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Tezin Savunulduğu Tarih : 08 Haziran 2011
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COMPUTATIONAL BLOOD CLOTTING MODELLING WITH COUPLED
LATTICE BOLTZMANN AND DISCRETE ELEMENT METHODS

SUMMARY

One of the most important and complex physiologic system is the clotting mechanism.
Blood must flow freely through the blood vessels so as to sustain life. But if a blood
vessel is traumatized, the blood flow must be controlled by a mechanism to prevent flow
outside from the blood vessels. Thus, to stop the flow of blood, the blood must provide
a system that can be activated instantaneously and contained locally. This system is
called the clotting mechanism.

The clotting mechanism requires two interacting processes known as blood platelet
aggregation and coagulation. The aggregation of blood platelets is normally induced by
the connection of chemicals with the blood plasma from the damaged endothelium in a
traumatized blood vessel. When bleeding occurs, some of the chemical reactions change
the surface of the platelets to make them sticky. Sticky platelets are said to have become
activated. These activated platelets begin to aggregate at the wall of the blood vessel
around the site of bleeding, and in a shorter time they form a white clot around there.
The traumatized blood vessel also triggers a series of enzymatic reactions, leading to the
process of blood coagulation. The activated coagulation proteins engage in a cascade of
chemical reactions that finally produce a substance called fibrin. Fibrin can be thinkable
as a long, sticky string. Fibrin strands stick to the exposed endothelium, clumping
together and forming a web like complex of strands. Red blood cells become caught up
in the web, and a red clot forms. The strands of fibrin bind the blood cells together, and
tightened the clot to make it stable. A mature blood clot consists of platelets, red blood
cells and fibrin strands.

At the present study, we considered a coupled Lattice Boltzmann Method (LBM)
and Discrete Element Method (DEM) for the numerical modelling of the blood clot
formation. We considered LBM for blood plasma flow simulation and DEM for thrombi
formation due to cell aggregation/coagulation modelling.
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LATTICE BOLTZMANN VE DISCRETE ELEMENT YÖNTEMLERİ
KULLANILARAK KANIN PIHTILAŞMASININ MODELLENMESİ

ÖZET

Önemli ve karmaşık olan fizyolojik sistemlerden biride pıhtılaşma mekanizmasıdır.
Hayatımızı sürdürebilmemiz için kan damarlarımızda serbestçe akmalıdır. Peki ya
damarımızdan biri zedelenirse, kanın damarlarımız dışına akmasının engellenmesi için
bir mekanizma tarafından kontrol altına alınması gerekmektedir. Kanın akışını durdur-
mak için kan ani ve yerel olarak oluşan bir sistem meydana getirmelidir. Bu sisteme
pıhtılaşma mekanizması denilmektedir.

Pıhtılaşma mekanizması trombosit birikmesi ve koagülasyon olarak bilinen iki etk-
ileşimli sürece ihtiyaç duymaktadır. Zarar görmüş bir damar içerisindeki kanın zede-
lenen endotelyumdaki kimyasallarla temas etmesiyle trombositlerin birikmesi süreci
tetiklenmektedir. Kanama meydana geldiğinde, bazı kimyasal tepkimeler trombositlerin
yüzeylerinin yapışkan özelliği kazanmasına sebep olmaktadırlar. Yapışkan olan
trombositlere aktive olmuşta denilebilir. Aktive olmuş trombositler kanamanın meydana
geldiği alanın çevresinde birikmeye başlarlar ve kısa bir süre içerisinde beyaz pıhtı de-
nilen yapıyı oluştururlar. Ayrıca koagülasyon sürecinin başlaması için zarar gören
damar bir takım enzimatik tepkimeleri tetikler. Aktive olan koagülasyon proteinleri
fibrin denilen son ürünü elde edebilmek amacıyla kademeli bir kimyasal tepkimeler
zincirine girerler. Fibrinler uzun yapışkan şeritler olarak düşünülebilirler. Fibrin şeritleri
zarar gören endotel dokuya yapışırlar ve ağ şeklinde karmaşık bir yapı oluştururlar.
Alyuvarlar bu karmaşık ağ yapısına takılırlar ve böylece kırmızı pıhtı oluşur. Fibrin
şeritleri kan hücrelerinin birbirlerine sıkıca bağlanmasını sağlarlar ve daha stabil bir
pıhtı için onları iyice sıkıştırırlar. Olgunlaşan bir pıhtı, içerisinde trombosit, alyuvar ve
fibrin şeritlerini barındırır.

Bu çalışmada, kanın pıhtılaşmasının sayısal olarak modellenmesi için birleştirilmiş
Lattice Boltzmann (LBM) ve Discrete Element (DEM) yöntemlerinin kullanıl-
ması düşünülmüştür. Kan plazmasının akışı için LBM ve hücrelerin birikimiyle trombüs
oluşumu için DEM yöntemleri uygun görülmüştür.
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1. INTRODUCTION

Blood is a specialized bodily fluid that delivers necessary substances, such as nutrients

and oxygen, to the cells and transports waste products away from those same cells.

The 8% of human body weight consists of blood. Its average density is approximately

1060 kg/m3, very close to pure water’s density of 1000 kg/m3. The average adult has a

blood volume of approximately 5 liters. It is composed with plasma and several kinds

of cells; these formed elements of the blood are red blood cells (RBCs, erythrocytes),

white blood cells (leukocytes), and platelets (thrombocytes). If we think about the total

volume of the blood, the plasma constitutes about 54.3%, the red blood cells about 44%

and white cells about 0.7% of whole blood.

Whole blood (cells and plasma) shows non-Newtonian, viscoelastic fluid dynamics; its

flow properties are adapted to flow effectively through tiny capillary blood vessels with

less resistance than plasma by itself. In addition, if all human hemoglobin were free

in the plasma rather than being contained in RBCs, the circulatory fluid would be too

viscous for the cardiovascular system to function effectively.

As the existence of such a fluid being critical for life, blood must flow freely in our

vessels. But if a vessel is traumatized, the blood flow must be controlled by a mechanism

to prevent flow outside from the vessels. The clotting mechanism, which is named

as blood coagulation, is the system of controlling the flow of blood after the vascular

injuries. The phenomenon of coagulation is of enormous physiological importance. Its

purpose is to stop further hemorrhage. When bleeding occurs, the shed blood coagulates

and the bleeding vessels become plugged off by the clot. The retraction of the clot

compresses the ruptured vessels further and in this way bleeding is stopped. Also It

must be in a well regulated balance. Thus, the disorders of coagulation can lead to vital

complications such as an increased risk of bleeding (hemorrhage) or obstructive clotting

(thrombosis).

The current work presents a coupled Lattice Boltzmann (LBM) and Discrete Element

Method (DEM) approach for the numerical modelling of the blood clotting mechanism.
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The blood plasma flows are being modelled by the Lattice Boltzmann Method (LBM),

while cell aggregation/coagulation being modelled by the Discrete Element Method.

In addition to classical Finite Volume and Finite Element based Computational Fluid

Dynamics (CFD) solvers, the Lattice Boltzmann Method has emerged as a powerful

numerical technique for solving fluid dynamics. This method is suitable for the

simulation of fluid flow within time-varying and complicated computational boundary

geometries.

Discrete Element Method is one of the powerful numerical modeling method to model

the kinematic and dynamic behaviours of discontinuous bodies (like blood cells). These

bodies can interact with each other. Nowadays, Discrete Element Method can simulate

millions of particles on a single processor with progress of nearest neighbour sorting

algorithms.

Tightly coupled interactions of blood flow and Red Blood Cells (RBC) are modelled

by both LBM and DEM methods. Interactions are considered as particle (RBC) -

particle (RBC) and particle (RBC) - blood flow and simulated by coupled LBM and

DEM technique.
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2. LITERATURE REVIEW

Nowadays, because of the abnormalities of coagulation system, people are having

exceedingly important ailments. Therefore, the blood coagulation simulations are

considered as being challenging topics currently. Especially, in the years after the

millennium by using the accelerated computation power, blood coagulation simulations

began to take place with different techniques in the literature.

In the literature, some of the studies are dealing with the blood coagulation system

as a biochemical system. In these studies, the researchers are only focusing on to the

concentrations of zymogens and chemical reactions about the blood coagulation system.

As it can be seen from the studies [2–4] that, the mechanical effects of cardiovascular

system were ignored and only chemical reactions and concentrations of coagulation

factors were simulated in order to understand the blood coagulation system and its

abnormalities. In these simulations, they took the whole coagulation system as an

enzymatic activity. With this idea, they create some set of dynamic equations to present

the whole coagulation system. Each of dynamic equations represents a mass balance of

one of the chemicals involved [2]. Though these simulations, they can research effects of

coagulation factors deficiencies but they did not mention any of the mechanical effects

of blood flow or structures of vessels. So it can be concluded that, the whole blood

coagulation can not be simulated only as a biochemical system.

