigated under a constant strain £ of 0.015, while the rotation varies between
-0.005 to 0.025 with 0.005rad/mm increase in each step. Figure 7.27 shows the
plastic behavior of the forced rotation. When the presented result is compared with
the force-strain analysis of a lang lay IWRC presented in Figure 7.19, it can be seen

clearly that the plasticity behavior is harmonious in each analysis.
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Figure 7.27: Forced torsion under constant deformation for a lang lay IWRC,
£=0015; ®=-5.10",...,0.025.

7.4 Strain and von-Mises stress distribution over a simple straight strand in a

3-D numerical model

Encastre boundary condition is given to one side of the wire rope strand which
prohibits the strand to rotate S =0. On the other side, each of the outer wires is
loaded with force 11828.6/N and the center wire is loaded with 12677.4N according
to Costello’s work. Wire material is selected as steel with the Young’s modulus of
E =196497.52N /mm’ and the Poisson’s ratio has been taken as v=0.25. In
addition, the wires are constrained at the loaded side with another boundary

condition, which allows the strain and displacements can occur only in the u,(z)
directions. The other directions are prohibited to strain/displacement affects in u,(z)

and u,(z) directions.

The proposed model is solved and resulting contour plots of the deformation and
von-Mises stress distribution is presented in Figure 7.28 (a-b) respectively. It can be
concluded that strain distribution along the strand is harmonious with the general
behavior of a wire rope strand and in a good agreement with the analytical solution
of 0.003 strain given in Costello’s work. Strains are going to be stable near to the
encastre side of the strand and shows a good von-Mises stress distribution along the

wire rope strand.
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(a) Deformation over a straight wire rope strand, (b) von-Mises stress distribution

Figure 7.28: Strain and von-Mises stress distribution on a wire rope strand.

7.5 Laying type effects of a 300mm IWRC FEA

Various lay types of IWRCs are modeled and shown in Figure 6.13. In this section a
300mm length (6x7) wire IWRCs are analyzed for different lay types; right lang lay
(RLL), left lang lay (LLL), right regular lay (RRL) and left regular lay (LRL).
Number of nodes and elements used in the analysis are shown in Table 7.6. During
the FEA analysis, explicit method is used with linear hexahedral elements of type
C3DS8R. The geometrical and material properties are given in Table 7.2 and Table
7.3 respectively. Surface to surface contact is defined with the friction coefficient

£=0.115.

Table 7.6: Number of nodes and elements used in various IWRC models.

Lay types | Number of nodes | Number of elements
RLL 164492 126816
LLL 164492 126816
RLR 164000 126432
LRL 164000 126432

For different laying options of the IWRCs, one side of the rope is constraint to be
fixed while the other end is constraint not to rotate. An axial strain of 0.015 is
applied to the nonrotating end. Axial force variation with strain comparisons of the

IWRC:s for different lays are given in Figure 7.29 for fixed end.
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From these figures, it can be seen that the behavior of the CW and IH 1-6 wires are
in similar manner. Nested helical wires in a regular lay type IWRC loaded more than
a lang lay type IWRCs. In addition, the force distributions are close to each other
over the nested helical wires for regular lay types than the lang lay type IWRCs.
Similar analysis are conducted for the non-rotating end conditions and results are
presented in Appendix-D for convenience. von-Mises stress distribution over the
fixed end IWRCs for different lay types are shown in Figure 7.30. From these
figures, it can be concluded that the regular lay type IWRC stresses are close to each
other while the stresses over the lang lay type IWRC are distributed in a larger band.
In addition, nested helical wire stresses are got closer to the center wire stresses at

the plastic area of the analysis.

Total reaction force comparisons given in Figure 7.31 for fixed end condition shows
that the maximum reaction force is obtained at the LRL IWRC while the minimum
reaction force is obtained at the RLL. IWRC. When the LRL and RLL types IWRC
are considered given in Figure 6.14 and Figure 6.15, it can be seen that the
differences of the lay directions are important while force distributions within a rope.
In LRL IWRC wires in the strands are laid to the right while the strands are laid to
the left. Considereing the geometry of the LRL IWRC the axial force distribution

given in Figure 7.31 is clearly understood.

. I IWRC comparison corresponding to lay types
I T T

—¥—RLL Total
—& —LLL Total
RRL Total
56|+ LRLTotal
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Strain of the strand - &

Figure 7.31: A 300mm fixed end total reaction force comparison for RLL, LLL,
RRL and LRL type IWRC:s.
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Strands within an IWRC are compared next. Center strand comparisons for fixed end
boundary conditions are shown in Figure 7.32. It can be concluded that the center
strand force distributions are similar with small differences for each lay types. Outer
strand comparisons for fixed end conditions are given in Figure 7.33. LRL takes
maximum reaction force while RRL takes minimum reaction force values as depicted
in Figure 7.31 due to the geometrical composition of the wires within an outer
strands of the IWRCs. Figures for non-rotating end conditions for different lay types

of IWRCs are presented in Appendix D for convenience.

ot IWRC comparison corresponding to lay types
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—%—RLL Center Strand
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Figure 7.32: A 300mm fixed end center strand reaction force comparison for RLL,
LLL, RRL and LRL type IWRCs.
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Figure 7.33: A 300mm fixed end outer strand reaction force comparison for RLL,
LLL, RRL and LRL type IWRCs.
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Reaction force percentages for each wire in the IWRCs for fixed end boundary
conditions are presented in Figure 7.34. It can be seen that nested helical wires have

closer percentages in regular lay type IWRCs.

IWRC Right Lang Lay as IWRC Right Lang Lay
R by Bl H e e A i Bttt | B e N T E
e cw |, | | | | | | e ow iy I I I I I I
A H16| | | | | | [ | A H16| | | | | L |
. 3 OOW|+—=—=—F—=——l———4———F— ===+ ~ 3 OCW | & = = = = = == = = F = T T T T
9 NH-A | 1 | I Ay I R NHA | 1 I I I I | |
g | | | | | | . o NH2 | ! | | | | | |
Py ¢ NH2 )
IR R R e Sl R ] D e S A S
L NH4 | o ‘ | | | | P R | | | \ \ \
S > NH5 | % | | | | | S oL PONRS &
B | 4 NHE[T T T T[T T T TToT T B <4 NH6 I | 1 | | |
15}
© 1 | | | | | | [ | | | | | | | |
& I I I I I I T I I I I I I I
16 —— —|———®_ 4 - - == = B e R e i il Bl o it
| I | | | | | | | I | | | | | |
| | | | | | | | | | | | | | | |
1 L | | | | | 1 | 1 1 1 1 1 1 1 1 |
1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 21
Wire Radius [mm] Wire Radius [mm]
IWRC Right Regular Lay IWRC Right Regular Lay
R ety Hl e A ety Bl e e S e A
e Ccw |, | | | | | | e cw | | | | | | |
A H18| | I I | I @ I A H16| | | | ey I
— 3 OCW|+———F-———I———+—- - F—-——-—-——-4 _ 3 OCW [+ ——~—F -~ ===~ T~ 3 r~—-~—=~=—1
S NH-A | 1 | | | | | R NHA | I I | | | |
o o NH2 | ! | | | | | = o NH2 | ! I I | | | |
S 25l x Ngald--—-Lo-——lo—_dl___L__0___1 Q925 | x NHg|lt-—-L---leo—do L
| |
S e | ! | | | | o N | ! I | | | |
p N | | | | | | [ > NHs | L I I | | | |
S o 0 A O BN - B ol e SO IR S
5 4 NH6 i | T i | 5 4 NH6 i | T i | i
s I | | | | | I3 | b I I | | | |
I 4 | | | | | | | I I | | | |
e e
I | | | | | | | | I I | | | | |
I | | | | | | | | I I | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
1.3 1.4 15 1.6 17 1.8 1.9 2 2.1 1.3 1.4 15 16 1.7 1.8 1.9 2 2.1
Wire Radius [mm] Wire Radius [mm]

Figure 7.34: Reaction force (%) values for each wire in IWRCs.

It is interesting to compare the behavior of an 18mm length and a 300mm length right
lang lay IWRCs with the same properties and under the same loading conditions. The
resulting reaction force variations with strain at the fixed end of each model are

presented in Figure 7.35.

Both models are constrained to be fixed at one end, and axial strain of £=0.015 is
applied to both IWRCs. From Figure 7.35, it can be concluded that the reaction
forces over the nested helical wires are relaxed while the distance of the rope is
increased. This situation shows that the center strands are faced to more load than the

outer strands.
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w10° Wire by wire numerical results of a Right Lang Lay IWRC
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Figure 7.35: Wire by wire reaction force over the fixed end RLL IWRC.

7.6 A simple straight strand bending over a sheave illustrative example

One of the most important application areas of wire ropes is known as bending over a
sheave problem. A straight wire strand is considered for this problem. Geometrical
and numerical analysis model parameters are defined in Table 7.7 and Table 7.8. A
simple straight wire strand with the given parameters and a 12mm diameter sheave is

modeled. The sheave is placed to be tangent to the straight wire strand at the mid
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point in the first step of the analysis. Then a 20mm displacement boundary condition
is applied to the each side of the strand to bend the wire strand around the sheave in

the first step.

Table 7.7: Design parameters of a strand for bending problem.

Parameter Value
Strand diameter 2.35mm
Center wire diameter R, 0.83mm
Outer wire diameter R, 0.76mm
Pitch length p 18.8mm
Helix angle of the strand o 75.12°

Strand length used in the model 7 45mm

Sheave diameter 12mm

Table 7.8: Material properties of steel wire within a strand for bending problem.

Properties Value
Elasticity modulus 190000 N/mm’
Poisson’s ratio 0.29

Friction coefficient 0.2

Minimum break load 6011 N
Applied force 1000 N

At the second step of the analysis one of the edges of the strand is fixed by defining
encastre boundary conditions while 1000N concentrated force is applied to the other
side of the strand. Thus pulling one of the edges of the strand is analyzed in this
example. Figure 7.36 shows the contour plot of the von-Mises distribution over the
bent wire strand and Figure 7.37 shows the contour plot of the displacement

distribution over the wire strand.

