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ASSIGNMENT OF ASPECTS IN HETEROGENEOUS DISTRIBUTED 

SYSTEMS 

SUMMARY 

Nowadays, object-oriented programming has become the most preferred 

programming paradigm where a problem is decomposed into modular units called 

objects. Although object-oriented programming offers greater ability for separation 

of concerns, it has difficulty to implement crosscutting concerns like logging, 

profiling, caching, authentication, and authorization. Aspect oriented programming is 

proposed as a solution for separation of crosscutting concerns into single units called 

aspects. Aspects are then combined with a base program through a process called 

weaving. 

In recent years, with increasing use of distributed systems, distributed AOP has 

become more popular. In distributed AOP, aspects can be deployed in a set of hosts 

where each host has unique memory and processing capabilities. Remote pointcuts, 

which are similar to traditional remote method calls, invoke the execution of method-

like constructs called advices in aspects on remote hosts.  

The way of distributing aspects over the network is critical and affects the 

performance of the program, because there is a relation between objects and aspects. 

When there is a call from an object to an aspect, data is exchanged between these 

object and aspect. This process consumes time and this time depends on the amount 

of the data and the capacity of the link, which is used during the data transfer. 

Therefore, while assigning aspects of an AOP to hosts in a distributed system several 

properties of the physical system and the program must be taken into consideration 

like processing capabilities of hosts, parameters of communication links, amount of 

data shared between objects and aspects. 

Although a large number of task assignment approaches have been identified up to 

now, none of them is interested in assignment of aspect. In this thesis, first, the 

aspect assignment problem in heterogeneous distributed systems is formulated by 

considering all necessary parameters. Then we apply three algorithms namely A*, 

GA and PSO to solve this problem that occurs in distributed AOPs. Also a new 

algorithm which creates clones (copies) of necessary aspects while assigning them to 

hosts is proposed in order to improve the performance of the distributed AOP. 

Finally, we evaluate the efficiency of these algorithms for different systems and 

programs and compare the increase in the performance of the AOP obtained by these 

algorithms with an algorithm that assigns aspects to hosts randomly. 

Experimental results show that GA and PSO are more favorable than A* algorithm 

for larger systems with many nodes, while for smaller systems A* may be preferable. 

On the other hand, using copies of aspects decreases the cost values up to a certain 

level and makes improvements in the performance. Finally, it is shown that proper 

assignment of aspects improves performance of the distributed AOPs. 
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HETEROJEN DAĞITILMIŞ SİSTEMLERDE CEPHE ATAMA 

ÖZET 

Problemi, nesne adı verilen modüler parçalara ayrıştıran nesneye yönelik 

programlama günümüzde en sık tercih edilen programlama tekniğidir. Nesneye 

yönelik programlama her ne kadar ilgilerin ayrıştırılması konusunda büyük imkanlar 

sağlasa da loglama, performas gözleme, ön bellekleme, kimlik doğrulama ve 

yetkilendirme gibi dik kesen ilgilerin ele alınmasında zorluklar yaşamaktadır. 

Cepheye yönelik programlama, dik kesen ilgileri cephe adı verilen parçalara 

ayrıştıran bir çözüm olarak önerilmiştir. Cephe adlı bu parçalar örme adı verilen bir 

işlem ile ana programa birleştirilir. 

Son yıllarda dağıtılmış sistemlerin kullanımının artmasıyla birlikte dağıltılmış 

cepheye yönelik programlama da popüler hale gelmiştir. Dağıltılmış cepheye yönelik 

programlamada cepheler, her biri farklı bellek ve işlem gücüne sahip bir dizi düğüme 

yüklenir. Geleneksel uzak method çağrımına benzer şekilde uzak kesim noktaları 

tarafından cephe içinde yer alan method benzeri yapılar uzak düğümler üzerinde 

çalıştırılır. 

Cephelerin sistem üzerinde nasıl dağıtıldığı önemlidir ve programın performansını 

etkiler. Çünkü nesneler ile cepheler arasında bir ilişki vardır. Nesneden cepheye bir 

çağrı olduğunda arada veri transferi gerçekleşir. Bu işlem bir süre gerektirir ve bu 

süre transfer edilen verinin miktarına ve transfer esnasında kullanılan iletişim 

yolunun kapasitesine bağlıdır. Dolayısıyla, cepheler dağıtılmış sistem üzerinde 

düğümlere atanırken düğümlerin işlem kapasiteleri, iletişim yolu parametreleri, 

transfer edilen veri miktarı gibi sistemin ve programın özellikleri dikkate alınmalıdır.   

Her ne kadar günümüze kadar çok sayıda iş atama yöntemi tanımlanmış olsa 

bunların hiç biri cephelerin atanması ile ilgilenmemiştir. Tez kapsamında ilk olarak, 

heterojen dağıtılmış sistemlerde cephe atama problemi gerekli tüm özellikler dikkate 

alınarak tanımlanmıştır. Sonrasında dağıtılmış cepheye yönelik programlamada yer 

alan bu problemi çözmek üzere A*, GA ve PSO algoritmaları uygulanmıştır. Ayrıca 

dağıtılmış cepheye yönelik program performansını arttırmak üzere cepheleri 

düğümlere atama işlemi esnasında gerekli cephelerin kopyalarını oluşturan yeni bir 

algoritma önerilmiştir. Son olarak algoritmaların farklı sistemler ve programlar 

üzerinde etkinlikleri değerlendirilerek, rastgele atama yapan bir algoritmaya göre 

sağlamış oldukları performans artışı karşılaştırılmıştır. 

Yapılan deneyler çok düğüme sahip büyük sistemlerde GA ve PSO algoritmalarının, 

daha küçük sistemlerde ise A* algoritmasının tercih edilebileceğini göstermiştir. 

Diğer taraftan cephelerin kopylarının kullanılması belirli bir seviyeye kadar maliyet 

değerlerini düşürmüş ve performansta artış sağlamıştır. Son olarak cephelerin uygun 

şekilde atanması dağıtılmış cepheye yönelik program performansını arttırdığı 

gözlemlenmiştir. 
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1.  INTRODUCTION 

Today, object oriented programming (OOP) is the most popular and preferred 

programming method in the software world. OOP groups operations and data into 

modular units called objects, and lets programmers combine objects into structured 

networks to form a complete program. However, some programming concerns 

(crosscutting concerns) cannot be neatly encapsulated in objects, but must be 

dispersed throughout the code like logging, tracing, profiling, policy enforcement, 

pooling, caching, authentication, authorization and transactional management. At this 

point, aspect oriented programming (AOP) [1] has been proposed as a technique to 

break all that crosscutting concerns out from the objects and apply it to the objects in 

some other way called aspect. AOP builds on previous technologies such as OOP 

that have caused improvements in the modularization of software. 

Distributed systems [2], in which the processing elements are connected by a 

network, have become increasingly popular in recent years because of their high 

speed and high reliability. Distributed systems generally consist of dissimilar hosts 

where each host has unique memory and processing capabilities. Distributed systems 

allow programmers to divide applications into a number of tasks and execute 

concurrently on different hosts. This process obtains tremendous improvement in the 

performance when the task distribution and assignment are applied effectively. 

In recent years, with increasing use of distributed systems, distributed AOP arouses 

more interest. In distributed AOP, aspects can be deployed in a set of hosts. The way 

of distributing aspects over the network can affect the performance of the program. 

While assigning aspects of an AOP to hosts in a distributed system several properties 

of the physical system and the program must be taken into consideration. These 

properties are processing capabilities of hosts, parameters of communication links, 

amount of data shared between objects and aspects. The assignment of aspects is 

critical and affects the program completion time because when there is a call from an 

object to an aspect (assuming that the object and the aspect are assigned to different 

hosts), exchanging data between these object and aspect consumes time. This time 
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depends on the amount of the data and the capacity of the link which is used during 

the data transfer. 

Although there are a large number of task assignment algorithms, none of them is 

interested in assignment of aspect. To assign aspect to processing nodes properly we 

take the following two structures into consideration. Firstly, the parameters of the 

distributed system such as processing capabilities of nodes and bandwidths of 

communication lines between them. Secondly, structure of the aspect oriented 

program expressed by the relations between aspects and objects such as reference 

counts, amount of transferred data between them. 