On the other hand, some researchers simulating the blood coagulation system as a

single blood flow problem. For these type of studies [5, 6], the coagulation system

triggered from mechanical conditions and growing mechanism is fed by the mechanical

conditions of the blood flow. In these studies, they assumed that the blood was

only consisted of plasma. In the Bernsdorf’s study, to simulate the clotting process

numerically, they extended the Lattice Boltzmann Method in two ways: (1) an advection

diffusion scheme for a passive scalar was applied in order to estimate the residence

time of the fluid (blood), and (2) a solidification procedure depending on the age of the

fluid [5]. In our view, blood coagulation system can not be simulated as a single fluid

flow condition problem without the interactions of the blood cells.
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Due to the disadvantages of separated biochemical and biomechanical blood coagula-

tion simulations, we research literature for tightly coupled models. In the literature,

there are less number of studies on the simulation of blood coagulation in both

biochemical and biomechanical perspective. So, the main objective of our study is to

couple the biochemical effects with biomechanical conditions for the simulation of the

blood coagulation system but in this study we only created a base system for aggregation

of blood cells.

To achieve our goal, firstly we must develop a generic simulation for the flow of blood

plasma and blood cells together. In this study, the center of the research is the simulation

of blood coagulation through the perspective of plasma flow including the blood cells.

For the flow simulation of the blood plasma we used Lattice Boltzmann Method where

as for the collisions of the blood cells inside the plasma, Discrete Element Method was

used.

Lattice Boltzmann Method is a new alternative approach to classical Computational

Fluid Dynamics simulations. Due to its particulate nature, it has some advantages on

the parallelization of an algorithm. So, in the near future, the interest on this method is

going to be fairly increased. There are many studies about Lattice Boltzmann method

but especially Sukop’s [7] and Wagner’s [8] books are better references for the basics

of this technique. Also, for the simulations of complex flow with LBM, Bernsdorf’s

thesis [9] can be a good reference.

On the other hand, Discrete Element Method is becoming widely accepted as an

effective method of addressing engineering problems in granular and discontinuous

materials. It was pioneered and developed by P.A. Cundall [10]. Nowadays, many

researchers are using and developing this technique. In addition to Cundall’s studies,

we have benefited from the Zienkiewicz’s [11] and Munjiza’s [12] books. In the

Munjiza’s book, the main subject is about the combined finite-discrete element method.

The combined finite-discrete element method is focusing on the problems which are

involving transient dynamics of systems comprising a large number of deformable

bodies that interact with each other [12]. Despite this, for now we used rigid discrete

particles that interact with each other.

In order to coupling these two powerful method (LBM and DEM), the literature was

searched deeply. There are very limited numbers of studies about coupling the LBM
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with DEM. In the literature, the most important reference is the Feng’s study [13].

This study presents essential numerical procedures in the context of the coupled Lattice

Boltzmann Method (LBM) and Discrete Element Method (DEM) solution strategy for

the simulation of particle transport in turbulent fluid flows. In Feng’s study, the key

computational issues involved are (1) the standard LBM formulation for the solution of

incompressible fluid flows, (2) the incorporation of large eddy simulation (LES)-based

turbulence models in the LBM equations for turbulent flows, (3) the computation of

hydrodynamic interaction forces of the fluid and moving particles; and (4) the DEM

modelling of the interaction between solid particles.

In our study, we created a simulation platform about particle transport in fluid flows

through the enlightenment by Feng’s study [13]. As we discussed above, the main

objective of our study is simulating the both biochemical and biomechanical effects over

the blood coagulation system. So we modelled the tightly coupled interactions of blood

flow and blood cells. In an arterial flow for the aggregation of the blood cells, we created

a clotting force which can take both zymases’ and flow effects together. When the blood

cells entered the area of the aggregation, they were influenced by a central force. The

blood cells, which the effect of fluid flow force is lower than the clotting force, were

aggregated at the clotting area. As a result, we constructed a simulation platform, which

can take both influences of the biochemical and biomechanical conditions over the blood

coagulation system by the help of clotting force.
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3. BLOOD COAGULATION

3.1 Coagulation Process

Blood coagulation is a very complex process of the cardiovascular system. It is the

important part of haemostasis (the preventing process of bleeding from a damaged

vessel), wherein a damaged blood vessel wall is covered by the blood cells and fibrin

containing clot to stop bleeding and begin repair of the damaged vessel. Also disorders

of blood coagulation can cause to an increased risk of bleeding (hemorrhage) or

obstructive clotting (thrombosis).

Blood coagulation begins almost instantly after an injury of the blood vessel’s

endothelium (lining of the vessel). When the tissue factor (TF) contact with the blood

through the injury, it initiates changes of blood platelets and the fibrinogen protein,

which is a clotting factor. Triggered platelets immediately form a plug at the injury area;

this is called primary haemostasis. Then secondary haemostasis occurs simultaneously:

The coagulation factors or clotting factors, respond in a complex cascade to form fibrin

strands from fibrinogen, which strengthen the platelet plug with catching the other blood

cells especially the red blood cells (see Figure 3.1).

Figure 3.1: The Coagulation Schematic.
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3.1.1 Platelet activation

For the activation of fibrinogens, firstly platelets must be activated. With the damage

of blood vessel’s wall, subendothelium proteins exposes. Under the endothelium, the

most known protein is von Willebrand factor (vWF). Von Willebrand factor is a protein,

which is secreted by healthy endothelium. It is main duty is forming a layer between

the endothelium and underlying basement membrane. With the damage of endothelium,

the normally isolated, underlying vWF activates Factor VIII, collagen, and other clotting

factors. With the vWF’s triger, platelets bind to collagen with surface collagen specific

glycoprotein Ia/IIa receptors. This adhesion is strengthened with the help of von

Willebrand factor, which forms additional links between the collagen fibrils and the

platelets glycoprotein Ib/IX/V. Through these adhesions, the platelets become active.

After the activation of platelets, the contents of stored granules release into the blood

plasma. The granules include ADP, platelet-activating factor (PAF), platelet factor

4, thromboxane A2 (TXA2), serotonin and vWF, which, in turn, activate additional

platelets. Because of the increased calcium concentration in the platelets’ cytosol,

Gq-linked protein receptor cascade is become active. Also the calcium activates protein

kinase C, which, in turn, activates PLA2 (phospholipase A2). Then PLA2 modifies

the integrin membrane glycoprotein IIb/IIIa, increasing its affinity to bind fibrinogen.

Activated platelets’ shapes change from spherical to stellate. And the glycoprotein

IIb/IIIa cross links with the fibrinogen for aggregation of adjacent platelets.

3.1.2 Coagulation cascade

The coagulation cascade has two pathways which lead to fibrin formation. These

pathways are extrinsic pathway (tissue factor pathway), and intrinsic pathway (contact

activation pathway). At the end of the process these two pathways joined to a common

pathway. The pathways are a series of reactions, in which a zymogen of a serine

protease and its glycoprotein cofactor are activated to become active components that

then catalyze the next reaction in the cascade. As a result of these series of reactions

cross-linked fibrins are processed (see Figure 3.2). In generally the coagulation factors

are indicated by Roman numerals. In order to specify the activated forms of factors, a

lowercase "a" appended at the end of Roman numerals.
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Figure 3.2: The Coagulation Cascade.

In generally, coagulation factors are serine proteases, but there are some exceptions. As

an example, Factor XIII is a transglutaminase and FVIII and FV are glycoproteins. And

in the circulation the coagulation factors stand as inactive zymogens. The coagulation

cascade is classically divided into three pathways. The extrinsic and intrinsic pathways

both activate the "final common pathway" of factor X, thrombin and fibrin.

3.1.2.1 Extrinsic pathway (Tissue factor pathway)

The main role of the extrinsic pathway (Tissue factor pathway) is generating a thrombin

burst, a process by which thrombin is released instantaneously. The thrombin is the

most important enzyme of the coagulation in terms of its feedback activation roles. On

the other hand, the FVIIa factor is higher amount of than any other activated coagulation

factor in the circulation.

• Following damage to the blood vessel, FVII leaves the circulation and comes into

contact with tissue factor (TF) expressed on tissue-factor-bearing cells (stromal

fibroblasts and leukocytes), forming an activated complex (TF-FVIIa).

• TF-FVIIa activates FIX and FX.

• FVII is itself activated by thrombin, FXIa, FXII and FXa.

9



• The activation of FXa by TF-FVIIa is almost immediately inhibited by tissue factor

pathway inhibitor (TFPI).

• FXa and its co-factor FVa form the prothrombinase complex, which activates

prothrombin to thrombin.

• Thrombin then activates other components of the coagulation cascade, including FV

and FVIII (which activates FXI, which, in turn, activates FIX), and activates and

releases FVIII from being bound to vWF.

• FVIIIa is the co-factor of FIXa, and together they form the "tenase" complex, which

activates FX; and so the cycle continues.

3.1.2.2 Intrinsic pathway (Contact activation pathway)

The intrinsic pathway starts with the formation of primary complex on collagen by

high-molecular-weight kininogen (HMWK), prekallikrein, and FXII. Prekallikrein is

converted to kallikrein and FXII activated to FXIIa. FXIIa converts FXI into FXIa.