From Figure 7.36, it can be easily seen that maximum stress value is reached at the
upper midpoint position of the sheave. Maximum displacement value is reached at
the fixed side of the strand as depicted in Figure 7.37. Wires are numbered as
represented in Figure 7.37 and analysis results for the maximum stresses are 8605,
8358, 8760, 8668, 8847, 8686, 8039 N/mm?® for wires W, through W¢ and 8039
N/mm? for the center wire. According to the analysis, W5 has the maximum von-

Mises stress value.
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Figure 7.36: von-Mises stress distribution on a wire strand bent over sheave.
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Figure 7.37: Deformation distribution on a wire strand bent over sheave.

As a second example, a 30mm wire strand is bent over a 6mm sheave. In this
example, wire strand is bent over the sheave at first step of the FEA. At the second
step, 1000N load is applied to one end while the other is constraint to be fixed end
boundary conditions. Contour plots presented in Figure 7.38 shows the stress
distribution over each wire of the strand. Variation of the von-Mises stress

distribution with true distance for each wire is presented in Figure 7.39.
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Figure 7.39: Variation of von-Mises stress over each wire with true distance.

7.7 Bending an IWRC over a sheave

Bending over a sheave problem for an IWRC is modeled and the FEA results are
presented in wire-by-wire manner in this section. For the definition of the problem,
the design parameters and material properties previously defined in Table 7.2 and
Table 7.3 are considered. Two different lengths of IWRCs are analyzed for bending
problem, a 9mm and a 300mm lengths respectively. The IWRC diameter and cross
sectional area are 29.8mm and 380.48mm’. According to the standards, sheave
diameter should be minimum 30 times to the rope diameter. Sheave diameter is
computed as an 894mm with respect to the geometrical design parameters of the
IWRC. It is constructed as a rigid body with encastre boundary conditions. The
sheave is placed tangent to the IWRC at the mid point while constructing the bending

problem geometry.

Boundary conditions of the IWRC is defined as fixed end over the sheave where the
IWRC is tangent at the mid upper point of the sheave and free end boundary
condition over the other side is defined. The analysis over a 9mm IWRC is processed
for 0.2 second with two consecutive steps. An axial strain of £=0.008 is applied for
the first step of the analysis which will not extend beyond the elastic region of the
material properties defined in Table 7.3. At the second step, the displacement
boundary condition is defined and run for 0.1 second. Due to the length of the IWRC

is very small in the first numerical analysis, only 1mm displacement is considered.
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Due to the geometry of bending over a sheave problem and wire position within the
IWRC geometry, variation of axial force with respect to time shows differences
between wires within the IWRC. Numerical results are obtained in wire-by-wire
bases for reaction force and presented in Figure 7.40 for a 9mm IWRC that is bent
over a sheave. The variation of the total reaction force with respect to time is
presented in Figure 7.41. In the figures, only the results obtained at the second step
of the analysis are considered and presented. From the figures, it can be seen that,
while IWRC is displaced to bend over the sheave the value of reaction force

increases with a slope and takes steady state after 0.18 seconds.
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Figure 7.40: A 9mm IWRC bent over an 894mm diameter sheave.

Wit 9mm Right Lang Lay IWRC bent over a sheave
I I I I T T T I T T T T

—F— IWRC RLL Total

Axial Force - F [N]

X 1 1 | 1 1 1 i 1 1 1 | 1 1 1 1 1 1 1 |
32
01 0105 o ong 012 0% 013 0138 014 0145 015 0188 016 0188 017 0175 018 0188 019 0185 02

Time [s]

Figure 7.41: Variation of axial force with time for 9mm IWRC bent over sheave.
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On the second bending problem, a 300mm IWRC and an 894mm diameter sheave are
modeled and analyzed. An axial strain of € =2.4e-4 is applied to the free end of the
IWRC as shown in Figure 7.42. Secondly, 90mm displacement boundary condition is
applied to the free end of the IWRC, which bends the rope over the sheave as
depicted in Figure 7.42. Outer strands are labeled as S/,...,S6 and core strand is

labeled as C and shown in Figure 7.43.

Free end

Fixed endp Axial strain

applied

90mm
displacement
applied for
bending

(a) Fixed end of the IWRC (b) Free end of the IWRC
Figure 7.43: Strand numbers over the ends of an IWRC.

The analysis process is conducted using explicit scheme. Wire-by-wire results for

each strand are presented in Figure 7.44 and Figure 7.45.

154



Fg g spuens (DY M Ue Jo wa[qoxd Surpuaq J0J Judwade[dSIp [IImM UONBLIBA 9010J UOT)OBAI puels AqQ puens :pp°L 3N

[unw] Juswaoedsiq

09 S5 05 4 oy

s
e A

S PHQ -

S 2Ha
S IHQ

PSEHQ ~—+-- | |2

ySOHA -4--| 7|8+
S GHQ ~igrm

PSHO g | (22

39!

[wur] wawaoeid
Sy

sia

or

[N] 4 - 2104 uonoeay

25 SHA ~gp-
TS VPHO e
TS EHQ ~—b--
2s2Ha
S 1Ha
ZSHO i

0004

0002

000

000t

0005

0009

0002

0008

0006

0000+

0004+

0002+

000g+

000v 4

0005+

—0o0gt

—Jooozt

—ooost

€ puens sisAjeue aim Aq aam 774 OHMI

[ww] uewaoe|dsiq
05 St o

[N] 4 - @2104 uonoeay

ST Tr oo
opmeeee

R

o

== ¥
|

B e

LI e

L4111 L _L_L_

d— 44—+ -+ -k —F - —

1S SHQ ~onkpem
LS PHQ e
1S EHQ 4=
+S2Ha
IS HO
IS HO oigiens

000+

0002

0008

000%

0005

0009

0002

0008

0006

0000+

0004

—00ozt

— oooet

—00ovt

2 puesg sisAleue aim Aq a1m 179 OHMI

| puesS sisAfeue aim Aq aim 1Y OHMI

[N] 4 - 2104 uonoeay

[N] 4 - #2104 uoioeay



") pue 99 Cq spuens DY M U Jo woqoid Surpuaq I0J JUSUIIR[ASIP YIIm UOTIBIIBA 9010J UOTIORAI puens Aq puens :SpL 9Insrj

3

9¢1

[ww] uswaoedsig
St

-+ -8

--r--8

[E

\

-+ -

— k- g -

A %4 -

90104 uojoeay

IN] 4

- — 8

[ww] uswooed

sig
oy

0002

000y

0009

0008

[N] o - 82104 uonoeay

0000+

| .
95 9HQ -4~
9S GH -ntprm
95 PHQ e
9S EHQ ~~+--
9s2Ha

— |95 Ha —{ 000w
9SHO g

— 000zt

9 puesg sishleue aim Ag a1m T1H OHMI

S 9HO -4~
S GHO «m

[N] o - #2104 uonoeay



From these figures, it can be seen that the single helical core wires of each outer
strand are loaded higher than the nested helical wires wrapped around the core wires.
However, the load distribution over the core strand is regular with respect to the

outer strands within an IWRC.

Reaction force variations with respect to displacement for strands are compared in
Figure 7.46. It can be seen from the figure that the center strand has the maximum
reaction force. Strands S3;&S4, S,&Ss and S;&Sg behaves together and their positions
within the IWRC affects their load distribution. Figure 7.43-(a) and Figure 7.43-(b)
should be considered together with Figure 7.46. As an example, strands S; and S4 are
placed over the outer part of the IWRC with respect to sheave surface as it can be
seen from Figure 7.43-(a). According to the bending analysis results, it can be seen
from the Figure 7.46 that strand S; and S, are loaded more than the other strands and
their reaction force distributions are in similar fashion. Analogous conclusions can be
done for the other strands also. This shows that the compositions of the strands are
effecting the load distributions of the strands. The closer strands to the bending area
over the sheaves surface are loaded higher than the other strands during the bending

over the sheave process.

In Figure 7.47 the total reaction force variation with displacement of the IWRC is
presented. When the Figure 7.46 and Figure 7.47 are investigated together, reaction
forces over each strand are increased during the bending process until application of
the approximately 72mm displacement as depicted in Figure 7.42. Then the reaction
forces begin to decrease slightly after this point is passed. In the literature there is no
numerical result for bending over a sheave problem exists for the moment. For this
reason it is not possible to compare these results with the previously obtained neither
theoretical nor test results. However, the current numerical analysis encourages that
bending analysis could be carried over 3-D wire rope models with success. The
validity of the axial loading problems is analyzed previously, and the behavior of the
IWRC during the bending process shows valuable results for further researches on

this area.

von-Mises stress distribution over the IWRC is illustrated in Figure 7.48. From these
contour plots, it can be seen that stress distribution over the center wire strand is

much higher than the outer strands. This behavior can be explained as the
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superposition rule used at the theoretical analysis. The wire rope behavior can be

thought as a simple straight strand while bending process. The inner and outer

strands in an IWRC can be expressed as center straight wire and outer single helical

wires of a simple straight strand respectively. When the IWRC is bent over the

sheave by superposition rule, core stand is loaded more than the outer strands and

this situation can validate the stress distribution presented in Figure 7.48.

IWRC RLL Bending Strand by Strand results

x 10

5

1

Displacement [mm]

Reaction force variation with displacement comparison for strands on

the bending problem of a 300mm IWRC.

Figure 7.46

IWRC RLL Bending analysis

T

-=+-- FEA bending 90mm

x 10

8
75 —=—=——=

[N] o - 92104 uonoeay

Displacement [mm]

Variation of reaction force with displacement for a 300mm IWRC.

Figure 7.47
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Figure 7.48: von-Mises stress distribution of a 300mm IWRC bent over an
894mm diameter sheave.