In this thesis, we first formulate the aspect assignment problem in heterogeneous 

distributed systems by taking all necessary parameters into account and then apply 

three algorithms to solve this problem that occurs in distributed AOPs. The first 

algorithm is an A* [3] based search technique, the second one is based on Genetic 

Algorithms (GA) [4], and finally the third one is Particle Swarm Optimization (PSO) 

[5]. We evaluate the efficiency of these algorithms for different systems and 

programs. It is shown that the GA and PSO are more favorable than A* algorithm for 

larger systems with many nodes, while for smaller systems A* may be preferable. 

GA obtains slightly better results compared to PSO, but PSO is faster than GA. Then 

we propose a new algorithm that creates clones (copies) of necessary aspects while 

assigning them to hosts in order to improve the performance of the distributed AOP. 

Creating clones of the aspects makes it possible to find a solution in a partially 

connected system and decreases communication costs. We also compare the increase 

in the performance of the AOP obtained by these algorithms with an algorithm that 

assigns aspects to host randomly. Simulation results indicate that assigning aspects to 

hosts properly using the proposed algorithms can reduce the completion time of a 

distributed aspect oriented program almost by half compared to random assignment. 
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2.  BACKGROUND AND RELEATED WORK 

2.1 Aspect Oriented Programming (AOP) 

Aspect-oriented programming (AOP) [1] is a programming style that allows 

programmers to implement cross-cutting concerns like logging, tracing, profiling, 

policy enforcement, pooling, caching, authentication, authorization and transactional 

management in a modular way and then combine these concerns with a base program 

through a process called weaving. AOP aims at improving the quality of the software 

by decreasing the level of code scattering and code tangling known as primary 

symptoms of non-modularization. Code scattering occurs when a single issue is 

implemented in multiple modules. Code tangling occurs when a module is 

implemented to handle multiple concerns simultaneously. 

There  are  lots  of  AOP  implementations  that  have  been widely used. Some of 

these implementations are AspectJ [6], AspectWerkz [7], JBoss-AOP [8], and Spring 

[9].  Table 2.1 lists AOP Frameworks and highlights their features. AspectJ, which 

was proposed  as  an extension  of  the  Java  language  for  AOP,  is  the  most 

prominent implementation. It extends Java with support for two kinds of crosscutting 

implementation. First, it allows programmers to define additional implementation to 

run at certain points in the execution of the program which is called dynamic 

crosscutting mechanism. Second, it allows programmers to define new operations on 

existing types which is called static crosscutting mechanism. 
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Table 2.1: AOP frameworks [10] 

Feature / issue AspectJ AspectWerkz JBoss AOP Spring 

Weaving time Compile/Load Compile/Load Compile/Load/Run Run 

Transparency Transparent Transparent Choice Factory 

Per-instance No No Yes Yes 

Aspect 

constructor, field, 

throw, and cflow 

interception 

All All Some Some 

Annotations No Yes Yes Yes 

Standalone Yes Yes Yes No 

AOP alliance No No No Yes 

Affiliation IBM BEA JBoss Spring 

In an AOP crosscutting concerns are defined as a set of aspects. An aspect consists of 

method-like constructs called advice. An advice is used to define additional behavior 

at a set of well-defined points called join points in the program’s execution.  Join 

points are matched by a predicate called pointcut. AOP weaver maps various 

crosscutting elements to the object oriented constructs. For example, aspects map to 

classes where each data member and method in aspect become the members of the 

class. Pointcuts are intermediate elements that map to methods. Advice usually maps 

to one or more methods.  The  weaver  inserts  calls  to  these  methods  at potential  

locations  matching  the  associated  pointcut. During the execution of an AOP 

objects call methods of related aspects and mostly objects and related aspects operate 

on common data. This process can be seen in Figure 2.1. 

 

Figure 2.1 : AOP weaving mechanism. 
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2.2 Distributed Systems 

A distributed system is a collection of independent computers (hosts) that appears to 

its users as a single coherent system [2]. The hosts interact with each other over a 

network in order to achieve a common goal, such as solving a large computational 

problem [11]. Large problems can be divided into a number of tasks and each task 

can be executed concurrently on different hosts. Since each host has its own 

resources, the hosts can run concurrently in parallel. Information is exchanged by 

passing messages between the hosts. Most of the distributed systems are defined in 

the form of heterogeneous in which the connected hosts have different processing 

capabilities. These types of systems are called heterogeneous distributed systems.  

The advantages of distributed systems can be listed as follows: 

 Provide high speed computing capabilities 

 Achieve higher availability and improved reliability 

 Offer modular expandability 

 Hide the network structure and provide transparency 

 Make it easy for the users to access remote resources 

A distributed system can be modelled using a host connectivity graph GT = (VT, ET) 

where VT corresponds to hosts in the network and ET corresponds to links between 

the processors labelled by the communication costs. A sample host connectivity 

graph of a system is shown in Figure 2.2.  

 

VT = {v1, v2, v3, v4, v5, v6} 

ET = {e1, e2, e3, e4, e5, e6, e7}  

GT = (VT, ET) 

Figure 2.2 : Host connectivity graph. 
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The topology –in other words, how the hosts in the system are connected– of a 

distributed system is critical in order to guarantee the system performs well under 

favorable conditions. Topologies can be grouped into two categories: 

 Partially connected 

 Fully connected 

In partially connected topologies, communication links exist only between some 

pairs of hosts, but not all. Star-structured, ring-structure and tree-structured 

topologies are some of the examples of partially connected topologies. On the other 

hand, in fully connected topologies, there are communication links between all pairs 

of hosts. These topologies are more complex than others are but they are more 

powerful. 

   
 

(a) 

Star-structured 

(b) 

Ring-structured 

(c) 

Tree-structured 

(d) 

Fully-connected 

Figure 2.3 : Distributed system topologies. 

2.3 Task Assignment  

To exploit effectiveness on a distributed system, tasks must be properly allocated to 

the hosts. This problem is called task assignment problem where it is well-known to 

be NP-hard [12]. Assuming that there are n hosts and k tasks, the total number of 

possible assignment cases is n
k
. So, the optimal assignment is a problem of 

exponential complexity. 

Task assignment can be performed statically or dynamically. Static task assignments 

are performed before running the application and remain unchanged until the end of 

the execution. In contrast, dynamic task assignments are performed at run time. 

Static task assignments are more favourable than dynamic task assignments when all 

information needed for the assignment is known before the application execution. 
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Figure 2.4 : Classification of task assignment approach. 

Many approaches to static task assignment problem have been identified up to now.  

Detailed classification of these approaches is showed in Figure 2.4. They can be 

classified into main two categories 

 Approximate connected 

 Heuristic connected 

Approximate methods attempt to obtain the optimal solutions by searching the 

complete solution space. Approximate methods are developed using different 

strategies.  

In graph theoretical approach, each task or/and host is represented by a node and the 

cost induced by the communication delay between them is represented by a weighted 

edge. The first attempt in graph based task assignment is done by Stone [18]. In 

Stone’s work, a Max Flow/Min Cut Algorithm is utilized to find assignments, which 

minimize total execution and communication costs. Stone uses Ford-Fulkerson 

algorithm for finding the maximum-flow in order to find an optimal partition of a 

program on a two-processor system. Then, he generalizes it to systems with three or 

more processors.  In his work, Stone constructs a graph for the n-processor problem 

for which a minimal cost cut is a minimal cost partition of the graph into n disjoint 

sub graphs. 

Static Task Assignment 

Approximate Heuristic 

Graph 

Theoretical 

Integer 

Programming 

State-space 

Search 

Genetic 

Algorithms 

Simulated 

Annealing 

Partical Swarm 

Optimization 

Harmony 

Search 

Greedy 
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Stone's work is used as a starting point for new algorithms. V. M. Lo [19] develops a 

heuristic algorithm, which combines recursive invocation of Max Flow/Min Cut 

Algorithms with a greedy-type algorithm to find suboptimal assignments of tasks to 

processors. 

The integer programming method formulates the model as an optimization problem 

and solves it via mathematical programming techniques. Chu [20] developed a model 

to find an optimal file allocation in a multiple computer system where the criterion of 

optimality is minimal overall storage and transmission costs. In his work, Chu 

assumed that the number of file copies to be stored in the fully connected network is 

a fixed and known quantity. He formulates the problem into a nonlinear integer zero-

one programming problem and then reduced it to a linear zero-one programming 

problem. 