Factor XIa activates FIX, which with FVIIIa form the tenase complex, which activates

FX to FXa. The intrinsic pathway has in initiating clot formation can be illustrated by

the fact who has deficiencies of HMWK, FXII and prekallikrein do not have a bleeding

disorder.

3.1.2.3 Final common pathway

The thrombin’s primary role is the activation of fibrinogen to fibrin, which is building

block of a hemostatic plug. Besides, it activates Factor XIII, which forms covalent bonds

that crosslink the fibrin polymers that form from activated monomers and their inhibitor

protein C, and also it activates Factors VIII and V. Following activation by the intrinsic

or extrinsic pathways, for forming the tenase complex by the continued activation of

FVIII and FIX, the coagulation cascade is maintained in a prothrombotic state until it is

down regulated by the anticoagulant pathways.

3.2 Blood Clot

At the coagulation cascades some chain reactions occurs and platelets and fibrinogens

activated. The active platelets become a sticky structure. At the site of injury, platelets

change their shapes from round to spiny and release proteins and other substances that
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help catch more platelets and clotting proteins. By the help of fibrin strands they catch

other blood cells, especially red blood cells. Also with the red blood cells, the blood

clot’s color changes to red. In a fully developed blood clot, it has mostly red blood cells

in its structure.

The series of reactions that cause platelets and proteins to create blood clots are balanced

by other reactions that stop the clotting process and dissolve clots after the blood vessel

has repaired. If this control system fails, blood vessel injuries can trigger clotting

throughout the body. The tendency to clot too much is called hypercoagulation. This

blood clots inside the blood vessels can cause to vital complications.

Figure 3.3: Blood Clot Formation.

3.3 Clotting Disorders

Clotting disorders is a term used to describe a group of conditions often repeated

and over an extended period of time, for excessive clotting. There is an increased

tendency on the clotting disorders. These disorders include inherited conditions such

as protein C deficiency, protein S deficiency, Factor V Leiden, anti-thrombin deficiency

and prothrombin 20210A mutations.

Thrombophilia affects too many people around the world. The most common inherited

abnormality in this class is Factor V Leiden. It affects approximately 5% to 7% of the

Caucasian population of European descent in the United States [14].

People who experience episodes of thrombosis, either as a repeated event or as an

isolated event, may be affected with a thrombophilic disorder. There are people who
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have inherited the gene, who have an increased tendency for thrombosis, but may never

personally experience a blood clot. Many people can have a thrombophilic condition

and never experience a thrombosis.

3.3.1 Thrombosis

Thrombosis is a medical term which is the formation of a blood clot inside the blood

vessel. The clot inside the blood vessel named as thrombus and with this blood clot

blood vessel can be plugged (see Figure 3.4). Thrombus can form in both arteries and

veins of the cardiovascular system. If the formation of a thrombus within a vein, it is

named as venous thrombosis. If the formation of a thrombus within an artery, it is named

as arterial thrombosis. Venous thrombosis has several types like deep vein thrombosis,

portal vein thrombosis, renal vein thrombosis etc.

Thrombus formation, which is caused by coagulation of the blood, can be occurred

anywhere inside the cardiovascular system. If thrombus detaches itself and begins to

travel through the body, which is named as embolus, it can plug very important vessels.

When the thrombus occurs in one of the two main arteries of the heart, this condition

can induce to heart attack.

Figure 3.4: Thrombosis.

There are several causes of thrombosis. The most known are Virchows triad. These

are endothelial injury, hemodynamic changes and hypercoagulability. The inner layer

of the blood vessel (endothelium) can be damaged because of the high shear stress or

hypertension. Moreover hemodynamic changes like stasis, varicose, mitral stenosis,

and turbulence veins can cause thrombosis. Furthermore the hypercoagulability is the

most important reason for the thrombosis disease. Hypercoagulability is a genetic
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disorder about abnormality in the system of coagulation. This genetic disorder the

patient’s clotting factors can cause the formation of thrombus inside the blood vessel

unnecessarily. Besides all of these, lifestyle habits such as smoking, alcohol, and obesity

can serve as contributing reasons.
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4. BLOOD FLOW AND BLOOD CELLS

4.1 Blood Flow

Blood is a specialised fluid which transports nutrients, oxygen and waste products

through the network of vessels. Basically it is consists of plasma and blood

cells. In large vessels (diameter greater than 1 mm) blood behaves can be accepted

as a Newtonian fluid. However in smaller vessels, like capillaries, the blood

behaviour is non-Newtonian. In the Türkeri’s study, the differences of Newtonian

and non-Newtonian fluid affects on the blood plasma simulations can be found [15].

However, in this study, we modelled the blood plasma as a Newtonian fluid.

Through the cardiovascular system, the blood flow is driven by the pumping of the

heart. So, the pressure inside the arteries can be different from the veins. In our study,

simulations was done with the consideration of an artery.

The red blood cells (RBC) have a very high amount in the blood. They are

approximately 45% of blood by volume. Because of their semisolid structure and

amount, they increase the viscosity of blood and change the behavior of the fluid.

The blood plasma, which is the only fluid part of the blood, makes up about 54.3% of the

total blood volume. Also its density is between 1000 kg/m3 and 1100 kg/m3 depends

only on temperature. The Reynolds number is typically on the order of 100 to 1000 for

a medium-sized artery.

In our simulations, we used Poiseuille flow for modeling blood flow (see Figure 4.1).

The velocity is initialized to zero, and converges only slowly to the expected parabola

[16].

With the consideration of all above, we modeled blood flow with Lattice Boltzmann

Method. In this study we used 2D LBM techniques. The computational domain is

spatially discretized by the lattices, and an extremely regular model is used for the

motion of the particles in Lattice Boltzmann Method. The nodes of the lattice confine

the positions of particles. In our 2D model momentum change modelled with continuum
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Figure 4.1: Poiseuille flow in a circular tube.

of velocity directions and magnitudes and with changing particle mass. These variables

are described as 8 directions, 3 magnitudes and 1 particle mass. Figure 4.2 shows the

cartesian lattice and the velocities. The ei where i = 0,1, ...,8 is a direction index and

e0 = 0 represents particles at rest. This type of model is D2Q9 model (see Figure 4.2). It

is a 2 dimensional and 9 directional model. This discretization scheme was presented by

Qian et al. [17] and now it is in common use. Velocities and momentums are effectively

equivalent because of the uniform particle mass. (see Sukop et al. [7])

Figure 4.2: D2Q9 lattice and velocities.

The most common velocity indexing scheme is 1 lattice unit per time step (1luts−1)

for e1 through e4 and
√

2luts−1 for e5 through e8. If their x and y components either

0 or ± 1, these velocities are exceptionally suitable. For streaming and collision of

the particles via the distribution function, we used the BGK (Bhatnagar-Gross-Krook)

approximation in our simulations.
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4.2 Blood Cells

Basically blood is consist of plasma and blood cells that float in it. Also blood contains

clotting factors, proteins and waste products. In vertebrates, blood is suspended in a

liquid called plasma. The amount of plasma is 54.3% of whole blood. In the blood

plasma it contains proteins, mineral ions, hormones, glucose, carbon dioxide and blood

cells. The blood cells are mainly red blood cells (RBC)and white blood cells, including

leukocytes and platelets. In vertebrates, the most abundant cell is RBC. Red blood cell’s

main duty is the transportation of oxygen to the cells with hemoglobin. In contrast,

carbon dioxide is almost entirely transported extracellularly dissolved in plasma as

bicarbonate ion.

All of the body tissues are dependent upon oxygen from red blood cells. Because of this

dependency if the blood flow is cut off, the body tissues dies. So the transformation of

oxygen must be never stopped. In the red blood cells of all vertebrates, hemoglobin is

the iron containing oxygen transport metalloprotein. Also hemoglobin makes up 97% of

the dry weight of red blood cells, and 35% of the total weight, including water. Because

of this feature of RBC, they have a semisolid structure.

Figure 4.3: Shape of Red Blood Cells.
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Typical human RBC has a disk diameter of 6− 8 µm and a thickness of 2 µm (see

Figure 4.3). These cells have a volume of about 90 f L with a surface of about 136 µm2,

and can swell up to a sphere shape containing 150 f L, without membrane distension.

Approximately an adult woman have about 4 to 5 million RBCs per microliter (cubic

millimeter) of blood and an adult man about 5 to 6 million; people living at high altitudes

with low oxygen tension will have more.

Due to the RBCs are the most common cells in the blood, mostly we used RBCs for

aggregation in our blood coagulation simulations.

Also as a type of blood cell, white blood cells (WBC) are important of the body defence

system against to foreign substance. The number of white blood cells is related to

foreign substance but normally they are between 4 x 109 and 1.1 x 1010 in a liter of

blood. For a healthy adult WBCs are approximately 0.7% of whole blood.