7.7.1 Parallel solution of the IWRC bending over a sheave problem

Bending an IWRC over a sheave problem is solved using FEA. During the analysis,
a 300mm length of IWRC with C3D8R; 8-node linear brick, reduced integration with
hourglass control elements are used to mesh the solid model. Total number of 17005
nodes, 135324 elements, and 531078 DOF of variables are exists in the model. FEA
are conducted using the HPC Laboratory in Informatics Institute. CNO2 system is
used for the parallel FEA of the problems. System specifications are listed in Table
7.9. Problem solution with the given degrees of freedom (DOF) takes 2889 minutes
using one CPU. Because of this difficulty, parallelization of the proposed model is
taken into account. Parallelization of the bending over sheave problem using 1, 2, 4,

8, 16, and 32 CPU is done. Each trial is reported in Figure 7.49. It can be seen that
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parallelization of the wire rope model works up to 16 CPU. From the figure, it can be

concluded that increasing the number of CPU used beyond 16 CPU has no additional

improvements while solving the considered wire rope problem.

CPU time in minutes

Table 7.9: System specifications used for parallel FEA.

Orion host architecture

HP DL360 (thin) host group:

34 number of 2x3.4 GHz Intel Xeon
- 14 number of 2x2 GB RAM
- 20 number of 2x4 GB RAM

2 x 160 GB (IDE) HDD

HP DL380 (thin) host group:
10 number of 2x3.0 GHz Intel Xeon
2x4 GB RAM

HP DL580 (fat) host group:

41 number of 4x3.16 GHz Intel Xeon
- 36 number of 8x1 GB RAM
- 4 number of 8x2 GB RAM
- 1 number of 8x4 GB RAM

2 x 147 GB (SCSI) HDD

Total shared disk capacity: 27 TB

IWRC bending over a sheave

L | 1
8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 3,0 31 2 3} 34
Number of CPUs

w
&

Figure 7.49: CPU time variation with number of CPUs for parallelization of the

bending problem.
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7.8 A 6x19 Seale IWRC solid model and FEA results

A Seale IWRC is one of the complicated types of wire rope. Modeling and numerical
analysis of a 6x19 Seale IWRC is investigated. A cross section of the 6x19 Seale
IWRC is given in Figure 7.50. Wires are numbered as Wj;, i indices indicates strand
number while j indices indicates wire number starting from the center wire of a
strand to the outer wire of the same strand as presented in Figure 7.51. The
geometrical properties and wire lengths are presented in Table 7.10 and Table 7.11

respectively.

Strand #3

Strand #2

Strand #1

(c) Strand #3

Figure 7.51: Wire numbers over a cross section of the 6x19 Seale IWRC strands.
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Titles given in Table 7.10 and Table 7.11 are corresponds to the radius of strand
helix r,, radius of wire helix r,, angle of strand helix a;, angle of wire helix a,,, lay
length of strand Ly, lay length of wire L,, rotation of nested helix over a single helix

n, Length of strand S;, length of wire S,, respectively.

Table 7.10: Geometrical parameters of the 6x19 Seale IWRC.

S.No | Noof | Radius Ty O L, I O, L, n
Wires
| 1xW10 | 0.8014 0 0 0 0 0 0 0
6xWI11 | 0.7347 | 1.5361 | 1.2864 | 33.0228 0 0 0 0
5 1xW20 | 0.7042 | 4.2864 | 1.2362 | 77.4703 0 0 0 0
6xW21 | 0.6557 | 4.2864 | 1.2362 | 77.4703 | 1.3599 | 1.4149 | 54.3555 1.5089
1xW30 | 1.4557 | 11.4443 | 1.2259 | 200.1544 0 0 0 0
3 9xW31 | 0.7125 | 11.4443 | 1.2259 | 200.1544 | 2.1682 | 1.7849 | 62.6550 | -3.3944
9xW32 | 1.2682 | 11.4443 | 1.2259 | 200.1544 | 3.8741 | 1.9414 | 62.6551 | -3.3944

Table 7.11: Strand and wire lengths of the 6x19 Seale IWRC.

Strand Wires L S, Wire to rope
No length ratio

| W10 0 0 1
W11 33.0228  34.4043 1.0418

5 W20 77.4703  82.0183 1.0587
W21 77.4703  83.0255 1.0717

W30 200.1544 212.6789 1.0626

3 W31 200.1544 217.6483 1.0874
W32 200.1544 228.1653 1.1399

Wire paths for both single and nested helical wires in cross sectional and side views
are presented in Figure 7.52, Figure 7.53 and Figure 7.54 for the corresponding
strands of the 6x19 Seale IWRC.

x10° Seale IWRC Right Regular Lay Seale IWRC Right Regular Lay

Strand-1 Single helice
——Strand-2 Center single helice
——Strand-2 Nested helice
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(a) Helices in Strand #1 and #2, (b) Helices in Strand #3
Figure 7.52: 6x19 Seale IWRC wire centerline plots.
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Figure 7.53: 6x19 Seale IWRC helical wire centerlines for Strand #1 and #2.
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Figure 7.54: Paths of helical wire centerlines on 6x19 Seale IWRC for Strand #3.

Cross-sectional views of a 6x19 Seale IWRC for RRL and LRL types are presented
in Figure 7.55.
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(a) RRL (b) LRL
Figure 7.55: A 6x19 Seale IWRC cross sectional views.

For the FEA, one side of the 6x19 Seale IWRC is constraint with the encastre
boundary condition as a fixed end, a displacement boundary condition is applied to
the other side of the 6x19 Seale IWRC corresponding to a strain value of 0.015.
Variation of reaction force with strain results for strands #1, #2 and #3 in wire-by-

wire basis are presented in Figure 7.56, Figure 7.57 and Figure 7.58 respectively.
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Figure 7.56: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #1.
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Figure 7.57: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #2.
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Figure 7.58: Variation of reaction force with strain, 6x19 Seale IWRC, Strand #3.

It can be seen from the Figure 7.56 that core wire W) of strand #1 is loaded with the
maximum axial force, while outer wires in the same strand are loaded in similar
manner. For the strand #2, core wire is also loaded highly, but differs than the typical
behavior of the outer strands of the IWRC as presented in Figure 7.57. Wires in the
second layer of the Seale part which corresponds to the strand #3, are loaded with
higher reaction force corresponding to the wires placed in the third layer. Possible
reason for this difference is based on the wire radiuses and positions of second and

third layer wires with respect to the core wire of the Seale part as shown in strand #3.
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As a complicated wire rope model, a Seale IWRC is also shows similar behaviors
during axial loading problem. Various analyses can be conducted over the Seale

IWRC to see different behavior under dissimilar circumstances.

7.9 GUI implementations for wire rope model generation

Wire ropes needs special treatment to implement solid models because of the
complex constructional difficulties included to create each individual wire. For the
construction of a wire strand, only a simple straight wire and single helical wires are
needed. However, more complex rope models such as a Seale IWRC needs several
different type of wires within the model. For a Seale IWRC; straight wire, single
helical wire, double or nested helical wire are necessarily needed while rotation of a
wire with respect to the others should be considered within a strand. In addition, for
each wire within a wire rope, proposed solid modeling algorithm defined in Figure
6.9 needs to be followed in a systematic way. The first step of this algorithm consists
of geometry generation and ir becomes a little bit cumbersome issue for complex
wire ropes such as Seale IWRC. Model generation part of the analysis is considered
to be time consuming and two graphical user interfaces are developed. First one is
named as Wire Rope Skeleton (WRS) and the second one which is rely on the WRS
is called as Wire Rope Model & Mesh Generator (WRMMG). Brief introductions of

these two GUI implementations are given in the following parts.

7.9.1 Wire Rope Skeleton (WRS) GUI code

Seperately written code files corresponding to produce temporary nodes necessary to
build individual wire centerline are gothered on WRS GUI code. To generate one of
the wire centerline using this code one has to enter necessary wire radiuses and helix
pitch lengths of the wire rope geometry at the beginning of the process. User also
defines wire rope length. After these parameters are entered, user is responsible to
choose the correct wire and wire rope type using the popup menus. At present WRS
is designed to build wire rope geometry of a WS, an IWRC and a 6x19 Seale IWRC.
The user also can select lay types during this process. To complete the generation of
the wire centerline nodes user should select one of the wire rope types available. As a
result, a file is produced including the locations of the centerline of the wire

geometry in 3-D space. This file is imported using HyperMesh and the same
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procedure explained widely in the algorithm defined in Figure 6.9 is applied starting
from the solid part and mesh generation module. To this point, WRS GUI
implementation makes it easy to generate temporary nodes required to construct a
solid wire. It reduces time need for the geometry generation process and user

interferance requirement is removed.

The interfacing GUI code main screen is presented in Figure 7.59. It is coded to be
user friendly and produced wire centerline and Frenet-Serret triad is shown in its

main screen as depicted in Figure 7.60.

I wirekopettenuy i SRR LA BS A A . A sman
(146) Wire Strand (W8), (6x7) Independent Wire Rope Core (IWRC) ITY, Informatics Institute
and Seale IWRC Model Generation Code Comptiatuna i an el Enginaenng
| T T T T T T T T T
6x7 IWRC " ;

(1+6) WS ix19 Seale TWRC Wire Radius (mm)
(RS RN = | 1970
6x7 IWRC A= 186>

R(z)= [ | 1.600
6x19 Seale IWRC
_ R(2,2)= 1500
Predefined (WS+IWRC) rREM = 0
Predefined (Seale IWRC) R(3,2) = 0
R33)= 0
[Strand 1 Center Wire (CW) [
e Strand #1 Strand #2
0w 0 200 0 500 0 800 a0 [ws Rignt1ay H
Pitch Length R12 (mm) = 70 i =
I g (mm) Pitch L ength R31 (mm) n 0
Pitch Length R21 (mm) = 193 Pitch Length R32 (mmj = 0 Wire Rope Length (mm) = [ 70
Pitch Length R22 (mm) = 70 Pitch Length R33 (mm) = 0 Space (mm) = 0
P.S. - For Seale type IWRG pitch lengths defined above correspands to lay angles for each wire. 3 ) _
Il *helixpoint.inp* file which contains wire centerline data is stored in current working directory P zeiop tskaleton (RS Coryan 00 ch e Ry ZE BUONNES)

Figure 7.59: Wire Rope Skeleton GUI code user interface screen.
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Figure 7.60: Wire Rope Skeleton GUI screen after geometry generation.