State-space search techniques represent the problem in terms of states and 

systematically and intelligently enumerate on these states to find the solution. Shen 

and Tsai [21] proposed a graph-matching algorithm based on a minimax criterion for 

solving the static task assignment problem where the processors need not be fully 

connected. The algorithm combines graph homomorphism to restrict mapping of 

modules to processors, and an informed search technique, A* to produce an optimum 

assignment. Ramakrishnan and his colleagues [22] proposed an extension to Shen 

and Tsai's task assignment strategy by introducing several heuristics to choose the 

task to be assigned at each level. 

Since approximate methods search the whole space to find the optimal solutions, 

they need a lot of time and memory. Heuristic methods on the other hand, do not 

pursue the optimal solutions but provide sub-optimal fast and effective solutions. 

They use special parameters that affect the systems in indirect ways. 

Genetic algorithms (GA) generate solutions using techniques inspired by natural 

evolution. Simulated annealing (SA) is based on the manner in which liquids freeze 

or metals recrystallize in the process of annealing. Harmony search (HS) is derived 

from the improvisation of musicians that process of searching for better harmony. 

Particle swarm optimization (PSO) follows a collaborative population-based search 

model where each individual of the population, called a ‘particle’, flies around in a 

multidimensional search space looking for the optimal solution. Finally, greedy 
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algorithms follow iteration-based approach and seek to reach better solutions from 

one generation to the next.  

There are wide varieties of heuristic algorithms used in task assignment problem 

such as genetic algorithms [23-24], simulated annealing [25-26], particle swarm 

optimization [27-28], harmony search [29], and greedy [30]. 

2.4 Distributed AOP  

The relation between AOP and distributed computing is interesting. In distributed 

systems, decentralized crosscutting concerns can be found where distributed aspects 

are usually executed simultaneously in multiple hosts of the network. The first 

approximation in distributed aspects is using AspectJ for improving the modularity 

of RMI-based programs [13], splitting code and remote object logic into aspects. 

However, combination of AspectJ and an existing framework for distributed software 

is not a solution. Because this approximation does not provide general support for 

explicit distribution in the aspect language or weaver technology, but can only 

modify the distribution behaviour of a base program. 

The next approximation in distributed aspects is the remote pointcut concept [14]. A 

remote pointcut is a function for identifying join points in the execution of a program 

running on a remote host. Remote pointcuts are similar to remote method calls, 

which invoke the execution of a method on a remote host. When the thread of control 

reaches the join points identified by a remote pointcut, the advice body associated 

with that remote pointcut is executed on a remote host different from the one where 

those join points occur. 
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Host W Host D

Host T

:AuthServer :DBServer

<<aspect>>

:AuthServerTest

1. RegisterUser

2. AddUser

<<pointcut>>

Execution(AddUser)

 

Figure 2.5 : Remote pointcut in distributed system [14]. 

In Figure 2.5, a simple distributed authentication service is illustrated. The service 

consists of two components: a front-end server AuthServer on a host W and a 

database server DbServer on another host D. When a client on host T needs to 

register a new user it remotely calls RegisterUser on the front-end server. Then the 

RegisterUser method remotely calls AddUser on the database server to complete the 

task. Let there is an aspect located on the client used to confirm that adding user to 

the database is correctly done.  By the concept of remote pointcut, related advice(s) 

of aspect located on host T is executed when the thread of control reaches the 

AddUser method on the host D. 

There are lots of approaches that address distributed AOP. DjCutter [14], JAC [15], 

AWED [16], Damon [17] and ReflexD [18] are some of these approaches. They are 

built on top of the previous AOP frameworks and introduce new pointcut predicates 

that can match events on remote hosts. 
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DjCutter is the first study which points out the remote pointcut concept. It proposes a 

centralized aspect-server where the server gathers joinpoint information of remote 

pointcut definitions and executes the related advices local to the server. It also 

provides another language construct named remote inter-type declaration, which 

allows developers to declare a new method and field in a class on a remote host. JAC 

does not introduce a dedicated aspect language, but use OOP constructs to describe 

aspects. JAC provides support to specify a named host that delimits the context in 

which the joinpoint should be detected. AWED and ReflexD make it possible to 

execute advices in several hosts and programmers can control where aspects are 

deployed. ReflexD also allows programmers to customize the remote parameter 

passed to a remote advice which provides greater flexibility. Damon, on the other 

hand, introduces distributed component model and aspect remoting service with one-

to-one and one-to-many abstract. 
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3.  PROBLEM DEFINITION 

The  assignment  problem  for  aspects  in distributed systems can be defined as the 

assignment of k aspects A = {a1, a2, ... , ak } to n hosts, H = {h1, h2, ... , hn }. We 

define our distributed system in the heterogeneous form in which the connected hosts 

have different processing capabilities. In the network Xqi denotes the execution cost 

of aspect that is proportional to the execution time of the aspect ai when it is assigned 

to and executed on host hq, 1 ≤ i ≤ k, 1 ≤ q ≤ n. Here we assume that each advice in 

the same aspect has the same load. This means that the execution time doesn’t 

depend on which advice of an aspect is executed. 

Each communication link in the network has different amounts of delay, which can 

be represented by a delay matrix D={Dpq}. Dpq denotes the communication cost 

between two hosts hp and hq, which arise because of the communication delay when 

an object located on hp calls an aspect located on hq. Further, Dpq=Dqp and Dpp=0. 

Another parameter that effects the performance of the AOP is the relation count 

defined as how many times each aspect instance will be called from each object. 

These values can be obtained from the AOP framework tools. For example, AspectJ 

Development Tools (AJDT) allows programmers to register a listener to obtain 

crosscutting relationship information whenever a project is built [35]. Let there be m 

objects, O = {o1, o2, …, om}, then Rij denotes aspect-object relation count between 

aspect ai and object oj. On the other hand, when there is a call from an object to an 

aspect, a communication cost is incurred because of exchanging data. So, let Cij 

denotes the communication cost between aspect ai and object oj that is proportional 

to size of data transferred between ai and oj. All cost values (Xqi, Dpq, Cij) are 

normalized by assigning one to the smallest positive value in each group. 

In our study we assume that locations of objects are fixed and predetermined 

according to their specific jobs. We focus on distributing and assigning aspects, 

which are used by the objects. Therefore we don’t consider the execution times of 

objects. So, let Lj denotes the host that object oj is assigned to, 1 ≤ Lj ≤ n 
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All parameters described in this section can be derived explicitly from the distributed 

system. As an example, the parameters of a simple system which is made up of three 

hosts, five objects and four aspects are represented in tabular form in Figure 3.1 

Dpq h1 h2 h3      Xqi a1 a2 a3 a4 

h1 0 1 3     h1 1 4 2 3 

h2 1 0 2     h2 3 1 6 2 

h3 3 2 0     h3 5 6 2 3 

          (a) Host Communication Costs                 (b) Aspect Execution Costs 

 

Cij o1 o2 o3 o4 o5      Rij o1 o2 o3 o4 o5 

a1 4 1 2 4 4     a1 16 0 11 14 9 

a2 4 1 5 3 2     a2 17 3 9 10 5 

a3 2 2 6 3 5     a3 2 9 0 9 16 

a4 5 2 1 5 4     a4 14 1 14 4 9 

     (c) Aspect-Class Communication Costs      (d) Aspect-Class Relation Counts 

o (j) 1 2 3 4 5 

h(Lj) 1 2 2 3 1 

                                              (e) Object Assignments (Lj) 

Figure 3.1 : An Example set of system and program parameters 

Host connectivity graph and aspect-object relation graph of the sample system are 

shown in Figure 3.2. Host connectivity graph has three circle nodes corresponding to 

hosts and edges between them indicating the communication cost as the edges label. 

Each host in the graph contains a list where the elements of the list represent the 

execution costs of aspects on that host.  On the other hand, aspect-object relation 

graph has five square nodes corresponding to objects, four triangle nodes 

corresponding to aspects and edges between objects and aspects indicating the 

communication cost and relation counts respectively as the edges label. Object 

assignments are shown on top of each object node. 