Another important blood cell is the platelet. They are irregularly-shaped and colorless

bodies. Because of their sticky surface for the coagulation system platelets have a very

important mission. When bleeding from a wound suddenly occurs, the platelets gather

at the injured area and attempt to block the blood flow immediately.

If the amount of platelets is too low, irrepressible bleeding can occur. However, if

the amount of platelets is too high, blood clots can be formed inside the blood vessel

(thrombosis), which may obstruct blood vessels and result in such events as a stroke,

pulmonary embolism, myocardial infarction or the blockage of blood vessels to other

parts of the body, such as arms or legs.

Figure 4.4: Blood Cells Differentiation Chart.
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In our coagulation simulations, we modelled blood cells with discrete element method.

In Discrete Element Method, the forces acting on the discontinuous bodies (particles

like blood cells) are summed and the equations of motion of Newton and Euler are

integrated to obtain the velocity and the position of the particles in the next time step.

In this study, the simulations were created with red blood cells. Also in coagulation

process, because of their percentages in the whole blood, the clot substance consist of

red blood cells (see Figure 4.5).

Figure 4.5: Red blood cells in a web of fibrin.

19



20



5. THE SIMULATION OF THROMBUS FORMATION

Thrombosis is a medical term which is the formation of a blood clot inside the

blood vessel. With this clot the blood vessel can be plugged and caused to vital

complications. Because of the vital importance of this disease, thrombosis must be

understood perfectly. So in this study, we get this diseases as a basis of our blood

coagulation simulations.

The thrombus formation simulation presents a coupled Lattice Boltzmann and Discrete

Element approach for the numerical modeling of the thrombus formation. For the

flow simulation of the blood plasma we used Lattice Boltzmann Method where as for

the collisions and aggregation of the blood cells inside the plasma, Discrete Element

Method was used.

Simulation based on Newtonian blood plasma flow and the flow was assumed as 2D

Poiseuille flow. Our simulation domain was 400lu x 100lu (lu is the lattice unit and

can be accepted as millimeter in this simulation), the fluid density was 1060kg/m3,

Reynolds number was 1000 and for Lattice Boltzmann Method the time step was ∆t =

0.0001sec. At the end of the domain we have a fattycore area, which the aggregation

will start there (see Fig. 5.1).

Red Blood Cells were simulated with discrete element method using viscoelastic

material model for the collisions of RBCs. Also the RBCs were modeled to resist shear

flow and strain linearly with time when a stress is applied with viscoelasticity.

At this simulation, the discrete element method’s time step was ∆t = 4.76e− 6sec,

and RBCs’ normal restitution coefficient en = 0.3 and tangential restitution coefficient

es = 0.3. These parameters were used for calculating viscoelastic material’s elastic and

viscous coefficients. The friction angle was taken as 35rad. For simplicity, we used

circle particles for modeling the RBCs. The particles’ mass were taken as 1e−17kg.

For aggregation we used central force field technique. This force was supplanted for

clotting factors’ effects and called as clotting force. When the particles enter the area of

aggregation, they were influenced by a central force. The particles which the fluid flow
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Figure 5.1: Starting position of the thrombus formation simulation.

force is lower than clotting force, were aggregate at the clotting area. Thus a thrombus

can be occurred at the diseased area. For now, the clotting force is an imaginary force

to trigger the cell aggregation mechanism so the clotting force does not depend on

concentrations of thrombin. In the near future with a point of biochemical view, it is

going to be bonded with the concentration of the thrombin and the production rate of

the thrombin. In this simulation, we planned to create a biomechanical base system for

the blood coagulation simulations without any biochemical effects.
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6. NUMERICAL METHODS

In order to simulate the blood coagulation system, we used two numerical methods

together. The blood plasma flows being simulated by the Lattice Boltzmann Method

(LBM) [18], while thrombus formation due to cell aggregation/coagulation being

modeled by the Discrete Element Method (DEM) [19].

6.1 Lattice Boltzmann Method (LBM)

Navier-Stokes and continuity are principles of the traditional fluid dynamics. It is given

by,

∂tρ +∇(ρu) = 0 (6.1)

and expresses that the density ρ is a locally conserved quantity and can only be changed

if it is advected away by a flow with velocity u. So the change of the density ρ is

given by the divergence of the current ρu. The main idea in the physical content of this

equation is the density in this system which is locally conserved. For the local velocity

u we need to couple Navier-Stokes equation with this equation,

∂t(ρu)+∇(ρuu) =−∇p+∇σ (6.2)

where p is the local pressure and σ is a viscous stress tensor. For the stress we can write

this equation,

σ = η
[
∇u+(∇u)T ]+ν∇.u1. (6.3)

To numerically integrate these equations we need to discretize the derivatives requiring

first and second order derivatives. There are many possible discretizations of
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these equations. Lots of these possible discretizations will only conserve mass

and momentum up to the order of discretization. An alternative approach to these

computational fluid dynamics simulations was invented in the late 1980s with the lattice

gas methods. These methods allowed particles to move on a discrete lattice and local

collisions conserved mass and momentum. This is the Lattice Boltzmann Method

which has been extraordinarily successful for many applications including turbulence,

multi-component and multi-phase flows as well as additional applications, including

simulations of the Schrödinger equation.

6.1.1 The Boltzmann equation

The dynamics of the Boltzmann equation always mimimizes the H-Functional,

H(t) =
∫

dxdv f (x,v, t)log( f (x,v, t)) (6.4)

This H-functional will be minimized by the equilibrium distribution function f 0 in a

volume V for a given density n, mean momentum nu and energy nε = 1/2nu2+3/2nθ .

To minimize this H-functional we can use Lagrangian multipliers. With Lagrangian

multipliers the H-functional adopts the following form:

H(t) =
∫

dxdv f (x,v, t)log( f (x,v, t))

−λ1

(
nV −

∫
dxdv f (x,v, t)

)
−λ2α

(
nuαV −

∫
dxdv f (x,v, t)vα

)
−λ3

(
nεV −

∫
dxdv f (x,v, t)

v2

2

)
(6.5)

With respect to the distribution function, we can calculate the functional derivative of

the H-functional. Since the equilibrium distribution minimizes the H-functional this

derivative has to vanish when the distribution is the equilibrium distribution f = f 0.

0 =
δH(t)

δ f

∣∣∣∣
f= f 0

= 1+ log( f 0)+λ1 +λ2αvα +λ3
v2

2
(6.6)
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Solving for the equilibrium distribution:

f 0 = exp

[
−1−λ1 +

λ 2
2

2λ3
− λ3

2

(
λ2

λ3
+ v
)2
]

(6.7)

The new set of Lagrangian multipliers, a, b and c, can be written as,

f 0 = aexp
[
(b− v)2

c

]
(6.8)

As you can see that this expression does not depend on spatial variables. Thus, the

solution will be homogeneous. By invoking the conservation laws, we can find the

Lagrange multipliers

nV =
∫

dxdv f 0nuαV =
∫

dxdv f 0vα

nu2

2
V +

3
2

nθV =
∫

dxdv f 0 v2

2
(6.9)

The equilibrium distribution can be found with solving these equations for a, b and c

f 0 =
n

(2πθ)3/2 exp
[
−(v−u)2

2θ

]
(6.10)

which is known as the Maxwell-Boltzmann distribution.

6.1.2 Derivation of the hydrodynamic equations from the Boltzmann equation

The conservation equations for continuous fields are simply the macroscopic equations

of motion. The general concepts involved the transport equations we derive not only

applicable for dilute gases, which we require for the Boltzmann equation to apply, but

also for much denser fluids. With this point of view a numerical method called “Lattice

Boltzmann” has been developed for the simulation of fluid dynamics.

The Boltzmann equation is given by

∂t f + v∂x f +F∂v f =
∫

dv′1dv′2dv2( f ′1 f ′2− f1 f2)P12→1′2′ (6.11)

Solving this equation analytically is very challenging and can only be done for special

cases.
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6.1.2.1 The BGK approximation

The Bhatnagar, Gross and Krook noticed that the main effect of the collision term is

to bring the velocity distribution function closer to the equilibrium distribution. The

equilibrium distribution is given by

f 0(v) =
n

(2πθ)3/2 e−(v−u)2/2θ (6.12)

where n is the number density of particle, u is the mean velocity and θ = kT is the

temperature. These macroscopic quantities can be given by moments of the distribution

function:

∫
f = n (6.13)

∫
f vα = nvα (6.14)

∫
f v2 = nu2 +3nθ (6.15)

Single relaxation time approximation is the simplest way for approximating the collision

term.