7.9.2 Wire Rope Model and Mesh Generator (WRMMG) GUI code

WRMMG GUI code is based on the precedessor WRS GUI code. The geometry and
mesh generation process is done by the code automatically and a model file is
generated ready to use for analysis. User has the responsibility to define the
parameters of the wire rope to be modeled. A geometry generation process is
simulation screen shot is presented in Figure 7.61. A wire strand model generated by

using WRMMG is imported using Abaqus/CAE and presented in Figure 7.62.

With this new GUI code, any user interference during model and mesh generation
stages are prevented by the code. Different from the WRS, this GUI code does the
meshing of the wires and assembles them to generate the model automatically
without usage of mesh generator such as HyperMesh. From this point of view,
WRMMG GUI code solves the model generation problem with a practical approach.
Mesh refinement is also possible using this GUI code. In addition, WRMMG code
has improved with a tool, which gives user a very usefull data necessarily used at
production level. This tool computes the wire lengths required to produce a wire rope
according to the wire rope type. Depending of the wire type lengths of the wires are
computed. As an illustrative example, 1m length 6x19 Seale IWRC wire lengths are
computed with the prescribed radiuses and wire lengths are presented in Table 7.12.
The capability of defining wire lengths reduces the production time costs of the
producers. From this point of view, one can compute necessary lengths for each wire

at the production time and arrange the production process according to these datas.
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Figure 7.61: WRMMG GUI code screen shot.
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Figure 7.62: A wire strand model created using WRMMG GUI code.

Table 7.12: Wire length computation for a 1000m Seale IWRC.

Wire Wire Pitch Length [ Length of | Total Wire length
title radius (mm)| (degree) | Wire (m) needed (m)
CW 0.8014 0.00 1000.00 1000.00
H 0.7347, 73.71] 1041.84 6251.02)
OCW 0.7042 70.83] 1064.66 6387.99
ODH 0.6557, 81.07| 1083.95 39022.29
SOCW 1.4557 70.240 1062.57 6375.45
SDH1 0.7125 102.27| 1092.69 59005.11
SDH2 1.2682 111.23] 1156.26 62437.81

7.10 Contact analysis of a simple straight strand

Center wire radius of a wire strand is chosen sufficiently such that to prevent outer
wires touching each other. This is the general aim to decrease frictional effects due to
bending of the strand. Outer wires of a simple straight strand are in contact with only
the center wire at the initial position as shown in Figure 7.63. This phenomenon
produces a line of contact between the center and outer wires of a strand which is a
single helical contact line as presented in Figure 7.64. Using the design parameters
defined in Table 7.1, a wire strand solid model is created. Strand length is selected,
enough to guarantee contacts between center and outer wires of the strand, to be

quarter of the pitch length of the strand as 28.75mm. Boundary conditions are defined
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as in Figure 7.64; one side is constrained to be encastre (fixed end) while the other

side is constrained for rotation along the z-axes (free end).

Contact points
Angle of contact

Figure 7.63: Contact points over the cross sectional view of a straight strand.

Surface to surface contact interactions between center and six outer single helical
wires and between six helical wires are defined individually. During the numerical
FEA, tangential and normal contact properties are defined. Contact property of
tangential behavior with penalty frictional formulation is used with friction

coefficient of ¢ =0.115, defined as in Table 7.1.

Boundary Conditions i Sets of corresponding nodes:
for free end 4 A, 4
for . (4.4)
(4, 4)

Line of contact

Boundary Conditions \{i !

- Pl el : A
forfixedend ~—TT T T T -k=TY-__*
= L.x

u =0,u =0

u, =0,u,=0

u =0,u_=90

Figure 7.64: Helical line of contact and applied boundary conditions.
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Contact property of normal behavior with “hard contact” pressure-over closure is
defined as the second interaction property. During the numerical analysis, a strain of
£=0.015 is applied to the free end of the strand. FEA results for different contact
modes; without contact, with tangential contact and with tangential/normal contact
interactions are analyzed and results are presented in Figure 7.65. As it can be seen
from the Figure 7.65 that FEA result without the contact definitions gives slightly
lower axial force variation with strain. Tangential and normal contact interaction
definitions gives harmonious result with the test result of Utting&Jones by keeping
the elastic-plastic properties of the wire material. This behavior of the contact

interactions shows the validity of the proposed FEA model with contact definitions.

il Wire Strand, Right Lay

42 I I T 1 T T T T T T T T
=% =Theory - Costello : H A :
-+ #--Frictionless Elagtic FEA i : P

2| —B—Test - Unting : i i

— 4+ -\Without contact Elastic-Plastic FEA s i /'."
—+ —Tangential contact Elastic-Plastic FEA H i A

1.8|—{ — # - Tangential and normal contact Elastic-Plastic FEA |-+ -5rmsomsonsionson SO SR ST - SO 0 ’/ 3 -

Axial Force - F [N]

! I i \ i | ] I
0.001 0.002 0,003 0.004 0.005 0.006 0.007 0.008 0.009 001 0.011 0012 0.013 0014 0015

Strain of the strand - &

Figure 7.65: Axial force variation with strain comparison of a wire strand FEA
results; with and without contact interactions.

Line of contact between center and outer single helical wires can be easily seen from
the contour plot of the wires given in Figure 7.66. Fine mesh is used for the contact
analysis presented here to see the interactions between wires and line of contact
between core and outer wires shown in Figure 7.66. Total number of nodes used is
213690, while the total number of linear hexahedral elements of type C3D8R used is
196524, to model the contact behavior of the simple straight strand.
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Figure 7.66: Line of contact over center and outer helical wires.

Contact and deformation between wires over a strand cross section is shown in

Figure 7.67, which validates the preceding contact points shown in Figure 7.63.

Figure 7.67: Cross sectional view of a contacting area.

An exaggerated representation of Figure 7.67 is presented in Figure 7.68. From this
figure, deformations between wires within a wire strand can be clearly seen. There
are 477 numbers of elements present in each wire cross section and 196524 elements
exist in the whole model. Element length is defined to be 0.5mm for each wire along
the wire strand. Increasing the mesh size makes it possible to clearly understand the

deformations at the contact points.
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Figure 7.68: Cross sectional view of a contacting area.

Contact forces between wires are presented in Figure 7.69, contact pressure between
wires are given in Figure 7.70 and wire stresses for each wire are given in Figure
7.71. These figures give insight about wire-by-wire behavior of individual wire along

the wire strand.
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Figure 7.69: Contact force variation with strain of a simple straight strand.
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Figure 7.70: Contact pressure variation with strain of a simple straight strand.
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Figure 7.71: Stress variation with strain over wires of a simple straight strand
considering contact interactions.

Variation of center wire diameter and helical wire diameter with strain are given in
Figure 7.72. Diameters of the center and outer helical wires are reduced 1.16% and
0.92% respectively. This shows that while the wires are elongated, reduction occurs
in wire diameters due to axial loading. As the center wire is loaded with the higher

amount of total load, also the center wire diameter reduces more than the outer wires
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in a strand. Wire diameter reduction for center wire and helical wire is computed as

2.1% and 1.81% respectively and shown in Figure 7.73.
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Figure 7.72: Wire diameter change with strain for a wire strand.
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Figure 7.73: Wire diameter change with wire length change for a wire strand.

In this part of the analysis mesh sizes of the wire strand is increased and results for
finer meshes are compared with coarser meshes. A 28.75mm simple straight wire
strand model is used to investigate the importance of mesh size. Number of surface
elements used on the cross section of a wire within a wire strand is presented on the

first column of Table 7.13. Element lengths along a 28.75mm wire strand is defined
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in decreasing order; 1mm, 0.5mm and 0.25mm respectively to generate finer meshes.
von-Mises stress variation for strain value of 0.015 is compared for different mesh
sizes and approximated error values are computed and listed in Table 7.13. von-
Mises stress value for a wire strand with 0.25mm element length is accurately
computed and the approximated error value of 0.004% is obtained as a result which

shows the accuracy of the proposed model mesh size for FEA.

Table 7.13: Mesh sizes for a 28.75mm wire strand for various element lengths.

Element lengths along the wire strand
1mm 0.5mm 0.25mm
pumbergg Number of Number of Number of
elements on Approx. Approx. Approx.
wire Cross  otal Error (%) Total Error (%) Total Error (%)
. Elements “’| Elements /| Elements ?
section
32 6496 - 13184 - 26144 -
48 9744  2.1972 19776 1.0466 39216/ 0.0334
73 14819 0.8649 30076 0.4488 59641 0.0242
81 16443|  0.7625 33372 0.3688 66177 0.0101
104 21112  0.4926 42848 0.1082 84968 0.0043

Variation of von-Mises stress and axial force with strain for element sizes of 1mm,
0.5mm and 0.25mm presented in Figure 7.74 and Figure 7.75 respectively. Both von-
Mises stress distribution and axial force distribution converges while the quality of
the wire strand mesh increased from total of 6496 elements to 84968 elements and
approximated error value decreases to 2.19% to 0.0043% as presented in Table 7.13.
As a result, it is enough to increase mesh size up to 104 elements on the cross section
of a wire within a wire strand while the element length along the wire strand can be
selected as 0.25mm. Increasing the mesh quality more than these values will increase
the computational time and its benefit will be argued at that point. In addition, while
the length of wire strand increased the mesh size should be carefully considered to

control the computational difficulty of the problem for FEA.
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Figure 7.74: von-Mises stress variation with strain for a 28.75mm WS with

element length=1mm, 0.5mm and 0.25mm.
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Figure 7.75: Axial force variation with strain for a 28.75mm WS with element
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length=1mm, 0.5mm and 0.25mm.
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Comparison of von-Mises stress and axial force variation with strain for element
sizes of 1mm, 0.5mm and 0.25mm with defining number of 104 elements in each wire
cross section is presented in Figure 7.76 and Figure 7.77 respectively. As a result, it
can be easily seen that total 84968 elements with element size of 0.25mm gives

accurate results during the finite element analysis.
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Figure 7.76: Comparison of von-Mises stress variation with strain for a 28.75mm
WS with element lengths 1mm, 0.5mm and 0.25mm.
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Figure 7.77: Comparison of axial force variation with strain for a 28.75mm WS
with element lengths 1mm, 0.5mm and 0.25mm.