The solution of the aspect assignment problem is a proper mapping of k aspects to n 

hosts that will minimize the running time of the aspect-oriented program. To evaluate 

the efficiency of the assignment procedure we consider the host that is maximally 

loaded by the aspects. 
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Figure 3.2 : Host Connectivity Graph and Aspect-Object Relation Graph 

Here the load of a host is defined as a metric that is proportional to the total time 

consumed by the aspects located on this host during the execution of the program. As 

the hosts in a distributed system run parallel, the host that needs the longest time to 

complete its aspects is taken into consideration, because it will determine the 

completion time of the whole AOP. The load metric of a host consists of two 

components. First, one is the total running time of the aspects on this host and second 

one is data transfer time between these aspects and related objects. Let T be the set of 

aspects that are assigned to host q then the load on host q is:  

  
  
















Ti

m

j

m

j

qLijijqiijq j
DCRXRLoad

1 1

 (3.1) 

where m is the number of the objects and Lj is the host number of j
th

 object. 

The solution has to fulfill two objectives. First, we try to minimize the load of the 

maximally loaded host, which is represented by the following cost function F1: 

nqLoadF q  1),max(1  (3.2) 
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This first objective is related to the completion time of the aspect-oriented program 

under assumption that all hosts operate parallel. Secondly, if there are many aspect 

assignment possibilities, which minimize the F1, the second objective is to minimize 

the sum of load on all nodes, which is expressed by the following function F2:  






n

q

qLoadF

1

2  
(3.3) 

 

 

   

 



 
17 

4.  THE PROPOSED ALGORITHMS 

To solve the aspect assignment problem in distributed systems we propose three 

algorithms, namely an A* algorithm, a Genetic Algorithm (GA) and a Particle 

Swarm Optimization (PSO). Each of these algorithms has drawbacks and 

advantages. A*, which is widely used in artificial intelligent, is an effective search 

algorithm that allows to solve a large number of problems with greater ease. 

However, its memory requirement is the main drawback of A* algorithm. On the 

other hand, GA is a randomized searching technique where it is used for optimization 

and classification problems. PSO is similar to the GA in the sense that these two 

algorithms use some heuristics to solve the problems. GA has strong ability of global 

searching but it requires more computational effort than PSO. They are both fast and 

effective, but they usually find sub-optimal solutions. 

4.1 A* Algorithm 

A* [3] is a best-first search algorithm, which can guaranteed to find the optimal 

solutions by using admissible heuristics. In a tree representation it starts from the 

root node, expands the intermediate nodes and finally reaches one of the leaf nodes. 

At each node, one of the aspects is assigned to a specific host as an addition to 

assignments made at its ancestors. Root node is a null solution of the problem. 

Intermediate nodes represent the partial solutions and leaf nodes represent the 

complete solutions. 

Each node p in the tree maintains a cost function f(p) which is computed as 

f(p)=g(p)+h(p), where g(p) is the cost of getting from the root to node p and h(p) is 

the estimated cost of getting from p to the goal node. In our algorithm g(p) is 

calculated using Equations 3.1 and 3.2 as the load on the heaviest-loaded host (F1) of 

partial assignment. Since, at intermediate nodes all aspects have not been assigned 

yet, g(p) is not sufficient solely to express the greatest load F1. Future assignments to 

the same host may increase this load. To be able to compare cost values of nodes in 

different levels fairly, possible effect of unassigned aspects on the load is added as 
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h(p) to g(p). In our algorithm h(p) is calculated as the sum of the object relation 

counts of aspects that are unassigned at node p. Let U be the set of unassigned 

aspects in node p, then h(p) is calculated as follows: 

 
 
















Ui

m

j

ijRph

1

)(  (4.1) 

Here h(p) is not a real load value; it is just an estimation of the effect of future 

assignments that is used to compare cost values of different nodes fairly. Different 

functions may also be used as h(p). In our thesis, we chose the simple one in 

(Equation 4.1), which provides proper solutions. 
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Figure 4.1 : Search tree for A* algorithm. 

As an illustration, for the sample system of three hosts, five objects and four aspects 

(see Figure 3.1) the resulting search tree of the A* algorithm is shown in Figure 4.1. 

A search-tree node includes partial assignment of aspects to hosts, and the value of 

the cost function. A partial assignment means that some aspects are unassigned; if 
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there is an ‘X’ in the place of aspect ai it indicates that i
th

 aspect has not been 

assigned yet. For example in Figure 4.1 the node with label 5 shows that aspect a1 

has been assigned to host 2, and the value produced by the cost function f(p) is 485. 

The search tree’s depth equals the number of aspects, and any node of the tree can 

have a maximum of n successors, which is the number of the hosts. 

The algorithm maintains two lists named OPEN and CLOSED. The OPEN list keeps 

nodes that need to be examined, while the CLOSED list keeps nodes that have 

already been examined. When a node is selected from OPEN list to be examined, its 

child nodes are generated and put into the OPEN list. The nodes in the OPEN list are 

ordered before the selection according to cost function f(p); that is, the algorithm 

selects the node with the minimum cost. Initially, the OPEN list contains just the root 

node, and the CLOSED list is empty. 

In the example, given in Figure 4.1, labels show the selection order of the nodes for 

the given system. We start with the root node labelled as 1. We examine children of 

the root and select node 2 because it has the lowest cost value (292). Then all 

children of node 2 are added to the OPEN list, where children of root still exist. Now 

node 3 is selected from the OPEN list because it has the smallest cost value and its 

children are added to the list. After that, nodes 4, 5 and finally 6 are selected from the 

OPEN list according to their cost values. Since node 6 is a leaf node the algorithm 

terminates and the final solution is the assignment of aspects as presented on this 

node. If more than one node have the same smallest cost value then the second 

objective function (F2) is taken into account, and the node with the smallest sum of 

load is selected. The complete A* algorithm is as follows: 

Initialize OPEN and CLOSED lists (OPEN=root node; CLOSED=EMPTY) 

while the OPEN list is not empty { 

  Get node p off the OPEN list with the lowest f(p)  

  Add p to the CLOSED list 

  if p is the leaf node then return p as solution 

  Generate each successor node p' of p 

  Add p' to the OPEN list 

} 

Figure 4.2 : Complete A* algorithm. 
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4.2 Genetic Algorithm 

Genetic algorithms (GA) [4], which are used for solving many search and 

optimization problems, generate solutions using techniques inspired by natural 

evolution. A GA starts by generating a random population of solutions (called 

chromosomes in GAs literature). At each iteration, a number of solutions are selected 

for the mating pool according to their fitness. Crossover and mutation operations are 

then applied to mating pool in order to produce new solutions. The algorithm 

terminates when either a maximum number of generations has been produced or 

population is converged. 

The first step in designing a GA is to develop a suitable representation for 

chromosomes in the population. In our algorithm, we use integer representation, with 

considering the relationship between hosts and aspects. For k aspects there are k 

elements (called gene in GAs literature) in the chromosome. The value of each gene 

in the chromosome represents the host to which that aspect is allocated. As an 

example, a chromosome with four genes is shown in Figure 4.3. 

 

Figure 4.3 : Chromosome representation. 

The fitness value of each gene in the chromosome is the load on the host that the 

gene represents (Loadq), which is calculated using the equation giving in 3.1. On the 

other hand, the fitness value of the chromosome is the maximum gene fitness, which 

is the load on the heaviest-loaded host that is represented by F1 as given in Equation 

3.2. 

For selection phase, we use Roulette-Wheel Selection, which is a very common 

probabilistic selection method for GAs. It simulates a toss in a roulette-wheel to 

select an individual. Each individual is assigned a segment on the roulette-wheel 

proportional to its selection probability. This selection scheme is repeated until a 

number (size of population) of individuals have been selected. Figure 5.4 illustrates 

the Roulette-Wheel Selection. 

 

2     3     1     2      

1      2      3      4 Aspect:               

Host (gene): 
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Figure 4.4 : The roulette-wheel selection method. 

In our algorithm, we apply one point crossover operation on a pair of chromosomes, 

which is randomly selected from the mating pool. One point crossover is 

accomplished by randomly choosing a point along the length of the chromosome, 

and exchanging all genes beyond that point in either chromosome. This operation 

yields two new chromosomes. After crossover operation, a mutation operation is 

performed on a randomly selected gene of each chromosome with a certain 

probability. In mutation operation the value of a gene is replaced by randomly 

generated host number. These operations are illustrated in the Figure 4.5 and Figure 

4.6. 

 

Figure 4.5 : Crossover operation. 

 

Figure 4.6 : Mutation operation. 