∫
dv′1dv′2dv2( f ′1 f ′2− f1 f2)P12→1′2′ ≈

1
τ
( f 0− f ) (6.16)

Because of this approximation’s important feature the mass, momentum and energy can

be still exactly conserved by the collision term. With this approximation the Boltzmann

equation can be written as,

∂t f + v∂x f +F∂v f =
1
τ
( f 0− f ) (6.17)
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This expression can be used for to approximate the probability density function by the

equilibrium distribution and its derivatives.

f = f 0− τ(∂t f + v∂x f +F∂v f ) (6.18)

6.1.2.2 Moments of the equilibrium distribution function

The distribution function can be expressed in terms of the equilibrium distribution

function. Thus, velocity moments of the equilibrium distribution function can be written

as,

∫
f 0 = n (6.19)

∫
f 0(vα −uα) = 0 (6.20)

∫
f 0(vα −uα)(vβ −uβ ) = nθδαβ (6.21)

∫
f 0(vα −uα)(vβ −uβ )(vγ −uγ) = 0 (6.22)

∫
f 0(vα −uα)(vβ −uβ )(v−u)2 = 5nθ

2
δαβ (6.23)

These are derived using Gaussian integrals.

6.1.2.3 Mass conservation

The mass conservation equation can be found with integrating over the Boltzmann

equation.

∂t

∫
dv f +∂α

∫
dv f vα +F

∫
dv∂v f =

1
τ

∫
dv( f 0− f )

⇔ ∂tn+∂α(nuα) = 0 (6.24)

27



which is the continuity equation.

6.1.2.4 Momentum conservation

For obtaining the momentum conservation equation the Boltzmann equation was

multiplied with vα and integrated.

∂t

∫
dv f vα +∂β

∫
dv f vαvβ +Fβ

∫
dv∂vβ

f vα =
1
τ

∫
dv( f 0− f )v (6.25)

∂t(nuα)+∂β

∫
dv f vαvβ −nFα = 0 (6.26)

We now need to use equation (6.18) to approximate

∫
dv f vαvβ =

∫
dv f 0vαvβ

− τ

(
∂t

∫
dv f 0vαvβ +∂γ

∫
dv f 0vαvβ uγ +nFαuβ +nuαFβ

)
+O(∂ 2)

(6.27)

To first order in derivatives conservation equation now reads

∂t(nuα)+∂β (nuαuβ ) =−∂α(nθ)+nFα (6.28)

The equation that appears above is known as the Euler equation. With using the

continuity equation we can also write it as

∂tuα +uβ ∂β uα =−1
n

∂α(nθ)+Fα (6.29)

To calculate the equations of motion to second order in the derivatives we need to

evaluate the higher order terms in equation (6.27) .
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∂t

(∫
f 0vαvβ

)
= ∂t(nuαuβ +nθδαβ )

= ∂t(nuα)uβ +nuα∂tuβ +∂tnθδαβ +n∂tθδαβ

=−∂γ(nuαuγ)uβ −∂α(nθ)uβ −nFαuβ

−nuαuγ∂γuβ −uα∂β (nθ)−nuαFβ

−∂γ(nuγ)θδαβ −nuγ∂γ(θδαβ )−
2
3

∂γuγθ

=−∂γ(nuαuβ uγ)−∂β (nθ)uα −∂α(nθ)uβ −n(Fαuβ +uαFβ )

−∂γ(nθuγ)δαβ −
2
3

nθ∂γuγ (6.30)

∂γ

∫
f 0vαvβ vγ = ∂β (nθuα)+∂α(nθuβ )+∂γ(nθuγ)δαβ +∂γ(nuαuβ uγ) (6.31)

∂t

∫
dv f 0vαvβ +∂γ

∫
dv f 0vαvβ vγ = nθ(∂αuβ +∂β uα)−

2
3

nθ∂γuγ (6.32)

This expressions can be used to obtain the first order momentum conservation from

equation

n∂tuα +nuβ ∂β uα =−∂α(nθ)+nFα +∂β

[
η

(
∂β uα +∂αuβ −

2
3

∂γuγδαβ

)]
(6.33)

where η = nθτ is the viscosity. This equation is known as the Navier-Stokes Equation.

6.1.2.5 Energy conservation

For obtaining the energy equation the Boltzmann equation multiplied with (v−u)2 and

integrated
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∫
dv∂t f (v−u)2+

∫
dv∂α f vα(v−u)2 +Fα

∫
dv∂vα

f (v−u)2 =
1
τ

∫
dv( f 0− f )(v−u)2

⇔ ∂t

∫
dv f (v−u)2 +

∫
dv f 2(vα −uα)∂tuα

+∂α

∫
dv f vα(v−u)2 +

∫
dv f vα2(vβ −uβ )∂αuβ = 0

⇔ ∂t

∫
dv f (v−u)2 +∂α

∫
dv f vα(v−u)2 +2nθ∂αuα

− τ

[∫
∂t(vα −uα)(vβ −uβ )

∫
∂γ f 0vγ(vα −uα)(vβ −uβ )

]
∂αuβ = 0

⇔ 3∂t(nθ)+∂α

∫
dv f vα(v−u)2 +2nθ∂αuα

− τ∂αuβ

(
∂αuβ +∂β uα −

2
3

∂γuγδαβ

)
= 0 (6.34)

The remaining integral is need to be approximated by using equation (6.18)

∫
dv f vα(v−u)2

= dv f 0vα(v−u)2− τ[
∫

dv∂t f vα(v−u)2 +
∫

dv∂β f vαvβ (v−u)2

+
∫

dv∂v f vα(v−u)2]

= 3nθuα − τ[
∫

dv∂t f 0vα(v−u)2 +
∫

dv∂β f 0vαvβ (v−u)2

−5nθFα ]+O(∂ 2) (6.35)

For the zeroth order the energy conservation equation can be written as

∂tθ +uα∂αθ =−2
3

∂αuαθ +O(∂ 2) (6.36)

again the continuity equation (6.24) was used. To obtain the first order equation the two

integrals in equation (6.35) must be evaluated.
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∫
dv∂t f 0vα(v−u)2

= ∂t

∫
f 0vα(v−u)2 +

∫
f 0vα2(vγ −uγ)∂tuγ

= ∂t(3nθuα)+2nθ∂tuα

= 3θ [−∂β (nuαuβ )−∂α(nθ)+nFα ]+3nuα(−uβ ∂β θ − 2
3

∂β uβ θ)

+2nθ [−uβ ∂β uα −
1
n

∂α(nθ)+ fα ]

= ∂β (−3θnuαuβ )−2nθ∂β (uαuβ )−5θ∂α(nθ)+5nFα (6.37)

For the second integral,

∫
dv∂β f 0vαvβ (v−u)2

= ∂β

∫
f 0vαvβ (v−u)2 +

∫
f 0vαvβ 2(vγ −uγ)∂β uγ

= ∂α

∫
dv f 0(vα −uα)(vβ −uβ )(v−u)2−∂β (3nθuαuβ )

+2nθ(uα∂β uβ +uβ ∂β uα)

= ∂α(5nθ
2)+∂β (3nθuαuβ )+2nθ∂β (uαuβ ) (6.38)

Both integrals from equation (6.35) and the forcing term can be combined,

∂α(5nθ
2)−5θ∂α(nθ) = 5nθ∂αθ (6.39)

Hence, the heat conduction equation can be found as,

∂tθ +uα∂αθ =−2
3

∂αuαθ +
1
n

∂α(
5nθ

3
∂αθ)+ τ∂αuβ

(
∂αuβ +∂β uα −

2
3

∂γuγδαβ

)
(6.40)

6.1.3 Lattice Boltzmann

6.1.3.1 The Lattice Boltzmann equation

A simple discretization of the Boltzmann equation with BGK approximation (6.17) for

the collision term can be written as
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f (x+ vi,vi, t +1)− f (x,vi, t)+F(vi) =
1
τ
[ f 0(n,u,θ)− f (x,vi, t)] (6.41)

Here velocity space was discretized to a finite number of velocity vectors vi, x+ vi is

new lattice position and t is the time which can only takes integer values. Because of

the velocity vectors are fixed the equations can be writen as f (x,vi, t) ≡ fi(x, t) and

F(vi) ≡ Fi. The force terms Fi are defined as a generalization of the force of equation

(6.17), i.e. Fi↔ Fα∂vα
f . Moments can be matched up like:

∑
i

Fi =
∫

dvFα∂vα
f = 0 (6.42)

∑
i

Fiviα =
∫

dvFβ ∂vβ
f vα =−nFα (6.43)

∑
i

Fiviαviβ =
∫

dvFγ∂vγ
f vαvβ =−n(Fαuβ +uαFβ ) (6.44)

∑
i

Fiviαviβ viγ =
∫

dvFδ ∂vδ
f vαvβ vγ =−n[Fα(θδβγ +uβ uγ)+Fβ (θδαγ +uαuγ)

+Fγ(θδαβ +uαuβ )] (6.45)

6.1.3.2 Taylor expansion

We obtain to second order Taylor expansion of the equation (6.41) to determine what

the macroscopic equations are the Lattice Boltzmann equation simulates

∂t fi + viα∂α fi +
1
2
[∂t(∂t fi + viα∂α fi)+∂β (∂t fiviβ + viβ viα∂α fi)]+Fi +O(∂ 3)

=
1
τ
( f 0

i − fi) (6.46)

The equation is not the Boltzmann equation (6.18) that setted out to simulate because

with second derivative there are lots of additional terms. In these additional terms there
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is a discretization error because of the the simple discretization scheme. For now the

equation can be writen as

fi = f 0
i − τ(∂t f + viα∂α fi +Fi) (6.47)

to express the fi in terms of the equilibrium distribution f 0
i . With expressing all

components in terms of the equilibrium distribution,

∂t f 0
i − τ∂t(∂t fi + viα∂α fi +Fi)+ viα∂α f 0

i +∂α(∂t f 0
i viα + viαviβ ∂β f 0

i +Fi)

+
1
2
[∂t(∂t fi + viα∂α fi)+∂β (∂t f 0

i viβ + viβ viα∂α f 0
i )]+O(∂ 3) =

1
τ
( f 0

i − fi) (6.48)

The discretization errors are of exactly the same form as the higher order terms for the

expression of the distribution function in terms of the equilibrium distribution function.