During the dynamic explicit FEA in Abaqus/CAE, process time is selected to be 1

second for the analysis. Solution time is increased to 3 and than 5 seconds
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respectively to see the effect of solution time to the results. It can be seen from

Figure 7.78 and Figure 7.79 both stress and force distributions are in good agreement

while the solution time is increased. As a result, it is enough to use 1 second as the

solution time for the dynamic explicit analysis.
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Figure 7.78: von-Mises stress variation with strain for dynamic explicit analysis

x10

with solution time 1, 3 and 5 seconds.
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Figure 7.79: Axial force variation with strain for dynamic explicit analysis with

solution time 1, 3 and 5 seconds.

7.11 Discussion on wire rope length effect

Because of the preceding proposed wire rope solid modeling method, it has been

mentioned that it is possible to conduct FE analysis over long wire ropes. In this part

Im to Sm length wire strands are modeled and analyzed. Contact interactions are
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defined over each individual wire as described before. Surface to surface contact
with tangential and normal properties are proposed. Material properties are selected

as in Table 7.1.

Surface-to-surface contact interactions between center and outer single helical wires,
between six individual helical wires are defined. During the numerical FEA,
tangential and normal contact properties are used. Contact property of tangential
behavior with penalty frictional formulation is used with friction coefficient of

L1 =0.115, defined as in Table 7.1. Contact property of normal behavior with “hard

contact” pressure-overclosure is defined as the second interaction property.
Boundary conditions for wire strands are defined to be encastre condition to one end
while the other side is constraint to rotate through z-axes. The cross sectional area of
the wire strand is computed as 77.77mm’ and an axial load of 140000N is applied to
the free end of the strand for the FEA. There are 32 elements in each wire cross
sections and element lengths are selected to be Smm along the wire strand. Number
of nodes and elements defined over the wire strands are presented in Table 7.14. The
analysis is conducted over 1m-5m wire strands using the prescribed boundary
conditions and loads to see the behavior of long wires under these conditions. Stress
distributions with distances for 1m to Sm strands are shown in Figure 7.80-Figure
7.84 respectively. It can be seen that stress is distributed along the wire strands and

high oscillations along the stress distribution can be seen from the figures.

von-Mises stress distribution is homogeneous along 1m length wire strand for
straight core wire and oscillates for outer helical wires along its length. von-Mises
stress distributions are in sinusoidal manner because of the helical structures of the
outer wires as shown in Figure 7.80. Similar stress distributions are presented for 2m-
4m wire strands during their analysis in Figure 7.81 through Figure 7.83. When the
4m and 5Sm wire strands are examined given in Figure 7.83 and Figure 7.84
respectively, it can be seen that wire stresses are increased from one side to the other
side stabilized at the end section. This behavior depends on the weight of the wire
strand. Both core wire and outer helical wires von-Mises stress distribution shows
similar behavior. It can be concluded from the present analysis that, to obtain correct
stress distribution over a long wire rope whole model of the problem should be
considered. In this way, necessary informations on any part of the wire rope can be

obtained with confidence.
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Table 7.14: Number of nodes and elements used in 1m-5m wire strand models.

Total number of elements
Length Total number of nodes linear hexahedral elements of
type C3D8R
1m 73,431 57,088
2m 120,745 94,016
3m 180,851 140,928
4m 241,203 188,032
Sm 301,309 234,944

This analysis scheme gives insight about the behavior of long wire strands under the
axial loading conditions. With this analysis, it has been shown that the proposed
scheme can be applied to the long wire ropes. In this aspect, it is possible to model
and analyze wire ropes without length limitation, which gives opportunity to

establish real application models for wire ropes.
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Figure 7.80: von-Mises stress variation with true distance for 1m wire strand.
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Figure 7.83: von-Mises stress variation with true distance for 4m wire strand.
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Figure 7.84: von-Mises stress variation with true distance for Sm wire strand.

Furthermore, when the stress distributions along 1m-5m length wire strands are
considered, high oscillations are encountered and it is confusing to understand the
general behavior of the wire strand clearly. To discard the oscillatory behavior, 1m
length wire strand is analyzed for different helix pitch lengths and finer mesh sizes

defined as in Table 7.15.
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Table 7.15: Number of nodes and elements used to construct 1m wire strand.

Helix pitch lengths
100mm 110mm 115mm
Num. of Num. of Num. of Num. of Num. of Num. of
Nodes Elements Nodes Elements Nodes Elements
1,773,273 1,528,594 1,741,257 1,497,610 1,738,329 1,495,090

The analysis of 1m wire strand is conducted with the design parameters of a simple
straight strand given in Table 7.1 and wire material properties is defined as in Table
7.3. Encastre boundary condition is applied on one side of the wire strand while the
other side is constraint not to rotate in x, y and z directions. Axial strain of £ =0.008
is applied to the free end of the strand. Variation of von-Mises stress with true
distance for 1m Steel wire strand for helix pitch lengths of 100mm, 110mm, and
115mm are presented in Figure 7.85 respectively. To plot the stress distributions
along the center and outer wires within strand nodes over the outer surfaces of
individual wire is used and a path is generated. Helical path over the wire strand is
defined and it is depicted at the bottom of Figure 7.85. These paths are used to probe
values along the wire strand. For 1m length wire strand it can be seen from the Figure
7.85 that stress distribution over the center wire is still oscillating but in a much
smoother manner while inner helical wire is oscillating with a period. To measure
this period distance values belongs to the pick points are noted as in Table 7.16 and
distances between consequtive pick points are computed. Average values for the
distances of the pick points are listed below each column. From these average values,
it can be seen that the oscillations are repeated approximately in every 106.5mm for
100mm pitch length wire strand, 116mm for 110mm pitch length wire strand and
120.14mm for 115mm pitch length wire strand respectively. Values of the oscillations

show similar behavior and correlated with the pitch lengths of the wire strands.
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Figure 7.85: Variation of von-Mises stress with distance for 1m steel wire strand.

Table 7.16: Oscillation measure for helical wire along 1m steel wire strand.

Pick points Distance Pick points Distance Pick points Distance
along 100mm | between pick | along 110mm | between pick | along 115mm | between pick
WS (mm) points (mm) WS (mm) points (mm) WS (mm) points (mm)
106 — 116 — 124 —
212 106 233 117 242 118
319 107 349 116 361 119
426 107 464 115 483 122
532 106 580 116 604 121
638 106 697 117 724 120
744 106 812 115 846 122
851 107 928 116 965 119
958 107 — — — —
dis’;:’lireaf,;m) 106.5 — 116.0 — 120.14
Percent (mm) 6.5% — 5.5% — 4.7%

A similar analysis for Im aluminum wire strand with 115mm pitch length is
investigated and the obtained results for wire strands with increased mesh sizes are

presented in Figure 7.86. Material properties of the aluminum alloy are obtained
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from [116]; density, elasticity and Poison’s ratio are defined as 2.7e-9, 70000 and

0.33 respectively.
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Figure 7.86: Variation of von-Mises stress with distance for 1m Aluminum wire
strand.

For 1m aluminum wire strand with 115mm pitch length, it has been obtained that
osciallation periods are increased extremely over the center straight wire. Hovewer
oscillation over the helical wire is again in periodical manner as in steel wire strand
and repeated in every 119.25mm. When compared with the steel wire strand with the
same pitch length as presented in Figure 7.87, oscillation periods and oscillation
distances are seen to be in good agreement for stell and aluminum wire strand

models.
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8. CONCLUSION

In this thesis, a more realistic 3-D solid wire rope model is generated successfully
and the finite element analysis is established by means of the generated models.
Mainly three solid wire rope models are studied; a simple straight wire strand (WS),
an independent wire rope core (IWRC) and a Seale IWRC. The main aims of this
study are to model a 3-D solid wire rope without length limitations by using the
parametric equations of the nested helical geometry, to analyze reaction force, stress
distribution in wire-by-wire basis under different loading conditions, to model, and
analyze bending problem defined over the solid wire rope models respectively. In
addition, contact behavior of wire ropes are modeled and analyzed. By using the

proposed modeling method, analysis of long wire ropes are conducted successifully.

At first using the rod theory deformations over a rod and relations with a helical
spring investigated. The angular velocity and curvatures acting over a wire is derived
using the loads and moments acting over a thin wire. Using the geometric
consideration of a simple straight strand general behavior of a strand is presented. An
analytical solution for axial loading problem is proved for the governing equilibrium
equations with Mapple in a different way. Afterward, general analytical formulation
of a wire rope is established using relation between axial loading and twisting

moment.

Equilibrium equations for only bending moment is defined and proved using Mapple.
Frictional effects over a strand are defined and static response of an IWRC is
investigated. The relation between a sheave and an IWRC diameter is investigated
for bending problem analytically. General theoretical formulation of an IWRC using

the homogenization method is derived and presented.

Wire rope geometry modeling is a complicated issue because of the complex nature
of the wires. (1+6) wire simple straight strand is composed by using a straight core
wire, which is wrapped by six outer single helical wires. To construct a more
complicated model, which is an IWRC, six strands are wrapped around a simple

straight wire strand in helical manner. However, these six strands have a more
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complex geometry then the simple straight strand. Core wires of these six strands are
single helical shaped solid wires while the outer wires are nested helical shaped solid
wires. That is why the outer nested helical wires need to be generated using special
treatment. Parametric representations of these outer nested helical wires have to be

used during the solid modeling process.

To make a realistic 3-D solid modeling of a complex wire strand/rope, it has been
determined that there are problems while modeling single/nested helical solid wires.
Definition of the nested helical wire and length limitation are encountered problems
at first glance. There is no ready to use tools for defining a nested helical wire
centerline in commercial CAD software’s. A computer code is written to define
control points of the centerline for each single and nested helical wires using Matlab.
During the simple straight wire strand generation, a single helical wire wraps a
straight wire. However, while an IWRC design, a nested helical wire is wrapped
around a single helical wire. The angle of rotation between nested helical wires and
single helical wires are in significant importance. This relation is carefully
established via the written Matlab code to produce nested helical wires. The code is
adapted to CAD software’s by using the available macro script languages. At the end
of this study, written codes are built to form two GUI codes called WRS and
WRMMG respectively.