After crossover and mutation operations the worst chromosomes, the chromosomes 

with the highest value of fitness (F1) in the population are replaced by new ones in 

the mating pool. This means that the best chromosomes (the chromosomes with the 

4 1 1 3 2 4 2 3 2 4 1 3 3 2 4 2 3 2 

1 2 3 2 4 1 3 2 1 1 4 3 2 3 2 1 

4 1 1 3 2 4 2 3 2 1 1 2 4 3 3 4 

1 2 3 2 4 1 2 3 2 1 1 2 4 3 3 4 

4 1 1 3 2 4 3 2 1 1 4 3 2 3 2 1 
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lowest value of fitness) in the population are carried to the next generation (called 

elitism in GAs literature). In our algorithm we replace 1 chromosome by new ones 

with better fitness values. If there are many chromosomes with the same fitness value 

(F1), then the second objective (F2) comes into play, and the chromosomes with the 

smallest F2 value are selected. The complete GA is given in Figure 4.7. 

Generate initial population (chromosomes represent different 

aspect assignment possibilities. Fitness = F1) 

do { 

  Create mating pool 

  Apply crossover operation 

  Apply mutation operation 

  Apply elitism (Select chromosomes with smallest F1 values. If  

    these values are equal select chromosomes with smallest F2  

    values.) 

  Carry new chromosomes from mating pool to population 

}until(max generation is reached or converged) 

Figure 4.7 : Complete GA. 

4.3 Partical Swarm Optimization 

Particle Swarm Optimization (PSO) [5] is a population based stochastic optimization 

technique first proposed by Kennedy and Eberhart in 1995. The algorithm is inspired 

by the social behavior of organisms such as bird flocking or fish schooling. The 

system consists of multiple candidate solutions and searches for optimal solution by 

updating generations. Each solution candidate, called a ‘particle’, flies in the problem 

search space looking for the optimal position to land. 

Each particle keeps track of its position in the problem space, which is associated 

with the best cost value (fitness) it has achieved so far. Also the best position, 

obtained so far by any particle in the population is tracked as time passes through 

particle quests. These local and global best solutions are used to balance exploration 

and exploitation of the algorithm. 

The algorithm is initialized with a population of random solutions. At each time step, 

the travelled distance (velocity) of each particle is determined toward its local and 

global best positions using the equation giving in 4.2. Then the position of each 



 
23 

particle is updated according to its velocity value using the equation giving in 4.3. 

After each step, particles renew their local best position if they get better cost value. 

Also the global best position is updated according to new local best positions. When 

updating the global best position, the local best position with the lowest cost value 

(F1) is chosen among the particles. If there are many particles with the same cost 

value (F1), then the second objective (F2) comes into play, and the local best 

position of the particle with the smallest F2 value are selected. Concept of 

modification of a searching point by PSO is shown in Figure 4.8 where Xi
k
 is the 

current position, Xi
k+1 

is the modified position, Vi
k
 is the current velocity, Vi

k+1 
is the 

modified velocity, Vi
Pbest

 is the velocity based on local best position, and Vi
Gbest

 is the 

velocity based on global best position. 

 

Figure 4.8 : Concept of modification of a searching point by PSO [32]. 

The algorithm terminates when either a maximum number of generations has been 

produced or population is converged. At the end, the global best position gives the 

result. 

   igiipii XGRandcXPRandcWVV  ()() 21  (4.2) 

iii VXX   (4.3) 

In Equations 4.2 and 4.3, Vi, called the velocity for particle i, represents the distance 

to be traveled by this particle from its current position, Xi represents the particle 

position, Pi represents its best previous position (local best), and G represents the 

best position (global best) among all particles in the population. Randp() and Randg() 
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are two random functions with a range [0,1]. c1 and c2 are positive constant 

parameters used to control the impact of previous historical values of particle 

velocities on its current one. Usually the value 2 is suggested for both parameters in 

the literature. W, on the other hand, is called inertia weight and it is used in order to 

keep the balance between the local and global optimality. In our algorithm W is 

assigned to 0.9, and c1 = c2 = 2. The complete PSO algorithm is given in Figure 4.8. 

Generate initial population with the random position and velocity 

Initialize the local best position of each particle with a copy of  

  initial position 

Initialize the global best position of population within local  

   best positions 

do { 

  Update the velocity of each particle 

  Update the position of each particle according to its velocity 

  Calculate the fitness of each particle (Fitness = F1) 

  Renew the local best position of each particle if it gets  

    smallest F1 

  Renew the global best position of population (Select the local  

    best position with smallest F1 values. If these values are  

    equal select the local best position with smallest F2 values. 

}until(max generation is reached or converged) 

Figure 4.9 : Complete PSO. 

4.4 Aspect Copy Assignment Algorithm 

In order to increase efficiency in distributed AOP we propose an algorithm, which 

works after finding proper aspect assignment. First, the algorithm finds the host hp 

that is maximally loaded after the aspect assignment, and examines all 

communication costs related with aspects assigned to this host to find the highest 

one. After this examination, the algorithm finds out an aspect ai on hp, and a host hq 

which are caused to highest communication cost on hp. Let M be the set of objects 

that are located on hq then the communication cost between hp and hq for ai is 

calculated as follows: 






Mj

pqijij DCRCost  
(4.4) 
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Secondly, a copy of aspect ai which can be called ak+1 (k is the number of aspects) is 

assigned to host hq. This means that there is no need for a communication between hp 

and hq for ai because hq can now use ak+1 instead of ai. After this assignment a new 

vector for ak+1 is added to aspect execution costs matrix, aspect-object relation 

counts matrix, and aspect-object communication costs matrix. For aspect execution 

costs matrix and aspect-object communication costs matrix, the values of the vector 

for ak+1 are the same as the values of the vector for ai, because these aspects are the 

same one. On the other hand, for aspect-object relation counts matrix, all the relation 

counts between ai and the objects which are located on hq are copied to the vector for 

ak+1, and then, these values on the vector for ai and the rest of the values of the vector 

for ak+1 are initialized to zero. 

 … ai … ak+1 

 

 o1 o2 … om 

 

 o1 o2 … om 

h1  1  1 …     …     

h2  3  3 ai 3 2  5 ai 12 0 … 16 

…  …  … …     …     

hn  4  4 ak+1 3 2  5 ak+1 0 9 … 0 

   (a) Aspect Execution                 (b) Aspect-Object                    (c) Aspect-Object 

                 Costs                          Communication Costs                  Relation Counts 

Figure 4.10 : Adding a new vector for ak+1 to input matrices. 

Finally, a further examination is performed on the other hosts different then hp and 

hq. We check the objects on these hosts which are related with ai and determine if 

they will use ai or ak+1 according to the communication cost between hosts. For 

example in Figure 4.11, let hp is the maximally loaded host and after examination, a 

copy of ai is assigned to hq. Also let om which is located on hr has a relation with ai. 

We compare the communication costs Dpr and Dqr. If Dqr is less than Dpr then we 

decide that om will use ak+1 which is located on hq instead of ai which is located on hp. 

We make all necessary updates on related input matrices. 
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Figure 4.11 : A simulation of aspect copy assignment. 

The cost value F1 is calculated after the above-described steps. If there is a decrease 

in the cost value, we repeat the process again to find the new aspect copy assignment. 