Now equation can be written as,

∂t f 0
i + viα∂α fi +

(
τ− 1

2

)
[∂t(∂t fi + viα∂α fi)+∂β (∂t f 0

i viβ + viβ viα∂α f 0
i )]+O(∂ 3)

=
1
τ
( f 0

i − fi) (6.49)

except the relaxation time is renormalized to be τ − 1/2, the equation is the same

equation which would be obtained for the Boltzmann equation. So if an equilibrium

distribution is chosen with the appropriate moments, automatically the hydrodynamic

equations can be simulated to the same order that derived the hydrodynamic limit.

6.1.3.3 One dimensional implementation

For the implementation an equilibrium distribution which fulfills the equivalent

definitions of (6.19) - (6.23) must be defined

∑
i

f 0
i = n, (6.50)

∑
i

f 0
i (viα −uα) = 0, (6.51)
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∑
i

f 0
i (viα −uα)(viβ −uβ ) = nθδαβ , (6.52)

∑
i

f 0
i (viα −uα)(viβ −uβ )(viγ −uγ) = 0, (6.53)

∑
i

f 0
i (viα −uα)(viβ −uβ )(vi−u)2 = nθ

2
δαβ (6.54)

where the difference between (6.54) and (6.23) is due to the fact that one dimensional

model is considered instead of a three dimensional model. Five equations is required

for one dimensional model. And a set of 5 velocities vi and corresponding equilibrium

distribution terms f 0
i are required. If the symmetric velocity set is chosen,

{vi}= {−2c,−c,0,c,2c} (6.55)

the equilibrium distribution is obtained

f 0
0 =

n(4c4 +3θ 2 +6θu2 +u4−5c2(θ +u2))

4c4 (6.56)

f 0
1 =

n(−3θ 2 +4c3u−6θu2−u4 +4c2(θ +u2)− c(3θu+u3))

6c4 (6.57)

f 0
−1 =

n(−3θ 2−4c3u−6θu2−u4 +4c2(θ +u2)+ c(3θu+u3))

6c4 (6.58)

f 0
2 =

n(3θ 2−2c3u+6θu2 +u4− c2(θ +u2)+2c(3θu+u3))

24c4 (6.59)

f 0
−2 =

n(3θ 2 +2c3u+6θu2 +u4− c2(θ +u2)−2c(3θu+u3))

24c4 (6.60)

With these the actual implementation of the lattice Boltzmann method defined in (6.41)

can be leaved.
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6.1.3.4 Isothermal Lattice Boltzmann

Lattice Boltzmann simulations application area is mostly simulate the continuity and

Navier Stokes equations. At these simulations temperature can be assumed as constant

and instead it serves as a thermostat, the equilibrium distribution will no longer conserve

energy. This condition removes the requirement for the equilibrium equations to fulfill

equation (6.54). For the calculation of heat equations this moment was needed. For

the full thermohydrodynamic model five velocities are needed. And one constraint

can be dropped, so four velocity model to fulfill the remaining four constraints. For

saving memory and cpu time the number of required velocities can be reduced. The

determination of the temperature can be used as an additional degree of freedom. The

four equation can be used to determine f 0
−1, f 0

0 f1, and θ . This technique can work but

θ must be a constant independent of n and u for our usual solution.

Using the D1Q3 velocity set vi = {−1,0,1} it is easy to see that (6.50) to (6.52) require

f 0
−1 =

1
2

n(−u+θ +u2) (6.61)

f 0
0 = n(1−θ −u2) (6.62)

f 0
1 =

1
2

n(u+θ +u2) (6.63)

θ can be calculated from (6.53) with sing these solutions for the f 0
i :

θ =
1
3
− u2

3
(6.64)

The velocity must be smaller than the lattice velocity c = 1 and also θ must be nearly

constant. Lots of standard Lattice Boltzmann models use this smaller velocity sets. The

third moment of the equilibrium distribution function can be modified for models in an

arbitrary number of dimensions, as,

∑
i

f 0
i (viα −uα)(viβ −uβ )(viγ −uγ) = nuαuβ uγ (6.65)
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and the term in u3 can be neglected. If it is not negligible, this terms will lead to

violations of Galilean invariance.

There are variety of velocity sets and corresponding equilibrium distributions with,

depending on the dimensionality of the space you want to simulate, in the literature.

Equilibrium distribution can be given by:

f 0
i = nwi

[
1+

3
c2 u.vi +

9
2c4 (u.vi)

2− 3
2c2 u.u

]
(6.66)

The wi’s are weights depending on the set of velocities. The values for commonly used

models are given below.

For D2Q9 the weights are:

wi =


4/9 i = 0
1/9 i = 1,2,3,4

1/36 i = 5,6,7,8
(6.67)

For D3Q15 the weights are:

wi =


2/9 i = 0
1/9 i = 1−6

1/72 i = 7−14
(6.68)
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For D3Q19 the weights are:

wi =


1/3 i = 0

1/18 i = 1−6
1/36 i = 7−18

(6.69)

For D3Q27 the weights are:

wi =


8/27 i = 0
2/27 i = 1−6

1/216 i = 7−14
1/54 i = 15−26

(6.70)

Note: The moments of the equilibrium distribution function (6.50) to (6.52) and (6.65)

are not sufficient to determine the wi for large velocity sets. The weights to D3Q15 can

be considered as a subset of D3Q27. The D3Q15 model weights can be recover from

D3Q27 and moments can be still same.

6.1.3.5 Non-ideal fluids

As shown above, the Boltzmann equation leads to the Navier-Stokes equation for

ideal systems, also we can use it for non-ideal systems too. For non-ideal systems

Navier-Stokes equation can be given by

n∂tuα +nuβ ∂β uα =−∂β Pαβ +∂β [η(∂β uα +∂αuβ −
2
3

∂γuγδαβ )] (6.71)

The non-ideal behaviour can be recovered by

nFα =−∂β (Pαβ −nθδαβ ) (6.72)

for any given non-ideal pressure tensor Pαβ . These pressure tensors can be derived for

an iso-thermal system from the system’s free energy.

A forcing term F can be implemented by
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F0
i = nwi

[
3
c2 Fαviα +

9
2c4 (Fαuβ +Fβ uα)viαviβ −

3
c2 Fαuα

]
(6.73)

Note: There can be additional terms for the surface tension. Introducing a forcing of the

form of (6.72) will lead to a surface tension.

6.1.3.6 Boundaries

In the fluid dynamics some boundaries must be implemented to the simulation.

And usually non-slip boundary condition desired at those boundaries. For the

implementation of a boundary the simplest way is drawing the boundary and marking

all links which was cut by the boundary. On these links instead of free streaming the

densities are bounced-back

fi(x, t +1) = f−i(x, t) (6.74)

the velocity index−i is defined as v−i =−vi. The effective boundary is at the middle of

the between links.

If the boundary is moving, this boundary condition must be modified. For the

modification a Galilean transformation of the distribution can be performed into the

rest of the frame of boundary, the bounce-back operation can be performed, and then

the flow back can be transformed into the original. A Galilean transform can be defined

as

f ′(vi) = fi(vi)+G(vi,U) (6.75)

Then the moving bounce back boundary condition can be written as

f (vi, t +1) = f ′−i +G(−vi,−U) = f−i +G(vi,U)+G(−vi,U) (6.76)

The usual choice for the moments of the Galilean transformation

(G(vi,U)+G(−vi,−U)) =
6
c2 winUαviα (6.77)
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The streaming step can be replaced for each density crossing the moving boundary

fi(x, t +1) = f−i(x, t)+
6
c2 winUαviα (6.78)

6.2 Discrete Element Method (DEM)

Discrete Element Method is one of the powerful numerical modeling method to model

the kinematic and dynamic behaviours of discontinuous bodies (like RBC). These

bodies can interact with each other through collisions. Today Discrete Element Method

can simulate millions of particles on a single processor with progress of nearest neighbor

sorting algorithms. This technique is finding a large area in the field of discontinuous

engineering problems with its simulation power. In Discrete Element Method the forces

acting on the discontinuous bodies (particles like RBC) are summed and the equations

of motion of Newton and Euler are integrated to obtain the velocity and the position of

the particles in the next time step.