Length limitation is occurred while CAD software’s used, because of the number of
control points necessary to define the helical path of the wires. In fact, when the
construction is done using the CAD software’s such as SolidWorks, it seems that
there is no problem with the construction of the wire geometry. When the wire
geometry is exported to the analysis software such as Abaqus/CAE, the
constructional problems are arised because of the control points used to define
splines. When the length of the wire rope is increased, numbers of control points
have to be increased also. However, analysis packages cannot capable of handling
sweep operation accurately using these increased number of control points. This
leads to unwanted and unusable geometrical shapes at the analysis stage. Meshing
problems appears and solid model of the wire rope cannot be established at the
beginning of the design stage. It has been concluded that the 3-D models constructed
by using only the CAD software’s capability, such as Solidworks or CATIA, can be

used for finite element analysis approximately at a maximum length of 300mm.

190



When the length of wire strand/rope is increased beyond this, aforementioned
problems are confronted. To overcome this difficulty two different procedures are
tried. First, a pitch length of a helical wire is created by using parametric
mathematical functions and splines. Then, number of revolutions has to be computed
to construct a wire in its intended length. At the end, numbers of revolutions times
pitch length of wires are connected by using tie constraints via the analysis tools.
This scheme is conducted to construct such a long wires necessary to build wire
ropes for the intended length. However, during the analysis stage it has been seen
that there are oscillations in the results at the connection points. For this reason, this

scheme is not adequate for the analysis.

Another procedure is investigated to overcome the length limitation problem. The
second method is proposed to construct wires long enough at the modeling stage by
using CAD software’s, such as SolidWorks, and then meshing the solid part by a
meshing tool, such as HyperMesh. By the way, using this procedure, wire ropes are
built only for limited lengths that can be analyzed correctly. When the wire rope
length is increased, meshing and analyzing problems are encountered again.

Therefore, this strategy is also failed and abandoned.

At the end, using the generated Matlab code, control nodes are found for the
centerline of the wires. Meanwhile three points are generated to construct a plane,
which is intended to be perpendicular to the centerline of each wire. This plane is
constructed by considering the Frenet-Serret triad. Control nodes for the centerline
and three points for defining Frenet-Serret plane are exported to the HyperMesh by
an interfacing code. A spline is created using the control nodes for defining the
centerline of the wire. In addition, a circle is generated using the three points on the
Frenet-Serret plane. This circle is sweeped along the centerline curve to produce
solid mesh of the wire. Furthermore, generated solid meshed wires are exported to a
file using Abaqus input file format. Each solid wire is imported in Abaqus/CAE to
build the final 3-D wire rope model. The main contribution made here is to construct
a solid wire rope model without length limitation and without any meshing problems.
Wire rope model produced by using this last scheme generates ready to use meshed
models, which can be used in finite element analysis. Using the proposed solid wire
rope modeling scheme, an IWRC model for different lay types such as right lang lay,

left lang lay, right regular lay and left regular lay can be constructed.
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The benefit of the proposed solid wire-modeling scheme enables ones to construct a
realistic 3-D solid model of a wire rope. This leads to analyze different types of wire
ropes under prescribed conditions by using finite element codes easily. During the
proposed modeling strategies, information about each wire within a wire rope can be
obtained by means of wire-by-wire basis. As well maximum stress distribution over

the wire strand/rope can be probed at the specified point for the specific wires.

In the numerical analysis chapter, finite element analyses are conducted on a simple
straight wire strand, an IWRC and a Seale IWRC respectively. First, a simple straight
wire strand model is analyzed under axial loading condition. Both frictionless and
frictional behaviors are investigated while changing the helix angles between 65° and
84°. Wire strand behaves like parallel rods, for the helix angle higher than 84°. It can
be seen that the change of the pitch length of the strand near to helix angle 65°

minimizes, while the pitch lengths are dramatically increased after 78°.

An 14mm length, (1+6) wires, simple straight strand is considered under axial
loading. Elastic frictionless and elastic-plastic frictional numerical models are
developed. An axial strain € of 0.015, was applied in increments of 0.001 in the
analysis. The frictionless behavior of both theory of Costello and FEA results are in
good agreement under axial loading conditions. The frictional plastic behavior of the
strand is compared with the test results of Utting&Jones [12,13] given in the
literature. Plastic behavior of the model is found to be in very good agreement with

the test results.

An 18mm length, (6x7) wire IWRC of a three dimensional numerical model is
considered. Elastic frictionless and elastic-plastic frictional numerical models are
developed for different lay lengths. Axial strain of £€=0.015 is applied to the free

end of the IWRC. Especially for the case of pitch length p, =70, very good

agreement is obtained between theory and FEA results.

Wire radial contraction is analyzed over an IWRC for Poisson’s ratio of v=0 and
v=0.3. From the obtained results, it can be concluded that the wire contraction plays a
very little role over the whole wire rope model analysis. Tensile forces obtained from
the proposed model have a good agreement with Costello’s results for both regular
lay and lang lay rope constructions. However, twisting moments gives better

agreement for regular lay construction than for the lang lay one when compared with
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Costello’s results. These analyses are conducted over a wire rope with the length of
9% pitch length. A wire-by-wire loading is investigated by the analysis of a right
lang lay IWRC. The theoretical result of Costello and FEA results shows good

agreement in wire-by-wire basis.

Using the same numerical models, forced torque is analyzed over the both simple
straight strand and IWRC. Harmonious results are found for both models. In
addition, elasto-plastic behaviors of the models are investigated under forced torque

conditions.

By using the proposed modeling procedure, a 300mm length IWRC is modeled for
each lay type and analyzed. In addition, the stress distributions over each lay type
and wire-by-wire based reaction forces over fixed end are analyzed. An axial strain
of 0.015 is applied to both an 18mm length and a 300mm length RLL IWRCs and
reaction forces are compared in wire-by-wire basis. The proposed model enables one
to analyze and see the differences of the reaction forces between small and long

length IWRC:s.

On the other hand, two different lengths of IWRCs are analyzed for bending
problem, a 9mm and a 300mm lengths respectively. IWRC diameter and cross
sectional area are 29.8mm and 380.48mm’ respectively. According to the test
standards, sheave diameter should be minimum 30 times the rope diameter. Sheave
diameter is computed as 894mm. An IWRC is axially loaded in first step and then
bent over the sheave with 90mm displacement boundary condition. Reaction forces
over each strand are increased during the bending process after 72mm displacement
is applied. Wire-by-wire basis analysis results shows that the core strand of the
IWRC holds much more loads while bending over a sheave. Meanwhile the strands
located near to the sheave are loaded more than the other strands beyond the wire
rope composition. This numerical analysis gives information about the wires and
strands, forced to bend over a sheave. In addition, using the benefits of the computer
technology, parallelization of the wire rope problem is accomplished, and it has been
seen that for a specific bending over a sheave problem, 16 CPUs is enough to

conduct analysis for parallel execution.

In this thesis basis of the modeling and numerical analyzes are discussed. A more

realistic 3-D solid wire rope model is developed. This study can be used as a guide to
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model and analyze wire ropes under different loading conditions. Analytical
solutions are available in the literature and can be used for comparison purposes.
Numerical analysis scheme is clearly defined and can be modeled easily without any
length limitation. Boundary conditions can be defined depending on the
requirements, and new problems can be defined for further research purposes. Using
the mentioned FEA procedures, simulations of special conditions or specific
arrangements can be constructed and analyzed. The proposed scheme is used to
model a more complex rope known as Seale IWNRC. Numerical results are presented

in wire-by-wire basis for each wire of a 6x19 Seale IWRC.

Wire rope modeling scheme defined during this study is used to develop two GUI
implementations. First one is called as WRS and it is used to generate control nodes
corresponding to the centerline of a specific wire. Using these control nodes, meshed
solid wire geometry is constructed by using HyperMesh. Wire rope model generation
process is completed by repeating the same procedure for each wire. Second one is
called as WRMMG and it is an improved form of the WRS. The main difference is
that the new GUI code generates the complete wire rope model automatically with a
stand-alone manner. No user interference is needed and meshed wire rope assembly
is generated readily with only defining the necessary wire parameters such as radius,
pitch lengths and wire rope length. In addition, it has been improved with a tool,
which computes wire lengths. This tool makes it easy to compute wire lengths

necessary to produce a wire rope and reduces production costs.

Using the benefits of the proposed numerical model, contact interactions are defined
and included in FEA analysis. Deformations between wires are obtained and wire
radius reduction is computed. During the contact analysis, accuracy of the model is
validated by using finer mesh definitions. The response of the problem, depending on
the number of elements used, is considered. As a result, it has been obtained that
accuracy of FEA results are improved by using finer meshes. It should be considered
that while mesh size is increased computational complexity of the problem is also
increased. During the dynamic explicit FEA in Abaqus/CAE, job processing time
effect is investigated. Job process time is applied to be 1, 3 and 5 seconds. The
analysis results are compared with each other and it has been obtained that 1 second
is enough to use as job processing time. It should be emphasized that increasing job-

processing time also increases the computational cost of the problem.
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In addition, a wire rope construction without length limitation is accomplished by
modeling and analyzing 1m-5m wire strands. von-Mises stress variation with true
distance is presented in number of figures. It has been seen that there are number of
oscillations along wire lengths, which confuses to understand the wire strand
behavior correctly. To solve this problem finer mesh sizes are used for the analysis of
long wire strands. Increasing the mesh size reduces the oscillations of the von-Mises
distribution along the wire to a meaningful size. As a result, it has been obtained that
the oscillation period is approximately 4.5%-6.5% larger than the helical wire pitch
length. The analysis is repeated using aluminum material on the same wire strand
model and the results are compared with steel wire rope. It has been concluded that
the wire rope model with both material behaves in a similar manner. Pitch lengths are
found to be effective over the stress oscillations along the wire strands. As a result,
one of the most important issues of wire rope modeling and analysis without length
limitation is accomplished accurately with obtaining detailed understanding of wire

strand behavior.