The process continues until there are no decreases in the cost value. The complete 

algorithm is given in Figure 4.12. 
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do 

  hp = findMaximallyLoadedHost(); 

  cost = 0; 

  a = 0; 

  hq = 0; 

  for(int i=1; i <= number of hosts; i++) do 

      if(h(i) != h(p)) then 

         for(int j=1; j <= number of aspects; j++) do 

            if(a(j) is assigned to hp)then 

               temp = 0; 

               for(int k=1; k <= number of objects; k++) do 

                  if(o(k) is located on h(i))then 

                     temp += D(hp,i)*R(j,k)*C(j,k); 

                  end 

               end 

               if (temp > cost) then 

                  cost = temp; 

                  a = a(j); 

                  hq = h(i); 

               end 

            end 

         end 

      end 

   end 

   /* Update Aspect-Object Relation Counts Matrix */ 

   for(int i=1; i <= number of objects; i++) do 

      if(o(i) is located on hq)then 

         R(number of aspects+1,i) = R(a,i); 

         R(a,i) = 0; 

      else 

         R(number of aspects+1,i) = 0 

      end 

   end 

   /* Update Aspect Execution Cost Matrix */ 

   for(int i=1; i <= number of hosts; i++) do 

      X(number of aspects+1,i) = X(a,i); 

   end 

   /* Update Aspect-Object Communication Cost Matrix */ 

   for(int j=1; j <= number of objects; j++) do 

      C(number of aspects+1,i) = C(a,j); 

   end 

   for(int i=1; i <= number of objects; i++) do 

      if(o(i) is not located on hp and hq) then 

         if(D(hq,i) < D(hp,i)) then 

            R(number of aspects+1,i) = R(a,i); 

            R(a,i) = 0; 

         end 

      end  

   end 

   number of aspects = number of aspects + 1; 

while(cost value (F1) is decreases) 

Figure 4.12 : Complete aspect copy assignment algorithm. 
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5.  EXPERIMENTAL RESULTS 

To evaluate the performance of our algorithms firstly, we coded our algorithms in 

Java programming language using Eclipse SDK 3.4.2 and compared their efficiency 

for different aspect oriented programs by executing them on a server with four quad-

core 2.60 GHz Intel Xeon CPU processors and 15 GB main memory, running the 

Ubuntu Linux 10.04.1. The system specifications are shown in Figure 5.1. Secondly, 

aspects of different programs are assigned to hosts according to solutions obtained by 

three algorithms and these programs are executed on a simulation tool called the 

Asynchronous Distributed System Simulator [33]. We compared completion time of 

programs related to the different aspect assignments. 

 

Figure 5.1 : System specifications. 

 



 
30 

 

The Asynchronous Distributed System Simulator is written  in  Java  programming  

language  using  a threaded architecture and  can  simulate  any  algorithm  that  has  

been  designed  for  the distributed system network. It takes input parameters  

through an XML  file  which specifies  the  nodes  in  the network,  the  links  

between  the  hosts and the  algorithm  to  be  run  on  the distributed system. The 

simulator has a queue of messages that represents messages that are in transit on the 

network. Each link has a delay associated with it and messages sent using a link are 

not delivered until after the delay period has passed. 

In our experiments we test our algorithms on a fully connected distributed system 

and a partially connected distributed system with five hosts. The host connectivity 

graphs of the systems are shown in Figure 5.2 and Figure 5.3 respectively, where 

labels on edges show the cost of delays of the communication links (Dpq). The 

partially connected distributed system is obtained from the fully connected 

distributed system by removing some connections between hosts. On these systems 

we try to distribute aspects of three aspect oriented programs with different sizes. 

The programs are detailed below: 

 P1 : 10 objects and 5 aspects 

 P2 : 20 objects and 10 aspects 

 P3 : 30 objects and 15 aspects 

For each of these programs we generate 10 different datasets randomly, which 

include following properties of programs: aspect execution costs (Xqi), aspect-object 

relation counts (Rij), aspect-object communication costs (Cij) and object locations 

(Lj). Xqi and Cij cost values are generated randomly in the range of [1, 10]. Similarly, 

Rij values are generated randomly in the range of [0, 20]. We run GA and PSO for 50 

trials for each of the dataset, and then we calculate the confidence intervals (CI) for 

95% confidence level for the cost value F1. CI for 95% confidence level means that 

there is a probability of 95% to get the result during the specific range. We calculate 

CI as follows: 

n

t
CI

*
  

(5.1) 
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In Equation 5.1, n is the sample size, σ is the standard deviation of the sample, and t 

is the critical value from the t-distribution [34] with the degrees of freedom of n. For 

sample size 50 and the probability of 95% confidence t is equal to 2.009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 : Host connectivity graph for fully connected distributed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 : Host connectivity graph for partially connected distributed system. 
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Using the results of simulations, we evaluate performance of our algorithms in two 

ways. Firstly, we consider execution times of algorithms, spent to find a solution. 

Secondly, we investigate the completion time of the AOP, when the aspects are 

assigned to host according the solutions provided by the algorithms. 

5.1 Fully Connected Distributed System 

# of 

DS 

P1 P2 P3 

F1 F2 Time F1 F2 Time F1 F2 Time 

1 1690 6287 20 6246 29085 671278 12078 56246 3935320 

2 1627 6505 25 6563 30585 441766 12435 59121 9420174 

3 1713 6173 32 6131 28809 317609 12871 63270 1956809 

4 1615 7240 24 7100 32391 524357 13115 59602 5884341 

5 2012 5751 20 6377 26695 389860 12045 55062 5229528 

6 1838 7057 30 5397 21439 478004 12346 59445 3257284 

7 1427 5194 26 5969 26092 383846 12053 56469 6977759 

8 1763 7023 25 6127 28620 680675 12741 58318 7851088 

9 1985 6994 39 6019 27461 238493 13734 65334 3139030 

10 1354 5307 39 6267 25851 174162 13291 61567 2761528 

Avg.   27   430005   5041286 

# of 

DS 

GA PSO 

F1 CI F2 Time F1 CI F2 Time 

1 1690 0 6287 441 1690 0 6287 43 

2 1627 0 6505 379 1627 0 6505 44 

3 1713 0 6173 371 1713 0 6173 43 

4 1615 0 7240 425 1615 0 7240 43 

5 2012 0 5751 418 2012 0 5751 43 

6 1838 0 7057 378 1838 0 7057 43 

7 1427 0 5194 368 1427 0 5194 43 

8 1763 0 7023 359 1763 0 7023 44 

9 1985 0 6994 399 1985 0 6994 43 

10 1354 0 5307 363 1354 0 5307 43 

Avg.    390    43 

 

 

 

 

Table 5.1: Obtained cost values and execution times of A* on a fully connected  

distributed system for P1, P2, and P3 in milliseconds 

Table 5.2: Obtained cost values and execution times of GA and PSO on a fully 

connected distributed system for P1 in milliseconds 
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# of 

DS 

GA PSO 

F1 CI F2 Time F1 CI F2 Time 

1 6723 62 30529 1391 7044 58 32279 133 

2 6712 37 29880 1280 6882 37 31171 133 

3 6575 60 29123 1343 6864 62 30523 139 

4 7242 35 31615 1378 7379 30 32682 136 

5 6383 25 28424 1349 6447 38 29207 137 

6 5405 12 21993 1212 5603 34 23592 140 

7 6017 38 26367 1300 6085 33 26851 135 

8 6367 99 28411 1308 6927 53 30632 136 

9 6463 87 28796 1154 6645 56 30234 135 

10 6363 53 27032 1291 6646 59 28803 134 

Avg.    1301    136 

# of 

DS 

GA PSO 

F1 CI F2 Time F1 CI F2 Time 

1 13091 117 60384 3556 13906 98 63839 315 

2 13061 102 60037 3642 14062 105 64667 314 

3 14189 115 65718 3520 14944 114 69034 307 

4 13736 102 62893 3387 14972 116 67587 317 

5 12923 99 59053 3653 13832 123 63036 308 

6 13491 115 62978 3549 14317 97 66134 317 

7 12813 88 58830 3675 13767 83 62940 316 

8 13144 92 61229 3487 13874 105 64529 312 

9 14566 103 67908 3516 15368 96 71022 311 

10 13883 131 63811 3520 14813 107 68284 308 

Avg.    3551    312 

Tables 5.1, 5.2, 5.3 and 5.4 provide performance comparison of three algorithms by 

considering obtained cost values (F1 and F2) and their execution times for three 

different programs. Results in Table 6.1 show that A*, GA, and PSO obtain always 

the same cost values for P1, which is a relative smaller program than P2 and P3. In 

this case A* performs more than 10 times faster than GA and almost 2 times faster 

than PSO. When the number of aspects increases A* obtains better (smaller) cost 

values than the GA and PSO. This means that A* can distribute aspects more 

efficiently than the GA and PSO for bigger programs. A* achieves about 7% smaller 

F1 values for P2 and about 10% smaller F1 values for P3 compared to the GA. Also 

it achieves about 12% smaller F1 values for P2 and about 14% smaller F1 values for 

P3 compared to the PSO. On the other hand, with the increase in the number of 

Table 5.3: Obtained cost values and execution times of GA and PSO on a fully 

connected distributed system for P2 in milliseconds 

Table 5.4: Obtained cost values and execution Times of GA and PSO on a fully 

connected distributed system for P3 in milliseconds 
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aspects and objects in the program, the execution time of A* increases very fast. For 

P2 the GA proposes a solution 300 times faster and the PSO proposes a solution 

3000 times faster than the A*. Similarly, for P3 the GA proposes a solution nearly 

1400 times faster and PSO proposes a solution 16000 times faster than the A*. When 

we compare GA and PSO, it is shown that GA achieves about 7% smaller F1values 

than PSO for both of P2 and P3. However, PSO proposes a solution 10 times faster 

than the GA for all of the programs. 