The term discrete element methods will here be understood to comprise different

techniques suitable for a simulation of dynamic behaviour of systems of multiple rigid,

simply deformable (pseudo-rigid) or fully deformable separated bodies of simplified

or arbitrary shapes, subject to continuous changes in the contact stares and varying

contact forces, which in turn influence the subsequent movement of the bodies. Such

problems are non-smooth in space (separate bodies) and in time (jumps in velocities

upon collisions) and the unilateral constraints (non-penetrability) need to be considered.

A system of bodies changes its position continuously under the action of external forces

and interaction forces between bodies, which may eventually lead to a steady-state

configuration, once static equilibrium is achieved. For rigid bodies, the contact

interaction law is the only constitutive law considered, while the continuum constitutive

law (e.g. elasticity, plasticity, damage, fracturing) needs to be included for deformable

bodies.

Computational modelling of multi-body contacts (both the contact detection and contact

resolution) represents the dominant feature in discrete element methods, as the number

of bodies considered may be very large. If the number of potential contact surfaces

is relatively small (e.g. non-linear finite element analysis of contact problems) it is

convenient to define groups of nodes, segments or surfaces which belong to a possible
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contact set a priori. These geometric attributes can then be continuously checked against

one another and the kinematic resolution can be treated in a very rigorous manner.

Bodies which are possibly in contact may be internally discretized by finite elements,

and their material behaviour can essentially be of any complexity.

The category of discrete element methods specifically refers to simulations involving a

large number of bodies where the contact locations and conditions cannot be defined

in advance and need to be continuously updated as the solution progresses. Discrete

element methods are most frequently applied to macroscopically discrete system of

bodies (jointed rock, granular flow) but have also been successfully utilized in a

microscopic setting, where very simple interaction laws between individual particles

provide the material behaviour observed at a homogenized, macroscopic level.

The discrete element method is most commonly defined as a computational modelling

framework which allows finite displacements and rotations of discrete bodies, including

complete detachment and recognizes new contacts automatically, as the calculation

progresses.

6.2.1 DEM formulations

The main formulation of the discrete element method, was based on deformable contacts

of the rigid circular bodies in two dimensions. The general solution scheme was

formulated in an explicit time-stepping format for the discrete element method. Particle

movements are driven by external forces and some contact forces which are normal,

tangential contact forces and viscous contact forces. The discrete element method

considers that each particle in turn and at a definite time determines external or contact

forces acting on it. For determining the particles movement during the next time step,

the unbalanced forces considered.

The main computation progress of DEM is typically occurred by solving the given

discrete element’s equations of motion and updating the contact forces which was

occurred by contacts between different particles or/and resulting from the boundaries

(see Figure 6.1).

The RBSM (Rigid Bodies Spring Model) was proposed as a plastic analysis framework

which has generalized limit (see Figure 6.2). And the solid structures were assumed as
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assemblies of rigid blocks which was combined with deformable interfaces (normal and

tangential springs).

Figure 6.1: Discrete element particles (bodies) in contact.

The stiffness matrix was obtained by the related rigid particles are connected each others

with distributed normal and tangential springs whose stiffness values are kn, and ks per

unit length, respectively. The displacement field within an arbitrary two dimensional

block is expressed based on a centroid displacement and rotation (u,v,θ)T .

In the Figure 6.2 the displacements at a common interface point P were defined

independently as a centroid degree of freedoms (ui,vi,θi)
T and (u j,v j,θ j)

T of the two

neighbouring blocks with centroids located at (x0
i ,y

0
i ) and (x0

j ,y
0
j), respectively.

Up = Qpu

Up =
[

U i
p ,V i

p ,U j
p ,V j

p

]T

u =
[

ui vi θi u j v j θ j
]T

Qp =


1 0 −(yp− y0

i ) 0 0 0
0 1 (xp− x0

i ) 0 0 0
0 0 0 1 0 −(yp− y0

i )
0 0 0 0 1 (xp− x0

i )

 (6.79)

and the relative displacements at the location P,

δp =
[

δ P
n δ P

s
]T

= MŨP = MR̃QPu = Bu (6.80)
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Figure 6.2: Two rigid blocks with an elastic interface contact in RBSM.

M =

[
−1 0 1 0
0 −1 0 1

]
and ŨP = R̃UP = R̃QPu (6.81)

after UP is projected to ŨP which was aligned to the local coordinate system along the

interface. The constitutive relation in plane stress is expressed as,

σ = Dδ σ =
[

σn ,τs
]T (6.82)

D =

[
kn 0
0 ks

]
kn =

(1−ν)E
h(1−2ν)(1+ν)

ks =
E

h(1+ν)
(6.83)

where h is the total of shortest distances between the two block centroids of contact line.

This approximate distance h is also used for the measurement of approximate normal

and shear strain components with

εP =

[
εn
γs

]
P
=

1
h

[
δn
δs

]
=

1
h

δP (6.84)

Applying the virtual work principle over the interface reveals,
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f =
[∫

S
BT DBds

]
u = Ku (6.85)

The generalization of the method to the three dimensional form is straightforward. And

the method can be interpretable as a finite element method with zero thickness interface

elements. The only difference is the overall elastic behaviour is represented by the

distributed stiffness springs along interfaces.

Because of some given criterion, the contact springs can be deactivated, so that the

progressive failure can be modelled by widening discontinuities, through cracks and/or

slippage at the interfaces.

Force Displacement Law

Relative Velocities : Ẋi = (ẋi− ẏi)− (θ̇xRx + θ̇yRy)ti

Relative Displacements : ṅ = Ẋiei, ṡ = Ẋiti

Contact Force Increments : ∆n = n∆t,∆s = s∆t

Total Forces : Fn = Fn−1
n +∆Fn,Fs = Fn−1

s +∆Fs

Check For Slip : Fs = min(Fs,C+Fntanφ)

Compute Moments : Mx = ∑FxRx,My = ∑FyRy (6.86)

Equations Of Motion

Assume Force And Moment Constant Over ∆t : ∆t = (tn+1/2− tn−1/2)

Acceleration : mẍi = ∑Fi, Iθ̈ = Mi

Velocity : ẋn+1/2
i = ẋn−1/2

i + ẍi∆t, θ̇ n+1/2
i = θ̇

n−1/2
i + θ̈i∆t

Assume Velocities Constant Over ∆t : ∆t = (tn+1− tn)

Displacements : xn+1
i = xn

i + ẋn+1/2
i ∆t

Rotation : θ
n+1 = θ

n + θ̇
n+1/2

∆t (6.87)

6.2.2 Contact detection

Discrete element method’s principle algorithmic case is the detection of the particles in

contact followed by the calculation of the contact forces due to contact. Generally the

contact detection case can be stated as contact finding or overlap of a definite colliding

particles with a number of particles from a target set of N bodies in Rn space. The
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contact detection strategies are related with geometric characterization and topological

attributes of interacting particles. If the colliding particles are simple geometries (like

circle or sphere) the algorithmic check for a possible overlap is quite simple. Also the

tangential contact plane is so perceptible. Contact detection algorithms are based on

body based search or space based search. Body based algorithm is searching only the

space in the neighbour of the specified discrete element. On the other hand space based

algorithm is purposing the total searching space into a number of overlapping windows.

Figure 6.3: The sweep and prune algorithm used for collision detection.

For the calculation with arbitrary geometric shapes, mostly a two phased strategy is

employed. The first step is that particles can be approximated by simpler geometric

constructs. With this step the actual particle can be encircled and the possible contact

pairs can be listed by a region search algorithm. Then followed by second step which is

a detailed local contact resolution step.

For the detection of collision, efficient detection algorithms and powerful data

representation concepts are taken from other disciplines, generally computer graphics,

to describe the geometric position of a particle with data representation techniques.

Also the decomposition of the computation space and various cell data representation

for collision particles are adopted too. The issues of algorithm and data structures are

quite involved and the relationship between the number of cells and the total number of

particles is non linear.
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For simple shapes very efficient data structures map a minimum set of parameters

which uniquely define a domain in Rn into a representative point in an associated

R2n space (Fig.6.4)- for example, a one-dimensional segment (a − b) is mapped

into a representative point in two-dimensional space, with coordinates (a,b), or a

two-dimensional rectangle of a size (xmin − xmax) and (ymin − ymax) is mapped to a

representative point in a four-dimensional space (xmin,ymin,xmax,ymax). Alternative

representation schemes are also possible, e.g. by characterizing a rectangular domain

in R2 by the starting point coordinates (xmin,ymin) and the two rectangle sizes (hx,hy)

followed by a mapping into an associated R 4 space (xmin,ymin,hx,hy) . As the

representation of the physical domain is reduced to a point, region search algorithms

are more efficient in the mapped R2n spaces than in the physical Rn space.

Figure 6.4: Mapping of a segment from one-dimensional space into a point in an
associated two-dimensional space and mapping of a box in two dimensions
into an associated four-dimensional space.