Future studies can be conducted in special applications of wire ropes such as; reverse
bending problems, cycling loading problems, fatigue analysis and wire rope fracture
condition during bending problems can be studied by using the proposed numerical
modeling method. Besides, a proposal for the service life expectancy can be studied
with numerical analysis. Wire rope accidents can be modeled by using the damage
processes as a future study. Wearing of wire ropes can also be another important
application area of the numerical analysis of wire ropes. Non-rotational wire rope
configuration can be investigated using finite element analysis as a future study also.
In addition, by using the proposed solid modeling scheme, structures including

nested helical shapes such as synthetic or nylon fibers can be modeled and analyzed.
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APPENDICES

APPENDIX A: Numerical Examples

A.1 Example 1

Consider a simple straight strand with the parameters given as;

R =2.6162 mm, R,=2.5654 mm, p,=247.65mm, E=19649752 N/mm*,

y=025, m,=6.

Outside wires are assumed not touching each other. Equation (4.42) yields,
=R +R,=51816 mm.
The helix angle «, is determined by equation (4.53); hence,

tana, = 24765 =7.606670 = o, =82.510641°.
27 *5.1816

The following values are then computed;

sin@, =0.991469, sin>a,=0.983011, cos@, =0.130342, cos>a,=0.016989,

sina,cosr,=0.129230 and 2 =2,019802.

2

The outside wires are checked to determine if they are touching each other. From the

equation (4.52) yields for m, =6 that,

(5] 5
RA\1+————22 = 256541+ ———= >~

sin® & 0.983011
=5.163946 mm < 5.181600 mm = R, +R,
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which shows that the outside wires do not touch each other. Now equations (4.89)
and (4.98) are prepared by letting the angle of twist per unit length of the strand
7, =0, which means that the strand is not allowed to rotate, and letting

& =¢e=0.003 as follows,

Aa,

0.003=& +——"2 Al
2 7.606670 A1)

and,

'B =57 = §2 —AC{ +V(R1§1+R2§2)
2 2%s 2 >

tan @, 7, tan &,
*
y ¢ _ A, +0.25 (2.6162*0.003+2.5654¢,) (A.2)
7.606670 2.5654*7.606670

If equation (A.1) and (A.2) are solved together for &, and Ac,, we found that
&, =0.002936 and Aex, =0.000483596. From the equations (4.101) and (4.103), the

values of R,Ax} and R,A7, can be computed as follows,

/ —2si RE+R 2
RZAK‘ZZRZMAa2+VR2( 1§1 252) COS a2

T a r,
— 15654 —2(0.99147)(0.13034) 0.00048359 +
5.1816
* %
0.25%2 5654 (0.103*0.003+0.101*0.002936) 0.016989
5.1816 5.1816
=-0.00005564,

1-2sin RS +R in @, cos &.
RZATZ = R2 #AO@ +VR2 ( 1§1 . 252) s erOS A
2 5 )

— D%
=2.5654 172%0.98301, 0.00048359 +
5.1816

0.25 (0.103*0.003+0.101*0.002936) (0.99147*0.13034)
' 5.1816 5.1816

=-0.0001838,
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Equations (4.104) through (4.116) yields,

G,
ER;

= %RzA K, = %* (~0.00005564) = -0.00004370,

H23 — 72: RzAfz — L
ER}  4(1+v) 4(140.25)

*(—=0.0001838) =—-0.00011549,

N; _p H cos’ a, R G, sina,cosa,
ER? “ER} 1, > ER’ a
.01
=2.5654*(-0.00011549) 0016989
5.1816
*
—2.5654%0.00004370 L0147 034 =0.000001825,
5.1816
L «
—2==7¢, = 7£*0.002936 = 0.00922505 ,
ER,
X, _, N sina,cosa, D cos’ a,
2 2
ER, ER; r, ER’ 1
.99147%*0.13034
=2.5654*0.000001825 0.9 0.13034)
5.1816
—2.5654%0.00922505 0016989 =-0.000077474,
5.1816
L:m Lsina + : cos .
2 2 2 2 2 2
ER, R, ER,

=6*[0.00922505%0.99147 +0.000001825*0.13034]
=0.054879,

M, H, . ; I, n N; H o
ER3 =m, SSlna2+Wcosa2+ Z—Cosaz— 2—Sln0!2
2

2 2 2 2 2 2

—0.00011549%*0.99147 +-0.00004370*0.13034 +

=6 5.1816 5.1816

0.00922505 * ————%*0.13034 - 0.000001825 * *0.99147
2.5654 2.5654

=0.013828,

Lz = 71, = £%0.003 = 0.00942478 ,
ER,
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M, P2 z

=— - Rz 2.6162%0=0,
ER® ™ 4(1+v)

T 414025

F = F,+F, = ER?*0.00942478 + ER,” *0.054879
=12675.65+70970.48 =83646.12 N,

M,=M,+M,=0+ER,>*0.013828 = 45877.83 Nimm .

Since the above equations are linear, a reduction or increase in the axial strain, with

7, =0, would correspond to a similar decrease or increase in the loads. For example,
with £=0.0015 and 7, =0, the total axial force would be 41813.3 N, and the total

axial moment would be 902.989 Nmm . This shows that while the strain & is
decreased by half, total axial force and total axial moment also decreased by half of

its value.
A.2 Example 2

The same strand used in example 1 is considered again. Let the strand subjected to an

axial load of 83646.12 N and not allowed to rotate (7, =0). Using the results of

example 1 and the equations (4.117)-(4.121) gives the following results,

F, _ 12675.65

PO =—5= ~=589.49 N/ mm?,
TR 71%2.6162
wO = 2M31 =0N/mm’, dueto M, =0 ,
1
T. .
oy 19988
TR, 7w*2.5654
AG,  4%144.
g0, =2 _ AT 1603 N 1 mm,
TR, 7m*2.5654
*
oy =2ty 273835 N .

IR m*2.5654°
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The shearing force can be computed by using equation (4.106) and the result from

example 1,

7’

LZ‘Z =0.000001825
ER

2

= N/ =0.000001825* ER,>
=0.000001825%1293204.63
=235N.

The maximum normal tensile stress can be computed by adding the axial stress

caused by the load 7, and the maximum normal stress due to the bending moment

G, such that,
0, + 0, =577+10.93=587.93 N / mm’,

and this stress occurs on the inside of an outer wire (due to the sign of G, ). These

results shows that the center wire is depend on a slightly greater stress than the outer

wires as shown in this example.
A.3 Example 3

In this example, the load deformation relation of the given simple straight strand is

computed for the strand defined in example 1, and using the computed values from

example 2. The constant values of C,...,C, is computed as defined in equations

(4.122) and (4.123). The cross sectional area of the given strand is,
A=Y 7R’ = 1*2.6162° +67%2.5654’ =145.5567 mm’
and R can be computed as,

R=2.6162+2%2.5654="7.747T mm .

Taking =0 and €=¢, using the results of example 2, equations given in (4.122)

and (4.123) can be computed to yield C, and C, as follows,

C = £ =0.975,
AEE€
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and

M
C,=——=0.167.
' ER’e

Now assume that & =¢£=0 and & =0.001. Using the equation (4.89) we can find,

Ac,
tana,’

§:§2+

0=0.001+- 2%
7.6067

Solving the equation above yields Aa, =—0.0076067 . From the equation (4.98),

B, =nt, = & Aa2+vM’
tana, r, tan @,
&
5.18167, = QOO +0.0076067+0.25M,
7.6067 5.1816*7.6067

which results in 7, =0.038012 and from equation (4.125), B = Rz, which results,
B =17.747%0.038012=0.011593.

Now equations (4.101), (4.103) through (4.116) can be solved and the following

results are obtained,

—2sina, cos &,

Aa, +VR, (Rlé:l +R2§2) cos’ a,
r r r

Dk *
=2.5654 2 0.1222138106‘0076067 *(-0.0076067)

(2.5654*0.001) 0.016989
5.1816 5.1816
— 12 .
RZATZ = R2 MA“Z +VR2 (ngl + szz) Sin a2 COS aZ
r r r,
¥
5.1816

(2.5654*0.001) 0.12923*0.0076067
5.1816 5.1816

R,AK, =R,

+0.25%2.5654 =0.00097442,

+0.25%2.5654
=0.0036460,
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—G23 =2 R,AK, =Z#(0.00097442) = 0.0007653,
ER} 4 4

H23 =~ RA7, = z
ER  4(1+v) 4(1+0.25)

*0.0036460 = 0.0022908 ,

N, _ Pt cos’ @, R G, sina,cosa,
2 2
ER) ER’ 1, ER) A
0.016989

5.1816
(0.99147%0.13034)

5.1816

=2.5654%0.0022908 *

—2.5654*0.0007653* =-0.00002970,

—— =7, =7%0.001=0.0031416,

X _gr N; sina,cosa, , T, cos’a,
ER, ’ER} r *ER}’ 1,
(0.99147%0.13034)

5.1816

—2.5654%0.0031416 « Q016989 _ —0.00002832,
5.1816

=-2.5654*0.00002970*

F, T, . N,
> =m, >sinQ, +—=-cosd,
ER, ER, ER,
=6* [0.003 1416*0.99147 —0.00002970 * 0.13034]
=0.018665,
M, H, . ; I, n N; o
T =m, ssin@, +——>5cosa, + S —-COS U, — s—sina,
ER, ER, ER, ER R, ER R,
0.0022908*0.99147 +0.0007653*0.13034 +
=6
0.0031416*m*0.13034+0.00002970*m*0.99147
2.5654 2.5654
=0.019546,
F
——=a, =1*%0=0,
ER/} 2
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M, b4 P4

=— = Rt *2.6162%0.038012 = 0.00246 ,
ER’ ~ 4(1+v)

T 4(1+0.25)
F=F+F,=ER’>*0+ER,”*0.018665=24138.34 N,
M, =M, +M, =8655.76+64844.25=73500.01 Nmm .