The relation between the performance of the algorithms and the number of objects 

and aspects in the program can be explained as follows. A* algorithm uses a best-

first search technique that builds a search-tree by visiting the most promising nodes 

first. When the number of nodes in the search tree is smaller, it quickly reaches the 

solution node. However, if the number of aspects increases, nodes in the tree also 

increase and the algorithm spends more time to visit these nodes. On the other hand, 

GA and PSO use a random search technique, which requires only a certain number of 

iterations to obtain a solution. Therefore if the number of aspects increase the 

execution time of the A* is increased much more that the GA and PSO. However it is 

expected that the A* can find optimal solution in all cases, while the GA and PSO 

can obtain optimal aspect assignments only for relative small systems. 

Since the execution time of A* increases very fast with the increase in the number of 

program elements, we do further experiments on GA and PSO. We execute these 

algorithms for different sizes of hosts, objects, and aspects.  For each execution, we 

generate a dataset randomly. The properties of the datasets used in this experiment 

are the same as the ones used in the previous experiment. 

Table 5.5 provides performance comparison of two algorithms by considering 

obtained cost values (F1 and F2) and their execution times for different sizes of 

hosts, objects, and aspects. Results in Table 6.4 shows that GA achieves about 18% 

smaller F1 values and about 7% smaller F2 values compared to the PSO. On the 

other hand, PSO performs almost 10 times faster than GA. 

In order to validate the efficiency of the aspect assignments of three algorithms we 

run three aspect-oriented programs (P1, P2, and P3) on the simulator and measure 

the completion time of these programs under different assignments of aspects. To 

evaluate the performance improvement achieved by our algorithms, we created a 

rival algorithm, namely the random assignment algorithm (RAA). The RAA assigns 
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aspects to hosts randomly without taking any properties of the system and program 

into consideration. This is our baseline algorithm that helps us to observe the 

speedup obtained by the proposed algorithms. We performed the RAA on three 

programs (P1, P2, P3) for each dataset 10 times. We ran these programs on the 

simulator for 10 different random assignments produced by the RAA and calculated 

the average of the completion time T(RAA) for each dataset. To get the speedup of 

the AOPs we do the following calculations: T(RAA)/T(A*), T(RAA)/T(GA), and 

T(RAA)/T(PSO), where T(A*), T(GA), and T(PSO) are completion times of the 

AOPs, when aspects are assigned according to the A*, GA, and PSO, respectively. 

Results are given in Table 5.6. For example, the value 2.6 in the first row and column 

of the table denotes that the execution time of the AOP P1 for dataset #1 takes 2.6 

times longer if the aspects are assigned by the RAA then the case where aspect 

assignment is performed by the A*, GA, and PSO. 
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# of 

Hosts 

# of 

Objects 

# of 

Aspects 

GA PSO 

F1 CI F2 Time F1 CI F2 Time 

10 20 10 7144 87 52982 1203 7972 126 56866 123 

10 40 20 26723 202 221873 4231 29700 238 231638 467 

10 60 30 59613 368 525417 10755 63989 379 536408 1155 

20 40 20 16303 252 223507 3577 19975 278 226594 412 

20 60 30 37096 270 527756 8081 41365 388 544472 905 

20 80 40 70215 534 1045199 15914 78327 683 1054328 1745 

30 60 30 33355 369 556523 7535 37899 308 566392 837 

30 80 40 53917 277 1015205 13157 59619 585 1035816 1486 

30 100 50 78940 920 1597086 21747 92570 897 1601167 2354 

40 80 40 50145 340 1022945 12223 54847 267 1039298 1352 

40 100 50 71510 409 1641617 19714 79145 820 1661243 2147 

40 120 60 94863 820 2336423 29651 113424 842 2343305 3184 

50 100 50 67551 399 1647067 18899 73176 398 1682990 2078 

50 120 60 85000 642 2334146 28438 95506 1320 2369123 3064 

50 140 70 109906 1615 3147700 40311 129996 881 3145409 4285 

Table 5.5: Obtained cost values and execution times of GA and PSO for different sizes of hosts, objects, and aspects in milliseconds 
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# of 

Dataset 

P1 P2 P3 

A*, GA and PSO A* GA PSO A* GA PSO 

1 2.6 1.9 1.8 1.8 2.0 1.9 1.7 

2 2.3 1.7 1.7 1.6 2.2 1.8 1.8 

3 2.2 2.6 2.3 2.2 2.1 1.9 1.7 

4 2.5 2.0 2.0 1.8 2.0 1.8 1.7 

5 1.8 2.1 2.0 2.0 2.3 2.1 1.9 

6 1.9 2.1 2.1 2.0 1.9 1.8 1.6 

7 2.8 2.1 1.9 1.9 2.2 1.9 1.8 

8 2.4 2.2 2.2 1.9 1.9 1.8 1.7 

9 2.4 2.0 1.8 1.7 2.3 2.0 2.0 

10 2.9 2.2 2.0 1.9 2.0 1.8 1.7 

We deduce from Table 5.6 two main results. Firstly, properly assignment of aspects 

improves the performance of a distributed AOP.  Experimental result show that the 

proposed algorithms can speed up the AOPs between 1.6 and 2.9 times. Secondly, 

we see that A* achieves slightly higher speedups then the GA and PSO except for 

P1, where the GA and PSO obtain also the same values. Also, it is shown that GA 

achieves slightly higher speedups then PSO for P2 and P3. This result was expected, 

since the cost values (F1) given in Tables 6.1, 6.2, 6.3 and 6.4 are related to the 

completion time of the AOPs and they have almost the same characteristic as the 

speedup values in Table 5.6. 

We deduce from Table 5.6 two main results. Firstly, properly assignment of aspects 

improves the performance of a distributed AOP.  Experimental result show that the 

proposed algorithms can speed up the AOPs between 1.6 and 2.9 times. Secondly, 

we see that A* achieves slightly higher speedups then the GA and PSO except for 

P1, where the GA and PSO obtain also the same values. Also, it is shown that GA 

achieves slightly higher speedups then PSO for P2 and P3. This result was expected, 

since the cost values (F1) given in Tables 6.1, 6.2, 6.3 and 6.4 are related to the 

completion time of the AOPs and they have almost the same characteristic as the 

speedup values in Table 5.6. 

We run our aspect copy assignment algorithm for the results of three algorithms. 

Results are given in Table 5.7, 5.8, and 5.9. 

 

 

Table 5.6: Speedup of programs using proposed algorithms relative to random 

assignment  
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# of 

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 0 1690 6287 0 1690 6287 0 1690 6287 

2 4 1063 3822 4 1063 3822 4 1063 3822 

3 0 1713 6378 0 1713 6378 0 1713 6378 

4 2 1568 5891 2 1568 5891 2 1568 5891 

5 4 923 2538 4 923 2538 4 923 2538 

6 6 806 3143 6 806 3143 6 806 3143 

7 0 1427 5194 0 1427 5194 0 1427 5194 

8 1 1568 5908 1 1568 5908 1 1568 5908 

9 6 729 2264 6 729 2264 6 729 2264 

10 0 1354 5307 0 1354 5307 0 1354 5307 

# of 

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 0 6246 29085 3 5696 25474 4 5957 26747 

2 0 6563 30585 3 5946 26040 3 6164 26532 

3 1 6006 25947 2 6045 25628 3 5963 25202 

4 0 7100 32391 2 6467 28617 2 6744 29897 

5 6 4967 17642 3 5372 23489 4 5297 23477 

6 0 5397 21439 1 5237 21337 2 5092 21418 

7 9 3657 14660 6 4405 19102 6 4591 19868 

8 0 6127 28620 4 4471 17984 6 4287 16751 

9 0 6019 27461 7 4310 18597 7 4740 20152 

10 7 3737 16869 4 4992 21780 2 5856 25358 

# of 

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 0 12078 57378 3 12018 54474 3 12603 57638 