After listing the potential contact pairs, a exhaustive contact resolution algorithm is

required. For this algorithm the particle geometries must be defined in detail. During
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the contact resolution step, potential pairs is searched by the algorithm and if a

contact is established, the alorithm must define the contact plane’s orientation. Thus

a local coordinate system (n, t,s) can be determined and the sliding or impenetrability

conditions can be applied.

The particle geometry characterization can be categorized into three main groups:

1- Polygon or polyhedron representation,

2- Implicit continuous function representation,

3- Discrete function representation (DFR).

In two dimension the polygonal representation defines a particle in terms of corners and

edges. And some algorithms can determine the intersection of two polygons. When the

corner to edge or edge to edge contact is considered, the orientation of the contact plane

can be defined easily.

Another possible procedure utilizes an optimum triangulation of the space between the

polygons, whereby a collapse of a triangle indicates an occurrence of contact.

A continuous implicit function representation of bodies, provides an opportunity to

employ a simple analytical check to identify whether a given point lies inside or on

the boundary (φ(x,y)≤ 0) or outside (φ(x,y)> 0) of the body where

φ(x,y) =
(x

a

)β1
+
(y

b

)β2
−1 (6.88)

Unlike a polygonal representation, a complete intersection of overlapping superquadrics

can be solved very difficultly. Because of the difficulties to find a solution the surfaces

can be discretized to facets and nodes and the contact of a specific node on the

particle can be found by inside-outside analytical check with respect to the functional

representation of the other body.

Discrete Functional Representation (DFR) is a scheme for describing the particles

boundary with a parametric function in one parameter. DFR is an algorithmic look-up

table for replacing the continuous implicit function representation of bodies by the set

of pre-evaluated function values on a background grid for the inside-outside check. The

DFR concept in contact detection is illustrated through the polar DFR descriptor in two

dimensions where, following the global region search for possible neighbours, the local

contact is established by transforming the local coordinates of the approaching comer Pi
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of a body i into the polar coordinates of the other body P j
i and checking if an intersection

between the segments (O jP
j

i ) and (M jN j) can be found.

6.2.3 Boundary conditions

In discrete element method boundaries can be defined at space level or at particle

level. Space level boundaries are generally periodic boundaries. In periodic boundaries

particles leaves the periodic cell on one side enter on the other side (see Figure 6.5). Also

for periodicity the cell must be parallel piped shaped. Through the periodic boundary,

the boundary related distortions can be eliminated. On the other hand particle level

boundaries can be defined as fixing some particles in space. Other boundaries, which

aim at a more faithful representation of experimental setups, might be flexible where a

chain of particles is tied together by links or hydrostatic where forces corresponding to

constant hydrostatic stress are exerted on particles on the boundary.

Figure 6.5: Schematic diagram of a simulation box with periodic boundary conditions.
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7. COUPLING LBM AND DEM

Coupling LBM and DEM requires clarification of particle - fluid interaction mechanism.

At this point interaction mechanism is related to boundary conditions, solid particle

properties and solid - fluid area fractions. The required approach has to answer all of

these points for a complete solution. Therefore our methodology is including a moving

boundary approach using solid - fluid area fractions with viscoelastic particle collisions.

In this study, we adopt a scheme proposed by Noble and Torczynski [1]. In this scheme,

the collision operator in the LBM equation is modified by the solid area fraction γ in

each nodal cell (see Feng et al. [13]).

The new BGK streaming and collision function:

fi(x+ ei∆t, t +∆t) =

fi(x, t)−
1
τ
(1−β )

[
fi(x, t)− f eq

i (x, t)
]
+β f m

i (7.1)

where β is a weighting function that depends on the solid area fraction γ in each nodal

cell:

∫
β = γ (7.2)

f m
i is a new collision term that accounts for the bounce- back of the non-equilibrium

part of the distribution function and is given by

f m
i = f−i(x, t)− fi(x, t)+ f eq

i (ρ,vb)− f eq
−i(ρ,v) (7.3)

where - i denotes the direction opposite of i.
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Figure 7.1: Noble and Torczynski’s scheme (Ref [1]).

The hemodynamic forces and torque exerted on a particle can be computed as:

Ff luid =
h2

∆t

[
∑
n

(
βn ∑

i
f m
i ei

)]
(7.4)

Tf luid =
h2

∆t

[
∑
n
(xn− xc) x ∑

n

(
βn ∑

i
f m
i ei

)]
(7.5)

where n is the number of nodes covered by a particle.

Figure 7.2: LBM - DEM coupling steps.

The coupling steps for LBM and DEM are described as:

• Step1: Calculate the fluid forces and torques with LBM.

• Step2: Send forces and torques to the DEM.

• Step3: Calculate the collisions and new positions of particles.

• Step4: Send the positions of particles to LBM.

• Step5: Go to Step1 and do first 4 steps again.
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8. RESULTS

8.1 The Simulation of Thrombus Formation

In this simulation we have 2D vessel geometry with a fatty core area (see Fig. 8.1).

The simulation was based on Newtonian blood plasma flows and the velocity profile

is Poiseuille which is initialized with zero, and converges only slowly to the expected

parabola. In the simulation, the artery flow was characterized by Poiseuille flow.

In order to modeling RBC aggregation, we used discrete particles. To simplify the idea,

we choose circle model for RBCs with random initial positions.

The resulting thrombus formation is seen in Figure 8.1.

Figure 8.1: Results from thrombosis simulation.
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Figure 8.1 shows that RBCs were aggregated at the diseased area because of the clotting

force. When a particle entered diseased area, it will be under the influence of fluid

forces and clotting forces. Therefore the effects of forces over the particle are computed

by DEM software. If the clotting force is higher than others, the particles (RBCs)

aggregate in the region of interest. If this blood clot detaches itself form the point

that is formed, there maybe a possibility to stacked within any of the main arteries of

the heart. This condition can induce to heart attack, stroke, myocardial infarction and

other vital complications.

The numbers of RBCs were aggregated at the interest area within a time period shorter

than a minute. At the beginning of the simulation the percentage of the aggregating

particles were 1.5% while 68% at the end of the 0.8 minute. These results showed us

that at the end of the simulation fluid flow speed up in the narrowing vessels area and

fluid forces became dominant to clotting forces.

Figure 8.2: Results from thrombosis simulation (Clotting force is 2 times higher than
Figure 8.1).
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As we can see from the Figure 8.2, with the clotting force’s increasing effects, more

RBCs were aggregated at the diseased area. As a result of that, we can change the

amount of aggregation with the clotting force effects.

Moreover, as we know the zymases concentration has special importance because of the

effects on the clotting mechanism. To simulate these effects by changing the magnitude

of clotting force, we can simulate different levels of zymases’ effects. This technique

provided us to simulate different clotting mechanisms with different zymases’ effects

comparatively.
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9. DISCUSSION AND CONCLUSION

Due to the blood coagulation disorders are vital diseases, they must be understood

carefully. To understand these diseases deeply, we can get assistance from compu-

tational simulations. As we discussed at the previous chapters we must simulate the

blood coagulation process with different ways. For understanding the proteins and

zymases’ contributions to this process, we must simulate the whole biochemical system

about the blood coagulation. Also for understanding the mechanical conditions of blood

coagulation, we must simulate these processes with a biomechanical perspective.

In this study, our aim was to develop a base system for the simulation of blood

coagulation process. We focused to develop a simulation for the flow of blood plasma

and blood cells together. So we choose two new and powerful modeling technique

together. For the simulation of blood flow, we choose Lattice Boltzmann Method and for

the simulation of blood cells interactions, we choose Discrete Element Method together.

At the development stage of the blood coagulation simulation, we coupled these two

methods (LBM and DEM). In the literature these coupling techniques are so new and

can be developed for more realistic results. We adopt a scheme proposed by Noble and

Torczynski [1].

After the completion of theoretical coupling steps of these two methods, we used two

powerful library for making simulations in the computing environment (Palabos [18]

and Yade [19]). After some benchmarking simulations, we developed a simulation for

the most important disease of blood coagulation system, which is named as thrombosis.

At the thrombus formation simulations, we used red blood cells for the aggregation. And

also for this aggregation, we create a clotting force with the help of the central force field

technique. This force was supplanted for zymase’s effects. When the particle enters the

area of aggregation, they were influenced by a central force. The particles, which are

under the influence of fluid drag force is lower than clotting force, were aggregate at

the clotting area. As a result of this technique a thrombus formation occurred at the

diseased area.
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As we can see from the Results Chapter, we can change this thrombus’ quantity through

the clotting force effects. So with this relativity, the concentrations of zymases and

production rates of zymases can be affected to the simulation through the help of this

clotting force.

Our future plan for this study is create a simulation for blood coagulation with both

biochemical and biomechanical perspective. So we will bond the concentrations and

production rates of zymases with the clotting force for more realistic simulations.

According to this view, we can predict that how can zymase paucity effects or how

can mechanical conditions effects to the coagulation system, comparatively.
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