The general equations of the strand given in (4.122) and (4.123) can be organized to
find C, and C,,

F
E:CI*O_‘_CZIB’

e, = —007s,

T AEB

Mt
i C,*0+C,p,

M
= Cy= g = 006%4.

Finally, equations of the strand can be written as,

F o 0.975%6+0.0728% 3,
AE

M, =0.167*£+0.0694* 3 .

3=
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APPENDIX B: IWRC cross-sections for different lay types

(a) Right Lang Lay (RLL) (b) Left Lang Lay (LLL)

(c) Right Regular Lay (RRL) (d) Left Regular Lay (LRL)

Figure B.1: Cross-sectional view of IWRCs for different lay types.

213



(a) Right Lang Lay (RLL) (b) Left Lang Lay (LLL)
(c) Right Regular Lay (RRL) (d) Left Regular Lay (LRL)

Figure B.2: Wrapping nested helical wires; (a,b) without indentations, (c,d) with
indentations over a simple straight core strand.
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APPENDIX C: Matlab code to construct a nested helical wire

% This code creates the nested helix to construct an IWRC and three points perpendicular to the wire
centerline.
% All nodes are written in a text file.
clear all
format long
telyaricaplari(1) = 1.970 ; %'R1
telyaricaplari(2) = 1.865 ; %'R2
telyaricaplari(3) = 1.600 ; %'R3
telyaricaplari(4) = 1.500 ; %'R4
% Right Lang Lay IWRC
% oshw_sign=1; odhw_sign=1;
% Left Lang Lay IWRC
% oshw_sign=1; odhw_sign=-1;
% Right Regular Lay IWRC
% oshw_sign=-1; odhw_sign=-1;
% Left Regular Lay IWRC
oshw_sign=-1; odhw_sign=1;
boslukl = 0.05;
bosluk2 = 0.05;

nokta = 30;
p2=193; % ' pitch lengt
uzunluk = 300; % ' wire length

wirenumber= 6;

j = wirenumber-1;

% ' j=0,1,2,3,4,5 nested helix numbers

rs = telyaricaplari(1) + bosluk1 + 2 * telyaricaplari(2) + bosluk2 + 2 * telyaricaplari(4) + bosluk2 +
telyaricaplari(3);

%' rs = R1+2*R2+2*R4+R3

twO=0*pi/3;% "0 * PI/3 to 5¥PL/3

rw = telyaricaplari(4) + bosluk2 + telyaricaplari(3); % "rw = R4+R3

Qp'  stesteskstestesteste sfestesheste sfesose e st s st sttt st stk sfetokoskolok sk

alfas = atan(p2 / (2 * pi * 1s));% ' radian

Q' estesteshestestesteste e st s st sfese e sfe st s sheste sk she s st sfesishe st st sheste sk e seshestese sheste st skt ste stk seste skt st skt sttt skok

%' array length of nPtData is computed
%f st sk sk sfe st sk stk st sk st st steoske sk sk sk st sk skeosteoskeoske skt st sk ste st st sk skeosteosie sk sk sk sk sk steoske st stk sk st sk skeosteostototeototoskokokokokokolkok

%' rev =uzunluk / (2 * PI * rs * Tan(alfas))
rev = uzunluk/p2;

1i=0;

for ts=0:pi/nokta:(2 * rev * pi)
i=i+1;

end

rev =i/ (2 * nokta);

i=0;

for ts=0:pi/nokta:(2 * rev * pi)
i=i+1;

end

indis=3*i-1;
%f e sfe sk sfe st sk st sie sfe she sfe she sk she e sie sie st sfe sfe she she she sk siesie sfe sfe sfe sfe she s sfe sk siesie sfe sie she she sfe she skeske e sie ste sfe sfe she she sheosk sk steste sk sfesoskeskeokok
m=1;
i=1;
for ts=0:pi/nokta:(2 * rev * pi)
xyz(i) = oshw_sign*rs * cos(ts);
xyz(i + 1) = s * sin(ts);
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xyz(i+ 2) =rs * ts * tan(alfas);

i=i+3
end
%' 1w =0.025815*25.4+ 0.1 + 0.027725 *25.4
%' twO=0*PI/3 '0 * PI/3 to 5*PI/3
for k=j:j
twO=k * pi/3;% "0 * PI/3 to 5*PI/3
i=1;

for ts=0:pi/nokta:(2 * rev * pi)
tw =m * ts + twO;
% - sign show regular lay otherwise it is lang lay

% nPtData(i) = (oshw_sign*xyz(i) + odhw_sign*( rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) *

sin(alfas))) / 1000;
nPtData(i) = odhw_sign*(xyz(i) + ( rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas))) /

1000;

% nPtData(i) = (xyz(i) + rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas)) / 1000;
nPtData(i + 1) = (xyz(i + 1) + rw * cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas)) / 1000;
nPtData(i + 2) = (xyz(i + 2) - rw * sin(tw) * cos(alfas)) / 1000;
i=i+3;

end
i=i-3;

P3=[nPtData(i) nPtData(i+1) nPtData(i+2)];
end

n=max(size(nPtData));

=L

for i=1:3:n

xw(j)=nPtData(i);
yw(j)=nPtData(i+1);
zw(j)=nPtData(i+2);
=it

end

plot3(xw,yw,zw,'k', linewidth',2);

hold on

maxelsay=max(size(xw));

sirano=1:1:maxelsay;

Xyz=[sirano' xw' yw' zw'];

% file name for writing the nodes

fid = fopen('helixpoint.inp','w");

fprintf(fid,”*NODE\n');

for i=1:maxelsay

fprintf(fid,'%3d, %15.10f, %15.10f, %15.10f\n',sirano(i),xw(i),yw(i),zw(i));
end
%)******************************************************************************

% three points which are perpendicular to wire centerline
%7*************************************************************************

syms X y

twyedek=tw;

syms t tw

Yohelix=[-(xyz(i) + rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) * sin(alfas))/1000,(xyz(i + 1) + rw *
cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas))/1000,(xyz(i + 2) - rw * sin(tw) *
cos(alfas))/1000]

helix=[(oshw_sign*xyz(i) + odhw_sign*(rw * cos(tw) * cos(ts) - rw * sin(tw) * sin(ts) *
sin(alfas)))/1000,(xyz(i + 1) + rw * cos(tw) * sin(ts) + rw * sin(tw) * cos(ts) * sin(alfas))/1000,(xyz(i
+2) - rw * sin(tw) * cos(alfas))/1000]

dhelix = diff(helix)

ddhelix =diff(dhelix)

realdot = @(u, v) u*transpose(v)

veclength = @(v) sqrt(realdot(v,v))

binormal = cross(dhelix,ddhelix)/veclength(cross(dhelix,ddhelix))

normalvect= cross(binormal,dhelix)/veclength(cross(binormal,dhelix))
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tw=twyedek
bval=eval(binormal)
hval=eval(helix)
hval=P3
tval=eval(dhelix)
nval=eval(normalvect)
% sk skeoske sfeosk sk skeoskeo sk skeosie skeoskeoske sk sk skt skt skeskeo sk skeosie sk sk skeosie sk skt sk sie sk stk sk sk stk skeosiostke sk sk sk skoskoskoskoskok sk skoskok skolkekeskox
% normal binormal and tangent lines
grid on;
xlabel('x"); ylabel('y"); zlabel('z')
k=-5:0.1:5;
plot3(hval(1)+k*tval(1),hval(2)+k*tval(2),hval(3)+k*tval(3),'m"); % tangent line
tanpoints=[(hval(1)+k*tval(1))' (hval(2)+k*tval(2))' (hval(3)+k*tval(3))];
k=-0.01:0.001:0.01;
plot3(hval(1)+k*bval(1),hval(2)+k*bval(2),hval(3)+k*bval(3)); % binormal line
binormalpoints=[(hval(1)+k*bval(1))' (hval(2)+k*bval(2))' (hval(3)+k*bval(3))'];
k=-0.01:0.001:0.005;
plot3(hval(1)+k*nval(1),hval(2)+k*nval(2),hval(3)+k*nval(3),'g"); % normal line
normalpoints=[(hval(1)+k*nval(1))' (hval(2)+k*nval(2))' (hval(3)+k*nval(3))'];
% sk sk sk ske s sk ke sk ske sk sk sie sk ske sk sk ke sk ske sk skeosie sk sk sk skeosie sk skeoske skesie sk ske sk st sk sk ske sk sk sk sk she sk sk sheste sk ske st sk sk sk ske st skeoste skeske sk sk sk stk skt skeske sksk
k=0.01;
PO=[hval(1)+k*tval(1),hval(2)+k*tval(2),hval(3)+k*tval(3)]
Pl=[hval(1)+k*bval(1),hval(2)+k*bval(2),hval(3)+k*bval(3)]
P2=[hval(1)+k*nval(1),hval(2)+k*nval(2),hval(3)+k*nval(3)]
PO=tanpoints(5,:);
P=[P0;P2;P3]
plot3(P1(1),P1(2),P1(3),'ro', linewidth',1.5)
plot3(P2(1),P2(2),P2(3),'ys', linewidth',1.5)
plot3(P3(1),P3(2),P3(3),'g*", linewidth’,1.5)
sirano=[maxelsay+1;maxelsay+2;maxelsay+3];
xyz=[sirano PJ;
for i=1:3

fprintf(fid,'%3d, %15.10f, %15.10f, %15.10f\n',sirano(i),P(i,1),P(,2),P(1,3));
end
fprintf(fid, *****\n');
fclose(fid)
max(zw)*1000
return
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Figure D.3: A 300mm non-rotating end, total reaction force variation with strain

for RLL, LLL, RRL and LRL type IWRCs.
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Figure D.4: A 300mm non-rotating end, center strand reaction force variation with

strain for RLL, LLL, RRL and LRL type IWRCs.
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Figure D.5: A 300mm non-rotating end, outer strand, reaction force variation
with strain for RLL, LLL, RRL and LRL type IWRCs.
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