2 1 12085 56246 3 11482 52337 4 12049 55159 

3 0 12871 63270 4 12349 56348 3 13243 60150 

4 6 10457 47754 3 12509 56545 3 13086 59191 

5 1 11364 53185 3 11615 52415 3 12269 54853 

6 0 12346 59445 3 12326 56551 3 12983 59822 

7 4 10035 45502 6 9980 44453 6 10683 48133 

8 0 12741 58318 4 11481 52291 3 12556 57546 

9 0 13734 65334 5 12160 55858 4 13151 60354 

10 5 10946 51161 3 12207 55660 4 12724 58216 

Table 5.7: Obtained cost values of aspect copy assignment algorithm on a fully 

connected distributed system for P1 

Table 5.8: Obtained cost values of aspect copy assignment algorithm on a fully 

connected distributed system for P2 

Table 5.9: Obtained cost values of aspect copy assignment algorithm on a fully 

connected distributed system for P3 
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Since both of the algorithms find the same assignments for P1, results indicated from 

Table 5.7 for each of the algorithm are identical. On the other hand, for P2 and P3, 

more copies of aspects are used for the assignments of GA and PSO than the 

assignments of A*. Therefore, the cost values obtained for GA and PSO are less than 

the cost values obtained for A*. It is obvious that using more copies of aspects 

results in decreasing the cost values. Because, using copies of aspects reduces the 

communication costs. On the other hand, aspect execution costs are increased by 

using copies of aspects, however, since communications costs are higher than 

execution costs, overall cost values decrease up to a certain level. 

5.2 Partially Connected Distributed System 

The experiments on partially connected distributed system show that algorithms 

cannot be able to find any solution. They were able to find a solution only with three 

datasets for P1. This can be explained as follows. The aspects are used by the objects 

where the locations of the objects are fixed and predetermined according to their 

specific jobs. So, there must be a communication link between the hosts that the 

objects are located and the hosts that the aspects are assigned. Since each aspect is 

used by many objects, algorithms cannot be able to find any host for aspects that the 

communications can be done properly. 

To be able to find a result on a partially connected distributed system we add virtual 

links between hosts where there are no links actually. To make it sense, we set the 

communication cost for these virtual links to very high value, for example 1000000. 

Since the results have to use at least one of the virtual links, obtained cost values are 

over 1000000 expectedly. 

We run our aspect copy assignment algorithm for the results of three algorithms on a 

partially connected distributed system. Results are given in Table 5.10, 5.11, and 

5.12. Since we use one or more copies of aspects, the obtained cost values (F1 and 

F2) decrease drastically. It is obvious that after using the copies of aspects, there is 

no longer need to use virtual links. 
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# of 

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 5 1788 3821 5 1788 3788 5 1788 3821 

2 10 665 1709 10 665 1709 10 665 1712 

3 8 594 1796 8 594 1796 8 594 1796 

4 8 772 2254 8 772 2254 8 772 2254 

5 12 496 2056 12 496 2056 12 496 2056 

6 11 543 2021 11 543 2021 11 543 2021 

7 10 471 1653 10 471 1653 10 471 1653 

8 10 1526 3246 10 1526 3246 10 1526 3246 

9 7 287 988 7 307 985 7 287 988 

10 9 703 1798 9 703 1798 9 703 1798 

# of 

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 14 2654 10258 14 2649 10506 14 2717 11361 

2 16 2193 8714 17 2182 8900 17 2323 9342 

3 11 3797 11675 11 3470 12030 12 3780 12760 

4 16 3448 11083 16 3397 11233 17 3434 10799 

5 15 1960 8964 15 2160 9602 15 2247 9701 

6 13 2866 9323 13 3202 9959 12 3141 10157 

7 18 1446 6170 18 1449 6166 18 1459 6078 

8 12 3546 12179 13 3128 11712 14 3459 12189 

9 10 3032 10072 13 2873 9516 14 2587 9089 

10 14 3404 12488 14 3337 12199 15 3152 11528 

# of  

DS 

A* GA PSO 

# of 

copy 

F1 F2 # of 

copy 

F1 F2 # of 

copy 

F1 F2 

1 20 6813 23127 20 7310 23385 22 7197 23173 

2 19 5552 25490 18 5670 25620 18 5646 25069 

3 21 4712 20906 21 5487 22818 20 5607 22465 

4 20 5338 24446 21 5616 24378 21 5619 23973 

5 26 6062 22871 28 5236 21671 27 5200 21911 

6 31 3814 18019 26 4672 21059 25 4562 20690 

7 19 6568 25716 19 6331 24901 19 6966 2487 

8 25 6207 22086 23 6583 22576 23 6464 22458 

9 18 6352 27527 21 5348 23978 21 5457 24130 

10 24 4356 19486 24 5236 22422 23 5050 21438 

Table 5.10: Obtained cost values of aspect copy assignment algorithm on a partially  

 connected distributed system for P1 

Table 5.11: Obtained cost values of aspect copy assignment algorithm on a partially  

 connected distributed system for P2 

Table 5.12: Obtained cost values of aspect copy assignment algorithm on a partially  

 connected distributed system for P3 
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Results in Tables 5.10, 5.11, and 5.12 indicate that using copies of aspects on a 

partially connected distributed system shows same characteristic as using on fully 

connected distributed system. However, in this case nearly the same number of 

copies of aspects is used for both of the algorithms. Results show that the cost values 

obtained for A* is smaller than the cost values obtained for GA and PSO in most 

cases for P2 and P3. This is expected because A* produces better results than GA 

and PSO for P2 and P3. Similarly, the cost values obtained for GA is smaller than 

the cost values obtained for PSO as expected. 
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6.  CONCLUSION AND FUTURE WORK 

In this thesis, we first formulate the aspect assignment problem for distributed AOP. 

During this formulation, we consider properties of heterogeneous distributed systems 

and distributed AOPs, such as processing capabilities of hosts, delays of 

communication links, amount of transferred data between objects and related aspects.  

Then we propose there different algorithms to solve this problem. One of these 

algorithms is A* algorithm which is based on best-first search technique, the second 

one GA which is based on the laws of natural evolution and the third one is PSO 

which is inspired by the social behavior of organisms such as bird flocking or fish 

schooling. We improved these algorithms by adding the feature of cloning necessary 

aspects. Without cloning feature sometimes, it is not possible to find a solution for 

partially connected systems, because locations of objects are predetermined and 

fixed. This feature also decreases the communication cost in the system. 

Experimental results show that the proposed algorithms have their own advantages 

and disadvantages compared to each other. Firstly, we noticed that the A* algorithm 

obtained the optimal assignments for each of the programs with all datasets we used. 

On the other hand, the GA and PSO found the optimal assignments for small sized 

programs and sub-optimal solutions if the size of the programs increased. Secondly, 

the solution time for A* algorithm is considerably shorter than GA and PSO when 

the search space is smaller. However, the duration of the A* algorithm increases with 

the growth of the search space very fast and GA and PSO perform better. When we 

compare GA and PSO, the results show that GA achieves a bit smaller cost values 

than PSO for big sized programs. However, PSO proposes a solution 10 times faster 

than the GA for all of the programs. 

To evaluate proposed algorithms and examine the effect of assignment of aspects on 

the speed of the AOPs, we distributed aspects in four different ways, namely 

according to A*, GA, PSO and randomly. Then we compared the completion time of 

the AOPs under different aspect assignments. The simulation results indicate that 

properly assignment of aspects can speed up the AOPs between 1.6 and 2.9 times. 
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We also see that A* provides approximately 10% higher speedups then the GA and 

PSO for relatively larger programs. In conclusion, properly assignment of aspects 

improves performance of the distributed AOPs, and because it’s shorter response 

times the proposed PSO can be preferred to solve this assignment problem.  

A further study can be carried out to find a solution for aspect assignment problem 

on multicore systems. Different from the distributed systems, multicore systems have 

a number of tightly connected cores using level one and two caches. Each core has 

its own level one cache. Level two cache is shared between the cores of processor. 

The way of distributing aspects over the cores can affect the performance of the 

program. Since caches are used frequently in systems and have limited capacity there 

is a need to propose new algorithms for aspect assignment problem on multicore 

systems. 

Dynamic aspect assignment can be also performed as a further study. In static aspect 

assignment, an initial assignment of aspects is computed and this assignment is used 

for the duration of the program execution. However, in the case of dynamic aspect 

assignment, the process of assignment is done continuously over time. These types of 

assignments are quite difficult because it is necessary to find a proper assignment 

very quickly to respond to new information. 
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